

Mastering Scala

Scala is a multi-paradigm, general-purpose scripting language. It is a completely
object-oriented programming language that supports a functional programming
technique. This book is a detailed guide for beginners to understand Scala.

Concise and easy to understand, Mastering Scala: A Beginner’s Guide covers a com-
prehensive understanding of Scala and its components, libraries, and advance con-
cepts to help readers quickly advance with the necessary information.

This book provides functional approaches for solving queries using Scala. The fun-
damental principles of Scala explained here are helpful to beginner and intermedi-
ate users interested in learning this highly technical and diverse language.

Key Features:

• Follows a hands-on approach and offers practical lessons and tutorials
related to Scala

• Includes detailed tutorials meant for beginners to Scala
• Discusses Scala in-depth to help build robust knowledge

About the Series

The Mastering Computer Science covers a wide range of topics, spanning
programming languages as well as modern-day technologies and frame-
works. The series has a special focus on beginner-level content, and is pre-
sented in an easy-to-understand manner, comprising:

• Crystal-clear text, spanning various topics sorted by relevance.

• Special focus on practical exercises, with numerous code samples
and programs.

• A guided approach to programming, with step-by-step tutorials for
the absolute beginners.

• Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead of indus-
try-prevalent coding paradigm,

• A wide range of references and resources, to help both beginner and
intermediate-level developers gain the most out of the books.

Mastering Computer Science series of books start from the core concepts,
and then quickly move on to industry-standard coding practices, to help
learners gain efficient and crucial skills in as little time as possible. The
books assume no prior knowledge of coding, so even the absolute newbie
coders can benefit from this series.

Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator having over a decade of experience in the computing
field.

For more information about this series, please visit: https://www.rout-
ledge.com/Mastering-Computer-Science/book-series/MCS

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS

Mastering Scala
A Beginner’s Guide

Edited by
Sufyan bin Uzayr

First Edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering Scala : a beginner’s guide / edited by Sufyan Bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2024. | Series:
Mastering computer science | Includes bibliographical references and index.
Identifiers: LCCN 2023017681 (print) | LCCN 2023017682 (ebook) | ISBN
9781032415291 (hbk) | ISBN 9781032415277 (pbk) | ISBN 9781003358527 (ebk)
Subjects: LCSH: Scala (Computer program language) | Object-oriented
programming (Computer science) | Computer programming.
Classification: LCC QA76.73.S28 M37 2024 (print) | LCC QA76.73.S28
(ebook) | DDC 005.13/3--dc23/eng/20230601
LC record available at https://lccn.loc.gov/2023017681
LC ebook record available at https://lccn.loc.gov/2023017682

ISBN: 9781032415291 (hbk)
ISBN: 9781032415277 (pbk)
ISBN: 9781003358527 (ebk)

DOI: 10.1201/9781003358527

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2023017681
https://lccn.loc.gov/2023017682
https://doi.org/10.1201/9781003358527

For Mom

http://www.taylorandfrancis.com

vii

Contents

About the Editor, xv

Acknowledgments, xvi

Zeba Academy – Mastering Computer Science, xvii

Chapter 1 ◾ Scala Overview 1
SCALA’S EVOLUTION 1

VERSIONS OF SCALA 2

SCALA’S POPULARITY 2

WHY USE SCALA? 3

SCALA’S TOP 10 USES 4

SCALA’S ADVANTAGES OVER JAVA 6

START WITH SCALA PROGRAMMING 8

SCALA FEATURES 9

ADVANTAGES 10

DISADVANTAGES 10

APPLICATIONS 11

AN INTRIGUING FACT ABOUT SCALA 11

SETTING UP THE SCALA ENVIRONMENT 13

SCALA INSTALLATION IN LINUX 15

VERIFYING JAVA PACKAGES 16

SCALA DOWNLOAD AND INSTALLATION 16

Scala Download 16
WHAT CAUSES SCALA TO BE SCALABLE? 17

viii ◾ Contents

HELLO WORLD IN SCALA 19

HOW TO EXECUTE A SCALA PROGRAM 19

UNIFORM ACCESS PRINCIPLE IN SCALA 20

SCALA VS. JAVA 22

PYTHON VS. SCALA 23

THE DISTINCTION BETWEEN KOTLIN AND SCALA 24

REPL IN SCALA 26

REPL IMPLEMENTATION 26

SOME ADDITIONAL IMPORTANT REPL CHARACTERISTICS 27

Chapter 2 ◾ Scala Basics 28
KEYWORDS IN SCALA 28

IDENTIFIERS IN SCALA 30

JAVA SCALA DEFINING RULES 31

SCALA IDENTIFIER TYPES 32

SCALA DATA TYPES 34

LITERALS IN SCALA 36

SCALA VARIABLES 37

MUTABLE VARIABLE 37

IMMUTABLE VARIABLES 38

SCALA VARIABLE NAMING RULES 39

SCALA VARIABLE TYPE INFERENCE 39

println, printf, and readLine IN SCALA 39

PATTERN MATCHING IN SCALA 41

IMPORTANT NOTE 43

SCALA COMMENTS 44

SINGLELINE COMMENTS 44

MULTILINE COMMENTS 45

DOCUMENTATION COMMENTS 45

SCALA COMMAND LINE ARGUMENT 46

SCALA ENUMERATION 48

VARIABLE SCOPE IN SCALA 51

Contents ◾ ix

FIELDS 51

METHOD PARAMETERS 52

LOCAL VARIABLES 53

RANGES IN SCALA 54

Operations Performed on Ranges 55

Chapter 3 ◾ Scala Control Statements 58
MAKING DECISIONS (if, if-else, Nested if-else, if-else if)
IN SCALA 58

if Statement 59

if-else Statement 61

Nested if-else Statement 62

if-else if Ladder 66

LOOPS IN SCALA (while, do..while, for, Nested Loops) 68

while Loop 69

Infinite while Loop 70

do..while Loop 70

for Loop 71

Nested Loops 72

SCALA FOR LOOP 73

for Loop Using to 73

for Loop Using until 74

MULTIPLE VALUES IN for-Loop 74

USING for-loop WITH COLLECTIONS 75

USING for-loop WITH filters 76

USING for-loop WITH yield 77

SCALA while AND do while Loop 77

while Loop 78

do while Loop 79

SCALA BREAK STATEMENT 81

BREAK IN Nested Loop 82

LITERALS IN SCALA 84

x ◾ Contents

LITERALS TYPES 84

yield KEYWORD IN SCALA 89

TYPE INFERENCE IN SCALA 91

SCALA FUNCTION TYPE INFERENCE 92

Chapter 4 ◾ Scala OOP Concepts 96
SCALA CLASS AND OBJECT 97

Class 97

Class Declaration 97
OBJECTS 98

Defining Objects (Also Called Instantiating a Class) 99
Creating an Object 100
Anonymous Object 101

SCALA INNER CLASS 101

How to Make a Class within an Object and an Object
Inside a Class 103

SCALA INHERITANCE 105

HOW TO UTILIZE INHERITANCE IN SCALA 105

INHERITANCE TYPE 106

SCALA OPERATORS 112

ARITHMETIC OPERATORS 113

RELATIONAL OPERATORS 114

LOGICAL OPERATORS 115

ASSIGNMENT OPERATORS 116

BITWISE OPERATORS 119

SCALA OPERATORS PRECEDENCE 121

SCALA ABSTRACT CLASSES 122

When Should We Use Abstract Class in Scala? 128
SCALA COMPANION OBJECTS AND SINGLETON 129

SINGLETON OBJECT 129

COMPANION OBJECT 131

SCALA GENERIC CLASSES 132

Contents ◾ xi

SCALA ACCESS MODIFIERS 135

SCALA CONSTRUCTORS 137

PRIMARY CONSTRUCTOR 137

AUXILIARY CONSTRUCTOR 141

PRIMARY CONSTRUCTOR IN SCALA 142

AUXILIARY CONSTRUCTOR IN SCALA 146

IN SCALA, CALLING A SUPERCLASS CONSTRUCTOR 149

SCALA CLASS EXTENDING 153

CASECLASS AND CASEOBJECT IN SCALA 157

CASEOBJECT EXPLANATION 157

POLYMORPHISM SCALA 160

VALUE CLASSES IN SCALA 163

FIELD OVERRIDING IN SCALA 165

Overriding Rules for the Field 165
ABSTRACT TYPE MEMBERS IN SCALA 170

SCALA TYPE CASTING 173

SCALA OBJECT CASTING 174

SCALA OBJECT EQUALITY 175

MULTITHREADING IN SCALA 178

WHAT EXACTLY ARE THREADS IN SCALA? 178

Thread Creation by Extending Thread Class 178
Thread Creation by Extending the Runnable Interface 179

THREAD LIFE CYCLE IN SCALA 180

SCALA FINAL 180

SCALA THIS KEYWORD 183

CONTROLLING VISIBILITY OF CONSTRUCTOR

FIELDS IN SCALA 184

Chapter 5 ◾ Scala String and Packages 186
SCALA STRING 186

SCALA STRING CREATION 187

DETERMINE THE LENGTH OF THE STRING 187

xii ◾ Contents

CONCATENATING STRINGS IN SCALA 188

CREATING FORMAT STRING 189

STRING INTERPOLATION IN SCALA 190

STRING INTERPOLATOR TYPES 191

StringContext IN SCALA 193

SCALA REGULAR EXPRESSIONS 195

Scala Regular Expression Syntax 197
SCALA StringBuilder 199

The StringBuilder Class Performs Operations 199
SCALA STRING CONCATENATION 204

SCALA PACKAGES 205

PACKAGE DECLARATION 205

HOW PACKAGE FUNCTIONS 206

ADDING PACKAGE MEMBERS 206

USING PACKAGES 207

PACKAGE OBJECTS IN SCALA 208

SCALA CHAINED PACKAGE CLAUSES 210

SCALA FILE HANDLING 211

Chapter 6 ◾ Scala Methods 215
SCALA FUNCTIONS – BASICS 215

DECLARATION AND DEFINITION OF FUNCTIONS 216

CALLING A FUNCTION 217

EXAMPLES OF CURRYING FUNCTIONS IN SCALA 217

Another Method for Declaring a Currying Function 218
Partial Application Currying Function 219

SCALA ANONYMOUS FUNCTIONS 221

ANONYMOUS PARAMETERIZED FUNCTIONS 221

Without parameters, anonymous functions 222
SCALA HIGHER ORDER FUNCTIONS 223

NAMED ARGUMENTS IN SCALA 225

Contents ◾ xiii

FUNCTIONS CALL-BY-NAME IN SCALA 227

Call-by-Value 228
Call-by-Name 229

CLOSURES IN SCALA 231

NESTED FUNCTIONS IN SCALA 233

SINGLE NESTED FUNCTION 233

MULTIPLE NESTED FUNCTION 235

SCALA PARAMETERLESS METHOD 236

SCALA RECURSION 238

TAIL RECURSION 240

SCALA TAIL RECURSION 241

PARTIALLY APPLIED FUNCTIONS IN SCALA 244

SCALA METHOD OVERLOADING 248

Why Do We Require Method Overloading? 248
Different Approaches to Overloading Methods 248
What Happens When the Method Signature and Return
Type Are the Same? 251

SCALA METHOD OVERRIDING 252

When Should We Use Method Overriding? 252
Method Overriding Guidelines 254

OVERRIDING VS OVERLOADING 257

WHY IS METHOD OVERRIDING REQUIRED? 257

METHOD INVOCATION IN SCALA 258

FORMAT AND FORMATTED METHOD IN SCALA 260

Format Method 261
Formatted Method 262

SCALA CONTROLLING METHOD SCOPE 263

Public Scope 263
Private Scope 264
Protected Scope 265
Object Private/Protected Scope 266
Package Specific 267

xiv ◾ Contents

SCALA REPEATED METHOD PARAMETERS 268

SCALA PARTIAL FUNCTIONS 271

Partial Function Definition Methods 272
SCALA LAMBDA EXPRESSION 276

Making Use of Lambda Expressions 276
SCALA VARARGS 280

SCALA FUNCTION COMPOSITION 282

IN SCALA, CALL A METHOD ON A SUPERsCLASS 285

SCALA IMPLICIT CONVERSIONS 287

Chapter 7 ◾ Scala Exceptions 291
EXCEPTION HANDLING IN SCALA 291

HIERARCHY OF EXCEPTION 291

SCALA EXCEPTIONS 292

What Is the Scala Exception? 292
THROWING EXCEPTIONS 293

TRY/CATCH CONSTRUCT 293

THE FINALLY CLAUSE 294

SCALA THROW KEYWORD 295

SCALA TRY-CATCH EXCEPTIONS 297

SCALA FINALLY EXCEPTIONS 299

CONTROL FLOW IN TRY-FINALLY 300

TRY-CATCH-FINALLY CLAUSE 302

SCALA EITHER 303

APPRAISAL, 306

BIBLIOGRAPHY, 317

INDEX, 326

xv

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur having over a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com

https://sufyanism.com

xvi

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to:

• My parents, for everything they have done for me.

• The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Simran Rao, for offering great amounts of help and assistance during
the book-writing process.

• The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

• Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

• Typesetters, cover designers, printers, and everyone else, for their
part in the development of this book.

• All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

• The programming community, in general, and the web development
community, in particular, for all their hard work and efforts.

Sufyan bin Uzayr

xvii

Zeba Academy –
Mastering Computer
Science

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr, consisting of:

• Divya Sachdeva

• Jaskiran Kaur

• Simran Rao

• Aruqqa Khateib

• Suleymen Fez

• Ibbi Yasmin

• Alexander Izbassar

Zeba Academy is an EdTech venture that develops courses and content for
learners primarily in STEM fields and offers educational consulting and
mentorship to learners and educators worldwide.

Additionally, Zeba Academy is actively engaged in running IT schools in
the CIS countries and is currently working in partnership with numerous
universities and institutions.

For more info, please visit https://zeba.academy

https://zeba.academy

http://www.taylorandfrancis.com

1DOI: 10.1201/9781003358527-1

C h a p t e r 1

Scala Overview

IN THIS CHAPTER

 ➢ Introduction and History

 ➢ Setting Up the Environment in Scala

 ➢ Hello World in Scala

 ➢ Uniform Access Principle

Scala is a multi-paradigm, general-purpose scripting language. It is a com-
pletely object-oriented programming (OOP) language that supports the
functional programming (FP) technique. Programs written in Scala may
be translated into bytecodes and run on the Java Virtual Machine (JVM).
Scalable language is referred to as Scala. Runtimes for JavaScript are also
accessible. Java and other programming languages like Lisp, Haskell,
Pizza, and others have had a significant effect on Scala.

SCALA’S EVOLUTION
Scala was created by Martin Odersky, a German computer scientist and
professor of programming techniques at École Polytechnique Fédérale de
Lausanne (EPFL) in Switzerland. Martin Odersky also co-created Javac,
Generic Java, and the EPFL Funnel programming language. He began
designing the Scala in 2001. On the Java platform, Scala’s original version
was made available to the public in 2004. In June 2004, Scala was upgraded
for the .Net Framework. The second version, v2.0, came out shortly after in
2006. The ScriptBowl competition at the 2012 JavaOne conference was won

https://doi.org/10.1201/9781003358527-1

2 ◾ Mastering Scala

by Scala. As of June 2012, Scala no longer supports the .Net Framework.
The most recent version of Scala is 2.12.6, which was released on April 27,
2018.

VERSIONS OF SCALA

Version Released Date

2.0 March 12, 2006
2.1.8 August 23, 2006
2.3.0 November 23, 2006
2.4.0 March 9, 2007
2.5.0 May 2, 2007
2.6.0 July 27, 2007
2.7.0 February 7, 2008
2.8.0 July 14, 2010
2.9.0 May 12, 2011
2.10 January 4, 2013
2.10.2 June 6, 2013
2.10.3 October 1, 2013
2.10.4 March 18, 2014
2.10.5 March 5, 2015
2.11.0 April 21, 2014
2.11.1 May 20, 2014
2.11.2 July 22, 2014
2.11.4 October 31, 2014
2.11.5 January 8, 2015
2.11.6 March 5, 2015
2.11.7 June 23, 2015
2.11.8 March 8, 2016
2.12.1 December 5, 2016

SCALA’S POPULARITY
• Twitter revealed that it has converted a significant amount

of its backend from Ruby to Scala and planned to convert the
remainder.

• Specific teams at Apple Inc. employ Scala, Java, and the Play
framework.

• The New York Times’ internal content management system, Blackbeard,
was constructed using Scala, Akka, and Play Framework.

Scala Overview ◾ 3

• Google teams employ Scala mostly as a result of acquisitions like
Firebase and Nest.

• Scala is used by Walmart Canada’s backend platform.

WHY USE SCALA?
The popularity of Scala among programmers is influenced by a number of
variables. The advantages of using Scala are as follows:

• Simple to start with: Scala is a high-level programming language that
is comparable to well-known ones like Java, C, and C++. Scala learn-
ing becomes incredibly easy for everyone as a result. For Java pro-
grammerslearning Scala is easier.

• Contains the best features: Scala enhances usability, scalability, and
productivity by incorporating features from other languages such as
C, C++, Java, etc.

• Java and Scala are closely integrated: The source code for Scala
was written such that its compiler could understand Java classes.
Additionally, its compiler is capable of using Java libraries, frame-
works, and other tools. Scala programs can run on the JVM after
compilation.

• Web-based and desktop application development: It offers support
for web apps by compiling JavaScript. Similarly, it is possible to com-
pile desktop apps to JVM bytecode.

• Utilized by major corporations: The majority of well-known
corporations, including Apple, Twitter, Walmart, Google, etc.,
migrate the majority of their code from other languages to Scala
because it is highly scalable and suitable for usage in backend
operations.

People frequently mistake Scala for a Java extension. But this is not the
case. It is just fully compatible with Java. After successful compilation,
Scala programs are translated into .class files containing Java Byte Code
and may subsequently be launched on JVM.

4 ◾ Mastering Scala

SCALA’S TOP 10 USES
The following are the top ten uses:

1. A multi-paradigm language: Scala is a worthwhile language since
it supports object-oriented and functional programming. It develops
imperative, logical, functional, and OOP abilities. We may efficiently
study both functional and OOP simultaneously. Scala permits the
definition of types with both data and behavior characteristics. Scala
functions are a first class that permits passing values and enables
anonymous functions. This is one of the primary reasons Scala has
become so successful in the marketplace. It may use in conjunction
with Java.

2. Scala runs on Java Virtual Machine: It is up to the Scala user to
decide whether or not to utilize Java. This Java interoperability
capability is one of Scala’s most excellent alternatives. This allows
developers to use all Java libraries straight from Scala code. It is also
advantageous for Java engineers since they may use their talents in
Scala relatively easily. It is also possible to invoke Scala code from
Java, allowing users to write any portion of a program in Scala and
the remainder in Java. This functionality allows users to develop
code in Java and Scala and operate with both languages.

3. Patterns are incorporated into the language: Scala was created
in a Swiss university to create new advances in studying computer
languages like Java. This language already incorporates several best
practices and design principles. In Java, variables are immutable and
readily overloaded. In addition, it allows using new programming
languages, such as Python, Ruby, etc., to perform FP.

4. A language that communicates: Scala is, by nature, a more expres-
sive language than Java. Coding in Scala is more straightforward and
exciting for programmers who have previously learned Java.

5. Market demand is high: A developer must constantly be in demand.
The primary purpose or use of Scala is to improve economic devel-
opment and employment. Learning Scala will boost our marketabil-
ity and raise our demand. Scala is used by several firms, including
Twitter, LinkedIn, Foursquare, etc. Once we have mastered Scala,
we may quickly get the desired promotion. Due to its scalability, all

Scala Overview ◾ 5

investment banks and financial institutions will use Scala in the near
future. Several businesses discuss efficient Scala use techniques. It
will soon be the first Java substitute.

6. Language that is typed statically: A statically typed language pre-
vents errors in code and aids programmers in writing and debugging
correct code. In dynamic programming languages, faults are only
noticeable when a program is executed. Scala offers the advantages
of both static and dynamic programming languages. The language
seems dynamic but is mostly typed statically. Scala enables type
inference for variables and functions, which is superior to Java and
C# type inference. It also offers a compiler that makes extensive use
of type references.

7. Growing frameworks: Scala applications supply several libraries;
thus, they may utilize to develop numerous frameworks. Numerous
organizations are attempting to make Scala a mainstream language.
There are already several frameworks in existence, such as Lift and
Play. Akka is a concurrent Scala-based framework that is developed
as a toolkit and runtime for developing highly concurrent, distrib-
uted, and fault-tolerant systems. It also offers an improved platform
for event-driven applications running on JVM.

8. Creating a community: Scala is a rapidly expanding language,
and many programmers will soon join the Scala bandwagon. Even
developers who are familiar with Java are beginning to learn Scala.
Numerous new libraries and frameworks are being developed with
the use of Scala. Other IDEs under development accept Scala and
provide far more excellent support than Eclipse and IntelliJ. Scala is
also advantageous due to its inherently dynamic nature. Additionally,
it supports object-oriented and functional programming.

9. Precise syntax: Scala’s exact grammar provides an additional ben-
efit. Java has a lengthy syntax. Scala is simultaneously more read-
able and concise. Scala’s compiler, Scalac, may build and operate with
improved code, such as String(), equals(), etc.

10. Relatively simple to learn: Any functional language is tough to learn
for a Java programmer. Object-oriented functionality makes Scala
simple to use. Scala features clear syntax, decent libraries, excellent
online documentation, and widespread industrial use.

6 ◾ Mastering Scala

SCALA’S ADVANTAGES OVER JAVA

• Code simplicity and size: The most common pro-java argument is
that Java is incredibly straightforward and intuitive to learn. However,
the verbose nature of Java increases code size and frequently makes
it more difficult to understand. The Scala compiler, on the other side,
is smarter since it does not need an explicit declaration of things that
the compiler may deduce. Consider the “Hello Everyone” example.

// Java
public class HelloEveryone {
 public static void main(String[] args) {
 System.out.println("Hello Everyone");
 }
}
//scala
object HelloEveryone {
 def main(args: Array[String]): Unit = {
 println("Hello Everyone")
 }
}

Even in this simple instance, we can see how Scala eliminates the
need for redundant code. The same is true in complex circumstances.

public class Bus {
 private String type;

 public String getType() {
 return type;
 }

 public void setType(String name) {
 this.type = type;
 }
}

Scala makes this much easier.

class Bus {
 var type: String = _
}

Scala does not have the limits of OO conventions for implement-
ing our code, resulting in concise code. Fewer lines of code eventu-
ally result in increased testing and development speed.

Scala Overview ◾ 7

• Performance: Google conducted research many years ago compar-
ing C++, Java, Scala, and Go. The research revealed that Scala is
quicker than Java and Go when average developers write code with-
out excessive optimization consideration. The research used the
idiomatic default data structures in each language. This is because
they believe that developers are under time constraints and pro-
duce idiomatic code for the language utilizing approaches that are
simple and quick for developers.

According to several websites, Scala is quicker than Java. Several
programmers claim that Scala is 20% quicker than Java. Scala and
Java both run on JVM. Consequently, their code must compile into
bytecode before execution on JVM. However, the Scala compiler
enables tail call recursion as an efficient approach. The optimization
allows Scala code to be compiled more quickly than Java code.

• Typed statically: A statically typed language, such as Java, identifies
problems at build time and requires us to declare the variable type
before using it, whereas a dynamic language, such as Python, only
detects errors at runtime.

Scala is blessed with the finest of both worlds. It is heavily statisti-
cally coded yet has a dynamic vibe about it. The compiler guarantees
that a specific type Int value is utilized correctly throughout the pro-
gram and that nothing other than an Int may retain in that value’s
memory address during runtime. The Scala compiler makes exten-
sive use of type inference.

var c = 20

Scala’s type inference for variables and functions is far superior to
Java’s restricted type inference.

• Advanced structures: Scala’s syntax is quite close to that of Java.
Scala, however, has a lot more sophisticated structures than Java.
Scala, for example, offers case classes that represent immutable
value objects and sophisticated automated type inference. Because
of Scala’s highly organized nature, DSL is particularly popular. As
a result, programmers may alter Scala’s appearance by writing their
little sublanguage as necessary.

• Framework and community development: Scala’s ecosystem is con-
stantly expanding. Many big firms have begun to use Scala. Because
of its widespread usage, many excellent frameworks like Lift, Finch,
and Play exist.

8 ◾ Mastering Scala

Akka is a Scala-based concurrent framework well-known as a
toolkit and runtime for developing highly concurrent, distributed,
and fault-tolerant event-driven systems on the JVM. Because of its
excellent concurrency mechanism, developers choose Akka over
competitors.

START WITH SCALA PROGRAMMING

• Locating a compiler: Several online IDEs, such as Scala Fiddle
IDE and others, may run Scala applications without installing
anything.

• Programming in Scala: Because Scala is syntactically comparable
to other commonly used languages, it is easy to code and learn in
Scala. Scala programs may develop in any of the frequently used text
editors such as Notepad++, gedit, and so on. After developing the
program, save it with the extension .sc or .scala.

• For Windows and Linux: Before installing Scala on Windows
or Linux, we must have Java Development Kit (JDK) 1.8 or higher
installed on our machine. Because Scala requires Java 1.8 or above
to execute.

// Scala program to print Hello, Everyone by using
the object-oriented approach

// creation of object
object Everyone {

 // the main method
 def main(args: Array[String])
 {

 // prints Hello, Everyone
 println("Hello, Everyone")
 }
 }

• Comments: Comments are used to describe the code in the same
way as in Java, C, or C++. Compilers ignore and do not execute com-
ment items. Comments might be single or many lines long.

Scala Overview ◾ 9

• Single-line comments:

Syntax:

// Single-line-comment

• Multi-line comments:

Syntax:

/* Multi-line
Comments */

• Object Everyone: Object is the term that is used to construct objects.
The item is called “Everyone” in this case.

• def main(args: Array[String]): In Scala, the term def is used to
declare the function, and “main” is the name of the Main Method.
The command line parameters are represented by args: Array[String].

• println(“Hello, Everyone”): println is a Scala method that displays
a string on the console.

It should note that a functional technique may also be employed in
Scala projects. Some online IDEs do not support it.

SCALA FEATURES
Several characteristics distinguish it from other languages.

• Object-oriented: Since every value in Scala is an object, this pro-
gramming language is entirely object-oriented. In Scala, classes and
characteristics illustrate the behavior and type of objects.

• Functional: It is a FP language since each function is a value, and
each value is an object. It supports high-order functions, nested
functions, anonymous functions, and so on.

• Statically typed: Scala is statically typed, meaning that the process
of checking and enforcing type restrictions occurs at build time.
Scala, unlike other statically typed programming languages such as
C++, C, etc., does not need the user to provide redundant type infor-
mation. Most of the time, the user is not required to provide a type.

• Extensible: Scala is extensible in that new language constructs may
be introduced as libraries. Scala is developed for compatibility with
the JRE (Java Runtime Environment).

10 ◾ Mastering Scala

• Concurrent and synchronize processing: Scala enables users to
construct immutable code, simplifying parallelism (synchronize)
and concurrency.

• Run on JVM and able to execute Java code: Java and Scala share the
same runtime environment, the JVM, so that the user may transition
quickly from Java to Scala. The Scala compiler generates the applica-
tion into a .class file that contains executable Bytecode for JVM. Scala
can use all classes of the Java Standard Development Kit. The Java
classes may be customized with the aid of Scala.

ADVANTAGES

• Scala’s sophisticated characteristics allowed for superior code and
performance efficiency.

• Scala’s developments include tuples, macros, and functions.

• It includes object-oriented and functional programming, which
makes it a potent programming language.

• It is very scalable and hence offers superior support for backend
activities.

• It mitigates the greater risk associated with Java’s thread safety.

• The functional approach typically results in fewer lines of code and
defects, leading to increased productivity and quality.

• Scala computes expressions only when the program needs them due
to lazy evaluation.

• Scala lacks both static methods and variables. It employs the unique
object (class with one object in the source file).

• It also includes the idea of traits. The collection of abstract and non-
abstract methods that may compile into Java interfaces is known as
a trait.

DISADVANTAGES

• Occasionally, two techniques make Scala challenging to comprehend.

• Comparatively, there are fewer Scala developers available than Java
developers.

Scala Overview ◾ 11

• As it runs on JVM, it has no true-tail recursive optimization.

• Scala is an object-oriented computer program where each function is
a value and each value is an object.

APPLICATIONS

• It is mainly used for data analysis using spark.

• Utilized in the development of web apps and API.

• It facilitates the development of frameworks and libraries.

• Preferred for usage in backend processes to increase developer
efficiency.

• Scala may use for parallel batch processing.

AN INTRIGUING FACT ABOUT SCALA
Scala (pronounced “skah-lah”) is a computer language created by Martin
Odersky. Scala’s development began in 2001 at EPFL in Lausanne,
Switzerland. Scala was first made public in 2004 on the Java platform.
Scala is intended to be brief and solves Java’s shortcomings. Scala source
code is converted to Java byte code, then executed on a JVM 2.12.8, which
is the most recent version.

• Name: Scala is an abbreviation for Scalable Language.

• A Hybrid Language: A Mixed Language: Scala is an OOP and FP
hybrid. OOP is a programming paradigm built on the notion of
“objects,” which are data structures that hold data in the form of
fields and code in the form of procedures or methods. On the other
side, FP is a programming paradigm in which computer programs
are built with a structure and elements such that the evaluation of
mathematical functions is considered computation and prevents
changeable data and changing states. Scala is distinguished from
other programming languages by these two paradigms.

• Auto-inference: Scala uses auto-inference to infer type information.
The user only provides type information when it is required.

• Mutable and immutable variables: Scala allows us to declare any
variable as mutable or immutable. The term var indicates that a

12 ◾ Mastering Scala

variable is changeable, whereas the keyword val indicates that a vari-
able is immutable.

• No semicolon: In most current programming languages (C, C++,
Java, etc.), the semicolon serves as a separator and must be typed
after every statement. Scala, on the other hand, does not require a
semicolon after each statement. A newline character can use to sepa-
rate Scala statements.

• Import statements: Not all import statements must be written at the
program’s start. Scala classes can import at any time.

• Features of Scala: Scala incorporates characteristics of functional
programming languages such as Scheme, Standard ML, and Haskell,
in addition to Java’s OOP capabilities, such as currying, type infer-
ence, immutability, lazy evaluation, and pattern matching.

• Functions and procedures: Functions and procedures are different
in Scala and should not be used interchangeably. A function proto-
type can return any type and contains the = sign. On the other hand,
the procedure does not include a = sign and always returns Unit(). In
general, print statements are discouraged in the function definition.

Example:

def func1():Int = {
 //this is function returns Int
 }

 def proc1() {
 //this is procedure returns void(Unit())
 }

• Higher-order functions: We can send a function as a parame-
ter to another function in Scala. These are known as higher-order
functions.

Example:

val l = List(1, 2, 3)
l.foreach(println) // println passed as argument
to foreach function

In addition, the return value of a function might be another function.

Scala Overview ◾ 13

Example:

def square(c:Float) = { pow(c, 2) }

• Supports nested functions: We may define and utilize a function
within another function as needed. Any point inside the outer func-
tion’s scope can invoke the nested function.

• Industry of big data: Apache Spark is a commonly used large data
processing solution that is an open-source cluster computing plat-
form. Scala is used to write Spark programs because of its JVM scal-
ability. Scala is the most often used programming language among
big data specialists working on Spark projects. Instances of Spark
using Scala include Alibaba, Netflix, and Pinterest.

SETTING UP THE SCALA ENVIRONMENT
Scala is a reasonably compatible language; thus, it can simply install on
Windows and Unix operating systems. In this portion, we will study how
to proceed with the Scala environment installation and configuration.
The most fundamental prerequisite is that our computer has installed
Java 1.8 or a later version. We’ll look at the stages for Windows and Unix
individually.

• Step 1: Validate Java packages: The first need is a Java Software
Development Kit (SDK) installed on the computer. We must
validate these SDK packages and install them if not already
installed. Open the command prompt and enter the following
commands:

For Windows

C:\Users\Your_PC_username>java -version

When we run this command, the result will display the Java ver-
sion, which is as follows:

java version "1.8.0_111"
Java(TM) SE Runtime Environment (build
1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-
b14, mixed mode)

For Linux

$ java -version

14 ◾ Mastering Scala

When we run this command, the results will show the Java ver-
sion and will look like this:

java version "1.8.0_20"
Java(TM) SE Runtime Environment (build
1.8.0_20-b26)
Java HotSpot(TM) 64-Bit Server VM (build 25.20-
b23, mixed mode)

If we obtain the result above, we have installed the most recent
Java SDK and are ready to proceed to STEP 2. If we don’t already have
the SDK installed, go to https://www.oracle.com/technetwork/java/
javase/downloads/jdk12-downloads-5295953.html and download
the latest version based on our machine requirements.

• Step 2: Install Scala: Now that we’ve installed Java let’s install the
Scala packages. Downloading these packages from the official site is
the best option: https://www.scala-lang.org/download/ the packages
on the URL above have about 100MB of storage. Once the packages
have been downloaded, open the downloaded.msi file and follow the
steps outlined below:

Installation of Scala.

 1: Press the NEXT button.

 2: The screen will show when we click the NEXT button.
Check the “I Agree” box, and then click NEXT.

https://www.oracle.com
https://www.oracle.com
https://www.scala-lang.org

Scala Overview ◾ 15

 3: Continue with the installation.
Select the INSTALL option.

 4: The installation procedure begins.
Allow time for the packages to install.

 5: Installation is Complete.
Select the FINISH option.
Now that the packages are complete, we can begin utilizing

Scala.

• Step 3: Run and test the Scala commands: Now launch the com-
mand prompt and enter the following commands.

C:\Users\Your_PC_username>scala

Now that we have Scale installed, we can write some commands to
test several Scala statements:

scala>println("Hi, Everyone who is Learning
Scala")
scala>14+6
scala>8-5

The Scala environment is now operational. We may now work
with Scala by entering commands into the command prompt
window.

SCALA INSTALLATION IN LINUX
Before we begin, we must first install Scala on our system. We need a first-
hand understanding of what the Scala language is and what it performs.
Scala is a multi-paradigm, general-purpose language of programming. It
is an FP that allows OOP. Scala has no concept of basic data since every-
thing is an object. It is intended to convey general programming patterns
in a polished, concise, and type-safe manner. Scala programs may be con-
verted to bytecodes and executed on the JVM. Scala is an abbreviation
for Scalable language. It also includes Javascript runtimes. Scala is heavily
influenced by Java and other computer languages like Lisp, Haskell, Pizza,
and others.

Scala is a relatively compatible programming language that can readily
load into the Linux operating system. The most fundamental prerequisite
is having Java 1.8 or above installed on our PC.

16 ◾ Mastering Scala

VERIFYING JAVA PACKAGES
The first step is to install an SDK on the computer. We must validate these
SDK packages and install them if not already installed. Simply enter the
following command into the Terminal:

java --version

When we run this command, the result will display the Java version.
If we do not have the SDK installed, use the following command to

obtain the newest version based on the machine’s requirements:

sudo apt-get install default-jdk

SCALA DOWNLOAD AND INSTALLATION
Scala Download

We must first download it before proceeding with the installation. Scala for
Linux is available in all versions at https://www.scala-lang.org/download/.

Scala may download here, and installation instructions can find here.
However, the current version of Scala may simply install on Ubuntu by
using the following command:

sudo apt-get install scala

To begin with, the installation:

• Getting started

• Begin the installation procedure

• Completed Installation

After installing Scala, any IDE or text editor may use to develop Scala
code and run it on the IDE or the terminal using the command:

scalac filename.Scala
scala classname

Here’s an example program to get us started with Scala programming:
Consider a basic Hello World program.

// program to print Hello World
object Peeks

https://www.scala-lang.org

Scala Overview ◾ 17

{
 // the main Method
 def main(args: Array[String])
 {
 // prints the Hello World
 println("Hello World")
 }
}

WHAT CAUSES SCALA TO BE SCALABLE?
A language’s scalability is influenced by various elements ranging from
syntactic nuances to component abstraction constructs. Scala’s funda-
mental feature that makes it scalable is that it combines object-oriented
and functional programming. It supports high-order functions, tail-
call optimization, immutable values, pattern matching, polymorphism,
abstraction, inheritance, and other programming features. Scala also has
its interpreter, which may use to execute instructions without first compil-
ing them. Another significant component is the parallel collections library,
which is meant to assist developers in dealing with parallel programming
patterns.

Other features include the following:

• Scala is concise. It improves support for backend operations. Scala
programs are up to ten times shorter than Java applications. It avoids
code that repeatedly appears to achieve a result that burdens the Java
application.

Example: A constructor class in Java looks like this:

class Peek
{
 // class data members
 String name;
 int id;

 // constructor would initialize data members
with
 // values of passed arguments while the object
of that class is created.
 Geek(String name, int id)

18 ◾ Mastering Scala

 {
 this.name = name;
 this.id = id;
 }
}

• Scala assists us in managing complexity by allowing us to increase
the amount of abstraction in the interfaces we develop. Stings are
low-level entities in Java, which are processed character by character
in a loop. The Scala code treats the exact string as higher-level char-
acter sequences that may be searched. Scala allows for the creation of
frameworks and libraries.

Example: In Java, identify the first capital letter.

// Function to find the string with the first
character of each word.
static char first(String str)
{
 for (int m = 0; m < str.length(); m++)
 if (Character.isUpperCase(str.charAt(m)))
 return str.charAt(m);
 return 0;
}

• Strings are low-level entities in Java programming, whereas they are
high-level things in Scala _.isUpperCase is a function literal in Scala.

• It enables static typing, in which calculations are expressed as state-
ments that affect the program’s state at build time. It is a method that
can enhance runtime efficiency. A static type system classifies vari-
ables and expressions based on the values they contain and compute.
A hierarchical class type system similar to Java’s allows us to param-
eterize types with generics, conceal details with abstract types, and
mix types using intersections.

• Because it is built atop the JVM, it has access to all Java methods and
fields, may inherit from Java classes, and implement Java interfaces.
No specific terminology, detailed interface descriptions, or glue code
is required. It takes Java types and dresses them up to make them
appear prettier. The Scala compiler converts the program into a .class
file containing the Bytecode the JVM may run. Scala can utilize all
of the Java SDK classes. Scala allows the user to modify Java classes.

Scala Overview ◾ 19

HELLO WORLD IN SCALA
The Hello World program is the most basic and first program we should
try while learning a new computer language. This displays the message
Hello World on the output screen. A simple program in Scala includes the
following elements:

• Object

• Main Method

• Statements or Expressions

Example:

// program to print Hello World
object Peeks
{
 // the main Method
 def main(args: Array[String])
 {
 // prints the Hello World
 println("Hello World")
 }
}

Explanation:

• Peeks: object is the term that is used to construct objects. A class’s
instance is an object. The item is called “Peeks” in this case.

• def main(args: Array[String]): In Scala, the term def is used to declare
the function, and “main” is the name of the Main Method. The com-
mand line parameters are represented by args: Array[String].

• println(“Hello World”): println is a Scala method that displays the
Output on the console.

HOW TO EXECUTE A SCALA PROGRAM
To utilize an online Scala compiler, follow these steps: We may use mul-
tiple online IDEs to run Scala applications without installing anything.

Using the Command Line: Check that we have the Java 8 JDK (also
known as 1.8). In the command line, use the javac -version to ensure
that we see javac 1.8.___ If version 1.8 or above is unavailable, install the

20 ◾ Mastering Scala

Java Development Kit. To begin, launch a text editor such as Notepad or
Notepad++. In a text editor, write the code and save it with the (.scala)
extension. Launch the command prompt and proceed through the steps
on our machine.

// program to print Hello World
object Peeks
{
 // the main Method
 def main(args: Array[String])
 {
 // prints the Hello World
 println("Hello World")
 }
}

• Step 1: Compile the above file with scalac Hello.Scala will create
Peeks after compilation. class file and the name of the class file are
the same as the name of the object (Here Object name is Peeks).

• Step 2: Run the command with the object name scala Peeks. It will
provide the outcome.

Scala IDE: IDEs such as IntelliJ IDEA and ENSIME make it simple to
run Scala programs. Enter the code in the text editor and hit enter to run it.

UNIFORM ACCESS PRINCIPLE IN SCALA
In Scala, a programming concept known as the Uniform Access Principle
is implemented; this asserts that the annotations used to get the property
of a Class are similar for both methods and variables. Bertrand Meyer
advocated for this principle. The concept essentially states that the nota-
tion used to access a class feature should be the same whether it is a method
or an attribute.

Some points to consider:

• This Principle states that attributes and functions with no param-
eters can be accessed using the same syntax.

• A function declaration with no arguments can convert to “var” or
vice versa.

• This Principle is more closely related to OOP.

Scala Overview ◾ 21

Example:

// program for Uniform Access Principle

// Creation of an object
object Access
{

 // the main method
 def main(args: Array[String])
 {

 // Creating array
 val m : Array[Int] = Array(17, 28, 49, 20,
55)

 // Creating String
 val n = "PeeksforPeeks"

 // Accessing length of an array
 println(m.length)

 // Accessing length of a String
 println(n.length)
 }
}

We now understand that the length of an array is variable and the
length of a string is a method in the Class “String,” but we accessed both
in the same way.

Example:

// program for Uniform Access Principle

// Creating object
object Access
{

 // the main method
 def main(args: Array[String])

22 ◾ Mastering Scala

 {

 // Creating a list
 val m = List(11, 43, 25, 57, 7, 30)

 // Creating a method
 def portal = {
 "Peeks" +"for" + "Peeks"
 }

 // Accessing size of a method
 println(portal.size)

 // Accessing size of a variable
 println(m.size)
 }
}

SCALA VS. JAVA
Java is a general-purpose computer language that is concurrent, class-
based, and object-oriented, among other characteristics. Java programs are
compiled into bytecode, which may execute on any Java virtual machine,
independent of computer architecture.

Scala is a multi-paradigm, general-purpose programming language.
It is an OOP language that also supports the FP technique. Scala has no
concept of basic data since everything is an object. It is intended to con-
vey general programming patterns in a polished, concise, and type-safe
manner.

The following are some significant differences between Scala and Java:

Scala Java

Scala is a cross between object-oriented
and functional programming.

Java is a general-purpose, object-oriented
programming language.

Because of the nested code, Scala is less
understandable.

Java is easier to read.

The compilation of source code into byte
code is a time-consuming operation.

The compilation of source code into byte code
is a quick process.

Scala allows for operator overloading. Operator overloading is not supported in
Java.

Scala allows for slow evaluation. Lazy evaluation is not supported in Java.

(Continued)

Scala Overview ◾ 23

Scala does not support backward
compatibility.

Java is backward compatible, which implies
that code written in the latest version will
execute without issue in prior versions.

Scala treats any method or function as
though it were a variable.

Java considers functions to be objects.

Scala code is written concisely. The code in Java is written in long form.
Scala variables are immutable by default. Java variables are mutable by default.
Scala is more object-oriented than Java
and regards everything as an instance
of the class.

Because of the presence of primitives and
statics, Java is less object-oriented than Scala.

The static keyword does not exist in Scala. Java includes the static keyword.
Method calls are used to perform all
operations on entities in Scala.

In Java, operators are processed differently
from method calls.

PYTHON VS. SCALA
Python is a high-level, interpreted, general-purpose dynamic program-
ming language with a significant emphasis on code readability. Python
needs less typing, has new libraries, allows faster prototyping, and has
various other new features.

Scala is a high-level programming language. It is an OOP language
alone. Scala’s source code is written so its compiler can read Java classes.

The following are some critical distinctions between Python and Scala:

Python Scala

Python is a dynamically typed
programming language.

Scala is a statically typed programming
language.

Python is a dynamically typed Object
Oriented Programming language;
therefore, we don’t need to declare
objects.

Because Scala is a statically typed Object
Oriented Programming language, we must
declare the type of variables and objects.

Python is simple to learn and apply. Scala is easier to learn than Python.
At runtime, the interpreter is given
more tasks.

Scala generates no extra work, making it ten
times quicker than Python.

It determines the data types at runtime. This is not the case in Scala, so it should be
used instead of Python is useful for dealing
with large volumes of data.

The Python community is far larger
than the Scala community.

