

Angular Projects
Third Edition

Build modern web apps in Angular 16 with 10 different
projects and cutting-edge technologies

Aristeidis Bampakos

BIRMINGHAM—MUMBAI

Angular Projects
Third Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Tejas Mhasvekar
Project Editor: Meenakshi Vijay
Content Development Editor: Shazeen Iqbal
Copy Editor: Safis Editing
Technical Editor: Srishty Bhardwaj
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Priyadarshini Sharma

First published: September 2019
Second edition: July 2021
Third edition: July 2023

Production reference: 1110723

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-911-8

www.packt.com

http://www.packt.com

Foreword

Angular is a powerful web framework that helps teams build robust, scalable applications. Angu-

lar continues to evolve but the core values remain the same: build a platform developers love to

use, enable developers to build applications that users love to use, and have a community where

everyone feels welcomed.

Angular Projects is a book that embraces these values and takes a unique approach to empower

new and experienced developers to build great applications using Angular. Aristeidis uses a

project-driven approach to help learners understand modern Angular techniques in an intriguing

and accessible way.

This guide will help learners to build their first application with the powerful Angular CLI, take

advantage of Angular’s strong PWA integration, build performant static applications with Scully,

and more. This book will add significant value to developers looking to get the most out of their

Angular experience.

As Angular continues to power incredible experiences inside Google and across the web, this book

will serve as an excellent learning resource for developers looking to build great apps.

Mark Thompson

Angular Team at Google

Contributors

About the author
Aristeidis Bampakos has over 20 years of experience in the software development industry.

He is a Greek national who currently works in Athens as a Web Development Team Leader at

Plex-Earth, specializing in the development of web applications using Angular.

He studied Computer Technology at the University of Portsmouth and in 2002 he was awarded a

Bachelor of Engineering degree with Second Class Honors (Upper Division). In 2004, he completed

his MSc in Telecommunications Technology at Aston University. His career started as a C# .NET

developer, but he saw the potential of web development and moved toward it in early 2011. He

began working with AngularJS, and Angular later on, and in 2020 he was officially recognized

as a Google Developer Expert (GDE) for Angular.

Aristeidis is passionate about helping the developer community learn and grow. His love for

teaching has led him to become an award-winning author of 3 successful book titles about An-

gular (Learning Angular – 3rd/4th edition and Angular Projects – 2nd edition), as well as an

Angular Senior Tech Instructor at Code.Hub, where he nurtures aspiring Angular developers and

professionals. In his spare time, he enjoys being an occasional speaker in meetups, conferences,

and podcasts where he talks about Angular. He is currently leading the effort of making Angular

accessible to the Greek development community by maintaining the open source Greek transla-

tion of the official Angular documentation

To my amazing Expert Network Team at Packt for believing on my vision about the book and their great

help and support.

About the reviewer
Chihab is an independent consultant and trainer, and a Google Developer Expert in Angular. With

over a decade of experience, he has developed expertise in building web applications, component

libraries, and tools for various companies. Chihab has coached numerous individuals, ranging

from corporations to startups, on Angular and web technologies.

Passionate about knowledge-sharing, Chihab is the creator and organizer of various local meetups

in Morocco, including Rabat.js, ngMorocco, and JS Morocco. Furthermore, Chihab serves as the

host of AngularInDarija.dev, a captivating video streaming podcast that delivers comprehensive

Angular tutorials in Darija, the Moroccan local dialect.

Chihab is the author of the @ngx-env/builder and @dotenv-run packages, both open source

projects that help managing environment variables within Angular and Node.js projects.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/AngularProjects3e

https://packt.link/AngularProjects3e

Table of Contents

Preface xv

Chapter 1: Creating Your First Web Application in Angular 1

Essential background theory and context ��� 2

Introduction to the Angular CLI �� 4

Exploring the rich ecosystem of Angular tooling in VS Code ��� 5

Nx Console • 5

Angular Language Service • 6

Angular Snippets • 7

Angular Evergreen • 8

Material Icon Theme • 9

Project overview ��� 9

Getting started �� 10

Creating our first Angular application �� 10

Interacting with the Angular framework ��� 13

Using Nx Console for automating Angular CLI commands �� 16

Summary �� 18

Practice questions ��� 19

Further reading ��� 19

Chapter 2: Building an SPA Application with Scully and Angular Router 21

Essential background theory and context �� 21

Table of Contentsviii

Project overview ��� 22

Getting started �� 23

Setting up routing in an Angular application �� 23

Creating the basic layout of our blog ��� 25

Configuring routing for our application �� 30

Creating the contact page • 30

Adding the articles page • 34

Adding blog capabilities with Scully ��� 38

Installing the Scully library • 38

Initializing our blog page • 40

Displaying blog posts on the home page ��� 43

Summary �� 49

Practice questions ��� 49

Further reading ��� 50

Chapter 3: Building an Issue Tracking System Using Reactive Forms 51

Essential background theory and context ��� 52

Project overview ��� 52

Getting started �� 53

Installing Clarity in an Angular application �� 54

Displaying an overview of issues ��� 55

Fetching pending issues • 55

Visualizing issues in a data grid • 57

Reporting new issues �� 61

Setting up reactive forms in an Angular application • 61

Creating the report issue form • 62

Displaying a new issue in the list • 65

Validating the details of an issue • 69

Resolving an issue ��� 72

Turning on suggestions for new issues ��� 77

Summary �� 79

Table of Contents ix

Exercise ��� 79

Further reading �� 80

Chapter 4: Building a PWA Weather Application Using Angular Service
Worker 81

Essential background theory and context ��� 82

Project overview ��� 83

Getting started �� 83

Setting up the OpenWeather API �� 83

Displaying weather data ��� 84

Setting up the Angular application • 85

Communicating with the OpenWeather API • 87

Displaying weather information for a city • 90

Enabling offline mode with the service worker �� 95

Staying up to date with in-app notifications ��� 99

Deploying our app with Firebase Hosting ��� 105

Summary �� 109

Exercise ��� 109

Further reading ��� 109

Chapter 5: Building a WYSIWYG Editor for the Desktop Using Electron 111

Essential background theory and context ��� 111

Project overview �� 112

Getting started ��� 113

Adding a WYSIWYG editor library for Angular ��� 114

Integrating Electron in the workspace ��� 116

Communicating between Angular and Electron �� 122

Configuring the Angular CLI workspace • 123

Interacting with the editor • 124

Interacting with the filesystem • 127

Table of Contentsx

Packaging a desktop application �� 129

Configuring webpack for production • 129

Using an Electron bundler • 131

Summary ��� 134

Practice questions �� 134

Further reading �� 134

Chapter 6: Building a Mobile Photo Geotagging Application Using Capacitor
and 3D Maps 135

Essential background theory and context �� 136

Project overview �� 136

Getting started �� 138

Creating a mobile application with Ionic �� 138

Scaffolding the application • 138

Building the main menu • 139

Taking photos with Capacitor �� 141

Creating the user interface • 141

Interacting with Capacitor • 143

Storing data in Firebase �� 146

Creating a Firebase project • 147

Integrating the AngularFire library • 150

Previewing photos with CesiumJS ��� 154

Configuring CesiumJS • 155

Displaying photos on the viewer • 160

Summary �� 166

Practice questions ��� 166

Further reading ��� 166

Table of Contents xi

Chapter 7: Building an SSR Application for a GitHub Portfolio Using
Angular 169

Essential background theory and context ��� 170

Project overview ��� 170

Getting started ��� 171

Building an Angular application with the GitHub API ��� 171

Building the dashboard • 172

Displaying personal information • 175

Listing user repositories • 180

Visualizing the organization membership • 185

Integrating Angular Universal �� 189

Prerendering content during build �� 192

Enhancing SEO capabilities ��� 195

Summary �� 198

Practice questions ��� 198

Further reading ��� 198

Chapter 8: Building an Enterprise Portal Using Nx Monorepo Tools and
NgRx 201

Essential background theory and context ��� 202

Project overview ��� 203

Getting started �� 204

Creating a monorepo application using Nx ��� 204

Creating user-specific portals ��� 207

Building the visitor portal • 207

Building the administrator portal • 213

Managing application state with NgRx �� 216

Configuring the state • 216

Interacting with the store • 220

Table of Contentsxii

Visualizing data with graphs ��� 226

Persisting visit data in the store • 226

Displaying visit statistics • 230

Summary �� 235

Practice questions ��� 235

Further reading ��� 235

Chapter 9: Building a Component UI Library Using Angular CLI and Angular
CDK 237

Essential background theory and context ��� 238

Project overview ��� 238

Getting started �� 239

Creating a library with the Angular CLI �� 239

Building a draggable card list �� 242

Displaying card data • 242

Adding drag-and-drop functionality • 247

Interacting with the clipboard �� 250

Publishing an Angular library to npm ��� 254

Using components as Angular elements �� 256

Summary �� 259

Practice questions ��� 260

Further reading ��� 260

Chapter 10: Customizing Angular CLI Commands Using Schematics 263

Essential background theory and context ��� 263

Project overview ��� 264

Getting started �� 265

Installing the Schematics CLI ��� 265

Creating a Tailwind CSS component ��� 266

Creating an HTTP service �� 272

Table of Contents xiii

Summary �� 276

Exercise ��� 276

Further reading ��� 276

Other Books You May Enjoy 279

Index 283

Preface

Angular is a popular JavaScript framework that can run on a broad range of platforms, including

web, desktop, and mobile. It has an array of rich features right out of the box and a wide range

of tools that makes it popular among developers. This updated third edition of Angular Projects

will teach you how to build efficient and optimized web applications using Angular.

You will start by exploring the essential features of the framework by creating 10 different re-

al-world web applications. Each application will demonstrate how to integrate Angular with a

different library and tool. As you advance, you will learn how to implement popular technologies

such as Angular Router, Scully, Electron, Angular’s service worker, Nx’s monorepo tools, NgRx,

and more while building an issue tracking system, a PWA weather application, a mobile photo

geotagging application, a component UI library, and many other exciting projects. In the con-

cluding chapters, you’ll get to grips with customizing Angular CLI commands using schematics.

By the end of this book, you will have the skills you need to build Angular apps using a variety of

different technologies according to you or your client’s needs.

Who this book is for
If you are a developer who has beginner-level experience with Angular and you’re looking to be-

come well versed in the essential tools for dealing with the various use cases you may encounter

with Angular, then this Angular development book is for you. Beginner-level knowledge of web

application development and basic experience of working with ES6 or TypeScript are assumed.

What this book covers
Chapter 1, Creating Your First Web Application in Angular, explores the main features of the Angu-

lar framework and teaches you about the basic building blocks that comprise a typical Angular

application. You will investigate the different tools and IDE extensions that are available in the

Angular ecosystem to enhance the developer’s workflow and experience.

Prefacexvi

Chapter 2, Building an SPA Application with Scully and Angular Router, looks at how an Angular

application is based on the Single-Page Application (SPA) architecture, where typically we have

multiple pages that are served by different URLs or routes. On the other hand, Jamstack is a hot

technology that is emerging and allows you to build fast, static websites and serve them directly

from a CDN. In this chapter, we will use the Angular Router to implement routing functionality

in an Angular application. We will also use Scully, the best static site generator for Angular, to

create a personal blog that embraces the Jamstack architecture.

Chapter 3, Building an Issue Tracking System Using Reactive Forms, is where we build an issue tracking

management system and use Angular reactive forms to add new issues to the system. We will

design our forms using Clarity Components from VMware, and we will incorporate built-in and

custom validations. We will also react to value changes in the forms and take actions accordingly.

Chapter 4, Building a PWA Weather Application Using Angular Service Worker, covers how the user

experience of a web application is not the same for all users, especially in places with poor network

coverage and connectivity. When we build a web application, we should take into account all

sorts of network types. In this chapter, we will create an application that uses the OpenWeather

API to display the weather of a specified region. We will learn how to deploy the application to

Firebase Hosting. We will also explore PWA techniques using the Angular service worker to pro-

vide a seamless user experience when offline.

Chapter 5, Building a WYSIWYG Editor for the Desktop Using Electron, a cross-platform JavaScript

framework for building desktop applications using web technologies. When combined with

Angular, it can yield really performant apps. In this chapter, we will create a WYSIWYG editor

that can run on the desktop. We will build an Angular application and integrate it with ngx-wig,

a popular WYSIWYG Angular library, and we will use Electron to package it as a desktop appli-

cation. Data is persisted locally in the filesystem using a Node.js API.

Chapter 6, Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps, covers

Capacitor, a service provided by the Ionic framework that turns any web application, such as one

created with Angular, into a native one. Its main advantage is that we can build a native mobile

application and a web app using the same code base. Cesium is a popular JavaScript framework for

building 3D maps. In this chapter, we will use Capacitor to build a geotagging mobile application

for our photos. We will use various Ionic plugins to take a photo in a specified location and persist

it to Cloud Firestore. We will then display a list of all photos taken inside the Cesium 3D viewer.

Preface xvii

Chapter 7, Building an SSR Application for a GitHub Portfolio Using Angular, dives into Search Engine

Optimization (SEO), a critical aspect for any website nowadays. Who doesn’t want their website

to look good when sharing it via social media? The real challenge for client web applications is to

optimize it, which can be accomplished by rendering content on the server. In this chapter, we

will learn how to create a GitHub portfolio application using the GitHub API. We will then render

it on the server and learn how to transfer the state to the browser. We will also see how to set the

page title and additional metadata dynamically.

Chapter 8, Building an Enterprise Portal Using Nx Monorepo Tools and NgRx, covers monorepo archi-

tecture, which is a popular technique for when working with multiple applications under a single

repository, giving speed and flexibility to the development process. In this chapter, we will use

Nx monorepo development tools to create two portals: one for the end user, in which they will

be able to select a Point of Interest (POI) and visit it on a map, and another for admins to check

on visit statistics for a given POI. Application state is managed using NgRx.

Chapter 9, Building a Component UI Library Using Angular CLI and Angular CDK, addresses how

enterprise organizations usually need custom UI libraries that can be used across different web

applications. The Angular CDK provides a broad range of functionalities for creating accessible

and high-performing UI components. In this chapter, we will create two different components

using the Angular CDK and the Bulma CSS framework. We will also package them as a single

Angular library and learn how to publish them on npm, so that they can be re-used in different

apps. We will also investigate how we can use each component as an Angular element.

Chapter 10, Customizing Angular CLI Commands Using Schematics, covers how organizations usually

follow different guidelines when it comes to creating Angular entities such as components or

services. Angular schematics can assist them by extending Angular CLI commands and providing

custom automation. In this chapter, we will learn how to use the Angular schematics API to build

our own set of commands for generating components and services. We will build a schematic for

creating an Angular component that contains the Tailwind CSS framework. We will also build

an Angular service that uses the built-in HTTP client by default.

To get the most out of this book
You will need a version of Angular 16 installed on your computer, preferably the latest one. All

code examples have been tested using the Angular 16.0.0 on Windows OS but they should work

with any future release of Angular 16 as well.

Prefacexviii

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Angular-Projects-Third-Edition. We also have other code bundles from our rich catalog of

books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/UbmtQ.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the

downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

getWeather(city: string): Observable<Weather> {

 const options = new HttpParams()

 .set('units', 'metric')

 .set('q', city)

 .set('appId', this.apiKey);

 return this.http.get<Weather>(this.apiUrl + 'weather', { params: options
});

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

import { HttpClientModule } from '@angular/common/http';

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

Any command-line input or output is written as follows:

ng generate service weather

https://github.com/PacktPublishing/Angular-Projects-Third-Edition
https://github.com/PacktPublishing/Angular-Projects-Third-Edition
https://github.com/PacktPublishing/
https://packt.link/UbmtQ

Preface xix

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexx

Share your thoughts
Once you’ve read Angular Projects, Third Edition, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1803239115
https://packt.link/r/1803239115

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239118

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239118

1
Creating Your First Web
Application in Angular

Angular is a popular and modern JavaScript framework that can run on different platforms, in-

cluding the web, desktop, and mobile. Angular applications are written in TypeScript, a superset

of JavaScript that provides syntactic sugar, such as strong typing and object-oriented techniques.

Angular applications are created and developed using a command-line tool made by the Angular

team called the Angular CLI. It automates many development tasks, such as scaffolding, testing,

and deploying Angular applications, which would take much time to configure manually.

The popularity of the Angular framework is considerably reflected in its broad tooling support. The

Visual Studio Code (VS Code) editor contains various extensions that enhance the development

experience when working with Angular.

In this chapter, we will cover the following topics:

• An introduction to the Angular CLI

• Exploring the rich ecosystem of Angular tooling in VS Code

• Creating our first Angular application

• Interacting with the Angular framework

• Using Nx Console to automate Angular CLI commands

Creating Your First Web Application in Angular 2

Essential background theory and context
The Angular framework is a cross-platform JavaScript framework that can run on various envi-

ronments, including the web, server, mobile, and desktop. It consists of a collection of JavaScript

libraries that we can use to build highly performant and scalable web applications. The architec-

ture of an Angular application is based on a hierarchical representation of components. Compo-

nents are the fundamental building blocks of an Angular application. They represent and control

a particular portion of a web page called the view. Some examples of components are as follows:

• A list of blog posts

• An issue reporting form

• A weather display widget

Components of an Angular application can be logically organized as a tree:

Figure 1.1 – Component tree

An Angular application typically has one main component by convention, called AppComponent.

