

Ultimate Tailwind

CSS Handbook

Build sleek and modern websites

with

immersive UIs using Tailwind CSS

Kartik Bhat

www.orangeava.com

http://www.orangeava.com/

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author

nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable

for any damages caused or alleged to have been caused directly or indirectly by

this book.

Orange Education Pvt Ltd has endeavored to provide trademark information

about all of the companies and products mentioned in this book by the

appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee

the accuracy of this information.

First published: August 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-76-1

www.orangeava.com

http://www.orangeava.com/

Om sahanaavavathu | sahanaubhunakthu |

Sahaveeryamkaravavahai | Tejaswi naavadheethamastu

maa vidvishavahai ||

Dedicated to

All my teachers, beloved family, and my friends

About the Author

Kartik Bhat, basically a scribbler in Kannada language.

Born in the year 1994. He has pursued a bachelor’s degree

in computer science and engineering from Visvesvaraya

Technological University Belagavi (Karnataka- India) in the

year 2016. Has 5+ years of experience in web applications

development and hands-on knowledge in various front-end

and back-end technologies. As a part of startup teams, he

has worked on multiple ways of full stack web development,

and experienced different front-end libraries, back-end/API

technologies. Since 2021, he has been working on projects

comprising user interface development using Tailwind CSS.

Currently lives in Dharwad (Karnataka - India) and works as

Senior Software Developer.

Technical Reviewer

Soroush Sohrabi is a Senior Front-End Web Developer with

10 years of experience. He is a growth seeker and thrives on

challenges. Soroush has the privilege of working directly

with more than 6 Asian and 3 European companies, where

he brings his expertise to create exceptional web

experiences. His mastery lies in designing readable and

scalable code that adheres to clean code principles. With a

strong background in UI and UX designing, Soroush

combines aesthetics and functionality to deliver user-centric

solutions. He is passionate about staying up-to-date with the

latest industry trends and technologies, constantly seeking

opportunities to expand his skill set. Soroush's dedication to

excellence and his ability to tackle complex projects makes

him a valuable asset to any team.

LinkedIn profile:

https://www.linkedin.com/in/soroshism

https://www.linkedin.com/in/soroshism

Acknowledgement

I wish to thank the people who supported me in the journey

of writing this book. My family fully encouraged me to write

this book by motivating me to keep dedicated time to write

this book, without compromising the content quality.

I am grateful to mention those mentors, guides, and the

companies where I worked in my professional career that

has given me knowledge in the field of web development, of

course that is the foundation for this book too. My friends

and colleagues really have a special role in my learning

phase.

Also, I am thankful to the gratitude to the editorial team at

Orange AVA for their continued guidance throughout the

process for quite a long time to complete this book. I

gratefully acknowledge Mr. Soroush Sohrabi for his kind and

valuable technical review of this book.

Preface

Development of complete website, without writing single

line of CSS directly. Looks curious right? Yes, Tailwind CSS

makes it possible. Being a CSS framework, it provides a

complete feature set to develop a website from scratch. It

just needs you should have basic knowledge of HTML, CSS.

Even if you don’t know these as well then, this book is for

you. Begin with it.

This book provides an approach to the development of

website and user interface components using Tailwind CSS.

Begins with the introduction to HTML and CSS, which are

foundation of website development. Then we explain

concepts in Tailwind CSS and utilities available in it.

Further we develop a simple website that comprises six

webpages using Tailwind CSS, here we will not write single

line of CSS directly, Tailwind CSS manages itself. Then we

push the developed code to GitHub and chain it with GitHub

Pages deployment. This deploys the code so the user can

access it using its URL. At last, we are providing some user

components developed using Tailwind CSS.

Chapter 1 will explain basic concepts of HTML, CSS so that

new readers can get basic foundation for further reading

and experienced readers can get quick glance prior to core

context. Then we will explain installing methods of Tailwind

CSS to get started with it.

Chapter 2 will cover detailed explanation on principle

concepts of the Tailwind CSS. These will describe how

Tailwind CSS proves to be a good fit for user interface

development easier and faster.

Chapter 3 will cover customization, base style available in

Tailwind CSS as a utility class, here we cover layout building

mechanism, spacing, and sizing mechanisms too.

Chapter 4 details styling mechanism like typography,

border, transition and transforms so on related utility

classes available in Tailwind CSS. These are related to

element specific styling.

Chapter 5 will introduce website development flow, by

explaining each user interface component we build a

complete web page. In this chapter we will build homepage,

gallery page and a menu page, where each webpage

contains different user interface components.

Chapter 6 will provide continued information of advanced

usage of Tailwind CSS in the development of user interface

components. In this chapter as well, we are developing

three web pages, blogs page, contact us page and faq page

that completes full website. Then we are deploying a

website under github pages.

Chapter 7 provides standard practices you need to keep in

mind while developing website or more precisely user

interface components. Then we are providing some

examples of user components developed using Tailwind

CSS.

Downloading the code

bundles and colored images

Please follow the link to download the

Code Bundles of the book:

https://github.com/OrangeAVA/

Ultimate-Tailwind-CSS-

Handbook

The code bundles and images of the book are also hosted

on

https://rebrand.ly/pubn0jv

In case there’s an update to the code, it will be updated on

the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt

Ltd and follow best practices to ensure the accuracy of our

content to provide an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@orangeava.com

https://github.com/OrangeAVA/Ultimate-Tailwind-CSS-Handbook
https://rebrand.ly/pubn0jv
mailto:errata@orangeava.com

Your support, suggestions, and feedback are highly

appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook

versions of every book published, with PDF and ePub files

available? You can upgrade to the eBook version at

www.orangeava.com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch

with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection

of free technical articles, sign up for a range of free

newsletters, and receive exclusive discounts and offers on

AVA™ Books and eBooks.

Piracy

If you come across any illegal copies of our works in any

form on the internet, we would be grateful if you would

provide us with the location address or website name.

Please contact us at info@orangeava.com with a link to

the material.

Are you interested in Authoring with us?

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book,

please write to us at business@orangeava.com. We are

on a journey to help developers and tech professionals to

gain insights on the present technological advancements

and innovations happening across the globe and build a

community that believes Knowledge is best acquired by

sharing and learning with others. Please reach out to us

to learn what our audience demands and how you can be

part of this educational reform. We also welcome ideas

from tech experts and help them build learning and

development content for their domains.

http://www.orangeava.com/
mailto:info@orangeava.com
http://www.orangeava.com/
mailto:info@orangeava.com
mailto:business@orangeava.com

Reviews

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you

purchased it from? Potential readers can then see and use

your unbiased opinion to make purchase decisions. We at

Orange Education would love to know what you think

about our products, and our authors can learn from your

feedback. Thank you!

For more information about Orange Education, please

visit www.orangeava.com.

http://www.orangeava.com/

Table of Contents

1. Getting Started with HTML, CSS, and Tailwind CSS

Introduction

Structure

Defining website

Website and its representation

Types of websites

Webpage: a technical aspect

HTML

Styles and interactivity

Cascading Style Sheet (CSS)

Selectors

Types of selectors

Styles – (property–value pairs)

CSS Box Model

Types of CSS

Inline CSS

Internal CSS

External CSS

Media queries

Key points to remember

Introducing Tailwind CSS

Need of Tailwind CSS

Applying Tailwind CSS on HTML

Advantages of Tailwind CSS

Installing and setting up Tailwind CSS

Apply Tailwind CSS using CDN

Standalone CLI - Tailwind CSS without Node.js

Tailwind CSS in production

Conclusion

2. Design Principles for Tailwind CSS

Introduction

Structure

Utility-first classes

Events and states

Responsive design

Targeting a breakpoint range

Dark mode

Reusing styles

Code editor support – multi cursor editing

Using frameworks

CSS abstraction

Extracting classes with @apply

Advantages of this approach

Adding custom styles

Arbitrary variants

Handling ambiguities

CSS and @layer

Customizing base styles

Customizing component classes

Customizing utility styles

Function and directives

Directives

@tailwind

@layer

@apply

@config

Functions

theme()

screen()

Conclusion

Points to remember

Multiple choice questions

Answers

3. Utility-First Classes and Customization Options

Introduction

Structure

Customization

Content

Classes Safelisting

Theme

Extend

Screens

Colors

Spacing

Plugins

Prefix

Base styles

Preflight

Extending Preflight

Disabling Preflight

Layout

Aspect ratio

Container

Columns

Based on column count

Based on column width

Break After – Break Before – Break Inside

break-before

break-inside

Box decoration break – box sizing

Display

Floats - clear - isolation

Object Fit – Object Position

Overflow

Overscroll behavior

Position

Top – Right – Bottom – Left

Negative value as a size

Visibility

Z-Index

Flexbox and Grid

Flex-Basis

Flex Direction

Flex Wrap

Flex

Flex Grow

Flex Shrink

Order

Grid template columns

Grid column start/end

Grid template rows

Grid row start/end

Grid Auto Flow

Grid Auto Columns

Grid Auto Rows

Gap

Justify – Align – Place

Justify Content

Justify Items

Justify Self

Align content

Align Items

Align Self

Place Content

Place Items

Place Self

Spacing

Padding

Margin

Space between

Sizing

Width

Min-width

Max-width

Height

Min-height

Max-height

Conclusion

Points to remember

Multiple choice questions

Answers

4. Element-Specific Styling with Utility- First Classes

Introduction

Structure

Typography

Font

Font family

Font size

Font smoothing

Font style

Font weight

Font variant numeric

Letter spacing

Line clamp

Line height

Relative line height

Fixed line height

List style

List style type

List style position

Text

Text align

Text color

Text decoration

Text decoration color

Text decoration style

Text decoration thickness

Text underline offset

Text transform

Text overflow

Text indent

Vertical align

Whitespace

Word break

Content

Backgrounds

Background attachment

Background clip

Background color

Background origin

Background position

Background repeat

Background size

Background image

Gradient color stops

Borders

Border radius

Border width

Border color

Border style

Divide width

Divide color

Divide style

Outline width

Outline color

Outline style

Outline offset

Ring width

Ring color

Ring offset width

Ring offset color

Effects

Box shadow

Box shadow color

Opacity

Mix blend mode

Background blend mode

Normal filters

Blur

Brightness

Contrast

Drop shadow

Grayscale

Hue rotate

Invert

Saturate

Sepia

Backdrop filters

Backdrop blur

Backdrop brightness

Backdrop contrast

Backdrop grayscale

Backdrop hue rotate

Backdrop invert

Backdrop opacity

Backdrop saturate

Backdrop sepia

Tables

Border collapse

Border spacing

Table layout

Transitions and animations

Transition property

Transition duration

Transition timing function

Transition delay

Animation

Transforms

Scale

Rotate

Translate

Skew

Transform origin

Interactivity

Accent color

Appearance

Cursor

Caret color

Pointer events

Resize

Scroll behavior

Scroll margin

Scroll padding

Scroll snap align

Scroll snap stop

Scroll snap type

Touch action

User select

Will change

SVG

Accessibility: Screen readers

Conclusion

Points to remember

Multiple choice questions

Answers

5. Developing a Website with Tailwind CSS

Introduction

Structure

Website

Categories of websites

Static website

Dynamic website

Types of websites

Requirement of website

Website – the developer’s viewpoint

The working way of website

Parts of the website

Building a restaurant website

Parts of our website

Think in Tailwind way

Let’s begin development

Webpages

Header and footer

Home page or Index page

Gallery page

Our ambience

Clicks from kitchen

Menu page

Text block

Menu Block

Conclusion

6. Advanced Website Development with Tailwind CSS

Introduction

Structure

Blogs page

Contact us page

FAQ page

GIT: a brief note

GIT working flow

Some of the terms present in GIT

GIT operations

GitHub

GitHub account

Deployment

Conclusion

Points to remember

Multiple choice questions

Answers

7. Best Practices for Tailwind CSS

A glance

Keep it in mind

Bonus

Component 1

Component 2

Component 3

Component 4

Component 5

Component 6

Component 7

Component 8

Component 9

Component 10

Component 11

Conclusion

Index

CHAPTER 1

Getting Started with HTML,

CSS, and Tailwind CSS

Introduction

In this chapter, we are going to learn about the definition of a

website, and the basic principles behind the development of web

pages. This chapter gives brief knowledge on the structure of a

webpage and the technologies used for it by explaining the core

concepts of HTML and CSS. Then, we will learn about Tailwind

CSS, and its installation variants, and discuss applying it to our

project.

Structure

In this chapter, we will cover the following topics:

Defining website

HTML

What is CSS?

Let’s begin with Tailwind CSS

Installation and setup

Standalone CLI: Use Tailwind CSS without Node.js

Defining website

A website is a document that has a certain link that can be

accessed or visited on a browser. More precisely, a website is a

document, which can be opened using the internet, where we

can find information about a person, company, place, and so on.

This can be the basic definition of a website that everybody can

interpret. Technically, a website is a set of documents built using

various programming languages, each of which has its unique

role.

When you refer a specific entity as a website, it is a collection of

web pages interconnected by hyperlinks, where all of them are

present under a single hood called domain.

Domain is a name that you need to visit a website,

which begins with www and ends with .com, .uk, .in, and

so on. Technically, domain in called as URL - Uniform

Resource Locator that act as a mask for an IP-address,

where website is located.

A website is a set of web pages. A web page is a document that

represents a part of the data that comes under the website.

Consider the following example:

There is a website that gives information about certain places,

and there are some parts present on that website like address,

about, contact, and so on. These parts are said to be web pages.

These represent specific information about that place's website.

Website and its representation

We are now aware that the website is an entity, and it runs on a

browser. Hence, the browser is a medium between website data

and visitors. Representation of data is a key point for every

successful website. So, what does this representation mean? It’s

a way users can conveniently access and experience the website

on various devices.

The usage of a website on various devices matters a lot behind

the success of a website. As a layperson, you may have noticed

that the same website has a different interface when accessed

from a desktop computer and a mobile device, isn’t it?

It is ultimately true that it can be inconvenient when a website

gets loaded on a mobile device with an interface of a desktop.

Mobile devices have a vertical orientation of usage, whereas

desktop or laptop devices have a horizontal orientation. It is

necessary to make the website look clean and effective on all

types of devices, in both orientations.

Most of us have mobile devices and internet access in today's

digital trend. According to a recent survey on website visits,

visits from mobile devices (more than 50% - increasing every

year) are more than visits from desktop devices. This highlights

the importance of ensuring a website’s appearance on various

devices. Thinking and implementing this approach is called the

Mobile First approach. Here, the development concentrates on

creating user-friendly experience on mobile devices and to

further larger devices.

Tailwind CSS has made this approach easier. We will learn more

about it in upcoming chapter.

Types of websites

We can distinguish websites into two major types:

Static website

Dynamic website

A static website consists of webpages with statically added

data. These data are added straight to the web pages that will be

displayed on a browser and are often added during the

development phase of the website (when there are no frequent

changes made). For example, a simple website showing

information on places, animals, and so on.

Dynamic websites are those where data comes dynamically

from other sources and are systematically displayed on

webpages. As and when data changes from external sources, it

will be rendered on these web pages, with different data being

loaded dynamically in the same place on a webpage.

For example, websites such as job posting sites, news sites, and

so on.

In this book, we are going to explain the development of

a static website from scratch until its deployment. We

have chosen a static one because we are focusing more

on the design of the website rather than the display of

dynamic data from external data points.

Webpage: a technical aspect

A page or a document, which consists of several lines of code, is

termed as a web page. When the browser engine reads and

understands the code written on the page, its visual

representation will be loaded on a browser window. So, what kind

of code does the browser understand?

Web pages are written in HTML language. HTML cannot be called

a programming language as we are not creating any complex

logic here. It is called markup language.

Markup language is a standard text-encoding system. It

comprises easily understandable keywords, names,

tags, and so on, which are used to structure the

webpage.

HTML

HTML is considered as a standard markup language for those

documents, which are meant to be displayed on web browsers.

Figure 1.1: Full form of HTML

HTML was initially released in 1993. With the progressive

improvements over the years, it is currently running with the 5th

version (5.3 as of October 2022) known as HTML5. Files that

hold HTML code have the extension .html.

HTML provides a sufficient number of built-in tags/elements to

easily structure the webpage as per expectations which can be

easily rendered on most current-day web browsers.

When you see a website loaded on a browser window, then it is

nothing but an HTML document that gets rendered on the

browser engine. HTML code or document or file is a set of

arrangement of tags in a specific order to obtain a structure to

display data.

HTML tags are reserved keywords enclosed with open–close

angular brackets, meant to render a specific structure. Most of

the tags are declared with open and close tags called block tags

(open–close tags are interchangeably called start–end tags).

Some of them can be used with single tags, which are called

inline tags.

Figure 1.2: (a) HTML block tag; (b) HTML inline tag

Here, we are providing the most used HTML tags or elements

throughout this book. You will also get knowledge on different

sets of HTML tags from some external sources:

Some commonly used HTML tags/elements

Tag Description Tag Description

<head> Head part of HTML <title> Defines Title of

Document of Browser

<body> Defines the whole body

of the HTML Document

<main> Defines the main

section of the

Document

<div> Division block <p> Paragraph

<h1> Heading - 1 <h2> Heading - 2

 Line break <hr /> Horizontal line

<table> Defines table Defines image

<td> Table data <tr> Table row

 Bold element Span element

<a> Hyperlink <link> To refer external CSS

files

<script> To refer to JavaScript

code

<header> Defines header part of

Document

<footer> Defines footer part of

the Document

<figure> Used to define image

 To begin ordered list To define list item

Table 1.1: Common HTML tags

By looking into these tag names, you can understand how easy it

is to write an HTML document, isn't it? HTML comes with an easy-

to-use set of built-in keywords.

Let’s look into the simple structure of an HTML document; as we

are using HTML5, it is specifically an HTML5 document:

Figure 1.3: Sample HTML document

Let’s learn some tags:

<!doctype html>: This is an indication tag. When we

include it in a document, the browser understands that the

document is using HTML5 for structuring the page.

<html></html>: This is a mandatory tag that must be

present in an HTML document. All other HTML tags should

be present within this paired tag.

<head></head>: This paired tag is used to refer to

external files (.css, .js) and the title of the document.

<body></body>: The body tag is the main part of the

document and it holds all the tags that are meant for page

structuring.

<div></div>, <p></p>, : These are the tags that

are added in a sequence to create a specific structure of the

page, and they are the core part of an HTML document.

It is a general practice to define <style></style> tag

within the <head></head> tag but it will not create a

problem if you define it outside of it. The style tag

brings the expected style to the document.

When you visit a website from a browser, you are allowed to view

the code that is responsible for the visualization. Yes, it is

available in the browser itself.

If you are using Windows, by right-clicking on a webpage, you

get a pop-up menu, and then by clicking Inspect, you get the

following:

Figure 1.4: HTML code from the browser

In this snapshot, a set of tags is arranged in a specific order to

create the structure of a page. You can also observe that these

tags have various attributes like class, id, and so on, which

provide style and interactivity to the page.

Styles and interactivity

HTML is meant for structuring the page but has limitations in

terms of design parameters and user interactivity. To overcome

it, we need to combine other technologies with HTML such as:

CSS: All visualization enhancement aspects, such as color

patterns, margins, borders, shadow, can be achieved with this

technology. As you read before, the term Mobile First

Approach requires this CSS for its implementation. In the next

section, we will provide brief information on the core concepts of

CSS which are very much essential for understanding the

working of Tailwind CSS.

JS: JavaScript: It is a scripting tool required to handle

interactivity with the visitors of the website. Interactivity includes

actions such as clicking, hovering on an element, submitting a

form, fetching dynamic data from external sources, and so on.

The following diagram helps you understand the importance and

capabilities of HTML–CSS–JS for the creation of webpages:

Figure 1.5: What is HTML-CSS-JS

Throughout this book, we will learn how to apply Tailwind CSS

to create a website from scratch. We are going to develop a

static website, where the focus is purely on creating a web page

rather than dynamic data fetching and handling through JS -

which is beyond the scope of this book. However, to make some

simple interactions with the page, we will explain the required JS

concepts while developing web pages.

Although it is not mandatory to know JS, knowing some

basics will help you to grow your knowledge to make a

web page more interactive.

A web page is said to be complete or perfect if it has a proper

structure with suitable visual enhancements and interactivity.

Here is a reference HTML page you can use to test chunks of

code mentioned throughout the book:

Figure 1.6: HTML reference document

As we are approaching website development, we strongly

recommend that you follow the preceding syntax while writing a

code to gain more confidence. This practice makes you well-

versed with code than by just reading it in a book.

Cascading Style Sheet (CSS)

This chapter provides a brief explanation on fundamentals of CSS

along with HTML, which is the foundation to understand and

apply Tailwind CSS.

CSS is a visual enhancement technology that is applied to HTML

documents to produce aesthetically neat webpages. CSS was

developed by the World Web Consortium (w3c) in 1996.

Currently, it is running third of it, called CSS3.

In this section, we cover typical aspects of CSS, such as types of

CSS, how it works with HTML, and the Box Model.

What is Cascading Style Sheet (CSS)? It can be elaborated as

follows:

Cascading: An arrangement or a sequence

Style: Appearance

Sheet: Set of rules

So, CSS can be defined as a document or a piece of code that

defines a set of rules in a sequence to create some stylish

appearance. CSS is a context that has no importance as an

independent entity. These written set of rules need to be referred

to somewhere to create a visual impact of it.

Visual Impact – Yes, this is how CSS has its identification. In

general, if a website appears to be visually appealing, it means

that CSS has been used to achieve that appearance. On that

website, CSS is used to create various colors, shadow effects,

margins, padding, text decorations, and so on.

Applying CSS in web development involves adding a set of

design rules to the webpage, that is, to the HTML document. CSS

rule will be adopted by HTML tag whenever it gets rendered on a

web browser.

The preceding paragraph clearly states that CSS needs a channel

to be visualized, and the HTML document plays as a channel for

it. How does HTML adopt these rules provided by CSS or what

CSS needs to get it visualized on the screen? Selectors.

Selectors

Selector is an entry point for a particular CSS rule. It’s the way

we can define a rule! Without selectors, we cannot say a piece of

CSS as a rule that affects the visual representation of data on an

HTML webpage:

Figure 1.7: CSS rule format

color: green ;

background-color: blue ;

width: 10px ;

height: 20px ;

div {

color: green ;

background-color: blue ;

width: 10px ;

height: 20px ;

}

It has no meaning (improper rule) It has proper meaning (proper rule)

Figure 1.8: Example of CSS rule

Now you can define the meaning of the CSS rule.

Set of styles (property – value pair) defined within a selector

scope, which targets tags present on HTML document.

The preceding code sample demonstrates how CSS rules can be

written. A CSS rule is considered a rule whenever it has a proper

selector mentioned in it. Without that, the styles written in CSS

will have no effect on any part of the HTML document.

Types of selectors

As we have understood, a CSS rule should contain a selector to

make visual representations of styles defined. So, what these

selectors can be? Can you guess?

If you know where the CSS rule will be projected for its execution,

then you can answer it immediately. Yes, it is HTML, more

concisely, a selector can be an HTML tag, the ID property of an

HTML tag, the class property of an HTML class, and so on.

Let’s take a look at some important selectors of CSS. Do note

that you need to read and understand them better from other

external sources for your convenience:

Tag or element selector: Here, the HTML tag also known as an

element, is used as a selector to apply style rules. When the

HTML page is rendered on the browser, these rules will be

applied to all instances of that element used as a selector:

p {

color: red ;

}

Here <p></p> tag is used as a selector to apply font color as red on

the HTML page, if there are ten <p> tags on the HTML document

then this CSS rule will be applied to all.

ID selector: The id attribute of HTML tag is used as a selector

for projection of CSS rules. As, we use the id attribute as a

unique identifier of tag on the HTML document, the rules with id

selectors will affect only that tag (an HTML document can have

multiple tags with the same id):

HTML –

<p id="paragraph"> It is first paragraph </p>

CSS –

#paragraph {

color: green ;

}

For id selectors, CSS requires the # (hash) symbol along with the

ID of the HTML tag. Here, those elements having id="paragraph"

receive green as their text color from CSS rule.

Class selector: The class attribute defined with an HTML tag is

used for CSS rules projection. This is one of the most important

selectors that you need to keep in mind, as Tailwind CSS refers to

the same approach for its execution:

HTML –

<p class="description"> description of the paragraph </p>

CSS –

.description {

color: blue ;

}

For class selectors, CSS requires . (dot) symbol along with the

class attribute of the HTML tag. Here, those elements having

class="description" will receive a blue color as their text color from

the CSS rule.

Pseudo selectors: These are special types of selectors, where

based on a certain condition of the HTML tag, receive projected

styles from the CSS rule. Conditions include on hover, on visited,

on focus events or on enabled – disabled states or only first-

child, last-child of the element. This has an important scope as

well on Tailwind CSS, Do understand it better from external

sources for your convenience:

HTML –

<p id="paragraph"> It is first paragraph </p>

CSS –

#paragraph:hover {

color: green ;

}

For pseudo selectors, CSS requires the colon (:) symbol in

between the selector keyword and the condition for an HTML tag.

Here, the elements having id="paragraph" will receive green as

their text color from the CSS rule when we hover the mouse over

it. We expect you to read and understand more about these

selectors’ sections for your ease of understanding.

Styles – (property–value pairs)

Style rules are at the heart of CSS rules!

These will define the visual enhancements that you need to

project on the HTML’s part. The selector leads the rule and

property–value pairs which define the actual style to be

represented.

In each rule, there is a property–value pair, where the Property

field holds one of the many keywords defined in CSS for design-

related things and the Value field holds an arbitrary value

supported by the respective Property field:

Property Value

height, width, padding, margin digit with (px,rem,em)

background-image url

text-indent center, left, right

color, background-color any color (hex, rgb, color name)

display Block flex, none

Table 1.2: Property – value pairs of CSS rule

CSS Box Model

CSS considers every element as a box with certain properties.

These properties are combined and called as CSS Box Model.

The following figure shows its components:

Figure 1.9: CSS Box Model

The box model contains four components:

Margin: It is the space between the border of an element

and other elements around it.

Border: It is the boundary line of an element.

Padding: It is the space between the boundary line and the

actual content.

Content: It is the area that holds the data to be rendered

(image, paragraph, and so on).

As CSS focuses on the Box Model, it is important to understand

the Box Model in detail. Manipulation is directly performed on the

Box Model to make an element look good aesthetically.

Except for content, all others can take a value as a number for all

directions or each direction separately.

The following tables depict various ways to define the box model

participants to give different effects:

div {

padding : 1px

}

div{

padding-top: 1px ;

padding-right: 1px ;

padding-bottom: 1px ;

padding-left: 1px ;

}

Table 1.3: This adds padding of 1px for all directions. (left column represents the

shorthand form of the right column)

div {

margin : 10px 20px ;

}

div {

margin-top : 10px ;

margin-bottom: 10px ;

margin-left: 20px;

margin-right : 20px;

}

Table 1.4: This adds a margin of 10px for vertical direction and 20px for horizontal

direction

Types of CSS

Types of CSS are not differentiated based on version or syntax.

They are based on how we use CSS on a webpage. Let’s take a

brief look at each.

In website development terminology, a webpage is a

place where our CSS is referenced. It is the place where

we can visualize those sets of style rules.

Inline CSS

This method is for adding CSS to a webpage where those style

rules are declared within the style attribute of an HTML tag.

This type of CSS has effects only on that tag or the children tags

within that tag. This way of adding CSS makes the handling of

styles more difficult when the number of tags on a webpage

grows.

For example:

<div style="background-color: yellow; color: blue">

This has yellow background and blue text

</div>

In this example, you can see that this kind of CSS doesn’t require

any selectors, as it directly targets an HTML tag, so we can

consider it a tag or element selector:

Advantage: Easy-to-apply styles to a specific HTML

element without disturbing the other elements.

Disadvantage: Code loses readability as each tag gets its

style.

Internal CSS

It’s an approach of adding CSS to the webpage where rules are

written as a separate section of the page, within the <style>

</style> tags of the HTML document. These rules can affect

targeted HTML elements throughout the document. These kinds

of CSS rules are helpful to create generalized rule sets that can

affect multiple similar sets of selector parameters within the

context of the HTML document.

Since all style rules are on the same page, the web page will

render along with the HTML code and CSS code. It’s a best

practice to keep these styles (style tag) before the body element.

This is because when there are many style rules declared, by

declaring them after the body element, on a partial load of pages,

the HTML elements may render without an expected style until

the page loads completely. If we declare them before the body,

then only after executing all style rules, the HTML elements will

be rendered.

For example:

CSS:

<style>

div {

margin: 2px ;

}

#paragraph {

color: green ;

}

.box {

padding: 3px;

}

</style>

HTML:

<body>

<div> This is block 1 </div>

<div> This is block 2 </div>

<div> This is block 3 </div>

<div> This is block 4 </div>

<p id="paragraph"> This is paragraph </p>

<div class="box"> It is the box </div>

</body>

In this block of code, the style related to the div selector (tag

selector) gets projected to all four instances of div on the page

and # paragraph (id selector) related style will be projected only

to instances of the p element. class selector .box affects the div

element with class box.

Advantage: Code readability increases and rules can be

generalized within the document.

Disadvantage: While creating a website, these rules

cannot be accessed outside the current document.

External CSS

This is the most used CSS type when developing a website. Here,

all CSS rules are kept in a separate file with an extension .css,

which is then referred to within the HTML document.

Like internal CSS, using different types of selectors, we can write

various CSS rules for HTML elements. By using the <link /> tag of

HTML, the external CSS file will be added to the current

document:

style.css

div {

margin: 2px ;

}

#paragraph {

color: green ;

}

.box {

padding: 3px;

}

page.html

<html>

<head>

<link href="style.css" />

</head>

<body>

<div> This is block 1 </div>

<div> This is block 2 </div>

<div> This is block 3 </div>

<div> This is block 4 </div>

<p id="paragraph"> This is paragraph </p>

<div class="box"> It is the box </div>

</body>

</html>

Compared to adding CSS using an internal CSS approach, we can

observe the same result, except CSS rules are present in some

external files with the extension .css.

This approach makes rules generalization easier, as we can refer

to this external CSS file in any number of HTML documents,

where we want similar style rules to be applied. Rules are written

only once but referred to at multiple places wherever we want

the same style to be visualized. This is a developer-friendly

approach to keep the code cleaner.

Media queries

Again, we are mentioning the word Mobile First Approach.

The previous section explains the importance of presenting

websites on different kinds of devices, right?

We need to adopt the mobile-first approach to ensure we are

developing a website that renders perfectly on various devices.

As this deals with the aesthetics of the website, we need to

handle it in CSS. This can be done using media queries.

Media query is the CSS rules will be changed based on the

condition we are mentioning. These conditions can include

screen resolutions and the min-max height of the device.

Devices are often differentiated by their dimensions,

more specifically their screen resolutions. Desktops,

laptops, mobiles, tablets, and so on, each has their

unique screen resolution.

We often write our code on a desktop or laptop and consider it as

correct based on the output we see on that resolution. But it may

not be the case when we look at the same website on devices

with various dimensions/screen resolutions.

Therefore, it is important to make design adjustments to the

webpage to make it accessible effectively on all devices.

Mentioning screen resolution as a condition for CSS rules is

nothing but writing a media query for the web page. Media query

will be along with keyword @media:

@media only screen and (max-width: 600px) {

body {

background-color: blue;

}

}

Here you can see a typical example of how a media query is

written. The CSS rule called background-color as blue will be

projected on the body element of an HTML document only when

the browser window/device resolution is 600px wide or less:

@media only (min-width:360px) and (max-width: 800px) {

div {

width: 10px;

height: 30px

}

}

@media only (min-width:801px) and (max-width: 1200px) {

div {

width: 20px;

height: 50px

}

}

In this example, the same CSS rule on the div element is set to

different values based on different screen resolutions. Devices

with a screen resolution between 400px and 800px have one set of

values while those with a resolution between 801px and 1200px

have a different set of values.

Key points to remember

When you mention all three different types of CSS on the same

HTML document for the same element, inline CSS has the

highest priority to apply style rules to that element. In the

absence of inline CSS, internal CSS takes priority. Style rules

defined in external files are overridden by style rules defined

within the document scope for the same selector.

In the absence of any style rules for some element, it will inherit

style rules from its parent element. So, while applying CSS to

elements with children, the same rules will imply to those

children as well (except for Box Model parameters):

CSS Rules

.data-box {

color: green;

}

HTML Elements

<div class="data-box">

Heading Text

<p>paragraph</p>

<div>simple text</div>

<p style="color:red;">red colored text</p>

</div>

Here the text color of all the text present under <div> with class

data-box will be green, as they inherit from the parent, except the

last <p> element, as it has its own style rule defined for the color

property.

CSS rules are case-insensitive. While writing rules, we must

provide proper text for selector, property, and value fields,

else CSS cannot identify the rule for visualization:

Table 1.5: CSS styling method

The keywords you are using on an HTML document should be the

same while writing CSS rules for it. CSS searches for the selector

on the HTML document and adds style to it when it is rendered

on the web browser.

If you write CSS rules with the same selector and the same

property but different value fields, the one that is written later

will be considered for targeting an element of the HTML

document. CSS reads code from top to bottom, adds styles for

the respective selectors, and keeps only the recently read style

rule for the element:

CSS Rules

#paragraph {

color: green;

font-size: 10px;

}

#paragraph {

color: red;

}

HTML Element

<p id="paragraph">

This is paragraph text

</p>

When this code got rendered on the web browser, it visualized

the <p> element with color as red and font-size:10px. You can

observe CSS has overridden only similar properties on similar

selectors (color property on the preceding code sample) and

those are defined only once and are added as a style on HTML

document.

How to override the default behavior of considering only the last

definition of a rule among multiple definitions written before in

the code? CSS has a solution for it - !important.

!important is the keyword to be added to the style rules among

multiple definitions, which one needs to be projected on an HTML

element. When CSS encounters the symbol ! (exclamation)

important, it considers this definition as a high priority for

projection and ignores any other similar definitions written either

before or after it:

CSS Rules

#paragraph {

color: green !important;

font-size: 10px;

}

#paragraph {

color: red;

}

In this code sample as per default behavior, an element with id

as paragraph should get a style where color is red but as we

applied !important keyword on similar definition written before.

So, CSS projects this style to that HTML element.

Introducing Tailwind CSS

Now we are at the actual focus of this book. The knowledge you

earned in the previous section is the basic knowledge to digest

upcoming concepts. Remembering these concepts is very

essential throughout reading this book:

Figure 1.10: Tailwind CSS Logo

Tailwind CSS is an open-source CSS framework, authored by

Adam Wathan and Steve Schoger, under the name Tailwind Labs

as development activity. It was first featured in the year May

2019.

After various enhancements with different aspects of user

interface development, currently, version 3.3.2 is running in the

market, attracting a big number of web developers' interest.

They believed in and achieved an intuitive way of applying styles

to HTML documents with a faster development experience.

Tailwind CSS has more than 61k stars (as of Oct 2022) on GitHub,

which shows that it is gaining and winning interest these days for

its support of the rapid building of user interfaces (UI). It is

called the Utility-First CSS framework.

Utility First CSS? It is nothing but low-level utility

classes to build expected visualization on HTML

documents. By using these low-level utility classes, you

are not restricted to stick with any predefined

components; instead, you are free to build any kind of

custom designs of your wish.

Utility classes are self-explanatory classes; there is no need of

remembering complex names to apply it on HTML document.

Tailwind CSS comes with a set of such class names that are

named according to their intended purpose. These can also be

called single-purpose CSS classes, and each one of them has a

corresponding CSS rule.

Need of Tailwind CSS

Tailwind CSS is popular because of the faster development

experience for its users. Then, how it makes the development

process faster?

Developing a fit and fine webpage as you know requires

knowledge of HTML and CSS on a primary note. You will create a

structure using HTML and then make it visually impacted, with

multiple device-friendly activities using CSS. Right? As a primary

definition on the development of a webpage, it is correct up to

the point.

As you read that Tailwind CSS provides utility classes to

development, using these classes alone you can create a

complete user interface of your wish without writing any CSS rule

directly for your HTML document.

Yes, writing a huge set of CSS rules is not required to achieve

various aspects on HTML documents, such as color patterns,

responsive design, and so on. In fact, you can completely avoid

writing any inline, internal, or external CSS rule when you are

with Tailwind CSS. Amazing, isn’t it?

This book is meant for educating you on this approach itself. We

will develop a complete website without worrying about directly

writing a CSS rule by ourselves. You are going to enjoy website

development alongside reading this book.

A webpage that has a cleaner look and can convey all

the information of the webpage on various devices

without disturbing the user experience is said to be a

responsive website.

Applying Tailwind CSS on HTML

HTML has a set of elements to define the structure of a webpage,

most of these elements or tags can hold various attributes for

different purposes. An internal or external CSS can be mapped

into these using class attributes.

It is that simple to mention class names to the elements that are

already provided by Tailwind CSS:

This sentence has good design, has background color and center-aligned

<div class = “bg-gray-300 text-center font-bold italic underline">

This sentence has good design, has background color and center-aligned

</div>

div {

background-color: #d1d5db;

text-align: center ;

font-weight: bold ;

font-style: italic ;

text-decoration: underline ;

}

Table 1.6: Glimpse on Tailwind CSS flavoring

From Table 1.5, you can easily understand how Tailwind CSS

makes our work easier and saves the time we spend on writing

CSS rules. Chaining different class lists on the class attribute of

the HTML element yields those style rules that were applied

when it got rendered on a web browser. It’s a work that is already

done behind the scenes to experience a faster development

process.