Scala is also well-supported by the community.
However, it is inferior to Python.

Python enables heavyweight process
forking but not true multithreading.

Scala features reactive cores and a variety of
asynchronous libraries, making it a preferable
alternative for concurrent implementation.

(Continued)

Scala Java

24 ◾ Mastering Scala

Python’s techniques are significantly
more complicated because it is a
dynamic programming language.

Because Scala is a statically typed language,
testing is significantly easier.

Its popularity stems from its English-
like syntax.

Scala has a considerably more significant role
in scalable and concurrent systems.

Python simplifies the writing of code
for developers.

Scala is simpler to learn than Python, but it is
more difficult to write code in Scala.

Python has an interface to numerous
OS system functions and libraries.
There are several interpreters.

It is a compiled language, with all source code
being compiled before execution.

When there is a modification to the
existing code, the Python language is
very prone to problems.

Scala does not have such an issue.

Python has machine learning, data
science, and speech recognition
packages (NLP).

Scala, on the other side, does not have such
tools.

Python is suitable for small-scale tasks. Scala is suitable for large-scale projects.
It does not support scalable features. It offers scalable feature support.

THE DISTINCTION BETWEEN KOTLIN AND SCALA
Scala is an extraordinarily multi-paradigm language that may range from
being a far superior version of Java to a less desirable version of Haskell.
This means that Scala libraries and codebases often use various writing
styles, and it may be time-consuming to learn how to deal with them. In
addition, it makes it tougher to standardize a group. To distinguish, Kotlin
reduces its superiority to Java, resulting in more dependable libraries and
the avoidance of many of these concerns.

Kotlin’s Java interoperability is dependable. Scala allows Java interoper-
ability, but it is difficult to use that wrapper written for the most popular
Java libraries. JetBrains is a significant sponsor of Kotlin since they are
the creators of some of the most acceptable app applications. Scala no lon-
ger has the same degree of major sponsorship; in fact, TypeSafe changed
its name to Lightbend and withdrew from Scala. Individuals having a
background in Java may remember Kotlin more quickly. Kotlin is a cross-
platform, statically written, general-purpose programming language that
supports type deduction. Kotlin is supposed to be fully compatible with
Java, and its standard library’s JVM version is based on the Java Lesson
Library; however, sort induction allows its language structure to be more
compact and performs well with Android. Android is easy to configure
(many lines to the gradle record in Android Studio).

Python Scala

Scala Overview ◾ 25

Scala’s compatibility with Android requires further customization and
a few aspects don’t carry over at that point. We are at the beginning of
an IoT uprising, with Android at the forefront; thus, it is crucial to have
a cutting-edge language and 100% compatibility with the most popular
mobile platform. Scala is a general-purpose programming language that
supports functional programming and a suitable architecture for inactive
sorting. Scala was concise, and many design decisions addressed Java’s
responses. Scala is a new computer program that blends the concepts of
object-oriented and functional programming. Scala is so named because
it is very scalable.

Scala might be a general-purpose programming language that under-
lies object-oriented and practical programming methods on a larger scale.
Scala is influenced by the Java programming language and has the poten-
tial to be a robust static programming language. One of the most striking
similarities between Scala and Java is that Scala may write in a manner
similar to Java. It is also possible to use a subset of Java libraries inside
Scala and several of Scala’s third-party libraries.

Here are the main differences between Kotlin versus Scala.

Kotlin Scala

An object-oriented dialect Multi-paradigm programming language
There are fewer libraries, blogs, and direct, in
other words, less quantified community
support.

A larger community When compared to
Kotlin, strengthens.

Kotlin Ordinarily, codes are concise and to
the point.

Scala Codes are often larger.

Kotlin is a recognized Android dialect. Scala isn’t widely used for Android.
Kotlin Does not provide complete design
coordination.

Complete assistance with pattern
matching, macros, and higher-order
forms

Practicality and consistency at the
commercial level.

Extensive quantities of information
pouring.

Kotlin is a free and open programming
language.

It is a functional programming language
hybrid.

It is a language that is statically typed. Martin Odersky designed it.
It provides improved performance and a
shorter runtime for all applications.

It also allows for object-oriented
programming.

JetBrains introduced and launched Kotlin in
2016.

It can do higher-order functions.

It is employed in server-side applications. It allows us to use all of the Java SDK’s
classes.

26 ◾ Mastering Scala

REPL IN SCALA
REPL stands for Read-Evaluate-Print-Loop and is an interactive command
line interpreter shell. It only works for what it stands for. It first reads the
expression provided as input on the Scala command line, then evaluates
it and prints the result on the screen before returning to the reading loop.
Previous results are automatically incorporated into the scope of the cur-
rent expression as needed. At the prompt, the REPL reads expressions. In
interactive mode, it then wraps them into an executable template before
compiling and running the result.

REPL IMPLEMENTATION
• User code can encapsulate either an object or a class; the switch used

is – Yrepl-class-based.

• Each line of input is compiled independently.

• Automatically created imports incorporate the dependencies on pre-
ceding lines.

• Scala’s implicit import.

• An explicit import can use to regulate Predef.

Scala REPL may launch by entering the scala command in the console/
terminal.

$scala

Let’s look at how we can use Scala REPL to create two variables.

scala> val m, n = 4
m: Int = 4
n: Int = 4

scala> m + n
res0: Int = 8

scala>

In the first line, we set up two variables in Scala REPL. Scala REPL
then printed these. We can see that it creates two variables of type Int
with values internally. Then we ran the sum expression with two variables

Scala Overview ◾ 27

specified. Scala REPL printed the total of expressions on the screen once
again. Because it lacked a variable, it displayed it using its temporary vari-
able solely with the prefix res. We may utilize these variables in the same
way that we generated them.

We may retrieve further information about these temporary variables
by executing the getClass method on them, as shown below.

scala> val m, n = 4
m: Int = 4
n: Int = 4

scala> m + n
res0: Int = 8

scala> res0.getClass
res1: Class{Int] = Int

scala>

We could conduct many tests using the Scala REPL on the run time,
which would have taken a long time if we used an IDE.

SOME ADDITIONAL IMPORTANT REPL CHARACTERISTICS
• REPL’s IMain is tied to $intp.

• The tab key is used for finishing.

• :load is used to load REPL input file.

• :javap is used to investigate class artifacts.

• -Yrepl-outdir is used to view class artifacts with the external tools.

• :power imports compiler components after entering compiler mode.

• :help returns a list of commands that can use to assist the user.

In this chapter, we covered Introduction and History, Setting up
the environment in Scala, Hello World program, and Uniform Access
Principle.

28 DOI: 10.1201/9781003358527-2

C h a p t e r 2

Scala Basics

IN THIS CHAPTER

 ➢ Keywords and Identifiers

 ➢ Data Types and Variables

 ➢ Console and Identifiers

 ➢ Pattern Matching

 ➢ Comments and Command Line Argument

 ➢ Enumeration in Scala

 ➢ Ranges

In the previous chapter, we covered a Scala overview, and in this chapter,
we will discuss the basics of Scala.

KEYWORDS IN SCALA
Keywords, often known as reserved words, are terms in a language that are
used for internal processes or to indicate preset actions. As a result, these
terms are not permitted to be used as variable names or objects. This will
produce a compile-time error.

Example:

// Program to illustrate the keywords

//object, def, and var are valid keywords

https://doi.org/10.1201/9781003358527-2

Scala Basics ◾ 29

object Main
{
 def main(args: Array[String])
 {
 var m = 10
 var n = 30
 var sum = m + n
 println("Sum of m and n is :"+sum);
 }
}

Scala includes the following keywords:

abstract case catch class
def do finally extends

false final else for
lazy if implicit import

forSome match new Null
object override package private

protected throw sealed super
this return trait Var
true with val Try

while type yield
− : = =>

<− <: <% >:
@

Example:

// Program to illustrate the keywords

// class keyword is used to create new class def
keyword
// is used to create Function var keyword
// is used to create the variable
class PFP
{
 var name = "Shreya"
 var age = 19
 var branch = "Information technology"
 def show()

30 ◾ Mastering Scala

 {
 println("Hey my name: " + name + "and my age
is"+age);
 println("The Branch name: " + branch);
 }
}

// object keyword is used to define object new
keyword is used to
 create an object of the given class
object Main
{
 def main(args: Array[String])
 {
 var obj = new GFG();
 obj.show();
 }
}

IDENTIFIERS IN SCALA
Identifiers are used to identify objects in computer languages. An identi-
fier in Scala can be a class name, method name, variable name, or object
name.

Example:

class PFP{
 var m: Int = 19
}
object Main {
 def main(args: Array[String]) {
 var obj = new PFP();
 }
}

We have six Identifiers in the preceding program:

• PFP: Class name

• m: Variable name

• Main: Object name

Scala Basics ◾ 31

• main: Method name

• args: Variable name

• obj: Object name

JAVA SCALA DEFINING RULES
A valid Scala identifier must follow certain constraints. If these criteria are
not followed, we will obtain a compile-time error.

• Case matters with Scala identifiers.

• Scala does not support the usage of keywords as identifiers.

• Reserved words, such as $, cannot be used as identifiers.

• Scala only permitted the creation of Identifiers using the four types
of identifiers listed below.

• The identification length is not limited, although it is best to keep it
between 5 and 18 letters.

• Identifiers should not begin with numbers ([0-9]). “123peeks,” for
instance, is not an acceptable Scala identifier.

Example:

// program to demonstrate Identifiers

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // Valid Identifiers
 var 'name' = "Rajat";
 var _age = 19;
 var Branch = "Computer Science";
 println("Name is:" +'name');
 println("Age is:" +_age);
 println("Branch is:" +Branch);
 }
}

32 ◾ Mastering Scala

SCALA IDENTIFIER TYPES
Scala recognizes four types of identifiers:

• Alphanumeric identifiers: Identifiers that begin with a letter (capital
or small letter) or an underscore and are continued by letters, numer-
als, or underscores are known as alphanumeric identifiers.

Valid alphanumeric identifiers include:

_PFP, peeks123, _1_Pee_23, Peeks

Example:

// program to demonstrate Alphanumeric
Identifiers

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // main, _name1, and Tuto_rial are the valid
alphanumeric identifiers
 var _name1: String = "PeeksforPeeks"
 var Tuto_rial: String = "Scala"

 println(_name1);
 println(Tuto_rial);
 }
}

• Operator identifiers: These are identifiers that contain one or more
operator characters such as +, :, ?, ~, or #.

Valid operator identifiers include:

+, ++

Example:

// program to demonstrate Operator Identifiers

object Main

Scala Basics ◾ 33

{

 // the main method
 def main(args: Array[String])
 {

 // main, m, n, and sum are valid
alphanumeric identifiers
 var m:Int = 20;
 var n:Int = 10;

 // Here, + is an operator identifier that is
used to add two values
 var sum = m + n;
 println("Display the result of +
identifier:");
 println(sum);
 }
}

• Mixed identifiers: Mixed identifiers have alphanumeric identifiers
followed by an underscore and an operator identifier.

Valid mixed identifiers include:

unary_+, sum_=

Example:

// program to demonstrate Mixed Identifiers

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // num_+ is a valid mixed identifier
 var num_+ = 20;
 println("Display result of the mixed
identifier:");
 println(num_+);
 }
}

34 ◾ Mastering Scala

• Literal identifiers: These are identifiers that include an arbitrary
string contained by back ticks (‘. . . .’).

Valid mixed identifiers include:

'Peeks', 'name'

Example:

// Scala program to demonstrate
// Literal Identifiers

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // 'name' and 'age' are the valid literal
identifiers
 var 'name' = "Rajat"
 var 'age' = 19
 println("Name is:" +'name');
 println("Age is:" +'age');
 }
}

SCALA DATA TYPES
A data type is a classification of data that tells the compiler what sort
of value a variable has. For instance, if a variable has an int data type, it
retains a numeric value. Scala data types are equivalent to Java in terms of
length and storage. Data types are handled as objects in Scala; hence the
initial letter of the data type is capitalized.

Scala data types are listed in the table below:

DataType Default Value Description

Boolean False True or False
Byte 0 8 bit signed value. The Range:-128 to 127
Short 0 16 bit signed value. The Range:-215 to 215-1
Char ‘\u000’ 16 bit unsigned unicode character. The Range:0 to 216-1
Int 0 32 bit signed value. The Range:-231 to 231-1

(Continued)

Scala Basics ◾ 35

Long 0L 64 bit signed value. The Range:-263 to 263-1
Float 0.0F 32 bit IEEE 754 single Precision float
Double 0.0D 64 bit IEEE 754 double Precision float
String null Sequence of character
Unit – Coincides to no value.
Nothing – It is a subclass of all other types and has no value.
Any – It is a supertype of all the other types
AnyVal – It serves as a value types.
AnyRef – It serves as reference type.

Scala, unlike Java, does not have the idea of primitive type.

Example:

// program to illustrate the Datatypes
object Test
{
def main(args: Array[String])
{
 var m: Boolean = true
 var m1: Byte = 143
 var m2: Float = 3.45673f
 var m3: Int = 3
 var m4: Short = 29
 var m5: Double = 2.73846513
 var m6: Char = 'M'
 if (m == true)
 {
 println("boolean:peeksforpeeks")
 }
 println("byte:" + m1)
 println("float:" + m2)
 println("integer:" + m3)
 println("short:" + m4)
 println("double:" + m5)
 println("char:" + m6)
}
}

DataType Default Value Description

36 ◾ Mastering Scala

LITERALS IN SCALA
This section will go through the various sorts of literal used in Scala.

• Literal integral: These are often of the int or long type (“L” or “I” suf-
fixed). Some examples of permissible integral literals are:
04
0
60
219
0xFFFFFFFF
0793L

• Floating-point literals: These are of the float type (the suffix “f” or
“F” is used) and of the double type.
0.9
1e40f
3.14154f
1.0e100
.5

• Boolean literals: These are only true and false and are of the Boolean
type.

• Literals for the symbol: Symbol is a case class in Scala. In symbol
literal, a “Y” is the same as scala.
package scala
final case class Symbol private (name: String)
{
override def toString: String = "'" + name
}

• Character literals: A character literal in Scala is a single character
surrounded by single quotes. Some characters are printable unicode
characters as well as escape characters. Here are a few examples of
valid literal:

'\b'
'a'
'\r'
'\u0027'

• String literals: In Scala, string literals are a sequence of characters
surrounded by double quotes. Here are some examples of valid literal:

Scala Basics ◾ 37

"welcome to \n peeksforpeeks"
"\\This is a tutorial of Scala\\"

• Null values: A null value is of scale in Scala. It is adaptable with any
reference type since it is a null type. It is a reference value pointing to
a special “null” object.

• Multi-line literals: In Scala, multi-line literals are a sequence of
characters surrounded by triple quotes. Other control characters are
acceptable in this new line. The following are some examples of valid
multi-line literals:

"""Hey welcome to peeksforpeeks\n
this is a tutorial of \n
scala programing language"""

SCALA VARIABLES
Variables are nothing more than storage places. Every variable has a name
and holds a known and unknown piece of information called value. A
variable can be defined by its data type and name; a data type is in charge
of allocating memory for the variable. Variables in Scala are classified into
two types:

• Mutable Variables

• Immutable Variables

Let’s take a closer look at each of these factors.

MUTABLE VARIABLE
Mutable variables allow us to modify the value of a variable after it has been
declared. The var keyword is used to define mutable variables. Because
data types are viewed as objects in Scala, the initial letter of the data type
should capitalize.

Syntax:

var Variablename: Datatype = "value";

Example:

var name: String = "peekforpeeks";

38 ◾ Mastering Scala

In this case, the name is the variable’s name, a string is the variable’s
data type, and peeksforpeeks is the value stored in memory.

Variable may also be defined as follows:

Syntax:

var variablename = value

Example:

var value = 40

//works without error
value = 32

The variable’s name is used as the value here.

IMMUTABLE VARIABLES
These variables do not allow us to change their value after they have been
declared. The val keyword is used to define immutable variables. Because
data types are viewed as objects in Scala, the initial letter of the data type
should capitalize.

Syntax:

val Variablename: Datatype = "value";

Example:

val name: String = "peekforpeeks";

A name is the variable’s name, a string is the variable’s data type, and
peeksforpeeks is the value stored in memory.

A variable may also be defined as follows:

Syntax:

val variablename = "value"

Example:

val value = 40

Scala Basics ◾ 39

//it will give error
value = 32

Here, the value is the variable’s name.

SCALA VARIABLE NAMING RULES
• The variable name should write in lowercase.

• A variable name can contain a letter, a numeric, and two special
characters (the underscore (_) and the dollar symbol ($).

• The keyword or reserved term must not appear in the variable name.

• The variable name must begin with the alphabet letter.

• White space is not permitted in variable names.

Note that while Scala enables multiple assignments, we can only use
them with immutable variables.

Example:

val(name1:Int, name2:String) = pair
(2, "peekforpeeks")

SCALA VARIABLE TYPE INFERENCE
Inference based on variable type inference is supported in Scala. Variable
type inference assigns values to variables without describing their data
types; the Scala compiler automatically determines which values corre-
spond to which data types.

Example:

var name1=40;
val name2="peeksforpeeks";

In this case, name1 is an int by default, and name2 is a string by default.

println, printf, and readLine IN SCALA
Console provides functions for showing the specified values on the ter-
minal; for example, we may post to the display using print, println, and
printf. The scala.io.StdIn function is also used to read the data from the
Console. It is even beneficial in developing interactive programs.

40 ◾ Mastering Scala

Let us go through it in depth and then look at some instances.

• println: It is used to write values to the console and compute a trail-
ing newline. We can pass it any type as an argument.

• print: print is the same as println, but it does not calculate any trail-
ing lines. It moves the data to the start of the line.

• printf: This is useful for writing format strings and inserting extra
arguments.

Example:

// program of print functions

// Creation of an object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Applying console with the println
 Console.println("PeeksfoPeeks")

 // Display the output with no
 // the trailing lines
 print("CS")
 print("_portal")

 // Used for newline
 println()

 // Display the format string
 printf("Age = %d", 24)
 }
}

• readLine(): readLine() is a function that takes input from the key-
board in the form of a String pattern.

Scala Basics ◾ 41

Example:

// program of readLine() method

// Creation of an object
object PfP

{
// the main method
def main(args: Array[String])

{
// Applying loop
while (true) {

 // Reads line from the Console
 val result = scala.io.StdIn.readLine()

 // Display string that user gives
 printf("Enter String: %s", result)

 //prints the newline
 println()
 }
}
}

The while loop, in this case, is indefinite, and after providing user
inputs, the variable will hold that string. If we offer any further input,
the variable will contain that input.

PATTERN MATCHING IN SCALA
Pattern matching is a method of detecting the presence of a specified pat-
tern in a given sequence of tokens. It is the most commonly used Scala
feature. It is a method for comparing a value to a pattern. It is comparable
to the Java and C switch statements.

Instead of a switch statement, the term “match” is used here. To make
“match” available to all objects, it is always declared in Scala’s root class.
This might include a list of options. Each alternative will begin with the
case keyword. Each case statement contains a pattern and one or more
expressions are evaluated if the given pattern is matched. The arrow char-
acter (=>) is used to differentiate the pattern from the phrases.

42 ◾ Mastering Scala

First example:

// program to illustrate pattern matching

object PeeksforPeeks {

 // the main method
 def main(args: Array[String]) {

 // calling the test method
 println(test(1));
 }

// method containing the match keyword
def test(x:Int): String = x match {

 // if the value of x is 0,
 // this case will execute
 case 0 => "Hello, Everyone"

 // if the value of x is 1, this case will
execute
 case 1 => "Are we learning Scala?"

 // if x doesn't match any sequence, then this
case will execute
 case _ => "Good Bye"
}
}

Explanation: In the above code, if the value of x passed in the test
method call corresponds to any of the situations, the expression within
that case is evaluated. We are passing 1 here; therefore case 1 will be con-
sidered. case_ => is the default case, which is run if x is not 0 or 1.

Second example:

// program to illustrate the pattern matching

object PeeksforPeeks {

 // the main method
 def main(args: Array[String]) {

Scala Basics ◾ 43

 // calling the test method
 println(test("Peeks"));
 }

// method containing match keyword
def test(x:String): String = x match {

 // if the value of x is "P1",
 // this case will be executed
 case "P1" => "PFP"

 // if the value of x is "P2",
 // this case will execute
 case "P2" => "Scala Tutorials"

 // if x does not match any sequence,
 // then this case will execute
 case _ => "Default Case Execute"
}
}

IMPORTANT NOTE
• At least one case clause must be present for each matching keyword.

• If none of the other instances match, the final “_” case will be exe-
cuted. Cases are sometimes known as alternatives.

• There is no break statement in pattern matching.

• Pattern matching always yields some results.

• Match blocks are expressions rather than statements. This implies
that they look at the body of the case that matches. This is a crucial
aspect of functional programming.

• Pattern matching may be used for value assignment and comprehen-
sion in addition to matching blocks.

• With the first match policy, pattern matching may match any type
of data.

• Each case statement returns the value, and the entire match state-
ment functions to deliver a matched value.

• Using “|,” we may test several values in a single line.

44 ◾ Mastering Scala

SCALA COMMENTS
In our code, comments are entities that the interpreter/compiler ignores.
We often utilize them to explain the code and conceal code specifics. This
indicates that comments will not include in the code. It will not be run;
rather, it will use to explain the code thoroughly.

Scala comments, in other terms, are statements that the compiler or
interpreter does not execute. The comments can use to explain or offer
information about a variable, class, method, or sentence. This can also be
used to conceal software code.

There are three sorts of comments in Scala:

• Singleline comments

• Multi-line comments

• Documentation comments

Each kind will be explained in detail, including syntax and examples:

SINGLELINE COMMENTS
When we only require one line of a remark in Scala, that is, when we just
want to create a singleline comment, we may use the characters ‘//’ before
the comment. These characters will remark the line.

Syntax:

//Comments here(Only the text in this line is
considered a comment)

Example:

// This is the singleline comment

object MainObject
{
 def main(args: Array[String])
 {
 println("Singleline comment above")
 }
}

Scala Basics ◾ 45

MULTILINE COMMENTS
A multiline comment can be used if our comment exceeds more than one
line. We surround the comment with the letters ‘/*’ and ‘*/’. We insert text
between these characters, which becomes a comment.

Syntax:

/*Comment starts
continue
continue
.
.
.
.
.
Comment ends*/

Example:

// program to show the multiline comments

object MainObject
{
 def main(args: Array[String])
 {
 println("Multiline comments below")
 }

 /*Comment line1
 Comment line2
 Comment line3*/
}

DOCUMENTATION COMMENTS
A documentation comment is used to facilitate easy access to documenta-
tion. The compiler uses these comments to document the source code. The
syntax for making a documentation comment is as follows:

Syntax:

/**Comment start
*

46 ◾ Mastering Scala

*tags are used in order to specify the parameter
*or method or heading
*HTML tags can also use
*such as
*
comment ends/

Example:

// program to show the Documentation comments

object MainOb
{
 def main(args: Array[String])
 {
 println("Documentation comments ")
 }

 /**
 * This is peek for peeks
 * peeks coders
 *
 */
}

To declare such a comment, write the letters ‘/**’, type something, or
press. As a result, every time we press enter, the IDE will be marked with a
‘*’. After one of the carets(*), write ‘/’ to terminate a comment.

SCALA COMMAND LINE ARGUMENT
Command-Line Arguments are the arguments passed to the main() pro-
cedure by the user or programmer. The main() function is the program’s
starting point. The main() function receives a string array.

Syntax:

def main(args: Array[String])

The args array, made accessible to us implicitly when we extend
App, is used to retrieve our Scala command-line arguments. Here’s an
illustration.

Scala Basics ◾ 47

First example: Print all of the specified items.

// Program on the command line argument
object CMDExample
{
 // the main method
 def main(args: Array[String])
 {
 println("Command Line Argument Example");

 // We pass anything at runtime
 // that will print on the console
 for(arg<-args)
 {
 println(arg);
 }
 }
}

Save the program CMDExample.scala first, then open CMD/Terminal
and navigate to the directory where we saved our Scala program.

To compile and run the above program on the terminal, use the follow-
ing commands:

Compile: scalac CMDExample.scala
Execute: scala CMDExample Welcome To PeeksforPeeks!

Second example:

// Program on the command line argument
object CMDExample
{
 // the main method
 def main(args: Array[String])
 {
 println("Command Line Argument Example");

 // We pass anything at runtime
 // that will print on the console
 println(args(0));
 println(args(2));
 }
}

48 ◾ Mastering Scala

SCALA ENUMERATION
In computer languages, enumerations are used to express a collection of
named constants. For further information on enumerations, see enumera-
tion (or enum) in C and enum in Java. Scala includes an enumeration class
that we may modify to construct our enumerations.

Enumeration declaration in Scala:

// simple scala program of the enumeration

// Creation of an enumeration
object Main extends Enumeration
{
 type Main = Value

 // Assigning the values
 val first = Value("Action")
 val second = Value("Horror")
 val third = Value("Romance")
 val fourth = Value("Comedy")

 // the main method
 def main(args: Array[String])
 {
 println(s"The Main Movie Genres = ${Main.
values}")
 }
}

Important enumeration points:

• Unlike Java or C, there is no enum keyword in Scala.

• Scala includes an Enumeration class that we may modify to con-
struct our enumerations.

• Every enumeration constant represents an enumeration object.

• The evaluation’s val members are specified as enumeration values.

• Many functions were inherited when we expanded the enumeration
class. Identification is one of them.

• We can change the members.

Scala Basics ◾ 49

Printing a specific enumeration element:

// program Printing particular element of enumeration

// Creation of ab enumeration
object Main extends Enumeration
{
 type Main = Value

 // Assigning the values
 val first = Value("Action")
 val second = Value("Horror")
 val third = Value("Romance")
 val fourth = Value("Comedy")

 // the main method
 def main(args: Array[String])
 {
 println(s"Third value = ${Main.third}")
 }
}

Printing a specific enumeration element:

// program of Printing default ID of any element in
enumeration

// Creation of an Enumeration
object Main extends Enumeration
{
 type Main = Value

 // Assigning the Values
 val first = Value("Action") // ID = 0
 val second = Value("Horror") // ID = 1
 val third = Value("Romance") // ID = 2
 val fourth = Value("Comedy") // ID = 3

 // the main Method
 def main(args: Array[String])
 {
 println(s"ID of the third = ${Main.third.id}")
 }
}

50 ◾ Mastering Scala

Enumeration values that match:

// program of Matching values in the enumeration

// Creation of an Enumeration
object Main extends Enumeration
{
 type Main = Value

 // Assigning the Values
 val first = Value("ACtion")
 val second = Value("Horror")
 val third = Value("Romance")
 val fourth = Value("Comedy")

 // the main Method
 def main(args: Array[String])
 {
 Main.values.foreach
 {
 // Matching values in the Enumeration
 case d if (d == Main.third) =>
 println(s"Favourite type of the Movie =
$d")
 case _ => None
 }
 }
}

Changing the value’s default IDs:
The values are written in the order specified by the ID. These ID values

can be any integer.
These IDs do not have to be in any specific sequence.

// program of Changing default IDs of values

// Creation of an Enumeration
object Main extends Enumeration
{
 type Main = Value

 // Assigning the Values

Scala Basics ◾ 51

 val first = Value(0, "Action")
 val second = Value(-1, "Horror")
 val third = Value(-3, "Romance")
 val fourth = Value(4, "Comedy")

 // the main Method
 def main(args: Array[String])
 {
 println(s" The Movie Genres = ${Main.values}")
 }
}

VARIABLE SCOPE IN SCALA
The variable declaration defines the variable’s name that will keep in mem-
ory, and memory may be accessed using this variable name. Scala variables
have three forms of scope.

• Fields

• Method Parameters

• Local Variables

Let’s go through each one in depth.

FIELDS
If we declare these variables with the appropriate access modifiers, we
may access them from any method within the object and from outside
the object. A field can be changeable or immutable, and it can define with
“var” or “val.”

Example:

// Scala program of field scope for the Scala
variable

// class created with the field
// variables m and n.
class disp
{
 var m = 20.3f
 var n = 8f

52 ◾ Mastering Scala

 def windet()
 {
 println("Value of m : "+m)
 }
 println("Value of n : "+n);
}

object Example
{
 // the main method
 def main(args:Array[String])
 {
 val Example = new disp()
 Example.windet()
 }
}

The preceding example creates a disp class with field variables x and
y. These variables may be accessible within a method and called from an
object by generating a reference to them.

METHOD PARAMETERS
When we call a method, we use these variables to send a value within the
method. They can be accessed both inside and outside the method if the
object is referenced from outside the method. These variables can change
at any time using the term “val.”

Example:

// program of Method scope for the Scala variable

// class created with Method variables k1 and k2.
class rect
{
 def mult(k1: Int, k2: Int)
 {
 var result = k1 * k2
 println("The Area is: " + result);
 }
}

object Area

Scala Basics ◾ 53

{
 // the main method
 def main(args:Array[String])
 {
 val su = new rect()
 su.mult(15, 20)
 }
}

In the preceding example, a rect class is built with a mult function that
accepts two method argument variables, k1 and k2. The area object is created,
and the rect method is called by giving the values of variables k1 and k2 to it.

LOCAL VARIABLES
These variables are declared within a method and are only available within
it. These variables can be both changeable and immutable by using the
“var” and “val” keywords.

Example:

// program of Method scope for the Scala variable

// class created with the Local
// variables k1 and k2.
class Area
{
 def mult()
 {
 var(k1, k2) = (5, 70);
 var k = k1 * k2;
 println("The Area is: " + s)
 }
}

object Test
{
 // the main method
 def main(args:Array[String])
 {
 val ex = new Area()
 ex.mult()
 }
}

54 ◾ Mastering Scala

The above example demonstrates the class Area with local variables s1,
s2, and k within function mult. Outside of the procedure, these variables
are inaccessible.

RANGES IN SCALA
Scala defines the Range as an orderly series of evenly separated Integers. It
is useful in providing more strength with fewer methods; therefore, opera-
tions are very fast.

Here are some key points:

• The for loops can use the Ranges for iteration.

• It may be achieved by the use of several specified methods such as
until, by, and to.

• It is defined by three constants, which are:start, end, and increment
value.

Syntax:

val range = Range(a, b, c)

Where x represents the lower limit, y represents the higher limit, and z
represents the increment.

Example:

// program for Ranges

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // applying the range method
 val a = Range(4, 12, 1)

Scala Basics ◾ 55

 // Display the given range
 println(a)

 // Display the starting value
 // of a given range
 println(a(0))

 // Display the last value
 // of given range
 println(a.last)
 }
}

Operations Performed on Ranges

• If we want a range that includes the final value, we may use the till
method. The until and Range methods serve the same function.

Example:

// program for Ranges

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // applying the range method
 val a = Range(0, 12, 3)

 // applying the until method
 val b = 0 until 12 by 3

 // Displays true if both methods are
equivalent
 println(a == b)
 }
}

56 ◾ Mastering Scala

• The Range’s upper bound can be made inclusive.

Example:

// program for Ranges

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // applying the range method
 val a = Range(2, 9)

 // Including the upper bound
 val b = a.inclusive

 // Displays all elements of the range
 println(b)
 }
}

• We may use the to method to get a range of integer values; both to
and inclusive Ranges are similar.

Example:

// Scala program for Ranges

// Creating object
object GFG
{

 // Main method
 def main(args: Array[String])
 {

 // applying the range method
 val a = Range(2, 9)

Scala Basics ◾ 57

 // Including the upper bound
 val b = a.inclusive

 // applying 'to' method
 val c = 2 to 9

 // Displays true if both methods are
equal
 println(b == z)
 }
}

This chapter covered Keywords and Identifiers, Data Types and
Variables, Console, and Identifiers. We also talked about Pattern Matching,
Comments and Command Line Arguments, Enumeration, and Ranges.

58 DOI: 10.1201/9781003358527-3

C h a p t e r 3

Scala Control Statements

IN THIS CHAPTER

➢ Decision Making

➢ Loops

➢ Break Statement in Scala

➢ Literals

➢ yield Keyword

➢ Type Inference

In the previous chapter, we covered Scala basics, and in this chapter, we
will discuss control statements.

MAKING DECISIONS (if, if-else, Nested if-else, if-else if)
IN SCALA
Making decisions in programming is analogous to making decisions in
real life. When a condition is met, a piece of code is performed in decision
making. Control flow statements are another name for them. Scala uses
control statements to direct program execution flow based on particular
criteria. These trigger the execution flow to progress and branch based on
changes in a program’s state.

https://doi.org/10.1201/9781003358527-3

Scala Control Statements ◾ 59

Scala’s conditional statements are as follows:

• if

• if-else

• Nested if-else

• if-else if Ladder

if Statement
Across all decision-making statements, the “if” statement is the simplest.
In this statement, the piece of code is run once the specified condition is
true, and it is not performed if the condition is false.

Syntax:

if(condition)
{
 // Code executed
}

After examination, the condition will be either true or false. The if
statement takes boolean values; if the value is true, the block of statements
behind it is executed.

If we do not include the curly brackets “{and}” after if(condition), the
if statement will regard the preceding statement as within its block by
default.

Example:

if(condition)
 statement1;
 statement2;
.........
// if the condition is true if block
// will consider only statement1 inside its block.

60 ◾ Mastering Scala

Flowchart:

Statement of if.

Example:

// program to illustrate if statement
object Test {

 // the main Method
 def main(args: Array[String]) {

 // taking variable
 var m: Int = 60

 if (m > 40)
 {

 // statement will execute as m > 40
 println("HelloEveryone")
 }
 }
 }

Scala Control Statements ◾ 61

if-else Statement
The if statement alone indicates that if a condition is true, a block of state-
ments will be executed; if the condition is false, the block of statements
will not be executed. But what if the condition is false and we want to do
else statement. The else statement follows. When the condition is false, we
may use the else statement in conjunction with the if statement to run a
block of code.

Syntax:

if (condition)
{
 // Executes this block if condition is true
}

else
{
 // Executes this block if condition is false
}

Flowchart:

Statement of if.

62 ◾ Mastering Scala

Example:

//program to illustrate the if-else statement
object Test {

 // the main Method
 def main(args: Array[String]) {

 // taking variable
 var m: Int = 650

 if (m > 798)
 {

 // This statement will not
 // execute as m > 798 is false
 println("HelloEveryone")
 }

 else
 {

 // statement will execute
 println("Sudo Placement")
 }
 }
 }

Nested if-else Statement
An if statement that targets another if-else expression is referred to as a
nested if. An if-else statement that is nested indicates that it is included
within an if statement or an else statement. We may nest if-else statements
within if-else statements in Scala.

Syntax:

// Executes when the condition1 is true
if (condition1)
{

 if (condition2)
 {

Scala Control Statements ◾ 63

 // Executes when the condition2 is true
 }

 else
 {

 // Executes when the condition2 is false
 }

}

// Executes when the condition1 is false
else
{

 if (condition3)
 {

 // Executes when the condition3 is true
 }

 else
 {

 // Executes when the condition3 is false
 }

}

64 ◾ Mastering Scala

Flowchart:

Statement of nested-if-else

Example:

// program to illustrate nested if-else statement
object Test {

 // the main Method
 def main(args: Array[String]) {

 // taking the three variables
 var x: Int = 70
 var y: Int = 40
 var z: Int = 100

Scala Control Statements ◾ 65

 // condition1
 if (x > y)
 {
 // condition2
 if(x > z)
 {
 println("x is largest");
 }

 else
 {
 println("z is largest")
 }

 }

 else
 {

 // condition3
 if(y > z)
 {
 println("y is largest")
 }

 else
 {
 println("z is largest")
 }
 }
 }
 }

66 ◾ Mastering Scala

if-else if Ladder
A user can select from several alternatives here. The if statements are per-
formed in the order listed. When one of the if conditions are met, the state-
ment associated with that if is performed, and the rest of the ladder is
skipped. If none of the requirements are met, the last else expression is
performed.

Syntax:

if(condition_1)
{

 // this block will execute when condition1 is
true
}

else if(condition2)
{

 // this block will execute when the condition2
is true
}
.
.
.

else
{

 // this block will execute when none of
condition is true
}

Scala Control Statements ◾ 67

Flowchart:

Statement of if-else-if.

Example:

//program to illustrate if-else-if ladder
object Test {

 // the main Method
 def main(args: Array[String]) {

 // Taking variable
 var value: Int = 60

 if (value == 30)
 {

68 ◾ Mastering Scala

 // print the "value is 30" when
 // the above condition is true
 println("Value is 30")
 }

 else if (value == 20)
 {

 // print "value is 20" when the
 // above condition is true
 println("Value is 20")
 }

 else if (value == 50)
 {

 // print "value is 50" when
 // the above condition is true
 println("Value is 50")

 }

 else
 {

 // print "No Match Found"
 // when all the condition is false
 println("No Match Found")
 }
 }
 }

LOOPS IN SCALA (while, do..while, for, Nested Loops)
In computer languages, looping is a feature that allows the execution of
a set of instructions/functions repeatedly while some condition is true.
Loops make the job of the coder easier. Scala supports many loop types
to handle conditional situations in programs. Scala’s loops are as follows:

• while Loop

• do..while Loop

Scala Control Statements ◾ 69

• for Loop

• Nested Loops

while Loop
A while loop often accepts a condition in the form of parenthesis. If the
condition is True, the program contained within the body of the while
loop is executed. A while loop is used when we do not understand how
many times we want the loop to run but know the loop’s termination
condition. Because the condition is verified before performing the loop,
it is also known as an entry controlled loop. The while loop is similar to a
repeating if statement.

Syntax:

while (condition)
{
 // Code to execute
}

The while loop begins with a condition check. If true, the loop body
statements are performed; else, the first sentence after the loop is executed.
As a result, it is also known as an entry control loop.

The statements in the loop body are performed once the condition is
determined to be true. Normally, the statements include an updated value
for the variable under consideration for the following iteration.

The loop stops when a condition is met, signaling the end of its life cycle.

Example:

// program to illustrate the while loop
object whileLoopDemo
{

 // the main method
 def main(args: Array[String])
 {
 var m = 1;

 // Exit when x becomes greater than 4
 while (m <= 4)

70 ◾ Mastering Scala

 {
 println("Value of m: " + m);

 // Increment the value of m for
 // next iteration
 m = m + 1;
 }
 }
}

Infinite while Loop
A while loop can continue indefinitely, which means it has no end condi-
tion. In other words, some circumstances always remain true, causing the
while loop to continue endlessly, or it never finishes.

Example: The following software will print the provided statement
indefinitely while displaying the runtime error Killed (SIGKILL) in the
online IDE.

Example:

// program to illustrate Infinite while loop
object infinitewhileLoopDemo
{

 // the main method
 def main(args: Array[String])
 {
 var m = 1;

 // this loop will never terminate
 while (m < 5)
 {
 println("HelloEveryone")
 }
 }
}

do..while Loop
A while loop is identical to a do…while loop. The only distinction is that
the do..while loop is run at least once. After the initial execution, the con-
dition is verified. When we want the loop to execute at least once, we use a

Scala Control Statements ◾ 71

do..while loop. Because the condition is verified after performing the loop,
it is also called the exit controlled loop.

Syntax:

do {

 // statements to Execute

 } while(condition);

Example:

// program to illustrate the do..while loop
object dowhileLoopDemo
{

 // the main method
 def main(args: Array[String])
 {
 var m = 20;

 // using do..while loop
 do
 {
 print(a + " ");
 m = m - 1;
 }while(m > 0);
 }
}

for Loop
While the functionality of a for loop is identical to that of a while loop,
the syntax is different. When the number of times loop statements are to
be run is known ahead of time, for loops are chosen. We will cover other
versions of the “for loop in Scala” in future posts. It is essentially a repeti-
tion control structure that lets the programmer construct a loop that must
execute a specific number of times.

Example:

// program to illustrate for loop
object forloopDemo {

72 ◾ Mastering Scala

 // the main Method
 def main(args: Array[String]) {

 var m = 0;

 // for loop execution with the range
 for(m <- 1 to 7)
 {
 println("Value of m is: " + m);
 }
 }
 }

Nested Loops
The nested loop is a loop that contains a loop within a loop. It can have
a for loop within a for loop or a while loop within a while loop. It is also
feasible for a while loop to include a for loop and vice versa.

Example:

// program to illustrate the nested loop
object nestedLoopDemo {

 // the main Method
 def main(args: Array[String]) {

 var m = 5;
 var n = 0;

 // outer while loop
 while (m < 7)
 {
 n = 0;

 // inner while loop
 while (n < 7)
 {

 // printing values of a and b
 println("Value of m = " +m, " n = "+n);
 n = n + 1;
 }

Scala Control Statements ◾ 73

 // new line
 println()

 // incrementing value of m
 m = m + 1;

 // displaying the updated value of m
 println("The Value of m Become: "+m);

 // new line
 println()
 }

 }
 }

SCALA FOR LOOP
For loops are also referred to as for-comprehensions in Scala. A for loop is
a loop control model that enables us to design a loop that will run numer-
ous times. The loop allows us to complete n number of steps in a single line.

Syntax:

for(w <- range){
 // Code...
 }

Here, w is a variable; the <- operator is referred to as a generator since it
is used to create individual values from a range, and the range is the value
that contains the starting and ending values. m to n or m until n can use
to denote the range.

for Loop Using to
When we need to display the values 0 to n in for loop, we may use to. In
other terms, when we use for loop, it contains both the start and finish val-
ues, as shown in the following program, and it outputs from 0 to 10, rather
than 0 to 9 as in until.

Example:

// program to demonstrate how to create for loop
using to

74 ◾ Mastering Scala

object Main
{
 def main(args: Array[String])
 {

println("Value of k is:");

// Here, for loop, starts from 0 and ends
at 10

for(k <- 0 to 10)
{

println(k);
}

 }
}

for Loop Using until
When we want to display the value from 0 to n−1, we may utilize till in
the for loop. In other words, until the for loop excludes the last value, as
illustrated in the following program, it prints just from 0 to 9, not 0 to 10.

Example:

// demonstrate how to create for loop using until
object Main
{
 def main(args: Array[String])
 {

println("Value of k is:");

// for loop starts from the 0 and ends at
10

for(k <- 0 until 10)
{

println(k);
}

 }
}

MULTIPLE VALUES IN for-loop
Multiple ranges can also be used in a single for-loop. A semi-colon sepa-
rates these ranges (;). Let me discuss this with an instance. In the following
example, we combine two separate ranges into a single loop: m <- 0 to 4;
n<- 9 until 10.

Scala Control Statements ◾ 75

Example:

// demonstrate how to create multiple ranges in
for loop
object Main
{
 def main(args: Array[String])
 {

 // for loop with the multiple ranges
 for(m <- 0 to 4; n<- 9 until 10)
 {
 println("The Value of m is :" +m);
 println("The Value of n is :" +n);
 }
 }
}

USING for-loop WITH COLLECTIONS
In Scala, we may utilize the for-loop with collections such as List. It gives a
quick way to iterate across the collections.

Syntax:

for(x <- List){
 // Code..
 }

Example:

// demonstrate how to use for loop with collection
object Main
{
 def main(args: Array[String])
 {
 var rank = 0;
 val ranklist = List(11, 12, 13, 14, 15,
16, 17, 18, 19, 20);

 // For loop with the collection
 for(rank <- ranklist){

76 ◾ Mastering Scala

 println("The Author rank is : " +rank);
 }
 }
}

USING for-loop WITH filters
For-loop in Scala allows us to filter some entries from a specified collection
using one or more if expressions.

Syntax:

for(x<- List
if condition1; if condition2; if condition3;......)
{
// code..
}

Example:

// demonstrate how to use for loop with the
filters
object Main
{
 def main(args: Array[String])
 {
 var rank = 0;
 val ranklist = List(11, 12, 13, 14, 15,
16, 17, 18, 19, 20);

 // For loop with the filters
 for(rank <- ranklist
 if rank < 8; if rank > 2)
 {
 println("The Author rank is : " +rank);
 }
 }
}

Explanation: In the preceding example, the for loop filters the supplied
collection using two filters. These filters exclude rankings that are less than
8 and larger than 2.

