
ALEXEY PECHNIKOV

PyGMTSAK:
Sentinel-1 Python

InSAR
An Introduction

la
tit

ud
e [

de
gr

ee
s_

no
rth

]

15.05

15.00

14.95

14.90

14.85

Landmasked Phase, [rad]

-24.50 -24.45 -24.40 -24.35 -24.30
longitude [degrees_east]

PyGMTSAR: Sentinel-1 Python InSAR

An Introduction

Alexey Pechnikov

2023-07-01

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

Copyright © 2023 Alexey Pechnikov.

Written by Alexey Pechnikov.

Annotation

The “PyGMTSAR: Sentinel-1 Python InSAR” book series serves as your
gateway to mastering the innovative world of Sentinel-1 satellite
interferometry using the open-source Python InSAR library, PyGMTSAR.
Authored by the developer himself, these books act as hands-on guides for
working with PyGMTSAR, whether through Jupyter notebooks or console
Python scripts.

The book “PyGMTSAR: Sentinel-1 Python InSAR. An Introduction”
employs Google Colab, a free-to-use cloud service, as an ideal platform
for beginners. Readers can explore the applications of PyGMTSAR, from
seismic activity tracking to infrastructure health assessment, through a
series of interactive notebooks. Each notebook comes complete with
adaptable instructions to facilitate personalized learning.

The guide also introduces Docker Desktop, an advanced open-source
platform for containerization. The PyGMTSAR Docker image sets up a
workspace similar to a traditional one, enabling more intense
computations on your local computer and on cloud hosts. All the Google
Colab examples are available.

This tutorial sheds light on the principles of lazy and delayed
computations. It explains how Dask, an advanced task scheduler,
intelligently partitions and schedules tasks. These insights enhance your
ability to handle Big Data processing with PyGMTSAR efficiently,
whether on your local machine or cloud-based systems.

Whether you’re a student, a researcher, or an industry professional with an
interest in remote sensing and earth observation, the “PyGMTSAR:
Sentinel-1 Python InSAR. An Introduction” book equips you with the
necessary skills and knowledge to navigate Python-based satellite
interferometry.

Table of Contents

Overview

1.1. The Basics of Satellite Interferometry.

1.2. Introduction to PyGMTSAR

Getting Started

2.1. Launching Online with Google Colab

2.2. Running Locally with Docker Desktop

Exploring PyGMTSAR

3.1. Understanding PyGMTSAR

3.2. Lazy and Delayed Computations

3.3. The Primary SBAS Object

3.4. Data Reading and Writing

3.5. InSAR Workflow Steps

Troubleshooting and FAQs

Books in the PyGMTSAR Tutorial Series

About the Author

1. Overview

In this chapter, we will explore two crucial elements: the fundamental
concepts underlying satellite interferometry and an introduction to
PyGMTSAR, a powerful tool for processing and interpreting InSAR data.

Section 1.1 provides a roadmap to understanding the basics of satellite
interferometry, specifically Interferometric Synthetic Aperture Radar
(InSAR). This advanced remote sensing technique involves the use of two
or more synthetic aperture radar (SAR) images to generate highly accurate
maps of surface deformation or digital elevation models of terrain. This
process relies on the detailed calculation of the phase difference between
return signals from two nearly identical images, known as interferograms.
Furthermore, it highlights how PyGMTSAR is utilized in processing these
images, performing operations like Doppler correction, topography
correction, and applying Gaussian and Werner/Goldstein filters for noise
reduction. The section also elaborates on the SBAS technique for
displacement calculation and how the resulting time-series data can be
analyzed to extract trends and seasonal movements.

Section 1.2 introduces PyGMTSAR, a powerful software designed to
encapsulate the complexities of InSAR processing. The utility of
PyGMTSAR lies in its ability to automate advanced algorithms for InSAR
data processing, making the extraction of valuable insights from the data
accessible regardless of your technical background. As an analogy, the
principles of InSAR are compared to those of common Wi-Fi or 4G/5G

cellular connectivity, illustrating PyGMTSAR’s intention to make the
technology as user-friendly and accessible as possible. A notable feature
of PyGMTSAR is its capability to run directly on Google Colab, thereby
eliminating the need for local software installations. Finally, this section
notes the potential of PyGMTSAR to handle large datasets efficiently,
further contributing to its ease of use and power.

1.1. The Basics of Satellite Interferometry

Satellite Interferometry, specifically Interferometric Synthetic Aperture
Radar (InSAR), is a remote sensing technique that utilizes two or more
synthetic aperture radar (SAR) images to generate maps of surface
deformation or digital elevation models of the terrain. A satellite emits a
radar signal towards Earth; this signal interacts with the surface and then
reflects back.

InSAR includes several specialized techniques, including Differential
InSAR (DInSAR) and Time series DInSAR, which involve comparing
more than two images over time to analyze surface changes more
precisely or to track changes over time.

The “D” in DInSAR stands for “Differential”, indicating that it is used to
observe phase changes between two images over a given time period.
DInSAR is typically employed to monitor subsidence/uplift or lateral
deformation. To separate the deformation signal from topographic
contributions, the topographic phase is simulated using a reference Digital
Elevation Model (DEM) and then subtracted from the interferogram.

Time series InSAR, also known as multi-temporal InSAR, is an extension
of DInSAR. It involves the use of multiple SAR images collected over the
same area at different time intervals to monitor and measure changes that
occur over time, such as land displacement due to seismic, volcanic, or
anthropogenic activities.

Instead of using just two images as in traditional DInSAR, time series
InSAR involves the generation and analysis of multiple differential
interferograms, each created using a different pair of images from the
available time series. The main advantage of this approach is that it allows
for the separation of the deformation signal from other unwanted effects
(like atmospheric disturbances), leading to more accurate displacement
maps.

There are several processing techniques used for time series analysis in
InSAR, including the Persistent Scatterer Interferometry (PSI) and the
Small BAseline Subset (SBAS) methods. These techniques have proven to
be highly effective in areas with a high density of stable scatterers and
moderate to high temporal decorrelation.

In summary, InSAR is related to distance changes from the satellite and is
suitable for DEM generation. For surface changes monitoring, we need to
estimate distance changes and this technique is called Differential InSAR
(DInSAR). More generic analysis based on multiple DInSAR pairs is
called Time series DInSAR.

In this book, we use the most common term InSAR while technically we
are discussing Time series Differential InSAR. For the time series
analysis, we apply the Small BAseline Subset (SBAS) method.
PyGMTSAR allows for some inclusion of Persistent Scatterer
Interferometry (PSI) in the SBAS analysis, and this direction looks
promising. There is a lot of research being done to merge the best features
of SBAS and PSI, and we are in the process of enhancing PyGMTSAR in
this regard.

The term ‘synthetic aperture’ refers to a computational technique that
involves continuously transmitting and receiving signals and integrating
the waves received from various points on Earth’s surface. This approach,
although increasing the complexity of image processing compared to
instant snapshots, significantly enhances image resolution. A radar image
is computational in its essence as it’s not captured in a single moment but
post-processed from a long-duration measured signal. Available for
download, Sentinel-1 SLC scenes are focused synthetic radar images and
form the data source for PyGMTSAR computations.

An interferogram, entirely computational, is created from the phase
difference of the return signals from two separate yet nearly identical
images. To achieve nearly identical images, alignment is critical. The
well-documented Sentinel-1 satellite orbit is used to calculate the
geometric correction for a minor spatial difference known as the
perpendicular baseline. PyGMTSAR can automatically download the orbit
files for selected scenes.

Because of the high number of image pair combinations, it’s technically
unfeasible to provide all pre-calculated interferograms for download, akin
to the Sentinel-1 scenes themselves. PyGMTSAR computes
interferograms for selected image pairs using downloaded Sentinel-1
scenes and orbit files. This operation is straightforward, hinging on simple
math operations. However, for practical reasons, additional processing,
such as Doppler correction using orbit information and topography
correction using the Earth’s area covered in the Sentinel-1 images, is
performed. PyGMTSAR automatically downloads and converts SRTM
(Shuttle Radar Topography Mission) topography heights to the WGS84
ellipsoid from standalone EGM96 geoid for SRTM and other topography
models.

Gaussian and Werner/Goldstein filters are applied to reduce radiometric
noise and highlight changes, enhancing the visibility of interferogram
fringes at the expense of spatial resolution. As of now, Gaussian and
Werner/Goldstein filters are mandatory, but work is underway to make
them optional and allow for persistent scatterers interferometry features.
The well-known interferogram fringes result from phase measurement in
the interval 2n, often referred to as the wrapped phase.

The SNAPHU (Statistical-Cost, Network-Flow Algorithm for Phase
Unwrapping) program is used for 2D unwrapping to produce a continuous
phase. PyGMTSAR supports both single-raster and tiled SNAPHU
unwrapping using predefined or custom unwrapping configurations.
Interestingly, we can visually estimate the changes without unwrapping by
counting the so-called fringes (a phase change of 2n mapped as a full
colormap range) and locating their centers, which can indicate
deformation epicenters. By design, a single fringe signifies a 2n phase
change, corresponding to a round-trip (to the ground and back to the
satellite) change in distance equivalent to a single radar signal wavelength,
or equivalently, a one-way change of half of this wavelength. In other
words, while SNAPHU is a highly useful tool for satellite interferometry,
it isn’t essential.

By using the continuous unwrapped phase, we can gauge the distance
change between the satellite and each point on the ground. This change is
partially related to surface deformation, but it also depends on
atmospheric conditions and other factors. Fundamentally, InSAR
measures Earth’s surface movements with remarkable precision, often
down to a few millimeters or even better over a large series of
interferograms.

Knowing the unwrapped phase in radians, it’s easy to calculate LOS
(Line-of-sight) displacement in millimeters and its vertical and east-west
projections using the scenes’ geometry. For better accuracy, PyGMTSAR
projection transformations are based on a complete grid of the incidence
angle computed for every ground pixel. The sum of the projections
obtained for two orbits (ascending and descending) are the real
displacement components. The displacements are related to the Sentinel-1
image capture date intervals, not to specific dates.

Small BAseline Subset (SBAS) displacements calculation applies a
correlation-weighted least-squares algorithm to the interferogram
displacements to produce continuous displacement timeseries for every
pixel. More interferograms mean more displacements on intersected
intervals and potentially better result accuracy. The SBAS technique
simplifies atmospheric phase exclusion as atmospheric phase delays are
included with different signs in different interferograms with common
cloudy images.

The SBAS displacement often presents substantial noise, making it
difficult to discern real-world changes. To overcome this, signal
processing can be used for pixel-wise analysis to extract trends and
seasonal movements from the time series. PyGMTSAR uses Seasonal-
Trend Decomposition using LOESS (STL) for this purpose. Trend
extraction applies the power of mathematical statistics for noise reduction.
A seasonal trend tends to be vertical and repetitive by definition; thus, we
can estimate it more accurately than merely relying on SBAS time series.
The non-seasonal trend, averaged over the duration of the time series,
yields the average velocity. These extracted features reflect real-world
characteristics that can be validated by ground measurements, providing
valuable insights for surface monitoring.

And still, that’s not the end of the interferometric processing journey. The
produced results need to be geocoded from scene radar coordinates to
geographic coordinates and exported in a common format. PyGMTSAR
processing is based on NetCDF (Network Common Data Form) data files
which can be opened directly in open-source QGIS, GDAL, and other GIS
(geographic information system) software. Also, PyGMTSAR allows
exporting 3D rasters in VTK format for interactive 3D visualization and
analysis in open-source ParaView software.

1.2. Introduction to PyGMTSAR

Numerous InSAR software applications have been developed by various
experts, from seasoned geophysicists to specialized software development
companies, and even driven amateurs. However, PyGMTSAR carves out a
unique position among them. It’s the creation of a fundamental radio
physics scientist with extensive experience in computer science and
applied programming. PyGMTSAR represents a significant investment of
time and effort into the development of mathematical models of
interferometry and holography, the construction of hardware to test these
models in lab environments, and the education of students, postgraduates,
and researchers in these concepts. This deep-rooted understanding and
proficiency in the core principles and numerical calculation algorithms
distinctively set PyGMTSAR apart.

The developer of PyGMTSAR isn’t just a programmer or a geophysicist,
but a well-rounded researcher who has worked on every aspect of
interferometry, from the initial theoretical modeling to the processing of
collected data. This comprehensive perspective, coupled with a
commitment to usability, has culminated in a tool that combines cutting
edge scientific accuracy with user-friendly design.

PyGMTSAR simplifies the complex realm of satellite interferometry,
making it accessible to everyone, regardless of technical background or
expertise. It stands on the belief that advanced scientific tools should be
universally available to anyone interested in understanding and harnessing

the power of satellite data. The mission of PyGMTSAR is clear —
democratize access to advanced remote sensing technologies and inspire a
new generation of users and innovators.

