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Preface

The rapid development in the area of sensor technology has been respon-
sible for a number of societal phenomena. For instance, the increased
availability of imaging sensors integrated into digital video cameras has
significantly stimulated the UGC (User Generated Content) movement be-
ginning from 2005. Another example is the groundbreaking innovation in
wearable technology leading to a societal phenomenon called Quantified
Self (QS), a community of people who use the capabilities of technical
devices to gain a profound understanding of collected self-related data.

Machine learning algorithms benefit a lot from the availability of such
huge volumes of digital data. For example, new technical solutions for
challenges caused by the demographic change (ageing society) can be
proposed in this way, especially in the context of healthcare systems in
industrialised countries. The decision making process is often supported
or even fully taken over by machine learning algorithms. We live in a data-
driven society and significantly contribute to this concept by voluntarily
generating terabytes of data everyday. This societal transformation cannot
be stopped anymore. Our objective should be to gain as much benefit from
this movement as possible by limiting possible risks connected to it.

The goal of this book is to present selected algorithms for Visual Scene
Analysis (VSA, processing UGC) as well as for Human Data Interpretation
(HDI, using data produced within the QS movement) and to expose a
joint methodological basis between these two scientific directions. While
VSA approaches have reached impressive robustness towards human-like
interpretation of visual sensor data, HDI methods are still of limited se-
mantic abstraction power. Using selected state-of-the-art examples, this
book shows the maturity of approaches towards closing the semantic gap
in both areas, VSA and HDI.

Another objective of this book is to sketch a scientific vision of a generic
platform for holistic human condition monitoring. Based on the data de-
livered by sensors integrated in wearables (time series) and, if available,
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also images, the algorithms will continuously analyse humans’ physical,
cognitive, emotional and social states/activities. Integrated into a single
module for holistic human health monitoring, the software platform will
perform a long-term analysis of human data on a very large scale. In-
telligent algorithms will automatically detect “interesting events” in these
data. Both real-time data analysis and as cumulative assessments will
be possible with the platform. The conceptualisation and development of
these machine learning algorithms for the recognition of patterns in hu-
mans’ physiological and behavioural data will happen on different levels of
abstraction between the methodology and application.

This book is designated for an interdisciplinary audience who would
like to use machine learning techniques to solve problems from the areas
of visual scene analysis as well as human data interpretation. Ideally, the
book will provide helpful background and guidance to researchers, under-
graduate or graduate students, or practitioners who want to incorporate
the ideas into their own work. On the one hand, it aims to show the
technical feasibility of machine learning techniques towards automatic in-
terpretation of multimodal sensory data. On the other hand, it warns
society to carefully monitor the implications of the rapid developments in
this area.

I would like to thank all members of the Research Group for Pattern
Recognition at the University of Siegen for proofreading this book and
providing valuable discussions which helped me to improve it. My special
thanks goes to Zeyd Boukhers, Ahmad Delforouzi, Muhammad Hassan
Khan, Kristin Klaas, Lukas Köping, Frédéric Li, Przemys law  Lagodziński,
Kimiaki Shirahama, and Cong Yang. Last but not least, I would like to
thank my family for being unfailingly supportive of this effort.

Marcin Grzegorzek
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Part I

Introduction
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Chapter 1

Fundamental Concept

Sensors are everywhere. By the early 2020s, their number will have already
exceeded one trillion [5]. This is driven by falling sensor costs and new
fabrication techniques enabling their significant miniaturisation. For exam-
ple, the startup company mCube (www.mcubemems.com) creates motion
sensors that are “smaller than a grain of sand” and envisions a world where
motion sensors are embedded in “everything that moves”.

The rapid development in the area of sensor technology has been re-
sponsible for a number of societal phenomena. For instance, the increased
availability of imaging sensors integrated into digital video cameras has
significantly stimulated the UGC (User Generated Content) movement be-
ginning from 20051. Another example is the groundbreaking innovation in
wearable technology leading to a societal phenomenon called Quantified
Self (QS), a community of people who use the capabilities of technical
devices to gain a profound understanding of collected self-related data.

Huge and continuously increasing volumes of digital sensor data are
collected everyday. For example, in June 2016, YouTube users were up-
loading 400 hours of new video content to the platform per minute2. How-
ever, the digital sensor data themselves do not provide the users with any
added value. They need to be semantically interpreted (understood) in a
particular application context to become useful.

The abstraction of digital sensor data towards their semantic under-
standing using automated algorithms is a challenging scientific problem.
The so called semantic gap, the lack of coincidence between automatically
extractable data features and human-perceivable semantic meanings [17],

1A video-sharing platform www.youtube.com got launched in February 2005.
2https://www.domo.com/blog/data-never-sleeps-4-0

3

www.mcubemems.com
www.youtube.com
https://www.domo.com/blog/data-never-sleeps-4-0


must get bridged for this. A person’s everyday life requires an immense
amount of knowledge about the world. Much of this knowledge is sub-
jective and intuitive, and therefore difficult to articulate in a formal way.
Computers need to capture the same knowledge in order to behave in an
intelligent way. One of the key challenges in artificial intelligence is how
to get this informal knowledge into a computer [6]. In contrast to human
experts from a certain application area (e.g., medical doctors), computers
do not possess the context knowledge to interpret low-level digital data on
a high-level of semantic abstraction (e.g., early diagnosis in medicine) [7].

One of the approaches towards closing the semantic gap aims at inte-
grating knowledge bases called ontologies into the process of low-level data
analysis [19]. However, the ontology generation process has been auto-
mated up to a certain limited level only which makes this strategy very time
consuming. In addition, the integration of the high-level ontology-based
reasoning techniques into the low-level data analysis algorithms usually
requires the pattern recognition software to be customised towards the
context model (application ontology) currently used [2]. This hinders the
portability of such solutions across application domains [7].

Currently, the most widely investigated family of approaches aiming to
reach high-level interpretations from low-level digital data is called deep
learning [4, 6]. Generally, deep learning algorithms allow computers to
learn from experience and understand the world in terms of a hierarchy
of concepts, with each concept defined in terms of its relation to simpler
concepts. By gathering knowledge from experience, this approach avoids
the need for human operators to formally specify all of the knowledge that
the computer needs. The hierarchy of concepts allows the computer to
learn complicated concepts by building them out of simpler ones [7].

In this book, selected state-of-the-art approaches for Visual Scene
Analysis (Part II) and for Human Data Interpretation (Part III) all aiming
at reaching the highest possible level of semantic interpretation are pre-
sented and discussed. The author comprehensively contributed to most of
the scientific results described in this book.

This chapter is structured as follows. In Section 1.1, the book is moti-
vated on the application level and from the methodological point of view.
Afterwards, the two main applications addressed by this book and in its
author’s current research, namely Active and Assisted Living (Section 1.2)
as well as Digital Medicine (Section 1.3), are introduced. Section 1.4
presents an overall structural concept of the book identifying its author’s
contributions to the particular chapters.
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Figure 1.1: The trend towards a digital society results in a huge volume
of sensor data generated everyday. These pieces of data improve the
performance of machine learning algorithms. In this way, new technical
solutions to challenges caused by the demographic change (ageing society)
can be proposed.

1.1 Motivation

The selection of applications (Active and Assisted Living as well as Digital
Medicine, see Figure 1.4) addressed in this book and in its author’s cur-
rent research is motivated by main phenomena of modern societies. On
the one hand, the demographic change leading to society ageing, along-
side the shortage of medical staff (especially in rural areas), critically chal-
lenges healthcare systems in industrialised countries in their conventional
form [7]. On the other hand, the trend towards a digital society (digitali-
sation) progresses with tremendous speed, so that more and more health-
related data is available in digital form. As large volumes of data improve
the performance of machine learning algorithms, new technical solutions
for problems caused by the demographic change (ageing society) can be
proposed (Figure 1.1).

From the methodological point of view, this book presents and reviews
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selected state-of-the-art algorithms for automatic sensor data understand-
ing. While in the area of image and video analysis (Part II: Visual Scene
Analysis) the semantic gap has already been closed up to an impressive
grade, the semantic interpretation of human-centred data recorded by sen-
sors embedded in wearable devices (Part II: Human Data Interpretation)
has still not reached a satisfactory level [17]. However, the analysis of visual
data (2D, 2.5D, or 3D images or videos) and the processing of human-
centred sensor data (mostly 1D time series) share the same methodological
fundament. The difference is the heterogeneity of data sources. While al-
gorithms for visual scene analysis can usually be built under the assumption
of a stable and constant dimensionality of data, in case of human data
interpretation the number of sensors available to the system can dynami-
cally change over time. Moreover, the labelling process in the supervised
training phase is more objective in case of visual scene analysis (e.g., man-
ual naming of objects in a scene) as for human data interpretation, since
human’s physiological, emotional, and behavioural states are not always
clearly distinguishable. Therefore, the main methodological motivation
for this book is to present selected algorithms for Visual Scene Analy-
sis (Part II) and Human Data Interpretation (Part II) and discuss their
difference in the semantic interpretation power.

1.2 Active and Assisted Living

The well-established concept of Ambient Assisted Living (AAL) aims at3

• extending the time people can live in their preferred environment by
increasing their autonomy, self-confidence and mobility;

• supporting the preservation of health and functional capabilities of
the elderly;

• promoting a better and healthier lifestyle for individuals at risk;

• enhancing security, preventing social isolation and supporting the
preservation of the multifunctional network around the individual;

• supporting carers, families and care organisations;

• increasing the efficiency and productivity of the resources used in
the ageing societies.

3Source: www.aal-europe.eu
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In the last years, the term AAL has been extended to Active and Assisted
Living to emphasise the importance of physical, cognitive, and social ac-
tivities for preserving health and functional capabilities of the elderly.

According to the Survey of Health, Ageing and Retirement in Europe
(SHARE, www.share-project.org), retirement accelerates the physi-
cal, cognitive and mental decline and, therefore, has a negative effect on
personal well-being. Staying active and social in retirement are important
ingredients for healthy ageing. For seniors who no longer head out to work
every day, it is more important than ever to find ways to stay active and
to maintain social relationships. And doing so may help seniors ward off a
number of health problems. However, finding opportunities for meaningful
physical and cognitive activities within interesting social networks becomes
increasingly difficult after retirement, especially in rural areas.

The relevance of technical solutions for AAL has continuously been
increasing over the last years, especially due to the rapid development in
the area of sensor and wearable technology. An example can be seen in
Figure 1.2. The users of such sensor-based miniaturised systems are in a
closed loop with technology. Human’s physiological and behavioural data
can be continuously recorded by wearables and automatically analysed by
machine learning algorithms to provide the users with real-time guidance
as well as recommendations for follow-up activities. In this way, the users
can benefit from individualised training programmes optimised in terms
of improving their physical, cognitive, mental, emotional and social well-
being.

The author of this book has participated in several research projects
related to Active and Assisted Living. One of them is summarised below.

In the project Cognitive Village4 [15] funded by the German Federal
Ministry of Education and Research and coordinated by Marcin Grzegorzek,
technological, economic and social innovations as well as the participatory
design approach are integrated into technical assistance systems enabling
long-term independent living of elderly and diseased people in their own
homes, and even in rural areas where well-developed infrastructure is often
missing. Under careful consideration of ethical, legal and social implica-
tions as well as the users’ real needs, the technical system is collecting
digital data about the elderly’s daily life provided by sensors voluntarily
distributed in their homes as well as by wearables such as smartwatches,
intelligent glasses and smartphones. These sensory data is then automat-

4www.cognitive-village.de
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Figure 1.2: Continuous feedback loop between the user and the technol-
ogy leading to personalised follow-up recommendation and individualised
training. Photograph source: www.shutterstock.com.

ically processed, analysed, classified and interpreted by adaptive machine
learning algorithms. The objective is to automatically achieve high-level
semantic interpretation of activities as well as physical and cognitive states
of the elderly for the detection of emergency situations with different criti-
cality grades. Equipping the algorithms with adaptive properties (different
users, behaviour changes over time) belongs to the most prominent sci-
entific contributions of Cognitive Village from the machine learning and
pattern recognition point of view. In addition, the system is required to
cope with the dynamically reconfigurable sensor system delivering the data.
The semantic gap in automatic data processing is reduced here by applying
probabilistic methods for sensory data fusion, introducing adaptive learn-
ing mechanisms, integrating ontological background knowledge as well as
probabilistic modelling and automatic detection of extreme events in the
data. Deep learning strategies are also used in the Cognitive Village sys-
tem.
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Figure 1.3: Steps of healthcare.

1.3 Digital Medicine

Currently, the patient care is conducted in functionally and geographically
isolated medical facilities. It causes fragmentation of medical processes
leading to media and technology gaps in the information flow. Missing in-
teroperability of devices and data transfer interfaces is only an exemplary
reason for this. A digital and patient-centred care consequently defined
along all its steps would improve its medical quality and economic effi-
ciency [7].

Considering the current degree of digitalisation over the healthcare
stages depicted in Figure 1.3, the digitalisation has mainly been estab-
lished in the diagnostics. Especially the modern medical imaging modalities
and molecular approaches demonstrate the huge amount of digital data
generated in today’s healthcare systems for diagnostics. In the remaining
healthcare steps, such as prevention or therapy, the degree of digitalisation
in the treatment procedures has recently gradually increased [7].

The demographic change leading to society ageing alongside the short-
age of medical staff (especially in rural areas) critically challenges health-
care systems in industrialised countries in their conventional form. For
this reason, less cost intensive forms of data-driven algorithmically sup-
ported treatments will experience an extremely high scientific, societal
and economic priority in the near future. Luckily, the digitalisation of
our society progresses with a tremendous speed, so that more and more
health-related data is available in digital form. For instance, people wear
intelligent glasses or/and smartwatches, provide digital data with standard-
ised medical devices (e.g., blood pressure and blood sugar meters following
the standard ISO/IEEE 11073) or/and deliver personal behavioural data
by their smartphones.
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This huge amount of personal data generated every day significantly
improves the accuracy of machine learning and pattern recognition al-
gorithms aiming at a holistic assessment of the human health. Better
understanding of human physical, mental and cognitive condition makes
personalised and preventive interventions possible. However, the ethical,
legal and social implications (short ELSI) of this trend must be analysed
very carefully. For instance, data-driven precise medical profiles of patients
may lead to ethically and legally completely unacceptable pricing models
in health insurance.

The health-related digital data voluntarily generated by patients/users
on a daily basis is automatically processed, analysed, classified and medi-
cally interpreted with support of semi-automatic machine learning and pat-
tern recognition algorithms in a number of projects currently conducted
by the author of this book. Two of them are shortly summarised below.

My-AHA5 (My Active and Healthy Ageing) is an EU-funded project [14]
which aims at preventing cognitive and functional decline of older adults,
through early risk detection and tailored intervention. A multinational and
multidisciplinary consortium is developing an innovative ICT-based plat-
form to detect subtle changes in physical, cognitive, psychological and
social domains of older adults that indicate an increased risk of a subse-
quent vicious cycle of disability and diseases, including dementia, depres-
sion, frailty and falls. For this, we develop, apply and investigate machine
learning approaches for multimodal data understanding in the context of
healthy ageing. Our activities follow the increasing level of semantic ab-
straction. On the low data classification level we apply and extend multiple
existing approaches targeting concrete tasks such as sleep quality estima-
tion, speech emotion analysis, gait analysis, indoor/outdoor localisation,
etc. The outcomes of these low-level classifiers are then fused on the mid-
dle data analysis level to assess the cognitive, social and physical states
of the elderly. Coming onto the high-level of semantic interpretation, the
outcomes of the middle layer are fused and jointly analysed towards general
multimodal state description of elderly in context of healthy ageing. These
multidimensional elderly description profiles deal subsequently as inputs for
a generic intervention model that, using concrete parameter values of a
particular profile, provides a specific intervention programme optimised for
a particular individual. The high heterogeneity of data sources is the main
challenge for the pattern recognition software developed in My-AHA.

5www.activeageing.unito.it
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In the project SenseVojta [8] funded by the German Federal Ministry
of Education and Research and conducted in collaboration with the Chil-
dren’s Hospital in Siegen (Kinderklinik Siegen6), a sensor-based system for
the support of diagnostics, therapy and aftercare following the so called
Vojta Principle is developed [10, 11]. The Vojta Principle starts out from
what is known as reflex locomotion. While looking for a treatment for
children with cerebral palsy, Prof. Vojta observed that these children re-
sponded to certain stimuli in certain body positions with recurring motor
reactions in the torso and the extremities. The effects of this activation
were astonishing: Afterwards, the children with cerebral palsy could first
speak more clearly, and after a short time they could stand up and walk
more assuredly7. In Vojta Therapy, the therapist administers goal-directed
pressure to defined zones on the body of a patient who is in a prone,
supine or side lying position. In everyone, regardless of age, such stimuli
lead automatically and involuntarily, i.e. without actively willed coopera-
tion on the part of the person concerned, to two movement complexes:
Reflex creeping in a prone lying position and reflex rolling from a supine
and side lying position. Through therapeutic use of reflex locomotion,
the involuntary muscle functions necessary for spontaneous movements in
everyday life are activated in the patient, particularly in the spine, but
also in the arms and legs, the hands and feet, as well as in the face. In
this project, we develop a technical solution to support both, professional
therapists as well as relatives (e.g., children’s parents) performing the ther-
apy. For this, different sensors (e.g., a Kinect camera visually observing
the scene as well as wearables measuring the acceleration of extremities)
are applied. Data acquired by these sensors is analysed and interpreted
by the pattern recognition algorithms conceptualised and implemented in
this project. The automatic sensor-based therapy interpretation provides
real-time guidance to the therapists/parents. It also cumulatively monitors
the therapy progress.

1.4 Outline and Contribution

Overall structural concept of the book relates to research areas investigated
by its author in the last years and is depicted in Figure 1.4. The table of
contents of this book is aligned to the methodological level (Level: Algo-

6www.drk-kinderklinik.de
7Source: www.vojta.com
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Figure 1.4: Overall concept of the book relates to research areas investi-
gated by its author in the last years. The table of contents of this book
is aligned to the methodological level (Level: Algorithms) and, apart from
Introduction (Part I) and Conclusion (Part IV), is divided into two parts,
Visual Scene Analysis (Part II) and Human Data Interpretation (Part III).
Sensor data analysed by the algorithms described in this book are acquired
by the mentioned cameras and wearable devices (Level: Sensors). From
the application point of view (Level: Applications), Active and Assisted
Living as well as Digital Medicine have played a crucial role in the author’s
research over the last years.
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rithms) and, apart from Introduction (Part I) and Conclusion (Part IV), is
divided into two parts, Visual Scene Analysis (Part II) and Human Data
Interpretation (Part III). Sensor data analysed by the algorithms described
in this book are acquired by the mentioned cameras and wearable devices
(Level: Sensors). From the application point of view (Level: Applications),
Active and Assisted Living as well as Digital Medicine have played a crucial
role in the author’s research over the last years.

Part II on Visual Scene Analysis is divided into three chapters. In
Chapter 2, the scientific area of Large-Scale Multimedia Retrieval (LSMR)
is reviewed. It is based on the survey article by Shirahama and Grzegorzek
published in 2016 in the Multimedia Tools and Applications journal [17].
Chapter 3 provides an overview of shape-based object recognition. Its
contents extend the Pattern Recognition journal article by Yang, Tiebe,
Shirahama, and Grzegorzek published in 2016 [20]. In Chapter 4, video
interpretation techniques based on the analysis of moving objects are de-
scribed. The contents of this chapter have their origins in [1] recently
accepted for publication in the IEEE Transactions on Circuits and Systems
for Video Technology as well as in [3] published in the proceedings of the
International Conference on Pattern Recognition 2016, both co-authored
by Marcin Grzegorzek.

Part III on Human Data Interpretation also consists of three chapters.
Chapter 5 deals with the topic of physical activity recognition using sensors
embedded in wearable devices. It is partly based on three articles co-
authored by Grzegorzek [9, 12, 18]. In Chapter 6, selected algorithms for
cognitive activity recognition are described. Its content extends an article
co-authored by Grzegorzek and recently accepted for publication in the
Computers in Biology and Medicine journal [13]. Chapter 7 addresses
the scientific area of emotion recognition and partly originates from [16]
co-authored by Marcin Grzegorzek.
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Chapter 2

Large-Scale Multimedia
Retrieval

Large-Scale Multimedia Retrieval (LSMR) is the task in which a large
amount of multimedia data (e.g., image, video and audio) is analysed to
efficiently find the ones relevant to a user-provided query. As described
in many publications [55, 64, 69, 72], the most challenging issue is how
to bridge the semantic gap which is the lack of coincidence between raw
data (i.e., pixel values or audio sample values) and semantic meanings
that humans perceive from this data. This chapter presents an overview
of both traditional and state-of-the-art methods, which play principal roles
in overcoming the semantic gap in LSMR.

2.1 Hierarchical Organisation of Semantic
Meanings

First of all, by referring to Figure 2.1, let us define semantic meanings
targeted by LSMR. Since events are widely-accepted access units to mul-
timedia data, semantic meanings are decomposed based on basic aspects
of event descriptions [53, 89]. As shown in Figure 2.1 (a), meanings are
organised using three components, concept, event and context. Based
on [53, 89], concepts form the participation (or informational) aspect of
objects in an event. That is, the event is derived by relating multiple ob-
jects. Contexts are the collection of part-of, causal and correlation aspects
among events.

More formally, concepts are defined as textual descriptions of mean-
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a) Organisation of
semantic meanings 

b) An example of organised semantic meanings

(Part-of)

Cooking a Hamburger

(Causal)

Eating the cooked Hamburger

Concept

Event

Context

Shot 1

- Cheese
- Meat
- Sausage
- Grill

Burning a Cheese,
Meat and Sausage

Shot 2

- Hand
- Food_Turner
- Bread
- Cheese etc.

Putting a Cheese
etc. on a Bread

Shot 3

- Person
- Hamburger

Eating a Hamburger

Time

Figure 2.1: An illustration of decomposing meanings based on concepts,
events and contexts [55].

ings that can be perceived from images, shots or videos, such as objects
like Person and Car, actions like Walking and Airplane Flying, and scenes
like Outdoor and Nighttime [42, 66]. In other words, concepts are the
most primitive meanings for multimedia data. Below, concept names are
written in italics to distinguish them from the other terms. An event is a
higher-level meaning derived from the interaction of objects at a specific
situation [26, 63]. In this chapter, it is especially defined by the combina-
tion of concepts. For example, in Figure 2.1 (b), Shot 1 shows Cheese,
Meat, Sausage and Grill, from which the event “barbecuing” is derived.
Shot 2 displays Hand, Food Turner, Bread, Cheese and so on, where the
event “putting Cheese etc. on Bread” is formed based on movements
of these concepts. Furthermore, as depicted by the bold line arrow in
Figure 2.1 (a), contexts are used to recursively define higher-level events
based on part-of, causal and correlation relations among lower-level ones1.
In Figure 2.1 (b), based on the part-of relation, the events in Shot 1 and
2 are combined into the higher-level event “cooking a Hamburger”. This
event and the one in Shot 3 (“eating a Hamburger”) are further abstracted
into “eating the cooked Hamburger”. Also, the correlation relation is used
to connect two ‘weakly-related’ events, such as those which occur in sep-

1In this chapter, contexts only include relations which are obtained from multimedia
data themselves, and exclude external data like geo-tags and Web documents.
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arate locations but at the same time [53]. The final goal of LSMR is the
above-mentioned organisation of semantic meanings based on concepts,
events and contexts. To make the following discussions simple and clear,
an example is used to indicate a single unit of multimedia data, such as
image, shot, video and audio. When the discrimination among these data
formats is not important, examples are used as their abstract name.

However, an event is ‘highly-abstracted’ in the sense that various ob-
jects interact with each other in different situations. In consequence, visual
appearances of examples relevant to a certain event can be completely dif-
ferent. In other words, these examples have got a huge variance in the
space of low-level features like colour, edge, and motion. One promising
solution for this is a concept-based approach which projects an example
into the space where each dimension represents the detection result of a
concept [66]. Owing to recent research progress, several concepts can be
robustly detected irrespective of their sizes, directions and deformations
in video frames. Thus, compared to the space of low-level features where
each dimension just represents the physical value of an example, in the
space of concept detection results, each dimension represents the appear-
ance of a human-perceivable meaning. In such a space, the variation of
relevant examples to an event becomes smaller and can be modelled more
easily. That is, relevant examples that are dissimilar at the level of low-level
features become more similar at the level of concepts.

Several publications reported the effectiveness of concept-based ap-
proaches. For example, Tešic̀ et al. showed that when using the same
classifier (SVM), concept detection scores lead to 50-180% higher event
retrieval performance than colour and texture features [75]. In addition,
Merler et al. reported that compared to high-dimensional features (see lo-
cal features described in the next section), concept detection scores yield
the best performance [40]. In particular, the example representation using
detection scores for 280 concepts only requires a 15 times smaller data
space than high-dimensional features, where data sizes are crucial for the
feasibility of LSMR. Furthermore, Mazloom et al. demonstrated that con-
cept detection scores offer 3.1-39.4% performance improvement compared
to a high-dimensional feature [39].

Figure 2.2 shows an overview of concept-based LSMR. Although Fig-
ure 2.2 focuses on the “birthday party” event in videos, it is straightforward
to apply the same approach to images or audio signals. First, each video
is divided into shots. For this, there exist many accurate shot boundary
detection methods. One popular approach is to detect a shot boundary
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as a significant difference of colour histograms between two consecutive
video frames [25]. In the bottom of Figure 2.2, each shot is represented
by one video frame, and arranged from front to back based on its shot ID.
Then, concept detection is conducted as a binary classification problem.
For each concept, a detector is built using training shots annotated with
the presence or absence of this concept. After that, the detector is used
to associate each shot with a detection score, representing a scoring value
between 0 and 1 in terms of the presence of the concept. A larger detec-
tion score indicates a higher likelihood that the concept being present in
a shot.

Person: 0.7
Indoor: 0.8
Table:   0.4
Crowd: 0.2
...

Person: 0.9
Indoor: 0.9
Table:   0.5
Crowd: 0.2
...

Person: 1.0
Indoor: 0.9
Food:    0.7
Crowd: 0.2
...

Shot IDShot ID

Person: 0.8
Indoor: 0.9
Table:   0.6
Crowd: 0.1
...

Person: 0.9
Indoor: 0.7
Food:    0.7
Crowd: 0.4
...

Person: 1.0
Indoor: 0.9
Table:   0.6
Crowd: 0.5
...

Person: 0.2
Indoor: 0.1
Table:   0.8
Crowd: 0.5
...

Person: 0.7
Indoor: 0.4
Table:   0.6
Crowd: 0.3
...

Person: 0.0
Indoor: 0.4
Table:   0.2
Crowd: 0.3
...

Person: 0.9
Indoor: 0.2
Table:   0.0
Crowd: 0.1
...

Person: 0.1
Indoor: 0.5
Food:    0.8
Crowd: 0.0
...

Shot ID

Videos showing a certain event (birthday party)

Multi-dimensional sequence
of concept detection scores

Person: 1.0
Indoor: 0.0
Table:   0.3
Crowd: 0.1
...

Person: 0.7
Indoor: 0.9
Table:   0.2
Crowd: 0.2
...

Person: 1.0
Indoor: 0.8
Table:   0.2
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...
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...

Shot ID
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...
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...
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Crowd: 0.1
...

Person: 1.0
Indoor: 0.2
Table:   0.1
Crowd: 0.0
...

Person: 0.9
Indoor: 0.1
Table:   0.0
Crowd: 0.0
...

Person: 0.5
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...

Shot ID

Other videos where the certain event is not shown
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Shot ID

Concept detection

Train a classifier Apply the classifier

Shot ID
Shot ID

Shot ID

Figure 2.2: An overview of concept-based LSMR where “birthday party”
is used as an example event.

Such detection scores are illustrated in the middle of Figure 2.2. For
example, the first shot in the leftmost video shows an indoor scene where
a person is bringing a birthday cake. Correspondingly, this shot is asso-
ciated with the large detection scores 0.9, 0.7 and 0.7 for Person, Indoor
and Food, respectively. Note that concept detection is uncertain because
small (or large) detection scores for a concept may be falsely assigned to
shots where it is actually present (or absent). Nonetheless, representative
concepts in shots are assumed to be successfully detected, and even if the
detection of a concept fails on some shots, its contribution to an event
can be appropriately evaluated by statistically analysing many shots. For
example, even though the shot exemplified above does not display Crowd,
a relatively large detection score 0.4 is assigned to this shot. But, by
checking the other shots in videos showing the event “birthday party”, it
can be revealed that Crowd is irrelevant to this event. The above con-
cept detection allows us to represent each video as a multi-dimensional
sequence where each shot defined as a vector of detection scores is tem-
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porally ordered, as depicted in the middle of Figure 2.2.

A classifier is built to distinguish videos showing a certain event from
the other videos, by comparing multi-dimensional sequences for these
videos. The classifier captures intra-/inter-shot concept relations that are
specific to the event. For example, corresponding to candle blowing scenes,
videos relevant to “birthday party” often contain shots where Nighttime
and Explosion Fire are detected with high detection scores. In addition,
shots displaying Person are often followed by shots showing Singing or
Dancing. Finally, the classifier is used to examine whether the event oc-
curs in unknown videos.

In concept-based LSMR, one important issue is how to define a vocabu-
lary of concepts. Such a vocabulary should be sufficiently rich for covering
various events. One traditionally popular vocabulary is Large-Scale Con-
cept Ontology for Multimedia (LSCOM), which defines a standardised set
of 1, 000 concepts in the broadcast news video domain [42]. These con-
cepts are selected based on their ‘utility’ for classifying content in videos,
their ‘coverage’ for responding to a variety of queries, their ‘feasibility’
for automatic detection, and the ‘availability’ (observability) of large-scale
training data. It is estimated that if the number of concepts in LSCOM
reaches an amount of 3, 000, granting the quality of the new concepts
remains similar to the existing ones, the retrieval performance approaches
that of the best search engine in text information retrieval [20]. The
currently most popular concept vocabulary is ImageNet [13, 52]. This is
an extension to its predecessor WordNet which is a large lexical ontology
where concepts (called synonym sets or synsets) are interlinked based on
their meanings [17]. ImageNet aims to assign on average 500 to 1, 000
images to each WordNet concept. In March 2017, 14, 197, 122 images
are associated with 21, 841 concepts through Amazon’s Mechanical Turk,
where the assignment of images has been outsourced to Web users2. The
developers of ImageNet plan to assign 50 million images to 80, 000 con-
cepts in the near future. In what follows, concept-based LSMR will be
explained by mainly focusing on two main processes, concept detection in
Section 2.2 and event retrieval in Section 2.3.

2http://image-net.org/
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2.2 Concept Detection

Concept detection (including object detection, scene recognition, image
and video classification etc.) has been investigated for a long time. It can
be formulated as a binary classification problem in machine learning, where
for each concept a detector is trained to distinguish examples showing it
from the others. This requires two types of training examples, positive
examples and negative examples. The former and latter are examples that
are annotated with the concept’s presence and absence, respectively. By
referring to these training examples, the detector examines test examples
where neither the concept’s presence nor absence is known. In accordance
with this machine learning setting, Section 2.2.1 presents the basic frame-
work by mainly focusing on representations of examples (i.e., features),
and then Section 2.2.2 provides the state-of-the-art methods that extract
useful representations by analysing a large amount of examples.

2.2.1 Global versus Local Features

Classical methods cannot achieve accurate concept detection. One main
reason is the weakness of global features which are extracted from the
whole region of an example. In other words, they only express overall
characteristics of an example. As an example of global features, Figure 2.3
shows a colour feature indicating the distribution of colours included in
an image. This kind of overall representation loses a lot of information.
For example, from the colour feature in Figure 2.3, appearances of the
car, road and vegetation cannot be deduced any more. In addition, the
overall characteristics of the example can easily change depending on the
camera techniques and shooting environments. For instance, the colour
distribution of the image in Figure 2.3 changes substantially if it is taken
in a brighter or darker lighting condition.

