

Learning Embedded Systems

with MSP430 FRAM

Microcontrollers

MSP430FR5994 with Code

Composer Studio

Second edition

January 2023

Byul Hur

MSP430, MSP432, Code Composer Studio, E2E, EnergyTrace, Launchpad,

BoosterPack, Simplelink,

 Tiva, TivaWare, EnergyTrace, C2000, TMS320, and Sitara are trademarks

of Texas Instruments.

Arm, Cortex, Keil, and Thumb are registered trademarks of Arm Limited (or its

subsidiaries)

 in the US and/or elsewhere.

IAR Embedded Workbench is a trademark of IAR Systems.

PIC and AVR are registered trademarks of Microchip in the U.S.A. and other

countries.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

BeagleBone and BeagleBoard are trademarks of BeagleBoard.org Foundation.

TERASIC is a trademark of Terasic Technologies.

Windows is a registered trademark of Microsoft Corporation.

Mac, macOS, and OS X are trademarks of Apple Inc., registered in the U.S. and

other

 countries and regions.

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries.

Android is a trademark of Google LLC.

All other product or service names mentioned herein are the trademarks of their

respective

 owners. Instead of putting a trademark symbol after every trade-marked

name and to

 benefit the trademark owner, we use names in an editorial fashion only

with no intention

 of infringement of the trademark. While the author and publisher of this

book have

 used their best efforts in preparing this book, they make no

representation or warranty

 of any kind, expressed or implied, with regard to the contents of this

book including

 hardware connection diagrams, schematics, and programs. The author

and publisher shall

 not be liable in any event for incidental or consequential damage in

connection with,

 or arising out of, the use of the contents of this book including hardware

connection

 diagrams, schematics, and programs.

Copyright © 2023 by Byul Hur

All Right Reserved. No portion of this book may be reproduced or used in any

manner

 without the prior written permission of the copyright owner except, as

permitted by

 U.S. copyright law. For contact information, visit the web page at

www.rftestgroup.com/books

Library of Congress Control Number: 2023900461

ISBN: 979-8-9868278-6-5

The paperback versions, ISBNs: 979-8-9868278-7-2 and 979-8-9868278-5-8,

also contain

 the materials that appeared in this eBook.

Preface

This book is the complied materials that I have used in

embedded system education

 over several years. This book is suitable for a

textbook or support materials for

 an embedded system course or microcontroller

application course. The target audiences

 of this book include undergraduate engineering

students and readers who already have

 similar prior knowledge.

This is the second edition published in January 2023. The

first edition of this book

 was published in August 2022. There were prior

published books related to MSP432P401R

 MCUs. This book contains the materials that were

reused [1]. The contents of this

 second edition were revised and customized for

MSP430FR59xx MCUs.

This book covers basics including MSP430™, GPIO, timers,

display, interrupt, and ADC.

 Moreover, this book covers topics of software

architectures, PWM, motor control, serial

 communications, TI Driver library, TI-RTOS, Power

management, and embedded system

 security.

An MSP430 IC (Integrated circuit) is a microcontroller unit

(MCU) introduced by Texas

 Instruments™ (TI). The CPU (Central Processing

unit) of this MCU is TI’s 16-bit RISC

 (Reduced Instruction Set Computer).

There are several MSP430 IC models available. These

MSP430 devices include MSP430FR2xxx

 and MSP430FR5xxx devices based on FRAM

(Ferroelectric Random Access Memory) technology.

 The FRAM technology applied to MSP430 devices

can offer several advantages such as

 high endurance and fast writing speed.

In this book, we will learn about an MSP430FR5994 MCU.

This MSP430FR5994 MCU is one

 of the MSP430FR59xx devices. After studying this

platform, readers can continue to

 study and use other TI MSP430 microcontrollers.

In order to study this MSP430 model, an MSP430FR5994

LaunchPad™ Development Kit is

 used in this book, which is an MSP-EXP430FR5994

Launchpad. This MSP-EXP432P401R Launchpad

 board is a low-cost development platform based

on the MSP430FR5994 MCU.

The integrated development environment (IDE) primarily

used in this book is Code Composer

 Studio™. The Code Composer Studio supports TI

MCUs including this MSP430FR5994 MCU.

 As of today, the latest version of the Code

Composer Studio is 12. In this version,

 TI does not charge license fees for Code Composer

Studio. Users/Developers can download

 the set-up file and install the IDE software on their

PC, Mac®, or Linux machines.

This book can be used as educational materials for an

embedded system course. In order

 to be effective in teaching embedded systems as

an educational course, it is recommended

 to have hands-on laboratory sessions as well as

lecture sessions. This hands-on learning

 approach can help students understand the

materials in this book.

If you have adopted, used, or listed this book as an

educational resource, or used

 as a part of educational activities, please, feel free

to contact the author and share

 your educational experience associated with this

book. For the educators who need

 resources for lectures, you can contact the author

by visiting the website. The contact

 information is posted on the website:

www.rftestgroup.com/books

If you have any comments or questions, please, do not

hesitate to contact the author.

 I hope this book can be used as a good resource

helping you learn about embedded systems.

Acknowledgment

I would like to express my appreciation to many people who

have been supporting me

 in many ways in academia. I have been learning a

lot of aspects as I work and teach

 in a higher educational environment. I am thankful

for all those who have shown kindness

 through the journey in academia.

I am sincerely grateful to all of my family. Particularly, I

would like to show my

 appreciation to Ms. Bongnou Jun, Mrs. Soohee

Park, Mrs. Elisa Hur, and Ms. Erin Hur.

I would like to acknowledge current and former teaching

assistants and graders. Moreover,

 I would like to thank my students who have given

me insights into engineering education.

Above all, I am deeply grateful to God the Father, God the

Son, and God the Holy Spirit.

 I have dedicated my life to Him. I am thankful for

the delicate guidance and care

 including this book publication journey.

Contents

Chapter 1. Introduction

Chapter 2. Development Tools

Chapter 3. MSP430FR5994 architecture

Chapter 4. Assembly Language

Chapter 5. General-Purpose I/O

Chapter 6. Register level C/C++ programming

Chapter 7. Timer basics

Chapter 8. Interrupt

Chapter 9. Display

Chapter 10. Analog to Digital Converter

Chapter 11. ADC Applications

Chapter 12. Embedded Software Architectures

Chapter 13. Pulse Width Modulation

Chapter 14. DC Motor Control

Chapter 15. Servo Motor

Chapter 16. Basics of Serial Communications and UART

Chapter 17. RS-232, RS-485, and USB

Chapter 18. Serial Peripheral Interface (SPI)

Chapter 19. Inter-integrated Circuit (I2C)

Chapter 20. Time Measurement

Chapter 21. Wireless Modules

Chapter 22. Embedded System Integration

Chapter 23. Driver Library

Chapter 24. Introduction to TI-RTOS

Chapter 25. Open-Source Electronics Development Platform

Chapter 26. Power Management Considerations

Chapter 27. Embedded System Security

Chapter 28. Educational Embedded Linux System Platforms

Appendix A. Basic Digital Logic Circuits

Appendix B. Basic Verilog Hardware Description Language

Appendix C. Memory-Mapped I/O

Appendix D. C/C++ Data Types

References

Chapter 1. Introduction

Embedded systems can be easily found in our modern lives,

and there are many applications

 of embedded systems for home or industrial uses.

The core components in these embedded

 systems are microcontrollers and microprocessors.

In Chapter 1, we will learn about

 the differences between microcontrollers and

microprocessors. Next, Texas Instruments™

 (TI) microcontrollers including an MSP430FR5994

will be introduced.

For the development of microcontroller applications, an

Integrated Development Environment

 (IDE) is a useful tool. There are several IDEs that

can be used in developing an MSP430FR5994

 microcontroller application. In this chapter, a TI

Code Composer Studio IDE will be

 introduced.

What is a Microcontroller?

A microcontroller unit (MCU) is typically a small sized

integrated circuit (IC) that

 is used for specific operations in an embedded

system. There are several components

 that are commonly found in a microcontroller unit.

Let us examine these components.

 Typically, a microcontroller unit includes a

component of a Central Processing Unit

 (CPU). This CPU can process digital arithmetic and

logical calculations, and the CPU

 can access the data in registers and memory

devices.

Memory devices can be a component of a microcontroller

unit. The memory devices can

 be categorized into Read Only Memory (ROM) or

Random Access Memory (RAM). ROM typically

 contains permanent or semi-permeant data. For

instance, a program such as boot firmware

 can be stored in this ROM memory. RAM is a

memory that can read or store data. One

 of the examples is to use this RAM memory as a

part of stack memory. The stack memory

 is a computer memory that can store various

temporary variables created by functions

 and programs.

One of the useful peripherals in microcontrollers is a

General-Purpose Input and Output

 (GPIO). GPIO is a component that can generate a

digital output signal to an external

 pin or read a digital signal from an external pin.

This GPIO is a useful component

 in microcontroller applications.

Another typical component is a timer. Timers can be used

for multiple purposes. The

 primary application of the timer is a digital counter

that is capable of counting

 up or down. It is also common to find a special

timer called watchdog timer. This

 watchdog timer can trigger a system reset process

if a program is in a certain hardware

 or software failure condition.

In computing, it is typical to find the situation where the

execution of a main program

 is paused, and the system needs to run a different

program routine, if there is an

 internal or external request. This request can be

processed by an interrupt controller.

 This interrupt controller is a common component in

microcontrollers.

For input signals, a signal type at the external pin of

microcontrollers can be analog

 instead of digital. These analog signals can be

converted to digital signals using

 an Analog to Digital Converter (ADC). Once the

conversion is completed, the CPU can

 process the digital data or store the data in

registers and memory devices.

For output signals, a signal type through an external pin can

be analog instead of

 digital. In this case, a Digital Analog Converter

(DAC) can be used. A DAC can generate

 various voltage levels of analog signals.

The internal data stored in MCUs may need to be exchanged

with an external device.

 In order for this communication, serial

communication components can be used in

microcontrollers.

 A serial communication component can be used in

exchanging serial digital data between

 a microcontroller and an external device.

Clock signals in digital circuits are signals oscillating

between high and low states.

 These signals can be used in synchronizing digital

components. Clock signals can be

 provided by an oscillatory circuit component. For

MCUs, it is typical to support multiple

 clock sources through internal and external

oscillators.

In general, a typical microcontroller may have these

common components mentioned earlier.

 In addition to these components for some

microcontroller models, they have specialized

 components such as USB/ethernet/wireless

communication modules, and precision ADCs.

For application developers, they need to choose a proper

microcontroller that meets

 the needs of their applications. They may need to

understand the functions that the

 microcontroller offers. For an embedded system

development, the choice of a microcontroller

 is an important step, and it involves the

understanding of the scope and specification

 of the given embedded system project. The scope

of the embedded systems may vary depending

 on projects, but, for a simple embedded system

project, a decent microcontroller with

 a few external components could satisfy the needs

of the desired project scope and

 the specification.

Microcontroller/Microprocessor

Microcontrollers have been commonly used in embedded

systems. How about microprocessors?

 Can we implement an embedded system using a

microprocessor? The answer is positive.

 The embedded system can be built using a

microprocessor, and it can be considered

 as a microprocessor application or a

microprocessor-based system. In order to understand

 the differences, block diagrams of a simplified

microprocessor-based system and a

 microcontroller shown in Figure 1.1. The upper

portion of Figure 1.1 shows a microprocessor-based

 system. This is a system with ROM, RAM, I/O port,

timer, and ADC. A microprocessor

 is used, and it can be found on the upper left side.

In order to make this system

 function properly, it is typically to use additional

external components. For instance,

 the system may need an external RAM memory IC

and an external ADC IC. This microprocessor

 and the external components are connected using

data bus and address bus lines. These

 components can be mounted on a PCB (Printed

Circuit Board). For instance, an assembled

 PCB with a microprocessor and the external

components such as memory ICs can be considered

 as a microprocessor-based system, and it can be

used as a part of an embedded system.

Figure 1.1. Microprocessor-based system and

Microcontroller.

On the other hand, the lower portion of Figure 1.1 shows a

microcontroller with similar

 components that we previously described in a

microprocessor-based system. The difference

 is that all of the components shown in the grayed

box are integrated on a single chip.

 This one chip contains various components, and it

can provide multiple functions.

 It can be a part of an embedded system. By using

a microcontroller, a developer may

 need less effort and needs a smaller number of

external components in creating an

 application of embedded systems. Moreover, it can

make the size of an embedded system

 compact. This is a benefit of choosing a

microcontroller.

However, in general, microcontrollers may not be suitable

for a system that requires

 fast and highly complex computations. This is

partially because a microcontroller

 typically has a limited small memory space, and it

might not be suitable to handle

 tasks that need a large memory space and fast

computing speed. If a developer needs

 to build a system that requires processing highly

complex tasks, a microprocessor-based

 system might be a reasonable choice.

16-bit/32-bit Microcontrollers

For some applications of embedded systems, a reasonable

choice of microcontroller

 models can be 16-bit microcontrollers and 32-bit

microcontrollers. Depending on the

 application, developers can choose high-end

microprocessors such as 64-bit microprocessors

 or low-end microcontrollers such as 8-bit

microcontrollers. In this chapter, let

 us examine and compare 16-bit and 32-bit

microcontrollers.

The number of bits is associated with the primary

instruction length of a CPU. Typically,

 a 32-bit instruction may represent a bigger integer

number than a 16-bit instruction.

 Moreover, the number of the bits is also related to

the widths of data bus, address

 bus, and registers. However, for some

architectures, this number of bits does not

 necessarily match with the widths of data bus,

address bus, or registers. For instance,

 there can be an architecture that uses more bits

for address bus than the number of

 bits of registers or data bus.

In general, a 32-bit microcontroller can process a bigger

integer number per instruction

 cycle than a 16-bit microcontroller. And a 32-bit

microcontroller has more widths

 of data bus, address bus, and registers than a 16-

bit microcontroller. For a wide

 range of low-cost embedded systems, 16-bit

microcontrollers are suitable. For better

 performance or for complex systems, 32-bit

microcontrollers can be used in applications

 of embedded systems.

There are many IC manufacturers providing various 16-bit

and 32-bit microcontroller

 models. For instance, Microchip®

(https://www.microchip.com) provides 16-bit and 32-bit

microcontroller units (MCUs).

 For 16-bit MCUs, there are 16-bit PIC® MCUs. For

32-bit MCUs, there are Arm® Cortex® and MIPS based MCUs.

Moreover, NXP® semiconductors (https://www.nxp.com)

provides Arm processor based MCUs.

Texas Instruments™ (TI) provides 16-bit and 32 MCUs. Some

of the MCU models are shown

 in Table 1.1. For 16-bit TI MCUs, there are many

MSP430™ MCU models. These MSP430

 MCUs are low power MCUs, and they are suitable

for many applications of embedded systems.

 The CPU architecture is simple to understand, and

these MCUs are based on a TI proprietary

 architecture. Although the CPU architecture is not

fully disclosed, the manufacturer

 provides technical documentations to assist

developers to understand how the microcontroller

 functions.

MSP430™

MCUs

Arm®-based

MCUs

C2000™

MCUs

Wireless

connectivity

MCUs

Feature

s

TI proprietary

Arm-based

TI proprietary

Wireless Arm-

based or

16-bit MCUs

Ultra-low

power

32-bit MCUs

32-bit MCUs or

Arm-based 32-

bit MCUs

TI proprietary

MCUs

Models

MSP430x2xxx

MSP430x4xxx

MSP430x5xxx

MSP430x6xxx

TM4Cxxx

MSP432Pxxx

MSP432Exxx

TMS320xxxx

CC1xxx

CC2xxx

CC3xxx

RF430xxxxx

Table 1.1. TI microcontrollers.

For 32-bit MCUs, TI has MCUs that are based on Arm Cortex-

M cores and TI peripherals.

 For instance, TM4C123x and TM4C129x

microcontrollers are based on Arm® Cortex-M4F cores.

Moreover, there are TI’s 32-bit MCUs that are digital signal

processors

 (DSPs) optimized for real-time control applications.

They are C2000™ MUCs, and they

 can be used in automotive and industrial

applications.

Developers can add wireless communication capability to

their embedded system projects.

 For the wireless connectivity, there are several

low-power wireless microcontrollers.

 The wireless technologies include Bluetooth®,

WiFi®, Zigbee®, and Near-field communication (NFC).

Developers can switch the MCU as it is desired. A portion of

the program or entire

 program developed for a specific MCU model can

be reused in other MCU models. However,

 this complexity of the conversion process may

vary depending on the combination of

 the MCU models, as it can be simple and

straightforward, or it can be highly complex

 or even impossible to implement certain functions

to the other MCU models.

Low-power Microcontrollers

Some applications of embedded systems are battery

operated. The operating time of

 these systems is relevant to the use of energy. In

order to increase the operating

 time, there can be several efforts, and they include

the choice of a low-power microcontroller

 and the use of low-power modes efficiently.

Moreover, even for some applications of

 embedded systems that are not battery operated,

there can be a need to reduce energy

 consumption.

MSP430 MCUs support low-power management techniques,

and the MCUs offer several lower

 power modes. For example, two specific MSP430

MCU models are selected to show the

 active and low power modes of operation. One of

them is MSP430FR5994 and the other

 one is MSP430F5529. The information related to

power consumption is shown in Table

 1.2.

MSP430FR5994

(MSP43FR59xx)

MSP430F5529

(MSP430F55xx)

Core TI proprietary 16-bit core TI proprietary 16-bit core

Active Mode

Current

1225 µA at 1 MHz (3.0 V)

(1Unified memory, FRAM

memory execution)

2360 µA at 1 MHz (3.0 V)

(2PMMCOREV0, Flash

memory execution)

Low-power Mode

4 (LPM4) Current

30.6 µA (3.0 V)

(3Including SVS, 25 °C)

41.4 µA (3.0 V)

(4PMMCOREV0, 25 °C)

Table 1.2. Power comparison between selected MSP430

MCUs [2][3].

In active mode, both MCUs have already shown relatively

low current consumption. To

 further reduce the power consumption, these

MCUs can be controlled to be in low mode.

 The table shows the current consumptions when

they are in active or low power modes.

 In a lower-power mode 4, both of the MSP430

MCUs have shown that the power consumption

 is very low.

Developers may need to understand and measure the

power consumption of their embedded

 systems. If the system is a battery application, it is

more important because it is

 related to the system life expectancy. Using the

MSP430FR5994 Launchpad board and

 the Code Composer Studio, developers can

measure the MCU current consumption easterly

 using EnergyTrace Technology.

Integrated Development Environment

(IDE)

In order to test and debug a microcontroller, various

development software packages

 need to be installed and used. The manual

installation and configuration of several

 necessary software packages can be complicated.

In this reason, an integrated development

 environment (IDE) can be used to make the

system development easy. An IDE may contain

 headers, library files, program templates, and

plug-in files that are needed to build

 microcontroller and microprocessor applications.

Moreover, an IDE typically provides

 a user-friendly GUI (Graphical User Interface).

There are several IDEs that can be used for the

development of MSP430 applications.

 The summary of the IDEs is shown in Table 1.3.

Texas Instruments provides an IDE called

 Code Composer Studio. This Code Composer

Studio (CCS) supports a wide range of TI’s

 MCUs. It is optimized with C/C++ compilers. As of

January 2023, the latest version

 is 12. In this book, the CCS version 12 is used.

Code Composer Studio provides large amounts of resources

and libraries without a charge.

 However, if the developers want to create a

commercial product, it is recommended

 to carefully examine the license agreement of

Code Composer Studio and libraries that

 are used in their programs.

Texas Instruments IAR Systems

Program Code Composer Studio
IAR Embedded

Workbench

License

Full function

No license fee

32 kB code size limit

Upgradable

Compiler TI C/C++ IAR C/C++

Table 1.3. Software Development Packages for MSP430.

IAR systems® (https://www.iar.com) provides an IDE that

supports TI MCUs and processors. This

 IDE is called IAR embedded workbench®. It also

supports MSP430 MCUs. IAR systems provides a fully

functional license for

 a limited time, or a code size-limited kick start

license without the time limit.

For many simple educational or small-scale embedded

systems projects, code size limited

 IDEs may work well. When the developers need to

unlock the code size limit for complex

 projects, the license can be purchased later for full

functionality.

For programs in this book, they were created and tested

based on the Code Composer

 Studio IDE. These programs do not necessarily

work under other IDE environments.

Chapter 2. Development Tools

To provide technical support and resources, MCU

manufacturers often provide evaluation

 modules, boards, and kits for their MCUs, and

developers can build their functional

 prototypes using these kits. These hardware

boards are also called development boards

 (or dev. boards). The cost of these development

boards depends on many factors, and

 the cost may vary depending on the MCU models.

In many cases, it is necessary to purchase

 an additional JTAG programming tool to load and

debug programs.

Texas Instruments (TI) has introduced Launchpad™ boards,

and they are affordable development

 kits based on selected TI MCUs. Launchpad boards

have BoosterPack™ headers. There

 are various pre-assembled BoosterPack plug-in

modules. Users can easily expand the

 functions of their systems by adding stackable

BoosterPack plug-in modules to their

 Launchpad boards.

MSP430 ICs are microcontroller units (MCUs) introduced by

Texas Instruments, and there

 is a wide selection of MSP430 MCU models. One of

the MSP430 MCU groups is an MSP430

 FRAM family. In this chapter, several

MSP430FR2xxx and MSP430FR5xxx MCUs will be

introduced.

 In addition, we will look into Code Composer

Studio IDE and run a test program using

 an MSP430FR5994 Launchpad.

FRAM MCUs

FRAM stands for Ferroelectric Random-Access. It is a non-

volatile memory. MSP430 FRAM

 MCUs are integrated with technologies of MSP430

and FRAM. These MSP430 FRAM MCUs may

 have several advantages over Flash memory

based MSP430 MCUs.

For Speed, FRAM write speed can be faster compared to the

write speed of Flash or

 EEPROM memory. Moreover, for Power

consumption, FRAM cells can be operated in a low

 voltage, and they may need low current in

changing the data. Furthermore, for Data

 reliability, FRAM memory can endure a higher

number of read and write cycles.

MSP430 FRAM MCUs can be used in many applications, and

they are particularly useful,

 for instance, in the data logging, remote sensing,

and low-power battery applications

 where they need to endure a large number of read

and write operations and need to

 make the energy consumption very low.

MSP430FR2311 Launchpad Overview

There is a group of MSP430FR23xx MCUs. An

MSP430FR2311 MCU is one of these MSP430FR23xx

 MCUs. In addition to the advantages of FRAM

technology, a transimpedance amplifier

 (TIA) is integrated with this MCU. This analog

module can provide a current-to-voltage

 conversion and good current response. A

Launchpad board based on this MSP430FR23xx

 MCU model is shown in Figure. 2.1. Specifically,

this is an MSP430FR2311 Launchpad

 board.

This MSP430FR2311 Launchpad board has 20-pin booster

pack header pins. This header

 configuration is defined by Texas Instruments.

There are various functional plug-in

 modules that are available and compatible with

this header configuration.

This Launchpad board can be powered through the

microUSB located at the top of Figure

 2.1. There is an isolation jumper block. They can

be used to isolate the connections

 between the on-board eZ-FET debug probe and the

MSP430FR2311 MCU.

Figure 2.1. MSP430FR2311 Launchpad board (MSP-

EXP430FR2311) [4].

There are two push buttons (S1 and S2) on the bottom side.

Moreover, there is one

 red LED (Light-emitting diode) (LED1) and one

green LED (LED2). Furthermore, a light

 sensor is placed on this Launchpad board.

MSP430FR2355 Launchpad Overview

An MSP430FR2355 MCU is also one of these MSP430FR23xx

MCUs. This MCU includes SAC

 modules. SAC stands for Smart Analog Combo, and

an SAC module includes integrated

 operational amplifier, programmable gain amplifier

(PGA), and DAC (Digital-Analog

 Converter) units. On this specific MCU, there are

four SAC modules. A picture of an

 MSP430FR2355 Launchpad board is shown in

Figure 2.2.

Figure 2.2. MSP430FR2355 Launchpad board (MSP-

EXP430FR2355) [5].

This Launchpad board has 40-pin booster pack header pins.

This header configuration

 is also defined by Texas Instruments. There are

various functional plug-in modules

 available and compatible with this header

configuration.

The power can be provided through the microUSB located at

the top of Figure 2.2. There

 is an isolation jumper block between the eZ-FET

debug probe and the MSP430FR2355 MCU.

There are two push buttons (S1 and S2) on the right and left

sides. Moreover, on this

 board, there are two LEDs and two buttons.

Moreover, a Grove connector is placed on

 this Launchpad board. This is a four-pin header

that can be used to connect to a Grove

 system. A grove system includes base units and

various Grove sensor modules by Seeed

 Studio®.

MSP430FR5969 Launchpad Overview

There is a group of MSP430FR59xx MCUs. An

MSP430FR5969 MCU is one of these MSP430FR59xx

 MCUs. While an MSP430FR2355 MCU includes a

32kB FRAM memory space, this MSP430FR5969

 MCU provides a bigger FRAM memory space of

64kB. A Launchpad board using this specific

 MCU is shown in Figure 2.3. The part number of

this Launchpad board is MSP-EXP430FR5969.

This Launchpad board has 20-pin booster pack header pins.

It also has two buttons

 and two LEDs. Moreover, a super capacitor is

placed on the board, which can be used

 to demonstrate very low power capabilities. The

super capacitor can be used to keep

 providing power to the Launchpad board, and the

board can be operated for a limited

 time, when an external power supply source is

removed or disconnected.

Figure 2.3. MSP430FR5969 Launchpad board (MSP-

EXP430FR5969) [6].

MSP430FR5994 Launchpad Overview

An MSP430FR5994 MCU is one of these MSP430FR59xx

MCUs. An MSP430FR5994 Launchpad development

 board is based on this MSP430FR5994 MCU. The

part number of this Launchpad board is

 MSP-EXP4305994. A picture of this MSP430FR5994

Launchpad board is shown in Figure

 2.4.

In this book, we will learn about an MSP430FR5994 MCU

using this model of the MSP430FR5994

 Launchpad board. In this book, this Launchpad

board can be referred to as an MSP430FR5994

 Launchpad board or simply an MSP430 Launchpad.

This Launchpad board has 40-pin booster pack header pins.

As mentioned, there are

 various functional plug-in modules that are

compatible with this header configuration.

A user can plug in a USB cable through the microUSB

located at the top of Figure 2.4.

 This micoUSB connection can provide power to the

MSP430FR5994 MCU and the on-board

 eZ-FET debug probe that is located at the top

portion of the board. There is an isolation

 jumper block that can be used to isolate the power

between the MSP430FR5994 MCU and

 the on-board eZ-FET debug probe.

This is a low-cost development board, and a user can debug

this board without an extra

 JTAG programming tool because this development

board has an on-board eZ-FET debug

 probe.

Figure 2.4. MSP430FR5994 Launchpad board (MSP-

EXP430FR5994) [7].

There are two push buttons (S1 and S2) on the bottom side,

and there are two LEDs,

 one red LED (LED1) and one green LED (LED2).

Moreover, there is a microSD card connector.

 On this Launchpad board, a super capacitor is

placed on the board, and this super

 capacitor can be used to provide power to the

board to operate it for a limited time

 without an external power supply.

For more details about this Launchpad board, readers can

obtain relevant resources

 visiting the TI’s web page:

https://www.ti.com/tool/MSP-EXP430FR5994

In this web page, readers may be able to access an

MS430FR5994 Launchpad Development

 Kit User’s Guide file [2]. This document contains

relevant information regarding this Launchpad board.

Code Composer Studio (CCS)

Code Composer studio is an IDE for TI microcontrollers and

microprocessors, which

 supports various TI MCU models. Code Composer

Studio was built based on an Eclipse

 open-source software framework. Users can take

advantage of the latest improvements

 of Eclipse, and TI provides useful resources,

libraries, and examples for the users

 through Code Composer Studio IDE. This IDE can

run under Windows, Mac®, and Linux machines.

CCS Download and Installation

The installation file of Code Compose Studio can be

downloaded via the web link:

https://www.ti.com/tool/download/CCSTUDIO

There are off-line installer and web (on-demand) installer

files. Users can choose

 either of them. During the installation process, you

may be prompted to select components

 as shown in Figure 2.5. It is up to the users to

choose any of these options. But,

 in order to support MSP430 MCUs, users need to

select the MSP430 component as shown

 in Figure 2.5. Additionally, users can select any

other components. You can review

 the list of the selected components. Then, you can

click the next button to continue

 the installation process.

Figure 2.5. Component selection for MSP430 MCUs.

Now, we will create a project and write a simple blink

program for an MSP430FR5994

 MCU. After successfully installation, you can run

Code Composer Studio. As shown in

 Figure 2.6, you can create a new CCS project.

Figure 2.6. Creating a New Project.

Next, you can see the screen as shown in Figure 2.7. You

can select a proper MCU model

 that is “MSP430FR5994”. For the project name,

“blink” is typed. But, users can enter

 any other favorite project name instead.

Figure 2.7. New CCS Project setup.

There are two project templates. You can choose “Empty

Project (with main.c).” You

 can click “Finish” icon. Next, you can see project

files that are created on the left

 side of the window of Code Composer Studio. You

can double click “main.c,” and you

 can edit this source file to write your own code.

LED Blink Program in C/C++

You can write your program by modifying the main.c file as

it was described in the earlier sub-section. You can type the

code shown

 in Program 2.1. This program is a simple LED blink

program.

In this program, the first line inside of main() is associated

with configuring a watchdog timer. The watchdog timer is

purposefully

 configured to be on hold. This is simply for an

educational purpose to make it easier

 for students to write programs easier to avoid

protection behaviors by the watchdog.

 In this book, the example programs were created

assuming that the watchdog timer is

 on hold. However, it would be typical and desired

to enable a watchdog timer for commercial

 products and professional programming in order to

manage basic fault conditions of

 hardware or software.

Program 2.1. LED Blink Test Program.

In the following code line, you can find this code as follows:

PM5CTL0 &= ~LOCKLPM5.

 This code can clear the LOCKLPM5 bit in PM5CTL0

register. This register configuration

 is applicable to specific MSP430 FRAM MCU models

such as an MSP430FR5994 MCU. When

 the MCU is started up, I/O pins may remain locked.

In order to be effective for the

 port register configuration, this LOCKLPM5 bit

needs to be cleared in PM5CTL0 register.

In the following line of code, you can find the code that can

configure a GPIO port.

 The GPIO direction is configured to be the output

for P1.0. A red LED (LED1) is internally

 connected to the P1.0. Next, the logical output of

this port is configured to be high.

Next, it shows a code block that is a “while” loop. In this

while loop, the value

 of this P1.0 gets toggled. Also, the system gets

delayed for a certain period of time.

 Thus, it will blink the red LED (LED1) with a

reasonable rate. If the program is running

 successfully, you can see a flashing red LED.

If the LED is not flashing, you can check whether the shunt

jumper (J7) for LED1 is

 placed properly or not. The shunt jumper for LED1

is supposed to be placed properly,

 and it is located close to the LED1. In Chapter 5,

we will learn more details about

 digital IOs.

BH EDU Board Kit

In order to build and learn about embedded systems,

learners would choose to obtain

 additional parts and kits to form a system for their

own experiments. In this book,

 we will learn about selected electronics parts and

how to use them such as an LCD

 module, an Accelerometer IC, and a motor driver

IC.

Figure 2.5. BH EDU board kit with an MSP430FR5994

(Version 2.1.x) [8].

In order to support embedded system educations, BH EDU

boards were developed. With

 additional parts, BH EDU kits were formed. These

kits can be used for lectures and

 laboratory sessions for users to conduct

experiments. A picture of a BH EDU board

 with an MSP430FR5994 Launchpad board is shown

in Figure 2.5. The details of this BH

 EDU board and TI BH EDU kit [8] can be found in

the web link:

https://github.com/bh-projects/TI-BH-EDU-board-kit

TI BH EDU kits can assist students’ experiential learning via

hands-on laboratory

 sessions. Learners can use these kits to build their

own educational embedded systems.

 For embedded system developers, it is important

to have a decent level of knowledge

 of analog/digital circuits and systems. It is

assumed that the users/readers already

 have prior knowledge of circuits and systems.

Basic digital logic circuits are introduced

 in Appendix A.

Readers can learn about MSP430 microcontrollers without

this kit. It is not essential

 to obtain this kit to study the materials described

in this book, since the circuit

 diagram and the generalized connection diagrams

are given in this book. Therefore,

 readers can obtain their own proper parts to

perform their relevant experiments as

 needed. However, readers may need to use the

same electronics parts or the electronics

 parts that are functionally equivalent components.

For instance, a specific model of an LCD component was

selected and used in this book.

 Some level of the knowledge can be common and

generic; however, any of the hardware

 connections and software programming portions

are not necessarily reusable in other

 LCD modules. If readers would choose to different

hardware components or connections,

 they would be conducting experiments at their

own risk and they would need to study

 and examine documentations from the

manufacturer carefully. Also, they would need

 to consult with the manufacturer for further

technical support.

While the author has prepared this book with his best effort,

it makes no representation

 or warranty of any kind with regard to the contents

of this book including hardware

 connection diagrams, schematics, and programs. It

is worth noting that the author

 shall not be liable in any event for incidental or

consequential damage in connection

 with the use of the contents of this book.

Chapter 3. MSP430FR5994

architecture

An MSP430FR5994 MCU is based on a 16-bit RISC (Reduced

Instruction Set Computer) architecture.

 The clock frequency can go up to 16 MHz. For the

MCU, it is acceptable to choose the

 supply voltage from 1.8 V to 3.6 V. In this book, we

choose to use the supply voltage

 is 3.3 V, and, in general, it is assumed that the

supply voltage to the MCU is 3.3V.

Pin Diagram of MSP430FR5994IPZ

Several package options are available for an MSP430FR5994

MCU model. The part number

 of the MCU IC on the Launchpad board is

MSP430FR5994IPN. The package is an 80-pin

 Low-profile quad flat package (LQFP). The pin

diagram of this MSP430FR5994IPN IC is

 shown in Figure 3.1.

Figure 3.1. MSP430FR5994IPN Pin Diagram [2].

The naming conventions are similar to typical MSP430

MCUs. The ports and pins are

 named Px.y. For instance, for the pin number of 4

in Figure 3.1, this pin is associated

 with P3.0. This is a general-purpose input/output

function, and this pin refers to

 the first bit (or bit 0) of Port 3. Moreover, this pin

can function as an analog input

 (A12), or it can function as a comparator input

(C12) after a proper port configuration.

 This means the multiple functions are shared

through this pin. Many other pins of

 this IC provide multiple functions.

The technical details of this MCU can be found in various

documents provided by the

 manufacturer. For instance, readers can download

and access the datasheet of an MSP430FR5994

 MCU [1]. As of January 2023, the revision D of the

datasheet released in 2021 is available

 to download from the Texas Instruments’ web

page. The manufacturer may release newer

 revisions, if needed. The datasheet and technical

documents can be found in the web

 link:

https://www.ti.com/product/MSP430FR5994

Functional Block Diagram

An MSP430FR5994 MCU has an internal 256 kB FRAM

memory and 8 kB SRAM memory space.

 The simplified functional block diagram is shown

Figure 3.2.

Figure 3.2. Simplified MSP430FR5994 Functional Block

Diagram [2].

A RAM block that includes FRAM and SRAM memory is

connected to address and data lines.

 Several peripheral module blocks are connected to

these address and data bus lines.

 For instance, a 12-bit ADC block is connected to

the address and data bus lines. eUSCI_Ax

 and e_USCI_Bx blocks are connected to these bus

lines. Moreover, Timer_Ax and Timer_B0

 general-purpose timer blocks are connected, and

clock system, watchdog timer, and

 voltage reference blocks are also connected. There

are several peripheral device blocks

 connected to these bus lines. There is a bus

control logic, and it is assumed that

 it can make the peripheral blocks and the CPU

(Central Processing Unit) work together

 properly. For the CPU, an MSP430X CPU is used as

shown on the left side in Figure

 3.2. Let us examine an MSP430X CPU in the

following sections.

MSP430X CPU Overview

The CPU that was implemented in an MSP430FR5994 MCU is

a TI proprietary 16-bit RISC

 processor. Specifically, it is an MSP430X CPU, which

can be simply referred to as

 CPUX. This MSP430X CPU is compatible with an

MSP430 CPU. An MSP430X CPU is a 16-bit

 processor, and it supports a 20-bit address bus.

An MSP430X CPU supports several methods to access the

memory address range that is

 higher than 64 KB. The MSP430X CPU provides

extended MSP430X instructions. They can

 give access to its 20-bit address space. These

extended MSP430X instructions can be

 used, when the capability of 16-bit address or data

length is limited or exceeded.

Figure 3.3. Simplified block diagram of a portion of an

MSP430X CPU [9].

A simplified block diagram of a portion of an MSP430X CPU

is shown in Figure 3.3.

 The CPUX includes 16 registers R0 to R15, and they

are connected to an ALU (Arithmetic-Logic

 Unit) through a control circuit. The control logic

represents a generalized circuit

 block. The ALU can perform relevant operations and

it can generate status bits including

 Z, C, V, and N. This ALU unit can process 16-bit data,

and it can process 20-bit data

 via extended MSP430X instructions.

For more information about the MSP430X CPU architecture,

users can examine various

 documents and resources including technical

documents provided by the manufacturer

 [9].

MSP430X Registers

There are 16 registers that are implemented in an MSP430X

CPU. Figure 3.4 shows these

 MSP430X registers. The registers R4 to R15 are

general-purpose registers. These 12

 registers can be used in storing and processing 8-

bit, 16-bit, or 20-bit data, and

 they can be used for general use. These general-

purpose registers support several

 formats including byte, word, and 20-bit data

formats.

Figure 3.4. MSP430X registers [9].

The registers R0 to R3 are special registers that are used for

dedicated functions.

 The register R0 serves as a program counter (PC).

This is a 20-bit program counter,

 and the value of the register may indicate the next

instruction to be fetched. For

 instance, during a reset sequence, the MCU can

load the value stored in the address

 of the reset vector and store it in the PC.

The registers R1 serves as a stack pointer (SP). This is a 20-

bit stack pointer, and

 it can be used to point to a proper stack memory

address to store return addresses

 when a subroutine or an interrupt is called.

The register R2 serves as a status register (SR). A detailed

description of the status

 register will be followed in the next sub-section.

This status register is a 16-bit

 register, and the remaining combinations are

related to a CG1 constant generator register.

 The register serves as a CG2 constant generator

register. An MSP430X CPU supports

 several commonly used constants using the CG1

and CG2 constant generator registers.

Status Register

The register R2 serves a dedicated function as a 16-bit

status register (SR). The

 status register (SR) contains important information

including the result status of

 an operation. Users should not write 20-bit values

to the status register as it could

 cause an unpredictable operation [9].

The status register (SR) bits are shown in Figure 3.5. The

first bit from the right

 is a Carry bit (C). This bit can be set when the

result of an operation generates

 a carry. The second bit from the right is a Zero bit

(Z). This bit can be set when

 the result of an operation is zero. The third bit from

the right is a Negative bit

 (N). This bit can be set when the result of an

operation is negative. The nineth bit

 from the right is an overflow bit (V). This bit can be

set when the result of an arithmetic

 operation causes an overflow. These C, Z, N, and V

status bits can be used in conditional

 jump instructions.

Figure 3.5. Status register bits [9].

The fourth bit from the right is the bit that can enable or

disable general interrupt. When this bit is set, the general

interrupt is enabled.

There are bits related to CPU OFF and OSC OFF functions.

These bits can be used in turning on or off oscillators and

CPU. Moreover,

 there are bits related to SCG0 and SCG1. These

bits can control clock generators in the clock system. The

combination of

 these bits is related to the low-power modes.