Scala Control Statements ◾ 77

USING for-loop WITH yield

var output = for{ x<- List
 if condition1; if condition2;
 }
 yield x

Example:

// show how to use for loop with yields
object Main
{
 def main(args: Array[String])
 {
 var rank = 0;
 val ranklist = List(11, 12, 13, 14, 15,
16, 17, 18, 19, 20);

 // For loop with the yields
 var output = for{ rank <- ranklist
 if rank > 5; if rank != 9 }
 yield rank

 // Display the result
 for (rank <- output)
 {
 println("The Author rank is : " +
rank);
 }
 }
}

Explanation: In the above instance, the result is a variable containing a
collection of all rank values. And the for loop only displays Author’s ranks
that are more than 5 but less than 9.

SCALA while AND do while Loop
In computer languages, looping is a feature that allows the execution of
a set of instructions/functions repeatedly while some condition is true.
Loops make the job of the coder easier. Scala supports several loop types;
however, this chapter focuses on the while and do-while loops.

78 ◾ Mastering Scala

while Loop
While programming, we may encounter situations that need us to repeat
until and unless a condition is fulfilled. The while loop is used in these
instances. A while loop often accepts a condition in the form of paren-
thesis. If condition is True, the code within the while loop’s body is run.
The while loop can be used when we don’t know how many repetitions
we want the loop to run but know the loop’s termination condition. The
circumstance that causes the loop to terminate is known as the breaking
condition.

Syntax:

while (condition)
{
 // Code to execute
}

Example: While loop execution

// program of while loop

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // the variable declaration (assigning
5 to m)
 var m = 5

 // loop execution
 while (m > 0)
 {
 println("m is : " + m)
 m = m - 1;
 }
 }
}

Scala Control Statements ◾ 79

Example: Finding an element in an array

// program of while loop

// Creation of object
object PFP
{
// the main method
def main(args: Array[String])
{
 // variable declaration (assigning 5 to m)
 var m = Array("do_while", "for", "while")
 var index = 0

 // loop execution
 while (index < m.length)
 {
 if(m(index) == "while")
 println("The index of while is " +
index)
 index = index + 1
 }
}
}

do while Loop
A do…while loop is identical to while loop. The only difference is that the
do..while loop is executed at least once. After the initial execution, the con-
dition is verified. When we want the loop to execute at least once, we use
a do..while loop. Because the condition is verified after the loop is also
known as the exit controlled loop. The while loop condition is inserted at
the top of the loop. Because the condition in the do while loop is placed at
the end, all statements in the do while loop are executed at least once.

Syntax:

do {

 // statements to Execute

 } while(condition);

80 ◾ Mastering Scala

Example: do while loop execution

// program of do-while loop

// Creating object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // the variable declaration (assigning 5 to
m)
 var m = 5;

 // loop execution
 do
 {
 println("m is : " + m);
 m = m - 1;
 }
 while (m > 0);
 }
}

Example: Running a loop till we find a string in the Array

// program for do-while loop

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // Declaration of an array
 var m = Array("hello", "This", "is",
"Computertutorials", "bye")
 var str = "bye"
 var x = 0

 // loop execution
 do

Scala Control Statements ◾ 81

 {
 println("program is saying " + m(x));
 x = x + 1;
 }
 while (m(x) != str);
 }
}

SCALA BREAK STATEMENT
To halt the program’s loop execution, we utilize a break statement in Scala.
The Scala programming language lacks the idea of a break statement (in
versions above 2.8). Instead, it includes a break function, which is used to
interrupt the execution of a program or a loop. Importing the scala.util.
control.breaks._ package allows us to utilize the break function.

Syntax:

// import the package
import scala.util.control._

// create Breaks object
val loop = new breaks;

// loop inside the breakable
loop.breakable{

// Loop starts
for(..)
{
// code..
loop.break
}
}

OR

import scala.util.control.Breaks._
breakable
{
 for(..)
{
 code

82 ◾ Mastering Scala

 break
}
}

Example:

// program to illustrate the implementation of
break

// Importing the break package
import scala.util.control.Breaks._
object MainObject
{

// the main method
def main(args: Array[String])
{

 // breakable is used to prevent an exception
 breakable
 {
 for (m <- 1 to 12)
 {
 if (m == 8)

 // terminate the loop when the
value of m is equal to 8
 break
 else
 println(a);
 }
 }
}
}

BREAK IN Nested Loop
The break technique may also be used in nested loops.

Example:

// program to illustrate the implementation of the
break in the nested loop

Scala Control Statements ◾ 83

// Importing the break package
import scala.util.control._

object Test
{

// the main method
def main(args: Array[String])
{
 var numb1 = 0;
 var numb2 = 0;
 val m = List(15, 20, 25);
 val n = List(30, 35, 40);

 val outloop = new Breaks;
 val inloop = new Breaks;

 // breakable is used to
 // prevent from exception
 outloop.breakable
 {
 for (numb1 <- m)
 {

 // print list m
 println(" " + num1);

 inloop.breakable
 {
 for (numb2 <- n)
 {

 //print list n
 println(" " + num2);

 if (numb2 == 35)
 {

 // inloop is break when
 // numb2 is equal to 35
 inloop.break;
 }

84 ◾ Mastering Scala

 }

 // inloop breakable
 }
 }

 // outloop breakable
 }
}
}

Explanation: In the above example, the starting value of numb1 and
numb2 are both 0. Now, the outer for loop begins and prints 15 from the
m list, followed by the inner for loop, which begins and prints 30, 35 from
the n list. The inner loop terminates when the controls reach the numb2
== 35 condition, likewise for 20 and 25.

LITERALS IN SCALA
Literal/constant refers to any constant value that may give to a variable.
The literals are a set of symbols used to describe a constant value in the
code. In Scala, literals are classified as Character literals, String literals,
Multiline String literals, Boolean literals, Integer literals, and Floating
point literals.

LITERALS TYPES
1. Integer literals: When a suffix L or l is appended to the end of an

Integer literal, it is of type Int or Long. Integer numbers are repre-
sented by the types Int and Long.

Note:

• It should note that the type Int has a range ranging from −231 to
230.

• The Long type has a range of from −263 to 262.

• When an Integer literal contains a number outside of this range,
a compile time error occurs.

The literals for integers are supplied in two ways:

• Decimal literals: The allowable digits range from 0 to 9.

val m = 47

Scala Control Statements ◾ 85

• Hexa-decimal literals: The allowable digits range from 0 to 9,
while the characters range from a to f. We can use both uppercase
and lowercase letters.

// hexa-decimal number should be prefix with 0X
or 0x.
val x = 0xFFF

Example:

// program of integer
// literals

// Creation of an object
object integer
{

 // the main method
 def main(args: Array[String])
 {

 // decimal-form literal
 val m = 46

 // Hexa-decimal form the literal
 val n = 0xfF

 // Display the results in
 // the integer form
 println(m)
 println(n)
 }
}

2. Floating point literals: When a suffix F or f is added at the end, this
type of literal becomes Double as well as Float, and we may further
select the Double type by suffixing with d or D.

val x = 2.43159

Example:

// program of floating point literals

86 ◾ Mastering Scala

// Creation of object
object double
{

 // the main method
 def main(args: Array[String])
 {

 // the decimal-form literal
 val m = 4.256

 // It is also the decimal form of the
literal
 val n = 0213.34

 // Display the results
 println(m)
 println(n)
 }
}

3. Character literals: Character literals are either unicode characters
that are printable or escape sequences.

val m = 'b'
//character literal in the single quote.

val m = '\u0051'
//uni-code representation of the character
literal,
//This uni-code represents Q.

val m = '\n'
//Escape sequence in the character literals

Example:

// program of character literal

// Creation of object
object literal
{

Scala Control Statements ◾ 87

 // the main method
 def main(args: Array[String])
 {
 // Creating a character literal
 // in single quote
 val m = 'b'

 // uni-code representation of
 // character literal
 val n = '\u0051'

 // Escape sequence in the character
literals
 val o = '\n'

 // Display the results
 println(m)
 println(n)
 println(o)
 }
}

4. String literals: String literals are a series of characters enclosed in
double quotes. String Interpolation allows for the seamless handling
of String literals.

val m = "PfP"

Example:

// program of literals

// Creation of object
object literal
{

 // the main method
 def main(args: Array[String])
 {
 // Creation of a string
 // literal
 val m = "HelloEveryone"

88 ◾ Mastering Scala

 // Display the string literals
 println(m)
 }
}

5. Multiline string literals: Multiline string literals are also collections
of characters that span many lines.

val m = """PfP"""

Example:

// program of multi-line string literals

// Creation of object
object literal
{

 // the main method
 def main(args: Array[String])
 {
 // Creating multiple
 // line string literal
 val m ="""HelloeEveryone
 is a
 computer graphics
 portal"""

 // Display the multiple lines
 println(m)

 }
}

6. Boolean literals: Boolean literals accept just two values, true and
false, which are Boolean members.

val m = true

Example:

// program of Boolean literals

// Creation of object

Scala Control Statements ◾ 89

object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Assigning the true
 val m = true

 // Assigning the false
 val n = false

 // Display the results
 println(m)
 println(n)
 }
}

yield KEYWORD IN SCALA
The yield keyword will produce a result when the loop iterations are com-
pleted. The for loop employed a buffer internally to hold iterated results,
and after all, iterations were completed, it returned the end result from
that buffer. It does not work in the same manner as an imperative loop
works. The type of the returned collection is the same as the type we were
iterating through, so a Map produces a Map, a List yields a List, and so on.

Syntax:

var result = for{ var m <- List}
yield m

The curly brackets have been used to keep the variables and conditions,
and the outcome is a variable where all of the values of m are preserved in
the form of a collection.

Example:

// program to illustrate yield keyword

// Creation of an object
object PFP

90 ◾ Mastering Scala

{
 // the main method
 def main(args: Array[String])
 {
 // Using the yield with for
 var print = for(m <- 1 to 10) yield m
 for(n<-print)
 {
 // Printing the result
 println(n)
 }
 }
}

In the preceding example, the for loop used with a yield statement gen-
erates a list sequence.

Example:

// program to illustrate yield keyword

// Creation of an object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 val m = Array(8, 3, 1, 6, 4, 5)

 // Using the yield with for
 var print=for (n <- m if n > 4) yield e
 for(k<-print)
 {
 // Printing result
 println(k)
 }
 }
}

In the preceding example, the for loop combined with a yield statement
creates an array. Because we say yield e, it’s an Array[n1, n2, n3,. . . .]. e <- a
is our generator, and if (e > 4) may be a guard that filters out numbers that
don’t appear to be bigger than 4.

Scala Control Statements ◾ 91

TYPE INFERENCE IN SCALA
Scala Type Inference specifies the type of variable unnecessary, provided
that type mismatches are handled. With type inference, we can spend less
time writing out things that the compiler already knows. Because the Scala
compiler can frequently infer the type of an expression, we don’t need to
specify it explicitly.

Let’s start with the syntax for declaring immutable variables in Scala.

val variablename : Scala_datatype = value

Example:

// program of type interference
object Peeks
{

 // the main method
 def main(args: Array[String])
 {
 // prints double value
 val m : Double = 9.793
 println(m)
 println(m.getClass)

 }
}

The getClass function is used in the above example to output the vari-
able’s type to the console. The variable “m” in the preceding example is of
the type double.

Scala, on the other hand, discovers the variable type without the user
specifying it.

Example:

// program of type interference
object Peeks {

 // the main method
 def main(args: Array[String])
 {

92 ◾ Mastering Scala

 // type inference
 println("The Scala Data Types")
 val number = 5
 val bignumber = 100000000L
 val smallnumber = 2
 val doublenumber = 3.50
 val floatnumber = 3.50f
 val stringofcharacters = "This is a string
of the characters"
 val byte = 0xc
 val character = 'B'
 val empty = ()

 println(number)
 println(bignumber)
 println(smallnumber)
 println(doublenumber)
 println(floatnumber)
 println(stringofcharacters)
 println(byte)
 println(character)
 println(empty)

 }
}

It is worth noting that no specific data type is defined for the variables
listed above.

SCALA FUNCTION TYPE INFERENCE
Now we’ll look at how type inference works in Scala for functions.

Let’s start with how functions are declared in Scala.

Syntax:

def functionname ([parameterlist]) : [returntype]
= {
 // function body

 }

Scala Control Statements ◾ 93

Example:

// program of the multiply two numbers
object Peeks
{

 // the main method
 def main(args: Array[String])
 {

 // Calling the function
 println("The Product of two numbers is: "
+ Prod(6, 4));
 }

 // declaration and definition of the Product
function
 def Prod(x:Int, y:Int) : Int =
 {
 return x*y
 }
}

As we can see from the declaration, the specified return type in the pre-
ceding example is Int. Scala type inference automatically finds the func-
tion type without the user specifying it.

Example:

// program of the type interference
object Peeks
{

 def factorial(n: Int)= {

 var f = 1
 for(x <- 1 to n)
 {
 f = f * x;
 }

94 ◾ Mastering Scala

 f
 }

 // Driver-Code
 def main(args: Array[String])
 {
 println(factorial(6))
 }

}

The colon and return type are missing in the preceding example.
Also, in the preceding example, we removed the statement “return f” to

“f” since we did not specify the return type.
The compiler displays the following error if “return f” is used instead

of “f.”

prog.scala:11: error: method factorial has return
statement; needs the result type
 return f
 ^

This demonstrates the potential of Scala type inference, but the com-
piler cannot infer a result type for recursive functions. The factorial func-
tion shown above can also implement recursively.

The factorial function is defined recursively below, with no type
inference.

Example:

// program of using recursion
object Peeks {

 // the factorial function
 def factorial(n: Int): Int =
 {
 if (n == 0)
 return 1
 else
 return n * factorial(n-1)
 }

Scala Control Statements ◾ 95

 // Driver-Code
 def main(args: Array[String])
 {
 println(factorial(6))
 }

}

Example: Consider Scala type inference.

// program of type interference
object Peeks
{

 // Defining function with the type interfrence
 def factorial(n: Int) =
 {
 if (n == 0)
 1
 else
 n * factorial(n-1)
 }

 // Driver-Code
 def main(args: Array[String])
 {
 println(factorial(6))
 }

}

This chapter covered Decision Making, Loops, Break statement in Scala,
Literals, yield Keyword, and Type Inference.

96 DOI: 10.1201/9781003358527-4

C h a p t e r 4

Scala OOP Concepts

IN THIS CHAPTER

 ➢ Class and Object in Scala

 ➢ Inheritance

 ➢ Operators

 ➢ Abstract Classes

 ➢ Singleton and Companion Objects

 ➢ Generic Classes

 ➢ Access Modifiers

 ➢ Type Casting

 ➢ Object Casting

 ➢ Object Equality

 ➢ Multithreading

 ➢ Constructors

 ➢ Extending a Class in Scala

 ➢ Polymorphism

 ➢ Field Overriding

 ➢ Abstract Type Members

https://doi.org/10.1201/9781003358527-4

Scala OOP Concepts ◾ 97

 ➢ Final

 ➢ This Keyword

In the previous chapter, we covered Scala control statements, and in this
chapter, we will discuss Object-Oriented Programming (OOP) concepts.

SCALA CLASS AND OBJECT
Classes and Objects are fundamental notions in OOP that center around
real-world entities.

Class
A class is a user-defined blueprint or prototype used to build things.
Alternatively, a class combines fields and methods (member functions that
specify actions) into a single entity. In a class, the constructor is used to ini-
tialize new objects, fields are variables that supply the state of the class and its
objects, and methods are used to implement the class’s and its objects’ actions.

Class Declaration

A class declaration in Scala begins with the class keyword and is followed by
the class identifier (name). However, several optional properties can utilize
with class definition depending on the application requirements. In general,
class declarations can have the following components in the following order:

• Class keyword: The type class is declared using the class keyword.

• Classname: The classname should start with a capital letter (capital-
ized by convention).

• SuperClass (if any): If there is one, the name of the class’s parent
(superClass), preceded by the keyword extends. A class can only have
one parent that it can extend (subClass).

• Traits (if any): A comma-separated list of the class’s characteristics, if
any, preceded by the term extends. A class can implement many traits.

• Body: The class’s body is encircled by (curly braces).

Syntax:

class Classname{
 // the methods and fields
 }

98 ◾ Mastering Scala

It should note that the class’s default modifier is public.

Example:

// program to illustrate how to create class

// Name of class is Smartphone
class Smartphone
{

 // the Class variables
 var number: Int = 16
 var nameofcompany: String = "Apple"

 // the Class method
 def Display()
 {
 println("The Name of the company : "
+ nameofcompany);
 println("The Total number of Smartphone
generation: " + number);
 }
}
object Main
{

 // the main method
 def main(args: Array[String])
 {

 // the Class object
 var obj = new Smartphone();
 obj.Display();
 }
}

OBJECTS
It is a fundamental unit of OOP that represents real-world things. A typi-
cal Scala application generates a large number of objects, which interact
via executing methods. An item is made up of:

• State: State is represented through an object’s characteristics. It also
reflects an object’s attributes.

Scala OOP Concepts ◾ 99

• Behavior: It is expressed through an object’s methods. It also repre-
sents an object’s interaction with other objects.

• Identity: It provides an object with a unique name and allows one
thing to communicate with other objects.

Consider Dog as an object, and refer to the diagram below to learn
about its identification, state, and behavior.

Objects in OOP.

Objects are items found in the actual world. A graphics application, for
example, may have objects such as “circle,” “square,” and “menu.” Objects
in an online shopping system may include “shopping cart,” “customer,”
and “product.”

Defining Objects (Also Called Instantiating a Class)

When a class’s object is generated, the class is said to be instantiated. All
instances share the characteristics and behavior of the class. However,
the values of those attributes, that is, the state, are specific to each object.
A single class can have an unlimited number of instances.

Declaration of Objects.

100 ◾ Mastering Scala

The new keyword in Scala is used to construct a class object. In Scala,
the syntax for constructing an object is:

Syntax:

var obj = new Dog();

Scala also has a companion objects feature that allows us to construct
an object without using the new keyword.

Creating an Object

The new operator creates a class by allocating memory and return-
ing a pointer to that memory. The new operator is also called the class
constructor.

Example:

// program to illustrate Initialization of an
object

// Class with the primary constructor
class Dog(name:String, breed:String, age:Int,
color:String)
{
 println("My name:" + name + " my breed:" +
breed);
 println("I am: " + age + " and my color:"
+ color);

}
object Main
{

 // the main method
 def main(args: Array[String])
 {

 // the Class object
 var obj = new Dog("bruno", "papillon", 4,
"brown");
 }
}

Scala OOP Concepts ◾ 101

Explanation: There is just one constructor in this class. We can identify
a constructor because the body of a class is the body of the constructor
in Scala, and the parameter-list precedes the class name. The Dog class’s
constructor accepts four parameters. The following sentence offers values
for those parameters as “Bruno,” “papillon,” 4, and “brown”:

var obj = new Dog("bruno", "papillon", 4, "brown");

Anonymous Object

Anonymous objects are objects that are created but lack a reference; we
can construct an anonymous object if we do not wish to reuse it.

Example:

// program to illustrate how to create Anonymous
object

class PFP
{
 def display()
 {
 println("Welcome, Everyone");
 }
}
object Main
{

 // the main method
 def main(args: Array[String])
 {

 // Creating Anonymous object of the PFP
class
 new PFP().display();
 }
}

SCALA INNER CLASS
Inner class refers to the division of one class into another. This feature
allows the user to logically organize classes that are only used in one loca-
tion, increasing encapsulation and producing more understandable and

102 ◾ Mastering Scala

manageable code. The idea of inner classes in Scala differs from that of
Java. The inner class, like the outer class in Java, is a member of the outer
class, but in Scala, the inner class is connected to the outer object.

Syntax:

class Outerclass{
 class Innerclass{
 // Code…
 }
 }

Example:

// program to demonstrate how to create inner
class

// Outer class
class Peek
{

 // Inner-class
 class P1
 {
 var a = 0
 def method()
 {
 for(a<-0 to 4)
 {
 println("Welcome to the inner
class: P1");
 }
 }
 }
}
object Main
{
 def main(args: Array[String])
 {

 // Creating object of outer and
 // inner class Here, P1 class is bounded
with the object of Peek class

Scala OOP Concepts ◾ 103

 val obj = new Peek();
 val o = new obj.P1;
 o.method();
 }
}

Explanation: Peek is the outside class in the preceding example, while
P1 is the inner class. To construct the object of the inner class, we must
first create the object of the outer class, which is obj. Because the inner
class is tied to the object of the outer class, obj is prefixed with P1 class and
creates the object o of P1 class.

How to Make a Class within an Object and an Object Inside a Class

We may also embed a class within an object or an object inside a class
in Scala. Let’s look at an example. In the next example, we first create an
object within a class and then access the object’s method using the new
keyword followed by the class name, object name, and method name, as
seen in the second comment:

new outerclass().innerobject.method;

Second, we construct a class within an object and access the meth-
ods contained within the class using the new keyword followed by
the object, class, and method names, as illustrated in the following
statement:

new outerobject.innerclass().method;

Example:

// program to illustrate how to create an object
inside class, Or
// class inside an object

// Class inside Object
class outerclass
{
 object innerobject
 {
 val q = 0;
 def method()

104 ◾ Mastering Scala

 {
 for(q <- 0 to 3)
 {
 println("The object inside a class
example")
 }
 println()
 }
 }
}

// Object inside Class
object outerobject
{
 class innerclass
 {
 val s = 0;
 def method()
 {
 for(s <- 0 to 2)
 {
 println("The class inside an
object example")
 }
 }
 }
}

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // Object inside a class
 new outerclass().innerobject.method;

 // Class inside an object
 new outerobject.innerclass().method;
 }
}

Scala OOP Concepts ◾ 105

SCALA INHERITANCE
OOP relies heavily on inheritance. The Scala mechanism allows one class
to inherit another class’s characteristics (fields and methods).

Important terms to remember:

• SuperClass: A superClass is a class with inherited characteristics (a
base class or a parent class).

• SubClass: A subClass is a class that inherits from another class (or a
derived class, extended class, or child class). In addition to the super-
Class’s fields and methods, the subClass can add its own.

• Reusability: Inheritance supports the idea of “reusability,” which
means that if we want to construct a new class and there is already
a class that has part of the code that we require, we may derive our
new class from the old class. We are utilizing the old class’s fields and
functions by doing so.

HOW TO UTILIZE INHERITANCE IN SCALA
The keyword for inheritance is extends.

Syntax:

class child_classname extends parent_classname {
 // Methods and fields
 }

Example:

// program to illustrate implementation of
inheritance

// Base class
class Peeks1{
 var Name: String = "Drishti"
}

// Derived class Using the extends keyword
class Peeks2 extends Peeks1
{
 var Articleno: Int = 150

 // the Method
 def details()

106 ◾ Mastering Scala

 {
 println("The Author name: " +Name);
 println("The Total numbers of articles: "
+Articleno);
 }
}

object Main
{

 // Driver code
 def main(args: Array[String])
 {

 // Creation of object of derived class
 val ob = new Peeks2();
 ob.details();
 }
}

Explanation: In the preceding example, Peeks1 is the base class, and
Peeks2 is a derived class that is derived from Peeks1 through the extends
keyword. When we create the object of the Peeks2 class in the main
method, a duplicate of all the methods and fields of the base class is allo-
cated memory in this object. As a result, we may access the base class
members by using the object of the derived class.

INHERITANCE TYPE
Scala supports the various forms of inheritance listed below.

• Single inheritance: A derived class inherits the characteristics of just
one base class under single inheritance. Class A acts as the base class
for the derived class B in the illustration below.

Single inheritance.

Scala OOP Concepts ◾ 107

Example:

// program to illustrate Single inheritance

// Base class
class Parent
{
 var Name: String = "Drishti"
}

// Derived class
// Using the extends keyword
class Child extends Parent
{
 var Age: Int = 19

 // Method
 def details()
 {
 println("Name is: " +Name);
 println("Age is: " +Age);
 }
}

object Main
{

 // Driver code
 def main(args: Array[String])
 {

 // Creating object of derived class
 val ob = new Child();
 ob.details();
 }
}

• Multilevel inheritance: A derived class will inherit the base class,
and the derived class will also function as the base class to some
other class. The class A in the figure below consists of a base class
for the derived class B, which acts as a base class for the derived
class C.

108 ◾ Mastering Scala

Multilevel inheritance.

Example:

// program to illustrate Multilevel inheritance

// Base class
class Parent
{
 var Name: String = "Shreya"
}

// Derived from the parent class
// Base class for the Child2 class
class Child1 extends Parent
{
 var Age: Int = 23
}

// Derived from the Child1 class
class Child2 extends Child1
{
 // Method
 def details(){
 println("Name is: " +Name);
 println("Age is: " +Age);
 }
}

Scala OOP Concepts ◾ 109

object Main
{

 // Drived Code
 def main(args: Array[String])
 {

 // Creating object of derived class
 val ob = new Child2();
 ob.details();
 }
}

• Hierarchical inheritance: In this inheritance, one class acts as the
superClass (base class) for several subClasses. In the diagram below,
class A acts as the base class for the derived classes B, C, and D.

Hierarchical inheritance.

Example:

// program to illustrate Hierarchical
inheritance

// Base class
class Parent
{
 var Name1: String = "Shreya"
 var Name2: String = "Seema"
}

// Derived from parent class

110 ◾ Mastering Scala

class Child1 extends Parent
{
 var Age: Int = 23
 def details1()
 {
 println(" Name is: " +Name1);
 println(" Age is: " +Age);
 }
}

// Derived from the Parent class
class Child2 extends Parent
{
 var Height: Int = 154

 // Method
 def details2()
 {
 println(" Name is: " +Name2);
 println(" Height is: " +Height);
 }
}

object Main
{

 // Driver code
 def main(args: Array[String])
 {

 // Creation of objects of both derived
classes
 val ob1 = new Child1();
 val ob2 = new Child2();
 ob1.details1();
 ob2.details2();
 }
}

• Multiple inheritance: A class can have many superClasses and
inherit traits from all parent classes. Multiple inheritance with
classes is not supported in Scala, although it is possible using traits.

Scala OOP Concepts ◾ 111

Multiple inheritance.

Example:

// program to illustrate multiple inheritance
using traits

// Trait 1
trait Peeks1
{
 def method1()
}

// Trait 2
trait Peeks2
{
 def method2()
}

// Class that implement both Peeks1 and Peeks2
traits
class PFP extends Peeks1 with Peeks2
{

 // method1 from Peeks1
 def method1()
 {
 println("Trait 1");
 }

 // method2 from Peeks2
 def method2()
 {
 println("Trait 2");
 }
}

112 ◾ Mastering Scala

object Main
{
 // Driver code
 def main(args: Array[String])
 {

 // Creating object of PFP class
 var obj = new PFP();
 obj.method1();
 obj.method2();
 }
}

• Hybrid inheritance: It combines two or more of the preceding
inheritance categories. Because Scala does not enable multiple
inheritance with classes, hybrid inheritance is likewise not fea-
sible. Only characteristics in Scala allow us to accomplish hybrid
inheritance.

Hybrid inheritance.

SCALA OPERATORS
An operator is a symbol that shows a method that must be carried out
with one or more operands. Every programming language is built around
operators. Operators allow us to do numerous actions on operands. Scala
has several types of operators, which are as follows:

Scala OOP Concepts ◾ 113

ARITHMETIC OPERATORS
These are used to carry out arithmetic and mathematical operations on
operands.

• The addition (+) operator combines two operands. For instance,
c+d.

• The subtraction (−) operator is used to subtract two operands. For
instance, c−d.

• The multiplication (*) operator is used to multiply two operands. For
instance, c*d.

• The division (/) operator divides the first and second operands. For
instance, c/d.

• When first operand is divided by the second, the modulus(percent)
operator returns the remainder. For instance, c % d.

• The exponent (**) operator returns the power of the operands. For
instance, c**d.

Example:

// program to demonstrate Arithmetic Operators

object Arithop
{

def main(args: Array[String])
{
 // variables
 var c = 60;
 var d = 20;

 // Addition
 println("Addition of c + d = " + (c + d));

 // Subtraction
 println("Subtraction of c - d = " + (c - d));

 // Multiplication
 println("Multiplication of c * d = " + (c * d));

114 ◾ Mastering Scala

 // Division
 println("Division of c / d = " + (c / d));

 // Modulus
 println("Modulus of c % d = " + (c % d));

}
}

RELATIONAL OPERATORS
For comparing two values, relational operators or comparing operators
are utilized. Let’s go over them one by one:

• The Equal To(==) operator determines whether or not the two oper-
ands are equal. If this is case, it returns true. If not, it returns false.
5==5 will, for example, return true.

• The Not Equal To(!=) operator determines whether or not the two
operands are equal. If it does not, it returns true. If not, it returns
false. It is the boolean equivalent of the ‘==’ operator. 5!=5 will, for
example, return false.

• The Greater Than(>) operator determines if the first operand is greater
than the second. If this is case, it returns true. If not, it returns false.
6>5 will, for example, yield true.

• The less than(<) operator determines if the first operand is less than
the second. If this is case, it returns true. If not, it returns false. 6<5,
for example, will return false.

• The Greater Than Equal To(>=) operator determines if the first and
second operands are greater than or equal. If this is case, it returns
true. If not, it returns false. 5>=5 will, for example, yield true.

• The operator Less Than Equal To(<=) determines if the first operand
is less than or equal to the second operand. If this is case, it returns
true. If not, it returns false. 5<=5 will, for instance, also yield true.

Example:

// program to demonstrate Relational Operators
object Relop
{

Scala OOP Concepts ◾ 115

def main(args: Array[String])
{
 // variables
 var c = 60;
 var d = 20;

 // Equal to operator
 println("Equality of c == d is : " +
(c == d));

 // Not equal to operator
 println("Not Equals of c != d is : " +
(c != d));

 // Greater than operator
 println("Greater than of c > d is : " +
(c > d));

 // Lesser than operator
 println("Lesser than of c < d is : " +
(c < d));

 // Greater than equal to operator
 println("Greater than or Equal to of c >= d is
: " + (c >= d));

 // Lesser than equal to operator
 println("Lesser than or Equal to of c <= d is
: " + (c <= d));

}
}

LOGICAL OPERATORS
They are used to integrate two or more conditions/constraints or to sup-
plement the evaluation of the original condition. These are as follows:

• When both of the conditions in question are met, the logical
AND(&&) operator returns true. If not, it returns false. The “and”
operator is an alternative to the && operator. c && d, for example,
returns true when both c and d are true (i.e., non-zero).

116 ◾ Mastering Scala

• When one (or both) of the criteria in question are met, the logical
OR(||) operator returns true. If not, it returns false. The “or” operator
is an alternative to the || operator. For instance, c || d returns true if
either c or d is true (i.e., non-zero). Naturally, it returns true if both
c and d are true.

• Logical When the NOT(!) operator returns true, the condition in
question is not met. If not, it returns false. The “not” operator is an
alternative to the! operator. !true, for example, returns false.

Example:

// program to demonstrate
// Logical Operators
object Logop
{

def main(args: Array[String])
{

 // variables
 var c = false
 var d = true

 // logical NOT operator
 println("Logical Not of !(c && d) = " + !(c &&
d));

 // logical OR operator
 println("Logical Or of c || d = " + (c || d));

 // logical AND operator
 println("Logical And of c && d = " + (c &&
d));

}
}

ASSIGNMENT OPERATORS
It is used to assign the value to a variable. The assignment operator’s left
operand is a variable, while the assignment operator’s right operand is a

Scala OOP Concepts ◾ 117

value. However, the compiler will throw an error if the value on the right
side is not of the same data-type as the variable on the left side.

The following are examples of assignment operators:

• The simple assignment operator is the equals symbol (=). This opera-
tor is used to assign the variable on the left the value on the right.

• The Add AND Assignment (+=) operator is used to combine the left
and right operands and then assign the result to a variable on the left.

• The Subtract AND Assignment (−=) operator is used to subtract the
left operand from the right operand and then assign the result to the
left operand’s variable.

• The Multiply AND Assignment (*=) operator is used to multiply the
left operand by the right operand and then assign the result to the left
operand variable.

• The Divide AND Assignment (/=) operator divides the left operand
by the right operand and then assigns the result to a variable on the
left.

• The Modulus AND Assignment (% =) operator is used to assign the
modulus of the left operand to the right operand and then to the vari-
able on the left.

• The Exponent AND Assignment (**=) operator is used to increase
the power of the left operand and assign it to the variable on the left.

• The Left shift AND Assignment (<<=) operator performs a binary left
shift of the left operand with the right operand and assigns it to the
variable on the left.

• The Right shift AND Assignment (>>=) operator performs binary
right shift of the left operand with the right operand and assigns it to
the variable on the left.

• The Bitwise AND Assignment (&=) operator is used to execute Bitwise
And on the left operand and assign it to the variable on the left.

• The Bitwise exclusive OR and Assignment (̂ =) operator is used to
conduct Bitwise exclusive OR on the left operand and assign it to the
variable on the left.

118 ◾ Mastering Scala

• The Bitwise inclusive OR and Assignment (|=) operator is used to
conduct Bitwise inclusive OR on the left operand and assign it to the
variable on the left.

Example:

// program to demonstrate
// Assignments Operators
object Assignop
{

def main(args: Array[String])
{

 // variables
 var x = 50;
 var y = 40;
 var z = 0;

 // simple addition
 z = x + y;
 println("simple addition: z= x + y = " + z);

 // Add AND assignment
 z += x;
 println("Add and assignment of z += x = " +
z);

 // Subtract AND assignment
 z -= x;
 println("Subtract and assignment of z -= x = "
+ z);

 // Multiply AND assignment
 z *= x;
 println("Multiplication and assignment of z *=
x = " + z);

 // Divide AND assignment
 z /= x;
 println("Division and assignment of z /= x =
" + z);

Scala OOP Concepts ◾ 119

 // Modulus AND assignment
 z %= x;
 println("Modulus and assignment of z %= x = "
+ z);

 // Left shift AND assignment
 z <<= 3;
 println("Left shift and assignment of z <<=
3 = " + z);

 // Right shift AND assignment
 z >>= 3;
 println("Right shift and assignment of z >>=
3 = " + z);

 // Bitwise AND assignment
 z &= x;
 println("Bitwise And assignment of z &= 3 =
" + z);

 // Bitwise exclusive OR and assignment
 z ^= x;
 println("Bitwise Xor and assignment of z ^=
x = " + z);

 // Bitwise inclusive OR and assignment
 z |= x;
 println("Bitwise Or and assignment of z |=
x = " + z);
}
}

BITWISE OPERATORS
Scala has seven bitwise operators that act at the bit level or are used to
execute bit by bit operations. The bitwise operators are as follows:

• Bitwise AND (&): Takes two operands and does AND on each bit of
the two numbers. The AND only returns 1 if both bits are 1.

• Bitwise OR (|): Takes two operands and performs OR on each bit of
the two integers. OR yields 1 if any of the two bits is 1.

120 ◾ Mastering Scala

• Bitwise XOR (̂): Takes two operands and performs XOR on each
bit of the two numbers. If two bits are different, the result of XOR
is 1.

• Bitwise left Shift (<<): Takes two integers, left shifts the bits of the first
operand, and the second operand determines the number of places
to shift.

• Bitwise right shift (>>): Takes two values, right shifts the bits of the
first operand, and the second operand determines the number of
places to shift.

• Bitwise operations complement (̂): This operator accepts a single
number and performs an 8-bit complement operation.

• Bitwise shift right zero fill (>>>): The left operand is shifted right by
the number of bits indicated by the right operand, and the shifted
values are filled with zeros.

Example:

// program to demonstrate
// Bitwise Operators
object Bitop
{
def main(args: Array[String])
{
 // variables
 var x = 20;
 var y = 18;
 var z = 0;

 // Bitwise AND operator
 z = x & y;
 println("Bitwise And of x & y = " + z);

 // Bitwise OR operator
 z = x | y;
 println("Bitwise Or of x | y = " + z);

 // Bitwise XOR operator
 z = x ^ y;
 println("Bitwise Xor of x ^ y = " + z);

Scala OOP Concepts ◾ 121

 // Bitwise once complement operator
 z = ~x;
 println("Bitwise Ones Complement of ~x = " + z);

 // Bitwise left shift operator
 z = x << 3;
 println("Bitwise Left Shift of x << 3 = " + z);

 // Bitwise right shift operator
 z = x >> 3;
 println("Bitwise Right Shift of x >> 3 = " + z);

 // Bitwise shift right zero fill operator
 z = x >>> 4;
 println("Bitwise Shift Right x >>> 4 = " + z);
}
}

SCALA OPERATORS PRECEDENCE
An operator is a way to depict a process that must be performed with one
or more operands. Operators are the foundations of every programming
language. Operator precedence determines which operator is performed
first in an expression having several operators with differing precedence.

For example, 20 + 10 * 30 is computed as 20 + (10 * 30) rather than (20
+ 10) * 30.

Associativity is utilized when two operators with the same precedence
exist in an expression. Right-to-left or left-to-right associativity is possible.
Because “*” and “/” have the same precedence and associativity is left to
right, the phrase “100 / 20 * 20” is handled as “(100 / 10) * 20.”

The table below shows operators with the highest precedence at the top
and operators with the lowest precedence at the bottom.

Operator Category Associativity

()[] Postfix Left to Right
* / % Multiplicative Left to Right
! ~ Unary Right to Left
+ – Additive Left to Right
< <= > >= Relational Left to Right
>> >>> << Shift Left to Right

(Continued)

122 ◾ Mastering Scala

== != The Relational is equal to/
is not equal to

Left to Right

== != Equality Left to Right
& Bitwise AND Left to Right
| Bitwise inclusive OR Left to Right
^ Bitwise exclusive OR Left to Right
&& Logical AND Left to Right
| | Logical OR Left to Right
= += -= *= /= %= >>=
<<= &= ^= |=

Assignment Right to left

, Comma (separate
expressions)

Left to Right

Example:

// program to show Operators Precedence
// Creation of object
object pfp
{
 // the main method
 def main(args: Array[String])
 {

 var a:Int = 40;
 var b:Int = 20;
 var c:Int = 35;
 var d:Int = 9;
 var e = 0

 // operators with highest precedence
 // will operate first
 e = a + b * c / d;

 println("The Value of a + b * c / d is : "
+ e)

 }
}

SCALA ABSTRACT CLASSES
Abstraction is the process of hiding internal information and display-
ing simply the functionality. An abstract class is used to accomplish

Operator Category Associativity

Scala OOP Concepts ◾ 123

abstraction in Scala. The Scala abstract class operates similarly to the Java
abstract class. The abstract keyword is used in Scala to create an abstract
class. It has both abstract and non-abstract methods and cannot handle
multiple inheritances. A class can extend just one abstract class.

Syntax:

abstract class classname
{
// code…
}

The abstract methods of an abstract class are those that do not have any
implementation. In other terms, an abstract procedure is one that does not
have anybody.

Syntax:

def functionname()

Example:

// program to illustrate how to create abstract
class

// Abstract class
abstract class myauthor
{

 // the abstract method
 def details()
}

// PFP class extends abstract class
class PFP extends myauthor
{
 def details()
 {
 println("Author name is: Shreya Sood")
 println("Topic name is: Abstract class in
the Scala")
 }
}

124 ◾ Mastering Scala

object Main
{
 // the main method
 def main(args: Array[String])
 {
 // objects of PFP class
 var obj = new PFP()
 obj.details()
 }
}

The following are some key points to remember regarding abstract
classes in Scala.

• In Scala, like in Java, we are not permitted to make an instance of the
abstract class. When we try to construct objects of the abstract class, the
compiler throws an error, as demonstrated in the following program.

Example:

// program to illustrate concept of abstract
class

// Abstract class
abstract class myauthor{

 // abstract method
 def details()
}

object Main {

 // the main method
 def main(args: Array[String]) {

 // the object of myauthor class
 var obj = new myauthor()
 }
}

• An abstract class in Scala can also include fields. These fields are
accessible by abstract class methods as well as class methods that
inherit abstract class. As shown in the program following.

Scala OOP Concepts ◾ 125

Example:

// program to illustrate
// concept of abstract class

// Abstract class with the fields
abstract class Peek
{
 var name : String = "HelloEveryone"
 var tutorial: String = "Scala"
 def portal()
}

// PFP class extends abstract class
class PFP extends Peek
{

 // Abstract class method accessing
 // fields of abstract class
 def portal()
 {
 println("The Portal name: " + name)

 }

 // PFP class method accessing
 // fields of abstract class
 def tutdetails()
 {
 println("The Tutorial name: " +
tutorial)
 }
}

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // objects of PFP class
 var obj = new PFP()

126 ◾ Mastering Scala

 obj.portal()
 obj.tutdetails()
 }
}

• An abstract class in Scala, like Java, can have a constructor, and an
abstract class’s constructor is invoked when an instance of an inher-
ited class is created. As shown in the program below.

Example:

// program to illustrate
// concept of abstract class

// Abstract class with the constructor
// And constructor contain two arguments
abstract class myauthor(name: String,
 topic: String)
{
 def details()
}

// PFP class extends abstract class
class PFP(name: String, topic: String) extends
 myauthor(name, topic)
{
 def details()
 {
 println("Author name is: " + name)
 println("Topic name is: " + topic)
 }
}

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // objects of PFP class

Scala OOP Concepts ◾ 127

 var obj = new PFP("Shreya", "Abstract
class")
 obj.details()
 }
}

• Only non-abstract methods can be found in an abstract class. This
enables us to construct classes that can only be inherited rather than
instantiated. As shown in the program below.

Example:

// program to illustrate
// concept of abstract class

// Abstract class with
// the non-abstract method
abstract class myauthor
{

 // Non-abstract method
 def details()
 {
 println("Welcome to Club")
 }
}

// PFP class extends abstract class
class PFP extends myauthor{}

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // objects of PFP class
 var obj = new PFP()
 obj.details()
 }
}

128 ◾ Mastering Scala

• An abstract class in Scala can have final methods (methods that can-
not be overridden). The following program, for instance, builds and
executes without problem. The final keyword is used in Scala to cre-
ate the final method.

Example:

// program to illustrate
// concept of abstract class

// Abstract class with final method
abstract class myauthor
{
 final def mymethod()
 {
 println("The Final method")
 }
}

// PFP class extends abstract class
class PFP extends myauthor{}

object Main
{

 // the main method
 def main(args: Array[String])
 {

 // objects of PFP class
 var obj = new PFP()
 obj.mymethod()
 }
}

When Should We Use Abstract Class in Scala?

A useful abstract class is:

• When we want to create a base class that requires constructor parameters.

• When our code is invoked from Java code.

• It should be noted that traits may also be utilized to accomplish
abstraction.

Scala OOP Concepts ◾ 129

SCALA COMPANION OBJECTS AND SINGLETON

SINGLETON OBJECT
Scala is a more object-oriented language than Java, hence there is no idea
of a static keyword in Scala. Scala uses a singleton object instead of the
static keyword. A Singleton object is one that defines just one object of
a class. A singleton object serves as the starting point for our program’s
execution. If we do not construct a singleton object in our application, our
code will compile but will not produce any output. So we needed a single-
ton object to retrieve our program’s output. The object keyword is used to
construct a singleton object.

Syntax:

object Name{
 // code…
 }

Important information regarding the singleton object:

• The method in the singleton object is available globally.

• We are not permitted to construct a singleton object instance.

• The primary constructor of a singleton object cannot accept
parameters.

• A singleton object in Scala can extend classes and traits.

• A main method is always present in a singleton object in Scala.

• The method in the singleton object is called using the object’s name
(much like calling a static method in Java), hence no object is required
to access this function.

First example:

// program to illustrate
// concept of the singleton object

class AreaOfRectangle

130 ◾ Mastering Scala

{

 // Variables
 var length = 50;
 var height = 30;

 // the method which gives area of the
rectangle
 def area()
 {
 var ar = length * height;
 println("Height of the rectangle:" +
height);
 println("Length of the rectangle:" +
length);
 println("Area of the rectangle:" + ar);
 }
}

// the singleton object
object Main
{
 def main(args: Array[String])
 {

 // Creating object of the AreaOfRectangle
class
 var obj = new AreaOfRectangle();
 obj.area();
 }
}

Second example:

// program to illustrate
// how to call method inside the singleton object

// Singleton object with the named as
Exampleofsingleton
object Exampleofsingleton
{

Scala OOP Concepts ◾ 131

 // Variables of singleton object
 var str1 = "Welcome ! toSession";
 var str2 = "This is Scala programming
tutorial";

 // Method of the singleton object
 def display()
 {
 println(str1);
 println(str2);
 }
}

// Singleton object with the named as Main
object Main
{
 def main(args: Array[String])
 {

 // Calling method of the singleton object
 Exampleofsingleton.display();
 }
}

Explanation: In the above instance, we have two singletons,
Exampleofsingleton and Main. The function display() in the exampleofs-
ingleton object is now called in the Main object. Using the expression
Exampleofsingleton.display(), we invoke the display() function of the
Exampleofsingleton object and print the output.