The handling of data in the ever-evolving field of satellite remote sensing
can become a complicated task. PyGMTSAR rises to the occasion by
streamlining the process, making it more manageable and accessible. It
simplifies the most advanced algorithms for InSAR data processing for all
users, regardless of their technical expertise.

While understanding InSAR can be challenging due to its computational
intensity and complex principles, such as synthetic aperture and
interferogram, these principles share similarities with those used in
everyday technologies like Wi-Fi or 4G/5G cellular connectivity. The key
is to encapsulate the complexities of InSAR into a user-friendly tool that
doesn’t require the user to fully comprehend the technical specifics. This
is the ethos behind PyGMTSAR, aiming to be as accessible and
straightforward to use as your cellphone or wireless modem.

One of PyGMTSAR’s key features is its ability to run directly on Google
Colab with a single click. This eliminates the need for local software
installations or complicated procedures to generate results. Users can
access live, annotated examples directly in their web browsers, allowing
them to interactively change source datasets and processing parameters to
observe different outcomes - an effective learning tool for understanding
InSAR data processing.

The subsequent chapters will provide more specifics on effectively
utilizing PyGMTSAR, offering a curated set of examples illustrating how
to extract valuable insights from InSAR data. These examples are not only

available on Google Colab but also in a Docker image, making them
easily accessible to anyone keen on learning.

For those who prefer a more traditional approach, PyGMTSAR can be
installed directly on a computer or used on cloud hosts, like Amazon or
Google Cloud computing instances. Although this book doesn’t cover this
procedure, it’s well-documented in the PyGMTSAR

Despite its simplicity and ease of use, PyGMTSAR is incredibly powerful
and can handle large datasets with ease. Whether processing thousands of
interferograms for multiple Sentinel-1 scenes stitched together at high
resolution, or producing hundreds of multi-gigabyte displacement rasters
on common hardware like an Apple Air laptop, PyGMTSAR maintains an
impressive performance level.

PyGMTSAR bridges the gap between complex satellite data and user
accessibility in the realm of satellite remote sensing and InSAR data
processing. With a development approach centered around simplifying
technical complexities, PyGMTSAR emerges as an invaluable resource
for anyone seeking to navigate the world of InSAR.

2. Getting Started

In this chapter, you’ll discover the first steps to using PyGMTSAR - a
software package for satellite interferometry processing. The chapter is
divided into two sections, focusing on how to set up and start working
with PyGMTSAR in two environments: Google Colab and Docker
Desktop.

Section 2.1 introduces Google Colab, a free cloud service, as a convenient
way to run PyGMTSAR examples directly in your web browser. Google
Colab, although not suitable for all workloads, is ideal for lighter tasks
and provides an excellent starting point for beginners. Here, you’ll find
various example notebooks highlighting the application of PyGMTSAR in
different areas like seismology, volcanology, hydrology, and infrastructure
monitoring. The instructions provided in these notebooks will guide you
on how to adjust the radar scenes and processing parameters to match
your specific needs.

Section 2.2 shifts the focus to Docker Desktop, an open-source platform
that allows you to run applications in isolated containers. This approach is
more suited for those wanting to work offline or locally, or those whose
workloads demand more computational power than what Google Colab
can provide. Here, you will learn how to download and install Docker
Desktop, create a DockerHub account, configure Docker Desktop,
download the PyGMTSAR Docker image, and finally run the image using
Docker Desktop. This provides an interactive workspace where you can
access and use the PyGMTSAR examples in an environment closer to a
traditional development setup.

2.1. Launching Online with Google Colab

Google Colaboratory, or Google is a free cloud service that allows you to
develop and execute code in Python, directly in your browser. It is similar
to Jupyter Notebook, and it offers the added benefits of leveraging
Google’s cloud computing infrastructure.

Google Colab provides a host of advantages:

No setup Google Colab is ready to use immediately. PyGMTSAR
example notebooks include all the commands to initialize the environment
and perform the processing.
Free access to GPUs and Google Colab provides free access to powerful
graphics processing units (GPUs) and tensor processing units (TPUs),
which are useful for training machine learning models. For now,
PyGMTSAR does not use GPUs and TPUs, but these might be helpful to
speed up your own code.
Notebooks on Google Colab can be easily shared, allowing for seamless
collaboration among teams. This feature can be beneficial for researchers
and developers working in groups. Open the example PyGMTSAR
notebooks and make your changes and share the updated notebook with
everyone or just for selected users.
Integration with Google Drive and Google Colab integrates smoothly with
Google Drive and GitHub, making it easy to load data, notebooks, and
store your work. You can load Sentinel-1 scenes stored on your Google
Drive and save the results.

Interactive tutorials and Google Colab notebooks can contain live code,
equations, visualizations, and narrative text, making it a great tool for
creating interactive tutorials and documentation. PyGMTSAR uses all the
features to provide the example notebooks as the complete interactive
learning tutorials.

Given these advantages, Google Colab is an excellent platform to run the
PyGMTSAR examples, which provide a comprehensive, self-explained
InSAR pipeline right in your web browser, producing detailed graphs and
maps. You can use these examples as templates for your tasks, simply by
replacing the used radar scenes and altering the processing parameters to
meet your specific needs.

To access these notebooks directly in your browser, follow the provided
links below. The links are sorted into thematic groups, and the complete
list of examples is also available on the PyGMTSAR GitHub page.

Remember, while Google Colab is an excellent resource, it’s crucial to
note that it’s not suitable for all use cases because of its limitations in
terms of available RAM and processing time. For heavier workloads, you
might need to consider more powerful hardware or cloud solutions.

Seismology

InSAR plays a vital role in monitoring and studying seismic activities. It can
detect ground deformation before, during, and after earthquakes. This
technology provides valuable data on fault systems and magma movements,
enhancing our understanding of these natural phenomena. The following
examples show the application of InSAR data in studying and interpreting
seismic events.

This notebook analyses the 2017 Iran-Iraq Earthquake, with a comparison to
results from other software tools such as GMTSAR, GAMMA, and SNAP.

In this analysis, the notebook fetches Sentinel-1 scenes from the Alaska
Satellite Facility (ASF). This facilitates the generation of an interferogram
and coherence map for a single cropped subswath. It exports NetCDF rasters,
which are compatible with QGIS, GDAL, and other GIS software. A
comparative review of the results with GMTSAR, SNAP, and GAMMA
software is also provided. Note: To generate an interferogram and Line-Of-
Sight (LOS) displacement for your area of interest, simply replace the scene
names.

The first image illustrates an interferogram of the 2017 Iran-Iraq Earthquake,
a seismic event captured using InSAR data. The fringes visible in the image
represent different amounts of ground movement that occurred during the
event. Each cycle from one color back to the same color represents the half
wavelength of displacement in Line-Of-Sight (LOS) direction. Well-defined
fringes are indicative of significant ground deformation associated with the
earthquake.

The second image depicts a coherence map, a measure of the quality of the
interferometric phase data. High coherence values indicate areas where the
phase difference is reliable, and this typically aligns with regions of stable
scatterers, like rocks or bare ground. Areas of low coherence, on the other
hand, might represent regions where the radar signal was disrupted, perhaps
due to vegetation, surface changes, or atmospheric effects.

This notebook focuses on the 2016 Kumamoto Earthquake. It demonstrates
the processing of InSAR data to create a co-seismic interferogram, which
highlights earth’s deformation because of the seismic event. The findings are

contrasted with results from the ESA Sentinel 1 Toolbox on the Alaska
Satellite Facility.

The example shows the processing of a single subswath with a land mask
applied to the interferogram, unwrapped phase, and Line-Of-Sight (LOS), as
well as east-west and vertical displacement results.

The first image shows the interferogram for the 2016 Kumamoto Earthquake,
with a land mask applied. Water bodies are removed from the analysis
because they produce a random, or “noisy,” phase result in the interferogram
due to their dynamic nature. The visible fringes in the image, especially those
that are challenging to interpret, highlight the complex ground movements
that occurred during the seismic event.

The second image displays an incidence angle map which corresponds to the
angle at which the satellite’s radar signal hits the ground. This information is
crucial for converting the Line-Of-Sight (LOS) displacement to horizontal
and vertical displacement components.

in
ci

de
nc

ea
ng

le

The third image illustrates the estimated vertical displacement for the 2016
Kumamoto Earthquake. The applied land mask removes the noisy offshore
values.

The 2021 Crete Earthquake Co-Seismic Interferogram notebook showcases
the application of InSAR in processing data from a recent seismic event to
understand the associated ground deformations. The results are contrasted
with a report from the Centre of EO Research & Satellite Remote Sensing in
Greece.

This example illustrates the processing of a single, cropped subswath with a
land mask applied to the interferogram, unwrapped phase, and Line-Of-Sight
(LOS), east-west, and vertical displacement results.

The first image showcases an interferogram of the 2021 Crete Earthquake.
The fringes represent phase changes between the before and after images of
the event, which correspond to the ground deformations caused by the
earthquake. Each fringe cycle corresponds to a half-wavelength change in the
distance between the satellite and the ground surface, translating to a relative
ground movement.

The land mask applied to this image enhances the visibility of these fringes
by eliminating the noise produced by the ocean. Offshore areas tend to exhibit
more noise due to water motion and low radar reflectivity.

The epicenter of the earthquake can be visually pinpointed from the
concentric fringes originating from a common center. The varying fringe
patterns surrounding the epicenter indicate the diverse ground displacements
caused by the seismic activity.

The second image presents the east-west component of the displacement
caused by the earthquake, computed from the incidence angle map and the
unwrapped phase of the interferogram. Again, a land mask is applied to
remove offshore noise.

The 2023-02-06 Turkiye Earthquake Co-Seismic Interferogram notebook
demonstrates the application of InSAR to process data from one of the most
catastrophic seismic events in recent history. On 6 February 2023, a
magnitude 7.8 earthquake impacted southern and central Turkey and northern
and western Syria, causing widespread destruction.

The example makes use of InSAR techniques to process Sentinel-1 Scenes,
obtained from the Alaska Satellite Facility (ASF). This processing involves
stitching 3 scenes, merging subswaths, detrending phase, and performing lazy
exporting of NetCDF rasters (compatible with QGIS, GDAL, and other GIS
software).

This case illustrates some tricks to process a large volume of data on Google
Colab effectively. Note that you can replace the scene names in this notebook

to produce an interferogram for your specific area of interest.

The first image displays an interferogram derived from the Sentinel-1 scenes
of the 2023-02-06 Turkiye Earthquake. The colorful fringes represent phase
changes between the pre- and post-seismic event, illustrating the ground
deformations caused by the earthquake.

This interferogram covers a large area, which corresponds to the substantial
extent of the earthquake’s impact. The heterogeneous pattern of the fringes
might suggest various types of ground movements such as landslides and
surface ruptures associated with the seismic event. These different
movements can be further studied for a comprehensive understanding of the
event.

A land mask is applied to this interferogram to eliminate noise, particularly in
the lower left corner where a water body is located.

The second image showcases the Line-Of-Sight (LOS) displacement map of
the same event, after detrending the phase. The detrending process aims to

remove the linear ramp present in the original phase map, which can distort
the final displacement results.

Despite the noisiness of the original interferogram, the phase unwrapping tool
SNAPHU manages to unwrap the phase, providing a continuous displacement
pattern. The result may have some inaccuracies due to unrecognized fringes,
but the overall displacement pattern gives a reasonable approximation of the
ground movements during the earthquake.

The colors in the map represent the magnitude and direction of displacement
along the satellite’s line of sight, providing a clearer visualization of the
ground deformations caused by the earthquake.

Detrended LOS Displacement, [mm]

36.0 36.5 37.0 37.5 38.0 38.5 39.0

Volcanology

InSAR is a useful tool in volcanology. It uses the phase differences in radar
waves bounced back from the Earth’s surface to construct detailed maps of
surface deformation with high spatial resolution and precision. This
technology is especially valuable for monitoring volcanoes, as it can cover
sizeable areas and work in all weather conditions, day or night.

The ability of InSAR to detect minute changes in the Earth’s surface (down to
a fraction of the wavelength of the radar wave, typically a few centimeters)
makes it particularly effective for monitoring volcanic activity. Before an
eruption, magma rising towards the surface can cause the ground to swell.
This inflation can be picked up by InSAR, providing a warning sign of a
possible impending eruption.

Similarly, after an eruption, the ground can deflate as magma chambers are
empty. Again, InSAR can detect these changes, providing valuable data on
the volume of magma involved and the mechanics of the eruption. This kind
of information can help scientists better understand a volcano’s behavior and
improve eruption forecasting.