Apart from lots of prebuilt classes for rapid development,

Tailwind CSS supports a high level of customization that is

required for complex design patterns. This is one of the reasons

that makes Tailwind CSS compete with popular component-based

frameworks.

Advantages of Tailwind CSS

Tailwind CSS produces class names that are named almost to the

intended purpose. There is no need to remember these class

names, which makes the learning curve easy.

User interface - it is a technical term for what a website

user sees on a web browser. Designing this user

interface is done using CSS, which visualizes the styles.

In our case, applying Tailwind CSS makes it faster.

When using Tailwind CSS, it is not mandatory to write our own

CSS rules set, which avoids direct interaction with CSS files as we

get most of the things done from pre-built classes themselves.

To implement a responsive design of a webpage, we need to

keep many aspects into account and address them carefully

(header, footer, menu, popup, and so on). In such scenarios,

the CSS rules set grows to multiple sets of lines. Tailwind CSS

provides a cleaner approach for this, with breakpoint-oriented

class names excel to target different device resolutions.

Being a low-level CSS framework as its learning curve is not so

steep, it is easy to get adopted by groups of people working in a

broader context. Tailwind CSS helps to define systematic

coherence in design.

Tailwind CSS’s production version of CSS file contains only those

sets of CSS rules that have been referred to through class names

in the HTML document, not all the hundreds of pre-built class

names supported in the framework. It boosts the loading time of

CSS into the browser.

As you are free to develop any design of your wish, there are

scenarios where you need to use the same pattern in multiple

places on the same page or other web pages of the same

website. Tailwind CSS allows you to prepare a component and

reuse it anywhere on your website, it enhances the Don’t

Repeat Yourself (DRY) strategy, which keeps code cleaner.

In the coming chapters of this book, we are using the latest

version of Tailwind CSS to make you learn recent and advanced

features and its brief example and for website development.

As of April 2023, the latest version of Tailwind is Tailwind CSS

v3 (3.2.3).

Installing and setting up Tailwind CSS

Tailwind CSS is written in JavaScript and distributed as an NPM

package, which means you need to have a node environment

running for Tailwind CSS to work.

Your system needs to have NodeJS installed before you begin

with the installation of Tailwind CSS in your system:

NodeJS: It is a JavaScript runtime environment that

executes JavaScript code outside a web browser.

NPM: Node Package Manager, for NodeJS.

Follow these steps:

1. Let’s create a folder to begin with our installation. We will

name it TailwindCSSProject.

We suggest using VS code for code writing, although it is up

to you to use your convenient IDE for code writing. (VS code

is user-friendly and the useful features are already inbuilt).

NodeJS is an environment and NPM is a package manager.

As NPM works with a command line, you must execute a

specific command to download packages for your work. In

this case, we are downloading or installing our Tailwind CSS

using NPM commands. It is called Tailwind CSS Command

Line Interface (CLI).

2. Open the project folder with VSCODE and open the terminal.

If you already installed NodeJS, you can run the following

command:

node -v

3. You can see the version of the same as a response.

Installation of NodeJS also installs npm by default. If you run

the following command, you can see its version as well:

npm -v

Figure 1.11: (a) NodeJS version, (b) NPM version

It flags you are good to go with the installation of Tailwind

CSS on your system/project. Observe that there are no files

present in your folder (TailwindCSSProject folder).

4. Now run the command:

npm install -D tailwindcss

It installs all required files from the server and then you can

observe the node_modules folder and package.json file created

in your folder. These are related to the NodeJS environment:

Figure 1.12: Node environment files

If you open these node_modules folders, then along with other

folders you can find the tailwindcss folder. It confirms you

have successfully installed tailwindcss on your system.

Now it’s time to create a configuration file for Tailwind CSS,

configuration is done using the file itself. As Tailwind CSS is

written in JS, this file should also be in JS itself.

5. Now run the following command:

npx tailwindcss init

This creates a tailwind.config.js file in your project folder:

Figure 1.13: Tailwind CSS config file

6. Now, open, and edit the content section of this config file to

listen to HTML files of our project. This investigates the place

where Tailwind needs to search for its utility classes. It is

important to mention the path of your HTML files (folder

hierarchy) / project user interface files where you are

applying Tailwind CSS:

Figure 1.14: tailwind.config.js file

Here we are placing .html files within the src folder in the

project folder. Within that folder, tailwind can read a file with

any name that has the extension .html (* indicates any file

name).

Apart from the content section, other two sections are

present in that config file, namely, theme and plugins. Here,

theme section is used to configure custom classes with

Tailwind CSS, here we can define custom class names and

require CSS style to be linked with it. Further, these class

names can be used within HTML documents like other

Tailwind CSS classes. plugins section can hold a reference to

those external features developed to support common

development elements like forms, aspect ratio, and so on,

which will be explained in detail in further chapters:

Figure 1.15: Other section of the config file

7. Create a .css file within the src folder to refer to all those

features provided by Tailwind CSS, then we will refer to this

.css file in our HTML files. Then add the following line to that

empty file:

@tailwindcss utilities;

What this @ symbol in CSS: @ symbol is called as At-

rule, this instructs CSS how to behave, for example,

@charset "utf-8";

Here we are using rule @tailwindcss as a rule for

CSS.

Here, we are referring to all those utility classes provided by

it in our CSS file. When it gets rendered on the browser, it

holds all those utility classes in it. This line also adds utility

classes of those plugins added to support Tailwind CSS.

It completes setting up Tailwind CSS on your project. Now

you are free to use those all-utilities classes from Tailwind

CSS in your HTML documents.

8. Create a sample HTML document to test if Tailwind CSS is

working or not:

index.html

<!doctype html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

</head>

<body>

<h1 class="text-4xl font-semibold italic">

This is sample text

</h1>

</body>

</html>

Hope you are familiar with the HTML structure, here we are

adding three utility classes on the h1 element present with

the body element.

Whenever we load this page on a browser, it should render

text with 4×l size, semi-bold thickness with italic style.

Right? Understand that class names are named for the

intended purpose. Isn’t it?

Now, this code as-is cannot render styles on the browser.

Why can you guess?

We are missing a CSS file that holds/listens to all these

utility classes' CSS rules, and that says what to visualize for

what.

Before that, is it good to load all Tailwind CSS utility classes

even though we are using it? No, right? Tailwind has a

solution for it. It provides a command to create a compiled

CSS file that holds only those CSS rules related to those

classes we have used in our HTML files. In the preceding

case, only those CSS rules of classes text-4xl, font-semi-bold

and italic should be added as a style.

9. Run the following command to achieve that:

npx tailwindcss -i ./src/style.css -o ./style/output.css --

watch

--watch option indicates command is running to observe

changes we are making on HTML files to identify utility

classes and adding related CSS rules to the output.css file

which we need to refer to in our HTML document. After

running this command, it automatically generates the

output.css file.

Add/refer output.css file to index.html file within head section

using the link tag:

<link href="output.css" rel="stylesheet">

As a curious factor, you can open this output.css file to verify

which all CSS rules are added for utility classes we have

utilized in index.html.

Until the preceding command keeps on

running/watching all your changes on the HTML file, it

will create a set of CSS rules dynamically on the

output.css file.

It’s time to run this index.html file on the browser:

Figure 1.16: index.html on browser

We now have an appropriate style rendered on the browser.

Apply Tailwind CSS using CDN

Whenever we are using NodeJS runtime environment we stick

with npm to manage Tailwind CSS installation. Even though it is a

suggested approach it is not the only way to use Tailwind CSS.

TailwindCSS’s content delivery network (CDN) is equally

capable of bringing results to the table. CDN is a mechanism

where we are referring to some content that is available in the

network using an URL. The setup process is a bit different

compared to the above suggested, but it is not so difficult to

adopt.

Add the following script tag at the head section of index.html,

CDN is served using the script tag:

<script src="https://cdn.tailwindcss.com"></script>

Remove that link tag used to refer to compiled CSS from

output.css while using the CDN approach of Tailwind

CSS. Replace that link tag with a CDN script tag.

Yes, now it is done. Refresh the index.html file on your browser

and you will get a similar effect.

Then, how to configure more with CDN?

Add the theme sections of the tailwind.config.js file as a JavaScript

code in index.html within <script></script> tag just after CDN. You

can customize it as you wish:

<script>

tailwind.config = {

theme: {

extend: {

colors: {

clifford: '#da373d',

}

}

}

}

</script>

Plugins can be added as a GET parameter on the CDN URL that

will bring utility classes of respective plugins under the same

CDN reference.

For example:

<script src="https://cdn.tailwindcss.com?plugins=forms,typography">

<script>

Forms and typography are the first-party plugins of Tailwind CSS.

Any other third-party plugins cannot be used in this way.

Standalone CLI - Tailwind CSS without

Node.js

As you know Tailwind CSS is built using JavaScript, except for the

CDN approach, which always requires NodeJS to run behind to

compile Tailwind CSS classes for our project.

It is acceptable if you are completely utilizing this environment

for your project for various aspects, but there are scenarios

where NodeJS is not a common thing for development. In such

cases, the usual installation enforces people to be there with

NodeJS environment to use Tailwind CSS, which is an entirely

different ecosystem they need to adopt.

In December 2021, Tailwind CSS announced a tooling mechanism

that provides full feasibility of using Tailwind CLI in a self-

contained executable format, where there is no interference of

NodeJS or NPM. It is called a standalone CLI build.

From GitHub, you can download the supported executable for

Windows, Mac, and Linux accordingly. Then instead of running

CLI commands as npm commands, you can run them using

Tailwind form and everything remains the same.

To init Tailwind CSS in your project you can run the following

command:

./tailwindcss init

These commands create a config file of Tailwind CSS in your

project. Similarly, to compile the class names you can run the

following command:

./tailwindcss -i input.css -o output.css –watch

There is no change in other parts of the command except the

need for the npm prefix.

When it comes to the config file, it is acceptable to use the same

syntax for the plugin section as we use in the NodeJS

environment.

We can use a project called pkg by Vercel that makes a Node.js

project into an executable that can be run without installing

Node.js on the system by bundling all the parts your project

needs right into the executable itself. That’s how it is possible to

utilize the full power of JavaScript in our project.

If your project is already running on the NodeJS

ecosystem, then there is no point in using Standalone

CLI. If you only need a JavaScript environment to use

Tailwind CSS, it would be a better option without

creating complexity in your project, for example, Rails,

Phoenix, and so on.

Tailwind CSS in production

Tailwind CSS is more widespread than any other similar

framework because of its production size. When we minify our

output CSS file, it becomes less than 10 KB even for bigger

projects. Following is a command to minify the output CSS file:

npx tailwindcss -o output.css --minify

Conclusion

To apply Tailwind CSS effectively in website development for its

user interface creation, the information covered here can be

considered as a basic foundation. Understanding and exploring

the concepts discussed above makes you feel more confident

with Tailwind CSS, a better approach for a faster development

experience.

In the next chapter, we will cover the core concepts of Tailwind

CSS. Let's be ready to explore.

CHAPTER 2

Design Principles for Tailwind

CSS

Introduction

Being a CSS framework or a tool to create user interfaces,

we are learning core concepts that Tailwind CSS conveys for

the development process. There are many factors involved

to develop a design of a website, and since Tailwind CSS

exists to make it easier to approach them, we are

categorizing each one for easy comprehension. We keep the

explanation simple because we try to utilize most of the

resources while developing the website.

Structure

In this chapter, the following topics will be discussed:

Utility classes

Events

Responsive design

Dark mode

Re-usage of style

Creating custom styles

Function and directives

Utility-first classes

In the previous chapter, we already had a glimpse of how

utility class is applied to HTML by avoiding writing CSS rules

directly just by adding various classes for HTML elements.

Now let's see a detailed view of it.

We prefer you add HTML and CSS rules to the model

HTML document provided in the previous chapter so

that you can run on browsers easily to visualize the

styles of your wish.

Here, we are seeing a traditional way of creating user

interfaces or by specifically a component (use either internal

CSS or external CSS for testing this code).

HTML

<div class="mainBlock">

<div class="innerBlock">

<div class="contentBlock">

<div class="colorBlock"></div>

<div class="textBlock">

<h2>Information</h2>

Lorem Ipsum is simply dummy text

of the printing and typesetting industry.

</div>

</div>

</div>

</div>

</div>

CSS rules

.mainBlock {

background-color: #6b7280 ;

padding: 0.5rem ;

width: 18rem;

}

.innerBlock {

border: 1px solid #030304 ;

border-radius: 5px ;

}

.contentBlock {

display: flex ;

}

.colorBlock {

margin: 0.5rem ;

background-color: #16a34a ;

border-radius: 50%;

width: 5rem ;

height: 3rem ;

}

.textBlock {

padding: 0.5rem ;

color: #ffffff ;

font-size : 12px ;

}

These HTML and CSS combinedly produce the following

effect on the browser window:

Figure 2.1: Output of traditional approach of CSS

Here, you can observe there is an outer block with gray color

then inside that there is another block with a black border,

then within that, there is a green box and white text one

beside another. Right? a simple component.

Now let's create it using utility-first classes provided by

Tailwind CSS. Pretty sure you admire it.

It's an alert that we are not using any CSS rules directly to

design the component. It's just an HTML block of code.

HTML

<div class="bg-gray-500 p-2 w-72 m-2">

<div class="border border-gray-900 rounded-md">

<div class="flex">

<div class="bg-green-600 h-12 w-24 rounded-full m-2">

</div>

<div class="text-white text-xs p-2">

Lorem Ipsum is simply dummy text

of the printing and typesetting industry.

</div>

</div>

</div>

</div>

After running this HTML on the browser, we will get the

following result. We can hardly identify the difference, isn't

it? (Except the font family all other styles remain the same):

Figure 2.2: Output of Tailwind CSS approach

If you look at HTML document, for the first time if you are

looking into Tailwind CSS utility classes applied, you may say

it is creating a mess to the readability of the HTML code.

Until you know the importance of each class.

The preceding HTML document shows everything is done by

providing utility classes as a class attribute value of the

element.

When you feel comfortable with the usage of utility classes

you will agree that you are not wasting time defining CSS

rules and giving an unrelated name to the class to refer to it.

You can feel that your CSS stops growing bigger than the

actual HTML elements of the file. Moreover, you feel safe

while changing style property as you are just changing the

class name rather than changing CSS rule itself.

While using these utility classes provided by Tailwind CSS,

you may get a question in your mind about using inline CSS

itself in the name of utility class names. If you just started

utilizing utility classes, it is common that you doubt it:

If you use inline styles, then it is a localized rule set on

that element. Further, you cannot reuse that rule on

other elements, but utility classes are a part of a design

system. You can reuse the same class name to build an

impactable design, where CSS rules are defined only

once.

Inline styles are only meant for styling purposes. You

cannot handle responsive design code there, but there

are utility classes for handling responsive design that

really save your development time to target each aspect

ratio separately to write CSS rules.

Inline CSS is incapable of handling state events like

hover, focus, and so on. There is support for these as

well in Tailwind CSS utility classes.

Hope you got clarity on the distinction between inline CSS

and utility classes. Now you feel charged to continue with

the usage of utility classes with more comfort and fun.

Events and states

Whenever you are building a webpage some events play an

important role from a user experience perspective. Events,

more precisely we can say interactivity of the user with the

web page. Interactivity on an HTML page means hovering on

elements, clicking on buttons, text selection, and so on.

Similarly, State is a status or condition of an HTML element

like disabled, first child, even children, first-letter, first-line,

and so on.

Let's look at a simple example:

<button class=" w-36 py-3 rounded bg-green-300 hover:bg-blue-

400

active:bg-red-500 ">

Simple blockD

</button>

You can see the following output on the browser. On load, the

page button renders with green color. When you hover on it

will be changed to blue and when you click on it will be

changed to red color. Got it? How utility classes provide

support for interactivity:

Figure 2.3: Events utility classes (normal state, hover event, and click state)

From the example, you can understand that these state and

event-related classes have a format event name and as

usual class name separated by colon.

If you want to add multiple styles on interactivity,

you need to prepend an event name with a colon

with each of those classes.

For example, on hover if you need to change the text

color and background color then you need to add

class like hover:bg-green-500 hover:text-white.

The following table shows simple examples of various event-

and state-related utility classes:

First child and last child: Style will

be added to only first and last

accordingly:

<div>

<div class="first:font-bold

last:italic">one</div>

<div class="first:font-bold

last:italic">two</div>

<div class="first:font-bold

last:italic">three</div>

<div class="first:font-bold

last:italic">four</div>

</div>

Figure 2.4: First and last child

elements styling

(Here you can observe: the first child

of the parent got bold style and the

last child got italic style among all

children.)

odd – even child: Style will be

applied to odd or even child

accordingly:

<div class="w-36 text-white">

<div class="my-1 odd:bg-green-500

even:bg-blue-500">one </div>

<div class="my-1 odd:bg-green-500

even:bg-blue-500">two</div>

<div class="my-1 odd:bg-green-500

even:bg-blue-500">three</div>

<div class="my-1 odd:bg-green-500

even:bg-blue-500">four</div>

</div>

Figure 2.5: Styling odd – even child

elements

(Similar to first – last child example,

based on position within the parent

element, odd or even children can be

styled accordingly.)

Form element states: For example,

required, invalid, disabled:

<input type="number" required

class="required:bg-red-200 my-1" />

<input type="number" disabled

class="disabled:bg-green-200 my-1" />

Figure 2.6: Form elements styling

Based on the state we mention, input

element style will be reflected on it.

group: Based on interactivity with

parent element style will be added to

its children:

<div class="group w-24 p-5">

Figure 2.7: group elements styling

<div class="bg-gray-100

group-hover:bg-green-500">

Text1

</div>

<div class="bg-gray-100

group-hover:bg-red-500">

Text2

</div>

</div>

(When you hover on parent element of

these two elements, background color

of these will be changed accordingly,

group class is mandatory for the

parent element.)

peer: Style will be added to the peer

or sibling element:

<input type="email" class="peer"/>

<p class="mt-2 invisible text-sm

peer-invalid:visible

peer-invalid:text-red-600 ">

invalid

</p>

Figure 2.8: Peer elements styling

(Based on valid data on input element

peer element p will be shown and

hidden, peer class on deciding

element is mandatory.)

before – after : These are used to

style contents after or before the

current element:

<span class="after:content-['am']

after:text-green-500">

I

<span class="before:content-['I']

before:text-red-500">

am

Figure 2.9: Styling before- after

elements

(Here, in the first case, am with green

color will be added after text I of the

element, similarly in second case I

with red color will be added before text

am of the element.)

Placeholder: Before entering any

characters within the input field

placeholder text can be shown to

convey what to enter, this can be

styled using utility classes:

<input class=" placeholder:italic

placeholder:text-red-500"

placeholder="Enter name" />

Figure 2.10: Styling placeholder text

(You can observe placeholder text

color has styled with color red).

Marker: List style items will be styled

using marker:

<ul class="marker:text-blue-500">

one

two

three Figure 2.11: Styling list item text

four

(Listing item style has color blue,

mentioned on parent element.)

Selection: Styling selected text using

mouse cursor or keyboard – text-

selection:

<div class="selection:bg-green-600

selection:text-white w-36">

<p> I am learning TailwindCSS, it is

fun way to learn, basics are easy,

Let's build website

</p>

</div>

Figure 2.12: Styling selection text

First Line – First Letter: Style can

be added to the first line or first letter

of the element:

<p class="first-line:bg-green-500">

I am learning TailwindCSS, it is

fun way to learn, basics are easy

</p>

<p class="first-letter:text-3xl">

I am learning TailwindCSS

</p>
Figure 2.13: Styling selection text

(First line of the upper text gets green

as background color and the first letter

of the lower text has a bigger font

size.)

Viewport: Styles can be added based

on the viewport of the device.

(portrait and landscape)

<div class="portrait:hidden">

I am Desktop

</div>

<div class="landscape:hidden">

I am Mobile

</div>

Figure 2.14: Styling based on

viewport

(Figure (a) got hidden whenever page

got rendered on mobile viewports –

portrait.

Figure (b) got hidden whenever the

page got rendered on desktop

viewports – landscape.)

Print: Specific style can be added to

content when they get printed:

<p class="text-green-500

print:text-red-500">

I am learning TailwindCSS

</p>

Figure 2.15: Styling based on

viewport

(Here you see that text is in green color

when the page gets loaded on

browser, but on print it will be printed

in red color – (try ctrl + p).)

Table 2.1: Examples of different events and state styling

Apart from these ways, style can be applied using aria

attributes and data attributes that we can use on HTML

elements.

Not all sets of utility classes can be used with every state

and event, only some of them which are used frequently and

meaningfully are supported. Still, we could write custom

classes to achieve it if we needed to.

You can chain multiple states and events with a

single class, for example:

placeholder:hover:text-green-500

When hovering on placeholder text it will be changed

to green, each state/event is separated by : (colon).

Responsive design

Being an emerging CSS framework, Tailwind CSS provides a

smoother way of achieving responsiveness on a website. As

we need to follow, Mobile First approach to build website, to

make it feel good on different kinds of devices right from

mobile to larger displays, Tailwind CSS's utility classes

provide target breakpoint keywords to prepend with usual

classes so that style variants will be added accordingly to

create adaptive user interfaces.

Let's look into Tailwind CSS default breakpoints list; here you

can understand breakpoints, maximum width of the

screen on which they can work, and CSS media query of

that breakpoint:

Breakpoint name Breakpoint width Equivalent Media query

sm

(for smaller width

devices)

640px @media (min-width: 640px) {

// CSS Rules

}

md

(for medium width

devices)

768px @media (min-width: 768px) {

// CSS Rules

}

lg

(for large width devices)

1024px @media (min-width: 1024px)

{

// CSS Rules

}

xl

(for extra-large width

devices)

1280px @media (min-width: 1280px)

{

// CSS Rules

}

2xl

(for double extra-large

width devices)

1536px @media (min-width: 1536px)

{

// CSS Rules

}

Table 2.2: Tailwind CSS responsive design breakpoints

Along with these breakpoint classes, we are free to use any

of the utility classes to make any variation in style for

different device viewports. Changing the color of div on

mobile, width on larger devices can be basic usages.

The following example shows changing color of the

background in different devices:

<div class="h-36 w-36

bg-pink-500

sm:bg-red-500

md:bg-green-500

lg:bg-gray-500

xl:bg-blue-500

2xl:bg-gray-200">

</div>

Figure 2.16: Change of div color in responsive design

When you run the above code it adapts different colors in

different devices, the figure shows color of div with 2×l

breakpoint.

If you haven't mentioned any breakpoint, it means a

common utility class, which influences all kinds of

breakpoints. If you mention utility class with only sm

breakpoint that style will be applicable to all devices equal to

or above sm breakpoint. Similarly, if you mention utility class

with md breakpoint, then style will be applicable to all devices

having width as md and above breakpoints.

If you want to style only smaller devices and all

larger devices should obey the same style, then no

need to mention utility classes for all breakpoints.

sm:bg-green-500 md:bg-red-500

green background is applied for only smaller (sm)

devices and all other devices equal to or above md

(lg, xl, 2xl) get red as their background color.

Targeting a breakpoint range

As you read previously, if you mention breakpoint with a

classname, it will be applied to all the preceding breakpoints.

But there is a possibility we can provide a range of

breakpoints for a particular class. So that utility class we will

apply to that range of devices:

sm:bg-green-500: Applies green as background from sm

breakpoint.

sm:max-lg:bg-red-500: Applies red as background color

between sm and lg breakpoints.

Targeting a single breakpoint: There are situations

where we need to apply class for a particular resolution.

There, by targeting the next resolution with a utility

class we can achieve it.

sm:max-md:flex: Flex will be applied to resolution with sm

width devices.

md:max-lg:font-semibold: Font semi bold, will be applied to

resolution with md with devices.

Dark mode

These days dark mode is one of the popular features among

the latest operating systems. Now it is more common than

designing a website in a dark mode to go along with a

default design of the operating system.

Tailwind CSS comes with this feature to make dark mode

design development easier. As like other things responsive

design, event and state the dark mode can be applied similar

to them. Mentioning the dark keyword before our utility class

and a colon in-between.

Let's have a simple example:

<div class="dark">

<div class="h-10 w-10 bg-green-400 dark:bg-red-500"></div>

</div>

This will render a green box on browser windows with a

default or light mode, try switching your browser mode to

dark, then you can see a red-colored box.

If you wish you can make this light/dark mode shifting

manually on your webpage instead of relying on the

operating system's behavior. To make that you can make the

following changes to your Tailwind configuration file.

On tailwind.config.js:

module.exports = {

darkMode: 'class',

}

Then to make dark variants to work with our usual variant it

is mandatory to mention dark class to the parent element.

Now, manual toggling can be achieved by adding/removing

this class with parent element using JavaScript.

HTML

<div class="flex justify-center w-40" id="parentDiv">

<div class="flex flex-col">

<div class="flex justify-center" >

<div class="h-10 w-10 bg-green-400 dark:bg-red-500"></div>

</div>

<button class="bg-blue-400 mt-5" onclick="changeMode()">

change mode

</button>

</div>

</div>

JavaScript

This code should be added between <script></script> before

closing the body element:

function changeMode() {

var element = document.getElementById('parentDiv')

if(element.classList.contains('dark')) {

element.classList.remove('dark')

} else {

element.classList.add('dark')

}

}

Figure 2.17: Changing light/dark mode

In the preceding HTML chunk, you observe that there is no

dark class added to any of the elements, but we have a dark

variant style defined for an element to change its

background color (green for light mode – red for dark mode).

In JavaScript, we are handling adding and removing of dark

utility class to the element which has ID parentDiv to toggle

between dark and light mode. Each time when you click on a

button present in the HTML (change mode), it calls the

JavaScript function. It adds/removes class dark to/from the

element. The color of the div changes accordingly.

Reusing styles

Assume that we are showing 10 square boxes with the same

design, what will be the primary approach for this? Adding

the same classes to each element.

But at the beginning of learning the Tailwind CSS approach

itself somewhere, you already suspected that these Tailwind

CSS utility classes were creating a mess with the readability

of the HTML document.

You may agree on the usage of the same set of utility classes

on a set of elements to obtain the same style:

<div class="flex justify-center gap-2">

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

</div>

Figure 2.18: Multiple elements with the same style

Hence, to make a similar style, we are writing/repeating the

same pattern to make code readability more difficult.

In real-time projects, while displaying similar items we

usually follow looping mechanisms where we define style

elements within the loop so that it will repeat that many

times programmatically:

For example:

for loop begins (loop for 10 times)

<div class="h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300">

</div>

for loop ends

Here, an element with a specific set of utility classes got

rendered for 10 times, with the same style effects as for loop

executes for 10 times.

Code editor support – multi cursor

editing

If you are using such elements with the same set of classes

on it within the same HTML document then there are

powerful code editors, which provide support for editing

multiple lines at the same time by providing multiple cursor

support, where users can create multiple blinking cursor

points to add or edit characters. Example: VSCode,

JetBrains, and so on.

Using frameworks

While developing projects with React, Vue, blade, and so

on technologies, where you can be able to create

components for frequently using HTML block. In such cases,

applying utility classes to elements present in those

components keeps the code cleaner. Along with the page

structure and logic, keeping respective styles abstracted

using components is a popular approach in modern

technologies.

CSS abstraction

Whenever we are using elements with the same set of styles

in different files then those styles can be abstracted using

CSS. Those elements get the same class name, and that

class name will be used to add styles from CSS.

HTML file 1

<div class="box">

This is file 1

</div>

HTML file 2

<div class="box">

This is file 2

</div>

External CSS

.box {

background-color: green ;

color: white

}

Table 2.3: CSS abstraction

When you render those two separate HTML files, the element

gets rendered with the same style – the basic functionality of

the external CSS approach.

Extracting classes with @apply

It is a feature provided by Tailwind CSS to create a generic

style block that can be used anywhere in your project. It's a

way out of the box feature, where we are defining CSS rule

not by key-value pairs, but instead with those set utility

classes provided by Tailwind CSS. Yes, it is that simple.

Open your input.css file from the src folder of your project.

There you can see only line @tailwind utilities; as we used

only utility classes till now. Add the following statement next

to it to make component addition possible:

@tailwind utilities;

Here, we can see a simple example of how components look

like. We are extending the component structure of the

Tailwind CSS, then as a part of extending, we are defining a

CSS rule with utility classes that are required to form an

expected generic style:

@layer components {

.btn-primary {

@apply py-2 px-4 bg-blue-500 text-white font-semibold

rounded-lg shadow-md hover:bg-blue-700 focus:outline-none

focus:ring-2

focus:ring-blue-400 focus:ring-opacity-75;

}

}

We can use this .btn-primary class anywhere in our project, it

loads/applies all these respective lists of utility classes to the

element of the HTML document.

Let's try this approach to create a similar result as we saw in

Figure 2.14.

Add this in input.css file:

@layer components {

.box {

@apply h-20 w-20 bg-green-500 border-2 border-green-900

rounded-2xl hover:bg-blue-600 active:bg-gray-300;

}

}

HTML block

<div class="flex justify-center gap-2">

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

<div class="box"></div>

</div>

Simple. Right? Do you agree that now HTML has more

readability? Adding only class box to all elements renders all

those related utility classes referred behind class box. You can

try this to match a similar result.

Advantages of this approach

The advantages of this approach are as follows:

Remembering utility classes are enough to create a

component.

Altering style is not scarier. You need to change it in only

one place.

You can still add more utility classes to HTML elements,

along with generic class.

Do not create reusable components as you wish in

your project, it is highly not recommended. Just to

create cleaner HTML, you should not follow this

approach. Create a component only if it is required

and will be used frequently in your project. As you

create more components for simple designs, it

violates the advantages of Tailwind CSS and grows

compiled CSS unimaginably.

Adding custom styles

Only by providing a set of a rich number of utility classes to

create any kind of styles Tailwind CSS couldn't be so popular.

It is allowing developers to customize as, and they require

for their needs. Let's look into how to make customization.

All the customizations will be added using the configuration

file of the Tailwind CSS. Customization of styles is called

customization of themes.

Open tailwind.config.js.

You can find this block. This is the place where you can make

your customization. More specifically you are extending a

theme:

theme: {

extend: {},

}

In this extended block, we can define all our customization

related to screen resolution breakpoints, color variants, and

font families that need to be added. Let's see some of them:

module.exports = {

theme: {

extend: {

colors: {

'silver': '#C0C0C0',

'bronze': '#CD7F32'

},

},

}

}

Now you can use these custom classes similar to default

classes:

<div class="flex justify-center gap-2">

<div class="h-20 w-20 bg-bronze"></div>

<div class="h-20 w-20 bg-silver"></div>

<div class="h-20 w-20 bg-green-100 text-silver">Silver

Text</div>

<div class="h-20 w-20 bg-green-100 text-bronze">Bronze

Text</div>

</div>

This will render the following output:

Figure 2.19: Custom colors in utility classes

Those custom colors cannot be limited to use only with

background or text, you are free to use this color wherever

color property has a possibility.

Defining customization like colors and other

properties outside the extended block within the

theme block creates new rules itself. Further, you

cannot use Tailwind CSS default classes in your HTML

document.

Similarly, we can extend spacing property, add the following

definition within the extend block, these are the styles that

are not there in Tailwind CSS by default:

spacing: {

'101': '32rem',

'102': '36rem',

}

Now you are free to use 101 and 102 digits with any spacing-

related utility class as default possibilities. 101 and 102 can be

used with margin, padding, height, width, and so on.

For example, m-101, pl-101, pt-102, h-101.

You can customize these spacing-related properties to

extend blocks separately as well.

Arbitrary variants

Yes, Tailwind CSS provides a rich number of utility classes, by

using them we can craft any kind of design. But at some

moment we need a very perfect design for our website

instead of adjusting with existing classes. There is no need to

keep writing/extending custom classes for all of them.

Tailwind CSS supports usage of arbitrary values for utility

classes wherever it is possible. That's a very useful feature

where we can customize style more quickly and easily.

For example, there are certain values provided by Tailwind

CSS for padding like 1,2,3,4,5,6, and so on, these are the

most used variants, but if we need a different variant than

these then we just need to pass the expected value as an

arbitrary value for padding class in place of those numbers

but within square brackets []. The expected value can be

anything that CSS supports.

Possible arbitrary classes Explanation of arbitrary value

p-[15px] Adds padding of 15px, relative to the viewing

device.

p-[4rem] It is relative to the font size of the root

element.

p-[3em] It is relative to the font size of the element.

p-[2in] It adds padding in inches – (1in = 96px).

p-[10cm] It adds padding in centimeters.

p-[80mm] It adds padding in millimeters.

p-[5pt] It adds padding in points (1pt = 1/72 of 1in).

p-[10pc] It adds padding in picas (1pc = 12 pt).

p-[2ex] It is relative to the x-height of the current font.

p-[5ch] It is relative to the width of the '0' (zero).

p-[10vw] It is relative to 1% of the width of the browser

viewport.

(If the viewport is 50 cm wide, 1 vw = 0.5cm)

p-[2vmin] It is relative to 1% of browser viewport's

smaller dimension.

p-[4vmax] It is relative to 1% of browser viewport's

smaller dimension.

p-[10%] Adds padding in percentage, which is relative

to the parent element.

Table 2.4: Possibility of arbitrary values with padding property

You can use the same kind of arbitrary values on any of

those utility classes which can hold measurement-related

values. For example, height, width, margin, and so on.

There are no restrictions to pass arbitrary values for utility

classes with states, events, or breakpoint-related logics in

your HTML document. For example, top-[117px] lg:top-

[344px].

Arbitrary value can be used with background property as

well. Let's have some examples:

Possible arbitrary classes Explanation of arbitrary value

bg-[#ededed] Renders #ededed hex color as

background-color.

bg-[url(' https://shorturl.at/owDEW')] Render image as background- image.

bg-['rgb(201, 76, 76)'] Renders rgb color as background-color.

bg-['rgba(201, 76, 76,1)'] Render rgb with opacity as

background-color.

Table 2.5: Possibility of arbitrary values with background property

Handling ambiguities

While adding arbitrary values, there are possibilities we may

override some other property instead of the expected one or

say pass the wrong value as an arbitrary value.

Tailwind CSS is built with automatic handling of ambiguity

based on type arbitrary value that we pass and generates

respective utility for it.

For example, we are trying to add an arbitrary value for text

color, instead of passing a supported color value. If we pass

a measurement value then by resolving this ambiguity it

generates the respective class for text-size:

<div class="text-[5rem]">Hi TailwindCSS</div>

// This generates a class for text-size (font-size – property)

<div class="text-[#d0d0d0]">I am gray text</div>

// This generates a class for text-color (color – property)

CSS and @layer

Whenever you want to add custom styles to your project

then the easiest way is to add them in a stylesheet, where

you are defining Tailwind CSS. Along with the usage of

normal CSS rules, you can use the @layer directive of Tailwind

CSS to gain more power.

Tailwind CSS identifies styles in three different ways:

base: Styles of default HTML elements.

components: Component styles.

utilities: Utility styles.

We can customize each one of these using the @layer

directive, we already see a glance at this approach before

itself to create a customized generic component.

Let's look into the simple examples of each style section,

before that make sure you added these three statements in

your input.css file:

@tailwind base;

@tailwind components;

@tailwind utilities;

Customizing base styles

@layer base {

p {

font-size: 1.5rem ;

}

span {

@apply bg-green-200;

}

}

The preceding definition says that the p element should be

rendered with font-size 1.5rem (CSS rule) and the span

element should be with green as its background (utility class

with @apply):

<p>this is paragraph </p>

span text

Figure 2.20: Custom base styles

On browsers, you can get respected styles added to default

elements.

Customizing component classes

Along with @layer directive we need to use the components

keyword to customize component styles:

@layer components {

.box {

border: 2px solid black;

border-radius:20px ;

margin: theme('spacing.2');

}

}

Here, we are defining style rules for a component called box,

you can observe that the first two rules are normal CSS

rules, and the last one is using the theme() function of

Tailwind CSS to refer to style from the theme (either default

style of Tailwind CSS or those we defined at the configuration

file) to add spacing-2 utility value for the component’s margin

property.

Just add the class name of the component in an HTML

document:

<div class="box h-20 w-20 bg-green-400"></div>

You can observe the following result, referring to styles from

custom component classes along with default utility classes:

Figure 2.21: Custom component styles

Customizing utility styles

Along with @layer directive, we need to use the utilities

keyword to customize utility classes:

@layer utilities {

.text-xl {

color: '#0e0e0e';

font-size: 5rem;

}

}

Here, we are overriding default styles of text-xl class to

custom styles, where we are adding text-color as hex #0e0e0e

and text-size as 5rem.

Add this class to the HTML element to observe custom styles

added:

<p class="text-xl">I am xl text</p>

Figure 2.22: Custom utility styles

The default behavior of text-xl utility class has been

overridden by custom styles.

Function and directives

From previous sections, you already saw some keywords of

Tailwind CSS like @layer, @tailwind, @appy, and so on. Now let's

look into them and what they mean.

Directives

These are tailwind-specific at-rule functionalities. Provides a

special way of using Tailwind CSS in our CSS.

@tailwind

This directive is used to add Tailwind's base, components,

and utilities in our CSS file:

Example: @tailwind base ;

@layer

This directive is used to mention customized classes belong

to which set of styles.