To overcome the weakness of global features, Schmid and Mohr pro-
posed to represent an example as a collection of local features, each of
which is extracted from a local region of the example [54]. The top right
of Figure 2.3 illustrates local features extracted from local regions circled
in yellow. In addition, [36] developed a local feature called Scale-Invariant
Feature Transform (SIFT) which represents the shape in a local region,
reasonably invariant with respect to changes in illumination, rotation, scal-
ing and viewpoint. By extracting a large number of such local features
from an example, it can be ensured that at least some of them represent
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Local feature: 
SIFT descriptor

Global feature: Color histogram Distribution (histogram) of local features

Figure 2.3: A comparison between a global feature and a local feature [56].

characteristic regions of a concept. More specifically, even if the car in
Figure 2.3 is partially masked by other objects, local features that char-
acterise a wheel, window or headlight are extracted from the visible part
of the car. Sande et al. developed extended SIFT features that are de-
fined in different colour spaces and have unique invariance properties for
lighting conditions [81]. Furthermore, local features are defined around
trajectories, each of which is obtained by tracking a sampled point in a
video [86]. The resulting local features represent the displacement of a
point, the derivative of that displacement, and edges around a trajectory.
Also, Speeded-UP Robust Features (SURF) are similar to SIFT features,
but can be efficiently computed based on the integral image structure
which quickly identifies the sum of pixel values in any image region [3].

Based on local features, Csurka et al. developed a simple and effective
example representation called Bag of Visual Words (BoVW), where each
example is represented as the collection of characteristic local features,
called visual words [10]. In BoVW, millions of local features are first
grouped into clusters where each cluster centre is a visual word representing
a characteristic local region. Then, each local feature extracted from an
example is assigned to the most similar visual word. As a result, as seen
from the bottom right of Figure 2.3, the example is represented as a vector
(histogram) where each dimension represents the frequency of a visual
word. This way, the example is summarised into a single vector where the
detailed information is maintained by visual words (local features) that
are robust with respect to varied visual appearances. The effectiveness of
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BoVW has been validated by many researchers [10, 27, 59, 81, 96].

Many extensions of BoVW have been proposed, such as soft assign-
ment which extracts a smoothed histogram by assigning each local feature
to multiple visual words based on kernel density estimation [81], sparse cod-
ing which represents the distribution of a large number of base functions
used to sparsely approximate local features [91, 92], Gaussian Mixture
Model (GMM) supervector which estimates the distribution of local fea-
tures using a GMM [22], Fisher vector encoding which considers the first
and second order differences between the distribution of local features and
the reference distribution [49], and Vector of Locally Aggregated Descrip-
tors (VLAD) which concatenates vectors each representing the accumu-
lated difference of a visual word to the assigned local features [1, 24].

Another reason for the unsatisfactory performance of classical concept
detection is the insufficiency of training examples. Although local features
are useful for managing diverse visual appearances of a concept, instances
with significantly different appearances are included in the same concept
category. For example, the concept Car includes saloon cars, buses, trucks
and so on. Regarding this, a classifier can conduct accurate detection on
test examples where instances of a concept are similar to those in train-
ing examples. However, detection is not accurate on test examples where
instances have significantly different characteristics from those in train-
ing examples. Thus, a large number of training examples are required
to address the diversity attributed to the difference in instance types of
an object. In general, the detection performance is proportional to the
logarithm of the number of positive examples, although each concept has
its own complexity of recognition [43]. This means that 10 times more
positive examples improve the performance by 10%. Considering this im-
portance of the number of training examples, researchers have developed
Web-based collaborative annotation systems where annotation of large-
scale multimedia data is distributed to many users on the Web [2, 83].
That is, these users collaboratively annotate a large number of examples
as positive or negative. In an extreme case, 80 million training images
yield accurate recognition performance [77].

However, regular users on the Web are unlikely to volunteer to annotate
when no benefit or no reason is given. In consequence, only researchers
participate in annotation, which makes it difficult to collect large-scale
annotation. Von Ahn and Dabbish proposed a Games With A Purpose
(GWAP) approach where users play a game, and as a side effect, a com-
putationally difficult task is solved [84, 85]. More concretely, users play a
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fun game without knowing that they conduct image annotation. Owing
to the motivation that users want to have fun, as of July 2008, 200, 000
users contributed to assigning more than 50 million labels to images on the
Web [85]. Another approach that motivates users is crowdsourcing that
outsources problems performed by designated human (employee) to users
on the Web [50]. In the field of multimedia annotation, one of the most fa-
mous crowdsourcing systems is Amazon’s Mechanical Turk where anyone
can post small tasks and specify prices paid for completing them [28]. Ima-
geNet, which is the currently most popular large-scale concept vocabulary
(see the previous section), has been created via Mechanical Turk [13, 52].

A detector for a concept is built based on BoVW-based features and
large-scale training examples. In most cases, the detector is built as a
Support Vector Machine (SVM) [79], which constructs a classification
boundary based on the ‘margin maximisation’ principle so that it is placed
in the middle between positive and negative examples. This ‘moderate’
boundary which is biased toward neither positive nor negative examples
is suitable for BoVW. Specifically, many visual words (e.g., thousands of
visual words) are required to maintain the discrimination power of BoVW.
That is, an example is represented as a high-dimensional vector. This
renders the nearest neighbour classifier ineffective because of many ir-
relevant dimensions to similarity calculation [6]. In contrast, the margin
maximisation makes the generalisation error of an SVM independent of
the number of dimensions, if this number is sufficiently large [79]. Ac-
tually, SVMs have been successfully applied to BoVW with thousands of
dimensions [10, 81, 27, 59].

Below, two important issues for accurate concept detection are dis-
cussed. The first is how to sample local features. In general, local feature
extraction consists of two modules, region detector and region descrip-
tor [96]. The former detects regions useful for characterising objects, and
the latter represents each of the detected regions as a vector. For example,
SIFT features are typically extracted using Harris-Laplace (or Harris-affine)
detector to identify regions where pixel values largely change in multiple di-
rections. Such regions are regarded as useful for characterising local shapes
of objects, like corners of buildings, vehicles and human eyes. Then, each
detected region is described as a 128-dimensional vector representing the
distribution of edge orientations. However, a concept is shown in signifi-
cantly different regions, and in videos, it does not necessarily appear in all
video frames. Considering this ‘uncertainty’ of concept appearances, it is
necessary to extract the BoVW representation of an example by exhaus-
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tively sampling local features in both the spatial and temporal dimensions.
Actually, the performance is improved as the number of sampled local
features increases [47]. In addition, Snoek et al. compared two meth-
ods [67]. One extracts features only from one video frame in each shot
(one shot contains more than 60 frames), and the other extracts features
every 15 frames. They found out that the latter exceeds the former by 7.5
to 38.8%. The second issue is an expensive computational cost to process
a large number of training examples and exhaustively sampled local fea-
tures. So far, many methods for reducing these computational costs have
been developed based on special hardware like computer cluster [90] and
General-Purpose computing on Graphics Processing Units (GPGPU) [82],
or based on algorithm sophistication with sub-problem decomposition [15],
tree structures [22] and matrix operations [61].

2.2.2 Feature Learning

Global and local features described in the previous section are ‘hand-
crafted’ or ‘human-crafted’ in the sense that their representations are man-
ually specified in advance [4]. For instance, a SIFT feature is described as a
128-dimensional vector where each dimension represents the frequency of
a certain edge orientation in a local region. However, such a hand-crafted
feature is insufficient for representing diverse concept appearances. This
is because all of such appearances cannot be assumed in advance and
cannot be appropriately represented by the feature. Apart from this, the
human brain recognises concepts in a hierarchical fashion where simple
cells are gradually combined into more abstract complex cells [29]. This
hierarchical brain functionality is recently implemented as deep learning
that constructs a feature hierarchy with higher-level features formed by
the composition of lower-level features [4, 5]. Such a feature hierarchy is
represented as a multi-layer neural network. In every layer, each of the
artificial neurons composes a more abstract feature based on outputs of
neurons in the previous layer.

Figure 2.4 shows a conceptual comparison between a traditional ma-
chine learning approach using a hand-crafted feature and a deep learning
approach. The former in Figure 2.4 (a) uses a ‘shallow architecture’ con-
sisting of two layers, where the first layer transforms an example into a
feature represented by a high-dimensional vector, and in second layer ag-
gregates values of this feature into a detection result of a concept. On
the other hand, the deep learning in Figure 2.4 (b) first projects an exam-
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ple into the most primitive features at the bottom layer, and then these
features are projected into more abstract ones at the second layer. This
abstraction of features is iterated to obtain a detection result of the con-
cept. For example, features in the bottom and second layers correspond
to typical edges and their combinations, respectively. Moreover, features
at in upper layer represent parts of a car, and the ones in the top layer
indicate the whole car. Like this, the workflow from processing pixels to
recognising a concept is unified into a deep architecture, which is extracted
from large-scale data.

a) Traditional machine learning approach using a hand-crafted feature

b) Deep learning approach                                 

Car

Car

Figure 2.4: A conceptual comparison between traditional machine learning
and deep learning approaches.

Deep learning mainly offers the following three advantages (see [5] for
more detail): The first is its discrimination power compared to the shallow
one in the traditional machine learning approach. The latter requires O(N)
parameters to distinguish O(N) examples, while the former can represent
up to O(2N) examples using only O(N) parameters [5]. Intuitively, a
huge first layer (i.e., very high-dimensional feature vector) is required for
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the traditional approach to discriminate diverse examples. In contrast, the
discrimination power of the deep architecture is exponentially increased
based on the combination of features in two consecutive layers. The second
advantage is the invariance property where more abstract features are
generally invariant to subtle changes in visual appearances. The last one
is the explanatory factor that the learnt feature hierarchy can capture
valuable patterns or structures underlying raw images or videos. Finally, a
classifier for detecting a concept is created by using the learnt hierarchy
as initialisation of a multi-layer neural network, or building a supervised
classifier by constructing the feature vector of each example based on the
hierarchy (this is called transfer learning [38]).

One of the most fundamental deep learning models called AlexNet is
implemented as an eight-layer Convolutional Neural Network (CNN) which
iteratively conducts convolution or pooling of outputs by neurons in the
previous layer [30]. Convolution works as feature extraction using filters
each represented by weights of a neuron. On the other hand, pooling sum-
marises outputs of neighbouring neurons to extract more abstract features.
The parameter optimisation is conducted by stochastic gradient descent
which updates each weight of a neuron by backpropagating the derivative
of training errors in terms of this weight. In ILSVRC 2012 which is a world-
wide competition on large-scale image classification [11], AlexNet with the
error rate of 15.3% significantly outperformed the others (the second best
error rate was 26.1%). Also, Le et al. developed a nine-layer stacked
sparse autoencoder to train concept detectors from unlabelled images [32].
Each layer consists of three sub-layers, filtering, pooling and normalisation,
which respectively offer feature extraction from small regions of the pre-
vious layer, the invariance of features (neighbouring neurons’ outputs) to
local deformation of visual appearances, and the range adjustment of fea-
tures. The stacked sparse autoencoder is optimised layer-by-layer so that
sparse features constructed in a layer can be accurately converted back
into the ones in the previous layer. By training such a stacked autoen-
coder using 10 million unlabelled images with 16, 000 cores, it was shown
that the highest-level neurons characterise concepts like Face, Cat Face
and Human Body. Moreover, compared to state-of-the-art methods, the
multi-layer classifier using the stack autoencoder as the initialisation yields
15% and 70% performance improvement for 10, 000 and 22, 000 concept
detection tasks, respectively. Inspired by the above-mentioned research,
many improved deep learning models have been proposed such as VGGNet
which is a very deep CNN with consisting of 16 (or 19) layers with small
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filter fields (3× 3) [62], GoogLeNet which is a 22-layer CNN where mul-
tiple convolutions are performed in parallel [71], and ResNet which is a
152-layer CNN where neuron outputs in a layer are forwarded to a layer
which is more distant than the one-level higher layer [21].

2.3 Event Retrieval

There are two scenarios of event retrieval. In the first scenario, a ma-
chine learning setting similar to concept detection is adopted by regarding
concept detection scores for each examples as its feature vector. To for-
mulate this, examples are re-defined as follows: Positive examples indicate
the ones showing a certain event, while all the other examples are signified
as negative. Based on training examples consisting of these positive and
negative examples, a classifier is built to examine the occurrence of the
event in unknown test examples. The second scenario is called zero-shot
learning that builds a classifier for an event with no training example. In
other words, the classifier is trained by considering how the event is se-
mantically configured by concepts [31, 19]. For example, a classifier for
the event “a person is playing guitar outdoors” is constructed so as to
assign high weights to detection scores for the concepts Person, Outdoors
and Playing Guitar, because these concepts are obviously important for
the event.

The following discussion mainly focuses on the first scenario where a
user provides a small number of positive examples for an event. It should
be noted that although a huge diversity of examples can be negative, it
is difficult or unrealistic for the user to provide such negative examples.
On the other hand, negative examples are necessary for accurately shap-
ing regions of examples relevant to the event [33, 60]. With respect to
this, Natsev et al. assumed that only a small number of examples in the
database are relevant to an event, and all the others are irrelevant [44].
Based on this, they proposed an approach which selects negative examples
as randomly sampled examples because almost all of them should be ir-
relevant to the query. This approach works well and has been validated in
many high performance retrieval systems [46, 65]. Keeping this prepara-
tion of training examples, existing event retrieval methods are summarised
by classifying them into two categories. The first described in Section 2.3.1
focuses on events within images/shots, and the second in Section 2.3.2
targets events over video shot sequences.
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2.3.1 Event Retrieval within Images/Shots

Given positive examples for an event, methods in this category construct
a classifier that fuses concept detection scores for a test example (image
or shot) into a single relevance score. This score indicates the relevance
of the test example to the event. Existing methods are roughly classified
into four categories, linear combination, discriminative, similarity-based or
probabilistic. Linear combination builds a classifier that computes the rel-
evance score of a test example by weighting detection scores for multiple
concepts. One popular approach to build such a classifier is to analyse con-
cept detection scores in positive examples. If the average detection score
for a concept in positive examples is large, this concept is regarded as
related to the query and associated with a large weight [45, 88]. Discrimi-
native methods construct a discriminative classifier (typically, SVM) using
positive and negative examples for an event [45, 46]. The relevance score
of a test example is obtained as the classifier’s output. Similarity-based
methods compute the relevance score of a test example as the similarity
between positive examples and the test example in terms of concept detec-
tion scores. The method in [34] uses the cosine similarity and a modified
entropy as similarity measures. Probabilistic methods estimate a proba-
bilistic distribution of concepts using detection scores in positive examples,
and use it to compute the relevance score of a test example. In [51], the
relevance score of a test image is computed as the similarity between the
multinomial distribution of concepts estimated from positive examples and
the one estimated from the test image.

In the zero-shot learning scenario, one popular approach to classifier
construction is ‘text-based weighting’ where a concept is associated with a
large weight if its name is lexically similar to a term in the text description
of the query [45, 88]. The lexical similarity between a concept name and a
term can be measured by employing a lexical ontology like WordNet [17],
or recently by utilising their vector representations (word2vec [41]) ob-
tained by a neural network, which is trained on a large amount of text
data [94]. Another approach is to construct an embedding space between
visual features and text descriptions for training examples [19]. Given a
test example, its text description is estimated by projecting its visual fea-
tures into the embedding representation, which is then further projected
into a text description. Finally, the similarity between this description and
the text description of an event is computed.
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2.3.2 Event Retrieval over Shot Sequences

This section only focuses on the usual machine learning setting to detect
an event over video shot sequences. One big problem is the difficulty of
annotating the relevance of each shot. The reasons are two-fold: First,
it is labour-intensive to annotate shots contained in each video. Second,
videos are known as continuous media where sequences of media quanta
(i.e., video frames and audio samples) convey semantic meanings when
continuously played over time [18]. Due to this temporal continuity, any
segment of a video can become a meaningful unit [73]. Specifically, hu-
mans tend to relate each shot in a video to surrounding ones. Let us
consider a video where the event “birthday party” is shown. One per-
son may think that the event occurs in a shot where a birthday cake is
brought to a table, followed by a shot showing a candle blowing scene.
But, another person may perceive that the surrounding shots displaying
participants’ chatting are also a part of the birthday party. This kind of
shot relation makes it ambiguous to determine the boundary of an event.
Thus, objective annotation is only possible at the video level in terms of
whether each video contains an event or not. Hence, a classifier needs to
be built under this weakly supervised setting where even if a training video
is annotated as relevant to the meaning, it includes many irrelevant shots.

The simplest approach to build a classifier under the weakly supervised
setting3 is to create a ‘video-level vector’ using by max-pooling [9, 35] or
average-pooling [76], which computes each dimension value as the maxi-
mum or average concept detection score over shots in a video. However,
such video-level vectors are clearly too coarse, because max-pooling may
over-estimate detection scores for irrelevant concepts to an event, and
average-pooling may under-estimate the ones for relevant concepts.

Shirahama et al. developed a more sophisticated method using a Hid-
den Conditional Random Field (HCRF) [57]. It is a probabilistic discrimi-
native classifier with a set of hidden states. These states are used as the
intermediate layer to discriminate between relevant and irrelevant shots to
an event. Specifically, each shot in a video is assigned to a hidden state
by considering its concept detection scores and transitions among hidden
states. Then, hidden states and transitions are optimised so as to max-

3Event detection under weakly supervised setting is being explored in TRECVID
Multimedia Event Detection task [63]. Although some other methods (e.g., [23, 74,
80]) can treat weakly supervised setting, they use low-level features, so are excluded
from the discussion.
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imise the discrimination between positive and negative videos. It is shown
that the optimised hidden states and transitions successfully capture con-
cepts and their temporal relations, that are specific to the event. Sun and
Nevatia proposed a method which extracts temporal concept transitions
in an event using Fisher kernel encoding [70]. Using all training videos,
they first build an HMM which works as a prior distribution, representing
concept transitions in the general case. Then, the video-level vector of
a video is created by computing the difference between the actual transi-
tions of concept detection scores in the video, and the transitions predicted
by the HMM. Thereby, vectors of positive videos for an event represent
characteristic concept transitions by suppressing trivial transitions that are
observed in many negative videos. Finally, Lu and Grauman developed
a metric which can quantify the context between two events, by finding
concepts that appear in the first event and strongly influence the second
one [37]. Such influences are measured by performing a random walk on
the bipartite graph, which consists of event and concept nodes. A concept
is regarded as influential if its ignorance leads to a dramatic decrease of the
probability of transition between two event nodes. In [37], the metric was
used to create summaries consisting of events associated with semantically
consistent contexts.

2.4 Conclusion and Future Trends

This chapter presented a survey of traditional and state-of-the-art LSMR
methods by mainly focusing on concept detection and event retrieval pro-
cesses. Regarding the former, thanks to the preparation of large-scale
datasets like ImageNet [13, 52] and the development of deep learning ap-
proaches in Section 2.2.2, many concepts can be detected with acceptable
accuracies. One open issue for concept detection is how to successfully
extend deep learning approaches that have been successful for the im-
age (i.e., spatial) domain to the video (i.e., temporal) domain. Although
several methods use 3D convolutional neural network [78] or Long Short
Term Memory (LSTM) [68], there is still significant room for improvement.
Compared to concept detection, event retrieval needs much more research
attention for both performance improvement and method innovation, as
discussed below.
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2.4.1 Reasoning

Existing event retrieval approaches lack reasoning to precisely infer events
(higher-level semantic meanings) based on ontological properties and rela-
tions of concepts. Even though some works consider hierarchical relations
among concepts, they only use is-a (generalisation/specialisation) connec-
tions among concepts [12, 98]. Reasoning based on concept properties and
relations is necessary because concept detection itself has the following two
limitations: First, concepts are too general to identify examples that users
want to retrieve. Secondly, most of the existing methods use concepts in
isolation. For example, various events are displayed in examples where the
concepts Person, Hand and Ball are present. In other words, examples that
users really want to see cannot be identified by independently examining
presences of Person, Hand and Ball. Instead, if it is observed that the
Hand of a Person is moving and the Ball is separating from the Person,
the event “throwing a ball” can be derived.

Due to the poor performance of past concept detection methods, the
above kind of reasoning has received little research attention. However,
considering their recent improvements, it seems to be the right time for the
reasoning to be widely addressed in LSRM. For this, [8] developed an in-
teresting approach which optimally specialises detected concepts and their
relations, so that they are the most probable and ontologically-consistent.
This approach, which formulates reasoning as an optimisation problem
based on constraints defined by the ontology, can be considered as a
promising future direction of LSMR.

2.4.2 Uncertainties in Concept Detection

Reasoning requires overcoming the crucial problem of how to manage ‘un-
certainties’ in concept detection. There are still many concepts that can-
not be detected with high accuracies. In addition, real-world examples are
‘unconstrained’ in the sense that they can be taken by arbitrary camera
techniques and in arbitrary shooting environments [26]. Hence, even in the
future, it cannot be expected to detect concepts with 100% of accuracy.
If one relies on uncertain concept detection results, detection errors for
some concepts damage the whole reasoning process.

Shirahama et al. have developed a pioneering method which can han-
dle uncertainties based on Dempster-Shafer Theory (DST) [58]. DST is
a generalisation of Bayesian theory where a probability is not assigned to
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a variable, but instead to a subset of variables [14]. Given a set of con-
cepts C, and S a subset of C, a ‘mass function’ m(S) is defined over
an example to indicate the probability that one concept in S is present in
the example. For instance, m({Person, Car}) represents the probability
that either Person or Car could be present in an example. In the extreme
case, m(C) represents the probability that every concept could be present;
that is, it is unknown which concept is present. Using such a mass func-
tion, DST can represent uncertainties in concept detection much more
powerfully than Bayesian theory, because the latter can only represent
uncertainties by assigning 0.5 to the probability of a concept’s presence.
However, the derivation of a mass function is quite intractable, because it
is very subjective or impossible to prepare training examples by annotating
them from the perspective that one of a set of concepts could be present.
Thus, based on the set-theoretic operation in DST, it is proved that a prob-
abilistic classifier using a mass function can be transformed into the one
using a ‘plausibility’, which is an upper bound probability that a concept
could possibly be present in an example. By modelling these plausibilities
based on the distribution of positive and negative examples for each con-
cept, a classifier is constructed in the framework of maximum likelihood
estimation. It is reported that this classifier yields about 19% performance
improvement compared to a classifier which uses concept detection scores
without considering uncertainties. One useful future direction might be
to incorporate a reasoning mechanism into the above-mentioned classifier,
where concept properties and relations are used as constraints in maximum
likelihood estimation.

2.4.3 Adaptive Learning

It is often difficult for a user to precisely express his/her interesting event,
because of the poor lexical vocabulary. For example, when the user wants
to search for an event involving a specific model of “Porsche”, it often
happens that he/she does not know the model name. Only specifying the
keyword “Porsche” leads to retrieved examples showing different models.
This kind of discrepancy between the user’s search intent and the event
description (query) specified by him/her is called the intention gap [93].
Thus, adaptive learning is necessary for the user to interactively specialise
an initially ambiguous description into an appropriate one. One of the
most popular adaptive learning approaches is Relevance Feedback (RF)
that asks a user to provide feedback regarding the relevance or irrelevance
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of currently retrieved examples [97]. These newly labelled examples are
used to refine the current classifier. RF is closely related to active learning
to select the most informative examples for improving the performance
of a classifier, and asks the user to label them [87]. Such RF (or active
learning) methods enable us to adaptively obtain satisfying event retrieval
results with reduced manual effort.

Below, an adaptive learning approach for concept detection is firstly
presented, and its extension to event retrieval is discussed at the end of
this section. The traditional RF relies on the very restrictive communi-
cation between a classifier and a user, where the user only informs the
classifier whether an example is relevant to a certain semantic meaning
or not. In the real world, the communication between a teacher and a
learner is a lot more complex. In particular, if the learner makes a mistake,
the teacher will explain it to him/her. Based on this idea, [48] developed
an Attribute-based Feedback (AF) which realises the complex communi-
cation between a user and a classifier. Here, attributes are semantically
meaningful descriptions, such as parts (e.g., “propeller”), shapes (e.g.,
“round”), textures (e.g., “stripe”), rough scene categories (e.g., “natu-
ral”), and non-verbal properties (e.g., “properties that dogs have but cats
do not”) [16, 31]. Similar to concept detection, a detector for each at-
tribute is built to identify its presence in an example. As a result, the
example is represented as a vector where each dimension represents the
output of the detector for one attribute. For example, in Figure 2.5, the
example (a) is associated with the large output value 0.6 for the attribute
“natural”, because trees and the grass are displayed in a large region.
Note that, since attributes represent lower-level semantic meanings than
concepts, automatic detection of the former is relatively easier than that
of the latter [95].

AF uses attributes as a language between a classifier and a user to
implement their complex communication [48]. Specifically, if an example
that the classifier regards as relevant to a concept’s presence is judged to
be irrelevant by a user, he/she can explain the reason for this misclassifica-
tion. Let us consider Figure 2.5 where examples are represented as points
in the multi-dimensional space defined by detector outputs for different
attributes. For simple visualisation, only two dimensions are shown in
Figure 2.5 where the horizontal dimension represents detector outputs for
the attribute “natural”. Assume that for the concept Streets, a classifier
(SVM) with the boundary depicted by the dashed line is built using three
positive and four negative examples, which are marked by blue circles and
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Figure 2.5: Attribute feedback overview

red triangles, respectively. Test examples are represented by white circles.
One popular RF approach (uncertainty sampling [87]) asks the user to
give feedback to the test example (a) that is the closest to the classifi-
cation boundary. Under this setting, the user can not only annotate the
test example (a) as negative in terms of the concept’s presence, but also
explain “this example is too natural for Streets”. This implies that test
examples which have higher detector outputs for the attribute “natural”
than the test example (a), should also be negative. In Figure 2.5, these
test examples like (c) and (d) are located in the red rectangle. This way,
based on the attribute explained in a reason, the annotation for one ex-
ample can be propagated to other examples, so that the performance of a
classifier can be effectively improved. Furthermore, attributes, which are
used as features of the classifier, can be refined based on user feedback [7].
In Figure 2.5, the above exemplified explanation has another implication
that the detector for the attribute “natural” should output lower values for
positive examples for Streets than the one for the test example (a). Using
this as a constraint, the detector is refined so that the positive example
in the red rectangle is associated with a lower value than the one for the
test example (a). This way, both of the classifier and attribute detectors
are refined by AF.

The AF described above only targets the efficient refinement of concept
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classifiers based on attributes. But, AF can be flexibly used for various lev-
els of semantic meanings. Here, classifiers for a certain level of meanings
are refined by regarding one lower level of meanings as attributes. In par-
ticular, AF seems useful for event retrieval where concepts are considered
as attributes, and accurate classifiers for events can be built with reduced
manual annotation effort. Furthermore, by viewing events as attributes,
AF may succeed in effectively extracting their causal relations.
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Chapter 3

Shape-Based Object
Recognition

This chapter addresses approaches for shape representation and matching,
including own contributions. Section 3.1 states the problem of shape-based
object recognition and motivates its practical importance. Strategies for
shape representation with coarse- and fine-grained features are proposed
and discussed in Section 3.2. In Section 3.3, matching algorithms for the
aforementioned shape descriptors are introduced. Experiments and results
are presented in Section 3.4. Finally, conclusions are drawn and further
possible research directions are listed in Section 3.5.

3.1 Problem Statement and Motivation

Shape is a very important object property being perceptually unique due
to the fact that it is both complex and structured. Shapes are perceived
veridically and are the only perceptual attributes of objects that allow
unambiguous classification [54]. Estimating similarities of object shapes
belongs to the most common unconscious human activities. Humans pro-
cess shapes using a huge knowledge database of prior experiences and
taking into account the surrounding environment. For instance, a horse
and a cat become, for humans, less similar to each other, if a dog suddenly
appears in the scene and chases away a stork. Moreover, humans uncon-
sciously consider both the outer contour and the topology of an object for
categorisation. However, it is really difficult to imitate the amazing hu-
man shape interpretation and abstraction capabilities with computer-based
algorithms [75].
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Shape-based object representation (Section 3.2) requires effective and
perceptually significant features based on either boundary or region infor-
mation. However, there are three main challenges. The first one is how
to extract efficient descriptors that are invariant to shape rotation, trans-
lation and scaling. The second one is how to extract shape descriptors
that are robust to noise and distortions. The third challenge is how to
generate descriptors with low computational complexity. In Section 3.2,
two main strategies to face these challenges are presented. Firstly, sim-
ple geometry descriptors for capturing coarse-grained shape features are
described. Secondly, rich descriptors modelling fine-grained shape details
are presented.

Shape matching (Section 3.3) aims to calculate the overall similarity
(or dissimilarity) between two object shapes based on their descriptors. For
coarse-grained shape descriptors, the matching between shapes is usually
conducted using state-of-the-art vector similarity/dissimilarity functions.
In contrast, fine-grained shape descriptors often have complex structures
and the matching process usually optimises the assignment of shape parts.
Several matching algorithms for coarse- and fine-grained shape features are
described in Section 3.3.

3.2 Shape Representation

Shape-based object representation requires perceptually significant fea-
tures extracted from object boundary information. It is sufficient to gen-
erate coarse-grained shape descriptors modelling global shape properties
for some applications (e.g., [26, 74]). For others, fine-grained shape de-
scriptors capturing detailed shape information are necessary.

3.2.1 Survey of Related Methods

A detailed review of coarse-grained shape representation techniques is
given in [2, 85]. According to [80], common coarse-grained shape descrip-
tors include the area, the circularity (perimeter2/area), the eccentricity
(length of major axis/length of minor axis), the major axis orientation,
the bending energy, etc. Other descriptors including convexity, ratio of
principle axis, circular variance and elliptic variance have been proposed
by Peura et al. [53]. These descriptors can only discriminate shapes with
large-scale differences. B-Splines [16, 27, 72] are also used for shape rep-
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resentation. Chain codes [3, 81], a widely known shape representation
technique, are not reliable for object matching [3] due to discretisation
errors with respect to rotation and scale [32].

Compared to the representation methods listed above, signature-based
shape descriptors have a higher ability to discriminate coarse-grained dif-
ferences. A shape signature represents a shape by a one dimensional
function derived from boundary points [85]. Many signature-based shape
descriptors exist [71, 84], including centroidal profile, complex coordinates,
centroid distance, tangent angle, cumulative angle, curvature and chord-
length, etc. Besides the high matching cost, shape signatures are sensitive
to noise, and slight changes in the boundary can cause large errors in
matching [84].

Fine-grained shape descriptors are classified into two types: contour-
and region-based methods. A detailed discussion and review of those
methods can be found in [79].

One of the most common contour-based shape representation tech-
niques is called Shape Context [10]. Its basic idea is to pick a certain
number of points on the shape contour and describe each of them using
the properties of its connections to remaining points. Sharon et al. [61]
proposed the figure print of a shape. It is generated by a series of confor-
mal maps, starting from mapping the object to a unit circle in the complex
plane, then from the boundary of the object to the exterior of the circle, so
that the final boundary is a diffeomorphism from the unit circle to itself.
In contrast to these approaches, Maney et al. [47] used integral invariants
to describe shapes with similar invariant properties as their differential
counterparts. An advantage of such a structural invariant approach is the
ability to handle occlusions and possibility of partial matching in shapes.
With this motivation, several invariant-based shape representation meth-
ods have been proposed [28, 78, 32]. There are four types of commonly
used invariants: (1) algebraic invariants [67], (2) geometric invariants [62],
(3) differential invariants [13], and (4) integral invariants [28, 32]. A broad
review of those types of invariants used for shape representation is given
in [13].

Another category of shape description methods integrates local and
global contour properties in a hierarchical way. McNeill et al. [50] intro-
duced a hierarchical procrustes method for shape matching based on shape
contour segmentation. The hierarchical representation avoids the problems
associated with pure global or local descriptors. Xu et al. [73] established
the contour flexibility technique to extract both global and local features
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that depicts the deformable potential at contour points. Felzenszwalb et
al. presented in [24] the shape tree algorithm which segments a curve into
two halves in the middle, and the two halves are further segmented into
respective halves. Raftopoulos et al. [55] proposed a method based on
global-local transformation to represent shape curvature being robust to
noise. Bai et al. [7] introduced the shape vocabulary representation us-
ing bag-of-words, where the shape contours are segmented into fragments
and represented as words of shape contours in different scales. Although
most of those descriptors are invariant to shape rotation, translation and
scaling, they need to sample many contour points to precisely represent
the shape characteristics. The main reason is that since those methods
do not know which contour point is useful for matching, they need to
use a large number of contour points to achieve accurate correspondences
and alignments. Thus, all of the descriptors mentioned above incur high
computational complexity.