COMPANION OBJECT
A companion object is one whose name is the same as the class name. Or
in other words, when an object and a class share the same name, the object
is referred to as the companion object, and the class is referred to as the
companion class. The companion object is specified in the same source
file as the class. A companion object has access to both the class’s private
methods and private fields.

Example:

// program to illustrate
// concept of the Companion object

132 ◾ Mastering Scala

// the Companion class
class ExampleofCompanion
{

 // Variables of the Companion class
 var str1 = "WelcomeToSession";
 var str2 = "Tutorial of the Companion object";

 // Method of the Companion class
 def show()
 {
 println(str1);
 println(str2);
 }
}

// the Companion object
object ExampleofCompanion
{
 def main(args: Array[String])
 {
 var obj = new ExampleofCompanion();
 obj.show();
 }
}

SCALA GENERIC CLASSES
Creating a Generic Class in Scala is quite similar to creating generic classes
in Java. In Scala, Generic Classes are defined as classes that accept a type
as a parameter. This class accepts a type as a parameter enclosed by square
brackets, that is, []. In Scala, these classes are expressly used to advance
the collection classes. If we have two list types, A and B, then List[A] is a
sub-type of List[B] if and only if type B is comparable to type A.

Some things to keep in mind:

• A, as in List[A], is the symbol for a type parameter of a simple type.

• In generic classes, the symbols for a type parameter of the second,
third, fourth, and so on, types are B, C, D, and so on.

• In Scala Map, the symbol for a key is A, while the symbol for a value
is B.

• A numeric value is represented by the symbol N.

Scala OOP Concepts ◾ 133

Despite the fact that certain symbol conventions are specified, any sym-
bol can be used for the type parameters.

Let’s look at a few instances below.

Example:

// program of forming Generic classes

// Creation of an object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Class structure for the Generic types
 abstract class Divide[z]
 {
 // Defining method
 def divide(u: z, v: z): z
 }

 // Extending Generic class of the type
parameter Int
 class intDivide extends Divide[Int]
 {
 // method returning Int
 def divide(u: Int, v: Int): Int =
u / v
 }

 // Extending Generic Class of the type
parameter Double
 class doubleDivide extends Divide[Double]
 {
 // method returning Double
 def divide(u : Double, v : Double) :
Double = u / v
 }

 // Creation of objects and assigning
 // values to methods called

134 ◾ Mastering Scala

 val q = new intDivide().divide(35, 8)
 val r = new doubleDivide().divide(32.0, 6.0)

 // Display the output
 println(q)
 println(r)

 }
}

The abstract class Divide contains a type argument z, which is enclosed
in square brackets to indicate that the class is generic; this type param-
eter z can accept any data type. We have built a method split within the
Generic class, which contains two variables, u and v, with the data type z.
As previously indicated, the class intDivide accepts integer values while
the class doubleDivide accepts double kinds. As a result, the type parame-
ter z was replaced with the data types Int and Double. Subtyping is feasible
in Generic classes in this manner.

Example:

// program of using generic
// types for the numeric values
import Numeric._

// Creation of an object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Defining generic type for the numeric
 // values with the implicit parameter
 def addition[N](a: N, b: N)(implicit num:
Numeric[N]):

 // Using a method 'plus'
 N = num.plus(a, b)

 // Displays sum of two numbers

Scala OOP Concepts ◾ 135

 println("The sum: "+addition(55, 10))
 }
}

SCALA ACCESS MODIFIERS
Scala Access Modifiers are used to specify the access field of members of
packages, classes, or objects. To use an access modifier, add its keyword in
the definition of package, class, or object members. These modifications
will limit the members’ access to certain portions of code.

In Scala, there seem to be three types of access modifiers:

• Private

• Protected

• Public

The following table lists the types of access modifiers:

Modifier Class Companion SubClass Package World

No Modifier/Public Yes Yes Yes Yes Yes
Protected Yes Yes Yes No * No
Private Yes Yes No No * No

What is the meaning of companion in the above table?
It is a singleton object with the same name as the class.

1. Private: A private member may only be used within the defining
class or through one of its objects.

Example:

// program of private access modifier
class xyz
{
 private var m:Int = 345
 def display()
 {
 m = 8
 println(m)
 }
}

136 ◾ Mastering Scala

object access extends App
{
 // class xyz is accessible
 // because this is in same enclosing scope
 var n = new xyzc()
 n.display()
}

We defined a variable “a” private here, and it may now be acces-
sible only within its defining class or through the class’s object.

2. Protected: They can only be accessed by subClasses of the base class
where the member is declared.

Example:

// program of the protected access modifier

class pfp
{
 // declaration of the protected member
 protected var a:Int = 234
 def display()
 {
 a = 9
 println(a)
 }
}

// class new1 extends by class pfp
class new1 extends pfp
{
 def display1()
 {
 a = 10
 println(a)
 }
}

object access extends App
{
 // class abc is accessible because this
 // is in same enclosing scope
 var e = new gpfp()
 e.display()

Scala OOP Concepts ◾ 137

 var e1 = new new1()
 e1.display1()

}

Because new1 is a subClass of abc, we were allowed to modify pro-
tected variable a when we extended abc in class new1.

3. Public: Scala does not have a public keyword. When no modifier is
supplied, the default access level corresponds to Java’s public access
level.S

Example:

// program of the protected access modifier

class pfp
{
 var a:Int = 234
}
object access extends App
{
 var e = new gfg()
 e.a = 666
 println(e.a)
}

SCALA CONSTRUCTORS
Constructors are used to set the state of an object. A constructor, like
methods, includes a set of statements (i.e., instructions) performed when
an object is created.

Scala has two kinds of constructors:

PRIMARY CONSTRUCTOR
When our Scala code just has one constructor, that constructor is referred
to as the main constructor. Because the primary constructor and the class
share the same body, we don’t need to define a constructor explicitly.

Syntax:

class classname(Parameterlist){
 // Statements....
 }

138 ◾ Mastering Scala

Important details:

• Because the primary constructor and the class share the same body
in the above syntax, anything declared in the body of the class except
the method declaration is part of the primary constructor.

Example:

// program to illustrate concept of primary
constructor

// Creation of primary constructor
// with parameterlist
class GFG(Aname: String, Cname: String,
Particle: Int)
{
 def display()
 {
 println("Author name is: " + Aname);
 println("Chapter name is: " + Cname);
 println("Total published articles is:" +
Particle);
 }
}

object Main
{
 def main(args: Array[String])
 {

 // Creating and initializing
 // object of PFP class
 var obj = new PFP("Shreya",
"Constructors", 240);
 obj.display();
 }
}

• There may be zero or more arguments in the main constructor.

• If we do not define a constructor in our Scala code, the compiler will
generate one when we create an object of our class; this constructor is
known as a default primary constructor. There are no parameters in it.

Scala OOP Concepts ◾ 139

Example:

// program to illustrate
// the concept of default primary constructor

class PFP
{
 def display()
 {
 println("Welcome to Sessions");
 }
}

object Main
{
 def main(args: Array[String])
 {

 // Creating object of PFP class
 var obj = new PFP();
 obj.display();
 }
}

• If the constructor parameter-list parameters are defined with var, the
values of the fields may vary. Scala creates getter and setter methods
for that field as well.

• If the constructor parameter-list arguments are defined with val, the
values of the fields cannot change. In addition, Scala produces a get-
ter function for that field.

• If the arguments in the constructor parameter-list are not defined
with val or var, the field’s accessibility is severely limited. Scala gener-
ates no getter or setter methods for the field.

• If the arguments in the constructor parameter-list are specified using
private val or var, no getter and setter methods are generated for that
field. As a consequence, members of that class have access to these
fields.

• Only a primary constructor in Scala is permitted to call a superClass
constructor.

140 ◾ Mastering Scala

• We may make a primary constructor private in Scala by insert-
ing a private keyword between the class name and the constructor
parameter-list.

Syntax:

// private constructor with the two argument
class PFP private(name: String, class:Int){
 // code..
 }

 // private constructor without the argument
 class PFP private{
 // code...
 }

• In Scala, we may specify default values in the constructor declaration.

Example:

// program to illustrate concept of primary
constructor

// Creation of primary constructor with the
default values
class PFP(val Aname: String = "Shreya",
 val Cname: String = "Constructors")
{
 def display()
 {
 println("Author name is: " + Aname);
 println("Chapter name is: " + Cname);

 }
}

object Main
{
 def main(args: Array[String])
 {
 // Creating object of PFP class
 var obj = new PFP();
 obj.display();
 }
}

Scala OOP Concepts ◾ 141

AUXILIARY CONSTRUCTOR
Auxiliary constructors are constructors other than the primary construc-
tor in a Scala program. We can include as many auxiliary constructors as
we like in our code, but there is only one major constructor.

Syntax:

def this(.......)

Important details:

• We can have numerous auxiliary constructors in a piece of code, but
they must have separate signatures or parameter lists.

• Every auxiliary constructor must use one of the constructors already
specified.

• The invoke constructor can be a primary or an auxiliary constructor
that occurs before the calling constructor in the code.

• The constructor call utilizing this must include the auxiliary con-
structor’s first sentence.

Example:

// program to illustrate
// the concept of the Auxiliary Constructor

// Primary constructor
class PFP(Aname: String, Cname: String)
{
 var no: Int = 0;;
 def display()
 {
 println("Author name is: " + Aname);
 println("Chapter name is: " + Cname);
 println("Total number of articles is: " +
no);

 }

 // the Auxiliary Constructor
 def this(Aname: String, Cname: String, no:Int)

142 ◾ Mastering Scala

 {

 // Invoking the primary constructor
 this(Aname, Cname)
 this.no=no
 }
}

object Main
{
 def main(args: Array[String])
 {

 // Creation of object of PFP class
 var obj = new PFP("Ankita", "Constructor",
37);
 obj.display();
 }
}

PRIMARY CONSTRUCTOR IN SCALA
Constructors are used to set the state of an object. A constructor, like
methods, includes a set of statements (i.e., instructions). Statements are
performed when an object is created. When our Scala program has only
one constructor, that constructor is referred to be the primary constructor.

Because the primary constructor and the class share the same body, we
don’t need to define a constructor explicitly.

Syntax:

class classname(Parameterlist) {
 // Statements...
 }

Some key points concerning Scala’s primary constructor are as follows:

• There can zero or more arguments for the main constructor.

• The parameters of the parameter-list are specified using var within
the constructor, and their values are subject to change. Scala creates
getter and setter methods for that field as well.

Scala OOP Concepts ◾ 143

• When the parameters of the parameter-list are specified using val
within the constructor, the value cannot change. In addition, Scala
only produces a getter function for that field.

• When the parameters in a parameter-list are declared in the con-
structor without using val or var, the visibility of the field is very
compact, and Scala does not produce any getter and setter methods
for that field.

• When the parameters in a parameter-list are specified using private
val or var in the constructor, no getter and setter methods are gen-
erated for that field. As a consequence, members of that class have
access to these fields.

• Only a primary constructor in Scala is permitted to call a superClass
constructor.

Let’s break it down with some examples.

First example: A primary constructor with a set of parameters.

// program to illustrate concept of primary
constructor

// Creation of a primary constructor
// with the parameter-list
class PFP(Lname: String, Tname: String, article:
Int)
{
 def show()
 {
 println("Language name is: " + Lname);
 println("Topic name is: " + Tname);
 println("Total published articles is:" +
article);
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])

144 ◾ Mastering Scala

 {

 // Creating and initializing
 // object of PFP class
 var obj = new PFP("Scala", "Constructors",
16);
 obj.show();
 }
}

In the preceding example, Lname, Tname, and article are major con-
structor parameters, and show the function that prints values.

Second example: A parameter-list primary constructor.

// program to illustrate concept of the default
primary constructor

class PFP
{
 def show()
 {
 println("Welcome to Sessions");
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of PFP class
 var obj = new PFP();
 obj.show();
 }
}

When we generate an object of our class, the compiler will automati-
cally produce a primary constructor, which is known as a default primary
constructor.

Scala OOP Concepts ◾ 145

Third example: Default values for the primary constructor.

// program to illustrate concept of primary
constructor

// Creating primary constructor with the default
values
class PFP(val Lname: String = "Scala",
 val Tname: String = "Constructors")
{
 def show()
 {
 println("Language name is: " + Lname);
 println("Topic name is: " + Tname);

 }
}

// Creating object
object Main
{
 // the main method
 def main(args: Array[String])
 {
 // Creating object of PFP class
 var obj = new PFP();
 obj.show();
 }
}

 Fourth example: Using the private keyword to make the primary con-
structor private.

// program to illustrate concept of the primary
constructor
// by using private keyword
class PFP private
{
 // Define the method
 override def toString = "Welcome to Sessions."
}

// Creating object of the class PFP

146 ◾ Mastering Scala

object PFP
{
 // Creation of object
 val pfp = new PFP
 def getObject = pfp
}

object SingletonTest extends App
{

// this won't compile
// val pfp = new PFP
// this works
val pfp = PFP.getObject
println(pfp)
}

AUXILIARY CONSTRUCTOR IN SCALA
Constructors are used to set the state of an object. A constructor, like
methods, includes a set of statements (i.e., instructions). Statements are
performed when an object is created. Auxiliary Constructors are con-
structors that are not the primary constructor in a Scala Program. In our
Scala class, we may add as many auxiliary constructors as we like, but
there is only one primary constructor.

Auxiliary constructors are declared in the class as methods using the
keyword this. Multiple auxiliary constructors can be described, but their
argument lists must be distinct.

Syntax:

def this(.......)

Let’s look at few instances to assist us grasp Auxiliary constructors.

First example: Only one Auxiliary Constructor is used.

// program to illustrate concept of Auxiliary
Constructor

// Primary constructor
class PFP(Lname: String, Tname: String)

Scala OOP Concepts ◾ 147

{
 var no: Int = 0;;
 def show()
 {
 println("Language name is: " + Lname);
 println("Topic name is: " + Tname);
 println("Total number of articles is: " +
no);

 }

 // the Auxiliary Constructor
 def this(Lname: String, Tname: String, no:Int)
 {

 // Invoking the primary constructor
 this(Lname, Tname)
 this.no = no
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creating object of PFP class
 var obj = new PFP("Scala", "Constructor",
5);
 obj.show();
 }
}

As we see in the above instance, only one auxiliary constructor is uti-
lized, and the primary constructor is executed in that auxiliary construc-
tor. After creating an object of the PFP class (obj), the display() function
will be invoked, and the result will print.

Second example: Using several Auxiliary Constructors.

// Scala program to illustrate concept of more than
concept

148 ◾ Mastering Scala

// Auxiliary Constructor

// the Primary constructor
class Company
{
 private var Cname = ""
 private var Employee = 0

 // Creation of function
 def show()
 {
 println("Language name is: " + Cname);
 println("Total number of employee is: " +
Employee);
 }

 // auxiliary constructor
 def this(Cname: String)
 {
 // Calls the primary constructor
 this()
 this.Cname = Cname
 }

 // Another auxiliary constructor
 def this(Cname: String, Employee: Int)
 {
 // Calls the previous auxiliary constructor
 this(Cname)
 this.Employee = Employee
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {
 // the Primary constructor
 val c1 = new Company
 c1.show()

Scala OOP Concepts ◾ 149

 // First auxiliary constructor
 val c2 = new Company("PeeksForPeeks")
 c2.show()

 // Second auxiliary constructor
 val c3 = new Company("PeeksForPeeks", 42)
 c3.show()

 }
}

As we see from the code above, two auxiliary constructors with distinct
arguments are produced. Auxiliary constructor is called primary con-
structor, and another auxiliary constructor is called auxiliary constructor
that was previously declared.

Some vital points about Auxiliary Constructor are as follows:

• In the same class, we can have one or more auxiliary constructors,
but they must have independent signatures or parameter-lists.

• Each auxiliary constructor must invoke one of the previously defined
constructors, either the primary or preceding auxiliary constructor.

• The invoke constructor might be a primary or previous auxiliary
constructor that appears before the calling constructor in the code.

• The this keyword must be in the first statement of the auxiliary
constructor.

IN SCALA, CALLING A SUPERCLASS CONSTRUCTOR
Constructors are used to create an object’s state in Scala and are run when
the object is created. There is just one primary constructor, and all other
constructors must eventually chain into it. When we specify the extends
component of a subClass declaration in Scala, we control the superClass
constructor that its primary constructor invokes.

With one constructor: A call to a superClass constructor instance

Example:

// program to show calling a super class
constructor

150 ◾ Mastering Scala

// Primary constructor
class PFP (var message: String)
{
 println(message)
}

// Calling super class constructor
class Subclass (message: String) extends PFP
(message)
{
 def display()
 {
 println("Subclass constructor called")
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of Subclass
 var obj = new Subclass("Peeksforpeeks");
 obj.display();
 }
}

• In the preceding example, the subClass is specified to call the PFP
class’s primary constructor, which is a single argument constructor
that accepts message as a parameter. When constructing a subClass
in Scala, one has control over the SuperClass constructor, which is
invoked by the SubClass’s primary constructor when the extends
section of the SubClass declaration is defined.

• With numerous builders: If the superClass has many constructors,
any of those constructors can be invoked using the SubClass’s pri-
mary constructor. For instance, in the following code, the super-
Class’s double argument constructor is called by the SubClass’s
primary constructor via the extends clause by declaring the particu-
lar constructor.

Scala OOP Concepts ◾ 151

Example:

// Scala program to show
// calling a specific super class constructor

// Primary constructor (1)
class PFP (var message: String, var num: Int)
{

 println(message+num)

 // Auxiliary constructor (2)
 def this (message: String)
 {
 this(message, 0)

 }

}

// Calling super class constructor with 2
arguments
class Subclass (message: String) extends PFP
(message, 3000)
{
 def display()
 {
 println("Subclass constructor called")
 }
}

// Creating object
object PFP
{
 // Main method
 def main(args: Array[String])
 {

 // Creating object of Subclass
 var obj = new Subclass("Article count ");
 obj.display();
 }
}

152 ◾ Mastering Scala

We may call the single argument constructor here, and the default value
for the additional parameter is 0.

Example:

// program to illustrate
// calling the specific super class constructor

// the Primary constructor (1)
class PFP(var message: String, var num: Int)
{

 println(message + num)

 // the Auxiliary constructor (2)
 def this (message: String)
 {
 this(message, 0)

 }

}

// Calling superclass constructor with the 1
arguments
class Subclass (message: String) extends PFP
(message)
{
 def display()
 {
 println("Subclass constructor called")
 }
}

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of the Subclass

Scala OOP Concepts ◾ 153

 var obj = new Subclass("Article Count");
 obj.display();
 }
}

SCALA CLASS EXTENDING
When extending a class in Scala, the user can create an inherited class. In
Scala, we utilize the extends keyword to extend a class. In Scala, there are
two limitations to extending a class:

To override a method in Scala, use the override keyword.
The primary constructor is the only one that may provide parameters

to the base constructor.

Syntax:

class base_classname extends derived_classname
{
 // Methods and fields
}

Example:

// program of extending a class

// Base class
class Peeks1
{
 var Name: String = "drishtisood"
}

// Derived class
// Using the extends keyword
class peeks2 extends Peeks1
{
 var Article_no: Int = 40

 // Method
 def details()
 {
 println("Author name is: " + Name);
 println("Total numbers of articles is: "
+ Article_no);

154 ◾ Mastering Scala

 }
}

// Creation of object
object PFP
{

 // Driver code
 def main(args: Array[String])
 {

 // Creation of object of the derived class
 val ob = new Peeks2();
 ob.details();
 }
}

Peeks1 is the base class in the above example, and Peeks2 is the derived
class that is derived from Peeks1 through the extends keyword. When we
create the object of the Peeks2 class in the main method, a duplicate of all
the methods and fields of the base class is allocated memory in this object.
As a result, we may access the base class members by using the object of
the derived class.

Example:

// program of extending a class

// Base class
class Parent
{
 var Name1: String = "peek1"
 var Name2: String = "peek2"
}

// Derived from parent class
class Child1 extends Parent
{
 var Age: Int = 25
 def details1()
 {
 println(" Name is: " + Name1)

Scala OOP Concepts ◾ 155

 println(" Age is: " + Age)
 }
}

// Derived from the Parent class
class Child2 extends Parent
{
 var Height: Int = 156

 // Method
 def details2()
 {
 println(" Name is: " + Name2)
 println(" Height is: " + Height)
 }
}

// Creating object
object PFP
{

 // Driver code
 def main(args: Array[String])
 {

 // Creation of objects of both derived
classes
 val ob1 = new Child1();
 val ob2 = new Child2();
 ob1.details1();
 ob2.details2();
 }
}

Parent is the base class in the preceding example. Child1 and Child2 are
derived classes from Parent through the extends keyword. When we construct
the objects of the Child1 and Child2 classes in the main method, a duplicate of
all the methods and fields of the base class is stored in memory in this object.

Example:

// program of extending a class

// Base class
class Bicycle (val gearVal:Int, val speedVal: Int)

156 ◾ Mastering Scala

{
 // Bicycle class has two fields
var gear: Int = gearVal
var speed: Int = speedVal

// Bicycle class has two methods
def applyBreak(decrement: Int)
{
 gear = gear - decrement
 println("new gear value is: " + gear);
}
def speedUp(increment: Int)
{
 speed = speed + increment;
 println("new speed value is: " + speed);
}
}

// Derived class
class MountainBike(override val gearVal: Int,
 override val speedVal: Int,
 val startHeightVal : Int)
 extends Bicycle(gearVal,
speedVal)
{
 // MountainBike subclass adds one more field
var startHeight: Int = startHeightVal

// MountainBike subclass adds one more method
def addHeight(newVal: Int)
{
 startHeight = startHeight + newVal
 println("new startHeight is: " + startHeight);
}
}

// Creating object
object PFP
{
 // the main method
 def main(args: Array[String])
 {

Scala OOP Concepts ◾ 157

 val bike = new MountainBike(20, 10, 25);

 bike.addHeight(12);
 bike.speedUp(7);
 bike.applyBreak(7);
 }
}

CASECLASS AND CASEOBJECT IN SCALA
A caseClass is a standard class with the addition of a capability for rep-
resenting unchangeable data. It is also beneficial in pattern matching. It
has been specified with a modifier case; as a result of this case keyword,
we may receive certain benefits to avoid doing portions of code that must
include in many places with little or no modification. As seen below, a
minimum caseClass requires the keyword caseClass, an identifier, and a
parameter list that may be empty.

Syntax:

Case class class_Name(parameters)

Take note that the CaseClass contains a default apply() function that
handles object construction.

CASEOBJECT EXPLANATION
A caseObject is similar to an object in that it contains more properties
than a regular Object. It combines caseClasses with object classes. A case-
Object has certain additional characteristics over a regular object.

Two significant characteristics of the caseObject are listed below:

• It can be serialized.

• It includes a hashCode implementation by default.

Example:

// program of the case class and case Object
case class employee (name:String, age:Int)
object Main
{
 // the main method

158 ◾ Mastering Scala

 def main(args: Array[String])
 {
 var c = employee("Shreya", 26)

 // Display the both Parameter
 println("Name of employee is " + c.name);
 println("Age of employee is " + c.age);
 }
}

Some advantages of caseClass/Object are as follows:

• One of the most significant advantages of CaseClass is that the Scala
Compiler affixes a method with the name of the class and the same num-
ber of arguments as provided in the class description, allowing us to cre-
ate instances of the CaseClass even in the absence of the keyword new.

Example:

// program of case class and case Object
// affix a method with name of the class
case class Book (name:String, author:String)
object Main
{
 // the main method
 def main(args: Array[String])
 {
 var Book1 = Book("Data Structure and
Algorithm", "cormen")
 var Book2 = Book("Computer Structure",
"Tanenbaum")

 // Display strings
 println("Name of Book1 is " + Book1.
name);
 println("Author of Book1 is " + Book1.
author);
 println("Name of Book2 is " + Book2.
name);
 println("Author of Book2 is " + Book2.
author);
 }
}

Scala OOP Concepts ◾ 159

• The second advantage is that the Scala compiler by default affixes val or
var to all constructor parameters, so we won’t be able to reassign a new
value to them once that class object is constructed. This is why, even in
the absence of val or var, caseClass’s constructor parameters will turn
out to be class members, which is not feasible for regular classes.

• The Scala compiler additionally adds a copy() function to the case-
Class, which is used to produce a replica of the same object with or
without modifying any parameters.

 Example: To produce a copy of the same instance without changing
the parameters.

// program of the case class To create
// duplicate of the same instance
case class Student (name:String, age:Int)
object Main
{
 // the main method
 def main(args: Array[String])
 {
 val s1 = Student("Shreya", 26)

 // Display the parameter
 println("The Name is " + s1.name);
 println("The Age is " + s1.age);
 val s2 = s1.copy()

 // Display the copied data
 println("Copy Name: " + s2.name);
 println("Copy Age: " + s2.age);
 }
}

• In this case, we generated a new object s2 by copying the s1 object
without changing any of its characteristics.

Example: To make a copy of the same object with different properties.

// program of the case class same object
// with the changing attributes
case class Student (name:String, age:Int)

object Main
{
 // the main method

160 ◾ Mastering Scala

 def main(args: Array[String])
 {
 val s1 = Student("Shreya", 26)

 // Display parameter
 println("The Name is " + s1.name);
 println("The Age is " + s1.age);
 val s2 = s1.copy(age = 25)

 // Display copied and changed attributes
 println("The Copy Name is " + s2.name);
 println("The Change Age is " + s2.age);
 }
}

• Scala Compiler adds toString, equals methods, companion object
with apply and unapply methods by default, so we don’t need the
new keyword to generate a CaseClass object.

POLYMORPHISM SCALA
Polymorphism refers to any data’s capacity to be processed in more than
one way. The term implies the meaning itself since poly means many
and morphism denotes kinds. Polymorphism is implemented in Scala
via virtual functions, overloaded functions, and overloaded operators.
Polymorphism is a crucial topic in OOP languages. Polymorphism is most
commonly employed in OOP when a parent class reference is used to refer
to a child class object. We will explore how to represent any function in
various kinds and forms. A person can simultaneously have several roles
in life, which is an example of polymorphism. A woman is a mother, a
wife, an employee, and a daughter all at the same time. So the same indi-
vidual must have numerous traits but must implement each according to
the circumstance and conditions. Polymorphism is regarded as an impor-
tant aspect of OOP. In Scala, the function can use to arguments of several
kinds, or the type itself can include instances of various types.

Polymorphism is classified into two types:

• Subtyping: A subClass’s instance can be provided to a base class via
subtyping.

• Generics: Type parameterization creates instances of a function or
class.

Scala OOP Concepts ◾ 161

Here are a few examples:

First example:

// program to shows the usage of
// many functions with same name
class example
{

 // This is the first function with name fun
 def func(a:Int)
 {
 println("The First Execution:" + a);
 }

 // This is the second function with name fun
 def func(a:Int, b:Int)
 {
 var sum = a + b;
 println("The Second Execution:" + sum);
 }

 // This is the first function with name fun
 def func(a:Int, b:Int, c:Int)
 {
 var product = a * b * c;
 println("The Third Execution:" + product);
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {
 // Creation of object of example class
 var ob = new example();
 ob.func(140);
 ob.func(30, 60);
 ob.func(20, 15, 9);
 }
}

162 ◾ Mastering Scala

Second example:

// program to illustrate polymorphism concept
class example2
{
 // Function1
 def func(vehicle:String, category:String)
 {
 println("The Vehicle is:" + vehicle);
 println("The Vehicle category is:" +
category);
 }

 // Function2
 def func(name:String, Marks:Int)
 {
 println("The Student Name is:" + name);
 println("The Marks obtained are:" +
Marks);
 }

 // Function3
 def func(a:Int, b:Int)
 {
 var Sum = a + b;
 println("The Sum is:" + Sum)
 }

}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {
 var A = new example2();
 A.func("swift", "hatchback");
 A.func("honda-city", "sedan");
 A.func("Ashok", 85);
 A.func(20, 30);
 }
}

Scala OOP Concepts ◾ 163

VALUE CLASSES IN SCALA
Value classes are a novel method that aids in avoiding the allocation of
run-time objects. AnyVal defines value classes. Value classes are pre-
defined and correspond to the basic type of Java-like languages.

Double, Float, Long, Int, Short, Byte, Char, Unit, and Boolean are the
nine predefined value types.

A value class cannot redefine equals or hashCode. Value classes are pri-
marily used to improve speed and memory management.

Let’s look at few examples to grasp value classes better.

First example:

// program to illustrate the value class

// Creation of a value class and extend with
AnyVal
case class C(val name: String) extends AnyVal

// Creation of object
object pfp
{
 // the main method
 def main (args: Array[String])
 {
 // Creating instance of the ValueClass
 val c = new C("PeeksForPeeks")
 c match
 {
 // new C instantiated here
 case C("PeeksForPeeks") =>
println("Matched with PeeksForPeeks")
 case C(x) => println("Not matched with
PeeksForPeeks")
 }
 }
}

In the preceding code, a value class is defined using the caseClass, and
AnyVal is used to define the value class (C). The value class has one string
argument. If we provide the same string as in the case statement, this will
return true else false.

164 ◾ Mastering Scala

Second example:

// program to illustrate value class

// Creation of the value class and extend with
AnyVal
class Vclass(val a: Int) extends AnyVal
{
 // Defining the method
 def square() = a*a
}

// Creation of object
object pfp
{
 // the main method
 def main (args: Array[String])
 {
 // creation of the instance of the
ValueClass
 val v = new Vclass(6)
 println(v.square())
 }
}

As we can see in the above instance, a value class was formed, and the
representation is an int. The above code includes a definition in the
value class Vclass. Vclass is a user-defined value class that encompasses a
square method and wraps the Int argument. To invoke the square method,
make an object of the Vclass class like follows: new Vclass = val v (6).

Some value class restrictions are as follows:

• It is possible that a value class does not contain specialized type argu-
ments. There may be no specialized type parameters.

• There may be no nested or local classes, characteristics, or objects in
a value class.

• A value class cannot redefine equals or hashCode.

• Lazy vals, vars, and vals cannot be members of a value class. Its mem-
bers can only be defs.

• A value class cannot be extended by any other class.

Scala OOP Concepts ◾ 165

FIELD OVERRIDING IN SCALA
Overriding is a feature in any object-oriented computer language that
allows a subClass to offer a customized implementation of a method or
field that is already supplied by one of its super-classes. Overriding is more
plainly specified in Scala than in Java, as both methods and fields can be
overridden, although a few constraints must follow.

Overriding Rules for the Field

The field overriding rules are as follows:

• One of the most significant requirements is that when overriding the
fields of the super-class in the sub-classes, we must use the keyword
override or override notation; otherwise, the compiler will raise an
error and stop the program’s execution.

• To do a Field Overriding, we must override variables specified using
simply the val keyword in both the super-class and sub-classes.

• Because we can read and write var, field overriding cannot over-
ride it.

Example:

// program of Field Overriding

// Creation of class
class Shapes
{

 // Creation of a variable with val keyword
 val description:String = "shape"
}

// Creating a subclass
class shape1 extends Shapes
{

 // Overriding field using the
 // 'override' keyword
 override val description:String ="It is a
circle."

166 ◾ Mastering Scala

 // Defining the method
 def display()
 {

 // Display the output
 println(description)
 }
}

// Creation of a subclass
class shape2 extends Shapes
{

 // overriding field using the
 // 'override' keyword
 override val description:String ="It is a
square."

 // Defining the method
 def display()
 {

 // Display the output
 println(description)
 }
}

// Creation of object
object PfP
{

 // the main method
 def main(args:Array[String])
 {

 // Creation of instances for all
 // sub-classes
 var x = new shape1()
 var y = new shape2()

 // Calling methods
 x.display()

Scala OOP Concepts ◾ 167

 y.display()

 }
}

As we can see from the following code, val is used in both the super
class and the subClass; therefore overriding the field was possible; other-
wise, an error would have been thrown. The field in the superClass is val,
which is overridden by the override keyword in the sub-classes.

Example:

// program of Field Overriding

// Creation of class
class Shapes
{

 // Creation of a variable with val keyword
 val description:String = "shape"
}

// Creation of a subclass
class shape1 extends Shapes
{

 // Overriding field using the
 // 'override' keyword
 override var description:String ="It is a
circle."

 // Defining the method
 def display()
 {

 // Display the output
 println(description)
 }
}

// Creating a subclass
class shape2 extends Shapes

168 ◾ Mastering Scala

{

 // overriding field using the
 // 'override' keyword
 override var description:String ="It is a
square."

 // Defining the method
 def display()
 {

 // Display the output
 println(description)
 }
}

// Creation of object
object PfP
{

 // the main method
 def main(args:Array[String])
 {

 // Creation of instances for all
 // sub-classes
 var x = new shape1()
 var y = new shape2()

 // Calling the methods
 x.display()
 y.display()

 }
}

It is the same instance as earlier, but now issues are identified because
var is used in the sub-classes to override the fields, which is not possible
because, as stated above, val cannot be overridden by the var.

Scala OOP Concepts ◾ 169

Example:

// program of Field Overriding

// Creation of class
class Animals
{

 // Creation of a variable with the 'var'
keyword
 var number:Int = 2
}

// Creation of a subclass
class Cat extends Animals
{

 // Overriding field using the 'override'
keyword
 override var number:Int = 4

 // Defining the method
 def show()
 {

 // Display the output
 println("We have " + number + " cats.")
 }
}

// Creation of object
object PfP
{

 // the main method
 def main(args:Array[String])
 {

 // Creation of instance of
 // the sub-class
 var cat = new Cat()

170 ◾ Mastering Scala

 // Calling the method
 cat.show()

 }
}

ABSTRACT TYPE MEMBERS IN SCALA
If a member of a class or trait lacks a complete definition in the class, that
member is said to be abstract. These abstract members are always imple-
mented in any subClasses of the class that defines them. Many program-
ming languages provide this type of declaration, and it is an important
feature of object-orientated programming languages. Scala also allows us
to specify such methods, as illustrated in the following example:

abstract class Samples{
 def contents: Array[String]
 def width: Int = a
 def height: Int = b
 }

Thus, in the preceding Samples class, we specified three methods: con-
tents, width, and height. The implementation of the final two methods
is already defined, however, no implementation is mentioned in the first
method, contents. As a result, this method is an abstract member of the
Samples class. It’s worth noting that a class containing abstract members
must also be declared abstract. The abstract keyword in front of the class
indicates that the class will almost certainly have an abstract member with
no implementation.

Another example of how to build abstract class members:

abstract class Examples{
 type T
 def transform(m: T): T
 val initial: T
 var current: T
 }

The abstract class is declared in the above example, which specifies an
abstract type T, an abstract method transform, an abstract value initial,
and an abstract value current.

Scala OOP Concepts ◾ 171

The following is an instance of an abstract type member:

// program of the abstract type member

// Declarion of an abstract class
abstract class vehicle (name:String)
{
 // This is abstract member
 // with the undefined implementation
 val category: String

 // function that is used to print
 // value of the abstract member
 def cartype{ println(category) }
 override def toString = s" Vehicle type is
$category"
}

// Now extend classes bike, car,
// truck and bus and provide values for variable type

class car (name:String) extends vehicle (name)
{
 // assigning value of abstract member as car
 val category = "car"
}
class bike (name:String) extends vehicle (name)
{
 // assigning the value of the
 // abstract member as bike
 val category = "bike"
}
class bus (name:String) extends vehicle (name)
{
 // assigning value of the
 // abstract member as bus
 val category = "bus"
}
class truck (name:String) extends vehicle (name)
{
 // assigning value of the
 // abstract member as truck
 val category = "truck"
}

172 ◾ Mastering Scala

object AbstractFieldsDemo extends App
{
 // assigning name as Honda in the abstract
 // class where category value is car
 val car = new car("Honda")

 // assigning the name as Yamaha in the abstract
 // class where the category value is bike
 val bike = new bike("Yamaha")

 // assigning name as Tata in the abstract
 // class where category value is bus
 val bus = new bus("Tata")

 // assigning name as Ashok_Leyland in the
 // abstract class where category value is truck
 val truck = new truck("Ashok_Leyland")

 // function implementation
 // cartype for the object car
 car.cartype

 // function implementation
 // cartype for the object bus
 bus.cartype

 // function implementation
 // cartype for the object truck
 truck.cartype

 // function implementation
 // cartype for the object bus
 bike.cartype
 println(car)
 println(bus)
 println(truck)
 println(bike)
}

The trait vehicle in the above example has an abstract val category, a
simple concrete method named cartype, and an override of the toString
function. The classes vehicle is then extended by the classes car, bike,
truck, and bus, which offer values for the field category.

Scala OOP Concepts ◾ 173

In the preceding code, we can see how the abstract member’s undefined
implementation is being utilized to assign values and alter the assigned
values for each object of a different sort. In this instance, we saved many
category values for various vehicle types.

As a result, the abstract data members are those with an uncertain
implementation.

SCALA TYPE CASTING
A type casting is essentially a conversion from one type to another. Casting
from one type to another is commonly utilized in Dynamic Programming
Languages such as Scala. The asInstanceOf[] function is used in Scala to
cast types.

asInstanceof method applications:

• This viewpoint is necessary for manifesting beans from an applica-
tion context file.

• It is also used to cast numbers.

• It may also use in more complicated programming, such as commu-
nicating with Java and passing an array of Object objects to it.

Syntax:

obj1 = obj.asInstanceOf[class];
where,
obj1 is the object to which casted instance of obj
is returned, obj represents the object to be
casted, and class represents the name of the class
into which obj is to be casted.

Only object of an extended(child) class can cast to be an object of its
parent class, not the other way around. If class A extends class B, the object
of class A may cast to be an object of class B, but the object of class B cannot
convert to be an object of class A. This method notifies the compiler that
the value is of the given type. An exception is triggered during runtime if
the value/object given is incompatible with the type or class specified.

Example:

// program of type casting
object PFP

174 ◾ Mastering Scala

{
 // Function to display the name, value and
 // classname of a variable
 def display[A](y:String, x:A)
 {
 println(y + " = " + x + " is of type " +
 x.getClass.getName);
 }

 // the main method
 def main(args: Array[String])
 {
 var i:Int = 60;
 var f:Float = 7.0F;
 var d:Double = 92.4;
 var c:Char = 'p';

 display("i", i);
 display("f", f);
 display("d", d);
 display("c", c);

 var i1 = i.asInstanceOf[Char]; //Casting
 var f1 = f.asInstanceOf[Double]; //Casting
 var d1 = d.asInstanceOf[Float]; //Casting
 var c1 = c.asInstanceOf[Int]; //Casting

 display("i1", i1);
 display("f1", f1);
 display("d1", d1);
 display("c1", c1);
 }
}

SCALA OBJECT CASTING
It is required to utilize the asInstanceOf method when casting an Object
(i.e., instance) from one type to another. This function is specified in the
Scala class hierarchy’s root, Class Any (like Object class in Java). The asIn-
stanceOf method of Class Any relates to the concrete value members and
is used to cast the recipient Object.

Scala OOP Concepts ◾ 175

SCALA OBJECT EQUALITY
Comparing two values for equality is common in programming languages.
We construct an equals method for a Scala class so that we may compare
object instances. The equality function in Scala represents object identity,
however, it is rarely used.

Scala provides three distinct equality techniques:

• The equals Method

• The == and != Methods

• The ne and eq Methods

Note that eq functions similarly to the == operator in Java, C++, and
C#, but not in Ruby. The ne method is the inverse of eq, which is identi-
cal to !(x eq y). The == operator in Java, C++, and C# checks for reference
equality rather than value equality. Ruby’s == operator, on the other hand,
checks for value equality. In Scala, however, == tests for value equality.

Let’s look at an example.

// program of Equals

// Creation of a case class of Subject
case class Subject (LanguageName:String,
TopicName:String)

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // Creation of objects
 var x = Subject("Scala", "Equality")
 var y = Subject("Scala", "Equality")
 var z = Subject("Java", "Array")

 // Display the true if instances are equal
else false
 println(x.equals(y))
 println(x.equals(z))

176 ◾ Mastering Scala

 println(y == z)

 }
}

• equals Method: The equals method is used to test for value equality. If
both x and y have the same value, the expression if x equals y is true.
They do not have to refer to the same instance. As a result, the equals
method in Java and the equals method in Scala work identically.

• The == and != Methods: While == is an operator in many languages,
Scala reserves The == equality for all natural equality. It’s a Scala
method that’s declared as final in Any. This will put value equality to
the test. If both x and y have the same value, then x == y.

• The ne and eq methods will use to test reference equivalence. If
both x and y point to the same address in memory or reference the
same object, x eq y is true. These techniques are applicable solely to
AnyRef.

If two objects are equal as per equals method, then applying the hash
code method to each must have the same numeric result. Equals (and, ==)
has the same behavior as eq by default, but we can change it by overriding
the equals method in the classes we define. Scala treats == as though it
were declared in class Any: as follows.

The following is an example of the equals method and its corresponding
hashCode method:

Example:

// program to illustrate how
// the hashCode() and equals() methods work

// Creation of class
class Subject (name: String, article: Int)
{
 // Defining the canEqual method
 def canEqual(a: Any) = a.isInstanceOf[Subject]

 // Defining equals method with the override
keyword

Scala OOP Concepts ◾ 177

 override def equals(that: Any): Boolean =
 that match
 {
 case that: Subject => that.canEqual(this)
&&
 this.hashCode == that.hashCode
 case _ => false
 }

 // Defining the hashcode method
 override def hashCode: Int = {
 val prime = 33
 var result = 1
 result = prime * result + article;
 result = prime * result +
 (if (name == null) 0 else name.
hashCode)
 return result
 }
}

// Driver code
object PFP
{
 // the main method
 def main(args: Array[String])
 {

 // Creating the Objects of Peek class.
 // Subject p1 = new Subject("aa", 1);
 val p1 = new Subject("Scala", 29)
 val p2 = new Subject("Scala", 29);

 // Comparing above created Objects.
 if(p1.hashCode() == p2.hashCode())
 {

 if(p1.equals(p2))
 println("Both the Objects are
equal. ");
 else

178 ◾ Mastering Scala

 println("Both the Objects are not
equal. ");

 }
 else
 println("Both the Objects are not
equal. ");
 }
}

In the preceding example, a modified version of a hashCode function
created by Eclipse for a comparable Java class. It also use the canEqual
technique. With the equals method implemented, we can use == to com-
pare instances of a Subject.

MULTITHREADING IN SCALA
The process of operating many threads at the same time is referred to as
multithreading. It enables us to carry out different tasks individually.

WHAT EXACTLY ARE THREADS IN SCALA?
Threads are little subprocesses that use little memory. A multi-threaded
application comprises two or more threads that may operate concurrently,
and each thread can do a distinct job at the same time, making the most
use of the available resources, which is especially important when our sys-
tem (computer) has several CPUs. Scala uses multithreading to create con-
current applications.

Scala threads may be generated using two mechanisms:

• Extending Thread class

• Extending Runnable Interface

Thread Creation by Extending Thread Class

We design a class that extends the Thread class. This class overrides the
Thread class’s run() function. A thread begins its life inside the run() pro-
cedure. To begin thread execution, we construct an instance of our new
class and use the start() function. Start() calls the run() function on the
Thread object.

// code for thread creation by extending Thread class
class MyThread extends Thread

Scala OOP Concepts ◾ 179

{
 override def run()
 {
 // Displayingthread that is running
 println("Thread " + Thread.currentThread().
getName() +
 " is running.")
 }
}

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 for (y <- 1 to 6)
 {
 var th = new MyThread()
 th.setName(y.toString())
 th.start()
 }
 }
}

Thread Creation by Extending the Runnable Interface

We build a new class that extends the Runnable interface and overrides
the run() function. Then we build a Thread object by sending the newly
generated class to the constructor. We then invoke the start() function on
this object.