Example: Custom classes belongs to base styles:

@layer base {

//custom classes

}

@apply

This directive is used to add utility classes as a style rule for

custom classes instead of property-value pairs.

Example: This definition should be present in your input.css

file:

p {

@apply bg-green-400 text-xl ;

}

@apply approach of defining styles will not work with internal

CSS definitions (within <style></style> element of HTML

document). As CSS and HTML files are processed separately.

It is not possible to add !important keywords along

with @apply. If you add then Tailwind CSS removes it

automatically in an output version of CSS.

@config

This directive is used to specify which config file of tailwind

should be used while compiling our CSS file (input.css).

Sometimes in projects, we need to refer to configuration

from a different file than the actual tailwind.config.js.

Example: @config "./tailwind.site.config.js";

Functions

Tailwind provides some custom functions we can use in our

CSS to access Tailwind-specific values. These functions are

evaluated at build-time, and are replaced by static values in

our output CSS.

theme()

This function is used to access Tailwind config values using

(.) dot notation. From the example given in the previous

section, you already got some hint of this.

Example: Here class .greenery gets background equal to

colors.green.600 utility class:

input.css

.greenery {

background-color: theme(colors.green.600);

}

In our output.css file, we can observe that this class gets

exactly the same style as bg-green-500 style.

output.css

.greenery {

background-color: #16a34a;

}

screen()

This function is used to get screen resolution values

(breakpoint values) as defined in the configuration file. Using

this, we can avoid mentioning resolution values directly

while writing custom media queries.

Example: This shows how we can write custom media

queries in our input.css and how it will be compiled into the

output.css file:

input.css

@media screen(md) {

/* ... */

}

output.css

@media (min-width: 768px) {

/* ... */

}

Conclusion

This chapter provided brief information on core features that

made Tailwind CSS popular for usability. Hope you gained a

bit of knowledge on the pillars of the CSS framework –

Tailwind CSS. A thorough understanding of these concepts

makes it more convenient to use Tailwind CSS more

powerfully.

In the next chapter, we are learning utility - classes in depth

and applying them to HTML documents to analyze the

results.

Points to remember

Utility classes are the heart of the Tailwind CSS.

State and events handling from utility classes itself

made Tailwind CSS feel different from inline CSS.

Utility classes with screen resolution breakpoints save

lots of time we spend on writing media query.

Dark mode development is easy; toggling keyword dark

plays a key role.

Reuse of classes has an efficient way to achieve this.

Customization can be done easily with a configuration

file.

Tailwind-specific directive & function makes work easier.

Multiple choice questions

1. Hover and focus are:

a. Events

b. States

c. Feature

d. Functionality

2. peer utility class affects:

a. Current element

b. Root element

c. Next element

d. Previous element

3. Mobile devices targeted with:

a. With sm

b. With md

c. No breakpoint

d. With lg

4. Dark mode toggled using:

a. HTML

b. CSS

c. JavaScript

d. None of these

5. @apply directive used for:

a. Define Tailwind CSS style

b. Define components

c. Apply utility classes as styles

d. Define configuration file

6. Extend block in the configuration file is meant for:

a. Utility classes

b. Custom class definitions

c. CSS rules

d. JavaScript functions

Answers

1. a

2. c

3. c

4. c

5. c

6. b

CHAPTER 3

Utility-First Classes and

Customization Options

Introduction

This chapter provides detailed information on resources available

in Tailwind CSS: a set of utility-first classes. In the previous

chapter, you already read that utility-first classes are the heart of

Tailwind CSS. Yes, here we are explaining how they are formed

and their various categories. Categories in the sense styling

aspects of the webpage. We covered more information on the

customization of the framework as well and you already had a

glimpse of it in the previous chapter. Understanding the meaning

of utility-first classes makes you fit to dive into the development

of the website.

Structure

In this chapter, the following topics will be discussed:

Customization

Base style

Layout

Flexbox and Grid

Spacing

Sizing

Customization

Since Tailwind CSS comes with a rich number of built-in utility

classes to create complex user interfaces, we are not able to

stick with those default styles alone. Different projects require

different sets of styles. That's where the customization concept

arises and Tailwind CSS supports a very feasible way to achieve

it.

In the previous chapter, you already understood what

customization is and how Tailwind CSS supports it to make our

custom style adapted to existing rules. Here, we are providing

information on each concept involved in the customization

process.

Before that, we suggest that you restore all the changes that

we/you made on tailwind.config.js regarding customization. So

that we can begin from scratch again:

module.exports = {

content: [],

theme: {

extend: {},

},

plugins: [],

}

The preceding code block shows the default configuration code

that will be generated after running the following command:

npx tailwindcss init

Also, remove anything apart from these three from the input.css

file:

@tailwind base;

@tailwind utilities;

@tailwind components;

Let's look into the possible key-value pairs that module.exports can

have.

Content

This section is where you provide those file paths in HTML, JS, or

any other file where you are willing to use Tailwind CSS

classnames:

content: [

'./pages/**/*.{html,js}',

'./components/**/*.{html,js}',

],

Tailwind CSS scans all sets of files that you mention within this

content section for the existence of Tailwind CSS class names. It

then generates the respective CSS styles in the output CSS file.

From the preceding code, you can see the usage of * that

indicates that anything can come in the path (any number of

intermediate folders except slashes and hidden folders), **

indicates zero or more possible folders named in the path.

Remember that all file paths must be relative to the

tailwind.config.js file.

Never include CSS in the content section as it is meant

to scan class names within the template, not within the

generated styles.

Scanning of classnames is nothing but Tailwind CSS uses regular

expressions to match scanning strings with exact utility-first

class names that might be available.

While adding a classname using a condition, you should provide

a complete classname instead of adding part of the classname

using a condition.

While styling those components from third-party libraries, we

need not use @layer directive to style as they are not a direct part

of our project or Tailwind CSS environment.

Classes Safelisting

There is a feature in Tailwind CSS where you can provide class

names that need to be added without scanning the files if you

doubt encountering those classes from files, but you still need it

for the safer side. It is safelisting of the classes.

You can add this within the module.exports object similar to the

content section:

safelist: [

'bg-red-500',

'text-3xl',

'lg:text-4xl',

]

This adds the mentioned classes' appropriate styles directly to

output CSS even though scanning doesn't find them among any

template files.

Theme

What you read in the previous chapter on customization is all

about the theme section itself. It is a place purely meant for total

customization. Colors, fonts, spacing, breakpoints, and so on are

all defined here.

This theme section/object further contains sub-sections for

screens, colors, spacing, animation, float, and so on, it can be a

key or subpart which is among the core plugins of Tailwind CSS.

Also, remember that not all plugins have a relative key within the

theme object.

By using these objects, you can customize most of the styles as

per your expectation. To make Tailwind CSS work seamlessly with

your project. If you fail to mention custom styles for any of the

objects, then they automatically inherit styles from the default

theme. To disable a particular core plugin completely, mention

that object with the corePlugins section within the module.exports

object:

module.exports = {

corePlugins: {

container: false,

}

}

This disables all styles of container objects with the default

theme of Tailwind CSS.

Extend

This is the important object that comes under the theme object.

By customizing supported core plugins using their objects you

are overriding existing rules of the Tailwind CSS. By using this

extended object, you can just add expected styles along with

existing styles:

module.exports = {

theme: {

extend: {

colors: {

'silver': '#C0C0C0',

'bronze': '#CD7F32'

},

},

}

}

In the previous chapter, you already saw this example of

extending styles with existing themes.

Screens

This section under the module.exports object is used to define

project-specific breakpoints which are different from default

breakpoints. The classes you mention here can be used as

responsive modifiers along with utility classes. This section

elaborates on those things which we discussed in Chapter 2,

Design Principles for Tailwind CSS with the title Responsive

Design.

module.exports = {

theme: {

screens: {

'sm': '640px',

'md': '768px',

'lg': '1024px',

'xl': '1280px',

'2xl': '1536px',

}

}

}

These are the default breakpoints of the Tailwind CSS, where

each classname represents the minimum width they will target. If

you wish to change this targeting width to your custom width

then just mention that specific width with the respective

classname. Then onwards that responsive modifier targets

adding/removing styles with respect to the width you specify:

theme: {

screens: {

'sm': '500px',

'md': '900px',

'lg': '1500px'

},

}

It doesn't mean that you can only override those number of

default breakpoints for breakpoint targeting, you are free to

define new responsive modifiers as well:

screens: {

'3xl': '1800px',

'5xl': '2500px',

}

You can even name these responsive modifiers if you wish, but

still, you are not restricted to that as well:

screens: {

'mobile': '640px',

'medium': '768px',

'tablet': '1024px',

'laptop': '1280px',

'desktop': '1536px',

}

So, there is no change in the usage of these as a responsive

modifier:

<div class=" mobile:bg-green-400

medium:bg-gray-600

laptop:bg-pink-400

desktop:bg-red-600 ">

</div>

Feels awesome right?

Since, you targeted the devices based on min-width, its inverse

is possible as well for breakpoint creation. You can define

breakpoints by referring to the max-width that a breakpoint can

have an effect on:

screens: {

'lg': {

'max': '1000px'

},

}

Like media queries, you can even add min and max width for

breakpoints as part of customization. So that style was added to

this responsive modifier alone. It reverts with other

bigger/smaller resolution breakpoints:

screens: {

'md': {

'max': '600px', // has no effect below this width (default

behavior)

'min': '900px' // has no effect after this width (added behavior)

},

}

Colors

Right from the beginning of this book, we have provided lots of

examples as you already read. We hope you might be curious

about the usage of color names for background, border, and text.

Along with the color name, we are mentioning some digits like

100, 200, 300, and so on.

As color is an important part of the aesthetics of the website,

Tailwind CSS comes with enough varieties of utility classes by

default. Those digits along with the color name indicate a variant

of the same color with different transparency.

Starting from 50 to 900, the color variant's transparency

increases gradually. This is the default set of colors that Tailwind

CSS provides.

Slate, Gray, Zinc, Neutral, Stone, Red, Orange, Amber, Lime,

Green, Emerald, Teal, Cyan, Sky, Blue, Indigo, Violet, Purple,

Fuchsia, Pink, and Rose.

Each of these again has internal variants with 50 – 900 range

transparency.

Feel free to override these default colors as per your project-

specific requirements:

module.exports = {

theme: {

colors: {

'pale': '#fedfed',

'gum' : '#defdef',

}

}

}

These custom colors can be used similarly to other colors (except

the transparency range).

For example, bg-gum, text-pale.

If you wish, you can define transparency values as well as an

object parameter of color. These parameters can be anything

relatable with color to group them with the color name, it is not

mandatory to pass transparent values itself. Since you are

passing the color hex code, you can pass any color of your wish:

colors: {

'gum': {

50: '#fefefd'

100: '#ececef'

200: '#adfe65'

}

}

These can be used similarly to default color classes, for example,

bg-gum-50, text-gum-200, and so on.

Apart from overriding the configuration you can even pass

arbitrary values for the color along with expected utility classes.

bg-[#dbdb65], text-[#456abc], border[#aabb77]

These are some examples of arbitrary classes for colors. You just

need to pass the color code within square brackets.

You can use the existing colors to create new colors, and color

objects provide access to the Tailwind CSS-supported color set.

By importing it into the configuration file:

const colors = require('tailwindcss/colors');

module.exports = {

theme: {

colors: {

maroon: color.red

}

}

}

You are allowed to use any name for the color classes (primary,

secondary, and so on) as per your needs. You can alias other

colors to some other colors as well.

For example, green: colors.emerald - then onwards wherever you

use the color green it will show color emerald. Simple, isn't it?

Instead of extending colors, if you directly mention colors under

the theme object, it declines all other default colors and only

those defined colors can be used in your templates.

<div class=”bg-green-400”> - This will add emerald color for the

background instead of green as you mentioned emerald for green

keyword.

It is not mandatory that you always need to use hex

color codes for defining colors, you can use rgb (red,

green, blue) colors and hsl (hue, saturation, lighness)

colours.

colors: {

maroon : rgb(255, 87, 51),

guava : hsl(57°, 89%, 33%)

}

Spacing

While developing a user interface along with colors, the spacing

parameter too has an important role. Simple design with a

proper spacing mechanism can also create a good impact on

user interfaces. Customization is like other sections, for this we

need to use spacing objects to define our values.

This table shows the default values followed by Tailwind CSS for

spacing scales:

Table 3.1: Default spacing values

These spacing values can be used with border, margin, padding,

height, width, gap and other spacing-related utility classes.

For example, m-1, p-5, w-24, h-36.

Let's see an instance of customization of the spacing scale:

module.exports = {

theme: {

spacing: {

'1': '10px',

'2': '1.5rem'

}

}

}

Plugins

If you want to add some new features from an external source

(pre-developed) to your project, you need to use plugins for that.

Here, in our case, if we want to use external styles in our project,

we can use plugins with Tailwind CSS, where JavaScript injects

those styles directly into the project's stylesheet.

Let's look into some official plugins from Tailwind CSS, which are

more useful while developing a website.

Typography - @tailwindcss/typography

This provides a set of prose classes that are useful to style

typographic content blocks. This can override pre-styled content

from CMS.

For example, prose md:prose-lg

Forms - @tailwindcss/forms

This plugin is used to style form elements along with utility

classes. Enhances the look and feel of form elements of HTML

documents.

Aspect ratio - @tailwindcss/aspect-ratio

This plugin provides classes to apply a fixed height-width ratio to

the element, which is an aspect ratio of an element.

For example, aspect-w-3 aspect-h-2 makes an element with an

aspect ratio of 3:2.

Prefix

While using Tailwind CSS along with other CSS libraries, there are

chances that Tailwind CSS utility classes may face conflicts with

classes in other libraries. In such scenarios, Tailwind CSS faces

confusion about what to do with such class names. To resolve

this, we can use a prefix object to add some prefixes for Tailwind

CSS so that scanning captures suitable classnames for respected

CSS rules generation.

For example:

module.exports = {

prefix: 'tw-',

}

Furthermore, you need to use the tw- prefix for all utility-first

classes of Tailwind CSS:

<div class="tw-bg-red-500 tw-m-2">

<!-- -->

</div>

Tailwind CSS even provides an approach to create reusable

configuration settings of our own that can be used across various

projects – preset configuration.

The explanation of the creation of this reusable customization is

beyond the context of this book.

Base styles

Tailwind CSS comes with a set of styles arranged for its projects –

Preflight.

Preflight

Preflight is a set of base styles for Tailwind CSS which are

crafted smoothly to overcome cross-browser inconsistencies and

make the design system cleaner and easier.

These preflight styles are injected into the base styles of the

@tailwind system. As these styles deal with HTML default tags so

most of the time, they may go unnoticed while working with

them. They are styled in a way that they behave as you would

expect.

These are the modifications made for Tailwind CSS:

Default margins removed:

blockquote, dl, dd, h1, h2, h3, h4, h5, h6, hr, figure, p, pre for

these tags margin kept as 0 (margin: 0px).

Headings unstyled:

h1, h2, h3, h4, h5, h6 for these tags font size and font weight

are just inherited, there are no specific styles defined.

Lists unstyled:

ol,

ul {

list-style: none;

margin: 0;

padding: 0;

}

While using lists in TailwindCSS you need to specify styles

for them via utility classes.

Images and other similar tags - block level and constrained

with parent element width:

img, svg, video, canvas, audio, iframe, embed, object

{

display: block;

vertical-align: middle;

}

img, video {

max-width: 100%;

height: auto;

}

Border styles - reset globally:

*, ::before, ::after {

border-width: 0;

border-style: solid;

border-color: theme('borderColor.DEFAULT', currentColor);

}

Buttons - have a default outline:

button:focus {

outline: 1px dotted;

outline: 5px auto -webkit-focus-ring-color;

}

Extending Preflight

Feel free to add your own custom style on top of the preflight.

Using the @layer directive we can define customization for

preflight.

In your input.css of our project, you can try to add these and

verify the changes:

@tailwind base;

@layer base {

h1 {

@apply text-2xl;

}

h2 {

@apply text-xl;

}

h3 {

@apply text-lg;

}

a {

@apply text-blue-600 underline;

}

}

Hope you remember doing this kind of customization on

components and utilities that we discussed before.

Disabling Preflight

If you wish, you can disable the preflight that comes with

Tailwind CSS. This restores the behavior of all tags to their

default with different browsers:

module.exports = {

corePlugins: {

preflight: false,

}

}

Further concepts from Tailwind CSS are purely about utility

classes for various aspects, instead of explaining them in detail

along with examples, we will explain respective classes while

developing web pages for websites as and when they are

required. Here you can get a glimpse of available utility classes.

Again, we encourage you to apply and test the results of the

reading utility class on your computer.

Layout

This is the set of utility classes that deals with the layout of a

page, block, and so on.

Aspect ratio

This utility class is used to set the desired ratio for an element.

There are three variants: auto, square, and video. The syntax will

be aspect-{ ratio } :

Class name Aspect ratio Information

aspect-auto auto Auto sets aspect ratio.

aspect-square 1:1 Set equal height and width.

aspect-video 16:9 Sets aspect ratio to 16:9 as it's the

default for videos.

aspect-[arbitrayvalue] 4:3, 6:4, 12:8 As an arbitrary value, you can pass your

expected ratio. With the following syntax,

for example:

aspect-[4/3], aspect-[12/8]

Table 3.2: Aspect ratio possibilities

In some browsers (for example, Safari), this may behave

inappropriately, in such scenarios utilizing Tailwind CSS's aspect-

ratio plugin is a better approach.

Container

This utility class is used to fix the width of the element to the

active breakpoint. This basically sets the max-width rule of an

element to the active breakpoint. This enforces the design to

have a static viewport.

container classes do not auto center the content and

have no horizontal padding as well, you can either add

suitable objects for this on configuration or add utility

classes for them along with the container class.

The following table shows the width that the container sets for

different breakpoints:

Breakpoint Property

none

(without container class)

width: 100%

sm max-width: 640px

md max-width: 768px

lg max-width: 1024px

xl max-width: 1280px

2xl max-width: 1536px

Table 3.3: Default breakpoint values for container

max-width property's value will be as per the default configuration,

container will follow the same if you have already overridden

breakpoint values in the configuration file.

Columns

These utility classes are used to control the number of columns

needed to be created with the children of an element.

Based on column count

Controlling total columns by mentioning column count with column

class. The width will be auto-adjusted based on mentioning

count. The syntax looks like columns-{count}.

For example, columns-2, columns-3, columns-10.

The following table shows supported columns count classes by

default:

Table 3.4: column count default possibilities

The following figure shows an example:

Figure 3.1: Example of column – 4 columns in a row

Based on column width

This is a reverse operation of column count, here instead of

mentioning column count we can mention the ideal width for the

column and then the number of columns will be automatically

adjusted to fit the total width value. The syntax looks like columns-

{width}.

For example, columns-2xs, columns-lg, columns-xl.

The following table shows supported columns count classes by

default.

Table 3.5: column width default possibilities

You can even extend the theme with new column values by

defining them in a configuration file. If you wish you can even

pass arbitrary values as well for column width, where you need

to pass the expected width.

For example, columns-[50px], columns-[10rem]

Break After – Break Before – Break Inside

These utility classes are used to break a column or a page

after/break/inside an element. The Break After class controls

how a page or column should break after an element. Similarly,

the Break Before class controls how a page or column should

break before an element. The Break Inside class decides how a

page or column should break within a particular element:

break after syntax – break-after-{value}

break before syntax – break-before-{value}

break inside syntax – break-inside-{value}

Following are the possibilities of each breaking element class

with equivalent CSS rules.

Variants of break-after class are given in the following table:

Table 3.6: Break after default classes

break-before

Variants of break-before class are given in the following table:

Table 3.7: Break before default classes

break-inside

Variants of break-after class are given in the following table:

Table 3.8: Break inside default classes

Box decoration break – box sizing

These utility classes are used to control how part of an element

should be rendered across multiple pages, columns, or lines. Box-

sizing utilities sway how the browser should calculate an

element's total size.

Each of these concepts has two utility classes available for

styling.

Box decoration break has the following variants:

box-decoration-slice: Parts of the same element share the

same styles that are applied to its parent.

box-decoration-clone: All parts of the element get the same

styles that are applied to its parent.

Box sizing has the following variants:

box-border: This directs the browser to add margin and

padding to the element when you mention height and width

to it. The total area of the box includes margin and

padding, which reduces the actual space of content.

box-content: This directs the browser to the margin and

padding on top of the mentioned height and width of the

element. The total area of the content remains intact with

mentioned height and width. The total box area grows

accordingly with margin and padding values.

Display

This utility class section provides classes to handle the display

type of the element.

The following table shows all the possibilities by default, each of

them is the proper value for displaying CSS property.

Class Explanation Class Explanation

block Element fills to its

parent width. The

whole line gets

blocked.

inline-block It wraps the

element to prevent

its contents from

extending beyond

its parent.

inline Contents wrap

normally within the

element.

grid This creates a grid

container.

inline-grid This creates an

inline grid container

contents This creates a

container where its

children act like

direct children of

the parent

element.

hidden This utility class

hides the element

from the DOM

(display:none;

property).

list-item This utility makes

elements as a list

item

flex This creates a block

level (width =

parent width) flex

container. Content

can be displayed

flexibly.

inline-flex This creates an

inline flex container

that flows content.

flow-root This creates a

block-level element

with its own block-

formatting context.

Table 3.9: Display utility classes

Apart from these, there are other display utility classes as well

for table display:

table inline-table table-caption

table-cell table-column table-column-group

table-footer-group table-header-group table-row-group

table-row

Table 3.10: Table displays utility classes

These table-related utility classes are used to style the

respective properties of the table element.

Floats - clear - isolation

Float utility classes are used to wrap the content around the

element, there are three possibilities. Floating right, floating

left, and floating none (disabling float):

float-left – This floats an element to the left of the

container.

float-right – This floats an element to the right of the

container.

float-none – This disables an element from floating.

Clear utility classes are used to position those elements which

are below any preceding left/right floating elements. There are

four possibilities: clear right, clear left, clear both, and clear

none:

clear-left – This positions elements below any preceding

left-floated elements.

clear-right – This positions elements below any preceding

right-floated elements.

clear-both – This positions elements below all preceding

floated elements.

clear-none- This resets any positioning applied to an element.

(default behavior).

Isolation utility is used to explicitly create new stacking contexts

with the element. There are two variants for it: isolate and

isolation-auto:

isolate – This creates a new stacking context for an element

as we are mentioning.

isolation-auto – Based on the status of an element in a

browser, this class decides whether to isolate it or not.

Object Fit – Object Position

Object fit utility classes are used to determine how a replaced

element's content should be resized

There are five possibilities for this: object-contain, object-cover,

object-fill, object-none, and object-scale-down.

Table 3.11 explains the preceding classes:

Class CSS Property-Value Explanation

object-contain object-fit: contain; This resizes the element's content

(object) to stay contained within the

container of the element.

object-cover object-fit: cover; This resizes the element's content

(object) to cover the container of the

element.

object-fill object-fit: fill; This stretches the element's content

(object) to fit the container of the

element.

object-none object-fit: none; This displays the element's content

(object) in its original size by ignoring the

container size of the element.

object-scale-

down

object-fit: scale-down; This displays the element's content

(object) in its original size but scales it

down to fit within the container of the

element.

(Ratio remains the same)

Table 3.11: Object fit classes

Object position utility classes are used to decide what to show

from an element's content (object) within the container.

Positioning part of the object to the container of the element.

The following table shows all positioning possibilities:

Position class CSS property – value Explanation

object-bottom object-position: bottom ; This shows only the bottom part of the

object within the container.

object-center object-position: center ; This shows only the center part of the

object within the container.

object-left object-position: left ; This shows only the left part of the object

within the container.

object-left-

bottom

object-position: left

bottom ;

This shows only the bottom left part of

the object within the container.

object-left-top object-position: left top

;

This only shows the top left part of the

object within the container.

object-right object-position: right ; This shows only the right part of the

object within the container.

object-right-

bottom

object-position: right

bottom ;

This only shows the bottom right part of

the object within the container.

object-right-top object-position: right

top ;

This only shows the top right part of the

object within the container.

object-top object-position: top ; This only shows the top part of the object

within the container.

Table 3.12: Object position classes

Overflow

These utility classes are used to handle the overflow behavior of

an element within its container.

The following table explains different overflow scenarios:

Overflow

class

CSS property - value Explanation

overflow-auto overflow: auto ; It auto-decides what to do with

overflowing content, and shows the

scrollbar only if necessary.

overflow-hidden overflow: hidden ; It hides the overflowing content from the

element.

overflow-clip overflow: clip ; This clips off the overflowing content of

the element.

overflow-visible overflow: visible ; It shows an overflowing portion of the

content completely.

overflow-scroll overflow: scroll ; It makes the element scrollable if the

content is overflowing (always adds

scrollbar)

overflow-x-auto overflow-x: auto ; It auto-decides what to do with

overflowing content in the x-axis, and

shows a scrollbar only if necessary.

overflow-y-auto overflow-y: auto ; It auto-decides what to do with

overflowing content in the y-axis, and

shows a scrollbar only if necessary.

overflow-x-

hidden

overflow-x: hidden ; It hides the overflowing content in the x-

axis from the element.

overflow-y-

hidden

overflow-y: hidden ; It hides the overflowing content in the y-

axis from the element.

overflow-x-clip overflow-x: clip ; It clips off the overflowing content in the

x-axis from the element.

overflow-y-clip overflow-y: clip ; It clips off the overflowing content in the

y-axis from the element.

overflow-x-

visible

overflow-x: visible ; It shows an overflowing portion of the

content on the x-axis completely.

overflow-y-

visible

overflow-y: visible ; It shows an overflowing portion of the

content on the y-axis completely.

overflow-x-

scroll

overflow-x: scroll ; It makes the element scrollable in the x-

axis if the content is overflowing (always

adds scrollbar).

overflow-y-

scroll

overflow-y: scroll ; It makes the element scrollable in the y-

axis if the content is overflowing (always

adds scrollbar).

Table 3.13: Overflow classes

Overscroll behavior

These utility classes are used to control browser behavior when

reaching the end of the scrolling area.

The following table provides a brief explanation of each

possibility:

Overscroll

Class

CSS property – value Explanation

overscroll-auto overscroll-behavior: auto

;

It auto-decides if the child element is

scrollable and if overscrolled then it

scrolls the parent element as well.

overscroll-

contain

overscroll-behavior:

contain ;

It prevents the scrolling effect of the

parent element that is coming from the

child element (the parent element

doesn't scroll when the child element

gets over scrolled.) – but preserves the

bounce effect (as per OS support).

overscroll-none overscroll-behavior:

none;

The same as overscroll-contains itself –

but prevents the bounce effect as well.

overscroll-y-

auto

overscroll-behavior-y:

auto ;

It auto-decides if the child element is

scrollable in the y-axis and if it is over-

scrolled then it scrolls the parent element

as well in the y-axis.

overscroll-y-

contain

overscroll-behavior-y:

contain ;

Prevents scrolling of the parent element

in the y-axis but preserves bounce effect.

overscroll-y- overscroll-behavior-y: The same as overscroll-y-contains itself –

none none ; but prevents the bounce effect as well.

overscroll-x-

auto

overscroll-behavior-x:

auto ;

It auto-decides if the child element is

scrollable in the x-axis, and if over-

scrolled, then it scrolls the parent

element as well in the x-axis.

overscroll-x-

contain

overscroll-behavior-x:

contain ;

Prevents scrolling of the parent element

in the x-axis but preserves bounce effect.

overscroll-x-

none

overscroll-behavior-x:

none ;

The same as overscroll-x-contains itself –

but prevents the bounce effect as well.

Table 3.14: Overscroll utility- classes

Position

These are the element positioning utility classes that are useful

to control the position of an element in a DOM. There are five

possible position classes that Tailwind CSS provides:

static - This positions an element to the normal flow of the

document. Ignore any offsets added. Cannot be a position

reference for absolutely positioned elements.

relative - This positions an element to the normal flow of

the document. Offsets are calculated relative to the normal

position, and they will act as position references for

absolutely positioned elements.

absolute – This positions an element outside the normal

flow of the document causes the neighboring element to act

as if the element does not exist. Offsets are calculated

relative to the nearest parent that has a position property

except for static.

fixed – This positions an element relative to the browser

window. Offsets are calculated relative to the viewport of the

browser.

sticky – This positions an element as relative until it crosses

a certain limit, then it changes to fixed until its parent

moves off the screen. Offsets are calculated relative to the

element's normal position.

Remember these classes as we use them frequently in our

website development.

Top – Right – Bottom – Left

These utility classes are used for the placement of positioned

elements. There are five main aspects of placements: right, left,

top, bottom, and inset.

General syntax looks like { top | right | bottom | left | inset } –

{ size }.

For example, top-3, bottom-4, left-2, right-5, inset-0, and so

on.

top-{size}: These classes are used to position the element

from the top, for example, top-0, top-1, and so on.

Ascending size can be any height or width.

bottom-{size}:These classes are used to position the

element from the bottom, for example, bottom-0, bottom

-1, and so on.

left-{size}: These classes are used to position the element

from left, for example, left-0, left -1, and so on.

right-{size}: These classes are used to position the

element from right, for example, right-0, right-1, and so

on.

inset-{size}: These classes are used to position the

element from all directions with equal distance, for example,

inset-0, inset-1, and so on.

inset-x-{size}: These classes are used to position the

element from left and right with equal distance, for example,

inset-x-0, inset-x-1, and so on.

inset-y-{size}: These classes are used to position the

element from top and bottom with equal distance, for

example, inset-y-0, inset-y-1, and so on.

Negative value as a size

You can position the element with negative values as well, in

such cases, the element positions from beyond the outside of its

container as per mentioned size.

For example, -top-4, -left-5, -inset-5, and so on (observe –

symbol added at the beginning of the classname).

Visibility

These utility classes are used to determine the visibility of the

element. There are three possibilities: visible, invisible, and

collapse:

visible: This class is used to display the element.

invisible: This class is used to make the element hidden

from the browser window. This element stays within the

DOM and affects other layouts within the layout.

(display:none;)

collapse: This class is used to hide the element from the

browser window and from DOM as well. So, it will not affect

other elements within the layout.

Z-Index

This class is used to decide the stacking order of the element.

When you are adding elements one over the other, this class is

required to set the priority of each element.

Its syntax looks like z-{size}.

Size decides priority, the higher the priority elements render

over other elements with lower size:

z-0 z-10 z-20 z-30 z-40 z-50 z-auto

Table 3.15: Z-Index utility classes

This table shows the size values available by default. Feel free to

create more sizes for Z-index by extending the zIndex object on

the configuration file. And you can even pass arbitrary values as

well, for example, z-[85], z-[99], z-[100], and so on.

Flexbox and Grid

As you already read, Flexbox and Grid are display types of an

element. There are various detailing utility classes that come

under these. Understand these classes perfectly because these

are the important classes that make website development easier.

Flex-Basis

These utility classes are used to set the initial size of the flex

items. These classes are added to the parent element that will

affect the children element.

The general syntax is basis-{size}. Initial size increases as we

increase the size value. Extended spacing utilities can be used

for size as well. For example, basis-1, basis-2, basis-1/2,

basis-full, and so on, as shown in Figure 3.2:

Figure 3.2: Example of flex-basis

Flex Direction

These utility classes are used to define the direction of the flex

items in the DOM. These classes are added to the parent element

that handles the behavior of its children.

There are four ways to decide the direction of the elements:

flex-row: This class shows children elements in the left to

right direction in a single row.

flex-row-reverse: This class shows children elements in the

right to left direction in a single row.

flex-col: This class shows children elements in the top to

bottom direction in a single column.

flex-col-reverse: This class shows children elements in the

bottom to top direction in a single column.

Figure 3.3: Example of flex direction

Flex Wrap

These utility classes are used to wrap those elements which are

overflowing from the mentioned width/height and added to the

next row/column. Added a parent element that affects its

children.

There are three possibilities for it:

flex-wrap: This normally wraps the child elements to the next

row/column if they do not fit within the same row/column.

flex-wrap-reverse: This wraps the child elements to the next

row/column if they do not fit within the same row/column

but in reverse order.

flex-nowrap: This disables any wrapping effect on the

element cause overflowing of the child elements in a single

row/column.

Flex

These utility classes are used to control the shrink and grow

mechanism of flex items. These classes will be added to the

children element itself. There are four possible states:

flex-1: Ignoring the initial size of the element, this class

allows an element to grow and shrink as needed.

flex-auto: It is similar to flex-1 but it auto decides either to

grow or shrink an element by considering its initial size.

flex-initial: This class allows to shrink an element but not

grow beyond its initial size.

flex-none: This class prevents either growing or shrinking of

an element.

Flex Grow

These utility classes decide how an element can grow. This will

be added to the children element itself. There are two variants

for this:

grow: This class allows an element to grow.

grow-0: This class prevents an element from growing.

Flex Shrink

These utility classes decide how an element can shrink. These

will be added to the children element itself. There are two

variants for this:

shrink: This class allows an element to grow.

shrink-0: This class prevents an element from growing.

Order

These classes are used to decide the order of the element among

its other elements. These will be added to the children element

itself, lowering the order number of the element that comes first

than other elements within its parent element. The general

syntax is order-{order}.

The following table shows the default order available with

Tailwind CSS:

order-0 order-1 order-2 order-3 order-4

order-5 order-6 order-7 order-8 order-9

order-10 order-11 order-12 order-first order-last

Table 3.16: Flex order utility classes

The following figure shows an example of ordering items:

Figure 3.4: Example of ordering items

You can even add more order classes to the configuration file by

extending a theme object.

Grid template columns

These utility classes are used to divide columns in a grid layout.

These classes will be applied with a grid class and its children

element will be differentiated from many columns.

The general syntax is, grid-column-{n}, n represents the number of

columns to be created.

The following table shows the default classes available:

grid-cols-1 grid-cols-2 grid-cols-3

grid-cols-4 grid-cols-5 grid-cols-6

grid-cols-7 grid-cols-8 grid-cols-9

grid-cols-10 grid-cols-11 grid-cols-12

grid-cols-none

Table 3.17: Grid template column classes

If you wish, you can create utility classes for different numbers of

columns by extending the theme object. You can even pass

arbitrary values to the utility classes.

For example, grid grid-cols-[200px_minmax(700px,_1fr)_100px]

Figure 3.5: Example of grid columns - grid-columns-3

Grid column start/end

These utility classes are used to determine how elements are

sized and placed across grid columns. These classes are applied

to children of grid elements. There are three main types of

classes under this element: column span, column start,

column end. The grid column begins with index 1, not 0.

The general syntax of these looks like this:

Current technology scenario

It decides how many columns that element should span.

For example, col-span-3 – the same element occupies

three columns.

column start: col-start-{n}

It decides at which column the element should begin.

For example, col-start-2 – element begins at column 2.

column end: col-end-{n}

It decides at which column the element should end.

For example, col-end-5 – element ends at column 5.

You can extend the theme object to create more size parameters.

Arbitrary values can be passed as well for size parameters.

Grid template rows

These classes are used to create a number of rows in the grid

layout. These will be applied along with the grid class. The

general syntax looks like, grid-rows-{n} where n stands for the

number of rows to be created.

The following table shows the row counts available by default in

Tailwind CSS:

grid-rows-1 grid-rows-2 grid-rows-3

grid-rows-4 grid-rows-5 grid-rows-6

grid-rows-none

Table 3.18: Grid template rows classes

If you wish, you can create utility classes for different numbers of

rows by extending the theme object. You can even pass arbitrary

values to the utility classes.

For example, grid grid-rows-[200px_minmax(700px,_1fr)_100px].

Grid row start/end

These utility classes are used to determine how elements are

sized and placed across grid rows. These classes are applied to

children of grid elements. There are three main types of classes

that exist under this: row span, row start, and row end. The

grid row begins with index 1, not 0.

The general syntax of these looks as follows:

row span: row-span-{n}

It decides how many rows that element should span.

For example, row-span-3 – the same element occupies

three rows.

row start- row-start-{n}

It decides at which row element should begin.

For example, row-start-2 – element begins at row 2.

row end – row-end-{n}

It decides at which row element should end.

For example, row-end-5 – element ends at row 5.

You can extend the theme object to create more size parameters.

Arbitrary values can be passed as well for size parameters.

Grid Auto Flow

These utility classes are used to determine how elements in a

grid are auto-placed.

The general syntax is grid-flow-{keyword}. There are five

possibilities:

grid-flow-row: Items are placed by filling each row in turn,

adding new rows as necessary. Row by default.

grid-flow-col: Items are placed by filling each column in turn,

adding new columns as necessary. Column By default.

grid-flow-dense: This class attempts to fill in holes earlier in

the grid if smaller items come up later. This may cause

items to appear out-of-order when doing so would fill in

holes left by larger items.

grid-flow-row-dense: Same as grid-flow-dense but fills the holes

by considering rows.

grid-flow-col-dense: Same as grid-flow-dense but fills the holes

by considering columns.

If none of these will be applied to the grid layout, it applies the

sparse technique to place items, which ensures elements stay in

order. Elements flow only in a forward direction, and there is no

such backtracking to fill holes in between.