Each component in the tree can communicate and interact with its siblings using an application

programming interface, defined by each component.

An Angular application can have many features that are called modules. Each module serves a

block of single functionality corresponding to a particular application domain or workflow. An-

gular modules are used to group Angular components that share similar functionality:

Chapter 1 3

Figure 1.2 – Module hierarchy

In the previous diagram, the dashed line circles represent Angular modules. An Angular application

typically has one main module by convention, called AppModule. Each module can import other

modules in an Angular application if they wish to use part of their functionality.

The functionality of a module can be further analyzed in the presentational and business logic of

a feature. Angular components should only handle the presentational logic and delegate business

logic tasks to services. The Angular framework provides Angular services to components using a

built-in dependency injection (DI) mechanism.

The Angular DI framework uses special-purpose objects, called injectors, to hide much of the

complexity of providing dependencies to an Angular application. Components are not required to

know the actual implementation of an Angular service. They only need to ask for it from an injector.

An Angular service should follow the single responsibility principle and not cross boundaries

between different modules. Some examples of services are as follows:

• Accessing data from a backend API using the HTTP protocol

• Interacting with the local storage of the browser

• Error logging

• Data transformations

Creating Your First Web Application in Angular 4

An Angular developer does not need to remember how to create components, modules, and ser-

vices by heart while building an Angular application. Luckily, the Angular CLI can assist us by

providing a command-line interface to accomplish these tasks.

Introduction to the Angular CLI
The Angular CLI is a tool created by the Angular team that improves the developer experience

while building Angular applications. It hides the complexity of scaffolding and configuring an An-

gular application while allowing developers to concentrate on what they do best – coding! Before

we can start using the Angular CLI, we need to set up the following prerequisites in our system:

• Node�js: A JavaScript runtime that is built on the v8 engine of Chrome. You can download

any Long-Term Support (LTS) version from https://nodejs.org.

• npm: A package manager for the Node.js runtime.

We can then install the Angular CLI using npm from the command line:

npm install -g @angular/cli

We use the -g option to install the Angular CLI globally, since we want to create Angular appli-

cations from any operating system path.

To verify that the Angular CLI has been installed correctly, we can run the following from the

command line:

ng version

The previous command will report the version of the Angular CLI installed in our system. The

Angular CLI provides a command-line interface through the ng command, which is the binary

executable of the Angular CLI. It can accept various options, including the following:

• serve: Build and serve an Angular application.

• build: Build an Angular application.

• test: Run the unit tests of an Angular application.

Installing the Angular CLI may require administrative privileges in some operating

systems.

https://nodejs.org

Chapter 1 5

• generate: Generate a new Angular artifact, such as a component or module.

• add: Install a third-party library compatible with the Angular framework.

• new: Create a new Angular application.

The previous options are the most common ones. If you want to view all the available commands,

execute the following in the command line:

ng help

The previous command will display a list of all the supported commands from the Angular CLI.

The Angular tooling ecosystem is full of extensions and utilities that can help us when developing

Angular applications. In the next section, we will learn some of those that work with VS Code.

Exploring the rich ecosystem of Angular tooling in
VS Code
There are many extensions available in the VS Code Marketplace that enhance the Angular tool-

ing ecosystem. In this section, we will learn about the most popular ones that can significantly

help us in Angular development:

• Nx Console

• Angular Language Service

• Angular Snippets

• Angular Evergreen

• Material Icon Theme

The preceding list is not exhaustive; some extensions are already included in the Angular Essen-

tials extension pack. However, you can browse more Angular extensions for VS Code at https://

marketplace.visualstudio.com/search?term=angular&target=VSCode.

Nx Console
Nx Console is a VS Code extension developed by the Nrwl team that provides a graphical user

interface over the Angular CLI. It contains most of the Angular CLI commands and uses the An-

gular CLI internally to execute each one. We will learn more about this extension in the Building

our application with Nx Console section.

https://marketplace.visualstudio.com/search?term=angular&target=VSCode
https://marketplace.visualstudio.com/search?term=angular&target=VSCode

Creating Your First Web Application in Angular 6

Angular Language Service
The Angular Language Service extension provides various enhancements while editing HTML

templates in an Angular application, including the following:

• Code autocompletion

• Compile error messages

• Go-to definition techniques

Code autocompletion is a feature that helps us find the right property or method to use while

typing. It works by displaying a list of suggestions while we start typing in HTML content:

Figure 1.3 – Code completion

In the previous screenshot, the Angular Language Service suggests the description component

property when we start typing the word descr. Notice that code completion only works for the

public properties and methods in a component.

One of the most common issues when developing web applications is detecting errors before

the application reaches production. This problem can be solved partially by the Angular compil-

er, which is bootstrapped upon building an Angular application for production. Moreover, the

Angular Language Service can take this further by displaying compilation error messages long

before our application reaches the compilation process:

Figure 1.4 – Compile error message

For example, if we accidentally misspell the name of a property or method of the component, the

Angular Language Service will display an appropriate error message.

Chapter 1 7

Angular Snippets
The Angular Snippets extension contains a collection of Angular code snippets for TypeScript

and HTML. In TypeScript, we can use it to create components, modules, or services in a blank

TypeScript file:

Figure 1.5 – New Angular component snippet

In an HTML template, we can use the extension to create useful Angular artifacts, such as the

*ngFor directive, to loop through a list in HTML:

Figure 1.6 – *ngFor snippet

Creating Your First Web Application in Angular 8

Due to the widespread popularity and capabilities of the Angular CLI, it looks more convenient

to use it to generate Angular artifacts in TypeScript. However, Angular Snippets does a great job

with the HTML part, where there are more things to remember by heart.

Angular Evergreen
A primary factor that makes the Angular framework so stable is that it follows a regular release

cycle based on semantic versioning. If we want our Angular applications to be packed with the

latest features and fixes, we must update them regularly. But how can we stay up to date most

efficiently? We can use the Angular Evergreen extension!

It compares the Angular and Angular CLI versions of an Angular CLI project with the latest ones

and alerts you about whether you need to update it:

Figure 1.7 – Angular Evergreen

Chapter 1 9

It provides an easy-to-use user interface to execute the following commands:

• Upgrading Angular dependencies to the latest version

• Upgrading Angular dependencies to the next version

• Upgrading all npm dependencies

Angular Evergreen is the perfect extension to always stay updated with your Angular projects.

Material Icon Theme
The last extension in the list adds little value regarding the productivity of the developer. Instead, it

focuses on the discoverability and aesthetic point of view by modifying the icon theme of VS Code.

The Material Icon Theme contains a ton of icons that are based on Google Material Design. It

can understand each file type in your project and display the related icon automatically. For ex-

ample, Angular modules are indicated with a red Angular icon, whereas components are shown

with a blue Angular icon.

VS Code has a default file icon theme called Seti. Once you’ve installed Material Icon Theme, it

will prompt you to select which one you would like to activate:

Figure 1.8 – Selecting a file icon theme

Selecting Material Icon Theme will automatically update the icons of your current Angular project.

Now, when you open your Angular project, you will understand the type of each file at a glance,

even if its name is not displayed wholly on the screen.

Project overview
In this project, we will use Angular CLI to create a new Angular application from scratch. Then,

we will interact with the core functionality of the Angular framework to make a simple change

to our application. Finally, we will learn how to use the Nx Console extension to build and serve

our application.

Material Icon Theme is installed and applied globally to VS Code, so you do not need

to activate it separately for each Angular CLI project.

Creating Your First Web Application in Angular 10

Build time: 15 minutes.

Getting started
The following software tools are required to complete this project:

• Git: A free and open-source distributed version control system. You can download it from

https://git-scm.com.

• VS Code: A code editor that you can download from https://code.visualstudio.com.

• Angular CLI: We introduced the command-line interface for Angular in the Essential

background theory and context section.

• GitHub material: The code for this chapter, which you can find in the Chapter01 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Creating our first Angular application
To create a fresh new Angular application, we must execute the ng new command of the Angular

CLI, passing the name of the application as an option:

ng new my-app

The ng new command is used to create a new Angular application or a new Angular workspace.

An Angular workspace is an Angular CLI project containing one or more Angular applications,

some of which can be Angular libraries. So, when we execute the ng new command, we create an

Angular workspace with an Angular application by default.

In the previous command, the name of our Angular application is my-app. Upon executing the

command, the Angular CLI will ask some questions to collect as much information as possible

regarding the nature of the application we want to create:

1. Initially, it will ask if we want to enable Angular analytics:

Would you like to share pseudonymous usage data about this project
with the Angular Team at Google under Google's Privacy Policy at
https://policies.google.com/privacy. For more details and how to
change this setting, see https://angular.io/analytics. (y/N)

The Angular CLI will only ask the previous question once, when we create our first Angular

project, and apply it globally in your system. However, we can change the setting later in

a specific Angular workspace.

2. Next, it will ask whether we want to enable routing in our Angular application:

https://git-scm.com
https://code.visualstudio.com
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Chapter 1 11

Would you like to add Angular routing? (y/N)

Routing in Angular is all about navigating between the components of an Angular appli-

cation using a URL. We are not concerned with routing in this project, so press Enter to

accept the default value.

3. Then, the Angular CLI prompts us to select the style format that we want to use through-

out the Angular application:

Which stylesheet format would you like to use? (Use arrow keys)

Select a format from the list of available stylesheets and press Enter.

The Angular CLI initiates the creation process of your Angular application, which consists of the

following:

• Scaffolding the necessary folder structure of a typical Angular CLI project

• Installing the required npm dependencies and Angular packages

• Initializing Git in the Angular CLI project

This process may take some time, depending on the speed of your network. Once it has finished,

you should have a new folder named my-app in the path where you ran the ng new Angular CLI

command.

Now, the time has finally come to run our Angular application and see it in action:

1. Open a terminal window and navigate to the my-app folder.

2. Run the following Angular CLI command:

ng serve

The preceding command will build the Angular application and start a built-in web server

that we can use to preview it. The web server is started in watch mode; it automatically

rebuilds the Angular application whenever we change the code. The first time an Angular

application is built, it takes considerable time to complete, so we must be patient. We will

know when the process has finished with no errors when we see the following message

in the terminal window:

Figure 1.9 – Angular build output

Creating Your First Web Application in Angular 12

3. Fire up your favorite browser and navigate to http://localhost:4200 to get a preview

of your brand-new Angular application:

Figure 1.10 – Minimal Angular application

The Angular CLI creates a minimal Angular application by default to provide us with a starting

point for our Angular project. It contains some ready-made CSS styles and HTML content, which

we will learn how to change according to our specifications in the following section.

Chapter 1 13

Interacting with the Angular framework
When working with Angular, the real fun starts when we get our hands dirty with the framework it-

self. After all, understanding how Angular works and writing the application code is what matters.

The application source code resides inside the src\app folder at the root of our Angular CLI project.

It contains all the files needed to build and test our Angular application, including a component

and a module. The component is the main component of the Angular application:

app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'my-app';

}

The following properties characterize an Angular component:

• selector: A unique name used to identify and declare the component inside HTML content.

It is an HTML tag, just like any native HTML element, such as <app-root></app-root>.

• templateUrl: The path pointing to an HTML file that contains the HTML content of the

component, which is called the component template.

• styleUrls: A list of paths where each one points to a stylesheet file containing the CSS

styles of the component.

The Angular CLI provides the app- prefix by default in component selectors.

We can use a custom one using the --prefix option when creating a new

Angular CLI application from scratch. A custom prefix can be based on the

name of an organization or a particular product, and it helps avoid collisions

with other libraries or modules.

Creating Your First Web Application in Angular 14

The preceding properties are defined using the @Component decorator. It is a function that dec-

orates the TypeScript class of the component and recognizes it as an Angular component. The

title property of the AppComponent class is a public property that contains a string value and

can be used in the component template.

The main module of our Angular application uses a similar decorator called @NgModule to define

its properties:

app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

The decorator of an Angular module defines a set of properties that can be used to configure the

module. The most common ones are as follows:

• declarations: Defines Angular components that are part of the Angular module. Every

component that exists in the Angular module must be added to the declarations array.

• imports: Defines other Angular modules that contain the functionality the Angular mod-

ule needs.

Let’s get our feet wet now by modifying the code of our Angular application. We will change

the following greeting message, which is displayed at application startup, to something more

meaningful:

Chapter 1 15

Figure 1.11 – Greeting message

First, we need to find where the message in the previous screenshot is declared. The main compo-

nent of an Angular application is the component that is loaded at application startup by default.

So, the message should be declared inside the app.component.ts file. Let’s take a look:

1. Open the VS Code editor and select File | Open folder… from the main menu.

2. Find the my-app folder of the Angular application that we created and select it.

3. Navigate to the src\app folder from the EXPLORER pane and select the app.component.

ts file.

4. Locate the title property in the AppComponent class and change its value to

Angular Projects:

title = 'Angular Projects';

5. Run ng serve from the terminal window if the application is not running, and navigate

to http://localhost:4200 using your browser. Our Angular application should now

display the following greeting message:

Figure 1.12 – Greeting message

The title property is bound to the template of the main component. If we open the app.component.

html file and go to line 344, we will see the following HTML code:

{{ title }} app is running!

The bootstrap property of the main module of the application indicates the com-

ponent that is displayed when an Angular application is bootstrapped. We rarely

need to change this property. The selector of that component is used in the index.

html file by default.

Creating Your First Web Application in Angular 16

The {{}} syntax surrounding the title property is called interpolation. During interpolation,

the Angular framework reads the enclosed component property value, converts it into text, and

prints it on the screen.

The Angular CLI provides a rich collection of commands to assist us during our daily develop-

ment routine. However, many developers struggle to use the command line and prefer a more

graphical approach. In the next section, we will learn how to use the Nx Console, a graphical user

interface for the Angular CLI.

Using Nx Console for automating Angular CLI
commands
The Angular CLI is a command-line tool with a variety of commands. Each command can accept a

wide range of options and parameters according to the task we want to accomplish. Remembering

these commands and their options by heart is daunting and time-consuming. In such cases, the

ecosystem of Angular tooling can come in handy. VS Code Marketplace contains many useful

extensions that we can install to help us during Angular development. One of these extensions

is the Nx Console, which provides a user interface over the Angular CLI. To install the Nx Console

in your environment, follow these steps:

1. Open VS Code and click on the Extensions menu in the sidebar:

Figure 1.13 – VS Code Extensions

2. In the EXTENSIONS pane that appears, type Nx Console.

3. Click the Install button on the first item to install the Nx Console extension.

Chapter 1 17

The Nx Console extension is now installed globally in our environment, so we can use it in any

Angular project. It is a graphical representation of the most common Angular CLI commands.

Currently, it supports the following commands (the related Angular CLI command is shown in

parentheses):

• generate: Generate new Angular artifacts, such as components and modules (ng generate).

• run: Run an architect target, as defined in the angular.json configuration file of the

Angular CLI workspace (ng run).

• build: Build an Angular application (ng build).

• serve: Build and serve an Angular application (ng serve).

• test: Run the unit tests of an Angular application (ng test).

The Nx Console can almost achieve whatever we can do with the Angular CLI. The real benefit

is that the developer does not need to remember all the Angular CLI command options, as they

are all represented in a graphical interface. Let’s see how:

1. Open the my-app folder using VS Code and click on the Nx Console menu in the sidebar:

Figure 1.14 – Nx Console

Creating Your First Web Application in Angular 18

2. Select the serve command from the PROJECTS pane and click the play button to execute it:

Figure 1.15 – The serve command

3. VS Code opens an integrated terminal at the bottom of the editor and executes the ng

serve command:

Figure 1.16 – VS Code integrated terminal

It is the same command we run when using the Angular CLI from a terminal window.

The Nx Console uses tasks internally to run Angular CLI commands. Tasks are a built-in mech-

anism of VS Code that allow us to run scripts or start external processes without interacting

directly with the command line.

The Nx Console extension does a fantastic job of removing the burden of remembering Angular

CLI commands by heart. The VS Code Marketplace contains many more extensions for Angular

developers that supplement the job of the Nx Console.

Summary
In this chapter, we learned about the basic principles of the Angular framework and provided a

brief overview of the Angular architecture. We saw some popular extensions for VS Code that we

can use to enhance our development experience while working with Angular.

Chapter 1 19

Then, we learned how to use the Angular CLI, a powerful tool of the Angular ecosystem, to scaf-

fold and build a new Angular application from scratch. We also made our first interaction with

Angular code by modifying the Angular component of a typical Angular CLI application. Finally,

we installed the Nx Console extension and learned how to build our application.

In the next chapter, we will look at the Angular Router and learn how to use it to create a personal

blog, using the Scully static website generator.