This notebook explores the eruption of the Pico do Fogo volcano on Fogo
Island in Cape Verde, which occurred on November 23, 2014. The study uses
InSAR data to investigate the geophysical changes related to this volcanic
event, offering insights into the eruption dynamics and the subsequent
impacts on the local environment.

In this example, a single cropped subswath is processed with a land mask
applied to the interferogram. The output includes the interferogram,
unwrapped phase, and Line-Of-Sight (LOS), east-west, and vertical
displacement maps. These results give an overview of the earth’s deformation
due to the eruption.

The image is a phase map showing the deformation of the Pico do Fogo
volcano due to an eruption. The land mask filters out the water bodies. The
fringes indicate surface deformation due to the volcanic activity and the
eruption. In this case, it seems the whole island experienced some level of
deformation due to the eruption, which would have been caused by the
movement of magma beneath the surface.

Hydrology

InSAR is a powerful tool that can monitor changes in water levels and
subsurface movements. This technology has been successfully used in various
hydrological studies, including tracking the rate of groundwater extraction,
mapping wetland water levels, and observing glacier movements.

This notebook guides you through the entire process of using PyGMTSAR to
analyze changes in water levels in the Imperial Valley using Small BAseline
Subset (SBAS).

In this example, you will learn how to implement the SBAS approach, a
powerful InSAR technique specifically designed to detect slow ground
deformation over time. The SBAS approach involves selecting a subset of
interferograms with small temporal and spatial baselines, which effectively
reduces the impact of decorrelation and atmospheric delays on the results.

And the example introduces you to the detrending technique used in
PyGMTSAR to remove atmospheric noise, thus significantly improving the
quality of the resulting interferograms and making the observed water level
changes more accurate and reliable.

The first image is a baseline chart for the SBAS InSAR technique. It shows
all the interferograms that were used in the analysis, arranged by their
acquisition dates (X-axis) and the perpendicular baseline (Y-axis). Each point
on the plot represents an individual Sentinel-1 scene, and each edge
represents an interferogram.

The second image illustrates the cumulative Line of Sight (LOS)
displacements over time in the Imperial Valley. This map of displacement
provides a clear visualization of the relative movement of the ground surface
due to changes in water levels.

In regions where groundwater is extracted, we often observe a seasonal
pattern in subsidence and uplift - subsidence typically occurs during the dry
months when more water is pumped out, and uplift occurs during the wet
months when aquifers are replenished. Hence, the map not only provides
valuable information on the spatial distribution of subsidence/uplift but also
potentially reveals insights about the region’s groundwater dynamics.

Cumulative Model LOS Displacement in Geographic Coordinates, [mm]
A

zi
m

ut
h

A
zi

m
ut

h

32 47

32 44

3241

32 38

32.35

32 4 7

32 44

3241

32 38

32 35

date - 2015-01-21 date - 2015-03-10 date - 2015-04-03

-115 24 -115 20 -115 16 -115 12 -115 24 -115 20 -115 16 -115 12
Range Range

Infrastructure Monitoring

InSAR is used to monitor infrastructure like dams, bridges, and buildings. It
can detect subtle movements and deformations that might suggest potential
structural problems or failures.

For now, PyGMTSAR applies Goldstein and Gaussian filters to the processed
interferograms, making the results more smooth and highlighting fridges.
That makes the outputs more suitable for the kinds of analysis explained
above. Be careful with spatial accuracy for small infrastructure objects
monitoring. When monitoring infrastructure, accurate identification and
assessment of subtle changes can mean the difference between timely
intervention and significant structural failure.

This notebook presents an analysis of OpenStreetMap’s road infrastructure to
monitor road subsidence. That’s just an example and the most subsidence are
related to seasonal water level changes for the area.

The first image portrays a vector and a rasterized representations of road
infrastructure derived from OpenStreetMap (OSM) data. These roads are
converted from their original geographic coordinates into radar coordinates,
to allow their alignment with the radar-based interferometric data.

Such a road mask can be crucial in studies looking to identify ground
movement affecting infrastructure, such as roads. It enables the extraction of
InSAR data specific to these regions, allowing for detailed analysis of any
detected ground deformation.

The second image presents a cumulative Line-Of-Sight (LOS) displacement
map. Here, the displacements observed across multiple radar acquisitions are
summed to illustrate the total changes over time. These shifts could be due to
a variety of factors, with seasonal fluctuations in water levels being a
common cause in this region.

The roads, previously identified and masked from the OSM data, are included
on this map. This enables an investigation into how changes in ground
movement, possibly due to fluctuating water levels, impact the stability and
integrity of road infrastructure. With a long enough time series of data, this
analysis can detect not only common seasonal changes but also trends in road
movement that may indicate potential issues or the overall health state of the
infrastructure.

Cumulative Model LOS Displacement in Geographic Coordinates AOI, [mm]

2.2. Running Locally with Docker Desktop

Docker is an open source platform that uses OS-level virtualization to
deliver software in packages called containers. A Docker container is a
standalone, executable package that includes everything needed to run an
application: the code, a runtime, libraries, environment variables, and
config files.

If you prefer to work offline or locally, or if your project necessitates a
more powerful setup than what’s available on Google Colab, you can
make use of Docker. The author of PyGMTSAR has prepared a Docker
image with the same examples as those on Google Colab. This can be
found on the DockerHub

Here’s why consider Docker:

You can avoid the common software issue where an application works on
one machine but not on another because of differences in their
environment. Containers with different PyGMTSAR versions can be run
on the same host even simultaneously and can be transferred between
different computers and operation systems. Define exactly available
processor cores, memory, and disk space.

Docker ensures consistency across multiple computers and operation
systems. The ready-to-use PyGMTSAR images include reproducible
examples which work equally on any host. Use the stable and well tested

PyGMTSAR images and containers or make your own ones and do not
worry about portability.

Docker provides control over your environments and allows
configurations to be versioned and reused. Operate the stable and well
tested PyGMTSAR images, which can be rebuilt and reused locally or
from DockerHub.

To get PyGMTSAR running on your computer, you will need to download
the PyGMTSAR Docker image and run it using Docker Desktop. Docker
Desktop is a user-friendly and open source interface for Docker, providing
a GUI and additional features for managing containers. If you do not have
Docker Desktop already installed, the following steps will guide you
through the installation process. Note, however, that you could use the
lower-level Docker tool as an alternative to Docker Desktop, though it
may be more challenging to navigate.

Installing Docker Desktop

First, you need to download and install Docker Desktop on your operating
system. Just follow these simple guides:

For Windows users: Install Docker Desktop on
For Linux users: Install Docker Desktop on
For Mac users: Install Docker Desktop on

How to Register on DockerHub

Before you can explore the PyGMTSAR collection of container images on
DockerHub, you’ll need to set up an account. DockerHub is a cloud-based
platform where Docker images can be found, shared, and managed. It acts
as a connection point between your local Docker installation and Docker’s
public repository.

Docker Desktop offers various methods to download prepackaged
software images. You can use console commands provided on DockerHub
software pages if you’re an advanced user, or use the Docker Desktop’s
user-friendly interface.

To register on DockerHub through Docker Desktop, just click “Sign in” in
the top right corner of the application window. This action will direct you
to a sign-in page where you can create a new account.

If you’d rather register directly on a web browser, follow this link: Create
a Docker Keep your Docker ID and password handy; you’ll need them to
download and manage Docker images.

Having a DockerHub account enables you to download and use any public
images, create and manage your own Docker images, and even share them
with others.

How to Configure Docker Desktop

To access Docker Desktop settings, click on the gear icon at the top right
corner and navigate to the “Resources” section:

Docker Desktop Update to latest Q Search | XK | G 0 Sign m O

Preferences X

•±? General

13 Resources

• Advanced

Filesharing

Proxies

Network

* Docker Engine

Kubernetes

Software updates

Extensions

SSS features in development

Resources Advanced

CPUs: 2

I •----------------•----------------- •----------------- •----------------- •----------------- •----------------- 1

12 4 8

Memory: 4 GB

I t <-------------- 1---------------- •---------------- »---------------- •---------------- 1---------------- 1

1GB 4 GB 8 GB 12 GB 16 GB

Swap: 1 GB

I----------------•----------------1----------------- ♦----------------- 1----------------- 1----------------- 1----------------- 1

512 MB 1GB 2G8 3 GB 4 GB

Virtual disk limit: 16 GB
Due to filesystem overhead, the real available space might be less

8 GB 729 GB 1457 GB 2186 GB 2914 GB

RAM 0 68 GB CPU 0 37% Disk 21 02 GB avail of 31.32 GB t Not connected to Hub ©*4.15-0 Q'

If you plan to run examples from the mobigroup/pygmtsar image, you’ll need
to allocate 2 CPU cores, 4 GB RAM, 1 GB swap, and a virtual disk of 16+
GB. If you intend to execute all the notebooks sequentially, set the virtual
disk limit to 200+ GB. Remember, satellite interferometry processing can
take up significant storage!

If you aim to launch the larger mobigroup/pygmtsar-large image, your virtual
system should have 4 CPU cores, 16 GB RAM, 1 GB swap, and a 500 GB
virtual disk. This configuration allows you to produce 34 interferograms, each
of 3 GB size, along with their corresponding correlation files. It also enables
detrending and SBAS analysis. Even a task this heavy can be performed on
an Apple Silicon iMac or Air with 16 GB RAM, as Docker Desktop can
utilize all available RAM.

How to Download the PyGMTSAR Docker Image

Once you’ve registered and logged in, look for the “pygmtsar” in the search
box located in the “Images” tab:

Two options will appear: mobigroup/pygmtsar is a standard 1 GB
PyGMTSAR image that meets the requirements of most users, and
mobigroup/pygmtsar-large is a more advanced 50 GB image designed for
expert users. Choose the one that fits your needs and click on the “Pull”
button to download it onto your computer.

Steps to Run the PyGMTSAR Docker Image

In Docker Desktop, the “Images” section contains all the software images
you’ve downloaded. You can manage these images from here. To run the
PyGMTSAR image you downloaded, click the triangular button, as shown in
the image below.

PyGMTSAR will connect with you through a webpage in your browser,
utilizing network port 8888. Set it as shown in the image below and, if you
want, give it a name, such as “PyGMTSAR”:

After setting it up, click the “Run” button in the form above to start the
software:

Next, click on the bottom link in the “Logs” page to open a new webpage and
begin working:

The interface presents an interactive workspace: the left panel shows all the
files and directories in your Docker image, while the right panel acts as an
interactive editor, viewer, and console, among other functions. There are two
key directories, “notebooks” and “tests”.

“notebooks” contains interactive Jupyter notebook examples that guide you
through various PyGMTSAR processes, allowing you to interact with the
data and results in real time.

In contrast, “tests” contains Python script examples for those who prefer
using console scripts. These scripts work in batch mode and produce the same
visual outputs as the interactive ones. Importantly, these scripts are used for
continuous integration testing in the PyGMTSAR GitHub repository. You can
access the outputs of these tests on the PyGMTSAR GitHub Actions page.

To get started, click on an example in the left panel. You can navigate through
the example by scrolling, reading the instructions, and viewing the maps:

To run the whole example, select “Kernel” -> “Restart Kernel and Run All
Cells...” from the toolbar menu (Note: the exact menu item may vary
depending on the image version).

This interface allows you to monitor the execution steps, pause and resume
processing as needed, alter parameters, and view the resulting outputs. It
provides the same functionality as the Google Colab live online examples, but
without third-party timeouts and processing limits. This makes Docker
Desktop a robust tool for comprehensive analysis and research.

3. Exploring PyGMTSAR

Chapter 3 unveils the principles and functionality of PyGMTSAR, a
powerful tool designed for efficient processing of interferometric synthetic
aperture radar (InSAR) data. This section serves as a comprehensive guide
for using this software, shedding light on its operational aspects without
delving too deep into the intricacies of its core algorithms.

In Section 3.1, we present the operational facets and the architecture of
PyGMTSAR. This Python library is versatile, designed to operate across a
variety of hardware, from standard laptops to high-performance
workstations. We explore how PyGMTSAR streamlines processing tasks,
making execution as simple as a single click, even in the absence of local
software installation. This feature is powered by its compatibility with
multiple environments, including interactive Jupyter notebooks on Google
Colab, Docker containers, and GitHub Action runners. Underpinning this
scalability is Dask, a distributed process manager, which optimizes the
execution of PyGMTSAR operations. Dask segments large operations into
manageable tasks and executes them in an optimal order, efficiently
leveraging all available resources.