Grid Auto Columns

These utility classes are used to control the size of implicitly

created grid columns. There are four possibilities for this. The

general syntax looks like auto-cols-{size}:

auto-cols-min: This class defines the largest minimal content

contribution of the grid items occupying the grid element

space.

auto-cols-max: This class defines the largest maximal content

contribution of the grid items occupying the grid element

space.

auto-cols-fr: fr is a fractional unit and 1fr is for 1 part of the

available space.

auto-cols-auto: This class is identical to auto-cols-max if it's a

maximum. As a minimum, it represents the largest minimum

size of the grid items occupying the grid element space.

Arbitrary values can be passed to the utility class as well and you

can define custom classes by extending the theme object with

the gridAutoColumns key in a configuration file.

Grid Auto Rows

These utility classes are used to control the size of implicitly

created grid rows. There are four possibilities for this. The

general syntax looks like auto-rows-{size}:

auto-rows-min: This class defines the largest minimal content

contribution of the grid items occupying the grid element

space.

auto- rows-max: This class defines the largest maximal

content contribution of the grid items occupying the grid

element space.

auto- rows-fr: fr is a fractional unit and 1fr is for 1 part of the

available space.

auto- rows-auto: This class is identical to auto-cols-max if it's

maximum. As a minimum, it represents the largest minimum

size of the grid items occupying the grid element space.

Arbitrary values can be passed to utility classes as well and you

can define custom classes by extending the theme object with

the gridAutoRows key in a configuration file.

Gap

These are the utility classes used to define gutter space between

child elements of grid and flex elements. These classes will be

added to parent elements to create that much gutter between its

children. The general syntax looks like gap-{size}.

Size represents the width that a gutter can occupy. Gaps can be

added in both vertical and horizontal directions separately. If not

specified, the direction then gutter space will be added in both

directions.

For example, gap-4, gap-2, gap-x-6, gap-y-12, and so on.

You can define your custom gap width by extending the theme

object and the gap follows what you defined for the spacing key

in that theme object. Arbitrary values are supported as well,

where you can pass width for the gap utility class.

For example, gap-[5rem], gap-[12px], and so on.

Justify – Align – Place

Justify-related utility classes are used to justify elements in a

horizontal direction, Align-related utilities are used to align

items in a vertical direction and Place-related utility classes

are used to both justify and align the items within a flex or grid

container.

Justify Content

These utilities are used to justify the flex and grid content along

the container's total space (horizontally). There are six variants

for this. These classes are added to the parent element and

justification will be applied on its children. Consider all children

as one content.

justify-start: This class justifies the child elements from the

start of the container element:

Figure 3.6: Example of flex –justify start

justify-end: This class justifies the child elements to the

end of the container element:

Figure 3.7: Example of flex –justify end

justify-center: This class justifies the child elements to the

center of the container element:

Figure 3.8: Example of flex–justify center

justify-between: This class justifies even space between

each child by taking the full width of the parent container.

Figure 3.9: Example of flex –justify between

justify-around: This class adds equal amounts of space

before and after each element by considering the full width

of the parent.

Figure 3.10: Example of flex –justify around

justify-evenly: This class adds equal space between each

child element, and at the beginning, and at the end of child

elements. Similar to justify-around but the space width

remains the same for each space within the parent:

Figure 3.11: Example of flex –justify evenly

Justify Items

These utility classes are used to control how grid items are

aligned along their inline axis (horizontally). These classes are

added to the parent element and justification will be applied on

its children. There are four possibilities for this. Adds rules to

each child:

justify-items-start: This class is used to align elements to

the start of their inline axis.

justify-items-end: This class is used to align elements to the

end of their inline axis.

justify-items-center: This class is used to align elements to

the center of their inline axis.

justify-center-stretch: This class is used to stretch elements

to their inline axis.

Justify Self

These utilities are used to decide how an individual grid item is

aligned along its inline axis (horizontally). These classes are

added to the child element itself. There are five possibilities for

this. These classes on child element override justify items rule

applied on its parent:

justify-self-auto: This class auto-decides how to self-justify

the element. Works as per justify items property on the

parent element.

justify-self-start: This class justifies an element to the start

of its inline axis.

justify-self-end: This class justifies an element to the end of

its inline axis.

justify-self-center: This class justifies an element to the

center of its inline axis.

justify-self-stretch: This class stretches an element to its

full width.

Align content

These are the utility classes used to position rows in a container

element which is a multi-row flex or grid (vertically). These

classes will be added on a parent element that will be affected

on its children. This utility has seven possibilities. Consider all

children as one content:

content-start: This class aligns the row to the starting

position of the container:

Figure 3.12: Example of flex–align content start

content-end: This class aligns the row to the end position of

the container.

content-center: This class aligns the row to the center

position of the container.

Figure 3.13: Example of flex–align content center

content-between: This class aligns the elements from top to

bottom with equal space between each row:

Figure 3.14: Example of flex–align content between

content-around: This class aligns the elements from top to

bottom by adding an equal amount of space above and

below each row.

content-baseline: This class aligns the rows to the baseline of

the content present in the parent element.

content-evenly: This class aligns the rows from top to bottom

by adding an equal amount of space between each row.

Also, the space width remains the same for the start and

end positions of the parent:

Figure 3.15: Example of flex – align content evenly

Align Items

These utility classes are used to align flex or grid items along the

cross-axis of the parent element (vertical alignment). These

classes will be applied to parents that will be affected by their

children. There are five possibilities for this. Adds rules to each

child:

items-start: This class aligns the element to the start of the

cross-axis of the parent.

items-end: This class aligns the element to the end of the

cross-axis of the parent.

items-center: This class aligns the element to the center of

the cross-axis of the parent.

items-baseline: This class aligns the elements to their

baseline and to the cross-axis of the parent.

items-stretch: This class stretches the height elements to fill

their parent element's cross-axis.

Align Self

This utility is used to align an element to the cross-axis of its

parent element. It will be applied to child elements. These

overrides align the item rule applied to its parent element. There

are six possibilities for this class:

self-auto: This class aligns an item based on the value of the

parent element's align-items property.

self-start: This class aligns an item to the start of the parent

element's cross-axis.

self-end: This class aligns an item to the end of the parent

element's cross-axis.

self-center: This class aligns an item to the center of the

parent element's cross-axis.

self-stretch: This class stretches an item to fill the parent

element's cross-axis.

self-baseline: This class aligns an item to its baseline in the

parent element's cross-axis.

Place Content

These utilities control how content is justified and aligned at the

same time. These classes will be added to parent elements that

will affect its children. There are eight possibilities. Consider all

children as one content:

place-content-center: This class positions the elements to the

center of the block axis of the parent element.

place-content-start: This class positions the elements to the

start of the block axis.

place-content-end: This class positions the elements to the

end of the block axis.

place-content-between: This class positions the elements to the

start of the block axis.

place-content-around: This class is used to distribute grid

items along the block axis so that there is an equal amount

of space between each row on the block axis.

place-content-evenly: This class is used to distribute grid

items such that there is an equal amount of space around

each row on the block axis.

place-content-baseline: This class is used to distribute grid

items such that there is an equal amount of space around

each row on the block axis.

place-content-stretch: This class is used to stretch grid items

along their grid areas on the block axis.

Place Items

These utilities control how items are justified and aligned at the

same time. These classes will be added to parent elements that

will be affected on its children. There are five possibilities. This

class adds CSS rules to each child:

place-items-start: This class is used to place grid items at the

start of their grid areas on both axis.

place-items-end: This class is used to place grid items on the

end of their grid areas on both axis.

place-items-center: This class is used to place grid items in

the center of their grid areas on both axis.

place-items-baseline: This class is used to place grid items on

their baseline in the grid areas on both axis.

place-items-stretch: This class is used to stretch the grid

items along their grid areas on both axis.

Place Self

These utility classes are used to determine how an individual

item is justified and aligned at the same time. There are five

possibilities for this. These classes will be applied to child

elements directly. This overrides the place items rule applied to

the parent element:

place-self-auto: This class is used to align an item based on

the value of the container's place-items property.

place-self-start: This class is used to align an item to the

start on both axis.

place-self-end: This class is used to align an item to the end

on both axis.

place-self-center: This class is used to align an item to the

center on both axis.

place-self-stretch: This class is used to stretch an item on

both axis.

Spacing

These utilities are for spacing functionality. There are three

categories: padding, margin, and space-between.

Padding

Padding is a space created between the border and an actual

content element. Spacing width will be applied inwards to the

element.

Padding will be applied to all the directions of the element. Its

general syntax looks like:

p{ t | b | l | r }-{ size }

t, b, l, r represents the top, bottom, left, and right respectively

and size represents a number that adds a certain width. By

default, Tailwind CSS provides a rich set of spacing values that

can be used here as size parameters.

For example, pt-2, pb-3, pr-4, pl-6, and so on.

Padding can be applied in vertical and horizontal directions as

well. Horizontal padding applies padding in left and right

directions and vertical padding applies padding to the top and

bottom direction of the element. Its general syntax looks like p{ x

| y }-{ size }.

For example, px-2, py-4, and so on.

If you mention padding only with size, then the padding will be

added to all the directions:

For example, p-4, p-12, and so on.

By extending the spacing object of the theme, we can use those

values for padding as well.

Feel free to pass arbitrary values as well for the utility classes.

For example, p-[5px], px-[2rem], pt-[3em], and so on.

Margin

Margin is a space created outside the border of an element.

Spacing width will be applied outwards to the element.

Margins will be applied to all directions of the element. Its

general syntax looks like:

m{ t | b | l | r }-{ size }

t, b, l, r represent top, bottom, left, and right respectively and

size represents a number that adds a certain width. By default,

Tailwind CSS provides a rich set of spacing values that can be

used here as size parameters.

For example, mt-2, mb-3, mr-4, ml-6, and so on.

Margin can be applied in vertical and horizontal directions as

well. Horizontal margin applies margin to the left and right

directions and vertical margin applies margin to the top and

bottom directions of the element. Its general syntax looks like m{

x | y }-{ size }.

For example, mx-2, my-4, and so on.

If you mention margin only with size then the margin will be

added to all the directions.

For example, m-4, m-12, and so on.

By extending the spacing object of the theme, we can use those

values for the margin as well.

You are free to pass arbitrary values as well for the utility classes.

For example, m-[5px], mx-[2rem], mt-[3em], and so on.

Space between

These utility classes are used to control the space between child

elements. You can add space in horizontal and vertical directions.

These classes will be added to parent elements that will add

space between its children.

The general syntax looks like space-x-{amount} and space-y-{amount}

respectively for horizontal and vertical directions.

For example, space-x-3, space-x-5, space-y-6, space-y-10, and so

on.

You can even use negative spaces between elements like -

space-x-10, -space-y-3, and so on.

Extended spacing object values of the theme object can be used

as the amount parameter of space between classes. You are

allowed to pass arbitrary values for the amount parameter.

For example, space-y-[5px], space-x-[1rem], and so on.

The space between utility classes is not designed to

handle complex cases of grid and flex. In those

situations, gap utilities perform better.

Cannot use this space between utility classes with

divided utilities. The scenario margin and padding

classes on elements are suitable options.

Sizing

These are the utility classes that are meant for the sizing of the

elements.

Width

These utility classes are used to set the width of an element:

Width using size, these are fixed width – w-{number} – for

example, w-0.5, w-4, w-12, w-16, and so on.

Width using fraction, these are percentage-based width – w-

{fraction} – for example, w-3/6, w-1/2, w-4/12, and so on.

Width using size follows the spacing parameter defined or those

that come with Tailwind CSS by default. Width using fraction is a

way of occupying part of the complete width by referring to the

complete width by a number. w-/2 indicates 1 part among 2 total

parts of full width. w-5/12 indicates 5 parts among 12 parts of full

width.

Additionally, you can extend width objects as well to use them as

a number with width class.

The width can be set with its rendering viewport using the w-

screen class. The width can be reset or auto-set using w-auto class.

The following table shows some other different width-specifying

classes available:

w-full w-screen w-min w-max w-fit

width:

100%

width

:100vh

width:

min-content

width:

max-content

width:

fit-content

Table 3.19: Other utility classes for width

You can even pass arbitrary values for fixed width classes. For

example, w-[20px], w-[2rem], and so on.

Min-width

These are the utilities used to set the minimum width of an

element. There are five possibilities by default. The general

syntax looks like min-w-{width}:

min-w-0: This class sets the minimum width of the element to

0px.

min-w-full: This class sets the minimum width of the content

to the full width of its parent.

min-w-min: This class sets the minimum width of the content

to a possible minimum width of the content.

max-w-max: This class sets the minimum width of the content

to a possible maximum width of the content.

min-w-fit: This class uses the fit-content formula with the

available space replaced by the specified argument.

Custom min-width can be extended using the minWidth key on the

theme object. You can even pass arbitrary values for the min-

width utility, for example, min-w-[40%], min-w-[2rem], and so

on.

Max-width

These are the utilities used to set the maximum width of an

element. The general syntax looks like max-w-{size}. There are

various ways to mention the maximum width for an element:

By mentioning the number provided by Tailwind CSS by

default. For example, max-w-0, max-w-2xl, max-w-6xl,

and so on.

By mentioning the width of the content itself, for example,

max-w-min, max-w-max, max-w-fit.

By mentioning the screen width. For example, max-w-

screen-sm, max-w-screen-xl, max-w-screen-lg, and so

on.

The max-w-full class considers the full width of the element for

setting the maximum width of the element. The max-w-prose utility

gives an element max-width optimized for readability and adapts

based on the font size.

You can define the expected custom max-width class using maxWidth

key by extending it to the theme object. Arbitrary values can be

passed as well for width. For example, max-w-[2rem], max-w-

[100px], and so on.

Height

These utility classes are used to set the height of an element:

Height using size, these are fixed width – h-{number} –; for

example, h-0.5, h-4, h-12, h-16, and so on.

Height using fraction, these are percentage-based height –

h-{fraction} –; for example, h-3/6, h-1/2, h-4/12, and so on.

Height using size follows the spacing parameters defined or

those that come with Tailwind CSS by default. Height using

fraction is a way of occupying part of complete height by

referring to complete height by a number. h-1/2 indicates 1 part

among 2 total parts of full height. h-5/6 indicates 5 parts among

the 6 parts of full height.

Additionally, you can extend height objects as well to use them

as a number with height class. Height can be set with its

rendering viewport using h-screen class. Height can be reset or

auto-set using h-auto class.

Table 3.20 shows some other different height-specifying classes

available:

h-full h-screen h-min h-max w-fit

height:

100%

height:

100vh

height:

min-content

height:

max-content

height:

fit-content

Table 3.20: Other utility classes for height

You can even pass arbitrary values for fixed height classes. For

example, h-[20px], h-[2rem], and so on.

Min-height

These are the utilities used to set the minimum height of an

element. There are six possibilities by default. The general

syntax looks like min-h-{height}:

min-h-0: This class sets the minimum height of the element

to 0px.

min-h-full: This class sets the minimum height of the content

to the full width of its parent.

min-h-min: This class sets the minimum height of the content

to a possible minimum height of the content.

max-h-max: This class sets the minimum height of the content

to a possible maximum height of the content.

min-h-fit: This class uses the fit-content formula with the

available space replaced by the specified argument.

min-h-screen: This class is used to set the minimum height of

the element to visible screen height.

Custom min-height can be extended using the minHeight key

within the theme object. You can even pass arbitrary values for

the min-height utility, for example, min-h-[40%], min-h-

[2rem], and so on.

Max-height

These are the utilities used to set the maximum height of an

element. The general syntax looks like max-h-{size}. There are

various ways to mention the maximum height for an element:

By mentioning a number provided by Tailwind CSS by

default; for example, max-h-0, max-h-44, max-h-96, and

so on.

By mentioning the height of the content itself. For example,

max-h-min, max-h-max, max-h-fit.

The max-h-full class considers the full height of the element for

setting the maximum height of the element.

You can define the expected custom max-height class using the

maxHeight key by extending it to the theme object. Arbitrary value

can be passed as well for height. For example, max-h-[20rem],

max-h-[150px], and so on.

Conclusion

This chapter provided brief information on a different set of

styling entities provided by Tailwind CSS by default to frame the

layout of the webpage (an HTML document). Understanding

these sections and remembering respective utility classes makes

you ready to code an HTML layout that is said to be fully

responsive. Hope you learned it and applied it for visual

understanding.

In the next chapter, we are looking into the utilities provided by

Tailwind CSS to style specific elements like text, images, and so

on.

Points to remember

Custom utility classes can be created by extending the

theme object within the configuration.

Colors and spacing utilities are used by many other utilities.

Flex and grid utilities are important to design page layouts.

Breakpoint prefixes are required to create a responsive page

design.

Arbitrary values for utilities are only for rare scenarios, do

not follow multiple usages of the same arbitrary value

instead create a specific class for it under the theme object.

Official plugins are used along with the current environment

that works out of the box for respective features.

Sizing spacing and layout utilities play an important role in

the development of web pages.

Multiple choice questions

1. Customization is dependent on which object?

a. theme

b. custom

c. style

d. config

2. The default width for md viewport:

a. 640px

b. 1024

c. 768px

d. none of the above

3. Among these which is not a default color available in

Tailwind CSS?

a. Slate

b. Copper

c. Gray

d. Zinc

4. The preflight theme adds the following style to

'Button':

a. a blue color

b. a border of 1px

c. a default outline

d. rounded corner

5. Among these which is not a positioning utility-class:

a. static

b. absolute

c. super

d. fixed

6. Z-index styling is used for:

a. To decide stacking order of an element

b. To place the element in the corner

c. To align the element to end

d. To determine the opacity of the element

7. The 'flex' utility class displays elements in:

a. a row

b. a column

c. a box

d. none of the above

8. The general syntax of max-width utility is:

a. max-w-{size}

b. max-width-{size}

c. max-w-{amount}

d. max-width-{arbitrary}

Answers

1. a

2. c

3. b

4. c

5. c

6. a

7. a

8. a

CHAPTER 4

Element-Specific Styling with

Utility- First Classes

Introduction

This chapter provides information on more utility-first classes

available in Tailwind CSS. In the previous chapter, you read

the information on utility-first classes available for layout and

other sizing–spacing operations. This chapter provides

information on more utility-first classes available in Tailwind

CSS. We are explaining here those utilities available for

element-specific styling. Elements can be text-content,

box, button, image, and so on. Learning these element

specific styling utilities makes you feel confident on styling

elements, a building block of the website.

Structure

In this chapter, the following topics will be discussed:

Typography

Backgrounds

Borders

Effects

Filters

Tables

Transitions and animations

Transforms

Interactivity

SVG

Accessibility

Typography

These are the utility classes related to font, color, alignment,

spacing, and other aspects of text content.

Font

In this section of utilities, font-related styles are handled.

Like family, size, style, and so on.

Font family

These utility classes are used to set the font-family of the

text content. We can download and refer to the fonts of our

wish and we need to create a class for those fonts in our

configuration under the theme object:

module.exports = {

theme: {

fontFamily: {

'montserrat': [‘montserrat’, 'system-ui']

}

}

}

Font montserrat makes text load with montserrat font, you can

add these font-family utility classes similar to other utility

classes.

There are some built-in fonts by Tailwind CSS, for example,

font-sans, font-serif, font-mono.

Font size

These are the utilities used for controlling font size of the

text content of the element. Tailwind CSS provides some font

sizes by default.

Further, we can define our font sizes by using the fontSize

key inside the theme object of the configuration.

The following table shows default availability:

Table 4.1: Utility classes for font size

Arbitrary values can be passed for font size as well, for

example, text-[14px], text-[1.2rem], and so on:

Figure 4.1: Examples of different font sizes

Font smoothing

These utilities are used to control smoothness of the text

content of an element. There are two possibilities:

antialiased: To render text using grayscale antialiasing.

subpixel-antialiased: To render text using subpixel

antialiasing.

Font style

These utilities are used to control the style of the text

content of the element. There are two possibilities:

italic: Utility can be used to make text italic.

non-italic: Utility can be used to display text normally.

Font weight

These utilities are used to control the style of the text

content of the element. The syntax is font-{weight}.

The following table shows utility classes available by default:

Table 4.2: Utility classes for font weight

Arbitrary value weight parameters can also be passed, for

example, font-[1200]. You can define your own class for

font weight by adding values for fontWeight key in a theme

object of configuration:

Figure 4.2: Examples of different font weights

Font variant numeric

These utility classes are used to decide variant designs of a

number. This enables additional glyphs for numbers,

fractions, and ordinal markers. There are nine variants

provided by Tailwind CSS.

The following table gives information on it:

Classname Information

normal-nums This class is used to display number sin normal style

(default).

ordinal This class is used to enable special glyphs for the

ordinal markers, for example, 1st (this will make st as

superscript).

slashed-zero This class is used to force a 0 with a slash; this is

useful when a clear distinction between O and 0 is

needed.

lining-nums This class is used to use the numeric glyphs that are all

aligned by their baseline. (default for most fonts)

oldstyle-nums This class is used to use numeric glyphs where some

numbers have descenders.

proportional-nums This class is used to use numeric glyphs that have

proportional widths. (rather than uniform/tabular).

tabular-nums This class is used to use numeric glyphs that have

uniform/tabular widths. (rather than proportional)

diagonal-fractions This class is used to replace numbers separated by a

slash with common diagonal fractions.

stacked-fractions This class is used to replace numbers separated by a

slash with common stacked fractions. (very few fonts

supports this)

Table 4.3: Utility classes for font variant numeric

Letter spacing

These utilities are used for controlling the letter spacing

(tracking) of text content of an element. The syntax is

tracking-{size}. There are six possibilities by default as given

in Table 4.4:

classname CSS rule

tracking-tighter letter-spacing: -0.05em;

tracking-tight letter-spacing: -0.025em;

tracking-normal letter-spacing: 0em;

tracking-wide letter-spacing: 0.025em;

tracking-wider letter-spacing: 0.05em;

tracking-widest letter-spacing: 0.1em;

Table 4.4: Utility classes for letter spacing

You can use negative values as well for letter spacing

provided that you already need to define that spacing width

inside the theme object of configuration using key

letterSpacing. For example, tracking-5.

You can pass arbitrary values as well for letter spacing. For

example, tracking-[0.5rem], tracking-[10px].

Line clamp

These utilities are used for clamping text to a specific

number of lines. This will truncate a block of text after a

specific number of lines. The syntax is line-clamp-

{lines_count}. There are seven possibilities by default.

line-clamp-1, line-clamp-2, line-clamp-3, line-clamp-4, line-

clamp-5, line-clamp-6

These will do line clamp as per mentioned lines count and

there is another utility class that removes line clamp, that is,

line-clamp-none.

Line height

These utilities are used for controlling the line height

(leading) of an element. There are two ways of adding line-

height:

Relative line height

Fixed line height

Relative line height

These utilities are used to give an element a relative line-

height based on its current font-size. Possibilities available

by default are:

leading-none

leading-tight

leading-snug

leading-normal

leading-relaxed

leading-loose

Fixed line height

These utilities are used to give an element a fixed line-

height, irrespective of the current font-size. Size represents a

height. Provides very precise control over an element’s final

size. Possibilities available by default are:

leading-3, leading-4, leading-5, leading-6, leading-7, leading-

8, leading-9, leading-10

List style

These sets of utilities are used to control the type and

position of list items.

List style type

These utilities are used for controlling the bullet or

numbering style of a list item. There are three variants by

default:

list-none: Adds no styles for list items.

list-disc: Adds disc styles for list items.

list-decimal: Adds decimal numbering to list items.

You can define your list style by adding values to the key

listStyleType key under the theme object. Arbitrary values can

be passed to style parameters. For example, list-[lower-

roman].

List style position

These utilities are used for deciding the position of bullets or

numbering in lists. There are two possibilities:

list-inside: This class positions the markers inside the

indentation of the list items.

list-outside: This class positions the marker outside the

indentation of the list items.

Text

The following set of utility classes explained here are used to

control the styling of text content.

Text align

These utilities are used to decide the alignment of text

content within its element/container. There are six default

alignment classes available as follows:

text-left: This class is used to align text to the left edge

of the element (default).

text-center: This class is used to align text to the center

of the element.

text-right: This class is used to align text to the right

edge of the element.

text-justify: This class is used to justify the text to the

available width of the element.

text-start: The same as left if the direction is left-to-right

and right if the direction is right-to-left.

text-end: The same as right if the direction is left-to-right

and left if the direction is right-to-left.

Figure 4.3: Examples of text alignment

Text color

These utilities are used for adding the color for the text

content of an element. Those default colors with their

variants are available for text coloring as well. When you

extend colors in configuration those will be available to text

coloring as well.

Passing arbitrary values for the color is as simple as passing

a hex code of color for color value. Example: text-

[#44DD22].

Text decoration

These are the utilities used to add decorations to the text

content. There are four default variants for this:

underline: This class adds underline to the text content.

overline: This class adds overline to the text content.

line-through: This class adds lines on a text content.

no-underline: This class removes underline from the text

content.

Text decoration color

Similar to text color these utilities are used to add color to

the decoration made on texts. All the default colors and their

variants are supported for coloring text decoration, for

example, green underline, blue overline, and so on.

Arbitrary colors are as simple as passing a hex color code to

decoration class. Example: decoration-[#55CC66].

Text decoration style

These are the utility classes used to style the text

decoration. There are five possibilities by default, which

should be used with suitable text decoration classes. The

syntax is decoration-{style}.

decoration-solid: This class adds a solid pattern for text

decoration like solid underline, solid overline, and so on.

decoration-double: This class adds a double pattern for

text decoration like double underline, double line

through, and so on.

decoration-dotted: This class adds dotted patterns for text

decoration like dotted underline.

decoration-dashed: This class adds a dashed pattern for

text decoration like dashed overline.

decoration-wavy: This class adds wavy patterns for text

decoration like wavy underline.

Text decoration thickness

These utilities are used for controlling the thickness of text

decorations. The general syntax is decoration-{width}. Should

be used along with suitable text decoration. There are seven

default possibilities:

decoration-auto

decoration-from-font

decoration-0

decoration-1

decoration-2

decoration-4

decoration-8

You are allowed to define your own decoration style

thickness by adding value for key textDecorationThickness

under the theme object.

Arbitrary values can be passed as well, for example,

decoration-[5px], decoration-[1rem], and so on.

Text underline offset

These are the utility classes used to add offset for the

underline decoration. Underline class should be present to

get the effect of this class.

The general syntax is underline-offset-{width}. As width

increases, offset space increases.

There are six variants for this class:

underline-offset-auto

underline-offset-0

underline-offset-1

underline-offset-2

underline-offset-4

underline-offset-8

You are allowed to define your underline offset by adding

value for key textUnderlineOffset under theme object. Arbitrary

values can be passed as well, for example, underline-

offset-[5px], underline-offset-[1rem], and so on.

Text transform

These are the utility classes used for the transformation of

text content. There are four default possibilities:

uppercase: This class transforms all characters of the text

content to uppercase letters.

lowercase: This class transforms all the characters of the

text content into lowercase letters.

capitalize: This class transforms the first characters of

each word to the capital letter.

normal-case: This class shows texts as we enter, there is

no added transformation on it.

Figure 4.4: Examples of Text transform

Text overflow

These are the utility classes used for controlling overflow of

text elements in its container. There are three variants for it:

truncate: This class truncates the overflow text and adds

… symbol if necessary along with whitespace as nowrap

and overflow-hidden properties.

text-ellipsis: This class truncates the overflow text and

adds … symbol if necessary.

text-clip: This class truncates the text at the limit of the

content area.

Text indent

These are the utility classes used to mention the amount of

empty space shown before text in a block. As this empty

space indicates empty width, you are allowed to pass

spacing values provided by Tailwind CSS or your extended

values from the configuration. The syntax looks like indent-

{width}.

Examples of indent classes: indent-2, indent-4, and so on.

Negative indentation is also allowed, for example, -indent-

4, -indent-6.

Arbitrary values can be any valid width parameter. For

example, indent-[5rem], indent-[40%], and so on.

Vertical align

These are the utilities for controlling the vertical alignment of

an inline or table-cell box. There are eight default

possibilities.

The following table shows information about those:

Classname Information

align-baseline Used to align the baseline of an element with the

baseline of its parent.

align-top Used to align the top of an element and its

descendants with the top of the entire line.

align-middle Used to align the middle of an element with the

baseline plus half the x-height of the parent.

align-bottom Used to align the bottom of an element and its

descendants with the bottom of the entire line.

align-text-top Used to align the top of an element with the top of the

parent element’s font.

align-text-bottom Used to align the bottom of an element with the

bottom of the parent element’s font.

align-sub Used to align the baseline of the element with the

superscript-baseline of its parent.

align-super Used to align the baseline of the element with the

subscript-baseline of its parent.

Table 4.5: Utility classes for vertical align

You can pass arbitrary value for vertical align, for example,

align-[6px], align-[0.5rem].

Whitespace

These are the utility classes used for controlling an element's

white-space property. There are five default variants. The

syntax looks like whitespace-{style}.

whitespace-normal: This class keeps normal white spacing

between texts (default).

whitespace-nowrap: This class is used to prevent text from

wrapping within an element. Newlines and spaces will be

collapsed.

whitespace-pre: This class is used to preserve newlines

and spaces within an element. Text will not be wrapped.

whitespace-pre-line: This class is used to preserve

newlines but not spaces within an element. Text will be

wrapped normally.

whitespace-pre-wrap: This class is used to preserve

newlines and spaces within an element. Text will be

wrapped normally.

Word break

These are the utility classes used to handle word break

patterns in an element. There are four possibilities. The

syntax looks like break-{type}.

break-normal: This class is used to only add line breaks at

normal word break points.

break-words: This class is used to add line breaks mid-

word if needed.

break-all: This class is used to add line breaks whenever

necessary, without trying to preserve whole words.

break-keep: This class is used for avoiding word breaks for

Chinese/Japanese/Korean (CJK) text.

Content

These utilities are for controlling the content of the before

and after pseudo-elements.

content-none this class is used for removing content data

added using content class.

For example, content-none removes before:content-['here']

after: content-['go'] kind of classes from element.

Backgrounds

The following sections are the utility classes for the

background styling of the element.

Background attachment

These utilities are for controlling how a background image

behaves when a scrolling event happens on an element.

There are three variants available:

bg-fixed: This class is used to fix the background image

relative to the viewport.

bg-local: This class is used to scroll the background

image with the container and the viewport.

bg-scroll: This class is used to scroll the background

image with the viewport, but not with the container.

Background clip

This utility is used for controlling the bounding box of an

element’s background. There are four possibilities. Syntax is

bg-clip-{keyword}.

bg-clip-border: By using this class the background

extends to the outside edge of the border (but

underneath the border in z-ordering).

bg-clip-padding: By using this class the background

extends to the outside edge of the padding. No

background is drawn beneath the border.

bg-clip-content: By using this class the background is

painted within (clipped to) the content box.

bg-clip-text: This class is used to crop an element’s

background to match the shape of the text. Useful for

effects where you want a background image to be visible

through the text.

Background color

This utility is used to decide the color of the background of

an element. You are free to use any color and its variants

that are provided by Tailwind CSS by default or those classes

you have defined or extended in the theme object of

configuration.

Syntax: bg-{color}

You can even control the opacity of the color with the opacity

value.

For example, bg-green-500/40 – adds bg-green-500 color

with 40% opacity.

You are free to use any color of your wish as a background

color as an arbitrary value. Color can be a hex code, rgb

value, and so on, for example, bg-[#33BB22], bg-

[#5522AA], and so on.

Background origin

These utilities are used for controlling how an element’s

background is positioned relative to borders, padding, and

content. There are three possibilities by default.

bg-origin-border: This class makes the background

positioned relative to the border box.

bg-origin-padding: This class makes the background

positioned relative to the padding box.

bg-origin-content: This class makes the background be

positioned relative to the content box.

Background position

These utilities are used for controlling the position of an

element's background image. It decides what to focus on

from the background with the viewing space of an element.

The syntax is bg-{side}. There are nine possibilities for this.

The following table gives information about this.

Classname CSS rule Information

bg-bottom background-position:

bottom;

This focuses on the bottom

portion of the background in

an element space.

bg-center background-position:

center;

This focuses on the center

portion of the background in

an element space.

bg-left background-position:

left;

This focuses on the left

portion of the background in

an element space.

bg-left-bottom background-position:

left bottom;

This focuses on the left

bottom portion of the

background in an element

space.

bg-left-top background-position:

left top;

This focuses on the left top

portion of the background in

an element space.

bg-right background-position:

right;

This focuses on the right

portion of the background in

an element space.

bg-right-bottom background-position:

right bottom;

This focuses on the right

bottom portion of the

background in an element

space.

bg-right-top background-position:

right top;

This focuses the right top

portion of the background in

an element space.

bg-top background-position:

top;

This focuses the top portion of

the background in an element

space.

Table 4.6: Utility classes for background position

You can define your custom position within a theme object

with a key backgroundPosition. You are allowed to pass

arbitrary values as well for background position.

For example, bg-[center_bottom_2rem].

Background repeat

These utilities are used for controlling the repetition of an

element's background image. There are six possibilities. The

syntax is bg-repeat-{type}.

bg-repeat: This class is used to repeat the background

image both vertically and horizontally.

bg-no-repeat: This class is used when you don’t want to

repeat the background image.

bg-repeat-x: This class is used to repeat the background

image only horizontally.

bg-repeat-y: This class is used to repeat the background

image only vertically.

bg-repeat-round: When this class is used, background

images will stretch (leaving no gaps) until there is space

(space left >= half of the image width) for another one

to be added. When the next image is added, all the

current ones compress to allow space.

bg-repeat-space: When this class is used the image is

repeated as much as possible without clipping. The first

and last images are pinned to either side of the element,

and whitespace is distributed evenly between the

images.

Background size

These utilities for controlling the background size of an

element's background image. There are three possibilities for

this:

bg-auto: This class is to display the background image at

its default size.

bg-cover: This class is to scale the background image

until it fills the background layer.

bg-contain: This class is to scale the background image to

the outer edges without cropping or stretching.

You can define your custom background sizes within the

theme object with a key backgroundSize. Arbitrary values can

be passed with expected height and width in it.

For example, bg-[length:300px_150px].

Background image

These utilities are for adding images as a background for an

element. You can even pass color gradients as a background

image. Tailwind CSS provides nine default approaches to add

gradients. Syntax: bg-gradient-{direction}.

bg-none: This class removes the background image of an

element.

bg-gradient-to-t: This class adds gradients towards the

top direction.

bg-gradient-to-tr: This class adds gradients towards the

top-right direction.

bg-gradient-to-br: This class adds gradients towards the

bottom right.

bg-gradient-to-b: This class adds gradients towards the

bottom direction.

bg-gradient-to-bl: This class adds gradient towards the

bottom left direction.

bg-gradient-to-l: This class adds gradients towards the

left direction.

bg-gradient-to-tl: This class adds gradients towards the

top-left direction.

Examples of gradient coloring for background:

bg-gradient-to-r from-cyan-500 to-blue-500 – gradient

begins with cyan-500 color and ends at right with blue-500

color.

By extending the theme with a key backgroundImage you can

define a custom background gradient or image. Arbitrary

values can be passed for background image, the values can

be an image URL as well. For example, bg-[url('/img/live-

image.png)].

Figure 4.5: Examples of gradient backgrounds

Gradient color stops

These are the utilities used for controlling the color stops in

background gradients. There are two stops: starting color

and ending color and middle color.

General syntax looks like from-{color} and end-{color} and via-

{color}.

Similar to background color you are free to use any color and

its variants which are provided by Tailwind CSS by default or

those classes you have defined or extended in the theme

object of configuration.

Fading effect on gradient need not be mentioned explicitly

here, transparent effect will be added automatically. All the

extended color of theme object can be used for these classes.

Arbitrary values can also be passed for color value:

For example, from-[#243c5a], to[#aa4455], via-[#556677].

Borders

Border-related utilities are explained in the following

sections. There are four types, border, divide, outline, and

ring.

Border radius

These utility classes are used to add a border radius for an

element. You are allowed to add a radius to complete the

border or to a specific side of the border. Border radius can

be applied with different sizing parameters.

rounded: This class adds radius to all sides of the border.

rounded-none: This class removes radius from all sides.

rounded-full: This class makes a border look like a

complete circle.

Along with the radius keyword, we can pass sizing

parameters. Following is the list of default sizes available:

rounded-sm, rounded-md, rounded-lg, rounded-xl, rounded-

2xl, rounded-3xl.

These sm, lg, xl, 2xl, and 3xl increase the radius value

respectively, to make it relatable sizing parameters named

with respect to breakpoints.

You can add border radius to only specific sides as well, only

the top side, bottom side, and so on.

Mention these sides between rounded and size parameter,

for example, rounded-t-xl, rounded-l-sm, and so on.

Following are the keys for border radius for different sides:

Table 4.7: Sides available for border radius

Custom border radius can be created by passing values for

borderRadius within the theme object. Arbitrary values can be

passed for size, for example, rounded-[1rem], rounded-t-

[5px], and so on.

Figure 4.6: Examples of border radius

Border width

These utilities are for controlling the width of an element's

borders. There are five variants provided by Tailwind CSS by

default:

border: This adds normal border width.

border-0: This removes border width.

border-2, border-4, border-8 are for thicker border width

respectively.

You are allowed to add thickness to only specific sides of the

total border as well. Between the border and the size, you

can mention which side of the border to be thickened.

t: for top side

b: for bottom side

l: left side

r: right side.

For example, border-t-2, border-l-8, and so on.

You can thicken the border by the mentioned axis as well:

x: Make the top and bottom side thicker and

y: Make the left and right side thicker.