Memory Map

Table 3.1 shows the memory map for an MSP430FR5994

MCU. The address range from 0x04000

 to 0x43FFF is to access the 256kB FRAM. This is

the memory space where the user’s

 program can be stored. Moreover, in this FRAM

address range, interrupt vector information

 can be stored. Specifically, interrupt vector and

signature information are stored

 in 0x0FF80 to 0x0FFFF.

The address range from 0x01C00 to 0x3BFFF is used to

access the 8kB RAM. The device

 descriptor (TLV) information is stored in the

address range from 0x01A00 to 0x01AFF.

 TLV information includes ADC and REF calibration

data.

The address range from 0x00020 to 0x00FFF is used to

access peripherals. This address

 range is assigned for the access of peripheral

devices including Port 1~ Port 8, Timers,

 eUSCI_Ax, and eUSCI_Bx.

Address Range
Memory

Space
Description

0x00000 ~ 0x00009 Reserved

0x0000A ~ 0x0001F Tiny RAM

0x00020 ~ 0x00FFF Peripherals

0x01000 ~ 0x017FF ROM Bootloader (BSL) memory

0x01800 ~ 0x019FF FRAM Information memory

0x01A00 ~ 0x01AFF FRAM Device descriptor (TLV)

0x01C00 ~ 0x02BFF RAM

0x02C00 ~ 0x03BFF RAM
Shared with low-energy

accelerator

0x04000 ~ 0x43FFF FRAM

Code memory,

Interrupt vectors and signature

Table 3.1. Memory map (MSP430FR5994) [2].

The peripheral device can be accessed via the assigned

address range. The method of

 accessing peripheral devices is related to the

memory-mapped I/O. For reference, a

 general description of memory-mapped I/O

techniques is presented in Appendix C. Appendix

 C includes a control block that was designed using

a Verilog Hardware Description

 Language (HDL). A basic description of the Verilog

HDL is presented in Appendix B.

Chapter 4. Assembly Language

An executable object file can be created, and the executable

object file can be converted

 to a hex file. A linker can create the executable

object file from object files, and

 the object files can be created by an assembler

from assembly code. An executable

 hex file can be created from an assembly language

program, and this executable hex

 file can be processed to store an executable

program in an MSP430FR5994. As described,

 an assembly code is one of the methods to

generate an executable program for an MSP430FR5994

 MCU. In this chapter, MSP430X instructions and

assembly programs based on a TI compiler

 and Code Composer Studio IDE (Integrated

Development Environment) for an MSP430FR5994

 MCU will be introduced.

MSP430X Instructions and Assembly code

An MSP430FR5994 MCU has an MSP430X CPU that is a 16-

bit processor. This CPU supports

 a 20-bit address bus. An MSP430X CPU is

compatible with an MSP430 CPU. A brief introduction

 of MSP430X instructions and assembly program

examples are presented in this chapter.

 In an assembly source program, there are several

section definitions including “.text”,

 “.data”, and “.bss”.

For “.text” section, it contains executable code. For “.data”

section, it contains

 initialized data. For “.bss” section, it contains

uninitialized variables. The executable

 instructions will be stored in the “.text” section.

An operation code (opcode) is an instruction such as add.

An operand is a value or an argument. A double operand

instruction example is shown

 as follows:

 Instruction source, destination

An instruction can be chosen, and two operands can be

followed. In this double operand

 instruction, users may need to be familiar with the

order of the source operand and

 destination operand.

An assembly instruction example, shown in Assembly 4.1,

can add the values stored

 in two registers of R10 and R11. In this example,

the result of adding R11 and R10

 is to be written back to the register R10.

 Assembly 4.1. add.w R11, R10

An MSP430X CPU supports 8-bit and 16-bit operations. In

addition, it supports 20-bit

 operations. 8-bit data or byte handing operations

can be indicated using .b suffixes. 16-bit data or word

handling operations can be indicated using .w suffixes. For

instance, the .w suffix is added to the add instruction. If a

8-bit data operation is desired, .b suffixes can be used

instead. An 8-bit add instruction is add.b. If a suffix is

omitted in an assembly instruction, predefined/default bit

operation

 per assembly instruction would be selected and

processed. The default bit modes for

 assembly instructions can be found in the

technical documentation [9].

It is worth mentioning that users may need to be aware of

unused bits when the operations

 are mixed. For instance, let us say that the values

stored in R10 and R11 are 0x01234

 and 0x00001, respectively. For the word handling

operation such as the case shown

 in Assembly 4.1, the result is the value of 0x01235

in R10. However, if a byte handing

 is used instead such as add.b. The result is the

value of 0x00035 because higher bits are cleared. Users

may need

 to understand the behaviors of unused bits and

instructions. In this book, to make

 the operations clear, proper suffixes are used

where applicable.

An MSP430X CPU supports MSP430X extended instructions

for 20-bit operations. In the

 following sections, we will study byte or word

instructions that are compatible with

 an MSP430 CPU. For 20-bit operations, a brief

introduction of MSP430X extended instructions

 can be found in the latter portion of this chapter.

In the previous example, the values stored in two registers

were added. An immediate

 value can be used instead. An assembly

instruction example that can perform add operation

 of an immediate value of 12 and the value in R10

is shown in Assembly 4.2. The result

 is to be stored back in R10.

 Assembly 4.2. add .w #12, R10

Moreover, there are single operand instructions. As an

example, a push instruction is selected, and the example is

Assembly 4.3. In this example, the value

 of R10 will be pushed and the value is to be stored

in a stack memory space.

 Assembly 4.3. push.w R10

Selected arithmetic instructions are shown in Table 4.1. The

table includes add, subtract,

 increment, decrement, and arithmetic shift

operations. In addition to the MSP430X

 core instructions, emulated instructions are

available to make the code easier. Emulated

 instructions in the table are indicated by the

asterisk (*) symbol. Table 4.1 includes

 the instructions that can process addition or

subtraction operations. It also includes

 add and subtraction operations with a carry bit.

In addition to the binary computations, an MSP430X

provides a dadd instruction that can perform a decimal

addition operation. This is a base 10 addition.

 In some applications, BCD (Binary-Coded Decimal)

format can be useful. For instance,

 the BCD data format can be effective in handling

data for 7 segment displays or LCD

 (Liquid Crystal Display) displays.

There are instructions for increment or decrement

operations such as inc, incd, dec, and decd. As mentioned,

these instructions are indicated by the asterisk symbol, and

this

 means that they are emulated instructions. For

instance, if the following instruction:

 “inc.w R10” is used, the internal conversion by the

assembler or compiler can be “add.w

 #1, R10”.

Moreover, Table 4.1 includes the arithmetic shirt right or left.

For the shift right,

 the method of processing MSB (Most Significant

Bit) and Carry bit can differentiate

 between arithmetic and logical shift right

operations. For the shift left, this is

 an emulated instruction, and it doubles the value

in the register using an add instruction.

Table 4.1. Selected arithmetic MSP430X instructions

(*Emulated instructions) [9].

Selected logical instructions are shown in Table 4.2. Bitwise

logical AND, OR, XOR,

 and NOT operations can be performed using and,

bis, orr, and inv instructions, respectively. Moreover, the

operation that can selectively clear bits

 is useful. An MSP430X CPU provides a bic

instruction to clear bits selectively. Moreover, logical shift

right or left operations

 can be performed using rrc or rlc. The carry bit is

used in both cases of operations.

Table 4.2. Selected logical MSP430X instructions (*Emulated

instructions) [9].

Selected compare and branch instructions are shown in

Table 4.3. There are several

 instructions to perform compare operations. A

cmp instruction can be used to compare the values stored

in two registers. The status

 flags are to be updated on the result of the

subtract operation of two values. A tst instruction can be

used to compare the value stored in a register with zero.

A bit instruction can be used to compare the bitwise logical

values of two registers. The

 values of the condition flags are to be updated on

the result of the bitwise AND operation

 of two values.

Table 4.3. Selected compare/branch MSP430X instructions

(*Emulated instructions)

 [9].

A simple unconditional branch operation can be performed

using the jmp or br instruction. For a subroutine call, a call

instruction is used. To exit the subroutine and return, a ret

instruction can be used. A main program can be interrupted

and can process an interrupt

 service routine (ISR). A reti instruction can be

used instead to return from an ISR.

MSP430X CPU provides conditional jump instructions. Table

4.4 shows the selected conditional

 jump instructions. There are various conditions

including equal, not equal, carry,

 no carry, greater or equal, or less. These

conditions are determined by status bits

 including zero (Z), carry (C), negative (N) and

overflow (V) bits.

Table 4.4. Selected conditional jump MSP430X instructions

[9].

A “move” instruction in an MSP430X CPU supports various

formats of operations. Selected

 move instructions are shown in Table 4.5. A mov

instructions can be used in register and memory operations.

Table 4.5. Selected move MSP430X instructions [9].

The value of one register can be moved to another register

using a mov instruction. Moreover, an immediate value can

be written to a register using a mov instruction. For the

immediate data, a number sign “#” is used in front of the

number.

A mov instruction can be used in accessing data stored in a

memory space such as load and

 store operations. An MSP430X CPU provides

several addressing modes including indexed,

 indirect register, symbolic, and absolute modes.

As it was introduced, a certain memory space is associated

with physical I/O devices.

 Performing load/store operations using this specific

memory space may access physical

 I/O devices. This is related to the topic of a

memory-mapped I/O. This topic has been

 introduced in Appendix C.

Selected several instructions such as address, push/pop,

and nop instructions are shown in Table 4.6. The address of

a memory space can be stored

 using a mov instruction. For the 16-bit address

that is located in the lower 64 KB address range,

 a mov instruction (mov.w to be specific) can

perform the task of storing the address.

An MSP430X CPU supports address instructions to access a

20-bit address. For the 20-bit

 address, a mova instruction can perform the task

of accessing and storing the 20-bit address. This

 is a part of MSP430X extended instructions.

Table 4.6. Selected address/push/pop/nop MSP430X

instructions (*Emulated instruction)

 [9].

Some operations may need to access data in a stack

memory space. This operation can

 be performed using push and pop instructions. A

value can be stored in a stack memory space using a push

instruction. A value stored in a stack memory can be loaded

using a pop instruction.

In general, a no operation instruction can take an instruction

space, but it does not affect the context or

 status of the CPU. No operation instructions can be

useful as they can introduce short delays that could be

needed

 for the CPU or program routines. MSP430X CPU

includes a nop (no operation) instruction. This is an

emulated instruction, and the actual implementation

 of this instruction is “mov R3, R3”.

A brief introduction to selected assembly instructions was

presented in this chapter.

 For readers who wish to learn more about

MSP430X CPU assembly language programming,

 they can examine other educational resources or

documents provided by the manufacturer

 [9][10].

Assembly Language Test Environment

In general, Assembly language programming in MSP430

CPUs can be effective if it is

 efficiently coded by an experienced programmer.

Moreover, studying Assembly language

 programming can be useful in deepening the

knowledge about the MSP430X CPU architecture.

 However, for a fairly complicated system, it may

not be practical to write an entire

 code in Assembly language, and we will study

C/C++ programming in the following chapters.

Texas Instruments provides a TI compiler that is integrated

with Code Composer Studio.

 We will follow the TI assembler convention and use

TI compiler and Code Composer Studio

 for Assembly programming. For more details of the

TI assembler convention, readers

 can examine MSP430 Assembly Language Tools

document [10].

Assembly Language Project

As described in Chapter 2, users can create a simple test

project. Specifically, this

 was a C/C++ project. Users can perform a similar

task to create a new assembly language

 project.

Using Code Composer Studio, users can choose the

following selections to open a “New

 CCS Project” window.

File -> New -> CCS Project

Users can see a New CCS Project window as shown in Figure

4.1. For the assembly test project, users can choose an

 “Empty Assembly-only Project”. The proper MCU

name that is “MSP430FR5994” needs to

 be selected. In this example, the project name was

entered as “asm_test”. However,

 users can choose any preferred project name.

Figure 4.1. New Assembly CCS project.

Once the project is created, users can find an assembly

program on the left side of

 the program window. In this case, the file name is

“main.asm” as shown in Figure 4.2

Figure 4.2. Assembly source file.

Users can open the file. It is a pre-filled text file. Users can

edit the file to

 enter an assembly code. As an example, an

assembly test program is shown in Program

 4.1, users can enter this assembly test program.

Program 4.1. Assembly test program.

This program includes move, add, and subtract instructions.

When users type and enter

 an assembly code, it would be helpful to know that

proper indentations or tabs need

 to be kept. Once users can make this test code

work, they can modify this test program

 to create their own assembly program to perform a

complicated task.

Figure 4.3. Debugging environment for Assembly language.

For debugging purposes, users can access “step into” or

“step over” to step through

 the program. These “step into” and “step over”

icons are shown in Figure 4.3. They

 are useful in debugging a program in C/C++

language. Users can access “assembly step

 into” or “assembly step over” instead. Users can

set a breakpoint as shown in Figure

 4.2. Breakpoints are useful in debugging a

program. Once the program gets started

 in debug mode, the program will suspend at the

line where users set the breakpoint.

 Next, users can step through the assembly code.

Now, let us examine a functional assembly program. A

simple LED blink example in Assembly

 language will be presented in the following sub-

section,

LED Blink Program in Assembly Language

A test program that can blink an LED in C language was

presented previously in Chapter

 2. In this section, an Assembly program that can

blink an LED is presented. This Assembly

 LED blink program is shown in Program 4.2.

Program 4.2. Assembly LED blink program.

This program sets the first bit of P1 direction register

(P1DIR) using the “bis.b #0x01, &P1DIR” instruction. And,

the program sets the first bit of P1 output register (P1OUT)

using

 the “bis.b #0x01, &P1OUT” instruction. On an

MSP430FR5994 Launchpad board, a red LED is physically

connected

 to the pin related to P1.0. Based on this hardware

configuration, the LED can be controlled

 to be turned on or off by the value of the first bit of

Port 1.

In the main assembly loop (_loop), a bitwise XOR operation

using an xor instruction is used to toggle the first bit in the

P1OUT register. This program executes

 the code block labeled as “ _lp1”. This is a code

block for a delay function. In this _lp1 block, the value of the

register R10 gets decreased. Using a cmp compare

instruction, the status flags can be updated. Depending on

the results, the

 “jne _lp1” instruction can be executed. When the

R10 becomes zero, the program can branch to

 _loop and will keep repeating the “_loop” code

block. Thus, when the program is running

 successfully, users can see that a red LED (LED1)

on an MSP430FR5994 Launchpad board

 is blinking.

We have briefly mentioned the P1 direction register and P1

output register. These

 registers are related to General-purpose I/Os. In

the following chapter, we will study

 more detail about General-purpose I/Os in an

MSP430FR5994 MCU.

MSP430X extended instructions

An MSP430X CPU is a 16-bit CPU, and it supports MSP430X

extended instructions to handle

 20-bit operations. To give an explanation, an

example assembly program that handles

 20-bit data is shown in Program 4.3.

Program 4.3. MSP430X extended instruction test program.

In this program, the registers R10 and R11 can store the

values of 0x22000 and 0x11000,

 respectively. The result of the addition of these two

values is to be stored in R12.

 The result of the subtraction is to be stored in R13.

MSP430X extended instructions can be used when the

capability of the 16-bit address

 or data length is limited or exceeded. MSP430X

extended instructions can handle the

 20-bit address range. In an MSP430FR5994 MCU, a

portion of FRAM can be accessed using

 16-bit address instructions, and the rest of the

FRAM located at the address range

 that is higher than 64 KB can be accused using

MSP430X extended instructions.

Chapter 5. General-Purpose I/O

A general-purpose input/output (GPIO) module in a

microcontroller typically includes

 circuits that can be used in reading digital input

signals or generating digital output

 signals through external I/O pins. A peripheral in

microcontroller is typically a

 device, module, or a part of circuits other than a

CPU and a memory device that can

 be used for interfacing with systems outside of the

microcontroller. In this aspect,

 a GPIO module is a peripheral that can be used for

interfacing external circuits and

 devices. GPIO modules are useful for various

applications.

Functional GPIO Block Diagram

An MSP430FR5994IPZ IC model has 80 pins. Some of the

pins are connected to internal

 GPIO circuit blocks. For each pin, there are

similarities in GPIO configurations,

 but they are slightly different from each other

because each pin may have been designed

 to provide different functions.

An MSP430FR5994 IC has multiple digital I/O ports such as

P1~P8, PA~PD, and PJ. There

 are internal GPIO registers associated with these

names of ports. While some ports

 have less, one port can be found that there are

eight associated I/O pins. For instance,

 for P1.0, Port 1 is the relevant port. In this port,

there are several registers such

 as P1DIR and P1OUT using this port name of P1. In

these registers, the first least

 significant bit (LSB) is the relevant bit for P1.0. And

this bit is associated with

 a specific physical pin. In this book, for ease of

explanation, this physical pin

 can be simply referred to as P1.0.

Figure 5.1. Simplified functional block diagram for P1.0 [2].

In this chapter, Port 1 (P1) is selected as an example to

explain the functions of

 a GPIO module. Other ports have similar

configurations; however, there are clear differences

 because each port may provide different functions.

For more details, readers can examine

 the documents provided by the manufacturer [2].

Port 1 (P1) is associated with specific I/O pins including eight

pins. These eight

 pins are related to P1.0~P1.7. To simplify the

explanations, let us choose P1.0 as

 an example. Figure 5.1 shows a simplified

functional block diagram for P1.0.

This functional block diagram shown in the figure does not

necessarily represent the

 physical circuit implementation on a chip;

however, it can be used to help readers

 understand the functional behavior. There are

various registers related to Port 1.

 Let us examine the functional behavior based on

each of these registers.

Direction Register (P1DIR)

The direction register of P1 is named P1DIR. Each bit in

P1DIR register can select

 the direction of the associated I/O pin. If the first

least significant bit (LSB)

 of the P1DIR is 0, the direction of P1.0 is input. If

the first LSB of the P1DIR is 1, the direction of P1.0 is

output. For instance, if the P1DIR is 1, the direction of P1.0

is output.

If the direction of a pin is supposed to be input, however, if

it would be accidentally

 configured as output instead, in the unfortunate

case, it might cause a hardware problem.

 Users need to be cautious in configuring output

directions if they are debugging a

 system with a potential hardware issue.

Output Register (P1OUT)

When the direction is configured as output, each bit in

P1OUT register can determine the output signal of the

corresponding

 I/O pin. First, the direction of the pin needs to be

configured as output. Then, the logical level of the output

can be low, if the associated bit of the P1OUT

 register is cleared. Or, the logical level of the

output can be high, if the associated

 bit of the P1OUT register is set.

For instance, for P1.0, the direction of the pin can be

configured as output by setting the first LSB of the P1DIR.

Then, if P1OUT is 0, the logical level of

 the associated pin of P1.0 can be low. Or, if P1OUT

is 1, the logical level of the

 associated pin of P1.0 can be high.

Pull-up or Pull-down Resister Enable

Register (P1REN)

A GPIO module has internal resistors as shown in Figure 5.1.

Internal resistors can

 be enabled by setting P1REN register. Next, the

corresponding pins need to be properly

 configured as input in order to enable these

internal resistors. Then, they can be

 configured either pull-up or pull-down depending

on the values of P1OUT as shown in

 Table 5.1.

According to the datasheet [2], this typical value of the

internal resistor is 35 kΩ. This is not a high precision

 resistor, and it may have a wide process variation.

P1REN.

y
P1DIR.y P1OUT.y I/O configuration

0 0 0 Input

0 0 1 Input

0 1 0 Output

0 1 1 Output

1 0 0
Input / internal pull-down

resistor

1 0 1 Input / internal pull-up resistor

1 1 0 Output

1 1 1 Output

Table 5.1. I/O port configuration [9].

Users can configure GPIO registers in order to use this

internal resistor as a pull-up

 or pull-down resistor without the need to place an

external resistor. This technique

 can be useful and effective depending on circuits

of the system and applications.

Input Registers (P1IN)

When the direction is configured as input by clearing bits in

P1DIR register, the associated pins would function as input.

In this state, the logical level of each bit of P1IN register will

follow the same

 logical level of the corresponding I/O pin.

For instance, for P1.0, the direction can be configured as

input by clearing the first LSB of the P1DIR. Then, the value

of the first LSB of P1IN

 gets updated to be the digital value depending on

the input signal of P1.0.

As shown in Figure 5.1, the first LSB of input register P1IN

can read the logical

 level of P1.0 through a Schmitt trigger. The analog

voltage level at the pin of P1.0

 can be converted to a digital value through the

Schmitt trigger.

From the diagram, it can be seen that there is status that

the values of P1IN can

 get updated even the direction is configured as

output. Readers can examine this behavior

 by generating a logical level for a certain pin and

checking the value of input register

 relevant to the pin.

Function Select Registers (P1SEL1,

P1SEL0)

Most of pins in an MSP430FR5994 MCU are internally

multiplexed with other relevant

 peripheral modules. This means that they can

provide many functions. For instance,

 P1SEL1 and P1SEL0 registers are used to select

the function of P1.

There are possible I/O functions based on PSEL1 and PSEL0

registers as shown in Table

 5.2. When both bits of P1SEL1 and P1SEL0 are

cleared, the function of the associated

 pin is a GPIO function. Other than this case of the

configuration, there are three

 alternate functions. The function assignments may

vary depending on the pin. For more

 information, users can refer to the datasheet [2].

For instance, a physical pin number 1 can function as a

typical GPIO for P1.0. Or,

 it is possible to make it generate digital signals

using Timer_A0 instead depending

 on the value of P1SEL1 and P1SEL0 registers. By

selecting an alternate function, this

 pin may not function simply as a GPIO function.

P1SEL1.

y
P1SEL0.y I/O function

0 0 GPIO

0 1 Alternate function / Primary module

1 0
Alternate function / Secondary

module

1 1 Alternate function / Tertiary module

Table 5.2. I/O function selection [9].

In some ports, when one of the alternate functions is

selected, PxDIR register may

 not necessarily control the pin direction. It may

vary depending on the pin. Developers

 may refer to the datasheet [2] to gain the

understanding of the behavior of the relevant available

functions.

Port Interrupts

For the interrupt capability of Port1, P1 Interrupt Enable

Register (P1IE) needs to

 be enabled. P1 interrupt flags are associated with

P1IFG bits. Each bit of P1IFG can

 be set when the selected signal edge occurs at the

corresponding pin. The interrupt

 edge can be configured. Interrupt Edge Select

Registers (P1IES) make pins responsive

 to either low-to-high or high-to-low transitions.

Ports interrupt configuration may

 vary depending on the ports. For more information,

users can refer to the datasheet

 [2].

LEDs and Buttons on MSP430FR5994

Launchpad

An MSP430FR5994 Launchpad board has two LEDs (LED1

and LED2) and two push buttons

 (S1 and S2) as shown in Figure 5.2. The LED1 is

connected to P1.0, and it is a red

 LED. Shunt jumper JP7 can free up P1.0 because it

disconnects from the LED1. The LED2

 is a green LED, and it is connected to P1.1.

Figure 5.2. LEDs and push buttons on MSP430FR5994

Launchpad board [2][7].

Two push buttons (S1 and S2) are mounted on the board.

P5.6 and P5.5 are connected

 to S1 and S2, respectively. For S1, if the push

button is pressed, P5.6 can be 0.

 However, if the push button is not pressed, P5.6

could be at a high impedance state,

 and the BIT6 of P5IN may not be relevant to the

physical push button state. Therefore,

 in this case, a pull-up resistor can be placed at the

pin of P5.6.

The pull-up resistor can be an additional external resistor

placed between the pin

 and the push button. If the performance of the

push button is not a primary concern,

 an internal pull-up resistor can be used. The pull-

up register can be configured using

 P1REN register as we studied previously.

Assuming the pull-up resistor is configured properly, let us

revisit the behavior

 of this switch. If the push button is not pressed,

P5.6 can read 1 properly due to

 the pull-up resistor connection. If the push button

is pressed, P5.6 can read 0. In

 order to understand this behavior, we can write a

simple code to test the S1 button

 and the red LED.

Button Test Program

The button test program is shown in Program 5.1. In this

program, the S1 button and

 the red LED (LED1) will be used. In this code, an

internal pull-up resistor is configured

 for P5.6. In the while loop, it checks whether the

associated bit of input register

 of P5.6 is set or not. In the parentheses, it

performs a masking operation. This technique

 is to obtain a relevant bit only from the P5IN

register. Therefore, when a user presses

 the button, the first bit of output register P1 will be

set and the red LED will be

 turned on.

Program 5.1. Button test program in C/C++.

Debouncing Switches

We studied the behavior and the test program for a push

button switch. We will study

 more about the push button switch behavior and

switch applications. Push buttons are

 electrical components commonly used in

electronics applications. The input signals

 from push buttons can be asynchronous, and,

practically, the signals may not be electronically

 clean. This means that the transition is not clean

between 0 and 1 when a button is

 pressed or released.

This behavior is described in Figure 5.3. This figure shows

the signal from a switch

 circuit as the button is pressed or released.

Roughly, the logic value was changing

 from 1 to 0, and it also was changing back to 1.

However, you can see the noise fluctuating

 during the transitions. This random behavior is

related to switch bounce. In order

 to avoid unexpected results, developers may make

an effort to process and handle this

 non-ideal behavior. This is related to debouncing

switches. The methods of resolving

 this issue include hardware and/or software

approaches.

Figure 5.3. Switch bounce.

Hardware Approaches (Debouncing

Switches)

Figure 5.4 shows simple hardware switch debouncers. The

circuit on the left has one

 RC filter and one inverter logic gate. This is simple,

but this can be effective if

 the parameters of the RC filter are designed

properly. In this configuration, the

 charging time may not be balanced. In order to

control the charge time, a diode can

 be used as shown on the right side.

Figure 5.4. A simple switch debouncer.

A better hardware approach is to use two cross-coupled

NAND gates to form a simple

 Set-Reset (SR) latch, and it also needs to use a

double-throw switch as shown in Figure

 5.5. Two pull-up resistors may pass a logical high

level, while the switch may pass

 a logical low level. This approach can be effective,

but it comes with non-trivial

 extra cost of hardware components.

Figure 5.5. Switch debouncer using SR Latch.

Software Approaches (Debouncing

Switches)

Software debounce approaches includes simple to complex

algorithms. The software routines

 could become more complex depending on the

number of buttons. Using software approaches,

 developers may resolve this non-ideal behavior at

some level even without completely

 understanding the characteristics of unwanted

noise. However, it is a good idea to

 perform testing to obtain the behavior of the noise

as it may vary depending on a

 system. One of the simple software approaches is

to delay the reading or processing

 the next button input status using a proper time

delay obtained by measurements and

 testing. Generally, the slow read rate can ignore

some of the noise and may seem to

 resolve most of the problems. However, one

downside is a slow response. Developers

 may need to make an effort to determine an

optimum delay for their specific embedded

 system.

Keypad Matrix

It is common to find electronics applications with many

switches. For instance, for

 a computer keyboard, it may have more than 100

switches. For the applications with

 many switches, instead of using each GPIO pin per

switch, the connection of the switches

 can be formed as an array or matrix. Therefore,

the input status of many switches

 can be read and processed using a smaller number

of GPIO pins.

As an example, let us consider a 16-keypad module. There

are many 16 keypad modules

 including a 16-keypad module from Vellman® [11].

Figure 5.6 shows a generic 16-key keypad component, and

each key includes one switch.

 16 keys are connected in array or matrix.

Figure 5.6. Keypad matrix.

A keypad component drawn as an abstract block diagram is

shown Figure 5.7. The pin

 arrangement is also described in the figure. For a

16-keypad module, there can be

 4 rows and 4 columns. Until one of the switches is

pressed, none of the lines has

 been connected to each other. For instance, if key

5 is pressed, ROW2 and COL2 lines

 become connected to each other.

Figure 5.7. Keypad matrix connection [11].

Now, a keypad component is connected to an

MSP430FR5994 Launchpad board as shown in

 Figure 5.8.

Figure 5.8. Keypad matrix example.

Eight pins are connected to P3.0 ~ P3.7. External pull-up

resistors at P3.0 ~ P3.3

 are placed. Four resistors were connected at P3.4,

P3.5, P3.6, and P3.7. These resistors

 were added for protection.

For a control program, a proper port configuration is

essential. The port directions

 for P3.0 ~ P3.3 need to be configured as input,

and the port directions for P3.4 ~

 P3.7 need to be configured as output.

The push button status can be determined by scanning

process. First, let us control

 P3.4 is to be a logical low level, and the rest pins

of P3.5, P3.6, and P3.7 are to

 be logical high levels. In this state, the button

state of ROW1 can be read through

 P3.0 ~ P3.3. For instance, in this state, one button

on the far right in this row

 is pressed. Then, P3.0 can read a logical low level

and the rest of them can read

 logical high levels.

For the next step, P3.5 is controlled to be a logical low level

and the rest ports

 of P3.4, P3.6, and P3.7 are controlled to be logical

high levels. In this state, the

 button state of ROW2 can be read. After taking two

more similar steps for the rest

 of ROW3 and ROW4, it will complete a scanning

cycle, and the position of the button

 that was pressed can be determined.

This scanning process can detect not only the response of

one button but also multiple

 keypad responses. However, the detection of

multiple keys pressed in the same column

 might cause shorting power to the ground. Some

keypad models have internal resistance.

 For these keypad models, it may not result in a

critical issue. However, if the matrix

 keypad connections are made using individual

switches without protection resistors,

 it may cause a critical condition that causes

shorting power to ground. In this reason,

 as shown in Figure 5.8, extra resistors for

protections were added to avoid potential

 excessive current conditions.

On a BH EDU board, this protection scheme was applied.

Moreover, external pull up

 resistors were placed. Users need jumper wires to

connect the proper headers for the

 keypad and their Launchpad board headers.

Chapter 6. Register level C/C++

programming

MCUs can execute machine code that consists of digital

numbers written for the machine.

 For low level programming, users can write a

program in Assembly language. An assembler

 can convert assembly code to machine code.

Assembly language is more human friendly

 than machine code. Assembly Language can

effectively describe the low-level behavior

 of an MCU. However, if a user would choose to

describe a complex behavior of a microcontroller

 application in Assembly language only, it might

have taken an excessive amount of

 effort in development. In this reason, a higher-level

abstraction can help in writing

 a program for a complex system. C or C++ can be

a reasonable choice for some microcontroller

 applications. C/C++ language is a higher level of

abstraction than Assembly language.

There are several styles of C/C++ programming in the

development of microcontroller

 applications. One of the low-level approaches is

register level C programming. In

 this approach, the level of abstraction is not very

high. This method is related to

 controlling registers directly to gain access to an

MCU. This method helps developers

 understand low-level hardware and software

aspects of their microcontroller application

 in development. And it can help in learning

fundamental concepts and behavior of a

 microcontroller.

In this book, for C/C++ language programming, it begins

with learning about an MSP430FR5994

 MCU using this register level C/C++ programming.

Later in this book, we will learn

 about higher-level abstraction styles of C/C++

programming using TI driver library

 and real-time operating system.

Conventions

For MSP430FR5994 C/C++ language programming, there

are several conventions that users

 can use. For instance, if users want to generate a

logical high level for P1.0, they

 can write a code line in C/C++ as follows:

P1OUT = 1;

In order to make this code line work as intended, the

direction needs to be configured

 properly. It is assumed that the direction was

configured to be output. In this example, the decimal

number of 1 is used. A hexadecimal number is useful

 in describing a digital system. A hexadecimal

number can be used instead, and the

 following code lines are equivalent.

 P1OUT = 0x01;

 P1OUT = 01h;

Moreover, there are predefined names such as for common

numbers in the MSP430 header.

 They are BIT0 ~ BIT7. For instance, BIT0 is the

same as 0x01, BIT1 is the same as

 0x02, and so forth. This can be a convenient way

of describing the one bit of a register.

 Using the predefined names, the following line is

equivalent.

 P1OUT = BIT0;

A number can be expressed using a shift operator. For

instance, 1 << 1 means 0x02

 because it performs one left bit shift using 1. This

can result in the same number

 as BIT1. For instance, 1 << 2 means 0x04, and it is

the same as BIT2. Therefore, the

 following line is an equivalent expression.

 P1OUT = 1 << 0;

The shift operations in C/C++ language can be processed

by the compiler. An equivalent

 expression in this chapter does not mean it would

result in the same assembly code

 or machine code.

Each developer may prefer different styles when they write

a program. The choice is

 also dependent on the functions that the

microcontroller can provide. This means that

 readers may find the use of these conventions in

source code written by others. So,

 it would be useful to understand these common

conventions.

Bit Access

Let us revisit the code line of P1OUT=0x01. This code line

can set the first least

 significant bit (LSB). This is the desired behavior.

However, this code line clears

 other bits. For instance, if a device is connected to

P1.1, this code may also clear

 the output of P1.1. This means that there is a

chance that unwanted bits could be

 accidentally affected. This is the reason that it is

important to access and update

 relevant bits only. Let us consider the following

code line.

 P1OUT |= 0x01;

This is one of the ways to set the first bit only while it can

leave other bits unchanged.

 To understand the behavior, let us expand it, and it

is P1OUT = P1OUT | 0x01. The

 behavior can be understood better in this

expanded form. However, it is not common

 to write a code line like this expanded form

because this might not generate an efficient

 code for the compiler.

Now, let us consider a method that can clear the first LSB

only and can leave other

 bits unchanged, we can write the code line as

follows.

 P1OUT &= ~0x01;

To understand the behavior, let us expand it. It is P1OUT =

P1OUT & ~0x01. Although

 the behavior can be understood better in this

expanded form, for the same reason,

 it is not common to write a code line like this

expanded form.

Hardware connections of microcontroller applications may

vary. Embedded system developers

 may need to be careful in configuration and

accessing GPIO pins to avoid the access

 of unwanted GPIO pins that are connected to

external devices. In this reason, it is

 recommended to access the relevant bits only in a

port such as using the described

 selectively set or clear conventions when

applicable and possible.

Chapter 7. Timer basics

Timers are versatile and useful peripherals for

microcontroller applications. An MSP430FR5994

 MCU has a watchdog timer as well as general-

purpose 16-bit timers. In this book, we

 will learn about a Timer_A module, which is a 16-

bit timer,

Clock Sources

One of key parameters in a timer is the selection of a clock

source. First, let us

 study a clock system in an MSP430FR5994 MCU.

Several clock sources and system clock

 signals are available to use in an MSP430FR5994

MCU.

External oscillators can be used in providing clock signals

for an MSP430FR5994 MCU.

 A low-frequency oscillator (LFXT) such as a 32.768

kHz crystal or a high frequency

 oscillator (HFXT) such as a 4 MHz crystal can be

placed and connected to the MCU.

An MSP430FR5994 MCU can be operated without any

external oscillators. It has an internal

 digitally controlled oscillator (DCO) with selectable

frequencies. There are several

 calibrated DCO frequency settings.

Moreover, an MSP430FR5994 MCU has an internal Very-Low-

Power Low-Frequency Oscillator

 (VLO). It also has MODCLK that is an internal

oscillator.

Clock Signals

An MSP430FR5994 supports several clock signals in the

clock module. Clock signals

 include Auxiliary clock (ACLK), Master clock

(MCLK), and Subsystem master clock (SMCLK)

Auxiliary clock (ACLK) is selectable as LFXTCLK, VLOCLK, or

LFMODCLK. ACLK can be

 divided by up to 32, and it can be used by

peripheral modules.

Master clock (MCLK) is selectable as LFXTCLK, VLOCLK,

LFMODCLK, DCOCLK, MODCLK, or

 HFXTCLK. MCLK can be divided by up to 32, and it

can be used by CPU, and peripheral

 modules.

Subsystem master clock (SMCLK) is selectable as LFXTCLK,

VLOCLK, LFMODCLK, DCOCLK,

 MODCLK, HFXTCLK. SMCLK can be divided by up to

32, and it can be used by peripheral

 modules.

In Chapter 2, we created a new CCS project by selecting

“Empty Project (with main)”,

 and we studied a program that can blink an LED. In

this project setting, a master

 clock (MCLK) is configured to use a 1 MHz DCO

clock.

In this project setting, SMCLK is also configured to use the 1

MHz DCO clock. Using

 this configuration, the waveform of SMCLK at 1

MHz is shown in Figure 7.1.

Figure 7.1. SMCLK waveform at 1 MHz.

In this book, we will provide program examples based on

this clock source setting.

 However, as needed, users can change the

frequency settings to use a higher clock

 frequency.

Timer_A

An MPS430FR5994 MCU has six 16-bit general-purpose

timers. A Timer_A module includes

 a 16-bit timer and counter. A Timer_A module can

provide up to multiple capture and

 compare register blocks, and the selected pins are

connected to capture and compare

 register blocks. Timer_A modules can be used to

generate PWM output signals. A simplified

 functional block diagram of Timer_A1 is shown in

Figure 7.2.

An MSP430FR5994 MCU includes multiple Timer_A modules

such as Timer_A0 to Timer_A4.

 There are similarities among the Timer_A modules.

To simplify explanations, Timer_A1

 module is selected in this chapter.

A clock source is selectable for Timer A1. TASSEL bits are

associated with the selection

 of a clock source. The frequency of the selected

clock source can be divided by two

 divider blocks. The divider settings can be

configured by ID and TAIDEX bits. Then,

 at the rising edge of this clock signal, the timer

TA1R value will be increased or

 decreased. There are capture and compare blocks,

and specifically, they include TA1CCR0

 capture and compare block to TA1CCR2 capture

and compare block. And they are simply

 called TA1CCR0 block to TA1CCR2 block in this

book.

The Timer_A1 module can be used to generate PWM signals,

or it can be used as a capture

 function of digital signal. These functions are

grayed out, and they can be found

 in the dotted boxes named OUTPUT MODE and

CAPTURE MODE. In this chapter, we will focus

 on basic timer and compare functions. Later, in

this book we will revisit this timer

 block to learn about these OUTPUT MODE and

CAPTURE MODE functions.

Figure 7.2. Simplified functional block diagram of Timer_A1

[9].

16-Bit Timer Counter

The timer register TA1R holds the value, and the value of

the register can be increased

 or decreased. MC bits control this timer mode

behavior. TACLR bit can clear the value

 of the TA1R register. Moreover, there is a TAIFG,

which is an interrupt flag. It can

 be set when the value of the counter overflows

and it rolls off to zero. Timer can

 be halted when MC bits are cleared.

As described, the clock source for Timer_A1 module is

selectable. The choice depends

 on the functional requirements of the applications.

In general, you can choose ACLK,

 if it is preferred to use a counter that is running

slow for your application. If

 you need a counter that is running fast, you can

choose SMCLK. The clock speed of

 the SMLCK is programmable.

As mentioned, the clock frequency of SMCLK is 1 MHz in the

default project setting

 introduced in this book. If needed, this SMCLK

clock can be slowed down using two

 dividers connected in series. ID bits can configure

the divider up to 8, and the further

 division can be done up to 8 by setting TAIDEX

bits.

For Timer _A1 module, a TA1CCR0 register in TA1CCR0 block

can be found, and this register

 can be used to set the upper bound of the counter

in certain timer modes.

Timer Modes

Timer modes are listed in Table 7.1. As described, if MC bits

are cleared, the timer

 can be halted. Other than this MC bit state, the

timer keeps counting up or down.

 If the MC bits are configured to 1, the operation of

the timer is in Up mode.

Mode
MC

bits
Description

Stop 0 Timer is halted.

Up 1
Timer counts up to TA1CCR0 value, then,

rolls off to zero (Repeatedly)

Continuou

s

2

Timer counts up to 0xFFFF, then, rolls off to

zero

(Repeatedly)

Up/Down 3
The timer counts up to the TA1CCR0 value

and counts down to zero (Repeatedly)

Table 7.1. Timer Modes [9].

In Up mode, the counter reaches the value of TA1CCR0;

then it rolls off to zero. This

 is the pattern of operation, and it will keep

repeating. This count pattern for Up

 mode is shown in Figure7.3. The value of TA1R

keeps increasing, but it resets the

 counter when it reaches TA1CCR0.

Figure 7.3. Count pattern for Up mode [9].