Practice questions
Let’s take a look at a few practice questions:

1. What is the basic building block of an Angular application?

2. How do we group components of similar functionality?

3. Who handles business logic tasks in an Angular application?

4. Which Angular CLI command can we use to create a new Angular application?

5. Which Angular CLI command can we use to serve an Angular application?

6. How do we declare an Angular component in HTML?

7. How do we declare Angular components in a module?

8. What syntax do we use to bind text on HTML templates?

9. What is the benefit of using the Nx Console?

10. Which extension do we use to perform static analysis in our Angular code?

Further reading
Here are some links to build upon what we learned in the chapter:

• Introduction to Basic Angular Concepts: https://angular.io/guide/architecture

• Interpolation: https://angular.io/guide/interpolation

• Nx Console: https://nx.dev/core-features/integrate-with-editors#vscode-

plugin:-nx-console

• Angular Essentials: https://marketplace.visualstudio.com/items?itemName=johnpapa.

angular-essentials

• Angular Evergreen: https://expertlysimple.io/get-evergreen

https://angular.io/guide/architecture
https://angular.io/guide/interpolation
https://nx.dev/core-features/integrate-with-editors#vscode-plugin:-nx-console
https://nx.dev/core-features/integrate-with-editors#vscode-plugin:-nx-console
https://marketplace.visualstudio.com/items?itemName=johnpapa.angular-essentials
https://marketplace.visualstudio.com/items?itemName=johnpapa.angular-essentials
https://expertlysimple.io/get-evergreen

2
Building an SPA Application
with Scully and Angular Router

Angular applications follow the Single-Page Application (SPA) architecture, where different

views of the web page can be activated using the URL in the browser. Any changes to that URL

can be intercepted by the Angular router and translated to routes that can activate a particular

Angular component.

Scully is a popular static website generator that is based on the Jamstack architecture. It can

cooperate nicely with the Angular router to prerender the content of an Angular application

according to each route.

In this chapter, we are going to combine Angular and Scully to create a personal blog. The fol-

lowing topics are going to be covered:

• Setting up routing in an Angular application

• Creating the basic layout of our blog

• Configuring routing for our application

• Adding blog capabilities with Scully

• Displaying blog posts on the home page

Essential background theory and context
In the old days of web development, client-side applications were highly coupled with the un-

derlying server infrastructure. Much machinery was involved when we wanted to visit the page

of a website using a URL.

Building an SPA Application with Scully and Angular Router 22

The browser would send the requested URL to the server, and the server should respond with

a matching HTML file for that URL. This was a complicated process that would result in delays

and varying round-trip times.

Modern web applications eliminate these problems using the SPA architecture. A client needs to

request a single HTML file only once from the server. Any subsequent changes to the URL of the

browser are handled internally by the client infrastructure. In Angular, the router is responsible for

intercepting in-app URL requests and handling them according to a defined route configuration.

Jamstack is a hot emerging technology that allows us to create fast and secure web applications.

It can be used for any application type, ranging from an e-commerce website to a Software as

a Service (SaaS) web application or even a personal blog. The architecture of Jamstack is based

on the following pillars:

• Performance: Pages are generated and prerendered during production, eliminating the

need to wait for content to load.

• Scaling: Content is static files that can be served from anywhere, even from a Content

Delivery Network (CDN) provider that improves the performance of the application.

• Security: The serverless nature of server-side processes and the fact that content is already

static eliminates potential attacks that target server infrastructures.

Scully is the first static website generator for Angular that embraces the Jamstack approach.

It essentially generates pages of the Angular application during build time to be immediately

available when requested.

Project overview
In this project, we will build a personal blog using the Angular framework and enhance it with

Jamstack characteristics using the Scully site generator. Initially, we will scaffold a new Angular

application and enable it for routing. We will then create the basic layout of our application by

adding some barebones components. As soon as we have a working Angular application, we

will add blog support to it using Scully. We will then create some blog posts using Markdown

files and display them on the home page of our application. The following diagram depicts an

architectural overview of the project:

Chapter 2 23

Figure 2.1 – Project architecture

Build time: 1 hour.

Getting started
The following software tools are required to complete this project:

• Angular CLI: A command-line interface for Angular that you can find at https://angular.

io/cli.

• GitHub material: The related code for this chapter, which you can find in the Chapter02

folder at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Setting up routing in an Angular application
We will kick off our project by creating a new Angular application from scratch. Execute the fol-

lowing Angular CLI command in a terminal window to create a new Angular application:

ng new my-blog --routing --style=scss

We use the ng new command to create a new Angular application, passing the following options:

• my-blog: The name of the Angular application that we want to create. The Angular CLI

will create a my-blog folder in the path where we execute the command.

• --routing: Enables routing in the Angular application.

Every command that we run in the terminal window should be run inside

this folder.

https://angular.io/cli
https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building an SPA Application with Scully and Angular Router 24

• --style=scss: Configures the Angular application to use the SCSS stylesheet format when

working with CSS styles.

When we enable routing in an Angular application, the Angular CLI imports several artifacts from

the @angular/router npm package in our application:

• It creates the app-routing.module.ts file, which is the main routing module of our ap-

plication:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

const routes: Routes = [];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

• It imports AppRoutingModule into the main module of our application, app.module.ts:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

Chapter 2 25

})

export class AppModule { }

We configured our application to use the SCSS stylesheet format. Instead of creating the styles

of our application manually, we will use the Bootstrap CSS library:

1. Execute the following command in a terminal window to install Bootstrap:

npm install bootstrap

In the preceding command, we use the npm executable to install the bootstrap package

from the npm registry.

2. Add the following import statement at the top of the styles.scss file that exists in the

src folder of our Angular application:

@import "bootstrap/scss/bootstrap";

The styles.scss file contains CSS styles that are applied globally in our application. In the

previous snippet, we import all the styles from the Bootstrap library into our application.

The @import CSS rule accepts the absolute path of the bootstrap.scss file as an option

without adding the extension.

In the following section, we will learn how to create the basic layout of our blog by creating

components, such as the header and the footer.

Creating the basic layout of our blog
A blog typically has a header containing all the primary website links and a footer containing

copyright information and other useful links. In the world of Angular, both can be represented

as separate components.

The header component is used only once since it is added when our application starts up, and

it is always rendered as the main menu of the website. In Angular, we typically create a module,

named core by convention, to keep such components or services central to our application. To

create the module, we use the generate command of the Angular CLI:

ng generate module core

The preceding command will create the module in the src\app\core folder of our application. To

create the header component, we will use the same command, passing a different set of options:

ng generate component header --path=src/app/core --module=core --export

Building an SPA Application with Scully and Angular Router 26

The previous command will create all necessary component files inside the src\app\core\header

folder. It will also declare HeaderComponent in the core.module.ts file and add it to the exports

property so that other modules can use it:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { HeaderComponent } from './header/header.component';

@NgModule({

 declarations: [

 HeaderComponent

],

 imports: [

 CommonModule

],

 exports: [

 HeaderComponent

]

})

export class CoreModule { }

The header component should display the main links of our blog. Open the header.component.

html template file of the header component and replace its content with the following snippet:

<nav class="navbar navbar-expand navbar-light bg-light">

 <div class="container-fluid">

 Angular Projects

 <ul class="navbar-nav me-auto">

 <li class="nav-item">

 Articles

 <li class="nav-item">

 Contact

 </div>

</nav>

Chapter 2 27

The footer component can be used more than once in an Angular application. Currently, we want

to display it on the main page of our application. In the future, we may want to have it also on a

login page that will be available for blog visitors. In such a case, the footer component should be

reusable. When we want to group components that will be reused throughout our application,

we typically create a module named shared by convention. Use the Angular CLI generate com-

mand to create the module:

ng generate module shared

The previous command will create the shared module in the src\app\shared folder. The footer

component can now be created using the following command:

ng generate component footer --path=src/app/shared --module=shared
--export

The previous command will create all necessary files of the footer component inside the src\

app\shared\footer folder. It will also add FooterComponent in the declarations and exports

properties in the shared.module.ts file:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { FooterComponent } from './footer/footer.component';

@NgModule({

 declarations: [

 FooterComponent

],

 imports: [

 CommonModule

],

 exports: [

 FooterComponent

]

})

export class SharedModule { }

The content of the footer component should contain copyright information about our blog.

Building an SPA Application with Scully and Angular Router 28

Let’s see how to add this information to our component:

1. Open the footer.component.ts file, add a currentDate property in the FooterComponent

class, and initialize it to a new Date object:

currentDate = new Date();

2. Open the footer.component.html template file of the footer component and replace its

content with the following:

<nav class="navbar fixed-bottom navbar-light bg-light">

 <div class="container-fluid">

 <p>Copyright @{{currentDate | date: 'y'}}. All

 Rights Reserved</p>

 </div>

</nav>

The preceding code uses interpolation to display the value of the currentDate property on

the screen. It also uses the built-in date pipe to display only the year of the current date.

We have already created the essential components of our blog. Now it is time to display them

on the screen:

1. Open the main module of the application, the app.module.ts file, and add CoreModule

and SharedModule into the imports property of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 CoreModule,

 SharedModule

],

Pipes are a built-in feature of the Angular framework that apply transforma-

tions on the view representation of a component property. The underlying

value of the property remains intact.

Chapter 2 29

 providers: [],

 bootstrap: [AppComponent]

})

2. Add the appropriate import statements at the top of the file for each module:

import { CoreModule } from './core/core.module';

import { SharedModule } from './shared/shared.module';

3. Open the app.component.html template file of the main component and replace its con-

tent with the following HTML snippet:

<app-header></app-header>

<app-footer></app-footer>

We added the header and the footer component in the preceding snippet by using their

CSS selectors.

If we run the serve command of the Angular CLI to preview the application, we should get the

following:

Figure 2.2 – Basic layout

Building an SPA Application with Scully and Angular Router 30

We have already completed the basic layout of our blog application, and it looks great! But the

header contains two additional links that we have not covered yet. We will learn how to use

routing to activate those links in the following section.

Configuring routing for our application
The header component that we created in the previous section contains two links:

• Articles: Displays a list of blog articles

• Contact: Displays personal information about the blog owner

The previous links will also become the main features of our application. So, we need to create

an Angular module for each one.

By convention, Angular modules that contain functionality for a specific feature are called feature

modules.

Creating the contact page
Let’s begin by creating our contact feature:

1. Create a module that will be the home for our contact feature:

ng generate module contact

2. Create a component that will be the main component of the contact module:

ng generate component contact --path=src/app/contact
--module=contact --export --flat

We pass the --flat option to the generate command so that the Angular CLI will not

create a separate folder for our component, as in previous cases. The contact component

will be the only component in our module, so there is no point in having it separately.

3. Open the contact.component.html file and add the following HTML content:

<div class="card mx-auto text-center border-light" style="width:
18rem;">

 <img src="assets/angular.png" class="card-img-top"

When you design your website and need to decide upon the Angular modules that

you will use, check out the main menu of the website. Each link of the menu should

be a different feature and, thus, a different Angular module.

Chapter 2 31

 alt="Angular logo">

 <div class="card-body">

 <h5 class="card-title">Angular Projects</h5>

 <p class="card-text">

 A personal blog created with the Angular

 framework and the Scully static site generator

 </p>

 <a href="https://angular.io/" target="_blank"

 class="card-link">Angular

 <a href="https://scully.io/" target="_blank"

 class="card-link">Scully

 </div>

</div>

In the preceding code, we used the angular.png image, which you can find in the src\

assets folder of the project from the accompanying GitHub repository.

We have already created our contact feature. The next step is to add it to the main page of our

Angular application:

1. Open the app-routing.module.ts file and add a new route configuration object in the

routes property:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ContactComponent } from './contact/contact.component';

const routes: Routes = [

 { path: 'contact', component: ContactComponent }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

The assets folder in an Angular CLI project is used for static content such

as images, fonts, or JSON files.

Building an SPA Application with Scully and Angular Router 32

 exports: [RouterModule]

})

export class AppRoutingModule { }

The preceding code indicates that when the URL of the browser points to the contact

path, our application will activate and display ContactComponent on the screen. The

routes property of a routing module contains the routing configuration of the respective

feature module. It is an array of route configuration objects where each one defines the

component class and the URL path that activates it.

2. Add ContactModule in the imports array of the @NgModule decorator of AppModule to be

able to use it:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 CoreModule,

 SharedModule,

 ContactModule

],

 providers: [],

 bootstrap: [AppComponent]

})

Do not forget to add the respective import statement for ContactModule at the top of

the file.

3. Routed components, just like ContactComponent, need a place where they can be loaded.

Open the app.component.html file and add the <router-outlet> directive:

<app-header></app-header>

<div class="container">

 <router-outlet></router-outlet>

</div>

<app-footer></app-footer>

Chapter 2 33

Now, we need to wire up the route configuration that we created with the actual link on the

header component:

1. Open the header.component.html file and add the routerLink directive to the respective

anchor HTML element:

<li class="nav-item">

 <a routerLink="/contact" routerLinkActive="active"

 class="nav-link">Contact

In the preceding snippet, the routerLink directive points to the path property of the route

configuration object. We have also added the routerLinkActive directive, which sets the

active class on the anchor element when the specific route is activated.

2. The routerLink and routerLinkActive directives are part of the Angular Router package.

We need to import RouterModule in the core.module.ts file to use them:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { HeaderComponent } from './header/header.component';

import { RouterModule } from '@angular/router';

@NgModule({

 declarations: [

 HeaderComponent

],

 imports: [

 CommonModule,

 RouterModule

],

 exports: [

 HeaderComponent

]

Notice that the value of the routerLink directive contains a leading /,

whereas the path property of the route configuration object that we de-

fined does not. According to the case, omitting the / would give a different

meaning to the route.

Building an SPA Application with Scully and Angular Router 34

})

export class CoreModule { }

We are now ready to preview our new contact page! If we run the application using ng serve and

click on the Contact link, we should see the following output:

Figure 2.3 – Contact page

In the following section, we will build the functionality for the Articles link of the header in our

blog.

Adding the articles page
The feature that is responsible for displaying articles in our blog will be the articles module.

It will also be the module that connects the dots between Angular and Scully. We will use the

generate command of the Angular CLI to create that module:

ng generate module articles --route=articles --module=app-routing

Chapter 2 35

In the previous command, we pass some additional routing options:

• --route: Defines the URL path of our feature

• --module: Indicates the routing module that will define the route configuration object

that activates our feature

The Angular CLI performs additional actions, instead of just creating the module, upon executing

the command:

• It creates a routed component in the src\app\articles folder that will be activated by

default from a route navigation object. It is the landing page of our feature, and it will

display a list of blog posts, as we will see in the Displaying blog data on the home page section.

• It creates a routing module named articles-routing.module.ts that contains the rout-

ing configuration of our module.

• It adds a new route configuration object in the route configuration of the main application

module that activates our module.

The articles-routing.module.ts file contains the routing configuration for the articles module:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ArticlesComponent } from './articles.component';

const routes: Routes = [{ path: '', component: ArticlesComponent }];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule]

})

export class ArticlesRoutingModule { }

It imports RouterModule using the forChild method to pass the routing configuration to the

Angular router. If we take a look at the main routing module of the application, we will see that

it follows a slightly different approach:

app-routing.module.ts

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ContactComponent } from './contact/contact.component';

Building an SPA Application with Scully and Angular Router 36

const routes: Routes = [

 { path: 'contact', component: ContactComponent },

 { path: 'articles', loadChildren: () => import('./articles/articles.
module').then(m => m.ArticlesModule) }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

The forChild method is used in feature modules, whereas the forRoot method should be used

only in the main application module.

The route configuration of the articles module contains only one route that activates

ArticlesComponent. The path of the route is set to an empty string to indicate that it is the de-

fault route of the routing module. It essentially means that ArticlesComponent will be activated

whenever that module is loaded. But how is the articles module loaded in our application?

The second route of the main routing module contains a route configuration object that does not ac-

tivate a component but rather a module. It uses the loadChildren method to load ArticlesModule

dynamically when navigation triggers the articles path.

The previous approach is called lazy loading and improves the startup and the overall perfor-

mance of an Angular application. It creates a separate bundle for each lazy-loaded module, which

is loaded upon request, reducing the final bundle size and the memory consumption of your

application. Let’s wire up the new route to our header component:

1. Open the header.component.html file and add the following routerLink and

routerLinkActive directives to the Articles anchor HTML element:

<li class="nav-item">

 <a routerLink="/articles" routerLinkActive="active"

The import function in the loadChildren property accepts the relative path of the

TypeScript module file without the extension.

Chapter 2 37

 class="nav-link">Articles

2. Run ng serve and use your favorite browser to preview your application.

3. Open the developer tools of your browser, click on the Articles link, and inspect the Net-

work tab:

Figure 2.4 – Lazy loading Angular module

Among other requests, you should see one named src_app_articles_articles_module_ts.js.

It is the bundle of the lazy-loaded articles module that was loaded when you clicked on the Ar-

ticles link.

We are now ready to convert our amazing Angular application into a professional blog website.

Building an SPA Application with Scully and Angular Router 38

Before we move on, let’s add some additional routes to the app-routing.module.ts file:

const routes: Routes = [

 { path: 'contact', component: ContactComponent },

 { path: 'articles', loadChildren: () => import('./articles/articles.
module').then(m => m.ArticlesModule) },

 { path: '', pathMatch: 'full', redirectTo: 'articles' },

 { path: '**', redirectTo: 'articles' }

];

We added a default route to automatically redirect our blog users to the articles path upon

visiting the blog. Additionally, we created a new route configuration object with its path set to

** that also navigates to the articles path. The ** syntax is called the wildcard route, and it is

triggered when the router cannot match a requested URL with a defined route.