For example, border-x-2, border-y-4.

You can define more border width under the theme with a

key borderWidth. Arbitrary values can be passed as well for

width, for example, border-[2px], border-t-[1rem],

border-x-[2px], and so on.

Border color

These utility classes are for controlling the color of an

element's borders. You are free to use any color and its

variants which are provided by Tailwind CSS by default or

those classes you have defined or extended in the object of

configuration for coloring the border. The general syntax is

border-{color}. A border width class should be present to get

the effect of this class.

For example, border-green-400, border-red-600, and so on.

Similar to border width to specific sides and axis, color can

also be applied to specific sides and axis as well.

For example, border-t-green-700, border-r-blue-400, border-

x-gray-600, and so on.

Arbitrary values can be passed for color value. For example,

border-[#556688].

Border style

These are the utilities for controlling the style of an

element's borders. There are six variants available for this.

This class requires border width to be present to create a

visual effect. The general syntax is border-{style}:

border-solid: This class adds a solid border to the

element(default).

border-dashed: This class adds a dashed border to the

element.

border-double: This class adds double normal borders to

the element.

border-dotted: This class adds dotted borders to the

element.

border-hidden: This class hides the border style.

border-none: This class removes all styles from the border.

Figure 4.7: Examples of border style

Divide width

There are utilities for controlling the border width between

elements. The general syntax is divide-x-{width}. divide width

will be added either in x-axis or in y-axis. Based on the

thickness of the width, Tailwind CSS provides eight default

classes for it:

divide-x is for adding width from normally ordered

elements in x-axis and divide-x-reverse is for adding

width from reversely ordered elements in x-axis.

divide-y and divide-y-reverse works similarly but with

respect to y-axis.

For x-axis, divide-x-2, divide-x-4, divide-x-8. For y-axis,

divide-y-2, divide-y-4, divide-y-8 as width parameter

increases thickness of border increases.

You can define expected divide width values under theme

width with key borderWidth. And arbitrary values can be

passed for width parameters.

For example, divide-[5px], divide-[1rem], and so on.

Divide color

These utility classes are for controlling the border color

between elements. You are free to use any color and its

variants which are provided by Tailwind CSS by default or

those classes you have defined or extended in theme object

of configuration for coloring the divide border. The general

syntax is divide-{color}. divide-width should be present for

this utility.

For example, divide-green-500, divide-blue-400, and so on.

Arbitrary values can be passed for color parameter, for

example, divide-[#CC5511], and so on.

Divide style

These are the utilities for controlling the border style

between elements. There are five variants available for this.

This class requires a divide width to be present to create a

visual effect. The syntax is border-{style}:

divide-solid: This class adds a normal border to divide

between elements.

divide-dashed: This class adds a dashed border to divide

between elements.

divide-dotted: This class adds a dotted border to divide

between elements.

divide-double: This class adds a double solid border for

dividing between elements.

divide-none: This removes styles added for divide width.

Outline width

These utilities are used for controlling the width of an

element's outline. The syntax is outline-{width}. Based on the

thickness of the outline there are five possibilities by default.

outline-0, outline-1, outline-2, outline-4, outline-8 greater

width for thicker outline.

You can define your outline widths under the theme object

using key outlineWidth. Arbitrary values can be passed for

width as well. For example, outline-[10px], outline-

[1rem].

Outline color

These utility classes are for controlling the color of an

element’s outline. You are free to use any color and its

variants that are provided by Tailwind CSS by default or

those classes you have defined or extended in the theme

object of configuration for coloring of the outline. General

syntax looks like divide-{color}. This utility requires a divide-

width class to be present.

For example, divide-green-500, divide-blue-400, and so on.

Arbitrary values can be passed for color parameter, for

example, outline-[#EE4511], and so on.

Outline style

These are the utilities for controlling the border style of an

element's outline. There are five variants available for this.

This class requires outline width to be present to create a

visual effect. General syntax looks like outline-{style}:

outline: This class adds normal outline to the elements.

outline-dashed: This class adds a dashed outline to the

elements.

outline-dotted: This class adds dotted outline to the

elements.

outline-double: This class adds double normal outline to

the elements.

outline-none: This removes styles added for outline of the

elements.

Outline offset

These utilities are used to change the offset of an element’s

outline. This indicates a gap between outline and an actual

content area. There are five variants by default based on

offset value:

outline-offset-0 outline-offset-1 outline-offset-2 outline-offset-4

outline-offset-8

Table 4.8: Outline offset utility classes

Ring width

These utility classes are used for creating outline rings with

box-shadows. There are seven possibilities by default for

adding width. The general syntax will be ring-{width}.

ring, ring-0, ring-1, ring-2, ring-4, ring-8, ring-inset

ring-inset utility class is used to force a ring to render on the

inside of an element instead of the outside. This prevents the

hiding of the ring when the element presents at the edge of

the screen.

You can define the ring width class of your wish under the

theme object with a key ringWidth. Arbitrary values can be

passed for width parameters. For example, ring-[5px], ring-

[2rem], and so on.

Ring color

These utility classes are for controlling the color of outline

rings. You are free to use any color and its variants which are

provided by Tailwind CSS by default or those classes you

have defined or extended in theme object of configuration

for coloring of the ring. General syntax looks like ring-{color}.

This utility requires a ring-width class to be present.

For example, ring-green-500, ring-blue-400, and so on.

Arbitrary values can be passed for color parameter, for

example, ring-[#EE4511], and so on.

Ring offset width

These utilities are used for simulating an offset when adding

outline rings. There are five default classes available by

default. General syntax looks like ring-offset-{width}. This

adds solid white box-shadow and increases the thickness of

the accompanying outline ring to accommodate the offset.

ring-offset-0 ring-offset-1 ring-offset-2 ring-offset-4 ring-offset-8

Table 4.9: Ring offset width utility classes

Custom utilities can be defined under the theme object with a

key ringOffsetWidth. Arbitrary values can be passed as well

with parameters.

For example, ring-offset-[5px], ring-offset-[1rem].

Ring offset color

These utility classes are for controlling the color of outline

ring offsets. You are free to use any color and its variants

which are provided by Tailwind CSS by default or those

classes you have defined or extended in the theme object of

configuration for coloring of the ring-offset. General syntax

looks like ring-offset-{color}. This utility requires a ring-width

class to be present.

For example, ring-offset-orange-500, ring-offset-sky-400, and

so on.

Arbitrary values can be passed for color parameter, for

example, ring-offset-[#AA11CC], and so on.

Effects

The following sections explain different effects that can be

added on elements utility classes.

Box shadow

This utility class is used to decide the box shadow of an

element. There are eight utility classes provided by Tailwind

CSS based on shadow width:

shadow shadow-sm shadow-md shadow-lg

shadow-xl shadow-2xl shadow-inner shadow-none

Table 4.10: Box shadow utility classes

Width parameters named similar to breakpoints that

represent respective width.

shadow-inner creates shadows inside the element, shadow-none

removes box shadows added.

By extending the theme with key boxShadow you can define

the box shadow width of your wish. Arbitrary values can be

passed as well.

For example, shadow-

[0_50px_30px_-20px_rgba(100,200,50,0.3)].

Figure 4.8: Examples of box shadow

Box shadow color

These utility classes are for controlling the color of a box

shadow. You are free to use any color and its variants that

are provided by Tailwind CSS by default or those classes you

have defined or extended in the object of configuration for

coloring of the box shadow. The syntax will be shadow-{color}.

This utility requires a box shadow class to be present.

For example, shadow-gray-500, shadow-pink-400, and so on.

Arbitrary values can be passed for color parameters, for

example, shadow--[#22BB77], and so on.

Opacity

These utilities are for controlling the opacity of an element.

There are fifteen default classes available by default based

on different opacity values.

Syntax: opacity-{amount}

opacity-0, opacity-5, opacity-10, opacity-20, opacity-25,

opacity-30, opacity-40, opacity-50, opacity-60, opacity-70,

opacity-75, opacity-80, opacity-90, opacity-95, opacity-100

Extend them with key opacity to define your custom opacity

classes. Arbitrary values can be passed to the amount

parameter, for example, opacity-[.55], opacity-[.30], and

so on.

Figure 4.9: Examples of opacity effects

Mix blend mode

These are the utilities for controlling how an element should

blend with the background. General syntax looks like mix-

blend-{mode}. There are seventeen default variants for this:

mix-blend-

normal

mix-blend-

multiply

mix-blend-

screen

mix-blend-

overlay

mix-blend-darken mix-blend-lighten mix-blend-color-

burn

mix-blend- hard-

light

mix-blend-soft-

light

mix-blend-color-

dodge

mix-blend-

difference

mix-blend-

exclusion

mix-blend-hue mix-blend-

saturation

mix-blend-color mix-blend-

luminosity

mix-blend-plus-

lighter

Table 4.11: Mix blend mode utility classes

Background blend mode

These utilities for controlling how an element’s background

image should blend with its background color. There are

sixteen default variants for this:

mix-blend-

normal

mix-blend-

multiply

mix-blend-

screen

mix-blend-

overlay

mix-blend-darken mix-blend-lighten mix-blend-color-

burn

mix-blend- hard-

light

mix-blend-soft-

light

mix-blend-color-

dodge

mix-blend-

difference

mix-blend-

exclusion

mix-blend-hue mix-blend-

saturation

mix-blend-color mix-blend-

luminosity

Table 4.12: Background blend mode utility classes

Normal filters

These utilities are the filter adding attributes on elements.

The following sections are the type of filters:

Blur

These utilities are for applying blur filters to an element.

There are eight variants based on the amount of blur needed

to apply. The naming of these utilities follows breakpoint

sizing to convey it easier.

General syntax looks like blur-{amount}.

Blur: This class adds normal blur to the element, blur-

none – this class removes blur from the element.

blur-sm, blur-md, blur-lg, blur-xl, blur-2xl, blur-3xl:

As the amount parameter increases, the blurring effect

increases.

By extending the themes object with key blur, you can

define your blur utility classes. Arbitrary values can be

passed as well. For example, blur-[5px], blur-[2rem], and

so on:

Figure 4.10: Examples of blur effect

Brightness

These utility classes are for applying brightness filters to an

element. There are eleven default classes provided by

Tailwind CSS. The syntax is brightness-{amount}.

The amount parameter follows the brightness level, as it

increases the brightness effect from the normal level:

brightness-0, brightness-50, brightness-75, brightness-90,

brightness-95, brightness-100,

brightness-105, brightness-110, brightness-125, brightness-

150, brightness-200

By extending themes objects with key brightness, you can

define your own brightness utility classes. Arbitrary values

can be passed as well. For example, brightness-[1.25].

Contrast

These utility classes are for applying contrast filters to an

element. There are seven default classes provided by

Tailwind CSS. The syntax is contrast-{amount}.

Amount parameter follows the contrast level, as it increases

the contrast effect from the normal level:

contrast-0, contrast-50, contrast-75, contrast-100, contrast-

125, contrast -150, contrast-200

By extending the themes object with key contrast, you can

define your brightness utility classes. Arbitrary values can be

passed as well. For example, contrast-[.35].

Drop shadow

These utility classes are for applying drop-shadow filters to

an element. There are seven default classes provided by

Tailwind CSS. General syntax looks like drop-shadow-{amount}.

Amount parameter follows drop shadow level, as it increases

drop shadow effect increases from normal level. Naming of

these follows breakpoint sizing to convey it easier.

drop-shadow: This class adds normal drop shadow to the

element.

drop-shadow-none: This class removes drop shadows from

the element.

drop-shadow-sm, drop-shadow-md, drop-shadow-lg, drop-shadow-

xl, drop-shadow-2xl

By extending the themes object with key dropShadow, you can

define your own drop shadow utility classes. Arbitrary values

can be passed as well.

For example, drop-shadow-[0_25px_35px_rgba(0,0,0,0.5)].

Grayscale

These utilities are used for applying grayscale filters to an

element. There are two utilities for this one to add grayscale

and one to remove it:

grayscale: This class adds the grayscale to the element.

grayscale-0: This class removes the grayscale from the

element.

By extending themes objects with key grayscale, you can

define your own grayscale utility classes. Arbitrary values

can be passed as well.

For example, grayscale-[60%].

Hue rotate

These utilities are used for applying hue-rotate filters to an

element. There are six variants by default based on the

amount of hue-rotate added to the element.

Syntax: hue-rotate-{amount}

hue-rotate-0, hue-rotate-15, hue-rotate-30, hue-rotate-60,

hue-rotate-90, hue-rotate-100

By extending the theme object with key hueRotate, you can

define your own hue-rotate utility classes. Arbitrary values

can be passed as well.

For example, hue-rotate-[145deg].

Invert

These utilities are used for applying invert filters to an

element. There are two utilities for this one to add invert and

one to remove it.

invert: This class adds the invert filter to the element.

invert-0: This class removes the invert filter from the

element.

By extending the theme object with key invert, you can

define your own invert utility classes. Arbitrary values can be

passed as well. For example, invert -[.35].

Saturate

These utilities are used for applying saturation filters to an

element. There are five variants by default based on the

saturation amount to be added. The general syntax is

saturate-{amount}.

As the amount parameter increases, saturation increases.

saturate-0, saturate-50, saturate-100, saturate-150,

saturate-200

By extending themes object with key saturate, you can define

your own saturate utility classes. Arbitrary values can be

passed as well. For example, saturate-[.75].

Sepia

These utilities are used for applying sepia filters to an

element. There are two utilities for this one to add sepia and

one to remove it:

sepia: This class adds the sepia filter to the element.

sepia-0: This class removes the sepia filter from the

element.

By extending themes object with key sepia, you can define

your own sepia utility classes. Arbitrary values can be passed

as well. For example, invert-[.35].

Backdrop filters

Those all filters you already read just before this can be

applied to backdrops as well. When multiple elements have

been placed into full screen mode, the backdrop is drawn

immediately beneath the front most such element, and on

top of the older full screen elements. The next section

explains the set of available filters on backdrops.

Backdrop blur

These utilities are for applying backdrop blur filters to an

element. There are eight variants based on the amount of

blur needed to apply. Naming of these follows breakpoint

sizing to convey it easier. The syntax will be backdrop-blur-

{amount}.

backdrop-blur: This class adds normal blur to the element,

backdrop-blur-none – this class removes backdrop blur

from the element.

backdrop-blur-sm, backdrop-blur-md, backdrop-blur-lg,

backdrop-blur-xl, backdrop-blur-2xl, backdrop-blur-3xl: As

the amount parameter increases blurring effect

increases.

By extending themes object with key backdropBlur, you can

define your own backdrop blur utility classes. Arbitrary

values can be passed as well.

For example, backdrop-blur-[5px].

Backdrop brightness

These utility classes are for applying backdrop brightness

filters to an element. There are eleven default classes

provided by Tailwind CSS.

Syntax: backdrop-brightness-{amount}

The amount parameter follows the brightness level, as it

increases brightness effect from the normal level.

backdrop-brightness-0, backdrop-brightness-50, backdrop-

brightness-75,

backdrop-brightness-90, backdrop-brightness-95, backdrop-

brightness-100,

backdrop-brightness-105, backdrop-brightness-110,

backdrop-brightness-125,

backdrop-brightness-150, backdrop-brightness-200

By extending themes object with key backdropBrightness, you

can define your own backdrop brightness utility classes.

Arbitrary values can be passed as well.

For example, backdrop-brightness-[1.25].

Backdrop contrast

These utility classes are for applying backdrop contrast

filters to an element. There are seven default classes

provided by Tailwind CSS.

Syntax: backdrop-contrast-{amount}

The amount parameter follows the contrast level, as it

increases the contrast effect increases from the normal level.

backdrop-contrast-0, backdrop-contrast-50, backdrop-

contrast-75, backdrop-contrast-100, backdrop-contrast-125,

backdrop-contrast -150, backdrop-contrast-200

By extending themes object with key backdropContrast, you can

define your own brightness utility classes. Arbitrary values

can be passed as well.

For example, backdrop-contrast-[.35].

Backdrop grayscale

These utilities are used for applying backdrop grayscale

filters to an element. There are two utilities for this one to

add grayscale and one to remove it:

backdrop-grayscale: This class adds the backdrop

grayscale to the element.

backdrop-grayscale-0: This class removes the backdrop

grayscale from the element.

By extending themes object with key backdropGrayscale, you can

define your own backdrop grayscale utility classes. Arbitrary

values can be passed as well.

For example, backdrop-grayscale-[0.9].

Backdrop hue rotate

These utilities are used for applying backdrop hue-rotate

filters to an element. There are six variants by default

based on the amount of hue-rotate added on the element.

Syntax: backdrop-hue-rotate-{amount}

hue-rotate-0, hue-rotate-15, hue-rotate-30, hue-rotate-60,

hue-rotate-90, hue-rotate-100

By extending themes objects with key backdropHueRotate, you

can define your own backdrop hue-rotate utility classes.

Arbitrary values can be passed as well.

For example, backdrop-hue-rotate-[300deg].

Backdrop invert

These utilities are used for applying backdrop invert filters to

an element. There are two utilities for this: one to add invert

and one to remove it:

backdrop-invert: This class adds the backdrop invert filter

to the element.

backdrop-invert-0: This class removes the backdrop invert

filter from the element.

By extending themes object with key backdropInvert, you can

define your own backdrop invert utility classes. Arbitrary

values can be passed as well.

For example, backdrop-invert-[.55].

Backdrop opacity

These utilities are for controlling the backdrop opacity of an

element. There are fifteen default classes available by

default based on different opacity values.

The general syntax is backdrop-opacity-{amount}.

backdrop-opacity-0, backdrop-opacity-5, backdrop-opacity-

10, backdrop-opacity-20, backdrop-opacity-25, backdrop-

opacity-30, backdrop-opacity-40, backdrop-opacity-50,

backdrop-opacity-60, backdrop-opacity-70, backdrop-opacity-

75, backdrop-opacity-80, backdrop-opacity-90, backdrop-

opacity-95, backdrop-opacity-100

Extend theme object with key backdropOpacity to define your

custom opacity classes. Arbitrary values can be passed to

amount parameter, for example, backdrop-opacity-[.70].

Backdrop saturate

These utilities are used for applying backdrop saturation

filters to an element. There are five variants by default based

on the saturation amount to be added.

General syntax is backdrop-saturate-{amount}.

As the amount parameter increases, saturation increases.

backdrop-saturate-0, backdrop-saturate-50, backdrop-

saturate-100, backdrop-saturate-150, backdrop-saturate-200

By extending theme object with key backdropSaturate, you can

define your own saturate utility classes. Arbitrary values can

be passed as well.

For example, backdrop-saturate-[.75].

Backdrop sepia

These utilities are used for applying backdrop sepia filters to

an element. There are two utilities for this one to add sepia

and one to remove it:

backdrop-sepia: This class adds the backdrop-sepia filter

to the element.

backdrop-sepia-0: This class removes the backdrop-sepia

filter from the element.

By extending themes object with key backdropSepia, you can

define your own sepia utility classes. Arbitrary values can be

passed as well. For example, backdrop-invert-[.35].

Any kind of normal filter or backdrop filter can be removed

from elements using filter-none and backdrop-filter-none

classes respectively.

Tables

Tailwind CSS provides some utilities for table elements to

control styles applied to it. The forthcoming sections give

information about it.

Border collapse

These utilities are for controlling whether table borders

should collapse or be separated. There are two classes

available for this to be used with table elements:

border-collapse: This class is used to combine adjacent

cell borders into a single border when possible. Note that

this includes collapsing borders on the top-level <table>

tag.

border-separate: This class is used to force each cell to

display its own separate borders.

Border spacing

These utilities for controlling the spacing between table

borders. You can use all those Tailwind CSS’s default or your

extended spacing utilities as a border spacing utility’s

spacing parameter. Spacing can be added in both the x and

y axis separately.

For example, border-spacing-4, border-spacing-2, border-

spacing-x-3.

You can even extend borderSpacing under the theme object to

define your custom border spacing utilities. You can even

pass arbitrary values for spacing width.

For example, border-spacing-[10px], border-spacing-[1rem],

and so on.

Table layout

These are the utilities for controlling the table layout

algorithm. There are two possibilities:

table-auto: This class is used to allow the table to

automatically size columns to fit the contents of the cell.

table-fixed: This class is used to allow the table to ignore

the content and use fixed widths for columns. The width

of the first row will set the column widths for the whole

table.

Transitions and animations

To create transitions and animations of elements Tailwind

CSS provides the following utility classes.

Transition property

These are the utilities required to control properties of the

transition. There are seven variants by default. General

syntax is transition-{properties}:

transition: This class adds transition to the element.

transition-none: This class removes transition from the

element.

transition-colors: This class adds transition with the color

styling of the element.

transition-opacity: This class adds transitions with the

opacity styling of the element.

transition-shadow: This class adds transitions with the

shadow styling of the element.

transition-transform: This class adds transition with the

transform styling of the element.

Transition duration

These are the utility classes for mentioning transition

duration for the CSS transition. General syntax looks like

duration-{amount}. There are eight duration-related classes by

default based on duration span:

duration-75, duration-100, duration-150, duration-200,

duration-300, duration-500, duration-700, duration-1000

Here, the duration amount represents total milliseconds that

a transition can take. By extending a theme with a key

transitionDuration, you can define your own duration utilities.

Arbitrary values can also be applied. For example, duration-

[2000ms], duration-[5000ms], and so on.

Transition timing function

These are the utilities used for controlling the easing of CSS

transition. There are four default classes available by default.

The general syntax is ease-{timing}.

ease-linear, ease-in, ease-out, ease-in-out

Custom values can be defined under the theme object with a

key transitionTimingFunction. Arbitrary values can be passed

as well.

For example, ease-[cubic-bezier(0.80,0.03,0.450,0.050)].

Transition delay

These utilities are for controlling the delay of the CSS

transition. There are eight variants for it. Like transition

duration these classes are also based on the amount of delay

in milliseconds. The general syntax is delay-{amount}.

delay-75, delay-100, delay-150, delay-200, delay-300, delay-

500, delay-700, delay-1000

By extending a theme with a key transitionDelay, you can

define your own delay utilities. Arbitrary values can also be

passed for duration value.

For example, delay-[2000ms], delay-[5000ms], and so on.

Animation

These are the utility classes available for creating an

animation effect of an element. Tailwind CSS provides five

animation classes by default.

animate-none: This class removes the animation property

from the element.

animate-spin: This class adds spinning animation for an

infinite number of times that happens every second on

an element.

animate-ping: This class adds pinging animation for an

infinite number of times that happens every second on

an element.

animate-pulse: This class adds pulsing animation for an

infinite number of times that happens every second on

an element.

animate-bounce: This class adds pulsing animation for an

infinite number of times that happens every second on

an element.

You can define your own animation utilities by extending the

theme with a key animation. Arbitrary values can be passed

as well.

For example, animate-[wiggle_3s_ease-in _infinite],

provided wiggle animation should be defined prior in the

configuration.

Transforms

The next sections give information about transform utilities

available in Tailwind CSS.

Scale

These are the utility class for scaling elements with

transform. Scaling can be done in three ways. Scaling in both

axis, scaling in x-axis and scaling in y-axis. There are ten

variants available by default based on percentage of scale.

General syntax is scale-{percentage}.

scale-0, scale-50, scale-75, scale-90, scale-95, scale-100,

scale-105, scale-110, scale-125, scale-150

These scale class’s percentage values can be applied for

scale-x and scale-y classes as well. For example, scale-x-75,

scale-x-110, scale-y-125, scale-y-10, and so on.

Custom scaling classes can be defined under the theme object

with a key scale. Arbitrary values can be passed as well. For

example, scale-[1.85], scale-[0.7], and so on.

Rotate

These are the utility class for rotating elements with

transform. There are nine variants available for rotation

based on the angle of the rotation. The general syntax is

rotate-{angle}.

rotate-0, rotate-1, rotate-2, rotate-3, rotate-6, rotate-12,

rotate-45, rotate-90, rotate-180

Negative rotation can be added as well using these default

classes just by mentioning the minus symbol before the

class. For example, -rotate-12, -rotate-180, and so on.

Custom rotation values can be defined by extending the

theme object with a key rotate. Arbitrary values can be

passed for the angle parameter. For example, rotate-

[75deg].

Figure 4.11: Examples of Rotate transform

Translate

These are the utility class for translating elements with

transform. Translating can be done in two ways. One in the x-

axis and in the y-axis.

The syntaxes will be translate-x-{amount} and translate-y-

{amount}.

Amount parameter can take those values of spacing utilities

provided by Tailwind CSS or those extended by you.

For example, translate-x-3, translate-x-56, translate-y-44,

translate-y-60, and so on.

You can enable GPU instead of CPU to render this by adding

class transform-gpu.

You are still allowed to create custom classes for translate by

extending the theme object with the translate key. Arbitrary

values can be passed for the translate amount.

For example, translate-y-[10rem], translate-x-[50px], and so

on.

Skew

These are the utility class for skewing elements with

transform. Skewing can also be done in both the axes. There

are five variants for each available by default in Tailwind

CSS.

The general syntax is skew-x-{amount} and skew-y-{amount}. skew

amount represents a degree to be skewed.

skew-x-0, skew-x-1, skew-x-2, skew-x-3, skew-x-6, skew-x-12

skew-y-0, skew-y-1, skew-y-2, skew-y-3, skew-y-6, skew-y-12

By extending the theme object with a key skew you are allowed

to define your own skew classes. Arbitrary values can be

passed for skew amount.

For example, skew-x-[20deg], skew-y-[10deg], and so on.

Figure 4.12: Examples of skew transform

Transform origin

These are the utilities for specifying the origin of an element

for its transformations. There are nine variants available

based on the position of the element (see Table 4.13).

General syntax looks like origin-{keyword}:

Class name Information

origin-center Transformation origin will be at the center of the

element.

origin-top Transformation origin will be at the top of the element.

origin-top-right Transformation origin will be at the top right of the

element.

origin-right Transformation origin will be at the right of the

element.

origin-bottom-right Transformation origin will be at the bottom right of the

element.

origin-bottom Transformation origin will be at the bottom of the

element.

origin-bottom-left Transformation origin will be at the bottom left of the

element.

origin-left Transformation origin will be at the left of the element.

origin-top-left Transformation origin will be at the top left of the

element.

Table 4.13: Transform origin utility classes

Custom utility classes can be created by extending a theme

object with a key transformOrigin. Arbitrary values can be

passed for keyword parameters.

For example, origin-[66%_66%], origin-[50%_20%], and so

on.

Interactivity

The following sections are the interactivity-related classes

provided by Tailwind CSS by default.

Accent color

These utilities are for controlling the accent color of a form

control. Like checkbox, radio button, and so on which

overrides default behavior added by browser. You are free to

use any color and its variants which are provided by Tailwind

CSS by default or those classes you have defined or

extended inside a theme object of configuration for coloring of

the accent. The general syntax is accent-{color}.

For example, accent-gray-500, accent-green-800, and so on.

Arbitrary values can be passed for color parameters. For

example, accent-[#56ABCD].

Appearance

These utility classes are used for suppressing native form

control styling. There is a class available for this called

appearance-none. This removes those styling’s added by

browser on a form element.

Cursor

These utilities are for controlling the cursor style when

hovering over an element. General syntax looks like cursor-

{style}.

cursor-auto cursor-default cursor-pointer cursor-wait

cursor-text cursor-move cursor-help cursor-not-allowed

cursor-none cursor-cell cursor-progress cursor-context-

menu

cursor-crosshair cursor-alias cursor-copy cursor-vertical-

text

cursor-no-drop cursor-grab cursor-grabbing cursor-all-scroll

cursor-col-resize cursor-n-resize cursor-row-resize cursor-e-resize

cursor-sw-resize cursor-sw-resize cursor-ew-resize cursor-ns-resize

cursor-ns-resize cursor-w-resize cursor-ne-resize cursor-nwse-resize

cursor-zoom-in cursor-nw-resize cursor-sw-resize cursor-nesw-resize

Table 4.14: Cursor interactivity utility classes

Caret color

These are the utilities for controlling the color of the text

input cursor. You are free to use any color and its variants

which are provided by Tailwind CSS by default or those

classes you have defined or extended inside a theme object

of configuration for coloring of the caret. The general syntax

looks like caret-{color}. For example, caret-green-600,

caret-red-400, and so on.

Arbitrary values can be passed for color parameters. For

example, caret-[#56ABCD].

Pointer events

These are the utilities for controlling whether an element

responds to pointer events. There are two classes:

pointer-events-none: This class reverts the default browser

behavior for pointer events (like :hover and click).

pointer-events-auto: This class is to make an element

ignore pointer events.

Resize

These utilities for controlling how an element can be resized.

There are four variants for this:

resize: This class is to make an element horizontally

and vertically resizable.

resize-none: This class is to prevent an element from

being resizable.

resize-x: This class is to make an element horizontally

resizable.

resize-y: This class is to make an element vertically

resizable.

Scroll behavior

These are the utilities for controlling the scroll behavior of an

element. There are two classes:

scroll-auto: This class is to flag auto scrolling behavior

within an element.

scroll-smooth: This class is to enable smooth scrolling

within an element.

Scroll margin

These utilities for controlling the scroll offset around items in

a snap container. General syntax looks like scroll-m{side}-

{size}. Size parameters can take those values of spacing

utilities provided by Tailwind CSS or those extended by you.

Side parameter can be any side or axis.

Still, you are allowed to use custom classes by extending the

theme object with a key scrollMargin. You can also pass

arbitrary values. For example, scroll-m-[24rem].

Scroll padding

These utilities for controlling an element's scroll offset within

a snap container. General syntax looks like scroll-p{side}-

{size}. Size parameters can take those values of spacing

utilities provided by Tailwind CSS or those extended by you.

Side parameter can be any side or axis.

Still, you are allowed to use custom classes by extending the

theme object with a key scrollPadding. Arbitrary values can be

passed as well. For example, scroll-p-[24rem].

Scroll snap align

These utilities for controlling the scroll snap alignment of an

element. There are four variants for this:

snap-start: This utility to snap an element to its start

when being scrolled inside a snap container.

snap-end: This utility is to snap an element to its end

when being scrolled inside a snap container.

snap-center: This utility to snap an element to its center

when being scrolled inside a snap container.

snap-align-none: This utility removes snap alignment

applied on elements.

Scroll snap stop

These utilities for controlling whether you can skip past

possible snap positions. There are two possibilities:

snap-normal: This class is to allow a snap container to skip

past possible scroll snap positions.

snap-always: Use the snap-always utility together with the

snap-mandatory utility to force a snap container to

always stop on an element before the user can continue

scrolling to the next item.

Scroll snap type

These utilities for controlling how strictly snap points are

enforced in a snap container. There are six possibilities as

follows:

snap-x: This class is to enable horizontal scroll snapping

within an element.

snap-y: This class is to enable vertical scroll snapping

within an element.

snap-both: This class is to enable horizontal vertical scroll

snapping within an element.

snap-mandatory: This class is to force a snap container to

always come to rest on a snap point.

snap-proximity: This class is to make a snap container

come to rest on snap points that are close in proximity.

This is the browser default.

snap-none: This class is to disable scroll snapping within

an element.

Touch action

These utilities for controlling how an element can be scrolled

and zoomed on touchscreens. General syntax looks like

touch-{action}. There are ten variants available as shown in

Table 4.15:

Classname Information

touch-auto This class auto decides touch interaction with an

element.

touch-none This class removes touch interactivity with an element.

touch-pan-x This class is to enable touch interaction only in x-axis

with an element.

touch-pan-left This class is to enable touch only in the left direction

with an element.

touch-pan-right This class is to enable touch only in the right direction

with an element.

touch-pan-y This class is to enable touch interaction only in the y-

axis with an element.

touch-pan-up This class is to enable touch only in up direction with

an element.

touch-pan-down This class is to enable touch only in down direction

with an element.

touch-pinch-zoom This class is to enable multi-finger panning and

zooming with an element.

touch-manipulation This class enables panning and pinch zoom gestures,

but disables additional non-standard gestures such as

double-tap to zoom.

Table 4.15: Touch action interactivity utility classes

User select

These utilities for controlling whether the user can select text

in an element. There are four variants for this:

select-none: This class is to prevent selecting text in an

element and its children.

select-text: This class is to allow selecting text in an

element and its children.

select-all: This class is to select automatically all the

text in an element when a user clicks.

select-auto: This class is to use the default browser

behavior for selecting text.

Will change

These utilities for optimizing upcoming animations of

elements that are expected to change. There are four

variants by default:

will-change-auto: This class auto decides the changing of

elements for the browser.

will-change-scroll: This class flags scrolling behavior will

change.

will-change-contents: This class flags content will change.

will-change-transforms: This class flags transforms will

change.

The last three classes optimize an element that’s expected

to change in the near future by instructing the browser to

prepare the necessary animation before it begins.

You are allowed to extend the theme object with a key

willChange to define more will-change classes of your wish.

Arbitrary values can be passed as well.

For example, will-change-[right,bottom].

SVG

Scalable Vector Graphics. SVG is used to define graphics

for the web. It is a W3C recommendation. It is defined within

<svg> </svg> in an HTML document. SVG can contain shapes,

gradients, images, and so on. It has three main properties:

fill: Defines color to be filled for svg.

stroke: Defines color to be filled for stroke or border of

svg.

stroke-width: Defines width for stroke or border of svg.

Tailwind CSS provides utilities to handle these more

efficiently. As fill and stroke expect color values, you are free

to use any color and its variants that are provided by

Tailwind CSS by default or those classes you have defined or

extended inside a theme object of configuration for coloring

them.

General syntax for fill is fill-{color}.

General syntax for stroke is stroke-{color}.

Examples of fill and stroke, fill-green-500, fill-gray-200,

stroke-blue-700, stroke-pink-400, and so on.

Arbitrary value can also be passed to color parameter, for

example, fill-[#446688], stroke-[#113355], and so on.

For stroke width Tailwind CSS provides three default variants

based on width thickness. General syntax looks like stroke-

{width}.

By extending the theme object with key strokeWidth you can

define custom classes for stroke width. Arbitrary values can

be passed for width, for example, stroke-[5px], stroke-

[1rem], and so on.

Accessibility: Screen readers

These utilities are used for improving accessibility with

screen readers. There are two classes by default:

sr-only: To hide an element visually without hiding it

from screen readers and

not-sr-only: To make an element visible to sighted users

as well as screen readers.

Conclusion

This chapter provided brief information on different

categories of styling entities provided by Tailwind CSS by

default. Understanding these sections and remembering

respective utility classes makes you ready to begin with the

development of the website that begins from the next

chapter. Hope you learned it and applied for visual

understanding.

In the next chapter, we are understanding the meaning of

the website and the development of some pages of it.

Points to remember

Background image can be a gradient value or an URL of

image.

Gradient coloring has three parts: from color, to color

and optionally stop color.

Three attributes of SVG elements are fill, stroke, and

stroke-width.

Accent color is used to override default color of browser

for form elements like radio, checkbox.

Multiple choice questions

1. Object for extending font family is:

a. font-family

b. font

c. fontFamily

d. FontFamily

2. ‘italic’ utility class is a:

a. font family

b. font decoration

c. font style

d. font weight

3. Which of the following is not a background

attachment class?

a. bg-fixed

b. bg-flow

c. bg-local

d. bg-scroll

4. utility-class to create circular div element:

a. rounded-div

b. rounded-corner

c. rounded-full

d. rounded-xl

5. Which of the following is not a transform

property?

a. scale

b. draw

c. skew

d. rotate

Answers

1. c

2. c

3. b

4. c

5. b

CHAPTER 5

Developing a Website with

Tailwind CSS

Introduction

This chapter provides a detailed explanation of the developer

aspect of the website. We will learn the way a developer can

analyze a website. We will explain HTML Doc and features of the

webpage that we are developing. As the website comprises a set

of webpages, we are providing a plan which we are following to

build a web page in a Tailwind CSS way. Then we are building

three web pages as well

Structure

In this chapter, the following topics will be discussed:

Website – the developer’s viewpoint

Building a Restaurant website

Parts of website

Plan of each page

Think in a Tailwind Way

Webpage 1 – Home page

Webpage 2 – Menu page

Webpage 3 – Gallery page

Website

A website is an URL where we can find information on a place,

person, company, and so on, they are meant for providing

information to its visitors. There are different pages for different

sets of information that come under the same context, for

example, contact us, about us, feedback page, and so on. There

are links to travel between different pages. It all conveys What is

a website.

In simple terms, you are representing data or information

digitally by entering a specific URL which can be accessed using

the internet on various sets of devices.

Categories of websites

Based on the data, we are displaying we can say there are two

types of websites:

Static website

Dynamic website

Static website

These websites contain data that is static on each of its pages,

and we are convinced that the information on its pages are

defined there. This information may not change, or it may

change less frequently. As information is merged along with the

code, we cannot alter them without direct intervention on its

code.

Technically, these websites don’t require any other programming

tool or database which decides what to be shown, as all data and

visual representation will be decided on HTML, and CSS itself.

For example, a website on an event, a website on a historical

place, and so on.

Dynamic website

These are the websites where data can be dynamically changed.

Information present on web pages changes as and when they get

new information or as they get controlled from another end.

Information present on a specific page is not written there along

with a code. Either manually or automatically new data can be

arrived at without intervention of its code directly.

Technically, these websites require an external source of data

and a programming tool that decides what information will be

shown at which part of the webpage. That handles all the logic of

data and HTML, and CSS are responsible for visual

representation.