Let us examine the interrupt flag behaviors in up mode. The

flag setting in Up mode

 is shown in Figure 7.4.

Figure 7.4. Counter and Flag behavior in Up mode [9].

There are two important interrupt flags associated with

Timer_A1. They are CCIFG and

 TAIFG. The CCIFG is a part of TA1CCR0, and the

TAIFG is a part of TA1CTL. There is

 one TAIFG in TA1. However, there are multiple

CCIFGs in TA1. For instance, a CCIFG

 bit is in TA1CCR0 block. And there is another

CCIFG bit in TA1CCR1 block.

In this Up mode, the counter behavior is dependent on

CCIFG in TA1CCR0 block. As the

 counter reaches the value stored in TA1CCR0

register, a CCIFG interrupt flag is to

 be triggered. Then, as the counter is rolled off to

zero, a TAIFG interrupt flag is

 going to be triggered.

Next, if MC bits are configured to 2, this operation of the

timer is in Continuous

 mode. In this mode, the counter reaches 0xFFFF;

then, it rolls off to zero. This count

 pattern in Continuous mode is shown in Figure7.5.

This figure shows that the value

 of TA1R keeps increasing until 0xFFFF; then, it rolls

off to zero.

Figure 7.5. Count pattern for Continuous mode [9].

Let us examine an interrupt flag behavior as shown in Figure

7.6. Since this is in

 Continuous mode, a CCIFG is not necessarily

relevant, but the behavior of TAIFG interrupt

 flag can be important. As the value of TA1R rolls

off to zero, a TAIFG interrupt flag

 is to be triggered.

Figure 7.6. Counter and Flag behavior in Continuous mode

[9].

A pulse generation program example is shown in Program

7.1. This code is based on

 the use of a CCIFG flag, and it is also based on a

polling method. In this example,

 P8.0 is chosen to generate relevant output signal.

The TA1CCR0 register is also simply

 called TA1CCR0 in this book. TA1CCR0 is initialized

as 2000. TA1CTL is configured

 to use SMCLK as a clock source, and it is

configured in Up mode. In the while loop,

 it keeps checking whether the CCIFG flag is set or

not. If it is set, it toggles an

 output value of P8.0, and clears the CCIFG flag.

This program can generate a relevant digital signal through

the pin of P8.0. It is

 recommended to use an oscilloscope to check this

waveform. If successful, a square

 wave clock can be seen, and the frequency of the

digital signal can be about 250 Hz.

Program 7.1. Pulse generation program using CCIFG flag

(Polling based).

Another pulse generation program example is shown in

Program 7.2. This code is different

 because it is based on the use of a TAIFG flag

instead. However, this program is also

 based on a polling method. There can be examples

using interrupts. Interrupt-based

 program examples will be introduced in the next

chapter,

In Program 7.2, P8.0 is the same choice to generate an

output signal as shown in Program

 7.1. TA1CCR0 is initialized as 2000, and TA1CTL

configuration is the same as the one

 in Program 7.1. However, in Program 7.2, it is

based on TAIFG flag instead. In the

 while loop, it keeps checking whether the TAIFG is

set or not. If it is set, it will

 toggle an output value of P8.0, and it will clear the

TAIFG flag. If successful, similar

 to the result of Program 7.1, a square wave clock

can be seen, and the frequency of

 the digital signal can be about 250 Hz at P8.0.

Program 7.2. Pulse generation program using TAIFG flag

(Polling based).

Piezo buzzer

We studied program examples that can generate square

wave clock signals. The clock

 frequency was within an audible frequency range.

This could mean that an audible can

 be generated if we can use a proper component

such as a piezo buzzer.

Figure 7.7. Piezoelectric disk element and piezo buzzer.

A piezo buzzer has a piezoelectric disk element as shown in

Figure 7.7. The word,

 Piezo, is from the Greek root, peizein, which means

“to press.” This is a transducer

 component. A transducer means that it can

convert energy from one form to another

 form. In this case, piezoelectric disk element can

convert the electrical energy to

 mechanical energy and vice versa. A piezo buzzer

is a component with the piezoelectric

 disk element in a plastic package, which can be

used as a small and low-cost speaker.

Figure 7.8. Piezo buzzer application.

A connection diagram for a piezo buzzer application is

shown in Figure 7.8. It shows

 a piezo buzzer component, and it can be a small

sized generic piezo buzzer. On a BH

 EDU board, TDK piezo buzzer model, PS1740P02E,

is used [12].

A transistor and two resistors are used in this buzzer

application. In addition, there

 is a switch (SW). This switch is not essential;

however, it would be useful because

 it can cut off the sound immediately by isolating

the power. The reason for adding

 this cut-off switch is to provide a method of turning

off the buzzer, while users

 are developing an application. Otherwise, it could

become uncomfortable as they have

 to hear the buzzer sound for a while. This switch

can be simply replaced with a jumper.

If a developer needs to pursue a simpler circuit

configuration, there is an alternative

 connection scheme. Instead of directly connecting

a piezo buzzer and the pin of P8.0,

 it is recommended to add a resistor such as a 1kΩ

resistor in series between the piezo

 buzzer and the pin of P8.0. The other node of the

piezo buzzer pin needs to be connected

 to the ground.

Table 7.2. Selected frequencies of musical notes.

In case, users want to create a program that can generate a

musical tone. As a reference,

 selected frequencies of musical notes are shown in

Table 7.2. C4 is the middle C in

 a piano keyboard. The frequency is 261.626 Hz.

The frequency you could hear using

 either Program 7.1 or Program 7.2 is about 250 Hz.

It is the frequency between C4

 and B3 musical notes. For an experiment, users

can generate different frequencies

 to play a music scale. Different frequencies can be

generated by changing the value

 of TA1CCR0 register. Next, users can create their

own simple buzzer music song using

 these basic musical notes.

Chapter 8. Interrupt

A typical microcontroller has the capability to suspend what

it is doing and process

 an interrupt service routine (ISR) upon the request

of an interrupt service. This

 interrupt service can improve Response time, and

it also can provide a capability that can

 process and run multiple tasks concurrently.

However, there could be some problems

 if an interrupt request is not properly handled.

When an interrupt service is requested, its full context

including registers, processor status, and

 some of the relevant data may need to be saved

properly. When returned, the context

 may need to be restored properly. If there are

shared data and they are not managed

 properly, the system may suffer from a shared

data problem between concurrent tasks.

There can be non-maskable interrupt services, which cannot

be disabled by a program

 routine or a user. Developers may need to

understand the details of non-maskable interrupt

 services that may vary depending on different

MCU models. Priorities of interrupt

 services were typically already defined in a

hardware level. This could mean there

 can be a case where some interrupt services that

the developer would use can be low

 priority interrupt services. In this case, the low

priority services may suffer from

 latency. In this reason, for developers, it is

recommended to understand the interrupt

 priority and handle the interrupt requests properly

in their programs.

Interrupts in an MSP430FR5994 MCU

An MSP430FR5994 MCU can handle interrupt requests. First,

registers related to an

 interrupt enable for a specific peripheral module

and a general interrupt enable need to be properly

configured to be enabled. Then, when there is an interrupt

request

 from the specific peripheral, the MCU can execute

a relevant interrupt service routine.

There are several interrupt types including System reset,

Non-maskable, and Maskable.

 There can be several conditions that can trigger a

system reset, which includes a

 power-on reset. For Non-maskable interrupts

(NMIs), there are system NMI and user NMI. For NMIs, in

general, the general interrupt enable (GIE) bit may not

simply disable them. For maskable interrupts, the general

interrupt enable (GIE) bit or individual interrupt enable bit

can disable makable interrupts.

Interrupt priorities were already defined in a hardware level.

The interrupt priorities

 can be used in determining an interrupt to be

executed first if there are more than

 one pending interrupts.

Interrupt sources and interrupt vector addresses are shown

in Table 8.1. From this

 table, interrupt priority information can be

obtained. For instance, a watchdog timer

 interrupt request has a higher priority than a Port 1

interrupt request.

Interrupt

Source
Address

Interrupt

Source
Address

System Reset 0xFFFE

P2 0xFFD8

System NMI 0xFFFC

TA3 0xFFD6

User NMI 0xFFFA

TA3 0xFFD4

Comparator_E 0xFFF8

P3 0xFFD2

TB0 0xFFF6

P4 0xFFD0

TB0 0xFFF4

RTC_C 0xFFCE

Watchdog timer 0xFFF2

AES 0xFFCC

eUSCI_A0 0xFFF0

TA4 0xFFC8

eUSCI_B0 0xFFEE

TA4 0xFFCA

ADC12_B 0xFFEC

P5 0xFFC6

TA0 0xFFEA

P6 0xFFC4

TA0 0xFFE8

eUSCI_A2 0xFFC2

eUSCI_A1 0xFFE6

eUSCI_A3 0xFFC0

DMA 0xFFE4

eUSCI_B1 0xFFBE

TA1 0xFFE2

eUSCI_B2 0xFFBC

TA1 0xFFE0

eUSCI_B3 0xFFBA

P1 0xFFDE

TA2 0xFFDC

TA2 0xFFDA

Table 8.1. Interrupt sources and interrupt vector addresses

[2].

Memory addresses of the interrupt handlers are stored in

the memory locations of the

 vector addresses. When an interrupt is accepted

and processed, a relevant interrupt

 vector address can be accessed, and it can be

used to branch and execute a relevant

 interrupt service routine (ISR).

I/O Port ISR

Program 8.1 shows an Interrupt based button and LED

example. The function of this

 program is similar to the one shown in Program

5.1. In this code, P5IE register is

 used. Configuring this register, the interrupt for

P5.6 is enabled. P5IES register

 is used to configure to be responsive to high-to-low

transition. A general interrupt

 enable was configured properly to take an effect

on processing interrupts.

In the program, there is a “Port5_ISR_handler” subroutine.

This interrupt service

 routine (ISR) can be executed if a relevant Port 5

interrupt service is requested

 and processed. First, it checks whether the

interrupt flag for BIT6 of Port 5 is set

 or not. If the flag is set, it will toggle the value of

the output of P1.0. Since

 P1.0 is connected to a red LED, it will toggle the

red LED. The program has a code

 line for a time delay. This function of this time

delay is also for debouncing switch.

 Next, it clears the interrupt flag, and exits the

interrupt service routine.

In the while loop, there is a code line of __no_operation(). As

is, there is no particular task to be executed. Users can add

their own task in

 this while loop as needed. Then, it can process this

task in the while loop and the

 button process task concurrently.

This example program is functional; however, this program

contains a bad coding practice

 that is not typically recommended in writing an ISR

code. A good practice is to write

 an ISR code short as possible. This means it is a

good idea to spend a short amount

 of time in an ISR routine and manage the program

to spend most of CPU time in the

 main routine. However, in this ISR routine, an extra

time delay was intentionally

 added. This was needed for the switch debounce.

For this reason, this code may need

 to be revised. One of the possible solutions is to

use a shared variable and process

 this variable in the main while loop to execute a

short delay. Making an ISR short

 is very important and a recommended practice.

This topic is related to software architectures

 that we will study in Chapter 12.

Program 8.1. Interrupt based button and LED program.

Timer_A1 ISR

In the previous chapter, we studied the timer_A1 and the

two different programming

 examples. Both programs were based on a polling

method. In this section, Interrupt

 based programs will be presented. Program 8.2

shows the Interrupt based pulse generation

 program using CCIFG.

In this code, CCIFG interrupt for TA1CCR0 block is enabled.

This was achieved by the

 code line as follows: “TA1CCTL0 = CCIE;” As it was

described previously, a general

 interrupt enable needs to be configured properly

using the following code line: “__enable_interrupt();”

In the while loop, it toggles the pin of P1.0. In this program,

the name of the ISR

 subroutine is “Timer1_A0_ISR”. In the ISR, it can

toggle the pin of P8.0. A CCIFG

 flag in TA1CCR0 block can be automatically reset

when the Timer1_A0_ISR is served.

 In this reason, a code line that clears the CCIFG

was not included. Therefore, this

 program can blink the red LED and it can generate

digital clock signal concurrently.

A user can hear buzzer tone if a piezo buzzer is connected

to the pin of P8.0. In

 the previous Chapter, it was suggested to write a

simple piezo buzzer music as an

 experiment. Using this interrupt-based code, the

simple piezo buzzer music program

 can be written easier and more efficiently.

This program is also a flexible clock generation method. A

clock signal can be generated

 using a preferred GPIO pin. Users can modify the

code to choose their own GPIO pin

 instead of the pin of P8.0.

Program 8.2. Pulse generation program using CCIFG flag

(Interrupt).

Now, pulse generation code using TAIFG flag is shown in

program 8.3. In comparison

 with the code using CCIFG flag, this code based on

TAIFG flag has a different interrupt

 configuration. For instance, in order to configure a

TAIFG interrupt flag, TAIE bit

 was set in TA1CTL register.

Program 8.3. Pulse generation program using TAIFG flag

(Interrupt).

The name of the ISR subroutine in this program is

“Timer_A1_ISR”. This is a different

 one from the one used previously in the previous

CCIFG based case. In this ISR, it

 checks whether TAIFG is set or not. If it is set, it

can toggle the pin of P8.0. Then,

 it clears the TAIFG flag. Similar to the previous

case, this code also can blink a

 red LED, and it can generate the clock signal

concurrently. Apparently both Program

 8.2 and Program 8.3 can perform similar behaviors

for the ones we have seen in Chapter

 7, however, the internal operations and

programming routines are different.

Chapter 9. Display

In many embedded systems, it is common to use a small or

large display module. The

 requirement for a product may vary, and there is a

wide selection of the display modules.

 The display modules can be categorized in several

ways. First, we can categorize it

 whether it is a monochrome or color display. It is

common to see color displays in

 embedded systems. If a product does not require a

color display, the implementation

 would become easier as a monochrome display

can be selected instead. Next, we can

 categorize it as a graphic or a character display. A

graphic display is common because

 the format of displaying data can be flexible and it

is typically user friendly. One

 of the problems is that the development may take

longer than a character display.

 If the requirement of the product is simply to

display the numeric or character data,

 a character display may be a reasonable choice as

it can reduce the developmental

 effort significantly. In this chapter, we will study

and learn how to control a monochrome

 character liquid-crystal display (LCD) module.

Liquid Crystal Display (LCD)

A liquid-crystal display (LCD) is an electronically modulated

optical device. It uses

 light modulating properties and polarizers. LCD

does not emit light directly. It is

 used with a backlight display or a reflective part.

LCDs can be either positive or negative. This is dependent

on the polarizer arrangement.

 For instance, a character on a positive LCD can be

a black letter on a backlight color

 background. On the other hand, a character on a

negative LCD can be a white color

 letter on a color backlight background.

A typical LCD module includes an LCD controller and an LCD

glass. There are many small

 units in two polarizers between two electrodes on

an LCD glass. An LCD controller

 can generate alternating voltages across the two

electrodes. LCD segments glow when

 both of their back and front planes are enabled.

For an MSP430FR5994 MCU, in this book, we use the supply

voltage of 3.3 V, and we

 will use an LCD module that can be operated in

the voltage of 3.3 V, as it can minimize

 the circuit design effort for some of the examples

in this book. However, it can be

 found easier to find an LCD module that can be

operated in the supply voltage of 5

 V. If readers choose to use a 5-V LCD module, they

need to check the datasheet and

 the documents provided by the LCD manufacturer.

LCD module

As described, a 3.3-V LCD module is selected to make it

work with an MSP430FR5994

 MCU. The part number of the selected LCD is NHD-

0216HZ-FSW-FBW-33V3C. There are many

 generic LCD modules with a similar programming

method; however, this LCD model is

 the one mounted on a BH EDU board. For the

reader who owns a generic LCD module, the

 theory and the programming method in this

chapter can be applied since there are similarities.

 But, they may need to refer to the datasheet and

documents from the LCD manufacturer

 carefully.

Figure 9.1. Connection diagram for the selected LCD

module (NHD-0216HZ-FSW-FBW-33V3C).

The connection diagram using this specific 3.3-V LCD

module (NHD-0216HZ-FSW-FBW-33V3C)

 is shown in Figure 9.1. The third pin from the left is

N/C (no connect) for this module.

 This may be the difference compared to a generic

LCD module. This pin is, typically,

 “contrast adjust” in a generic LCD module. It can

change the contrast of an LCD screen

 by applying a different voltage level to this pin.

This voltage level provided through

 this pin is important to display the characters

correctly. However, in this specific

 3.3-V LCD module, this pin is not used.

Symbol Pin Description

VSS 1 Ground

VDD 2 Supply Voltage (+3.3V)

NC 3 No Connect

RS 4

Register Select signal.

RS=0: Command, RS=1: Data

R/W 5

Read/Write select signal.

R/W=1: Read, R/W=0: Write

E 6
Enable signal (Falling edge

triggered)

DB0 ~ DB7 7~14 Data bus lines.

LED+ 15 Backlight LED Anode (+3.0V)

LED- 16 Backlight LED Cathode (Ground)

Table 9.1. Pin description [13].

The pin descriptions are shown in Table 9.1. In this chapter,

an 8-bit operation will

 be used, which means we use DB0 ~DB7.

However, it is possible to use it in a 4-bit

 operation instead. In that case, users need to use

only DB4 ~ DB7 among the data bus

 lines. On a BH EDU board, the connections to the

backlight LED (pin 15 and pin 16)

 were intentionally removed. If needed, users can

create circuit connections to use

 the backlight LED. For reference, the normal

voltage for this backlight LED from the

 datasheet is 3.0 V and the max voltage is 3.2 V.

Instruction

There are two control pins, RS and R/W. Moreover, in order

for communication, the edge signal of E with a proper time

delay needs to be generated manually. It is worth

mentioning that

 this pin of E is falling edge sensitive. The

operations according to RS and R/W bits are shown in Table

9.2.

RS R/W Operation

0 0 Write command

0 1

Read Busy flag (DB7) and

address counter (DB0 ~

DB6)

1 0 Write data

1 1 Read data

Table 9.2. Operations according to RS and R/W bits [13].

If RS pin is low, this means that it is related to “command”.

If RS pin is high, this means it is related to “data”

operations. R/W pin is used to choose either read or write

operation. In some of designs of the LCD applications, it can

be found that this

 pin of R/W is simply connected to ground. In that

case, data can be written to the LCD module;

 but the data cannot be read from the LCD module.

This LCD configuration is functional,

 but it may not be an efficient method in some

cases. For optimal control of an LCD

 module, the busy flag can be checked before

sending the next data. In this case, it

 may be necessary to configure R/W properly to be

able to read from an LCD module.

Busy Flag (BF)

As mentioned, a busy flag can be checked before sending

the data. If RS is low and R/W is high, busy flag can be read

through DB7 as shown in Table 9.2. If BF is high, it indicates

that the internal operation is still in processing.

Address Counter (AC)

Address Counter (AC) can be used for the Display Data RAM

(DDRAM) address or Character

 Generator ROM (CGROM) address. After read or

write operation, the AC can be automatically

 increased (or decreased) by 1

Display Data RAM (DDRAM)

Display data RAM (DDRAM) can store display data in 8-bit

character codes. Predefined

 area in DDRAM is allocated to show corresponding

characters according to character

 codes on an LCD display. For the selected LCD

module, it can display 16 characters

 per line on an LCD display, and the number of lines

can be up to two. In this reason,

 this selected LCD module is also simply called the

selected 16 x 2 LCD module in this

 book. The DDRAM address allocation for the

selected 16 x 2 LCD module is shown in

 Figure 9.2.

Figure 9.2. DDRAM address allocation the selected 16 x 2

LCD module [13][14].

The first line address starts from 0x00 and it ends at 0x0F.

The second line address

 starts from 0x40 and it ends at 0x4F. As can be

seen, there is a noticeable address

 gap in-between the first line and the second line.

Character Generator ROM (CGROM)

Character Generator ROM (CGROM) can provide 5 x 8 dot or

5 x 11 dot character patterns

 associated with 8-bit character codes. In other

words, the CGROM has predefined/built-in

 character information. For instance, if the value of

0x41 is stored in a specific

 DDRAM address, the character pattern from

CGROM associated with 0x41 can be provided

 to display a character on an LCD module. In this

case, 0x41 is a character ‘A’ defined

 in ASCII table. Therefore, the character ‘A’ can be

displayed on an LCD module at

 the LCD position relevant to the DDRAM address if

a proper DDRAM address is used.

Predefined built-in font table can be found in the datasheet

and documents provided

 by the manufacturer [13][14]. Mapping of the

characters in lower addresses of the built-in font table is

somewhat

 similar to the one in an ASCII code table. Users can

use some symbols, numbers and

 alphabets defined in the ASCII code table.

However, mapping of the characters in the

 built-in font table is not the same as the one in the

ASCII code table. More character

 patterns including Japanese characters can be

found in the upper addresses of the

 built-in font table.

Character Generator RAM (CGRAM)

Character Generator RAM (CGRAM) can be used to create

user defined character patterns.

 For 5 x 8 dots, users can create eight-character

patterns. For 5 x 11 dots, users

 can create four-character patterns. User-defined

character patterns can be stored

 and accessed using specific addresses of the built-

in font table. For example, for

 this selected LCD module, the addresses of 0x00

to 0x07 in the table are associated

 with the eight user-defined characters.

Instruction Table

A selected instruction table for the selected LCD module is

shown Table 9.3. For “Clear Display“, both RS and R/W need

to be low, and the value of the command is 0x01. It may

take about more than

 1.5 ms to process this instruction. It is

recommended to do it during the initialization

 of the LCD module. However, it would not be a

good idea to use this instruction frequently

 during the normal operation.

Moreover, users can set the LCD position. For instance, if

they want to write characters

 in the 2nd line of the LCD display. They can choose

an LCD instruction related to

 “set DDRAM address” from the instruction table.

There is a parameter associated with an address counter.

 They can choose 0x40 for the parameter. Then, it

will result in a “command” instruction

 of 0xC0. As described, the command instruction is

related to the low levels of RS and R/W pins.

Table 9.3. Selected instruction table [13][14].

LCD test program

An LCD test program example is shown in Program 9.1. This

is an example program created

 for an MSP430FR5994 using a pseudo code given

by the manufacturer. This code was written

 to be functional for a breadboard prototype

environment. This means that extra time delays were

added,

 and this code is not written for a good

performance.

Program 9.1. LCD test program.

There are three subroutines. They are LCD_command,

LCD_write, and LCD_init. For LCD_command, it is related to

sending a command to the LCD module. LCD_write is related

to sending character data. LCD_init is to initialize the LCD.

After running this code successfully, users can see “Test”

 characters on their LCD module.

Chapter 10. Analog to Digital

Converter

Analog signals can be converted to digital signals. Digital

signals have a finite

 set of possible levels. An Analog to digital

converter (ADC) can perform this conversion.

 For instance, an analog audio signal can be

converted to a digital signal, and it

 can be stored in a portable SD memory card. This

ADC component is useful in various

 microcontroller applications. A majority of modern

MCUs have at least one integrated

 ADC. An MSP430FR5994 MCU has a 12-bit ADC

module that supports multiple input channels.

 In this chapter, we will study basics of ADCs, and

the use of the ADC module in an

 MSP430FR5994 MCU.

Sampling and Quantization

The ADC conversion process can be understood as the steps

of sampling and quantization.

 Sampling converts an analog signal into a discrete

time signal. This discrete time

 signal is defined at discrete times, and the

amplitude of the signal is continuous.

 The discrete time signal can be obtained at

uniformly spaced times. The period of

 the uniformly spaced times is related to a

sampling rate. Next, the sequence of the

 finite numbers from the continuous amplitude

signal can be obtained by a quantization

 process. This sequence of the finite numbers is

relevant to a digital signal. Some

 of the relevant quantization levels are 256 (8 bit),

1,024 (10 bit), and 4,096 (12

 bit).

Nyquist Sampling Theorem

A sufficient sampling rate () for a band limited signal () is

higher than according to the Nyquist sampling theorem

[15]. For instance, an audible frequency range can be about

20 to 20 kHz. In this case,

 based on the Nyquist sampling theorem, the

sampling frequency needs to be higher than

 40 kHz. In digital audio, 44.1 kHz is a common

sampling frequency, which is used in

 CD (compact disc) digital audio. Some ADCs have

implemented a sampling () rate close to . These are

Nyquist ADCs. However, practically, it is common to find

ADCs to perform

 oversampling by choosing higher frequency than

.

12-bit SAR ADC

One of the common ADCs that can be found in an MCU is a

successive approximation (SAR)

 ADC. A SAR ADC is a reasonable choice for a

microcontroller application that needs

 a decent resolution and conversion speed. It is

suitable for a low power application,

 and the size of the SAR ADC on a chip is relatively

small. Therefore, SAR ADC modules

 can be found in integrated with many modern MCU

ICs.

A SAR ADC has a DAC that can generate reference voltages

in a binary fashion. A comparator

 unit can generate the output comparing the input

voltage with these reference voltages

 in sequence. A SAR ADC implements a binary

search algorithm. The binary output values

 in sequence from the comparator can be

converted to digital data.

A conceptual block diagram of a 12-bit SAR with 32 input

channels is shown in Figure

 10.1. Let us suppose the first channel is selected

properly. Then, the analog signal

 passes an analog multiplexer (mux), and the signal

will be sampled. The sampled value

 is compared to the reference voltage generated by

the DAC. The output of the comparator

 gets stored in one of the bits in a 12-bit register.

Let us assume this DAC can generate

 the relevant binary weighted voltages. This

process will be repeated until it can

 fill the rest of the bits in the 12 bit-register. In this

block diagram, there is

 one SAR ADC core, but it can receive 32 analog

inputs through the analog mux component.

Figure 10.1. A conceptual block diagram of a 12-bit SAR

with 32 input channels.

Sigma Delta Converter

An SAR ADC module is integrated with an MSP430FR5994

MCU. There are other ADC types

 such as a Sigma Delta Converter. This Sigma Delta

Converter can typically provide

 a higher sampling frequency and higher resolution.

If developers’ targeted application

 needs a higher specification and requirement, they

can choose a different MCU model

 with an integrated Sigma Delta Converter, or they

can use an additional standalone

 Sigma Delta Converter IC. The key technique of a

Sigma Delta Converter is Sigma Delta

 Modulation. The Sigma Delta modulator includes a

quantizer and an integrator. The

 quantizer in the modulator generates a sequence

of finite numbers for a digital signal.

ADC12_B

We have studied a generalized 12-bit SAR ADC module with

multiple input channels.

 Now, let’s study an ADC12 module in an

MSP430FR5994 MCU. An ADC12_B module is a 12-bit

 SAR ADC with multiple input channels. Figure 10.2

shows the simplified functional

 block diagram of the ADC12_B module. The ADC

core can convert analog signals to 12-bit

 digital signals. The programmable voltages of

and are the upper and lower limits of the conversion.

The full scale of the digital output

 (is 0x0FFF. is an input analog voltage.

Then, the conversion formula of the 12-bit ADC for a

 single-ended mode is as follows:

Using this equation, a developer can estimate the digital

output (from the input voltage (. Likewise, the

input voltage can be estimated by the digital output (

.

Figure 10.2. Simplified functional block diagram of ADC12_B

[9].

The converted digital data can be stored in a memory

buffer. The memory buffer has

 memory registers of ADC12MEM[0]~

ADC12MEM[31]. The ADC conversion process can be

initiated

 by ADC12SC bit. In this section, we will study the

“single-channel single-conversion

 mode.” In order to perform the test, an ADC test

circuit is configured as shown in

 Figure 10.3.

Figure 10.3. An ADC test circuit.

Readers can use a generic 1 kΩ potentiometer for an

experiment. A 10 Ω resistor was

 added for protection. For a BH EDU board, this test

circuit is already implemented.

 A user can simply connect P4.1 to a proper header

on a BH EDU board using a breadboard

 jumper wire.

ADC Test Example (Polling)

Program 10.1 shows an ADC test example. P4.1 is

configured for channel A9 by setting

 P4SEL1 and P4SEL0 bits. In the following line of the

code, the ADC12CTL0 is configured

 to turn the ADC on, and it also configures the

timing of the ADC unit.

ADC12RES_2 was chosen to obtain 12-bit converted data.

Channel A9 was selected by

 configuring ADC12MCTL0. In the while loop, the

ADC conversion is initiated by ADC12SC. There is another

while loop that checks whether the ADC busy flag is set or

not.

 The program stays in this while loop until the ADC

conversion is completed. Then,

 the ADC result can be accessed using

ADC12MEM[0], and it will be copied to adc_raw. Next, it can

toggle a red LED. This behavior of the ADC conversion and

toggling

 an LED will be repeated in the loop.

Program 10.1. ADC test example (Polling based).

Since the ADC result was copied to a global variable,

adc_raw. There are many ways to check this value. One of

them is to suspend the program in

 Code Composer Studio and move the cursor over

the variable. Then, the value stored

 in this variable can be displayed in a small pop-up

window.

ADC Test Example (Interrupt)

The test code in Program 10.1 was based on a polling

method. It would be useful to

 write an interrupt-based program that can perform

a similar task. In this reason,

 an interrupt-based ADC example code was written

as shown in Program 10.2.

Program 10.2. ADC test example (Interrupt).

A good portion of the code is similar; however, the major

difference is related to

 an ISR set up and the ISR. The interrupt

configuration for the ADC ISR was performed

 using the code lines as follows:

ADC12IER0 |= ADC12IE0;

The ADC interrupt is enabled by setting ADC12IE0 bit in

ADC12IER0, and the ISR name is “ADC12_ISR”. In this ISR

code, the ADC result will be copied to a global variable,

adc_raw. As you have done in the previous example, you

can check this variable to find out

 whether the ADC conversion was successful or not.

Another indication of the completion

 of the ADC conversion is to check whether the red

LED keeps bilking or not.

Chapter 11. ADC Applications

ADCs are commonly found in microcontroller applications.

For instance, the ADCs can

 be used in processing analog signals from various

sensors. It is typical to find sensor

 components providing variations in resistance

values or voltage levels with respect

 to specific physical states of the sensors. Let us

consider temperature sensor applications.

 The variations of the values in resistances or

voltages can be observed when the sensors

 are exposed to different temperatures. With the

use of proper interface circuits,

 these variations can be measured using ADCs.

Let’s say we have chosen to use MCUs

 with ADC modules. The MCUs can be used to

provide digital communication interfaces;

 therefore, the digital sensor data can be

transferred to other systems. This configuration

 can be found in temperature sensor applications.

As we have studied previously, an

 MSP430FR5994 MCU has an ADC module. In this

chapter, we will study temperature sensor

 and accelerometer applications using an

MSP430FR5994 MCU. A generalized concept of

 these applications can be applied to other ADC

applications.

Temperature Sensors

Temperature sensors are commonly used in many

microcontroller applications. Developers

 may be able to obtain some temperature data

easily from a temperature sensor using

 a programming example given by the

manufacturer or by communities. For a better

understanding

 of the obtained temperature data, it is important

to understand the physical characteristics

 of temperature sensors and the considerations of

the testing environment. To analyze

 the temperature data properly, it is recommended

to obtain knowledge about the sensor

 characteristics and their limitations.

In this chapter, we will study four temperature sensor types.

They are Resistance Temperature Detector, Thermocouple,

Thermistor, and Semiconductor-based temperature sensors.

They are briefly summarized in the following sections.

Resistance Temperature Detector (RTD)

A Resistance Temperature Detector (RTD) sensor can

measure temperatures based on the

 resistance variations in a metal wire. The RTD wire

is commonly made of a pure material

 such as platinum, nickel, or copper. Platinum RTDs

can provide high accuracies, and

 a typical operating range is −200 °C to 600 °C.

Thermocouple

A Thermocouple temperature sensor typically consists of

two wires that are made of

 different metals. There are several types of

Thermocouples. Wires on one side have

 connected, and they form a hot junction. The wires

on the other side connected form

 a cold junction. Typically, the hot junction is a

measuring point. The varying voltages

 that can be measured due to the use of the

different metals are associated with temperature

 variations. The measurements can be found to be

nonlinear; therefore, it needs a proper

 conversion. The accuracy can be found a bit low,

but the thermocouple sensors can

 be used in applications that need a wide

temperature range. The temperature ranges

 vary by type, and an example operating range is

−200 °C to 1750 °C.

Thermistor

A Thermistor is a thermally sensitive resistor that shows the

value of resistance

 can change as the temperature changes. There are

two types of thermistors, Negative Temperature Coefficient

(NTC) thermistor and Positive Temperature Coefficient (PTC)

thermistor. Typically, NTC thermistors are used as

temperature sensors. The resistance of NTC

 thermistors will decrease as the temperature

increases. NTC Thermistors show non-linear

 resistance variations with respect to temperature

variations. NTC thermistors are

 suitable for various applications. An example

operating temperature range is −50 °C

 to 250 °C.

PTC thermistors are also temperature sensitive, but the

resistance will increase as

 the temperature increases. PTC Thermistors are

typically used in circuit protection

 applications. A certain level of the overcurrent

through a PTC can cause a high temperature

 on the PTC. The resistance of the PTC will increase

significantly. When the cause

 of the overcurrent is eliminated and the PTC sensor

is cooled down, the resistance

 will be decreased, and the circuit might work

again. This is like a resettable fuse,

 and this can be used in a circuit protection

application.

Semiconductor-based Temperature Sensor

Semiconductor-based temperature sensors can be designed

and placed on IC wafers. These

 on-chip temperature sensors are often

implemented by diodes and transistors. Types

 of temperature sensors can be categorized as

voltage output, current output, resistance output, digital

output, and diode.

Semiconductor temperature sensors are implemented on a

chip, and the chip is placed

 inside IC packages. Some IC packages are not

necessarily designed for thermal conduction.

 In this case, there can be limitations in making

good thermal contact.

In general, semiconductor-based temperature sensors are

found in many embedded systems.

 These temperature sensors are low-cost, and the

sizes of the sensors are small. However,

 they may not be suitable for temperature

applications that need high accuracy and/or

 a wide operating range. An example operating

range of semiconductor-based temperature

 sensors is −40 °C to 120 °C.

Integrated Temperature Sensor in an

MSP430FR5994 MCU

An MSP430FR5994 MCU has a built-in temperature sensor.

The temperature sensor data

 can be accessed. This temperature sensor can be

enabled by setting ADC12TCMAP bit in the ADC12CTL3

register. On an MSP430FR5994 MCU, this integrated

temperature sensor is connected

 to Analog channel 30 (A30). Therefore, the voltage

that is relevant to the temperature

 sensor can be read through the A30.

The manufacturer provides calibration data measured at

30°C ±3°C and 85°C ±3°C under

 certain internal voltage reference states of 1.25 V,

2.0, and 2.5 V. The temperature

 in Celsius degree (°C) can be calculated using the

characteristic equations as follows:

The temperature data in Fahrenheit degree (°F) can be

obtained by a simple mathematical

 formula as needed. An integrated temperature

sensor test code is shown in Program

 11.1.

In this code, the 2.5-V internal reference voltage is enabled.

The temperature sensor

 calibration data for the 2.5-V reference voltage

was read from the MCU. ADC12RES_2 was chosen to obtain

12-bit data. ADC12CTL0 ~ ADC12CTL3, and ADC12MCTL0

registers are configured as we have studied previously.

In the while loop, the ADC value is read, and the adc_raw

value is converted. The value stored in “TempDegC”

variable is a corresponding temperature

 in Celsius degrees (°C).

Program 11.1. Integrated temperature sensor test example.

Accelerometers

An accelerometer sensor can measure acceleration. For

instance, when an accelerometer

 is at rest on the surface of the earth toward

upwards, the acceleration will be measured

 approximately as +g (≈ 9.81 m/s). When an

accelerometer is in free fall, the acceleration

 will be measured approximately as zero.

Accelerometers have been used in many applications such

as vibration detection, tilt

 detection, and shock detection. Accelerometers

are also used in flight control applications

 and robot applications. It is typical to find them as

a part of an inertial measurement

 unit (IMU). An IMU can measure the force, angular

rate, and orientation of an object.

 For instance, it can be a combination of

accelerometers, gyroscopes, and magnetometers.

 There are several types of accelerometers. In the

following sections, we will learn

 about accelerometer ICs.

Accelerometer ICs

MEMS stands for the micro-electromechanical system. It is a

miniature mechanical and

 electro-mechanical element made by using

microfabrication techniques. It has been

 merged with other technologies including

integrated circuits. These techniques make

 it possible to create accelerometer ICs that are

suitable for many compact-sized embedded

 systems. There are many standalone

accelerometer IC models and IMU IC models.

Figure 11.1. Simplified accelerometer MEM sensor example.

Let us consider a simplified accelerometer MEM sensor

example as shown in Figure 11.1.

 The size of the sensor is assumed to be very small.

On the left side, it shows the

 beam and finger structure. The gaps between the

beam and the fingers are associated

 with the capacitors of and . In this case, the

beam is in the middle, the capacitors of and are

assumed to be equivalent. In this MEM sensor, the beam is a

moving mass. On the

 right side, the beam was shifted to the left side. In

this case, the capacitors of

 and show the variations that are related to

the acceleration. These variations can be

 read and can be converted to the voltage output

as shown in Figure 11.2. This figure

 shows a simplified accelerometer block diagram

for one axis.

Figure 11.2. Simplified accelerometer block diagram for one

axis.

It has an oscillator block that can generate two RF signals

with a 180-degree phase

 difference. They are applied to the fingers and the

beam. The output from the beam

 is amplified. This amplified signal is demodulated

and filtered. Then, it is properly

 amplified to provide the proper output level to be

read by other systems. This is

 a simplified and generic explanation for one axis. It

can be extended to other axes

 with corresponding interface circuits.

Figure 11.3. Simplified block diagram of ADXL355

accelerometer sensor IC [16].

For an experiment and further explanations, an ADXL335

module was chosen. A simplified

 block diagram of ADXL335 [16] accelerometer

sensor IC is shown in Figure 11.3. There is a 3-axis sensor

block on

 the left side. The output signals are amplified and

demodulated. Then, the amplifiers

 provide proper levels for Xout, Yout, and Zout.

Typical zero g bias levels are almost

 half of the supply voltage. However, the actual

value might vary by the sensor. The

 AXDL335 IC can be operated at 3.3 V. This sensor

generates three output analog signals.

 They can be read through the ADC module in an

MSP430FR5994 MCU.

Let us connect this ADXL335 IC and an MSP430FR5994 MCU.

The connection diagram is

 shown Figure 14.4. The output signals of X, Y, and

Z are connected to P4.1, P4.2,

 and P4.3, respectively. The selected functions of

the P4.1, P4.2 and P4.3 are related

 to three analog channels of A9, A10, and A11. The

directions of the X, Y, and Z are

 marked on the PCB. In the following sections, we

will study how to read multiple channel

 ADC values.

Figure 11.4. Connection example of an ADXL335 module

[17].

There are several ADXL335 modules with ADXL335 ICs.

Readers can find them from different

 vendors and companies for their experiments. If

readers would like to use different

 but similar models of accelerometer ICs, they need

to refer to the documents carefully

 from the manufacturer or the vendor to determine

the proper connections. On a BH EDU

 board, one ADXL335 IC is placed. Users can access

three pins for three axes of the

 accelerometer IC through the proper header pins.

ADC Conversion Modes

For an ADC module, there are four ADC conversion modes.

They are Single-channel single-conversion, Sequence-of-

channels, Repeat-single-channel, and Repeat-sequence-of-

channels. Previously, we have used a Single-channel single-

conversion mode.

A sequence-of-channels mode is also called autoscan mode.

Multiple channels can be sampled and covered once in

sequence. We will use

 this mode in the multiple channel conversion

example in the following section.

Moreover, there are repeated modes for the continuous

sampling and conversions. They

 are Repeat-single-channel mode and Repeated-

sequence-of-channels (Repeated autoscan)

Multiple Channel Conversion

Depending on the embedded systems, we may need to

access and read multiple ADC channels.