In Section 3.2, we delve into the principle of lazy and delayed numeric
computations that PyGMTSAR implements. This strategy allows
operations to be deferred, enabling quick access to input and output
rasters. We provide a detailed explanation of how to initialize the Dask
parallel and distributed scheduler, a critical component for managing

parallel processing tasks. Additionally, we cover on-the-fly
transformations, such as geocoding, and discuss the trade-off between
memory consumption and processing speed. To monitor and understand
the software’s internal parallel processing, we introduce the Dask
Dashboard and the PyGMTSAR progress indicator. These tools offer
valuable insights into your code’s performance, helping identify potential
bottlenecks or areas for improvement and ensuring that computations are
efficient and resource-effective.

In Section 3.3, the critical role of the core SBAS object that PyGMTSAR
manipulates during processing is highlighted. This object is central to
PyGMTSAR’s functionality, acting as the primary data structure with
which the software interacts. The SBAS object serves a dual purpose: it
stores essential data and enables effective management and processing of
this information.

In Section 3.4, we explore the internal operations on NetCDF grids,
focusing on PyGMTSAR’s capabilities to read and write in NetCDF and
GeoTIFF, and to export data into VTK files. Given that InSAR time-series
analysis deals with large datasets and generates equally large outputs, a
deep understanding of PyGMTSAR’s data operation features becomes
crucial for efficient data processing.

Section 3.5 focuses on the essential steps of InSAR processing that
PyGMTSAR executes. From data acquisition to reframing, image co
registration, interferogram formation, geocoding, phase unwrapping,
phase detrending, displacement map creation, displacement projection,
time-series analysis, trend analysis, and data exporting, each step is
thoroughly explored. This section also introduces the machine learning
algorithms integrated into PyGMTSAR that simplify these processes for

users. Leveraging advanced techniques, PyGMTSAR provides not just an
efficient, but also a robust and high-quality InSAR processing pipeline.

The principles and functioning of PyGMTSAR covered in this chapter
form a robust foundation for understanding the examples provided in
Google Colab and in Docker images. By following these principles and
keeping the operation of delayed computation in mind, you can effectively
use all the InSAR processing steps.

3.1. Understanding PyGMTSAR

PyGMTSAR is a Python library designed to analyze a vast amount of
satellite interferometry data across a broad range of hardware. Its core
concept is to facilitate the reproducible processing of interferometry tasks
with a single click, even without the need for local software installation.
This is achievable in an interactive Jupyter notebook environment on
Google Colab, in Docker containers, and as console scripts on more
limited environments like GitHub Action runners. Simultaneously,
PyGMTSAR enables the execution of the same notebooks and scripts on
more powerful computers, utilizing all available processing power. This
multifaceted approach likely requires further explanation.

While Python is renowned as a popular programming language, it is often
considered slow for numerical calculations. However, it is exceptionally
adept at building scalable big data processing systems. A crucial
component of distributed high-performance computations is a cluster
resource manager. This type of software is installed on any Linux/Unix
cluster and supercomputer to perform ordered execution of a set of small
dependent tasks effectively. The fundamental idea is pretty simple —
break down large operations into manageable chunks, construct a
dependencies graph, and run enough processes in the right order to utilize
all processors while ensuring sufficient memory for all calculations.

PyGMTSAR utilizes a distributed process manager, similar to how large
computer clusters use systems like Slurm: cluster management and job

scheduling .Fortunately, Dask offers more flexibility than traditional
Unix/Linux resource managers and can be run on a variety of platforms.
This includes Google Colab, within a Docker container, on a local laptop,
a high-performance workstation, or even on a computer cluster. Python
boasts remarkable flexibility and speed compared to shell scripts used on
Unix/Linux clusters to manage tasks. Moreover, Dask excels in
autoscaling, enabling the full utilization of all processors for nearly any
amount of available memory. In other words, it works effectively on any
hardware, organizing the processing appropriately.

All these advantages of Dask can be realized if the software can work on
distributed data chunks of variable size while using predictable memory.
PyGMTSAR was designed to comply with these requirements. Although
it can run effectively on Linux/Unix cluster managers, it achieves the best
results with Dask — zero administration automated scalable processing on
any hardware.

Native PyGMTSAR processing functions based on well-known scientific
libraries to process the huge amount of data effectively. Low-level
operations in scientific Python libraries are mostly coded on compiled
languages C and Fortran and these are very scalable and powerful. Python
language is glue for the optimized and well-tuned core blocks for
multidimensional array manipulation in Numpy, machine learning
algorithms in Scipy and so on. PyGMTSAR Python code never operates
by a single pixel but always calls the basic operations on data blocks
(chunks) like 512x512 raster patch (by default).

While PyGMTSAR strives to deliver optimal performance and uses high
performance Python libraries, it is still relies on some of third-party binary
tools. Although these tools perform well, they weren’t designed for an

interactive environment with lazy computations. These are the GMTSAR
InSAR (InSAR processing system based on GMT) and the SNAPHU
(Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping)
software. Consequently, some operations are separate processes using
binary tools, making them less flexible compared to the core Python code.
All binary tools called internally by PyGMTSAR are wrapped to be Dask-
compatible. This required a set of patches to GMTSAR sources in the
upstream repository, which is why PyGMTSAR requires a modern version
of GMTSAR, adapted for it. In the future, GMTSAR binaries are planned
to be fully replaced by PyGMTSAR alternatives that offer better
performance and scalability. This process is, however, time-consuming.
Frequently, it demands devising new methods to achieve the same
outcomes, utilizing multiple processor cores and limited memory while
preserving performance.

3.2. Lazy and Delayed Computations

The fastest calculations are those that are skipped, and the most effective
algorithms do less work to achieve the same results. This is the essence of
lazy, or delayed, numerical computations. In this approach, many
operations are deferred, enabling you to obtain outputs almost instantly.
However, the actual computations are performed only when you begin to
use the values (delayed), and only for those specific values (lazy). If some
results are never requested, the computations for those will never be
carried out. This advantage makes Dask superior to traditional Linux/Unix
task managers.

This concept can be likened to inspecting a new, unfurnished house. You
can see it, touch it, and estimate its value, but it’s essentially empty. If you
bring in your bed, you can sleep in it; if you bring your coffee machine,
you can brew coffee, and so on. The same principle applies in
programming. PyGMTSAR processing functions provide you with an
‘empty house,’ and it only ‘furnishes’ the rooms you visit and the items
you actually need at the moment. This will be illustrated using some
examples in the following sections.

When working with delayed or lazy computations, we’re dealing with
operations that are not immediately executed. Instead, these computations
are divided into a series of atomic tasks and scheduled to be run when
required. This necessitates the initialization of a software called a parallel
and distributed scheduler prior to performing computations. Fortunately,
Dask is a modern, self-configurable scheduler, and its initialization is
straightforward.

Initializing the Dask Scheduler

In the code snippet provided below, we demonstrate the initialization of the
simplest single-host setup, although variations are included in the example
Jupyter notebooks. By default, the straightforward “distributed.LocalCluster”
scheduler is initiated. While this might not be the most efficient choice for
processing large data stacks, it’s user-friendly and suits most typical projects.
For further details, please refer to the Dask API

Distributing and scheduling processing jobs can be complex, and there may
be times when things don’t go as planned, particularly if the execution is
manually interrupted or an error occurs during processing. If such a situation
arises, simply return to the Dask scheduler initialization cell and rerun it once
or twice. This action will clear out any incomplete jobs, free up resources,
and allow you to continue from where you left off.

However, it’s important to note that in the context of PyGMTSAR, the
management of Dask tasks is further optimized through the use of the joblib
library. This additional layer of resource management enhances reliability, as
direct Dask code can occasionally fail to properly clean up resources in the
event of an error or interruption. Thus, while PyGMTSAR handles these
scenarios, there might be potential issues with your own code.

from dask.distributed import Client
if 'client' in globals():

client.close()
client = Client()

client

One noteworthy feature is the option of monitoring internal parallel
processing through the Dask “Dashboard” link provided in the cluster
initialization cell. This tool offers useful insights into how your code manages
parallel processing and can help identify potential performance issues by
providing information on processor, memory, and network activity. However,
remember the Dask dashboard is not available on Google Colab because it
requires an additional network connection to serve the dashboard.

In summary, using the simple initialization code, we have a processing
scheduler up and running in our Jupyter notebook or Python shell, which
manages all parallel processing tasks. This setup offers several benefits,
though it has certain limitations too, which we will explore in the following
examples.

Performing Lazy or Delayed Computations

By using the Dask scheduler, we are able to execute Python code in a parallel
and memory-efficient way across a distributed cluster or a single multicore
computer. For educational purposes and to measure processing times, we
employ a Jupyter “magic cell”, where the first line of code is This isn’t
typically necessary for everyday tasks as PyGMTSAR provides progress
indicators for operations that take a long time to run.

The processing pipeline typically begins with opening input datasets from
NetCDF files lazily using the PyGMTSAR open_grids() function. From
there, we can directly apply certain computations to these datasets through the
open_grids() function arguments and also by operating on the returned lazy
object using functions from NumPy, Xarray, and other Dask-compatible
libraries. Upon reaching the desired result, we generate outputs, such as plots
and NetCDF files, which are saved to disk. As long as every processing step
supports delayed operations, the process remains effective and does not
require any code modifications, as all the complexity is handled inside
PyGMTSAR itself. The ideal user-level lazy processing code has no special
modifications. To illustrate this, we’ll show a few common data processing
examples.

Let’s begin by opening a large stack of correlation grids, specifically 1059
rasters, from NetCDF files in radar coordinates. This process takes only a few
seconds (6.61s):

%%time

corr_ra = sbas.open_grids(pairs, 'corr')
corrra

The Dask object is nicely visualized, providing detailed information such as
array dimensions, coordinates and their limits, data type, and data chunks.
While most of the properties are self-explanatory, data chunking is a crucial
concept for lazy computations. This entails dividing the dataset into a
collection of atomic data units — chunks — and Dask manages these chunks
to plan and execute its tasks. The default chunk size is 512 (or rather,
512x512) for a 2D raster, which is typically sufficient. In Google Colab, there
is no need to adjust this parameter, but for special cases, it can be fine-tuned
during PyGMTSAR initialization and by using the chunksize argument in
open_grids() and other functions. The 3D raster stack illustrated above has
dimensions (1059, 915, 1152) and a chunk size of (1,512,512), resulting in a
total of 6354 chunks. Therefore, to read the complete dataset, Dask performs

as many as 6354 reading operations. However, Dask can’t read a single pixel
from a single grid, but only a block of raster pixels (512,512). Given the
float32 data type, the single block size is 512 * 512 * 4 bytes = 1 which is
adequate for standard InSAR computations. It might seem conservative and
slightly better performance can be achieved with larger chunk sizes, like 1024
(1024x1024) or 2048 (2048x2048), particularly for interferogram processing,
unwrapping, and detrending.

Challenges arise in steps that require pixel-wise processing, such as SBAS
time series calculation, seasonal trend decomposition, etc. In such cases, the
processing is performed for the full stack depth (1059 rasters) on 512x512
raster blocks, handling 1059 * 512 * 512 * 4 bytes = 264 MB data chunks.
The actual analysis can require significantly more memory than the source
data size, especially with numerous tasks running in parallel. To utilize 8
cores, Dask executes 8 parallel processing tasks on each 264 MB sub-stack. If
the analysis requires 20 times more RAM than the data block, the total
memory consumption equates to 264 MB * 8 cores * 20 = 42 GB memory.
Fortunately, PyGMTSAR’s core functions can estimate memory requirements
and fine-tune Dask’s chunk size for optimal performance, enabling it to run
smoothly on any hardware. Without a solid understanding of the underlying
principles and constraints, it is advisable not to adjust the parameters
manually. Generally, allowing PyGMTSAR to manage these technical aspects
automatically results in the best outcomes for most InSAR scenarios.
However, for highly demanding projects and powerful hardware,
PyGMTSAR does permit manual parameter tuning.

And we can open the same rasters with on-the-fly geocoding applied to
transform rasters into geographic coordinates in a matter of seconds (8.71s):

%%time
corr_ll = sbas.open_grids(

pairs,
'corr',
geocode=True

)
corr_ll

This is possible because only the data structures are pulled from the disk, not
the actual values. And more, the Dask scheduler split the job to read the
rasters stack into a set of parallel tasks to read the rasters properties right now
and read the only required chunks of rasters later in case if we really need
them. It’s workable to transform the structures much faster than the real
values. As a result, we see the output grid in geographic coordinates and the
coordinates values—it looks like the complete result for us and that’s all we
need right now. We do not spend processing time and memory to perform any
operations on the data yet.