// code for thread creation by implementing Runnable
Interface
class MyThread extends Runnable
{
 override def run()
 {
 // Displaying thread that is running
 println("Thread " + Thread.currentThread().
getName() +
 " is running.")
 }
}

180 ◾ Mastering Scala

// Creation of object
object MainObject
{
 // the main method
 def main(args: Array[String])
 {
 for (y <- 1 to 6)
 {
 var th = new Thread(new MyThread())
 th.setName(y.toString())
 th.start()
 }
 }
}

Threads do not have to run in any particular order. All threads operate
continuously and independently of one another.

THREAD LIFE CYCLE IN SCALA
A Scala Thread goes through several state changes between the time it is
created and when it is terminated. These are the stages of a Scala Thread’s
life. It has the five states listed below.

• New: When the Thread is first formed, it is in this condition.

• Runnable: This is the state in which the Thread has been generated
but has yet to begin running.

• Running: The Thread is in this condition because it is completing its
duty.

• Blocked (or Waiting): This is the condition of a thread that is still
alive but unable to run owing to a lack of input or resources.

• Terminated: When a thread’s run() function returns an error, it is
said to be terminated.

SCALA FINAL
Final is a keyword in Scala used to place restrictions on superClasses or
parent classes in various ways. We can use the final keyword in conjunc-
tion with variables, methods, and classes.

Scala OOP Concepts ◾ 181

The following are examples of using the final keyword in Scala.

1. Scala final variable: A Scala final variable is defined once and then
utilized as a constant throughout the program. In the following
example, variable area is defined as final and also initialized when
declared in superClass shapes. If we wish to access or edit the vari-
able area from the derived class Rectangle, we cannot since the key-
word final applies the variable area limitation.

Scala final variables can initialize in the following ways:

• While declaring

• In static block

• In Constructor

// program of using the final variable
class Shapes
{
 // define the final variable
 final val area:Int = 80
}
class Rectangle extends Shapes
{
 override val area:Int = 120
 def display()
 {
 println(area)
 }
}

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 var m = new Rectangle()
 m.display()
 }
}

182 ◾ Mastering Scala

2. Scala final methods: This is the final method CalArea in the parent
class (Shapes) indicates that methods in a child class cannot be over-
ridden (Rectangle).

// program of using the final method
class Shapes
{
 val height:Int = 0
 val width :Int =0

 // Define the final method
 final def CalArea(){
 }
}
class Rectangle extends Shapes
{
 override def CalArea()
 {
 val area:Int = height * width
 println(area)
 }
}

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 var m = new Rectangle()
 m.CalArea()
 }
}

3. Scala final classes: If a Scala class is final, it cannot inherit from
derived class. The final keyword will introduce inheritance restric-
tions. If the class Shapes is final, then all of its members are also final
and cannot be utilized in derived class.

// program of using the final class
final class Shapes
{
 // Final variables and functions

Scala OOP Concepts ◾ 183

 val height:Int = 0
 val width :Int =0
 final def CalArea()
 {
 }
}
class Rectangle extends Shapes
{
 // Cannot inherit the Shapes class
 override def CalArea()
 {
 val area:Int = height * width
 println(area)
 }
}

// Creation of Object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 var m = new Rectangle()
 m.CalArea()

 }
}

SCALA THIS KEYWORD
Keywords are terms used in a language to describe predetermined actions
or internal processes. When we wish to introduce the current object for
a class, we utilize this keyword. We may then refer to instance variables,
methods, and constructors by using the dot operator (.). This keyword is
also used in conjunction with auxiliary constructors.

Let’s look at few examples to grasp this keyword better.

// program to illustrate this keyword
class Addition(x:Int)
{
 // using this keyword
 def this(x:Int, y:Int)

184 ◾ Mastering Scala

 {
 this(x)
 println(x + " + " + y + " = " + { x + y })
 }
}

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 var add = new Addition(18, 14)
 }

}

CONTROLLING VISIBILITY OF CONSTRUCTOR
FIELDS IN SCALA
The visibility of Constructor Fields in the Scala language is controlled and
regulated by declaration. These can be declared in the following formats:

• Declared as val

• Declared as var

• Declared without var and val

• Add Private to the fields

We’ll go through all of the following approaches in further depth, with
the assistance of several examples:

• When a var field is defined: When a field is specified as var, the Scala
language creates both Getter and Setter modes for that variable. This
indicates that the field’s value can always modify.

• When the field is specified to be val: If the field is defined as val, the
value of the fields assigned at the beginning cannot be modified and
stays fixed. In this scenario, Scala only supports the getter function.

• When a field is specified without the variables val and var: If field is
declared without var and val, its visibility is severely limited because

Scala OOP Concepts ◾ 185

Scala does not support setter and getter functions. The visibility of
the field is reduced.

• Including the keyword Private: In addition to the var and val
modes, we may use the term “private.” This makes the field accessible
in the same way as C++ does. This disables the methods getter and
setter, and the field is ordinarily accessible using the class’s member
functions.

We covered object-oriented programming ideas, including syntax and
examples, in this chapter.

186 DOI: 10.1201/9781003358527-5

C h a p t e r 5

Scala String and
Packages

IN THIS CHAPTER

 ➢ String

 ➢ String Interpolation

 ➢ StringContext

 ➢ Regular Expressions

 ➢ StringBuilder and concatenation

 ➢ Packages

 ➢ File Handling

In the previous chapter, we covered Scala control statements, and in this
chapter, we will discuss strings and packages.

SCALA STRING
A string is a series of characters. String objects in Scala are immutable,
meaning they cannot modify once created.

https://doi.org/10.1201/9781003358527-5

Scala String and Packages ◾ 187

SCALA STRING CREATION
In Scala, there are two ways to construct a string:

• When compiler encounters a string literal, it generates a string
object str.

var str = "Hello! PFP"
or
val str = "Hello! PFP"

• Before meeting the string literal, a String type is specified.

Syntax:

var str: String = "Hello! PFP"
or
val str: String = "Hello! PFP"

Use the StringBuilder class if we need to add to the original string.

Example:

// program to illustrate how to
// create the string
object Main
{

 // str1 and str2 are the two different strings
 var str1 = "Hello! PFP"
 val str2: String = "PeeksforPeeks"
 def main(args: Array[String])
 {

 // Display both the strings
 println(str1);
 println(str2);
 }
}

DETERMINE THE LENGTH OF THE STRING
An accessor method is used to find information about an object. In Scala, a
length() method is an accessor function used to determine a given string’s
length. In other terms, the length() function returns the number of char-
acters in the string object.

188 ◾ Mastering Scala

Syntax:

var len1 = str1.length();

Example:

// program to illustrate how to
// get a length of the given string
object Main
{

 // str1 and str2 are the two strings
 var str1 = "Hello! PFP"
 var str2: String = "PeeksforPeeks"

 // the main function
 def main(args: Array[String])
 {

 // Get length of str1 and str2 strings
 // using length() function
 var LEN1 = str1.length();
 var LEN2 = str2.length();

 // Display the both strings with their
length
 println("String 1 is:" + str1 + ",
Length :" + LEN1);
 println("String 2 is:" + str2 + ",
Length :" + LEN2);
 }
}

CONCATENATING STRINGS IN SCALA
A string concatenation occurs when a new string is formed by joining
two existing strings. Scala has a concat() method for concatenating two
strings; this method returns a new string generated by concatenating two
strings. To concatenate two strings, use the “+” operator.

Syntax:

str1.concat(str2);

Scala String and Packages ◾ 189

Example:

// program to illustrate how to concatenate
strings
object Main
{

 // str1 and str2 are the two strings
 var str1 = "Welcome, PeeksforPeeks "
 var str2 = " to Session"

 // the main function
 def main(args: Array[String])
 {

 // concatenate the str1 and str2 strings
 // using concat() function
 var Newstr = str1.concat(str2);

 // Display the strings
 println("String 1:" +str1);
 println("String 2:" +str2);
 println("New String :" +Newstr);

 // Concatenate the strings using '+'
operator
 println("This is the lessons" +
 " of the Scala language" +
 " on PFP portal");
 }
}

CREATING FORMAT STRING
When we need to format a number or values in a string, we’ll utilize the
printf() or format() methods. Aside from these methods, the String class
also has a format() function that returns a String object rather than a
PrintStream object.

Example:

// program to illustrate how to
// Creation of format string
object Main

190 ◾ Mastering Scala

{

 // two strings
 var A_name = "Shreya"
 var Ar_name = "Scala|Strings"
 var total = 150

 // the main function
 def main(args: Array[String])
 {

 // using the format() function
 println("%s, %s, %d".format(A_name,
Ar_name, total));
 }
}

Some useful string methods are as follows:

Function Description

char charAt(int index) This function returns the character at the provided index.
String replace(char ch1,
char ch2)

This method returns a new string with the element of ch1
replaced by the element of ch2.

String[] split(String reg) This method separates the string based on regular
expression matches.

String substring(int i) This method generates a new string that is a substring of the
provided string.

String trim() This method returns a string with the beginning and ending
whitespace removed.

boolean startsWith(String
prefix)

This function determines whether or not the provided text
begins with the specified prefix.

STRING INTERPOLATION IN SCALA
String interpolation is the substitution of identified variables or expres-
sions in a given String with respected values. String interpolation makes
it simple to parse String literals. To use this Scala functionality, we must
follow a few rules:

• Strings must begin with the characters s / f /raw.

• Variables in the String must prefix with “$.”

• Expressions must enclose in curly braces ({, }), and a prefix of “$” is
added.

Scala String and Packages ◾ 191

Syntax:

// c and d are defined
val str = s"Sum of $c and $d is ${c+d}"

STRING INTERPOLATOR TYPES

• s Interpolator: We may access variables, object fields, function calls,
and so on within the String.

First example: Variables and expressions.

// program for s interpolator

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {

 val c = 40
 val d = 20

 // without s interpolator
 val str1 = "The Sum of $c and $d is
${c+d}"

 // with s interpolator
 val str2 = s"The Sum of $c and $d is
${c+d}"

 println("str1: "+str1)
 println("str2: "+str2)
 }
}

Second example: Function call.

// program for s interpolator

// Creation of object
object PFP

192 ◾ Mastering Scala

{
 // adding the two numbers
 def add(c:Int, d:Int):Int
 =
 {
 c+d
 }

 // the main method
 def main(args:Array[String])
 {

 val c = 40
 val d = 20

 // without s interpolator
 val str1 = "The Sum of $c and $d is
${add(c, d)}"

 // with s interpolator
 val str2 = s"the Sum of $c and $d is
${add(c, d)}"

 println("str1: " + str1)
 println("str2: " + str2)
 }
}

• f Interpolator: This interpolation aids in the easy formatting of
numbers.

Format Specifiers explains how to format specifiers function.

Example: Printing upto 2 decimal place:

// program for f interpolator

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {

 val x = 32.6

Scala String and Packages ◾ 193

 // without the f interpolator
 val str1 = "The Value of x is $x%.2f"

 // with the f interpolator
 val str2 = f"The Value of x is $x%.2f"

 println("str1: " + str1)
 println("str2: " + str2)

 }
}

• raw Interpolator: String Literal should begin with the word “raw.”
Escape sequences are treated the same as any other character in a
String by this interpolator.

Example: Printing an escape sequence.

// program for raw interpolator

// Creation of object
object PFP
{
 // the main method
 def main(args:Array[String])
 {

 // without the raw interpolator
 val str1 = "Hello\nEveryone"

 // with the raw interpolator
 val str2 = raw"Hello\nEveryone"

 println("str1: " + str1)
 println("str2: " + str2)
 }
}

StringContext IN SCALA
StringContext is a class used in string interpolation that allows end users
to add variable references directly into processed String literals. This class
includes raw, s, and f methods as interpolators by default. The Linear

194 ◾ Mastering Scala

Supertypes, in this case, are Serializable, java.io. Serializable, Product,
Equals, AnyRef, and Any.

• An example of using the s-method as an interpolator.

Example:

// program of StringContext

// Creation of object
object Main
{

 // the main method
 def main(args: Array[String])
 {

 // Assigning the values
 val name = "PeeksforPeeks"
 val articles = 29

 // Applying the StringContext with
s-method
 val result = StringContext("We have
written ",
 " articles on ",
".").s(articles, name)

 // Display the output
 println(result)

 }
}

In this case, the StringContext.s method extracts the constant
sections, translates the escape sequences inside them, and combines
them with the values of the specified expression parameters.

• Creating our own interpolator: To provide our own String interpola-
tor, we must create an implicit class that will connect a method to the
StringContext class.

Example:

// program of StringContext for creating our own
string interpolator

Scala String and Packages ◾ 195

// Creation of object
object Main
{

// the main method
def main(args: Array[String])
{
 // Using the implicit class with
StringContext
 implicit class Reverse (val x :
StringContext)
 {

 // Defining the method
 def revrs (args : Any*) : String =
 {

 // Applying the s-method
 val result = x.s(args : _*)

 // Applying the reverse method
 result.reverse
 }
 }

 // Assigning the values
 val value = "PeeksforPeeks"

 // Displays reverse of the stated string
 println (revrs"$value")
}
}

SCALA REGULAR EXPRESSIONS
Regular Expressions describe a common pattern used to match a succes-
sion of input data, making it useful in Pattern Matching in various com-
puter languages. Scala Regex is the common word for regular expressions
in Scala.

Regex is a class imported from the package scala.util.matching.Regex
that is widely used in search and text processing. To recast a string into a
Regular Expression, use the r() function with the specified string.

196 ◾ Mastering Scala

Example:

// program for Regular Expressions

// Creation of object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Applying the r() method
 val portal = "PeeksforPeeks".r
 val CS = "PeeksforPeeks is a CS portal."

 // Displays first match
 println(portal findFirstIn CS)
 }
}

To generate a pattern, we invoked the function r() on the specified
string to generate an instance of the Regex class. In the preceding code,
the function findFirstIn() is used to find the first match of the Regular
Expression. Use the findAllIn() function to find all the expressions’
matching words.

// program for Regular Expressions
import scala.util.matching.Regex

// Creation of object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Applying the Regex class
 val x = new Regex("Shreya")
 val myself = "My name is Shreya Sood."

Scala String and Packages ◾ 197

 // replaces first match with String given below
 println(x replaceFirstIn(myself, "Ridhi"))
 }
}

We may even utilize the Regex constructor instead of the r() function.
The replaceFirstIn() function is used to replace the first match of the speci-
fied string, while the replaceAllIn() method is used to replace all matches.

Example:

// program for Regular Expressions
import scala.util.matching.Regex

// Creation of object
object PfP
{

 // the main method
 def main(args: Array[String])
 {

 // Applying the Regex class
 val Peeks = new Regex("(G|g)fG")
 val y = "PfP is a CS portal. I like pfP"

 // Displays all matches separated
 // by separator
 println((Peeks findAllIn y).mkString(", "))
 }
}

We utilized the mkString function to concatenate all the matches sepa-
rated by a separator, and a pipe (|) is used in the above code to search for
both upper and lower case in the provided text. As a result, both the upper
and lower case of the specified string is returned here.

Scala Regular Expression Syntax

Java inherits several features from Perl, whereas Scala inherits the Scala
regex syntax from Java. The following is a list of metacharacter syntax:

198 ◾ Mastering Scala

Subexpression Matches

^ It is used to match the line’s starting point.
$ It is used to match the line’s ending point.
. It is used to match any one character other than the newline.
[…] It is used to match any one character included within the

brackets.
[^…] It is used to match any one scharacter that is not contained inside

the brackets.
\\A It is used to find the beginning of the intact string.
\\z It is used to find the end of the intact string.
\\Z It matches the end of the whole string, omitting any new lines

that may appear.
re* It is used to match zero or more occurrences of the preceding

expressions.
re+ It corresponds to one or more of the preceding expressions.
re? It matches either zero or one occurrence of the preceding

expression.
re{ n} It is used to match exactly n instances of the preceding

expression.
re{ n, } It is used to find n or more instances of the preceding expression.
re{ n, m} It matches at least n and no more than m occurrences of the

preceding expression.
q|r It may use to match either q or r.
(re) It is used to group Regular expressions and remember the

matched text.
(?: re) It also groups the regular expressions but does not remember the

matched text.
(?> re) It is used to match a self-sufficient pattern in the absence of

backtracking.
\\w It is used to match word characters.
\\W It is used to match non-word characters.
\\s It is used to match white spaces that are similar to [tnrf].
\\S It's used to fill in non-white spaces.
\\d It matches digits, such as [0-9].
\\D It's used to find non-digits.
\\G It is used to match the moment at which the final match is over.
\\n It is used to occupy group number n for back-reference.
\\b It matches the word frontiers when they are outside the brackets

and the backspace when they are inside the brackets.
\\B It is used to find non-word frontiers.
\\n, \\t, etc. It is used to match newlines, tabs, and so forth.
\\Q It is used to escape (quote) each character till \\E.
\\E It is used in quotes that begin with \\Q.

Scala String and Packages ◾ 199

SCALA StringBuilder
A String object is immutable, meaning it cannot modify once generated.
StringBuilder is useful in instances when we need to make repetitive
changes to a string. To add input data to the internal buffer, StringBuilder
is used. Using methods on the StringBuilder, we can conduct various oper-
ations. This operation includes adding, inserting, and deleting data.

Important details:

• The StringBuilder class is useful for effectively extending mutable
strings.

• StringBuilder instances are used in the same way as Strings.

• Because Scala Strings are immutable, we can use StringBuilder to
create changeable Strings.

The StringBuilder Class Performs Operations

• Character adding: This procedure is useful for character appending.

Example:

// program to append a character

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of StringBuilder
 val x = new StringBuilder("Author");

 // Appending the character
 val y = (x += 's')

 // Displays string after
 // appending character
 println(y)
 }
}

200 ◾ Mastering Scala

• String appending: This operation is useful for string appending.

Example:

// program to append a String

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of StringBuilder
 val x = new StringBuilder("Authors");

 // Appending the String
 val y = (x ++= " of PeeksforPeeks")

 // Displays string after
 // appending the string
 println(y)

 }
}

• Appending String representation of a number: The number can be
of any type, such as Integer, Double, Long, Float, etc.

Example:

// program to append String representation of
the number

// Creation of object
object num
{

 // the main method
 def main(args: Array[String])

Scala String and Packages ◾ 201

 {

 // Creation of StringBuilder
 val x = new StringBuilder("The Number of
Contributors : ");

 // Appending String representation of
the number
 val y = x.append(700)

 // Displays string after appending the
number
 println(y)
 }
}

• Resetting StringBuilder’s content: It is useful for resetting the con-
tent by making it empty.

Example:

// program to reset the content

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of StringBuilder
 val x = new StringBuilder("Hello")

 // Resetting content
 val y = x.clear()

 // Display the empty content
 println(y)
 }
}

202 ◾ Mastering Scala

• Delete operation: This operation is useful for removing characters
from the StringBuilder’s content.

Example:

// program to perform delete operation

// Creation of object
object delete
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of StringBuilder
 val q = new StringBuilder("Computer
Networking")

 // Deleting the characters
 val r = q.delete(1, 4)

 // Displaying the string after
 // deleting some characters
 println(r)
 }
}

• Insertion operation: This operation is useful for inserting Strings.

Example:

// program to perform insertion operation

// Creating object
object insert
{

 // the main method
 def main(args: Array[String])
 {

Scala String and Packages ◾ 203

 // Creation of StringBuilder
 val q = new StringBuilder("PfP CS
portal")

 // inserting the strings
 val r = q.insert(4, "is a ")

 // Display the string after
 // insertion of required string
 println(r)
 }
}

• Converting StringBuilder to a String: This operation converts
StringBuilder to a String.

Example:

// program of Converting StringBuilder to a
String

// Creation of object
object builder
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of StringBuilder
 val q = new
StringBuilder("GeeksforGeeks")

 // Applying conversion operation
 val r = q.toString

 // Display the String
 println(r)
 }
}

204 ◾ Mastering Scala

SCALA STRING CONCATENATION
A string is a character sequence. String objects in Scala are immutable,
which means they cannot be modified once generated. A string concatena-
tion occurs when a new string is formed by joining two existing strings.
Scala has a concat() method for concatenating two strings; this method
returns a new string generated by concatenating two strings. We may also
use the “+” operator to concatenate two strings.

Syntax:

str1.concat(str2);

Or

"str1" + "str2";

The following is an example of concatenating two strings.
Using the concat() method: The parameter is appended to the string

using this method.

Example:

// program to illustrate how to concatenate
strings
object PFP
{

 // str1 and str2 are the two strings
 var str1 = "Welcome, PeeksforPeeks "
 var str2 = " to Portal"

 // the main function
 def main(args: Array[String])
 {

 // concatenate the str1 and str2 strings
 // using the concat() function
 var Newstr = str1.concat(str2);

 // Display the strings
 println("String 1 is:" +str1);

Scala String and Packages ◾ 205

 println("String 2 is:" +str2);
 println("New String is:" +Newstr);

 // Concatenate strings using the '+'
operator
 println("This is the sessions" +
 " of Scala programming" +
 " on PFP portal");
 }
}

SCALA PACKAGES
In Scala, a package is a technique for encapsulating a collection of classes,
subpackages, traits, and package objects. It just gives namespace for stor-
ing our code in multiple files and folders. Packages are a simple method to
organize our code and avoid name conflicts between members of various
packages. Providing access control to package members such as private,
protected, and package-specific regulating scope limits the access of mem-
bers to other packages, whereas members with no modifier can use within
any other package with some reference.

PACKAGE DECLARATION
Packages are specified in the first statement of a Scala file.

Syntax:

package packagename
// Scala classes
// traits
// objects…

A package can define in several ways:

• Chained methods

package a.b.c
// members of c

• Nesting packages

package a{
 // members of a {as required}
 package b{

206 ◾ Mastering Scala

 // members of b{as required}
 package c{
 // members of c{as required}
 }
 }
 }

HOW PACKAGE FUNCTIONS
Packages link together data in a single file or act as data encapsulation;
when a file is saved, it is stored under the default package or the package
name specified at the start of the file. Package names and directory struc-
ture are inextricably linked. If a package’s name is college.student.cse,
for example, there will be three directories: college, student, and cse. As
a result, cse is present in the student and the student is present at college.

college
 +student
 +cse

The goal is to ensure that files in directories are simple to find when
using the packages.

Domain name package naming standards are in reverse order, as in org.
peeksforpeeks.practice, org.peeksforpeeks.contribute.

ADDING PACKAGE MEMBERS
A package can have any number of members, including classes, subclasses,
traits, objects containing the primary method, and subpackages. Unlike
Java packages, we may declare packages in separate scala files, which
means that different scala files can create for the same package.

Example:

// the file named as faculty.scala
package college
class faculty{
 def faculymethod(){}
}

// the file named as student.scala
// containing main method

Scala String and Packages ◾ 207

// using college package name again
package college
class student
{
 def studentmethod(){}
}

// Creation of object
object Main
{

 // the main method
 def main(args: Array[String])
 {
 val stu= new student()
 val fac= new faculty()
 // faculty class can access while
 // in the different file but in the same
package.
 }
}

USING PACKAGES
Packages can utilize in a variety of ways within a program. Import clauses
in Scala are more versatile than in Java. Import clauses, for instance, can
be used anywhere in the program as an independent statement by using
the keyword import, something Java does not allow.

// base.scala
// bb directory
package bb

// creation of a class
class peek
{
 private var id=0
 def method()
 {
 println("welcome to scala class")
 println("id="+id)
 }
}

208 ◾ Mastering Scala

The following is an instance of a Package utilizing import clauses.

// main.scala
// aa directory
package aa

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {
 // importing in the main method
 import bb.peek

 // using member injected using the import
statement
 val obj = new peek()
 obj.method();
 }
}

PACKAGE OBJECTS IN SCALA
The primary goal of a package is to make files modularized and easy to
manage. So we maintain project files in distinct folders or directories based
on the namespace defined, but there are instances when we want specific
variables, definitions, classes, or objects to be available to the entire pack-
age. However, definitions, data variables, and type aliases cannot store
directly in a package. To do this, we have package objects, which allow the
common data to reside at the top level of the package. Scala version 2.8
added package objects.

Syntax:

package projectx
package src
package main
object 'package'
{
 // using the backticks
 val m
 // members
}

Scala String and Packages ◾ 209

Example:

package language.PFP

object PFP
{
val scala = "scala"
val java = "java"
val csharp = "csharp"
}

object demo
{
def main(args : Array[String])
{
 println(PFP.scala)
 println(PFP.csharp)
 var totalfees= tax + fees
 println(totalfees)
}
}

Objects in this package are as follows:

• They have the ability to extend other classes and/or mixin traits.

package object main extends demovars
{
 val m = a // from demovars
 val n = b // from demovars
 // members
}

• Instead of specifying implicit in companion objects, they are an
excellent way to keep them.

• We may reduce the number of imports in our code by using package
objects.

package object main
{
 val m = demovars.a // from demovars
 val n = demovars.b // from demovars
 // members
}

210 ◾ Mastering Scala

• Only one package object with the associated directory directory/
package name is permitted for each package.

+src
 +eatables
 +food.scala
 +package.scala // package object for the
eatables folder
 +drinkables
 +drinks.scala
 +package.scala // package object for the
drinkable folder

SCALA CHAINED PACKAGE CLAUSES
Chained packages are a method of resolving the visibility of package mem-
bers. According to Martin Odersky, this was added in Scala 2.8. Assume
we have the following code.

Let’s crack the code and figure out what’s going on here.

package x.z
object m {
 n //object n
}
object b{
 m //object m
}

Alternatively, we may write the above code as follows.

// but this is not good and short way of writing the
package clauses
// let's just stick to first style.
package x{
 package z{
 object m {
 }
 object n{
 }
 }
 }

Scala String and Packages ◾ 211

Objects m and n are specified in a directory z, which is contained within
a directory x. Members m and n of package z are visible, but not members
x. We may alternatively put these objects in various Scala files, as given
below:

// m.scala
package x.z
object m {
 n //object n still visible
}

// n.scala
package x.z
object n{
 m // object m still visible
}

// files would create like this
+x
 +z
 +m.scala
 +n.scala

SCALA FILE HANDLING
File Handling is a method of storing the retrieved data in a file. Scala
includes packages allowing us to create, read, and write files. We borrow
java.io._ from Java to write to a file in Scala since the Scala standard library
lacks a class. We might also include java.io.File and java.io.PrintWriter in
our imports.

Creating a new file:

• java.io is generating a new file. The file provides classes and interfaces
that allow the JVM to access files, file systems, and attributes.

• File(String pathname) translates the supplied string to an abstract
path name, generating a new file object.

Writing the file:

• Writing to the file. java.io PrintWriter contains all of the printing
techniques found in PrintStream.

212 ◾ Mastering Scala

The implementation for making a new file and writing into it is shown
below:

// program of File handling
import java.io.File
import java.io.PrintWriter

// Creation of object
object Peeks
{
 // the main method
 def main(args:Array[String])
 {
 // Creation of a file
 val file_Object = new File("xyz.txt")

 // Passing the reference of file to
printwriter
 val print_Writer = new
PrintWriter(file_Object)

 // Writing to file
 print_Writer.write("Hello, This is Peeks For
Peeks")

 // Closing printwriter
 print_Writer.close()
}
}

The string “Hello, This is Peeks For Peeks” is written to the text file abc.
txt.

Scala does not provide a class for writing files, but it does give a class for
reading files. This is the Source class. To read files, we utilize its partner
object. To read the contents of this file, we use the fromFile() function of
the Source class, which takes the filename as an argument.

The implementation for reading every character from a file is shown
below:

// program of File handling
import scala.io.Source

Scala String and Packages ◾ 213

// Creation of object
object PeeksScala
{
 // the main method
 def main(args : Array[String])
 {
 // file name
 val fname = "xyz.txt"

 // creates the iterable representation
 // of source file
 val fSource = Source.fromFile(fname)
 while (fSource.hasNext)
 {
 println(fSource.next)
 }

 // closing the file
 fSource.close()
 }
}

We may use the getLines() function to read specific lines rather than the
entire file at once.

The implementation for reading each line from a file is shown below:

// file handling program to Read each
// line from the single file
import scala.io.Source

// Creation of object
object pfpScala
{
 // the main method
 def main(args:Array[String])
 {
 val fname = "xyz.txt"
 val fSource = Source.fromFile(fname)
 for(line<-fSource.getLines)
 {
 println(line)
 }

214 ◾ Mastering Scala

 fSource.close()
 }
}

This chapter covered String Interpolation, StringContext, Regular
Expressions, StringBuilder, and concatenation. Moreover, we discussed
Packages and File Handling.

215DOI: 10.1201/9781003358527-6

C h a p t e r 6

Scala Methods

IN THIS CHAPTER

 ➢ String

 ➢ String Interpolation

 ➢ StringContext

 ➢ Regular Expressions

 ➢ StringBuilder and concatenation

 ➢ Packages

 ➢ File Handling

In the previous chapter, we covered Scala strings and packages, and in this
chapter, we will discuss Scala Methods.

SCALA FUNCTIONS – BASICS
A function is a group of statements that execute a certain activity. The code
can be divided into separate functions, understanding that each func-
tion must do a certain purpose. Functions simplify some common and
repetitive tasks into a single function so that instead of rewriting the same
code for different inputs, we can just call the function. Scala is thought
to be a functional programming language, hence they are significant. It
makes debugging and modifying the code easy. First-class values are Scala
functions.

https://doi.org/10.1201/9781003358527-6

216 ◾ Mastering Scala

The distinction between Scala functions and methods is that a function
is an object that may be put in a variable. A method, on the other hand,
always belongs to a class with a name, signature bytecode, and so on. A
method is essentially a function that is a member of some object.

DECLARATION AND DEFINITION OF FUNCTIONS
In theory, function declaration and definition consist of six components:

• def keyword: In Scala, the “def” keyword is used to declare a function.

• functionname: It must be a legitimate name in lower case. In Scala,
function names can contain characters like as +, ~, &, –, ++, \, /, and
so on.

• parameterlist: In Scala, a comma-separated list of input param-
eters, followed by their data type, is declared within the enclosing
parentheses.

• returntype: When defining a function, the user must provide the
arguments’ return type, and the function’s return type is optional.
If no return type is specified for a function, the default return type is
Unit, which is equivalent to void in Java.

• =: In Scala, a function can create with or without the = (equal) opera-
tor. The function will return the desired value if the user invokes it. If
they do not utilize it, the function will not return any value and will
operate in the same manner as a subroutine.

• Method body: The method body is surrounded by braces {}. The code
must be performed in order to carry out our planned tasks.

Syntax:

def functionname ([parameterlist]) : [returntype]
= {

 // function body

 }

Note: The method is declared abstract implicitly if the user does not use
the equals sign and body.

Scala Methods ◾ 217

CALLING A FUNCTION
In Scala, there are primarily two methods for calling the function. The
first method is the standard method, which is as follows:

functionname(paramterlist)

In the second method, a user can invoke the function using the instance
and dot notation as follows:

[instance].functionname(paramterlist)

Example:

object PeeksforPeeks {

 def main(args: Array[String]) {

 // Calling function
 println("The Sum is: " +
functionToAdd(7,4));
 }

 // declaration and definition of the function
 def functionToAdd(m:Int, n:Int) : Int =
 {

 var sum:Int = 0
 sum = m + n

 // returning value of sum
 return sum
 }
 }

EXAMPLES OF CURRYING FUNCTIONS IN SCALA
Currying is essentially a technique or procedure for modifying a function
in Scala. This function converts a function with several parameters into a
function with a single argument. It is commonly used in a variety of func-
tional languages.

218 ◾ Mastering Scala

Syntax:

def functionname(argument1, argument2) = operation

Example:

// program add two numbers
// using the currying Function
object Curry
{
 // Define the currying function
 def add(m: Int, n: Int) = m + n;

 def main(args: Array[String])
 {
 println(add(22, 17));
 }
}

Here, we defined the add function, which accepts two inputs (m and n)
and simply adds m and n and returns the result, which we call the main
function.

Another Method for Declaring a Currying Function

Assume we need to convert this add function into a Curried function,
which means we need to transform a function that takes two(multiple)
parameters into a function that takes one(single) argument.

Syntax:

def functionname(argument1) = (argument2) =>
operation

Example:

// program add two numbers
// using the Currying function

object Curry
{
 // transforming function that
 // takes two(multiple) arguments into

Scala Methods ◾ 219

 // function that takes one(single) argument.
 def add2(m: Int) = (n: Int) => m + n;

 // the main method
 def main(args: Array[String])
 {
 println(add2(22)(17));
 }
}

Here, we defined the add2 function, which accepts only one input m
and returns a second function with the value of add2. The second function
will likewise accept one argument, say n, and when called in main, it will
take two parenthesis(add2()()), where the first is of the function add2 and
the second is of the second function. It will yield the product of two num-
bers, m+n. As a consequence, we curried the add function, which means
we converted the function that accepts two arguments into a function that
takes one input and returns the outcome.

Partial Application Currying Function

The Partially Applied function is another method to use the Curried func-
tion. So, to understand it, let’s look at a basic example. In the main func-
tion, we defined a variable sum.

Example:

// program add two numbers
// using the Currying function
object Curry
{
 def add2(m: Int) = (n: Int) => m + n;

 // the main function
 def main(args: Array[String])
 {
 // Partially Applied function.
 val sum = add2(27);
 println(sum(7));
 }
}

220 ◾ Mastering Scala

When assigning the function to the value, just one parameter is pro-
vided. The value is supplied as a second parameter, and the result is dis-
played when these arguments are added.

The following is another method to construct the currying function
(syntax).

Syntax:

def functionname(argument1) (argument2) =
operation

Example:

// program add two numbers
// using the Currying function
object Curry
{
 // Curring the function declaration
 def add2(m: Int) (n: Int) = m + n;

 def main(args: Array[String])
 {
 println(add2(27)(7));
 }
}

The Partial Application method also changes for this syntax.

Example:

// program add two numbers
// using the Currying function
object Curry
{
 // Curring the function declaration
 def add2(m: Int) (n: Int) = m + n;

 def main(args: Array[String])
 {
 // Partially Applied function.
 val sum=add2(27)_;
 println(sum(7));
 }
}

Scala Methods ◾ 221

SCALA ANONYMOUS FUNCTIONS
Scala has A function literal is another name for an anonymous function.
An anonymous function is one which doesn’t have a name. An anony-
mous function provides a lightweight function definition. It comes in
handy when we need to write an inline function.

Syntax:

(n:Int, m:Int)=> n*m
Or
(_:Int)*(_Int)

In the first syntax, => is referred to as a transformer. The transformer
changes the left-hand side of the symbol’s parameter list into a new result
using the expression on the right-hand side.

The _character in the above second syntax is known as a wildcard and
is a shorthand approach to express a parameter that appears just once in
the anonymous function.

ANONYMOUS PARAMETERIZED FUNCTIONS
A function value is created when a function literal is instantiated in an
object. In other words, when we assign an anonymous function to a vari-
able, we may use that variable as a function call. In the anonymous func-
tion, we may declare numerous parameters.

Example 1:

// program to illustrate an anonymous method
object Main
{
 def main(args: Array[String])
 {

 // Creation of anonymous functions
 // with the multiple parameters Assign
 // anonymous functions to the variables
 var myfc1 = (str1:String, str2:String)
=> str1 + str2

 // Anonymous function is created
 // using _ wildcard instead of

222 ◾ Mastering Scala

 // the variable name because str1 and
 // str2 variable appear only once
 var myfc2 = (_:String) + (_:String)

 // Here, variable invoke like a function
call
 println(myfc1("Peeks", "12Peeks"))
 println(myfc2("Peeks", "forPeeks"))
 }
}

Without parameters, anonymous functions

We can define an anonymous function with no parameters. We can pro-
vide an anonymous function as a parameter to another function in Scala.

Example 2:

// program to illustrate the anonymous method
object Main
{
 def main(args: Array[String])
 {

 // Creation of anonymous functions
 // without the parameter
 var myfun1 = () => {"Welcome to
PeeksforPeeks...!"}
 println(myfun1())

 // Function which contains anonymous
 // function as parameter
 def myfunction(fun:(String, String)=>
String) =
 {
 fun("Dog", "Cat")
 }

 // Explicit type declaration of anonymous
 // function in the another function
 val f1 = myfunction((str1: String,
 str2: String) => str1 + str2)

 // Shorthand declaration using the wildcard
 val f2 = myfunction(_ + _)

Scala Methods ◾ 223

 println(f1)
 println(f2)
 }
}

SCALA HIGHER ORDER FUNCTIONS
A function is referred to be a Higher Order Function if it takes other
functions as parameters or returns another function as an output; that
is, functions that operate on other functions are referred to as Higher
Order Functions. It is important to note that this higher order function
applies to functions and methods that take functions as parameters or
return a function as a result. This is possible because the Scala compiler
allows us to coerce methods into functions.

Some key items to remember regarding higher order functions:

• Higher order functions are conceivable because the Scala program-
ming language considers functions as first-class values, which means
that functions, like other values, may be supplied as parameters
or returned as output, which is useful in providing an adaptable
approach for constructing codes.

• It is useful in constructing function compositions, in which func-
tions may create from other functions. Function composition is a
form of composing in which a function demonstrates the use of two
composed functions.

• It’s also useful for writing lambda functions and anonymous func-
tions. Anonymous functions are functions that do not have a name
yet execute functions.

• It is even used to reduce the number of unnecessary lines of code in
a program.

Example:

// program of higher order function

// Creation of object
object PfP
{

 // the main method
 def main(args: Array[String])

224 ◾ Mastering Scala

 {
 // Display the output by assigning
 // the value and calling functions
 println(apply(format, 34))

 }

 // higher order function
 def apply(m: Double => String, n: Double)
= m(n)

 // Defining the function for
 // format and using a
 // method toString()
 def format[R](z: R) = "{" + z.toString() + "}"

}

The apply function in this case contains another function m with the
value n and performs the function m to n.

Example:

// program of higher order function

// Creation of object
object PfP
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of a list of numbers
 val num = List(5, 6, 7)

 // Defining the method
 def multiplyValue = (n: Int) => n * 4

 // Creation of a higher order function
 // that is assigned to variable
 val result = num.map(n =>
multiplyValue(n))

Scala Methods ◾ 225

 // Displays output
 println("Multiplied List is: " + result)
 }
}

Here, map is a higher order function that accepts another function as an
argument, namely (n => multiplyValue(n)).

NAMED ARGUMENTS IN SCALA
When arguments pass through a function with named parameters in
Scala, we may label the arguments with the parameter names. These
named arguments are cross-referenced with the function’s named param-
eters. Unnamed Parameters normally utilize Parameter Positions to call
Functions or Constructors; however, these named parameters enable us to
modify the order of the arguments passed to a function by simply swap-
ping the order.

Syntax:

Function Definition : def createArray(length:int,
capacity:int);
Function calling : createArray(capacity=30,
length:20);

Precautions:

-> If some arguments are named, and others are
not, unnamed arguments come first
function(0, b = "1")

-> the Order Interchange is valid
function(b = "1", a = 0)

-> Not accepted, error: positional after the named
argument
function(b = "1", 0)

-> Not accepted, parameter 'a' specified twice as
'0' in the first position and again as a = 1
function(0, a = 1)

226 ◾ Mastering Scala

Note: If the m argument expression is of the form m = expr and m is
not a method parameter name, the argument is handled as an assignment
expression to some variable m.

Example:

// program using the Named arguments

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // passed with the named arguments
 printIntiger(X = 8, Y = 9);
 }

 // Defining the method
 def printIntiger(X:Int, Y:Int) =
 {
 println("The Value of X : " + X);
 println("The Value of Y : " + Y);
 }
}

In the above instance, we built the printIntiger function and then called
it. When invoking the function, we utilize the names of the function
parameters. We passed arguments X = 8 and Y = 9, where X and Y are
parameter names.

Example:

// program using the Named arguments

// Creation of object
object PFP
{

 // the main method
 def main(args: Array[String])

Scala Methods ◾ 227

 {

 // without the named arguments

 printName("peeks","for","peeks");

 // passed arguments according to order

 printName(first = "Peeks", middle="for",

 last = "Peeks");

 // passed arguments with different order

 printName(last = "Peeks", first = "Peeks",

 middle="for");

 }

 // Defining the function

 def printName(first: String, middle: String,

 last: String) =

 {

 println("Ist part of the name: " + first)

 println("IInd part of the name: " + middle)

 println("IIIrd part of the name: " + last)

 }

}

As seen in the preceding example, we constructed the printName func-
tion and then invoked it. When invoking the function, we utilize the
names of the function parameters. We may get the same result by modi-
fying the order of the inputs, such as printName(last = “Peeks,” first =
“Peeks,” middle= “for”).

FUNCTIONS CALL-BY-NAME IN SCALA
When arguments pass through a call-by-value function in Scala, the value
of the passed-in expression or arguments is computed once before invok-
ing the function. A call-by-Name function in Scala, on the other hand,
calls the expression and recomputes the value of the passed-in expression
every time it is retrieved within the function. Here are some examples of
differences and syntax.

228 ◾ Mastering Scala

Call-by-Value

This approach makes advantage of in-mode semantics. Changes made to
formal parameters are not returned to the caller. Any changes made to the
formal parameter variable within the called function or method impact
just the separate storage location and do not affect the real parameter in
the calling environment. This technique is also known as a call-by-value
method.

Syntax:

def callByValue(m: Int)

// program of function call-by-value

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 // Defined the function
 def ArticleCounts(i: Int)
 {
 println("Shreya did article " +
 "on day one is 1 - Total = "
+ i)
 println("Shreya did article " +
 "on day two is 1 - Total = "
+ i)
 println("Shreya did article "+
 "on day three is 1 - Total = "
+ i)
 println("Shreya did article " +
 "on day four is 1 - Total = "
+ i)
 }

 var Total = 0;

 // the function call
 ArticleCounts

Scala Methods ◾ 229

 {
 Total += 1 ; Total

 }
 }
}

In this case, the total articles are not raised using the function call-by-
value method in the preceding program.

Call-by-Name

A call-by-name mechanism sends a code block to the function call, which
compiles, executes, and calculates the value. The message will be written
first, followed by the value.

Syntax:

def callByName(m: => Int)

Example:

// program of the function call-by-name

// Creation of object
object main
{
 // the main method
 def main(args: Array[String])
 {
 // Defined the function call-by-name
 def ArticleCounts(i: => Int)
 {
 println("Shreya did articles " +
 " on day one is 1 - Total = "
+ i)
 println("Shreya did articles "+
 "on day two is 1 - Total = "
+ i)
 println("Shreya did articles " +
 "on day three is 1 - Total = "
+ i)
 println("Shreya did articles " +

230 ◾ Mastering Scala

 "on day four is 1 - Total = "
+ i)
 }

 var Total = 0;

 // calling the function
 ArticleCounts
 {
 Total += 1 ; Total
 }
}
}

The total number of articles will enhance in this case by employing the
function call-by-name approach in the preceding program.

Another function-by-name program.

Example:

// program of the function call-by-name

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 def something() =
 {
 println("calling the something")
 1 // return value
 }

 // Defined the function
 def callByName(m: => Int) =
 {
 println("m1=" + m)
 println("m2=" + m)
 }

 // Calling the function
 callByName(something)
 }
}

Scala Methods ◾ 231

CLOSURES IN SCALA
Scala Closures are functions that employ one or more free variables and
whose return value is determined by these variables. The free variables
are defined independently of the Closure Function and are not sent to it
as arguments. The free variable distinguishes a closure function from a
conventional function. A free variable is any variable that is not specified
within the function and is not supplied as a function argument. A free
variable does not have a valid value since it is not tied to a function. There
are no values for the free variable in the function.

As an example, consider the following function:

def example(m:double) = m*p / 100

When we run the above code, we get the error beginning not found p.
So now we give p a value outside of the function.

// defined value of p as 20
val p = 20

// define this closure.
def example(m:double) = m*p / 100

The above code may now execute since the free variable has a value. If
we execute the functions as follows:

Calling function: example(20000)
Input: p = 20
Output: double = 2000.0

When the value of the free variable changes, how would the value of the
closure function change?

So, in essence, the closure function takes the most recent state of the
free variable and appropriately modifies the closure function’s value.