 Given the test setup in Figure 11.4, we can write a

program that can read three ADC

 channels for X, Y, and Z axes. The example code is

shown in Program 11.2.

Program 11.2. Multiple channel conversion example.

The ADC12CTL0 register is configured for a multiple sample

conversion and sequence of channel mode. The multiple

sample conversion is enabled by setting ADC12MSC bit and

the sequence of channel mode is selected by configuring

ADC12CONSEQ bits.

In order to store multiple values, the adc_raw variable is

defined as an array. ADC12MCTL0, ADC12MCTL1,

ADC12MCTL2 registers are configured for A9, A10, and A11,

respectively. ADC12EOS is added to the last channel of the

sequence. In the while loop, the program waits

 until the ADC14BUSY flag is cleared to determine

the completion of the conversion.

 Then, the converted data can be stored in the

adc_raw array.

The raw reading of the ADC values may need to be

converted to the corresponding voltages

 or angles as needed. Users can modify this code to

perform their proper conversions

 of the values. This multiple channel example can

be modified and applied to other

 microcontroller applications where it is necessary

to read ADC values from multiple

 channels. For instance, a system may need to read

multiple analog voltages for a temperature

 sensor, a battery level monitor, and an analog

tuning knob. An MSP430FR5994 MCU can

 be configured to read many channels. Specific pin

numbers associated with ADC channels

 can be found in the datasheet [2]. For an

MSP430FR5994 Launchpad board, the pinout information

can be found in the

 Launchpad board kit document [7].

Chapter 12. Embedded Software

Architectures

In general-purpose computer systems, speed or throughput

is one of the key performance

 parameters. You can imagine a typical laptop or a

PC as an example of a general-purpose

 computer system. The speed or throughput is also

a key performance parameter in embedded

 systems. Throughput is the amount of data that

can be processed in a given amount

 of time. In addition, there are other key

performance parameters such as response

 time and power consumption. Since embedded

system is a special purpose system, the

 emphasis on performance parameters might vary

depending on the applications. Moreover,

 in some embedded systems, performance

parameters may not only be the major factors

 but, other factors can be important such as

reliability of the system. In some cases,

 the cost associated with the production and

development can be a major consideration

 in some embedded systems. Designers and

programmers may need to understand the hardware

 and software requirements of the targeted project

in development. Then, they can choose

 suitable hardware and an embedded software

architecture for the project.

Embedded systems can be implemented without the use of

any kernel or an embedded system

 operating system. In this case, these specific

embedded systems simply do not have

 a kernel or a scheduler. In some of the other

embedded systems, they are implemented

 using embedded system operating systems such

as real-time operating systems (RTOSs).

 In this chapter, we will study five embedded

systems architectures. They are Round Robin, Round Robin

with Interrupts, Function-Queue scheduling, and Real-time

operating system [18].

Some embedded systems are built based on a Linux kernel.

Embedded Linux operating

 systems have been widely accepted in embedded

systems. Embedded Linux operating systems

 may process complex tasks and provide user-

friendly environments. For instance, an

 Android™ operating system that are used in

smartphones is one of the examples of embedded

 Linux operating systems. An Android operating

system is a mobile operating system,

 and it is based on a Linux kernel. Similarly, there

are many embedded Linux systems.

Embedded systems are becoming more powerful and

complex. Some of those complex embedded

 systems can be built using embedded Linux

operating systems. And these embedded Linux

 systems may seem to be low performance

general-purpose computers. However, embedded

 Linux systems and general-purpose computers are

not the same because embedded Linux

 systems are targeted to service specific purposes.

There are several embedded Linux

 systems that are suitable for educational

environments. Educational Embedded Linux

 Systems will be briefly presented in Chapter 28.

Scheduler and Kernel

A scheduler is in charge of changing ready state to running

of a task or process. When a task or a process is running, it

means it is using the

 associated system resources. It is typical to

manage multiple tasks. Scheduling is a method of assigning

or distributing computer resources to perform tasks. There

 are many scheduling algorithms. A scheduler is

typically a part of a kernel. A kernel is a part of an operating

system. The kernel is a core of an operating system, and

typically, it is the program loaded

 into the memory on boot, and it manages the

process of starting up a system.

Round Robin

Some of the microcontroller applications can be

implemented without the need for a

 kernel. They may have only several simple tasks

to be performed. If the tasks do

 not need to be processed concurrently, they can

be processed in sequence in an infinite

 loop. This embedded software system structure is

called a round robin architecture. This structure can be seen

as cyclic executives or super loop. This implementation is

simple and easy. It may not suffer from a shared memory

problem

 across multiple tasks.

Let us consider a pseudo code for the round robin

architecture shown in Program 12.1.

 There are four tasks defined in the program. The

first task is “read-button” task. The system reads the status

of buttons. In this case, we assume the system

 has multiple buttons. The second task is “read-

ADC” task. It reads the ADC values from the module and

performs the associated calculations.

 The third task is “control” task. The program

performs proper actions according to the system status

including

 button and ADC status. The fourth task is “display”

task. It manages to show data on a display module. The fifth

task is “send-data” task. It sends data over a serial

communication interface. In this program, a variable

 function, is used in switching a running task.

Initially, this variable is configured to run

 the read-button task at the start. Then, in the

while loop, all of the four tasks are running in

 sequence repeatedly. A volatile keyword is used for

this function variable. The volatile keyword is used to try to

prevent an unexpected optimization by the compiler.

Program 12.1. Pseudo code for Round Robin.

In this program, each task can be processed one at a time. If

there are data variables

 that are shared between the tasks, they do not

suffer from shared memory problems.

 The shared memory is the memory area that can

be accessed by multiple tasks. In this

 Round Robin architecture case, the shared

memory is not accessed simultaneously by

 multiple tasks.

Since there can be other tasks to perform between the read-

button task and the control task such as read-ADC task in

this example, there is a chance that this program may suffer

from a response-time

 problem. If the read-button task has a certain

deadline like an emergency button and other tasks in-

between could

 take longer time than the desired deadline. In this

scenario, it may cause missing

 a targeted deadline. A missed deadline might

cause a serious system failure. In order

 to overcome this issue, we can use interrupt

service routines in this Round Robin

 architecture described in the following section.

Round Robin with Interrupts

There can be several variants of Round Robin Architecture.

In this section, let us

 consider an architecture of Round Robin with

Interrupts. For the read-button task and the read-ADC task,

they can be processed in the interrupt service routines

(ISRs) as shown in

 Program 12.2. These two tasks can be processed

when they are requested. As they have

 higher priorities, these tasks may interrupt a

running task in the while loop. In

 this while loop, the control task, display task, and

send-data task are running in sequence repeatedly. When

buttons are pressed, a running task

 in the while loop is going to be interrupted. Then,

the associated ISR, Port5_ISR_handler, can be processed.

This method may resolve the response time problem that

we have

 considered in the Round Robin example. In

addition, this program does not need to

 wait until the ADC conversion and the relevant

calculation are completed. When the

 ADC interrupt service is requested, the read-ADC

task can interrupt a task in the while loop. Then it can

process the read-ADC task. After the read-ADC task is

completed, the program can run control task, display task,

and send-data task in sequence repeatedly.

Program 12.2. Pseudo code for Round Robin with Interrupts.

This variant of Round Robin is a potential solution to resolve

the response time problem.

 However, there are some other conditions to be

considered. While the system is processing

 the read-ADC task, the other read-button task

requests could be triggered multiple times. For an

MSP430FR5994 MCU, an ADC12

 ISR has a higher priority than a Port 5 ISR as we

have studied previously. In this

 case, there is a chance to miss the multiple read-

button task requests. In addition,

 these read-button or the read-ADC tasks have

higher priorities than other tasks in the while loop. If ISRs

were overly

 dominating the processor time, the other tasks in

the while loop would not be running

 properly.

This would be related to the recommended practice of

writing an ISR short to reduce

 the time spent in the ISR. Next, let us consider a

scheduling system to tackle this

 problem in the following section.

Function-Queue Scheduling

We have studied simple examples of Round Robin and a

variant of Round Robin in the

 previous sections. Using a circular queue, we can

implement a simple scheduling system.

 A circular queue can store data, and its data

structure is based on FIFO (First In

 First Out). The last position of the data is

connected back to the first position

 of the data, and it forms a circular buffer. Function

pointers for tasks can be stored

 in the circular queue. Let us say that there is a

program routine that checks whether

 the function pointer has any data or not. If it has

the data, then the program reads

 the queue and calls the associated function.

An example of this type of program with a circular queue is

shown in Program 12.3.

 In this program, it is assumed that the circular

queue is already implemented separately.

 This circular queue is not a part of a standard

library; but a user can simply implement

 it, or a user can find relevant queue library found

in a software package provided

 by a manufacturer. In this example program, there

are five functions that were defined,

 and they are associated with five tasks we have

studied previously.

Program 12.3. Pseudo code for Function Queue Scheduling.

For the Port 5 ISR, it can process minimum actions to handle

a read-button task, and the remaining actions to complete

the read-button task can be processed in the function1 sub-

routine. This method can make the time to spend in an ISR

short, and the rest

 of the process can be processed after exiting the

ISR. Likewise, an ADC ISR is handling

 minimum actions for a read-ADC task, and the

function2 has the remaining actions for the read-ADC task

to be performed. The function3, function4, and function 5

are the sub-routines related to control task, display task,

and send-data task, respectively. The function3, function4,

and function5 will be running in sequence in a normal

condition repeatedly. If there is any interrupt

 request from the Port 5 or ADC, this cycle can be

interrupted, and the relevant code

 and function can be running first. This example

program is capable of catching task

 requests reasonably fast, and it could resolve

some of the problems discussed in the

 previous examples.

In Program 12.3, the function pointers that need to be

executed are stored in the

 circular queue, and the program runs the relevant

functions by reading function pointers

 from the queue. This is a function-queue

scheduling, which is a simplified example

 of scheduling.

Let us consider a scenario. Let say function3, function4, or

funcion5 is desired to be low priority tasks and function1

and function4 are desired to be high priority. If there are too

many requests of low priority tasks

 such as function3, function4, or funcion5, stored in

the queue, then, the chance of running higher priority tasks

properly

 such as function1, or function4 gets lower. This

might be relevant to the need for a capability to selectivity

run

 a task from the requested tasks stored in the

queue. In addition, this program treats

 all tasks as the same priority except the tasks

related to ISRs.

In this function-queue example, the method of assigning

different priorities was not

 implemented. But, these complex cases can be

handled by using a real-time kernel that

 is a part of a real-time operating system (RTOS). In

RTOS, developers can assign different

 priorities for the tasks, and RTOS can manage to

put a lower priority task in a ready

 state and run a higher priority first. In the following

section, we will study an

 RTOS example.

Real-time Operating System

A real-time kernel is the core of a real-time operating

system. It manages booting,

 task scheduling, and resources of an MCU. A real-

time operating system (RTOS) includes

 a real-time kernel and other higher level and

additional services. An RTOS is designed

 to meet strict deadlines. In addition, an RTOS

includes a large set of libraries that

 are suitable for various applications of embedded

systems.

A pseudo code example for an RTOS is shown in Program

12.4. Five tasks were defined.

 Task3, Task4, and Task5 are for a control task,

display task, and send-data task, respectively. They are

running in sequence repeatedly by synchronization using

 signaling. There are two more tasks that are

configured to be triggered by hardware

 interrupt requests. They are Task_GPIO_btn0 and

Task_ADC_callback0. In the main program, it begins with the

custom initializations including task definitions.

 Then, the BIOS (Basic Input Output System) gets

started. Once the BIOS started, RTOS

 system will take over the system. As you can

notice, this program style is different

 than the ones without an O/S. At the same time, it

is also different from an application

 program for a general-purpose O/S because the

application programing in a general-purpose

 O/S typically gets loaded and running after the

booting process. However, in this

 RTOS, the initialization of the tasks run first.

Developers can add their custom code

 to execute them first before the operating system

is running. After this initialization,

 the kernel will be running, and it will run defined

tasks.

Program 12.4. Pseudo code for RTOS.

RTOS supports task scheduling and multitasking as

discussed previously. In this example,

 the method of synchronization using signaling was

used. RTOS provides various methods

 for a multitasking environment such as mutexes.

Mutexes are objects that can be used

 as signaling and they may be used in resolving a

conflict in shared resources. Mutexes

 are binary semaphores with a method to resolve

priory inversions. In addition, RTOS

 provides more methods that are suitable for a

multitasking environment.

There are many Real-time operating systems available, and

the license options may

 vary depending on Real-time operating systems.

Texas Instruments provides TI-RTOS.

 TI-RTOS has a TI-RTOS kernel that was formerly

called SYS/BIOS. Later in Chapter 24,

 we will study simple TI-RTOS examples.

Architecture Selection

An embedded system is a special purpose system, and it is

up to developers to choose

 a proper embedded system architecture for their

targeted system. The decision is typically

 dependent on the project requirements and

specifications.

In this respect, developers may need to understand their

project requirements and

 specification in order to choose proper hardware

and software architectures for their

 embedded systems. At the same time, they need

to understand the limitations of their

 choice of software architecture. In some

applications, their embedded systems are

 relatively simple, and they can be implemented

without the use of any scheduler or

 operating system. In some other applications, they

may need to use an embedded operating

 system such as RTOS.

As mentioned, for some embedded systems, it is allowed to

use rich resources. In this

 case, embedded systems can be built using a

Linux kernel, Microsoft’s Windows kernel,

 or a macOS® kernel. In high-end embedded

systems, the programming environment is similar to an

 application program in general-purpose computing

systems. These systems can be still

 considered embedded systems since they are

designed to perform specific tasks and

 for the specific purposes.

Chapter 13. Pulse Width Modulation

Pulse Width Modulation (PWM) can be understood as a

method of generating analog signals

 using digital data. A PWM signal can control the

duration of logical high or low states

 of a periodic digital signal. PWM signals are useful

in many applications such as

 controlling DC motors, valves, pumps, and the

brightness of LEDs. There are two major

 parameters determining the behavior of a PWM

signal. These parameters are duty cycle

 and frequency. Previously, we could vary the

frequency of periodic digital signals.

 In this section, we will learn how to control the

duty cycle of the digital signals.

PWM signals

A duty cycle of a PWM signal can be determined by the

percentage obtained by the fraction

 of the “ON” time and the period of the PWM signal.

Let us suppose that a logical high

 level is ON state. Now, a duty cycle (%) can be

obtained as follows:

PWM signal examples with different duty cycles are shown

in Figure 13.1. It shows

 the duty cycle of 50% at the top. In this case, the

ON time is assumed to be half

 of the period of the signal.

Figure 13.1. PWM signals.

In the middle of Figure 13.1, the duty cycle of a PWM signal

is 25%. In this case,

 the ON time is less than half of the period. The ON

time is 1/4 of the period. At

 the bottom of Figure 13.1, it shows the case of the

duty cycle of 75%. In this case,

 the ON time is bigger than half of the period. The

ON time is 3/4 of the period.

We have studied variable frequency generator examples in

earlier chapters. The duty

 cycles were 50% and they were not variable. In

this chapter, we are going to learn

 a method that can control the duty cycles.

PWM signals can be generated using an MSP430FR5994

MCU. In order to generate a PWM

 signal, let us use CCR0 and CCR1 of a Timer_A1

module. At the top of Figure 13.2,

 it shows a case where TA1CCR1 is half of TA1CCR0.

The timer mode is configured as

 Up mode. Let us say that we can generate a

logical high level (set) when the counter reaches

 TA1CCR0, and we can generate a logical low level

(reset) when the counter reaches

 TA1CCR1. Then, an output signal alternating

ON/OFF states can be generated. Since

 TA1CCR1 is half of the TA1CCR0, the duty cycle of

the generated signal is close to

 50%.

For reference, this method is different than the one we used

in Chapter 7. Previously,

 the output signals were simply toggled at each

time when the counter reaches at TA1CCR0.

 The frequency generated by the method shown in

this chapter would be two times higher

 than the one in Chapter 7.

Figure 13.2. PWM generation using TA1CCR0 and TA1CCR1.

In the middle of Figure 13.2, it shows the case where

TA1CCR1 is smaller than half

 of the TA1CCR0. In this case, the duty cycle of

PWM signals is less than 50%. If TA1CCR1

 is 1/4 of TA0CCR0, the duty cycle is close to 25%.

At the bottom of Figure 13.2, it shows the case where

TA1CCR1 is bigger than half

 of the TA1CCR0. In this case, the duty cycle of a

PWM signal is higher than 50%. If

 TA1CCR1 is 3/4 of TA1CCR0, the duty cycle is close

to 75%.

As described, using TA1CCR0 and TA1CCR1, we can

generate PWM signals and the duty

 cycles of PWM signals can be varied. In the

following sections, we are going to study

 in more detail about generating PWM signals using

an MSP430FR5994 MCU.

Software PWM

Using a timer_A1 and a GPIO port, we can write a program

that can generate PWM signals.

 We call this technique “Software PWM” in this

section. The code example of the Software

 PWM using CCIFG flag is shown in Program 13.1. In

this program, the values of TA1CCR0

 and TA1CCR1 are configured as 2000 and 500,

respectively. Both TA1CCTL0 and TA1CCTL1

 interrupt services are enabled.

Program 13.1. S/W PWM program using CCIFG flag

(Interrupt).

Timer1_A0_ISR and Timer1_A1_ISR are the interrupt service

routines. If the CCIFG for TA1CC0 is set, Timer1_A0_ISR can

be executed, and the output of P1.2 can be set. Moreover,

the code in Timer1_A1_ISR can check whether the CCIFG for

TA1CCR1 is set or not. If the CCIFG is set, the output

 of P1.2 can be cleared.

Depending on the values of TA0CCR1 and TA0CCR0, a PWM

signal can be generated. The

 duty cycle of the generated PWM signal can be

about 25%, and the frequency of the

 generated PWM signal is about 500 Hz.

Another program example of the software PWM using TAIFG

flag is shown in Figure 13.2.

 The set-up process is similar; but there are some

differences such as in the use of

 timer flags and interrupt configurations. In this

program, TA1CTL and TA1CCTL1 interrupt

 services are enabled. Only Timer_A1_ISR interrupt

service routine (ISR) is used. In the ISR, it can check

whether the TAIFG

 is set or not. If the TAIFG is set, the output of P1.2

can be set. Moreover, it can

 check whether the CCIFG of TA1CCR0 is set or not.

If the CCIFG is set, the output

 of P1.2 can be cleared.

Program 13.2. S/W PWM program using TAIFG flag

(Interrupt).

Similar to the previous example, depending on the values of

TA1CCR1 and TA1CCR0, PWM

 signals can be generated. The duty cycle of the

generated PWM signal can be about

 25%, and the frequency of the generated PWM

signal is about 500 Hz.

Both Software PWM example programs can generate PWM

signals with similar duty cycles

 and frequencies; however, internal processing and

operations are different. One of

 the benefits of a software PWM generator is that

developers can apply their own custom

 operation pattern using any of GPIO pins.

However, in order to provide more stable

 PWM signals, a hardware based PWM signal

generation method can be used instead. Hardware

 based PWM signals can be generated using an

MSP430FR5994 MCU.

Hardware PWM

We have studied Software PWM methods, and PWM signals

can be generated. However, there

 can be a chance that some of interrupt services

with higher priorities may need to

 be running. If this instance occurs frequently, the

accuracy of the PWM signals might

 suffer.

Figure 13.3. Simplified Timer_A1 block diagram showing

CCR1 block [1].

For some applications such as motor control applications,

stable and accurate PWM

 signals can be critically important. In this reason,

hardware based PWM signals can

 be preferred choices. An MSP430FR5994 MCU can

provide hardware based PWM signals using

 a timer. We will use Timer A1 module in this

chapter.

Timer_A1 modules in an MSP430FR5994 MCU have output

units and relevant components

 that can be used in hardware PWM generations. A

simplified Timer_A1 block diagram

 displaying CCR1 block is shown in Figure 13.3. In

this figure, the OUTPUT MODE box

 is uncovered. And it is still enclosed with a thick

dotted line. This block shows

 the output unit and relevant components. Each

capture/compare block has these output

 unit and the relevant components.

Output Unit and Output Modes

There are multiple capture and compare blocks in the

Timer_A1 module. Each capture/compare

 block has an output unit. The output unit can be

used in generating PWM signals. There

 are eight operating modes supported by the

output unit as shown in Table 13.1. This

 table shows a specific case of TA1CCR0 and

TA1CCR1. However, users can extend it to

 other cases such as TA1CCR0/TA1CCR2. One of the

output modes can be selected by the

 configuration of OUTMOD bits.

Mode Description

OUTMO

D

Bits

Output 0
Output signal is updated according to the

corresponding OUT bit.

Set 1
Output signal is set when the counter reaches

TA1CCR1.

Toggle/Rese

t
2

Output signal is toggled when the counter reaches

TA1CCR1, and it is reset when the

 counter reaches TA1CCR0.

Set/Reset 3

Output signal is set when the counter reaches

TA1CCR1, and it is reset when the counter

 reaches TA1CCR0.

Toggle 4
Output signal is toggled when the counter reaches

TA1CCR1.

Reset 5
Output signal is reset when the counter reaches

TA1CCR1.

Toggle/Set 6

Output signal is toggled when the counter reaches

TA1CCR1, and it is set when the

 counter reaches TA1CCR0.

Reset/Set 7

Output signal is reset when the counter reaches

TA1CCR1, and it is set when counter

 reaches TA1CCR0.

Table 13.1. OUTPUT modes (TA1CCR0/TA1CCR1) [9].

We have used a specific signal generation pattern in the

previous Software PWM examples.

 This pattern was based on Output mode 7. In this

Output mode 7, the output signal

 is reset when the counter reaches TA1CCR1, and

the output signal is set when the counter

 reaches TA1CCR0. When it is properly configured,

the hardware units and components

 can function to perform in generating a similar

signal pattern. In addition to this

 pattern, users can generate different signal

patterns by using these Output modes.

Output signal examples in Up mode using Timer_A1 are

shown in Figure 13.4. In this example, TA1CCR1 is smaller

than

 half of the TA1CCR0. Given the configuration,

Output modes of 2, 3, 6, or 7 can generate

 PWM signals. However, the patterns and the duty

cycles are different. The duty cycles

 can be varied by changing the value of TA1CCR1.

Also, it is worth mentioning that

 we have examined the case of the Up mode only

in this chapter. This is simply one configuration of many

combinations. The

 other cases include a case of using other timer

modes such as continuous mode and up/down mode.

Figure 13.4. Output Signals – Up mode [9].

Pin Functions

The pin function needs to be configured properly in order to

generate an output signal.

 Specific pins that are interconnected to the output

units were pre-defined by the

 manufacturer. Table 13.2 shows the selected pin

functions of P1.2 in an MSP430FR5994

 MCU.

Pin P1SEL1 P1SEL0 P1DIR Description

P1.2

0 0 0 GPIO (Input)

0 0 1 GPIO (Output)

0 1 0 TA1.1 (Input/CC1A)

0 1 1 TA1.1 (Output)

Table 13.2. Selected pin functions of P1.2 in an

MSP430FR5994 MCU [9].

In order to generate an output signal using the

corresponding output unit and the

 relevant components, the P1SEL1 and P1SEL0

registers need to be configured properly

 to provide proper alternate function for TA1.1. The

output direction needs to be configured

 properly as well. Then, an output signal associated

with the Timer A1 and the corresponding

 output unit can be generated properly through the

pin of P1.2.

Hardware PWM Example

The hardware PWM example is shown in Program 13.3. The

registers related to P1.2 are

 configured to provide an output signal associated

with the Timer A1 and the relevant

 output unit. The TA1CCTL register is configured for

Output mode 7. Compared to the

 previous Software PWM programs, this Hardware

PWM program is simpler, and the MCU

 is less occupied with the tasks to be routinely

processed.

Program 13.3. Hardware PWM generation program.

This hardware PWM program example can generate a

hardware PWM signal, and we can control

 the PWM frequency and duty cycle. In the following

chapter, we will use this method

 to con a DC motor.

Chapter 14. DC Motor Control

A DC motor is an electromechanical component that

transforms direct current electrical

 energy into mechanical energy in the form of

rotation. DC motors are used in a wide

 range of microcontroller applications. Small-sized

motors are used in handheld tools,

 toys, and small electronics. Large-sized DC motors

are used in electric vehicles and

 industrial equipment. In this chapter, we will learn

about a DC motor control method

 that is suitable for embedded systems.

DC Motor Control and Practical

Consideration

An electronics circuit with a DC motor and a switch is shown

on the left side of Figure

 14.1. This switch is open. In the middle of the

figure, it shows the case where the

 switch is closed. In this state, the current flows

through the motor. It causes the

 DC motor to rotate. Next, when it is rotating, the

switch can be controlled to be

 open as shown on the right side of the figure.

Then, it will cut off the power and

 the rotation of the DC motor will eventually be

stopped. However, there would be a

 possible status that a high voltage could be

induced, and it might cause an arc through

 the air gap. This voltage spike could occur because

the current flowing through the

 inductance of the motor would change suddenly.

We can consider an equation of an inductor

 as follows:

As it can be seen from the equation, the induced voltage of

an inductor can be very

 high, if there is a sudden current change for a very

short time. This voltage spike

 or an arc is not desired because any spark can be

hazardous, and the high voltage

 could damage electronics components. Therefore,

a protection method is needed due

 to the potential arc and unwanted high voltage.

One of the methods is to use a flyback

 diode.

Figure 14.1. Simplified DC motor control and the practical

consideration.

Flyback diode

A flyback diode is a diode connected in parallel to an

inductor, and the flyback diode

 is placed with the reverse polarity from the power.

The inductor could be a relay

 or motor. A flyback diode can be used in tackling

the described practical problem

 of an arc or a high voltage. This flyback diode also

has other names such as a kickback

 diode and snubber diode. Let us consider a case

shown on the left side of Figure 14.2.

 This is a similar condition when the current is

flowing, and the motor is operating

 as shown in Figure 14.1. However, the difference is

that this circuit in Figure 14.2

 has a diode connected across the motor.

Figure 14.2. Simplified DC motor control circuit with a

flyback diode.

When a motor is rotating, counter-electromotive force also

known as back electromotive

 force (EMF) can be induced. This is because the

motor is also like a generator. Back

 EMF can be measured as a voltage that appears in

the opposite direction to the current

 flow. The voltage of the back EMF is related to the

speed of the motor. Back EMF is

 not necessarily bad because the current

consumption of a motor drops while the motor

 is spinning. Now, the switch can be turned off as

shown on the right side of the figure.

 In this case, there is a still path through the diode.

Therefore, the remaining current

 can flow through the path of the flyback diode. In

this reason, it could reduce a

 possibility of an unwanted arc or high voltage.

Flyback diodes can also be used in

 circuits such as relay switch applications.

Basic DC Motor Control Circuit

A switch for the motor control can be implemented using a

power transistor. A basic

 DC motor control circuit using an NPN power

transistor is shown in Figure 14.3. A

 base resistor is used between a GPIO pin and the

base of a transistor. The base resistor

 is an essential component in this control circuit.

When the logical output level of

 the GPIO pin is high, a significant current can flow

through the motor. It causes

 the motor to spin. When the logical level of the

GPIO pin is low, the current across

 the motor is very small. It can make the motor

stop eventually. During the transition

 from ON to OFF state, the remaining current has a

path through the diode. Then, the

 motor current can decay. This is a practical circuit

example of controlling a DC motor

 in embedded systems. For instance, one of the

GPIO pins of an MSP430FR5994 MCU can

 be used to control a DC motor as a vibration

motor.

Figure 14.3. Basic DC motor control circuit.

This basic DC motor control circuit can control a motor to

spin. However, it cannot

 change the direction of the rotation. If developers

want to control the direction

 of the rotation, an H-bridge motor control driver

can be used.

H-bridge Motor Control Driver

An H-bridge is a circuit configuration that can switch the

polarity of the voltage

 across a load. Let us say the load in this section is

a DC motor. An H-bridge circuit

 with ideal switches is shown on the left side of

Figure 14.4. Four ideal switches

 and one motor components are used. As you can

see, the graphical representation of

 the circuit due to the arrangement of the four

switches is similar to the letter H.

Figure 14.4. H-bridge circuits.

An ideal switch can be implemented by replacing it with a N-

channel power MOSFET (metal–oxide–semiconductor

 field-effect) transistor and a diode as a flyback

diode. All switches were replaced

 with this N-channel MOSFET power transistors and

diodes as shown on the right side

 of Figure 14.4. To compare the cases of an NPN

power transistor and a N-channel MOSFET,

 a resistor at the gate of the MOSFET transistor is

not necessary. This H-bridge circuit

 is a basic H-bridge configuration that we will study

in more detail in the following

 sections.

Let us consider the case where two transistors are turned

ON and the rest of transistors

 are remained turned OFF as shown on the left side

of Figure 14.5. In this case, the

 current can flow through the motor and two of the

transistors at each side. On the

 right side of the figure, it shows the other case

where the other two transistors

 are turned ON instead. In this case, the current can

flow through the motor as well.

 However, the current directions in these two cases

are different. Thus, the direction

 of the rotation of a motor can be switched by

controlling these transistors. Let us

 say that the first case is a forward direction, the

other case is a reverse direction

 for ease of explanation in this chapter.

Figure 14.5. Forward and reverse directions.

Decay Modes

As shown on the left side of Figure 14.6, if the H-bridge

driver is configured for

 the forward direction, the motor can spin. Then, let

us say we want to control it

 to stop. The figure in the middle shows the

condition that all of the transistors

 are turned OFF. In this case, as we have discussed

earlier, there is a path of the

 current through the flyback diodes. Let us assume

that this behavior of turning all

 transistors OFF is the state during the dead time in

this example. However, the behavior

 during the dead time can be implemented

differently by the manufacturer. Next, there

 can be further steps of decay modes that are

implemented for stop conditions depending

 on the H- bridge motor drivers. Let us examine

different decay modes for stop conditions.

One of the decay modes is a fast decay mode. In order to

stop the motor, the motor driver can turn the opposing

transistors

 ON as shown at the top right side of Figure 14.6.

These transistors are turned ON

 until the current decays to zero or during a fixed

short amount of time. The current

 in this mode is made to decay faster than the

other decay mode.

Figure 14.6. Decay modes.

Another decay mode is a slow decay mode. To stop a motor,

the motor driver can turn ON two transistors that are

located

 at the lower side as shown at the bottom right side

of Figure 14.6. In this configuration,

 there would be a back EMF involved across the

motor. Shorting the back EMF can cause

 a very quick rotor stop. This is also known as short

brake.

In some motor drivers, they support mixed decay mode. For

instance, a fast decay mode can be applied for a certain

duration of time.

 Then, a slow decay mode can be applied for

another duration of time. The ratio of

 the durations in these two modes may vary

depending on the motor driver. The mixed decay mode can

be useful in some applications such as stepper motor driver

applications.

Shoot-through

When the transistors are controlled, shoot-through should

be avoided. An example of shoot-through is shown in Figure

14.7. If both of two transistors are turned ON at the same

side

 as shown in the figure, it might cause an excessive

current flow and catastrophic

 damage. It is common to use an H-bridge motor

driver IC instead of using individual

 components. One of the advantages in using an H-

bridge motor driver IC is that some

 of the H-bridge driver IC models support the shoot-

through protection or prevention

 features.

Figure 14.7. Shoot-through.

DRV8833 H-bridge Motor Driver

There are many H-bridge motor driver ICs. Developers need

to find a suitable one for

 their given project. In this book, as an example, a

TI DRV8833 H-bridge motor driver

 IC is chosen [19]. A DRV8833 IC can be powered

with the supply voltage of 2.7 V to 10.8 V. A DRV8833

 IC includes two H-bridge drivers. Each H-bridge

driver can provide the current up

 to 1.5-A RMS and 2A peak.

A simplified block diagram of this motor driver IC is shown in

Figure 14.8. Two H-bridge

 drivers can be found on the right side, and they

are connected to two DC motors. Input

 pins of AIN1 and AIN2 are used to control the state

of one of the H-bridge drivers.

 The other input pins of BIN1 and BIN2 can control

the other DC motor. Moreover, a

 DRV8833 IC provides protection features such as

over-current protection and over-temperature

 protection. A DRV8833 IC can be controlled using a

MCU such as an MSP430FR5994 MCU.

Figure 14.8. Simplified block diagram of a DRV8833 IC [19].

There is a logic and gate driver block that controls the

behavior of the H-bridge

 drivers including decay modes. The H-bridge logic

for a DRV8833 IC is shown in Table

 14.1.

AIN1(BIN1) AIN2 (BIN2) Description

0 0 Fast decay

0 1 Reverse

1 0 Forward

1 1 Slow decay (Short brake)

Table 14.1. H-bridge logic.

The H-bridge logic table shows the relevant functions

according to the input signals.

 If the logic levels of AIN1 and AIN2 are high and

low, respectively, the motor will

 spin. Let us say this is a forward direction. If the

logical levels of AIN1 and AIN2

 are low and high, respectively, the motor will spin

but, the direction of the rotation

 will be the opposite. This is a reverse direction.

When the motor is spinning, logical levels of both AIN1 and

AIN2 can be controlled

 to be either low or high. Then, the motor is going

to stop spinning. If the logical

 levels of both AIN1 and AIN2 are low, the current

gets decayed in a fast decay mode. On the other hand, if

the logical levels of both AIN1 and AIN2 are high, the

 current gets decayed in a slow decay mode. In

comparison, in the fast decay, the current decays faster.

However, in the

 slow decay, due to the effect of shorting back EMF,

the rotor stops quickly.

In order to control the speed of the motor, PWM (Pulse Width

Modulation) signals can

 be applied. Table 14.2 shows the functions when

the PWM signals are applied.

AIN1(BIN1) AIN2 (BIN2) Description

0 PWM Reverse (PWM) / fast decay

PWM 0 Forward (PWM) / fast decay

1 PWM Forward (PWM) / slow decay

PWM 1 Reverse (PWM) / slow decay

Table 14.2. PWM control.

If the logical level of AIN1 is low and a PWM signal is applied

to AIN2, the reverse

 and fast decay states will be alternating. By

controlling the average power delivered

 to the motor, the motor speed can be controlled.

Then, if the input signals of AIN1

 and AIN2 are switched, the direction of the motor

will be reversed.

Likewise, if the logical level of AIN1 is high and a PWM signal

is applied to AIN2,

 the forward and slow decay states will be

alternating. Next, if the input signals

 of AIN1 and AIN2 are switched, the direction of the

motor will be reversed.

As it was explained, the speed and rotation of the motor can

be varied by providing

 different a PWM signal and a logical signal, and it

can control the average power

 delivered to the motor.

A simplified DRV8833 IC connection example is shown in

Figure 14.9. An DRV8833 motor

 driver IC is connected to an MSP430FR5994 MCU.

Figure 14.9. Simplified DRV8833 connection diagram for

two DC motors.

This circuit example shows a case of controlling two DC

motors. As it can be seen,

 the supply voltage of a DRV8833 IC can be higher

than the supply voltage of an MSP430FR5994

 MCU. A DRV8833 motor driver IC is connected to

five GPIO pins of an MSP430FR5994 MCU.

 Four GPIO pins are connected to AIN1, AIN2, BIN1,

and BIN2 pins, and one more GPIO

 pin is connected to the nSLEEP pin. If the logic

level of this pin is high, the motor

 driver will be activated. However, if the logical

level of this pin is low, the motor

 driver enters a low-power sleep mode.

DRV8833 Motor Driver Module

In order to reduce the complexity, instead of using an

individual DRV8833 IC, a PCB

 module with an DRV8833 motor driver IC can be

used. There are several modules available

 from different vendors. Readers can choose their

own DRV8833 module. One of the modules

 shown in this section is an Adafruit® DRV8833

module. Using this module, the connection can become

simpler.

The connection diagram is shown in Figure 14.10. In this

example, only one motor is

 connected. There is “VM” pin in the module. This

pin is internally connected to the

 VM pin of the DRV8833 IC on the PCB. In this

module, there is a small screw fixed

 terminal block. This module supports reverse

polarity protection through this terminal

 block. VM pin can be also connected through this

terminal block. Either the terminal

 block or directly VM pin would be fine in supplying

the power. However, if it would

 be a good idea to supply the power through the

terminal block due to the reverse polarity

 protection function.

For test and safety purposes, a DC power supply can be

used instead of batteries.

 A power supply can provide additional protection

by limiting the supply current. Using

 the power supply, a proper supply voltage can be

provided. The supply voltage to the

 DRV8833 module has to meet the specification of

a chosen DC motor. For instance, a

 DC gearbox motor may have a recommended

operating range such as 3 V to 6 V DC. A user

 can choose the supply voltage as 5 V.

Figure 14.10. DRV8833 module connection diagram [20].

In this diagram, three pins are connected to an

MSP430FR5994 MCU. The AIN1 and AIN2

 pins are connected to the pins of P1.2 and P1.3,

respectively. The SLP pin is the

 internally connected to nSLEEP pin of the DRV8833

IC. The SLP pin is connected to

 the pin of P4.7.

On a BH EDU board, a DRV8833 IC is placed. Users need to

connect to the proper headers

 to access pins of the motor driver IC.

Pin functions

The selected pin functions of P1.2 and P1.3 are shown in

Table 14.3. As we have studied

 in the previous chapter, P1SEL1, P1SEL0, and

P1DIR need to be configured properly

 for a proper alternate function. As shown in the

table, the alternate functions for

 P1.2 and P1.3 are chosen. They are related to

TA1.1 and TA1.2, respectively, and they

 can generate PWM signals.

Pin P2SEL1 P2SEL0 P2DIR Description

P1.2

0 0 0 GPIO (Input)

0 0 1 GPIO (Output)

0 1 0 TA1.1 (Input/CC1A)

0 1 1 TA1.1 (Output)

P1.3

0 0 0 GPIO (Input)

0 0 1 GPIO (Output)

0 1 0 TA1.2 (Input/CC2A)

0 1 1 TA1.2 (Output)

Table 14.3. Selected pin functions of P1.2 and P1.3 in an

MSP430FR5994 MCU [9].

DC Motor Control Example

A DC motor control program is shown in Program 14.1. This

is based on the connection

 shown in Figure 14.10. In this program, the GPIO

ports and the Timer_A1 are configured

 properly for the hardware PWM signals through

P1.2 and P1.3. In the previous chapter,

 we studied the program that can generate PWM

signals through one pin. The program

 in this chapter can generate hardware PWM

signals through two separate pins.

Program 14.1. PWM DC motor control example.

The duty cycles of the PWM signals can be controlled by

tweaking TA1CCR1 and TA1CCR2

 values. In this case, TA1CCR1 and TA1CCR2 values

are configured as 1000 and 2000,

 respectively. Since TA1CCR0 is 2000, the duty

cycles for the PWM signals at P1.2 and

 P1.3 are about 50% and 100%. The ideal 100%

PWM signal is simply like a logical high

 level. It is worth mentioning that it is not the same

as a solid logical high signal.

 The signal may show some periodic glitches.

Referring to Table 14.2, this program

 example will demonstrate the operations of the

reverse motor rotation and slow decay.

Users can change the TA1CCR1 and TA1CCR2 values in

order to create various conditions

 shown in Table 14.2. The value of TA1CCR0 can be

tweaked and it may vary the frequency.

 While any of the PWM frequency can be chosen, it

is preferred to choose a frequency

 that is above audible frequency range. This is

because an audible noise in a motor

 could be problematic in some applications.

However, if the PWM frequency gets too

 high, the motor driver may not be able to handle

the control signals properly. This

 may also be relevant to the choice of decay mode.

In Chapter 22, we will study a system integration topic and

a simple educational robot

 will be shown as an example. This robot is a

differential wheeled robot platform,

 which has two separately driven wheels with one

or more caster wheels. In order to

 operate the two motors, users can modify this

example program to add two more pins

 that can generate PWM signals.

Chapter 15. Servo Motor

A servo motor is a component that can produce a rotary

motion typically for precise

 control of angular position. Servo motors have

been utilized in many microcontroller

 applications. Servo motors are also used in

industrial robotics, manufacturing equipment,

 and CNC (Computer Numerical Control) machines.