Region-based shape descriptors take advantage of the information from
the inside of a shape. One of the most commonly used methods is based on
skeletonisation. Skeleton is an important shape descriptor for deformable
object matching since it integrates both geometrical and topological fea-
tures of an object. Skeleton-based descriptors usually lead to a better
performance than contour-based shape descriptors in the presence of par-
tial occlusion and articulation of parts [59]. This is because skeletons have
a notion of both the interior and the exterior of the shape, and are useful
for finding the intuitive correspondence of deformable shapes. In order
to generate proper skeletons for object matching, several skeletonisation
methods have been developed [19, 25, 36, 49]. One typical approach is
the Max-Disk Model [15] which continuously collects the centre points
of maximal tangent disks that touch the object boundary in two or more
locations. However, the skeleton obtained by this approach is sensitive
to small changes and noises in the object boundary [52, 63]. The reason
is that a small protrusion on the boundary may result in a large skeleton
branch. To solve this problem, Cong et al. [77] proposed an algorithm to
represent a shape using hierarchical skeletons. A hierarchical skeleton is a
collection of skeletons representing a shape at different granularity levels.

Recently, researchers have begun to combine both contour- and region-
based shape features for robust shape matching and classification. Bai et
al. [8] proposed to integrate shape contour and skeleton for object clas-
sification. This method can also be extended to incorporate other shape
features like Shape Context (SC) [10] and Inner Distance (ID) [42], etc.
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Shen et al. [64] proposed to recognise shapes by a new shape descriptor
which captures the features of a contour fragment associated with skele-
tal information. Benefiting from the association, this descriptor provides
the complementary geometric information from both contour and skeleton
parts, including the spatial distribution and the thickness change along the
shape part.

3.2.2 Coarse-grained Shape Representation

In this section, an intuitive coarse-grained shape descriptor with low com-
putation complexity is proposed. The biggest motivation of this descriptor
is that for some shapes, partition points are difficult to be generated. For
instance, the Discrete Curve Evolution (DCE) [6] cannot be applied on
a circle since all contour points could be vertices. Therefore, the shape
descriptor proposed in this section is directly calculated based on shape
regions. Prior to feature extraction, the orientation of each shape is ad-
justed by rotating it to the angle so that the straight line connecting its
two maximally distant contour points becomes vertical and the majority
of contour points lie on the left side of this line (see Figure 3.1). If the

Figure 3.1: Shape bounding box and equally high sub-boxes (h1 = h2 =
h3) used for feature extraction. A1, A2 and A3 are the areas of the top,
middle, and bottom sub-objects, respectively.

number of contour points on both sides of the line defined by p1 and p2 is
the same, the orientation is adjusted so that the straight line connecting
its two maximally distant contour points becomes vertical and the majority
of contour points lie on the upper h/2 side. If the object has a star-like
or circle-like shape, one straight line connecting its two maximally distant
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contour points is selected and the shape is rotated so that the straight line
becomes vertical.

After rotation, an object shape is described by a 10-dimensional feature
vector. For this, the bounding box of the whole shape as well as the three
equally high sub-boxes are used for feature generation (Figure 3.1). For
feature generation, the first f ′1 and the last feature f ′10 express the length of
a shape contour and the length of a shape skeleton l2, respectively. Here,
the shape skeleton is generated by the fast thinning algorithm presented
in [86] without any pre- and post-processing steps. The remaining features
are computed as follows:

f ′2 = h
w

; f ′3 = h1
w1

; f ′4 = h2
w2

; f ′5 = h3
w3

;

f ′6 = A3

A1
; f ′7 = A2

A1
; f ′8 = A1 + A2 + A3; f ′9 = l1

. (3.1)

Subsequently, two feature normalisation steps are performed. First, in
order to ensure scale invariance, the non-ratio elements (f ′1, f

′
8, f

′
9 and f ′10)

of the feature vector are divided by a half of the bounding box perimeter.
Second, all the feature values are linearly scaled to the range (0, 1] with
the following equation:

fi =
f ′i −min{f ′1, · · · , f ′10}+ 1

max{f ′1, · · · , f ′10} −min{f ′1, · · · , f ′10}+ 1
. (3.2)

In order to avoid fi = 0 and a zero denominator, a value 1 is added to both,
the numerator and the denominator. This scaling procedure is needed for
the Support Vector Machine (SVM) [68] applied in the classification tasks.
It avoids attributes in greater numeric ranges dominating the small ones.
Another reason for the scaling is to avoid numerical difficulties during the
calculation. Because kernel values usually depend on the inner products
of feature vectors (e.g., the linear kernel and the polynomial kernel), large
attribute values might cause numerical problems. After the normalisation,
a shape can be represented by a feature vector with 10 normalised feature
values:

f = (f1, f2, . . . , fi, . . . , f10)
T . (3.3)

3.2.3 Fine-grained Shape Representation

Considering all contour points for determining the similarity between object
shapes causes high computational costs. Moreover, most of the contour
points do not possess any relevance for the description of the shape char-
acteristics. For this reason, the method described in this section represents
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a shape with only a small number of interesting points. Each interesting
point is defined as a contour point that represents a rigid region of a shape.
More specifically, shapes are usually composed of different regions (Fig-
ure 3.2 (a)) with some regions being likely to be deformed. In contrast,

(a) Shape regions (b) Interesting points

Figure 3.2: Shape regions and interesting points.

other regions are resilient against shape deformations like the bird’s head,
bone ends or the handle of a hammer in Figure 3.2. Such regions are
regarded as rigid. As interesting points are mainly detected within rigid
regions, they are robust to shape deformation (Figure 3.2 (b)).

In this section, a procedure to select interesting points (Paragraph: In-
teresting Points) and a method to describe those points by feature vectors
(Paragraph: Point Context) are presented.

Interesting Points: In this paragraph, the procedure of selecting inter-
esting points pi=1,...,N from a given shape is shortly summarised. It is
based on the assumption that distinctive contour parts like the legs or the
tail of an elephant are characterised by a high curvature in comparison to
the overall shape trend [77]. The procedure itself consists of the following
steps. First, a polygonisation process is performed to suppress contour
noise without removing significant shape parts. For this, the well-known
Douglas-Peucker technique [21] is recursively applied to the object’s con-
tour. As a result, the contour is converted into a polygon. Second, the so
called reference point of the object shape is localised. It is a point inside of
the shape having the highest distance to the contour. Third, the distance
between each single contour point and its closest reference point is com-
puted. By ordering these values, a sequence is generated where interesting
points characterised by high curvatures are detected as peaks. Figure 3.3
shows results of interesting points selection for exemplary shapes.

Point Context: In [45, 46], the so called point context descriptor is
proposed representing each interesting point pi=1,2,...,N based on its geo-
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Figure 3.3: Interesting points of a bone, a bird and a person.

metrical and topological location. It is calculated using vectors originating
from pi to all other sample points qi=1,2,...,M on a shape contour in the
clockwise order. For pi, two vectors are computed, one representing the
distance of pi to each of qj=1,2,...,M , and the second representing the ori-
entation of the vector from pi to each qj=1,2,...,M . The distance from pi
to qj is defined as follows:

Di,j = log(1 + ‖pi − qj‖2) . (3.4)

The orientation Θi,j is defined as the orientation of the vector pi− qj. In
this way, a single interesting point pi is represented by two M -dimensional
vectors Di,? and Θi,?.

The proposed point descriptor is different from the method described
in [10]. Firstly, it only considers interesting points for feature vector com-
putation instead of uniformly or randomly selecting sample points. This
strategy can reduce the mismatches and computational complexity con-
spicuously. Secondly, the point descriptor described above is translation
and scaling invariant since the distance between point contexts is computed
after normalising Di,j and Θi,j. In addition, the point context features are
generated by the Euclidean distance and the four quadrant inverse tan-
gent methods, i.e., their values remain the same even if a shape is rotated.
Thus, the proposed descriptor is also rotation invariant. On the contrary,
the approach in [10] is not intrinsically rotation invariant because each
point is characterised by the tangent angle which is ineffective in case of
points for which no reliable tangent can be computed.

Shape Representation: Finally, given an arbitrary shape, its contour
can be represented by coordinates as well as the distance and orientation
vectors for all interesting points:

{pi,Di,?,Θi,?} ; i = 1, . . . , N . (3.5)
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Here, the rotation invariance property of Eq. 3.5 is briefly discussed. Theo-
retically, for a single interesting point, the proposed point context descrip-
tor is rotation invariant since it employs methods like Euclidean distance
and four quadrant inverse tangent stabilising the point context features
even if the shape is rotated. However, considering a shape with mul-
tiple interesting points, the proposed global descriptor (Eq. 3.5) is not
completely invariant to rotation since the order of interesting points may
change if it is rotated. This problem can be easily solved by some shape
preprocessing methods [76].

3.3 Shape Matching

In this section, several shape matching methods using the descriptors pre-
sented in Section 3.2 are introduced. Before going further into this discus-
sion, it is important to clarify the meaning and the aim of shape matching.
In some publications [5, 10, 47], shape matching indicates a process of
putting into correspondence different parts of two given shapes [47]. For
instance, establishing point correspondence among contours or skeletons,
searching corresponding sub-regions between shapes, etc. Based on the
correspondences between points or regions, a similarity (or dissimilarity)
value can be calculated to compare shapes. However, for some descriptors,
the correspondence-based shape matching cannot be properly applied due
to the feature structure [18, 75] and time complexity constraints [45, 46].
In such cases, a shape similarity (or dissimilarity) is calculated by vector
distance methods [11, 17, 57, 82] or feature statistics [18, 46]. No matter
how the shape similarity (or dissimilarity) is calculated, the ultimate goal
is to compare objects based on their contours. With these observations,
shape matching in this section means a process of calculating similarity
(or dissimilarity) between two given shapes based on their descriptors.

3.3.1 Survey of Related Methods

For coarse-grained features, shape matching is performed by calculating
similarities (or dissimilarities) between shapes without investigating cor-
respondences between points or regions. The most commonly applied
methods in this context include Euclidean distance [17], correlation [82],
HI [57], χ2-statistics [57] and Hellinger [11], etc. These algorithms treat
shape descriptors as global feature vectors and calculate similarities or dis-
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similarities based on appropriate vector functions. One drawback of those
methods is that they assume each feature space dimension to have the
same relevance in terms of distinguishing two given shapes which is not
always reasonable. In some cases, discriminative properties of a feature
space need to be analysed in detail by methods like Fisher Linear Dis-
criminant Analysis [58]. If the influence of each feature can be flexibly
weighted for a particular shape dataset, the discriminative power of the
shape descriptor can be improved.

For fine-grained features, shapes are usually matched by searching cor-
respondences on points or other elements of two given shapes. Comprehen-
sive surveys of shape matching techniques with respect to correspondence
can be found in [51, 70]. In contrast to coarse-grained shape matching
methods, correspondence-based shape matching measures the similarity
between shapes using element-to-element matching. Shape matching for
fine-grained shape features depends on the type of descriptor used [48].
For contour-based descriptors, a matching cost is calculated by search-
ing correspondences between shape contour points [12]. Hausdorff dis-
tance [30] calculates the distance of two point sets by both the maxi-
mum and the minimum distance between point pairs. Hence, this method
is sensitive to noise and slight variations. Belongie et al. proposed a
correspondence-based shape matching method using shape contexts [10]
with the comparison of two shapes done by matching their point his-
tograms. For region-based features, shape matching techniques involve
feature analysis based on graph matching [56]. Bai et al. proposed a
skeleton-based shape matching approach which uses the Hungarian algo-
rithm to find the best correspondence of skeleton endpoints in terms of
their geodesic paths [5]. However, all these matching methods may suffer
from the initial alignment problem due to boundary noise or shape symme-
try. As shown in Figure 3.4, there are many mismatched points (marked
in blue) in both the skeleton-based method [5] and the shape context-
based algorithm [10]. One possible way to overcome this problem is to
disregard point correspondences detected with a similarity value below a
certain threshold [1, 34, 57].

In addition to the methods mentioned above, several matching strate-
gies [41, 83] have been proposed that consider geometric relations among
multiple points. Leordeanu et al. proposed a spectral technique for match-
ing problems using pairwise constraints [41] where the correspondence be-
tween two pairs of points is established. This strategy suffers from the
similarity of lines defined by every pair of points. Zass et al. proposed to
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Skeleton Shape Context

Figure 3.4: Point (green dots) correspondences between two camels deter-
mined using the skeleton-based matching [5] and the shape context-based
matching approach [10].

match points using hyper-graphs [83] which are going beyond the pairwise
strategy. Specifically, each point set is modelled by a hyper-graph where
the relations between points are represented by hyper-edges. A match
between the point sets is then modelled as a hyper-graph matching prob-
lem. Due to the theoretical advance and empirical success, hyper-graph
matching has attracted increasing attention and many algorithms within
this category have been introduced [14, 20, 40, 44].

3.3.2 Shape Matching using Coarse-grained Features

This section introduces the shape matching and classification methods
based on the shape feature vector f defined in Section 3.2.2. Assume f ?

and f � are feature vectors representing two object shapes:

f ? = (f ?1 , f
?
2 , · · · , f ?n, · · · , f ?10)T

f � = (f �1 , f
�
2 , · · · , f �k , · · · , f �10)T

. (3.6)

Now, a function for calculating the dissimilarity value between the shapes
represented by f ? and by f � is introduced:

d′(f ?,f �) =
1

10

10∑
m=1

σm|f ?m − f �m|
|f ?m + f �m|

, (3.7)

where σm is the weight for each feature to be determined in a separate
optimisation process. Due to this optimisation, σm adapts the proposed
feature space to a particular dataset. Moreover, it helps the proposed
feature to avoid the overfitting problem by applying a proper σm to dif-
ferent features. The proposed dissimilarity measure has been inspired by
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the Chi-Square kernel [31], which comes from the Chi-Square distribu-
tion. Since the proposed shape descriptor contains a bag of features that
are discretely distributed, the Chi-Square kernel can effectively model the
overlap among them. The values of the dissimilarity function (Eq. 3.7)
belong to the range d(f ?,f �) ∈ [0, 1] which enables their easy conversion
to similarity values:

s(f ?,f �) = 1− d′(f ?,f �) . (3.8)

3.3.3 Shape Matching using Fine-grained Features

Based on the properties of the shape descriptor discussed in Section 3.2.3,
the aim is to consider the geometric relations among multiple interesting
points using high-order graph matching, which is an approach to match
two graphs by extracting the correspondences of multiple nodes [69]. This
approach is adopted by considering nodes as interesting points described
by point contexts. As shown in Figure 3.5 (a), singleton point matching is
a well-known assignment problem where the interesting point is matched
with one point in another shape. The pairwise matching (Figure 3.5 (b))
finds consistent correspondences between two pairs of interesting points by
taking into consideration both how well their descriptors match and how
similar their pairwise geometric relations are. The third-order matching
(see Figure 3.5 (c)) determines the correspondence of point triples between
the shapes to be compared. More specifically, a triple of interesting points
in one shape is matched with a triple in another shape.

(a) Singleton potential (b) Pairwise potential (c) Third-order potential

Figure 3.5: Singleton, pairwise, and third-order matching.

Let p1,i ∈ P1 and p2,j ∈ P2 denote interesting points (and their sets)
corresponding to the shapes D1 and D2, respectively. A set of point
correspondences between P1 and P2 is denoted by P = P1 × P2. Now,
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

No Optimisation 700 647 600 567 521 488 447 426 405 342

Opt. by [9] 640 584 552 501 463 424 398 381 303 145

Own Opt. [76] 700 657 615 591 553 518 475 467 420 363

Table 3.1: Retrieval results on the MPEG7 dataset for different parameter
optimisation techniques.

the following binary correspondence indicator is defined:

xi,j =

{
1 ; if p1,i corresponds to p2,j

0 ; otherwise
. (3.9)

In this definition, a basic constraint is that each point from P1 is mapped
to at most one point in P2, while for each point from P2 there is at most
one corresponding point in P1. The general approach to determine the
final point correspondence is to find an optimum distribution of xi,j for all
elements of P so that the matching costs (singlet, pairwise, or triplet) are
at a minimum [77].

3.4 Experiments and Results

In this section, experiments and results for shape-based object retrieval
are described. Techniques based on coarse-grained features are evaluated
in Section 3.4.1. Section 3.4.2 presents retrieval results for shapes repre-
sented by fine-grained features.

3.4.1 Shape Retrieval using Coarse-grained Features

Object retrieval algorithms based on the coarse-grained shape features are
evaluated using the MPEG7 [37] dataset (Figure 3.6). MPEG7 consists of
1400 shapes representing 70 object classes (20 per class). 10 shapes from
each category (altogether 700 shapes) are randomly selected for supervised
parameter optimisation [76]. The remaining 700 shapes are employed for
testing. Table 3.1 shows retrieval results achieved for this dataset with
different optimisation options. More specifically, the numbers of correct
shapes returned by the retrieval process on the first 10 positions are given,
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Figure 3.6: Sample shapes from the MPEG7 [37] database.

whereas the retrieval process is conducted 700 times (once for each of the
700 testing shapes).

In addition, the retrieval result is validated using the so-called bull’s
eye score. To compute it, every shape in the database is compared to all
other shapes, and the number of shapes from the same class among the
20 most similar shapes is reported. The bull’s eye retrieval rate is the ratio
of the total number of shapes from the same class to the highest possible
number (20 × 70 = 1400 for 700 testing shapes). The own matching algo-
rithm applied together with the optimisation technique introduced in [76]
achieves a bull’s eye score of 94%.

The second experiment is conducted on the MPEG400 dataset since
shapes in this dataset have much larger intra-class variations. The object
retrieval results are compared to the contour-based method introduced
in [75]. The experiments are performed twice, once with and once with-
out parameter optimisation. As one can see in Table 3.2, the own al-
gorithm described in this book outperforms the contour-based approach
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MPEG400 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Contour-based [75] 375 348 333 325 317 311 300 295 276 275

Own (No Opt.) 381 355 341 320 322 316 304 295 269 260

Own (Opt.) 381 370 365 354 337 342 328 315 300 301

Table 3.2: Object retrieval on the MPEG400 dataset. The second and the
third row show the results for the own matching algorithm, without and
with supervised parameter optimisation, respectively.

published in [75]. Moreover, supervised parameter optimisation improves
the performance significantly.

3.4.2 Shape Retrieval using Fine-grained Features

In this section, the own approaches for interesting point detection (Sec-
tion 3.2.3), point context description (Section 3.2.3), and high-order match-
ing (Section 3.3.3) are experimentally compared to related state-of-the-art
methods.

Interesting Point Detector: The interesting point detector described
in Section 3.2.3 is evaluated using the Kimia216 dataset [60] in a shape
retrieval scenario. The similarity value between each shape and its query
is calculated using the interesting point matching algorithm explained in
Section 3.3.3. For the isolated evaluation of the interesting point detection
method, the same point descriptors as well as the same matching strategies
are used for all compared algorithms. A quantitative evaluation of the
own approach in comparison to related state-of-the-art methods is given
in Table 3.3.

Point Context Descriptor: The experimental evaluation of the point
context descriptor defined in Section 3.2.3 is performed in a shape retrieval
scenario using the MPEG400 dataset consisting of 400 objects categorised
in 20 classes. Its performance is compared to two related description tech-
niques, namely Shape Context (SC) [10] and Point Context and Contour
Segments (PCCS) [23]. For an isolated assessment of the description
power only, the same sets of interesting points as well the same match-
ing method (Hungarian algorithm) are applied in all three cases. Detailed
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SC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IP1 216 210 195 184 181 172 161 146 148 128

IP2 216 205 195 190 187 179 180 170 171 161

IP3 216 212 206 197 191 190 186 186 183 171

PC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IP1 216 211 205 196 192 191 186 178 177 175

IP2 216 210 205 203 194 188 179 170 160 155

IP3 216 212 211 211 205 200 201 195 193 195

Table 3.3: Evaluation of interesting point detectors on the Kimia216
dataset [60]. SC: Shape Context [10] descriptor; PC: Point Context [77]
descriptor; IP1: Interesting point detection using DCE [38]; IP2: Inter-
esting point detection using visual curvature [43]; IP3: Interesting point
detection performed with the own approach.

retrieval results are reported in Table 3.4.

High-Order Matching: The own approach for high-order matching
(Section 3.3.3) is evaluated on two datasets: Kimia99 [60] and Tetra-
pod120. Kimia99 is composed of 9 classes, each one containing 11 shapes.
Tetrapod120 includes 120 visually similar tetrapod animals categorised in
six classes (camel, cattle, deer, dog, elephant, and horse). Example shapes
of both datasets are depicted in Figure 3.7. The performance compari-
son between the own method and related state-of-the-art techniques like
Inner Distance (ID) [42], Shape Context (SC) [10], and Path Similarity
Skeleton Graph Matching PSSGM [5] based on both datasets (Kimia99
and Tetrapod120) is given in Table 3.5.

3.5 Conclusion and Future Trends

The last half century has seen the development of many biological or
physical theories that have explicitly or implicitly involved object shapes
and other spatial entities in the real world. Simultaneously, mathematicians
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MPEG400 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [10] 370 343 310 302 277 272 265 264 239 240

PCCS [23] 377 351 336 331 317 302 287 282 273 262

PC 391 377 372 364 356 343 338 319 304 276

Table 3.4: Experimental comparison of the Point Context (PC) descriptor
introduced in Section 3.2.3 to SC [10] and PCCS [23] using the MPEG400
dataset.

Figure 3.7: Rows 1 and 2: Sample shapes from the Kimia99 [60] dataset.
Rows 3 - 5: Tetrapod120 examples.

and other researchers have studied the properties of object shapes and
have been stimulated by many application areas where object shapes are
useful [66]. Moreover, computer scientists and engineers have developed
numerous algorithms using object shapes. In this chapter, state-of-the-
art methodology for shape representation and matching including own
contributions is presented and experimentally evaluated.

For shape representation (Section 3.2), there is always a trade-off be-
tween accuracy and efficiency. On the one hand, shape should be described
as accurately as possible. On the other hand, a shape descriptor should be
compact to simplify indexing and retrieval. Keeping this in mind, two shape
descriptors are introduced in Section 3.2. The first one captures coarse-
grained shape features with low computational complexity so that it can be
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Kimia99 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Inner Distance [42] 99 97 92 89 85 85 76 75 63 53

Shape Context [10] 99 97 91 88 84 83 76 76 68 62

PSSGM [5] 99 99 99 99 96 97 95 93 89 73

Own Method 99 99 96 92 88 84 80 78 73 60

Tetrapod120 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Inner Distance [42] 120 118 106 101 90 83 77 69 70 56

Shape Context [10] 100 80 70 53 53 51 40 28 27 27

PSSGM [5] 120 109 101 98 81 78 68 66 65 59

Own Method 120 115 111 105 105 103 98 93 94 87

Table 3.5: Experimental comparison of the own method to ID [42], SC [10],
and PSSGM [5] on Kimia99 and Tetrapod120 datasets.

fused with some rich descriptors [5, 10] to improve its description power.
The second one models fine-grained shape properties. Experiments illus-
trate that the coarse-grained features have a promising description power
(Section 3.4.1) and improve their matching accuracy after fusion with rich
descriptors. In Section 3.4.2, high robustness of fine-grained features is
experimentally proven.

For shape matching, the algorithms are designed based on the type
and structure of shape descriptors they use. Specifically, for the coarse-
grained descriptor, shape matching is applied by calculating the distances
between shape feature vectors. In order to improve the matching accuracy
and flexibility of the coarse-grained descriptor, a supervised optimisation
strategy is applied to control the discrimination power of each dimension in
the feature space. For the fine-grained descriptor, shape matching is more
complex since it contains rich feature structures. In addition to the inher-
ent matching strategy, i.e., one-to-one interesting point matching, the idea
of high-order graph matching is also considered to improve the matching
accuracy of interesting points. For this, several potential functions are
specifically designed. The experiments in Section 3.4 show the impressive
robustness of the proposed methods in an object retrieval scenario.
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In the future, two directions will be considered to extend the research on
shape-based object retrieval. In the first one, the deep learning method [39]
will be used for shape generation and recognition. With a deep learning
framework [33], the shape generation and recognition could be realised in a
more accurate way. For the second direction, a 2D-to-3D skeleton match-
ing algorithm will be designed for non-rigid 2D-to-3D object matching.
The last decade has witnessed a tremendous growth in 3D sensing and
printing technologies. The availability of large 3D object datasets makes
it necessary to explore and search in 3D shape collections. As ordinary
users are not skilled to model 3D shapes as a query, one typical way is
to use 2D-to-3D shape retrieval approaches such as sketch-based shape
retrieval [22]. However, the underlying problem of multimodal similarity
between a 3D object and its 2D representation is challenging, especially
in case of non-rigid shapes [35]. As skeleton models integrate both geo-
metrical and topological features of 2D and 3D objects, it is reasonable to
consider it for non-rigid object matching. Particularly, 2D skeletons can
be generated from object shapes [6] or natural images [65]. For 3D object
collections, their skeletons can be formed depending on different 3D mod-
els like meshes [4], point clouds [29], etc. With the 2D-to-3D skeleton
matching, both 2D object shapes and nature images can be easily used as
the query for 3D object retrieval.
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Chapter 4

Moving Object Analysis for
Video Interpretation

Extracting and analysing object trajectories from videos is a basic problem
in computer vision and has important applications in event understanding,
robot localisation, video surveillance, etc. 2D and 3D trajectories of objects
represent high-level semantic features, which can be used to automatically
understand object activities in different kinds of videos [2].

In this chapter, selected methods for video interpretation based on
the analysis of moving objects are described. Section 4.1 provides an
overview of existing approaches in the area of object tracking in 2D, divided
into methods working with rectangular and omnidirectional video data,
respectively. In Section 4.2, algorithms for extracting 3D object trajectories
from 2D videos are introduced. Finally, conclusions are drawn and further
possible research directions are mentioned in Section 4.3.

4.1 Object Tracking in 2D Video

This section is structured as follows. Section 4.1.1 surveys state-of-the-art
approaches for object tracking, both in rectangular and polar video. Sec-
tion 4.1.2 presents a popular and robust approach in this category called
Tracking-Learning-Detection [15]. In Section 4.1.3, the topic of object
tracking in omnidirectional video data is addressed. An experimental eval-
uation of selected algorithms is presented and discussed in Section 4.1.4.
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Polar Object
Tracking

X X X X X

Multiple
Target
Tracking

X X X X X X X X

Outdoor
Application

X X X X X X X X X X

Real-time
Tracking

X X X

Moving
Camera

X X X X X X X X X X

Occlusion
Handling

X X X X X X X X X X X

Rectangular Video Polar Video

Table 4.1: Distribution of object tracking properties over related methods.

4.1.1 Survey of Related Approaches

This section lists and shortly summarises most related approaches for ob-
ject tracking, starting with those using rectangular video followed by algo-
rithms working with polar video data. Table 4.1 shows the distribution of
common object tracking properties over these methods.

Object Tracking in Rectangular Video

In [33], tracking of different kinds of interacting objects is formulated as a
network-flow mixed integer program. This is made possible by tracking all
objects simultaneously using intertwined flow variables and expressing the
fact that one object can appear or disappear at locations where another
is in terms of linear flow constraints. The proposed method is able to
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track invisible objects whose only evidence is the presence of other ob-
jects that contain them. Furthermore, the tracklet-based implementation
yields real-time tracking performance. The performance of the approach is
demonstrated on scenes involving cars and pedestrians, bags being carried
and dropped by people, and balls being passed from one player to the next
in team sports. In particular, it is shown that by estimating jointly and
globally the trajectories of different types of objects, the presence of the
ones which were not initially detected based solely on image evidence can
be inferred from the detections of the others.

In [30], an algorithm is proposed that formulates the multi-object track-
ing task as one to exploit hierarchical dense structures on an undirected
hypergraph constructed based on tracklet affinity. The dense structures in-
dicate a group of vertices that are inter-connected with a set of hyperedges
with high affinity values. The appearance and motion similarities among
multiple tracklets across the spatio-temporal domain are considered glob-
ally by exploiting high-order similarities rather than pairwise ones, thereby
facilitating the distinguishability of spatially close targets with similar ap-
pearance. In addition, the hierarchical design of the optimisation pro-
cess helps the proposed tracking algorithm handle long-term occlusions
robustly.

In multi-object tracking, it is critical to explore the data associations
by exploiting the temporal information from a sequence of frames rather
than the information from the adjacent two frames. Since straightfor-
wardly obtaining data associations from multi-frames is an NP-hard multi-
dimensional assignment (MDA) problem, most existing methods solve this
MDA problem by either developing complicated approximate algorithms,
or simplifying MDA as a 2D assignment problem based upon the infor-
mation extracted only from adjacent frames. In [12], it is shown that the
relation between associations of two observations is the equivalence rela-
tion in the data association problem, based on the spatial-temporal con-
straint that the trajectories of different objects must be disjoint. Therefore,
the MDA problem can be equivalently divided into independent subprob-
lems by equivalence partitioning. In contrast to existing works for solving
the MDA problem, the authors of [12] developed a connected component
model (CCM) by exploiting the constraints of the data association and
the equivalence relation on the constraints. Based upon CCM, the global
solution of the MDA problem for multi-object tracking can be efficiently
obtained by optimising a sequence of independent data association sub-
problems.
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Feature pooling in a majority of sparse coding based tracking algo-
rithms computes final feature vectors only by low-order statistics or ex-
treme responses of sparse codes. The high-order statistics and the cor-
relations between responses to different dictionary items are neglected.
In [18], a more generalised feature pooling method for visual tracking is
presented which utilises the probabilistic function to model the statistical
distribution of sparse codes. Since immediate matching between two dis-
tributions usually requires high computational costs, the Fisher vector to
derive a more compact and discriminative representation for sparse codes
of the visual target is introduced. The approach encodes target patches
by local coordinate coding, utilises Gaussian mixture model to compute
Fisher vectors, and finally trains semi-supervised linear kernel classifiers
for visual tracking. In order to handle the drifting problem during the
tracking process, these classifiers are updated online with current tracking
results.

Under a tracking framework, the definition of the target state is the
basic step for automatic understanding of dynamic scenes. More specifi-
cally, far object tracking raises challenges related to the potentially abrupt
size changes of the targets as they approach the sensor. If not handled,
size changes can introduce heavy issues in data association and position
estimation. This is why adaptability and self-awareness of a tracking mod-
ule are desirable features. The paradigm of cognitive dynamic systems
(CDSs) can provide a framework under which a continuously learning cog-
nitive module can be designed. In particular, CDS theory describes a basic
vocabulary of components that can be used as the founding blocks of a
module capable of learning behavioural rules from continuous active in-
teractions with the environment. This quality is fundamental to deal with
dynamic situations. In [20], a general CDS-based approach to tracking is
proposed. It is shown that such a CDS-inspired design can lead to the self-
adaptability of a Bayesian tracker in fusing heterogeneous object features,
overcoming size change issues.

The task of tracking multiple targets is often addressed with the so-
called tracking-by-detection paradigm, where the first step is to obtain a
set of target hypotheses for each frame independently. Tracking can then
be regarded as solving two separate, but tightly coupled problems. The
first is to carry out data association, i.e., to determine the origin of each of
the available observations. The second problem is to reconstruct the ac-
tual trajectories that describe the spatio-temporal motion pattern of each
individual target. The former is inherently a discrete problem, while the
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latter should intuitively be modelled in continuous space. Having to deal
with an unknown number of targets, complex dependencies, and physical
constraints, both are challenging tasks on their own and thus most previous
work focuses on one of these subproblems. In [22], a multi-target tracking
approach is presented that explicitly models both tasks as minimisation
of a unified discrete-continuous energy function. Trajectory properties are
captured through global label costs, a recent concept from multi-model
fitting, which is introduced to tracking. Specifically, label costs describe
physical properties of individual tracks, e.g., linear and angular dynam-
ics, or entry and exit points. Further, the paper introduces pairwise label
costs to describe mutual interactions between targets in order to avoid
collisions. By choosing appropriate forms for the individual energy com-
ponents, powerful discrete optimisation techniques can be leveraged to
address data association, while the shapes of individual trajectories are
updated by gradient-based continuous energy minimisation.

Many recent advances in multiple target tracking aim at finding a
(nearly) optimal set of trajectories within a temporal window. To handle
the large space of possible trajectory hypotheses, it is typically reduced to a
finite set by some form of data-driven or regular discretisation. In [21], an
alternative formulation of multitarget tracking as minimisation of a contin-
uous energy is proposed. Contrary to recent approaches, [21] focuses on
designing an energy that corresponds to a more complete representation
of the problem, rather than one that is amenable to global optimisation.
Besides the image evidence, the energy function takes into account phys-
ical constraints, such as target dynamics, mutual exclusion, and track
persistence. In addition, partial image evidence is handled with explicit
occlusion reasoning, and different targets are disambiguated with an ap-
pearance model. To nevertheless find strong local minima of the proposed
nonconvex energy, a suitable optimisation scheme that alternates between
continuous conjugate gradient descent and discrete transdimensional jump
moves is constructed. These moves, which are executed so that they al-
ways reduce the energy, allow the search to escape weak minima and
explore a much larger portion of the search space of varying dimensional-
ity.