Input: p = 20
Output: double = 2000.0

Input: p = 30
Output: double = 3000.0

232 ◾ Mastering Scala

Depending on the kind of free variable, a closure function can further
characterize as pure or impure. If we give the free variable the type var, it
will alter its value at any moment during the code, potentially modifying
the value of the closure function. As a result, this closure is an impure
function. On the other hand, if we define the free variable of type val, the
variable’s value remains constant, resulting in a pure closure function.

Example:

// Addition of the two numbers with Scala closure

// Creation of object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 println("Final_Sum(1) value is = "
+ sum(1))
 println("Final_Sum(2) value is= "
+ sum(2))
 println("Final_Sum(3) value is= "
+ sum(3))
 }

 var a = 6

 // define the closure function
 val sum = (b:Int) => b + a
}

In the above code, the sum is a closure function. var a = 6 represents
impure closure. The value of a is the same, but the value of b is different.

Example:

// closure program to print the string

// Creation of object
object PFP
{
 // the main method

Scala Methods ◾ 233

 def main(args: Array[String])
 {

 var employee = 70

 // define the closure function
 val gfg = (name: String) => println
(s"The Company name is $name"+
 s" and total no. of the
employees are $employee")

 gfg("peeksforpeeks")
 }
}

In the above example, pfp is a closure. The employee is a mutable vari-
able that may change.

NESTED FUNCTIONS IN SCALA
A Nested Function is a function definition that is contained within another
function. C++, Java, and other programming languages do not support it. We
can call a function within a function in other languages, but it is not a nested
function. Scala allows us to construct functions within functions, and func-
tions defined within other functions are referred to as nested or local functions.

Syntax:

def FunctionName1(parameter_1, parameter_2, ...)
= {
 def FunctionName2() = {
 // code
 }
 }

SINGLE NESTED FUNCTION
Here’s an instance of a single nested function that accepts two values as
inputs and returns the Maximum and Minimum of those numbers.

Example:

// program of the Single Nested Function
object MaxAndMin

234 ◾ Mastering Scala

{
 // the main method
 def main(args: Array[String])
 {
 println("The Min and Max from 7, 9")
 maxAndMin(7, 9);
 }

 // Function
 def maxAndMin(m: Int, n: Int) = {

 // the Nested Function
 def maxValue() = {
 if(m > n)
 {
 println("Max is: " + m)
 }
 else
 {
 println("Max is: " + n)
 }
 }

 // the Nested Function
 def minValue() = {
 if (m < n)
 {
 println("Min is: " + m)
 }
 else
 {
 println("Min is: " + n)
 }
 }
 maxValue();
 minValue();
 }
}

In the above program, maxAndMin is a function, and maxValue is
another inner function that returns the largest value between m and n.
Similarly, minValue is another inner function that is likewise nested, and
it returns the least value between m and n.

Scala Methods ◾ 235

MULTIPLE NESTED FUNCTION
Here’s an example of a multiple-nested function.

Example:

// program of the Multiple Nested Function
object MaxAndMin
{
 // the main method
 def main(args: Array[String])
 {
 fun();
 }

 // Function
 def fun() = {

 peeks();

 // The First Nested Function
 def peeks() = {
 println("peeks");

 pfp();

 // The Second Nested Function
 def pfp() = {
 println("pfp");

 peeksforpeeks();

 // The Third Nested Function
 def peeksforpeeks() = {
 println("peeksforpeeks");
 }
 }
 }
 }
}

In the preceding code, fun is a function, and peeks, pfp, and peeksfor-
peeks are nested or local functions.

236 ◾ Mastering Scala

SCALA PARAMETERLESS METHOD
A parameterless method does not accept parameters and is distinguished
by the absence of any empty parenthesis. A parameterless function should
be invoked without parentheses. This allows for the change of def to val
without requiring any changes to the client code, which is part of the uni-
form access concept.

Example:

// program to illustrate Parameterless method
invocation
class PeeksforPeeks(name: String, ar: Int)
{
 // parameterless method
 def author = println(name)
 def article = println(ar)

 // empty-parenthesis method
 def printInformation() =
 {
 println("User -> " + name + ", Articles ->
" + ar)
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of Class
'Peeksforpeeks'
 val PFP = new PeeksforPeeks("Disha", 60)
 PFP.author // calling the method without
parenthesis
 }
}

There are two main rules for utilizing the parameterless procedure. The
first is when there are no parameters. The second is when the procedure

Scala Methods ◾ 237

does not alter the changeable state. By designing methods using parenthe-
ses, one may prevent invocations of parameterless methods that seem like
field selections.

Calling the parameterless method with parenthesis results in a
Compilation error.

Example:

// program to illustrate Parameterless method
invocation
class PeeksforPeeks(name: String, ar: Int)
{
 // parameterless method
 def author = println(name)
 def article = println(ar)

 // empty-parenthesis method
 def printInformation() =
 {
 println("User -> " + name + ", Articles ->
" + ar)
 }
}

// Creation of object
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of Class
'Peeksforpeeks'
 val PFP = new GeeksforGeeks("Disha", 60)
 PFP.author() //calling the method
without parenthesis
 }
}

Note: It is able to reach an empty parenthesis method without paren-
thesis, although it is usually encouraged and recognized as a convention to
call empty-parenthesis methods with parenthesis.

238 ◾ Mastering Scala

SCALA RECURSION
The Recursion is a method that divides the problem into smaller subprob-
lems and calls itself for each of them. That is function calling itself. Instead
of loops, we may employ recursion. Recursion avoids the changeable state
associated with loops. Recursion is fairly prevalent in functional pro-
gramming and gives a simple technique to explain many algorithms. In
functional programming, recursion is seen as significant. Scala has strong
support for recursion.

Let me explain with a simple factorial example.

Example:

// program of the factorial using recursion

// Creation of object
object PFP
{
 // the Function define
 def fact(n:Int): Int=
 {
 if(n == 1) 1
 else n * fact(n - 1)
 }

 // the main method
 def main(args:Array[String])
 {
 println(fact(4))
 }
}

The preceding code demonstrates a recursive approach to a factorial
function, where the condition n == 1 causes the recursion to break.

Let us clarify by using gcd as an example.

Example:

// program of GCD using recursion

// Creation object
object PFP

Scala Methods ◾ 239

{
 // the Function defined
 def gcd(x:Int, y:Int): Int=
 {
 if (y == 0) x
 else gcd(y, x % y)
 }

 // the main method
 def main(args:Array[String])
 {
 println(gcd(14, 17))
 }
}

The problem with recursion is that deep recursion might blow up the
stack if we are not careful.

Let me illustrate this using an example:

Example:

// program of sum all numbers using recursion

// Creation of object
object PFP
{
 // the Function defined
 def sum(num: Int): Int=
 {
 if (num == 1)
 1
 else
 sum(num - 1) + num
 }

 // the main method
 def main(args:Array[String])
 {
 println(sum(66))
 }
}

240 ◾ Mastering Scala

The procedure sum will add all of the numbers together. Every time,
we lower the number and add it to the result. Every time we use sum, it
will leave the input value num on the stack, using memory. When we
try to pass a huge input, such as sum(666666), the result is java.lang.
StackOverflowError. This indicates that the stack has blown up.

Because the above example does not employ tail recursion, it is not an
optimum strategy, especially if the beginning number n is very big.

TAIL RECURSION
Tail-recursive functions are preferred over non-tail-recursive functions
because tail-recursion can optimize by the compiler. If the recursive call
is the last thing done by the function, it is said to be tail recursive. It is not
necessary to preserve a record of the prior condition.

Consider the following example:

// program of factorial using the tail recursion
import scala.annotation.tailrec

// Creation of object
object PFP
{
 // Function definition
 def factorial(n: Int): Int =
 {
 // Using the tail recursion
 @tailrec def factorialAcc(acc: Int, n: Int):
Int =
 {
 if (n <= 1)
 acc
 else
 factorialAcc(n * acc, n - 1)
 }
 factorialAcc(1, n)
 }

 // the main method
 def main(args:Array[String])
 {
 println(factorial(6))
 }
}

Scala Methods ◾ 241

We may use the @tailrec annotation in the preceding code to ensure
that our algorithm is tail recursive.

The compiler will complain if we use this annotation and our approach
is not tail recursive. For example, if we try to apply this annotation on the
factorial method shown above, we will get the below compile-time error.

Example:

// program of factorial with the tail recursion
import scala.annotation.tailrec

// Creation of object
object PFP
{
 // Function definition
 @tailrec def factorial(n: Int): Int =
 {
 if (n == 1)
 1
 else
 n * factorial(n - 1)
 }

 // the main method
 def main(args:Array[String])
 {
 println(factorial(6))
 }
}

Couldn’t optimize @tailrec annotated method
factorial: it contains recursive call, not in the
tail position

SCALA TAIL RECURSION
Recursion is a method that divides a problem into smaller subproblems
and then calls itself for each of them. That is, it merely indicates that the
function calls itself. Because the compiler can optimize tail-recursion,
tail-recursive functions perform better than non-tail-recursive functions.
If the recursive call is the last thing done by the function, it is said to be
tail recursive. It is not necessary to preserve a record of the prior condition.

242 ◾ Mastering Scala

In the code, a package import scala.annotation.tailrec will be utilized
for the tail recursion function.

Syntax:

@tailrec
def FuntionName(Parameter_1, Parameter_2, ...):
type = …

Example:

// program of GCD using the recursion
import scala.annotation.tailrec

// Creation of object
object PFP
{
 // Function defined
 def GCD(n: Int, m: Int): Int =
 {
 // the tail recursion function defined
 @tailrec def gcd(x:Int, y:Int): Int=
 {
 if (y == 0) x
 else gcd(y, x % y)
 }
 gcd(n, m)
 }

 // the main method
 def main(args:Array[String])
 {
 println(GCD(14, 17))
 }
}

As seen in the above code, @tailrec is used for the gcd function, which is
a tail recursion function. There is no need to retain track of the prior state
of the gcd function while employing tail recursion.

Example:

// program of factorial using the tail recursion
import scala.annotation.tailrec

Scala Methods ◾ 243

// Creation of object
object PFP
{
 // Function definition
 def factorial(n: Int): Int =
 {
 // Using the tail recursion
 @tailrec def factorialAcc(acc: Int, n:
Int): Int =
 {
 if (n <= 1)
 acc
 else
 factorialAcc(n * acc, n - 1)
 }
 factorialAcc(1, n)
 }

 // the main method
 def main(args:Array[String])
 {
 println(factorial(6))
 }
}

The @tailrec annotation in the preceding code confirms that our
approach is tail recursive.

The compiler will complain if we use this annotation and our approach
is not tail recursive. For example, if we try to apply this annotation on
the factorial method shown above, we will get the following compile-time
error.

Example:

// program of factorial with the tail recursion
import scala.annotation.tailrec

// Creation of object
object PFP
{
 // Function definition
 @tailrec def factorial(n: Int): Int =

244 ◾ Mastering Scala

 {
 if (n == 1)
 1
 else
 n * factorial(n - 1)
 }

 // the main method
 def main(args:Array[String])
 {
 println(factorial(6))
 }
}

PARTIALLY APPLIED FUNCTIONS IN SCALA
Partially applied functions are not applied to all of the arguments defined
by the given function; for example, while calling a function, we can offer
some of the parameters and the left arguments are supplied as needed.
When we call a function, we may send less parameters to it, and it does not
raise an exception when we do. We utilize hyphen (_) as a placeholder for
parameters that are not given to the function.

Here are some key points:

• Partially applied functions are useful for reducing a function with
many arguments to a function with only a few arguments.

• It may use to replace any number of function parameters.

• This strategy is more convenient for users to use.

Syntax:

val multiply = (x: Int, y: Int, z: Int) => x * y * z

// the less arguments passed
val k = multiply(1, 2, _: Int)

As we can see from the syntax above, we built a standard function mul-
tiply with three parameters, but we passed less arguments (two). As we
can see, it does not throw an exception when the function is just partially
applied.

Scala Methods ◾ 245

Example:

// program of Partially applied functions

// Creation of object
object Applied
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of a Partially applied function
 def Book(discount: Double, costprice:
Double)
 : Double =
 {

 (1 - discount/100) * costprice

 }

 // Applying the only one argument
 val discountedPrice = Book(27, _: Double)

 // Displays discounted price of the book
 println(discountedPrice(500))

 }
}

The discount is passed in argument, and the cost price part is left empty
so that it may be passed later as required, allowing the decreased price to
be computed indefinitely.

Here are a few more instances of partially applied functions:

1. Even if no of the defined parameters are used, a partially applied
function can achieve.

Example:

// program of Partially applied functions

// Creation of object
object Applied
{

246 ◾ Mastering Scala

 // the main method
 def main(args: Array[String])
 {

 // Creation of a Partially applied
function
 def Mul(x: Double, y: Double)
 : Double =
 {
 x * y
 }

 // Not applying any argument
 val r = Mul _

 // Display the Multiplication
 println(r(7, 5))
 }
}

2. Any number of arguments can be replaced using partially applied
functions.

Example:

// program of Partially applied functions

// Creation of object
object Applied
{

 // the main method
 def main(args: Array[String])
 {

 // Creation of the Partially applied
function
 def Mul(c: Double, d: Double, d: Double)
 : Double =
 {
 c * d * e
 }

Scala Methods ◾ 247

 // applying the some arguments
 val r = Mul(8, 7, _ : Double)

 // Display the Multiplication
 println(r(10))
 }
}

3. Currying may use in Partially applied functions to divide a function
with several arguments into numerous functions, each with only one
argument.

Example:

// program of Partially applied functions using
// the Currying approach

// Creation of object
object curr
{

 // the main method
 def main(args: Array[String])
 {

 // Creating a Partially applied
 // function
 def div(x: Double, y: Double)
 : Double =
 {
 x / y
 }

 // applying the currying approach
 val m = (div _).curried

 // Display the division
 println(m(52)(7))
 }
}

The currying strategy divides the provided function into two
functions, each with one argument, thus we must send one value to
each of the functions to produce the required output.

248 ◾ Mastering Scala

SCALA METHOD OVERLOADING
Polymorphism is commonly implemented by method overloading. It is the
capacity to redefine a function in a variety of ways. Function overloading
may implement by declaring two or more functions in the same class with
the same name. Scala may differentiate between methods by using various
method signatures. Within the same class, methods can have the same
name but distinct parameter lists (i.e., the number of parameters, the order
of the parameters, and the data types of the parameters).

• The amount and kind of parameters given as arguments distinguish
overloaded methods.

• We cannot define more than one method with the same name, Order,
and argument type. It would be a compiler mistake.

• When differentiating the overloaded method, the compiler does not
consider the return type. However, two methods with the same sig-
nature but distinct return types cannot declare. It will generate a
compilation error.

Why Do We Require Method Overloading?

If we need to perform the same operation in multiple ways, for example,
for distinct inputs. In the following example, we perform the addition
operation on several inputs. It is difficult to come up with several relevant
labels for a single action.

Different Approaches to Overloading Methods

Method overloading is accomplished by changing:

• The total number of parameters in two methods.

• The data types of method parameters.

• The sequence of method parameters.

By varying the number of parameters

Example:

// program to demonstrate the function overloading
by changing the number

Scala Methods ◾ 249

// of the parameters
class PFP
{

 // function 1 with the two parameters
 def fun(p:Int, q:Int)
 {
 var Sum = p + q;
 println("The Sum in function 1 is:" + Sum);
 }

 // function 2 with the three parameters
 def fun(p:Int, q:Int, r:Int)
 {
 var Sum = p + q + r;
 println("The Sum in function 2 is:" + Sum);
 }
}
object Main
{
 // the main function
 def main(args: Array[String])
 {

 // Creation of object of PFP class
 var obj = new PFP();
 obj.fun(7, 9);
 obj.fun(4, 9, 72);
 }
}

By modifying the parameter data types:

Example:

// program to demonstrate the function overloading
by changing data types
// of parameters
class PFP
{

 // Adding the three integer elements
 def fun(p:Int, q:Int, r:Int)

250 ◾ Mastering Scala

 {
 var Sum = p + q + r;
 println("The Sum in function 1 is:"+Sum);
 }

 // Adding the three double elements
 def fun(p:Double, q:Double, r:Double)
 {
 var Sum = p + q + r;
 println("The Sum in function 2 is:"+Sum);
 }
}
object Main
{
 // the main method
 def main(args: Array[String])
 {

 // Creation of object of PFP class
 var obj = new PFP();
 obj.fun(7, 6, 11);
 obj.fun(6.8, 12.01, 44.9);
 }
}

By changing the parameters in a different order:

Example:

// program to demonstrate the function overloading
by changing
// order of parameters
class PFP
{

 // Function1
 def fun(name:String, No:Int)
 {
 println("The Name of the watch company:"
+ name);
 println("The Total number of watch :" + No);
 }

Scala Methods ◾ 251

 // Function2
 def fun(No:Int, name:String)
 {
 println("The Name of the watch company:" +
name);
 println("The Total number of watch :" +
No);
 }
}
object Main
{
 // the main Function
 def main(args: Array[String])
 {

 // Creation of object of PFP class
 var obj = new PFP();
 obj.fun("Rolex", 20);
 obj.fun("Omega", 20);
 }
}

What Happens When the Method Signature and Return
Type Are the Same?

The compiler will generate error because the return value alone is insuf-
ficient for the compiler to determine which function to call. Method over-
loading is only feasible if both methods have different argument types (and
so have separate signature).

Example:

// Program to show an error when the method
signature is the same
// and return the type is different.
object Main {

 // the main method
 def main(args: Array[String]) {
println("The Sum in function 1 is:" + fun(7, 6));
println("The Sum in function 2 is:" + fun(7, 6));
}

252 ◾ Mastering Scala

// function1
def fun(p:Int, q:Int) : Int = {
 var Sum: Int = p + q;
 return Sum;

}

// function2
def fun(p:Int, q:Int) : Double = {
 var Sum: Double = p + q + 4.5;
 return Sum;
}
}

SCALA METHOD OVERRIDING
Method overriding in Scala is similar to method overriding in Java; how-
ever, the overriding capabilities in Scala are more developed, since both
methods as well as var or val may override. Method Overriding occurs
when a subclass has a method name that is identical to the method name
defined in the parent class. This occurs when subclasses inherited by the
declared superClass override the method defined in the superClass using
the override keyword.

When Should We Use Method Overriding?

When a subclass intends to provide a specific implementation for a method
declared in the parent class, the subclass overrides the parent class’s defined
method. Method overriding can use to recreate the method specified in
the superClass.

Example:

// program of the method overriding

// Creation of a super class
class School
{

 // Method definition
 def NumberOfStudents()=
 {
 0 // Utilized for the returning an Integer
 }
}

Scala Methods ◾ 253

// Creation of a subclass
class class1 extends School
{

 // Using the Override keyword
 override def NumberOfStudents()=
 {
 30
 }
}

// Creation of a subclass
class class2 extends School
{

 // Using the override keyword
 override def NumberOfStudents()=
 {
 34
 }
}

// Creation of a subclass
class class3 extends School
{

 // Using override keyword
 override def NumberOfStudents()=
 {
 27
 }
}

// Creation of object
object PfP
{

 // the main method
 def main(args:Array[String])
 {

 // Creation of instances of all
 // the sub-classes

254 ◾ Mastering Scala

 var x=new class1()
 var y=new class2()
 var z=new class3()

 // Display the number of students in
class1
 println("The Number of students in class 1
: " +

x.NumberOfStudents())

 // Display the number of students in
class2
 println("The Number of students in class 2
: " +

y.NumberOfStudents())

 // Display the number of students in
class3
 println("The Number of students in class 3
: " +

z.NumberOfStudents())

 }
}

Method Overriding Guidelines

There are a few limitations to method overriding, which are as follows:

• One important guideline for method overriding is that the overrid-
ing class must use the modifier override or override annotation.

• Auxiliary constructors cannot instantly invoke superClass construc-
tors. They can rarely call the primary constructors, which will call
the superClass constructor reverse.

• We will not be allowed to override a var with a def or val in Method
Overriding; otherwise, an error will throw.

• We cannot override a val in the superClass with a var or def in the
subclass, and if the var in the superClass is abstract, we can override
it in the subclass.

Scala Methods ◾ 255

• If a field is declared var, it can override the def defined in the super-
Class. The var can override only a getter or setter combination in the
superClass.

Note: Auxiliary Constructors are defined similarly to methods, with
the def and this keyword, where this is the constructor’s name.

Primary Constructors start at the beginning of the class definition and
extend throughout the whole body of the class.

Example:

// program of method Overriding

// Creation of a class
class Animal
{

 // Defining the method
 def number()
 {
 println("We have 2 animals")

 }
}

// Extending class Animal
class Dog extends Animal
{

 // using the override keyword
 override def number()
 {

 // Display the output
 println("We have 2 dogs")

 }
}

// Creation of object
object PfP
{

256 ◾ Mastering Scala

 // the main method
 def main(args:Array[String])
 {

 // Creation of object of subclass
 // Dog
 var x = new Dog()

 // Calling the overridden method
 x.number()

 }
}

We overrode the method here by using the term override. In the above
example, the superclass Animal has a method called the number that the
subclass Dog overrides. As a result, constructing a subclass object may
invoke the overridden method.

Example:

// program of method overriding

// Creation of super-class
class Students(var rank:Int, var name:String)
{

 // overriding the method 'toString()'
 override def toString():String =
 {
 " Rank of "+name+" is : "+rank
 }
}

// Creating the subclass of Students
class newStudents(rank:Int, name:String)
 extends Students(rank, name){
}

// Inheriting the main method of
// trait 'App'
object PfP extends App

Scala Methods ◾ 257

{

 // Creating object of a super-class
 val students = new Students(2, "Riya Sood")

 // Display the output
 println(students)

 // Creating object of a subclass
 val newstudents = new newStudents(4, "Paras
Sharma")

 // Display the output
 println(newstudents)

}

The superClass constructor, Students, is called from the primary con-
structor of the subclass, newStudents, therefore the superClass construc-
tor is called using the term extends.

OVERRIDING VS OVERLOADING
In Scala, method overloading is a property that allows us to define meth-
ods with the same name. Still, different parameters or data types, whereas
method overriding allows us to redefine the method body of the super-
Class in the subclass with the same name and same parameters or data
types in order to change the method’s performance.

Method overriding in Scala uses the override modifier to override a
method defined in the superClass, whereas method overloading does not
require any keyword or modifier; we simply need to change the order of
the parameters used, the number of parameters in the method, or the data
types of the parameters for method overloading.

WHY IS METHOD OVERRIDING REQUIRED?
Method overriding allows us to redefine a single method in several
ways and do distinct actions with the same method name. In the pic-
ture above, for example, a superClass School contains a method entitled
NumberOfStudents() that is overridden by the sub-classes to do various
tasks.

258 ◾ Mastering Scala

METHOD INVOCATION IN SCALA
Method Invocation is a technique that displays various syntax by dynami-
cally calling methods of a class using an object.

Scala uses the same name standards as Java, which are as follows:

• There should be no space between the invocation object/target and
the dot(.), nor should there be any space between the dot and the
method name.

objt.display("name") // correct
objt.display ("name") // incorrect but legal
objt. display("name") // incorrect but legal

• Additionally, there should be no space between the method name
and the parenthesis.

println("students") // correct
println ("students") // incorrect but legal

• A single space and a comma should separate the parameters.

objt.display("name", 33) // correct
objt.display ("name", 33) // incorrect but legal
objt. display("name", 33) // incorrect but legal

Let’s look at few methods with various parameters and styles.

• Arity-0: When there are no arguments to pass to the method, the
arity is zero. As a result, adding parentheses to methods is not
required. It improves code readability, and removing parenthesis
reduces the number of characters to some extent.

objt.display() //correct
objt.display //correct

• Arity-1: When there is just one parameter to pass to the arity-1
method. We can avoid using parentheses around the provided
parameter if we utilize this rule for fully functional programming or
methods that take functions as parameters. Infix notation is another
name for this type of syntax.

Example:

// program for arity 1
// Creation of object
class x

Scala Methods ◾ 259

{
 // Defining the method
 def display(str: String)=
 {
 println(str)
 }
}

// Creation of object
object PfP
{
 // the main method
 def main(args: Array[String])
 {
 val objt = new x
 objt.display("student") // correct
 objt display ("student") // correct
 objt display "student" // correct

 }
}

• Higher order function: A function is referred to as a Higher Order
Function if it contains other functions as parameters or returns
another function as an output, that is, functions that operate on other
functions are referred to as Higher Order Functions. It is important
to note that higher order functions apply to functions and methods
that take functions as parameters or return a function as a result.
This is possible because the Scala compiler allows us to coerce meth-
ods into functions.

Example:

// program of higher order function

// Creation of object
object PfP
{
 // the main method
 def main(args: Array[String])
 {

 // Creating the Set of strings

260 ◾ Mastering Scala

 val names = Set("shreya","anusha",
"ritik")

 // Defining the method
 def captainDesignation = (y: String) =>
"captain " + y

 // Creating the higher order function
 // that is assigned to String elements
 val result = names.map(y =>
captainDesignation(y))

 // Display the output
 println("Multiplied List: " + result)
 }
}

Important notes:

• When there are no side effects, this syntax should use.

• These conventions are used to increase readability and make the
code more understandable.

• It can save space by omitting certain additional characters.

FORMAT AND FORMATTED METHOD IN SCALA
Competitive programming often needs to print the results in a specific
format. The printf function in C is well-known to most users. Let’s look at
how we may format the output in Scala. When a String has both values and
text following it, formatting is necessary for updating values and adding
text enclosing it.

Example:

We have written 23 articles

Note:

• String formatting in Scala may be accomplished using two methods:
format() and formatted().

• These techniques have been accessed using the StringLike Trait.

Scala Methods ◾ 261

Format Method

We may use the Format method to format strings and pass arguments to it,
where %d is used for integers and %f is used for floating-points or doubles.

Example:

// program of format method

// Creating the object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the format string
 val x = "There are %d books and" +
 "cost of the each book is %f"

 // Assigning the values
 val y = 17
 val z = 235.87

 // Applying the format method
 val r = x.format(y, z)

 // Display the format string
 println(r)
 }
}

Example:

// program of format for strings and characters.

// Creating the object
object GPFP
{

 // the main method
 def main(args: Array[String])

262 ◾ Mastering Scala

 {

 // Creating the format string
 val x = "Riit%c is a %s."

 // Assigning the values
 val a = 'a'
 val b = "coder"

 // Applying the format method
 val r = x.format(a, b)

 // Display the format string
 println(r)
 }
}

Formatted Method

This method may use for any object, including integer, double, and strings.

Example:

// program for formatted method

// Creating the object
object PFP
{

 // the main method
 def main(args: Array[String])
 {

 // Assigning the values
 val x = 42

 // Applying the formatted method
 val r = x.formatted("We have written %d
articles.")

 // Display the format string
 println(r)
 }
}

Scala Methods ◾ 263

SCALA CONTROLLING METHOD SCOPE
Access Modifiers in Scala, as the name implies, assist to limit the scope of
a class, variable, function, or data member. Method Scope Control Scala
allows us to limit the scope of a method or data member. In Scala, there are
five types of controlling method scope:

• Public Scope

• Private Scope

• Protected Scope

• Object-private Scope

• Package Specific

Public Scope

When no access modifier is given for a class, method, or data member, the
default access modifier is used.

Data members, classes, or methods not defined with any access modi-
fiers, that is, with the default access modifier, are available from anywhere
via package & imports or by creating new instances.

Example:

// program of the Public Scope
// package testA
class classA
{
 def method1(): Unit=
 {
 println("method1")
 }
}

// Creating the object
object PfP
{
 // the main method
 def main(args: Array[String])
 {
 // classA in a same package

264 ◾ Mastering Scala

 // as main method
 var x = new classA
 x.method1()
 }
}

Private Scope

In Java, the private modifier is the same as the private keyword. When a
method or variable is marked as private, it is only accessible to the current
class and its members and any instances of the same class.

Other objects/classes in the same package will be unable to access the
secret members.

This is accomplished by employing the private access modifier.

Example:

// program of the Private Scope
// package testA
class classA
{
 var x = 1
 private def method1: Unit =
 {
 println("method1")
 }
}

// Creating the object
object PfP
{
 // the main method
 def main(arg: Array[String])
 {
 var obj1 = new classA
 printf("x = "+obj1.x)
 // println(obj1.method1) error: method
 // method1 in the class classA cannot
 // access in classA
 }
}

Scala Methods ◾ 265

Protected Scope

Scala protected differs from Java protected. To protect a member, use the
term protected before a class or variable.

Only subclasses in the same package have access to protected members.

Example:

// program of Protected Scope package test
class classab
{
 protected var ab: Int=4
 var ad: Int =1
}

// Creating the object
object PfP extends classab
{
 // sub-class
 // the main method
 def main(args: Array[String])
 {
 println(ab) //can access
 println(ad) //can access
 }
}

Even with imports, protected members cannot be accessed by other
members in other packages.

Example:

// Scala program of Protected Scope
// package testA
package testA
{
 class classA
 {
 protected var ab: Int=4
 var ad: Int =1
 }
}

266 ◾ Mastering Scala

// the another package testB
package testB
{
 // importing all members
 // from the testA package
 import testA._

 // Creating the object
 object PfP
 {
 // the main method
 def main(args: Array[String])
 {
 var ta= new classA
 ta.ad
 ta.ab //error
 }
 }
}

Object Private/Protected Scope

• Private is the same as object private. The sole distinction is that a
member designated object private will be available exclusively to the
object in which it is specified, that is, no other object will be able to
access it, thus the term object private.

• The sole distinction between object protected and protected is that the
member is only available to the class in which it is defined or to the
subclasses and not to the objects.

• Use the terms private[this] to make a member object private.

• Use the phrase protected[this] to protect a member object, where this
refers to or references to the current object.

Example:

// program of the Object Private/Protected Scope
// package test1.test11
class class11
{
 private[this] var x = 1
 private var t = 2

Scala Methods ◾ 267

 var z = 3
 def method11(other: class11): Unit =
 {
 println(x)
 println(t)
 println(z)

 // println(other.x)
 println(other.t)
 println(other.z)
 }
}
// here on line14 x can only
// access from the inside in which
// it is defined

// Creating the object
object PfP
{
 // the main method
 def main(arg: Array[String])
 {
 var obj11 = new class11() //current
instance creation
 var y = 2
 println(obj11.method11(obj11))
 println(obj11.z)
 //println(obj11.t) //error: t cannot
access
 //println(obj11.x) //error: x is not the
member of the class11
 //according to obj11, x is not the member
 }
}

Package Specific

• When we need a member to be available throughout the
entire package, it is now time to define that member as private
[package_name].

• All members inside the package have access to that member.

• Any other package whose name is qualified to can access Member.

268 ◾ Mastering Scala

Example:

// program of the Package Specific
// program of the Package Specific
package aa
class peek
{
 class g1
 {
 // the inner class
 // private to the class g1
 private var a = 0

 // available to the package aa
 private[aa] var b = 0
 def method()
 {
 a = a + 1
 b = b + 1
 println("welcome to the inner class g1")
 println("a= "+a)
 }
 }
}

// Creating the object
object main
{
 // Driver code
 def main(args: Array[String])
 {
 val obj = new geek()
 val ob = new obj.g1
 ob.method();
 println("b= "+ob.b);
 }
}

SCALA REPEATED METHOD PARAMETERS
Repeated Method parameters are supported in Scala, which is useful when
we don’t know how many arguments a method requires. This Scala feature
is used to pass an infinite number of arguments to a specified method.

Scala Methods ◾ 269

Important details:

• Each parameter in the procedures with Repeated Parameters should
be the same type.

• A Repeated parameter is always the method’s final parameter.

• As Repeated Parameters, the method we constructed can only have
one parameter.

Example:

// program of repeated parameters

// Creating the object
object repeated
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the method with
 // the repeated parameters
 def add(x: Int*)
 : Int =
 {

 // Applying the 'fold' method to
 // perform the binary operation
 x.fold(0)(_+_)

 }

 // Display the Addition
 println(add(4, 5, 7, 9, 2, 11, 14, 15))
 }
}

To add any number of additional parameters, include * mark after the
kind of parameter being used.

Here are a few more instances of Repeated Parameters:

• In the Repeated Parameter method, an Array can pass.

270 ◾ Mastering Scala

Example:

// program of repeated parameters

// Creating the object
object arr
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the method with
 // repeated parameters
 def mul(x: Int*)
 : Int =
 {

 // Applying 'product' method to
 // perform the multiplication
 x.product

 }

 // Display the product
 println(mul(Array(8, 4, 5, 11): _*))
 }
}

To pass an array in the described procedure, we must use a colon,
that is, : and _* mark after supplying the array values.

• An illustration of how Repeated Parameters are always the method’s
final argument.

Example:

// program of repeated parameters

// Creating the object
object str
{

 // the main method
 def main(args: Array[String])

Scala Methods ◾ 271

 {

 // Creating the method with
 // the repeated parameters
 def show(x: String, y: Any*) =
 {

 // using 'mkString' method to
 // convert the collection to a
 // string with the separator
 "%s is a %s".format(x,
y.mkString("_"))
 }

 // Display the string
 println(show("PeeksforPeeks",
"Computer",
 "Sciecne",
"Session"))
 }
}

SCALA PARTIAL FUNCTIONS
When a function cannot create a return for every single variable input data
provided to it, it is referred to as a partial function. It can only determine
the output for a subset of possible inputs. It can only apply in part to the
specified inputs.

Here are some key points:

• Partial functions can help us grasp various inconsistencies in Scala
routines.

• Case statements can use to interpret it.

• It is a Trait that must be implemented using two methods: isDefine-
dAt and apply.

Example:

// program of Partial function

// Creating the object
object Case

272 ◾ Mastering Scala

{

 // the main method
 def main(args: Array[String])
 {

 // Creating the Partial function
 // using a two methods
 val r = new PartialFunction[Int, Int]
 {

 // Applying the isDefinedAt method
 def isDefinedAt(q: Int) = q != 0

 // Applying the apply method
 def apply(q: Int) = 13 * q

 }

 // Display the output if
 // the condition is satisfied
 println(r(12))
 }
}

In this part, two methods for applying the Partial function are defined,
where isDefinedAt indicates the condition and apply conducts the action
if the specified condition is satisfied.

Partial Function Definition Methods

Case statements, collect method, andThen, and orElse are some approaches
for defining Partial function.

• Case statement partial function: Using the case statement, we will
write a Partial function below.

Example:

// program using case statements

// Creating the object
object Case

Scala Methods ◾ 273

{

 // the main method
 def main(args: Array[String])
 {

 // Creating the Partial function
 val d: PartialFunction[Int, Int] =
 {

 // using the case statement
 case k if (k % 4) == 0 => k * 4
 }

 // Display the output if
 // the condition is
 // satisfied
 println(d(4))
 }
}

Because the Partial function is built using a case statement, apply,
and isDefinedAt are unnecessary.

• orElse is a partial function: This approach is useful for connecting
Partial functions.

Example:

// program using orElse

// Creating the object
object orElse
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the Partial function1
 val M: PartialFunction[Int, Int] =

274 ◾ Mastering Scala

 {

 // using the case statement
 case x if (x % 6) == 0 => x * 6
 }

 // Creating the Partial function2
 val m: PartialFunction[Int, Int] =
 {

 // using the case statement
 case y if (y % 3) == 0 => y * 3
 }

 // chaining two partial
 // functions using the orElse
 val r = M orElse m

 // Display the output for
 // which given condition
 // is satisfied
 println(r(6))
 println(r(3))
 }
}

• Partial function using Collect method: The Collect method asks
for a Partial function for each member of the collection and aids in
constructing a new collection.

Example:

// program using the collect method

// Creating the object
object Collect
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the Partial function
 val M: PartialFunction[Int, Int] =

Scala Methods ◾ 275

 {

 // using the case statement
 case x if (x % 6) != 0 => x * 6
 }

 // Applying the collect method
 val y = List(6, 14, 8) collect { M }

 // Display the output for which
 // given condition is satisfied
 println(y)
 }
}

In this case, Collect will apply the Partial function on all of
the List’s elements and return a new List based on the conditions
specified.

• andThen is a partial function: This method adds at the end of
chains, which is utilized to go on to further Partial function chains.

Example:

// program using the andThen method

// Creating the object
object andThen
{

 // the main method
 def main(args: Array[String])
 {

 // Creating the Partial function
 val M: PartialFunction[Int, Int] =
 {

 // using the case statement
 case k if (k % 5) != 0 => k * 5
 }

 // Creating the another function
 val append = (k: Int) => k * 10

276 ◾ Mastering Scala

 // Applying the andThen method
 val y = M andThen append

 // Display the output after
 // appending another function given
 println(y(8))
 }
}

SCALA LAMBDA EXPRESSION
A Lambda Expression is an expression that substitutes an anonymous
function for a variable or value. Lambda expressions are handier when we
just need to employ a simple function. These expressions are more expres-
sive and quicker than defining a whole function. We may reuse our lambda
expressions for any type of change. It can loop through a set of objects and
apply some sort of alteration to them.

Syntax:

val lambdaexp = (variable:Type) =>
TransformationExpression

Example:

// lambda expression to find the double of y
val ex = (y:Int) => y + y

Making Use of Lambda Expressions

Lambda expression ca be used as follows:

• A lambda can pass values exactly like any other function call.

Example:

// program to show working of lambda expression

// Creating the object
object PfP
{

// the main method
def main(args:Array[String])

Scala Methods ◾ 277

{
 // the lambda expression
 val ex1 = (x:Int) => x + 4

 // with the multiple parameters
 val ex2 = (x:Int, y:Int) => x * y

 println(ex1(8))
 println(ex2(3, 4))
}
}

• We often use the map() method to perform transformation to any
collection. It is a higher-order function that accepts our lambda
expression as an argument and transforms every collection element
according to its description.

Example:

// program to apply a transformation on collection

// Creating the object
object GPfP
{

// the main method
def main(args:Array[String])
{
 // list of the numbers
 val l = List(2, 2, 3, 4, 6, 9)

 // squaring each element of a list
 val res = l.map((y:Int) => y * y)

/* OR
val res = l.map(x=> y * y)
*/
 println(res)
}
}

As we can see, the anonymous function built to execute the square
operation is not reusable.

278 ◾ Mastering Scala

• We’re using it as an example. We can, however, make it reusable and
use it with multiple collections.

Example:

// program to apply transformation on the
collection

// Creating the object
object PfP
{
 // the main method
 def main(args:Array[String])
 {
 // list of the numbers
 val l1 = List(2, 2, 4, 5, 7, 9)
 val l2 = List(14, 22, 38)

 // the reusable lambda
 val func = (x:Int) => x * x

 // squaring each element of a lists
 val res1 = l1.map(func)
 val res2 = l2.map(func)

 println(res1)
 println(res2)
 }
}

• A lambda can also be used as a function argument.

Example:

// program to pass lambda as parameter to
function

// Creating the object
object PfP
{

 // transform function with the integer x and
 // function f as a parameter

Scala Methods ◾ 279

 // f accepts Int and returns Double
 def transform(x:Int, f:Int => Double)
 =
 f(x)

 // the main method
 def main(args:Array[String])
 {

 // lambda is passed to f:Int => Double
 val res = transform(4, r => 3.14 * r *
r)

 println(res)
}
}

In the above example, the transform function receives an integer x
and a function f, and then performs the transformation to x described
by f. The argument Lambda in a function call returns a Double type.
As a result, argument f must adhere to the lambda specification.

• We can do the same task with any collection. In the case of collec-
tions, the only change to the transform function is to use the map
function to apply the transformation described by f to each member
of the list l.

Example:

// program to pass lambda as a parameter to a
function

// Creating the object
object PfP
{

 // transform function with the integer list
l and
 // function f as a parameter
 // f accepts Int and returns Double
 def transform(l:List[Int], f:Int => Double)
 =
 l.map(f)

280 ◾ Mastering Scala

 // the main method
 def main(args:Array[String])
 {
 // lambda is passed to f:Int => Double
 val res = transform(List(2, 4, 6), r =>
3.14 * r * r)
 println(res)
 }
}

SCALA VARARGS
Scala, like other programming languages, allows us to provide variable
length arguments to functions. It enables us to declare that the function’s
final parameter is of variable length. It may be repeated several times. It
allows us to indicate that the function’s last parameter is of variable length
and may be repeated several times. We are free to make as many arguments
as we wish. This enables programmers to call the function with variable-
length parameter lists. The type of args stated inside the method is really pre-
served as an Array[Datatype], for example, String* is actually Array[String].

Note: To make the last parameter variable in length, we use *.

Syntax:

def Nameoffunction(args: Int *) : Int = { s
foreach println. }

The following are some limitations of varargs:

• The repeating argument must be the last parameter in the list.

def sum(a :Int, b :Int, args: Int *)

• There are no default values for any arguments in the method that
contains the varargs.

• All values must be of the same data type, else an error will occur.

> sum(4, 6, 2000, 3000, 4000, "one")
> error: type mismatch;
found : String("one")
required: Int

• Because args is an array within the body, all values are packed into
an array.

Scala Methods ◾ 281

Example:

// program of varargs
object PFP
{

 // the Driver code
 def main(args: Array[String])
 {

 // Calling function
 println("The Sum is: " + sum(5, 3, 1000,
2000, 3000));
 }

 // declaration and definition of the
function
 def sum(x :Int, y :Int, args: Int *) : Int =
 {
 var result = x + y

 for(arg <- args)
 {
 result += arg
 }

 return result
 }
}

Example:

// program of varargs
object GPFP
{
 // the Driver code
 def main(args: Array[String])
 {

 // calling the function
 printPeek("Peeks", "for", "peeks")

 }

282 ◾ Mastering Scala

 // declaration and definition of the function
 def printPeek(strings: String*)
 {
 strings.map(println)
 }

}

SCALA FUNCTION COMPOSITION
The Function composition is a process of combining two or more func-
tions. To execute its job, one function keeps a reference to another func-
tion during the composition. Function composition can take place in a
variety of ways, as shown below:

• compose: The compose technique uses val functions.

Syntax:

(function_1 compose function_2)(parameter)

• In the aforementioned syntax, function_2 first works with the
parameter passed, then passes and returns a value to function_1.

First example:

// program to illustrate compose method with the
val function

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 println((add compose mul)(2))

 // adding the more methods
 println((add compose mul compose sub)(2))
 }

 val add=(x: Int)=> {
 x + 1
 }

Scala Methods ◾ 283

 val mul=(x: Int)=> {
 x * 2
 }

 val sub=(x: Int) =>{
 x - 1
 }
}

• In the above instance, the mul function was used first, yielding 4(2 * 2),
followed by the add function, yielding 5(4 + 1). (add compose mul
compose sub)(2) will print 3 (step 1: 2 − 1 = 1, step 2: 1 * 2 = 2, step 3:
2 + 1 = 3).

• andThen: The andThen technique works with val functions as
well.

Syntax:

(function_1 andThen function_2)(parameter)

• In the above syntax, function_1 operates with the parameter
passed first, then passes and returns a value to function_2. or the
following:

Function_2(function_1(parameter))

Second example:

// program to illustrate andThen method with the
val function

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 println((add andThen mul)(2))

 // Adding the more methods
 println((add andThen mul andThen sub)(2))
 }

284 ◾ Mastering Scala

 val add=(x: Int)=> {
 x + 1
 }

 val mul=(x: Int)=> {
 x * 2
 }

 val sub=(x: Int) =>{
 x - 1
 }
}

• In the preceding example, we used the add function to get 3(2 + 1),
then the mul function to get 6(3 * 2). Similarly, adding (andThen mul
andThen sub)(2) produces 5 (step 1: 2 + 1 = 3, step 2: 3 * 2 = 6, step 3:
6 − 1 = 5).

• Method to method passing: Other methods are passed methods.

Syntax:

Function_1(function_2(parameter))

• It functions similarly to the compose function but uses the def and
val methods.

Third example:

// program to illustrate passing methods to
methods

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 println(add(mul(2)))

 // Adding the more methods
 println(add(mul(sub(2))))
 }

Scala Methods ◾ 285

 val add=(x: Int)=> {
 x + 1
 }

 val mul=(x: Int)=> {
 x * 2
 }

 val sub=(x: Int) =>{
 x - 1
 }
}

• In the above example, the mul function was used first, yielding
4(2 * 2), followed by the add function, yielding 5(4 + 1). Similarly,
add(mul(sub(2)) produces 3 (step 1: 2 − 1 = 1, step 2: 1 * 2 = 2, step 3:
2 + 1 = 3).