For example, social media websites, News websites, and so on.

Types of websites

Based on the data or information, we are displaying on the

website following are the types of websites:

E-commerce website: A website that is made for

shopping.

Blogs website: Shows a set of blogs (information on

different subjects).

Business website: Provides information on business.

Portfolio website: Introduces a person, place, and so on.

Social media websites: Connects peoples digitally.

Membership websites: Provides data based on

membership. For example, YouTube, Netflix, and so on.

Requirement of website

As we know, a website is a medium that shows information on

the respective context for what it is built. When they are built

with more precise and user convenience they act as an effective

way of reaching the world about the context. Blogs provide user

traffic to the website, e-commerce websites create virtual shops

for business, social media creates connections between people,

and so on.

Following are some of the reasons for the existence of the

website:

Websites on business, person, and place create a positive

impression on people before they experience them

physically – enhancing the brand.

Websites convey more about what companies, people, and

so on will do; it creates social proof that they are connected

to the world.

Perfectly built websites bring more business to the

companies – act as a medium for competition.

E-commerce websites make their users know about their

huge set of products at their fingertips (quality, reviews,

prices, and so on) which saves time for its user and

eliminates the requirement of physical shop setup for

vendors.

User-friendly websites create good credibility for a company

or a person with a first impression.

Websites built for growing businesses to reach more people

within a shorter period can make a good return on

investment for companies – act as an advertising medium.

Portfolio websites provide insight for its user about the

experience of a company or a person in a concerned field.

As a website has a way to reach out, it can bring more leads

for the business.

Search Engine Optimization (SEO) tool on websites, a

business can identify the type of peoples visiting their

website – analyzes the target audience for their product.

Making websites properly listed using search engines will

bring more people to visit a company's website which may

create awareness of it in the people.

Blog websites provide various sets of knowledge to their

visitors that they can get by reading. This engages people

with the website, and it creates a positive belief factor about

the company or a person.

Website – the developer’s viewpoint

Being a developer, you should think of it as How rather than just

What. A website is an HTML document, where the layout is

defined using HTML blocks, the aesthetic is defined using CSS

and interactivity is defined using JavaScript. The simplest

observation as a developer! Isn’t it?

Being a normal user or website visitor, you always expect that

content should be easily accessible and important information

should be nicely represented. These are dependent on how you

design your website. It talks about the visiting experience of the

user. There are a set of separate minds who can think like a

common man, or who can inquire, analyze, and study on those

colors, image sizes, and length of data that can cause

convenience for most of the visitors with respect to the interface

of the website. These may or may not know how developers can

develop a piece of such a user interface.

Similarly, being a developer it is not mandatory that you should

know about what the taste of the user with respect to the user

interface of the website is, rather you must concentrate on what

needs to be done from the code level to achieve the provided

design within the system.

The working way of website

Whenever you develop a website, it will be loaded on a browser

or browser engine to its visitors. Here, the website in the context

simply thinks in the sense that it will be an entity loaded on a

browser window. Website is an entity that has a specific Uniform

Resource Locator (URL) to view its contents. URL locates the

live location of the files belonging to that website, then brings

them to the browser of the visitor then renders them on its

window. As you know, a static website has everything (visual

representation and information) merged within the same files,

when that file gets loaded on the browser it will display the data

to the visitor.

In Chapter 1, Getting Started with HTML CSS and Tailwind CSS,

we understood the responsibility of HTML, CSS, and JS with

respect to an HTML document. These get downloaded into the

browser before they get loaded on a window. It works the same

for dynamic websites as well provided that dynamic data or its

logic remains in the server, browsers cannot download them, it

can listen to the data sent by them to update on HTML

documents.

It is always true that a browser is a tool that loads the user

interface of the webpage. Here in this book, we are developing a

website that renders a simple user interface developed using

Tailwind CSS. We are not concentrating on any data logic or any

external data source that may drag the actual subject of this

book.

Parts of the website

As a normal visitor, when you observe an ideal website you can

identify some facts about the website. There is a common header

for the pages which has links to traverse between different web

pages of the website. There is a footer which remains the same

for almost all the pages. And there is a main section in-between,

which varies page to page.

When you observe it as a developer, you need to keep in mind

what is the effort that you need to invest to achieve it. An effort

can be the level of understanding required; lines of code to be

written, step-by-step approach that need to be followed, and so

on.

The development expects a concept called DRY – Don’t Repeat

Yourself, where you must try to reduce the repetition of work

you are doing for the same kind of work that arises repeatedly in

the context. Repetition can be developing a piece of user

interface from scratch even though you already made it before

with full effort, writing logic again that you already identified

before, and so on. Repetition yields an obvious result at an end,

but it violates a way of proper approach to resolving. For-loops,

functions, classes, and so on, are there in programming

languages to make work easier.

As we will develop a static website, there is no way of controlling

data between different web pages, it is accepted in the learning

stage of the website (as here we are concentrating on user

interface only) that we can rewrite common parts among all the

webpages. But while developing dynamic websites (while using

any frameworks) where you have control over repetitive sections

you must follow the DRY approach for development.

Building a restaurant website

Here as a part of applying knowledge gained from learning

Tailwind CSS from previous chapters, we are building a simple

website to understand the way of applying it to create a design

parameter for it. We are developing a responsive website that

has different web pages. Then we are hosting it in the GitHub

pages as well.

Here we are building a restaurant website where we are

showcasing food and drinks available in it along with the various

details that customers can have about the restaurant.

Let’s look into the list of webpages we are developing that in

combination build a full website:

Home page or landing page: It is the starting point of the

website. When you enter the URL of the website and soon it

loads on the browser this page will be shown. Developing

this page with a neat design and highlighting content will

create a good impression on the visitor.

Menu page: This page showcases a set of different foods

and drinks available in the restaurant. The clean design

creates a good feel to the visitor.

Gallery page: This is for showcasing the ambiance of the

restaurant. Images of different corners of the restaurant in a

well-arranged manner may create a positive feel for the

visitor.

Blogs: This page shows a set of blogs written on various

foods, about the place, and different occasions. These kinds

of pages make visitors engage with the website as it will

provide some unique information.

Contact us page: This page is for form activity where

visitors interact with the restaurant person for their

enquiries, orders, and so on.

FAQ Page - Frequently Asked Questions: This page

provides a set of questions and answers, where the visitor

may find an answer to his doubt.

Parts of our website

Following are the parts we are building for a complete website;

you can understand what each page contains in it:

Header: In this section, we are showing hyperlinks to all the

web pages and a logo of the website. We are

repeating/rewriting this section on all our websites, as it

remains common for all.

Footer: In this section, we are showing some important links

to the website, address, and contact details of the

restaurant. Similar to the header section this section too

remains the same for all the pages.

Home page: This is the landing page of the website, which

gives a glimpse of what the restaurant has in it.

Menu page: This has a combination of image and text

where you can find detailed information on special and

popular recipes of the restaurant.

Gallery page: This page showcases a set of images

arranged in a systematic way to convey images of the

restaurant.

Blogs page: This page shows a list of blogs written on

events in a restaurant. Title, short description, and an image

are displayed for each blog item.

Contact us page: This is a page which has a form in it,

where website visitors can fill it and submit to contact

individuals of the restaurant regarding their expected

information.

FAQ Page: It is a page where visitors can find a set of

questions and answers, which are frequently doubts of the

other visitors.

Think in Tailwind way

We are developing a static website by concentrating on the rapid

development of user interface using Tailwind CSS. Here,

whenever you are starting into the development of a piece of

user interface you must analyze and identify the set of Tailwind

CSS utility classes required to achieve it. Then you should begin

with adding them really into the code. Classnames should keep

on flashing in your mind whenever you look into the piece of user

interface that you need to begin with development.

Let’s begin development

In this section, we will develop a website that comprises the

pages mentioned before.

We are keeping the design of the website as simple as possible

purposefully because explaining the parts of the component

(part of the user interface) will be easier. Also, as and how the

complexity of the interface increases we need to use a greater

number of utility classes for an HTML element that makes you

feel complicated about the overall result classes set and its

effect. Even though here we are developing a simple website, we

will try to utilize most of the utility classes that we have learnt in

the previous chapters.

At the end, you will agree to the point without writing the single

line of CSS code we successfully developed a website that too

with a considerably shorter period.

Are you ready?

As we are explaining ways to develop the user interfaces, which

are parts of a webpage. We usually provide a piece of the code

base for its brief information throughout the upcoming pages,

and we may repeat the same piece of code-block to explain

other aspects. So do not rush to begin development as and when

we mention code blocks here. It will create confusion for sure.

Instead, look carefully classname we mentioned and read the

brief note we provided with it and try to understand the context.

At the end of the development of each webpage, we will provide

the complete HTML code of that page, and at the end of the

development of all the webpages we are deploying it under

GitHub pages and providing complete source code access to the

public users. So again, make sure you will understand the usage

of classes and digest the note provided on that code instead of

code block itself.

Webpages

As we are developing our website from scratch, we prefer you to

follow the TailwindCSS installation process again with a different

folder apart from that you already used while learning, those are

described in our previous chapters. (Avoid direct CDN usage as of

now)

As we said before, we are trying to practicalize concepts and

different types of the utility classes we learned. If you still feel

you haven’t done enough with learning utility classes do read

previous chapters again then start from.

Further reading comprises lots of code and a brief

explanation. Codes are written as per their syntax as we

follow while writing them on IDE. Have patience while

reading and understanding the code-blocks.

As we are developing a static website, we need to keep the same

piece of code for the header and the footer of the website on

all our web pages. So, we are developing it only once and we add

it to all our web pages. We have our navigation bar of the

website in the header section itself, we need to add one more

utility class to highlight the active page’s link to make it

distinguish from other links.

As we have two modes of themes (dark and light) we need

JavaScript interference here, we kept it as simple as possible so

that it can be explained to you briefly.

The usage of prebuilt open-source libraries that makes our run

shorter is a key for an enhancement of the pace of development.

We are utilizing this advantage as well. Here, we are using a

couple of Google fonts, lord-icons, ionicons JS libraries via CDN

and a set of copyright-free images (stored under src/images

folder).

CDNs of the fonts and icons will be added to the <head></head>

section of the HTML Document:

CDN resources added for ionicons:

<script

type="module"

src="https://unpkg.com/ionicons@5.5.2/dist/ionicons/ionicons.

esm.js">

</script>

CDN resources added for Google fonts:

<link rel="preconnect" href="https://fonts.googleapis.com">

<link rel="preconnect" href="https://fonts.gstatic.com"

crossorigin>

<link href="https://fonts.googleapis.com/css2?

family=Domine:wght@500&family=Jost:wght@500&display=swap"

rel="stylesheet">

CDN resources added for lord-icons:

<script src="https://cdn.lordicon.com/fudrjiwc.js"></script>

Let’s begin with things that need to be added in the config file,

(tailwind.config.js).

Here, we are providing you those changes we made on the config

file for our home page of the website. As we develop further, we

may add more changes to the config and we will provide them

before developing that page:

/** @type {import('tailwindcss').Config} */

module.exports = {

darkMode: 'class',

content: ["./src/**/*.{html,js}"],

theme: {

extend: {

colors: {

'primary':'#BEAA2F',

'secondary':'#FB4F29',

'tertiary':'#AF4462',

'quaternary':'#C53773',

'quinary':'#452F70'

},

fontFamily: {

domine: ['Domine', 'sans-serif'],

jost: ['Jost', 'sans-serif'],

},

keyframes: {

wave: {

'0%': { transform: 'rotate(0.0deg)' },

'10%': { transform: 'rotate(14deg)' },

'20%': { transform: 'rotate(-8deg)' },

'30%': { transform: 'rotate(14deg)' },

'40%': { transform: 'rotate(-4deg)' },

'50%': { transform: 'rotate(10.0deg)' },

'60%': { transform: 'rotate(0.0deg)' },

'100%': { transform: 'rotate(0.0deg)' },

},

rotating : {

'0%': { transform: 'rotate(0.0deg)' },

'25%': { transform: 'rotate(90deg)' },

'50%': { transform: 'rotate(180deg)' },

'75%': { transform: 'rotate(270deg)' },

'100%': { transform: 'rotate(360deg)' },

}

},

animation: {

'waving': 'wave 2s linear infinite',

'rotating':'rotating 5s linear infinite',

},

},

},

plugins: [],

}

Observations on the preceding code-block:

Added darkMode key with value class – it says dark mode can

be toggled using class property. dark class will be toggled

with <html> element (root element of the HTML document) so

that we can get effects of dark mode on adding it.

Extended five more colors (primary, secondary, tertiary,

quaternary, quinary) with their respective hex-codes, so

that they will be available along with the default colors of

the Tailwind CSS.

After adding CDNs of the Google fonts we need to declare

class names for those fonts, it will be done by extending

fontFamily, where we define font class name and expected

font followed by fallback font of it.

For animation effects, we need keyframes defined. These

keyframes are defined with a specific name and their

transition flow, under keyframes key.

Animation classes are defined which may utilize keyframes

that are already extended.

Extended properties are used along with their parent key

names,

For example, bg-primary, text-secondary, border-tertiary, font-

jost, font-domine, animate-waving, and so on.

Now let’s look into the HTML document which is modified to

begin with development:

<!doctype html>

<html class="dark">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<link href="/dist/output.css" rel="stylesheet">

<script type="module"

src="https://unpkg.com/ionicons@5.5.2/dist/ionicons/ionicons.esm.js

">

</script>

<script src="https://cdn.lordicon.com/fudrjiwc.js"></script>

<link rel="preconnect" href="https://fonts.googleapis.com">

<link rel="preconnect" href="https://fonts.gstatic.com"

crossorigin>

<link

href="https://fonts.googleapis.com/css2?

family=Domine:wght@500&family=Jost:wght@500&display=swap"

rel="stylesheet">

</head>

<body></body>

</html>

Header and footer

These remain the same throughout all the web pages we are

developing under this website. While using framework or any

systematic DRY approach we do not write header and footer in

all the pages, but here to keep the approach simple we are

repeating it in all the pages.

These two sections are starting and ending sections of the visual

part of the HTML document. Everything that arises in-between

these will build an actual webpage.

Header section will be present within <header></header> element

and Footer section will be present within <footer></footer>

element of the HTML document within the <body></body> element.

The code for Header is given as follows:

<header

class=" sticky top-0 z-20

bg-purple-100 text-purple-800

w-full h-12 md:h-auto

dark:text-purple-100 dark:bg-slate-800 shadow-md dark:shadow-

zinc-700">

<div class=" flex flex-row justify-between md:items-end

px-5 md:px-10 py-2">

<div class="md:hidden" onclick="toggleMenu('open')">

<ion-icon size="large" name="menu-outline"></ion-icon>

</div>

<div class="relative">

<div

class=" absolute top-0 z-10

h-16 w-16 md:h-24 md:w-24 rounded-full

outline-4 outline-dotted outline-purple-700

dark:outline-purple-300 animate-rotating

duration-500 ease-out hover:animate-none

cursor-pointer">

</div>

<img src="/src/images/logo.png"

class="h-16 w-16 md:h-24 md:w-24 z-20 " />

</div>

<div class="flex items-start md:items-center">

<div class=" hidden md:grid grid-cols-6 gap-x-10

grow items-stretch place-content-center

justify-items-center px-5 max-w-7xl">

<div class=" menu-item border-b-4 border-purple-400">

Home

</div>

<div class="menu-item">Menu</div>

<div class="menu-item">Gallery</div>

<div class="menu-item">Blogs</div>

<div class="menu-item">Contact us</div>

<div class="menu-item">FAQ</div>

</div>

<div class="md:mb-1">

<div id="light"

class="hidden cursor-pointer place-self-center"

onclick="changeTheme('light')"

title="Normal mode">

<ion-icon name="sunny-outline"></ion-icon>

</div>

<div id="dark"

class="hidden cursor-pointer place-self-center"

onclick="changeTheme('dark')"

title="Dark mode">

<ion-icon name="moon"></ion-icon>

</div>

</div>

</div>

</div>

<aside id="drawer"

class=" absolute top-0 z-50 bg-purple-100 text-purple-800

md:hidden

min-h-screen min-w-full overflow-y-hidden

dark:text-purple-100 dark:bg-slate-800

-translate-x-[100%] duration-200 ease-in-out">

<div class="flex flex-col py-10 px-5">

<div class="w-full flex justify-end">

<div class="w-4/6 flex justify-between">

<div class="relative">

<div class=" absolute top-0 h-16 w-16 md:h-24 md:w-24

rounded-full outline-4 outline-dotted

outline-purple-700

dark:outline-purple-300

animate-rotating duration-500 ease-out">

</div>

<img src="/src/images/logo.png"

class="h-16 w-16 md:h-24 md:w-24 z-20" />

</div>

<div class="md:hidden" onclick="toggleMenu('close')">

<ion-icon size="large" name="close-outline">

</ion-icon>

</div>

</div>

</div>

<ul class=" flex flex-col divide-y

divide-purple-200 font-jost gap-y-4 m-10 ">

<li class="text-base font-bold py-3">Home

<li class="text-base py-3">Menu

<li class="text-base py-3">Gallery

<li class="text-base py-3">Blogs

<li class="text-base py-3">Contact us

<li class="text-base py-3">FAQ

</div>

</aside>

</header>

The explanation is as follows:

Make sure you are concentrating on the classenames we

used with the HTML elements, HTML structure can be

created in multiple ways for the same user interface. For

ease of reading, we already marked class names with bold

style.

Head has a sticky style, which means it will always be stuck

to the position mentioned – here we mentioned top-0, even

the onscroll on page header part remains stuck to the top of

the page.

As we are developing a responsive website, there are two

blocks of code present in the header for the navigation bar.

One is for mobile devices, where it will be opened on click of

menu button and the other will be for devices bigger than

mobiles viewports – md:<utility-class> will add the same

style on and above medium devices.

Design of the header changes from the mobile viewport and

other devices. On mobile devices, the navigation drawer will

be opened on click of the menu button, whereas on desktop

that button disappears. This on click logic will be handled

from JavaScript.

Onclick of menu button calls a function from JavaScript which

opens a navigation menu on a screen. We have added a

transition effect with delay for navigation menu opening,

where it is like a drawer opening from the left side.

For dark theme handling, classes with dark: prefix were

mentioned along with normal theme classes. These classes

with dark prefixes will be active only when we shift the

website theme to dark.

There is a function written in JavaScript to toggle between

light and dark themes.

There is a class mentioned called menu-item this is not a

default class from Tailwind CSS, as all the menu items follow

the same design pattern, instead of repeating all classes for

all menu items, we made declaration of a classname which

comprises all those classes of menu item, then we use that

class name wherever we need same style pattern. (Defined

under input.css file).

On mobile devices, the logo of the restaurant will be

displayed in the center of the row where it will be present at

the left side of the screen in bigger devices.

Following is the visually rendered status of the header in

mobile devices:

Figure 5.1: Header images in both light (a) and dark (b) themes in mobile

devices

Following are the images of the header in the desktop

viewport:

Figure 5.2: Header images in both light (a) and dark (b) themes in desktop

devices

The code for Footer is given as follows:

<footer class=" static bottom-0 p-3

flex justify-center bg-purple-100

dark:bg-slate-800 dark:text-zinc-200">

<div class="flex flex-col justify-center items-center">

<div>Copyrights 2023</div>

<small>Contact +91 4458156974126</small>

</div>

</footer>

Let’s explain the preceding code:

We have developed a simple form of footer, which shows a

logo of the restaurant in the middle of the row in all find

devices/viewports.

Following is the visual rendered status of footer in mobile

devices:/li>

Figure 5.3: Footer images in both light (a) and dark (b) themes in mobile

devices

Following are the images of the footer in the desktop

viewport:

Figure 5.4: Footer images in both dark theme in desktop devices

Home page or Index page

This page is the landing page of the website which means when

you hit the URL and when you see things loaded on the browser

window that is nothing but an index page or landing page. This is

the page that creates a positive impression on visitors about the

business/person/place. In general visitors, judge their experience

with the website by referring to this page itself. Developing a

highly designed and properly informative landing page led to the

success of a website. Here, we are keeping things simple from

the design aspect, we are just eager to experiment more with

utility class than in-depth design. We are developing simple

information blocks for the homepage to make it feel like a

homepage.

As we saw the code level design of header and footer before this

section, we are not adding the same code in this webpage.

We made four parts on this homepage; each part represents

different kinds of information. These parts are nothing but

chunks of user interfaces. These are independent of each other.

A set of these chunks makes a complete webpage:

Banner block

Features block

Reviews block

Numerical block

The following code represents the placement of each block along

with the complete body of the HTML Document:

<body class="font-domine">

// header code comes here

<main>

// Banner Block

// Features Block

// Reviews Block

// Numerical Block

</main>

// footer code comes here

</body>

Banner block

<div class=" relative p-3 md:p-10 min-h-screen max-w-screen

bg-[url('/src/images/bg1.jpg')]

dark:contrast-125">

<div class=" grid grid-cols-1 md:grid-cols-2 grid-rows-2

items-stretch place-content-center min-h-screen

text-white text-3xl">

<div class=" border md:border-l-4 md:border-y-4 border-sky-400

md:rounded-tl-xl

dark:border-stone-300">

<div class=" h-full py-10

flex flex-col justify-center items-center">

South Indian

<img src="/src/images/sf.png"

class="h-44 w-44 md:h-80 md:w-80" />

</div>

</div>

<div class=" border md:border-t-4 md:border-x-4 border-amber-

500

md:rounded-tr-xl dark:border-stone-300">

<div class=" h-full py-10

flex flex-col justify-center items-center">

North Indian

<img src="/src/images/nf.png"

class="h-44 w-44 md:h-80 md:w-80" />

</div>

</div>

<div class=" border border-blue-60

md:border-b-4 md:border-x-4 0 md:rounded-bl-xl

dark:border-stone-300">

<div class=" h-full py-10

flex flex-col justify-center items-center">

Vegan

<img src="/src/images/vf.png"

class="h-44 w-44 md:h-80 md:w-80" />

</div>

</div>

<div class=" border md:border-r-4 md:border-y-4 border-orange-600

md:rounded-br-xl dark:border-stone-300">

<div class="h-full py-10 flex flex-col justify-center items-

center">

Drinks and Juices

<img src="/src/images/juices.png"

class="h-44 w-44 md:h-80 md:w-80" />

</div>

</div>

</div>

<div class=" hidden absolute top-0 h-full w-[95%] z-10

md:flex items-center justify-center">

<img src="/src/images/logo.png"

class=" h-44 w-44 drop-shadow-2xl cursor-pointer

border-2 border-dashed border-zinc-200 rounded-full

hover:animate-waving duration-900 ease-in-out" />

</div>

</div>

Observations on the preceding code-block:

We used an image as a background for the grid layout. We

are increasing brightness on shift to dark mode.

We are creating a grid block with 2 rows and 2 columns,

where these rows-columns are reduced to 1 in the mobile

viewport. Each block shows sample food items available in

the restaurant.

In the center of this four-block layout, there is a restaurant

logo present that disappears on the mobile viewport.

Logo has an absolute position with reference to the grid

layout. This logo animates once as a hover effect.

Following are the snapshots of these blocks on both mobile

viewports:

Figure 5.5: Banner block images in both light (a) and dark (b) themes in

desktop devices

Following are the images of banner-block on desktop devices:

Figure 5.6: Banner block images in both light (a) and dark (b) themes in mobile

devices

Features block is given as follows:

<div class=" h-full w-full md:h-[20rem] p-10 font-jost

bg-lime-200 flex justify-center

dark:bg-slate-800/90 text-gray-800 dark:text-white">

<div class="w-full flex flex-col md:flex-row justify-around text-

2xl">

<div class="px-20 flex flex-col items-center justify-center">

<lord-icon src="https://cdn.lordicon.com/vukdchss.json"

trigger="loop" delay="2000"

class="h-36 w-36 md:h-[10rem] md:w-[10rem]">

</lord-icon>

<div class="font-semibold">Clean</div>

</div>

<div class=" px-20 flex flex-col items-center justify-center">

<lord-icon src="https://cdn.lordicon.com/ihyatngg.json"

trigger="loop" delay="2000"

class="h-36 w-36 md:h-[10rem] md:w-[10rem]">

</lord-icon>

<div class="font-semibold">Quality</div>

</div>

<div class="px-20 flex flex-col items-center justify-center">

<lord-icon src="https://cdn.lordicon.com/efdhjqgx.json"

trigger="loop"

delay="2000"

class="h-36 w-36 md:h-[10rem] md:w-[10rem]">

</lord-icon>

<div class="font-semibold">Original</div>

</div>

</div>

</div>

Here we are using a flex box to display live icons from lord-

icons. By default, that is on mobile devices it will be in a

column direction where three icons will be shown one below

another and in desktop devices this flex will be displayed in

a row direction, where icons will be displayed one aside from

another.

We are using another font family for this that we declared in

our config file – font-jost.

On shifting to dark mode, this flex-box’s background color

and text color will be changed.

Following are the snapshots of these blocks on both mobile

and desktop viewports:

Figure 5.7: Feature block images in both light (a) and dark (b) themes in

desktop devices

Following are the images of features-block in desktop

devices:

Figure 5.8: Feature block images in both light (a) and dark (b) themes in mobile

devices

Code for Reviews Block is given as follows:

<div class=" container min-w-full p-2 md:p-20

bg-orange-200 dark:bg-slate-600 ">

<div class=" flex justify-center text-4xl py-3 font-semibold

font-jost text-gray-700 dark:text-zinc-200">

Reviews

</div>

<div class=" columns-1 px-4 text-xs p-5 space-y-3

md:columns-3 md:px-10 md:text-base

dark:text-zinc-200">

<div class=" flex flex-col p-4

border border-secondary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 1</div>

</div>

<div class="italic">

Nice ambience, good restaurant

</div>

</div>

<div class=" flex flex-col p-4 border border-primary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 2</div>

</div>

<div class="italic">

Good Taste :)

</div>

</div>

<div class=" flex flex-col p-4

border border-tertiary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 3</div>

</div>

<div class="italic">

Pocket friendly prices.. best offers

</div>

</div>

<div class=" flex flex-col p-4

border border-quaternary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 4</div>

</div>

<div class="italic">

Decent Environment, lots of choices

</div>

</div>

<div class=" flex flex-col p-4

border border-quinary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 5</div>

</div>

<div class="italic">

Overall Good Experience

</div>

</div>

<div class=" flex flex-col p-4

border border-secondary rounded-md

dark:bg-slate-800 ">

<div class="flex space-x-2 items-center">

<img src="/src/images/profile.png"

class="w-12 h-12 rounded-full" />

<div class="text-md font-semibold">Person 6</div>

</div>

<div class="italic">

Nice Restaurant with good, clean maintenance

</div>

</div>

</div>

</div>

Here in this block, we are using the columns utility class for

arranging items within the element.

On mobile devices, we can see all the items will be arranged

in a single column and further, on bigger devices, it will be

changed to three columns.

Each item under this block is further aligned using flexbox.

Following are the snapshots of these blocks on both mobile

and desktop viewports:

Figure 5.9: Reviews block images in both light (a) and dark (b) themes in

desktop devices

Following are the images of reviews-block in desktop

devices:

Figure 5.10: Reviews block images in both light (a) and dark (b) themes in

mobile devices

Numerical blocks is given as follows:

<div class=" container min-w-full p-10

bg-rose-200 dark:bg-gray-800">

<div class="flex flex-col md:flex-row justify-around gap-y-6">

<div class=" w-full md:w-44 lg:w-56 xl:w-72 2xl:w-80 flex flex-

col p-5

text-center text-gray-700 dark:text-gray-200

border border-rose-500 rounded-md shadow-xl shadow-rose-400

dark:border-gray-100 dark:shadow-gray-100

dark:hover:border-gray-50 hover:-translate-y-5 duration-150

hover:border-rose-700 hover:shadow-2xl">

<div class="text-2xl">400+</div>

<div class="text-base">Tables</div>

</div>

<div class=" w-full md:w-44 lg:w-56 xl:w-72 2xl:w-80 flex flex-

col p-5

text-center text-gray-700 dark:text-gray-200

border border-rose-500 rounded-md shadow-xl

shadow-rose-400 dark:border-gray-100 dark:shadow-gray-100

dark:hover:border-gray-50 hover:-translate-y-5

duration-150 hover:border-rose-700 hover:shadow-2xl">

<div class="text-2xl">500+</div>

<div class="text-base">Dishes</div>

</div>

<div class=" w-full md:w-44 lg:w-56 xl:w-72 2xl:w-80 flex flex-col

p-5

text-center text-gray-700 dark:text-gray-200

border border-rose-500 rounded-md shadow-xl shadow-rose-400

dark:border-gray-100 dark:shadow-gray-100

dark:hover:border-gray-50 hover:-translate-y-5

duration-150 hover:border-rose-700 hover:shadow-2xl">

<div class="text-2xl">10-15 Mins</div>

<div class="text-base">Prep. Time</div>

</div>

<div class=" w-full md:w-44 lg:w-56 xl:w-72 2xl:w-80 flex flex-

col p-5

text-center text-gray-700 dark:text-gray-200

border border-rose-500 rounded-md shadow-xl shadow-rose-400

dark:border-gray-100 dark:shadow-gray-100

dark:hover:border-gray-50 hover:-translate-y-5 duration-150

hover:border-rose-700 hover:shadow-2xl">

<div class="text-2xl">25</div>

<div class="text-base">Total Kitchens</div>

</div>

</div>

</div>

Here in this block, we are showing four-card elements that

are having border and shadows effects. On hover

interaction, they will slightly translate upwards within

specific duration.

We are using a flexbox to align these four items within its

container. On mobile devices, they will be in a single column

and on bigger devices they will be in a single row.

Each of these items will take a different width on different

viewport devices. On smaller or mobile devices, it will be a

full width item and for medium, large, extra-large, and

double extra-large devices it increases gradually.

Following are the snapshots of these blocks on both mobile

and desktop viewports:

Figure 5.11: Numerical block images in both light (a) and dark (b) themes in

desktop devices

Following are the images of numerical-block in desktop

devices:

Figure 5.12: Numerical block images in both light (a) and dark (b) themes in

mobile devices

Including header, footer, and these four blocks within the proper

HTML layout completes the homepage. We name it as index.html,

you can try following the HTML document in your browser to look

into all the features we discussed earlier. Make sure the

output.css file is added in the header and all images are exist.

JavaScript used for mobile navigation and light-dark theme

shifting has been added here in the code. Have a look into those

simple logic as well.

A complete HTML file can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/index.md

Gallery page

Gallery page is one where we are mainly focusing on image

representation. There are many ways to represent images on a

webpage; here, we follow a simple approach by making three

sections of images in our gallery page:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/index.md

Our ambiance

Clicks from kitchen

Our food gallery

Our ambience

This section is to show the ambiance of the restaurant, where we

show a set of images around the restaurant logo:

<div class=" mx-auto relative

bg-teal-100 dark:bg-gray-800">

<div class=" px-4 py-8 w-full dark:text-zinc-300

text-right text-xl md:text-4xl text-slate-800">

It's all about our ambiance...

</div>

<div class=" grid grid-cols-2 p-4

md:grid-cols-4

gap-3 place-content-stretch">

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image1.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image2.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image3.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image4.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image5.jpg"

alt="image"/>

<div class="w-full p-10 order-first col-span-2

md:order-none md:row-span-2 ">

<img class=" p-10 md:m-auto shadow-2xl shadow-emerald-600

rounded-full md:rounded"

src="/src/images/logo.png"

alt="image"/>

</div>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image6.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image7.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image8.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image9.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image10.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover rounded

dark:border dark:border-gray-500"

src=" /src/gallery/image11.jpg"

alt="image"/>

<img class=" inset-0 h-full w-full object-cover

rounded dark:border dark:border-gray-500"

src=" /src/gallery/image12.jpg"

alt="image"/>

</div>

</div>

Here we are using a grid layout with two columns in the

mobile viewport and four columns in the desktop viewport.

In the case of the desktop viewport, the restaurant logo is

there in the middle of the layout by spanning two rows and

two columns.

The same logo block will be moved to the top of the layout

by using the order utility class.

Following are the snaps of the rendered result of this code

block:

Figure 5.13: Ambience block images in both light (a) and dark (b) themes in

desktop devices

Following are the images of ambiance-block in desktop

devices:

Figure 5.14: Ambience block images in both light (a) and dark (b) themes in

mobile devices

Clicks from kitchen

This block showcases images related to the kitchen of the

restaurant. Here, we are using a simple image-moving marquee

for image representation:

<div class=" relative py-20 flex flex-col space-y-8

bg-sky-100 dark:bg-slate-700 overflow-hidden">

<div class=" px-4 w-full dark:text-zinc-300

text-left text-slate-800 text-xl md:text-4xl">

Clicks from our kitchen...

</div>

<div class=" md:h-[18rem] grid grid-cols-2 gap-2

md:flex md:justify-between

md:items-center space-x-1 md:animate-marquee">

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/1.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/2.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/3.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/4.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/5.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/6.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/7.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/8.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/9.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/10.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/11.jpg"

alt="image"/>

<img class="inset-0 h-full w-full object-cover "

src=" /src/kitchen/12.jpg"

alt="image"/>

</div>

</div>

Here in this block, we are showing images in a marquee

pattern by adding animation to the layout of the images.

Each image will occupy the full space of the grid block –

using the inset utility class.

On mobile devices instead of a marquee it shows a grid of

two columns.

Following are the snapshots of rendered results from this

code block:

Figure 5.15: Kitchen images block in desktop (a) and mobile (b) devices

Our food gallery code-block is given here. This block showcases

a set of images in a masonry tile design:

<div class="p-5 bg-amber-100 dark:bg-gray-700 ">

<div class=" px-4 py-8 w-full dark:text-zinc-300

text-left text-gray-700 text-xl md:text-4xl">

Our food gallery...

</div>

<div class="columns-2 md:columns-5 space-y-3">

<img src="/src/food/1.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/2.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/3.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/4.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/5.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/6.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/7.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/8.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/9.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/10.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/11.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/12.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/13.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/14.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/15.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/16.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/17.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/18.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/19.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/20.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/21.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/22.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/23.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/24.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/25.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/26.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/27.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/28.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/29.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/30.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/31.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/32.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/33.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/34.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/35.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/36.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/37.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/38.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/39.jpg"

class="rounded dark:border dark:border-amber-200">

<img src="/src/food/40.jpg"

class="rounded dark:border dark:border-amber-200">

</div>

</div>

This block uses a column layout to display all the images in

a masonry title pattern. As each image is having different

height properties and when multiple such images are

arranged under a column layout it will form an arrangement

that looks similar to a masonry block arrangement.

On the mobile viewport, all the images are arranged within

two columns, and in the desktop viewport, it will be five

columns.

In dark mode, each image gets a border property to make

them visible and highlighted with a dark background.

Following are the snapshots of rendered results from this

code block:

Figure 5.16: Food images block in both light (a) and dark (b) themes in desktop

devices

Following are the images of food images-block in desktop

devices:

Figure 5.17: Food images block in both light (a) and dark (b) themes in mobile

devices

Extended the following configurations Tailwind config file for

gallery page:

animation: {

'marquee':'marquee 30s linear infinite',

},

keyframes: {

marquee : {

'0%': { transform: 'translateX(1%)' },

'100%': { transform: 'translateX(-100%)' },

},

}

Complete HTML Document of gallery page that you can try in

your browser. We saved it as gallery.html.

Complete HTML file can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/gallery.md

Menu page

This is a web page where we show brief information about the

restaurant and a simple menu of items available in the

restaurant.

For this page, we are using one of the official plugins from

Tailwind CSS called Line-clamp. This plugin is used to clamp the

exceeding line in the block.

Run the following command in the terminal within your project

folder:

npm install -D @tailwindcss/line-clamp

Then add the following (require() line) in the config file within

the plugin block, this enables installed plugins to the project:

plugins: [

require('@tailwindcss/line-clamp')

]

There are two sections in this page:

Text block

Menu block

Text block

This block displays the dummy text along with the logo of the

restaurant:

<div class="text-gray-900 text-xl md:text-3xl py-10 dark:text-

slate-100">

Foo...'d Eateries

</div>

<div class="w-full bg-slate-100 dark:bg-gray-800 ">

<p class="text-gray-700 dark:text-white clear-right

first-letter:text-3xl md:first-letter:text-5xl">

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/gallery.md

Contrary to popular belief, Lorem Ipsum is not simply random

text. It has roots in a piece of classical Latin literature

from 45 BC, making it over 2000 years old. Richard McClintock,

a Latin professor at Hampden-Sydney College in Virginia,

looked up one of the more obscure Latin words, consectetur,

from a Lorem Ipsum passage, and going through the cites of the

word in classical literature, discovered the undoubtable

source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of

"de Finibus Bonorum et Malorum" (The Extremes of Good and

Evil) by Cicero, written in 45 BC. This book is a treatise on

the theory of ethics, very popular during the Renaissance. The

first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..",

comes from a line in section 1.10.32.

The standard chunk of Lorem Ipsum used since the 1500s is

reproduced below for those interested. Sections 1.10.32 and

1.10.33 from "de Finibus Bonorum et Malorum" by Cicero are

also reproduced in their exact original form, accompanied by

English versions from the 1914 translation by H. Rackham.