Using the lazy grid stack object, we can map one grid in radar coordinates as
usual (0.439s):

%%time
corr_ra[0].plot(cmap='gray')

It works seamlessly, and it’s fast because here the data should be just read
from the disk and mapped. As expected, the map in geographic coordinates
requires a longer time to be mapped because it should be geocoded on-the-fly
(2.31s):

%%time
corr_ll[0].plot(cmap='gray')

In (16]: Wine
corr_ll[0].plot।cmap='gray’)

Out[16]: <matplotlib.collections.QuadMesh at 0x2ae6adc50>

pair = 2018-01-04 2018-01-10, ref = 2018-01-04,...

CPU tiroes: user 1.82 s, sys: 43.1 ms, total: 1.87 s
Wall time: 2.31 s

-6.2 —6.0 -5.8 -5.6 —5.4
Ion

Here still there is no excessive memory consumption to hold all the large
grids in memory (RAM) and there are no 1000+ grid geocoding operations
when we map just one grid. Dask scheduler performs only the required tasks
to process and map exactly one grid. This standalone Python code does not
require any modifications to the delayed processing.

The set of maps can be plotted effortlessly as well, with the plotting time here
about 5x longer for 10 images (2.04s):

%%time
fg = corr_ra[:10].plot.imshow(

col='pair',
col_wrap=5, size=3,
aspect=1.2, cmap='gray'

)
fg.set_ticks(max_xticks=5, max_yticks=5,

fontsize='medium')
fg.fig.suptitle('First 10 Correlation',

y=1.1, fontsize=36)
plt.show()

And the same set of geocoded grids requires roughly 10x more time to be
processed and mapped compared to a single grid (20.9s):

%%time
fg = corr_ll[:10].plot.imshow(

col='pair',

col_wrap=5, size=3,
aspect=1.2, cmap='gray'

)
fg.set_ticks(max_xticks=5, max_yticks=5,

fontsize='medium')
fg.fig.suptitle('First 10 Correlation',

y=1.1, fontsize=36)
plt.show()

While the extended processing time may seem reasonable, it’s not necessarily
optimal. The code above is capable of working well with a single grid in a
large stack, a set of grids, or all grids at once. However, we can accelerate
operations if we know that the processing grids fit into the available memory
—although failure in our estimations may lead to a system crash or extremely
prolonged processing time.

The Dask compute() command executes all processing instantly, optimally as
possible, and stores the complete result in memory. The critical point is to
examine the lazy object first to ensure it fits comfortably into memory before

we materialize it using In the next step, we prompt the necessary data grids to
load from the disk—this step involves no computations but only data reading
into memory—prior to plotting in radar coordinates, which takes around 1.05
seconds:

%%time
fg = corr_ra[:10].compute().plot.imshow(

col='pair',
col_wrap=5, size=3,
aspect=1.2, cmap='gray'

)
fg.set_ticks(max_xticks=5, max_yticks=5,

fontsize='medium')
fg.fig.suptitle('First 10 Correlation',

y=1.1, fontsize=36)
plt.show()

And in the following step, we plot in geographic coordinates. This step
requires not only loading the necessary data grids from the disk but also
performing geocoding computations. The entire process takes approximately
2.88 seconds:

%%time
fg = corr_ll[:10].compute().plot.imshow(

col='pair',
col_wrap=5, size=3,
aspect=1.2, cmap='gray'

)
fg.set_ticks(max_xticks=5, max_yticks=5,

fontsize='medium')
fg.fig.suptitle('First 10 Correlation',

y=1.1, fontsize=36)
plt.show()

In conclusion, we compare the performance of the two approaches: Dask-
managed automated processing and user-managed processing. The Dask-
managed approach took 2.04 seconds for processing original rasters and 20.9
seconds for geocoded ones. On the other hand, the user-managed method took
only 1.05 seconds for original rasters and 2.88 seconds for geocoded ones.

The extended processing time of the Dask-managed approach is a trade-off
for its low memory consumption and robust processing. It processes and
maps grids by chunks without storing all grids in memory at once, thus saving
memory resources. However, for geocoding computations before plotting, the
process requires 10 grids to be stored in memory simultaneously. The forced
compute() call does this even if there isn’t enough memory available.

This demonstrates the bargain between memory consumption and processing
speed. If memory resources are abundant, user-managed processing can be
quicker. Conversely, if memory is limited, the Dask-managed approach
provides a more memory-efficient yet slower solution. In case when you
guaranteed have more than sufficient memory on your computer you might
gain profit using compute() command otherwise avoid it completely.

Pixel-wise line plots are effective as well, albeit managing vast amounts of
data and operations internally. Plotting a single pixel for every one of the
1059 grids in our lazy stack implies that Dask must read and process the full
512x512 chunks. Thus, instead of a single pixel per raster, Dask operates on a
512 * 512 = 262144 pixel block on each raster. While this is still 6 times (the
amount of Dask chunks per raster) better than processing the complete
rasters, it is less efficient than retaining the complete rasters and all
processing results in memory. In most cases, the potential speedup does not
justify the added complexity and potential pitfalls of optimization. However,
this approach proves beneficial for challenging projects involving enormous

rasters where each 2D raster is comprised of numerous Dask chunks. Indeed,
for our chosen case using 90 meter resolution, there are only 6 Dask chunks
per raster, but for 15 meter resolution, we have roughly (90/15) * (90/15) * 6
= 216 chunks, meaning the single-pixel operation on all grids necessitates
processing only 1/216th of the data.

Let’s illustrate this theory with a single-pixel time series plot (52.3s):

%%time
corr_ll.sel(

lat=34.1, lon=-5.75,
method='nearest'

).plot(lw=0.5)

Although we understand the necessary processing well, it doesn’t seem
particularly swift. This even presents a more stringent trade-off between
memory consumption and processing speed than for the 2D plots mentioned
earlier. The method is both straightforward and quick for a single plot.
However, when generating multiple plots, the process time increases
significantly. As an example, it takes 2min 22s to plot 3 pixel timeseries
together:

%%time
corr_ll.sel(

lat=34.1, lon=-5.80,
method='nearest'

).plot(c='red', lw=0.25)

corr_ll.sel(
lat=34.1, lon=-5.75,
method='nearest'

).plot(c='blue', lw=0.25)
corr_ll.sel(

lat=34.1, lon=-5.70,
method='nearest'

).plot(c='green', lw=0.25)

In [41): Mrtime
corr_U. self lat=34.1, lon=-5.80, method= 'nearest').plot(c='red', lw=0.25)
corr_ll.sel(lat=34.1, lon=-5.75, method='nearest').plot(c='blue*, lw=0.25)
corr_ll.sel(lat*34.1, lon=-5.70, method='nearest').plot!c«‘green', lw=0.25)

CPU times: user Imin 27s, sys: 10.2 s, total: Imin 38s
Wall time: 2min 22s

0ut[41): [<matplotlib.lines.Line2D at 0x31aa26950>]

If you wish to interactively plot multiple plots for exploration, the compute()
function described earlier can be a timesaver if used judiciously. It allows us
to select the necessary subset and compute it to conserve memory, for
instance, a one-square-degree patch:

%%time
corr_ll_patch = corr_ll.sel(

lat=slice(34,35),
lon=slice(-6,-5)

)
corr_ll_patch

However, the selected patch is barely smaller than the full grid and includes
all the chunks. While the chunks are cropped, they still require excessive
computations. We might reduce it considerably more for the target plots:

%%time
corr_ll_patch = corr_ll.sel(

lat=slice(34,34.2),
lon=slice(-5.8,-5.7)

)
corr_ll_patch

This patch is much smaller and has only two chunks while covering the area
for the plots, so we can continue with it. And now that we’re certain the patch
is small and sufficient, we can call the compute() function to compute it
(48s):

%%time
corr_ll_patch = corr_ll_patch.compute()

And having computed the small dataset, which doesn’t require much memory,
we can swiftly produce the same plots (214ms):

%%time
corr_ll_patch.sel(lat=34.1, lon=-5.80,

method='nearest').plot(
c='red', lw=0.25)

corr_ll_patch.sel(lat=34.1, lon=-5.75,
method='nearest').plot(

c='blue', lw=0.25)
corr_ll_patch.sel(lat=34.1, lon=-5.70,

method='nearest').plot(
c='green', lw=0.25)

In (74): Wime
corr_ll_patch.sel(lat=34.1, lon=-5.80, method-'nearest').plot<c=‘red', lw=0.25)
corr_ll_patch.sel(lat=34.1, lon=-5.75, method='nearest').plot(c='blue*, lw=0.25)
corr_ll_patch.sel(lat=34.1, lon=-5.70, method='nearest').plot(o'green', lw=0.25)

0ut[74): (<matplotlib.lines.Line2D at 0x2f501e990>)

lat = 34.1, Ion = -5.7

CPU times: user 204 ms, syss 12.2 ms, total: 216 ms
Wall time: 214 ms

PyGMTSAR encourages the use of a fully lazy computation approach over
premature optimization. It’s been extensively tested on a wide array of
hardware configurations, proving itself to be both robust and fast. While
manual optimization may grant you a few seconds of speedup for plotting

smaller grids, it could lead to errors due to insufficient memory when dealing
with larger grids. The time lost in recomputing numerous steps can far
outweigh the brief moments saved. However, when careful optimizations are
truly needed, and performed judiciously, the expected results can be achieved.
This process merely requires caution and a check for the data size before
invoking the compute() function on your data.

One of the advantages of utilizing a system like Dask for lazy computations is
the predictability it provides. Your tasks will be processed efficiently and
within a predictable time frame, regardless of whether you’re using a
common laptop or a powerful workstation. This predictability enables the
implementation of features such as progress indicators for the long-time
operations, such as saving results to disk. Let’s examine some examples of
how this can be accomplished.

All grids can be efficiently saved to a NetCDF file using a simple command.
To ensure compatibility with lazy processing, we specify as the default engine
might not be compatible. While the operation may sometimes take a while (in
this case, 1 minute and 33 seconds), it runs effectively.

%%time
corr_ll.to_netcdf(

'corr_ll.nc',
engine=sbas.engine

)

In [231: Mrtime
corr_U.to_netcdf ('corr_U.nc', engine=sbas.engine)

CPU times: user Imin 2s, sys: 6.67 s, total: Imin 8s
Wall time: Imin 33s

This operation can be monitored on the Dask dashboard if it’s available.
However, it’s important to note that the dashboard isn’t accessible on Google
Colab currently. As resources in this environment are somewhat limited, we
usually can’t generate a large stack of substantial rasters here, and the saving
operation is quick enough not to warrant a progress indication. Nevertheless,
it’s still possible to produce sizable datasets even on Google Colab, and
monitoring the process can be beneficial. We can convert the command above
to a lazy one using the argument which defers the file saving operation:

%%time
delayed = corr_ll.to_netcdf(

'corr_ll.nc',
engine=sbas.engine,
compute=False

)

In [26]: Wine
delayed = corr_ll.to.netcdf('corr_U.nc’, engine=sbas.engine, compute=False)

CPU times: user 2.49 s, sys: 89.9 ms, total: 2.57 s
Wall time: 2.57 s

PyGMTSAR provides the tqdm_dask progress indicator to monitor the
processing of a lazy object in both Jupyter notebooks and console Python
scripts:

from pygmtsar import tqdm dask
import dask
tqdm_dask(

dask.persist(delayed),

desc='Saving NetCDF'

)

In [27]: froai pygmtsar iaport tqdm_dask|
import dask
tqdm_dask(dask.persist(delayed), desc='Saving NetCDF')

Saving NotCDF: 100% 54011/54011 (01:01<00:00.710.1 Ort/s]

This handy trick makes your work more comfortable and is included in some
of the example Google Colab notebooks that generate large output rasters.

Moreover, the benefits of Dask-guided lazy processing go beyond just this. A
significant advantage is Dask’s ability to automatically repeat failed
operations. This means that issues such as disk access or network timeouts
during distributed processing on a cluster can almost always be self
corrected, ensuring that we still get the expected results.

In essence, the delayed computation approach allows you to perform as many
operations as needed without worrying about hardware limitations. It’s all
about performing smarter calculations, not harder ones. As a result,
PyGMTSAR operates uniformly across a wide range of hardware, from
Google Colab and decade-old basic MacBook Air laptops to modern
multicore servers or computer clusters.

For a deeper understanding of lazy computing, consider exploring the Python
libraries that enable such efficient computing. These include:

Enables lazy computations and provides an interface for parallelizing Python
applications across computation clusters.
Supports grid processing with N-D labeled arrays and datasets in Python.

Fundamental package for scientific computing in Python, especially suited for
numerical computations.
A Python-based ecosystem of open-source software for mathematics, science,
and engineering.