IN SCALA, CALL A METHOD ON A SUPERsCLASS
When we wish to call a method from another class, we use this idea. So,
anytime a base and subclass have the same named methods, we utilize the
super keyword to call the base class function to resolve ambiguity. The
concept of Inheritance introduced the keyword “super.”

The following is an example of calling a method on a superclass.

First example:

// program to call the method on a superclass in
the Scala

/* The Base class ComputerScience */
class ComputerScience
{
 def read
 {
 println("We're reading")
 }
 def write
 {
 println("We're writing")
 }
}

286 ◾ Mastering Scala

/* Subclass */
class Scala extends ComputerScience
{
 // Note that readThanWrite() is only in the
Scala class
 def readThanWrite()
 {
 // Will invoke or call the parent class
read() method
 super.read

 // Will invoke or the call parent class
write() method
 super.write
 }
}

// Creating the object
object Peeks
{
 // the main method
 def main(args: Array[String])
 {
 var ob = new Scala();

 // Calling the readThanWrite() of Scala
 ob.readThanWrite();
 }
}

Second example:

// program to call the method on a superclass in
the Scala

/* Super-class Person */
class Person
{
 def message()
 {
 println("This is the person class");
 }

}

Scala Methods ◾ 287

/* Sub-class Student */
class Student extends Person
{

override def message()
 {
 println("This is the student class")
 }

 // Note that display() is only in the Student
class
 def display()
 {
 // will invoke or call the current class
message() method
 message ()

 // will invoke or call the parent class
message() method
 super.message
 }
}

/* Creating the object */
object Peeks
{
 // the main method
 def main(args: Array[String])
 {
 var st = new Student();

 // Calling the display() of Student
 st.display();
 }
}

SCALA IMPLICIT CONVERSIONS
In Scala, implicit conversions are a collection of methods that are invoked
when an object of the incorrect type is utilized. It enables the compiler to
transform from one type to another automatically.

288 ◾ Mastering Scala

Implicit conversions are used in two scenarios:

• First, if a type X and S expression do not match the intended type Y
expression.

• Second, if the selector m does not represent a member of X in a selec-
tion e.m of expression e of type X.

In the first condition, a conversion suited to the phrase and whose result
type matches Y is sought. In the second condition, a conversion relevant to
the expression is sought, resulting in a member named m.

Let us illustrate with an example.
It is permissible to perform the following operation on the two lists ca

and da of type List[Int]:

ca = da

Assume the following implicit methods listorder and intorder are
declared in the scope:

implicit def listorder[X](a: List[X])
(implicit elemorder: X => Ordered[X]):
Ordered[List[X]] =
new Ordered[List[X]] { /* .. */ }
implicit def intorder(a: Int): Ordered[Int] =
new Ordered[Int] { /* .. */ }

Example:

// Scala program of implicit conversions
import X.fromString
import scala.language.implicitConversions

case class X(s: String)
object X
{
 // Using implicitConversions
 implicit def fromString(s: String): X = X(s)
}

class Z

Scala Methods ◾ 289

{
def m1(x: X) = println(x)
def m(s: String) = m1(s)
}

// Creating object
object Z
{
 // Main method
 def main(args: Array[String])
 {
 var c : X = ("PeeksforPeeks")
 println(c)

 }
}

The compiler warns while compiling the implicit conversion definition
if it is used at random.

To prevent the warnings, we must either:

• In the scope of the implicit conversion definition, include scala.lan-
guage.implicitConversions.

• With -language:implicitConversions, run the compiler.

Example:

// program of the implicit conversions
import ComplexImplicits._

object ComplexImplicits
{
 // the implicit conversion
 implicit def DoubleComplex(value : Double) =
 new Complex(value,0.0)

 implicit def TupleComplex(value :
Tuple2[Double,Double]) =
 new
Complex(value._1,value._2);

}

290 ◾ Mastering Scala

// Creating the class containing different method
class Complex(val r : Double, val i : Double)
{

 def +(that: Complex) : Complex =
 (this.r + that.r, this.i + that.i)

 def -(that: Complex) : Complex =
 (this.r - that.r, this.i + that.i)

 def unary_~ = Math.sqrt(r * r + i * i)

 override def toString = r + " + " + i + "i"

}

// Creating the Object
object Complex
{

val i = new Complex(0,1);

// the main method
def main(args : Array[String]) : Unit =
{
 var a : Complex = (5.0,5.0)
 var b : Complex = (2.0,3.0)
 println(a)
 println(a + b)
 println(a - b)
 println(~b)

 var c = 6 + b
 println(c)
 var d = (4.0,4.0) + c
 println(d)
}
}

This chapter covered Named Arguments, Functions Call-by-Name,
Closures, Nested Functions, Parameterless Method, Recursion, Partially
Applied functions, and Method Overloading and Overriding. Moreover,
Method Invocation, Format and Formatted Method, Controlling
Method Scope, Repeated Method Parameters, Partial Functions, Lambda
Expression, and Function Composition.

291DOI: 10.1201/9781003358527-7

C h a p t e r 7

Scala Exceptions

IN THIS CHAPTER

 ➢ Exception Handling

 ➢ Throw Keyword

 ➢ Try-Catch Exceptions

 ➢ Finally Exceptions

 ➢ Either

In the previous chapter, we covered Scala methods and packages, and in
this chapter, we will discuss exceptions in Scala.

EXCEPTION HANDLING IN SCALA
An exception is an unexpected or unwelcome occurrence that occurs
during the execution of a program, that is, during run time. These events
affect the program’s flow control during execution. These aren’t hazardous
circumstances, and the program can manage them.

HIERARCHY OF EXCEPTION
All exception and error types are subclasses of the root class of the hierar-
chy, Throwable. Exception is in charge of one branch. This class represents
exceptional conditions that user programs should be aware of. An example
of such an exception is NullPointerException. Another branch, Error, is
used by the Java runtime system to identify faults in the runtime environ-
ment. An instance of such an error is StackOverflowError.

https://doi.org/10.1201/9781003358527-7

292 ◾ Mastering Scala

Hierarchy of exception.

SCALA EXCEPTIONS
Scala’s exception handling is built differently, although it acts precisely like
Java and works smoothly with current Java libraries. In Scala, all excep-
tions are unchecked. There is no idea of a checked exception. Scala pro-
vides a lot of flexibility in terms of being able to select whether or not to
catch an exception.

Note: In Java, “checked” exceptions are checked at build time. If a
method has the potential to throw an IOException, it must be declared.

What Is the Scala Exception?

Exceptions in Scala work in the same manner that they do in C++ or Java.
The current operation is canceled when an exception occurs, such as the
ArithmeticException seen in the preceding example. The runtime system
searches for an exception handler that can accept an ArithmeticException.
The innermost handler regains control. If no such handler is found, the
application exits.

Scala Exceptions ◾ 293

THROWING EXCEPTIONS
Making an exception. It appears to be the same as in Java. We build an
exception object and then throw it using the throw keyword.

Syntax:

throw new ArithmeticException

TRY/CATCH CONSTRUCT
Scala’s try/catch construct differs from Java’s; in Scala, try/catch is an
expression. Instead of creating a distinct catch clause for each exception,
the exception in Scala that results in a value can be pattern matched
in the catch block because try/catch is an expression in Scala. In Scala,
here’s an instance of exception handling using the traditional try-catch
block.

// program of the try-catch Exception
import java.io.IOException

// Creating the object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 try
 {
 var N = 6/0

 }
 catch
 {
 // Catch block contains the cases.
 case i: IOException =>
 {
 println("IOException occurred.")
 }
 case a : ArithmeticException =>

294 ◾ Mastering Scala

 {
 println("The Arithmetic Exception
occurred.")
 }

 }
 }
}

A single catch block in Scala may handle all types of exceptions, giving
flexibility.

THE FINALLY CLAUSE
A finally block can use if we want some element of our code to run regard-
less of how the expression ends. Here’s an illustration of what we mean:

// program of the finally Exception

// Creating the object
object PFP
{
 // The main method
 def main(args: Array[String])
 {
 try
 {
 var N = 6/0
 }
 catch
 {
 // Catch block contains the case.
 case ex: ArithmeticException =>
 {
 println("The Arithmetic Exception
occurred.")
 }
 }
 finally
 {
 // The Finally block will execute

Scala Exceptions ◾ 295

 println("This is the final block.")
 }
 }
}

SCALA THROW KEYWORD
In Scala, the throw keyword explicitly throws an exception from a func-
tion or a block of code. The throw keyword is used in Scala to throw and
catch exceptions explicitly. It may also use to throw user-defined excep-
tions. The handling of exceptions in Java and Scala is relatively similar.
Except that Scala only sees all errors as runtime exceptions; thus, it does
not compel us to handle them and instead utilizes pattern matching in the
catch block. In Scala, the throw is an expression with the outcome type
nothing. If the result does not evaluate anything, we can substitute it for
any other expression.

Essential things to keep in mind:

• The throw expression returns nothing.

• The throw is the keyword for throwing an exception, whereas throws
are the keyword for declaring an exception.

• To handle exceptions, the catch block employs pattern matching.

Syntax:

throw exception object
Example:
 throw new ArithmeticException("divide by 0")

Example:

val z = if (d % 10 == 0) 5 else throw new
RuntimeException("d must be a multiple of 10")

Explanation: If d is a multiple of 10, then 5 is assigned to z; otherwise,
an exception is thrown before z can be initialized to anything. As a result,
we may claim that throw has any value. Throwing an exception in Scala is
the same as in Java. We build an exception object and then use the throw
keyword to throw it:

296 ◾ Mastering Scala

Example:

// program of the throw keyword

// Creating the object
object Main
{
 // Define the function
 def validate(article:Int)=
 {
 // Using the throw keyword
 if(article < 25)
 throw new ArithmeticException("We are
not eligible for internship")
 else println("We are eligible for
internship")
 }

 // the main method
 def main(args: Array[String])
 {
 validate(27)
 }
}

If the number of articles is fewer than 20, we receive no output. A scala
method can throw an exception instead of returning when an error occurs.
The following example shows a single exception raised by a function.

// program of throw keyword

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {

 try
 {
 func();

 }

Scala Exceptions ◾ 297

 catch
 {
 case ex: Exception => println("Exception
caught in the main: " + ex);

 }
 }

 // Defining the function
 def func()
 {
 // Using the throw exception
 throw new Exception("Exception thrown from the
func");

 }
}

SCALA TRY-CATCH EXCEPTIONS
The Try-Catch construct is different in Scala than in Java; in Scala, Try-
Catch is an expression. In the catch clause, Scala employs pattern match-
ing. If we have to implement a series of code that can throw an exception
and we want to control that exception, we should use the Try-Catch seg-
ment because it allows us to try-catch all types of exceptions in a single
block. We must write a series of case statements in catch because Scala uses
matching to analyze and handle exceptions.

Example:

// program of try-catch exception

// Creating the object
object Arithmetic
{

// the main method
def main(args: Array[String])
{

 // Try clause
 try

298 ◾ Mastering Scala

 {
 // Dividing the number
 val result = 12/0
 }

 // Catch clause
 catch
 {
 // Case-statement
 case x: ArithmeticException =>
 {

 // Display this if the exception is
found
 println("Exception: Number is not
divisible by zero.")
 }
 }
}
}

Example:

// program of Try-Catch Exception
import java.io.FileReader
import java.io.FileNotFoundException
import java.io.IOException

// Creating the object
object PfP
{

// the main method
def main(args: Array[String])
{

 // Try clause
 try
 {
 // Creating object for FileReader
 val t = new FileReader("input.txt")
 }

Scala Exceptions ◾ 299

 // Catch clause
 catch
 {

 // Case statement1
 case x: FileNotFoundException =>
 {
 // Displays this if the file is
missing
 println("Exception: File missing")

 }

 // Case statement2
 case x: IOException =>
 {

 // Displays this if the input/output
exception is found
 println("Input/output Exception")

 }
 }
}
}

The try block is performed first, and if an exception is raised, each catch
clause case is tested, and the one that matches the thrown exception is
returned as output.

SCALA FINALLY EXCEPTIONS
The final block in Scala performs critical functionality such as terminating
a connection, stream, or releasing resources (it can be a file, network con-
nection, database connection, etc). It will always be performed, whether
or not an exception is thrown. After the try-and-catch blocks, but before
control returns to its origin, the finally block will be performed.

Syntax:

try {
 // scala code here
 }

300 ◾ Mastering Scala

finally {
 println("this block of the code is always
executed")
 // scala code here, such as to close the
database connection
 }

CONTROL FLOW IN TRY-FINALLY
In this scenario, whether or not an exception occurs in the try-block,
finally is always executed. However, control flow is determined by whether
or not an exception occurs in the try block.

1. Exception raised: Control flow will eventually be blocked, and the
default exception handling method will use. If exception occurs in
the try block.

Example:

// program to demonstrate the control flow of
the try-finally clause
// when exceptions occur in the try block

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {
 var arr = new Array[Int](5)

 try
 {
 var i = arr(5)

 // this statement will never execute
as the exception is raised
 // by the above statement
 println("Inside try block")
 }

 finally

Scala Exceptions ◾ 301

 {
 println("finally block execute")
 }

 // the rest program will not execute
 println("Outside try-finally clause")

 }
}

2. Exception not raised: If no exception is raised in the try block, con-
trol will pass to the finally block, which the rest of the program will
follow.

Example:

// program to demonstrate control flow of try-
finally clause
// when an exception does not occur in the try
block

// Creating the object
object PFP
{
 // the main method
 def main(args: Array[String])
 {

 try
 {
 val str1 = "123".toInt

 // this statement will execute as no
 // any exception is raised by the
above statement
 println("Inside try block")
 }

 finally
 {
 println("The finally block
executed")
 }

302 ◾ Mastering Scala

 // rest program will execute
 println("The Outside try-finally
clause")
 }

}

TRY-CATCH-FINALLY CLAUSE
Finally, when combined with a try/catch block, ensure that a part of the
code is performed even if an exception is raised.

Example:

// program of the try-catch-finally clause

// Creating the object
object PFP
{
 // the main method
 def main(args:Array[String])
 {
 try
 {
 // creation of an array
 var array = Array(2, 7, 4)
 var b = array(5)
 }
 catch
 {
 // the Catch block contain cases.
 case e: ArithmeticException =>
println(e)
 case ex: Exception => println(ex)
 case th: Throwable=> println("The
unknown exception"+th)
 }
 finally
 {
 // The Finally block will execute
 println("this block always executes")
 }

Scala Exceptions ◾ 303

 // the rest program will execute
 println(" The rest of code executing")
 }
}

In the above example, we build an array in the try block and assign the
value to variable b from that array. Still, it throws an exception because
the index of the array we are using to give the value to variable b is out of
the range of array indexes. Finally, no matter what, the catch block will
catch the exception and display the message.

SCALA EITHER
Either acts precisely like an Option in Scala. The main difference is that
with Either, it is possible to produce a text explaining the instructions
about the problem that occurred. Either has two children, Right and Left,
where Right is identical to the Some class and Left is similar to the None
class. Left is used for failure, and we may return the error that happened
inside the child Left of the Either, whereas Right is used for success.

Example:

Either[String, Int]

In this case, the String is used for the Left child of Either because it is the
left argument of an Either, and the Int is used for the Right child because
it is the right argument of an Either. Let’s now go through it in more depth
using some instances.

Example:

// program of Either

// Creating the object and inheriting
// main method of trait App
object PfP extends App
{

 // Defining the method and applying Either
 def Name(name: String): Either[String, String] =
 {

 if (name.isEmpty)

304 ◾ Mastering Scala

 // Left child for the failure
 Left("There is no name.")

 else
 // Right child for the success
 Right(name)
 }

 // Display this if the name is not empty
 println(Name("PeeksforPeeks"))

 // Display the String present in the Left
child
 println(Name(""))
}

The isEmpty method examines if the name field is empty or filled; if it is
empty, the Left child returns the String within itself; if it is not empty, the
Right child returns the name specified.

Example:

// program of Either with the Pattern matching

// Creating the object and inheriting
// main method of trait App
an object either extends App
{

 // Defining the method and applying Either
 def Division(q: Int, r: Int): Either[String,
Int] =
 {
 if (q == 0)
 // the Left child for the failure
 Left("Division not possible.")
 else
 // Right child for the success
 Right(q / r)
 }

 // Assigning the values
 val x = Division(4, 2)

Scala Exceptions ◾ 305

 // Applying pattern matching
 x match
 {
 case Left(l) =>

 // Display this if division is not
possible
 println("Left: " + l)

 case Right(r) =>

 // Displays this if the division is
possible
 println("Right: " + r)
 }
}

Because division is allowed in this case, Right returns 2. In this example
of Either, we’ve used Pattern Matching.

This chapter covered Exception Handling, Throw Keyword, Try-Catch
Exceptions, Finally Exceptions, and Either.

306 DOI: 10.1201/9781003358527-8

Appraisal

A functional and object-oriented software program with great abstraction
is called Scala. Static types in Scala assist to avoid problems in complicated
applications, while the JVM and JavaScript runtimes enable the creation of
high-performance systems with simple access to huge library ecosystems.

A modern computer program called Scala was created by Martin
Odersky. The language’s creation began in 2001 and was introduced to
the public in early 2004. Martin Odersky was heavily involved in devel-
oping javac (the major Java compiler) and also invented Generic Java, a
generic programming capability added to the Java programming language
in 2004. Because of this, it is not surprising that Scala is similar to Java
in many aspects and was even created to run in the JVM (Java Virtual
Machine). Many other programming languages and concepts from pro-
gramming research both had an impact on the creation of Scala. In fact,
Martin Odersky has remarked that there aren’t many “new” features in
Scala and that the language’s “innovation derives mostly from how its
constructs are put together.” Essentially, the goal was to create a “better
language.”

SCALA’S HISTORY
Scala’s initial design was established by Martin Odersky at the École
Polytechnique Fédérale de Lausanne in 2001 (EPFL). Scala was being devel-
oped at the same time as Funnel, a programming language that combined
ideas from Petri nets and functional programming, was being created.
Before developing Scala, Odersky worked on Generic Java, javac, and Sun’s
Java compiler. The first time the language was used internally was in 2003.

In addition, starting in January 2004, Scala was made accessible to the
entire public. In June 2004, the language was formally made available on
the Java and.NET platforms. The language’s 2.0 version, which has better
capabilities, was published in March 2006. The language’s development led
to the formal termination of.Net support in 2012.

https://doi.org/10.1201/9781003358527-8

Appraisal ◾ 307

The Scala team received a five-year, €2.3 million research grant from
the European Research Council on January 17, 2011, as a result of the lan-
guage’s consistent development and strong focus on the functional pro-
gramming paradigm. The grant had a five-year expiration date.

On the May 12, 2011, Odersky and other relevant colleagues continued
the establishment of Typesafe Inc. Typesafe Inc., a company whose mis-
sion is to provide training, commercial support, and other Scala-related
services. In 2011, Greylock Partners fueled the operations of Typesafe by
investing around $3 million in the firm.

IS SCALA VALUABLE IN 2022?
A language to know in 2022 is Scala. The pay for Scala developers is com-
petitive, and they are in high demand. There are currently over 24,000
Scala job advertisements on LinkedIn. The average Scala developer salary
in the US is $139,292, according to ZipRecruiter.

SCALA IS WORTH LEARNING FOR SOME REASONS
Still not sure that studying Scala is a worthwhile investment of your time
and effort? Aside from the increasing need for Scala developers and the
high pay potential in this area, there are several more reasons why study-
ing Scala is worthwhile.

• Java compatibility is required: Scala is executed via the JVM. As a
result, it can interact with Java code cleanly, allowing us to use Java
libraries straight from Scala code. To put it differently, we can use
Java to call Scala code and develop parts of our program in Scala
while the rest is done in Java. With this capability, it is not surprising
that Scala will become a popular language.

• Language with multiple paradigms: Scala is distinguished from
Java by its support for both object-oriented and functional program-
ming paradigms. Learn one language from each paradigm, such as
imperative, logical, functional, and object-oriented programming
(OOP), to improve your competitive programming abilities. Scala
enables us to study both functional and OOP at the same time.

• Typing that is static: Without running a program, static typing
allows us to identify programming problems fast, reliably, and
automatically. This contrasts with dynamic typing when problems
are discovered after running the program. Scala is a statically typed

308 ◾ Mastering Scala

language that frequently feels fluid and dynamic. We can work
more effectively with precise code, saving time on debugging and
testing.

• Concise syntax: As previously stated, Scala is compiled and statically
typed. It is much shorter than Java. Scala is compared to a scripting
language. Scala developers can work considerably quicker and more
effectively if they write succinct and clean code.

• Productivity and efficiency: Scala’s multi-paradigm and static typ-
ing capabilities, concise syntax, and Java compatibility enable us to
be a more efficient and productive developer. We can create fewer
lines of code, complete projects faster, decrease problems earlier, and
improve our program’s end-user experience.

• Marketable: Who doesn’t want to be marketable as a programmer?
A better job and professional progress are good reasons to master
a new technology or framework. Learning Scala will undoubtedly
increase your marketability. Scala is being used or migrated by many
firms, including Twitter, LinkedIn, Foursquare, and Quora.

Given Scala’s marketing as a Scalable language, the large invest-
ment banks and financial companies will soon look at Scala for low
latency solutions. Twitter has already revealed recommended prac-
tices for developing Scala applications as Effective Scala, similar to
the guidance given in Effective Java.

• Built-in language for Best Practices and Patterns: One thing we
might not know about Scala is that it was created at the Swiss univer-
sity EPFL in an attempt to apply for recent advances in programming
language research to a language that could garner public acceptance,
similar to Java.

Several best practices and patterns are built into the language; for
example, val declares top-level immutability far superior to the over-
loaded final in Java or const/read-only in C# with its strange con-
straints. Scala also supports closures, a feature borrowed from the
functional programming paradigm of dynamic languages such as
Python and Ruby.

• Language expressiveness: Scala wins when we compare Scala to
Java, as we did in my earlier piece on the differences between Scala
and Java. Scala is a naturally expressive language. Scala also has a

Appraisal ◾ 309

plethora of excellent and helpful code. Scala is attracting an increas-
ing number of Java engineers who appreciate attractive code.

To give us a sense, below is a word count application developed in
both Java and Scala; you can see the difference in language expres-
siveness for ourselves. Scala has accomplished in one line what Java
has taken more than ten lines to do.

• Frameworks in development, such as Akka, Play, and Spark: We
may be aware that Scala is expanding, and it is expanding rap-
idly. There are a lot of great libraries and frameworks on the way.
Companies that have begun to use Scala are also contributing to
Scala’s recent emergence as a mainstream language.

Various good Scala web frameworks are available, such as Lift
and Play. Akka, another Scala-based concurrent framework, has
already established itself as a toolkit and runtime for developing
highly concurrent, distributed, and fault-tolerant event-driven JVM
applications.

Scala is also employed in the Big Data sector alongside Apache
Spark, which has driven its popularity by many Java professionals
interested in the Big Data space.

• Relative, it is simple to learn: Learning a traditional functional pro-
gramming language like Haskell or OCaml is more challenging for a
Java developer than Scala. Scala is very straightforward to learn due
to its OOP functionality.

While learning Functional Programming, Java professionals may
still be productive in Scala by utilizing their previous OOP skills.
Scala, like Java, features simple syntax, decent libraries, extensive
online documentation, and significant industry support.

SCALA IS USED BY LARGE CORPORATIONS
SUCH AS TWITTER, NETFLIX, AND AIRBNB

• Scala is involved in commercial ventures: Scala is often assumed to
be utilized in a wide range of enterprise-related settings, with many
significant firms utilizing the capabilities of such a programming lan-
guage. However, there is a lot of doubt about Scala’s practicality, par-
ticularly in real-world business applications. For that purpose, it may
be beneficial to understand the essence of Scala and its theory and to
see actual examples of Scala’s application in the business context.

310 ◾ Mastering Scala

• Scala’s nature: Scala is a computer language that blends two separate
programming paradigms, featuring aspects of both object-oriented
and function-oriented languages. Such a technological spectrum
offers at least two significant benefits. First and foremost, because
it runs on JVM, it enables the use of any general programming
language’s reliability, omnipresence, features, and repute (JVM).
Second, Scala continues to enable access to Java libraries, both third-
party and your own, finally permitting any borrowing of the mat-
ter. Scala quickly extends via libraries to solve numerous challenges,
hence “scaling” in size as its name indicates.

• Cases in the enterprise: It is worth mentioning that the Scala feature
has long ensured the backing of several large corporations world-
wide. The reasons behind this will become apparent after a thorough
examination of real-world business cases:

• LinkedIn: LinkedIn is the most popular professional networking
site and is well-known for incorporating Scala into its operational
principles. The clearest example would be Norbert, a Scala-based
framework that enables the rapid development of client-server
message-based applications used in LinkedIn’s real-time Social
Graph and Search Engine. According to Chris Conrad, Head of
Engineering Team, the “killer feature [of Scala] is the seamless inte-
gration of Java and Scala, making it low risk to add and minimizes
the burden to experiment.” It significantly reduces the amount of
frustration associated with software development. In turn, Scala is
just a lot better than Java; that simplifies the whole writing process:
it’s clearer, concise, re-usable using mixins and characteristics, and
compensates for the usage of Actors concurrently. Scala’s selection
over the other programming languages was thus totally warranted.

• Twitter: When discussing Twitter, a well-known social network, it’s
critical to note how much it relies on Scala in various infrastruc-
ture groups. Scala for Twitter’s social adjacency store, name search,
“whom to follow,” streaming API, storage systems, and geo service
are just a few instances of its breadth. In reality, Twitter went from
Ruby to Scala due to the latter’s language flexibility, dependability,
and high performance. Compared to Ruby, Scala provides a more
robust and reliable foundation for Twitter’s long-lived servers,
which can be attributed solely to the language’s JVM foundation.

Appraisal ◾ 311

• Airbnb: Airbnb is a website where users can rent out a house for
a certain length of time. It’s a massive platform constructed with
the aid of many computer languages, most notably Scala. Scala
is mostly utilized in AirBnB’s financial reporting pipeline, a sys-
tem that evaluates the economic effect of different goods at dif-
ferent times in their life cycle. Airbnb largely used Scala due to
its immutability, ease of use, and lazy evaluation, allowing them
to examine each product independently and draw appropriate
accounting conclusions.

• Thatcham: Thatcham is a research-focused organization that
provides different statistics to assist car manufacturers in lower-
ing insurance claims costs. The firm uses Scala to meet its require-
ments for delivering data on the safe and cost-effective repair of
automobiles. Thatcham chose Scala because it allows for more
work with less code, provides concurrency-ready notions, and
allows him to expand on existing Java models. Thatcham’s web-
site and research concepts are focused on Scala for that purpose.

• Tumblr: Tumblr, a microblogging social network, has had signif-
icant scaling challenges as it has grown in popularity throughout
the world. The platform found the implementation of microser-
vices appealing, though it failed to organize a well-structured
infrastructure. To that end, a business created Colosseum, a
Scala-based framework that tries to overcome historical issues
by providing a clear and straightforward architecture for scal-
ing high-quality, stable, and durable microservices. Tumblr was
drawn to Scala’s ability to create expressive code and construct
maximally simple DSL with minimal boilerplates.

• Netflix: Scala is used in the architecture and design of Netflix, the
world’s largest movie and TV show streaming service. According
to business executives, Scala works well with the Netflix Platform
and the JVM Ecosystem while allowing for the reuse of existing
Groovy and Java code. Similarly, many sophisticated Java librar-
ies already in Netflix’s toolbox can easily access Scala, which the
firm finds attractive. Scala is an excellent choice for developing
a restful and reliable API with various tools that improve the
searching algorithms, service’s ML-based viewing suggestions,
and enable interactive testing.

312 ◾ Mastering Scala

ADVANTAGES OF SCALA
If a programming language wishes to threaten Java’s supremacy, it needs
to give programmers some compelling features. To that aim, Scala brings
numerous pros to the table. Here’s a taste of its benefits:

• Scala offers accurate grammar, minimizing boilerplate pro-
gramming. Scala-based apps require less code than Java-based
counterparts.

• It is a functional and object-oriented language of programming.
Because of this combination, Scala is the best choice for web
development.

• We can use Scala to run Java code.

• Scala utilizes an expressive type system that guarantees statistical
abstraction is safe and consistent.

• It’s straightforward to learn, particularly for programmers with an
object-oriented experience in Java or equivalent language.

• Scala is very scalable and ideal for constructing fault-tolerant, highly
parallel systems.

• It’s perfect for data analytics when assisted by technologies like
Apache Spark.

HOW ARE SCALA AND JAVA DISSIMILAR?
Herein is the true comparison. Although some of these things have previ-
ously been discussed, we will revisit them for a more direct comparison.

• Scala combines functional programming, statistically typed, and
object-oriented languages, whereas Java is an object-oriented, gen-
eral-purpose programming language.

• In Java, functions are objects, but in Scala, they are variables.

• To do ordinary operations, Java takes several lines of code, but Scala
programming is quick and concise. Scala code is composed of half as
many lines as Java code.

• Scala does not offer backward compatibility, unlike Java.

Appraisal ◾ 313

• Scala is more difficult to learn than Java, with a steeper learning
curve and more sophisticated syntax.

• Using the “lazy” keyword, Scala’s “lazy evaluation” feature enables
programmers to delay time-consuming operations until they are
required. Java lacks this option.

• Java does not allow operator overloading, although Scala does.

DRAWBACKS OF SCALA VS. JAVA
Scala, like Java, has its drawbacks, which include:

• It has a small community, especially when compared to Java.

• Scala has limited backward compatibility.

• Despite the name being simple to learn, Scala has concepts and func-
tionalities that many programmers are unfamiliar with, resulting in
a higher learning curve.

• Scala’s development tools are still in their infancy; they are not as
complex or sophisticated as Java’s, particularly the IDE plug-ins.

HOW DO SCALA AND KOTLIN COMPARE?
Kotlin also provides several current features that Scala lacks. Included are
null safety, extension functions, lambdas, top-level functions, ranges for
iterating over collections, and object declarations such as data classes and
object classes (similar to C structs). Scala and Kotlin both provide Null
Safety, although at various degrees. When comparing Kotlin to Scala for
pattern matching, it is clear that Kotlin is lacking. Users find this Scala
capability useful and commend it highly.

The Kotlin programming language supports the overloading operator.
The operator may have multiple implementations based on the parame-
ters. The Scala programming language also offers operator overloading.
Comparing Scala vs. Kotlin in terms of simplicity, it is easy to conclude
that Kotlin is the more accessible programming language. Because it was
created with Java compatibility in mind, this is the case. Because it utilizes
the same JVM bytecode as Scala, you can use Kotlin with existing Java
libraries without worrying about compatibility concerns. These are some
reasons why you should consider adopting Kotlin instead of other pro-
gramming languages, such as Java or Scala.

314 ◾ Mastering Scala

SCALA CHARACTERISTICS
Scala has the following characteristics:

• Type inference

• Singleton object

• Immutability

• Lazy computation

• Case classes and Pattern matching

• Concurrency control

• String interpolation

• Higher order function

• Traits

• Rich collection set

Types of Scala characteristics.

Appraisal ◾ 315

Type Inference

Scala does not need us to provide the data type and function return type
explicitly. Scala is intelligent enough to infer the type of data. The type of
the final expression in the function determines the function’s return type.

Singleton Object

There are no static variables or functions in Scala. Scala employs singleton
objects, classes with just one object in the source file. The object keyword
is used instead of the class keyword to declare a singleton object.

Immutability

Scala employs the idea of immutability. By default, each declared variable
is immutable. Immutable indicates that we cannot change its value. We
may also construct variables that can alter. Immutable data aids in the
management of concurrency control, which necessitates the management
of data.

Computational Laziness

Scala’s computation is by default lazy. Scala only evaluates expressions
when they are needed. The lazy keyword can use to declare a lazy variable.
It’s utilized to boost performance.

Pattern Matching and Case Classes

Scala case classes are simply normal classes that are immutable by default
and decomposable by pattern matching. By default, all of the arguments
in the case class are public and immutable. Pattern matching is supported
through case classes. As a result, you can create more rational code.

Concurrency Control

Scala comes with a standard library that incorporates the actor model.
Using actor, you may write concurrent code. Scala offers another plat-
form and tool for dealing with concurrency called Akka. Akka is an inde-
pendent open-source framework that supports actor-based concurrency.
Akka actors can be distributed or used in conjunction with software trans-
actional memory.

String Interpolation

Scala 2.10.0 introduces a new way of creating strings from data. String
interpolation is the term for this technique. String interpolation enables

316 ◾ Mastering Scala

users to incorporate variable references in processed string literals directly.
Scala has three methods for string interpolation: s, f, and raw.

Higher Order Functions

A higher-order function accepts or returns a function as an argument. In
other words, a function that interacts with another function is a higher-
order function. Higher order functions enable the creation of function
composition, lambda functions, anonymous functions, and so on.

Traits

A trait is analogous to an interface with just a partial implementation.
The trait is a set of abstract and non-abstract methods in Scala. We can
define a trait with just abstract methods or some abstract methods and
non-abstract methods. Traits are compiled into Java interfaces with imple-
mentation classes containing any methods implemented in the traits.

Rich Set of Collection

Scala has an extensive collection library. It includes classes and attributes
for data collection. These collections may or may not be changeable. We
can put it to use how we see fit. The Scala.collection.mutable package
includes all mutable collections. While using this package, we may add,
remove, and update data.

The Scala.collection.immutable package includes all immutable collec-
tions. It does not permit data modification.

317

Bibliography

 1. Introduction to Scala: https://www.geeksforgeeks.org/introduction-to-
scala/, accessed on July 7, 2022.

 2. History of Scala: https://www.javatpoint.com/history-of-scala#:~:text=
Scala%20is%20a%20general%20purpose,released%20on%20January%20
20%2C%202004, accessed on July 12, 2022.

 3. Scala Programming Language: History, Features, Application, and Why Should
Learn?: https://www.answersjet.com/2021/06/scala-programming-language-his-
tory-features-application-and-why-should-learn.html, accessed on July 15, 2022.

 4. Scala Programming Language: History, Features, Applications, Installation,
QA: https://www.devopsschool.com/blog/scala-programming-language-
history-features-applications-installation-qa/, accessed on July 7, 2022.

 5. Setting up the environment in Scala: https://www.geeksforgeeks.org/set-
ting-up-the-environment-in-scala/, accessed on July 7, 2022.

 6. Scala - Environment Setup: https://www.tutorialspoint.com/scala/scala_
environment_setup.htm, accessed on July 7, 2022.

 7. Scala - Environment Setup: https://www.bbminfo.com/scala/scala-environ-
ment-setup.php, accessed on July 7, 2022.

 8. Scala Environment Setup: https://www.stechies.com/scala-environment-
setup/, accessed on July 8, 2022.

 9. Scala Installation: http://www.w3big.com/scala/scala-install.html, accessed
on July 8, 2022.

10. Uses of Scala: https://www.educba.com/uses-of-scala/, accessed on July 8,
2022.

11. Hello, World! : https://docs.scala-lang.org/overviews/scala-book/hello-
world-1.html, accessed on July 8, 2022.

12. Scala Basic: https://www.w3resource.com/scala-exercises/basic/scala-basic-
exercise-1.php, accessed on July 8, 2022.

13. How to Write a Hello World Program in Scala?: https://www.educative.io/
answers/how-to-write-a-hello-world-program-in-scala, accessed on July 8,
2022.

14. Hello world by defining a “main” method. Retrieved from https://riptuto-
rial.com/scala/example/806/hello-world-by-defining-a–main–method,
accessed on July 8, 2022.

15. What is Scala?: https://www.edureka.co/blog/what-is-scala/, accessed on
July 8, 2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.answersjet.com
https://www.answersjet.com
https://www.devopsschool.com
https://www.devopsschool.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.bbminfo.com
https://www.bbminfo.com
https://www.stechies.com
https://www.stechies.com
http://www.w3big.com
https://www.educba.com
https://docs.scala-lang.org
https://docs.scala-lang.org
https://www.w3resource.com
https://www.w3resource.com
https://www.educative.io
https://www.educative.io
https://riptutorial.com
https://riptutorial.com
https://www.edureka.co

318 ◾ Bibliography

16. 6 Reasons Scala is Better Than Java.https://levelup.gitconnected.com/6-rea-
sons-scala-is-better-than-java-c328cfb410d1, accessed on July 8, 2022.

17. UniformAccessPrinciple: https://martinfowler.com/bliki/UniformAccess
Principle.html, accessed on July 9, 2022.

18. Scala | Uniform Access Principle: https://www.geeksforgeeks.org/scala-
uniform-access-principle/, accessed on July 9, 2022.

19. Uniform Access Principle: https://www.scala-exercises.org/std_lib/uniform_
access_principle, accessed on July 9, 2022.

20. Java vs. Scala: Which Is More Better?: https://javaassignmenthelp.wixsite.
com/mysite/post/java-vs-scala-which-is-more-better, accessed on July 9, 2022.

21. Apache Spark and Scala Certification Training: https://www.simplilearn.
com/big-data-and-analytics/apache-spark-scala-certification-training,
accessed on July 9, 2022.

22. Python vs. Scala Comparison: Which Language to Choose for Apache Spark? :
https://streamsets.com/blog/python-vs-scala-comparison/#:~:text=When%20
it%20comes%20to%20performance%2C%20Scala%20is%20the%20clear%20
winner,variable%20or%20expression%20at%20runtime, accessed on July 9, 2022.

23. Python vs. Scala – Which One to Choose for Big Data Processing? : https://
www.netguru.com/blog/python-versus-scala, accessed on July 9, 2022.

24. Why Should I Learn Scala?: https://www.toptal.com/scala/why-should-i-
learn-scala, accessed on July 9, 2022.

25. Scala Archive: https://www.scala-archive.org/nancy-bledsoe, accessed on
July 9, 2022.

26. Kotlin vs Scala. Baeldung:. https://www.baeldung.com/kotlin/kotlin-vs-
scala, accessed on July 9, 2022.

27. Scala vs Kotlin: Which One is Better for Your Project? DAC.digital:.
https://dac.digital/scala-vs-kotlin-which-one-is-better-for-your-project/
#:~:text=While%20both%20languages%20are%20statically,about%20
types%20all%20the%20time, accessed on July 9, 2022.

28. Kotlin vs Scala: Which One to Choose for Your Next Project?: https://appin-
ventiv.com/blog/kotlin-vs-scala/, accessed on July 9, 2022.

29. Difference Between Kotlin and Scala:. https://www.geeksforgeeks.org/dif-
ference-between-kotlin-and-scala/, accessed on July 9, 2022.

30. Kotlin vs Scala vs Java: https://dzone.com/articles/kotlin-vs-scala-vs-java,
accessed on July 9, 2022.

31. Kotlin vs Scala - Which is the Best JVM Language for Developing Apps?:.
https://appwrk.com/kotlin-vs-scala-which-is-the-best-jvm-language-for-
developing-apps, accessed on July 9, 2022.

32. Kotlin vs Scala: https://www.spec-india.com/blog/kotlin-vs-scala, accessed
on July 9, 2022.

33. Scala vs Kotlin: https://towardsdatascience.com/scala-vs-kotlin-practical-
considerations-for-the-pragmatic-programmer-d50bcc96765f, accessed on
July 10, 2022.

34. Scala Identifiers. https://www.geeksforgeeks.org/scala-identifiers/#:~:text=
Scala%20identifiers%20are%20case%2Dsensitive,below%20four%20
types%20of%20identifiers, accessed on July 10, 2022.

https://levelup.gitconnected.com
https://levelup.gitconnected.com
https://martinfowler.com
https://martinfowler.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.scala-exercises.org
https://www.scala-exercises.org
https://javaassignmenthelp.wixsite.com
https://javaassignmenthelp.wixsite.com
https://www.simplilearn.com
https://www.simplilearn.com
https://streamsets.com
https://streamsets.com
https://streamsets.com
https://www.netguru.com
https://www.netguru.com
https://www.toptal.com
https://www.toptal.com
https://www.scala-archive.org
https://www.baeldung.com
https://www.baeldung.com
https://dac.digital
https://dac.digital
https://dac.digital
https://appinventiv.com
https://appinventiv.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://dzone.com
https://appwrk.com
https://appwrk.com
https://www.spec-india.com
https://towardsdatascience.com
https://towardsdatascience.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org

Bibliography ◾ 319

35. Scala Identifiers Example Tutorial: https://www.journaldev.com/8170/scala-
identifiers-example-tutorial, accessed on July 10, 2022.

36. Identifiers in Scala: https://www.includehelp.com/scala/identifiers.aspx,
accessed on July 10, 2022.

37. Learning Scala: https://www.oreilly.com/library/view/learning-scala/
9781449368814/apa.html accessed on July 10, 2022.

38. Different Types of Identifiers in Scala: https://www.bartleby.com/essay/
Different-Types-Of-Identifiers-In-Scala-PK3SCGU5L4P, accessed on July
10, 2022.

39. Scala - Data Types: https://www.tutorialspoint.com/scala/scala_data_types.
htm, accessed on July 10, 2022.

40. Data Types in Scala: https://www.geeksforgeeks.org/data-types-in-scala/,
accessed on July 10, 2022.

41. Basic Types in Scala: https://intellipaat.com/blog/tutorial/scala-tutorial/
basic-types-in-scala/, accessed on July 10, 2022.

42. Spark SQL - Data Types: https://spark.apache.org/docs/latest/sql-ref-
datatypes.html, accessed on July 10, 2022.

43. Scala – Variables: https://www.tutorialspoint.com/scala/scala_variables.htm,
accessed on July 10, 2022.

44. Variables in Scala: https://www.geeksforgeeks.org/variables-in-scala/,
accessed on July 10, 2022.

45. Variables in Scala: https://www.datacamp.com/tutorial/variables-in-scala,
accessed on July 10, 2022.

46. Scala Variable and Data Types: https://www.javatpoint.com/scala-variable-
and-data-types, accessed on July 10, 2022.

47. Scala Variables: https://data-flair.training/blogs/scala-variables/, accessed
on July 10, 2022.

48. Scala | console println(), printf() and readLine():. https://www.geeksfor-
geeks.org/scala-console-println-printf-and-readline/#:~:text=Console%20
implements%20functions%20for%20displaying,with%20the%20func-
tion%20from%20scala, accessed on July 11, 2022.

49. println: Scala: https://www.dotnetperls.com/println-scala, accessed on July
11, 2022.

50. Scala println: How to Print Lines in Scala: https://thedeveloperblog.com/
scala/println-scala, accessed on July 11, 2022.

51. scala.Console. Scala Standard Library API. https://www.scala-lang.org/api/
current/scala/Console$.html, accessed on July 11, 2022.

52. Console Scala: println (), printf () and readLine (). Acervo Lima. https://
acervolima.com/console-scala-println-printf-e-readline/, accessed on July 11,
2022.

53. Printing debugging output in Scala with println and debugging symbols:
https://www.oreilly.com/library/view/scala-cookbook/9781449340292/
ch14s13.html, accessed on July 11, 2022.

54. Scala Identifiers: https://www.geeksforgeeks.org/scala-identifiers/, accessed
on July 11, 2022.

https://www.journaldev.com
https://www.journaldev.com
https://www.includehelp.com
https://www.oreilly.com
https://www.oreilly.com
https://www.bartleby.com
https://www.bartleby.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://intellipaat.com
https://intellipaat.com
https://spark.apache.org
https://spark.apache.org
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://www.datacamp.com
https://www.javatpoint.com
https://www.javatpoint.com
https://data-flair.training
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.dotnetperls.com
https://thedeveloperblog.com
https://thedeveloperblog.com
https://www.scala-lang.org
https://www.scala-lang.org
https://acervolima.com
https://acervolima.com
https://www.oreilly.com
https://www.oreilly.com
https://www.geeksforgeeks.org

320 ◾ Bibliography

55. Scala Identifiers: https://www.journaldev.com/8170/scala-identifiers-exam-
ple-tutorial, accessed on July 11, 2022.

56. Identifiers in Scala: https://www.includehelp.com/scala/identifiers.aspx,
accessed on July 11, 2022.

57. Identifiers, Names and Scopes: https://scala-lang.org/files/archive/spec/
2.13/02-identifiers-names-and-scopes.html, accessed on July 11, 2022.