Moreover, they can be small in size,

 and they are used in radio-controlled (R/C) cars,

airplanes, and boats. In this chapter,

 we will learn about servo motors.

Open Loop Control System

A gear motor can be controlled by an open loop system as

shown in Figure 15.1. In

 this open loop control system, an input is simply

fed to a controller, and the controller

 controls a gear motor accordingly. To make it clear,

the output of a system is not

 used as an input back to the system to determine

whether the output has achieved a

 goal or not.

Figure 15.1. Open loop control.

The advantage of the open loop control is the reduction of

system complexity. However,

 this open loop system cannot correct errors that

may have been caused by any disturbances.

 In a normal condition, the output behavior may be

close to the desired behavior or

 goal. However, in the presence of disturbances,

there is a chance that the output

 behavior can be deviated from the goal.

Closed Loop Control

A gear motor can be controlled by a closed loop system as

shown in Figure 15.2. In

 a closed loop control system, the output of a

system has a feedback loop to the system

 and the output is used as an input to the system to

determine whether the output has

 achieved a goal.

Figure 15.2. Closed loop control.

A feedback controller controls the gear motor. The

difference between the variable

 “x” and the sensor block output is going to be

used as an input for the feedback controller.

 The sensor block converts the behavior of the gear

motor such as rotation or angle

 to a proper format of a voltage, a current, or a

signal. This closed loop system is

 more complex than the open loop system.

However, in the presence of disturbances,

 the output behavior can be corrected in order to

meet the goal and for the desired

 behavior. A servo motor is an example of closed

loop control systems.

PID Control

A simplified PID control block diagram is shown in Figure

15.3. The block diagram

 includes proportional (P), integral (I), and

derivative (D) blocks. The controller

 block is related to these PID blocks. This is a

conceptual representation of the controller.

 Their outputs of PID blocks are summed to provide

the input to the motor. This is

 an example of a proportional integral derivative

controller (PID) controller. A PID

 controller continuously calculates an error between

the goal and the measured value,

 and it applies corrections based on proportional,

integral, and derivative terms.

 A PID controller has been widely used in control

applications.

Figure 15.3. Simplified PID control.

The control function can be expressed by the equation as

follows:

The first term is the proportional term. It contributes to the

output that is proportional

 to the current error value. The rate of the change

can be adjusted by a constant . The second term is the

integral term. The contribution to the output can be

determined

 by the sum of instantaneous errors over time. The

rate of the change can be adjusted

 by a constant . The third term is the derivative

term. The contribution is determined by the slope

 of the error over time. The rate of the change can

be adjusted by a constant . There are three control terms.

In some applications, only one or two terms can be

 used depending on the application. Proportional

and integration terms are chosen,

 which is known as a PI controller.

PID controllers can be found in many control applications

including servo control

 systems. For instance, a servo control system can

include a feedback loop and a PID

 controller that can provide tuning of a control loop.

Servo Motor

Servo motors are used in industrial applications including

industrial robots and industrial

 automation systems. Servo motors can provide

high precision positioning. A servo motor

 is shown in Figure 15.4, and the servo motor is

paired with an encoder. The encoder

 can determine the speed and position. Depending

on the servo motor model, a servo

 motor may provide several connectors including

encoder and power connectors.

Figure 15.4. Servo motor.

Using this servo motor, a servo control system is configured

as shown in Figure 15.5.

 The servo motor is connected to a block with servo

amplifier and motion controller

 units. This block is connected to a computer. A

custom application on the computer

 can control the speed and position of the servo

motor. For instance, a servo control

 system can be applied to a conveyor system of

manufacturing applications.

Figure 15.5. Servo control system.

Hobby/RC Servo Motor

In some small or simple electronics projects, “hobby” or

“RC” servo motors are used

 to provide motion control. Hobby or RC servo

motors are often simply called servo

 motors. In this book, they could be also called

servo motors. However, hobby servo

 motors are clearly different from the described

typical servo control systems. Hobby

 servo motors are inexpensive, and easier to

control. They can be found useful in small

 sized electronic systems. Now, let us study more

about hobby servo motors and how

 to control them in the following sections.

A micro servo and standard servo motors are shown in

Figure 15.6. As described, hobby

 servo motors are called RC servo motors or RC

servos, and they are widely used in

 small sized R/C cars and R/C airplanes. Standard

servo motors are bigger than micro

 servo motors; however, typically, they can deliver

higher torque. Hobby or RC servo

 motors have been used in small-sized robotics

projects.

Figure 15.6. Hobby servo motors.

A simplified block diagram of a hobby servo motor is shown

in Figure 15.7. The hobby

 servo motor has a smaller closed loop system than

the industrial servo motor system

 we have studied previously. A hobby servo motor

has a feedback control, and the shaft

 position is measured by a potentiometer. A PWM

signal can be applied to a hobby servo

 motor, and the shaft of the hobby servo motor can

hold a corresponding angular position.

Figure 15.7. Simplified block diagram of a hobby servo

motor.

Control of a Hobby/RC Servo Motor

It is typical to find a 3-pin female header that is attached to

a hobby servo motor.

 One of the pins is a control signal line. A digital

signal can be applied through

 this pin to control the shaft position of the servo

motor. Examples of control signal

 patterns are shown in Figure 15.8. It shows the

neutral position case in the center

 of the figure. The ON time is 1.5 ms, and the

period of the signal is 20 ms. When

 the servo motor receives this control signal

pattern, the shaft of the hobby servo

 motor attempts to stay at the neutral position. This

control signal can be generated

 by an MCU. An MCU can generate a PWM signal

with the frequency of 50 Hz and a proper

 duty cycle for the 1.5 ms ON time.

Figure 15.8. Control signal pattern examples.

Next, the duty cycle can be varied to generate a 1-ms ON

time pattern as shown in

 the case at the top of the figure. Then, the shaft of

the servo motor will be rotated

 by 45 degrees.

Let us suppose we set the shaft of the servo motor back to

the neutral position. Next,

 we can change the duty cycle to generate the 2-

ms ON time pattern as shown in the

 case at the bottom of the figure. Then, the shaft of

the servo motor will be rotated

 to the other direction by 45 degrees. In this way,

the servo motor position can be

 varied by applying proper PWM signals.

A typical range of the ON time is 1 ms to 2 ms. However,

depending on the model of

 servo motors, the servo motor position can travel

further by applying a lower than

 1-ms or higher than 2-ms ON time pattern. For

instance, some of the servo motors can

 provide a 180-degree range of motion.

If the ON time is out of the operating range, the servo motor

may not respond. The

 specifications of servo motors may vary depending

on manufacturers. Developers need

 to refer to the documents from the manufacturers

for more information such as operating

 ranges.

There are continuous rotation servos. While a regular servo

motor can rotate the shaft

 within only a certain rotation range, the shaft of

the continuous rotation servos

 can spin the shaft continuously. In this case, the

PWM control signal can control

 the speed and direction of the servo motor.

Micro Servo Motor Example

There are a wide range of selections of servo motor models.

One of them is the SG90

 servo motor. There are several similar models with

different specifications. As an

 example, in this chapter, a SG92R servo motor is

chosen, the connection diagram is

 shown in Figure 15.9. A SG92R servo motor is

similar to a SG90 servo motor; However,

 a SG92R has a higher torque.

Figure 15.9. micro servo motor connection example.

The color of the control signal is yellow or white depending

on the servo motors.

 This control line is connected to the pin of P1.0 of

an MSP430FR5994 MCU. The red

 color line is connected to the positive terminal and

the brown line is connected to

 the negative terminal of a power supply. The

brown line is a ground signal line, and

 the color of this line can be found black depending

on the model. The supply voltage

 for this servo motor is 5 V. It is worth mentioning

that the ground lines for an MSP430FR5994

 MCU and the servo motor may need to be

connected to each other.

In this example, the pin of P1.0 is used to control the servo

motor. On the Launchpad,

 this P1.0 pin is pre-configured to be connected to a

red LED. However, this P1.0 pin

 can be disconnected from the LED and the P1.0 pin

can be accessible directly by removing

 the shunt jumper (JP7) as shown in Figure 5.10.

Figure 15.10. Shunt jumper removal for P1.0.

After removing this shunt jumper, you can see two pins. The

exposed pin close to the

 MCU is the breakout pin of P1.0. After the

experiment in this chapter, this removed

 shunt jumper may need to be placed back for

other experiments. In Chapter 20, this

 P1.0 pin needs to be directly accessed again for

timer capture examples.

Hobby Servo Motor Control Example

A hobby servo motor control example is shown in Program

15.1 The selected alternate

 function for P1.0 is associated with TA0.1. The

function selection registers are configured

 properly as shown in the program. Previously, we

have used the Timer_A1. In this program,

 Timer_A0 is used instead. The timer register

configuration for Timer_A0 is very similar

 to the one for Timer_A1.

Program 15.1. Servo motor programming example.

The value of TA0CCR0 is calculated and the specific value is

used to generate a 50-Hz

 PWM signal. Output mode 7 is selected. TA0CCR1

is calculated and the proper value

 is entered to generate a 1.5 ms ON time pattern.

Using this program, the position of the servo motor can be

set to a neutral position

 initially. Users can change the value of the

TA0CCR1 register. The duty cycle can

 be varied depending on the value of the TA0CCR1

register, and the shaft of the servo

 motor position can change accordingly.

Chapter 16. Basics of Serial

Communications and UART

Data communication refers to the transmission of data

between systems. The communication

 links can be a point-to-point link or point-to-

multiple links. Embedded systems typically

 utilize one or more communication modules to

exchange data between microcontrollers

 and other external devices. In this chapter, we will

learn about serial communications

 and a UART module on an MSP430FR5994 MCU.

Serial and Parallel

In digital communications, serial and parallel

communications can be used to exchange

 data between devices. Data can be transmitted

and received over a single channel in

 serial communication. Or data can be transmitted

and received simultaneously over

 multiple channels in parallel communication.

Examples of serial communication for computer applications

are USB, Firewire, and

 SATA. Examples of parallel communication for

computer applications are IDE (Integrated

 Drive Electronics) and PCI (Peripheral Component

Interconnect).

Intuitively, it would seem parallel communication might

offer faster speed of data

 transfer compared to serial communication.

However, practically, this is not the case

 in modern systems. Serial communication offers

faster speed of data transfer. There

 are many reasons. Firstly, the signals that travel

along the multiple wires may not

 arrive at the destination at the same time. This

difference may get more significant

 as the frequency gets higher. It may cause a

problem in synchronization, and, eventually,

 it will affect and limit the data transmission speed.

Secondly, the parallel wires

 may suffer from crosstalk as well as inter symbol

interference (ISI) due to noise.

 For these reasons, parallel communication may

result in lower speed than serial communication.

Types of Communication Systems

Types of communications systems can be defined in several

ways. Let us consider three

 types with respect to communication channels

between two systems as shown in Figure

 16.1. A simplex communication system is shown at

the top. System A can send the data over a channel to

System B, while System B is unable to send data back to

System A. A simplex communication system transmits data

in one direction only. An example

 is the communication between a radio broadcast

station and a listener.

Duplex communication systems transmit data and receive

data in both directions. In

 duplex communications, there are half-duplex and

full-duplex communication systems.

 A half-duplex communication system is shown in

the middle of Figure 16.1. A half-duplex

 system can send and receive data between two

systems but not simultaneously. System A and System B in

the duplex system of the figure can exchange data, but it

does not send and

 receive the data simultaneously. An example is a

walkie-talkie, which is a two-way

 radio transceiver and only one radio on the

channel can transmit at a time.

Figure 16.1. Types of communication systems.

A full-duplex communication system is shown at the bottom

of Figure 16.1. A full-duplex

 system can send and receive data between two

systems simultaneously. System A and System B in the full

duplex system of the figure can exchange simultaneously.

An example

 of duplex communication is mobile phone

communication.

Universal Asynchronous

Receiver/Transmitter

Universal asynchronous receiver-transmitter (UART)

peripherals are useful in microcontroller

 applications. There can be multiple UART modules

integrated on an MCU. A UART provides

 asynchronous serial communication. It has been

widely used in data communications

 between external ICs. An example is the UART

communication between a MCU and a USB-to-UART

 IC. In this configuration, the MCU can

communicate with a computer over a USB interface

 through the USB-UART IC. An MSP430FR5994

Launchpad board includes an on-bard eZ-FET

 debug probe. This eZ-FET debug probe provides a

“backchannel” UART-over-USB connection.

 The backchannel term is used to differentiate the

UART channel that is provided through

 the booster pack header pins. The backchannel

UART can be referred to as Application UART in this book.

The microUSB connector on the Launchpad board is not only

used to supply

 power to the MSP430FR5994 Launchpad board,

but also to provide serial communication

 between an MSP430FR5994 MCU and a computer.

UART Data Transmission

A baud rate is one of the important parameters, and it

needs to be matched between

 systems in UART communication. A baud rate is

used to determine the speed of serial

 communication. A baud rate is usually expressed

in bits-per-second (bps). Standard

 baud rates include 1200, 2400, 4800, 9600,

19200, 38400, 57600, and 115200. Let us

 say that 9600 bps is chosen for a certain system.

Each bit for the UART data transmission

 has a fixed time duration. If we calculate 1 divided

by 9600 bps, we can obtain 104

 µs per bit. This is the value associated with the

time duration for a single bit to

 be sent or received.

A UART data frame format is shown in Figure 16.2. One bit is

allocated for the start

 bit. The logic level of the start bit is low. One bit or

two bits can be allocated

 for the stop bit(s). The logic level of the stop bit is

high. Between the start and

 stop bits, there are data bits and a parity bit. The

number of bits for data can be

 any choice between 5 and 9. A common choice is 7

or 8. Typically, data can be transmitted

 least significant bit (LSB) first. The use of the

parity bit is selectable, which

 is expressed as the “0~1 bit” in the frame format.

Figure 16.2. UART data frame format.

Let us consider a 9600 7E1 case. In this 9600 7E1 setting,

the baud rate is 9600 bps.

 The number of data bits is 7, and the parity bit is

enabled. The setting for the parity

 bit is even. One bit of the stop bit is selected. The

7E1 UART data frame case is

 shown in Figure 16.3.

Figure 16.3. 7E1 UART data frame.

Now, let us suppose we want to send character T. Let us

create this UART data packet. The ASCII (American Standard

Code for Information

 Interchange) code for the character T is 0x54. We

can send the bits of data. LSB can

 be sent first. The value of the parity bit is 1

because it can make the even number

 of 1s in the data packet excluding start and stop

bits. One bit is used for the stop

 bit. This UART data packet is shown in Figure 16.4.

Figure 16.4. 7E1 UART data frame example for the

character of T.

Another common choice is 8N1. In this 8N1 setting, the

number of data bits is 8 and

 the parity bit is not used. The 8N1 UART data

frame for the character T is shown in

 Figure 16.5. This is similar to the 7E1 case, but the

difference is related to the

 parity bit. In this 8N1 setting, the bit that was for

the parity bit in the 7E1 case

 is used as the bit for a part of data.

Figure 16.5. 8N1 UART data frame example for the

character T.

UART Device Connection

A UART device connection example is shown in Figure 16.6.

UART devices are typically

 connected using a crossover cable. The TX pin in

System A is connected to the RX pin in System B, and the

RX pin in System A is connected to the TX pin in System B.

Figure 16.6. UART device connection.

Additionally, we may need VDD and GND wires. Power line

configuration may vary depending

 on systems. The wires for RX and TX pins and

additional power wires can be used for

 a basic connection via UART communication.

There are two more pins, RTS and CTS. They are used for

hardware flow control. In

 some applications, a handshaking process is

needed to ensure communication between

 systems or devices. RTS means Request to Send,

and CTS means Clear to Send. RTS pin in System A is

connected to CTS in System B, and CTS pin in System A is

connected to RTS in System B. This is a typical connection of

the hardware flow control. However, in some

implementations,

 it can be found that RTS is connected to RTS and

CTS is connected to CTS depending

 on their configuration.

UART connections are typically used in a point-to-point

configuration as shown in

 Figure 16.6. There can be variants including a one-

to-multiple configuration. However,

 the one-to-multiple configuration is not a typical

connection scheme.

Software UART

Without dedicated hardware, serial communications can be

implemented simply using

 timers and GPIO pins. This technique is called bit-

banging. Using a bit-banging technique, we can implement

a UART using two GPIO pins for transmit and receive

channels.

 This can be called Software UART. We will learn

about hardware UART in the following

 section. A hardware UART approach can be a

preferred choice. However, there could

 be cases where software UART approaches are

needed depending on the applications.

Asynchronous communication is relatively easier to

implement compared to synchronous

 communication. UART communication is an

asynchronous communication because there is

 no external clock signal line used for

synchronization.

Software UART Programming Example

Software UART program example is shown in Program 16.1.

This program keeps sending

 the character T over a backchannel UART. The pin

of P2.0 is used as TX in this program.

 This matches with the TX pin configuration in the

backchannel UART. This means that

 data will be sent to a computer. The data can be

read using a terminal window in Code

 Composer Studio or using other serial terminal

software such as PuTTY.

An array of TX_buf includes the pattern for the character T.

It also includes the start and stop bits.

 This program reads the bit in sequence from this

array, then, it sets or clears the

 output of the pin of P2.0. Since it keeps repeating,

the terminal will keep receiving

 the character T.

The time duration between each bit is controlled by the

timer_A1. The target time

 delay is 104 µs. This code line can result in roughly

104 µs. As it was described,

 the time delay of 104 µs is related to 9600 bps. In

order to receive the characters

 successfully, the terminal setting on a computer

needs to be configured properly to

 match with 9600 8N1.

Program 16.1. Software UART program (Sending

characters).

This software UART programing example does not process

received data from a terminal.

 If a user sends data over a terminal, it will be sent

to the pin of P2.1. This pin

 of P2.1 is related to RX in the back channel UART.

However, as described, this program

 does not process received data. If desired, users

write a code that supports an RX

 function.

An MSP430FR5994 MCU supports hardware UART

communication. Hardware UART modules can

 be used to provide good communication between

UART devices. Using the hardware UART

 modules, we can process both TX and RX data.

The MSP430FR5994 UART communication module

 will be covered in the following sections. We will

learn how to send data and how

 to process received data using the hardware UART

modules.

Hardware UART

An MSP430FR5994 MCU has eUSCI (Enhanced Universal

Serial Communication Interface)

 modules. An eUSCI module includes eUSCI_A and

eUSCI_B modules. An eUSCI_A supports

 UART and SPI modes. A simplified block diagram of

eUSCI_A0 in UART mode is shown in

 Figure 16.7. On the left side, it shows a baud rate

generator. The setting of these

 parameters is important in UART communication.

BRCLK can be found in the figure. It

 is used in the baud rate generator. The baud rate

generator in an eUSCI_A module can

 provide signals for standard and non-standard

baud rates. It supports two modes of

 operation that can be selected by a UCOS16 bit.

The two modes are low-frequency baud

 rate and oversampling baud rate generation

modes.

At the bottom of the figure, it shows the blocks associated

with the transmit functions.

 The major blocks are transmit state machine,

transmit shift register, and transmit buffer. The name of the

transmit buffer is UCA0TXBUF. At the top of the figure, it

shows

 the blocks associated with the receive functions.

The major blocks are receive state machine, receive shift

register, and receive buffer. The name of the receive buffer

is UCA0RXBUF.

Figure 16.7. Simplified block diagram of eUSCI_A0 in UART

mode [9].

There are registers related to interrupt and interrupt flags in

the USCI_A0 module.

 UCA0IE register is an interrupt enable register, and

it includes UCTXIE and UCRXIE bits. UCA0IFG register is an

interrupt flag register, and it includes UCTXIFG and UCRXIFG

bits.

eUSCI_A0 Initialization

Setting USCWRST bit can reset the eUSCI_A0 module. While

keeping this bit set, we can configure the

 eUSCI_A0 module by changing eUSCI_A0 registers.

The port configuration can be processed.

 Once it is completed, eUSCI_A0 can operate in a

normal mode by clearing USCWRST bit. This step of

configuring eUSCI_A module is recommended to avoid

unexpected behavior.

 The initialization step is summarized below.

 (a) Set USCWRST

 (b) Initialize eUSCI_A0 registers (while

USCWRST bit is set)

 (c) Port configuration

 (d) Clear USCWRST

 (e) If applicable, enable interrupts such as

UCRXIE and UCTXIE

UART Baud Rate Generation

One of the low frequency baud rate and oversampling baud

rate generation modes can

 be selected by a UCOS16 bit. If the UCOS16 bit is

cleared, it operates in low frequency baud rate generation

mode. This mode

 is suitable if the BRCLK is selected from a low

frequency clock source such as a 32.768

 kHz crystal. If the UCOS16 bit is set, it can operate

in an oversampling frequency baud rate generation mode.

 This mode is suitable for higher frequency

generation. It uses a modulator to generate

 an internal clock that is 16 times faster, and it

results in a factor of 1/16 in UART

 baud rate parameter calculations. We will study

how to determine parameters in the

 following sections.

Setting a Baud Rate

Using the parameters of BRCLK and baud rate, a division

factor of N can be determined

 using the equation as follows:

If N is equal to or greater than 16, it is recommended to use

an oversampling frequency

 baud rate generation mode. In this case, let us say

UCOS16 is 1. It means UCOS16 bit is set.

Low-frequency Baud rate Generation

In low-frequency mode, UCOS16 is 0. It means the UCOS16

bit is cleared. We can obtain the integer portion of the

 divisor N that is relevant to the prescaler

parameter as shown in the following equation.

Since UCOS16 is 0, the UCBRFx is ignored. The fractional

portion of N is relevant to the modulator

 parameter.

The value of UCBRSx can be obtained by using the table of

“UCBRSx Settings for Fractional Portion of N…” from the

manufacturer’s technical manual document [9], or

performing an detailed error calculation based on the

recommendation from the

 manufacturer.

For the determination of the UCBRSx values, this book

introduces another method as

 an option. The method is to begins with

multiplying the fraction portion of N by , and the

parameter FN can be obtained by taking integer portion of

the product. The equation of FN is shown as follows:

Next, using the calculated value of FN, the value of UCBRSx

can be obtained from Table

 16.1.

Table 16.1. UCBRSx settings for FN [9].

The obtained parameters can be used as an initial value.

However, these parameters

 are not necessarily fixed numbers, but they can be

tweaked depending on a system for

 better performance. Specifically, modulator

parameters such as UCBRFx and UCBRSx can

 be tweaked to achieve better performance

depending on a system.

To assist the understanding of determining parameters for

low-frequency baud rate

 mode, the baud rate calculation example is shown

in Exercise 16-1.

Exercise 16.1) If the value BRCLK is selected as 32.768

kHz and the targeted baud rate is 9600 bps,

 what are the reasonable parameter values for

UCOS16, UCBRx, UCBRFx, and UCBRSx?

Explanation) We can obtain the division factor as follows:

. Since this is lower than

16, UCOS16 is selected as 0. This is a low-frequency baud

 rate generation mode setting. UCBRx can be

obtained by the equation as follows: UCBRx

 = UCBRFx is ignored because

USCO16 =0. The fractional portion of N is 0.4133, and the

 value of FN is 4133. According to Table 16.1,

UCBRSx is 146.

Oversampling Baud rate Generation

In oversampling mode, UCOS16 is 1. It means that UCSO16

bit is set. We can obtain

 the value of UCBRx using the equation as follows:

The first stage modulator parameter can be obtained by the

equation as follows:

For the value of UCBRSx, it can be obtained from the same

method described int the

 previous section, Low-frequency baud rate

Generation. One of the methods to obtain

 UCBRSx was to obtain the value of FN. Using the

value of FN, we can obtain the value

 of UCBRSx from Table 16.1.

The baud rate calculation example for the case of the

oversampling baud rate generation

 shown in Exercise 16-2. The explanation is as

follows.

Exercise 16.2) If the value of BRCLK is selected as 1 MHz

and the targeted baud rate is 9600 bps,

 what are the reasonable parameter values for

UCOS16, UCBRx, UCBRFx, and UCBRSx?

Explanation) We can obtain the division factor as follows:

. Since this is higher

than 16, UCOS16 is selected as 1. This is an oversampling

 baud rate generation mode setting. UCBRx can be

obtained by the equation as follows:

 . UCBRFx can be

obtained by the equation described above. The fractional

portion of

 is 0.5104, and the number is multiplied by

16. Next, the number after rounding is

 8. Thus, UCBRFx = 8. For UCBRSx, FN is 1667

because the fractional portion of N is 0.1667.

 According to Table 16.1, UCBRSx is 32.

Hardware UART Program

In the previous UART example program, we used the

software UART method. In this section,

 we can write a program that can perform a similar

task using a hardware UART module.

 This hardware UART program example is shown in

Program 16.2.

As you can see, there are code lines that initialize the eUSCI

module. It starts with

 setting USCWRST bit. The UART configuration is for

9600 8N1. We have studied this case in Exercise

 16.2. The SMCLK is selected as a clock source. In

this setting, the value of BRCLK

 is 1MHz. The parameters of this configuration were

shown previously. UCBRx was calculated

 as 6, and we can put “UCA0BRW” as 6. UCBRFx

and UCBRSx were calculated as 8 and 32,

 respectively. The UCOS16 was 1. Thus,

“UCA0MCTLW” is configured as follows: “UCOS16

 | (8 << 4) | (32 << 8)”. Next, the port

configuration for the UART function is described.

Program 16.2. Hardware UART program (Sending

characters).

After the UART initialization, USCWRST bit is cleared. In the

while loop, the UCXIFG flag is cleared. The character T is

going to be stored in the transmit buffer. The name of the

transmit buffer is UCA0TXBUF. The data is going to be

transmitted by the UART hardware module. If the

transmission

 is completed, the UCTXIFG flag will be set. Then,

the program waits until UCTXIFG flag is set. Next, it is going

to toggle an LED. This pattern keeps repeating, and

 it will result in sending the T characters to the

computer through the back channel

 UART. You can check whether you can receive the

T characters through a serial terminal

 in Code Composer Studio, or through any other

serial terminal software such as PuTTY.

UART Echo Program (Polling)

A UART “echo” program can be useful in testing UART

communication between systems

 or devices. This is a loopback test. It can simply

send received data back. Once the

 communication channel is established and

verified, the program can be modified to

 describe more complicated tasks. The UART echo

program example is shown in Program

 16.3. This code is based on a polling method.

Program 16.3. UART Echo Example (Polling).

As a result, for instance, when a user types a character on a

serial terminal window,

 this character can be sent to an MSP430FR5994

MCU. Then, the data can be sent back

 to the computer so that it will be displayed on the

serial terminal. This UART echo

 test is useful in checking and verifying the serial

communication between the device

 and the computer.

UART Echo Program (Interrupt)

As described, a UART echo program can be useful in testing

a serial port. We have

 studied a polling based UART echo program

previously. An interrupt based UART echo

 program can be written as shown in Program 16.4.

The UART initialization is similar

 to the one in a polling based UART echo program.

But, in this interrupt based UART

 echo program, the UART interrupt is enabled, and

the relevant configuration for interrupt

 service requests is added. In the while loop, it

simply toggles the pin of P1.0 to

 blink an LED.

Program 16.4. UART echo example (Interrupt).

The code lines to process the UART data are located in

USCI_A0_ISR. In the ISR, it executes a relevant code block, if

the UCRXIFG in the UCA0IFG register is set. This code block

contains several lines of code. First, data is read

 from UCA0RXBUF. The data is going to be stored

back in UCA0TXBUF. Then, it waits until the UCATXIFG flag

in the UCA0IFG register is set. After the transmission is

completed, both UCTXIF and UCRXIFG flags are cleared. As

a result, a UART echo program can perform a similar task as

 shown in the previous polling-based example. This

UART echo code can be modified for

 embedded system applications that need

communication between an MSP430FR5994 MCU and

 a computer.

ASCII control character

When we use a serial terminal, readers may experience or

may wonder why it shows a

 different behavior than what you actually type on

the serial terminal.

For instance, you can send “\n” expecting that it may work

similar to “enter key”

 on your keyboard. It may move the position to the

next line on the serial terminal.

 But, the position may stay in the same row. This is

related to the control characters.

 There are pre-defined control characters in ASCII.

Some of the useful control characters

 are summarized below.

 8 is a backspace. It can be used by adding backslash; thus,

it is “\b”.

 10 is a line feed. It can be used as “\n”.

 13 is a carriage return. It can be used as “\r”.

 27 is an escape. It can be used as “\e”.

In order to move the position to the first line, “\r” can be

used. Therefore, if a

 user wants to perform the function that is similar

to “enter key” on a keyboard, two

 control characters can be used, and they are “\n”

and “\r”.

Chapter 17. RS-232, RS-485, and

USB

Digital output signals directly from GPIO pins of an MCU are

not typically suitable

 for long-distance communication due to the noise.

For instance, UART signals from

 an MCU are typically for short-distance

communication. To extend the distance of communication,

 line drivers and buffers can be used to improve

signal reliability and noise immunity.

 To extend the communication distance, RS-232

and RS-485 can be used in personal computers

 and industrial applications. In modern systems,

many of these applications have been

 largely replaced by USB technology. In this

chapter, we will learn about the drivers

 and buffers including RS-232, RS-485, and USB.

RS-232

RS-232 is a standard protocol for serial communication. The

RS-232 standard was introduced

 in 1962 and revised in 1969. EIA-232-D standard

was developed in 1986. Many modern

 RS-232 ICs are based on TIA/EIA-232-E (1991) or

TIA/EIA-232-F (1997). But, this not

 the latest version, and there is a more recent

version of the RS232-standard. Physical

 serial ports on computers used to be widely used

for RS-232 communication; but they

 are not used in typical personal PCs or laptops

these days. However, serial COM ports

 can be found in industrial equipment and

instrumentations that are designed to be

 compatible with old models or devices. For RS-232,

TXD and RXD pins are for transmitter

 and receiver, respectively. In addition to these

pins, RS-232 provides flow control

 functions using RTS and CTS as well as DCD, DTR,

DSR, and RI.

Signal lines are unbalanced. The signals are voltages

referring to the ground. For

 TXD and RXD signals, Logic 1 is represented as a

negative voltage, and it is named

 “mark”. On the other hand, Logic 0 is represented

as a positive voltage, and it is

 named as “space”. For control signals, they are

defined differently. The “asserted”

 is a positive voltage and the “de-asserted” is a

negative voltage.

The maximum speed can be about 20kbit/s at a 50 ft cable

length. Practically, some

 of the RS-232 devices can be operated faster

these days. In addition, the length of

 the cable can play a role in the speed of

communication.

RS-232 ICs are available, and the operating voltage for a

majority of the RS232 IC

 models such as MAX232 is +5 V [21]. In order to

this IC and to interface with a 3.3-V MSP430FR5994 MCU, it

may need

 extra circuits such as a logic level converter.

Instead, we choose to use RS232 IC

 models that can be operated at +3.3 V. A

MAX3232 IC is an example of this 3.3-V RS232

 device [22]. This IC supports 2 receivers and 2

drivers. Internal regulated charge pumps generate

 output voltages of ±5.5V.

RS-485

RS-485 is a standard protocol for serial communication. RS-

485 is also known as EIA-485.

 The EIA-485 standard was approved in 1983. RS-

485 support multipoint interconnections,

 and electrical signaling is balanced. RS-485 can be

used in communication over a long

 distance in electrically noisy environments.

The maximum data rate can be about 10 Mbit/s at a 40 ft

cable length. This is a much

 higher data rate than RS-232. Practically, some of

the RS-485 devices can achieve

 higher data rate these days. The maximum cable

length is 4000 ft.

RS-485 uses a balanced interface. Differential singling

provides noise immunity because

 a majority of the common mode noise can be

rejected. For instance, the virtual ground

 can be shifted, and noise signals can be nullified.

RS-485 can form a network, and it supports up to 32

transceivers on the bus. Depending

 on the model of RS-485 ICs, it can be found that it

can support more than 32 transceivers

 on the bus. Unlike a RS-232 case, RS-485

application configuration needs termination

 resistors to avoid reflected signals. The typical

resistor value is 120 Ω.

RS-485 can be either a half-duplex or full-duplex system. If it

is used in a half-duplex

 system, there are “enable” control pins. They need

to be controlled properly. In a

 certain RS-485 IC, the pin names are and .

RS-485 is used as a physical layer of industrial control

systems. One of the examples

 is Modbus. It is a serial communication protocol

and was originally published by Modicon® (now Schneider

Electric®) in 1979 for programmable logic controllers (PLCs).

It is commonly used in industrial

 electronic devices.

The operating voltage of a majority of RS-485 ICs is +5 V.

For instance, a MAX485

 is a transceiver for the RS-485 communication

[23]. There are also RS-485 ICs that can be operated at +3.3

V. A MAX3485 IC is an example

 of this 3.3-V RS485 device. This IC supports up to

32 transceivers on the bus [24].

Performance comparison

The performance comparison between RS-232 and RS-485

for selected parameters is shown

 in Table 17.1. If a simple configuration for

communication between two systems is

 needed, RS-232 can be selected. However, if the

network between multiple systems is

 needed, RS-485 may be suitable because RS-485

can be used to connect up to 32 transceivers.

RS-232 signaling is unbalanced. It may have less noise

immunity than RS-485. Thus,

 RS-232 can be found useful in the short distance

communication application between

 two systems. For the systems that are separately

more than 50 ft, RS-485 can be a

 reasonable choice.

RS-232 RS-485

Number of devices

1 transmitter,

1 receiver

32 transmitters,

32 receivers

Maximum cable

length
50 feet 4000 feet

Signaling Unbalanced Balanced

Typical maximum

data rate

~20 kbit/s

at 50 ft cable

length

~10 Mbit/s

at 40 ft cable

length

Table 17.1. Summarized characteristics of RS232 and

RS485.

As it was mentioned, some of RS-232 and RS-485

communication modules are replaced

 by USB technology. A brief introduction of the USB

technology will be followed in

 the next section.

USB

Universal Serial Bus (USB) is an industry standard that

provides a serial bus for

 connecting devices. USB 1.0 specification was

introduced in 1996. USB became popular

 a few years later. USB 2.0 was introduced in 2001.

USB ports are commonly found in

 desktop and laptop computers these days. The

data rate has been improved significantly

 in USB 2.0. The summary of USB specifications is

shown in Table 17.2.

Release

date

Maximum

data rate

*Typical

voltage

*Typical

maximum

current

USB 1.0 1996 12 Mbit/s 5 V 0.5 A

USB 2.0 2000 480 Mbit/s 5 V 0.5 A

USB 3.0 2008 5 Gbit/s 5 V 0.9 A

USB 3.1 2013 10 Gbit/s 5 V 0.9 A

USB 3.2 2017 20 Gbit/s 5 V 3.0 A

USB 4.0 2019 40 Gbit/s 5 V -

Table 17.2. USB specifications. (*It excluded USB power

delivery specification).

In USB 3.0, the data rate has been improved significantly.

The power capacity has

 also increased. There are separate USB power

delivery specifications since some of

 the USB ports are used primarily for supplying

power. These were not included in Table

 17.2. In USB 3.1, the speed has increased. In USB

3.2, both speed and power have improved.

 This power improvement is because of the use of

USB-C connectors and cables.

USB-C can carry significantly more power, and USB-C can

supply power to decent size

 electronics devices. The latest USB standard is

USB 4.0. It is even faster than USB

 3.2.

USB signaling is balanced. For instance, there are four wires

in a USB 2.0 cable.

 There are +5V and ground wires. In addition, there

are D+ and D- wires. They are for

 data signals, and the signaling is balanced. In USB

2.0 technology, the data encoding

 and decoding is based on NRZI (Non Return to

Zero Inverted).

USB protocol layers are sophisticated. There are several

ways to provide serial communication

 over USB in an embedded system. One of the easy

methods is to use a USB-UART IC and

 to communicate over a virtual COM port. Then, the

system sends and receives data in

 a way that is similar to UART communication.

USB-to-UART IC

We will learn about open-source electronics development

platforms in Chapter 25. One

 of the popular open-source electronics platforms is

Arduino® [25]. Arduino Uno is one of the hardware models.

In the earlier model of Arduino Uno,

 a FT232RL IC was used as an USB-to-UART IC.

Recent Arduino Uno model uses an ATMEGA16U2

 IC. The FT232RL IC is a dedicated IC for a USB-to-

UART bridge function. The ATMEGA16U2

 IC used in an Arduino Uno is an 8-bit MCU with an

internal USB controller. Once the

 proper firmware is loaded on this MCU,

ATMEGA16U2 IC can work as a USB-to-UART bridge

 IC. A benefit of this approach is that it could be

used to provide additional functions.

An MSP430FR5994 Launchpad board has an on-board eZ-

FET debug probe. The core of this

 on-board eZ-FET debug probe is an MSP430F5528

MCU. The MSP430F5528 MCU is one of the

 MSP430F552x MCUs. One of the important

features of this MCU is the USB controller.

 It supports USB 2.0 standard.

If an MSP430FR5994 MCU sends a character over the

backchannel UART, data can be processed

 in the MSP430F5528 MCU, and it can be sent over

USB to a computer. In addition, the

 MSP430F5528 IC is used to debug and program

the MSP430FR5994 IC through JATG pins.

Chapter 18. Serial Peripheral

Interface (SPI)

Various serial interfaces, buses, and protocols have been

used in embedded systems.

 The serial peripheral interface (SPI) and Inter-

integrated Circuit (I2C) bus are widely adopted in embedded

systems. In this chapter, we will learn about

 the SPI bus and the SPI communication in an

MSP430FR5994 MCU.

Serial Peripheral Interface

The serial peripheral interface (SPI) was introduced by

Motorola® in the late 1970s. It is one of the simple

synchronous communication protocols. It

 has been widely accepted in microcontroller

applications. The connection of the master

 and slave SPI devices is shown in Figure 18.1.

The serial data out (SDO) pin of a master device is

connected to the serial data in

 (SDI) pin of a slave device. This line is called MOSI,

which stands for “Master Out,

 Slave In.” The SDI pin of the master device is

connected to the SDO pin of the slave

 device. This line is called MISO, which stands for

“Master In, Slave Out.” The master

 device provides clock signals through a serial clock

(SCK) line to the slave device.

 The master device also provides a chip select

signal for the pin, or a slave select signal for the pin

through a control line. The pin of the pin or the pin is

active low. This means the slave device can be selected by

providing a logical

 low signal through this control line.

Figure 18.1. SPI, Master-Slave connection.

A simple SPI bus can be understood conceptually as serial

communication using two

 shift registries as shown in Figure 18.2. Let us

suppose that data, 0x81, is going

 to be transmitted from a master device to a slave

device. First, this data needs to

 be stored in the 8-bit shift register of the master

device. In this block diagram,

 the most significant bit (MSB) is passed first. The

data bits are transmitted to the

 input of the 8-bit shift register of the slave device

through the MOSI line. Once

 the data transfer is completed, it can be seen that

the data stored in the slave device

 is 0x81. Likewise, the data in the slave device can

be sent to the master device.

 This is a simple conceptual description for ease of

understanding. However, an actual

 SPI unit is more complicated, and an internal state

machine provides micro-operations

 that are needed for the SPI module.

Figure 18.2. Simplified block diagram of an SPI bus.

SPI communication is relatively simple compared to other

serial communication interfaces

 and buses. An SPI bus can achieve higher

throughput than an I2C bus. An SPI protocol is more flexible

than an I2C protocol.

SPI Device Connection

Multiple slave devices can be connected to one master

device. A typical SPI bus connection

 is shown in Figure 18.3. In this setting, one master

SPI device can communicate with

 two slave SPI devices. The slave-A device can be

selected by providing a logical low

 signal for the pin of SPI Slave A. Next, the

slave-B device can be selected instead by providing a logical

low signal

 for the pin of SPI Slave B. This connection

requires one chip select pin per slave device. As the number

of slave devices increases, this connection scheme

 may increase the hardware complexity due to the

increasing number of chip select pins that are needed for

the master device.