[31] presents a method for single target tracking of arbitrary objects
in challenging video sequences. Targets are modelled at three different
levels of granularity (pixel level, parts-based level and bounding box level),
which are cross-constrained to enable robust model relearning. The main
contribution of this paper is an adaptive clustered decision tree method
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which dynamically selects the minimum combination of features necessary
to sufficiently represent each target part at each frame, thereby providing
robustness with computational efficiency. The adaptive clustered deci-
sion tree is implemented in two separate parts of the tracking algorithm:
firstly to enable robust matching at the partsbased level between succes-
sive frames; and secondly to select the best superpixels for learning new
parts of the target.

Semantic object segmentation in video is an important step for large-
scale multimedia analysis. In many cases, however, semantic objects are
only tagged at video-level, making them difficult to be located and seg-
mented. To address this problem, in [35] an approach to segment semantic
objects in weakly labelled video via object detection is proposed. In this ap-
proach, a novel video segmentation-by-detection framework is introduced,
which first incorporates object and region detectors pre-trained on still im-
ages to generate a set of detection and segmentation proposals. Based
on the noisy proposals, several object tracks are then initialised by solving
a joint binary optimisation problem with min-cost flow. As such tracks
actually provide rough configurations of semantic objects, the object seg-
mentation is refined while preserving the spatiotemporal consistency by
inferring the shape likelihoods of pixels from the statistical information of
tracks.

Visual attention is a crucial indicator of the relative importance of ob-
jects in visual scenes to human viewers. In [16], an algorithm to extract
objects which attract visual attention from videos is proposed. As hu-
man attention is naturally biased towards high level semantic objects in
visual scenes, this information can be valuable to extract salient objects.
The proposed algorithm extracts dominant visual tracks using eye track-
ing data from multiple subjects on a video sequence by a combination of
mean-shift clustering and Hungarian algorithm. These visual tracks guide
a generic object search algorithm to get candidate object locations and
extents in every frame. Further, [16] proposes a novel multiple object
extraction algorithm by constructing a spatio-temporal mixed graph over
object candidates. Bounding box based object extraction inference is per-
formed using binary linear integer programming on a cost function defined
over the graph. Finally, the object boundaries are refined using grabcut
segmentation.
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Object Tracking in Polar Video

Dual-camera systems have been widely used in surveillance because of
the ability to explore the wide field of view (FOV) of the omnidirectional
camera and the wide zoom range of the PTZ camera. Most existing algo-
rithms require a priori knowledge of the omnidirectional camera’s projec-
tion model to solve the nonlinear spatial correspondences between the two
cameras. To overcome this limitation, in [4], two methods are proposed:
geometry and homography calibration, where polynomials with automated
model selection are used to approximate the camera projection model and
spatial mapping, respectively. The proposed methods not only improve
the mapping accuracy by reducing its dependence on the knowledge of
the projection model but also feature reduced computations and improved
flexibility in adjusting to varying system configurations. Although the fu-
sion of multiple cameras has attracted increasing attention, most existing
algorithms assume comparable FOV and resolution levels among multiple
cameras. Different FOV and resolution levels of the omnidirectional and
PTZ cameras result in another critical issue in practical tracking applica-
tions. The omnidirectional camera is capable of multiple object tracking
while the PTZ camera is able to track one individual target at a time
to maintain the required resolution. It becomes necessary for the PTZ
camera to distribute its observation time among multiple objects and visit
them in sequence. Therefore, this paper addresses a novel scheme where
an optimal visiting sequence of the PTZ camera is obtained so that in a
given period of time the PTZ camera automatically visits multiple detected
motions in a target-hopping manner.

In [25], a novel integrated multicamera video-sensor (panoramic cata-
dioptric vision tracker plus - PCVT+) is proposed for surveillance systems.
In the proposed setup an omni-directional imaging device is used in con-
junction with a pan, tilt, zoom (PTZ) camera leading to an innovative
kind of sensor that is able to automatically track any moving object within
the guarded area at a higher zoom level. In particular, the catadioptric
sensor is firstly calibrated and used in order to track every single object
that is moving within its 360-degree field of view. Omni-directional image
portions are eventually rectified and pan, tilt and zoom parameters of the
moving camera are automatically adjusted by the image processing system
in order to track detected objects. A cooperative strategy was developed
for the selection of the object to be tracked by the PTZ sensor in the case
of multiple targets.
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A technique for applying visual tracking algorithms to omnidirectional
image sequences is presented in [24]. The method is based on a spherical
image representation which allows taking into account the distortions and
nonlinear resolution of omnidirectional images.

Using stereo disparity or depth information to detect and track moving
objects has received increasing attention in recent years. However, this
approach suffers from some difficulties, such as synchronisation between
two cameras and doubling of the image-data size. Besides, traditional
stereo-imaging systems have a limited field of view (FOV), which means
that they need to rotate the cameras when an object moves out of view.
In [32], the authors present a depth-space partitioning algorithm for per-
forming object tracking using single-camera omni-stereo imaging system.
The proposed method uses a catadioptric omni directional stereo-imaging
system to capture omni-stereo image pairs. This imaging system has 360-
degree FOV, avoiding the need for rotating cameras when tracking a mov-
ing object. In order to estimate omni-stereo disparity, the authors present
a depth-space partitioning strategy. It partitions, three-dimensional depth
space with a series of co-axial cylinders models the disparity estimation
as a pixel-labelling problem and establishes an energy minimisation func-
tion for solving this problem using graph cuts optimisation. Based on
the omni-stereo disparity-estimation results, the authors detect and track-
moving objects based on omni-stereo disparity motion vector, which is the
difference between two consecutive disparity maps.

Equipping mobile robots with an omnidirectional camera is very advan-
tageous in numerous applications as all information about the surrounding
scene is stored in a single image frame. [19] is concerned with detection,
tracking and following of a moving object with an omnidirectional camera.
The camera calibration and image formation is based on the spherical uni-
fied projection model thus yielding a representation of the omnidirectional
image on the unit sphere. Detection of moving objects is performed by
calculating a sparse optical flow in the image and then lifting the flow
vectors on the unit sphere where they are discriminated as dynamic or
static by analytically calculating the distance of the terminal vector point
to a great circle arc. The flow vectors are then clustered and the centre
of gravity is calculated to form the sensor measurement. Furthermore, the
tracking is posed as a Bayesian estimation problem on the unit sphere and
the solution based on the von Mises-Fisher distribution is utilised. Visual
servoing is performed for the object following task where the control law
calculation is based on the projection of a point on the unit sphere.
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4.1.2 Tracking-Learning-Detection

A very popular and robust approach for object tracking in rectangular video
is presented in [15]. It is called Tracking-Learning-Detection (TLD). TLD
is a framework designed for long-term tracking of an unknown object in a
video stream.

The authors of [15] start the motivation of their own approach stat-
ing the fact that most of the existing long-term tracking algorithms ap-
ply either tracking or detection and do not combine these two strategies.
Tracking algorithms estimate the object motion. Trackers require only ini-
tialisation, are fast and produce smooth trajectories. On the other hand,
they accumulate errors during run-time (drift) and typically fail if the ob-
ject disappears from the camera view. Research in tracking aims at de-
veloping increasingly robust trackers that track “longer”. The post-failure
behaviour is not directly addressed. Detection-based algorithms estimate
the object location in every frame independently. Detectors do not drift
and do not fail if the object disappears from the camera view. However,
they require an offline training stage and therefore cannot be applied to
unknown objects.

The main idea of [15] is to let tracking and detection algorithms work
together. Moreover, it also incorporates a learning module observing the
performance of both, tracker and detector, and learning from this obser-
vation. The components of the framework are characterised as follows:

Tracker estimates the object’s motion between consecutive frames under
the assumption that the frame-to-frame motion is limited and the
object is visible. The tracker is likely to fail and never recover if the
object moves out of the camera view.

Detector treats every frame as independent and performs full scanning
of the image to localise all appearances that have been observed and
learned in the past. As any other detector, the detector makes two
types of errors: false positives and false negatives.

Learning observes performance of both, tracker and detector, estimates
the detector’s errors and generates training examples to avoid these
errors in the future. The learning component assumes that both the
tracker and the detector can fail. By the virtue of the learning, the
detector generalises to more object appearances and discriminates
against background.
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Figure 4.1: An example of an omnidirectional camera image.

In the next section (Section 4.1.3) an approach is presented that extends
TLD towards object tracking in polar video.

4.1.3 Tracking in Omnidirectional Video

An omnidirectional camera (from “omni”, meaning all) is a camera with a
360-degree field of view in the horizontal plane, or with a visual field that
covers (approximately) the entire sphere (example image in in Figure 4.1).
While it is not limited to a single viewpoint and can observe a large area,
it distorts the objects in the scene. For this reason, existing methods for
object tracking in 2D rectangular video cannot be applied for these data
without appropriate modifications. Below, the MTLD [7], an accordingly
modified version of the TLD summarised in Section 4.1.2, is described.
The general MTLD processing pipeline is depicted in Figure 4.2. Its mod-
ifications compared to TLD are as follows:

Image Rectification: First, a rectification transformation is applied con-
verting polar images into rectangular ones (see example in Fig-
ure 4.3).

Classifier Modification: By the image rectification, in-plane rotation is
mostly removed. However, in some cases, the desired object is not
detected robustly due to the out-of-plane rotation problem. To re-
solve this issue, the nearest neighbour classifier performing this de-
tection is modified in such a way to accept more variance in the
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Figure 4.2: Block diagram of the MTLD method.

Figure 4.3: Image from Figure 4.1 after rectification.

appearance of the candidate objects. This strategy improves the
detection performance of the desired objects. However, it also in-
creases the number of false positives. To tackle this problem, ob-
jects with a high replacement in consecutive frames are ignored. The
block diagram of the MTLD detector is depicted in Figure 4.4.

Figure 4.4: Block diagram of the modified object detector.

Search Area Restriction: The MTLD approach attempts to decrease
the computational cost of the TLD method. For this reason, the
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Figure 4.5: Example polar images from the video dataset used for experi-
ments.

object searching area in MTLD is restricted to a region around the
object location in the previous frame. Due to the wide field of view
in 360-degree images, even when the camera is moving, the object
location in successive frames does not change significantly. Thus,
the limitation of the searching area does not negatively influence the
tracking performance.

Detection Strategy Modification: TLD uses the tracker output to train
the detector. However, it has been observed that it does not play
an important role in updating the detector output. To improve the
detection performance, the currently detected object is included in
the positive example set rather than the tracker output. Usually,
the object size varies in a very limited way between two successive
frames of a polar video. MTLD assumes the size difference to be
lower than 25% which additionally optimises the algorithm.

4.1.4 Experiments and Results

To comparatively evaluate the TLD (Section 4.1.2) and the MTLD method
(Section 4.1.3), a set of 9 different video samples with diverse frame num-
bers and various objects has been used. Example images of this dataset
are presented in Figure 4.5. The objects meant to be tracked include
cars, motorcycles, pedestrians, human head, human body and aeroplane.
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Video Topic Frames TLD MTLD

Recall Precision Recall Precision

Snorkelling 683 0.038 1.000 0.840 0.870

Snowboard 248 0.516 0.516 0.670 0.670

Airplane 761 0.760 0.760 0.760 0.740

Park 58 0.650 1.000 1.000 1.000

Pedestrians 129 0.640 0.640 0.860 0.860

Motorcycles 83 1.000 1.000 1.000 1.000

Car Racing 330 1.000 1.000 1.000 1.000

TPittsburgh 294 0.920 1.000 1.000 1.000

Motocross 250 1.000 1.000 1.000 1.000

Average 0.624 0.875 0.860 0.861

Table 4.2: Evaluation results in terms of recall and precision.

They feature both in-plane and out-of-plane rotations. Initial experiments
showed that TLD cannot track objects in 360-degree images due to the
lack of the rectification step. For this reason, all frames have first been
rectified and then passed to the TLD and the MTLD method for process-
ing.

The experimental results of the MTLD in comparison to the TLD
are presented in Table 4.2. As one can see, MTLD outperforms TLD
significantly. While the average precision has remained similar in both
cases (87.5% for TLD; 86.1% to MTLD), the average recall has been
improved from 62.4% to 86.0%

4.2 3D Trajectory Extraction from 2D Video

Capturing spatio-temporal relations among objects in the 3D space is cru-
cial for the semantic analysis of activities and events in videos. Starting
with a description of the Reversible Jump Markov Chain Monte Carlo
(RJ-MCMC) particle filtering [17] (Section 4.2.1), this section presents a
probabilistic method extracting 3D trajectories of objects from 2D videos
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captured from a monocular moving camera [2, 3] in Section 4.2.1, de-
scribes its application to human behaviour analysis in crowded surveillance
video [1] in Section 4.2.2, and, finally, discusses the evaluation results
achieved for it in Section 4.2.3.

Compared to other approaches, the method explained in this section
can extract 3D trajectories in a much less restrictive way than comparable
approaches known from the literature. Based on example object appear-
ances, it estimates the focal length of the camera and computes the depth
of detected objects. Contrary to other 3D trajectory extraction methods,
the algorithm presented in this section is able to process videos taken from
both, a stable camera and a non-calibrated moving camera without any
restrictions. For this, the Reversible Jump Markov Chain Monte Carlo
(RJ-MCMC) particle filtering [17] has been modified to be more suitable
for camera odometry without relying on geometrical feature points (details
in Section 4.2.1).

4.2.1 RJ-MCMC Particle Filtering

Practically, objects such as people or cars move freely in the space. Due
to the variety of their appearances and occlusions, the extraction of their
3D trajectories is a challenging task. For this, most existing approaches
use 3D sensors (e.g., lidar - light detection and ranging, stereo camera,
depth cameras). For instance, Choi et al. [5] propose a method, which
robustly extracts 3D object trajectories using 3D cameras.

However, this section addresses a much more challenging task for ex-
tracting 3D object trajectories from 2D video data. For this, an example-
based approach is adopted in order to estimate objects’ depths based on
a large-scale training dataset, where each example appearance of an ob-
ject is associated with the corresponding size. Given an object bounding
box, the approach retrieves the most similar candidates from the training
dataset, where the mean size of all candidates is assigned to the query
object. The query object is then projected to the real world given its size
in the image plane, its estimated size in the real world and the camera
matrix.

Another challenging problem is the enormous number of objects in the
scene, where the simultaneous estimation of several objects makes the
state dimension huge and variable. Therefore, the method proposed by
Khan et al. [17] called “Reversible Jump Markov Chain Monte Carlo (RJ-
MCMC) particle filtering” is applied here, where the difference to classical

94



particle filtering methods lies in its capability to generate a small number
of hypotheses to estimate the entire probability distribution. In addition,
the Markov Random Field (MRF) is applied to control the interaction of
objects.

The problem of extracting 3D trajectories of objects is formulated as
finding the most probable configuration, by estimating the maximum a
posteriori (MAP) solution of P (∆t|Ψ0,..,t), given all observations Ψ0,..,t.
Here, ∆t represents the configuration to be estimated, which consists
of 3D positions of existing objects at time t. For every particle j, one
hypothesis (update, add, delete, stay or leave) is generated and evaluated
afterwards given the visual observation Ψt and the previous configuration
∆t−1. The MAP solution of the posterior distribution can be formulated
as follows:

P (∆t|Ψ0,..,t) ∝
P (Ψt|∆t)︸ ︷︷ ︸

a

∫
P (∆t|∆t−1)︸ ︷︷ ︸

b

P (∆t−1|Ψ0,..,t−1)︸ ︷︷ ︸
c

d∆t−1 . (4.1)

In Equation 4.1, the first term (a) represents the observation likelihood
expressing the measurement model of the compatibility of a hypothetical
configuration ∆t given the observation Ψt. The second term (b) is the
transition model controlling the smoothness of object movements and their
interactions given their previous movements at t−1. Finally, the third term
(c) represents the posterior probability at time t− 1, which is assumed to
be available at the initial time. Below, detailed explanations about the
observation model, the transition model and the sampling process are
given.

Observation Model

In order to find the best configuration for the visual observation, each
hypothesis is evaluated by the projection of all objects onto the image
plane with respect to the current camera parameters of their last known
appearances. The observation model can be then expressed as the product
of all measurements:

P (Ψt|∆t) =
∏

i P (Ψt|ϕΦt(∆
i
t)) , (4.2)

where P (Ψt|ϕΦt(∆
i
t)) denote the measurement of the hypothesis corre-

sponding to the i-th object ∆i
t in ∆t. All objects are assumed to be located

on the ground plane, and their detection is performed in accordance with
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Figure 4.6: An illustration of object observation computation based on
point matching.

the algorithm proposed by Felzenszwalb et al. [9]. Subsequently, the leave
and update hypotheses are assessed based on matching similarity between
its last valid appearance and its current projection onto the image plane
w.r.t camera parameters Φt. For this VLFeat [29] that can achieve fast and
accurate point matching between two images is employed. More precisely,
for an update hypothesis of the object at time t, its bounding box BOX1

projection from the real world onto the image plane (ϕΦt(∆
i
t)) w.r.t Φt

is used. BOX1 is then resized to the same size as the output bounding
box of the corresponding object given by the detector in the initial frame
(BOX2). Figure 4.6 illustrates the matching process between BOX1 and
BOX2. Its key-points are marked as (+) and (◦), respectively, where the
best match is related to the highest number of matched points and the
smallest average of pixel displacements. The observation likelihood of ∆i

at t is given by the similarity S∆
i

t as follows:

P (Ψt|ϕΦt(∆
i
t)) = S∆

i

t =
`

ρ× (µ+ 1)
, (4.3)

where ρ and µ denote the diagonal length of ROI1 and the average of pixel
displacement field, respectively, and ` is the number of matched points
between BOX1 and BOX2. To obtain BOX1, the object hypothesis
is projected from the real world to the image plane using the projection
function ϕΦt given the translation vector Tt and the rotation matrix Rt

at time t. Moreover, ϕ−1Φt
is the inverse projection function, which is used

to project a newly detected object from the image plane to the camera
coordinate system.
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Transition Model

Since objects are assumed to move fluently in the space, the second term
of Equation 4.1 controls the transition smoothness between configurations.
However, objects usually try to avoid collisions which perturbs the evenness
in their movement. Hence, objects affect each other in their movement,
whereas fast objects impact the area in front of them, contrary to the slow
ones influencing the area around them [26]. Therefore, the independence
and the interaction models (described in paragraphs below) are considered
to represent object transition as follows:

P (∆t|∆t−1) = Pindependence(∆t|∆t−1) Pinteraction(∆t|∆t−1) . (4.4)

Independence Model: In this model, objects are supposed to move
smoothly with a rational change. Given the position at t − 1 and the
current velocity vit = vit−1 − vit−2, the independence model of the i-th
object’s 3D position ∆i

t at t is controlled by a simple normal distribution
with its maximum value at ∆i

t−1 + vit:

Pindependence(∆
i
t|∆i

t−1) = N
(
∆i
t−1 + vit, 1

)
. (4.5)

Interaction Model: In real scenarios, objects either move together in
groups or separably. This can be characterised by the distance between
them and their velocities. Using Markov Random Field (MRF), two modes
(group and repulsion) are defined, which control the relation between two
objects ∆i1

t and ∆i2
t (this relation can change over time). Therefore, a

hidden variable σ is employed in order to switch between modes, where the
probability of repulsion and relation is computed at every frame based on
the previous mode. The interaction model can be represented as follows:

Pinteraction(∆t|∆t−1) =
∏
i1<i2

ω(∆i1
t , ∆

i2
t ;σ∆

i1 ,∆i2

t ) , (4.6)

where σ∆
i1 ,∆i2

t is a binary variable (1: repulsion; 2: group) determined as

the most probable mode for the time t, while ω(∆i1
t , ∆

i2
t ;σ∆

i1 ,∆i2

t ) is the

probability mode of ∆i1
t and ∆i2

t based on σ∆
i1 ,∆i2

t .

Sampling

In order to approximate the best configuration, N hypotheses are randomly
generated at each time t starting from an arbitrary configuration ∆j=0

t .
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A hypothesis is accepted if it is better than the previous one; otherwise,
it is rejected. The jump from one hypothesis to another is applied only
to one randomly selected object, whereas the jump is accepted only if the
acceptance ratio A ≥ 1. Following the Metropolis-Hastings algorithm,
the acceptance ratio of the jump from j-th hypothesis to j + 1-th one is
computed as follows:

A =
P (Ψt|Θj+1

t )

P (Ψt|Θj
t )

P (Θj+1
t |Ψ0,..,t−1)

P (Θj
t |Ψ0,..,t−1)

Q(Θj
t ;Θ

j+1
t )

Q(Θj+1
t ;Θj

t )
. (4.7)

Each model in the set is reversible to another or to itself, e.g., the ac-
tions Add and Delete (described in the paragraphs below) counteract each
other.

Add: This jump allows to add a new object ∆new which did not exist
neither at t−1 nor in the previous jump t(j−1). For this, an arbitrary po-
sition and category (w.r.t the size of objects in that category) are assigned
to the newly added object, ensuring that its projection falls exactly within
the image boundary. The corresponding bounding box is evaluated us-
ing the object detector [9], where the proposal distribution QA(∆j+1

t ;∆j
t)

takes the detection confidence (0: non detected, 1: certainly detected).
In addition, the detected bounding box is compared to existing objects in
order to not overtake the identity of one of them.

Delete: As the reversible jump for Add, delete jump is applied in order
to deny a formerly added object at t(< j), if it is sufficiently similar to
one of the objects that existed at t− 1 but not at the time of its addition.
The proposal distribution QD(∆j+1

t ;∆j
t) is then the maximum similarity

between the newly added object and the last valid appearances of the
remaining objects.

Stay: This model inserts a randomly selected object from the set ε
S(j)
t ,

consisting objects that are no longer in ∆j
t but existed at t − 1. The

proposal distribution samples a new position from that in its last existence
at t:

QS(∆j+1
t ;∆j

t) =

{
1

|εS(j)
t |

P (Ψt|ϕΦt(∆
i(j+1)
t )) if i ∈ εS(j)t

0 otherwise
. (4.8)
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Leave: As a reversible jump of stay, this model removes a randomly
selected object from ε

L(j)
t , which is the set of objects that exist in Θj

t and
existed in Θt−1. The proposal is then:

QL(∆j+1
t ;∆j

t) =

{
1

|εL(j)
t |

if i ∈ εL(j)t

0 otherwise
. (4.9)

Update: This jump proposes a new position of a randomly selected ob-
ject from ε

L(j)
t . The proposal distribution is modelled by a simple normal

distribution, where the mean is the current position ∆i,j
t of the i-th object:

QU(∆i,j+1
t ;∆i,j

t ) = N (∆i,j+1
t , 1). Note that the update jump is reversed

by another update jump.

4.2.2 Convoy Detection in Crowded Video

Both 3D and 2D trajectories can be used to automatically detect group ac-
tivities, which might be important to analyse crowded surveillance videos.
This detection can be done by considering a group pattern as a set of
moving feature points [26]. Stationary groups represented as a batch of
feature points can also be analysed [34]. The analysis of people’s trajecto-
ries independently of each other is very difficult in crowded environments
due to complexity and scalability problems. For this reason, the algorithm
presented in this section performs the analysis of convoys, considering two
or more pedestrians moving or standing together as one pattern.

The difficulty of detecting convoys lies in the high pedestrian density,
where patterns change their intra properties (e.g., relative positions of
pedestrians in one group) and inter properties (e.g., a group can cross
another group) over time. Therefore, a two-phase algorithm is proposed
consisting of a density clustering phase and an intersection phase, where
the former is unaffected to the intra properties of pedestrians. In other
words, even if the relative positions of pedestrians in a group change, it al-
lows them to stay in the same group as long as they are densely connected.
Meanwhile, inter properties are handled by intersecting pedestrian groups
iteratively, where if the same pedestrians continuously form a group over
a frame sequence, they are regarded as a convoy.

The idea of extracting convoy patterns from trajectories is similar to
the work proposed in [13, 14], but a new pattern called noncontinuous
convoy is proposed.
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Noncontinuous Convoy: Jeung et al. [13] proposed a convoy as a group
of objects which are density-connected with each other during a consecu-
tive period of time. Here, density-connected is a measurable way to spa-
tially determine whether people stay together or not. However, convoys
with such density-connected objects are not as capable as expected in real-
life circumstances because of the very rigid constraint of consecutiveness.
For example, two pedestrians who are walking together may not be density-
connected for a few seconds for some reasons. Furthermore, pedestrian
detection may be unstable, or two pedestrians may become separated by
an obstacle, etc. Therefore, they are not considered as density-connected,
so it is not possible to represent the trajectories of pedestrians walking
together properly.

Thus, a new convoy pattern called noncontinuous convoy is proposed.
It is defined by relaxing the constraint of consecutiveness. For the previous
example, as long as cluster members (pedestrians) do not walk separately
for a long time, the convoy formed by them does not terminate, that is,
it persists until they get back together. To quantify the tolerable length
of separation, a parameter called elasticity (λ) is adopted, where it is
the minimal ratio of the number of density-connected frames to the life
time of a noncontinuous convoy. Arguably, a convoy is equivalent to a
noncontinuous convoy with the elasticity equal to 1 (λ = 1.0), while
a noncontinuous convoy with λ = 0.5 means that convoy members are
density-connected in over a half of its life time.

Clustering and Intersection: The proposed two-phase algorithm con-
sists of a clustering phase and an intersection phase to extract convoys
from trajectories. For intuition, Figure 4.7 represents an example case of
4 pedestrians. At the beginning, candidates are found as clusters of pedes-
trians who are spatially close to each other at all times [8]. In the course
of time, candidates are separated due to the intersection with candidates
from the previous frame. Candidates preserving their status for longer than
a certain time threshold are considered as convoys. Note that a convoy
involves at least two persons and its minimum duration is set to 2 frames.

Candidate Expiring Mechanism: Additionally, a candidate expiring
mechanism is proposed in order to detect noncontinuous convoys. The
key idea is to avoid flushing the candidate set so that convoys with sizes
smaller than the threshold are not removed immediately. Specifically, be-
sides the existing duration attribute (tduration), the timestamp of creation
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Figure 4.7: An illustration of convoy detection.

(tcreation) is assigned to each candidate in order to count the life time of a
noncontinuous convoy. Thus, the number of frames that have passed since
a particular candidate was created by calculating the difference between
the current time (tnow) and the time of creation is available. Meanwhile,
the unmodified duration is the number of frames where they are density-
connected. Thus, we can remove a candidate if it satisfies the following
condition:

tduration
tnow − tcreation

≤ λ (4.10)

The clustering and intersection algorithm with the candidate expiring mech-
anism performs a density-based clustering algorithm DBSCAN [8] for all
the pedestrians in the coming frame. The output of DBSCAN are clus-
ters of density-connected pedestrians. Then, for initialisation, if there are
no candidates, the current clusters are added to the candidate set R and
continue to process the next frame. Then the algorithm refines convoy
candidates by intersecting them with the new clusters. An intersection re-
sult that exceeds the assumed size threshold is stored as a new candidate.
Then, the new clusters are added to R, which is updated for the next
frame. Subsequently, the algorithm begins to evaluate the candidates by
elasticity. If a candidate exceeds the duration threshold, it is considered
as a convoy. Meanwhile, a candidate is discarded, if it does not satisfy the
elasticity criteria.
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(a) Error on X axis (b) Error on Z axis

Figure 4.8: Object depth estimation errors on the X and the Z axis.

4.2.3 Experiments and Results

For the evaluation of 3D trajectory extraction, the tracking set of Kitti [11]
benchmark consisting of 21 different sequences is used. This dataset pro-
vides a sequence of associated bounding boxes representing object trajec-
tories on the image plane. For the ground truth of 3D trajectories, the left
and the right images of each sequence are employed to compute the depths
of the corresponding tracked objects. The sequential 3D positions of the
object are subsequently computed given their positions on the image plane
and their depths. The sequences in this dataset are not associated with the
ground truth of the camera odometry. Therefore, the evaluation of the 3D
object trajectory extraction is performed in terms of the relation between
each object and the camera for every timestamp t. For this, the lack of the
ground truth is compensated by transforming all obtained trajectories to
the corresponding camera position. Here, the camera coordinate system
is used, considering the principal point as a centre.

In order to demonstrate the effectiveness of the proposed method in
extracting 3D object trajectories, sequential positions of the objects are
evaluated against the ground truth depth. For this, the mean and the
standard deviation error on X and Z axes are computed for all objects
sharing the same ground truth depth = 10m, 20m, . . . , 90m. Here, the
error is computed as the absolute difference between the estimated position
and the ground truth. The overall result is presented in Figure 4.8, showing
the mean and the standard deviation error in terms of object’s depth. As
illustrated in the figure, the errors are smaller for close objects than for the
far ones. The reason of this variance is that the projection of objects on the
image plane is influenced by their distances from the camera. Specifically,
the appearance of far objects is small on the image plane, where a deviation
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Figure 4.9: Comparative evaluation of the camera odometry estimation
on the Kitti dataset. Apart from the algorithm described in this sec-
tion, following approaches are considered: SFM [27], RMCPE+GP [23],
VISO2M-M+GP [28], VISO2-M [27], OABA [10].

of a few pixels has a big impact in the 3D space. In contrast to this, near
objects occupy an important region in the image plane, where the deviation
is less likely due to high resolution. In addition, small deviation does not
affect the localisation in the 3D space.

The result presented above validates the capability of the 3D trajec-
tory extraction method in localising objects in the 3D space. Although
neither the intrinsic parameters of the camera nor the depths of objects
are available, the method obtained reasonable results.

In addition to object trajectory estimation, the calculation of the cam-
era position (camera odometry) is also evaluated. Consequently, the
odometry set proposed by the Kitti benchmark [11] consisting of 11 stereo
sequences recorded from a moving camera is employed. The camera is
mounted on a car driving in different environments (e.g., city, highway,
etc.). Only the left images are considered in this evaluation and the re-
sulting output of the method is the relative pose (translation and rotation)
of the camera compared with its initial position. Figure 4.9 shows the rank-
ing of the method described in this section in comparison to some state-
of-the-art techniques using monocular cameras. In addition, Figure 4.10
illustrates two examples of camera odometry obtained by the proposed
method.

Furthermore, the overall error in terms of translation (position) and

103



(a) Translation error (b) Rotation error

Figure 4.10: Examples of the camera pose estimation in comparison to
ground truth.

(a) Translation error (b) Rotation error

Figure 4.11: Translation and rotation errors in terms of path length.

rotation is presented in Figure 4.11. The error is computed as the average
percentage error of all sequences in terms of the travelled path. Specif-
ically, while Figure 4.11(a) shows that the translation error accumulates
over time, Figure 4.11(b) proves that rotation is not affected in cases of
longer paths.

4.3 Conclusion and Future Trends

Analysis of moving objects is crucial for the semantic interpretation of
video data. This chapter deals with the topic of moving objects in video,
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in particular, the automatic extraction of 2D and 3D object trajectories
in video data. While Section 4.1 deals with aspects of object tracking
in 2D and polar video, Section 4.2 addresses the problem of 3D object
trajectory extraction from 2D video. Both sections refer to author’s own
contributions which have already been published partly in [2, 3, 6, 7].

Section 4.1 summarises an original method for unknown object track-
ing in output images from 360-degree cameras called Modified Training-
Learning-Detection (MTLD) [6, 7]. It is based on recently introduced
Training-Learning- Detection (TLD) algorithm [15]. Unlike TLD, MTLD
is capable of detecting the unknown objects of interest in 360-degree im-
ages.

For the semantic analysis of activities and events in videos, it is im-
portant to capture the spatio-temporal relation among objects in the 3D
space. In Section 4.2, an original methodology that extracts 3D trajecto-
ries of objects from 2D videos, captured from a monocular moving camera,
is summarised [3, 2]. Compared to existing methods that rely on restric-
tive assumptions, the described algorithm can extract 3D trajectories with
much less restriction by adopting new example-based techniques which
compensate the lack of information. Here, the focal length of the camera
based on similar candidates is estimated and used to compute depths of
detected objects. Contrary to other 3D trajectory extraction techniques,
the original method is able to process video data taken from a stable cam-
era as well as a non-calibrated moving camera without restrictions. For
this, the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) parti-
cle filtering has been modified to be more suitable for camera odometry
without relying on geometrical feature points.