A set of tools to provide lightweight pipelining in Python, particularly
designed for tasks that are computationally expensive and can be executed in
parallel.

These tools offer robust capabilities for managing complex computational
tasks and can help make your coding more efficient and powerful.

3.3. The Primary SBAS Object

At the heart of PyGMTSAR lies the SBAS class and its corresponding
object. The class is named after the well-known SBAS (Small Baseline
Subset) method for InSAR processing. This component forms the
backbone of the entire InSAR data processing and analysis pipeline within
the PyGMTSAR framework.

The SBAS class is essential to the entire processing pipeline. It offers all
user-level functions necessary for managing and analyzing InSAR data
within PyGMTSAR, encapsulating all the InSAR processing building
blocks we have explored in the previous sections.
The SBAS object serves as the central data structure within PyGMTSAR.
It stores references to all the subswaths of Sentinel-1 scenes along with
their corresponding orbits in a tabular format. This table, realized as a
GeoPandas GeoDataFrame, includes a “geometry” column that provides
the approximate boundaries of the scenes, as derived from Sentinel-1 SLC
GeoTIFF ground control points (GCPs). Each subswath and scene date
combination corresponds to a unique record. Initially, the subswath
numbers are single digits (1, 2, or 3), but post-interferogram generation,
these subswaths can be merged, and table records grouped for combined
subswaths 12, 23, or 123.

Additionally, we discuss more advanced functionalities of the SBAS
object, such as finding previously processed SBAS pairs and identifying
SBAS dates. These features extend beyond the examples provided on

Google Colab and help us understand the usage of the PyGMTSAR
Docker image mobigroup/pygmtsar-large shared on DockerHub.

Initializing the SBAS Object

The initialization process is straightforward and requires the definition of two
directories:

The data directory contains the Sentinel-1 SLC scenes and orbits. This
directory can be read-only, as no changes will be made to it.
The working directory is where all processing will take place and the
resulting grids will be stored. If this directory already exists, it will be
dropped and recreated from scratch for the processing.

Here’s how you can set it up:

from pygmtsar import SBAS
sbas = SBAS(DATADIR, basedir=WORKDIR)

You can retrieve the current state of the SBAS object using the following
command:

sbas.to_dataframe()

Plotting the SBAS GeoDataFrame is simple, while for a large stack of
interferograms, it’s essential to adjust opacity due to overlapping areas:

sbas.to_dataframe().plot(alpha=0.005)

Scenes can be plotted atop the DEM (Digital Elevation Model) as follows:

sbas.get_dem().plot()
sbas.to_dataframe().plot(alpha=0.005, ax=plt.gca())

Saving and Restoring the SBAS Object

It’s not always necessary to discard all results and rerun all steps from the
beginning. You can save your current state within the working directory and
close the notebook, then continue your work later, even on a different host,
using the SBAS.restore() command.

To dump the current state into the working directory defined during SBAS
initialization, use:

sbas.dump()

In (77): sbas.dump)

NOTE: save state to file raw_desc/SBAS.pickle

Later, you can restore the current state in the same or different notebook or
script to continue. Use:

sbas = SBAS.restore(WORKDIR)

In [78]: sbas = SBAS. restore WORKDIR l|

NOTE: load state from file raw_desc/SBAS.pickle

This allows you to continue from where you left off without losing previous
computation results.

Creating SBAS Pairs

To create interferograms, we need to define the pairs of images (dates). Each
pair represents two SAR acquisitions used to form and process
interferograms. For two images, there are two possible pairs—direct and
inverse. For three images, there are six possible pairs, and so on. You can
define these pairs manually or by using built-in methods.

The SBAS object in PyGMTSAR offers a method to define Small Baseline
Subset (SBAS) interferogram pairs. This is achieved by specifying
parameters such as the maximum date interval (BASEDAYS), the
perpendicular baseline (BASEMETERS), and a limit on the number of pairs
beginning from a certain date (LIMIT). These pairs, defined by baseline, are
critical for the interferogram processing functions. Here’s how you can
generate such pairs:

baseline_pairs = sbas.baseline_pairs(
days=BASEDAYS,
meters=BASEMETERS,
limit=LIMIT

)
baseline_pairs

The output is a Pandas DataFrame that can be readily manipulated, allowing
you to filter and plot the baseline pairs with ease.

The baseline pairs are used for interferogram creation and after that we can
continue to use the pairs for the next processing step or read the existing
SBAS pairs corresponding to the created interferograms.

Reading SBAS Pairs

PyGMTSAR provides a feature that allows you to identify all existing pairs
from already processed grids. This is particularly useful when you want to
proceed with other processing tasks, such as unwrapping, detrending, and
more, in separate Jupyter notebooks or Python scripts. While the
baseline_pairs() function creates only a list of SBAS pairs for future
interferogram processing, the pairs() function reads from disk the
interferograms that have already been processed.

sbas.pairs()

This method returns a DataFrame with the pairs identified from the processed
grids. You can then proceed with additional processing steps using these pairs
in the same or another Jupyter notebook or Python script.

3.4. Data Reading and Writing

PyGMTSAR primarily operates with 2D NetCDF grids, using 3D grids
for time-series analyses for more efficiency. For compatibility reasons,
SBAS results are stored in 2D grids. 3D grids are not well for use on
Google Colab while other platforms are better suited for larger time-series
processing.

While PyGMTSAR supports importing and exporting GeoTIFF files for
2D GIS software processing (such as QGIS, GDAL, etc.), NetCDF is the
recommended format. This recommendation is primarily due to NetCDF’s
superior performance in lazy processing, aligning with the PyGMTSAR
paradigm. Exporting large GeoTIFF files is not as robust, and it requires
careful handling. Therefore, GeoTIFF should only be used when
necessary.

Due to performance reasons, PyGMTSAR does not provide user-level
functions to write internal NetCDF files. Instead, it focuses on the data
processing pipeline and effective data storage. PyGMTSAR processing
functions handle these tasks well, and you can easily read the outputs and
export them into different output formats as illustrated below.

Reading PyGMTSAR 2D Grids

2D NetCDF grids serve as the internal storage format for PyGMTSAR. These
grids are chunked for lazy parallel access and compressed to optimize disk
consumption and read-write performance.

The function pygmtsar.SBAS.open_grids performs the read operations inside
the PyGMTSAR working directory. The code below illustrates how to open a
set of 2D grids named ‘corr’:

sbas.open_grids(pairs, 'corr')

In [12]: corr ■ sbas.open_grids pairs, 'corr')|

Loading: 100% 1059/1059 (00:01 <00:00, 1517.49ft/s]

There are many helpful options within this function.

Reading PyGMTSAR 3D Grids

For trend detection results, we do not need the capability for incremental 2D
grids processing, and the results can be saved to a single 3D dataset. For
compatibility with Google Colab and other limited environments, SBAS
output is currently saved to a set of 2D grids. Like 2D grids, the 3D grids are
chunked for lazy parallel access and compressed to optimize disk
consumption and read-write performance.

The function pygmtsar.SBAS.open_model performs read operations inside
the PyGMTSAR working directory:

sbas.open_model('stl')

Reading and Writing NetCDF

You can open and save external NetCDF files outside the PyGMTSAR
working directory using and xarray.to_netcdf functions.

To write a single 2D grid from the correlation stack, use the following
command:

corr = sbas.open_grids(pairs, 'corr')
corr[0].to_netcdf(

'corr0.nc',
engine=sbas.engine

)

In [23]: corr = sbas.open_grids(pairs, 'corr')
corr[0].to_netcdf('corrO.nc', engine=sbas.engine)

Loading: 100% 1059/1059 (00:00<00:00, 864.76iVs]

To read an external NetCDF file or one created as described above, use:

xr.open_dataarray('corr0.nc', engine=sbas.engine)

In [35]: xr.open_dataarray('corrO.nc', engine=sbas.engine)|

Out[35): xarray.DataArray *z* (y: 915, x: 1152)

S [1054080 values with dtype=fLoat32]

▼ Coordinates:

pair 0 object 9
ref 0 object 9
rep 0 object
x (x) float64 10.0 30.0 2.301 e-t-04 2.303e+ 04 9
y (y) float64 3.0 9.C 5.481 e+03 5.487e+03 «

► Indexes: (2)

► Attributes: (0)

Numerous NetCDF handling libraries are available, but many are
incompatible with Dask’s lazy processing. Therefore, in PyGMTSAR, we
specify the engine used via the designated option This ensures that the
appropriate engine is utilized throughout the processing, promoting smooth
and effective data handling.

Reading and Writing GeoTIFF

While GeoTIFF files are not optimal for lazy processing due to potential
issues, they can still be imported and exported when needed. Well-prepared
NetCDF files in geographic coordinates can be easily exported in GeoTIFF
format using the pygmtsar.SBAS.as_geo function.

It’s worth noting that there’s no practical reason to export a GeoTIFF file in
radar coordinates, as such files cannot be georeferenced. The example below
illustrates how to save the first 2D grid from the geocoded correlation stack
as a GeoTIFF file.

corr_ll = sbas.open_grids(
pairs, 'corr', geocode=True

)
sbas.as_geo(corr_ll[0]).rio.to_raster(

'corrll0.tif

)

In [141: corr_U = sbas.open.gridsfpairs, 'corr', geocode=True)
sbas.as_geo(corr_ll.[0]). rio.to_raster(' corr_ll0.tif1)

Loading: 100% 1059/1059 [00:04<00:00, 317.75rt/s]

To read an external GeoTIFF file or one created as described above, you can
use the following code. Note that the data structure of an opened GeoTIFF
file differs from that of a common NetCDF file, and as such, additional
operations are required to convert it to a compatible format.

import xarray as xr
corr_ll0 = xr.open_rasterio('corr_ll0.tif) \

.squeeze(drop=True) \

.rename({'y': 'lat', 'x': 'lon'})
corr_ll0

In [20]: import xarray as xr
corr_H0 = xr.open_rasterio('corr_H0. tif'). squeeze(drop=True). rename {'y': 'lat', 'x': 'ton'})
corr_H0

Out [201. xarray DataArray (lat: 989. lon: 1411)

S [1395479 values with dtype=float32)

▼ Coordinates:

lat (lat) float64 33.66 33.66 33.66 34.48 34.48 g
lon (lon) float64 6.383-6.382 ...-5.209-5.208 g

► Indexes: (2)

▼ Attributes:

transform : (0.0008333248368794325. 0.0, -6.38317714241844, 0.0. 0.000833390172064774, 33.
65959924491397)

crs: +init=epsg:4326
res : (0.0008333248368794325, 0.000833390172064774)
is_tiled: 0
nodatavals: (nan.)
scales: (1.0.)
offsets: (0.0.)
descriptions: (*z*,)
AREA_OR_POl... Area

Writing VTK

VTK format is excellent for 3D and 4D visualization and certain types of
analysis in ParaView software. A single VTK file can include a DEM, a
satellite image to be shown on top of DEM or on a plane, and 2D or 3D data
grids. PyGMTSAR provides the pygmtsar.NCubeVTK.ImageOnTopography
function for VTK data export. This function is defined in a separate class to
allow for potential placement into a separate library since it is not directly
related to PyGMTSAR. For now, it’s the only function available, and thus
there’s no need to split the code.

We can use the vtk library itself, although it requires a few more lines of
code:

from pygmtsar.NCubeVTK import NCubeVTK
import vtk
ds = xr.merge(

[sbas.get_dem(), corr_ll[0].rename('corr')]
).rename(

{'lat': 'y', 'lon': 'x'}

)
vtk_ugrid = NCubeVTK.ImageOnTopography(ds)
writer = vtk.vtkUnstructuredGridWriter()
writer.SetFileName ("dem_corr0.vtk")
writer.SetInputData(vtk_ugrid)
writer.Write()
vtk_ugrid

In [33]: from pygmtsar.NCubeVTK import NCubeVTK
import vtk
ds = xr.merge((sbas.get_dem(),

corr_U[0]. rename('corr')])\|
.rename({'lat': 'y', 'Ion': *x'})

vtk_ugrid = NCubeVTK.ImageOnTopography(ds)
writer = vtk.vtkUnstructuredGridWriter()
writer.SetFileName("dem_corr0.vtk")
writer.SetInputData(vtk_ugrid)
writer.Write()
vtk_ugrid

NOTE: unsupported attribute pair datatype <U21, miss it
NOTE: unsupported attribute ref datatype <U10, miss it
NOTE: unsupported attribute rep datatype <010, miss it

Out[33]: <vtkinodules.vtkCommonDataHodel..vtkUnstructuredGrid(0x2a7ceb5e0) at 0x292ec76a0>

With the helper library pyvista, the same code can be shorter, and the printed
object structure is clearer:

from pygmtsar.NCubeVTK import NCubeVTK
import pyvista as pv
ds = xr.merge(

[sbas.get_dem(), corr_ll[0].rename('corr')]
).rename(

{’laf: 'y', ’lon’: 'x'}
)
vtk_ugrid = NCubeVTK.ImageOnTopography(ds)
vtk_ugrid = pv.UnstructuredGrid(vtk_ugrid)
vtk_ugrid.save(’dem_corr0.vtk‘)
vtk_ugrid

The output file can even be opened in a Jupyter notebook for interactive 3D
and 4D visualizations.