Figure 18.3. Typical SPI bus connection.

In order to reduce the number of chip select pins, a daisy-

chained connection can be considered as shown in Figure

18.4. The daisy-chained

 SPI bus method does not require to use additional

chip select pin. The signal for a chip select pin from the

master device can be shared through the multiple slave

devices.

As shown in the figure, data from the slave-A device can be

transferred to the master

 directly. However, the data from the slave-B device

needs to be transferred to the

 slave-A device first. Then, the data can be

transferred to the master. In order to

 configure a daisy-chained SPI connection, the

slave devices should meet daisy-chain

 requirements. You can check the datasheet to see

whether your selected SPI device

 can support a daisy chain connection or not.

Figure 18.4. Daisy-chained SPI bus connection.

SPI Mode

In an SPI bus, there are a few key parameters such as clock

polarity (CPOL) and clock

 phase (CPHA). They are used to determine the

clock format and the associated timing

 of the data signals. These CPOL and CPHA as well

as the waveforms are shown in Figure

 18.5. The CPOL parameter determines whether the

clock is active high or active low.

 CPHA determines whether the clock is out of phase

with the data or in phase with the

 data. There are four SPI modes depending on the

configurations of the CPOL and CPHA

 parameters.

Figure 18.5. CPOL, CPHA, and waveforms.

The SPI transfer modes are shown in Table 18.1. The SPI

mode in an MSP430FR5994 MCU

 is configurable and programmable. For the slave

SPI ICs, the information related to

 the default SPI mode can be found in the

datasheet, or it can be determined by examining

 the timing diagram in the datasheet.

CPOL CPHA SPI Mode

Low Low 0

Low High 1

High Low 2

High High 3

Table 18.1. SPI modes.

SPI Transactions

A simple SPI write transaction example is shown in Figure

18.6. This shows the case

 that sends instruction and one-byte data. The

transaction begins with providing a

 logical low chip select signal. For the MOSI line, an

instruction byte is sent. Next, a data byte is sent.

 The MISO line in the slave device can be controlled

to be in a high-impedance state.

 The transaction ends with providing a logical high

chip select signal.

Figure 18.6. Simple SPI write transaction.

A simple SPI read transaction example is shown in Figure

18.7. This is the case that

 sends an instruction byte and receives one data

byte. Similarly, the transaction begins

 with providing a logical low chip select signal. For

the MOSI line, the instruction byte is sent. Since this is a

read instruction,

 a data byte is sent from the slave device to the

master device through the MISO line.

 While receiving the data, the MOSI line for the

master device side can be controlled

 to be in a high-impedance state. The transaction

ends with providing a logical high

 chip enable signal.

Figure 18.7. Simple SPI read transaction.

eUSCI – SPI Mode

Let us examine an SPI communication module in an

MSP430FR5994 MCU. The SPI mode is

 supported by both eUSCI_A and eUSCI_B. There

are several SPI modules available in

 an MSP430FR5994 MCU. In this chapter, we have

chosen a eUSCI_B1 unit. The simplified

 block diagram is shown in Figure 18.8.

Figure 18.8. Simplified block diagram of eUSCI_B1, SPI

mode [9].

There are four pins related to the SPI mode. They are

UCB1SIMO, UCB1SOMI, UCB1CLK, and UCB1STE pins. The

SPI mode parameter can be configured by UCMODE bits.

Either a 3-pin or 4-pin SPI operation can be chosen. For the

4-pin SPI operation,

 all four pins are used. However, for the 3-pin SPI

operation, UCB1STE is not used. UCB1STE is a slave

transmit enable. In this SPI module, master or slave modes

are programmable.

 The master can be selected by setting the UCMST

bit. The parameter in data transmission whether the LSB or

MSB first can be configured

 by UCMSB bit.

The clock direction phase can be configured by the UCCKPH

bit. This is related to CPHA. The clock polarity can be

configured by the UCCKPL bit. This is related to CPOL. These

are the parameters that can configure the SPI mode.

MCP3008 SPI Example

An MCP3008 IC is an 8-channel 10-bit A/D converter with an

SPI serial interface [26]. There are several IC packaging

options. One of them is a Plastic DIP (PDIP) package.

 The PDIP model of the MCP3008 IC can be

mounted on a prototyping breadboard. Readers

 can perform their experiments using a prototyping

breadboard. On a BH EDU board, this

 MCP3008 IC is placed, and the pins of the IC are

accessible through the proper header

 pins.

The connection diagram is shown in Figure 18.9. Since the

MSP430FR5994 MCU has a 12-bit

 SAR ADC with many channels, an additional

external 10-bit ADC IC may not be really

 necessary. However, this configuration using an

external ADC is for an educational

 purpose to demonstrate SPI communication. In

general, this 10-bit ADC IC can be found

 useful for microcontrollers with 8-bit ADC modules

or for microprocessors that do

 not have any built-in ADC module. However, in

some cases, it can be found that more

 ADC channels are necessary where there are many

analog sensors or analog voltages

 to read.

Figure 18.9. MCP3008 connection diagram.

The MCP3008 IC has eight ADC channels. In this section, we

will study an example program

 to read a voltage level through channel 0. A

potentiometer is connected to channel

 0. The voltage level can be varied by tweaking the

knob of the potentiometer.

The input pin of the IC (DIN) is related to the MOSI line. It is

connected to the

 pin of P5.0. The choice of the function is

UCB1SIMO. Moreover, the output pin of the IC (DOUT) is

related to the MISO line. It is connected

 to the pin of P5.1. The choice of the function is

UCB1SOMI, The CLK pin of the IC is connected to the pin of

P5.2. The choice of function is

 UCB1CLK. For the slave select pin, the P5.3 is used

as a custom chip select pin, and it is

 connected to the pin.

The MCP3008 SPI example program is shown in Program

18.1. The selected SPI mode is

 0. The SMCLK is selected as a clock source, and

the SCK is configured to be about

 100kHz. In the while loop, it reads data from the

IC, and stores it in ADC_buf. The pattern of receiving data

from the IC over SPI communication keeps repeating.

Program 18.1. MCP3008 SPI example program.

The method of SPI communication varies by IC. It is

recommended to refer to the datasheet

 of the manufacturer. For the MCP3008 IC, it needs

to perform several transmit and

 receive operations to read an ADC value from the

IC. In the example program, EUSCIB1_SPI_TX_data and

EUSCIB1_SPI_RX_data subroutines are used to transmit or

receive data.

Chapter 19. Inter-integrated Circuit

(I2C)

The Inter-integrated Circuit (I2C) bus is versatile, and it is

widely used in embedded systems. There are several

 variants of I2C serial communication interfaces;

however, they are typically compatible with each

 other. Many sensor ICs provide I2C serial

interfaces. In this chapter, we will learn about an I2C

peripheral in an MSP430FR5994 MCU.

Inter-integrated Circuit

Inter-integrated Circuit (I²C) technology was developed by

PHILIPS®. This is a serial communication based on two wires.

The patent for this two-wire

 bus system was filed in 1981, and the date of the

patent is August 25, 1987 [27]. The original I2C patent was

already expired. The hardware and the software protocol

structures are

 relatively simple, and the I²C technology provides

a simple universal bus.

Each device on the I2C bus is identified by its own address.

The master device initiates communication

 by providing the clock signal. There can be a

maximum clock frequency. However, the

 minimum clock speed may not be provided.

The master device can “poll” the device with a specific

address. It can be used to

 check whether a specific device is present or not.

This allows designers to build

 a system that can support easily adding or

removing I2C slave devices.

System Management Bus (SMBus) is also a two-wire

interface, which is based on the

 principles of operation of the I2C bus. The SMBus

was defined by Intel® in 1995. The SMBus and I2C are

similar, and they can be compatible in general. However,

there are a few differences

 in specifications including VDD & threshold voltage

and address acknowledge, and etc.

Two Wire Interface (TWI) was introduced by Atmel® and

other companies. Atmel was acquired by Microchip

Technology in 2016. This TWI

 bus and I²C are also similar, but there are a few

differences such in high-speed mode.

 Generally, TWI devices are compatible with I²C

devices.

A simple I2C bus example is shown in Figure 19.1. There are

two I2C devices. Any of these two can be used as either

master or slave device. It is typical

 to assign one master device on an I2C bus.

However, it is not common; but it is possible to assign

multiple masters on

 an I2C bus. A master device can initiate I2C

communication.

Figure 19.1. Simple I2C bus example.

In Figure 19.1, you can see SDA and SCL lines. SDA

represents the “serial data.” This

 line is used to send and receive data. SCL

represents the “serial clock.” This line

 is used to provide a clock signal. There are two

pull-up resistors connected to these

 lines. These resisters are required components.

The value of the resisters may not

 need to be precise. Common choices of the values

are 1 kΩ, 4.7 kΩ, and 10 kΩ. Designers

 can choose a reasonable value. The values of the

resistors may affect the communication

 speed; therefore, the choice of the values can be

important depending in some applications.

Figure 19.2. Simplified I2C block diagram on the I2C bus.

A simplified I2C block diagram on the I2C bus is shown in

Figure 19.2. This conceptual I2C device block includes

buffers, Field effect transistors (FETs), and control logic.

 This is an open-drain configuration, and it is the

reason that external pull-up resistors

 are essential.

Each I2C device can read the digital values on the bus. Each

device can pull the bus lines

 low, or it can release the bus lines. The example of

pulling the bus line down or

 releasing the bus is shown in Figure 19.3. The

figure on the left shows the case of

 controlling the FET to be the ON state from the

OFF state. When the FET is OFF, the

 bus line generates a logical high level since the

bus is released. When the FET is

 controlled to be ON, the bus line is pulled down,

and the logical output is low. Next,

 as shown on the right side of the figure, the FET is

controlled to be OFF. In this

 case, the bus line is released, and the logical level

of the output is back to high.

 This bus configuration is applied to both SDA and

SCL lines.

Figure 19.3. An open-drain driver.

In the previous example, it shows only two devices. You can

connect multiple I2C devices. The connection example is

shown in Figure 19.4.

Figure 19.4. Multiple devices on the I2C bus.

Multiple I2C devices can share the SDA and SCL lines, and

the connection of multiple I2C devices is straightforward and

simple. However, the designers need to make sure

 to use pull-up resisters properly. Moreover, each

device needs to have a unique address

 on the bus.

In embedded system applications, it is common to find a

system with multiple supply

 voltage levels such as 3.3 V and 5V. Let us

suppose there are two 3.3-V I2C devices and two 5-V I2C

devices, and we want them to be the I2C bus. One of the

example connections, in this case, is shown in Figure 19.5.

Figure 19.5. 3.3-V and 5-V I 2C devices on the I2C bus.

We can use a bi-directional logic converter that is at the top

of the figure. It can

 provide an interface between 3.3-V and 5-V bus

signals. One channel of the bi-directional

 logic converter consists of one N-channel MOSTFET

and two pull-up resistors. There

 are several “bidirectional logic level converter”

modules available. One of bidirectional

 logic level converters module will be used for

interfacing 3.3-V and 5-V signals in

 the next chapter.

I2C Message Format and Transactions

An I2C message example is shown in Figure 19.6. The

message starts from the “start condition

 (ST).” It can be generated when the SDA line is

pulled down while the logical level

 of the SCL line is held high. Next, a 7-bit address is

sent. The data is valid, while

 the logical level of the SCL line is held high. The

change of the data is possible,

 while the logical level of the SCL line is low. The

8th bit is . It indicates whether it is a read or write

operation.

Figure 19.6. I2C message example.

The 9th bit is acknowledgment (ACK) signal. For this

acknowledgment bit, the logical

 level of the SDA line is low. This ACK is generated

by the receiver side. It can be

 used to check whether the data is sent

successfully or not. If not, NACK bit can be

 sent instead. NACK means “Not Acknowledgment.”

In this case, the logical level of

 the SDA line is high. NACK can be used in other

cases including the condition to halt

 communication followed by the stop condition in a

repeated start transaction. The

 stop condition (SP) is shown at the end of the

message. It can be generated when the

 SDA line is released while the logical level of the

SDA line is held high.

An I2C write transaction example is shown in Figure 19.7.

The start condition is sent.

 Next, 8 bits are sent, which consist of a 7-bit

address and one bit of . In this case, the logical level of

 bit is low. It is followed by receiving acknowledgment.

Next, 8-bit data is sent,

 and it receives an acknowledgment signal. Then, it

generates a stop condition. This

 transaction initiates communication and sends

one-byte data to the slave device.

Figure 19.7. I2C write transaction example.

Next, an I2C read transaction example is shown in Figure

19.8. As it was done in the previous

 case, the start condition is sent. Next, 8 bits are

sent, which consist of a 7-bit

 address and one bit of . This is a read

operation. Thus, the logical level of bit is high. Then, it

is followed by receiving an acknowledgment signal. Now, 8-

bit

 data will be sent from the slave device, and the

master receives the 8-bit data. Next,

 the master device sends acknowledgment and

stop condition signals. This transaction

 initiates communication and receives a byte data

from the slave device.

Figure 19.8. I2C read transaction example.

I2C read and write operations can be performed by a

combined transaction as shown in

 Figure 19.9. First, it performs an I2C write

operation. However, it does not send a stop condition signal.

Instead, it

 sends a repeated start signal, and it performs an

I2C read operation. Instead of ACK, the master device sends

NACK signal. Next, it sends

 a stop condition signal. This transaction sends a

byte to the slave device first,

 and it receives one byte from the slave device.

Figure 19.9. Combined I2C write and read transaction

example.

eUSCI – I2C Mode

An MSP430FR5994 MCU has a hardware module that can be

used to configure I2C buses. The eUSCI_B module supports

I2C mode, and it can provide an interface to communicate

with I2C devices. A simplified block diagram of eUSCI_B2 –

I2C mode is shown in Figure 19.10.

Figure 19.10. Simplified block diagram of eUSCI_B2 – I2C

mode [9].

In this block diagram, open drain transistors were used, and

they are connected to

 the UCB2SDA and UCB2SCL lines. The UCB2SCL

line is associated with the clock circuit block. The UCB2SDA

line is associated with transmitting and receiving data

blocks. The I2C state machine block controls the operations

of the I2C module.

For clarification, this block diagram is simply a conceptual

functional diagram to

 describe the behavior of the module. This

simplified block diagram does not necessarily

 represent the actual circuit implementation of this

module.

PCF8574 I2C Example

Some embedded system applications may require many

GPIO pins. These cases include

 keyboard applications and LED matrix applications.

In some cases, unfortunately, the

 number of the available GPIO pins in an MCU may

not be enough. In these cases, developers

 may choose to use GPIO expanders. These GPIO

expanders provide a method of adding

 extra I/Os. As an example, a GPIO expander with

an I2C interface can be used to control a parallel interface

LCD. In this case, the LCD

 can be controlled by the I2C interface, and it can

free up some GPIO pins of an MCU.

A PCF8574 IC is an 8-bit GPIO expander via an I2C bus [28].

The operating voltage range is 2.5 V to 6 V. It works with a

3.3-V device such as

 an MSP430FR5994 MCU. The PCF8574 IC has 8-bit

quasi-bidirectional I/O ports. Three

 address pins of the IC can be used to provide 8

slave addresses. The active low open

 drain interrupt output () can be used to

indicate whether the input status of the IC has changed or

not.

A connection diagram of a PCF8574 IC is shown in Figure

19.11. The selected functions

 for the P6.4 and P6.5 pins are associated with SDA

and SCL lines, respectively. The

 pin of P4.7 is used to read an interrupt output from

the IC. Pull-up resistors are

 connected to these lines. The address is selected

by the three pins named A2 ~ A0.

 Two I/O ports are connected to two LEDs in the

connection diagram.

Figure 19.11. PCF8574 connection diagram.

The PCF8574 ICs are offered in many packaging types. They

include a Dual In-line Package

 (DIP). This DIP IC can be mounted on a prototyping

breadboard. Readers can perform

 the experiment using a prototyping breadboard.

On a BH EDU board, the PCF8754 was

 placed, and users can access the IC pins through

proper header pins.

Based on the connection shown in Figure 19.11, a

programming example of the PCF8574

 IC is written as shown in Program 19.1. In this

program, the P7.0 and P7.1 pins are

 configured properly to provide the I2C functions.

eUSCI B1 is configured to operate in I2C mode. The slave

address is 0x20 in this setting. The automatic stop

generation function is selected. It is configured to generate

a stop condition after processing one

 byte.

Program 19.1. PCF8574 I2C example program.

In the while loop, the program generates the start condition

in the master transmitter

 mode. Next, it waits until UCTXIFG is set. Then, the

data will be stored in UCB2TXBUF. The next line is to ensure

the stop condition. Now, the I2C transmit transaction is

completed, and the LEDs connected to the I/O port are

going

 to be turned ON or OFF according to the received

data. TXdata variable was initialized as 0x01, and two bits

are getting toggled in the loop. This

 will result in blinking two LEDs alternatively.

For some versions of BH EDU boards, a different version of

PCF8574 such as PCF8754A

 may have been used instead. The difference is the

device address. The relevant line

 of the code is as follows: “USCB2I2CSA = 0x20”.

For the PCF8754A IC, this line can

 be modified to change the device address to 0x38.

There are a wide range of ICs and modules with I2C

interfaces. Particularly, many I2C-compatible sensor ICs can

be found. For educational purposes, readers can choose

 their own I2C sensors for their experiments to

study and expand their knowledge.

Chapter 20. Time Measurement

Some embedded system applications are based on relative

time measurements between

 events. In an MSP430FR5994 MCU, the capture

mode in a Timer_A module can be used in

 recording and processing timer events. We will

learn about capture mode, ultrasonic

 distance sensor, and IR communication in this

chapter.

Capture Mode in Timer_A

Timer events can be captured by several methods. An

MSP430FR5994 MCU supports capturing

 timer events using Timer_Ax modules. A simplified

block diagram of a Timer_A0 showing

 CCR1 block is presented in Figure 20.1. The

CAPTURE MODE box was covered previously,

 in this figure, this CAPTURE MODE box is

uncovered, and it is still enclosed with

 a thick dotted line.

Figure 20.1. Simplified Timer_A0 block diagram showing

CCR1 block [9].

The capture mode can be selected by setting CAP bit. The

inputs relevant to the capture mode are CCI1A and CCI1B.

They can be selected by the configuration of CCIS bits. The

CCIxA and CCIxB can be connected to other components

internally or externally through pins. The connection

 to the pins is device-specific information. In this

case, CCI1A for Timer_A0 can be configured to receive input

signals through the P1.0 pin.

The input signals can be captured on a rising or falling edge,

or both edges. A capture

 mode can be configured by CM bits. In this setting,

we use a CCR1 block of Timer_A0. In this case, the captured

timer value will be stored in the TA0CCR1 register. The

capture signal can be synchronized with the capture source

by setting

 SCS bit.

A capture mode test program is shown in Program 20.1. This

is a loopback test program.

 One jumper wire is needed to connect the pins of

P1.0 and P6.3. The P6.3 pin will

 be used to generate test signals, and the P1.0 pin

will be used to capture the edges

 of the digital signals.

Program 20.1. Capture mode test program.

In order to access the P1.0. The jumper J7 may need to be

temporarily removed for

 the example programs in this chapter. Regarding

this access of the P1.0 pin, the detailed

 instructions were described at the end of Chapter

15.

In the test program in Program 20.1, the direction of the

P6.3 is configured as output.

 The direction of the P1.0 is configured as input.

P1SEL1 and P1SEL0 are configured to be operated in

capture mode.

Previously, timers were configured to be operated in Up

mode. In order to increase the range of the upper limit of

the counter, we will configure

 the timer to be operated in Continuous mode for

the example programs in this chapter. This can be

configured by MC bits. This continuous mode was selected

by selecting MC_2 in the program. Given this configuration,

the Timer_A0 can be operated to count up

 to 0xFFFF. The timer rolls off to zero when it

reaches 0xFFFF. This is a pattern of

 counting operation, and it will keep repeating.

TA0CCR1 register is configured to enable the capture mode

as well as to capture the signals

 on falling edges by choosing CM_2. The interrupt is

configured and the Timer0_A1_ISR subroutine is the relevant

ISR. In this ISR, it checks whether CCIFG is set or not.

 Then, the value of the TA0CCR1 register is going to

be stored in the tcap variable.

In the while loop, a capture test code block can be found.

This is simply a test code

 block to examine the behaviors for educational

purposes. In this test code block,

 the logical values of P6.3 are controlled to

generate a test signal through P6.3.

 This signal is going to be the input signal for P1.0

since the P6.3 and P1.0 pins

 are connected through a jumper cable.

In this test setup, the input signal can be captured, and a

proper signal edge can

 trigger the ISR to store the counter value to tcap

variable. In this given capture test behavior, the value of

tcap can be about 2000 plus additional small values, when

the program passes the test

 code and reaches the infinite loop with only a

delay operation code line. After the

 TA0R is cleared, there was one falling edge in the

capture test code block, and this

 final tcap value is related to the cycles needed for

the __delay cycle(2000) subroutine calls. Besides, there

were small additional cycles that were needed to

 process this internally including interrupt service

routines.

This loop back program can be used to help users to

understand the behavior of the

 capture mode. Moreover, this program can be

modified for other applications. In the

 following section, we will learn about an ultrasonic

sensor module and a program example.

Ultrasonic Sensor

Ultrasound technology uses sound waves that are higher

than the upper limit of human

 hearing. Ultrasonic waves can be generated by a

transducer. An ultrasonic device can

 be used as a ranging sensor. As an example, a low-

cost ultrasonic ranging sensor module,

 HC-SR04, is selected. The measurement range of

this ultrasonic sensor module is 2

 cm to 400 cm. The frequency of the waves is

about 40 kHz.

A timing diagram of an HC-SR04 ultrasonic sensor module is

shown in Figure 20.2. This

 ultrasonic sensor module can receive a 10-µs pulse

through a trig pin. Then, the sensor transmits the signals of

8-cycle sonic burst. These signals

 are going to travel, and some of them could be

returned to the sensor if they were

 bounced back properly by an obstacle. The

ultrasonic sensor module can respond to

 the returned signals to generate a corresponding

digital output signal. The travel

 distance is related to the time measurement from

transmitting the signals until receiving

 the returned signals. The distance can be

converted from the time measurement using

 the speed of sound. The speed of sound in air is

about 340 . In order to obtain the distance, the travel

time can be divided by roughly 2.

Figure 20.2. Timing diagram of an HC-SR04 ultrasonic

sensor.

The HC-SR04 sensor module can be connected to an

MSP430FR5994 MCU, and the connection

 diagram is as shown in Figure 20.3. The operating

voltage of an HC-SR04 sensor module

 is +5 V. In order to interface with an

MSP430FR5994 MCU safely, a bi-directional

 logic level converter can be used as we have

studied in the previous chapter. There

 are several bi-directional logic level converters

available. One of them is a Sparkfun® bi-directional logic

level converter module [29]. In the connection diagram, the

P6.3 and P1.0 pins are safely connected to trig and echo

pins of the ultrasonic sensor module using a bi-directional

logic level converter

 module. A BH EDU board includes bi-directional

logic level converter circuits; therefore,

 users do not need an additional logic level

converter module.

Figure 20.3. Connection diagram of an HC-SR04 ultrasonic

sensor.

Let us examine +5V pins on an MSP430FR5994 Launchpad.

These 5V pins are directly from

 the microUSB port on the Launchpad board. Since

the operating current of the ultrasonic

 sensor is about 15 mA, it may be reasonable to

use the +5V power from the Launchpad.

 It is worth mentioning that it is not a good idea to

supply a device that can consume

 high power from these pins. For instance, you may

not want to attempt to drive a motor

 using these +5V pins on the Launchpad.

An HC-SR04 example program is shown in Program 20.2.

This is a modified program from

 the capture mode test program in the previous

section. The initialization process in the code is similar.

However,

 additionally, the TAIE interrupt is enabled, and the

relevant TAIFG flag is going to be processed in an ISR.

Program 20.2. HC-SR04 example program.

If the returned signal is captured before the counter reaches

the maximum, the value

 of the counter will be stored in the tcap variable. If

the returned signal is captured after the timer rolls off to

zero, this

 overflow condition can be processed in a custom

overflow process, and the value of

 the tcap variable may remain as is.

In the while loop, P6.3 is set or cleared with a certain time

delay. This is for the

 generation of the trigger pulse. Thus, the program

repeatedly sends and receives ultrasonic

 signals to measure the distances, and the

captured timer values will be checked in

 the loop. When an object is detected within a few

inches, a green LED will be turned

 on. When the object is removed, the green LED will

be turned off.

This ultrasonic test program is simply one of the examples

written for educational

 purposes. This test program is not optimized. It

also does not guarantee the good

 performance or good functionality of the ultrasonic

sensor module. Readers can modify

 and write their own code to improve the behavior

and the quality of the ultrasonic

 distance measurement.

IR Communication

Infrared (IR) communication is an inexpensive wireless

communication technology that

 has been used in many electronic systems such as

IR remote control devices. The wavelengths

 of the infrared light are longer than the ones of the

visible light. For this reason,

 IR signals are generally invisibly to human eyes.

There are many applications using IR signals. One of the

applications is a short-range

 wireless communication. A simplified IR

communication block diagram is shown in Figure

 20.4.

On the left side of the figure, a transmitter circuit block can

be found. This transmitter

 circuit block includes transistor and IR LED

components. This block can control the

 IR LED to turn ON or OFF. An amplitude shift keying

(ASK) modulation is to send two

 different frequencies depending on whether the

logic level is 0 or 1. For instance,

 it can generate a signal pattern at a certain carrier

frequency for logic 1. For IR

 communication, the carrier frequency can be

found in the range between 30 kHz to 60

 kHz.

On the right side of the figure, it shows the receiver circuit

block. An IR photodiode

 can receive the transmitted signal. Next, the signal

is amplified. A bandpass filter

 passes the frequencies of interest, and it can block

the noise. After the demodulation,

 the digital output signals can be generated.

In order to configure a test system for IR communication, we

can choose an IR receiver

 module. A TSOP38238 device is an IR receiver

module that includes a PIN diode and

 a preamplifier [30]. On a BH EDU board, this IR

receiver module was placed. A TSOP38238 device has three

 pins of Vs, GND, and OUT. That is similar

configuration as it was shown in the figure.

Figure 20.4. Simplified IR communication block diagram.

NEC IR Protocol

There are several IR communication protocols. One of them

is a NEC® IR protocol that is commonly used in IR controlled

devices. The carrier frequency

 is 38 kHz. The signals for logical low and high

levels have the total transmit time

 of 1.125 ms and 2.25 ms, respectively. As you can

see, there is a time difference

 between the signals for logic 0 and 1. This time

difference can be detected by using

 a timer capture mode in an MSP430FR5994 MCU.

The NEC IR protocol can be summarized as follows:

 (a) 9-ms leading pulse burst

 (b) 4.5-ms space

 (c) 8-bit address

 (d) 8-bit logical inverse of the address

 (e) 8-bit command

 (f) 8-bit logical inverse of the command

 (g) 562.5-µs pulse burst (end of message

transmission)

The protocol begins with 9 ms leading pulse burst and 4.5

ms space signals. Next,

 the 8-bit address and its inverse can be sent.

Then, the 8-bit command and its inverse

 can be sent. The transmission can be ended with

the 562.5 µs pulse burst. An example

 of the NEC IR protocol is shown in Figure 20.5. In

this example, the address code

 is 0 and the command code is 0x6A.

Figure 20.5. NEC® IR protocol example.

The address range can be chosen between 0 to 255. It is

possible to increase the addresses

 range. There is an “Extended NEC IR protocol.” A

major difference is whether it uses

 a 16-bit address or an 8-bit address and the

inversion of the address. A majority

 of modern IR remote devices based on an NEC IR

protocol use an extended NEC IR protocol.

There are other IR protocols such as SONY®, RC5, and RC6.

Many IR devices. For some of the IR devices, they choose

not to follow

 a standard protocol. They may send raw data, or

they send data using their own format.

There are several types of IR receiver modules. As

mentioned, one of them is a TSOP38238

 IR receiver. This IR receiver module can be easily

connected to an MSP430FR5994 MCU.

 The receiver module has three pins. The “OUT” pin

of the IR receiver can be connected

 to one of the pins of an MSP430FR5994 MCU. It

can be the pin of P1.0 as studied in

 the previous examples.

An IR remote control device can transmit an IR signal

pattern if a user push one of

 the buttons on the IR remote control device. The IR

receiver can generate output signals.

 Using the capture mode through Timer_Ax in an

MSP430FR5994, readers can write a program

 that can record the sequence of the captured timer

values in an array. By analyzing

 this array, they can determine which button was

pressed on the IR remote.

An IR remote control device is an example of simple wireless

communication. An IR

 communication is only valid within a certain angle

between the transmitter and receiver.

 This IR communication system can be used in a

mobile application such as a mobile

 robot. However, the robot may not be controllable

if it is out of a certain angle.

 If this is not desired, a 2.4-GHz wireless module

can be used instead. We will learn

 about a wireless module in the next chapter.

Chapter 21. Wireless Modules

The choices of wireless connectivity for embedded systems

have become more popular,

 and they could lead to innovative new electronic

systems and products. For instance,

 Apple®’s AirPods® and Amazon® Echo® Buds

provide an alternative way to access the main unit remotely.

Moreover, a majority

 of the modern IoT (Internet of Things) devices

have WiFi connectivity. In this chapter,

 we will learn about a simple 2.4-GHz module to

provide a wireless link for an MSP430FR5994

 MCU.

Wireless Embedded Systems

Wireless technologies in embedded systems can be applied

to sensor network technologies.

 For instance, small sized sensor electronics

devices may obtain data from multiple

 locations and send the data wirelessly. The

wirelessly transmitted data can be received

 and processed by another electronics device.

There are many wireless technologies

 and standards including WiFi, Zigbee, and

Bluetooth® technologies.

WiFi is a family of wireless networking technologies based

on IEEE 802.11 standards.

 They can be used in networking between devices,

and they can provide internet access

 for an IoT system. However, typically, power

consumption is an important factor and

 can be an important factor for battery-operated

WiFi sensor devices. Optimizing WiFi

 energy consumption is the key. Moreover, another

effort is to use appropriate batteries

 to extend the time of the use until the next battery

replacement or recharge period.

ZigBee can be used for personal area networks. It is based

on IEEE 802.15.4 standards.

 It has been used in many low power sensor

devices. Digi XBEE® is a brand name. Some of the XBEE

modules support the Zigbee protocol. It could be

 a suitable choice for low-power sensors. However,

currently, the Zigbee protocol may

 not be available for widely used electronic systems

such as smart phones and tablet

 PCs.

Bluetooth® is a wireless standard that can be used in

exchanging data between fixed and mobile

 devices. The supported frequencies include the

ISM (Industrial, scientific, and medical)

 2.4 GHz frequency band. The Bluetooth 5.2 version

is released in 2020. Bluetooth technology

 is widely accepted in many electronic systems

including smart phones, tablet PCs,

 and laptops. Moreover, it is suitable for low power

devices. However, the communication

 range of the Bluetooth devices may not be

satisfactory depending on the applications.

 If longer distance communication is desired, a

class-1 Bluetooth device can be considered.

 For instance, a class-1 Bluetooth could transmit

the power of 100 mW, and the range

 can extend to about 100 meters (328 ft). In this

chapter, we will use a simple Bluetooth

 module for testing. An HC-05 module is chosen,

and it is a class-2 Bluetooth module

 based on Bluetooth v2.0+EDR.

HC-05 Bluetooth Module

There are many Bluetooth modules. One of the low-cost

Bluetooth modules is HC-05.

 The operating voltage of this Bluetooth module is

3.6 to 6 V. Typical supply voltage

 to this module is 5V. In order to connect safely with

an MSP430FR5994 MCU, a bi-directional

 logic level converter can be used. The connection

diagram of an HC-05 module is shown

 in Figure 21.1. On a BH EDU board, the logic level

converter is already applied. Users

 do not need an additional converter module.

The RX and TX lines are connected through the bi-

directional logic converter. As mentioned

 in the previous chapter, the 5-V power pins on an

MSP430FR5994 Launchpad board are

 directly connected to the microUSB. Since the

current consumption of the HC-05 module

 is reasonably small, in this example, we will use

these 5-V pins to supply power to

 the HC-05 module.

Figure 21.1. Connection diagram of an HC-05 module.

When the HC-05 module is powered, an LED on the HC-05

board may be flashing. it can

 be paired with a PC. If it asks to enter password, a

user can try to enter the default

 password that is 1234 or 0000 depending on the

HC-05 model.

For Windows O/S (Windows 10), after it is paired, you can

find two virtual COM ports

 over the Bluetooth link as shown in Figure 21.2.

You can select More Bluetooth Settings. Then, it will open a

Bluetooth Settings window. It shows a COM port with the

description of Outgoing. This is the COM port that will be

used in opening a serial terminal for the Bluetooth

 test code in the following section. The Bluetooth

connection status may become paired instead of connected

when the Bluetooth communication channel is not used.

This is an expected behavior.

 When data is sent over the Bluetooth link, it will be

changed to connected.

Figure 21.2. Bluetooth settings and Virtual COM port

(Windows 10).

For Mac® users, they might experience some difficulties in

using this HC-05 module. They can

 try a different Bluetooth module that supports an

iOS®. Or they can refer to the following description that

would make the HC-05 module

 functional for the Bluetooth Test Program in this

Chapter.

Figure 21.3. Bluetooth configuration and terminal (MacOS).

For macOS (Monterey), the Bluetooth module can be paired

as shown in Figure 21.3.

 During the pairing process, a password might be

asked. It is 1234 or 0000 depending

 on the HC-05 model. After it is connected, users

can see the serial devices, and it

 can even be accessed by a serial terminal

program. However, the communication may

 not be successful. In order to resolve this problem,

they can use Terminal on Mac to access the serial device.

Specifically, they can type “Terminal” in a search

 box, and open Terminal as shown Figure 21.3.

Next, they can type the following command:

ls /dev/tty.*

Then, they can find the serial device name. For instance, the

serial device name can

 be /dev/tty.DSDTECHHC-05

In this case, the device name is DSDTECHHC-05. However, it

would be different on readers’

 Mac. Next, they can type this command:

screen /dev/tty.DSDTECHHC-05 9600, cs8

Then, the terminal may work as a serial terminal for the

Bluetooth link, and this

 method can be used for the test program in the

following section.

For more information, the serial terminal needs to be closed

properly. By pressing

 “Ctrl + A” and “Ctrl + \”, it would be asked to exit

the session completely. Or, “Ctrl

 + D” can be pressed. It would minimize the screen.

In order to restore it, “screen

 -r” can be used.

Bluetooth Test Program

A Bluetooth test program for a HC-05 module is shown in

Program 21.1. The RX and TX

 pins of the eUSCI_A3 in UART mode are P6.0 and

P6.1. These pins are configured for

 the eUSCI A3 function. The baud rate generator is

configured for 9600 bps as we have

 studied previously.

Program 21.1. Bluetooth test program.

The UCRXIE interrupt is configured to be enabled. When the

UART module receives a byte, it triggers

 to execute the interrupt service routine. In the ISR,

the code line checks whether

 the UCRXIFG is set or not. Then, the byte data will

be read and stored in the “ch” variable.

 Next, it clears the interrupt flag. Thus, when a user

types a character in a terminal,

 it will be sent to the MSP430FR5994 MCU and it is

going to be stored in the ‘ch’ variable.

 In the while loop, it reads the ‘ch’ variable. If it is

‘1’, it can toggle the output

 of P1.0 that is connected to a red LED. And this

received character will be sent back

 to the terminal. Therefore, when a user types ‘1’

on the serial terminal, it can toggle

 a red LED to be ON or OFF. If the communication is

successful, you can see the ‘1’

 printed on the serial terminal.

This is a simple test program. However, it can be modified

to provide more complex

 functions. In the next chapter, we study an

educational robot application. This wireless

 control method can be found useful in mobile robot

applications.

Bluetooth ICs and Modules

Many Bluetooth modules are commercially available.

Designers and programmers can search

 and find the best one that meets the functional

requirements of the given project.

 There are also MCUs that support Bluetooth

connectivity. For instance, Texas Instruments

 and Microchip® provide MCUs, ICs, and modules

with Bluetooth connectivity. Readers can find the

 information related to Bluetooth connectivity from

manufacturers’ website.

As the complexity of the system is increasing, it is

preferable to use high level

 driver library and Real-Time Operating Systems.

Moreover, if a developer wants to

 create fast prototype devices, an open electronics

development tool can be used. We

 will study briefly about the driver library, real-time

operating system, and open

 electronics development platforms in Chapter 23,

24 and 25.

Chapter 22. Embedded System

Integration

Embedded systems can be easily found in modern

electronics products. They are used

 across a wide range of industries. It is typical to

find these products are integrated

 systems with multiple sub-systems. We have

studied various components and the programming

 techniques to control them using an

MSP430FR5994 MCU. In this chapter, approaches

 and considerations in integrating systems are

presented.

System Integration

Generally, in engineering, system integration is the process

of putting sub-systems

 together to make one larger system. The discrete

sub-systems function together as

 a system. A system integration typically focuses

on increasing the value and functionality.

 Developers put all relevant things together in

order to make the system work as a

 single integrated system. Developers work

together as a team to meet given project

 milestones.

Top-down Approach

Developers may share a big goal or idea of the system to

build. Next, they can communicate

 with each other to come up with a plan. The

project can be processed as a top-down

 approach. Typically, this method could spare an

extensive research and planning phase

 before the next execution phase of the project

such as hardware assembly or software

 programming.

Top-down Approach in embedded systems development is a

problem-solving strategy related

 to many areas including hardware, software, and

mechanical. During the analysis and

 planning phase, the system can be divided into

hardware, software, and mechanical

 tasks.

On the software development side, structured programming

is relevant to this approach.

 It performs a top-down analysis. Next, the program

has been broken down into sub-tasks

 to reduce the complexity of each sub-task.

Modular programming could be adopted, which is the

software design technique to separate

 the functionality of a program into independent

and interchangeable modules. Thus,

 sub-tasks can be divided into modules. These

modules can be independently developed,

 and they are preferred to be reusable.

The top-down programming method is organized, and it is

typically easier to maintain

 a program in the long run. However, it may be

slow to start since it may take an extensive

 time in planning, and it is slow to obtain the first

executable program. Moreover,

 as mentioned, the sub-tasks have to be specifically

defined, and they could be developed

 separately. If the specification of the product

happens to be changed after the planning

 phase, it might require an extended extra effort, if

it would change the major structure.

This explanation is similar to the overall top-down approach.

It can solve a complex

 problem by breaking it down into sub-tasks. It is

suitable for a traditional structured

 approach. However, due to the needs of extensive

planning and analysis, the top-down

 approach may be slow in delivering the first

prototype, and it is less flexible in

 adapting to the change of product specifications.

Bottom-up Approach

Developers share a big goal or idea of the system. Next,

they can communicate with

 each other to come up with a plan. This process is

similar to the previous top-down

 approach. However, it can be processed as a

bottom-up approach. This means, in planning,

 the goal and problems are outlined. However, in

this approach, it does not spend an

 extensive effort in breaking down the tasks and

identifying the problems. After the

 initial planning phase, they can move on to the

execution phase to start building

 hardware assembly or writing a piece of software

code.

On the software development side, bottom-up programming

is also a relevant approach.

 It tends to be less organized than the top-down

approach. The code tends to be difficult

 to maintain later. However, it allows getting it

started fast and it may generate

 the first executable program fast. Moreover,

bottom-up programming may provide a solution

 to a complex problem that is not clearly defined.

Traditionally, this bottom-up approach may not be highly

encouraged, but a structured

 approach like the top-down approach is more

emphasized in formal educational or training

 settings. One of the reasons is that it could

generate a spaghetti code. This code refers to the source

code negatively that is difficult to maintain. However,

 this bottom-up approach may be suitable for

experienced developers who already hold

 a fair understanding of the technology and can

maintain good communication with the

 team.