Contrary to popular belief, Lorem Ipsum is not simply random

text. It has roots in a piece of classical Latin literature

from 45 BC, making it over 2000 years old. Richard McClintock,

a Latin professor at Hampden-Sydney College in Virginia,

looked up one of the more obscure Latin words, consectetur,

from a Lorem Ipsum passage, and going through the cites of the

word in classical literature, discovered the undoubtable

source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of

"de Finibus Bonorum et Malorum" (The Extremes of Good and

Evil) by Cicero, written in 45 BC. This book is a treatise on

the theory of ethics, very popular during the Renaissance. The

first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..",

comes from a line in section 1.10.32.

</p>

</div>

Here, we are showing an image that is immersed in a flow of

text. The image is floating to the left of the text and the text has

clear space for the image:

The first character can be capitalized using the first-letter

modifier available in the utility classes.

On shift to dark mode text color and background color got

toggled.

Following are the snapshots of the block:

Figure 5.18: Text block in both light (a) and dark (b) themes in desktop devices

Following are the images of text-block in desktop devices.

Figure 5.19: Text block in both light (a) and dark (b) themes in mobile devices

Menu Block

This block gives a list of available items for the restaurant. In a

different category, we are showing different food item names:

<div class="relative">

<div class=" z-50 inset-0 h-full w-full flex

flex-col md:flex-row font-jost py-5 space-y-4 md:space-y-0

md:space-x-5">

<div class="w-full border border-dashed border-slate-800">

<div class="relative">

<div class="absolute -inset-0.5 blur-md opacity-75

bg-gradient-to-r from-pink-600 to-purple-600 ">

</div>

<div class="relative flex flex-col">

<div class="border border-slate-900 py-4 px-3 text-center

text-2xl dark:bg-slate-200 dark:text-slate-800

bg-slate-800 text-slate-300 ">

South Indian

</div>

<div class="flex flex-col space-y-4 px-5 py-3

divide-y-2 divide-slate-200 dark:divide-slate-500

text-slate-800 dark:text-slate-200

bg-white dark:bg-gray-700 ">

<div class="line-clamp-1 w-full pt-5">

Rava idly...................................

</div>

<div class="line-clamp-1 w-full pt-5">

Pulao.........................

</div>

<div class="line-clamp-1 w-full pt-5">

Kesaribath.............

</div>

<div class="line-clamp-1 w-full pt-5">

Masala Dosa......................

</div>

<div class="line-clamp-1 w-full pt-5">

Set Dosa..........................

</div>

</div>

</div>

</div>

</div>

<div class="w-full border border-dashed border-slate-800">

<div class="relative">

<div class="absolute -inset-0.5 blur-md opacity-75

bg-gradient-to-r from-pink-600 to-purple-600 ">

</div>

<div class="relative flex flex-col">

<div class="border border-slate-900 py-4 px-3 text-center

text-2xl dark:bg-slate-200 dark:text-slate-800

bg-slate-800 text-slate-300 ">

North Indian

</div>

<div class="flex flex-col space-y-4 px-5 py-3

divide-y-2 divide-slate-200 dark:divide-slate-500

text-slate-800 dark:text-slate-200

bg-white dark:bg-gray-700 ">

<div class="line-clamp-1 w-full pt-5">

Wheat Roti...................................

</div>

<div class="line-clamp-1 w-full pt-5">

Naan.........................

</div>

<div class="line-clamp-1 w-full pt-5">

Veg Biriyani.............

</div>

<div class="line-clamp-1 w-full pt-5">

Parota......................

</div>

<div class="line-clamp-1 w-full pt-5">

Samosa..........................

</div>

</div>

</div>

</div>

</div>

<div class="w-full border border-dashed border-slate-800">

<div class="relative">

<div class="absolute -inset-0.5 blur-md opacity-75

bg-gradient-to-r from-pink-600 to-purple-600 ">

</div>

<div class="relative flex flex-col">

<div class="border border-slate-900 py-4 px-3 text-center

text-2xl dark:bg-slate-200 dark:text-slate-800

bg-slate-800 text-slate-300 ">

Vegan

</div>

<div class="flex flex-col space-y-4 px-5 py-3

divide-y-2 divide-slate-200 dark:divide-slate-500

text-slate-800 dark:text-slate-200

bg-white dark:bg-gray-700 ">

<div class="line-clamp-1 w-full pt-5">

Fruit Mix...................................

</div>

<div class="line-clamp-1 w-full pt-5">

Coconuty.........................

</div>

<div class="line-clamp-1 w-full pt-5">

Cashew Dosa.............

</div>

<div class="line-clamp-1 w-full pt-5">

Veg Chops......................

</div>

<div class="line-clamp-1 w-full pt-5">

Soy Paneer masala..........................

</div>

</div>

</div>

</div>

</div>

<div class="w-full border border-dashed border-slate-800">

<div class="relative">

<div class="absolute -inset-0.5 blur-md opacity-75

bg-gradient-to-r from-pink-600 to-purple-600 ">

</div>

<div class="relative flex flex-col">

<div class="border border-slate-900 py-4 px-3 text-center

text-2xl dark:bg-slate-200 dark:text-slate-800

bg-slate-800 text-slate-300 ">

North Indian

</div>

<div class="flex flex-col space-y-4 px-5 py-3

divide-y-2 divide-slate-200 dark:divide-slate-500

text-slate-800 dark:text-slate-200

bg-white dark:bg-gray-700 ">

<div class="line-clamp-1 w-full pt-5">

Tea...................................

</div>

<div class="line-clamp-1 w-full pt-5">

Coffee.........................

</div>

<div class="line-clamp-1 w-full pt-5">

Coco cola.............

</div>

<div class="line-clamp-1 w-full pt-5">

Apple Juice......................

</div>

<div class="line-clamp-1 w-full pt-5">

Soup..........................

</div>

</div>

</div>

</div>

</div>

</div>

Observations on the preceding code-block:

Here, in this block, we are using flexbox to align four menu

categories one beside another, on the mobile viewport they

will be one below another.

There is a line-clamp-1 utility used from the installed

plugin, which can take only one row, further data will be

clamped.

There is a background element for each menu category

which has a gradient background and a blur effect added.

The following shows snapshots of the code block:

Figure 5.20: Menu block in both light (a) and dark (b) themes in desktop

devices

Following are the images of menu-block in desktop

devices:

Figure 5.21: Menu block in both light (a) and dark (b) themes in mobile devices

Complete HTML file can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/menu.md

Conclusion

This chapter provided information on different ways of web

pages that can be created using Tailwind CSS utilities.

Understanding the way we approached to develop Tailwind CSS

can help you to create UI components on your own.

In the next chapter, we will see the development of some more

web pages along with deploying this website into the GitHub

pages.

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/menu.md

CHAPTER 6

Advanced Website

Development with Tailwind CSS

Introduction

In the previous chapter, we covered the development of the first

three pages of the website we are building using Tailwind CSS.

We hope it brought you at least some knowledge on the structure

of web pages. This chapter is a continuation of the previous

chapter, here presenting the other three webpages of the

website. At the end, we are giving brief information on GIT, a

code management platform. We will also explain a way to deploy

a website that we are developing.

Structure

In this chapter, the following topics will be discussed:

Webpage 4 – Blogs page

Webpage 5 – Contact us page

Webpage 6 – FAQ page

GIT: a brief note

GIT operations

GitHub

Deployment

Blogs page

This page is meant for providing information to the users, in real

time, these kinds of pages make visitors engage with the

website. Here in our development, we are focusing on blog listing

pages, where you can see a set of blogs already published by

restaurants on various topics that give a set of information to

visitors. The same block of HTML that repeats multiple times with

different data in it makes a blog page.

Here, our blog items consist of two main columns, one has an

image of the blog, and the other shows the title, brief

description, and publish date.

We are using a grid block to render similar HTML blocks

systematically. It shows one blog item in a row for mobile devices

and three items in a row for bigger screen resolutions.

Let's look into this repeating block as an HTML code:

<div class=" bg-slate-100 md:flex rounded-xl dark:bg-slate-600 min-

h-max

dark:border-2 dark:border-slate-50/25">

<img class="h-48 w-full md:w-48 object-cover rounded-t-xl

md:rounded-l-xl md:min-h-max"

src="/src/blogs/blog1.jpg" />

<div class="flex flex-col p-4 justify-between">

<div class="flex flex-col">

<div class="font-semibold text-lg dark:text-gray-100 line-

clamp-1">

5 Best North Indian Recipes

</div>

<div class="text-sm text-gray-600 dark:text-gray-100 text-md

line-clamp-3 md:line-clamp-4">

Lorem Ipsum is simply dummy text of the printing and typesetting

industry. Lorem Ipsum has been the industry's standard dummy text

ever since the 1500s, when an unknown printer took a galley of type

and scrambled it to

</div>

</div>

<div class="flex flex-col text-sm">

<div class="text-gray-400">21-08-2022</div>

</div>

<div class="flex justify-end text-sm cursor-pointer underline

text-blue-500 hover:text-blue-600">

Read more

</div>

</div>

</div>

Key highlights of this block of code:

Blog items will be displayed vertically on the mobile aspect

where blog image and description are displayed vertically .

On bigger devices, image and information blocks will be

shown one beside another.

The Information section will be aligned using the flex

column, where the title, description, and publish date will be

displayed one below another.

Multiple such items can be children of the following grid

layout:

<div class=" grid grid-cols-1 p-4

md:grid-cols-3

gap-3 place-content-stretch">

// blog blocks

</div>

Following are the snaps of the rendered result of this code

block in desktop devices:

Figure 6.1: Blogs list images in both light (a) and dark (b) themes in desktop

devices

Blogs page on mobile devices:

Figure 6.2: Blogs list of images in both light (a) and dark (b) themes in mobile

devices

A complete HTML file can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/blogs.md

As you learned to create the user interface of web pages

using Tailwind CSS utility classes, you can create a blog

detail page for the blog list page that we just created.

You can give it a try for the development user interface

of that page.

Contact us page

This page represents the form structure that is used to contact

the restaurant by filling the details in the form. Here, we are

using TailwindCSS’s official forms plugin. This makes the form’s

input elements attain basic styles by default.

To install this plugin, run the following command on the

Command Prompt within the project folder:

npm install -D @tailwindcss/forms

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/blogs.md

After installing the plugin, you need to mention this plugin on the

config file of the Tailwind CSS to enable its effects.

There is a plugin array present within tailwind.config.js file under

module.exports object, add this form plugin as another array item:

plugins: [

require('@tailwindcss/forms'),

// other plugins if anything added before

]

The aim is to create a page with a form where it contains basic

input fields that a common contact us form contains, for

example, first name, last name, email address, and so on.

Both on Mobile and Desktop viewport devices form looks similar

where we will show input fields one below another and a button

to submit at the end. Similar to the Blogs page, here also we are

reusing the design of the input field to all the elements of the

form, so that form looks cleaner.

Let’s look into the piece of HTML block that creates one form

element:

<div class="relative">

<input type="text" name="fname" id="fname" autocomplete="off"

class="px-4 py-2 peer w-full border border-purple-400 bg-gray-

50

shadow-sm placeholder-transparent text-purple-600

focus:outline-none rounded-md

focus:border-purple-600 focus:ring focus:ring-purple-300

focus:ring-opacity-50 dark:bg-slate-800 dark:text-gray-50"

placeholder="First Name" />

<label for="fname"

class=" bg-gray-50 px-2 absolute left-2 -top-3.5 text-gray-600

text-sm transition-all peer-focus:-top-3 peer-focus:bg-

gray-50 peer-focus:text-gray-600 peer-focus:text-sm

peer-placeholder-shown:text-base

peer-placeholder-shown:text-gray-400

peer-placeholder-shown:top-2

dark:peer-focus:bg-slate-800

dark:bg-slate-800 dark:text-gray-50

dark:peer-focus:text-gray-100 ">

First Name

</label>

</div>

Highlights we can observe from the preceding piece of code:

Here, we are using the peer concept available in the utility

classes that help us to control peer elements from another

element.

Input’s placeholder will be transparent.

Border color changes on focusing the input box and input

gets different colors on dark themes.

Input element holds peer class, on interacting with the input

element associated label element reacts to it.

On focusing the input element, the label element:

Moves in the top direction for three points (that is, -top-3

utility class).

Changes its text color to gray-600 (that is, text-gray-

600).

Changes its text size to sm (that is, text-sm).

On the placeholder shown of the input element, the label

element:

Changes its text size to base (that is, text-base).

Changes its text color to gray-400 (that is, text-gray-

40).

Moves two point down from top (that is, top-2).

On Dark theme, background color of the label will be

slate-800 that is, bg-slate-800) and text color will be gray-

100 (that is, text-gray-100)

Following is the div block and a form element where all the

input fields will be present, inclusive of all these comprise a

complete contact us form:

<form method="POST" id="contact_us_form" onsubmit="return

submitForm();">

<div class="space-y-5 my-5 px-3 md:px-0">

/// all input fields

</div>

</form>

The Contact us form contains the following elements:

First name: Text input

Last name: Text input

Email address: Email address input

We have added a validation rule for this and error messages

will be displayed using peer-invalid state modifiers.

Mobile number: Number input

Query: Textarea input

Submit button

The following are the snaps of the rendered result of this

code block in desktop devices:

Figure 6.3: Contact us page images in both light (a) and dark (b) themes in

desktop devices

The following are the snaps of the rendered result of this

code block in mobile devices:

Figure 6.4: Contact us page images in both light (a) and dark (b) themes in

mobile devices

The complete HTML file can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/contact_us.md

FAQ page

This is the page that has a list of questions and answers; these

are common aspects that customers ask in general. Instead of

querying by filling out the form, customers can clarify doubts or

other information by looking into these questions and answers.

Here, we are developing these Question-and-Answer elements

using <details> and <summary> tags available in the HTML. By

designing these tags using Tailwind CSS utility classes to make

them look approaching.

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/contact_us.md

The following piece of HTML shows a single Question and Answer

element developed using <details> and <summary> designed using

Tailwind CSS:

<div class="w-full px-2">

<details class=" open:bg-white dark:open:bg-gray-900 ring-1 ring-

gray-600

dark:ring-gray-100 dark:open:ring-gray-200 open:shadow-lg

p-6 rounded-lg">

<summary class=" text-sm leading-6 text-slate-900

dark:text-white font-semibold select-none">

Popular recipes of the restaurant?

</summary>

<div class="mt-3 text-sm leading-6 text-slate-600 dark:text-

slate-400">

<p>

Lorem Ipsum is simply dummy text of the printing and

typesetting industry. Lorem Ipsum has been the industry's

standard dummy text ever since the 1500s,

</p>

</div>

</details>

</div>

Highlights we can observe from the given piece of code:

We are using a summary tag for displaying the question and a

div tag below it contains an answer for the question, as

surrounded by tags with details tag. On render, it shows only

a summary tag and by clicking it, we can observe a div tag that

contains the answer.

Added ring attribute for the details tag that covers both

question and answer in the same block.

Added leading-6 class to display the texts of question and

answer loosely.

Added select-none class for both question and answer so that

user cannot select them using the mouse cursor.

Repeating the preceding piece of code as many numbers of

times as wished with different questions and answers

generates a full FAQ page.

The following figure shows snaps of the FAQ page in the

desktop viewport.

Add open attribute to the details tag to keep the open answer

on the page load itself (HTML default attribute):

Figure 6.5: FAQ page images in both light (a) and dark (b) themes in desktop

devices

Figure 6.6 shows snaps of FAQ pages on mobile devices:

Figure 6.6: FAQ page images in both light (a) and dark (b) themes in mobile

devices

A complete HTML code can be found at this link:

https://github.com/iamkartikbhat23/tailwindCSSWebsite/b

lob/main/faq.md

This completes the development of a complete website with six

webpages. We tried to cover possibly a good number of utility

classes that you learned from the initial chapters. We hope you

have gained at least some knowledge of website development.

We expect you need to go through carefully on each element of

the HTML where we applied various utility classes to achieve the

expected user interface. Understand the usage of utility classes,

and try it again them your webpage to digest things more deeply.

Hope you identified that we haven’t used a single line of CSS

directly in any of our web pages, Tailwind CSS never made us

think about writing our CSS rules. Isn’t it?

As we completed the development, now it's time to deploy this

website on GitHub pages so that anybody can view it on the

internet. As a beginning step let’s begin with some simple

concepts of GIT.

GIT: a brief note

GIT is a popular version control system. In general, it is used to

track changes in the set of files. When multiple developers work

on the same project or source code, they will use it as a

collaboration tool to share the codebase with each other. GIT is a

free and open-source tool.

GIT makes data integrity easy with good speed and a support for

distributed systems made it popular among the huge developer

community. It was launched in the year 2005 by Linus Torvalds

(creator of the Linux operating system kernel) and maintained by

Junio Hamano and others. The currently running version is 2.39

(in March 2023).

GIT working flow

The following points explain how GIT works in a local machine:

Create a repository (project/folder) with a GIT hosting tool

(for example, GitHub, Bitbucket, and so on):

https://github.com/iamkartikbhat23/tailwindCSSWebsite/blob/main/faq.md

By signing in to the GIT hosting tools you can create

repositories that hold your source code. These hosting tools

store files of your project called as repository. You can get

various setting-up options while creating the repository from

that hosting tool. For example, you can keep your repository

as public so that everybody can access the project files or as

private so that either only you or a specific set of

people/developers mentioned by you can access the files of

the repository. This hosting tool may provide its file editor as

well to edit files directly online. These hosting tools will

communicate with GIT installed in a local machine/computer.

Clone or download that repository to the local machine:

Cloning or downloading the repository in the sense, you are

creating an instance to communicate with a GIT hosting tool

from your local machine. Changes you made to the code will

be integrated with the hosting tool from this instance.

Add/create files to the repository and commit (save) the

changes to the repository:

After cloning the repository, you can add files to the

repository of your wish then you need to commit or save the

changes to the repository so that these changes will be

ready for uploading to the hosting tool of the source code.

(Assume you have added two files – file A and file B)

Push the new changes to the hosting tool again:

After committing or saving you are now ready to upload or

to push the change to the hosting tool after this step change

you made will be reflected to the hosted repository.

When you clone or download again the repository at

different locations in your local system. It contains all the

changes you made/pushed last time to the repository.

This completes a normal flow of source code management.

Further, let us see how this GIT works with multiple

users/developers on the same project or source code:

After Developer 1 completes the preceding steps, there are

two files (file A and file B) available in the hosted repository.

Developer 2 will clone or download the repository and he will

get those two files (file A and file B) added by the developer

into his local system then he adds another one file (file C) to

the repository, then commits the changes and push or

upload the files to the hosted repository.

Here as Developer 2 hasn’t made any changes on those two

files (file A and file B) added by Developer 1 and he just

added a new file (file C) to the repository so GIT will

push/upload only the new change he made on the repository

instead of uploading other two files already present in the

repository along with a new one – this makes push

communication fast as it only looks for changes made on

the local machine.

This completes one cycle of source code management for

Developer 2, now the local repository of Developer 2 is up to

date with the hosted repository as he made a push

operation on the hosted repository at last.

Now, Developer 1 needs to pull/download the repository to

get that new file (file C) added by Developer 2. Here as well,

as the local system of Developer 1 already contain those

two files (file A and file B) and they are unaltered by

Developer 2 GIT will not pull them again and it pulls only a

new change (file C) to the Developer 1’s local system- this

makes pull communication faster because it only looks for

changes made on the repository for pulling instead of pulling

complete repository.

Then, Developer 1 can make changes to his wish and repeat

the commit and push operation and update the hosted

repository. Further Developer 2 pulls them to his local

system to get those changes and he continues to add his

changes to the repository. This process continues as part of

source code collaboration.

GIT makes this process very clear to save time for the

developers.

Some of the terms present in GIT

GIT has lots of concepts, which provides lots of flexibility to its

user to work with source code management. Explaining all the

terms may require deep dive into the GIT concepts that are out

of the focus of this book. So, let us look into the basic and

majorly used terms of the GIT:

Clone: It is the word used for downloading the repository, as

it creates a copy of the hosted repository it is called cloning.

Branch: It is the version of the source code present in the

hosted repository or local repository.

Remote: This represents the hosted repository URL; local

system repository refers to this URL to push and pull the

source code.

Add: This adds/tracks the files added to/edited from/deleted

from the repository.

Commit: This term is used to save the changes made on a

local repository, further, these files will be pushed to the

hosted repository.

Push: This term represents the upload operation of the

repository.

Pull: This term represents the download operation of the

repository.

Master: This is the default branch of the hosted repository.

Origin: This term represents the hosted instance (URL) of

the repository.

Status: This term represents the list of tracked files from

the local system repository.

You can download the GIT tool from the following URL, an official

download page from GIT:

https://git-scm.com/downloads

GIT operations

GIT supports multiple ways of communicating with a hosted

repository; here we can see how the command line approach

works.

https://git-scm.com/downloads

Following are the commands and their brief explanation of each.

git keyword should be there with all the commands that we want

to execute git operations. These commands should be executed

within the project folder:

git clone <remote-repository-url>

This command is to clone or download the remote

repository.

git add -- all

This command tracks all the changes you made on your

local repository.

git status

This command is used to list the tracked status of the files in

the repository. The green list indicates tracked files and the

red list indicates untracked files in the repository.

git commit -m “<commit_message>”

This command is used to save the changes made on a

repository, -m indicates the next parameter will be a

message of the commit, then we need to write a message

suitable for a change we made on a repository.

git push origin <branch_name>

This command pushes/uploads all the changes saved by the

git commit to the hosted repository. Origin indicates a

remote repository and <branch_name> indicates a branch of the

repository. For example, git push origin master.

git pull origin <branch_name>

This command pulls all the new changes available on the

hosted repository which are not there in the local system.

Origin indicates a remote repository and <branch_name>

indicates a branch of the repository. For example, git pull

origin master.

git branch

This command is used to list all the branches available in

the local system. Similarly, to get all the branches on a

hosted repository we need to pass -r argument to the

command.

That is, git branch -r.

to list out branches from both local and remote pass -a

argument.

git checkout “<branch_name>”

This command is used to switch between branches. Need to

provide branch name to be switched from the current

branch.

git init

This command initiates a GIT instance on the repository. This

creates a .git folder in the project folder. To perform any GIT

operation on a local repository it should contain a .git folder.

git remote add <repository_name> <hosted_repository_url>

This command is used to link an existing local repository to

the existing hosted repository. After this remote repository

holds changes made to the source code from the local

repository.

repository_name: Indicates local repository name.

hosted_repository_url: Indicates hosted repository URL.

GitHub

Starting from the explanation of the concepts of GIT we are

mentioning the word hosted repository. In general, it is a place

on the internet where our source code is stored. There are

various hosted repository services that exist today to store our

source code that communicates with GIT installed on the local

system, for example, GitHub, BitBucket, and so on.

Here we are using GitHub as a platform for our hosted repository.

GitHub provides much more features than just repository

hosting, like bug tracking, feature request, task management,

continuous integration, and so on.

As we already developed a website or restaurant now we will

store it on GitHub using GIT installed in our local system. Then in

addition to that, there is a feature called GitHub pages from

GitHub that deploys a website as a subdomain. So, that anybody

with a URL can access the website on the internet.

GitHub account

You need to create an account in GitHub, to host your source

code there. By providing your email address you can create an

account with GitHub.

Here we are providing snapshots of the account creation process

(as of March 2023):

Figure 6.7: GitHub account creation

After entering an email, if it is not registered before it will ask for

a password for your account and a username of your preference,

it validates the availability of the username if available it will ask

for a captcha validation. Then after clicking on the Create

account button, it will shoot an email to your email address with a

CODE to confirm your account.

After verifying the CODE, you can see your profile on your

browser. The following image shows the same:

Figure 6.8: GitHub profile

Figure 6.9 shows how a new repository can be created here; this

is what we call a hosted repository.

There is a file called .gitigore which comes at the root

location of the source code or project. It holds a list of

file names with their path within the repository. While

doing GIT operations (commit, push, pull, and so on)

these files will be ignored from the process.

Figure 6.9: GitHub - way to create a new repository

After clicking on the new repository, you can see a form where

you can enter details of your repository.

Here, we enter the repository name as restaurant-website and will

add a brief description for that. Then we choose a repository to

be publicly accessible. Then after clicking the Create repository

button, GitHub creates a repository in your account.

Figure 6.10 shows the create repository form:

Figure 6.10: GitHub - create new repository form

After this step, it creates a repository to host our website; it will

be hosted repository for our restaurant website; after the step,

GitHub shows a page that contains steps you can follow to push

your code to this online repository.

The following image shows the created repository, from the steps

mentioned there we need to follow the second approach to push

our existing project to this created repository (the first step

clones created repository as it has no files in it):

Figure 6.11: GitHub - created new repository with further steps

Whenever GitHub repository shows these steps, it indicates that

no files are existing within the repository and when it receives

files by communicating GIT installed in the local system of the

developer it shows all of them along with the date and commit

message added to them.

Now we need to execute the following commands to push our

restaurant website code to the restaurant-website GitHub

repository.

Before this, make sure you have configured your email and

username in the Command Prompt to get access to your GitHub

repository.

Run these commands in the Command Prompt opened in our

website source code folder:

git init

This command initiates a GIT instance in the project folder by

creating a .git folder making it ready for GIT command

executions:

Figure 6.12: Image of Command Prompt after executing git add command

Figure 6.13 shows repository items in the local system before

and after running the git add command. Without this folder, the

local repository cannot communicate with the GitHub-hosted

repository:

Figure 6.13: Project root folder before and after running git init

Now you can add remote to this repository:

git remote add origin

https://github.com/iamkartikbhat23/restaurant-website.git

(Do not add the preceding URL itself in your local system for your

source code repository, the URL should be grabbed from your

GitHub account and a repository created by you).

Let’s switch to a branch called main, by executing the following

command:

git branch -M main

This command suggests moving to the main branch of the

repository. (If it does not exist it creates a branch called main),

then at last there is a push command that pushes all the files to

the GitHub repository.

Then execute, git status.

This command lists all the untracked files of the local repository:

Figure 6.14: git status response on the local repository

Now run, git add –all.

This adds/tracks all the files from the local repository; then runs

again git status to check all tracked files:

Figure 6.15: git status response after git add --all

Now commit all the tracked files, by executing the following

command:

git commit -m “Source code added”

This command saves all the tracked files for pushing to the

GitHub repository Source code added will be a message that we

see on the GitHub repository. This responds to files created with

the chmod permission of it:

Figure 6.16: git commit command with response

Now, it's time to push the tracked changes of the local repository

to the GitHub repository. Run the following command to achieve

it:

git push -u origin main

Figure 6.17 shows the response to push command execution:

Figure 6.17: git push command response

After executing this push command, you can see all the files of

the local repository pushed to the GitHub repository. Open your

GitHub repository and check it:

Figure 6.18: GitHub repository with all the files pushed

This completes pushing your local repository to the GitHub

repository, if others clone the GitHub repository to their local

system they will get all the files available in the repository.

If you made any changes on the local repository, then you need

to follow:

git add --all

git commit -m “<suitable_message>”

git push origin main

To make it available at the GitHub repository so that if another

developer pulls the GitHub repository, he will get new changes

into his system.

The following image shows a list of commits you made and files

you have changed in that commit:

Figure 6.19: GitHub commits tree

As you already read the GIT tool tracks (add/edit/delete)

changes to make them pushed or pulled instead of pushing and

pulling the whole repository each time, that is why GIT saves a

lot of time and provides good performance. In a real-time project,

multiple developers are working on the same GitHub repository

by cloning, pushing, and pulling the change multiple times.

git tracks the changes in the sense it captures change from the

local repository of multiple developers and merges it with the

GitHub repository. Then it will raise a question: what if two

developers made the same change on the same file? Yes, GitHub

still tracks the changes and merges changes with the hosted

repository. But, whenever two developers made changes on the

same file and at the same line, the one who pushes first will not

face any problem because GIT never knows the same change

may come from other developers as well, it completes the push

operation successfully and then when other try to push the code,

it first asks for pull, if there is already new changes available in

the GitHub. Then after merging the GitHub repository changes

with the local repository, it encounters changes that already exist

at the same file and the same line. This is called merge

conflict.

Conflicts are needed to resolve carefully by rectifying whose

source code is correct and needs to be retained. Only after

resolving, all the merge conflicts the other developer is eligible

for pushing his code. While merging he has three options, he can

make any of his choices as per code correctness it brings:

Keep only his changes

Keep other developer changes

Keep both the changes

Let’s do minor edits to our website source code and will do all

required GIT operations again, assuming that the other developer

has already pulled your previous changes to his local repository.

Open menu.html from the local repository and edit the title of the

page Foo…’d Eateries to

Foo…’d Eateries – for you

Then, run git status command on the Command Prompt, you can

see menu.html in red color. It confirms that you made changes to

this file, and it is still untracked.

Now, run git add –all command to track the changes you made

on menu.html. Then, run again git status command to check and

confirm menu.html is being tracked.

Run git commit – m “menu page altered” command to save the

changes to GIT. Finally, run git push origin main command to push

new changes to the GitHub repository.

You can cross-check the commit from the GitHub commits tree

page.

Figure 6.20 shows an updated commit after executing the

preceding commands:

Figure 6.20: GitHub updated commits

Deployment

As we mentioned in the beginning of the chapter, we are

deploying our restaurant website using the GitHub pages feature

provided by GitHub.

It’s a free service available in GitHub that publishes a repository

for public access by providing a URL for it. URL will be a

subdomain of github.io along with the repository name. GitHub

creates a subdomain of your username of the GitHub account.

Then it points to the repository mentioned for deployment.

Currently, you can host any executable project that has only

HTML, CSS, and JS files in it. As we developed our restaurant

website within the same context, it is eligible for GitHub page

hosting.

Let’s deploy the website now (this explanation is as per the

GitHub interface in March 2023).

After opening the project repository on GitHub on the top navbar,

there is a menu called Settings, click on it:

Figure 6.21: GitHub settings tab

When you click on it opens a page, and it shows a sidebar with

different options, among those you need to click on Pages under

Code and Automation. It then opens the interface of GitHub pages.

There you can see the context of the usage of GitHub pages.

Then there is a section behind it called Build and deployment. It is

the main section of the deployment process. The first section

asks for a source, it is the way GitHub needs to make

deployment. By default, it will be Deploy from a branch, which

means deployment will happen from a branch belonging to the

repository. We can keep this as it is. Then in the next step, we

need to pick a branch for deployment.

In our GitHub repository, as we have only one branch, we need to

pick it.

So, pick the branch main from the dropdown. Then you need to

pick the root folder as deployment source from the dropdown.

Then, click on Save for deployment setting up.

The following figure shows the interface of the same:

Figure 6.22: GitHub pages deployment interface

After a few minutes, if we refresh the page we can see the

deployed response of the repository and a URL generated for it:

Figure 6.23: GitHub pages deployment status

Now, we are ready to visit the following URL in your browser, so

that we can see restaurant websites developed by us. It is the

deployed URL of the repository.

https://iamkartikbhat23.github.io/restaurant-website/

https://iamkartikbhat23.github.io/restaurant-website/

After visiting this URL on the browser, we are getting the

following page:

Figure 6.24: 404 not found page

Instead of showing the website why it is showing 404 pages? Do

you know why?

While doing a deployment, we specified the root folder of the

repository. Then, GitHub searches for an index.html file in the root

directory as a beginning page. Now, let’s revisit our local

repository:

Figure 6.25: Root structure of local repository

It clearly shows that here there is no index.html file present in the

root location, while developing the website we put all our HTML

files inside the src folder.

Now let us modify our local directory structure to keep the files

structure clean for proper deployment.

Now move all the HTML files from the src folder to the root folder,

make sure you will replace all /src with src in all the img tag’s src

attribute among all the HTML files and /dist to dist for CSS

including link tag’s href attribute (this will not give any problem

in local repository while testing but on deployment it does) and

on tailwind.config.js change:

content: ["./src/**/*.{html,js}"] to content: ["*.{html,js}"],

so that Tailwind CSS class be listed utility classes from root folder

files as well.

Now, it’s time to execute git add –all, git commit -m “HTML files

moved out from src” and git push origin main sequentially. It pushes

the code to the GitHub repository and as we already configured

deployment by referring to the main branch of the repository,

GitHub deploys the changes immediately after it completes the

push operation.

GitHub takes some minutes to reflect newly pushed changes into

the deployment. The following image shows the deployment

status of the repository in a GitHub interface. When that yellow

dot turns to a green check mark then it confirms deployment is

completed:

Figure 6.26: GitHub deployment status

Remember that whenever you make changes in your local

repository and push them to the GitHub repository’s main branch

it will be deployed automatically, and you can see your changes

by visiting the deployed URL of the repository.

Now revisit or refresh the URL

https://iamkartikbhat23.github.io/restaurant-website/.

https://iamkartikbhat23.github.io/restaurant-website/

To experience the perfect working of the website. This completes

the concept of deploying a website on GitHub pages. Feel free to

test this website in mobile and desktop devices to confirm its

responsiveness and a dark theme toggle as well.

If you observe, none of the HTML pages are having title tag,

which shows on the browser tab as a page name right? You can

make this change and repeat the GIT operation sequentially to

deploy a new version of the website.

Conclusion

This chapter provided information on the development of three

more web pages as a continuation of the previous chapter with a

context of website development. Hope you feel more flexible

about the usage of Tailwind CSS at the end of the development of

different web pages. Exploring utility classes and source code

present in our repository may boost your confidence in the usage

of Tailwind CSS for your projects. As we even explained, a free

source for deployment (GitHub pages) of your website may be a

good choice for showcasing your work online.

Hope we covered enough resources to make you feel fit, to begin

with Tailwind CSS or use it in a more intuitive way that makes

your user interface development easy. In the next chapter, we

are providing finishing concepts to keep in mind for you and

some of the Tailwind CSS components designs for you.

Points to remember

Website: Set of webpages.

Peer utility classes: These are used to control other

neighbor elements.

Git: A tool used to communicate with hosted repositories

from the local system.

GitHub: Repository hosting platform.

GitHub Pages: Repository deployment feature.

Multiple choice questions

1. On, git commit - <message> , -m indicates

a. Commit message comes next

b. Repository modified.

c. Repository moved

d. None of these

2. GitHub pages deploy source code by referring:

a. push

b. branch

c. commit

d. clone

3. Branch is:

a. Part of the repository that holds the source code.

b. Part of the local system that holds the folder.

c. Commits tree of GitHub.

d. None of these.

4. Domain of GitHub pages hosting:

a. git.io

b. github.io

c. github.com

d. git.code.io

5. Version of TailwindCSS we used in this book:

a. 2

b. 1

c. 3

d. 0

Answers

1. a

2. b

3. a

4. b

5. c

CHAPTER 7

Best Practices for Tailwind

CSS

A glance

Throughout the six chapters of this book, we hope we have

provided enough basic knowledge on Tailwind CSS right from

its fundamental concepts to building a simple website by

using it. We believe we have ignited a spark about the

specialty of using Tailwind CSS to develop user interfaces

more systematically and easily.

We expect you need to use Tailwind CSS in your projects to

feel more fulfilled about this gem for user interface

development. You cannot feed all the utility classes in your

head just by reading the documentation, instead, start

developing the web application, or a website to gain a

clearer idea of when to use which utility class to get the

expected output. You will remember utility classes properly

when you use them at a proper point of development.

As and how Tailwind CSS frameworks grow in the future

some more utility classes may get added and some classes

may be removed and some may get renamed. So,

understand what you need to do to get an expected user

interface design in a theoretical way (deciding on

components that require padding or a margin, big font size

or more font weight, and so on) then look into the suitable

utility class. Doing trial and error with utility class is a good

and enjoyable way of learning the framework but once you

understand identifying an actual requirement of the user

interface component, you should remind the correct/suitable

utility class instead of trying with different or nearly

matching utility classes for it. Doing this is not a crime but

then you need to forget the word rapid development that is

linked with Tailwind CSS. Cool.

Following is a glance at all the information we provided and

their importance.

Basics of website

Before learning Tailwind CSS you should know what

Tailwind CSS indicates. By looking into the name, we can

guess it is something related to CSS if you know what

CSS well before. So, to avoid possible loopholes between

basic knowledge and the knowledge you will gain, that’s

why we have covered most of the basics that are

required to understand before learning Tailwind CSS.

This section may act as a foundation for web

development for those who are in the initial stage of

learning. We tried to elaborate on the point that HTML,

CSS, and JavaScript are the pillars of webpage

development.

Fundamentals of Tailwind CSS

Further, we explained the features available in Tailwind

CSS, explained most of the Utility classes, and provided

pictorial examples wherever possible. This is to let you

know about how Tailwind CSS handles everything using

classes. If you understand this well then creating user

interface components for webpages will be easier.

Website development

By digesting the concept of utility classes in Tailwind CSS

we have built a simple but fully responsive website that

showcases the power of usage of Tailwind CSS for the

rapid development process. It’s a kind of practical

activity covered by the knowledge you gained from

previous chapters. As we said in the beginning, we will

develop the website, without writing a single line of

direct CSS code we made it possible.

Keep it in mind

The following are some of the things that you need to keep

in mind while learning and after learning too:

Framework changes

Frameworks are nothing but systematical usage of

existing technologies, here for example Tailwind CSS is

a framework of CSS, Laravel is a framework of PHP,

Django is a framework of Python, and so on. All the

fundamentals of the respective programming language

remain the same but those will be arranged in such a

way that features can be used easily and efficiently.

Frameworks adopt changes as new requirements arise or

a new efficient way opens for a particular feature.