We have already enabled and configured routing in our Angular application. In the following

section, we will establish the infrastructure needed to add blogging capabilities to our application.

Adding blog capabilities with Scully
Our application currently does not have any specific logic regarding blog posts. It is a typical

Angular application that uses routing. However, by adding a routing configuration, we have

established the foundation for adding blog support using Scully.

First, we need to install Scully in our application.

Installing the Scully library
We will use the install command of the npm CLI to install Scully in our Angular application:

npm install @scullyio/init @scullyio/ng-lib @scullyio/scully @scullyio/
scully-plugin-puppeteer --force

Define the most specific routes first and then add any generic ones, such as the

default and the wildcard routes. The Angular router parses the route configuration

in the order that we define and follows a first-match-wins strategy to select one.

Scully needs at least one route defined in an Angular application to work correctly.

Chapter 2 39

The preceding command downloads and installs all the necessary npm packages for Scully to

work correctly in our Angular application.

Open the app.module.ts file and import ScullyLibModule:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { ContactModule } from './contact/contact.module';

import { CoreModule } from './core/core.module';

import { SharedModule } from './shared/shared.module';

import { ScullyLibModule } from '@scullyio/ng-lib';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 CoreModule,

 SharedModule,

 ContactModule,

 ScullyLibModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

ScullyLibModule is the main module of the Scully library; it contains various Angular services

and directives that Scully will need.

The Scully library is not fully compatible with Angular 16, as of this writing. In the

preceding command we use the --force option to ignore any warnings that come

from the Angular version incompatibility.

Building an SPA Application with Scully and Angular Router 40

Create a configuration file for the Scully library in the root folder of the Angular CLI workspace

with the following contents:

scully.my-blog.config.ts

import { ScullyConfig } from '@scullyio/scully';

export const config: ScullyConfig = {

 projectRoot: "./src",

 projectName: "my-blog",

 outDir: './dist/static',

 routes: {

 }

};

The configuration file contains information about our Angular application that Scully will need

along the way:

• projectRoot: The path containing the source code of the Angular application

• projectName: The name of the Angular application

• outDir: The output path of the Scully-generated files

• routes: It contains the route configuration that will be used for accessing our blog posts.

Scully will populate it automatically, as we will see in the following section.

Since we have installed Scully successfully in our Angular application, we can now configure it

to initialize our blog.

Initializing our blog page
Scully provides a specific Angular CLI schematic for initializing an Angular application, such as

a blog, by using Markdown (.md) files:

ng generate @scullyio/init:markdown --project my-blog

The Scully output path must be different from the path that the Angular

CLI outputs for the bundle of your Angular application. The latter can be

configured in the angular.json file.

Chapter 2 41

The previous command will start the configuration process of our blog by going through a list of

questions (default values are shown inside parentheses):

1. Type posts as the name of the blog module:

What name do you want to use for the module? (blog)

This will create a new Angular module named posts.

2. Leave the slug choice empty, and press Enter to accept the default value:

What slug do you want for the markdown file? (id)

The slug is a unique identifier for each post, and it is defined in the route configuration

object of the module.

3. Enter mdfiles as the path that Scully will use to store our actual blog post files:

Where do you want to store your markdown files?

This will create an mdfiles folder inside the root path of our Angular CLI project. By de-

fault, it will also create a blog post for our convenience. We will learn how to create our

own in the Displaying blog data on the home page section.

4. Type posts as the name of the route for accessing our blog posts:

Under which route do you want your files to be requested?

The name of the route is the path property of the route configuration object that will be

created.

Scully performs various actions upon executing the preceding commands, including the creation

of the routing configuration of the posts module:

posts-routing.module.ts

import {NgModule} from '@angular/core';

import {Routes, RouterModule} from '@angular/router';

import {PostsComponent} from './posts.component';

Building an SPA Application with Scully and Angular Router 42

const routes: Routes = [

 {

 path: ':id',

 component: PostsComponent,

 },

 {

 path: '**',

 component: PostsComponent,

 }

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule],

})

export class PostsRoutingModule {}

The path property for the first route is set to :id and activates PostsComponent. The colon character

indicates that id is a route parameter. The id parameter is related to the slug property defined

earlier in the Scully configuration. Scully works by creating one route for each blog post that we

create. It uses the route configuration of the posts module and the main application module to

build the routes property in the Scully configuration file:

routes: {

 '/posts/:id': {

 type: 'contentFolder',

 id: {

 folder: "./mdfiles"

 }

 },

}

PostsComponent is the Angular component that is used to render the details of each blog post.

The template file of the component can be further customized according to your needs:

posts.component.html

<h3>ScullyIo content</h3>

<hr>

Chapter 2 43

<!-- This is where Scully will inject the static HTML -->

<scully-content></scully-content>

<hr>

<h4>End of content</h4>

You can customize all content in the previous template file except the <scully-content></scully-

content> line, which is used internally by Scully.

At this point, we have completed the installation and configuration of Scully in our Angular ap-

plication. It is now time for the final part of the project! In the next section, we will get Angular

and Scully to cooperate and display blog posts in our Angular application.

Displaying blog posts on the home page
We would like our users to see the list of available blog posts as soon as they land on our blog

website. According to the default route path that we have defined, ArticlesComponent is the

landing page of our blog. Scully provides ScullyRoutesService, an Angular service that we can

use in our components to get information about the routes that it will create according to the

blog posts. Let’s put this service into action on our landing page:

1. Open the articles.component.ts file and modify the import statements as follows:

import { Component, OnInit } from '@angular/core';

import { ScullyRoute, ScullyRoutesService } from '@scullyio/ng-lib';

import { Observable, map } from 'rxjs';

2. Add the OnInit interface to the list of implemented interfaces of the ArticlesComponent

class:

export class ArticlesComponent implements OnInit {

}

3. Inject ScullyRoutesService in the constructor of the ArticlesComponent class:

constructor(private scullyService: ScullyRoutesService) { }

4. Create the following component property:

posts$: Observable<ScullyRoute[]> | undefined;

5. Implement the ngOnInit method:

ngOnInit(): void {

Building an SPA Application with Scully and Angular Router 44

 this.posts$ = this.scullyService.available$.pipe(

 map(posts => posts.filter(post => post.title))

);

}

6. Open the articles.component.html file and add the following HTML code:

<div class="list-group mt-3">

 <a *ngFor="let post of posts$ | async"

 [routerLink]="post.route" class="list-group-item

 list-group-item-action">

 <div class="d-flex w-100 justify-content-between">

 <h5 class="mb-1">{{post.title}}</h5>

 </div>

 <p class="mb-1">{{post['description']}}</p>

</div>

There are many Angular techniques involved in the previous steps, so let’s break them down

piece by piece.

When we want to use an Angular service in a component, we just need to ask for it from the

Angular framework. How? By adding it as a property in the constructor of the component. The

component does not need to know anything about how the service is implemented.

The ngOnInit method is part of the OnInit interface, which is implemented by our component.

It is called by the Angular framework when a component is initialized and provides us with a

hook to add custom logic to be executed.

The available$ property of ScullyRoutesService is called an observable and returns all the

available routes that were generated from Scully when we subscribe to it. To avoid displaying

routes other than those related to blog posts, such as the contact route, we filter out the results

from the available$ property.

Angular services that provide initialization logic to a component should be called

inside the ngOnInit method and not in the constructor because it is easier to

provide mocks about those services when unit testing the component.

Chapter 2 45

In the component template, we use the *ngFor Angular built-in directive and the async pipe to

subscribe to the posts$ observable inside HTML. We can then access each item using the post

template reference variable and use interpolation to display title and description.

Finally, we add a routerLink directive to each anchor element to navigate to the respective blog

post when clicked. Notice that routerLink is surrounded by []. The [] syntax is called property

binding, and we use it when we want to bind the property of an HTML element to a variable. In

our case, we bind the routerLink directive to the route property of the post variable.

Now that we have finally completed all the pieces of the puzzle, we can see our blog website in

action:

1. Run the build command of the Angular CLI to build our Angular application:

ng build

2. Execute the following command to build Scully and generate our blog routes:

npx scully --project my-blog

The preceding command will create a scully-routes.json file inside the src\assets

folder. It contains the routes of our Angular application and is needed by the Scully runtime.

3. Run the following command to serve our blog:

npx scully serve --project my-blog

The preceding command will start two web servers: one that contains the static preren-

dered version of our website built using Scully and another that is the Angular live version

of our application:

Figure 2.5 – Serving our application

Running the Scully executable for the first time will prompt you to collect

anonymous errors to improve its services.

Building an SPA Application with Scully and Angular Router 46

If we open our browser and navigate to http://localhost:1668, we will not see any blog posts. A

blog post created with Scully is not returned in the available$ property of ScullyRoutesService

unless we publish it. To publish a blog post, we do the following:

1. Navigate to the mdfiles folder that Scully created and open the only .md file that you

will find. The name and contents may vary for your file because it is based on the date

Scully created it:

title: 2023-06-22-posts

description: 'blog description'

published: false

slugs:

 - ___UNPUBLISHED___lj738su6_7mqWyfNdmNCwovaCCi2tZItsDKMPJGcG

2023-06-22-posts

Scully has defined a set of properties between the closing and ending --- lines at the

top of the file representing metadata about the blog post. You can also add your own as

key-value pairs.

2. Delete the slugs property and set the published property to true:

title: 2023-06-22-posts

description: 'blog description'

published: true

2023-06-22-posts

3. Run the following command to force Scully to regenerate the routes of our application:

npx scully --project my-blog

We need to execute the previous command every time we make a change in our blog-re-

lated files.

Chapter 2 47

4. Execute the npx scully serve --project my-blog command and navigate to preview

the generated website.

We can now see one blog post, the default one that was created when we installed Scully. Let’s

create another one:

1. Run the following generate command of the Angular CLI:

ng generate @scullyio/init:post --name="Angular and Scully"

In the preceding command, we use the @scullyio/init:post schematic, passing the

name of the post that we want to create as an option.

2. Set the target folder for the new blog post to mdfiles:

What's the target folder for this post? (blog)

3. Scully will create a Markdown file named angular-and-scully.md inside the specified

folder. Open that file and update its content to be the same as the following:

title: 'Angular and Scully'

description: 'How to build a blog with Angular and Scully'

published: true

Angular and Scully

Angular is a robust JavaScript framework that we can use to build
excellent and performant web applications.

Scully is a popular static website generator that empowers the
Angular framework with Jamstack characteristics.

You can find more about them in the following links:

- https://angular.io

- https://scully.io

- https://www.jamstack.org

4. Run npx scully --project my-blog to create a route for the newly created blog post.

Scully will also update the scully-routes.json file with the new route.

Building an SPA Application with Scully and Angular Router 48

If we preview our application now, it should look like the following:

Figure 2.6 – List of blog posts

If we click on one of the blog items, we will navigate to the selected blog post. The content that

is currently shown on the screen is a prerendered version of the blog post route:

Figure 2.7 – Blog post details

To verify that, navigate to the dist folder of your Angular project, where you will find two folders:

• my-blog: This contains the Angular live version of our application. When we execute the

ng build Angular CLI command, it builds our application and outputs bundle files in

this folder.

• static: This contains a prerendered version of our Angular application generated from

Scully when we run the npx scully --project my-blog command.

If we navigate to the static folder, we will see that Scully has created one folder for each route

of our Angular application. Each folder contains an index.html file, which represents the com-

ponent that is activated from that route.

Chapter 2 49

The contents of the index.html file are auto-generated by Scully, and behave as if we run our

application live and navigate to that component.

Now you can take your Angular application, upload it to the CDN or web server of your choice,

and you will have your blog ready in no time! All you will have to do then will be to exercise your

writing skills to create excellent blog content.

Summary
In this chapter, we learned how to combine the Angular framework with the Scully library to

create a personal blog.

We saw how Angular uses the built-in router package to enhance web applications with in-app

navigation. We also learned how to organize an Angular application into modules and how to

navigate through these.

We introduced Jamstack to our Angular application using the Scully library and saw how easy it

is to convert our application into a prerendered blog. We used the Scully interface to create some

blog posts and display them on the screen.

In the following chapter, we will investigate another exciting feature of the Angular framework,

forms. We are going to learn how to use them and build an issue-tracking system.

Practice questions
Let’s take a look at a few practice questions:

1. Which library do we use for routing in an Angular application?

2. How do we add routing capabilities in an HTML anchor element?

3. Which Angular pipe do we use for date formatting?

4. What is the purpose of the assets folder in an Angular CLI application?

5. Which route property do we use for lazily loading a module?

6. Which npm CLI command do we use for installing Scully?

7. Which service do we use for fetching Scully routes?

8. What is property binding?

9. Which Angular directive do we use for iterating over an array in HTML?

10. What is the difference between a standard Angular application and a Scully one?

Building an SPA Application with Scully and Angular Router 50

Further reading
Here are some links to build upon what we learned in this chapter:

• Angular routing: https://angular.io/guide/router

• Angular feature modules: https://angular.io/guide/module-types

• Lazy loading modules: https://angular.io/guide/lazy-loading-ngmodules

• Angular built-in pipes: https://angular.io/api?type=pipe

• Bootstrap CSS: https://getbootstrap.com

• Jamstack: https://jamstack.org

• Scully: https://scully.io

• Mastering Markdown: https://guides.github.com/features/mastering-markdown

https://angular.io/guide/router
https://angular.io/guide/module-types
https://angular.io/guide/lazy-loading-ngmodules
https://angular.io/api?type=pipe
https://getbootstrap.com
https://jamstack.org
https://scully.io
https://guides.github.com/features/mastering-markdown

3
Building an Issue Tracking
System Using Reactive Forms

Web applications use HTML forms to collect data from users and validate them, such as when

logging in to an application, performing a search, or completing an online payment. The Angu-

lar framework provides two types of forms, reactive and template-driven, that we can use in an

Angular application.

In this chapter, we will build a system for managing and tracking issues. We will use Angular

reactive forms for reporting new issues. We will also use Clarity Design System from VMware

for designing our forms and displaying our issues.

We will cover the following topics:

• Installing Clarity Design System in an Angular application

• Displaying an overview of issues

• Reporting new issues

• Marking an issue as resolved

• Turning on suggestions for new issues

Building an Issue Tracking System Using Reactive Forms 52

Essential background theory and context
The Angular framework provides two types of forms that we can use:

• Template-driven: They are easy to set up in an Angular application. Template-driven

forms do not scale well and are difficult to test because they are defined in the component

template.

• Reactive: They are based on the reactive programming approach. Reactive forms operate

in the TypeScript class of the component, and they are easier to test and scale better than

template-driven forms.

In this chapter, we will get hands-on with the reactive forms approach, which is the most popular

in the Angular community.

Angular components can get data from external sources such as HTTP or other Angular compo-

nents. In the latter case, they interact with components that have data using a public API:

• @Input(): This is used to pass data into a component.

• @Output(): This is used to get notified about changes or get data back from a component.

Clarity is a design system that contains a set of UX and UI guidelines for building web applications.

It also comprises a proprietary HTML and CSS framework packed with these guidelines. Luckily,

we do not have to use this framework since Clarity already provides various Angular-based UI

components that we can use in our Angular applications.

Project overview
In this project, we will build an Angular application for managing and tracking issues using

reactive forms and Clarity. Initially, we will display a list of issues in a table that we can sort and

filter. We will then create a form for allowing users to report new issues. Finally, we will create

a modal dialog for resolving an issue. We will also go the extra mile and turn on suggestions

when reporting an issue to help users avoid duplicate entries. The following diagram depicts an

architectural overview of the project:

Chapter 3 53

Figure 3.1 – Project architecture

Build time: 1 hour

Getting started
The following software tools are required to complete this project:

• Angular CLI: A command-line interface for Angular that you can find at https://angular.

io/cli

• GitHub material: The related code for this chapter, which you can find in the Chapter03

folder at https://github.com/PacktPublishing/Angular-Projects-Third-Edition

https://angular.io/cli
https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building an Issue Tracking System Using Reactive Forms 54

Installing Clarity in an Angular application
Let’s start creating our issue-tracking system by scaffolding a new Angular application:

ng new issue-tracker --defaults

We use the ng new command of the Angular CLI to create a new Angular application with the

following characteristics:

• issue-tracker: The name of the Angular application.

• --defaults: This disables Angular routing for the application and sets the stylesheet for-

mat to CSS.

We now need to install the Clarity library in our Angular application:

1. Navigate to the issue-tracker folder that was created and run the following command

to install it:

npm install @cds/core @clr/angular @clr/ui --save

2. Open the angular.json file and add the Clarity CSS styles in the styles array:

"styles": [

 "node_modules/@clr/ui/clr-ui.min.css",

 "src/styles.css"

]

3. Finally, import ClarityModule and BrowserAnimationsModule in the main application

module, app.module.ts:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ClarityModule } from '@clr/angular';

import { BrowserAnimationsModule } from

 '@angular/platform-browser/animations';

@NgModule({

 declarations: [

 AppComponent

],

Chapter 3 55

 imports: [

 BrowserModule,

 ClarityModule,

 BrowserAnimationsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Now that we have completed installing Clarity in our application, we can start building beautiful

designs with it. In the following section, we will begin by creating a list for displaying our issues.