58. Scala Pattern Matching: https://www.geeksforgeeks.org/scala-pattern-
matching/#:~:text=Pattern%20matching%20is%20a%20way,statement%20
of%20Java%20and%20C, accessed on July 11, 2022.

59. Scala – Pattern Matchin: https://www.tutorialspoint.com/scala/scala_pat-
tern_matching.htm, accessed on July 11, 2022.

60. Scala Pattern Matching: https://www.baeldung.com/scala/pattern-match-
ing, accessed on July 11, 2022.

61. Advanced Pattern Matching in Scala: https://blog.knoldus.com/advanced-
pattern-match/, accessed on July 11, 2022.

62. Scala Pattern Matching: Types of Pattern Matching with Example: https://
data-flair.training/blogs/scala-pattern-matching/, accessed on July 11, 2022.

63. Comments in Scala: https://www.geeksforgeeks.org/comments-in-scala/,
accessed on July 11, 2022.

64. Scala comments: https://www.javatpoint.com/scala-comments, accessed on
July 11, 2022.

65. Scala Comments: Single & Multi-line Comments with Examples: https://
data-flair.training/blogs/scala-comments/, accessed on July 12, 2022.

66. Scala – Comments: http://www.java2s.com/Tutorials/Java/Scala/0090__
Scala_Comments.htm, accessed on July 12, 2022.

67. Scala – Comments: https://www.alphacodingskills.com/scala/scala-com-
ments.php, accessed on July 12, 2022.

68. Comments in Scala: https://www.includehelp.com/scala/comments-in-
scala.aspx, accessed on July 12, 2022.

69. IncludeHelp. (n.d.). Command Line Arguments in Scala: https://www.
includehelp.com/scala/command-line-arguments-in-scala.aspx, accessed
on July 12, 2022.

70. How to Read Environment Variables in Scala: https://www.oreilly.com/
library/view/scala-cookbook/9781449340292/ch14s12.html, accessed on
July 12, 2022.

71. Scope of Variables in Scala: https://www.geeksforgeeks.org/scope-of-vari-
ables-in-scala/, accessed on July 12, 2022.

72. Scala Variables - Variable Scopes, Field Variables & Method Parameters
Example: https://www.journaldev.com/7581/scala-variables-variable-scopes-
field-variables-method-parameters-example, accessed on July 12, 2022.

73. Scala Variables: https://data-flair.training/blogs/scala-variables/, accessed
on July 12, 2022.

74. Scope of Scala Variables: https://www.includehelp.com/scala/scope-of-
scala-variables.aspx, accessed on July 12, 2022.

75. Enumeration in Scala: https://www.geeksforgeeks.org/enumeration-in-
scala/, accessed on July 12, 2022.

https://www.journaldev.com
https://www.journaldev.com
https://www.includehelp.com
https://scala-lang.org
https://scala-lang.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.baeldung.com
https://www.baeldung.com
https://blog.knoldus.com
https://blog.knoldus.com
https://data-flair.training
https://data-flair.training
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://data-flair.training
https://data-flair.training
http://www.java2s.com
http://www.java2s.com
https://www.alphacodingskills.com
https://www.alphacodingskills.com
https://www.includehelp.com
https://www.includehelp.com
https://www.includehelp.com
https://www.includehelp.com
https://www.oreilly.com
https://www.oreilly.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.journaldev.com
https://www.journaldev.com
https://data-flair.training
https://www.includehelp.com
https://www.includehelp.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org

Bibliography ◾ 321

76. Enumerations in Scala: https://sodocumentation.net/scala/topic/1499/enu-
merations, accessed on July 12, 2022.

77. Enumerations in Scala: https://www.baeldung.com/scala/enumerations,
accessed on July 12, 2022.

78. Scala Variables: https://data-flair.training/blogs/scala-variables/, accessed
on July 12, 2022.

79. Enums: https://dotty.epfl.ch/docs/reference/enums/enums.html, accessed
on July 13, 2022.

80. The Scala Programming Language: https://www.scala-lang.org/, accessed
on July 13, 2022.

81. Scala Ranges: https://www.geeksforgeeks.org/scala-ranges/, accessed on
July 13, 2022.

82. Scala Ranges: https://www.geeksforgeeks.org/scala-ranges/, accessed on
July 13, 2022.

83. Scala Tutorial: https://www.tutorialspoint.com/scala/index.htm, accessed
on July 13, 2022.

84. Scala Decision Making (if, if-else, nested if-else, if-else-if): https://www.
geeksforgeeks.org/scala-decision-making-if-if-else-nested-if-else-if-else-if/,
accessed on July 13, 2022.

85. DataFlair Team. (2019). Scala Control Structures – Comprehensive Guide.
Retrieved from https://data-flair.training/blogs/scala-control-structures-
comprehensive-guide/, accessed on July 15, 2023.

86. Scala – Loop Control Statements – while, do-while, for Loops: https://
www.tutorialspoint.com/scala/scala_loop_types.htm, accessed on July 13,
2022.

87. Scala Loop Control Statements – while, do-while, for Loops: https://www.
journaldev.com/7905/scala-loop-control-statements-while-do-while-for-
loops, accessed on July 13, 2022.

88. Scala Object Oriented Programming: https://data-flair.training/blogs/
scala-object-oriented-programming/, accessed on July 13, 2022.

89. Object-Oriented Programming in Scala: https://blog.knoldus.com/object-
oriented-programming-in-scala/, accessed on July 13, 2022.

90. Class and Object in Scala: https://www.geeksforgeeks.org/class-and-object-
in-scala/, accessed on July 13, 2022.

91. Scala Classes and Objects: https://www.baeldung.com/scala/classes-objects,
accessed on July 13, 2022.

92. Inheritance from inner classes across path-dependent types: https://users.
scala-lang.org/t/inheritance-from-inner-classes-across-path-dependent-
types/7551, accessed on July 13, 2022.

93. Inner Class in Scala: How to Create Inner Class?: https://www.includehelp.
com/scala/inner-class-in-scala-how-to-create-inner-class.aspx, accessed on
July 13, 2022.

94. Inheritance in Scala: https://www.geeksforgeeks.org/inheritance-in-
scala/, accessed on July 15, 2023.

95. Scala – Classes and Objects: https://www.tutorialspoint.com/scala/scala_
classes_objects.htm, accessed on July 13, 2022.

https://sodocumentation.net
https://sodocumentation.net
https://www.baeldung.com
https://data-flair.training
https://dotty.epfl.ch
https://www.scala-lang.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://data-flair.training
https://data-flair.training
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://data-flair.training
https://data-flair.training
https://blog.knoldus.com
https://blog.knoldus.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.baeldung.com
https://users.scala-lang.org
https://users.scala-lang.org
https://users.scala-lang.org
https://www.includehelp.com
https://www.includehelp.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com

322 ◾ Bibliography

 96. Scala for Java Developers: Traits, Abstract Classes and Operators https://
blog.birost.com/a?ID=01050-cb4ec8e8-8e99-4418-944f-2862e639143a,
accessed on July 13, 2022.

 97. Operators in Scala: https://www.geeksforgeeks.org/operators-in-scala/,
accessed on July 13, 2022.

 98. Scala – Operators: https://www.tutorialspoint.com/scala/scala_operators.
htm, accessed on July 13, 2022.

 99. Operators in Scala: https://www.datacamp.com/tutorial/operators-in-scala,
accessed on July 13, 2022.

100. Operators Precedence in Scala: https://www.geeksforgeeks.org/operators-
precedence-in-scala/, accessed on July 13, 2022.

101. Operators: https://docs.scala-lang.org/tour/operators.html, accessed on July
13, 2022.

102. Scala - Operator Precedence: https://www.alphacodingskills.com/scala/
notes/scala-operators-precedence.php, accessed on July 14, 2022.

103. Scala – Operators: https://www.tutorialspoint.com/scala/scala_operators.
htm, accessed on July 14, 2022.

104. Operator Precedence: https://riptutorial.com/scala/example/22543/opera-
tor-precedence, accessed on July 14, 2022.

105. Learn Scala from Scratch: https://www.educative.io/courses/learn-scala-
from-scratch/g201WmJ1jyG, accessed on July 14, 2022.

106. Scala – Singleton and Companion Objects: https://www.geeksforgeeks.org/
scala-singleton-and-companion-objects/, accessed on July 14, 2022.

107. Scala Singleton and Companion Object: https://www.javatpoint.com/scala-
singleton-and-companion-object, accessed on July 14, 2022.

108. Scala Singleton Object Tutorial: Creating, Syntax and Uses: https://data-
flair.training/blogs/scala-singleton-object/, accessed on July 14, 2022.

109. Traits vs. Abstract Classes in Scala: https://www.baeldung.com/scala/traits-
vs-abstract-classes, accessed on July 14, 2022.

110. Scala Abstract Class: https://www.javatpoint.com/scala-abstract-class,
accessed on July 15, 2022.

111. Scala Abstract Class: https://linuxhint.com/scala-abstract-class/, accessed
on July 15, 2022.

112. Generic Classes: https://docs.scala-lang.org/tour/generic-classes.html,
accessed on July 15, 2022.

113. Generic Classes in Scala: https://www.geeksforgeeks.org/generic-classes-in-
scala/, accessed on July 15, 2022.

114. Scala Generics – Basics: https://www.baeldung.com/scala/generics-basics,
accessed on July 15, 2022.

115. Scala Generic Classes and Variance: https://blog.knoldus.com/scala-
generic-classes-and-variance/, accessed on July 15, 2022.

116. Access Modifiers in Scala: https://www.geeksforgeeks.org/access-modifi-
ers-in-scala/, accessed on July 15, 2022.

117. Scala - Access Modifiers: https://www.tutorialspoint.com/scala/scala_
access_modifiers.htm, accessed on July 15, 2022.

https://blog.birost.com
https://blog.birost.com
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.datacamp.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://docs.scala-lang.org
https://www.alphacodingskills.com
https://www.alphacodingskills.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://riptutorial.com
https://riptutorial.com
https://www.educative.io
https://www.educative.io
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://www.javatpoint.com
https://data-flair.training
https://data-flair.training
https://www.baeldung.com
https://www.baeldung.com
https://www.javatpoint.com
https://linuxhint.com
https://docs.scala-lang.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.baeldung.com
https://blog.knoldus.com
https://blog.knoldus.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com

Bibliography ◾ 323

118. Scala Access Modifiers - Private, Protected, and Public: https://www.jour-
naldev.com/7584/scala-access-modifiers-private-protected-and-public,
accessed on July 15, 2023.

119. Traits vs. Abstract Classes in Scala: https://www.baeldung.com/scala/traits-
vs-abstract-classes, accessed on July 15, 2022.

120. Scala Abstract Class: https://www.javatpoint.com/scala-abstract-class,
accessed on July 15, 2022.

121. Scala Abstract Class: https://www.javatpoint.com/scala-abstract-class,
accessed on July 15, 2022.

122. Scala Abstract Class: https://linuxhint.com/scala-abstract-class/, accessed
on July 15, 2022.

123. Generic Classes: https://docs.scala-lang.org/tour/generic-classes.html,
accessed on July 15, 2022.

124. Generic Classes in Scala: https://www.geeksforgeeks.org/generic-classes-in-
scala/, accessed on July 16, 2022.

125. Scala Generics – Basics: https://www.baeldung.com/scala/generics-basics,
accessed on July 16, 2022.

126. Scala Generic Classes and Variance: https://www.signifytechnology.com/
blog/2019/04/scala-generic-classes-and-variance-by-ayush-hooda, accessed
on July 16, 2022.

127. Scala Generic: https://www.educba.com/scala-generic/, accessed on July 16,
2022.

128. What are Generic Classes in Scala?: https://www.educative.io/answers/
what-are-generic-classes-in-scala, accessed on July 16, 2022.

129. Scala Generic Classes and Variance: https://blog.knoldus.com/scala-
generic-classes-and-variance/, accessed on July 16, 2022.

130. Access Modifiers in Scala: https://www.geeksforgeeks.org/access-modifi-
ers-in-scala/, accessed on July 16, 2022.

131. Scala - Access Modifiers: https://www.tutorialspoint.com/scala/scala_
access_modifiers.htm, accessed on July 16, 2022.

132. Scala Access Modifiers - Private, Protected, and Public: https://www.jour-
naldev.com/7584/scala-access-modifiers-private-protected-and-public,
accessed on July 17, 2022.

133. Scala Access Modifier: https://www.javatpoint.com/scala-access-modifier,
accessed on July 17, 2022.

134. Scala Access Modifiers - Private, Protected & Public: https://data-flair.train-
ing/blogs/scala-access-modifiers/, accessed on July 17, 2022.

135. Scala Constructors: https://www.geeksforgeeks.org/scala-constructors/,
accessed on July 17, 2022.

136. Scala Constructor: https://www.javatpoint.com/scala-constructor, accessed
on July 17, 2022.

137. Classes. Scala Language Documentation: https://docs.scala-lang.org/over-
views/scala-book/classes.html, accessed on July 17, 2022.

138. Scala Constructor – Syntax, Types of Constructors with Examples: https://
data-flair.training/blogs/scala-constructor/, accessed on July 17, 2022.

https://www.journaldev.com
https://www.journaldev.com
https://www.baeldung.com
https://www.baeldung.com
https://www.javatpoint.com
https://www.javatpoint.com
https://linuxhint.com
https://docs.scala-lang.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.baeldung.com
https://www.signifytechnology.com
https://www.signifytechnology.com
https://www.educba.com
https://www.educative.io
https://www.educative.io
https://blog.knoldus.com
https://blog.knoldus.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.journaldev.com
https://www.journaldev.com
https://www.javatpoint.com
https://data-flair.training
https://data-flair.training
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://docs.scala-lang.org
https://docs.scala-lang.org
https://data-flair.training
https://data-flair.training

324 ◾ Bibliography

139. Scala – Controlling Visibility of Constructor Fields: https://www.geeks-
forgeeks.org/scala-controlling-visibility-of-constructor-fields/, accessed on
July 17, 2022.

140. How to control the visibility of Scala constructor fields: https://www.oreilly.
com/library/view/scala-cookbook/9781449340292/ch04s03.html, accessed
on July 17, 2022.

141. Scala – Strings: https://www.tutorialspoint.com/scala/scala_strings.htm,
accessed on July 17, 2022.

142. Scala – String: https://www.geeksforgeeks.org/scala-string/, accessed on
July 17, 2022.

143. Package Objects: https://docs.scala-lang.org/tour/package-objects.html,
accessed on July 17, 2022.

144. Scala Import and Package Objects: https://www.baeldung.com/scala/pack-
age-import, accessed on July 18, 2022.

145. How to use package objects in Scala: https://www.oreilly.com/library/view/
scala-cookbook/9781449340292/ch01s11.html, accessed on July 18, 2022.

146. Scala Package Object: https://linuxhint.com/scala-package-object/, accessed
on July 18, 2022.

147. Scala – Functions: https://www.tutorialspoint.com/scala/scala_functions.
htm#:~:text=A%20Scala%20method%20is%20a,object%2C%20is%20
called%20a%20method, accessed on July 18, 2022.

148. Scala Functions and Methods: https://www.baeldung.com/scala/functions-
methods, accessed on July 18, 2022.

149. Scala Primary Constructor: https://www.geeksforgeeks.org/scala-primary-
constructor/, accessed on July 18, 2022.

150. Scala Auxiliary Constructor: https://www.geeksforgeeks.org/scala-auxil-
iary-constructor/, accessed on July 18, 2022.

151. Scala functions: https://www.javatpoint.com/scala-functions, accessed on
July 18, 2022.

152. Scala exception handling: https://www.geeksforgeeks.org/scala-exception-
handling/, accessed on July 19, 2022.

153. Scala exception handling: https://www.baeldung.com/scala/exception-han-
dling, accessed on July 19, 2022.

154. Scala exception handling: https://www.tutorialspoint.com/scala/scala_
exception_handling.htm, accessed on July 19, 2022.

155. Functional error handling: https://docs.scala-lang.org/overviews/scala-
book/functional-error-handling.html, accessed on July 19, 2022.

156. Exception handling in Scala: https://blog.knoldus.com/exception-handling-
in-scala/, accessed on July 20, 2022.

157. Scala Exception Handling: https://intellipaat.com/blog/tutorial/scala-tuto-
rial/scala-exception-handling/, accessed on July 20, 2022.

158. State exploration of Scala actor programs: https://1library.net/document/
q27l4xey-state-exploration-of-scala-actor-programs.html, accessed on July
20, 2022.

159. Is Scala worth learning?: https://careerkarma.com/blog/is-scala-worth-
learning/, accessed on July 20, 2022.

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.oreilly.com
https://www.oreilly.com
https://www.tutorialspoint.com
https://www.geeksforgeeks.org
https://docs.scala-lang.org
https://www.baeldung.com
https://www.baeldung.com
https://www.oreilly.com
https://www.oreilly.com
https://linuxhint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.baeldung.com
https://www.baeldung.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.javatpoint.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.baeldung.com
https://www.baeldung.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://docs.scala-lang.org
https://docs.scala-lang.org
https://blog.knoldus.com
https://blog.knoldus.com
https://intellipaat.com
https://intellipaat.com
https://1library.net
https://1library.net
https://careerkarma.com
https://careerkarma.com

Bibliography ◾ 325

160. What big companies use Scala?: https://datarootlabs.com/blog/big-compa-
nies-use-scala, accessed on July 20, 2022.

161. Scala vs. Java: https://www.simplilearn.com/scala-vs-java-article, accessed
on July 20, 2022.

162. Learn Scala from scratch: https://www.educative.io/courses/learn-scala-
from-scratch/qAoLO5npEj2, accessed on July 20, 2022.

https://datarootlabs.com
https://datarootlabs.com
https://www.simplilearn.com
https://www.educative.io
https://www.educative.io

326

Index

A

Abstract classes in Scala, 122–128
Abstract type members in Scala, 170–173
Access Modifiers in Scala, 135–137, 263
Add AND Assignment (+=) operator, 117
Advantages of Scala, 3, 10, 312
AirBnB, Scala in, 311
Akka, 8, 315
Alphanumeric identifiers, 32
Android, 24–25
andThen method, 275–276
Anonymous functions, 221
Anonymous object, 101
Anonymous parameterized functions,

221–223
Applications of Scala, 11
Arithmetic operators, 113–114
asInstanceOf method, 174
Assignment operators, 116–119
Auxiliary constructor, 141–142, 146–149,

254

B

Bitwise AND Assignment (&=) operator,
117

Bitwise exclusive OR and Assignment (̂ =)
operator, 117

Bitwise inclusive OR and Assignment (|=)
operator, 118

Bitwise operators, 119–121
Boolean literals, 36, 88–89
Breaking condition, 78
Break statement in Scala, 81–82
Break technique in nested loop,

82–84

C

Call-by-name, 229–230
Call-by-value, 228–229
caseClass in Scala, 157
caseObject in Scala, 157–160
Case statement partial function, 272–273
Chained package, 210–211
Character adding, 199
Characteristics of Scala, 314

collection library of Scala, 316
computational laziness, 315
concurrency control, 315
higher order functions, 316
immutability, 315
pattern matching and case classes, 315
singleton object, 315
string interpolation, 315–316
traits, 316
type inference, 315

Character literals, 36, 86–87
Class, 97

declaration, 97–98
Class extension in Scala, 153–157
Closure function, 231–233
Code simplicity and size, of Scala, 6
Coding in Scala, 4
Collection library of Scala, 316
Collections, for-loop with, 75–76
Collect method, 274–275
Command-Line Arguments, 46–47
Commands, Scala, 15
Comments, 8–9, 44

documentation, 45–46
multiline, 45
singleline, 44

Community, creating, 5

Index ◾ 327

Companion object, 131–132
Compile-time error, 28, 31
Computational laziness of Scala, 315
concat() method, 204
Concise, Scala as, 17–18
Concurrency control of Scala, 315
Constructor fields, visibility control of,

184–185
Constructors, 137

abstract type members, 170–173
auxiliary constructor, 141–142,

146–149
caseClas, 157
caseObject, 157–160
class extension, 153–157
equality function, 175–178
field overriding, 165–170
Object casting, 174
polymorphism Scala, 160–162
primary constructor, 137–140, 142–146
superClass constructor, 149–153
type casting, 173–174
value classes, 163–164

Control flow in try-finally, 300–302
Controlling method scope, 263

object private/protected scope,
266–267

package specific, 267–268
private scope, 264
protected scope, 265–266
public scope, 263–264

Control statements, 58
break statement in Scala, 81–82
break technique in nested loop, 82–84
decision making in Scala, 58

if-else if ladder, 66–68
If-else statement, 61–62
if statement, 59–60
nested if-else statement, 62–65

do while loop, 79–81
literals types, 84

Boolean literals, 88–89
character literals, 86–87
floating point literals, 85–86
hexa-decimal literals, 85
integer literals, 84
multiline string literals, 88
string literals, 87–88

loop, Scala for, 73
for loop using to, 73–74
for loop using until, 74
for-loop with collections, 75–76
for-loop with filters, 76
for-loop with yield, 77
multiple values in for-loop, 74–75

loops in Scala, 68
do..while Loop, 70–71
for loop, 71–72
infinite while Loop, 70
nested loops, 72–73
while Loop, 69–70

type inference in Scala, 91
for functions, 92–95

while loop, 78–79
yield keyword in scala, 89–90

Currying functions, 217
declaring, 218–219
Partially Applied function, 219–220

D

Data types, 34–35
Decision making in Scala, 58

if-else if ladder, 66–68
If-else statement, 61–62
if statement, 59–60
nested if-else statement, 62–65

Delete operation, 202
Disadvantages of Scala, 10–11
Divide AND Assignment (/=) operator,

117
Documentation comments, 45–46
Do while loop, 70–71, 79–81
Download of Scala, 16–17

E

École Polytechnique Fédérale de Lausanne
(EPFL), 1

Either, 303–305
Entry controlled loop, 59
Enumeration declaration in Scala, 48–51
Environment, Scala, 13–15
EPFL, see École Polytechnique Fédérale de

Lausanne
Equality function in Scala, 175–178

328 ◾ Index

Equals method, 176
Equal To(==) operator, 114
== and != methods, 176
Evolution of Scala, 1–2
Exception handling in Scala, 291, 292

control flow in try-finally, 300–302
Either, 303–305
final block in Scala, 299–300
finally clause, 294–295
hierarchy of exception, 291
throwing exceptions, 293
throw keyword, 295–297
try/catch construct, 293–294
Try-Catch construct, 297–299
try-catch-finally clause, 302–303

Executing Scala program, 19–20
Exit controlled loop, 79
Exponent AND Assignment (**=)

operator, 117
Extensible, Scala as, 9

F

Features of Scala, 9–10
Field overriding in Scala, 165–170
Fields, 51–52
File Handling, 211–214
Filters, for-loop with, 76
Final block in Scala, 299–300
Final keyword in Scala, 180

final classes, 182–183
final methods, 182
final variable, 181

Finally block, 294–295
findAllIn() function, 196
findFirstIn() function, 196
Floating-point literals, 36, 85–86
For loop, 71–72

with collections, 75–76
with filters, 76
multiple values in, 74–75
using to, 73–74
using until, 74
with yield, 77

Format() function, 189–190
Format method, 261–262
FP technique, see Functional

programming technique

Framework, Scala-based, 5
Framework and community development,

of Scala, 7–8
Functional programming (FP) technique,

1
Function composition, 282–285
Functions, 215

anonymous functions, 221
anonymous parameterized functions,

221–223
call-by-name, 229–230
call-by-value, 228–229
calling, 217
closure function, 231–233
currying functions, 217

declaring, 218–219
Partially Applied function, 219–220

declaration and definition of, 216
Higher Order Functions, 223–225
named arguments in Scala, 225–227

G

Generic classes in Scala, 132–135
getClass function, 91
Greater Than(>) operator, 114
Greater Than Equal To(>=) operator, 114

H

Hello World in Scala, 19
Hexa-decimal literals, 85
Hierarchical inheritance, 109–110
Higher Order Functions, 12, 223–225
Higher order functions of Scala, 316
History of Scala, 306–307
Hybrid inheritance, 112

I

Identifiers, 30–31, 32–34
alphanumeric, 32
literal, 33
mixed, 33
operator, 32–33

If-else if ladder, 66–68
If-else statement, 61–62
If statement, 59–60

Index ◾ 329

Immutability of Scala, 315
Immutable variables, 38–39
Implicit conversions, 287–290
Infinite while Loop, 70
Inheritance, 105

hierarchical, 109–110
hybrid, 112
multilevel, 107–109
multiple, 110–112
single, 106–107

Inner class, 101–104
Insertion operation, 202–203
Installation of Scala, 16–17
Installing Scala, 14–15
Integer literals, 84
Intriguing fact about Scala, 11–13
isEmpty method, 304

J

Java, Scala’s advantages over, 6
advanced structures, 7
code simplicity and size, 6
framework and community

development, 7–8
performance, 7
statically typed language, 7

Java Development Kit (JDK) 1.8, 8
Java interoperability capability, 4
Java packages

validating, 13–14
verifying, 16

Java Virtual Machine (JVM), 306
Java vs. Scala, 3, 4, 5, 22–23, 312–313

drawbacks of, 313
JDK 1.8, see Java Development Kit 1.8
JVM, see Java Virtual Machine

K

Keywords in Scala, 28–30
Kotlin vs. Scala, 24–25, 313

L

Lambda Expression, 276
making use of, 276–280

Learning Scala, 4, 5, 307–309

Left shift AND Assignment (<<=)
operator, 117

length() method, 187
Less than(<) operator, 114
Less Than Equal To(<=)operator, 114
LinkedIn, Scala in, 310
Linux, Scala installation in, 15
Literal identifiers, 33
Literals, 36, 84

Boolean, 36, 88–89
character, 36, 86–87
floating-point, 36, 85–86
hexa-decimal, 85
integer, 84
integral, 36
multi-line, 37, 88
null values, 37
string, 36–37, 87–88
for symbol, 36
yield keyword, 89–90

Local variables, 53–54
Logical operators, 115–116
Loop, Scala for, 73

for loop using to, 73–74
for loop using until, 74
for-loop with collections, 75–76
for-loop with filters, 76
for-loop with yield, 77
multiple values in for-loop, 74–75

Loops in Scala, 68
do..while Loop, 70–71
for loop, 71–72
infinite while Loop, 70
nested loops, 72–73
while Loop, 69–70

M

main() function, 46
map() method, 277
Market demand, of Scala, 4–5
Method Invocation in Scala,

258–260
Method overloading, 248

different approaches to, 248–251
method signature and return type,

251–252
requirement for, 248

330 ◾ Index

Method overriding, 252–254
guidelines, 254–257
requirement of, 257

Method parameters, 52–53
Methods, 215

functions, 215
anonymous functions, 221
anonymous parameterized

functions, 221–223
call-by-name, 229–230
call-by-value, 228–229
calling, 217
closure function, 231–233
currying functions, 217–220
declaration and definition of, 216
Higher Order Functions, 223–225
named arguments in Scala, 225–227

nested functions in Scala, 233
multiple nested function, 235
parameterless method, 236–237
single nested function, 233–234

recursion, 238
controlling method scope, 263–268
format method, 261–262
formatted method, 262
Function composition, 282–285
implicit conversions, 287–290
Lambda Expression, 276–280
Method Invocation in Scala,

258–260
method overloading, 248–252
method overriding, 252–257
overriding vs overloading, 257
Partial function, 271–276
partially applied functions in Scala,

244–247
Repeated Method parameters,

268–271
superclass, 285–287
tail recursion function, 240–244
varargs, 280–282

Method Scope Control Scala, 263
Mixed identifiers, 33
Modulus AND Assignment (% =)

operator, 117
Multilevel inheritance, 107–109
Multiline comments, 45
Multi-line literals, 37

Multiline string literals, 88
Multi-paradigm language, Scala as, 4
Multiple inheritance, 110–112
Multiple nested function, 235
Multiple values in for-loop, 74–75
Multiply AND Assignment (*=) operator,

117
Multithreading in Scala, 178

final keyword, 180
final classes, 182–183
final methods, 182
final variable, 181

this keyword, 183–184
thread creation, 178

by extending runnable interface,
179–180

by extending thread class, 178–179
thread life cycle in Scala, 180
visibility control of constructor fields

in Scala, 184–185
Mutable variable, 37–38

N

Named arguments in Scala, 225–227
Ne and eq methods, 176
Nested functions in Scala, 233

multiple nested function, 235
parameterless method, 236–237
single nested function, 233–234

Nested if-else statement, 62–65
Nested loop, break technique in, 82–84
Nested loops, 72–73
Netflix, Scala in, 311
Not Equal To(!=) operator, 114
NullPointerException, 291
Null values, 37

O

Object casting, 174
Object-oriented, Scala as, 9
Object-Oriented Programming (OOP)

concepts, 96
access modifiers, 135–137
class, 97

declaration, 97–98
companion object, 131–132

Index ◾ 331

constructors, 137
abstract type members in Scala,

170–173
auxiliary constructor, 141–142,

146–149
caseClass in Scala, 157
caseObject in Scala, 157–160
class extension in Scala, 153–157
equality function in Scala, 175–178
field overriding in Scala, 165–170
Object casting, 174
polymorphism Scala, 160–162
primary constructor, 137–140,

142–146
superClass constructor, 149–153
type casting, 173–174
value classes in Scala, 163–164

generic classes in Scala, 132–135
inheritance, 105–106
inheritance type, 106

hierarchical inheritance, 109–110
hybrid inheritance, 112
multilevel inheritance, 107–109
multiple inheritance, 110–112
single inheritance, 106–107

inner class, 101–104
multithreading in Scala, 178

final keyword in Scala, 180–183
this keyword, 183–184
thread creation in Scala, 178–180
thread life cycle in Scala, 180
visibility control of constructor

fields in Scala, 184–185
objects, 98

anonymous, 101
creating, 100–101
defining, 99–100

operators, 112
abstract classes, 122–128
arithmetic operators, 113–114
assignment operators, 116–119
bitwise operators, 119–121
logical operators, 115–116
precedence, 121–122
relational operators, 114–115

singleton object, 129–131
Object private/protected scope,

266–267

Objects, 98
anonymous, 101
creating, 100–101
defining, 99–100

OOP concepts, see Object-Oriented
Programming concepts

Operator identifiers, 32–33
Operators, 112

abstract classes, 122–128
arithmetic operators, 113–114
assignment operators, 116–119
bitwise operators, 119–121
logical operators, 115–116
precedence, 121–122
relational operators, 114–115

orElse function, 273–274
Overloading method, 248

different approaches to, 248–251
method signature and return type,

251–252
requirement for, 248

Overriding, 165–170
vs overloading, 257

P

Package members, adding, 206–207
Packages, 205

chained package, 210–211
declaration, 205–206
File Handling, 211–214
function, 206
objects, 208–210
using, 207–208

Package specific, 267–268
Parameterless method, 236–237
Partial function, 271

definition methods, 272–276
Partially Applied function, 219–220,

244–247
Pattern matching in Scala, 41–43, 315
Patterns, 4
Performance, of Scala, 7
Polymorphism, 160–162, 248
Popularity of Scala, 2–3
Primary constructor, 137–140, 142–146
printf in Scala, 39–41
println in Scala, 9, 39–41

332 ◾ Index

Private scope, 264
Programming in Scala, 8–9
Protected scope, 265–266
Public scope, 263–264
Python vs. Scala, 23–24

R

r() function, 195–196
Ranges in Scala, 54

operations performed on, 55–57
Read-Evaluate-Print-Loop (REPL)

characteristics, 27
implementation, 26–27
in Scala, 26

readLine in Scala, 39–41
Recursion, 238

controlling method scope, 263
object private/protected scope,

266–267
package specific, 267–268
private scope, 264
protected scope, 265–266
public scope, 263–264

format method, 261–262
formatted method, 262
Function composition, 282–285
implicit conversions, 287–290
Lambda Expression, 276

making use of, 276–280
Method Invocation in Scala, 258–260
method overloading, 248

different approaches to, 248–251
method signature and return type,

251–252
method overriding, 252–254

guidelines, 254–257
requirement of, 257

overriding vs overloading, 257
Partial function, 271

definition methods, 272–276
partially applied functions in Scala,

244–247
Repeated Method parameters,

268–271
superclass, 285–287
tail recursion function, 240–244
varargs, 280–282

Regular expressions (Regex), 195
syntax, 197–198

Relational operators, 114–115
Repeated Method parameters, 268–271
REPL, see Read-Evaluate-Print-Loop
replaceAllIn() method, 197
replaceFirstIn() function, 197
Reusability, 105
Right shift AND Assignment (>>=)

operator, 117
run() function, 178, 179

S

Scala 2.10.0, 315
Scalability, of Scala, 17–18
ScriptBowl competition, 1
SDK, see Software Development Kit
Setting up Scala environment, 13–15
Simple assignment operator, 117
Single inheritance, 106–107
Singleline comments, 44
Single nested function, 233–234
Singleton object, 129–131, 315
Software Development Kit (SDK), 13–14
StackOverflowError, 291
Start() function, 178, 179
Statically typed language, Scala as, 5, 7, 9
String, 186

concatenation, 188–189, 204–205
creation, 187
format() function, 189–190
interpolation, 190–191
interpolator types, 191–193
length determination of, 187–188
regular expressions, 195

syntax, 197–198
String appending, 200
StringBuilder, 199

appending string representation of a
number, 200–201

character adding, 199
converting StringBuilder to a string,

203
delete operation, 202
insertion operation, 202–203
resetting StringBuilder’s content, 201
string appending, 200

Index ◾ 333

StringContext in Scala, 193–195
String interpolation of Scala, 315–316
String literals, 36–37, 87–88
subClass, 105
Subtract AND Assignment (−=) operator,

117
superClass, 105, 285–287
superClass constructor, 149–153
Symbol, literals for, 36
Syntax, precise

Scala with, 5

T

Tail recursion function, 240–244
Thatcham, Scala in, 311
This keyword, 183–184
Thread creation in Scala, 178

by extending runnable interface,
179–180

by extending thread class, 178–179
Thread life cycle in Scala, 180
Throwing exceptions, 293
Throw keyword, 295–297
Top 10 uses of Scala, 4–5
Traits, 316
Try/catch construct, 293–294, 297–299
Try-catch-finally clause, 302–303
Try-finally, control flow in, 300–302
Tumblr, Scala in, 311
Twitter, Scala in, 310

Type casting, 173–174
Type inference in Scala, 91, 315

for functions, 92–95

U

Uniform Access Principle in Scala, 20–22
Uses of Scala, 4–5

V

Valuability of Scala, 307
Value classes in Scala, 163–164
Varargs, 280–282
Variable naming rules, 39
Variable scope in Scala, 51
Variables in Scala, 37
Variable type inference, 39
Versions of Scala, 2
Visibility control of constructor fields in

Scala, 184–185

W

While loop, 41, 69–70, 78–79

Y

Yield, for-loop with, 77
Yield keyword in Scala, 89–90

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	About the Editor
	Acknowledgments
	Zeba Academy – Mastering Computer Science
	CHAPTER 1: Scala Overview
	SCALA’S EVOLUTION
	VERSIONS OF SCALA
	SCALA’S POPULARITY
	WHY USE SCALA?
	SCALA’S TOP 10 USES
	SCALA’S ADVANTAGES OVER JAVA
	START WITH SCALA PROGRAMMING
	SCALA FEATURES
	ADVANTAGES
	DISADVANTAGES
	APPLICATIONS
	AN INTRIGUING FACT ABOUT SCALA
	SETTING UP THE SCALA ENVIRONMENT
	SCALA INSTALLATION IN LINUX
	VERIFYING JAVA PACKAGES
	SCALA DOWNLOAD AND INSTALLATION
	Scala Download

	WHAT CAUSES SCALA TO BE SCALABLE?
	HELLO WORLD IN SCALA
	HOW TO EXECUTE A SCALA PROGRAM
	UNIFORM ACCESS PRINCIPLE IN SCALA
	SCALA VS. JAVA
	PYTHON VS. SCALA
	THE DISTINCTION BETWEEN KOTLIN AND SCALA
	REPL IN SCALA
	REPL IMPLEMENTATION
	SOME ADDITIONAL IMPORTANT REPL CHARACTERISTICS

	CHAPTER 2: Scala Basics
	KEYWORDS IN SCALA
	IDENTIFIERS IN SCALA
	JAVA SCALA DEFINING RULES
	SCALA IDENTIFIER TYPES
	SCALA DATA TYPES
	LITERALS IN SCALA
	SCALA VARIABLES
	MUTABLE VARIABLE
	IMMUTABLE VARIABLES
	SCALA VARIABLE NAMING RULES
	SCALA VARIABLE TYPE INFERENCE
	println, printf, and readLine IN SCALA
	PATTERN MATCHING IN SCALA
	IMPORTANT NOTE
	SCALA COMMENTS
	SINGLELINE COMMENTS
	MULTILINE COMMENTS
	DOCUMENTATION COMMENTS
	SCALA COMMAND LINE ARGUMENT
	SCALA ENUMERATION
	VARIABLE SCOPE IN SCALA
	FIELDS
	METHOD PARAMETERS
	LOCAL VARIABLES
	RANGES IN SCALA
	Operations Performed on Ranges

	CHAPTER 3: Scala Control Statements
	MAKING DECISIONS (if, if-else, Nested if-else, if-else if) IN SCALA
	if Statement
	if-else Statement
	Nested if-else Statement
	if-else if Ladder
	LOOPS IN SCALA (while, do..while, for, Nested Loops)
	while Loop
	Infinite while Loop
	do..while Loop
	for Loop
	Nested Loops
	SCALA FOR LOOP
	for Loop Using to
	for Loop Using until
	MULTIPLE VALUES IN for-loop
	USING for-loop WITH COLLECTIONS
	USING for-loop WITH filters
	USING for-loop WITH yield
	SCALA while AND do while Loop
	while Loop
	do while Loop
	SCALA BREAK STATEMENT
	BREAK IN Nested Loop
	LITERALS IN SCALA
	LITERALS TYPES
	yield KEYWORD IN SCALA
	TYPE INFERENCE IN SCALA
	SCALA FUNCTION TYPE INFERENCE

	CHAPTER 4: Scala OOP Concepts
	SCALA CLASS AND OBJECT
	Class
	Class Declaration

	OBJECTS
	Defining Objects (Also Called Instantiating a Class)
	Creating an Object
	Anonymous Object

	SCALA INNER CLASS
	How to Make a Class within an Object and an Object Inside a Class

	SCALA INHERITANCE
	HOW TO UTILIZE INHERITANCE IN SCALA
	INHERITANCE TYPE
	SCALA OPERATORS
	ARITHMETIC OPERATORS
	RELATIONAL OPERATORS
	LOGICAL OPERATORS
	ASSIGNMENT OPERATORS
	BITWISE OPERATORS
	SCALA OPERATORS PRECEDENCE
	SCALA ABSTRACT CLASSES
	When Should We Use Abstract Class in Scala?

	SCALA COMPANION OBJECTS AND SINGLETON
	SINGLETON OBJECT
	COMPANION OBJECT
	SCALA GENERIC CLASSES
	SCALA ACCESS MODIFIERS
	SCALA CONSTRUCTORS
	PRIMARY CONSTRUCTOR
	AUXILIARY CONSTRUCTOR
	PRIMARY CONSTRUCTOR IN SCALA
	AUXILIARY CONSTRUCTOR IN SCALA
	IN SCALA, CALLING A SUPERCLASS CONSTRUCTOR
	SCALA CLASS EXTENDING
	CASECLASS AND CASEOBJECT IN SCALA
	CASEOBJECT EXPLANATION
	POLYMORPHISM SCALA
	VALUE CLASSES IN SCALA
	FIELD OVERRIDING IN SCALA
	Overriding Rules for the Field

	ABSTRACT TYPE MEMBERS IN SCALA
	SCALA TYPE CASTING
	SCALA OBJECT CASTING
	SCALA OBJECT EQUALITY
	MULTITHREADING IN SCALA
	WHAT EXACTLY ARE THREADS IN SCALA?
	Thread Creation by Extending Thread Class
	Thread Creation by Extending the Runnable Interface

	THREAD LIFE CYCLE IN SCALA
	SCALA FINAL
	SCALA THIS KEYWORD
	CONTROLLING VISIBILITY OF CONSTRUCTOR FIELDS IN SCALA

	CHAPTER 5: Scala String and Packages
	SCALA STRING
	SCALA STRING CREATION
	DETERMINE THE LENGTH OF THE STRING
	CONCATENATING STRINGS IN SCALA
	CREATING FORMAT STRING
	STRING INTERPOLATION IN SCALA
	STRING INTERPOLATOR TYPES
	StringContext IN SCALA
	SCALA REGULAR EXPRESSIONS
	Scala Regular Expression Syntax

	SCALA StringBuilder
	The StringBuilder Class Performs Operations

	SCALA STRING CONCATENATION
	SCALA PACKAGES
	PACKAGE DECLARATION
	HOW PACKAGE FUNCTIONS
	ADDING PACKAGE MEMBERS
	USING PACKAGES
	PACKAGE OBJECTS IN SCALA
	SCALA CHAINED PACKAGE CLAUSES
	SCALA FILE HANDLING

	CHAPTER 6: Scala Methods
	SCALA FUNCTIONS – BASICS
	DECLARATION AND DEFINITION OF FUNCTIONS
	CALLING A FUNCTION
	EXAMPLES OF CURRYING FUNCTIONS IN SCALA
	Another Method for Declaring a Currying Function
	Partial Application Currying Function

	SCALA ANONYMOUS FUNCTIONS
	ANONYMOUS PARAMETERIZED FUNCTIONS
	Without parameters, anonymous functions

	SCALA HIGHER ORDER FUNCTIONS
	NAMED ARGUMENTS IN SCALA
	FUNCTIONS CALL-BY-NAME IN SCALA
	Call-by-Value
	Call-by-Name

	CLOSURES IN SCALA
	NESTED FUNCTIONS IN SCALA
	SINGLE NESTED FUNCTION
	MULTIPLE NESTED FUNCTION
	SCALA PARAMETERLESS METHOD
	SCALA RECURSION
	TAIL RECURSION
	SCALA TAIL RECURSION
	PARTIALLY APPLIED FUNCTIONS IN SCALA
	SCALA METHOD OVERLOADING
	Why Do We Require Method Overloading?
	Different Approaches to Overloading Methods
	What Happens When the Method Signature and Return Type Are the Same?

	SCALA METHOD OVERRIDING
	When Should We Use Method Overriding?
	Method Overriding Guidelines

	OVERRIDING VS OVERLOADING
	WHY IS METHOD OVERRIDING REQUIRED?
	METHOD INVOCATION IN SCALA
	FORMAT AND FORMATTED METHOD IN SCALA
	Format Method
	Formatted Method

	SCALA CONTROLLING METHOD SCOPE
	Public Scope
	Private Scope
	Protected Scope
	Object Private/Protected Scope
	Package Specific

	SCALA REPEATED METHOD PARAMETERS
	SCALA PARTIAL FUNCTIONS
	Partial Function Definition Methods

	SCALA LAMBDA EXPRESSION
	Making Use of Lambda Expressions

	SCALA VARARGS
	SCALA FUNCTION COMPOSITION
	IN SCALA, CALL A METHOD ON A SUPERsCLASS
	SCALA IMPLICIT CONVERSIONS

	CHAPTER 7: Scala Exceptions
	EXCEPTION HANDLING IN SCALA
	HIERARCHY OF EXCEPTION
	SCALA EXCEPTIONS
	What Is the Scala Exception?

	THROWING EXCEPTIONS
	TRY/CATCH CONSTRUCT
	THE FINALLY CLAUSE
	SCALA THROW KEYWORD
	SCALA TRY-CATCH EXCEPTIONS
	SCALA FINALLY EXCEPTIONS
	CONTROL FLOW IN TRY-FINALLY
	TRY-CATCH-FINALLY CLAUSE
	SCALA EITHER

	Appraisal
	Bibliography
	Index