In order words, inexperienced developers who lack

understanding of technology may

 eventually generate a functional code at some

point by a trial-and-error approach.

 But, the code may not be well-written, and the

developers may fail to communicate

 with their team members due to the code that

cannot be understood easily by other

 developers. This may be one of the unfavorable

scenarios for a majority of product

 design projects.

If it is well managed, the bottom-up approach may result in

providing an innovative

 solution to a difficult problem that would not be

solved easily in a traditional formal

 setting. Moreover, it is flexible and can be

adaptable to the specification changes

 after the initial planning phase. This approach may

be found suitable in a research

 project type rather than consumer electronics

project types.

Blending Top-down and Bottom-up

Approaches

Depending on the projects, the blended top-down and

bottom-up approaches can be chosen.

 If it is a well-structured problem to solve, a top-

down approach can be a good choice.

 However, if the specification needs to be changed

in the middle of the execution of

 the project, it may not be an easy process for the

top-down approach.

The bottom-up approach may be less structured to begin

with. However, it can be flexible

 to adapt to the change. Moreover, the decision

process in a top-down approach tends

 to be centralized by leaders, and the decision

process in a bottom-up approach tends

 to be decentralized.

In software development, there is a waterfall methodology.

It is a linear project

 management approach where the stakeholders

and customers set up requirements at the

 early stage of the project. And, the rest of the

project period is based on the execution

 of the project based on the requirements. Typical

phases of the waterfall model are

 requirements, design, implementation,

verification, and maintenance.

Agile Software Development

Waterfall project management in software development is a

plan driven approach. There

 is another software development process. It is

Agile software development. This is

 effective in a complex environment. Agile is based

on the interactive process to receive

 and accept feedback and review from the

customer during product development.

The process is streamlined. This means that it reduces

unnecessarily long meetings

 and documentation but has quick meetings and

less documentation to move the project

 fast. Agile is based on time-boxed events and

iterations. A time-box is an agreed

 maximum period for a person or a team for a

certain goal. For instance, when the time

 limit is reached, it evaluates the task.

The key to agile is collaboration. For instance, the

specifications may be open to

 change according to the communication with the

client even in the middle of the project

 execution. Agile approach may result in creating a

better product, and it can improve

 the product continuously.

Design Project Management Consideration

A top-down approach is a typical choice for many

companies. The changes in specifications

 are necessary due to the changes in the demand

in the todays’ electronics market.

 Bottom-up approach may respond to the change

easier than the top-down approach. Also,

 the bottom-up approach can be used in tacking

difficult problems or creating an innovative

 solution. However, the lack of organization can

become a problem. Depending on the

 project, blended approach can be effectively used.

In software development, instead

 of Waterfall project management, Agile software

development can provide a continuously

 improving product.

BH EDU Robot Platform

In the previous chapters, we have studied various functions

that can be applied to

 embedded systems. For learning purposes, readers

can choose a goal of their own embedded

 system to design and build as a small educational

project.

At the early stage of the development, a conceptual block

diagram can be drawn, which

 shows the high-level description of the project. The

conceptual block diagram (CBD)

 can serve as a roadmap for the project. Next, a

functional block diagram (FBD) with

 more details including components, wiring and

connections information can be created.

 As the system becomes more complicated, it will

become challenging in making all the

 relevant components function properly. The FBD

can be used to check to see whether

 there is any resource conflict or not.

Figure 22.1. BH EDU robot platform example [8].

As an example, a mobile robot can be built using a BH EDU

board with an MSP430FR5994

 Launchpad board as shown in Figure 22.1. The

robot base kit is assembled with a BH

 EDU board. The robot base kit includes the DC

motors and wheel sets, and a manipulator

 set with a servo motor. On the BH EDU board, it

has a motor driver, an accelerometer,

 an ultrasonic sensor, an LCD module, buttons, and

a 5V regulator. This robot can be

 controlled wirelessly through an IR receiver or a

Bluetooth module.

For educational purposes, various robot missions can be

given such as solving a maze

 and moving objects to specified locations. As there

are many components to make them

 operate concurrently, programming can be

challenging. It may need several iterative

 efforts of programming, debugging, and testing.

Readers can choose any other educational embedded

system examples including calculators,

 alarm clocks, music players, fan control systems,

robot arms, and remote controlled

 four-wheeled or tracked robots. They can choose

their own robot chassis kits and DIY

 kits to implement their systems. However, the

recommended supply voltage for many

 of these kits could be 5 V. Since the operating

voltage that we used in this book

 for an MSP430FR5994 MCU is 3.3V, readers should

check and provide proper and safe

 interfaces between the board and the components

that they have chosen. It is recommended

 that the wiring and connections need to be

carefully reviewed. If it involves any

 components that could use high current such as a

motor driver, it should not use the

 power from the Launchpad. Instead, separate

regulated power such as through external

 batteries can be used for the motor driver.

Chapter 23. Driver Library

Developers may find a low-level programming method

difficult in describing complex

 tasks. In addition, they may want to write a

program that is reusable on other platforms.

 For this reason, developers can choose high-level

programming methods instead, and

 several high-level programming methods are

available. One of them is based on the

 hardware abstraction layer (HAL) and application

programming interfaces (APIs). A

 HAL creates abstract and high-level functions that

can make the hardware do some tasks.

 APIs can provide high-level interfaces that can be

used in creating an application.

For MSP430 MCUs, Texas Instruments provides an MSP430

Peripheral Diver Library. It

 supports a higher-level programming method. The

MSP430 Driver Library is included

 in the MSP430Ware. The MSP430Ware is a

collection of resources for MSP430 MCUs. The

 MSP430 Driver Library is an essential library to

help developers create MSP430 applications.

 The code written using Driver Library in one MCU

platform can be reusable on other

 MCU platforms. In addition, the code can be

written without an in-depth understanding

 of the hardware. This is a middleware approach,

and this is one of the recommended

 methods in writing a program for an

MSP430FR5994 MCU.

Driver Library

TI MSP430 Driver Library (DriverLib) is a set of Application

Programming Interfaces

 (APIs) [31]. It can be used to control MSP430

peripherals. DriverLib provides a higher level

 of programming compared to register-based C

programming. The code written using this

 high-level software programming method can be

reusable on other MCU platforms. In

 addition, it is more readable, intuitive, and easy to

program. As an example, the

 code that configures P1.0 as an output port can be

written using DriverLib as follows:

GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

The DriverLib package contains various examples. In order

to access and use the DriverLib,

 a proper setup process such as setting up the path

for the library folder is needed.

In order to access a Driver Library example project and set it

up easily, you can

 use Resource Explorer. It can be found in View on

your code composer studio and click Resource Explorer.

Next, click MSP430™ microcontrollers. Next, click

MSP430Ware-3.xx.xx.xx. Then, click the “install” icon to

install MSP430Ware as shown in Figure 23.1. The installation

process can be running in the background,

 and it may take some time to complete the

installation of the software package.

Figure 23.1. MSP430Ware installation.

After the installation of MSP430Ware is completed, you

continue to use Resource Explorer to import an example

project. You can go back to the MSP430Ware window by the

selection

 as follows:

Resource Explorer → MSP430™ microcontroller →

MSP430Ware-3.xx.xx.xx

Next, you can find the empty project through the sequence

of selections as follows:

Development Tools → MSP-EXP430FR5994 → Peripheral

Examples →

Driver Library → Example Projects → FRAMCTL_A →

framctl_a_ex1_write

Then, you can find "import" icon as shown in Figure 23.2

and click the icon to import the project.

Figure 23.2. DriverLib example project on TI resource

explorer.

Next, you can find the example project that was imported

into the project list. As

 shown in Figure 23.3, you can rename the project,

and you can use it as a template

 project. You can also rename the file name of

“framctl_a_ex1_write.c” to “main.c”.

 For the programming examples in this chapter,

you can modify this main.c file to enter the code.

Figure 23.3. Renaming a project.

DriverLib GPIO

A set of functions provides the control of a GPIO module. Let

us consider some of

 the selected functions in this section. They are

introduced in the following paragraph,

 and they are self-explanatory from the names of

the functions.

The GPIO pin can be configured as an input or output pin

with

GPIO_setAsOutputPin, GPIO_setAsInputPin,

GPIO_setAsInputPinWithPullDownResistor,

or GPIO_setAsInputPinWithPullUpResistor.

The GPIO pin can be configured to operate in the alternate

function using

GPIO_setAsPeripheralModuleFunctionOutputPin or

GPIO_setAsPeripheralModuleFunctionInputPin.

The port interrupt on the selected pin can be configured

using GPIO_enableInterrupt.

The interrupt flag on the selected pin can be cleared using

GPIO_clearInterruptFlag.

The interrupt status of the selected pin can be obtained

using

GPIO_getEnabledInterruptStatus.

Some functions that can generate output on the selected

pin are GPIO_setOutputHighOnPin,

 GPIO_setOutputLowOnPin, and

GPIO_toggleOutputOnPin.

Using some of these GPIO functions, a DriverLib GPIO

example is written as shown in

 Program 23.1. Some of these APIs have been used

in this example. This program starts

 with the initiation process. In the main loop, it

toggles the pin of P1.0, and the

 pin is connected to LED1 (Red LED). In the

interrupt service routine, the interrupt

 status can be read, and the program can check

whether the P5.6 pin is set or not.

 Then, it will toggle the P1.1 pin that is connected

to LED2 (Green LED).

A port interrupt is configured for the P5.6 pin, and it is

connected to the push button

 located on the left side. If successful, a red LED will

keep flashing, and the other

 LED will be turned on or off as the button is

pressed or released by a user.

Program 23.1. DriverLib GPIO example.

DriverLib UART

DriverLib package includes functions for a UART module.

The data format for the UART

 configuration is defined as a struct data type, and

the name is EUSCI_A_UART_initParam.

A UART module can be initialized using EUSCI_A_UART_init.

The UART block can be enabled by EUSCI_A_UART_enable.

The UART interrupt can be configured using

EUSCI_A_UART_enableInterrupt.

The UART interrupt status can be obtained by

EUSCI_A_UART_getInterruptStatus.

The data can be transmitted or received using

EUSCI_A_UART_transmitData or EUSCI_A_UART_receiveData.

A DriverLib UART example is written as shown in Program

23.2. Some of these UART functions

 are used in this program. This is a UART echo

program, and the baud rate is selected

 as 9600 bps. “uartConfig” variable contains the

UART configuration data. The pins of P2.0 and P2.1 are

configured

 to operate in UART mode.

The RX UART interrupt is configured. When data is received,

the interrupt service

 routine is going to be executed. In the ISR, it can

check whether the UART interrupt

 flag is set or not. Then, it is going to read the data

and send it back over UART

 communication.

Program 23.2. DriveLib UART echo example.

Similar to other echo program examples shown previously,

users can modify this code

 to provide the functions for their project. For more

information about the Driver

 Library, TI provides a Peripheral Driver Library

User’s Guide [31]. Further details can be found in the user’s

guide.

Chapter 24. Introduction to TI-RTOS

Developers can choose to use TI Driver Library to describe

functions as a high-level

 programming method. It is a middleware

approach. Another high-level approach is to

 use a Real-Time Operating System. There are

several RTOSs for MSP430 MCUs. In this

 chapter, we will learn about TI-RTOS. TI-RTOS can

accelerate development because it

 can eliminate the need to create basic software

functions. TI-RTOS provides a real-time

 kernel.

TI-RTOS

TI-RTOS is a real-time operating system. It is an embedded

system development package

 with source files and pre-compiled libraries. TI-

RTOS contains these components. Let

 me briefly introduce a few key components.

SYS/BIOS is a scalable real-time kernel, and it supports real-

time scheduling and

 synchronization [32]. SYS/BIOS provides

preemptive multithreading and hardware abstraction as well

as

 real-time analysis and configuration tools.

SYS/BIOS is used as the TI-RTOS kernel

 component in TI-RTOS.

SYS/BIOS provides a deterministic performance, and it

enables applications to meet

 real-time deadlines. SYS/BIOS also provides

various thread types, and it supports

 hardware interrupts (Hwi), software interrupts

(Swi), tasks, and idle functions. Moreover, SYS/BIOS

supports synchronization between threads including

 semaphores, mailboxes, events, gates, and

messaging.

TI-RTOS includes board support and drivers for peripherals.

These drivers are written

 to be thread-safe for use with the TI-RTOS Kernel.

Moreover, there is an XDCtools

 component. It is a core component that provides

tools to configure and build SYS/BIOS

 and other components.

GPIO Driver

TI-RTOS includes various software libraries and drivers. GPIO

driver is one of them

 [33]. It is an API set to manage GPIO pins and

ports. TI GPIO Driver provides GPIO APIs

 that are easy to use; however, they may not be

the same APIs in TI Driver Library.

 However, there is a similarity between TI-RTOS

GPIO APIs and TI Driver Library APIs.

In order to use the GPIO module in TI-RTOS, the proper GPIO

header needs to be included

 as follows: #include <ti/drivers/GPIO.h>

Moreover, the proper API names need to be used. Selected

GPIO APIs and their description

 will be followed.

GPIO pins can be initialized as it is pre-defined using

GPIO_init().

The specified GPIO pin can be configured using

GPIO_setConfig().

The status of the specified GPIO input pin can be read using

GPIO_read().

The state of the specified GPIO output pin can be set or

cleared using GPIO_write().

The state of the specified GPIO output pin can be toggled

using GPIO_toggle().

A call-back function to the specified GPIO pin can be

configured using GPIO_setCallback().

An interrupt on the specified GPIO pin can be enabled or

disabled using GPIO_enableInt() or GPIO_disableInt().

The interrupt flag for the specified GPIO pin can be cleared

using GPIO_clearInt().

For instance, an LED defined as “Board_LED0” can be turned

ON, OFF, or toggled using code lines as follows:

GPIO_write(Board_LED0, CONFIG_GPIO_LED_ON),

GPIO_write(Board_LED0, CONFIG_GPIO_LED_OFF), or

GPIO_toggle(Board_LED0).

TI-RTOS configuration for an

MSP430FR5994 MCU

In order to access and use TI-RTOS, proper software

packages need to be installed

 and configured. This setup process would be

complex and difficult if it has to be

 done manually from scratch. However, this setup

process can be relatively easily completed

 by importing a project template in Code Compose

Studio. In this section, the setup

 process is described.

First, it is recommended to install MSP430Ware as described

in the previous chapter. For TI-RTOS, a TI-RTOS product for

MSP430 needs to be installed. The TI-RTOS product for

MSP430 could be accessed and installed using Resource

Explorer. You can try to locate it through the selections of

View → Resource Explorer.

However, if the TI-RTOS product for MSP430 is not available

or there is any difficulty in accessing it through Resource

Explorer, developers can choose to install the TI-RTOS

product for MSP430 manually and import project examples

at their own risk and discretion. If this is

 the developers’ choice, they can visit the following

web address:

http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetc

ontent/tirtos/index.html

Then, developers can find the list of the released TI-RTOS

products. The TI-RTOS product for MSP430 can be located

and downloaded via accessing the webpage as shown in

Figure 24.1.

 After the download is completed, developers can

install the downloaded TI-RTOS software

 package.

Figure 24.1. TI-RTOS product for MSP430.

For the version of the TI-RTOS product for MSP430 in Figure

24.1 is 2.20.00.06. In addition, a proper version of a TI

compiler that

 works with this version of this specific TI-RTOS

version may need to be installed.

 This TI compiler version is 16.12.0.STS, and the

installation file can be found and

 downloaded via the following web address:

https://www.ti.com/tool/download/MSP-

CGT/16.12.0.STS

Once the download is finished, developers can install the TI

compiler. During the

 installation of this TI compiler, it can be prompted

to enter the destination directory.

 A proper folder name should be entered, and the

proper folder name is dependent on

 the chosen default TI folder. For instance, if the

default TI folder is “C:\ti”, the

 destination directory can be “C:\ti\ti-cgt-

msp430_16.12.0.STS”.

After the successful installation of the proper TI RTOS

product for MSP430 and the TI compiler. Next, developers

need to run the Code Composer Studio and choose

 the following selections:

Windows → Preferences → Code Composer Studio →

Products

Then, developers can see the window shown in Figure 24.2.

On this window, developers

 can click “refresh” on the right, and these

manually installed products can be discovered,

 and the message window can be prompt to install.

Then, after choosing to install,

 it will be processed. Next, it may ask to reboot the

Code Composer Studio.

The installation can be easily completed as the developers

clock the “refresh” icon

 as described. In case they experience any

difficulty, they can choose the “install”

 icon in Figure 24.2 to install and configure these

packages in Code Composer Studio

 manually to complete the process.

Figure 24.2. Preference-Products; Installed TI-RTOS for

MSP43x and XDC Tools.

After the completion of this installation and configuration

process, you can check

 whether these products are installed properly.

Figure 24.2 shows the installed TI-RTOS

 for MSP43x and the XDC Tools in Code Composer

Studio.

Moreover, developers can check whether the proper TI

compiler is installed and configured

 in Code Composer Studio by choosing the

following selections:

Windows → Preferences → Code Composer Studio →

Build → Compilers

Then, developers can see the windows as shown in Figure

24.3, and they can check the

 proper version of the TI compiler is stalled.

Figure 24.3. Preference–Compilers; Installed TI compiler.

After the verification of the installation of the proper TI-RTOS

for MSP430, XDC Tools,

 and TI compiler is finished, developers can import

a TI-RTOS project template by choosing

 following sections:

New → Import → Code Composer Studio -> CCS

Projects

Next, the import CCS Projects window can be accessed as

shown in Figure 24.4. In this window, click the browse icon

to choose a proper folder for Select search-directory.

Assuming the TI-RTOS product is installed in the default TI

folder (C:\ti), an example

 project can be accessed by selecting a proper

folder as follows:

C:\ti\tirtos_msp43x_2_20_00_06\resources\msp_exp430FR5994Launchpad\driver

Examples

Once the search of the projects in the example project

folder is successfully completed,

 the empty project template can be found in the

discovered projects as shown in Figure 24.4. This empty

project can be selected and click the “Finish” icon.

Figure 24.4. Search directory selection and the discovered

project (empty project).

Next, developers can see the “New CCS Project” window as

shown in Figure 24.5. In

 this window, the proper version of the installed TI

compiler needs to be selected.

 The selection of the proper TI compiler is as shown

in Figure 24.5.

Next, a new project can be created, and it contains library,

header, source, and configuration

 files. There is an “empty.c”, and the main() routine

can be found in this source file.

 We will continue to learn how to set up the project

properly in the GPIO program example section after the

following Task execution states section.

Figure 24.5. Selection of the TI compiler version.

Task Execution States

Tasks objects are threads managed by Task module. It

schedules and preempts tasks

 based on their priority levels and execution states.

The priority level can be assigned

 up to 31. The priority level of 0 is reserved for the

idle loop. Tasks can be created

 by calling Task_create() functions.

Figure 24.6. Task Execution States [32].

A task object is one of four states of execution. They are

running, ready, blocked, and terminated. Task execution

states are shown in Figure 24.6. They are named

Task_Mode_RUNNING, Task_Mode_READY,

Task_Mode_BLOCKED, and Task_Mode_TERMINATED,

respectively.

The running state is the one that is actually executing using

the processor time.

 The ready state is the one scheduled to be

executed depending on the availability

 of the processor. The blocked state is the one that

cannot be executed until a particular

 event. The terminated state is the one that is not

executed anymore.

Tasks are scheduled to be executed according to assigned

priority levels. There is

 one task that can be in the running state. In this

case, let us suppose that a higher

 priority task is ready to run. Then, this task

preempts, and the lower priority task

 that was in the running state is going to be in the

ready state.

A task that is in a running state can be in a blocked state if

the current task is

 suspended. Then, the task waits for a resource or a

signal. For instance, the blocked

 state can be caused by Task_sleep() or

Semaphore_pend(). A task can be terminated by calling

Task_exit(), or automatically called when a task returns from

its top-level function.

TI-RTOS GPIO Example

As it was described, you can import an empty project

example. After it is imported, you can rename the project as

shown in Figure

 24.4. It is renamed to “TI_RTOS_test”. However,

you can choose any project name. Next,

 you can find the “empty.c” file, and you can

rename this file to “main.c”. Next, you

 can find the “empty.cfg” file, and you can rename

this file to “main.cfg”. The screenshot

 after this setup process is shown in Figure 24.7 for

reference. This setup process

 will be used for the TI-RTOS examples in this

chapter.

Figure 24.7. TI-RTOS example project set-up.

You can double-click “main.cfg” file, and you can see a text-

based cfg file. Or, you

 move your mouse over the “main.cfg” file and

click the right mouse button. Then, you

 can see “Open With”, and choose “XGCONF”. In

this way, you can open the file using

 XGCONF configuration tool. Using this XGCONF

configuration tool, you can easily change

 the configuration of the TI-RTOS project.

There are some of the parameters defined in “board. h” for

an MSP430FR5994 Launchpad.

 For instance, there are two LEDs and two Buttons,

and the relevant information is

 shown in Table 24.1. The names that were pre-

defined for the LEDs and buttons will

 be used in the TI-RTOS example program in this

chapter.

Table 24.1. Parameters; LEDs and Buttons.

Next, you can type your code in “main.c”. You can use the

example code shown in Program

 24.1. You can run this example project. If

successful, you can see that two LEDs on

 your Launchpad board can blink simultaneously.

There are two tasks defined in this

 code. They can be found in the subroutines named

“task1Fxn” and “task2Fxn.“ Each task

 is blinking LED1 or LED2.

Program 24.1. TI-RTOS GPIO example.

In the main loop, it includes hardware initializations. Next, it

has task definitions. The values

 of task1Params.arg0 and task2Params.arg0 are

used in Task_sleep functions in each task. These arguments

were passed to each task, and they determine

 the duration of a blink. For the priority, both tasks

have the same priorities. Next,

 the BIOS_start() code line can be found, it will start

the TI-RTOS. When the program

 is run successfully, two LEDs will be turned ON and

OFF simultaneously.

Synchronization Modules

TI-RTOS supports several synchronization modules. They are

Semaphores, Event Module, Gates, Mailboxes, and Queues.

These modules can be used to coordinate access to shared

resources. Multiple tasks

 can be run concurrently. If a resource is shared

among the tasks. In order to avoid

 conflict, access to the shared resource can be

controlled properly by the use of the

 synchronization modules.

Semaphores can be used for inter-task synchronization and

communication. Semaphore

 objects in TI-RTOS can be either counting or binary

semaphores. Counting semaphores

 keep a count of the number related to the

availability of the corresponding resource.

 When the counter is greater than zero, it can be

considered that the resource is available.

 Semaphores can be configured as either simple

FIFO (First-In, First-Out) or priority-aware

 semaphores. The default setting for semaphores in

TI-RTOS is the simple counting semaphore.

 On the other hand, binary semaphores can

represent either available or unavailable.

 The value of the binary semaphore cannot exceed

more than 1.

The semaphore objects can be created or deleted using

Semaphore_create() and

Semaphore_delete(). The semaphore count needs to be

initialized properly when it is being created. Typically,

 it is initialized as the number of resources. The

task waits for a semaphore at the

 function of Semaphore_pend(). It waits for the

signal. If the number of the count is greater than zero,

simply,

 the number of the count is decreased and returns.

However, if the number of the count

 is zero, the semaphore keeps waiting for the

signal. The signal can be generated by

 Semaphore_post() because it increments the

number of counts and returns.

TI-RTOS Semaphore Example

You can repeat the same setup as in the previous TI-RTOS

GPIO example. Or, simply

 you can reuse the project by updating your

“main.c” file for the example program in

 this section.

The semaphore example program is shown in Program 24.2.

In this example, a semaphore

 is used to synchronize two tasks. The task1 is to

turn on a red LED and to turn off

 a green LED. The task2 is to turn off the red LED

and turn on the green LED.

Program 24.2. TI-RTOS Semaphore example.

By using semaphore_pend(), task1 waits for a signal. When

it is signaled, the red LED will be turned on; and

 the green LED will be turned off for a certain

duration. During processing this code

 block controlling LEDs in task1, the other task,

task2, cannot enter the code block

 controlling LEDs in task2, but it will wait for a

signal at semaphore_pend(). Once the task1 sends a signal,

the task2 can enter the code that will turn off the

 red LED; and turn on the green LED for a certain

duration. Similarly, task1 cannot

 enter into the code block that controls the LEDs in

task1, but it will wait for a

 signal. Once the code block that controls LEDs in

task2 is processed, task2 will send

 a signal and the code block that controls LEDs in

task1 can be executed. This behavior

 of task1 and task2 keeps repeating. This results in

blinking two LEDs alternatively.

This is a simple visual demonstration of how shared

resources can be accessed one

 at a time. Both LEDs are shared between two

tasks, and they are accessed properly

 using the semaphores. While one of the tasks is

accessing the LEDs, the other task

 needs to wait for a signal. This concept can be

applied and extended to other cases

 where the data or resources are shared in

concurrent processing.

TI-RTOS UART and Semaphore example

For a demonstration purpose of serial communication, the

DriverLib UART example in

 Chapter 23 is applied to the previous TI-RTOS

Semaphore example. An example code using

 UART/Semaphore is shown in Program 24.3. TI-

RTOS has its own UART driver APIs, but

 they are not used in this example. In Program

24.3, TI DriverLib APIs are used instead

 in this example.

For this project example, you can repeat the same set-up

process as shown in the previous

 TI-RTOS semaphore example. Or simply you can

reuse the semaphore example project by

 updating your “main.c” file.

Program 24.3. TI-RTOS UART and semaphore example.

In addition to the LEDs and buttons, you will use a UART

module that was defined in

 the “board.h”. In this program, task1 is the same

as we have used in the previous

 semaphore example. However, task2 has

additional functions of sending data over UART.

 When it is running successfully, certain code

blocks in each task1 and task2 will

 be mutually executed. Two LEDs are going to flash

but alternatively. In task2, data

 will be sent over UART. Users can see the numbers

that will be displayed on a serial

 terminal, and the number will be incremented up

to 9, then it will roll off to zero.

 This counting pattern and displaying on a serial

terminal will keep repeating.

In this RTOS example case, it has only two tasks. However,

developers can add more

 tasks as they need to add more functions. For

instance, task1 can process buttons. task2 can read the ADC

values from sensors. task3 can process the control status of

the device. task4 can display the data on the device. task5

can send the data over UART that is connected to a wireless

module. This task configuration

 can be one of the implementations of simple

wireless embedded systems, and this is

 also similar to the RTOS example that we have

studied previously in Chapter 12.

TI provides a broad range of wireless connectivity such as

Bluetooth, WiFi, Zigbee,

 and so forth. There are many options for

developers to choose from these wireless

 technologies. One of the choices is to use MCUs

that support TI-RTOS and the relevant

 wireless library. The development of the wireless

protocol stack from scratch is not

 trivial. However, TI-RTOS provides a wireless

protocol stack that is well-integrated

 with Code Composer Studio. Moreover, the code

that is written in the TI-RTOS environment

 can be reusable on other TI MCUs.

Chapter 25. Open-Source

Electronics Development Platform

Open-source hardware started in the late 1990s. It started

much later than open-source

 software. Typically, hardware designs have not

been shared outside of the company.

 This may be the case for many companies even

these days. However, in some areas of

 electronic system development, hardware designs

are not relativity complex, but common

 components and circuits such as basic functional

microprocessor or microcontroller

 circuits can be reused. Given such a development

platform with these common components,

 developers can add their own designs on top of it.

Thus, it is capable of creating

 new prototype electronics in a short time. Besides,

the designs can be shared via

 an internet community for further improvement. In

this way, developers in the community

 may contribute to making it better. Or, some of the

developers can even create new

 derivative prototype electronics. Currently, this

model of open and fast-paced development

 operations has been widely accepted in many

educational institutions and organizations.

One of these open-source electronics development

platforms is Arduino®. An MSP430FR5994 MCUs can be

programmed like Arduino using Energia. In this chapter,

 we will learn about open-source electronics

development platform and Energia programming

 for an MSP430FR5994 MCU

Arduino

The Arduino project started in 2005. Arduino is an open-

source computing platform

 with a simple I/O board and a simple development

environment [25]. Arduino hardware design files are open

and released under a Creative Commons Attribution

 Share-Alike license. This means it allows personal

and commercial derivative works.

 However, the condition is to credit Arduino and to

release their designs under the

 same license. Arduino software is also open and

released under GPL (Java environment)

 and LGPL (C/C++ microcontroller libraries). This

license allows manufacture and software

 distribution by anyone. Arduino has been widely

used by open-source communities, hobbyists,

 and educators.

The programming language for Arduino boards is C/C++.

Arduino provides an integrated

 development environment (IDE) that is easy to

use. Many Arduino boards are based on

 Microchip/Atmel® 8-bit AVR® microcontroller

models including ATmega328, ATmega8, ATmega168,

ATmega1280, or ATmega2560.

 Arduino Due is based on Arm Cortex M3

(Microchip/Atmel SAM3X8E). Recent small Arduino

 boards are based on Arm Cortex M0+. In addition,

there are many Arduino-compatible

 and Arduino-derived boards.

A sketch is a program that Arduino uses. It contains two

functions which are setup() and loop().

 The code in the “setup” function will be executed

once, and the code in the “loop”

 function will be executed repeatedly.

Energia

Energia is an open-source electronics platform that started

in 2012 [34]. It is a modified version of Arduino for selected

TI Launchpads. It made it possible

 for the selected TI Launchpads to use the Energia

sketch. Energia can be downloaded

 using the link as follows:

https://energia.nu

Energia IDE is similar to Arduino IDE. But, the color of the

Energia IDE theme is

 red. In order to use an MSP430FR5994 Launchpad,

the proper board package needs to

 be installed. “Boards Manager” can be selected

using the sequence of selections as

 follows:

Tools → Board: “xxxx” → Boards Manager

Next, the boards manager window will be opened. In the

search box, you can type, “MSP430” Then, you can see

 the narrowed choices. If needed, you can install

the latest “Energia MSP430 boards”.

You can connect the MSP430FR5994 launchpad board via

USB, and upload programs to the

 MSP430FR5994 Launchpad board. In order to do

so, as shown in Figure 25.1, you need

 to select the board and connect the port properly.

Figure 25.1. Selection of the board and port.

You can start learning Energia from example programs. The

examples programs can be

 found in the Energia IDE by selecting “Examples”

(Files -> Examples).

Eneriga GPIO and UART Example

An Energia GPIO and UART example is shown in Program

25.1. The buttons and LEDs are

 defined. In the setup() function, the pins are

configured, and the UART is initialized. While the code in

 the setup() function is executed once, the code in

the loop() function will be executed repeatedly. In the loop()

function, it keeps checking the status of the two buttons.

When button1 is pressed,

 the red LED will be turned on, and the green LED

will be turned on when button2 is

 pressed. Moreover, a character array will be sent

over UART depending on the press

 of the buttons.

Program 25.1. Energia GPIO and UART example.

This Energia sketch is easier to understand, and the code

can be written in a short

 time. Arduino or Energia can be effectively used in

a rapid prototyping project or

 a quick verification of the functions. If a developer

wants to create a commercial

 product using Energia, it is recommended to check

the license information thoroughly

 and carefully, which can be found on the Energia

and Arduino websites.

Chapter 26. Power Management

Considerations

There are many battery-powered embedded systems. In

these applications, energy consumption

 is an important factor. In order to increase the

length of the operations, it may

 need various power management efforts. Even for

applications that are not dependent

 on batteries, it is common to design electronics to

consume low energy for green electronics.

 In this chapter, we will learn about the power

management and lower power modes for

 an MSP430FR5994 MCU.

MSP430FR5994 Power management

There are various efforts and methods in power

management. Typically, it is associated

 with reducing or minimizing overall energy

consumption.

First, the supply voltage can be lowered to reduce power

consumption. IC manufacturers

 provide the minimum and maximum supply

voltage specifications in the datasheet. For

 instance, the supply voltage level of an

MSP430FR5994 IC can be lowered to about 1.8

 V. The lower voltage was determined by the

voltage level to enable the supply voltage

 supervisor (SVS). For reference, the maximum

supply voltage of an MSP430FR5994 IC

 is 3.6 V.

Second, the current consumption in a microcontroller

system can be closely related

 to the operating frequency. The operating

frequency can be lowered to reduce the power

 consumption of the system. The operating

frequency of an MSP430FR5994 IC can be up

 to 16 MHz, and it can be lowered to a few hundred

kHz. This would be effective in

 saving power for some embedded applications.

However, in some real-time applications,

 there is a limitation in lowering the operating

frequency because the CPU needs to

 be kept reasonably fast.

Third, in many embedded systems, the CPU resources are

not constantly used, and a

 system may be in an idle or stand-by status for an

extended period. This system can

 save power by entering a low-power state such as

sleep mode instead. The effort of

 lowering the operating time in active mode but

increasing the time in sleep mode can

 reduce power consumption.

Lastly, an embedded system may have dependencies in

processing tasks on the both hardware

 and software sides. Some dependencies may have

caused an increased time in active

 mode. There is a potential in reducing the time of

active mode by managing the dependencies

 effectively. However, this task may not be

necessarily straightforward depending on

 the degree of the interdependencies and the

complexity of the system.

MSP430FR5994 Power Modes

An MSP430FR5994 MCU provides one active mode and

seven software-selectable low-power

 modes. MSP430FR5994 power modes are shown in

Figure 26.1. When the CPU is started

 up, the MSP430FR5994 MCU will be in active

mode. As needed, the MCU can be operated

 in a lower power mode. And the MCU can be

woken up by an event such as an interrupt

 event.

Let us examine Low power modes. The Low Power Mode

(LPM0) can halt the CPU execution

 and the CPU can be in sleep mode. To reduce more

power, there are other lower power

 modes such as Low Power Mode 3 (LPM3) and Low

Power Mode 4 (LPM4). Moreover, the MSP430FR5994

 IC provides more low-power modes such as Low

Power Mode 3.5 (LPM3.5) and Low Power

 Mode 4.5 (LPM4.5).

Figure 26.1. Simplified diagram of MSP430FR5994 power

modes.

There are six lower power modes depending on several

parameters including CPUOFF,

 OSCOFF, SCG1, SCG0, and other factors. Table

26.1 shows the description of the low

 power modes and the parameters.

Parameters
Power

Mode
Description

Active Mode AM

CPU/MCLK: active: modules: active

(CPUOFF:0, OSCOFF:0, SCG1:0, SCG0:0)

Low Power

Mode 0
LPM0

CPU/MCLK: off, FLL: on, ACLK: on, Vcore: on

(CPUOFF:1, OSCOFF:0, SCG1:0, SCG0:0)

Low Power

Mode 1
LPM1

CPU/MCLK: off, FLL: off, ACLK: on, Vcore: on

(CPUOFF:1, OSCOFF:0, SCG1:0, SCG0:1)

Low Power

Mode 2
LPM2

CPU/MCLK: off, FLL: off, ACLK: on, Vcore: on

(CPUOFF:1, OSCOFF:0, SCG1:1, SCG0:0)

Low Power

Mode 3

LPM3

CPU/MCLK: off, FLL: off, ACLK: on, Vcore: on

(CPUOFF:1, OSCOFF:0, SCG1:1, SCG0:0)

Low Power

Mode 4
LPM4

CPU/MCLK: off, FLL: off, ACLK: off, Vcore: on

(CPUOFF:1, OSCOFF:1, SCG1:1, SCG0:1)

Low Power

Mode 3.5
LPM3.5

Vcore: off, modules off, optional RTC, No memory

retention

(CPUOFF:1, OSCOFF:1, SCG1:1, SCG0:1)

Low Power

Mode 4.5
LPM4.5

Vcore: off, modules off, no RTC op., No memory

retention

(CPUOFF:1, OSCOFF:1, SCG1:1, SCG0:1)

Table 26.1. Summary of MSP430FR5994 power modes.

Low Power Mode Example

The low power mode example in register C/C++

programming is shown in Program 26.1.

 This is a simple program that can turn on or off an

LED for a certain amount of time

 when a button is pressed. The MSP430FR5994

MCU can enter a low power mode 3, while

 it waits for a button press. The code line that can

put the MSP430FR5994 MCU to sleep

 is __low_power_mode_3(). This is an intrinsic

function. When this code line is executed, the system goes

 into LPM3 sleep mode.

Program 26.1. Low power mode example

The Port 1 interrupt is configured. The system can wake up

when Port 1 interrupt

 is triggered. In the Port 1 ISR, it checks whether

the button is pressed or not. If

 pressed, the LED1 is going to be turned on.

Developers can control the CPU to go into

 sleep mode or stay active as the program exits the

ISR. In this example, The CPU stays

 active as the program exits the ISR. This behavior

was described using the code line,

 “__low_power_mode_off_on_exit();” in the ISR.

Therefore, when the button is pressed,

 the MSP430FR5994 MCU will wake up and operate

in active mode, and it will turn the

 LED on. On exiting the ISR, the MCU will continue

to operate, and it will execute

 the next instruction in the while loop. Next, it

delays the program for a certain

 period, and it will turn the LED off. Next, the

MSP430FR5994 MCU will enter sleep

 mode again. This pattern keeps repeating as the

button gets pressed.

DriverLib - Low Power Mode Example

The low power mode example using TI driver library is

shown in Program 26.2. The function

 of the program is similar to the previous low-power

mode example program.

Program 26.2. DriverLib -low power mode example.

The code line that can enter the low-power mode is

__low_power_mode_3(). In Port 1 ISR, the code line of

__low_power_mode_off_on_exit() is used. Therefore, as the

button is pressed, it will turn on a red LED. While the

 LED is turned on, the MSP430FR5994 MCU is in

active mode. While the LED is turned

 off, the MSP430FR5994 MCU is in sleep mode. This

program has a code line to delay

 the time. This is an example pattern of the

execution as an embedded system to perform

 necessary functions for a short amount of time and

to enter sleep mode.

Users may need test equipment to measure the power

consumption of the device for development.

 However, the MSP430FR5994 Launchpad board

supports the EnergyTrace™ Technology. EnergyTrace

 Technology is useful in performing analysis of

energy consumption. Code Composer Studio

 supports the EnergyTrace mode and provides an

EnergyTrace Window. The energy measurement

 can be performed, and the data can be viewed

using the EnergyTrace Window.

Chapter 27. Embedded System

Security

The Internet of things (IoTs) are related to the systems and

devices that are connected

 to the internet. Many of these devices and systems

are commonly found in modern embedded

 systems. For devices and systems that were not

traditionally connected to the internet,

 newer models of these devices and systems come

with functionality to be connected

 to the internet. At the same time, embedded

system security becomes more important

 as there are more IoT devices in our everyday

lives. There are many aspects in the

 embedded system security. However, in this

chapter, we will consider one specific

 hardware component that may cause security

issues in embedded systems.

JTAG/Boundary Scan

A boundary scan technique provides a method of testing

interconnections of sub-blocks

 inside ICs. It can test multiple cells inside of ICs or

PCBs. Those multiple test

 cells can be internally connected to each other. To

access the test cells, an external

 interface or external pins are needed. Boundary

scan can be used as a test method

 for the components inside of an integrated circuit,

and it is also widely used in

 debugging, analyzing, and monitoring circuit

states, voltages, and memory devices

 inside ICs.

The Joint Test Action Group (JTAG) was formed in 1985, and

the boundary scan architecture

 was approved in 1990 as IEEE Std. 1149.1. There

have been enhancements, and the latest

 update was done in 2013. This technology has

been widely adopted by electronic device

 companies. JTAG is an industry standard that can

be used in verifying designs and

 testing after the fabrication. JTAG is named after

the Joint Test Action Group. In

 some settings, the boundary scan can be called

simply JTAG. This technology is relevant

 because it has been used for debugging,

programming, and testing for most of the modern

 microprocessors and microcontrollers.