While this chapter describes mostly techniques for the extraction of
2D and 3D object trajectories, their interpretation supporting the seman-
tic video analysis will play the most important role in the future. An
example for this is shown in Section 4.2.2. However, in the near future
more complicated activity patterns by studying objects trajectories will
be recognised. For this purpose, discriminative features, especially CNN-
based, are planned to be extracted from those trajectories. Considering
an object activity, its detection can be combined with the tracking process
towards building a feedback mechanism. Here, the intention is that the
output of each process is used as a cue of the other one.
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Chapter 5

Physical Activity Recognition

The World Health Organization (WHO) defines physical activity as any
bodily movement produced by skeletal muscles that requires energy ex-
penditure - including activities undertaken while working, playing, carrying
out household chores, travelling, and engaging in recreational pursuits1.
Insufficient physical activity is 1 of the 10 leading risk factors for death
worldwide and a key risk factor for noncommunicable diseases (NCDs)
such as cardiovascular diseases, cancer and diabetes. Regular moderate
intensity physical activity - such as walking, cycling, or participating in
sports - has significant benefits for health. For instance, it can reduce
the risk of cardiovascular diseases, diabetes, colon and breast cancer, and
depression. Moreover, adequate levels of physical activity will decrease the
risk of a hip or vertebral fracture and help control weight. However, more
than 80% of the world’s adolescent population is insufficiently physically
active.

In this chapter, selected algorithms for atomic activity recognition
(Section 5.1) as well as gait recognition (Section 5.2) including the au-
thor’s own scientific contributions are described. Moreover, conclusions
are drawn and further possible research directions are mentioned in Sec-
tion 5.3.

5.1 Atomic Activity Recognition

Activity recognition has been identified as a key component of building
personal fitness advisers or assisting senior persons to live in their own

1http://www.who.int/topics/physical_activity
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Figure 5.1: Wearable devices become more important for activity recogni-
tion since new sensor modalities are integrated into them. A smartphone
is typically equipped with an accelerometer, gyroscope and magnetometer.
Smartwatches have pulse-sensors and sensors for electrodermal activity [3]
and some smartglasses offer electrooculography [1].

homes for a longer period of time [5]. Hence, the proliferation of wearable
devices like smartphones, smartwatches and smartglasses is paving the way
to perform activity recognition with the help of technology that people are
already familiar with (see Figure 5.1). This is in stark contrast to systems
that are monitoring people with the help of cameras. People are often
worried about privacy issues when cameras are used and the installation
of cameras comes with non negligible costs that are necessary to operate
the system.

With the fast development of new wearable devices, we can also ob-
serve the increase in the number of built-in sensors. While several years
ago wearable devices were mostly equipped with an accelerometer and a
gyroscope, nowadays additional sensors like heart-rate, barometer, mag-
netometer, galvanic skin response or electrooculography are introduced.
This opens new possibilities to track more details of the daily routine of a
person, but it also introduces the necessity to investigate the applicability
of each new sensor modality. One of the strategies for these investiga-
tions is to use the sensor data in a machine learning set-up, where sensor
data must be firstly represented by meaningful features. However, defin-
ing which parts of the data are in fact meaningful or which representation
might be appropriate for the activity recognition classifier is often a difficult
task that requires specific domain knowledge or lots of experimentation.

For this reason, this chapter focuses on the evaluation of a feature
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learning approach [13] that automatically extracts features from the un-
derlying sensor data. The approach described in this chapter is based on
the Bag-of-Features technique, which summarises local characteristics of
the data in a single common feature vector [91]. As local characteristics
are parts of the raw sensor data, manual feature extraction or laborious
preprocessing is not performed. Due to this strategy, new sensors can
easily be integrated into the system. As one can see below, the fusion of
multiple sensors is done in a simple and intuitive manner by concatenating
extracted features from each sensor into one vector.

This section is structured as follows. In Section 5.1.1, a survey of
most related approaches in the field of smart home architectures and ac-
tivity recognition is presented. Section 5.1.2 explains the original approach
for time-series classification. In Section 5.1.3, results achieved in various
experiments regarding the detection and classification of activities are re-
ported.

5.1.1 Survey of Related Approaches

Traditionally, the fields of smart home technology and activity recogni-
tion are highly overlapping. Smart homes provide the hardware to collect
and process relevant data, while activity recognition approaches extract
semantic meanings from the collected data by adopting machine learning
methods. The following paragraphs are summarising the most important
approaches in those areas.

Smart Home Technology

For more than two decades the research community has been developing
different approaches that focus on the recognition of activities for in-home
settings. The need for in-home experiments is motivated by the fact that
people behave in a different manner when they feel observed and/or are
not used to the experimental environment. This makes it hard to transfer
results obtained in laboratory settings to more realistic scenarios or even
commercial products. This paragraph summarises only the most relevant
approaches in this area. More details have been analysed in various surveys
published in the last years [7, 95, 6, 65].

One common theme of many studies is to utilise motion sensors that
are fixed at some location in the house/apartment or at specific objects
like microwaves or toilets. The biggest advantage of motion sensors is
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their cheap price and the simplicity of the data. The output is often a
binary value that, e.g., represents the presence of a resident at a specific
location [102] or indicates if a certain object was used [105, 69, 83, 56,
41, 89]. Participants of such studies also report that, even if motion
sensors are placed at visible places, they forget or ignore their existence over
time [102]. The PlaceLab living lab [47] is a 1000 sq. ft. apartment that
is fully equipped with various sensors and computers. PlaceLab also offers
the possibility to use cameras and microphones to annotate activities.
Furthermore, additional sensors like accelerometers and gyroscopes can be
attached to participants. The output data are transferred over a wireless
network and synchronised with all other sensors. This laboratory was
used in [69], in which they monitor a married couple over a time span of
ten weeks. They compare the activity recognition accuracy for different
sensor modalities and conclude that many activities can be detected only
by knowing the location of the user, which is a strong argument for motion
sensors.

In addition to the pure hardware set-up, researchers have also realised
that an expandable architecture is the basis to built long-term usable smart
home systems. An example is the Gator Tech Smart House [44]. While
equipped with an impressive amount of smart devices, it also offers various
services to the developer of such systems. Raw sensor data are abstracted
into a physical layer so that developers can thus define services without
having to understand the physical world [44]. The CARDEA-MuSA [39,
15] is an example for another framework with the ability to integrate and
connect various sensors and use these advanced for health-monitoring.

An approach that targets especially user friendliness is described by
the CASAS system [30]. The main components of the system are various
motion sensors that the user can install on his own. Due to its architecture,
the system can be extended by additional sensors and only a small, low-cost
server is needed to perform activity recognition. At the time of publication
the estimated costs for the whole system amount to $2765.

One common disadvantage among the different approaches is that
additional sensors must be equipped within the house, even if the amount
of work load differs among the presented works. This leads to an obstacle
that many users are not willing to overcome.
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Activity Recognition from Continuous Data

Architectures for smart homes mostly rely on binary data obtained from
motion sensors or reed switches. However, the constantly increasing num-
ber of wearable devices has also brought a great deal of effort in work-
ing with real-valued sensor output, which are referred to as continuous
data [27, 19, 62, 8, 97]. This is especially true since the variety of sensor
modalities increases with every new wearable device generation. Sensors
like accelerometers, gyroscopes or magnetometers are common for almost
all devices. However, new devices also offer sensors like barometer, heart
rate sensor, electrooculography (EOG), electromyography (EMG) or sen-
sors for electrodermal activity (EDA). The main advancement in the last
years is that new sensors have a strong focus on the tracking of biometric
health data [61, 14, 74].

The framework described in Section 5.1.2 relies only on a few assump-
tions about the underlying sensor data. For this reason, it can easily deal
with new sensor modalities, which is an important point for future re-
search. This is often in contrast to related work that has to make certain
assumptions or that suffers from other shortcomings [19]. For example,
template matching methods measure the similarity of time sequences on
the basis of Euclidean distance or Dynamic Time Warping [76, 68, 120].
If two time sequences are alike, they are considered as the same activity.
However, it was found that these methods are easily corrupted by noise
in the signal [66]. Generative activity recognition methods estimate the
probability that a given time sequence is generated by assuming that the
user performed a specific activity. Hidden Markov Models and their ex-
tensions [103, 121, 20] belong to the predominantly used techniques of
this group. The advantage of these methods is that they take temporal
dependencies among data points into account. However, a substantial
amount of training data is essential to capture all the different variations
of an activity [27]. The overwhelming amount of research focuses on
feature-based approaches. These features should represent characteristics
of the underlying time sequence and be representative for each activity. For
example, statistical features summarise time sequences in terms of their
mean value or variance, while parameters from the frequency domain can
represent repetitive patterns of the signal [46, 52, 86, 40, 53, 96, 48, 84].
More sophisticated features describe characteristic events of an activity
like the occurrence of specific eye-movements [18] or biomedical events,
e.g., duration of inhalation/exhalation and heart beat intervals [85]. While
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such features might significantly improve the classification result, it often
requires domain knowledge that only experts can provide.

Avoiding the creation of the above-mentioned hand-crafted features
has become one of the main research issues in machine learning. Instead,
feature learning, the task of automatically extracting meaningful features
from data, is brought to the fore. A simple but effective version of fea-
ture learning is to count the occurrences of relevant pieces in the time
signal. This so-called codebook approach has its origin in image classifica-
tion [31, 49], where it analyses a large number of patches (small regions)
in images and constructs a codebook consisting of characteristic patches
called codewords. An image is then represented by a feature signifying the
distribution of codewords.

Codebook-based methods have also been shown to be successful candi-
dates for various areas of activity and emotion recognition [109, 80, 12, 91].
More advanced feature-learning methods stem from the field of deep
learning and have also already been applied to human activity recogni-
tion [87, 75, 77, 88, 42]. However, one big disadvantage of deep learning
architectures is a large number of hyper-parameters that require an exten-
sive optimisation phase.

Due to its advantages, the codebook approach used for the classifica-
tion of time-series is described in more detail in Section 5.1.2.

5.1.2 Codebook Approach for Classification

First of all, some important terms need to be clarified. Referring to time se-
ries, the whole dataset containing all the data available for training/testing
a classifier is meant. A sequence, however, is only one part of the dataset,
for example a window of 10 seconds. Finally, a subsequence is again one
window within the sequence (see Figure 5.2). The goal of activity recog-
nition is to predict the label (i.e., underlying activity) on a sequence level
using a machine learning approach.

Figure 5.3 shows an overview of the method described in this section. It
consists of three steps. Figure 5.3 (a) illustrates the codebook construction
step that groups subsequences collected from the dataset into clusters of
similar ones. A codebook is constructed as a set of codewords, where each
codeword is the centre of a cluster. Figure 5.3 (b) outlines the second step,
the codeword assignment, where a feature of a sequence is extracted by
assigning each subsequence to the most similar codeword and counting
the number of occurrences for each codeword. In other words, this feature
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Figure 5.2: An illustration of the dataset decomposition into subsequences.
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Figure 5.3: An overview of the codebook-based method for human activity
recognition.
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is a histogram representing the frequency of each codeword within one
sequence. The last step is the classifier training/testing based on the fact
that sequences represented by such features can be considered as points in
the multi-dimensional space, as shown in Figure 5.3 (c). As depicted by the
dashed line in Figure 5.3 (c), a classifier draws a classification boundary to
discriminate between training sequences annotated with a certain activity
class and those annotated with the others. Based on this boundary, the
classifier determines the activity class of a test sequence.

Codebook Construction: Since it is not possible to know beforehand
which codewords are characteristic for a specific activity, it is necessary to
learn them initially from the dataset and build a codebook. Constructing
the codebook is a part of the training phase and is performed on unlabelled
data. This is especially important since obtaining labelled data in activity
recognition is still a task that requires lots of effort.

The first step in the codebook construction is to find suitable code-
words. For this, subsequences of equal length are extracted from the
training dataset. A subsequence is a sliding window of size w that is
shifted from the beginning until the end of the dataset. In more detail,
the window is placed at every l-th time point, whereby a small l causes
a large overlap between neighbouring subsequences. While this “dense
sampling” of subsequences seems redundant, it has been shown to lead to
better results than “sparse sampling” with a small overlap [79]. Note that
the window size w and the sliding size l are hyper-parameters and must be
chosen appropriately. However, w can be chosen independently from the
expected duration of the activities since the final classification is based on
the histogram of codewords within a given time interval but not on the
codewords itself.

The second step groups all extracted subsequences into N different
clusters. In the implementation reported in [55], k-means clustering [43]
is performed to find N clusters consisting of similar subsequences. The
distance among two subsequence is measured as the Euclidean distance.
Since k-means clustering depends on initial cluster centres that are ran-
domly determined, it is conducted 10 times to select the best result that
yields the minimum sum of Euclidean distances between subsequences and
their assigned cluster centres. Based on the best clustering result, a code-
book consisting of N codewords is obtained whereby each cluster centre
equals one codeword. The optimal number of codewords N must be de-
termined experimentally.
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Codeword Assignment: To convert a sequence into a feature represen-
tation, a histogram that represents the distribution of the N codewords
within a sequence is built. Subsequences, which are extracted in the same
way to the codebook construction step, are assigned to the most simi-
lar codeword and its frequency is incremented. Finally, this histogram of
codewords is normalised so that the sum of frequencies of all the N code-
words is one. Note that while this “hard assignment” approach assigns
a subsequence to a single codeword, researchers have developed a “soft
assignment” approach that implements its flexible assignment to multiple
codewords [104]. However, preliminary tests did not show a significant
performance improvement of the soft assignment approach, despite its ex-
pensive computational cost. Thus, the hard assignment approach is used
in the framework described in [55].

Classifier Training/Testing: A binary classifier is trained that distin-
guishes training sequences labelled with a target activity from other train-
ing sequences. The former and latter are called “positive sequences” and
“negative sequences”, respectively. To gain high discrimination power,
a variety of characteristic subsequences need to be considered using hun-
dreds of codewords (i.e., N is large). Because each sequence is represented
with a high-dimensional feature, a Support Vector Machine (SVM) is used
due to its effectiveness for high-dimensional data [106]. The SVM draws
a classification boundary based on the “margin maximisation” principle
so that the boundary is placed in the middle between positive and nega-
tive sequences, which makes the generalisation error independent of the
number of dimensions [106]. Actually, the combination of the codebook
approach and an SVM has been justified in many classification tasks of
images/videos, which are represented by features with thousands of dimen-
sions [49]. For a test sequence, the trained SVM outputs a score between
0 and 1 based on its distance to the classification boundary [25]. Finally,
the recognition of C activities is conducted using C SVMs, each of which
is built as a binary classifier for one activity. Then, the activity of a test
sequence is determined as the one characterised by the highest SVM score.

The SVM implemented according to [55] uses the Radial Basis Func-
tion (RBF) kernel that has one parameter to control the complexity of
a classification boundary. This parameter is set to the mean of squared
Euclidean distances among training sequences, because it stably offers rea-
sonable performances without conducting computationally expensive cross
validation [119]. In addition, the SVM parameter to control the penalty
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of misclassification is empirically set to 2. This SVM parameter setting
has been proven to be generally applicable to different activity recognition
tasks [91], and is used throughout all the experiments.

Fusion of Multiple Features: Since different sensors capture different
characteristics of an activity, the recognition performance can be improved
by fusing features extracted from those sensor data. To realise this dynamic
sensor selection, three fusion approaches are explored (see Figure 5.4).
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Figure 5.4: An illustration of the early, late and dynamic late fusion ap-
proaches.

Figure 5.4 (a) shows the early fusion approach [94] where codebook-
based features extracted from different types of sensor data are combined
into a single high-dimensional feature, based on which an SVM is con-
structed. Hence, a codebook is constructed for each single sensor and
consequently, each sensor provides its own histogram-type feature.

Figure 5.4 (b) depicts the late fusion approach [94] where each type of
feature is used to construct a separate SVM. For a test example x, the final
recognition score f(x) is obtained by linearly combining the score fi(x)
produced by the SVM on the ith sensor data, that is, f(x) =

∑
iwifi(x)

(
∑

iwi = 1, wi ≥ 0). Here, the weight wi for the i-th sensor data is
computed in the following way: Firstly, the training dataset is divided
into two subsets with the same size and one of them is used for training
SVMs on different types of sensor data, and the other one for testing these
SVMs and computing their optimal weighted combination. In particular, a
gradient-ascend approach is used to obtain the weights that maximise the
recognition performance on the second subset. Afterwards, these weights
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are used to fuse SVMs using the whole training dataset. In other words,
the weights obtained for SVMs trained on a half of training dataset are
assumed to be applicable to more accurate SVMs trained on the whole
dataset.

However, the early fusion approach needs to build an SVM for each of
all the possible sensor combinations. And every time the user activates or
deactivates sensors, a different SVM has to be loaded. In addition, the late
fusion approach requires an expensive computational cost, because weights
have to be computed for all possible sensor combinations. To overcome
this, a “dynamic late fusion” approach shown in Figure 5.4 (c) can also
be used [55]. Here, weights are computed only for the combination of all
sensors, and adaptively re-used depending on sensor selection. Specifically,
weights for not-selected sensors are set to zero, and weights for the selected
sensors are normalised so that their summation is one.

5.1.3 Experiments and Results

A detailed evaluation of the codebook approach applied for physical activity
recognition using the codebook approach described in Section 5.1.2 has
been reported in [55]. This section describes the experimental setup and
summarises the performance evaluation.

As reported in [55], the hardware configuration used for the experi-
mental evaluation of the method described in Section 5.1.2 is depicted in
Figure 5.5. First, as depicted in Figure 5.5 (a), a user takes three mobile
devices, Google NEXUS 5X (smartphone), Microsoft Band 2 [2] (smart-
watch) and JINS MEME [1] (smartglasses), which are used to capture the
body, hand, and head movements, respectively. From these devices, the
following eight types of sensor data are obtained:

1. Smartphone’s accelerometer (sp-acc): This sensor delivers a three-
dimensional sequence that indicates acceleration forces (including
gravity forces) acting on the smartphone’s x, y and z axes.

2. Smartphone’s gyroscope (sp-gyro): This sensor delivers a three-
dimensional sequence that presents angular velocities on the x, y
and z axes.

3. Smartphone’s gravity (sp-grav): This sensor delivers a three-dimen-
sional sequence that represents gravity forces on the x, y and z
axes. This is useful for capturing transitions of the smartphone’s
orientations over time.
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Figure 5.5: An overview of the activity recognition system.

4. Smartphone’s linear accelerometer (sp-linacc): This sensor delivers
a three-dimensional sequence that indicates acceleration forces on
the x, y and z axes, where gravity forces are excluded.

5. Smartphone’s magnetometer (sp-mag): This sensor delivers a three-
dimensional sequence that describes intensities of the earth’s mag-
netic field along the x, y and z axes. Such intensities are useful for
determining the smartphone’s orientation.

6. Smartwatch’s accelerometer (sw-acc): Similar to sp-acc, this sensor
delivers a three-dimensional sequence of acceleration forces applied
to x, y and z axes of a smartwatch

7. Smartwatch’s gyroscope (sw-gyro): Similar to sp-gyro, this sensor
delivers a three-dimensional sequence of angular velocities on the x,
y and z axes.

8. Smartglasses’ accelerometer (sg-acc): This sensor delivers a three-
dimensional sequence of acceleration forces on the smartglasses’ x,
y and z axes.

Sampling rates of sp-acc, sp-gyro, sp-grav and sp-linacc are 200Hz, the
sampling rate of sp-mag is 50Hz, those of sw-acc and sw-gyro are 67Hz,
and that of sg-acc is 20Hz. By following the general framework shown in
Figure 5.5, sw-acc, sw-gyro and sg-acc are firstly sent to the smartphone
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via Bluetooth connection, and then all the sensor data are transferred
to the central server through RabbitMQ [4] on Wi-Fi connection. The
server (the activity recognition method is executed on) is established on
Intel NUC NUC5i5RYK (CPU: Core i5-5250U 1.6GHz, RAM: 16GB, HDD:
450GB, OS: Debian 4.8.4-1).

One codebook is constructed from each type of sensor data, that is,
a set of three-dimensional sequences. In order to capture correlations
among three dimensions, codewords are extracted by performing cluster-
ing on “three-dimensional subsequences”. Specifically, a subsequence col-
lected by a window of size w is represented as a 3w-dimensional vector,
where the first w, the subsequent w and the last w dimensions repre-
sent values on the x, y and z axes, respectively. It should be noted that
this subsequence representation can be used in the subsequent codebook
construction, codeword assignment and classifier training/test processes
with no modification. Regarding the hyper-parameters, codebooks for sp-
acc, sp-gyro, sp-grav and sp-linacc are constructed using the window size
w = 128 and the sliding size l = 8, codebooks for sp-mag, sw-acc and
sw-gyro are constructed with w = 64 and l = 4, and the codebook for
sg-acc is built with w = 32 and l = 1. Although these values are chosen
based on preliminary experiments, one criteria is that a sufficient number
of subsequences can be collected from a sequence of five seconds, which
is the unit to build recognition models (see below). More concretely, more
than 100 subsequences are collected from sp-acc, sp-gyro, sp-grav and sp-
linacc sequences, more than 45 subsequences are collected from a sp-mag
sequences, and more than 60 subsequences are located in sw-acc, sw-gyro
and sg-acc sequences. With this, the resulting feature of a sequence ap-
propriately represents the distribution of subsequences. The number of
codewords N is experimentally set to 1024 for all types of sensor data.
Except the above-mentioned tuning of hyper-parameters w, l and N , no
extra tuning or pre/post-processing has been done. An overview over all
sensor parameters can be found in Table 5.1.

Following 11 activities have been targeted: 1. lying, 2. sitting, 3.
standing, 4. walking, 5. bending, 6. getting up, 7. lying down, 8. putting
a hand back, 9. sitting down, 10. standing up, and 11. stretching a hand.
We prepare a training dataset which contains the eight types of sensor
data for 145 activity executions of one user. For each of the 11 activities,
the dataset includes more than 10 executions each of which lasts five
seconds and signifies a different style (e.g., the user lies on his stomach,
on his back, on his side, changes lying styles, etc.). This enables to cover
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sp-acc, sp-gyro sp-mag sw-acc, sg-acc

sp-grav, sp-linacc sw-gyro

Sampling Rate (Hz) 200 50 67 20

Window Size w 128 64 64 32

Sliding Size l 8 4 4 1

Table 5.1: Parameters of sensors used for physical activity recognition.

a variation of the same activity and carry out semantically meaningful
recognition. In addition, the codebook-based recognition method does
not require the exact boundaries of an activity. Instead, the method only
requires the activity to be “included” in five seconds, so that the resulting
feature encompasses subsequences corresponding to the moment of this
activity.

For each of the 11 activities, an SVM is constructed using the training
dataset. Four activities (lying, sitting, standing and walking) are regarded
as static, and the remaining seven as dynamic. This is based on the fact
that static activities indicate states of the user while dynamic activities
represent short-time movements occurring in different states. In other
words, dynamic activities occur while doing different static activities. For
instance, the user can stretch his hand while standing or sitting. Thus, it is
not reasonable that an SVM for a static activity is constructed by regarding
executions for all the other activities as negative examples, because these
executions may include moments of the static activity. Hence, negative
examples for the static activity are collected as executions for the other
“static” activities, since each static activity execution only includes one
state of the user. For a dynamic activity, negative examples are collected
as executions for all the other static and dynamic activities, as they do
not contain any moment of the dynamic activity. Positive examples are
obtained as executions of an activity regardless of whether it is static or
dynamic. Using such positive and negative examples, SVMs are built for
all 11 activities.

The performance of these SVMs is examined on a test dataset consist-
ing of 124 executions (test examples), which are performed by the same
user to the training dataset in a different day. Two evaluation measures
are used. The first is an accuracy representing the rate of correct pre-
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dictions over 124 test examples. Considering concurrent occurrences of
static and dynamic activities, the prediction for a test example of a static
(or dynamic) activity is determined as the one for which the highest SVM
score is observed among four static (or seven dynamic) activities. This
is because the accuracy computation mixing static and dynamic activities
underestimates the recognition performance. Let us assume that a test
example where the user stretches his hand while standing is labelled as
stretching a hand. For this test example, the SVM for stretching a hand
should output a high score, but a higher score may be produced by the
model for standing because the user is actually standing. Thus, the sep-
aration between static and dynamic activities is necessary for meaningful
evaluation.

However, the deterministic evaluation based on accuracies may be too
rigid. Thus, an Average Precision (AP) [73] as the second evaluation
measure is used. The AP does not require any deterministic decision on
a test example, but considers the difference between SVM scores assigned
to test examples for a target activity and the ones for the other test
examples. Specifically, test examples are ranked based on SVM scores
for the target activity. Then, the AP is calculated as the average of
precisions each of which is computed at the position of a test example
for the target activity. In other words, the AP approximates the area
under the recall-precision curve created based on SVM scores. A larger
AP means a better result where more test examples for the target activity
are ranked at higher positions. Because of this ranking-based statistical
computation, the separation between static and dynamic activities is not
considered for the AP computation. For evaluation of a static activity,
some test examples for dynamic activities may have higher SVM scores
than the ones for the static activity. But a good method assigns high
SVM scores to test examples for the static activity and ranks them at
higher positions compared to the ranking produced by another method.
In this way, APs are useful for relative performance comparison among
methods. Finally, the Mean of APs (MAP) over all 11 activities is used as
an overall evaluation measure.

Overall Performance Evaluation

Overall, the system using the early fusion approach achieves an accuracy
of 87.1% where evaluations for static and dynamic activities are separated
as described before. Figure 5.6 (a) and (b) show the confusion matrix for
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static activities and the one for dynamic activities. In each matrix, rows and
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Figure 5.6: The confusion matrix for static and dynamic activities.

columns correspond to ground truth and predicted activities, respectively.
As shown in Figure 5.6 (a), the most problematic activity is lying because it
is easily confused with the other activities depending on the user’s postures.
One possible solution is to capture the orientation of the smartglasses
by equipping a gravity or magnetometer sensor in them. Except lying,
the other activities are recognised quite accurately. Especially, in several
misrecognition cases, the system’s outputs are reasonable or even correct.
For example, as depicted in Figure 5.6 (b), the system predicts the activity
“putting hand back” for two executions annotated with the ground truth
activity “stretching hand”, and these predictions are evaluated as incorrect.
However, after the user stretched his hand, he actually put it back during
the five-seconds executions and forgot the annotation. In such a situation,
the system can perform detailed recognition which identifies activities that
the user was not aware of. Figure 5.7 displays APs and MAP of the
system over all 11 activities. Although APs vary depending on activities,
the methodology achieves a very high MAP value 88.8%.

5.2 Gait Recognition

Gait is a walking style and can be considered as a biometric feature to
identify people. Unlike other biometric modalities such as fingerprints,
DNA, palm print, hand geometry, face and iris recognition which require
the physical contact and cooperation of human with the system, gait can
be collected at distance without any interaction with the system. More-
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Figure 5.7: Average Precisions (APs) and Mean of APs (MAP).

over, it can be performed at low resolution in non-invasive and hidden
manners, which is unobtrusive. It is extremely useful in many applications
such as visual surveillance and service robots interacting with humans in
daily life. However, gait also has some limitations. It can be affected
due to injuries, different types of walking surface, wearing clothes and etc.
Although gait is not as powerful as other biometric modalities, the char-
acteristics to recognise individuals at a distance make it irreplaceable in
many applications such as visual surveillance.

This section is structured as follows. First, a survey of related ap-
proaches in the area of gait recognition is given in Section 5.2.1. Subse-
quently, a method for spatiotemporal representation of gait is introduced in
Section 5.2.2. Finally, experiments are described and results are presented
in Section 5.2.3.

5.2.1 Survey or Related Approaches

In literature, gait recognition techniques can be divided into two broad
categories: (1) model-based and (2) model-free approaches. Model-based
approaches describe the structure of the human body and its motion for
person identification. They track the different body parts and joint posi-
tions over time, using an underlying mathematical structure. The struc-
tural model [64, 92, 24, 70] considers the stick figures, ellipse fitting and
interlinked pendulum to construct a model, using the prior knowledge of
human body shape. The motion models [17, 114, 32, 110, 16] extract
the motion information from human body parts such as joint angle tra-
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jectories, rotation patterns of hip and thigh. Yam et al. [114] used a
temporal template matching technique on the gait cycle to extract the an-
gles of thigh and lower leg rotation. They developed a gait signature using
the phase-weighted magnitudes of the lower order Fourier components of
these rotations. The authors in [32] proposed a gait feature by exploiting
the angular motion of the hip and thigh using the Fourier series. Wang
et al. [110] proposed a structural and motion-based model to refine the
feature extraction for gait recognition, using a condensation framework.
They modelled the human body using fourteen rigid parts connected to
each other at join locations and the joint angle trajectories are computed
on these location to recognise the individual’s gait. In [92], a 3D voxel
model is derived from silhouette images and proposed for gait recognition.
Voxel models is constructed using ellipsoids fitting technique into four dif-
ferent components of lower limbs. The features derived from the ellipsoids
are modelled using a Fourier representation. Lee et al. [64] modelled the
human silhouette using seven different ellipses, representing the various
human body regions. They considered several statistical measurements
on these regions over time such as: mean, standard deviation, location
of its centroid, magnitude and phase of these moment based regions for
gait and gender classification. Recent studies [115, 78, 17] have shown
that model-based approaches can, to some extent, deal with rotation and
occlusion problems, but they are computationally expensive and sensitive
to the quality of video data. Therefore, they are not suitable for real-world
and real-time applications.

Alternatively, the model-free approaches do not model the structure
of human motion and normally operate on the sequence of segmented
silhouettes of the human body region. They either construct a template
image from the extracted silhouettes in a gait sequence [72, 10, 26, 11,
118, 107, 99, 113] or use the temporal information of human motion in
person identification [67, 9, 21, 29, 57, 115, 60]. Perhaps, the simplest
model-free technique using a template image from the segmented silhou-
ettes is proposed in [72]. They extract the human body silhouettes us-
ing background modelling and average them over a gait cycle, known as
Gait Energy Image (GEI). Later, this representation is classified using the
Bayesian classifier. Several improvements in [72], such as Gait Entropy
Image (GEnI) [11], AEI [118], Chrono-Gait Image (CGI) [107] and Frame
Difference Energy Image (FDEI) [26] have also been proposed. Many re-
searchers [67, 115, 60, 21] exploited the human motion information for
gait recognition. They built the shape of motion using optical flow field,
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which are investigated to recognise the individuals. Bashir et al. [9] pro-
posed a histogram based gait representation using the motion intensity
and its direction information from optical flow field. The authors of [21]
computed the spatio-temporal cuboids of optical flow from the video se-
quences and fed to Convolutional Neural Network (CNN) to obtain a high
level gait representation. Lam et al. [60] proposed the computation of
optical flow fields on segmented silhouettes and formulated in a represen-
tation known as Gait Flow Image (GFI) for person identification. Some
researchers [117, 38] have also computed the several features such as
height, width, centroid position from the segmented silhouette/contour of
human’s body region on the gait cycle, to approximate the gait patterns.

In comparison with model-based approaches, the model-free approaches
are low in computation and have demonstrated more convincing results on
benchmark gait databases. However, the silhouette-based gait recogni-
tion techniques are highly dependent on the accurate segmentation of the
human body region from the background, which is still a challenging prob-
lem. An inaccurate segmentation of the human body region will not only
disrupt the estimation of a gait cycle but also degrade the recognition
accuracy [117, 45]. Numerous techniques (such as [93, 45]) have also ex-
ploited the depth images from Microsoft Kinect to accurately segment the
human body region from the background, however, the biggest restriction
is the field-of-view, which is very limited (1-4 meters) [51]. A simple but
effective gait recognition technique using the the spatio-temporal char-
acteristics of human motion is described in the subsequent section. It
exploits the distinctive motion information of individual’s gait, using dense
trajectories. Moreover, it neither requires the estimation of gait cycle nor
the segmentation of the human body region. The experimental results on
various benchmark gait databases confirm its effectiveness.