Displaying an overview of issues
Our Angular application will be responsible for managing and tracking issues. When the ap-

plication starts, we should display a list of all pending issues in the system. Pending issues are

defined as those issues that have not been resolved. The process that we will follow can be further

analyzed as the following:

• Fetching pending issues

• Visualizing issues using a data grid

Fetching pending issues
First, we need to create a mechanism for fetching all pending issues:

1. Use the generate command of the Angular CLI to create an Angular service named issues:

ng generate service issues

The preceding command will create an issues.service.ts file in the src\app folder of

our Angular CLI project.

2. Every issue will have specific properties of a defined type. We need to create a TypeScript

interface for that with the following Angular CLI command:

ng generate interface issue

The previous command will create an issue.ts file in the src\app folder of the project.

3. Open the issue.ts file and add the following properties in the Issue interface:

export interface Issue {

Building an Issue Tracking System Using Reactive Forms 56

 issueNo: number;

 title: string;

 description: string;

 priority: 'low' | 'high';

 type: 'Feature' | 'Bug' | 'Documentation';

 completed?: Date;

}

The completed property is the date that an issue is resolved. We define it as optional

because new issues will not have this property set.

4. Open the Angular service we created in step 1 and add an issues property to hold our

data. Also, create a getPendingIssues method that will return all issues that have not

been completed:

import { Injectable } from '@angular/core';

import { Issue } from './issue';

@Injectable({

 providedIn: 'root'

})

export class IssuesService {

 private issues: Issue[] = [];

 constructor() { }

 getPendingIssues(): Issue[] {

 return this.issues.filter(issue => !issue.completed);

 }

}

In the preceding code, we initialize the issues property to an empty array. If you want to

get started with sample data, you can use the mock-issues.ts file from the src\assets

folder that exists in the GitHub material of this chapter and import it as follows:

import { issues } from '../assets/mock-issues';

In the following section, we will create a component for displaying those issues.

Chapter 3 57

Visualizing issues in a data grid
We will use the data grid UI component of the Clarity library to display data in a tabular format.

A data grid also provides mechanisms for filtering and sorting out of the box. Let’s create the

Angular component that will host the data grid first:

1. Use the generate command of the Angular CLI to create the component:

ng generate component issue-list

2. Open the template of the main component of our application, app.component.html, and

replace its content with the following HTML code:

<div class="main-container">

 <div class="content-container">

 <div class="content-area">

 <app-issue-list></app-issue-list>

 </div>

 </div>

</div>

The list of issues will be displayed in the main component of the Angular application as

soon as it starts up.

3. Currently, the <app-issue-list> component displays no issue data. We must connect

it with the Angular service we created in the Fetching pending issues section. Open the

issue-list.component.ts file and inject IssuesService in the constructor of the

IssueListComponent class:

import { Component } from '@angular/core';

import { IssuesService } from '../issues.service';

@Component({

 selector: 'app-issue-list',

 templateUrl: './issue-list.component.html',

 styleUrls: ['./issue-list.component.css']

})

export class IssueListComponent {

 constructor(private issueService: IssuesService) { }

}

Building an Issue Tracking System Using Reactive Forms 58

4. Create a method named getIssues that will call the getPendingIssues method of the

injected service and keep its returned value in the issues component property:

import { Component } from '@angular/core';

import { Issue } from '../issue';

import { IssuesService } from '../issues.service';

@Component({

 selector: 'app-issue-list',

 templateUrl: './issue-list.component.html',

 styleUrls: ['./issue-list.component.css']

})

export class IssueListComponent {

 issues: Issue[] = [];

 constructor(private issueService: IssuesService) { }

 private getIssues() {

 this.issues = this.issueService.getPendingIssues();

 }

}

5. Finally, call the getIssues method in the ngOnInit component method to get all pending

issues upon component initialization:

import { Component, OnInit } from '@angular/core';

import { Issue } from '../issue';

import { IssuesService } from '../issues.service';

@Component({

 selector: 'app-issue-list',

 templateUrl: './issue-list.component.html',

 styleUrls: ['./issue-list.component.css']

})

export class IssueListComponent implements OnInit {

 issues: Issue[] = [];

 constructor(private issueService: IssuesService) { }

Chapter 3 59

 ngOnInit(): void {

 this.getIssues();

 }

 private getIssues() {

 this.issues = this.issueService.getPendingIssues();

 }

}

We have already implemented the process for getting issue data in our component. All we have

to do now is display it in the template. Open the issue-list.component.html file and replace

its content with the following HTML code:

<clr-datagrid>

 <clr-dg-column [clrDgField]="'issueNo'"
[clrDgColType]="'number'">Issue No</clr-dg-column>

 <clr-dg-column [clrDgField]="'type'">Type</clr-dg-column>

 <clr-dg-column [clrDgField]="'title'">Title</clr-dg-column>

 <clr-dg-column [clrDgField]="'description'">Description</clr-dg-
column>

 <clr-dg-column [clrDgField]="'priority'">Priority</clr-dg-column>

 <clr-dg-row *clrDgItems="let issue of issues">

 <clr-dg-cell>{{issue.issueNo}}</clr-dg-cell>

 <clr-dg-cell>{{issue.type}}</clr-dg-cell>

 <clr-dg-cell>{{issue.title}}</clr-dg-cell>

 <clr-dg-cell>{{issue.description}}</clr-dg-cell>

 <clr-dg-cell>

 <span class="label" [class.label-danger]="issue.priority ===
'high'">{{issue.priority}}

 </clr-dg-cell>

 </clr-dg-row>

 <clr-dg-footer>{{issues.length}} issues</clr-dg-footer>

</clr-datagrid>

In the preceding snippet, we use several Angular components of the Clarity library:

• <clr-datagrid>: Defines a table.

Building an Issue Tracking System Using Reactive Forms 60

• <clr-dg-column>: Defines a column of a table. Each column uses the clrDgField directive

to bind to the property name of the issue represented by that column. The clrDgField

directive provides sorting and filtering capabilities without writing a single line of code

in the TypeScript class file. Sorting works automatically only with string-based content.

If we want to sort by a different primitive type, we must use the clrDgColType directive

and specify the particular type.

• <clr-dg-row>: Defines a row of a table. It uses the *clrDgItems directive to iterate over

the issues and create one row for each issue.

• <clr-dg-cell>: Each row contains a collection of <clr-dg-cell> components to display

the value of each column using interpolation. In the last cell, we add the label-danger

class when an issue has a high priority to indicate its importance.

• <clr-dg-footer>: Defines the footer of a table. In this case, it displays the total number

of issues.

If we run our Angular application using ng serve, the output will look like the following:

Figure 3.2 – Overview of pending issues

The data grid component of the Clarity library has a rich set of capabilities that we can use in our

Angular applications. In the following section, we will learn how to use reactive forms to report

a new issue.

In the previous screenshot, the application uses sample data from the mock-issues.

ts file.

Chapter 3 61

Reporting new issues
One of the main features of our issue-tracking system is the ability to report new issues. We will

use Angular reactive forms to create a form for adding new issues. The feature can be further

subdivided into the following tasks:

• Setting up reactive forms in an Angular application

• Creating the report issue form

• Displaying a new issue in the list

• Validating the details of an issue

Let’s begin by introducing reactive forms in our Angular application.

Setting up reactive forms in an Angular application
Reactive forms are defined in the @angular/forms npm package of the Angular framework. To

add them to our Angular application:

1. Open the app.module.ts file and import ReactiveFormsModule:

import { ReactiveFormsModule } from '@angular/forms';

2. Add ReactiveFormsModule into the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent,

 IssueListComponent

],

 imports: [

 BrowserModule,

 ClarityModule,

 BrowserAnimationsModule,

 ReactiveFormsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

ReactiveFormsModule contains all necessary Angular directives and services that we will need

to work with forms, as we will see in the following section.

Building an Issue Tracking System Using Reactive Forms 62

Creating the report issue form
Now that we have introduced reactive forms in our Angular application, we can start building

our form:

1. Create a new Angular component named issue-report:

ng generate component issue-report

2. Open the issue-report.component.ts file and add the following import statement:

import { FormControl, FormGroup } from '@angular/forms';

In this statement, FormControl represents a single control of a form and FormGroup is

used to group individual controls into a logical form representation.

3. Create the following interface, which will represent the structure of our form:

interface IssueForm {

 title: FormControl<string>;

 description: FormControl<string>;

 priority: FormControl<string>;

 type: FormControl<string>;

}

4. Declare an issueForm property of the FormGroup<IssueForm> type in the TypeScript class:

issueForm = new FormGroup<IssueForm>({

 title: new FormControl('', { nonNullable: true }),

 description: new FormControl('', { nonNullable: true }),

 priority: new FormControl('', { nonNullable: true }),

 type: new FormControl('', { nonNullable: true })

});

We initialize all controls to empty strings because the form will be used to create a new

issue from scratch. We also explicitly state that all controls will not accept null values by

default using the nonNullable property.

5. We must now associate the FormGroup object we created with the respective HTML el-

ements. Open the issue-report.component.html file and replace its content with the

following HTML code:

<h3>Report an issue</h3>

<form clrForm *ngIf="issueForm" [formGroup]="issueForm">

Chapter 3 63

 <clr-input-container>

 <label>Title</label>

 <input clrInput formControlName="title" />

 </clr-input-container>

 <clr-textarea-container>

 <label>Description</label>

 <textarea clrTextarea

 formControlName="description"></textarea>

 </clr-textarea-container>

 <clr-radio-container clrInline>

 <label>Priority</label>

 <clr-radio-wrapper>

 <input type="radio" value="low" clrRadio

 formControlName="priority" />

 <label>Low</label>

 </clr-radio-wrapper>

 <clr-radio-wrapper>

 <input type="radio" value="high" clrRadio

 formControlName="priority" />

 <label>High</label>

 </clr-radio-wrapper>

 </clr-radio-container>

 <clr-select-container>

 <label>Type</label>

 <select clrSelect formControlName="type">

 <option value="Feature">Feature</option>

 <option value="Bug">Bug</option>

 <option value="Documentation">Documentation

 </option>

 </select>

 </clr-select-container>

</form>

The formGroup and clrForm directives associate the HTML <form> element with the

issueForm property and identify it as a Clarity form.

The formControlName directive is used to associate HTML elements with form controls

using their name. Each control is also defined using a Clarity container element.

Building an Issue Tracking System Using Reactive Forms 64

For example, the title input control is a <clr-input-container> component that con-

tains an <input> HTML element.

Each native HTML element has a Clarity directive attached to it according to its type. For

example, the <input> HTML element contains a clrInput directive.

6. Finally, add some styles to our issue-report.component.css file:

.clr-input, .clr-textarea {

 width: 30%;

}

button {

 margin-top: 25px;

}

Now that we have created the basics of our form, we will learn how to submit its details:

1. Add an HTML <button> element before the closing tag of the HTML <form> element:

<button class="btn btn-primary" type="submit">Create</button>

We set its type to submit to trigger form submission upon clicking the button.

2. Open the issues.service.ts file and add a createIssue method that inserts a new issue

into the issues array:

createIssue(issue: Issue) {

 issue.issueNo = this.issues.length + 1;

 this.issues.push(issue);

}

We automatically assign a new issueNo property to the issue before adding it to the

issues array.

3. Return to the issue-report.component.ts file and add the following import statements:

import { Issue } from '../issue';

import { IssuesService } from '../issues.service';

The issueNo property is currently calculated according to the length of the

issues array. A better approach would be implementing a generator mech-

anism for creating unique and random issueNo values.

Chapter 3 65

4. Inject the IssuesService class into the constructor of the TypeScript class:

constructor(private issueService: IssuesService) { }

5. Add a new component method that will call the createIssue method of the injected

service:

addIssue() {

 this.issueService.createIssue(this.issueForm.getRawValue() as
Issue);

}

We pass the value of each form control using the getRawValue property of the issueForm

object that will provide us access to the underlying form model. We are also typecasting it

to the Issue interface since we already know that its values will represent the properties

of an issue object.

6. Open the issue-report.component.html file and bind the ngSubmit event of the form

to the addIssue component method:

<form clrForm *ngIf="issueForm" [formGroup]="issueForm"
(ngSubmit)="addIssue()">

The ngSubmit event will be triggered when we click on the Create button of the form.

We have completed all the processes to add a new issue to the system. In the following section,

we will learn how to display a newly created issue in the pending issue table.

Displaying a new issue in the list
Displaying and creating new issues are two tasks delegated to different Angular components.

When we create a new issue with IssueReportComponent, we need to notify IssueListComponent

to reflect that change in the table. First, let’s see how we can configure IssueReportComponent

to communicate that change:

1. Open the issue-report.component.ts file and use the @Output() decorator to add an

EventEmitter property:

@Output() formClose = new EventEmitter();

Output and EventEmitter symbols can be imported from the @angular/core npm package.

Building an Issue Tracking System Using Reactive Forms 66

2. Call the emit method of the formClose output property inside the addIssue component

method right after creating the issue:

addIssue() {

 this.issueService.createIssue(this.issueForm.getRawValue() as
Issue);

 this.formClose.emit();

}

3. Add a second HTML <button> element in the component template and call the formClose.

emit method on its click event:

<button class="btn" type="button" (click)="formClose.
emit()">Cancel</button>

IssueListComponent can now bind to the formClose event of IssueReportComponent and be

notified when any buttons are clicked. Let’s find out how:

1. Open the issue-list.component.ts file and add the following property in the

IssueListComponent class:

showReportIssue = false;

The showReportIssue property will toggle the appearance of the report issue form.

2. Add the following component method, which will be called when the report issue form

emits the formClose event:

onCloseReport() {

 this.showReportIssue = false;

 this.getIssues();

}

The preceding method will set the showReportIssue property to false so that the report

issue form is no longer visible and the table of pending issues is displayed instead. It will

also fetch issues again to refresh the data in the table.

3. Open the issue-list.component.html file and add an HTML <button> element at the

top of the template. The button will display the report issue form when clicked:

<button class="btn btn-primary" (click)="showReportIssue = true">Add
new issue</button>

Chapter 3 67

4. Group the button and the data grid inside an <ng-container> element. As indicated by

the *ngIf Angular directive, the contents of the <ng-container> element will be displayed

when the report issue form is not visible:

<ng-container *ngIf="showReportIssue === false">

 <button class="btn btn-primary" (click)="showReportIssue =
true">Add new issue</button>

 <clr-datagrid>

 <clr-dg-column [clrDgField]="'issueNo'"
[clrDgColType]="'number'">Issue No</clr-dg-column>

 <clr-dg-column [clrDgField]="'type'">Type</clr-dg-column>

 <clr-dg-column [clrDgField]="'title'">Title</clr-dg-column>

 <clr-dg-column [clrDgField]="'description'">Description</
clr-dg-column>

 <clr-dg-column [clrDgField]="'priority'">Priority</clr-dg-
column>

 <clr-dg-row *clrDgItems="let issue of issues">

 <clr-dg-cell>{{issue.issueNo}}</clr-dg-cell>

 <clr-dg-cell>{{issue.type}}</clr-dg-cell>

 <clr-dg-cell>{{issue.title}}</clr-dg-cell>

 <clr-dg-cell>{{issue.description}}</clr-dg-cell>

 <clr-dg-cell>

 <span class="label" [class.label-danger]="issue.
priority === 'high'">{{issue.priority}}

 </clr-dg-cell>

 </clr-dg-row>

 <clr-dg-footer>{{issues.length}} issues</clr-dg-footer>

 </clr-datagrid>

</ng-container>

The <ng-container> element is an Angular component not rendered on the screen and

used to group HTML elements.

5. Add the <app-issue-report> component at the end of the template and use the *ngIf

directive to display it when the showReportIssue property is true. Also bind its formClose

event to the onCloseReport component method:

<app-issue-report *ngIf="showReportIssue === true"
(formClose)="onCloseReport()"></app-issue-report>

Building an Issue Tracking System Using Reactive Forms 68

We have successfully connected all the dots and completed the interaction between the report

issue form and the table that displays issues. Now it is time to put them into action:

1. Run the Angular application using ng serve.

2. Click on the ADD NEW ISSUE button and enter the details of a new issue:

Figure 3.3 – Report issue form

3. Click on the CREATE button, and the new issue should appear in the table:

Figure 3.4 – Pending issues

4. Repeat steps 2 and 3 without filling in any details, and you will notice an empty issue

added to the table.

An empty issue can be created because we have not defined any required fields on our report issue

form. In the following section, we will learn how to accomplish this task and add validations to

our form to avoid unexpected behaviors.

Chapter 3 69

Validating the details of an issue
When we create an issue with the report issue form, we can leave the form control value empty

since we have not added any validation rules yet. To add validations in a form control, we use

the Validators class from the @angular/forms npm package. A validator is added in each form

control instance when we build the form. In this case, we will use the required validator to indi-

cate that a form control is required to have a value:

1. Open the issue-report.component.ts file and import Validators from the @angular/

forms npm package:

import { FormControl, FormGroup, Validators } from '@angular/forms';

2. Set the Validators.required static property in all controls except the description of

the issue:

issueForm = new FormGroup<IssueForm>({

 title: new FormControl('', { nonNullable: true, validators:
Validators.required }),

 description: new FormControl('', { nonNullable: true }),

 priority: new FormControl('', { nonNullable: true, validators:
Validators.required }),

 type: new FormControl('', { nonNullable: true, validators:
Validators.required })

});

We can use various validators for a form control, such as min, max, and email. If we want

to set multiple validators in a form control, we add them inside an array.