Note that there’s a separate library, N-Cube ParaView plugin for 3D/4D GIS
Data authored by the creator of PyGMTSAR and available on Github. This is
designed for use within ParaView, and the codes can be easily adapted for
other needs. As such, the modified code keeps the same authorship and can
be used in PyGMTSAR without licensing issues.

The example below illustrates how an interactive 3D VTK map appears
within a Jupyter notebook. The gray surface represents the topography, and
the colored map overlaid on it displays the InSAR trend movement.

from pygmtsar.NCubeVTK import NCubeVTK
import pyvista as pv
import xarray as xr

pv.set_plot_theme("document")

stl = sbas.open_model('stl')
delta = stl.trend[...,0] - stl.trend[...,-1]
ds = xr.merge(

[0.0001*dem, delta]
).rename(

{'lat': 'y', 'lon': 'x'}

)
vtk_ugrid = NCubeVTK.ImageOnTopography(ds)

static_plotter = pv.Plotter(notebook=True)
static_plotter.add_mesh(

vtk_ugrid,
scalars='trend',
cmap='turbo',
clim=[-100, 100]

)

static_plotter.show(
jupyter_backend="panel",
return_viewer=True

)

In [52]:

stat ic_plotter.show(jupyter_backend="panel", retu rn_viewer=True)

Out[52]:

magic trick for white background
pv.set_plot_theme("document")

static_plotter ■ pv.Plotter(notebook=True)
static_plotter.add_mesh(vtk_ugrid, scalars=*trend', cmap='turbo', clim=[-100, 100])

from pygmtsar.NCubeVTK import NCubeVTK
import pyvista as pv
import xarray as xr

stl = sbas.openjnodeU 'stl’)
delta = stI.trend[...,0] - stl.trend[...,-1]
scale for visualization
ds = xr.mergef (0.0001*dem, delta)). rename ■Clat': 'y’t ’Ion’: 'x'})|
vtk_ugrid = NCubeVTK.ImageOnTopography(ds)

3.5. InSAR Workflow Steps

PyGMTSAR implements the Small BAseline Subset (SBAS) InSAR time
series analysis for mapping ground deformation and offers a set of
features beyond it. All the fundamental steps in InSAR processing are
available, along with some advanced and modern machine learning
algorithms to simplify your work on InSAR projects. Depending on the
project, some steps can be omitted.

Although InSAR processing is quicker with just two images and a single
interferogram, PyGMTSAR carries out the required steps in the same way
as it would for SBAS processing with multiple interferograms. This
approach offers numerous benefits, such as simplifying the process and
providing unique features. First, it is more user-friendly to carry out the
same procedure for either one or many interferograms. Additionally, it’s
worth noting that technically, we can produce two interferograms from
two images: one in the direct order of the dates and one in the inverse
order. Having two interferograms derived from the same two images can
be useful for comparing unwrapping accuracy - we would expect the same
unwrapped results, up to a sign and aliquot 2n. Any discrepancies in this
comparison can highlight potential unwrapping errors.

The complete workflow is outlined below. The most challenging projects
can benefit significantly from having all processing steps readily available
in one software, easily stackable to achieve the desired results.

Data This is the process of downloading two or more Sentinel-1 scenes
and the related orbit files, along with downloading and preparing the
topography covering the area.

Sentinel-1 SLC scenes can be obtained using known scene names from the
Alaska Satellite Facility (ASF) data storage fast, or from the Sentinel
usually slower. For both storages, user credentials are required. Typically,
the Sentinel Hub is too slow for interactive notebooks, and for this reason,
the ASF access point is used in the notebooks. The notebooks request
credentials to download the data; these are not saved anywhere, so every
user needs to register on ASF and enter their credentials to execute the
notebooks. This authentication makes automated downloading impossible
but allows you to replace the used scene names with your own and run the
processing with ease.

For fully automated analysis, some of the example PyGMTSAR
notebooks use pre-downloaded scenes shared on Apple’s iCloud drive.
While there are other well-known and user-friendly cloud storages like
Google Drive or Dropbox, only iCloud provides direct links for automated
downloading. Other storages require user interaction. These notebooks
can be executed in a single click, but to replace the source scenes, you
need to download the new ones on your computer, share them on iCloud
drive, and copy the shared file link into the notebook.

Orbit files downloading is straightforward and automated. It’s also
possible to use pre-downloaded orbit files for offline processing.
PyGMTSAR finds all existing orbit files in the same directory where the
Sentinel-1 SLC scenes are located and downloads only missing ones, if
any. Pay attention that orbit files may sometimes be updated, and it’s

better to download the recent ones than use old ones. If you still need to
use outdated orbit files, they can produce a ramp in the produced
interferograms — use PyGMTSAR detrending to remove it.

The function pygmtsar.SBAS.download_orbits is designed for the task of
downloading orbit files.

DEM file can be automatically downloaded and pre-processed. If you use
your own DEM file, be aware that common SRTM and other DEM data
should be processed to remove the EGM96 geoid, making the heights
relative to the WGS84 ellipsoid. For automatically downloaded DEMs,
PyGMTSAR identifies the area covered by provided scenes and performs
all the required pre-processing itself, converting the DEM to the defined
resolution. Note: The output grid is exactly the same as the DEM grid.

The pygmtsar.SBAS.download_dem function streamlines the process of
downloading the DEM.

Scene A set of sequential Sentinel-1 scenes in the same orbit can be
stitched together. Conversely, a single scene comprising about 9 bursts can
be cropped to one or more bursts for faster processing. This step can be
performed before or after image co-registration. We generally do it before,
to have the ability to export the stitched and cropped scenes identical to
the original GeoTIFF files for reproducible analysis.

If you need to reframe scenes, the pygmtsar.SBAS.reframe_parallel
function is at your service.

Image Co-Registration Images must be accurately co-registered, i.e.,
aligned with each other within a fraction of a pixel. Each SAR image has a
unique radar coordinate system, defined by the satellite’s path and
position. For older satellites, alignment typically involves identifying
common features in the two images using their amplitudes, and then
aligning these features with each other. Modern Sentinel-1 satellites allow
for pure geometrical co-registration using precise satellite orbits. This is
achieved through inverse geocoding from a grid of reference points in
geographic coordinates for the images, and determining the aligning
transform between the master image and every repeating image using
robust linear regression. The defined transform is then applied to convert
all the images into the same master image radar coordinates, forming an
image stack. This approach allows different orbits and polarizations to be
analyzed separately and geocoded before the calculation of displacement
components or polarimetric analysis.

The pygmtsar.SBAS.stack_parallel function is your primary tool for co
registering the image stack.

Note: While Sentinel-1 SLC scenes do provide a set of ground control
points (GCP), their accuracy is quite low, approximately a couple of
kilometers. Therefore, they are only suitable for mapping a scene
boundary preview.

Radar Topography The conversion of a Digital Elevation Model (DEM)
from a geodetic coordinate system (latitude/longitude) to a radar
coordinate grid—a process known as radar coding or inverse geocoding—
is an essential step in the processing pipeline. Initially, the DEM in the
radar coordinate system can be used to simulate the radar phase for each

pixel. This phase is related to the topography and viewing geometry of the
radar system. This simulation forms a “flat earth” phase, which is
subtracted from the interferogram to remove the topographic effect. As a
result, it enables the study of deformation or other changes on the earth’s
surface. Secondly, it allows the production of geocoding matrices to
convert land masks and other geographic grids into radar coordinates, as
well as converting InSAR results into geographic coordinates.

The pygmtsar.SBAS.topo_ra_parallel function is used to perform these
radar topography calculations.

Interferogram The interferogram is formed by cross-multiplying the two
complex SAR images and taking the phase of the result. This step requires
the removal of the Doppler effect and topographic phase. The remaining
phase difference at each point in the image is proportional to the change in
travel time between the ground and the satellite along the line-of-sight
direction. Under ideal circumstances, this travel time is linearly
proportional when atmospheric conditions remain the same. However,
real-world conditions such as atmospheric turbulence and clouds can
affect it. Large movements are easiest to detect as they result in many so-
called fringes. The application of a Gaussian filter with a default cut-off
wavelength of 200m and modified adaptive Goldstein filters with a
coherence-driven alpha parameter in a default window size of 32 pixels
aids in better fringe shape detection. Be aware, though, that these
significantly affect image resolution, and small objects and changes can be
completely missed or biased. To reduce the output interferogram size, a
user-defined function can be applied. The example notebooks use an
averaging function that realizes noise-reducing multi-looking.

The pygmtsar.SBAS.intf_parallel function is available to facilitate your
interferogram formation tasks.

Subswaths The separate processing of multiple Sentinel-1 subswaths
should be followed by their merging into one grid after the interferogram
formation. This step is not necessary for single subswath processing and
can be omitted in such cases. In addition to merging subswaths, a merged
radar topography grid is also produced.

For all your subswath merging needs, turn to the
pygmtsar.SBAS.merge_parallel function.

Direct and Inverse Direct geocoding refers to the transformation of an
image from radar coordinates to geographic coordinates, while inverse
geocoding involves transforming a grid from geographic coordinates to
radar coordinates. PyGMTSAR enables fast on-the-fly geocoding, relying
on two geocoding matrices (direct and inverse) for simple pixel
permutations. This allows conversion of a geographic coordinate grid like
a land mask to the radar coordinate grid for unwrapping, and vice versa
for export.

For creating geocoding matrices, you can use the
pygmtsar.SBAS.geocode_parallel function.

Note: It’s recommended to use the same resolutions for the interferogram
and DEM for best accuracy because the conversion is a one-to-one
process, where every radar coordinate pixel corresponds to a single
geographic pixel. In cases where every DEM grid pixel includes a set of
radar grid pixels, only one pixel is used, which effectively results in

unwanted decimation. Conversely, when multiple DEM pixels correspond
to a single radar coordinate pixel, the DEM spacing is too precise and
could be reduced without loss of accuracy.

Phase The interferogram is a “wrapped” phase image, in the sense that
phase values are cyclic with a period of 2n. Unwrapping this phase is the
process of recovering the true phase values. This is achieved with the use
of the SNAPHU binary tool. PyGMTSAR offers a user-friendly Python
wrapper to define custom SNAPHU parameters, validate results, and
process output messages. Both single-tile and tiled unwrapping methods
are supported.

Use the pygmtsar.SBAS.unwrap_parallel function for the unwrapping
process.

Phase The unwrapped phase is a complex mixture of ground
deformations, atmospheric effects, and linear ramps due to orbit error,
among other things. Due to the lack of information about the absolute
phases on the source wrapped interferogram, the unwrapped phase is
offset by an arbitrary number of 2n shifts. This means that the unwrapped
phases, in their raw form, are not suitable for displacement calculations.
The process of detrending is required to remove the unwanted components
from the phase to isolate ground deformation. PyGMTSAR offers two
ways to perform detrending: in the spatial domain and the spatial
frequency domain. The well-established spatial domain detrending is
based on linear regression to fit and remove coordinates and topography
and the product of coordinates and topography. Frequency domain
detrending employs band-pass Gaussian filtering to achieve similar goals.
Detrending can be omitted when observing significant surface movement
and atmospheric effects are relatively small.

Use the pygmtsar.SBAS.detrend_parallel function for your detrending
requirements.

Line-of-Sight (LOS) Displacement The unwrapped phase can be
converted into a displacement map, which demonstrates the ground
deformation occurring between the two radar image captures. This
transformation is usually expressed in terms of the change in distance
along the satellite’s line-of-sight (LOS). This conversion can be applied to
both radar coordinates and geographic coordinate grids.

Use the pygmtsar.SBAS.los_displacement_mm function to calculate LOS
displacement in millimeters from the continuous phase given in radians.

Displacement The LOS displacements calculated are tied to satellite
positions and are not comparable between two orbits. To compute vertical
and east-west displacement components, the incidence angle grid is
computed and known conversion formulas are used. It is important to note
that PyGMTSAR uses the complete grid, not just the average incidence
angle. Due to the geometry of the Sentinel-1 satellites’ orbits, the
calculation of the north-south component is significantly less accurate and
therefore not provided. By default, PyGMTSAR calculates the projections
in geographic coordinates, suggesting that these steps should be
performed at the end of an InSAR analysis.