5.2.2 Spatiotemporal Representation of Gait

Numerous feature extraction techniques have been proposed and exploited
in computer vision for image and video representation: SIFT (Scale Invari-
ant Feature Transform), SURF (Speeded-Up Robust Feature) and trajec-
tory are a few to mention. Recently, dense trajectories have demonstrated
excellent results in image classification and action recognition [108, 81].
The motivation in using the dense trajectories for gait recognition is that
they encode the local motion patterns and can be easily computed from
the video sequences. A sample of dense points is selected from each frame
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and tracked in successive frames based on displacement information using
optical flow field. Each point pt = (xt, yt) at frame t is tracked in frame
t + 1 from a dense optical flow field, using median filtering. In a given
trajectory, the shape of displacement vectors is: S = ∆Pt, ..., ∆Pt+L−1,
where L is the length of the trajectory shape and ∆Pt = Pt+1 − Pt. The
vector S is then normalised by the sum of the magnitude of the displace-
ment vectors. That is,

S ′ =
(∆Pt, ....., ∆Pt+L−1)∑t+L−1

j=t ||∆Pj||
, (5.1)

where S ′ represents the shape of trajectory. Wang et al. [108] also pro-
posed the encoding of Histogram of Oriented Gradient (HOG) and His-
togram of Optical Flow (HOF). Moreover, the relative motion information
between the pixels along the horizontal and vertical axis is also computed
by taking the derivative along the respective components of HOF, and
their information is encoded in MBHx (Motion Boundary Histogram) and
MBHy, respectively. In addition, the derivative along the horizontal and
vertical components of HOF is computed to encode the relative motion
information between the pixels along the respective axis, known as MBHx

and MBHy, respectively. The orientation information of each of the above
mentioned local descriptors are quantised into histograms and normalised
with the L2-norm, separately. Several combinations of these local descrip-
tors are evaluated on TUM GAID gait database [45] to recognise their
effectiveness in person identification and the results are illustrated in Fig-
ure 5.8. The empirical results demonstrate that HOG in combination with
MBH outperform the rest. Since HOG capture the static appearance of a
person and MBH highlight the information about the changes in optical
flow field (i.e., motion boundaries), combining the person appearance and
local motion characteristics greatly improves the results of the identifica-
tion.

Once the local descriptors are extracted, they are used to construct
a signature to characterise an image or video sequence (i.e., feature en-
coding). The encoding process converts the local descriptors into a fixed
length vector. This process is normally accomplished by the vector quan-
tisation of local descriptors and building a histogram of visual words (also
known as bag-of-visual-words). However, inspired by the recent success
of the Fisher Vector (FV) encoding [90], the local descriptors are trans-
formed into high-level representation using FV encoding. It comprises the
description of local descriptors by its deviation from the generative model
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Figure 5.8: Performance of various motion descriptors for gait recognition
on the TUM GAID [45] gait database.

(i.e., GMM), which is computed using the gradient of its log-likelihood
with respect to the model parameters.

FV is derived from Fisher kernel [90] which combines the characteristics
of both discriminative and generic approaches, using a kernel from the
generative model of the data. The process of FV encoding begins by
learning a GMM. For a given feature set X = {xt | t = 1, ..., T}, it can
be mapped into a vector using the probability density function p(X | θ)

FX =
1

T
∇θ log p(X|θ) , (5.2)

where FX represents the FV and ∇θ is the gradient of the log-likelihood
function describing the contribution of parameters in the generation pro-
cess. Let xt be a D-dimensional local descriptor and qt(i) be the soft
assignment of t-th descriptor to the i-th mixture. Moreover, let us assume
that the covariance matrix

∑
i is diagonal and can be represented as σi.

The gradient vector with respect to the mean µi and the covariance σi
can be formulated as

ui =
1

T
√
wi

T∑
t=1

qt(i)
xt − µi
σi

, (5.3)

vi =
1

T
√

2wi

T∑
t=1

qt(i)

[
(xt − µi)2

σ2
i

− 1

]
, (5.4)
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Figure 5.9: Influence of the codebook clustering size on the accuracy in
gait recognition for the TUM GAID dataset.

where ui and vi are D−dimensional gradient vectors with respect to the
mean µi and the covariance σi known as the first and the second order
differences of descriptor points to the i-th cluster centre, respectively. The
final representation of FV for the feature set X is obtained by concatenat-
ing all the ui and the vi for i = 1, ..., K clusters. That is,

f = [u>1 , v
>
1 , u

>
2 , v

>
2 , ....., u

>
K , v

>
K ]> . (5.5)

The total size of f is 2KD. All the local descriptors (i.e., HOG, MBHx
and MBHy) are encoded separately.

5.2.3 Experiments and Results

To build a codebook with GMM, one million local descriptors are ran-
domly selected from each descriptor. The influence of various mixture
components ranging from 23 to 211 is evaluated in feature encoding for
gait representation. Figure 5.9 illustrates the influence of various Gaus-
sian components on the TUM GAID database [45]. The empirical results
demonstrate that excellent results can be obtained using mixture number
28. The recognition accuracy either remains constant or even decreases,
when the cluster size goes beyond 28. Perhaps a possible reason for the
decrease in accuracy is the large size of the encoded vector. Since, FV
scales linearly with the size of codebook, therefore, this large size may
effect the recognition accuracy.

To classify the high dimensional encoded features, a Linear Support
Vector Machine (SVM) is used which has been considered a powerful
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classification tool in many applications. In the comparison of SVM, the
other similarity based classifiers such K-Nearest Neighbour and probability
based classifiers like Naive Bayes do not perform well on high dimensional
features [50]. SVM first maps the training samples into a high dimensional
space and then generates a hyperplane between the different classes of
objects using the principle of maximising the margin. Because of this
principle, the generalisation error of the SVM is theoretically independent
from the number of feature dimensions. Specifically, the implementation
of SVM in the LIBLINEAR library [36] is exploited which has demonstrated
excellent classification results on large sparse datasets. For each database,
a 10-fold cross validation is performed to validate the model with the
selection of meta-parameters, prior to it the actual model is trained on the
full training database.

The technique is evaluated on the most well known four large bench-
mark gait databases to show its effectiveness. These databases include:
TUM GAID [45], NLPR [112], CASIA-B [116], and CASIA-C [99].

TUM GAID Gait Database

The TUM GAID is one of the biggest gait databases, captured using
Microsoft Kinect in an outdoor environment of Munich, Germany. The
database comprises the walk sequences of 305 subjects, in total 3370 video
sequences. Three different variations of walk, normal walk (N), walk with
a back-pack (B) and walk with coating shoes (S) are recorded for each
subject. Figure 5.10 displays few sample images from the TUM GAID
gait database. The same distribution of the database described in [45],
is exploited for gallery and probe set. The performance of the technique
in comparison with state-of-the-art methods is outlined in Table 5.2. The
recognition results demonstrate the superiority of the original technique in
all experiments.

NLPR Gait Database

The NLPR gait database contains the gait sequences of 20 subjects,
recorded in the outdoor environment. Each subject has four gait se-
quences, captured with three different viewing angles. The technique is
evaluated on the sequences, recorded in lateral view. Figure 5.11 illus-
trates some sample images from the NLPR gait database in lateral view.
In the experimental setup, first three gait sequences of each subject are
used as a gallery set and the remaining fourth one is used in the probe set.
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Example images from the TUM GAID gait database. (a-b):
normal walk, (c-d): walk with a backpack, and (e-f): walk with coating
shoes.

Table 5.2: Comparison of recognition results (%) on the TUM GAID gait
database for diverse methods. Each column N , B, S corresponds to a
different experiment and the average is computed as sum of the weighted
mean scores.

Method N B S Weighted Average

GEI [45] 99.4 27.1 56.2 61.2
GEV [45] 94.2 13.9 87.7 65.5
SEIM [113] 99.0 18.4 96.1 71.3
GVI [113] 99.0 47.7 94.5 80.4
SVIM [113] 98.4 64.2 91.6 84.9
DGHEI [45] 99.0 40.3 96.1 78.5
CNN-SVM [21] 99.7 97.1 97.1 98.3
CNN-NN128 [21] 99.7 98.1 95.8 98.1
H2M [23] 99.4 100.0 98.1 99.4
DCS [23] 99.7 99.0 99.0 99.4

Proposed 99.7 100.0 99.7 99.9
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(a) (b)

Figure 5.11: Example images from the NLPR gait database: (a) left to
right walk and (b) right to left walk in a lateral view.

The recognition results in comparison with state-of-the-art methods are
described in Table 5.3. The experimental results reveal that the original

Table 5.3: Comparison of recognition results on the NLPR gait database
for diverse methods.

Method Recognition Accuracy

Wavelet descriptors [71] 82.5
PSC [59] 97.50
NN [63] 87.5
2D polar-plane [28] 92.5
Gait+Face+Distance [37] 90.0
PSA [111] 88.8
Curves+NN [98] 89.3
STC+PCA [112] 82.5
WBP [58] 100.0
HSD [57] 100.0

Proposed Method 100.0

technique achieves the highest recognition results.

CASIA-B Gait Database

The CASIA-B gait database contains the walk sequences of 124 subjects.
The gait sequences are recorded in a well controlled laboratory environ-
ment, using 11 different viewing angles. Three different variations of walk,
namely: normal walk (nm), walk with a backpack (bg) and walk with
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(a) (b) (c)

Figure 5.12: Example images from the CASIA-B database: (a) normal
walk, (b) walk with coat and (c) walk with bag in a lateral view.

coating shoes (cl) are recorded for each subject. The proposed method is
evaluated on the sequences, recorded in lateral view. Figure 5.12 demon-
strates the various variations of walking styles in the database. In the
experimental setup, the first four gait sequences of nm for each subject
are used as a gallery set and the remaining two sequences of nm, bg and cl
are used in the probe set, separately. The obtained recognition results in
comparison with the state-of-the-art methods are presented in Table 5.4.
The experimental results demonstrate that the original method outper-
forms other state-of-the-art algorithms in most of the experiments and
achieves the highest average recognition rate of 96.2%.

CASIA-C Gait Database

The CASIA-C gait database comprises walk sequences of 153 subjects.
The video sequences were captured at night using a low resolution thermal
camera. The database contains four different variations of walk, namely:
normal walk (fn), slow walk (fs), fast walk (fq), and walk with a back-
pack (fb). Figure 5.12 demonstrates the few variations of walk in the
database. The technique is evaluated on the database to show its effec-
tiveness for low resolution video and with different walk variations. The
first three sequences of fn are used in a gallery set and the remaining
fourth sequence of fn and two sequences of fs, fq, and fb are used in
the probe set, separately. The recognition results in compression with the
state-of-the-art methods are presented in Table 5.5. The proposed method
achieves the best average recognition rate of 99.8%.
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Table 5.4: Comparison of recognition results on the CASIA-B gait database
for diverse methods in lateral view. Each column of nm, bg and cl corre-
sponds to a different experiment and the average is computed as the mean
score of all the experiments.

Experiment nm bg cl Average

TM [10] 97.6 52.0 32.7 60.8
GEI [107] 91.6 31.7 24.0 49.1
CGI [107] 88.0 43.7 43.0 58.2
AEI+2DLPP [118] 98.4 91.9 72.2 87.5
Baseline method [116] 97.6 52.0 32.2 60.8
RF+FSS+CDA [35] 100.0 50.0 33.1 61.0
HSD [57] 94.5 62.9 58.1 71.8
Mj+ACDA [10] 100.0 91.0 80.0 90.3
PFM [22] 100.0 100.0 85.5 95.2
SDL [117] 98.4 93.5 90.3 94.1

Proposed Method 100.0 100.0 88.7 96.2

(a) (b) (c) (d)

Figure 5.13: Example images from CASIA-C database: (a) normal walk,
(b) slow walk, (c) fast walk and (d) walk with bag.
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Table 5.5: Performance evaluation on the CASIA-C database. Each col-
umn of fn, fs, fq and fb corresponds to a different experiment and the
average is computed as the mean score of all experiments. The best results
are given in bold.

Methods fn fs fq fb Average

AEI+2DLPP [118] 88.9 89.2 90.2 79.7 87.0
WBP [58] 99.0 86.4 89.6 80.7 88.9
NDDP [101] 97.0 83.0 83.0 17.0 70.0
HSD [57] 97.0 86.0 89.0 65.0 84.2
Wavelet packet [33] 93.0 83.0 85.0 21.0 70.5
Pseudo shape [100] 98.4 91.3 93.7 24.7 77.03
Gait curves [34] 91.0 65.4 69.9 25.5 62.9
HTI [99] 94.0 85.0 88.0 51.0 79.5
SDL [117] 95.4 91.2 92.5 81.7 90.2
PFM [22] 100.0 98.7 100.0 99.3 99.5

Proposed 100.0 99.4 100.0 99.7 99.8

5.3 Conclusion and Future Trends

This chapter deals with the topic of physical activity recognition. In Sec-
tion 5.1, the original methodology for atomic activity recognition automat-
ically classifying data recorded by sensors (e.g., accelerometer) embedded
in wearables (smartglasses, smartwatch, smartphone) is described. Sec-
tion 5.2 presents an original algorithm for gait recognition and experimen-
tally compares it to related state-of-the-art approaches.

Atomic Activity Recognition: The algorithm presented in Section 5.1
is based on the so called codebook approach adopted to deal with time
series. It automatically classifies data recorded by sensors (e.g., accelerom-
eter) embedded in wearables (smartglasses, smartwatch, smartphone) in
real-time. The current version of the methodology deals with the recog-
nition of the so called atomic activities. These are fine-grained move-
ments of the human body (e.g., stretching hand, sitting down, standing
up, etc.). The effectiveness of the approach has been validated on a real-
world dataset consisting of eight types of sensor data obtained from a
smartphone, smartwatch and smartglasses.

In the future, a much larger training dataset needs to be collected in
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order to not only improve the recognition performance but also increase
the number of activities to be recognised. However, when such large-scale
training data are used, the currently applied non-linear SVMs may have
problems in terms of computational costs and memory consumption. This
is because a non-linear SVM needs to compute kernel values (similarities)
of a test example to training examples selected as support vectors (in the
worst case all training examples become support vectors). Thus, a linear
SVM is planned to be used because its classification can be done just by
taking the product between the feature vector of a test example and the
optimised weight vector. Furthermore, the linear SVM will run on an ex-
tended version of codebook-based feature, like Fisher vector representation
or Vector of Locally Aggregated Descriptors (VLAD) [82]. This represents
an example with a very high-dimensional feature, with which the linear
SVM can attain a high discrimination power. Finally, it will be also ex-
plored how to identify high-level activities (e.g., cooking, cleaning a room
and dressing) by combining recognition results of low-level activities that
our current system targets. To further improve the methodology, context
information like location and time of the day will also be used, since these
are often important properties when trying to distinguish among various
similar activities [54].

Gait Recognition: This chapter also deals with another aspect of phys-
ical activity recognition, the gait analysis described in Section 5.2. Gait
is a biometric feature that offers human identification at a distance and
without physical interaction with any imaging device. Moreover, it per-
forms well even in low-resolution imagery which makes it ideal for use
in numerous human identification applications, such as: access control,
visual surveillance and monitoring systems. Most existing gait-based per-
son recognition algorithms either construct a human body model based
on various skeletal data characteristics such as joints positioning and their
orientation, or they use gait features, e.g., stride length, gait patterns and
other shape templates. Such approaches extract the human-body silhou-
ettes, contours, or skeleton from the images, and therefore their perfor-
mance highly depends upon the accurate segmentation of a human body
region, which is still a challenging problem. The original gait recognition
method described in Section 5.2 exploits the spatiotemporal motion char-
acteristics of an individual without the need of silhouette extraction and
other related features. It computes a set of spatiotemporal features from
the gait video sequences and uses them to generate a codebook. Fisher
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vector is used to encode the motion descriptors which are classified using
linear Support Vector Machine (SVM). The performance of the proposed
algorithm has been evaluated on five widely used datasets, including indoor
(CMU-MoBo, NLPR, CASIA-C) and outdoor (CASIA-B, TUM GAID) gait
databases. It achieved excellent results on all databases and outperformed
the related state-of-the-art algorithms.
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[87] Thomas Plötz, Nils Y. Hammerla, and Patrick Olivier. Feature learn-
ing for activity recognition in ubiquitous computing. In Proceedings
of the 22th International Joint Conference on Artificial Intelligence,
IJCAI’11, pages 1729–1734, 2011.

[88] Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mas-
colo, Mahesh K. Marina, and Fahim Kawsar. Towards multimodal
deep learning for activity recognition on mobile devices. In Proceed-
ings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct, UbiComp ’16, pages 185–188,
2016.

[89] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe.
Discovering activities to recognize and track in a smart environment.
IEEE Transactions on Knowledge and Data Engineering, 23(4):527–
539, April 2011.

[90] J. Sánchez et al. Image classification with the fisher vector: Theory
and practice. International journal of computer vision, 105(3):222–
245, 2013.
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Chapter 6

Cognitive Activity Recognition

The following chapter discusses the state-of-the-art works and presents the
author’s scientific contribution to the area of cognitive activity recognition.
Section 6.1 gives the definition of cognition, and discusses cognitive ac-
tivity relation to health especially in context of the human ageing. As the
brain activity is the crucial source of information about cognitive abilities
of a person, Section 6.2 provides information on appropriate sensors. Sec-
tion 6.3 presents an overview of the renowned methods and approaches
utilising a variety of sensor data in order to properly recognise cognitive ac-
tivities. In Section 6.4, the author introduces the electrooculography-based
approach using the eye-movement information for the activity recognition.
Section 6.5 shows the possible application of the presented method and
validates the obtained results, while in Section 6.6 the final conclusions
and future plans are drawn.

6.1 Definition, Taxonomy, Impact on Health

Cognition is defined as a mental process of acquiring knowledge and un-
derstanding through our thoughts, experience and the information received
from five senses – including such aspects as: reasoning, awareness, per-
ception, knowledge, intuition or judgement. Each human being is charac-
terised by a set of cognitive skills that are needed for a person to be able to
talk, think, read, recall things from memory, analyse images and sounds or
draw association between numerous pieces of information. The decline of
cognitive skills and abilities is usually a part of the ageing process and re-
lated death of brain cells, or a result of an illness/disease and injuries that
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affect the brain such as Alzheimer’s disease, multiple sclerosis or stroke1.
Within the population of elderly people it can be observed that a number
of them never show any symptoms of an age-related loss of cognitive skills
and abilities, however a greater number of older seniors experience a decline
in cognitive functions. In order to maintain the cognitive skills, reduce the
risk of dementia or keep the mind sharp, various types of mental exercises
stimulating the brain can be performed, which are equally important for
the brain to stay active and alive as the physical exercises are important
to keep the body fit. Such cognitive activities regarding conscious part of
the cognition involve every day activities i.e. social interaction, engaging
in meaningful conversation, slightly changing daily routines, or performing
other mind-challenging activities such as drawing, reading, playing music,
photography or watching television/video.

6.2 Sensing the Brain Activity

Sensing the brain activity is crucial to the cognitive activity recognition
as the cognition processes are taking place in the human brain. The de-
vices and sensors allowing to observe the brain activity were designed for
medical purposes, thus in most cases they are stationary devices utilis-
ing relatively invasive methods of acquiring the information. For these
reasons, electrooculography (EOG) is the most promising technique for
mobile application.

6.2.1 Electroencephalography

Electroencephalography (EEG) is a diagnostic method allowing to monitor
and record an electrical activity of the brain. A number of (non)invasive
electrodes placed around the scalp measure the voltage fluctuation result-
ing from ionic current within the neurons of the brain. This gives the
possibility to record spontaneous electrical activity of the brain within a
given time interval. EEG is known to be noisy and can be easily obstructed
by a muscle movement, which leads to the complex and time consuming
signal processing.

1http://www.who.int/mediacentre/factsheets/fs396/en/
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6.2.2 Electrooculography

Electrooculography (EOG) is a technique used to track the eye-movement
based on the measurement of the standing-potential between the cornea
and retina (between front and back of an eye). This method utilises several
electrodes placed around the eyes to measure the potential difference be-
tween the electrodes when the eye moves from the centre position towards
one of the electrodes. This technique of tracking eye movements with a
lightweight, unobtrusive electrooculography (EOG) system [1] seems to be
suitable for day-long data collection.

6.2.3 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a functional neuroimag-
ing method using MRI (Magnetic Resonance Imaging) to measure brain
activity based on the correlation between cerebral blood flow changes and
the neuronal activation – blood flow is increasing in an area of the brain
that is currently in use. The measurements are frequently corrupted by
noise coming from various sources, and the technique itself is using blood-
oxygen-level dependent contrast which is administered to the patients –
which discriminates against this approach in the daily use.

6.2.4 Functional Near-InfraRed Spectroscopy

Functional Near-Infrared Spectroscopy (fNIRS) is a functional neuroimag-
ing method relying on the the principle of neurovascular coupling known
as Blood-Oxygenation-Level-Dependant response, which is also the core
of fMRI technique. The fNIRS method involves the quantification of chro-
mophore concentration resolved from the measurement of near-infrared
light attenuation and temporal or phase changes. This approach is known
for low spacial resolution, ability to record only brain surface and inaccurate
activation localization.

6.3 Survey of Related Methods

Eye movement analysis has been attracting researchers investigating vi-
sual behaviours for a long time. The early studies, focusing on recognising
objects perceived by human observers, use Markov processes in order to
model the visual fixations [8]. The obtained fixations were sequenced into
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character strings, and then the edit distance was applied to quantify the
similarity between eye movement sequences. In [7], the authors inves-
tigated the sequences of temporal fixations using discrete time Markov
chains to discover fixation clusters that can point out features attracting
observer’s attention. Such information can be especially helpful during a
training process. This was utilised by a method proposed in [5], where the
information about dynamics of saccadic eye movements is used to evalu-
ate the results of student’s training on assessing tomography images. The
automated eye movement analysis proposed in [18] along with sequence
matching and HMM-based methods allow to interpret eye movements with
a high accuracy and in a significantly short computation time. Recently,
the research community has become interested in human activity recogni-
tion, utilising a variety of sensors available in devices of every day use like
smartphones, smartwatches or fitness wristbands. However, eye-trackers
and the information about eye movements, that are strongly correlated
with cognitive aspects, have rarely been used to track our daily-life activi-
ties. In [12, 11], the authors proposed a method using the information on
blinking frequency, eye movement and head motion as a combined feature
for j48 decision tree to distinguish activities like reading, talking and walk-
ing. Eye movement data obtained with EOG were utilised by a method
proposed in [14] to estimate the number of words a user reads, using a
simple valley detection algorithm to detect line breaks on the horizontal
signal component of EOG. A more advanced method for recognising not
only reading activity but also copying a text, taking hand-written notes,
watching television or browsing the web, was proposed in [3]. The authors
developed a large set of hand-crafted features describing eye movement
data by capturing fundamental eye movement characteristics and dynam-
ics. Those features are string representations of saccade, fixation and
blink features, that are ranked and evaluated using minimum-Redundancy-
Maximum-Relevance (mRMR) feature selection [17] and a Support Vector
Machine (SVM) classifier.

The method proposed in [2] for interfacing with a speller utilised a
thresholding algorithm to detect different saccadic eye movements. The
authors defined five different thresholds to distinguish near and far sac-
cadic movements, fixations and near saccadic movements for horizontal
(EOGH) and vertical (EOGV) components of EOG data and blinks. Then
the classification is performed by comparing extracted peaks obtained from
EOGH and EOGV with the thresholds. In [10], the authors proposed a sim-
ple approach to reading activity recognition based on the observation, that
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reading text creates characteristic patterns on EOGH depicting the smooth
pursuit of text and rapid transition from right to left while switching the
lines (repetitive large negative peaks). The peaks are found by applying
minimum and maximum peak separation thresholds to the derivatives of a
preprocessed EOGH signal. The authors stated that the number of peaks
indicates the number of lines the user read, while the distance between
them reflects the time the user needed to read one line of text. A method
for recognising reading tasks based on autoregressive features extracted
from EOG data was proposed in [6]. The authors decided to utilise four
different autoregressive models, widely used for extracting features from
biomedical signals, based on the assumption that data at any point are
closely related to few preceding data points. With this approach, they
could extract several features from raw EOG signals, which were passed
to a recurrent Elman neural network to automatically detect the reading
activity. In [15], the authors presented a method to extract EOG features
using Linear Predictive Coding (LPC) model applied to spectral entropies
of EOG signals, where parameters were converted to LPC cepstral coeffi-
cients to obtain a more reliable and robust feature.

6.4 Electrooculography-Based Approach

In this section an electrooculography-based approach to cognitive activity
recognition is presented. Similarly to the codebook approach described in
Section 5.1.2, this method consists of three major steps: the codebook
construction, codeword assignment and the classifier training and test.
Based on the obtained results, a simple analysis of codewords is proposed
in order to extract parts of EOG sequences the characteristic to a particular
class of cognitive activity.

6.4.1 Cognitive Activity Recognition Method

Prior the fist step of the method, a data preprocessing is performed as raw
data obtained with an EOG system is known to contain a large amount of
noise introduced by muscle movements associated with facial mimicry. For
this reason, several different noise reduction and approximation algorithms
were investigated. As a result, the moving average produced the best
results, increasing the accuracy of activity recognition.

The codebook construction is the first step where subsequences are
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sampled from sequences of EOG data and grouped into clusters based
on their similarity using k-means clustering [9]. The codebook is then
constructed as a set of codewords, which are obtained as cluster centres.
Since EOG data tend to show some characteristics periodically (see Fig-
ure 6.1 a, b), an alternative representation of subsequences in a frequency
domain is used. Thus, as an alternative to a subsequence consisting of
time points of the raw EOG sequence, its vector representation consist-
ing of Fast Fourier (FFT) coefficients is applied to obtain a different type
of information about the subsequence. A codebook for this FFT-based
representation can be obtained using aforementioned k-means clustering
with no modification. The second step is the codeword assignment where
the feature is extracted from a sequence by assigning each subsequence
to the most similar codeword based on the Euclidean distance between
them. The feature obtained in this way is a histogram reflecting the fre-
quency of each codeword. The last step is the classifier training and test
where obtained features are considered as points in the multidimensional
space. Thus, a classifier can be trained to discriminate between training
sequences annotated with a certain activity class and the others, drawing
the boundary between, e.g., “reading” and other activities. Given this
boundary, the classifier can predict the activity class of a test sequence.
For this reason, the proposed method uses the Support Vector Machine
(SVM) as it is known to be effective for high-dimensional data [19]. An
important part of using the SVM is its parameter setting. The method de-
scribed in this chapter uses Radial Basis Function (RBF) kernel as it takes
one parameter γ controlling the complexity of a classification. Another
SVM parameter C controls the penalty of mis-classification. To obtain
the best possible results, C and γ are set by performing grid search using
cross-validation [4]. This approach for setting SVM parameters is used
throughout all the experiments.

6.4.2 Investigating Codewords

The steps described above focus on obtaining effective features in order
to accurately assign a sequence to the appropriate activity class. Such
histogram-type features represent the distribution of individual codewords
within a sequence. However, deeper understanding of which codewords
are characteristic for particular activity classes still requires investigation.
For this reason, simple statistical analysis involving probability and entropy
calculation is employed.
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By definition, an entropy is an expected, average value of information
contained in each event. Also, the information is defined as the negative
logarithm of the probability distribution of possible events. Assuming a
codeword c, its entropy over n activity classes can be denoted as follows:

H(c) =
n∑
i=1

Pi(c) · Ii(c) = −
n∑
i=1

Pi(c) · log2Pi(c) , (6.1)

where Pi(c) is the probability that the codeword c is included in sequences
for an activity i ∈ 1 . . . n. If the probability is distributed equally between
n activities, the entropy is high indicating the uncertainty and so the
chosen codeword is not so characteristic. However, if the probability of a
codeword is higher for one activity than the others, the value of entropy
tends to zero and thus the codeword can be perceived as characteristic
to the activity. Based on this, the desired codewords should be described
with high probability and low entropy values.

6.5 Application and Validation

This section presents the experimental results of the codebook-based method
(see Chapter 5.1.2) regarding the cognitive activity recognition task. At
the beginning, a brief description of the dataset is provided with a short
description of the implementation. Then, different representations of sub-
sequences are discussed along with various combinations of feature vectors
and their influence on the recognition accuracy. Afterwards, an analysis
of codewords is performed describing their connection to certain activity
classes.

6.5.1 Collecting a Dataset

The dataset used throughout all the experiments is obtained with the smart
eye-ware called JINS-MEME [1] (see Figure 5.1) with integrated EOG-
based eye-tracker, accelerometer and gyroscope. EOG data consisting of
four data vectors (EOGL, EOGR, EOGH, EOGV) and additional data from
the three-axis accelerometer (ACCX, ACCY, ACCZ) were collected with
JINS-MEME glasses, since the preliminary experiments showed that the
results obtained using only EOG signals are not good enough to effectively
distinguish between several cognitive activities. The EOGL (or EOGR)
data represent differences between the electric potential field of the pole
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at left (NL) (or right (NR)) nose pad and the reference one of the pole
at the bridging part (BR) [13]. The EOGH is defined as a difference
between the electric potential field of the left nose pad NL and the one of
the pole at the right nose pad (NR), while EOGV is an average of EOGL

and EOGR.
Data collection was performed in a controlled environment. One hun-

dred adults participated in experimental sessions, in which their eye and
head movements were recorded while performing the following three daily
activities: (1) reading a printed page of text in a participant’s native
language, (2) drinking mineral water, and (3) watching a video. After
each activity recording, participants took a short break to calm their eyes.
Around 30 seconds long EOG and accelerometer sequences were recorded
for each of these activities. Since these sequences were obtained with a
high sampling rate of 100Hz, it is considered that they contain sufficient
information to build an effective classifier. Figure 6.1 presents the EOG
and accelerometer sequences collected during the reading activity. The
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Figure 6.1: Examples of EOG and accelerometer sequences obtained for
the reading activity.

EOG and accelerometer data were collected by a Bluetooth-based data
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streaming application of the smartglasses [1]. To sum up, the dataset
consists of 100 data samples for each of the 3 activity classes, and each
data sample consists of 7 sequences - 4 EOG and 3 accelerometer vectors.

6.5.2 Implementation Details

During the experiments a codebook is constructed using subsequences
from all the 300 sequences from each type of sensor (i.e., 100 sequences ×
3 activities). The performance is evaluated using cross validation, where,
first, a half of the sequences is used for training and another half for
testing. Then, the second half is used for training and the first one for
testing. The cognitive activity recognition performance is measured as the
accuracy, expressed as a percentage of how many sequences are correctly
classified.

The method uses three main parameters describing the size of slid-
ing window w, the sliding size s, and the number of codewords N . The
parameter s allows to control the sampling rate. Assuming that a higher
sampling rate could lead to a better performance [16], s is set to 8 through
all the experiments. The values of parameters w and N are investi-
gated by taking combinations of values defined by w ∈ {8, 16, 32, 64, 128}
and N ∈ {8, 16, 32, 64, 128, 256, 512}, to avoid under- or over-estimating
recognition accuracies. Finally, using N , the obtained subsequences are
clustered to construct a codebook for each of the following seven features:
EOGL, EOGR, EOGH, EOGV, ACCX, ACCY and ACCZ. Early fusion is per-
formed to combine these features into a single high-dimensional feature.

6.5.3 Results for Cognitive Activity Recognition

Accuracies are calculated for 35 results, each of which is obtained by
applying early fusion to individual features, extracted with one combination
of w and N . Figure 6.2a depicts the accuracy distribution of these 35
results. The best accuracy result of 86.6% was obtained for w = 128 and
N = 64. During the experiments it was also observed that the values of w
higher than 128 may decrease the recognition accuracy. The reason for this
can be considered as overfitting, where codewords that are very specific
to training sequences are mistakenly regarded as useful for classifying test
sequences. The accuracy distributions of activity recognition using the
codebooks built with FFT coefficients are shown in Figure 6.2b, where the
best result of 96.6% was obtained (w = 128, N = 256).
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Figure 6.2: Accuracy distributions of cognitive activity recognition ob-
tained with codebooks constructed on raw subsequences (a) and subse-
quences represented by FFT coefficients (b).

Despite of the satisfactory results obtained based on the FFT-based
subsequence representation, investigations of data preprocessing approaches
to additionally improve the accuracy were performed, especially since EOG
data are sensitive to facial muscle movements. Several algorithms for noise
removal and approximation methods were utilised, however in most cases
no significant performance improvement was obtained. Nevertheless, us-
ing the moving average filter with the sliding window of size wavg = 8
presented around 2-3% of performance improvement for both raw and
FFT-based subsequence representations (88.5% for the former and 99.3%
for the later, as shown in Figure 6.3). A feature built as a combination
of the above-mentioned subsequence representations in both time and fre-
quency domains was also investigated. However, there was no significant
improvement in recognition accuracy.