Whenever a new framework enters the market, in the

beginning, they were only ready for providing a feasible

solution for a problem, as and when they grow, they will

concentrate on improvising the existing logic that

improves code efficiency, and they may introduce more

approaches that its audience expects, and they may

remove redundant features which have no or least

usability. In the lifetime of any framework these are the

common procedures that usually happen. These are

called minor or major versions of the frameworks.

In our case, as we built a website with Tailwind CSS v3,

here 3 indicates the version of the Tailwind CSS, we are

using and the currently active TailwindCSS is 3.3.1 (on

April 2023) it indicates third major version and within

that, their minor versions present among those 3, is the

first level minor version and 1 is the second level minor

version.

As and how versions got released, framework developers

do certain changes compared to its previous release that

brings efficiency to the user of that framework in various

aspects. Previous versions of Tailwind CSS (say v1 or v2)

have a smaller number of utility classes available

compared to v3 which released a new set of utility

classes that its users expected. It continues in future

versions as well.

Be always ready for adopting changes that the

framework brings on its new versions if you wish to

move along with framework updates. Framework

becomes stagnant when its developer community

dissolves, or it fails to retain its users.

Framework is not everything

As we said frameworks are called a systematic way of

using a programming language it doesn’t mean that it

covers all the corners of the programming language.

Frameworks always concentrate on providing easy and

efficient solutions to common problems that its audience

is experiencing. For more common features, the

framework has a rich level of solution whereas on the

other hand they may not touch those features which are

not important in a real-time usage of the programming

language.

As the framework becomes popular in the market it

keeps on adding new efficient ways that its users

request. It is the basic cycle of the framework, until

there is a request from its audience framework may not

pick up certain features. So, understand that learning

framework is nothing, but you are learning a part of

programming language/technology, not a complete

programming language/technology.

Do not stop learning CSS

In this book, we have provided one of the interesting and

easier ways to develop a user interface using the

framework Tailwind CSS. As you already understood

utility classes are the heart of the Tailwind CSS, it

provides a class name that can be used to get an

appropriate style by adding it as a parameter for the

class attribute of the HTML tag. Behind the scene, there

are CSS rules provided by Tailwind CSS for those utility

classes.

Even though Tailwind CSS provides a rich set of utility

classes to build user interfaces it doesn’t cover all the

style possibilities that CSS alone can do. As Tailwind CSS

grows, CSS grows gradually. The growth of Tailwind CSS

is dependent on the growth of CSS itself to some extent.

Those new style possibilities will be first introduced in

the CSS then based on the need for that style Tailwind

CSS brings respective utility classes to the audience.

Think first always

As you learned in the development of a user interface

using Tailwind CSS in this book, the user interface, more

technically a frontend development, is not a few lines of

code that decide a logic as we do in backend

programming languages (Java, PHP, Python, and so on).

As developers need to deal with HTML and style classes,

they should think properly about how to arrange and

nest the tags to yield an expected user interface design

rather than just doing a workaround for everything. The

arrangement of HTML tags and styles (utility classes in

Tailwind CSS) will impact the efficiency of code

readability and page load. Deciding on what to use to

get expected solutions rather than just beginning with

development, and fixing design issues requires more

time and patience for beginners as they need to

add/delete utility classes repeatedly until reaching a

proper one.

User interface is not alone

The user interface is a section where data will be

systematically represented to the user on his device

(desktop, mobile, and so on). Systematic representation

requires the usage of different colors, fonts, images, and

so on these will be provided by CSS (utility classes in

Tailwind CSS) front-end developer develops or writes

code to make it possible by referring to the design

provided by the designer. But it is not the ultimate truth

that a front-end developer just needs to develop the

design provided by the designer. He needs to be careful

about design logic as well as to decide whether to go in

hand with representation of data provided/fetched from

the backend developer. Design just says how data will be

displayed that makes a proper impact on users and

back-end returns the expected data of the user, but in

between these two a frontend developer needs to

develop/write the code by keeping proper integrity of

the throughout process.

Bonus

Here some of the components are provided which you can

use to understand the possibilities of designing better or can

use them in your projects.

Component 1

Figure 7.1 shows Component 1:

Figure 7.1: Component 1

When you execute the preceding component on a browser

you can observe an animating border around both the

elements of the components. The code is given as follows:

<div class=" flex min-w-full min-h-screen items-center justify-

center overflow-

hidden bg-slate-100 gap-5">

<div class="rounded-t-full rounded-br-full relative h-44 w-44

overflow-hidden bg-gray-300 before:content-['']

before:absolute

before:w-44 before:bg-[conic-

gradient(#3A1078_120deg,transparent_240deg,#E96479_360deg)]

before:h-60 before:shadow-lg before:animate-spin-slow

before:rounded-full after:content-[''] after:absolute

after:bg-

gray-300 after:inset-1 after:rounded-t-full after:shadow-lg

rotate-[270deg]"> div>

<div class="rounded-t-full rounded-br-full relative h-44 w-

44 overflow-hidden

bg-gray-300 before:content-[''] before:absolute before:w-44

before:bg-[conic-

gradient(#3A1078_120deg,transparent_240deg,#E96479_360deg)]

before:h-60 before:shadow-lg before:animate-spin-slow-

reverse

before:rounded-full after:content-[''] after:absolute

after:bg-

gray-300 after:inset-1 after:rounded-t-full after:shadow-lg

rotate-90"></div>

</div>

On config, we have extended animation and its keyframe for

border animation:

animation: {

'spin-slow': 'slow 4s linear infinite',

'spin-slow-reverse': 'fast 4s linear infinite',

},

keyframes: {

slow: {

'100%': { transform: 'rotate(360deg)' },

},

fast: {

'100%': { transform: 'rotate(-360deg)' },

}

}

From this component, you can understand how before and

after states can be achievable with Tailwind CSS.

Component 2

Following is a component that has a vertical flipping effect

on hover, it feels like you are flipping a real card.

Figure 7.2 shows Component 2:

Figure 7.2: (a and b) component 2

image source:

https://media.istockphoto.com/id/696094594/vector/minimal-

elephant.jpg?

s=2048x2048&w=is&k=20&c=6l_ZQ9WVVCZ7ghirkUzZp5lHRhkHqbEvK3

Lp-_0NmyY=)

You can observe the usage of group utilities with HTML

elements, also you can understand how arbitrary values can

be passed as utility classes, code is given here:

<div class="flex min-h-screen items-center justify-center bg-

slate-100">

<div class="group h-80 w-80 [perspective:500px]">

<div class="relative h-full w-full rounded-xl shadow-2xl

transition-all

duration-500 [transform-style:preserve-3d]

group-hover:[transform:rotateX(540deg)]">

<div class="absolute inset-1">

<img class="rounded-xl shadow-xl shadow-blue-600/60

group-hover:shadow-none"

src="https://media.istockphoto.com/id/696094594/vector/mini

mal-elephant.jpg?

s=2048x2048&w=is&k=20&c=6l_ZQ9WVVCZ7ghirkUzZp5lHRhkHqbEvK3L

p-_0NmyY=" alt="" />

</div>

https://media.istockphoto.com/id/696094594/vector/minimal-elephant.jpg?s=2048x2048&w=is&k=20&c=6l_ZQ9WVVCZ7ghirkUzZp5lHRhkHqbEvK3Lp-_0NmyY=

<div class=" absolute inset-1 rounded-xl bg-blue-300 px-12

text-center

[transform:rotateX(540deg)] [backface-visibility:hidden]">

<div class="flex w-full min-h-full flex-col items-center

justify-center

text-2xl bg-blue-300 font-semibold text-blue-800 ">

I'm an Elephant

</div>

</div>

</div>

</div>

</div>

Component 3

The following is the button component that opens other text

on hover and closes on moving away from it.

Figure 7.3 shows Component 3:

Figure 7.3: (a and b) Component 3

This component provides a hint on the usage of positioning

and translating using utilities, code is given as follows:

<div class=' min-h-screen flex items-center justify-center max-

w-md

mx-auto space-y-6'>

<div class='group relative inline-flex items-center justify-

center

cursor-pointer h-12 border-2 border-solid py-0 px-6

rounded-md

overflow-hidden z-10 transition-all duration-300 ease-in-

out

outline-0 bg-gradient-to-r from-purple-500 to-pink-500

text-white border-purple-500 hover:text-purple-500 font-

medium'>

<div class='group-hover:hidden'>Hover to uncover</div>

<div class='hidden group-hover:block'>Opened Text Info</div>

<span class='absolute bg-white right-0 w-0 left-1/2 h-full

-translate-x-1/2 transition-all ease-in-out

duration-500 group-hover:w-[105%] -z-[1]'>

</div>

</div>

Component 4

Following is the pendulum clock element, the pendulum, and

seconds hand move simultaneously.

Figure 7.4 shows Component 4:

Figure 7.4: Component 4

From this component, you can observe how border radius

can be used to design expected corner shapes. The code is

given as follows:

<div class='min-h-screen flex flex-col items-center justify-

center

max-w-md mx-auto '>

<div class="p-2 w-fit bg-gray-500 rounded-t-full relative">

<div class="w-44 h-44 bg-gray-200 z-20 rounded-t-full

relative">

<div class="absolute top-[20%] left-[49%] origin-bottom w-1

h-14

bg-black animate-seconds rounded-md">

</div>

<div class="absolute left-[47%] flex flex-col justify-

between h-full">

<div>12</div>

<div>6</div>

</div>

<div class="absolute top-[43%] flex justify-between w-full

px-1">

<div>9</div>

<div>3</div>

</div>

</div>

<div class="flex flex-col items-center justify-center

origin-top

animate-pendulam -mt-1 z-10 rounded-full">

<div class="w-3 h-44 bg-slate-200 "></div>

<div class="w-10 h-10 bg-slate-400 rounded-full -mt-1">

</div>

</div>

</div>

</div>

On configuration, we have extended the following utilities:

animation : {

pendulam:'revolve 2s linear infinite',

seconds:'slowspin 60s linear infinite',

minutes:'slowspin 3600s linear infinite',

},

keyframes : {

revolve : {

'0%, 100%' : {

transform: 'rotate(14deg)'

},

'50%': {

transform: 'rotate(-14deg)'

},

},

slowspin: {

'100%' : {

transform: 'rotate(360deg)'

},

}

}

Component 5

This component shows the arrangement of similar div

elements in a systematic way as if they look like arranged

cards.

Figure 7.5 shows Component 5:

Figure 7.5: Component 5

Following is the code for this component:

<div class=" flex min-h-screen items-center

justify-center bg-slate-800 px-5 relative shadow-lg">

<div class="card-design hover:shadow-gray-300 rotate-[12deg]">

<div class="card-text">

5

</div>

</div>

<div class="absolute card-design -rotate-6">

<div class="card-text">

4

</div>

</div>

<div class="absolute card-design -rotate-[24deg]">

<div class="card-text">

3

</div>

</div>

<div class="absolute card-design -rotate-[42deg]">

<div class="card-text">

2

</div>

</div>

<div class="absolute card-design -rotate-[60deg]">

<div class="h-[100%] flex flex-col justify-between">

<div class="card-text">

1

</div>

<div class="p-3 flex items-start justify-center w-full">

<div class="h-12 w-12 rotate-45 bg-red-500 skew-x-12">

</div>

</div>

<div class="card-text justify-start">

1

</div>

</div>

</div>

</div>

From this code, you can observe that there is a class called

card-design and card-text, these are not default utility classes

of Tailwind CSS, we have created these classes in our input

CSS file where we extended base, components, and utilities

of Tailwind CSS. We are adding a layer on components where

we define utility classes required to form card-design and

card-text components:

@layer components {

.card-design {

@apply w-44 h-64 bg-gray-200 rounded-md z-40 shadow-lg

hover:shadow-2xl

origin-bottom-left hover:shadow-gray-500 border border-gray-

400/30;

}

.card-text {

@apply p-3 flex items-start justify-end text-2xl font-

semibold;

}

}

Component 6

The following component also refers to the above

created/extended components, here cards are arranged

horizontally:

Figure 7.6 (a & b): Component 6

From this component, you can observe how the active state

of the HTML element can be handled from utility classes.

Here, when you click on any card it moves up and when you

release the click it moves down again; see the following

code:

<div class=" flex min-h-screen items-center justify-center bg-

slate-100 px-5

relative shadow-lg">

<div class="card-design hover:shadow-gray-300 active:-

translate-y-8">

<div class="card-text">

J

</div>

</div>

<div class="absolute card-design -translate-x-8 active:-

translate-y-8">

<div class="card-text">

Q

</div>

</div>

<div class="absolute card-design -translate-x-16 active:-

translate-y-8">

<div class="card-text">

K

</div>

</div>

<div class="absolute card-design -translate-x-24 active:-

translate-y-8">

<div class="h-[100%] flex flex-col justify-between">

<div class="card-text">

A

</div>

<div class="p-3 flex items-start justify-center w-full">

<svg xmlns="http://www.w3.org/2000/svg" fill="red"

viewBox="0 0 24 24"

stroke-width="1.5" stroke="red" class="w-12 h-12">

<path stroke-linecap="round" stroke-linejoin="round"

d="M21 8.25c0-2.485-2.099-4.5-4.688-4.5-1.935 0-3.597

1.126-4.312 2.733-.715-1.607-2.377-2.733-4.313-2.733C5.1

3.75 3 5.765 3 8.25c0 7.22 9 12 9 12s9-4.78 9-12z" />

</svg>

</div>

<div class="card-text justify-start">

A

</div>

</div>

</div>

</div>

In the preceding code, you can observe we have used SVG

element for a heart icon. These icons can be found at

heroicons.com which was developed by Tailwind CSS’s

creators itself.

Component 7

This element shows how polygons can be drawn using utility

classes:

Figure 7.7: Component 7

Image resource: (iStock Images)

https://media.istockphoto.com/id/965307792/photo/chimpanzee-

face.jpg?

s=2048x2048&w=is&k=20&c=foruAGheQRRfncHPcqavbyebYUnSdf5V2H

g3T0V0Hkw=

https://media.istockphoto.com/id/965307792/photo/chimpanzee-face.jpg?s=2048x2048&w=is&k=20&c=foruAGheQRRfncHPcqavbyebYUnSdf5V2Hg3T0V0Hkw=

Following is the code for the drawing the polygon:

<div class="min-h-screen flex items-center justify-center">

<img class="w-80 rounded-lg shadow-lg object-cover object-

center mb-0 mr-6

[clip-

path:polygon(20%_0%,80%_0%,100%_50%,70%_80%,0%_80%)]"

src="https://media.istockphoto.com/id/965307792/photo/chimpanze

e-

face.jpg?

s=2048x2048&w=is&k=20&c=foruAGheQRRfncHPcqavbyebYUnSdf5V2Hg3T0V

0Hkw="

/>

</div>

Component 8

The following element shows the arrangement of elements

based on z-index, hovering on each element they will get a

higher z-index:

Figure 7.8: Component 8

<div class="flex min-h-screen items-center justify-center bg-

slate-300 px-5

relative shadow-lg">

<div class="flex -space-x-10 border-2 border-gray-400 p-10">

<img

src= https://images.unsplash.com/photo-1533725920959-

5cd2c514d898?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=870&q=80 class="z-50 img-

design"/>

<img

src= https://images.unsplash.com/photo-1517849845537-

4d257902454a?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=735&q=80 class="z-40 img-

design"/>

<img

src= https://images.unsplash.com/photo-1615807713086-

bfc4975801d0?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=654&q=80 class="z-30 img-

design"/>

<img

src= https://images.unsplash.com/photo-1527153857715-

3908f2bae5e8?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=788&q=80 class="z-20 img-

design"/>

<img

src= https://images.unsplash.com/photo-1509987300714-

11c90a6d40e7?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=687&q=80 class="z-10 img-

design"/>

<img

src= https://images.unsplash.com/photo-1614027164847-

1b28cfe1df60?ixlib=rb-

4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%

3D%3D&auto=format&fit=crop&w=786&q=80 class="z-0 img-

design" />

</div>

</div>

You can observe a utility class called img-design, we have

defined it as a component under the input.css file:

@layer components {

.img-design {

@apply w-32 h-32 rounded-full object-cover border border-

white hover:z-[60]

hover:shadow-xl hover:shadow-gray-700 hover:scale-125;

}

}

Component 9

The following component is color-changing animation on

hovering an element:

Figure 7.9: Component_9

On hovering an element each div changes its color after a

specific delay, then on hover out changes its color back to

the original. Following is the code for it:

<div class=" flex min-h-screen items-center justify-center bg-

slate-300 px-5

relative shadow-lg">

<div class="grid grid-cols-5 grid-rows-5 gap-2 group">

<div class="box2 delay-0"></div>

<div class="box2 delay-[50ms]"></div>

<div class="box2 delay-100"></div>

<div class="box2 delay-[150ms]"></div>

<div class="box2 delay-200"></div>

<div class="box1 delay-[425ms]"></div>

<div class="box2 delay-[375ms]"></div>

<div class="box2 delay-[325ms]"></div>

<div class="box2 delay-[275ms]"></div>

<div class="box2 delay-[225ms]"></div>

<div class="box1 delay-[450ms]"></div>

<div class="box1 delay-[475ms]"></div>

<div class="box2 delay-[500ms]"></div>

<div class="box2 delay-[525ms]"></div>

<div class="box2 delay-[550ms]"></div>

<div class="box1 delay-[550ms]"></div>

<div class="box1 delay-[525ms]"></div>

<div class="box1 delay-[500ms]"></div>

<div class="box2 delay-[475ms]"></div>

<div class="box2 delay-[450ms]"></div>

<div class="box1 delay-[225ms]"></div>

<div class="box1 delay-[275ms]"></div>

<div class="box1 delay-[325ms]"></div>

<div class="box1 delay-[375ms]"></div>

<div class="box2 delay-[425ms]"></div>

<div class="box1 delay-200"></div>

<div class="box1 delay-[150ms]"></div>

<div class="box1 delay-100"></div>

<div class="box1 delay-[50ms]"></div>

<div class="box1 delay-0"></div>

</div>

</div>

box1 and box2 are the components that we defined under

input.css:

@layer components {

.box1 {

@apply w-20 h-20 bg-pink-500 group-hover:bg-green-400

transition-all;

}

.box2 {

@apply w-20 h-20 bg-green-400 group-hover:bg-pink-500

transition-all;

}

}

Component 10

This component is an example of multiple animations in

action. You can observe rotating squares in opposite

directions along with that there is a red circle that translates

in various directions:

Figure 7.10: Component 10

Its code is given here:

<div class="flex min-h-screen items-center justify-center bg-

white px-5

relative shadow-lg">

<div class=" w-96 h-96 relative z-0">

<div class="h-full w-full bg-gray-300 rounded-md shadow-2xl

animate-slowspinreverse duration-1000"></div>

<div class="absolute inset-0 h-full w-full rounded-md bg-

slate-300

rotate-45 shadow-2xl shadow-slate-500 animate-slowspin

duration-1000 p-3 border-2 border-dotted border-green-

500">

<div class="w-16 h-16 bg-red-500 rounded-full animate-

move">

</div>

</div>

</div>

</div>

Its animating keyframes for utilities slowspin, slowspinreverse

and move are as follows:

animation : {

slowspin : 'slowspin 10s linear infinite',

slowspinreverse : 'slowspinreverse 10s linear infinite',

move: 'move 8s ease-in-out infinite'

},

keyframes : {

slowspin : {

'0%': {

transform: 'rotate(0deg)',

background: '#99f6e4'

},

'50%': {

transform: 'rotate(180deg)',

background: '#d4d4d4'

},

'100%': {

transform: 'rotate(360deg)',

background: '#99f6e4'

},

},

slowspinreverse : {

'0%': {

transform: 'rotate(360deg)',

background: '#d4d4d4'

},

'50%': {

transform: 'rotate(180deg)',

background: '#99f6e4'

},

'100%': {

transform: 'rotate(0deg)',

background: '#d4d4d4'

},

},

move : {

'0%,100%': {

transform: 'translate(0%,0%)'

},

'20%': {

transform: 'translate(450%,200%)'

},

'40%': {

transform: 'translate(10%,250%)'

},

'60%': {

transform: 'translate(190%,20%)'

},

'80%': {

transform: 'translate(450%,450%)'

},

}

}

Component 11

This component is an example of how the utilities can be

applied to a peer element from an element:

Figure 7.11: Component 11

When you click on Glow button below the circle, the circle

element identifies the click state and changes it utilities.

Following is the code for the same:

<div class=" flex flex-col min-h-screen items-center justify-

center bg-white

px-5 space-y-3">

<div class="grid grid-cols-2 gap-4">

<div class="flex flex-col-reverse items-center justify-

center gap-6">

<div class=" w-36 h-10 bg-blue-800 rounded text-white text-

center py-2

cursor-pointer peer">

Glow

</div>

<div class="flex-grow p-8 w-44 h-44 rounded-full bg-blue-

200

peer-active:bg-blue-600 peer-active:shadow-2xl

peer-active:shadow-blue-400 rotate-180">

</div>

</div>

<div class="flex flex-col-reverse items-center justify-

center gap-6">

<div class="w-36 h-10 bg-blue-800 rounded text-white text-

center

py-2 cursor-pointer peer/bulb">Glow</div>

<div class="flex-grow p-8 w-44 h-44 rounded-full bg-

yellow-100

peer-active/bulb:bg-amber-300 peer-active/bulb:shadow-

2xl

peer-active/bulb:shadow-amber-400 rotate-180"></div>

</div>

</div>

</div>

Provided two different ways of approaching the peer concept

of utilities, look into it carefully.

Conclusion

This chapter concludes the book. It will help you learn about

Tailwind CSS so that you can try it for your academic/hobby

projects. Being the author of this book, I felt that I tried to

ignite the knowledge of Tailwind CSS in you, I assume you

will try more and more utilities that make you ready for rapid

development of user interfaces using this gem Tailwind CSS.

Index

A

align content 100, 101

align items 102

Align-related utility classes 98

align self 102, 103

arbitrary variants 55, 56

B

backdrop blur filters 142

backdrop brightness filters 142

backdrop contrast filters 143

backdrop filters 142

backdrop grayscale filters 143

backdrop hue rotate filters 143

backdrop invert filters 144

backdrop opacity filters 144

backdrop saturation filters 144, 145

backdrop sepia filters 145

background attachment 125

background blend mode 138

background clip

about 125

syntax 125, 126

background color 126

background image 128, 129

background position 126, 127

background repeat 127, 128

backgrounds 125

background size 128

base style

about 75

preflight 75-77

BitBucket 225

block tags 5

Blogs page

about 212-214

contact us page 214-218

deployment 234-239

FAQ page 218-221

GIT 221

GitHub 225

GitHub account 225-234

GIT operations 224, 225

GIT workflow 221-223

blur 139

border color 132

border radius

about 130

parameters 130

borders

about 130

border color 132

border radius 130

border style 132

border width 131

divide color 133

divide style 133

divide width 133

outline color 134

outline style 134

outline width 134

border style 132

border width 131

bottom utility classes 89

box decoration break

about 82

variants 82

box shadow 136

box shadow color 137

box sizing

about 82

variants 82

Break Before class 81

Break Inside class 82

brightness 139

C

Cascading Style Sheet (CSS)

about 7-10

CSS Box Model 14, 15

selector 10, 11

selector types 11

style rules 13

Cascading Style Sheet level 3 (CSS3) 9

classes

advantages 53

extracting, with @apply 51-53

class selector 12

clear utility classes 84

Command Line Interface (CLI) 26

content 125

content delivery network (CDN)

about 31

used, for applying Tailwind CSS 31, 32

contrast filters 140

CSS abstraction 51

CSS Box Model

about 14, 15

components 14

CSS types

about 15

external CSS 17, 18

inline CSS 15, 16

internal CSS 16, 17

key points 20, 21, 22

media query 19, 20

customization

about 66

classes safelisting 67

content 67

extend 68

plugins 74

prefix 75

screen 69-73

spacing 73, 74

theme 68

custom styles

adding 53-55

ambiguities, handling 57

arbitrary variants 55, 56

base styles, customizing 58

component classes, customizing 58, 59

CSS rules 57

@layer directive 57

utility styles, customizing 59, 60

D

dark mode 47-49

directives

about 60

@apply 60, 61

@config 61

@layer 60

@tailwind 60

divide color 133

divide style 133

divide width 133

Django 242

domain 2

drop shadow filters 140

dynamic website 3, 160

E

effects

about 136

backdrop blur filters 142

backdrop brightness filters 142

backdrop contrast filters 143

backdrop filters 142

backdrop grayscale filters 143

backdrop hue rotate filters 143

backdrop invert filters 144

backdrop opacity filters 144

backdrop saturation filters 144, 145

backdrop sepia filters 145

background blend mode 138

blur filters 139

box shadow 136

box shadow color 137

brightness filters 139

contrast filters 140

drop shadow filters 140

grayscale filters 140

hue rotate filters 141

invert filters 141

mix blend mode 138

normal filters 139

opacity 137

saturation filters 141

sepia filters 141

element selector 12

events

about 39

examples 40-44

external CSS 17, 18

F

FAQ page 218-221

fixed line height 118

flex

about 92

elements 92

flexbox

about 91

flex 92

flex-basis 91

flex direction 91

flex grow 93

flex shrink 93

flex wrap 92

order utility classes 93

flex direction

about 91

elements 91

flex grow

about 93

elements 93

flex shrink

about 93

elements 93

flex wrap

about 92

elements 92

float utility classes 84

font 114

font family 114

font size 114, 115

font smoothing 115

font style 116

font variant numeric 116, 117

font weight 116

frameworks

using 51

function

about 61

screen() 62

theme() 61

G

gap 98

GIT

about 221

workflow 221, 222

GitHub

about 225

account 225-234

GIT operations 224, 225

GIT workflow

about 223

terms 223

gradient color stops 129

grayscale filters 140

grid

about 91

align content 100, 101

align items 102

Align-related utility classes 98

align self 102, 103

gap 98

grid auto columns 97

grid auto flow 96

grid auto rows 97

grid column end 94, 95

grid column start 94, 95

grid row end 95, 96

grid row start 95, 96

grid template columns 94

grid template rows 95

Justify Content 98, 99

Justify Items 100

Justify-related utility classes 98

Justify Self 100

place content 103

place items 103

Place-related utility classes 98

place self 104

grid auto columns

about 97

syntax 97

grid auto flow

about 96

syntax 96

grid auto rows

about 97

syntax 97

grid column end 94, 95

grid column start 94, 95

grid row end 95, 96

grid row start 95, 96

grid template columns 94

grid template rows 95

H

horizontal padding 105

HTML

about 4-7

styles and interactivity 7-9

tags 6

used, for applying Tailwind CSS 24, 25

HTML5 4

hue rotate filters 141

I

ID selector 12

inline CSS 15, 16

interactivity

about 151

accent color 151

appearance 151

caret color 152

cursor 151

pointer events 152

resize 152

scroll behavior 153

scroll margin 153

scroll padding 153

scroll snap align 153

scroll snap stop 154

scroll snap type 154

touch action 154

user select 155

will change 155, 156

internal CSS 16, 17

invert filters 141

isolation utility classes 84

J

JavaScript (JS) 8

Justify Content 98, 99

Justify Items 100

Justify-related utility classes 98

Justify Self 100

L

Laravel 242

layout

about 78

aspect ratio 78

bottom utility classes 89

box decoration break 82

Break After class 81

Break Before class 81

Break Inside class 81

clear utility classes 84

column count 79, 80

columns 79

column width 80

container 79

display type 83, 84

float utility classes 84

isolation utility classes 84

left utility classes 89

negative value 90

order utility classes 93

overflow 86, 87

overscroll behavior 87, 88

position classes 88

right utility classes 89

top utility classes 89

visibility 90

Z-Index 90

left utility classes 89

letter spacing 117

line clamp 118

line height 118

list style 119

list style position 119

list style type 119

M

margin 105

markup language 4

media query 19, 20

merge conflict 233

mix blend mode 138

Mobile First approach 3, 8

multi cursor editing 50

N

negative value 90

NodeJS 26

Node Package Manager (NPM) 26

normal filters 139

O

object fit 85

opacity 137

outline color 134

outline offset

about 135

ring color 135

ring offset color 136

ring offset width 135, 136

ring width 135

outline style 134

outline width 134

overscroll behavior 87, 88

P

padding 104, 105

place content 103

place items 103

Place-related utility classes 98

place self 104

position classes

absolute 89

fixed 89

relative 89

static 88

sticky 89

preflight

about 75-77

disabling 77, 78

extending 77

pseudo selector 13

R

relative line height 118

responsive design

about 44-46

breakpoint range, targeting 46, 47

restaurant website

building 164

web page list 164

right utility classes 89

ring color 135

ring offset color 136

ring offset width 135, 136

ring width 135

rotating elements 148, 149

S

saturation filters 141

Scalable Vector Graphics (SVG) 156

scaling elements 148

screen readers

accessibility 157

Search Engine Optimization (SEO) 162

selector 10, 11

selector types

about 11

class selector 12

element selector 12

ID selector 12

pseudo selector 13

sepia filters 141

sizing

about 106

height 108, 109

max-height 109, 110

max-width 108

min-height 109

min-width 107

width 106, 107

skewing elements 149, 150

space between 106

spacing 104, 105

standalone CLI build 33

static website 3, 160

style rules 13

styles

reusing 49, 50

T

tables

about 145

border collapse 145

border spacing 145, 146

table layout 146

Tailwind CSS

about 8, 22, 23, 242

advantages 25, 26

applying, on HTML 24, 25

applying, with CDN 31, 32

best practices 242-245

in production 33

installing 26-31

need for 23, 24

setting up 26-31

static website, developing 165

without Node.js 32, 33

text 119

text align 119, 120

text color 120

text decoration 120

text decoration color 120

text decoration style

about 121

syntax 121

text decoration thickness 121

text indent 123

text overflow 123

text transform 122

text underline offset 122

top utility classes 89

transforms

about 148

origin 150

rotating elements 148, 149

scaling elements 148

skewing elements 149, 150

translating elements 149

transition delay 147

transition duration 147

transition property 146

transitions and animations

about 146

animation effect 147, 148

transition delay 147

transition duration 147

transition property 146

transition timing function 147

transition timing function 147

translating elements 149

typography

about 114

background attachment 125

background clip 125

background color 126

background image 128, 129

background origin 126

background position 126, 127

background repeat 127, 128

backgrounds 125

background size 128

content 125

fixed line height 118

font 114

font family 114

font size 114, 115

font smoothing 115

font style 116

font variant numeric 116, 117

font weight 116

gradient color stops 129

letter spacing 117

line clamp 118

line height 118

list style 119

list style position 119

relative line height 118

text 119

text align 119, 120

text color 120

text decoration 120

text decoration color 120

text decoration style 121

text decoration thickness 121

text indent 123

text overflow 123

text transform 122

text underline offset 122

vertical align 123, 124

whitespace 124

word break 124

U

Uniform Resource Locator (URL) 163

user interfaces (UI) 23

utility classes 36-39

Utility-First CSS framework 23

V

vertical align 123, 124

vertical padding 105

visibility 90

W

web page 2

website

about 2, 160

building 164, 165

categories 160

defining 2

developer's viewpoint 162

dynamic website 160

representing 2, 3

requisites 161, 162

static website 160

types 3, 161

web page 4, 163

working 162, 163

website design

about 165, 166

ambience 190-192

clicks 193-199

gallery page 189

header and footer 170-176

home page 177-189

index page 177-189

menu block 202-208

menu page 199

text block 200-202

web page 166-169

whitespace

about 124

syntax 124

word break

about 124

syntax 124

World Web Consortium (W3C) 9

Z

Z-Index 90

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Technical Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Getting Started with HTML, CSS, and Tailwind CSS
	Introduction
	Structure
	Defining website
	Website and its representation
	Types of websites
	Webpage: a technical aspect

	HTML
	Styles and interactivity

	Cascading Style Sheet (CSS)
	Selectors
	Types of selectors
	Styles – (property–value pairs)
	CSS Box Model
	Types of CSS
	Inline CSS
	Internal CSS
	External CSS
	Media queries

	Key points to remember
	Introducing Tailwind CSS
	Need of Tailwind CSS
	Applying Tailwind CSS on HTML
	Advantages of Tailwind CSS
	Installing and setting up Tailwind CSS
	Apply Tailwind CSS using CDN
	Standalone CLI - Tailwind CSS without Node.js
	Tailwind CSS in production

	Conclusion

	2. Design Principles for Tailwind CSS
	Introduction
	Structure
	Utility-first classes
	Events and states
	Responsive design
	Targeting a breakpoint range

	Dark mode
	Reusing styles
	Code editor support – multi cursor editing
	Using frameworks
	CSS abstraction
	Extracting classes with @apply
	Advantages of this approach

	Adding custom styles
	Arbitrary variants
	Handling ambiguities
	CSS and @layer
	Customizing base styles
	Customizing component classes
	Customizing utility styles
	Function and directives
	Directives
	@tailwind
	@layer
	@apply
	@config
	Functions
	theme()
	screen()

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	3. Utility-First Classes and Customization Options
	Introduction
	Structure
	Customization
	Content
	Classes Safelisting
	Theme
	Extend
	Screens
	Colors
	Spacing
	Plugins
	Prefix

	Base styles
	Preflight
	Extending Preflight
	Disabling Preflight

	Layout
	Aspect ratio
	Container
	Columns
	Based on column count
	Based on column width
	Break After – Break Before – Break Inside
	break-before
	break-inside
	Box decoration break – box sizing
	Display
	Floats - clear - isolation
	Object Fit – Object Position
	Overflow
	Overscroll behavior
	Position
	Top – Right – Bottom – Left
	Negative value as a size
	Visibility
	Z-Index

	Flexbox and Grid
	Flex-Basis
	Flex Direction
	Flex Wrap
	Flex
	Flex Grow
	Flex Shrink
	Order
	Grid template columns
	Grid column start/end
	Grid template rows
	Grid row start/end
	Grid Auto Flow
	Grid Auto Columns
	Grid Auto Rows
	Gap
	Justify – Align – Place
	Justify Content
	Justify Items
	Justify Self
	Align content
	Align Items
	Align Self
	Place Content
	Place Items
	Place Self
	Spacing
	Padding
	Margin
	Space between

	Sizing
	Width
	Min-width
	Max-width
	Height
	Min-height
	Max-height

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	4. Element-Specific Styling with Utility- First Classes
	Introduction
	Structure
	Typography
	Font
	Font family
	Font size
	Font smoothing
	Font style
	Font weight
	Font variant numeric
	Letter spacing
	Line clamp
	Line height
	Relative line height
	Fixed line height
	List style
	List style type
	List style position
	Text
	Text align
	Text color
	Text decoration
	Text decoration color
	Text decoration style
	Text decoration thickness
	Text underline offset
	Text transform
	Text overflow
	Text indent
	Vertical align
	Whitespace
	Word break
	Content
	Backgrounds
	Background attachment
	Background clip
	Background color
	Background origin
	Background position
	Background repeat
	Background size
	Background image
	Gradient color stops

	Borders
	Border radius
	Border width
	Border color
	Border style
	Divide width
	Divide color
	Divide style
	Outline width
	Outline color
	Outline style

	Outline offset
	Ring width
	Ring color
	Ring offset width
	Ring offset color

	Effects
	Box shadow
	Box shadow color
	Opacity
	Mix blend mode
	Background blend mode
	Normal filters
	Blur
	Brightness
	Contrast
	Drop shadow
	Grayscale
	Hue rotate
	Invert
	Saturate
	Sepia
	Backdrop filters
	Backdrop blur
	Backdrop brightness
	Backdrop contrast
	Backdrop grayscale
	Backdrop hue rotate
	Backdrop invert
	Backdrop opacity
	Backdrop saturate
	Backdrop sepia

	Tables
	Border collapse
	Border spacing
	Table layout

	Transitions and animations
	Transition property
	Transition duration
	Transition timing function
	Transition delay
	Animation

	Transforms
	Scale
	Rotate
	Translate
	Skew
	Transform origin

	Interactivity
	Accent color
	Appearance
	Cursor
	Caret color
	Pointer events
	Resize
	Scroll behavior
	Scroll margin
	Scroll padding
	Scroll snap align
	Scroll snap stop
	Scroll snap type
	Touch action
	User select
	Will change

	SVG
	Accessibility: Screen readers

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	5. Developing a Website with Tailwind CSS
	Introduction
	Structure
	Website
	Categories of websites
	Static website
	Dynamic website
	Types of websites
	Requirement of website
	Website – the developer’s viewpoint
	The working way of website

	Parts of the website
	Building a restaurant website
	Parts of our website
	Think in Tailwind way
	Let’s begin development
	Webpages
	Header and footer
	Home page or Index page
	Gallery page
	Our ambience
	Clicks from kitchen
	Menu page
	Text block
	Menu Block

	Conclusion

	6. Advanced Website Development with Tailwind CSS
	Introduction
	Structure
	Blogs page
	Contact us page
	FAQ page
	GIT: a brief note
	GIT working flow
	Some of the terms present in GIT

	GIT operations
	GitHub
	GitHub account
	Deployment

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	7. Best Practices for Tailwind CSS
	A glance
	Keep it in mind
	Bonus
	Component 1
	Component 2
	Component 3
	Component 4
	Component 5
	Component 6
	Component 7
	Component 8
	Component 9
	Component 10
	Component 11

	Conclusion

	Index