Make use of the pygmtsar.SBAS.vertical_displacement_mm and
pygmtsar.SBAS.eastwest_displacement_mm functions to compute
projections in millimeters from continuous phase in radians.

Time-Series When more than two radar images are available for the same
location, interferograms can be generated for many image pairs (by date)
to form overlapping displacement maps. To determine the most probable
deformation time series, PyGMTSAR supports both correlation-weighted
and non-weighted least squares calculations. The result is a displacement
map for each image (by date), derived from the displacements of the
interferogram pairs (by date pairs). This processing greatly minimizes
atmospheric delay effects, which are neutralized in sequential pairs of
interferograms.

For detecting displacement time series, utilize the
pygmtsar.SBAS.sbas_parallel or pygmtsar.SBAS.lstsq_parallel functions.

Trend Decomposing seasonal and long-term trends enables the detection
of phenomena like seasonal aquifer movements, long-term changes, and
more. PyGMTSAR employs the widely-used Seasonal-Trend
decomposition using LOESS (STL) technique, renowned for its
robustness in detecting trends amidst noisy data. Even when detrending
and SBAS analyses combined are unable to produce clean displacement
time series, STL decomposition is typically successful. Note that this
feature is not demonstrated in the example Jupyter notebooks on Google
Colab.

Rely on the pygmtsar.SBAS.stl_parallel function for robust trend
decomposition.

NetCDF and VTK Upon completion, interferograms, displacement maps,
and time series can be exported to NetCDF format. This format is
compatible with common GIS software such as QGIS and GDAL. It’s
worth noting that NetCDF effectively replaces GeoTIFF files in terms of

processing efficiency, rendering the generation of GeoTIFF files
unnecessary, although it remains an option. Additionally, VTK export is
supported to create files for 3D and 4D analysis and visualizations.
However, this feature isn’t demonstrated in the example Jupyter
notebooks on Google Colab.

To expedite your export process, utilize the xarray.to_netcdf and
pygmtsar.NCubeVTK.ImageOnTopography functions. For displaying
progress indicators during NetCDF exporting, consider using the

The steps listed above serve as key functional units in constructing a
comprehensive InSAR processing pipeline. Each step is designed to be
highly customizable, allowing you to seamlessly integrate your unique
code as necessary to tailor the process to your specific project
requirements. The results generated can be exported in widely compatible
formats such as NetCDF and VTK, enabling post-processing and review
in GIS software like QGIS. Moreover, dynamic 3D visualization of the
results can be achieved using tools like ParaView. This streamlined and
adaptable process ensures that PyGMTSAR is widely applicable across
diverse InSAR projects.

Troubleshooting and FAQs

In this chapter, we’ll address some common issues and questions users
might encounter while using PyGMTSAR. This section is not exhaustive
and primarily serves as a starting point for troubleshooting. For more in
depth inquiries, the project’s GitHub Issues page is a valuable resource,
particularly the resolved (closed) tickets. PyGMTSAR is complex
software as it implements a multitude of modern and well-established
algorithms using advanced numerical calculations and machine learning
approaches across various environments.

Most of the time, PyGMTSAR works flawlessly—almost like magic.
However, on rare occasions, the black magic of technical bugs can affect
us. These issues can be related to platform-specific changes, such as
backward-incompatible upgrades on Google Colab, as experienced in
early 2023. In such instances, some time may be required to identify and
resolve platform-related issues. This is all part of the ongoing commitment
to maintaining and improving the functionality and usability of
PyGMTSAR.

Q: I’m having trouble running PyGMTSAR on Google Colab. What
should I do?

A: First, ensure you select the default Google Colab environment. GPU-
powered environments can be limited in RAM and disk space. Ensure
your internet connection is stable, as interruptions can cause issues.

For more specific problems, the GitHub Issues page is a useful resource.

Q: I’m having trouble running PyGMTSAR in a Docker container.
What should I do?

A: Check if your Docker environment meets all the prerequisites and that
you’ve followed the Docker installation and setup instructions correctly.
Ensure your Docker container has adequate resources (RAM, CPU,
storage) to run PyGMTSAR. If the problem persists, consider seeking
assistance from the GitHub Issues page.

Q: I’m having trouble running PyGMTSAR installed on my
computer. What should I do?

A: Ensure you have installed and properly configured the latest versions
of GMTSAR, SNAPHU, and PyGMTSAR software. Verify that all
dependencies are installed correctly and are compatible with PyGMTSAR.

Up-to-date installation scripts are available in the project’s GitHub
continuous integration (CI) tests directory for MacOS and Linux Ubuntu.
Additionally, the Dockerfiles directory contains the latest installation
scripts for Linux Ubuntu.

If you continue to experience problems, consider seeking help on the
project’s GitHub Issues page.

Q: I’m experiencing errors during processing. What should I do?

A: PyGMTSAR generates error messages to help diagnose issues. Read
any error messages you receive during processing carefully. They often
include information that can aid in identifying the problem. Also,
PyGMTSAR’s parallel functions come with non-parallel counterparts and
arguments for enabling debug output. If you can’t resolve the issue, search
for the error message on the project’s GitHub Issues page to see if others
have encountered and solved the same issue.

Q: What should I do if I find a bug in PyGMTSAR?

A: If you believe you’ve found a bug in PyGMTSAR, please report it via
the project’s GitHub Issues page. Be sure to provide a detailed description
of the issue, steps to reproduce it, and any error messages you received.
This will help the maintainer and community address the issue more
effectively.

Q: How can I stay updated with changes or new features in
PyGMTSAR?

A: Google Colab examples install the latest PyGMTSAR version for
every run, ensuring you always have access to the most recent features.
Docker images, on the other hand, provide a well-tested and stable
environment, so there might not be any new features available, and the
existing examples work exactly the same for every run. You can modify
this pre-defined behavior if needed. Set the exact PyGMTSAR library
version to be installed in Google Colab notebooks for a fixed and stable
environment, or upgrade the pre-installed PyGMTSAR version in Docker
containers to access the most recent features.

Q: Where can I find the most recent information about PyGMTSAR?

A: PyGMTSAR maintains various channels for updates, catering to
different interests:

For Developers: If you’re interested in code updates or wish to contribute,
visit the PyGMTSAR project on This is the hub for development and issue
tracking, providing the latest updates on code modifications and project
enhancements.
For Real-World Applications: If you’re curious about how PyGMTSAR is
used in real-world applications, follow the author on The posts often
contain updates on PyGMTSAR applications and related satellite
interferometry developments.
For Exclusive Insights: If you’re looking for detailed insights and case
studies on PyGMTSAR and satellite interferometry, consider subscribing
to the authors’ It provides in-depth content not yet widely published,
granting you early access to PyGMTSAR insights, case studies, and more.

Remember to check back frequently, as the information in these sources is
updated regularly.

Q: Can I use PyGMTSAR for my commercial projects?

A: Yes, PyGMTSAR can be used for commercial projects. However,
always ensure you comply with the terms of the license under which
PyGMTSAR is distributed.

Q: Can I embed PyGMTSAR in my commercial software?

A: Yes, you can. The PyGMTSAR Python library is licensed under the
BSD License (BSD-3-Clause), which is a permissive license. This allows
you to use the library in commercial software provided that you adhere to
the conditions of the BSD-3-Clause license. Please consult the terms of
this license for more details.

Q: Where can I find commercial support and order additional
features development?

A: You can reach out to the author of PyGMTSAR on Upwork for
commercial support and additional feature development. This platform
provides a structured environment for hiring professionals and managing
projects.

Q: Is the PyGMTSAR code free of any potential conflicts of interest?

A: Yes, the PyGMTSAR Python library is developed by a single
developer and does not incorporate any third-party code. Initially, the
PyGMTSAR Github repository was cloned from the open-source
GMTSAR This step was necessitated by modifications the author made to
the GMTSAR project code to enable its integration with PyGMTSAR. As
it stands, these changes have all been merged into the GMTSAR
repository, allowing PyGMTSAR to work seamlessly with the upstream
GMTSAR tools. For the sake of reliability, PyGMTSAR continues to
maintain the modified GMTSAR sources in a separate branch.

Moreover, GMTSAR incorporates open-source SNAPHU project meaning
that an installation of GMTSAR also provides access to SNAPHU tools.
In its operations, PyGMTSAR calls GMTSAR and SNAPHU binaries as
separate processes, in line with the respective project licenses.

PyGMTSAR relies on numerous Python numerical processing and
scientific libraries. These libraries have permissive licenses that are
compatible with PyGMTSAR’s license and allow for this type of usage.
As is standard practice, all the external libraries used are listed in
PyGMTSAR’s setup file.

To sum up, the source code of PyGMTSAR directly originates from the
author. The repository’s commit history validates that every line of code in
PyGMTSAR has been written by the developer. As soon as PyGMTSAR
becomes self-sufficient with all necessary replacements for GMTSAR
tools, it will be moved to an independent repository.

Books in the PyGMTSAR Tutorial Series

An The book provides an in-depth introduction to the interactive Jupyter
notebook examples of PyGMTSAR, available on both Google Colab and
Docker images. It covers software architecture, the concept of lazy and
delayed computations, outlines the InSAR processing and the related
workflow steps available in PyGMTSAR. [Published]

Functions This reference presents a catalog of all user-level PyGMTSAR
functions. Each function is organized by functionality and comes with
arguments, explanations, and usage examples for better understanding. [In
Progress]

An The handbook guides readers through the steps to produce a single
interferogram, its continuous phase and displacement maps. It shows how
to compute and plot various types of maps and how to export them in
different formats for further analysis and visualization. [Planned]

Time-Series The manual covers Persistent Scatterers (PS), Small Baseline
Subset (SBAS) time-series, and Seasonal-Trend Decomposition using
LOESS (STL) analyses within PyGMTSAR. It outlines constructing and
analyzing a series of interferograms, generating displacement time series,
and offers guidance on exporting the output velocities and trends in
various formats. [Planned]

This guide details PyGMTSAR internals, offering theoretical knowledge
and practical tips for mastering InSAR principles. It uncovers the
underlying patterns of core InSAR algorithms and their implementations,
aiding you in extracting valuable information even from the most
challenging projects. It serves as your bridge between academic sciences,
high-performance computing, and real-world InSAR cases. [Planned]

About the Author

My name is Aleksei (Alexey) Pechnikov, a data scientist and software
engineer with a Master’s degree in Radio Physics and Electronics. I have
specialized in forward and inverse modeling for non-linear optics,
interferometry, and holography. My work in these areas earned me the
first prize in the All-Russian Physics competition in 2004.

With over 20 years of experience, I have engaged in various projects for
government agencies, universities, and multinational corporations like LG
Corp and Google Inc. I also have teaching experience at the university
level, including postgraduate students.

For many years now, I have been living in Thailand with my family,
enjoying the country while pursuing my professional endeavors.

I publish articles and posts on LinkedIn, Medium, and Patreon. These
platforms allow me to connect with readers and fellow professionals for
discussions on concepts, findings, and collaboration opportunities.

For over 9 years, I have been successfully completing projects on
Upwork, a renowned freelance platform, working on a variety of
challenging scientific and industrial projects. I have also provided long
term support for some of them. My work is characterized by its
complexity, efficiency, excellent communication, and effective time
management.

Connect with me on the following platforms:

YouTube
GitHub
DockerHub

LinkedIn
Medium
Patreon
Upwork

	PyGMTSAK:

	Sentinel-1 Python InSAR

	Seismology

	Volcanology

	Hydrology

	Infrastructure Monitoring

	Installing Docker Desktop

	How to Register on DockerHub

	How to Download the PyGMTSAR Docker Image

	Steps to Run the PyGMTSAR Docker Image

	Initializing the Dask Scheduler

	Performing Lazy or Delayed Computations

	Initializing the SBAS Object

	Reading and Writing GeoTIFF

	Writing VTK

	Q: I’m having trouble running PyGMTSAR on Google Colab. What should I do?

	Q: I’m having trouble running PyGMTSAR in a Docker container. What should I do?

	Q: I’m having trouble running PyGMTSAR installed on my computer. What should I do?

	Q: I’m experiencing errors during processing. What should I do?

	Q: What should I do if I find a bug in PyGMTSAR?

	Q: How can I stay updated with changes or new features in PyGMTSAR?

	Q: Where can I find the most recent information about PyGMTSAR?

	Q: Can I use PyGMTSAR for my commercial projects?

	Q: Can I embed PyGMTSAR in my commercial software?

	Q: Where can I find commercial support and order additional features development?