6.5.4 Results for Codewords Investigation

Investigations to find out which codewords are characteristic for particular
activity classes were also performed. Table 6.1 presents the exemplary
results of the codeword investigation obtained for 9 of 64 codewords that
were obtained with the proposed method using subsequences of prepro-
cessed data (w = 64, N = 128). It can be observed that the data
presented in Table 6.1 contain several features with high probabilities and
low entropies in every activity class – desired situation as a low entropy
indicates that the probability in one activity class is significantly higher
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Figure 6.3: Accuracy distributions of cognitive activity recognition ob-
tained with codebooks constructed on subsequences of preprocessed data
(a) and subsequences represented by FFT coefficients (b).

than in the other classes. For example, the fourth codeword C4 for the
accelerometer sequence on z axis ACCZ has very high probability for the
drinking activity. This coincides with the fact that one very characteristic
action is taken during drinking, that is tilting the head back while taking
the sip of water. Also, there is no eye movements that could be linked
with this activity class, thus codewords for EOG sequences have relatively
low probability values. Features corresponding to eye movements are more
likely to occur while describing the reading activity, where we are following
a line of text and switching between those lines using our eyesight. These
actions are captured, e.g., by codewords C10, C31 and C62 for all four
EOG sequences. The last activity class corresponding to watching televi-
sion/video presents very little characteristics, only time to time showing
some connection to eye movements – codeword C33 for EOGH sequence.
Nevertheless, this is justified as follows: Usually we are watching a video
sitting on a couch which is placed in some distance to the screen. Thus, in
most situations the whole surface of the screen is within a field of the eyes,
so there is no reason to make large eye movement. These characteristic
features are depicted in Figure 6.4.

6.6 Conclusion and Future Trends

In this chapter, related work and the author’s own methodology for cog-
nitive activity recognition based on data delivered by sensors embedded in
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Table 6.1: Exemplary results of codeword investigation using probabilities
and entropies.

Sequence
Probability

C4 C10 C19 C21 C22 C31 C33 C60 C62

D
ri
n
ki
n
g

ACCX 0.10 0.03 0.25 0.04 0.08 0.03 0.25 0.04 0.05
ACCY 0.00 0.07 0.47 0.50 0.31 0.54 0.06 0.01 0.01
ACCZ 0.99 0.12 0.99 0.00 0.08 0.99 0.15 0.07 0.11
EOGL 0.14 0.03 0.05 0.02 0.17 0.02 0.06 0.05 0.00
EOGR 0.35 0.00 0.17 0.26 0.16 0.15 0.04 0.00 0.01
EOGH 0.01 0.03 0.09 0.02 0.00 0.18 0.00 0.02 0.02
EOGV 0.22 0.05 0.16 0.16 0.18 0.05 0.09 0.01 0.00

R
ea
d
in
g

ACCX 0.80 0.83 0.41 0.83 0.70 0.96 0.37 0.75 0.76
ACCY 0.66 0.79 0.35 0.26 0.30 0.19 0.69 0.96 0.82
ACCZ 0.00 0.68 0.00 0.00 0.44 0.00 0.52 0.72 0.73
EOGL 0.56 0.90 0.78 0.85 0.00 0.90 0.78 0.89 0.99
EOGR 0.36 0.92 0.54 0.29 0.57 0.73 0.90 0.89 0.87
EOGH 0.94 0.94 0.87 0.95 0.00 0.66 0.00 0.96 0.94
EOGV 0.62 0.83 0.58 0.75 0.55 0.94 0.72 0.95 0.93

W
at
ch
in
g
vi
d
eo

ACCX 0.09 0.13 0.33 0.11 0.21 0.00 0.37 0.20 0.17
ACCY 0.32 0.13 0.17 0.23 0.38 0.26 0.23 0.02 0.15
ACCZ 0.00 0.19 0.00 1.00 0.46 0.00 0.32 0.19 0.15
EOGL 0.29 0.06 0.15 0.11 0.82 0.07 0.14 0.05 0.00
EOGR 0.28 0.07 0.27 0.44 0.26 0.10 0.05 0.09 0.10
EOGH 0.03 0.02 0.03 0.02 1.00 0.15 1.00 0.01 0.02
EOGV 0.15 0.10 0.25 0.07 0.25 0.00 0.18 0.02 0.06

Sequence
Entropy

C4 C10 C19 C21 C22 C31 C33 C60 C62

ACCX 0.90 0.77 1.55 0.78 1.12 0.00 1.56 0.97 0.97
ACCY 0.96 0.92 1.47 1.49 1.57 1.44 1.11 0.25 0.73
ACCZ 0.00 1.20 0.00 0.00 1.33 0.00 1.42 1.07 1.08
EOGL 1.38 0.53 0.91 0.69 0.00 0.54 0.95 0.57 0.08
EOGR 1.57 0.00 1.42 1.54 1.39 1.08 0.55 0.51 0.60
EOGH 0.35 0.38 0.64 0.31 0.00 1.25 0.00 0.27 0.35
EOGV 1.32 0.78 1.38 1.02 1.42 0.34 1.10 0.30 0.38

wearables (e.g., smartglasses) are described. The definition and health-
related aspects of cognitive activity are summarised in Section 6.1. Sec-
tion 6.2 provides important information on sensor modalities that are used
for sensing the brain activity. A survey of related approaches is given
in Section 6.3. The original electrooculography-based method for cogni-
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tive activity recognition based on the codebook approach used also for
physical activity recognition (see Chapter 5) is explained in Section 6.4.
The application of the methodology to recognition between three activi-
ties along with the corresponding experiments and results are described in
Section 6.5.

The experimental results show that the codebook approach can be
successfully utilised for the cognitive activity recognition task. Applied to
EOG and accelerometer data, the proposed method achieved high accuracy
results, predicting proper activity classes in 99.3% of cases without using
prior knowledge or heuristics. Moreover, the entropy-based investigation of
codewords appeared to be an easy-to-use analytical tool to gain knowledge
about subsequences characteristic to a particular class of activities. These
can be used to build a knowledge database on cognitive activities as there
is not much known about characteristics of particular cognitive activity
classes and they are still under investigation.

In the future, the number of cognitive activity classes will be signifi-
cantly increased. Moreover, the methodology for cognitive activity recog-
nition will be integrated into the general framework for holistic health
monitoring. Other modules of the framework will continuously assess the
physical and social activities as well as the emotional state of the users.
In this way, predictive investigations on human health and condition will
be possible.
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(a) C4(ACCZ) -
drinking

(b) C19(ACCZ) -
drinking

(c) C31(ACCZ) -
drinking

(d) C31(ACCX) -
reading

(e) C60(ACCY ) -
reading

(f) C4(EOGH) -
reading

(g) C10(EOGH) -
reading

(h) C21(EOGH) -
reading

(i) C60(EOGH) -
reading

(j) C62(EOGH) -
reading

(k) C10(EOGL) -
reading

(l) C31(EOGL) -
reading

(m) C62(EOGL) -
reading

(n) C10(EOGR) -
reading

(o) C33(EOGR) -
reading

(p) C60(EOGV ) -
reading

(q) C62(EOGV ) -
reading

(r) C21(ACCZ) -
watching TV

(s) C22(EOGH) -
watching TV

(t) C33(EOGH) -
watching TV

Figure 6.4: Plots of characteristic codewords for particular activities men-
tioned in Table 6.1.
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Chapter 7

Emotion Recognition

This chapter overviews state-of-the-art approaches and summarises the
author’s scientific contribution to the area of automated human emotion
recognition. Section 7.1 describes fundamental concepts of emotion recog-
nition including main emotion models, requirements for sensor selection as
well as most related contests organised in this field (e.g., The Audio/Visual
Emotion Challenge and Workshop1) providing ground truth datasets and
frameworks for quantitative performance comparison. Section 7.2 surveys
existing emotion recognition approaches that use multimodal data (e.g.
video, audio, physiological). Finally, Section 7.3 closes the chapter by ex-
plaining several methods for emotion recognition that are based exclusively
on human’s physiological data. The author’s contributions to emotion
recognition can mainly be assigned to the last section of this chapter.

7.1 Automatic Recognition of Emotions

Over the last few years, a lot of progress has been achieved in various fields
of pattern recognition, such as speech recognition or object recognition in
images and videos, and led to the development and/or improvement of
many real-life applications (e.g. driver-less cars, intelligent assistants on
smartphones, etc.). The emergence of increasingly powerful processors and
hardware - leading to the rise of promising classification approaches such
as solutions based on Neural Networks - coupled to an existing demand
for the development of such kind of technologies are some of the main
reasons behind those advances.

1http://sspnet.eu/avec2016
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The field of emotion recognition did not benefit as much from those
technological and theoretical advances regarding pattern recognition, de-
spite the existence of potential applications related to medical data under-
standing and psychological disorder detection, or to the development of
emotion-sensitive intelligent systems. This lack of progress compared to
other research fields can be attributed to different factors, like the difficulty
to acquire emotion-related data to apply the common supervised learning
approaches for pattern recognition and the scarcity of the datasets (espe-
cially for non-video data). The most important obstacle, however, is the
lack of a rigorous scientific definition of what exactly emotions are, since
the accepted literal definition (“complex state of feeling”) is too vague
and the perception of emotions can vary from one person to another.

7.1.1 Definition and Taxonomy of Emotions

So what does defining an emotion in a scientific way entail? Several
different theoretical approaches have been proposed in the past to provide
a way to rationally define this complex and - from a psychological point
of view - not well understood phenomenon.

The most simple framework was proposed in 1980 by R. Plutchik [49],
who introduced the idea of discrete emotional categories, claiming that
some basic emotions universally recognisable by humans (no matter which
cultural background they have) form distinct categories, and trigger uni-
versal facial expressions and behavioural reactions among the individuals
feeling them. Plutchik’s proposed model revolves around 8 basic emotions:
joy, trust, fear, surprise, sadness, disgust, anger, anticipation. All of them
can be organised in a wheel (see Figure 7.1), with each emotion having
two others which are closely related to it (e.g. joy closely related to trust
and anticipation) and one opposite (e.g., joy opposite of sadness). Every
basic emotion can also vary in intensity to form different emotional states
(e.g. ecstasy being the intense version of joy, while serenity being the
mild one). The notion of a dyad was also introduced in Plutchik’s work,
to name the possible associations of the basic emotions to form new and
more complex emotions. All pairs of basic emotions can be combined to
form a dyad, except two opposite ones (e.g., joy can be combined with
any other, except sadness, see Figure 7.2).

Plutchik’s theory was carried on and perfected by P. Ekman in 1992 [18],
who proposed a restricted panel of basic emotions revolving around only 6
emotional states: happiness, disgust, sadness, anger, fear and surprise. To
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Figure 7.1: Plutchik’s wheel of emotions, featuring the 8 basic emotions
and their variations in intensity.

justify his choice, P. Ekman carried out a cross-cultural experiment which
consisted of asking subjects from 21 different countries from all continents
to identify the emotion associated with the expression displayed on black-
and-white pictures of faces from the Pictures of Facial Affect (POFA)
dataset. The study showed that people from a large majority of countries
(and sometimes from all of them) agreed on the identification of those
6 basic emotions, no matter with which degree of intensity they were
depicted in the pictures [20].

The framework of Plutchik and Ekman proposing basic emotions has,
however, been criticised by a part of the research community for over-
simplifying the definition of emotions, and not being enough to tackle the
problem of the identification of more complex emotional phenomena. Sev-
eral dimensional approaches - all proposing a finer definition of emotions
by decomposing them along several different dimensions - were also made,
each proposing their own axes of decomposition:

The Circumplex model developed by J. Russell in 1980 [52]: J. Rus-
sell claimed that emotions could be decomposed following two axes.
The first axis, called arousal, is used to measure the level of physical
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Figure 7.2: Plutchik’s dyads.

response of the subject when in a specific emotional state, while the
second, called valence, characterises the level of attractiveness or
positivity of this emotional state. Unlike the basic emotion theory,
this definition has the advantage of being able to model the transi-
tions between different emotional states of a subject (see Figure 7.3).

Figure 7.3: The Circumplex model.

The Pleasure-Arousal-Dominance (PAD) model, proposed in 1980 by
A. Mehrabian [44], extends the Circumplex model by adding a third
axis called dominance, with pleasure and arousal replacing valence
and arousal respectively. The dominance axis can be used to classify
emotions in a more fine way in this model, by adding an information
on how dominant/controlling or submissive/controlled the subject
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feels in his or her current emotional state. For instance, 2 emotions
with negative pleasure and positive valence such as fear and anger
can be distinguished by being at the opposite of the dominance
spectrum (see Figure 7.4).

Figure 7.4: The PAD model.

The Positive Activation and Negative Activation (PANA) model,
proposed by Watson and Tellegan in 1985 [17], decomposes emo-
tion along 2 axes: one measuring the level of positive activation (ac-
tive/elated/excited against drowsy/dull/sluggish), the other of neg-
ative activation (calm/relaxed/at rest against fearful/distressed/ner-
vous) [14]. The axes are assumed to be independent, e.g., a high
level of positive activation is not necessarily incompatible with a
high level of negative activation. The PANA model is often seen
as a 45 degree rotation of the Circumplex model with a different
decomposition (see Figure 7.5).

The Lövheim cube of emotions: H. Lövheim proposed an emotion clas-
sification approach different from the previous models [39], made
by monitoring the levels of 3 different neurotransmitters: serotonin
(usually linked to well-being and happiness), dopamine (involved
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Figure 7.5: The PANA model

in reward-motivated behaviours) and noradrenaline (used to pre-
pare the body for action), after observing that the combinations
of different levels of those neurotransmitters corresponded to par-
ticular emotions (see Figure 7.6). Compared to the other models,
this model has the advantage of proposing 3 axes of decomposition
which do not have to rely on subjective assessments to be measured.
Its main limitation however remains the difficulty to have access to
those levels of neurotransmitters in a way that is non-intrusive for
the subject, as the main current approaches rely either on blood or
urine analysis, or, for some of those, on the use of radioactively la-
belled substances injected in the subject’s blood to get an imagery
of the distribution of the neurotransmitters in the subject’s brain
(Positron Emission Tomography) [24].

If those approaches for the definition of emotions attempt to clarify ideas
from a theoretical point of view, they however do not necessarily solve
the problem of recognising the emotions of one subject with a high cer-
tainty in practice, the measure of the proposed alternative features (e.g.,
valence, arousal) remains still subjective for most of them. It should be
noted that even if the valence/arousal decomposition of emotions pro-
posed by the Circumplex model, as well as the basic emotions approach
are mostly employed in current research works, none of those frameworks
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Figure 7.6: The Lövheim Cube of emotions.

have clearly established itself as the reference benchmark to define emo-
tions in the research community. None of those approaches is perfect and
each has its own drawbacks: while the discrete emotions theory might not
be a good framework to work with complex emotions or to model tran-
sitions between different emotional states, the Circumplex model is also
insufficient to clearly define certain emotions difficult to describe in terms
of arousal/valence - such as surprise, which can be linked to both posi-
tive or negative levels of valence or to distinguish well different emotions
with similar arousal/valence levels, such as fear and anger (both negative
valence - positive arousal).

However, it can also be noted that from a machine learning point of
view, the problem of formally conceptualising emotions intervenes mainly
at the level of the emotion-related data acquisition, by making the labelling
of the data difficult and potentially inaccurate. It is therefore still possible
for machine learning researchers to carry out studies on emotion recogni-
tion despite this issue, by using alternative means to label the data during
the experimental process with more confidence (e.g., real-time feedback
from the experimental subjects, questionnaires, etc.), and make the as-
sumption that the data is well labelled. This is the approach which has
been the most commonly adopted for studies on the topic of emotion
recognition, pending a clarification on the formal definition of emotions.
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7.1.2 Existing Techniques for Emotion Recognition

An additional problem hindering significant progress in emotion recognition
lies in the lack of consensus in the research community on the methodol-
ogy to be used in studies. Few studies in this research field propose the
same choice of emotions to recognise for instance, or agree on the way
to acquire the emotion-related data. The choice of the sensors to use
to obtain the data for the training set is indeed dependent on what par-
ticular emotions have to be recognised, as some sensor modalities might
become more useful while others lose their relevance depending on the
chosen classes. However, numerous studies have shown the importance
of features describing the facial expression of the subjects, and therefore
image and video-based modalities. But the latter are not the only ones.

Among the most common modalities used for emotion recognition,
audio and physiological data can also be found, even if they are most of
the time coupled with image or video data. Some studies make use of
audio data only (e.g. detection of emotions in speeches) or physiological
data only, but those remain marginal compared to the others. While
some descriptors and techniques have shown to have a sensible impact on
the performances of emotion recognition in the different research works
performed over the past years, most of them are related to image or video
data, which seems to confirm the important role of facial expressions for
the communication of emotions highlighted by P. Ekman [19].

A proposal for a scientific definition of facial expressions has in partic-
ular imposed itself as the reference framework: the Facial Action Coding
System (FACS) [46]. Based on the work of anatomist C. H. Hjortsjö who
identified and described the mechanisms behind basic facial movements,
it was proposed by P. Ekman and W. V. Friesen in 1978 to standardise
and name the most common facial movements. 44 of them - called Action
Units (AU) in the FACS - were listed in total (plus one neutral AU), each
being designed by the name AUn with n between 0 and 44 (e.g., AU0 =
neutral expression, AU1 = raise of inner brows, AU6 = raise of cheeks,
etc.). Using the FACS, Ekman and Friesen claimed that a specific emo-
tion can be identified by recognising a combination of different AU, e.g.,
happiness = AU6 + AU12 (cheeks raised + lip corners pulled), sadness
= AU1 + AU4 + AU15 (inner brow raised + brow lowered + lip corners
lowered), etc.

This idea of emotion recognition by the detection of certain facial
expressions in single images raised the interest of the research community
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which proposed several image processing approaches and descriptors to
detect the relevant AU. One in particular emerged as the state-of-the-art
descriptor for AU detection: the Local Gabor Binary Patterns from Three
Orthogonal Plans (LGBP-TOP). This simple video descriptor proposed by
T. R. Almaev and M. F. Valstar in 2013 [56] has proven its effectiveness
in problems of emotion recognition using video data of faces, by capturing
spatio-temporal information regarding the evolution of textures on the
faces with good efficiency. It relies on the use of Local Binary Patterns
(LBP), a descriptor applied for characterising the texture of 1-channel
images (e.g. grayscale images). The computation of LBP revolves around
the following steps:

1. A 1-channel image of a given size is divided into cells of smaller size.

2. The value of each pixel in each cell is compared to its 8 neighbours.
For each neighbour, 0 is attributed if its value is smaller than the one
of the centre pixel, 1 otherwise. The 8 obtained resulting numbers
form a 8-bit binary number, which is converted into a decimal (value
between 0 and 255).

3. 256-bit histograms of decimal values obtained are computed among
all cells.

4. Histograms of all cells are concatenated to form the LBP descriptor
(vector of dimension 255× number of cells).

Provided that an input video of the face of a subject is available, the fol-
lowing steps are performed in order to compute the LGBP-TOP descriptor:

1. A block of video frames (with a fixed number of successive frames) is
defined. This 3D video volume has three axes: x and y (dimensions
of the images) and t (time dimension).

2. All images of the block are turned into grayscale images (if input
RGB images are used).

3. Specific pre-defined Gabor filters (filters characterised by the multi-
plication of a sinusoidal wave with a Gaussian) are applied to each
frame of the video volume, to obtain a volume of Gabor Pictures
(GP).
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4. An altered version of LBP (with 59 histogram bins instead of 256)
is computed for all frames ((xy) planes) of the block of GP and
provides one histogram per frame. All frame histograms are then
averaged to return a single averaged histogram.

5. Step 4 is repeated for all frames of the volume of GP along the two
orthogonal planes to (xy) (i.e. (xt) and (yt) planes). Two more
averaged histograms are obtained after this step.

6. The three averaged histograms obtained are then concatenated to
provide the final LGBP-TOP descriptor (see Figure 7.7).

Figure 7.7: Computation of the LGBP-TOP descriptor.

LGBP-TOP descriptors have proven in particular to be pretty effective at
the detection of AU when used as inputs of SVM classifiers. They bring
an average improvement of 18% on the Cohn-Kanade dataset [55] and
14% on the MMI dataset [42] compared to the descriptors previously used
for the recognition of 7 specific AU (2, 6, 7, 12, 20, 25, 45) [56], for an
average recognition rate of 86%.

7.1.3 Emotion Recognition Challenges

Another difficulty - related to the two previous ones - which impedes the
progress in the domain is the lack of a clarified framework for the dif-
ferent studies about emotion recognition, defining the type of data to
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be used or the emotions to be classified for the recognition problem. In
order to address this issue, several proposals of Emotion Recognition Chal-
lenges have been made by researchers in the past few years; each of them
providing a labelled dataset of selected emotions, most of the time with
multimodal data comprising videos of the faces of the subjects, audio
records, and sometimes physiological signals such as Electroencephalogram
(EEG), Electrodermal Activity (EDA) (also known as Skin Conductance
(SC)), Blood Volume Pulse (BVP), Electrooculography (EOG) or Electro-
cardiogram (ECG) to name some of the most common ones. Researchers
participating in those challenges are then invited to propose either their
best models or their best descriptors for emotion recognition, using one or
several of the modalities of the dataset.

The existing challenges have mainly adopted either the Circumplex
model or P. Ekman’s framework of basic emotions for the definition of
emotions. The recognition of the latter can be translated into a regression
problem of arousal/valence in the first case, or a classification problem in
the second case. The challenges with the highest impact in the field of
emotion recognition for each of those approaches are:

• The Audio/Visual Emotion Challenge (AVEC) linked to the ACM
Multimedia conference [43] and

• The Emotion Recognition in the Wild challenge (EmotiW) linked to
the International Conference on Multimodal Interaction (ICMI) [4].

A more comprehensive description of each challenge and winning solutions
is provided below.

AVEC Challenge

Since 2011, the AVEC challenge of the ACM Multimedia conference pro-
poses a fixed framework and labelled dataset for researchers wanting to
compare the performances of their approaches. The adopted model for
emotion definition here is the Circumplex model, and participants are in-
vited to propose a method able to continuously estimate in the most accu-
rate way the arousal and valence levels of a subject. The dataset used is the
Remote Collaborative and Affective Interactions dataset (RECOLA) [23]
which contains data acquired from 27 French-speaking subjects asked to
solve a collaborative task via video-conference in a natural and sponta-
neous way. For each subject, video data of the face, audio recordings and
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ECG and EDA measurements are acquired. The labelling of the data is
performed by 6 French-speaker assistants, asked to assess continuously
the arousal and valence levels of each subject, for the 5 first minutes of
the recordings (during which the interactions between the participants were
the most interesting and potentially inducing emotions). The performance
metric in this challenge is the Concordance Correlation Coefficient (CCC),
used to measure the similarity between the ground truth arousal/valence
time sequences and their estimations.

Some state-of-the-art features are also extracted from all modalities
and then tested with a classifier to provide some baseline results. The
following list shortly describes them (more details in [43]):

• From video data: appearance and geometric-based features LGBP-
TOP and facial landmarks (on the eyes, eyebrows and the mouth)
respectively;

• From audio data: several hand-crafted low-level features which have
proven to give good recognition result for the modelling of emotion
from speech, giving information about spectral, cepstral, prosodic
and voice quality;

• From psychological features: hand-crafted features including the
Hearth Rate (HR: speed of the heartbeat) and Heart Rate Variability
(HRV: variations of time between heartbeats) from ECG, the Skin
Conductance Level (SCL) and Skin Conductance Response (SCR)
from EDA, and spectral and statistical descriptors from both ECG
and EDA.

The initiators of the challenge performed a comparative study of the dis-
criminative power of the different descriptors for both tasks of arousal and
valence estimation, using Support-Vector Regression (SVR) and Neural
Network (NN) models on each of the different features extracted from the
raw data. Their results indicate that audio features seem to perform the
best for arousal estimation, while video features are the most useful to
estimate valence. Physiological modalities are performing quite well with
ECG and EDA being the second best descriptor for arousal and valence
estimations respectively.

It should be noted that the AVEC challenge also proposes a sub-
challenge of depression recognition (binary classification problem) using
the Distress Analysis Interview Corpus (DAIC) dataset [23]. Since de-
pression often involves combinations of different basic emotions such as
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sadness, fear, anger, it will not be described in detail as it is seen as mov-
ing away from the topic of emotion recognition.For more details about this
sub-challenge, refer to [43].

EmotiW Challenge

The EmotiW challenge, linked to the ICMI conference, proposes one main
challenge for emotion recognition in videos (VReco) usually supplemented
by a second sub-challenge on a related thematic area, whose topic changes
depending on the challenge edition. Only the VReco challenge, more
directly related to the subject of this chapter, will be described in the
following.

The initiators of the EmotiW VReco challenge propose to work on a
problem of emotion recognition of 7 different emotional classes based on
P. Ekman’s discrete emotion theory: anger, disgust, sadness, happiness,
surprise, fear and neutral. The Acted Facial Expressions in the Wild dataset
(AFEW) [5] is used. The latter contains videos of 428 different subjects
(average age of 34.4 years) facing the camera, extracted from movies
with their associated soundtracks (i.e., use of video and audio data). An
algorithm parsing keywords from subtitles of the different movies is used
in order to find relevant extracts. These are then manually labelled to
obtain 1368 video samples in total, of length comprised between 300 and
5400ms, and extracted from 111 different movies. It can be noted that
one of the main assets of the AFEW dataset is to provide images taken
in a context which comes as close to reality as possible (e.g., in terms of
illumination, possible influences of the background, etc.), as opposed to
other datasets whose data is acquired in artificial and fixed experimental
setups. The dataset is then divided into three parts: training, testing and
validation.

Similarly to the AVEC challenge, some state-of-the-art descriptors are
computed from both the audio and video data, and a comparative study
of their effectiveness for emotion classification is performed. Once again,
more details about those can be found in [4]:

• From video data: LGBP-TOP;

• From audio data: hand-crafted low-level-descriptors, related to the
energy or spectre of the audio signals.

SVM classifiers with either linear or RBF kernels are then trained using
video-based features only, audio-based features only, and both audio and
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video descriptors. The comparative study shows here the importance of the
video-based descriptors, with the latter obtaining a classification accuracy
of 33.15% on the validation set; higher than those obtained with audio
only (26.10%) or even with both modalities fused (28.19%).

Other Challenges

Other existing main challenges related to emotion detection that can
be evoked are the Facial Expression Recognition and Analysis challenge
(FERA) [41] proposed by the European Social Signal Processing Network
(SSPNet) which focuses on the detection of facial AU, and the INTER-
SPEECH challenge [12] which targets the detection of emotion-related
phenomena in speeches by the exclusive analysis of audio data (with dif-
ferent targets depending on the challenge edition, e.g. sincerity, social
signals, autism, proficiency of the speaker in the spoken language, etc.).
Considering that the objectives of those two challenges are not recognis-
ing emotions strictly speaking, they will not be described further in this
chapter. More details about them can be found in the related papers [41]
and [12] for FERA and INTERSPEECH, respectively.

7.2 Multimodal Emotion Recognition

In this section, a short overview of the current best techniques for the two
most popular approaches for emotion recognition (arousal-valence esti-
mation and basic emotion classification) is provided, featuring the winning
solutions of the most recent editions of the AVEC and EmotiW challenges.

7.2.1 Arousal/Valence Estimation

The winning solution of the 2016 edition of the AVEC sub-challenge of
emotion assessment was proposed by K. Somandepalli et al. [34] who came
up with a method for continuous arousal and valence estimation using a
coupled Support Vector Regression (SVR)/Kalman Filter (KF) approach,
and all the available modalities as inputs (video, audio and physiological
data of the RECOLA dataset [23]).

One particularity of this solution is its ability to detect moments when
some sensor modalities are irrelevant, e.g., face not aligned with the cam-
era causing video-based features to become inaccurate, or audio features
computed when the subject is not speaking. This is done by computing
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two parameters at all times, a face status parameter ∈ {0, 1} indicating
whether the face of the subject is aligned with the camera (computed with
the external C++ library dlib [36]]), and a voicing probability ∈ [0, 1] in-
dicating the probability that the subject is speaking (computed using the
C++ Kaldi toolkit [16]). For either arousal or valence, 4 different Kalman
filters are defined, one using audio and video data, one using video only,
one using audio only and one last using physiological data only. Only the
output of the relevant filter is considered, depending on the values of the
Face Status and Voicing Probability (see Figure 7.8). It can also be noted

Figure 7.8: Conditional framework for the choice of Kalman filters.

that the KF estimating valence take the estimation of arousal as input in
order to refine their own estimations.

In addition to the baseline features proposed in the AVEC framework
(LGBP-TOP for video, hand-crafted low-level descriptors for audio, and
HR, HRV, SCL, SCR for physiological signals), 2 additional descriptors
(one audio, another physiological) are extracted:

• Teager Energy-based Mel-Frequency Cestrum Coefficients (TEM-
FCC) [6], which are a variation of the Mel-Frequency Cestrum Co-
efficients (MFCC) often used in sound processing to characterise
the short-term power of the input sound. The Teager energy opera-
tor [35] is applied to the magnitude of the discrete Fourier transform
of the incoming signal before the computation of MFCC.

• Sparse Dictionary representation of EDA (SD-EDA) [54] is another
signal processing method consisting of fitting the input EDA signal
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into a specific pre-determined shape in order to clean potential arte-
facts. The final descriptor includes mean SCL, number of SRC and
mean amplitude of SRC.

The method proposed then revolves around the 4 following main steps:

1. Extraction of video, audio and physiological features, and computa-
tion of face status and voicing probability.

2. First “noisy” estimation of both arousal and valence using the pre-
viously defined features and Support Vector Regression (SVR).

3. Determination of irrelevant modalities using face status and voicing
probability.

4. Finer estimation of both arousal and valence using the noisy esti-
mations of SVR and the Kalman Filter (KF) taking the relevant
modalities as inputs.

Figure 7.9: Arousal and valence estimation by SVR and KF.

The method manages to obtain an average CCC of 0.824 for arousal and
0.718 for valence on the validation set, and 0.703 for arousal and 0.681 for
valence on the test set after a Leave-One-Out Cross Validation performed
on the 9 subjects of both sets. It outperforms the baseline model using only
the features presented in [43] by the initiators of the AVEC challenge (CCC
of 0.793 and 0.659 on the validation set, and 0.682 and 0.638 on the testing
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set for arousal and valence respectively). The experimental results also
show the important contributions of either the arousal prediction feedback
for valence estimation, or the conditional framework for the choice of the
KF. The system without one of those two components indeed performs
lower on the validation set (CCC of 0.783 and 0.624 for arousal and valence
without both, and 0.783 and 0.702 without the conditional KF choice).

7.2.2 Basic Emotion Recognition

The winning solution of the EmotiW 2016 contest was submitted by Y.
Fan, X. Lu, D. Li, and Y. Liu [57] who proposed a system using a hybrid
Deep Neural Network (DNN)/linear SVM classifier on video and audio
data for the recognition of the 7 different emotions of the challenge (anger,
disgust, sadness, happiness, surprise, fear and neutral). It is depicted in
Figure 7.10.

Figure 7.10: Hybrid DNN/SVM model for emotion classification using
video and audio data.

The method revolves around the parallel processing of both video and au-
dio data. Each modality is treated separately: the video data by two DNN
simultaneously (a Convolutional Neural Network/Long-Short-Term Mem-
ory (CNN/LSTM) hybrid network, and a CNN performing 3D convolutions
on a block of frames extracted from the input video (C3D)) and the audio
data by an SVM with linear kernel. All three classifiers were trained sep-
arately, and the output class predictions were fused at the end by making
a weighted sum of them, with weights determined by the performance of
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each classifier alone on the validation set (i.e. the higher the performance
of the classifier, the bigger its associated weight).

In the following, details about the different parts of the proposed model
are summarised.

Audio Processing: Low-level features (e.g., signal energy, MFCC, spec-
tral shape related descriptors, etc.) are extracted using the openSMILE
toolkit [22]. The features are then used to train a linear SVM for emotion
classification.

Video Processing:

1. Data pre-processing: Faces in all frames of the video are extracted
using Viola-Jones cascades [37], aligned applying a similarity trans-
form based on facial points landmarks, and filtered using a CNN-
based face detector to remove frames with no faces.

2. CNN-LSTM hybrid network: A transfer learning approach is em-
ployed to train the CNN. Its weights are initialised to those of the
VGG16-Face CNN [45] (pre-trained on the Labelled Faces in the
Wild [28] and YouTube Faces datasets [38]) up to the layer fc6 (32
layers in total). A fine-tuning of the weights using Stochastic Gradi-
ent Descent is then performed on the Facial Expression Recognition
dataset (FER2013) [48]. The features computed by the previously
trained CNN are used as inputs of a one-layered LSTM network with
128 LSTM cells, trained with a Stochastic Gradient Descent. Clas-
sification predictions are provided through a Softmax layer appended
after the LSTM layer.

3. C3D network: Once again, a transfer learning approach is adopted
to train this network. The C3D model pre-trained on the sport1m
dataset [8] is used to initialise the weights, and fine-tuning is then
performed on the AFEW dataset [5]. The network comprises 8
convolutional, 5 max-pooling and 2 fully-connected layers (see Fig-
ure 7.11). The size of the input video block (i.e. number of con-
secutive frames) is fixed to 16. A Softmax layer at the end of the
network performs the classification.