3. When we use validators in a form, we need to provide a visual indication to the user of

the form. Open the issue-report.component.html file and add a <clr-control-error>

component for each required form control:

<clr-input-container>

 <label>Title</label>

 <input clrInput formControlName="title" />

 <clr-control-error>Title is required</clr-control-error>

</clr-input-container>

<clr-textarea-container>

Building an Issue Tracking System Using Reactive Forms 70

 <label>Description</label>

 <textarea clrTextarea formControlName="description"></textarea>

</clr-textarea-container>

<clr-radio-container clrInline>

 <label>Priority</label>

 <clr-radio-wrapper>

 <input type="radio" value="low" clrRadio
formControlName="priority" />

 <label>Low</label>

 </clr-radio-wrapper>

 <clr-radio-wrapper>

 <input type="radio" value="high" clrRadio
formControlName="priority" />

 <label>High</label>

 </clr-radio-wrapper>

 <clr-control-error>Priority is required</clr-control-error>

</clr-radio-container>

<clr-select-container>

 <label>Type</label>

 <select clrSelect formControlName="type">

 <option value="Feature">Feature</option>

 <option value="Bug">Bug</option>

 <option value="Documentation">Documentation</option>

 </select>

 <clr-control-error>Type is required</clr-control-error>

</clr-select-container>

The <clr-control-error> Clarity component provides validation messages in forms. It

is displayed when we touch an invalid control. A control is invalid when at least one of

its validation rules is violated.

4. The user may only sometimes touch form controls to see the validation message. So, we

need to consider that upon form submission and act accordingly. To overcome this case,

we will mark all form controls as touched when the form is submitted:

addIssue() {

 if (this.issueForm && this.issueForm.invalid) {

 this.issueForm.markAllAsTouched();

 return;

Chapter 3 71

 }

 this.issueService.createIssue(this.issueForm.getRawValue() as
Issue);

 this.formClose.emit();

}

In the preceding snippet, we use the markAllAsTouched method of the issueForm property

to mark all controls as touched when the form is invalid. Marking controls as touched

makes validation messages appear automatically. Additionally, we use a return statement

to prevent the creation of the issue when the form is invalid.

5. Run ng serve to start the application. Click inside the Title input, and then move the

focus out of the form control:

Figure 3.5 – Title validation message

A message should appear underneath the Title input stating that we have not entered

any value yet. Validation messages in the Clarity library are indicated by text and an ex-

clamation icon in red in the form control that is validated.

6. Now, click on the CREATE button:

Figure 3.6 – Form validation messages

Building an Issue Tracking System Using Reactive Forms 72

All validation messages will appear on the screen at once, and the form will not be submitted.

Validations in reactive forms ensure a smooth UX for our Angular applications. In the following

section, we will learn how to create a modal dialog with Clarity and use it to resolve issues from

our list.

Resolving an issue
The main idea behind having an issue tracking system is that an issue should be resolved at some

point. We will create a user workflow in our application to accomplish such a task. We will be

able to resolve an issue directly from the list of pending issues. The application will ask for con-

firmation from the user before resolving with the use of a modal dialog:

1. Create an Angular component to host the dialog:

ng generate component confirm-dialog

2. Open the confirm-dialog.component.ts file and modify it as follows:

import { Component, EventEmitter, Input, Output } from '@angular/
core';

@Component({

 selector: 'app-confirm-dialog',

 templateUrl: './confirm-dialog.component.html',

 styleUrls: ['./confirm-dialog.component.css']

})

export class ConfirmDialogComponent {

 @Input() issueNo: number | null = null;

 @Output() confirm = new EventEmitter<boolean>();

}

We use the @Input() decorator to get the issue number and display it on the component

template. The confirm event will emit a boolean value to indicate whether the user con-

firmed resolving the issue or not.

3. Create two methods that will call the emit method of the confirm output property, either

with true or false:

agree() {

 this.confirm.emit(true);

 this.issueNo = null;

Chapter 3 73

}

disagree() {

 this.confirm.emit(false);

 this.issueNo = null;

}

Both methods will set the issueNo property to null because that property will also control

whether the modal dialog is opened. So, we want to close the dialog in both cases.

We have set up the TypeScript class of our dialog component. Let’s wire it up now with its tem-

plate. Open the confirm-dialog.component.html file and replace its content with the following:

<clr-modal [clrModalOpen]="issueNo !== null" [clrModalClosable]="false">

 <h3 class="modal-title">

 Resolve Issue #

 {{issueNo}}

 </h3>

 <div class="modal-body">

 <p>Are you sure you want to close the issue?</p>

 </div>

 <div class="modal-footer">

 <button type="button" class="btn btn-outline"
(click)="disagree()">Cancel</button>

 <button type="button" class="btn btn-danger" (click)="agree()">Yes,
continue</button>

 </div>

</clr-modal>

A Clarity modal dialog consists of a <clr-modal> component and a collection of HTML elements

with specific classes:

• modal-title: The dialog title that displays the current issue number.

• modal-body: The main content of the dialog.

• modal-footer: The footer of the dialog that is commonly used to add actions for that

dialog. We currently add two HTML <button> elements and bind their click event to

the agree and disagree component methods, respectively.

Building an Issue Tracking System Using Reactive Forms 74

Whether it is opened or closed, the current status of the dialog is indicated by the clrModalOpen

directive bound to the issueNo input property. When that property is null, the dialog is closed.

The clrModalClosable directive indicates that the dialog cannot be closed by any means other

than programmatically through the issueNo property.

According to our specs, we want the user to resolve an issue directly from the list. Let’s find out

how we can integrate the dialog that we created with the list of pending issues:

1. Open the issues.service.ts file and add a new method to set the completed property

of an issue:

completeIssue(issue: Issue) {

 const selectedIssue: Issue = {

 ...issue,

 completed: new Date()

 };

 const index = this.issues.findIndex(i => i === issue);

 this.issues[index] = selectedIssue;

}

The previous method first creates a clone of the issue we want to resolve and sets its

completed property to the current date. It then finds the initial issue in the issues array

and replaces it with the cloned instance.

2. Open the issue-list.component.ts file and add a selectedIssue property and an

onConfirm method in the TypeScript class:

selectedIssue: Issue | null = null;

onConfirm(confirmed: boolean) {

 if (confirmed && this.selectedIssue) {

 this.issueService.completeIssue(this.selectedIssue);

 this.getIssues();

 }

 this.selectedIssue = null;

}

Chapter 3 75

The onConfirm method calls the completeIssue method of the issueService property

only when the confirmed parameter is true. In this case, it also calls the getIssues meth-

od to refresh the table data. The selectedIssue property holds the Issue object that we

want to resolve, and it is reset whenever the onConfirm method is called.

3. Open the issue-list.component.html file and add an action overflow component inside

the <clr-dg-row> component:

<clr-dg-row *clrDgItems="let issue of issues">

 <clr-dg-action-overflow>

 <button class="action-item" (click)="selectedIssue =
issue">Resolve</button>

 </clr-dg-action-overflow>

 <clr-dg-cell>{{issue.issueNo}}</clr-dg-cell>

 <clr-dg-cell>{{issue.type}}</clr-dg-cell>

 <clr-dg-cell>{{issue.title}}</clr-dg-cell>

 <clr-dg-cell>{{issue.description}}</clr-dg-cell>

 <clr-dg-cell>

 <span class="label" [class.label-danger]="issue.priority ===
'high'">{{issue.priority}}

 </clr-dg-cell>

</clr-dg-row>

The <clr-dg-action-overflow> Clarity component adds a drop-down menu in each

table row. The menu contains a single button to set the selectedIssue property to the

current issue when clicked.

4. Finally, add the <app-confirm-dialog> component at the end of the template:

<app-confirm-dialog *ngIf="selectedIssue" [issueNo]="selectedIssue.
issueNo" (confirm)="onConfirm($event)"></app-confirm-dialog>

We pass the issueNo property of selectedIssue to the input binding of the dialog com-

ponent.

We also bind the onConfirm component method to the confirm event so that we can be

notified when the user either agrees or not. The $event parameter is a reserved keyword

in Angular and contains the event binding result, which depends on the HTML element

type. In this case, it includes the boolean result of the confirmation.

Building an Issue Tracking System Using Reactive Forms 76

We have put all the pieces into place to resolve an issue. Let’s give it a try:

1. Run ng serve and open the application at http://localhost:4200.

2. If you don’t have any issues, use the ADD NEW ISSUE button to create one.

3. Click on the action menu of one row and select Resolve. The menu is the three vertical

dots icon next to the Issue No column:

Figure 3.7 – Action menu

4. In the dialog that appears, click on the YES, CONTINUE button:

Figure 3.8 – Resolve Issue dialog

After clicking the button, the dialog will close, and the issue should no longer be visible on the list.

We have provided a way for users of our application to resolve issues. Our issue-tracking system

is now complete and ready to put into action! Sometimes, users are in a hurry and may report an

issue already reported. In the following section, we will learn how to leverage advanced reactive

form techniques to help them in this case.

Chapter 3 77

Turning on suggestions for new issues
The reactive forms API contains a mechanism for getting notified when the value of a particular

form control changes. We will use it in our application to find related issues when reporting a

new one. More specifically, we will display a list of suggested issues when the user starts typing

in the title form control:

1. Open the issues.service.ts file and add the following method:

getSuggestions(title: string): Issue[] {

 if (title.length > 3) {

 return this.issues.filter(issue =>

 issue.title.indexOf(title) !== -1);

 }

 return [];

}

The preceding method takes the title of an issue as a parameter and searches for any issues

that contain the same title. The search mechanism is triggered when the title parameter

is more than three characters long to limit results to a reasonable amount.

2. Open the issue-report.component.ts file and import the OnInit artifact from the @

angular/core npm package:

import { Component, EventEmitter, OnInit, Output } from '@angular/
core';

3. Create a new component property to hold the suggested issues:

suggestions: Issue[]= [];

4. Add the OnInit interface to the list of implemented interfaces of the IssueReportComponent

class:

export class IssueReportComponent implements OnInit {

5. The controls property of a FormGroup object contains all form controls as a key-value

pair. The key is the name of the control, and the value is the actual form control object.

We can get notified about changes in the value of a form control by accessing its name, in

this case, title, in the following way:

ngOnInit(): void {

 this.issueForm.controls.title.valueChanges.subscribe(title => {

Building an Issue Tracking System Using Reactive Forms 78

 this.suggestions = this.issueService.getSuggestions(title);

 });

}

Each control exposes a valueChanges observable that we can subscribe to and get a con-

tinuous stream of values. The valueChanges observable emits new values as soon as the

user starts typing in the title control of the form. When that happens, we set the result

of the getSuggestions method in the suggestions component property.

6. To display the suggested issues on the template of the component, open the issue-report.

component.html file and add the following HTML code right after the <clr-input-

container> element:

<div class="clr-row" *ngIf="suggestions.length">

 <div class="clr-col-lg-2"></div>

 <div class="clr-col-lg-6">

 <clr-stack-view>

 <clr-stack-header>Similar issues</clr-stack-header>

 <clr-stack-block *ngFor="let issue of suggestions">

 <clr-stack-label>#{{issue.issueNo}}:{{issue.title}}</
clr-stack-label>

 <clr-stack-content>{{issue.description}}</clr-stack-
content>

 </clr-stack-block>

 </clr-stack-view>

 </div>

</div>

We use the <clr-stack-view> component from the Clarity library to display suggested

issues in a key-value pair representation. The key is indicated by the <clr-stack-header>

component and displays the title and the number of the issue. The <clr-stack-content>

component indicates the value and displays the issue description.

We display similar issues only when there are any available suggested ones.

Chapter 3 79

Run ng serve and open the report issue form to create a new issue. When you start typing in the

Title input, the application will suggest any issues related to the one that you are trying to create:

Figure 3.9 – Similar issues

The user will now see if there are any similar issues and avoid reporting a duplicate issue.

Summary
In this chapter, we built an Angular application for managing and tracking issues using reactive

forms and Clarity Design System.

First, we installed Clarity in an Angular application and used a data grid component to display

a list of pending issues. Then, we introduced reactive forms and used them to build a form for

reporting a new issue. We added validations in the form to give our users a visual indication of

the required fields and guard against unwanted behavior.

An issue-tracking system is only efficient if our users can resolve them. We built a modal dialog

using Clarity to resolve a selected issue. Finally, we improved the UX of our application by sug-

gesting related issues when reporting a new one.

In the next chapter, we will build a progressive web application for the weather using the Angular

service worker.

Exercise
Create an Angular component to edit the details of an existing issue. The component should

display the issue number and allow the user to change the title, description, and priority. The

title and the description should be required fields.

The user should be able to access the previous component using the action menu in the list of

pending issues. Add a new action menu button to open the edit issue form.

Building an Issue Tracking System Using Reactive Forms 80

After the user has completed updating an issue, the form should be closed, and the list of pending

issues should be refreshed.

You can find the solution to the exercise in the Chapter03 folder of the exercise branch at https://

github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise.

Further reading
• Angular forms: https://angular.io/guide/forms-overview

• Reactive forms: https://angular.io/guide/reactive-forms

• Validating reactive forms: https://angular.io/guide/form-validation#validating-

input-in-reactive-forms

• Passing data to a component: https://angular.io/guide/component-interaction#pass-

data-from-parent-to-child-with-input-binding

• Getting data from a component: https://angular.io/guide/component-

interaction#parent-listens-for-child-event

• Getting started with Clarity: https://clarity.design/documentation/get-started

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/AngularProjects3e

https://github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise
https://github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise
https://angular.io/guide/forms-overview
https://angular.io/guide/reactive-forms
https://angular.io/guide/form-validation#validating-input-in-reactive-forms
https://angular.io/guide/form-validation#validating-input-in-reactive-forms
https://angular.io/guide/component-interaction#pass-data-from-parent-to-child-with-input-binding
https://angular.io/guide/component-interaction#pass-data-from-parent-to-child-with-input-binding
https://angular.io/guide/component-interaction#parent-listens-for-child-event
https://angular.io/guide/component-interaction#parent-listens-for-child-event
https://clarity.design/documentation/get-started
https://packt.link/AngularProjects3e

4
Building a PWA Weather
Application Using Angular
Service Worker

We can access a web application using different types of devices, such as a desktop, mobile, or

tablet, and over various types of network, such as broadband, Wi-Fi, and cellular. A web applica-

tion should work seamlessly and provide the same user experience independently of the device

and the network of the user.

Progressive Web Apps (PWAs) are applications built with a collection of techniques with the

previous considerations in mind. One popular technique is the service worker, which improves

the loading time of a web application. In this chapter, we will use the service worker implemen-

tation of the Angular framework to build a PWA that displays the weather of a city using the

OpenWeather API.

We will cover the following topics in detail:

• Setting up the OpenWeather API

• Displaying weather data

• Enabling offline mode with the service worker

• Staying up to date with in-app notifications

• Deploying our app with Firebase Hosting

Building a PWA Weather Application Using Angular Service Worker82

Essential background theory and context
Traditional web applications are usually hosted in a web server and are immediately available

to any user at any given time. Native applications are installed on the device of the user, have

access to its native resources, and can work seamlessly with any network. PWAs straddle the

two worlds of web and native applications and share characteristics from both, summarized by

the following pillars:

• Capable: It can access locally saved data and interact with peripheral hardware that is

connected to the device of the user.

• Reliable: It can have the same performance and experience in any network connection,

even in areas with low connectivity and coverage.

• Installable: It can be installed on the device of the user, can be launched directly from the

home screen, and interact with other installed native applications.

Converting a web application into a PWA involves several steps and techniques. The most essen-

tial one is configuring a service worker. The service worker is a mechanism that runs on the web

browser and acts as a proxy between the application and an external HTTP endpoint or other in-

app resources such as JavaScript and CSS files. The main job of the service worker is to intercept

requests to those resources and act on them by providing a cached or live response.

The Angular framework provides an implementation for the service worker that we can use to

convert our Angular applications into PWAs.

It also contains a built-in HTTP client that we can use to communicate with a server over HTTP. The

Angular HTTP client exposes an observable-based API with all standard HTTP methods, such as

POST and GET. Observables are based on the observer pattern, the core of reactive programming.

In the observer pattern, multiple objects called observers can subscribe to an observable and get

notified about any changes to its state. Observables dispatch changes to observers by emitting

event streams asynchronously. The Angular framework uses a library called RxJS that contains

various artifacts for working with observables. One of these artifacts is a set of functions called

operators that can apply various actions on observables, such as transformations and filtering.

Next, let’s get an overview of our project.

The service worker is persisted after the tab of the browser is closed.

Chapter 4 83

Project overview
In this project, we will build a PWA to display the weather conditions of a city. Initially, we will

learn how to configure the OpenWeather API, which we will use to get weather data. We will then

learn how to use the API to display weather information in an Angular component. We will see

how to convert our Angular application into a PWA using a service worker. We will also implement

a notification mechanism for our application updates. Finally, we will deploy our PWA into the

Firebase Hosting provider. The following diagram presents an architectural overview of the project:

Figure 4.1 – Project architecture

Build time: 90 minutes

Getting started
The following software tools are required to complete this project:

• Angular CLI: A command-line interface for Angular that you can find at https://angular.

io/cli.