An MSP430FR5994 MCU supports four-wire and two-wire

JTAG interfaces. Readers may already

 have used the two-wire JTAG that is Spy-Bi-Wire in

loading programs on their MSP430FR5994

 Launchpad boards. They have seen their MCU

could be interrupted, and various internal

 registers could be read and displayed in Code

Composer Studio. This JTAG interface

 can be used in providing a very effective and

useful method for programmers to develop

 and debug embedded systems.

Typical four-wire JTAG uses several pins. For instance, “TDI”

is used for Test Data In. “TDO” is for Test Data Out. “TCK” is

for Test Clock. “TMS” is used for Test Mode Select. These

TDI, TDO, TCK, TMS pins are typically used for the JTAG

connection. Optionally,

 “TRST” pin is used for Test Reset.

The two-wire JTAG interface, Spy-Bi-Wire, uses pins including

SBWTDIO and SBWTCK.

 On an MSP430FR5994 Launchpad board, these

pins can be found on the header block that

 is located between the eZ-FET debug probe and

the MSP430FR5994 IC.

As discussed, the MSP430FR5994 Launchpad board has an

on-board debugger. This setting

 of the attachment of the JTAG may not be found

suitable as a product. However, as

 an educational purpose, it is useful and effective

as a development tool because users

 do not need to purchase a separate JTAG tool.

JTAG Security

JTAG is very useful and important. On the other hand, it can

be a potential target

 for unwanted attacks. This vulnerability is

supposed to be well known to the developers.

 In case a reader is not aware of this risk yet, it is

worth understanding this security

 vulnerability. For instance, let us suppose a

company developed a voice-activated

 alarm clock that can be connected to the WiFi

network. If an unethical hacker could

 access JTAG connection of this device, then, the

hacker could put their modified firmware

 that could hijack the data packet or to access the

internet. In this case, this IoT

 alarm clock could be compromised, and it could be

used in the wrong way by the hacker.

 A bigger problem may arise if the hacker could

access bigger critical systems such

 as industrial robots, plants, or traffic control

systems. It could jeopardize someone’s

 physical safety due to the malfunction caused by

the hacker. Although JTAG is very

 useful and important in embedded system

development, if not properly handled, it could

 open a back door in a hardware level, and it could

allow unwanted person to access

 the firmware, data, and the operating system. In

the worst case, it could serve as

 a hidden gateway that opens unwanted access to

a supposedly safe and secure system.

There are several efforts in securing JTAG. In some cases,

JTAG header pins are not

 populated on the PCB board, and markings on the

board are hidden purposefully from

 the users. However, even in this case, JTAG may be

still accessible by populating

 the JTAG header pins back or soldering wires. It is a

matter of simply figuring out

 the connection of the hidden pins. This would be

one of the counter examples of open

 design projects. It could be a valid reason for

keeping designs confidential as a

 product. Surprisingly, some electronics projects’

JTAG can be accessible relatively

 easily after some moderate effort in modifications.

For production parts, a system can be deployed to end users

with disabled JTAG access.

 This is an IC level protection. This can be achieved

by blowing off the JTAG fuse.

 In this case, users cannot access the JTAG of the

systems. Also, development and debugging

 tools provided by the manufacturer cannot access

the JTAG. This means that it is hard

 to diagnose the problems for the devices in the

field if the systems are not functioning

 as they are supposed to be. In addition, although

this may seem an effective method,

 it is not the perfectly secured solution because

there is a chance that the blown-out

 JTAG fuses could be restored by highly advanced

hackers.

In addition, an MSP430FR5994 MCU supports more security

features. An MSP430FR5994

 MCU supports AES encryption. Moreover, it

supports software IP protection (IPP). Furthermore,

 it supports a crypto-bootloader that is firmware

update mechanism with authentication

 and encryption of a firmware image.

Developers may need to consider using the security

features, as the embedded system

 in development is getting close to being a product

and getting deployed. If necessary,

 additional security features might need to be

applied depending on the security requirements

 of their embedded systems.

Chapter 28. Educational Embedded

Linux System Platforms

MSP430FR59xx microcontrollers (MCUs) are based on 16-bit

RISC cores. These MCUs can

 be used in various applications. However, in some

embedded systems, more complex functions

 are required, and they may need higher

performance computing systems. In this case,

 systems can be designed and built using

Embedded Linux Operating Systems.

Examples of these Embedded Linux Operating systems are

Android/Linux based smart phones

 and tablet PCs. In these applications, high-

performance and low-power microprocessors

 are suitable. Arm Cortex-A processors are suitable

for performance-intensive embedded

 systems, and some of the Linux distributions are

available depending on the models.

 There are several platforms, and boards using Arm

Cortex-A processors. Some of them

 are suitable for embedded Linux system

education, and they include Raspberry Pi® and

BeagleBone®.

In this chapter, educational Embedded Linux System

platforms is going to be briefly

 covered in order to provide a perspective on

embedded systems that can be used in

 processing complex tasks. Moreover, a great

benefit of using educational embedded

 Linux systems is about rich educational resources

that are shared through a large

 community. Furthermore, readers can gain and

access development resources and information

 including programming examples through

developers, manufacturers, and suppliers.

Raspberry Pi

Raspberry Pi series boards are small single-board computers

[35]. The Raspberry Pi was developed in the United Kingdom

by the Raspberry Pi Foundation.

 Initially, it was created for the use in teaching

basic computer science in schools

 and in developing countries.

Raspberry Pi 1 Model B was released in 2012. In 2015,

Raspberry Pi 2 Model B was released.

 In 2017, Raspberry Pi Zero was released.

Raspberry Pi 3 Model B was released in 2016.

 Raspberry Pi 3 Model B+ was released in 2018.

Moreover, Raspberry Pi 4 Model B was released in 2019. The

pictures of the Raspberry

 Pi 3 Model B+ and Raspberry Pi 4 Model B are

shown in Figure 28.1. Raspberry Pi 4

 Model B is faster than Raspberry Pi 3 Model B+.

However, there are other factors including

 power consumption to consider in choosing a

platform for your application.

These devices are based on Broadcom processors with Arm

Cortex-A series cores. They

 are small-scale general-purpose computers;

however, the performance is not as good

 as typical general-purpose computers like

desktops or laptops. There are several Linux

 distributions that can run on these Raspberry Pi

boards. One of them is a Raspberry

 Pi O/S, and this is based on Debian Linux and

customized Linux distribution for Raspberry

 PI boards [35][36].

Figure 28.1. Raspberry Pi 3 Model B+ and Raspberry Pi 4

Model B.

Using Linux operating systems, developers can create their

own customized applications

 fast and easy for their IoT projects or Robot

projects. Developers can choose their

 preferred language for the development as many

programming languages are available.

 One of the popular choices is Python [37].

Python programming language is generally easy to learn.

Python is a script language,

 and python programs are generally slower than

complied programs based on C/C++. Python

 programs are not necessarily simple. Python

Language can be used in creating highly

 complex systems that need complex mathematical

operations.

Raspberry Pi has a large size community. There are many

shared sample projects and

 programs. It can be found that programming

examples shared through the community are

 based on Python programming language. Readers

can increase their knowledge by studying

 various shared projects and programming

examples.

BeagleBone

Some of the BeagleBoard® series boards are single-board

computers based on Texas Instruments processors with

 Arm Cortex-A series cores [38]. They were

designed for hobbyists as educational tools.

BeagleBoard was released in 2008. It was based on a TI

OMAP3530 processor. BeagleBone

 using a TI AM3358 processor was released in 2011.

BeagleBone Black was released in

 2013. PocketBeagle was released in 2017.

Moreover, BeagleBone AI was released in 2019. The pictures

of the BeagleBone Black

 and BeagleBone AI are shown in Figure 28.2. The

BeagleBone AI is faster than the BeagleBone

 Black. However, as mentioned, there are other

factors including power consumption

 to consider in choosing a proper platform for your

application.

Figure 28.2. BeagleBone Black and BeagleBone AI.

These devices are based TI Sitara™ processors with Arm

Cortex-A series cores. Node.js is a JavaScript runtime

environment. The BeagleBone.org foundation supports

BoneScript

 that is based on a Node.js library. Moreover, users

can install a Python package and

 use Python Programming Language.

Educational Embedded Linux Platforms

Educational embedded Linux system platforms can provide

rich resources, examples,

 and friendly environment for students, hobbyists,

and engineers. Readers can learn

 about embedded Linux systems rapidly. These

educational embedded Linux systems have

 impacted a wide range of students in science and

engineering fields.

Embedded Linux systems can be considered easy to learn.

This would be partially because

 there are many approaches that are focused on

high-level programming. An embedded

 system can be rapidly developed without the need

for an in-depth understanding of

 hardware. Moreover, the development

environment is rich, and it is similar to the

 one that we use in a desktop or laptop computer.

Therefore, for the developers’ side,

 they could view it as simply a slow computer.

These platforms can be used as an effective learning tool. It

is great for developers

 to create a system rapidly using high level libraries

obtained from the Internet.

 However, at the same time, it can be controversial

because, in fact, embedded Linux

 systems are fairly complicated, and it might need

a long-term training and learning

 about many aspects of hardware and software to

become an experienced embedded Linux

 system developer. Moreover, the pace of the

development in embedded Linux systems

 is very fast. If an embedded Linux system is no

longer supported, this system without

 technical support could potentially cause

significant damages such as by the accidental

 creation of security hole causing data privacy and

data security issues. However,

 for entry level developers and hobbyists, it seems

that these important concerns are

 easily overlooked. In some experimental

development or educational environments, it

 seems that some of the security and privacy

concerns may not be in their interests.

 However, for developers, it is important to

understand the requirements of their systems

 and the security aspects of the systems, and they

need to choose proper hardware and

 software platforms as well as to manage the

systems properly.

In summary, embedded Linux system is a desirable solution

in many applications these

 days. It has gained more attention as the

computing requirements have been increasing.

 This is partially due to the increased popularity of

machine learning, image processing,

 and IoT systems.

As an example of an IoT system, it can form a network with

an MSP430FR5994 MCU and

 an embedded Linux system. An MSP430FR5994

MCU can work as a sensor device, and it

 can communicate with an embedded Linux system

as a host or an IoT gateway.

What’s next

We have studied various aspects of embedded systems

using an MSP430FR5994 MCU and

 Composer Studio. We have studied low to high

level programming as well as hardware

 concepts.

An embedded system is typically an integrated system that

involves a wide range of

 knowledge. For embedded system developers, it is

encouraged to have a good understanding

 of microcontrollers, modules, sensors, and

mechanical systems that are used in their

 system.

Readers can create their own embedded systems. Examples

of embedded systems can be

 found everywhere such as Game consoles, Mobile

phone, Digital cameras, Vending Machines,

 Washing machines, Cooking machines, Toys,

Printers, Scanners, Televisions, and Electronic

 instruments. The list will go on as we will see more

new and innovative embedded systems.

Lastly, we have studied embedded systems based on a

specific MCU model for educational

 purposes. However, it would be desirable for

readers to continue to learn about other

 microcontrollers and microprocessors and to

expand their knowledge in embedded systems.

Appendix A. Basic Digital Logic

Circuits

Firmware programmers may need to understand hardware

components to a certain extent.

 In this Appendix A, basic digital logic circuits are

presented. However, this is a

 simply brief introduction to the basic digital logic

circuits. For readers who are

 not already familiar with basic logic circuits, it

would be suggested to take other

 introductory level digital logic lessons.

Basic Digital Logic Gates

In digital circuits, a logic level is one of the finite number of

states. Typically,

 we use a 2-level logic, which is a binary logic. The

two levels are logical high and

 logical low, which are related to the binary number

1 and 0, respectively. In addition,

 there is another state to be considered, and it is a

high impedance state. In this

 state, the signal is not clearly driven high nor low.

This is similar to a floating

 state or an open circuit.

Some of the basic logic gates are shown in Figure A.1. An

AND gate generates a logical high signal when both input

signals are logical high. Otherwise,

 the output is a logical low signal. A NAND gate

generates the inverted output of the AND gate.

Figure A.1. Basic logic gates.

A buffer gate generates the same logical output signal as

the logical input signal. On the

 other hand, a NOT gate or inverter gate

generates an inverted logical output signal from the logical

input signal.

An OR gate generates a logical low signal when both input

signals are logical low. If any

 of the input signals is a logical high signal, the

output of the OR gate is logical high. A NOR gate generates

an inverted output of the OR gate.

A XOR gate generates a logical low signal when two input

logic signals are the same. If

 two input logic signals are not the same, it

generates a logical high signal. An XNOR gate generates an

inverted output of the XOR gate.

Digital Logic Gates with Negated Inputs

It is common to use an inversion bubble in a circuit

diagram. This is also simply called a bubble. This bubble

inverts the logic signal. It is similar to an inverter gate. The

bubbles can be used at input or output of a gate. Some of

the examples are shown in Figure

 A.2.

Figure A.2. Gates with bubbles.

One of the input signals of an AND gate is negated. One of

the input signals of an OR gate is negated. In addition, one

of the input signals of an XOR gate is negated. Moreover, a

bubble can be used in a buffer gate. In this case, the

function is simply the same as an NOT gate or inverter

gate.

The truth table for the AND gate with a negated input is

shown in Table A.1. As it can be seen, the output behavior

 is different than a typical AND gate. The truth

table for the OR gate with a negated input is shown on the

right side. As it was shown, the output

 behavior is not same as a typical OR gate.

Input A Input B Output

Input A Input B Output

Low Low Low

Low Low High

Low High High Low High High

High Low Low

High Low Low

High High Low

High High High

Table A.1. Gate with negated input.

Active Low Pin

In digital circuits, a logical low signal at a pin of an

integrated circuit (IC) or

 digital circuits can enable an intended function. An

example was shown in Figure A.3.

 The block of the digital circuits has a physical pin,

and this pin is defined as active

 low input pin in the block diagram. When a logical

low signal is provided at the pin,

 an intended function of the block of the digital

circuits can be enabled.

Figure A.3. Active low signal.

In this figure, there are three control signals, Control Signal

A, Control Signal

 B, and Control Signal C. Due to the active low pin,

a bubble is added to the output

 of the three input AND gate. Thus, it is a NAND

gate with three input signals of Control Signal A, B, and C.

Since the control signal

 C is active low, it was matched with a bubble at

the one of the NAND input pins.

Therefore, an intended function of the block of the digital

circuits can be activated

 when both logical levels of the control signals of A

and B are high, and the logical

 level of the control signal of C is low.

Open Collector/Drain Circuits

Some pins of ICs are pre-defined as open collector type

outputs. The open collector type output may have left a

collector of a BJT (Bipolar Junction Transistor) open.

 In this case, this open collector output pin needs to

be connected to a resistor tied

 to VCC. This is related to a pull-up resistor. Figure

A.4 shows the case where it

 needs a pull-up resistor. One of the pins of an IC is

an active low output, and it

 is connected to the block of digital circuits.

Figure A.4. Open collector type connection.

Some pins of ICs can be open drain type outputs. This

open drain type output can be relevant to a FET (Field Effect

 Transistor). For this open drain type output pin, it

also needs a pull-up resistor.

Tri-state Logic

A tri-state logic allows a high impedance state output. If the

logical level of ”select“ control signal is high, the logical

level of the output signal will follow the logical

 level of the input signal. If the logical level of

“select“ control signal is low, the output is considered to be

in a high impedance state.

Figure A.5. Tri-state logic and multiplexing.

A multiplexing circuit is shown in Figure A.5. In this circuit,

the output will follow

 the input signals of A, B, C, or D, as one of them is

activated. You can see the output

 line that is drawn as a thick line. You can see that

this output line can be a bus

 line for a single bit, and you can imagine multiple

lines for a multiple bit data

 bus such as 16-bit or 32-bit data bus.

Propagation Delay Consideration

A propagation delay is the transition time for a digital signal

to travel from a source

 to a destination. Propagation delays need to be

considered for the practical implementation

 of logic gates.

Figure A.6. Circuit with loading.

The propagation delay can also be affected by load

capacitance. Figure A.6 shows a

 control signal, and it is connected to many circuit

components. It can be understood

 as a large equivalent load capacitor for an inverter

gate to drive. In this case,

 the propagation delay for the inverter gate may

suffer and it may cause a slow response.

A prorogation delay can be improved by using a buffer gate

as shown in Figure A.7. Using this buffer gate might be

seen as adding more delay. However, if it is handled

properly, the

 load capacitance can be divided properly by using

this additional buffer gate. Assuming

 the buffer gate is reasonably well designed, it may

result in improving the signal

 response.

Figure A.7. Improved propagation delay.

It is worth mentioning that a buffer gate needs to be

designed with the consideration

 of many aspects. You can image this can be one

line for multiple bus lines, and many

 components may share these bus lines. Then, for a

single line, an optimally designed

 buffer gate or multiple inverters in series called an

inverter chain may improve the

 performance.

Decoupling Capacitors

It is common to find circuit schematics with many capacitors

merged as shown in the

 upper portion of Figure A.8. Because the capacitors

are connected in parallel. Theoretically,

 this can be seen as equivalent to one big

capacitor. However, this would not be the

 actual implementation.

Practically, these capacitors can be distributed across a

printed circuit board (PCB)

 as shown in the lower portion of Figure A. 8.

Moreover, most likely, capacitors would

 be placed close to ICs. These capacitors are used

as decoupling capacitors, and these

 capacitors may reduce the noise across VCC and

ground.

Figure A.8. Decoupling capacitors.

While decoupling capacitors are essential and effective, in

this book, most of decoupling

 capacitors were purposefully not placed, or they

were not drawn just to simplify block

 diagrams. It is up to readers to place additional

decoupling capacitors as they are

 needed.

Memory Types

Memory is one of the essential components in

microcontrollers. There is a type of

 memory called ROM which means Read Only

Memory. For instance, certain lines of program

 code are not supposed to be modified, while in

operation. And some of the numbers

 such as constants do not need to change while the

program is running. ROM can be the

 memory that can contain these read only code

blocks or constants.

There is another type of memory called RAM which means

Random Access Memory. This

 is a memory space that can be read or written.

RAM can be used to store some of the

 data that may need to be updated frequently. One

of the examples is a stack memory.

 This is the memory space that can store temporary

variables. As the program gets running,

 it could generate several arrays of data. They can

be stored in the stack memory area.

There is a non-volatile memory. This is a type of memory

that can hold the data even

 when the system would be turned off. Generally,

ROM is a type of non-volatile memory.

EEPROM (Electrically erasable programmable read-only

memory) is a non-volatile memory.

 Another example is Flash memory. It keeps the

data when the power is turned off. Ferroelectric

 RAM (FRAM) is also non-volatile memory.

On the other hand, there is volatile memory. This is a type of

memory that loses the

 data when the power goes off. Generally, RAM is a

type of volatile memory. Particularly,

 static RAM (SRAM) and Dynamic RAM (DRAM)

would be examples of volatile memory. Regarding

 SRAM and DRAM, internal SRAM is typically faster

than DRAM in applications of microcontrollers

 or microprocessor-based systems.

An SRAM IC Example

In Figure A.9, an example of a SRAM IC is shown. This SRAM

IC has 17 address lines

 and 16 data lines. The memory size of this chip is

 bits. Therefore, the memory size is 128k

bits.

Figure A.9. A typical SRAM IC.

This IC has an output enable pin (), a write enable pin (

), and a chip enable pin (), and they are active low

pins.

Figure A.10. Timing Diagram of an SRAM IC.

An example waveform is shown in Figure A.10. The address

signals can be read when

 the logical level of the chip enable signal is low.

During this operation, it is assumed that the logical level of

the

 write enable signal kept high properly. Then, the IC

can generate the output data signals when

 the logical level of the output enable signal is low.

Both address and data lines become high impedance states

when the

 logical level of the chip enable signal is high. Later,

in Appendix C, we will use this SRAM IC as a component in

 simple embedded system examples.

Appendix B. Basic Verilog Hardware

Description Language

A hardware description language (HDL) has been used in

describing the structure and

 behavior of electronic circuit models. An HDL can

be used for text-based expressions

 of the electronic systems and their behaviors. The

first hardware description languages

 were introduced in the late 1960s. Programmable

logic devices (PLDs) became popular

 in the late 1970s.

Types of Hardware Description Language

Verilog HDL was introduced by Gateway Design Automation

in 1985, and Cadence Design

 Systems later acquired the rights. Later, Cadence

Design Systems transferred it into

 the public domain under the Open Verilog

International (OVI) organization. In 1987,

 VHDL (Very High speed integrated circuits

Hardware Description Language) was developed

 by the request from the U.S. Department of

Defense. There are other HDLs. However,

 these two HDLs, Verilog HDL and VHDL, are

supported by IEEE, and they are the dominant

 HDLs in the industry.

Verilog HDL

In this book, we will use Verilog HDL. There are many FPGA

boards that support Verilog

 HDL. As of 2023, one of the FPGA suppliers is

Intel®. For those who are familiar with Altera®, Intel acquired

Altea in 2015. Moreover, Xilinx® is also one of the FPGA

suppliers. As an example of low-cost educational FGPA

boards,

 Intel provides Terasic® DE 10-Lite boards, and

Xilinx provides Basys 3 boards.

Verilog HDL uses pre-defined keywords, and it is a case-

sensitive language. Examples

 of keywords are module, endmodule, input,

output, wire, and, or, not, and etc.,

Verilog modules are like functions in other programming

languages. Verilog modules

 are defined using the module keyword, and the

modules end with the endmoudle keyword.

In order to leave comments, two slashes (//) can be used.

HDL Modeling

HDL has several abstraction levels, and HDL modeling can

be described in one or any

 combination of these abstraction levels.

Gate-level modeling is a low-level abstraction approach. It

describes the circuit through primitive gates

 and user-defined modules, and it describes how

they are connected.

Data flow level modeling is a higher level of abstraction

approach than gate level modeling. It describes

 the circuit through its functions and continuous

assignments.

Behavioral modeling is a higher level of abstraction

approach than data flow level modeling. It describes

 the circuit through procedural assignment

statements.

Gate Level Description

Verilog HDL has primitive gates and instances. For instance,

it supports and, nand, or, nor, xor, xnor, and not gates. A

circuit can be described using these gates. Figure B.1 shows

a simple logic

 circuit example.

Figure B.1. Simple logic circuit example.

This circuit has three input nodes and two output nodes, and

the circuit has three

 digital logic gates. This circuit can be described in

a gate-level abstraction. This

 circuit is described in Program B.1. In order to

describe this circuit, the wire keyword was used. The wire

is a scalar net description. In this case, one wire net of D

was used.

module LogicA(A, B, C, X, Y);

 input A, B, C;

 output X, Y;

 wire D;

 and g1(D, A, B);

 or g2(X, D, C);

 not g3(Y, X);

endmodule

Program B.1. Gate level modeling for a simple logic circuit

example.

Dataflow Modeling

Dataflow modeling can describe the circuit through its

functions. Verilog HDL supports

 several operator types as shown in Table B.1. Also,

dataflow modeling uses continuous

 assignments. Typically, it uses the assign

keyword. A continuous assignment is associated with

assigning a value to a net.

Symbol Operation

& bit-wise AND

| bit-wise OR

^ bit-wise XOR

~ bit-wise NOT

+ addition

- subtraction

== equality

> greater than

< less than

Table B.1. Selected Verilog HDL operator types.

The dataflow-modeling example is shown in Program B.2.

This is a description of the

 simple logic circuit example shown in Figure B.1.

There are two assign statements used in this example.

Output nodes of X and Y were described.

module LogicB(A, B, C, X, Y);

 input A, B, C;

 output X, Y;

 assign X=(A & B) | C;

 assign Y=~X;

endmodule

Program B.2. Dataflow Modeling for a simple logic circuit

example

A 2-to-1 multiplexer circuit diagram is shown in Figure B.2.

When the logic level

 of the select signal is low, the output will follow the

input signal of “B”. However,

 when the logic level of the select signal is high, the

output will follow the input

 signal of “A”. This circuit has two AND gates, one

OR gate, and one NOT gate.

Figure B.2. 2-to-1 multiplexer circuit diagram.

The dataflow modeling of this circuit was implemented, and

the description is shown

 in Program B.3. In this case, one assign keyword

is used to describe this circuit.

module mux2to1A(A, B, select, OUT);

 input A, B, select;

 output OUT;

 assign OUT=((A & select) | (B & ~select));

endmodule

Program B.3 Dataflow modeling for a 2-to-1 multiplexer

Behavioral Modeling

Behavioral modeling can describe the circuit at a functional

and algorithmic level.

 It can describe sequential circuits and

combinational circuits. Behavioral modeling

 uses always keywords with the procedural

assignment statements. The output of the procedural

 assignment statement is reg data type. The reg is

one of the data types. It represents the variable that can

store data. Figure

 B.3 shows a 2-to-1 multiplexer symbol, and

Program B.4 shows its behavior modeling.

Figure B.3. 2-to-1 multiplexer symbol.

The procedural assignment statement in this example was

described using an always block. If there is a change in any

of the variables of ”Select”, A, or B, it will execute the “if

else” block. And, if the logic level of “Select” is high, the

logic level of the output will be the same as “A”. Otherwise,

the logic

 level of the output will be the same as “B”.

module mux2to1B (A, B, select, OUT);

 input A, B, select;

 output OUT;

 reg OUT;

 always @(select or A or B) begin

 if (select==1) OUT=A;

 else OUT=B;

 end

endmodule

Program B.4. Behavior modeling for a 2-to-1 multiplexer.

Tri-state Gates

As it was previously mentioned in Appendix A, tri-sate gates

are useful in describing

 many circuit components including multiplexers

and bus lines. In Verilog HDL, several

 types of tri-state gates are available. These

symbols and the types are shown in Figure

 B.4.

Figure B.4. Types of tri-state gates.

Tri- state gates have an input node and an output node with

a control input node.

 The bufif1 gate is a typical tri-state gate. And it

behaves like a normal buffer when the logic

 level of the control input is high. The output

becomes a high-impedance state when

 the logic level of the control input is low. bufif0

gate has a bubble at the control input side. It will invert the

control input. The

 notif1 gate has a bubble at the output, which will

invert the output signal. The notif0 gate will invert both the

control input signal and the output.

The output nodes of tri-state gates can be connected to

each other to form a common

 output line. To define this type of connection, the

keyword tri needs to be used to indicate that the output has

multiple drivers. Figure B.4 and

 Program B.5 show a 2-to-1 multiplexer symbol and

the Verilog HDL description example

 using tri-state gates.

Figure B.4. Circuit diagram of a 2-to-1 multiplexer using tri-

sate gates.

module mux2to1C (A, B, select, OUT);

 input A, B, select;

 output OUT;

 tri OUT;

 bufif1 (OUT, A, select);

 bufif0 (OUT, B, select);

endmodule

Program B.5. Verilog HDL modeling for a 2-to-1 multiplexer.

Net Data Types

Verilog HDL net data types are summarized in Table B.2. We

have used wire and tri previously. There are more net data

types such as wired OR and wired AND connections.

 In addition, supply0 and supply1 can be used to

describe logical low or logical high signals.

Symbol Operation

wire, tri Interconnection wire

wand, triand Wired AND connection

wor, trior Wired OR connection

supply0, supply1 Logic 0, Logic 1

Table B.2. Selected Verilog HDL net data types.

Appendix C. Memory-Mapped I/O

CPU (Central Processing Unit) can perform logical and

arithmetic operations. Typically,

 a memory-mapped I/O technique has been used in

exchanging data between the CPU and

 peripheral devices. The CPU can read and write

the data by accessing memory spaces.

 For the memory-mapped I/O, a certain address of

the memory area can be related to

 physical hardware components and peripherals.

Let us examine the memory-mapped I/O

 technique for a microcontroller or microprocessor-

based system.

For educational purposes, we will study a case of a

simplified 16-bit CPU and its

 system to explain this memory-mapped I/O further.

It is worth mentioning that the

 simplified 16-bit CPU in Appendix C is not a

representation of an MSP430 MCU. The

 purpose is to study the memory-mapped I/O

behavior using a theoretical representation

 of a CPU.

Simplified 16-bit CPU model

A simplified 16-bit CPU model is shown in Figure C.1. This

CPU has sixteen data signal

 pins (D0 ~ D15), twenty address line pins (A0 ~

A19), one read control () pin, one write control pin (),

and one clock pin.

In this simplified 16-bit CPU model, memory devices were

not included. We will add

 memory devices as well as other devices later. In

this CPU, data lines are bidirectional,

 and they form a 16-bit data bus. The CPU has a 20-

bit address bus. The read control pin () is an active low

output pin. This read control signal indicates that the CPU

needs to read data from the specified address. The

 write control pin () is an active low output pin.

This write control signal indicates that the CPU needs to

store data at the specified address.

Figure C.1. A simplified 16-bit CPU [18].

16-bit CPU with memory ICs

The connections of the 16-bit CPU and memory ICs are

shown in Figure C.2. A non-volatile

 memory IC is used for a program section.

Examples of non-volatile memory ICs are Flash

 memory and EEPROM ICs. An SRAM memory IC is

used for a data section. A memory IC has

 three control pins of , , and . And, they

are Output Enable pin, Write Enable pin, and Chip Enable

pin, respectively. These pins are active low input pins.

Figure C.2. 16-bit CPU and memory ICs.

The two address lines (A19 and A18) are connected to the

chip enable pins, and they

 control the memory ICs, which can make the ICs

accessible through certain address

 ranges. Based on this configuration in Figure C.2,

the low and high addresses can

 be defined as shown in Table C.1.

Low address High address

Non-volatile

Memory
0x00000 0x3FFFF

SRAM memory 0x40000 0x7FFFF

Table C.1. Address space (Memory ICs).

Let’s say this is a basic configuration as a 16-bit system.

The non-volatile memory

 IC may include the program routines such boot

firmware, and the SRAM memory IC may

 be used to store temporary variables that are

needed to execute a program.

Adding more devices

More devices can be added to this basic system studied in

the previous section. Now,

 two devices of Device A and Device B are added,

and their connections are shown in

 Figure C.3.

Figure C.3. 16-bit CPU, memory ICs, and two devices.

Device A has 8-bit address lines. Device B has 4-bit address

lines. Regarding a method

 of control, these devices can perform read or write

operations. Moreover, the four

 address lines (A19, A18, A17, and A16) can control

the chip enable pins, and the devices can be accessed

through certain address ranges. Given this

 configuration, the low and high addresses with

these additional two devices are shown

 in Table C.2.

Low address High address

Non-volatile

memory
0x00000 0x3FFFF

SRAM memory 0x40000 0x7FFFF

Device A 0x80000 0x800FF

Reserved 0x80100 0x8FFFF

Device B 0x90000 0x9000F

Reserved 0x90010 0x9FFFF

Table C.2. Address space (Memory ICs and Devices).

Let us examine this address space allocation. If the CPU

performs read or write operations,

 for the address space of Flash or SRAM ICs, the

CPU can read data from the memory,

 or write data to the memory. This is a typical

memory operation. However, if the CPU

 performs read or write operations for the address

space allocated to Device A or B,

 this is not a typical memory operation. But, it is

accessing peripheral devices. It

 was generalized as Device A and Device B in

Figure C.3. These devices can be specific

 modules. For instance, Device A can be a general-

purpose I/O, and Device B can be

 a timer.

This is a simplified explanation of how the memory-mapped

I/O works and the connection

 scheme for these devices to the CPU. In a modern

microprocessor system, interconnections

 are much more complex, as they have more

address lines and more peripheral devices.

 Moreover, in order to make the CPU more efficient, some of

the peripheral devices

 are controlled by a direct memory access (DMA)

unit that allows accessing memory from

 certain external devices without the intervention

of the CPU.

FPGA implementation for the control logic

The control circuit components were implemented using

simple digital logic gates in

 the previous examples. However, these control

circuits can be implemented using an

 FPGA IC instead. For instance, a developer can

design their control digital logic

 using Verilog HDL, and the control logic can

provide proper control signals. Figure

 C.4 shows an FPGA implementation example.

Figure C.4. An example of an FPGA implementation for the

control logic.

The FPGA IC shown in the figure is a simplified version, and

it has 16 IO pins (IO0

 ~ IO15). IO0 ~ IO3 pins are connected to A16 ~

A19, respectively. IO12 ~ IO15 pins

 are connected to the chip enable pins of memory

ICs and devices. To implement the equivalent functions

previously

 shown in Figure C.3, the logical expressions for the

control signals can be derived

 as follows:

These logical expressions can be implemented using Verilog

HDL. An example of the

 Verilog HDL code is shown in Program C.1.

module GCA(IO3, IO2, IO1, IO0, IO15, IO14, IO13, IO12);

 input IO3, IO2, IO1, IO0;

 output IO15, IO14, IO13, IO12;

 assign IO12=~(~IO3 & ~IO2);

 assign IO13=~(~IO3 & IO2);

 assign IO14=~(IO3 & ~IO2 & ~IO1 & ~IO0);

 assign IO15=~(IO3 & ~IO2 & ~IO1 & IO0);

endmodule

Program C.1. Verilog HDL code for control signals.

An FPGA implementation of the control signals may have an

advantage in resolving complex

 hardware issues that might occur after production.

Many issues can be resolved at

 a software level; however, sometimes, hardware

modifications can be effective and

 needed to tackle complex problems such as critical

timing or resource conflict issues.

Appendix D. C/C++ Data Types

Table D.1 lists the sizes and ranges of the selected data

types for an MSP430FR5994

 MCU [39].

Table D.1. Selected C/C++ data types for an

MSP430FR5994 MCU (*Excluded negative

 cases) [39].

For a developer, it is important to understand data types

and the range of data. For

 instance, a program to test the data range for an

MSP430FR5994 was written, and it

 is shown in Program D.1.

Program D.1. Data range test.

In this code, a variable kp was defined as unsigned char.

During the initialization, this program will turn on a Red LED.

Next, there is

 a for-loop. When this for-loop block is running, the

value of the variable kp gets changed. After proper

interactions, the program will exit the for-loop, and it will

turn on a Green LED.

For an experiment, let us modify this code by changing 255

to 256 in the for-loop. Then, this program will not exit the

for-loop as it keeps repeating the for-loop. This is because

the value of the variable kp is unable to become 256.

Instead, the value of kp becomes zero, and this would cause

an infinite loop. The program cannot execute the

 line that can turn on the green LED. Therefore, it

will turn on the red LED only.

 This is just an example, but it demonstrates a case

where developers may need to understand

 the minimum and maximum numbers of the

variable types that they use in their programs.

References

1. B. Hur, “Learning Embedded Systems with

MSP432 Microcontrollers: MSP432P401R with Code

 Composer Studio,” Fourth edition, 2022.

2. Texas Instruments, “MSP430FR599x,

MSP430FR596x Mixed-Signal Microcontrollers

datasheet,”

 Revision D, 2021.

3. Texas Instruments, “MSP430F552x, MSP430F551x

Mixed-Signal Microcontrollers datasheet,”

 Revision P, 2020.

4. Texas Instruments, “MSP430FR2311 LaunchPad

Development Kit (MSP-EXP430FR2311) User's

 Guide,” Revised, 2017.

5. Texas Instruments, “MSP430FR2355 LaunchPad

Development Kit (MSP-EXP430FR235) User's

 Guide,” 2018.

6. Texas Instruments, “MSP430FR5969 LaunchPad

Development Kit (MSP-EXP430FR5969) User's

 Guide,” Revised, 2015.

7. Texas Instruments, “MSP430FR5994 LaunchPad

Development Kit (MSP-EXP430FR5994) User's

 Guide,” Revised, 2019.

8. B. Hur, “TI BH EDU Board Kit,” DOI:

10.5281/zenodo.2538993, [Online]. Available:

https://github.com/bh-projects/TI-BH-EDU-board-kit

9. Texas Instruments, “MSP430FR58xx,

MSP430FR59xx, and MSP430FR6xx Family User's

Guide,”

 Revised, 2020.

10. Texas Instruments, “MSP430 Assembly Language

Tools,” v18.1.0.LTS, 2018.

11. Velleman, “Keyboard 16 Keys - Matrix Output”.

12. TDK Corporation, “Piezoelectric Buzzer,” Model:

PS1740P02E.

13. Newhaven Display, “NHD-0216HZ-FSW-FBW-

33V3C product specification”.

14. Sitronix , “ST7066U datasheet,” 2006.

15. H. Nyquist, “Certain topics in telegraph

transmission theory,” IEEE Trans., vol. 47,

 pp. 617-644, 1928.

16. Analog Devices, “ADXL335 Datasheet,” Rev. B,

17. Sparkfun, “SparkFun Triple Axis Accelerometer

Breakout - ADXL335,”.

18. D. E. Simon, “An embedded software primer,” Vol.

1. Addison-Wesley Professional, 1999.

19. Texas Instruments, “DRV8833 Dual H-Bridge

Motor Driver Datasheet,” Rev. E, 2015.

20. Adafruit, “Adafruit DRV8833 DC/Stepper Motor

Driver Breakout Board”.

21. Maxim Integrated, “MAX220–MAX249 datasheet,”

Rev. 18, 2019.

22. Maxim Integrated,

“MAX3222/MAX3232/MAX3237/MAX3241

datasheet,” Rev. 10, 2019.

23. Maxim Integrated, “MAX485 datasheet,” Rev. 10,

2014.

24. Maxim Integrated, “MAX3485 datasheet,” Rev. 1,

2019.

25. “Arduino,” [Online]. Available: https://arduino.cc

26. Microchip Technology, “MCP3004/3008

datasheet,” 2008.

27. Moelands et al., “Two-wire bus-system comprising

a clock wire and a data wire for

 interconnecting a number of stations,”

US4689740A, Aug. 1987.

28. NXP Semiconductors, “PCF8574; PCF8574A

datasheet,” Rev. 5, 2013.

29. Sparkfun, “Sparkfun Logic Level Converter - Bi-

Directional”.

30. Vishay Semiconductors, “TSOP38238 datasheet,”

Rev. 1.7, 2018.

31. Texas Instruments, “MSP430 DriverLib for

MSP430FR5xx_6xx Devices, Users’ guide”, 2020.

32. Texas Instruments, “TI-RTOS Kernel (SYS/BIOS)

User's Guide,” 2018.

33. Texas Instruments, “TI-RTOS 2.20 User’s Guide”,

2016.

34. “Energia,” [Online]. Available: https://energia.nu

35. “Raspberry Pi,” [Online]. Available:

https://www.raspberrypi.org

36. “Debian”, [Online]. Available:

https://www.debian.org

37. “Python”, [Online]. Available:

https://www.python.org

38. “BeagleBone,” [Online]. Available:

https://beagleboard.org

39. Texas Instruments, “MSP430 Optimizing C/C++

Compiler,” SLAU132R, 2018.

	Chapter 1. Introduction
	Chapter 2. Development Tools
	Chapter 3. MSP430FR5994 architecture
	Chapter 4. Assembly Language
	Chapter 5. General-Purpose I/O
	Chapter 6. Register level C/C++ programming
	Chapter 7. Timer basics
	Chapter 8. Interrupt
	Chapter 9. Display
	Chapter 10. Analog to Digital Converter
	Chapter 11. ADC Applications
	Chapter 12. Embedded Software Architectures
	Chapter 13. Pulse Width Modulation
	Chapter 14. DC Motor Control
	Chapter 15. Servo Motor
	Chapter 16. Basics of Serial Communications and UART
	Chapter 17. RS-232, RS-485, and USB
	Chapter 18. Serial Peripheral Interface (SPI)
	Chapter 19. Inter-integrated Circuit (I2C)
	Chapter 20. Time Measurement
	Chapter 21. Wireless Modules
	Chapter 22. Embedded System Integration
	Chapter 23. Driver Library
	Chapter 24. Introduction to TI-RTOS
	Chapter 25. Open-Source Electronics Development Platform
	Chapter 26. Power Management Considerations
	Chapter 27. Embedded System Security
	Chapter 28. Educational Embedded Linux System Platforms
	Appendix A. Basic Digital Logic Circuits
	Appendix B. Basic Verilog Hardware Description Language
	Appendix C. Memory-Mapped I/O
	Appendix D. C/C++ Data Types
	References