The global multimodal model including CNN-LSTM, C3D (for video pro-
cessing) and linear SVM (for audio processing) manages to achieve a
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Figure 7.11: Architecture of the C3D network. The numbers designate the
number of feature maps for convolutional layers, or the number of neurons
for fully-connected layers.

59.02% accuracy on the test dataset of the EmotiW challenge for the
recognition of the 7 emotions to classify (anger, disgust, sadness, hap-
piness, surprise, fear and neutral). It greatly outperforms the proposed
baseline method (40.47%) as well as the previous best solution submitted
by the winner of the 2015 edition of the challenge (53.80%) [11], based
on the detection of features related to facial AU.

Figure 7.12: Confusion matrix of the CNN-LSTM/C3D/SVM hybrid
model.

It can be noted by analysing the confusion matrix (see Figure 7.12,
above) that the detection rate is not uniform among all emotions. Some
emotions are detected easily (anger, happiness, and neutral), while others
(disgust, fear, sadness, surprise) are often mistaken with each other or
with the neutral emotion. Possible reasons for this phenomenon are the
proximity of some emotions to each other (e.g., fear and surprise not
being exclusive) or the possible unsuitability of the input modalities for the
detection of a particular emotion (e.g., disgust not necessarily expressed on
the face of the subject, often mistaken for neutral). Those experimental
results act as a reminder of the importance of the definition of the emotions
to recognise, and the choice of modalities to use.
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7.3 Approaches Based on Physiological Data

The methods described in the previous section have shown a wide diversity
in approaches to the emotion recognition problem, as well in classification
performances obtained depending on the choice of emotions to recognise,
modalities and classification models used. But all of them have in common
the fact that they mainly rely on the video modality to obtain satisfying
performances.

The acquisition of exploitable video data of the faces of the subjects
is usually not an easy task though, or in some cases even impossible. In
addition to the obstacles related to ethical issues and the intrusive nature
of video-based sensors (e.g. agreement of the subject/system user usually
necessary for the use of their images) also comes the technical problem of
setting up cameras in a way they can capture images of the user’s face
at any moments. It can be noted that the same kind of privacy or tech-
nical related problems can occur concerning the collection of audio data.
Furthermore, video modalities can have trouble to capture information re-
garding emotions involving a low amount of physical response (arousal),
as most methods use them to capture movements on the subjects’ faces.

For these reasons, an increasingly interest has recently been shown
by a part of the research community in the topic of emotion recognition
exclusively using physiological signals, also known as bio-signals. The lat-
ter, unlike other modalities, is fairly easy to acquire by using non-intrusive
wearable sensors such as rings, wristbands or glasses. Physiological signals
have been shown to be correlated to emotions in several previous research
works. Some of them are listed here:

Electroencephalography (EEG) is the current reference method used
to monitor the electrical activity of the brain. It is however commonly
used to simply name the EEG signals instead. The latter are obtained
by placing electrodes on the head of the subject which measure the
voltage fluctuations caused by the activity of the brain. Previous
studies have shown that EEG seems to be correlated with levels of
arousal [10].

Electrodermal Activity (EDA) , also known as Skin Conductance or
Galvanic Skin Response, designates the conductance of the skin,
variations of which are caused by a change of state in the sweat
glands of the skin. It can be noted that EDA signals usually have a
typical shape, which features an alternance of two distinct phases:

192



a resting phase with the signals remaining relatively constant, and
a very brief perturbation phase with some peaks observed in the
level of EDA. The level of EDA during the resting phase is called
Skin Conductance Level (SCL), while the peaks observed during the
perturbation phase are referred to as Skin Conductance Response
(SCR). EDA has been shown to increase linearly with the level of
arousal of a subject [25].

Electrooculography (EOG) is the most relevant existing technique to
measure the corneo-retinal standing potential between the front and
the back of human eyes. EOG signals can be acquired by placing
pairs of electrodes surrounding each eye in a top/bottom or left/right
pattern. It is in particular used to track the movement of the eyes
which cause variations of potential between the electrodes [3].

Electrocardiography (ECG) refers to the method of monitoring the
electrical activity of the heart. ECG signals are obtained by placing
electrodes on the subject’s limbs and chest. They are indications
showing that they correlate with emotions with negative valence [2].

Blood Volume Pulse (BVP) is the phasic change in blood volume that
can be observed between each heartbeat. It is an indicator of the
blood flow which can be used to calculate the HR, as well as inter-
beat intervals [29].

It can be noted that due to the nature of the data provided by such sensors,
the problem of emotion classification using physiological data only can be
reformulated as a problem of 1D time signals classification (or regression
if the valence/arousal model is used for the definition of emotions). From
a pattern recognition point of view, the main difficulty of the problem lies
in the choice of relevant features to extract from the input 1D time series
for the emotion classification problem. From the manual crafting of simple
features provided as inputs of a simple classification model (e.g., decision
tree, SVM, etc.), to more elaborate solutions involving automatic feature
crafting using DNN based approaches, the choice of the methodology to
adopt remains pretty wide. The rest of this section will present several of
those possible approaches through specific application examples of emotion
recognition.
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7.3.1 Stress Detection Using Hand-crafted Features

In this section, a simple method for a binary classification problem between
stress and no-stress will be detailed to give a preview of how a very basic
model can be built for a real-time emotion recognition problem using ex-
clusively 1D physiological signals. It also shows an example of contribution
in the field in terms of crafting manual features related to physiological
signals.

Gouverneur et al. proposed in [47] a system for real-time stress detec-
tion, trained following a supervised learning approach, and relying on the
use of the wristband Empatica E4 [1] to acquire data from the subject.
The device used provides various behavioural and physiological signals such
as EDA, Heart Rate, temperature and acceleration. The EDA and Heart
Rate channels, sampled at a frequency of 4 Hz, were used in this study as
they are the most relevant for the problem of stress detection. In order to
enable the system to work in real-time, the common approach of a sliding
time window of fixed length is employed. At all time steps, the sensor data
comprised within the defined window is sent to the system to be processed.
At the next time step, it then slides to include the newly acquired data
points, and the process is repeated. In this project, the size of the time
window is fixed to 8 seconds (i.e., 32 data points for each sensor channel
with the adopted sampling frequency).

The acquisition of data to train a classification system is a paramount
step of a supervised learning approach, but can turn out to be difficult
when it comes to getting emotion-related data. Gouverneur et al. [47]
followed an experimental setup consisting of four different stress-inducing
experiments, each lasting for around 4 minutes and separated by 4-minute
resting phases:

1. A simple stress induction test consisting of putting the subject’s
hand in icy water.

2. A phase where the subject is asked to perform some calculations
consisting of subtracting a 2-digit number from a 4-digit number as
quickly as possible.

3. A Troop test, where the subject is asked to give the correct colour
of coloured words spelling the name of a different colour (e.g., when
seeing the word “green” written in red, the correct answer to give is
red) as quickly as possible.
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4. A Trier social stress test (TSST), where the subject is asked to
prepare a presentation in a limited amount of time, and then present
it in front of a jury trained to show only neutral facial expression. In
order to increase the level of stress, the interview is also filmed.

The data acquired during the resting phases and the experiments are
respectively labelled as no-stress and stress from 5 different subjects. The
original sensor records are then split into sequences of 60 seconds to obtain
the different examples of the set. Data related to one subject was used to
train the model, with the four others providing data for the testing set.

The Empatica E4 acquires EDA data via a pair of electrodes, whose
contact with the skin can be shortly lost at some points, depending on
the movements of the user. Those moments can be seen in the resulting
data by the presence of some artefacts, taking the form of peaks of very
high amplitude (see Figure 7.13). In order to remove them, a simple
pre-processing step is applied, consisting of detecting points where the
difference between its value and the one of its successor is above a pre-
defined threshold. When such a point is detected, the next 20 values are
removed, and a linear interpolation is used to fill the missing values.

Figure 7.13: EDA signal (in red) and outlier values (in blue).

Several hand-crafted features are then computed on each of the 8-second
time windows of pre-processed EDA and Heart Rate data. These are for
the EDA signals: mean, standard deviation, variance, maximum value,
mean amplitude, number of SCR peaks, mean rise time as well as the
first 100 coefficients of the Fourier transform. For the Heart Rate signals
features like the mean, standard deviation, variance, and maximum value
were computed.

To extract the number of SRC peaks and mean rise times, additional
computational steps are required. Information about SCL and SCR is
obtained by computing tonic and phasic signals from the original EDA
records. The tonic signal is obtained by computing the mean of the time
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window at each time step, and then subtracting it from the original record.
The phasic signal is computed by subtracting the tonic signal from the
original record (see Figure 7.14).

Figure 7.14: Original, tonic and phasic EDA signals (in red, yellow and
purple respectively). The tonic signal is shifted downwards for more clarity.

Every SCR peak can be characterised by an onset (starting point), a top
(peak) and an offset (ending point) (see Figure 7.15). Those three differ-
ent points are identified by applying the following operations:

• An onset is detected if the value of the phasic signal at that point
is non-negative, and the difference between it and the next one is
greater than a predefined threshold.

• An offset is determined if the value of the phasic signal becomes
negative again after an onset was detected.

• The peak is taken to be the maximum value between an onset and
an offset.

Every pair of onset/offset detected in the time window raises the peak
count by 1. The mean rise time is the average of all rise times in the
window, computed by checking the time between the onset and the peak.

The different features defined previously are then used to train several
classification models: naive Bayes, Decision Tree and Random Forests,
SVM. Random Forests return the best stress classification results with an
accuracy of 71% (67% for SVM, 63% for a single Decision Tree and 62%
for an approach using naive Bayes).

7.3.2 Codebook Approach for Feature Generation

The previous section describes a very classical approach of supervised learn-
ing, relying on the definition of some hand-crafted features related to 1D
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Figure 7.15: Onset, peak and offset of an EDA record.

physiological time signals which would be relevant for the classification
problem. However, although this methodology has proven to be fairly
effective, it also has its limitations.

Most of the time, the features chosen to be fed as inputs of the classifi-
cation model are either very simple statistical values (e.g. mean, standard
deviation, etc.) which compress the information contained in the origi-
nal input data, or features which have a physical meaning from a human
point of view (e.g., number of peaks in the EDA signal). In both cases it
can be difficult to pick a set of features which would not lose too much
information from the original signal, either because of the compression of
the information, or because of the application of potentially non-accurate
methods for the extraction of the more complex descriptors. In addition to
this difficulty, there is no guarantee that the chosen set of features would
give the best classification results compared to other possible features.
This is especially the case in the context of physiological signal processing
for emotion recognition, where the structure of the data is still fairly un-
known and complex, and where no state-of-the-art hand-crafted features
have been established as a standard yet (unlike in the image processing
field, with LGBP-TOP for instance).

For these reasons, increasing interest in semi-automated and unsu-
pervised feature crafting methods has been observed in the past years.
Contrary to the manual hand-crafting of features, those approaches have
the advantage of being able to find relevant descriptors which are neither
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obvious nor easy to interpret from a human point of view, and which would
not have been found otherwise.

An example of a semi-supervised feature crafting method is provided
by the codebook approach explained previously in Chapter 5.1.2. It can
also extract patterns from 1D physiological signals relevant to the emotion
recognition problem. The added value of this method (compared to the
manual one) lies in the automatic selection of the patterns, the codewords
in that case, to perform recognition in 1D time series, which is performed
once the hyper-parameters (number of clusters, window size and sliding
window step) are set. Making this task semi-automatic also allows the use
of a much higher number of codewords than for manually defined ones.

In [33], an implementation of this codebook approach to generate fea-
tures for an emotion recognition problem using physiological signals is
proposed. The experiments were carried out on the dataset presented by
Picard et al. in [50], which contains EDA, ECG, BVP and Respiration
(i.e., measure of the chest cavity expansion generated by inhalation and
exhalation) labelled data of 8 different emotions: anger, hate, grief, pla-
tonic love, romantic love, joy, reverence and neutral. The main steps of
the approach published in [33] are depicted in Figure 7.16.

Figure 7.16: Codebook approach applied to physiological 1D signals for
emotion classification.
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A different codebook is generated on the 160 sequences of the dataset
related to each sensor channel, for all four of them (EDA, ECG, BVP,
Respiration). The normalised histograms generated from those four code-
books are then concatenated and fed as inputs of an SVM classifier. The
adopted performance measure is the average accuracy obtained after one
leave-one-out cross-validation consisting of 159 sequences for the training
phase, and the remaining sequences for the testing phase. A grid-search is
used to find the best values of the window size and number of codewords,
while the sliding step of the window is set to a fixed value. In partic-
ular, 512 codewords are defined for each sensor modality, for a total of
4 × 512 = 2048 different patterns to recognise; a task which would have
been very difficult to perform manually. The method obtains an aver-
age accuracy of 54.3%, and outperforms the method relying on the use of
simple statistical hand-crafted features proposed in [50] (38.5% accuracy).

7.3.3 Deep Neural Networks for Feature Generation

Considering the good performances shown by semi-automatically crafted
features compared to human-made ones, it could be interesting to go even
further in the process of automatic generation of features. One type of
model which is particularly suitable for this task are the Artificial Neural
Networks (ANN), and especially deep variations of them (Deep Neural
Networks, or DNN, which simply refer to ANN with at least more than 2
hidden layers).

ANN are increasingly popular pattern recognition models used for clas-
sification or regression tasks. They consist of networks of units, called
neurons, which perform non-linear operations on their inputs. Each neu-
ron is characterised by n inputs (i1, i2, . . . , in), n weights (w1, w2, . . . , wn)
each one being associated to one input, a non-linear function σ called ac-
tivation function, and an additional parameter b called bias. One neuron
performs a weighted summation of its inputs S =

∑n
k=1wk × ik. The

result is then added to the bias, and fed as input of the activation function
to output a value o = σ(S + b) (see Figure 7.17). Artificial neurons are
then organised in layers, with the outputs of the neurons in one layer being
used as inputs of those of the next layer. The first, intermediate and last
layers of an ANN are respectively called input, hidden and output layers.
The training of an ANN consists of determining the best weights and bi-
ases of its neurons for a given classification or regression problem. It is
usually performed by defining a loss function computing the error between
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the prediction of the network and the expected result. A gradient descent
is then performed, using the backpropagation algorithm [30], to minimise
this loss function by computing the derivative of the error with respect
to each parameter, and updating the latter proportionally to the quantity
obtained.

Figure 7.17: Artificial neuron.

Many different variations in ANN have been found and developed for the
past years, all giving state-of-the-art results in many various domains such
as object recognition in images and videos, automatic image captioning,
speech processing. Here is a short description of the most popular ANN
models:

Multi-Layer-Perceptron (MLP), named after the works of Rosenblatt
who was the first to propose the mathematical model of artificial
neurons [51]), is used to designate the simplest architecture of an
ANN, with one input, one or several hidden and one output layer
(see Figure 7.18).

Figure 7.18: A Multi-Layer Perceptron for the processing of 1D time sig-
nals.
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Convolutional Neural Networks (CNN) (see Figure 7.19) are a vari-
ation of ANN models created by LeCun in the late 80s [59]. CNN
feature specific layers are called convolutional layers. In those layers,
each neuron computes a convolutional product on a small part of the
input image, delimited by a sliding window. The latter is then shifted
over the whole image so the neuron can process it in its totality, and
output a convoluted image called feature map. Convolutional lay-
ers are also often combined to pooling layers, which contain specific
neurons whose role is to downsample the data fed as their input.
CNN became extremely popular after Hinton et al. achieved an im-
pressive improvement of nearly 11% accuracy compared to previous
methods in the 2012 edition of the ImageNet Large-Scale Visual
Recognition Challenge [9].

Figure 7.19: An example of Convolutional Neural Network with two pairs
of convolutional and pooling layers for the processing of 1D time signals.

Recurrent Neural Networks (RNN) (see Figure 7.20) are ANN specif-
ically designed to process data with time dependencies (e.g., suc-
cessive frames of a video, time series, etc.). The neurons of this
model can take their own output at time t as inputs at time t + 1.
RNN have in particular proven to give state-of-the-art results in the
field of speech recognition [7]. Variations of traditional RNN like
Long-Short-Term-Memory networks (LSTM networks) are described
in [21].

Autoencoders (see Figure 7.21) proposed by Hinton [26] are regular
ANN similar to MLP with the specific restriction to have the same
number of input and output neurons. They are trained to reproduce
any input data they receive on their output layer, which is performed
with a regular backpropagation using a suitable loss function. The

201



Figure 7.20: Recurrent Neural Network for 1D time signals processing.

main interest of autoencoders is that they can extract some features
from any input data in a completely unsupervised way, without the
need of any labelled data.

Figure 7.21: Autoencoder for the reconstruction of a 1D input signal.

Extensive analyses of those models were initiated in the field of image
processing with CNN by LeCun Bengio and Hinton ([60], [58]) and Zeiler
and Fergus [40], who showed that each neuron of the different hidden
layer of an ANN acts as a specific feature extractor on the data given as
its input (e.g., horizontal or vertical patterns in images). The first hidden
layer can therefore be seen as a low-level descriptor extractor from the
input data, while the deeper hidden layers compute higher-level features
from those low-level descriptors.
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However, the number of studies related to deep learning exclusively
carried out on physiological signals remains small, mainly because of the
scarcity of datasets featuring 1D bio-signals with emotional labels. Some
CNN approaches adapted to 1D-signal processing have been tried though,
like in the study from Bengio et al. [31] where EDA and BVP related
features extracted by a CNN have shown to provide better results than
hand-crafted descriptors for the classification of four emotions (relaxation,
anxiety, fun, excitement) featured in the Mazeball dataset [27].

One possible solution to this obstacle related to the lack of 1D physio-
logical data consists of using techniques belonging to the theory of trans-
fer learning [53]. Transfer learning designates an ensemble of techniques
whose aim is to transfer the knowledge acquired from a source domain to
a target domain. In the case of ANN, it can be used to learn a specific
feature representation on one dataset, and use this learned representa-
tion (i.e. learned weights and biases of the ANN) to make the training
of the model easier on another dataset (transfer of parameters). Some
theoretical works showed namely that the initialisation of the weights and
biases of an ANN is a factor with a major impact on how well the training
phase can unfold, as it can determine whether the optimisation process
is stuck in non-optimal local minima or not [15]. However, it should be
noted that if those transfer learning approaches have already been used
several times for ANN trained to process image data (and in particular on
DNN trained for object recognition on the ImageNet dataset [32] like the
inception model developed by Google [13]), their use on 1D physiological
data remains anectodic. In the future, the emergence of larger datasets
featuring 1D bio-signals will hopefully help to bridge this gap.

7.4 Conclusion and Future Trends

In this chapter, the current state of the research in the field of emotion
recognition is summarised. While the automatic recognition of emotions
appears to be a task with promising outlets related to the design of human
interactive systems, or to applications of medical data understanding, it
is also not well understood and not very much explored, mainly because
of the still relevant problem of defining emotions rigorously in a scientific
way. Because of this uncertainty, no consensus has been found among
the research community to define a common framework (which would set
a dataset, the modalities to use or emotions to recognise) to make the
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comparison of the different studies carried out on this subject easier.

In spite of this obstacle, several attempts to define this framework
have been made, and appeared under the form of challenges for emotion
recognition. The different winning solutions of those challenges have con-
firmed the efficiency of several state-of-the-art descriptors or classification
approaches for the recognition of emotions, mainly related to image and
video modalities, such as the LGBP-TOP descriptor.

Even if images of facial expressions of the subjects have proven to be
one of the most effective modalities for the detection of emotions, their
acquisition is not always easy to set up in real life, because of ethical and
technical issues. For those reasons, an increasing interest in approaches
using non-intrusive sensor modalities to acquire data (e.g. wristband,
glasses, rings, etc.) has been observed over the past years, in the wake
of several studies which showed that some emotions and physiological
signals are correlated. In particular, many traditional supervised learning
approaches relying on the manual crafting of 1D time signal features to use
as inputs of a classification model have been investigated. But the lack of
understanding of the overall structure of the 1D emotional data, coupled
with the absence of state-of-the-art features for this kind of modality have
shifted the interest of the research community towards semi-automatic or
automatic methods for feature crafting.

ANN are a family of methods for classification which is particularly
suitable for this task of automatic extraction of features and patterns
from any kind of input data. But the need for large datasets to train ANN
properly, as well as the scarcity of 1D physiological data with emotional
labels are an obstacle. The application of transfer learning methods to
transfer the knowledge learned from one dataset to another one could be
a solution to improve the results obtained by ANN for emotion recognition,
and help to generalise the use of ANN to solve this problem using 1D time
bio-signals exclusively.
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Chapter 8

Summary and Future Vision

In this book, an overview of the most relevant scientific areas the author
contributed to over the last three years is given. It shows the author’s
scientific evolution from topics related to the analysis of visual data towards
aspects connected to algorithms dealing with data recorded by sensors
integrated in devices worn by humans (wearables). The methodological
basis in both cases usually remains the same. The structure of this book
is explained by Figure 1.4 in Section 1.4.

This chapter starts with a summary of algorithms presented in Part II
(Visual Scene Analysis, Section 8.1) and Part III (Human Data Interpre-
tation, Section 8.2). Finally, the book closes with interdisciplinary consid-
erations and future visions towards data-driven society in Section 8.3.

8.1 Visual Scene Analysis

In Part II selected aspects of Visual Scene Analysis (Large-Scale Multime-
dia Retrieval in Chapter 2, Shape-Based Object Recognition in Chapter 3,
and Moving Object Analysis for Video Interpretation in Chapter 4) in-
cluding the author’s contributions to the field are presented. They are
summarised in the following paragraphs.

Large-Scale Multimedia Retrieval (LSMR) is the task where a large
amount of multimedia data (e.g., image, video and audio) are analysed to
efficiently find the ones relevant to a user-provided query. As described in
many publications [16, 18, 20, 21], the most challenging issue is how to
bridge the semantic gap which is the lack of coincidence between raw data
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(i.e., pixel values or audio sample values) and semantic meanings that hu-
mans perceive from those data. In Chapter 2, a survey of traditional and
state-of-the-art LSMR methods by mainly focusing on concept detection
and event retrieval processes is given. Regarding the former, thanks to
the preparation of large-scale datasets like ImageNet [7, 14] and the devel-
opment of deep learning approaches (see Section 2.2.2), many concepts
can be detected with acceptable accuracies. One open issue for concept
detection is how to successfully extend deep learning approaches that have
been successful for the image (i.e., spatial) domain to the video (i.e., tem-
poral) domain. Although several methods use 3D convolutional neural
networks [22] or Long Short Term Memory (LSTM) [19], there is still a
significant room for improvement. Compared to concept detection, event
retrieval needs much more research attention for both, the performance
improvement and the method innovation.

Shape-Based Object Recognition: In Chapter 3, approaches for shape
representation and matching, including original contributions, are described.
With regard to shape representation, two shape descriptors are introduced
in Section 3.2. The first one captures coarse-grained shape features with
low computational complexity so that it can be fused with some rich de-
scriptors [1, 2] to improve its description power. The second one models
fine-grained shape properties. For shape matching, the algorithms are
designed based on the type and structure of shape descriptors they use.
Specifically, for the coarse-grained descriptor, shape matching is applied
by calculating the distances between shape feature vectors. In order to im-
prove the matching accuracy and flexibility of the coarse-grained descrip-
tor, a supervised optimisation strategy is applied to control the discrimi-
nation power of each dimension in the feature space. For the fine-grained
descriptor, shape matching is more complex since it contains rich feature
structures. In addition to the inherent matching strategy, i.e., one-to-one
interesting point matching, the idea of high-order graph matching is also
considered to improve the matching accuracy of interesting points. For
this, several potential functions are specifically designed. The experiments
in Section 3.4 show the impressive robustness of the proposed methods in
an object retrieval scenario.

Moving Object Analysis for Video Interpretation: Extracting and
analysing object trajectories from videos is a basic problem in computer
vision and has important applications in event understanding, robot locali-
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sation, video surveillance, etc. 2D and 3D trajectories of objects represent
high-level semantic features, which can be used to automatically under-
stand object activities in different kinds of videos [3]. In Chapter 4, selected
methods for video interpretation based on the analysis of moving objects
are described. Section 4.1 summarises an own method for unknown ob-
ject tracking in output images from 360-degree cameras called Modified
Training-Learning-Detection (MTLD) [5, 6]. It is based on the recently in-
troduced Training-Learning- Detection (TLD) algorithm [9]. Unlike TLD,
MTLD is capable of detecting the unknown objects of interest in 360-
degree images. In Section 4.2, an own methodology that extracts 3D
trajectories of objects from 2D videos, captured from a monocular moving
camera, is summarised [3, 4]. Compared to existing methods that rely on
restrictive assumptions, the described algorithm can extract 3D trajecto-
ries with much less restriction by adopting new example-based techniques
which compensate the lack of information. Here, the focal length of the
camera based on similar candidates is estimated and used to compute
depths of detected objects. Contrary to other 3D trajectory extraction
techniques, the author’s own method is able to process video data taken
from a stable camera as well as a non-calibrated moving camera without
restrictions. For this, the Reversible Jump Markov Chain Monte Carlo (RJ-
MCMC) particle filtering has been modified to be more suitable for camera
odometry without relying on geometrical feature points. Finally, conclu-
sions are drawn and further possible research directions are mentioned in
Section 4.3.

8.2 Human Data Interpretation

In Part III selected aspects of Human Data Interpretation (Physical Activity
Recognition in Chapter 5, Cognitive Activity Recognition in Chapter 6, and
Emotion Recognition in Chapter 7) including the author’s contributions to
the field are presented. They are summarised in the following paragraphs.

Physical Activity Recognition: Chapter 5 starts with the description
of an algorithm for atomic activity recognition in Section 5.1. It is based
on the so called codebook approach adopted to deal with time series. It
automatically classifies data recorded by sensors (e.g., accelerometer) em-
bedded in wearables (smartglasses, smartwatch, smartphone) in real-time.
The current version of the methodology deals with the recognition of the
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so called atomic activities. These are fine-grained movements of the hu-
man body (e.g., stretching hand, sitting down, standing up, etc.). The
effectiveness of the approach has been validated on a real-world dataset
consisting of eight types of sensor data obtained from a smartphone, smart-
watch and smartglasses. Subsequently, an own gait recognition method is
described in Section 5.2. It exploits the spatiotemporal motion character-
istics of an individual without the need of silhouette extraction and other
related features. It computes a set of spatiotemporal features from the
gait video sequences and uses them to generate a codebook. Fisher vector
is used to encode the motion descriptors which are classified using linear
Support Vector Machine (SVM). The performance of the proposed algo-
rithm has been evaluated on five widely used datasets, including indoor
(CMU-MoBo, NLPR, CASIA-C) and outdoor (CASIA-B, TUM GAID) gait
databases. It achieved excellent results on all databases and outperformed
the related state-of-the-art algorithms. Finally, conclusions are drawn and
further possible research directions are mentioned in Section 5.3.

Cognitive Activity Recognition: Chapter 6 discusses the state-of-the-
art approaches and presents the author’s scientific contribution to the area
of cognitive activity recognition. Section 6.1 gives the definition of cogni-
tion, and discusses cognitive activity relation to health especially in context
of human ageing. As the brain activity is the crucial source of information
about cognitive abilities of a person, Section 6.2 provides information on
appropriate sensors. Section 6.3 presents an overview of the renowned
methods and approaches utilising a variety of sensor data in order to prop-
erly recognise cognitive activities. An original electrooculography-based
method for cognitive activity recognition [11] based on the codebook ap-
proach used also for physical activity recognition (see Chapter 5) is ex-
plained in Section 6.4. The experimental results show that the codebook
approach can be successfully utilised for the cognitive activity recogni-
tion task. Applied to EOG and accelerometer data, the proposed method
achieved high accuracy results, predicting proper activity classes in 99.3%
of cases without using prior knowledge or heuristics. Further, Section 6.5
shows the possible application of the presented method and validates the
obtained results, while in Section 6.6 the final conclusions and future plans
are drawn.

Emotion Recognition: While the automatic recognition of emotions
appears to be a task with promising outlets related to the design of hu-
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man interactive systems, or to applications of medical data understanding,
it is also not well understood and not that much explored, mainly because
of the still relevant problem of defining emotions rigorously in a scientific
way. Because of this uncertainty, no consensus has been found among the
research community to define a common framework (which would set a
dataset, the modalities to use or emotions to recognise) to make the com-
parison of the different studies carried out on this subject easier. Chap-
ter 7 overviews state-of-the-art approaches and summarises the author’s
scientific contribution to the area of automated human emotion recogni-
tion. Section 7.1 describes fundamental concepts of emotion recognition
including main emotion models, requirements for sensor selection as well
as most related contests organised in this field (e.g., The Audio/Visual
Emotion Challenge and Workshop1) providing ground truth datasets and
frameworks for quantitative performance comparison. Section 7.2 surveys
existing emotion recognition approaches that use multimodal data (e.g.,
video, audio, physiological). Finally, Section 7.3 closes the chapter by ex-
plaining several methods for emotion recognition that are based exclusively
on human’s physiological data.

8.3 Data-Driven Society

The rapid development in the area of sensor technology has been respon-
sible for a number of societal phenomena. For instance, the increased
availability of imaging sensors integrated into digital video cameras has
significantly stimulated the UGC (User Generated Content) movement be-
ginning from 20052. Another example is the groundbreaking innovation in
wearable technology leading to a societal phenomenon called Quantified
Self (QS), a community of people who use the capabilities of technical
devices to gain a profound understanding of collected self-related data.

Machine learning algorithms benefit a lot from the availability of such
huge volumes of digital data. For example, new technical solutions for
challenges caused by the demographic change (ageing society) can be
proposed in this way (see Figure 1.1), especially in the context of healthcare
systems in industrialised countries (see Figure 1.3). Humans exist in a
continuous feedback loop with the technology (example in Figure 1.2).
The decision making process is often supported or even fully taken over

1http://sspnet.eu/avec2016
2A video-sharing platform www.youtube.com got launched in February 2005.
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Figure 8.1: Holistic human condition monitoring using algorithms for time
series and image analysis.

by machine learning algorithms. We live in a data-driven society and
significantly contribute to this concept by voluntarily generating terabytes
of data everyday. This societal transformation cannot be stopped anymore.
Our objective should be to gain as much benefit as possible from this
movement by limiting possible risks connected to it.

The author’s vision in this area is to develop and investigate a generic
platform for holistic human condition monitoring (see Figure 8.1). Based
on the data delivered by sensors integrated in wearables (time series) and,
if available, also images, the algorithms will continuously analyse humans’
physical, cognitive, emotional and social states/activities. Integrated into
a single module for holistic human condition monitoring, the software
platform will perform long-term analysis of human data on a very large
scale. Intelligent algorithms will automatically detect “interesting events”
in these data. Both, real-time data analysis as well as cumulative as-
sessments will be possible with the platform. The conceptualisation and
development of these machine learning algorithms for the recognition of
patterns in humans’ physiological and behavioural data will happen on dif-
ferent levels of abstraction between the methodology and application. The
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codebook approach adopted to the time series analysis in [10, 11, 15, 17]
will be an appropriate starting point for this. Later, still on the application
agnostic level, new transfer learning strategies will be proposed. Transfer
learning is necessary in such supervised pattern recognition settings, where
collecting labelled training data for some of the considered classes is im-
possible. Such situations occur quite often in this context, since collecting
physiological and behavioural data corresponding to certain extreme phys-
ical, cognitive, mental, and emotional states is ethically unacceptable or
even practically impossible. Once the transfer learning strategy has been
developed, instantiations of the generic pattern recognition framework for
holistic human condition monitoring will be generated. Instantiations of
the platform will realise different useful applications. The use cases ad-
dressed in the projects Cognitive Village [13] (see Section 1.2) as well as
My-AHA [12] and SenseVojta [8] (see Section 1.3) are great examples
for this.
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The rapid development in the area of sensor technology has
been responsible for a number of societal phenomena like
UGC (User Generated Content) or QS (Quantified Self). Ma-
chine learning algorithms benefit a lot from the availability of
such huge volumes of digital data. For example, new technical
solutions for challenges caused by the demographic change
(ageing society) can be proposed in this way, especially in
the context of healthcare systems in industrialised countries.
The goal of this book is to present selected algorithms for
Visual Scene Analysis (VSA, processing UGC) as well as for
Human Data Interpretation (HDI, using data produced within
the QS movement) and to expose a joint methodological
basis between these two scientific directions. While VSA
approaches have reached impressive robustness towards
human-like interpretation of visual sensor data, HDI methods
are still of limited semantic abstraction power. Using selected
state-of-the-art examples, this book shows the maturity of
approaches towards closing the semantic gap in both areas,
VSA and HDI.
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