• GitHub material: The related code for this chapter can be found in the Chapter04 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Setting up the OpenWeather API
The OpenWeather team created the OpenWeather API, which contains current and historical

weather information from over 200,000 cities worldwide. It also supports forecast weather data

for more detailed information.

https://angular.io/cli
https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building a PWA Weather Application Using Angular Service Worker84

We need to get an API key first to start using the OpenWeather API:

1. Navigate to the OpenWeather API website at https://openweathermap.org/api.

You will see a list of all available APIs from the OpenWeather team.

2. Find the Current Weather Data section and click the Subscribe button.

You will be redirected to the page with the available pricing schemes of the service. Each

scheme supports a different combination of API calls per minute and month. For this

project, we are going to use the Free tier.

3. Click on the Get API key button.

You will be redirected to the sign-up page of the service.

4. Complete all the required details and click the Create Account button.

A confirmation message will be sent to the email address you used to create your account.

5. Find the confirmation email and click the Verify your email button to complete your

registration.

You will shortly receive another email from OpenWeather with details about your current

subscription, including your API key and the HTTP endpoint you will use to communicate

with the API.

Once the API key has been activated, we can use it within an Angular application. We will learn

how to do this in the following section.

Displaying weather data
In this section, we will create an Angular application to display weather information for a given

city. The user will enter the name of the city in an input field, and the application will use the

OpenWeather API to get weather data for the specified city. We will cover the following topics

in more detail:

• Setting up the Angular application

• Communicating with the OpenWeather API

• Displaying weather information for a city

Let’s start by creating the Angular application first in the following section.

The API key may take some time to be activated, usually a couple of hours before

you can use it.

https://openweathermap.org/api

Chapter 4 85

Setting up the Angular application
We will use the ng new command of the Angular CLI to create a new Angular application from

scratch:

ng new weather-app --style=scss --routing=false

The preceding command will create a new Angular CLI application with the following properties:

• weather-app: The name of the Angular application

• --style=scss: Indicates that our Angular application will use the SCSS stylesheet format

• --routing=false: Disables Angular routing in the application

The user should be able to enter the name of the city in an input field, and the weather informa-

tion of the city should be visualized in a card layout. The Angular Material library provides a set

of UI components for our needs, including an input and a card.

Angular Material components adhere to the Material Design principles and are maintained by

the Components team of Angular. We can install the Angular Material library using the following

command of the Angular CLI:

ng add @angular/material --theme=indigo-pink --animations=enabled
--typography

The preceding code uses the ng add command of the Angular CLI, passing additional configu-

ration options:

• @angular/material: The npm package name of the Angular Material library. It will also

install the Angular CDK package, a set of behaviors and interactions used to build Angular

Material. Both packages will be added to the dependencies section of the package.json

file of the application.

• --theme=indigo-pink: The name of the Angular Material theme we want to use. Adding

a theme involves modifying several files of the Angular CLI workspace. It adds entries of

the CSS theme file to the angular.json configuration file:

@angular/material/prebuilt-themes/indigo-pink.css

It also includes the Material Design icons in the index.html file:

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

Building a PWA Weather Application Using Angular Service Worker86

Angular Material comes with a set of predefined themes that we can use. Alternatively,

we can build a custom one that fits our specific needs.

• --animations=enabled: Enables browser animations in our application by importing

BrowserAnimationsModule into the main application module, app.module.ts:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } from '@angular/platform-browser/
animations';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

• --typography: Enables Angular Material typography globally in our application. Typog-

raphy defines how text content is displayed and uses the Roboto font by default, which

is included in the index.html file:

<link href="https://fonts.googleapis.com/
css2?family=Roboto:wght@300;400;500&display=swap" rel="stylesheet">

It adds the following class to the <body> tag of the HTML file:

<body class="mat-typography">

 <app-root></app-root>

</body>

It also adds some CSS styles to the global styles.scss file of our application:

html, body { height: 100%; }

Chapter 4 87

body { margin: 0; font-family: Roboto, "Helvetica Neue", sans-serif;
}

We now have all the moving parts to build our Angular application. In the following section, we

will create a mechanism for interacting with the OpenWeather API.

Communicating with the OpenWeather API
The application should interact with the OpenWeather API over HTTP to get weather data. Let’s

see how we can set up this type of communication in our application:

1. First, we must create an interface describing the data type we will get from the API. Use

the following command of the Angular CLI to create one:

ng generate interface weather

The preceding command will create the weather.ts file in the src\app folder of our An-

gular CLI project.

2. Open the weather.ts file and modify it as follows:

export interface Weather {

 weather: WeatherInfo[],

 main: {

 temp: number;

 pressure: number;

 humidity: number;

 };

 wind: {

 speed: number;

 };

 sys: {

 country: string

 };

 name: string;

}

interface WeatherInfo {

 main: string;

 icon: string;

}

Building a PWA Weather Application Using Angular Service Worker88

Each property corresponds to a weather field in the OpenWeather API response. You can

find a description for each one at https://openweathermap.org/current#parameter.

Then, we must set up the built-in HTTP client provided by the Angular framework.

3. Open the app.module.ts file and add HttpClientModule to the imports array of the

@NgModule decorator:

import { HttpClientModule } from '@angular/common/http';

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } from '@angular/platform-browser/
animations';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

4. Use the following command of the Angular CLI to create a new Angular service:

ng generate service weather

The preceding command will create the weather.service.ts file in the src\app folder

of our Angular CLI project.

5. Open the weather.service.ts file and inject the HttpClient service into its constructor:

import { HttpClient } from '@angular/common/http';

import { Injectable } from '@angular/core';

@Injectable({

https://openweathermap.org/current#parameter

Chapter 4 89

 providedIn: 'root'

})

export class WeatherService {

 constructor(private http: HttpClient) { }

}

6. Add the following properties to define the endpoint URL of the OpenWeather API and

our API key:

private apiUrl = 'https://api.openweathermap.org/data/2.5/';

private apiKey = '<Your API key>';

Replace the value of the apiKey property with the API key that you have.

7. Add a method in the service that accepts the name of the city as a single parameter and

queries the OpenWeather API for that city:

getWeather(city: string): Observable<Weather> {

 const options = new HttpParams()

 .set('units', 'metric')

 .set('q', city)

 .set('appId', this.apiKey);

 return this.http.get<Weather>(this.apiUrl + 'weather', { params:
options });

}

The getWeather method uses the get method of the HttpClient service that accepts

two parameters. The first one is the URL endpoint of the OpenWeather API. The second

parameter is an options object used to pass additional configuration to the request, such

as URL query parameters with the params property.

We use the constructor of the HttpParams object and call its set method for each query

parameter we want to add to the URL. In our case, we pass the q parameter for the city

name, the appId for the API key, and the type of units we want to use. You can learn more

about supported units at https://openweathermap.org/current#data.

We used the set method to create query parameters because the HttpParams

object is immutable. Calling the constructor for each parameter you want

to pass will throw an error.

https://openweathermap.org/current#data

Building a PWA Weather Application Using Angular Service Worker90

We also set the response data type as Weather in the get method. Notice that the

getWeather method does not return Weather data but instead an Observable of this type.

8. Add the following import statements at the top of the file:

import { HttpClient, HttpParams } from '@angular/common/http';

import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

import { Weather } from './weather';

The Angular service that we created contains all the necessary artifacts for interacting with the

OpenWeather API. In the following section, we will create an Angular component for initiating

requests and displaying data from it.

Displaying weather information for a city
The user should be able to use the UI of our application and enter the name of a city for which

they want to view weather details. The application will use that information to query the Open-

Weather API, and the request result will be displayed on the UI using a card layout. Let’s start

building an Angular component for creating all these types of interactions:

1. Use the following command of the Angular CLI to create an Angular component:

ng generate component weather

2. Open the template of the main component, app.component.html, and replace its content

with the selector of the new component, <app-weather>:

<app-weather></app-weather>

3. Open the app.module.ts file and add the following modules from the Angular Material

library to the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent,

 WeatherComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule,

Chapter 4 91

 MatIconModule,

 MatInputModule,

 MatCardModule

],

 providers: [],

 bootstrap: [AppComponent]

})

Also, add the necessary import statements at the top of the file:

import { MatCardModule } from '@angular/material/card';

import { MatIconModule } from '@angular/material/icon';

import { MatInputModule } from '@angular/material/input';

4. Open the weather.component.ts file, create a weather property of the Weather type, and

inject WeatherService into the constructor of the WeatherComponent class:

import { Component } from '@angular/core';

import { Weather } from '../weather';

import { WeatherService } from '../weather.service';

@Component({

 selector: 'app-weather',

 templateUrl: './weather.component.html',

 styleUrls: ['./weather.component.scss']

})

export class WeatherComponent {

 weather: Weather | undefined;

 constructor(private weatherService: WeatherService){ }

}

5. Create a component method that subscribes to the getWeather method of WeatherService

and assigns the result to the weather component property:

search(city: string) {

 this.weatherService.getWeather(city).subscribe(weather => this.
weather = weather);

}

Building a PWA Weather Application Using Angular Service Worker92

We have already finished working with the TypeScript class file of our component. Let’s wire

it up to its template. Open the weather.component.html file and replace its content with the

following HTML code:

<mat-form-field>

 <input matInput placeholder="Enter city" #cityCtrl (keydown.
enter)="search(cityCtrl.value)">

 <mat-icon matSuffix (click)="search(cityCtrl.value)">search</mat-icon>

</mat-form-field>

<mat-card *ngIf="weather">

 <mat-card-header>

 <mat-card-title>{{weather.name}}, {{weather.sys.country}}</mat-
card-title>

 <mat-card-subtitle>{{weather.weather[0].main}}</mat-card-subtitle>

 </mat-card-header>

 <img mat-card-image src="https://openweathermap.org/img/wn/{{weather.
weather[0].icon}}@2x.png" [alt]="weather.weather[0].main">

 <mat-card-content>

 <h1>{{weather.main.temp | number:'1.0-0'}} ℃</h1>

 <p>Pressure: {{weather.main.pressure}} hPa</p>

 <p>Humidity: {{weather.main.humidity}} %</p>

 <p>Wind: {{weather.wind.speed}} m/s</p>

 </mat-card-content>

</mat-card>

The preceding template consists of several components from the Angular Material library, includ-

ing a <mat-form-field> component that contains the following child elements:

• An <input> HTML element for entering the name of the city. When the user has finished

editing and presses the Enter key, it calls the search component method passing the value

property of the cityCtrl variable as a parameter. The cityCtrl variable is a template

reference variable and indicates the actual object of the native HTML <input> element.

• A <mat-icon> component displays a magnifier icon at the end of the input element, as indi-

cated by the matSuffix directive. It also calls the search component method when clicked.

The cityCtrl template reference variable is indicated by a # and is accessible ev-

erywhere inside the component template.

Chapter 4 93

A <mat-card> component presents information in a card layout and is displayed only when the

weather component property has a value. It consists of the following child elements:

• <mat-card-header>: The header of the card. It consists of a <mat-card-title> compo-

nent that displays the name of the city and the country code and a <mat-card-subtitle>

component that displays the current weather conditions.

• mat-card-image: The image of the card that displays the icon of the weather conditions,

along with a description as an alternate text.

• <mat-card-content>: The main content of the card. It displays the temperature, pressure,

humidity, and wind speed of the current weather. The temperature is displayed without

any decimal points, as indicated by the number pipe.

Let’s now spice things up a bit by adding some styles to our component:

weather.component.scss

:host {

 display: flex;

 align-items: center;

 justify-content: center;

 flex-direction: column;

 padding-top: 25px;

}

mat-form-field {

 width: 20%;

}

mat-icon {

 cursor: pointer;

}

mat-card {

 margin-top: 30px;

 width: 250px;

}

h1 {

 text-align: center;

 font-size: 2.5em;

}

Building a PWA Weather Application Using Angular Service Worker94

The :host selector is an Angular unique CSS selector that targets the HTML element hosting our

component, which in our case, is the <app-weather> HTML element.

If we run our application using ng serve, navigate to http://localhost:4200, and search for

weather information in Athens, we should get the following output on the screen:

Figure 4.2 – Application output

Chapter 4 95

Congratulations! Now, you have a fully working Angular application that displays weather infor-

mation for a specific city. The application consists of a single Angular component that commu-

nicates with the OpenWeather API using an Angular service through HTTP. We learned how to

style our component using Angular Material and give our users a pleasant experience with our

app. But what happens when we are offline? Does the application work as expected? Does the

user’s experience remain the same? Let’s find out in the following section.

Enabling offline mode with the service worker
Users from anywhere can now access our Angular application to get weather information for any

city they are interested in. When we say anywhere, we mean any network type, such as broadband,

cellular (3G/4G/5G), and Wi-Fi. Consider the case where a user is in a place with low coverage or

frequent network outages. How is our application going to behave? Let’s find out by experimenting:

1. Run the Angular application using the ng serve command of the Angular CLI.

2. Open your favorite browser and navigate to http://localhost:4200, the default address

and port number for an Angular CLI project. You should see the input field for entering

the name of the city:

Figure 4.3 – Entering the name of a city

3. Open the developer tools of your browser and navigate to the Network tab. Set the value

of the Throttling dropdown to Offline:

Figure 4.4 – Offline network mode

Building a PWA Weather Application Using Angular Service Worker96

4. Try to refresh your browser. You will see an indication that you are disconnected from the

internet, as shown in the following screenshot:

Figure 4.5 – No internet connection (Google Chrome)

The previous case is standard in areas with low-quality internet connections. So, what can we

do for our users in such places? Luckily, the Angular framework contains an implementation of a

service worker that can significantly enhance the UX of our application when running in offline

mode. It can cache certain application parts and deliver them accordingly instead of making real

requests.

Run the following command of the Angular CLI to enable the service worker in our Angular

application:

ng add @angular/pwa

The preceding command will transform the Angular CLI workspace accordingly for PWA support:

• It adds the @angular/service-worker npm package to the dependencies section of the

package.json file of the application.

• It creates the manifest.webmanifest file in the src folder of the application. The manifest

file contains information about the application needed to install and run it natively. It

also adds it to the assets array of the build options in the angular.json file.

The Angular service worker can also be used in environments with large network

latency connections. Consider using a service worker in this type of network also to

improve the experience of your users.

Chapter 4 97

• It creates the ngsw-config.json file at the root of the project, which is the service worker

configuration file. We use it to define configuration-specific artifacts, such as which re-

sources are cached and how they are cached. You can find more details about the configu-

ration of the service worker at the following link: https://angular.io/guide/service-

worker-config#service-worker-configuration.

• The configuration file is also set in the ngswConfigPath property of the build configura-

tion in the angular.json file.

• It sets the serviceWorker property to true in the build configuration of the angular.

json file.

• It registers the service worker in the app.module.ts file:

@NgModule({

 declarations: [

 AppComponent,

 WeatherComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule,

 MatIconModule,

 MatInputModule,

 MatCardModule,

 ServiceWorkerModule.register('ngsw-worker.js', {

 enabled: !isDevMode(),

 // Register the ServiceWorker as soon as the application is
stable

 // or after 30 seconds (whichever comes first).

 registrationStrategy: 'registerWhenStable:30000'

 })

],

 providers: [],

 bootstrap: [AppComponent]

})

https://angular.io/guide/service-worker-config#service-worker-configuration
https://angular.io/guide/service-worker-config#service-worker-configuration

Building a PWA Weather Application Using Angular Service Worker98

• The ngsw-worker.js file is the JavaScript file that contains the actual implementation

of the service worker. It is created automatically for us when we build our application.

Angular uses the register method of the ServiceWorkerModule class to register it within

our application.

• It creates several icons to be used when the application is installed as a native one on the

device of the user.

• It includes the manifest file and a <meta> tag for theme-color in the <head> element of

the index.html file:

<link rel="manifest" href="manifest.webmanifest">

<meta name="theme-color" content="#1976d2">

Now that we have completed the service worker installation, it is time to test it! Before moving

on, we should install an external web server because the built-in function of the Angular CLI does

not work with service workers. A good alternative is http-server:

1. Run the install command of the npm client to install http-server:

npm install -D http-server

The preceding command will install http-server as a development dependency of our

Angular CLI project.

2. Build the Angular application using the ng build command of the Angular CLI.

3. Open the package.json file of the Angular CLI workspace and add the following entry

to the scripts property:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "server": "http-server -p 8080 -c-1 dist/weather-app"

}

4. Start the HTTP web server using the following command:

npm run server

The preceding command will start http-server at port 8080 and have caching disabled.

Chapter 4 99

5. Open your browser and navigate to http://localhost:8080.

6. Repeat the process we followed at the beginning of the section for switching to offline

mode.

7. If you refresh the page now, you will notice that the application is working as expected.

The service worker did all the work for us, and the process was so seamless that we could

not tell whether we were online or offline. You can verify that by inspecting the Network

tab:

Figure 4.6 – Service worker (offline mode)

The (ServiceWorker) value in the Size column indicates that the service worker served a cached

version of our application.

We have successfully installed the service worker and moved closer to converting our application

into a PWA. In the following section, we will learn how to notify users of the application about

potential updates.

Staying up to date with in-app notifications
When we want to apply a change in a web application, we make the change and build a new

version of our application. The application is then deployed to a web server, and every user can

access the latest version immediately. But PWAs are different.

When we deploy a new version of our PWA, the service worker must act accordingly and apply

a specific update strategy. It should notify the user of the new version or install it immediately.

Which update strategy we follow depends on our requirements. In this project, we want to show

a prompt to the user and let them decide whether they want to update the app. Let’s see how to

implement this feature in our application:

Prefer opening the page in private or incognito mode to avoid unexpected

behavior from the service worker.

Building a PWA Weather Application Using Angular Service Worker100

1. Open the app.module.ts file and add MatSnackBarModule to the imports array of the

@NgModule decorator:

import { MatSnackBarModule } from '@angular/material/snack-bar';

@NgModule({

 declarations: [

 AppComponent,

 WeatherComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule,

 MatIconModule,

 MatInputModule,

 MatCardModule,

 MatSnackBarModule,

 ServiceWorkerModule.register('ngsw-worker.js', {

 enabled: !isDevMode(),

 // Register the ServiceWorker as soon as the application is
stable

 // or after 30 seconds (whichever comes first).

 registrationStrategy: 'registerWhenStable:30000'

 })

],

 providers: [],

 bootstrap: [AppComponent]

})

MatSnackBarModule is an Angular Material module that allows us to interact with snack

bars. A snack bar is a pop-up window that usually appears on the bottom of the page and

is used for notification purposes.

2. Open the app.component.ts file and add the OnInit interface to the implemented inter-

faces of the AppComponent class:

import { Component, OnInit } from '@angular/core';

Chapter 4 101

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent implements OnInit {

 title = 'weather-app';

}

3. Inject the MatSnackBar and SwUpdate services in the constructor of the AppComponent

class:

import { Component, OnInit } from '@angular/core';

import { MatSnackBar } from '@angular/material/snack-bar';

import { SwUpdate, VersionReadyEvent } from '@angular/service-
worker';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent implements OnInit {

 title = 'weather-app';

 constructor(private updates: SwUpdate, private snackbar:
MatSnackBar) {}

}

The MatSnackBar service is an Angular service exposed from MatSnackBarModule. The

SwUpdate service is part of the service worker and contains observables that we can use

to notify the user on the update process of our application.

4. Create the following ngOnInit method:

ngOnInit() {

 this.updates.versionUpdates.pipe(

 filter((evt): evt is VersionReadyEvent => evt.type === 'VERSION_
READY'),

Building a PWA Weather Application Using Angular Service Worker102

 switchMap(() => this.snackbar.open('A new version is
available!', 'Update now').afterDismissed()),

 filter(result => result.dismissedByAction),

 map(() => this.updates.activateUpdate().then(() => location.
reload()))

).subscribe();

}

The ngOnInit method is an implementation method of the OnInit interface and is called

upon component initialization. The SwUpdate service contains a versionUpdates observ-

able property that we can use to get notified when a new version of our application is

available. Typically, we tend to subscribe to observables, but in this case, we don’t. Instead,

we subscribe to the pipe method, an RxJS operator for composing multiple operators.

5. Add the following import statements at the top of the app.component.ts file:

import { filter, map, switchMap } from 'rxjs';

A lot is going on inside the ngOnInit method that we defined previously, so let’s break it down

into pieces to understand it further. The pipe operator combines four RxJS operators:

• filter: We use it to filter out any emitted values from the versionUpdates observable

other than the one that indicates when the version is ready to be installed.

• switchMap: This is called when a new version of our application is available. It uses the

open method of the snackbar property to show a snack bar with an action button and

subscribes to its afterDismissed observable. The afterDismissed observable emits when

the snack bar is closed either by clicking the action button or programmatically using its

API methods.

• filter: This is called when the snack bar is dismissed using the action button.

• map: This calls the activateUpdate method of the updates property to apply the new

version of the application. Once the application has been updated, it reloads the browser

window for the changes to take effect.

Let’s see the whole process of updating to a new version in action:

1. Run the following command of the Angular CLI to build the Angular application:

ng build

2. Start the HTTP server to serve the application:

npm run server

Chapter 4 103

3. Open a private or incognito browser window and navigate to http://localhost:8080.

4. Without closing the browser window, let’s introduce a change in our application and

add a UI header. Run the generate command of the Angular CLI to create a component:

ng generate component header

5. Open the app.module.ts file and import the following Angular Material modules:

import { MatButtonModule } from '@angular/material/button';

import { MatToolbarModule } from '@angular/material/toolbar';

@NgModule({

 declarations: [

 AppComponent,

 WeatherComponent,

 HeaderComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 HttpClientModule,

 MatIconModule,

 MatInputModule,

 MatCardModule,

 MatSnackBarModule,

 MatButtonModule,

 MatToolbarModule,

 ServiceWorkerModule.register('ngsw-worker.js', {

 enabled: !isDevMode(),

 // Register the ServiceWorker as soon as the application is
stable

 // or after 30 seconds (whichever comes first).

 registrationStrategy: 'registerWhenStable:30000'

 })

],

 providers: [],

 bootstrap: [AppComponent]

})

Building a PWA Weather Application Using Angular Service Worker104

6. Open the header.component.html file and create a <mat-toolbar> component with two

HTML <button> elements, each one containing a <mat-icon> component:

<mat-toolbar color="primary">

 Weather App

 <button mat-icon-button>

 <mat-icon>refresh</mat-icon>

 </button>

 <button mat-icon-button>

 <mat-icon>share</mat-icon>

 </button>

</mat-toolbar>

7. Add the following CSS style to the header.component.scss file to position buttons at the

far-right end of the header:

.spacer {

 flex: 1 1 auto;

}

8. Open the app.component.html file and add the <app-header> component at the top:

<app-header></app-header>

<app-weather></app-weather>

9. Repeat steps 1 and 2 and refresh the browser window that points to http://localhost:8080.

You should see the following notification at the bottom of the page after a few seconds:

Figure 4.7 – New version notification

10. Click on the Update now button, wait for the browser window to reload, and you should

see your change:

Figure 4.8 – Application output

Chapter 4 105

Our Angular application has begun to transform into a PWA one. Along with the caching mech-

anism that the Angular service worker provides, we have added a mechanism for installing new

versions of our application. In the following section, we will learn how to deploy and install our

application natively on our device.

Deploying our app with Firebase Hosting
Firebase is a hosting solution provided by Google that we can use to deploy our Angular applica-

tions. The Firebase team has put much effort into creating an Angular CLI schematic for deploying

an Angular application using one single command. Before diving deeper, let’s learn how to set

up Firebase Hosting:

1. Use a Google account to log in to Firebase at https://console.firebase.google.com.

2. Click the Add project button to create a new Firebase project.

3. Enter the name of the project, weather-app, and click the Continue button.

4. Disable the use of Google Analytics for your project and click the Create project button.

5. Once the project has been created, the following will appear on the screen:

Figure 4.9 – Firebase project creation

Firebase generates a unique identifier for your project, such as weather-app-

b11a2, underneath the name of the project. The identifier will be used in the

hosting URL of your project later on.

https://console.firebase.google.com

Building a PWA Weather Application Using Angular Service Worker106

6. Click on the Continue button, and you will be redirected to the dashboard of your new

Firebase project.

We have now completed the configuration of Firebase Hosting. It is now time to integrate it with

our Angular application:

1. Run the following command in a terminal window to install Firebase tools:

npm install -g firebase-tools

2. Run the following command in the same terminal window to authenticate with the Fire-

base CLI:

firebase login

3. Finally, run the following command of the Angular CLI to install the @angular/fire npm

package in your Angular CLI project:

ng add @angular/fire

The preceding command will find the latest version of the library and prompt us to install it.

4. First, it will ask what features of Firebase we want to enable:

? What features would you like to setup?

Ensure the ng deploy -- hosting option is selected, and press Enter.

5. Then, it will ask us to select which Firebase account we want to use:

? Which Firebase account would you like to use?

Ensure the account you used earlier is selected, and press Enter.

6. In the next question, we will choose the project with which we are going to deploy our

application:

? Please select a project:

Select the weather-app project that we created earlier and press Enter.

7. Finally, we must choose the site that will host our application:

? Please select a hosting site:

Chapter 4 107

Select the hosting website that we created earlier and press Enter.

The previous process will modify the Angular CLI workspace accordingly to accommodate its

deployment to Firebase:

• It will create a .firebaserc file in the root folder that contains details of the selected

Firebase project.

• It will create a firebase.json file in the root folder, which is the Firebase configuration

file. The configuration file specifies settings such as the folder that will be deployed to

Firebase and any rewrite rules.

• It will add a deploy target in the angular.json configuration file.

To deploy the application, we only need to run a single Angular CLI command, and the Angular

CLI will take care of the rest:

ng deploy

The preceding command will build and deploy the application to the selected Firebase project.

Once deployment is complete, the Angular CLI will report back the following information:

• Project Console: The dashboard of the Firebase project.

• Hosting URL: The URL of the deployed version of the application. It consists of the unique

identifier of the Firebase project and the .web.app suffix that is added automatically from

Firebase.

The folder deployed by default is the dist output folder created by the An-

gular CLI when we run the ng build command.

The service worker requires an application to be served with HTTPS to work properly

as a PWA, except in the localhost that is used for development. Firebase hosts web

applications with HTTPS by default.

Building a PWA Weather Application Using Angular Service Worker108

Now that we have deployed our application, let’s see how we can install it as a PWA on our device:

1. Navigate to the hosting URL and click on the Install weather-app button next to the

address bar of the browser:

Figure 4.10 – Installing the application (Google Chrome)

The browser will prompt us to install the application.

2. Click the Install button, and the application will open as a native window on our device:

Figure 4.11 – PWA

The installation button may be found in different locations in other browsers.

Chapter 4 109

It will also install a shortcut for launching the application directly from our device. Congratula-

tions! We now have a full PWA that displays weather information for a city.

Summary
In this chapter, we built a PWA that displays weather information for a given city.

Initially, we set up the OpenWeather API to get weather data and created an Angular applica-

tion from scratch to integrate it. We learned how to use the built-in HTTP client of the Angular

framework to communicate with the OpenWeather API. We also installed the Angular Material

library and used some ready-made UI components for our application.

After creating the Angular application, we introduced the Angular service worker and enabled

it to work offline. We learned how to interact with the service worker and provide notifications

for updates in our application. Finally, we deployed a production version of our application into

Firebase Hosting and installed it locally on our device.

In the next chapter, we will learn how to create an Angular desktop application with Electron,

the big rival of PWAs.

Exercise
Use the OpenWeather API to display a weekly forecast for the selected city. The OpenWeather API

provides the 5 Day / 3 Hour Forecast collection that can be used. The collection returns a fore-

cast every 3 hours for each day, so, for a weekly forecast, you should just focus on the weather at

12:00pm each day. The forecast should be displayed as a grid list of card components and should

be positioned below the current weather of the city.

You can find the solution to the exercise in the Chapter04 folder of the exercise branch at https://

github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise.

Further reading
• PWAs: https://web.dev/progressive-web-apps

• OpenWeather API: https://openweathermap.org/api

• Angular Material: https://material.angular.io

• Angular HTTP client: https://angular.io/guide/http

• Angular service worker: https://angular.io/guide/service-worker-getting-started

https://github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise
https://github.com/PacktPublishing/Angular-Projects-Third-Edition/tree/exercise
https://web.dev/progressive-web-apps
https://openweathermap.org/api
https://material.angular.io
https://angular.io/guide/http
https://angular.io/guide/service-worker-getting-started

Building a PWA Weather Application Using Angular Service Worker110

• Communicating with the Angular service worker: https://angular.io/guide/service-

worker-communications

• HTTP server: https://www.npmjs.com/package/http-server

• Firebase Hosting: https://firebase.google.com/docs/hosting

• Deployment in Angular: https://angular.io/guide/deployment#automatic-
deployment-with-the-cli

https://angular.io/guide/service-worker-communications
https://angular.io/guide/service-worker-communications
https://www.npmjs.com/package/http-server
https://firebase.google.com/docs/hosting
https://angular.io/guide/deployment#automatic-deployment-with-the-cli
https://angular.io/guide/deployment#automatic-deployment-with-the-cli

5
Building a WYSIWYG Editor for
the Desktop Using Electron

Web applications are traditionally built with HTML, CSS, and JavaScript. Their use has also widely

spread to server development using Node�js. Various tools and frameworks have emerged in re-

cent years that use HTML, CSS, and JavaScript to create applications for desktop and mobile. In

this chapter, we will investigate how to create desktop applications using Angular and Electron.

Electron is a JavaScript framework used to build native desktop applications with web technol-

ogies. Combining it with the Angular framework allows us to create fast and highly performant

web applications. In this chapter, we will build a desktop WYSIWYG editor and cover the fol-

lowing topics:

• Adding a WYSIWYG editor library for Angular

• Integrating Electron in the workspace

• Communicating between Angular and Electron

• Packaging a desktop application

Essential background theory and context
Electron is a cross-platform framework used to build Windows, Linux, and Mac desktop appli-

cations. Many popular applications, such as Visual Studio Code, Skype, and Slack, are made with

Electron. The Electron framework is built on top of Node.js and Chromium. Web developers can

leverage their existing HTML, CSS, and JavaScript skills to create desktop applications without

learning a new language like C++ or C#.

Building a WYSIWYG Editor for the Desktop Using Electron 112

An Electron application consists of two processes:

• Main: This interacts with the native local resources using the Node.js API.

• Renderer: This is responsible for managing the user interface of the application.

An Electron application can have only one main process that communicates with one or more

renderer processes. Each renderer process operates in complete isolation from the others.

The Electron framework provides the ipcMain and ipcRenderer interfaces, which we can use to

interact with these processes. The interaction is accomplished using Inter-Process Communica-

tion (IPC), a mechanism that exchanges messages securely and asynchronously over a common

channel via a Promise-based API.

Project overview
In this project, we will build a desktop WYSIWYG editor that keeps its content local to the filesys-

tem. Initially, we will build it as an Angular application using ngx-wig, a popular WYSIWYG

Angular library. We will then convert it to a desktop application using Electron and learn how to

synchronize content between Angular and Electron. We will also see how to persist the content

of the editor into the filesystem. Finally, we will package our application as a single executable

file that can be run in a desktop environment. The following diagram describes an architectural

overview of the project:

Electron applications have many similarities with PWA applications. Consider build-

ing an Electron application for scenarios such as advanced filesystem manipulation

or when you need a more native look and feel for your application. Another use case

is when you build a complementary tool for your primary desktop product and want

to ship them together.

Chapter 5 113

Figure 5.1 – Project architecture

Build time: 1 hour.

Getting started
The following software tools are required to complete this project:

• Angular CLI: A command-line interface for Angular that you can find at https://angular.

io/cli.

• Visual Studio Code: A code editor that you can download from https://code.

visualstudio.com.

• GitHub material: The code for this chapter can be found in the Chapter05 folder at

https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

https://angular.io/cli
https://angular.io/cli
https://code.visualstudio.com
https://code.visualstudio.com
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building a WYSIWYG Editor for the Desktop Using Electron 114

Adding a WYSIWYG editor library for Angular
We will kick off our project by creating a WYSIWYG editor as a Angular application. Use the An-

gular CLI to create a new Angular application from scratch:

ng new my-editor --defaults

We pass the following options to the ng new command:

• my-editor: Defines the name of the application

• --defaults: Defines CSS as the preferred stylesheet format of the application and disables

routing because our application will consist of a single component that will host the editor

A WYSIWYG editor is a rich text editor, such as Microsoft Word. We could create one from scratch

using the Angular framework, but it would be time-consuming, and we would only reinvent the

wheel. The Angular ecosystem contains a wide variety of libraries for this purpose. One of them

is the ngx-wig library, which has no external dependencies, just Angular! Let’s add the library to

our application and learn how to use it:

1. Use the npm client to install ngx-wig from the npm package registry:

npm install ngx-wig

2. Open the app.module.ts file and add NgxWigModule to the imports array of the @NgModule

decorator:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { NgxWigModule } from 'ngx-wig';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 NgxWigModule

],

Chapter 5 115

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

NgxWigModule is the main module of the ngx-wig library.

3. Create a new Angular component that will host our WYSIWYG editor:

ng generate component editor

4. Open the template file of the newly generated component, editor.component.html, and

replace its content with the following HTML snippet:

<ngx-wig placeholder="Enter your content"></ngx-wig>

NgxWigModule exposes a set of Angular services and components we can use in our appli-

cation. The main component of the module is the <ngx-wig> component, which displays

the actual WYSIWYG editor. It exposes a collection of input properties that we can set,

such as the placeholder of the editor.

5. Open the app.component.html file and replace its content with the <app-editor> com-

ponent:

<app-editor></app-editor>

6. Open the styles.css file, which contains global styles for the Angular application, and

add the following styles to make the editor dockable and take up the full page:

html, body {

 margin: 0;

 width: 100%;

 height: 100%;

}

.ng-wig, .nw-editor-container, .nw-editor {

 display: flex !important;

 flex-direction: column;

 height: 100% !important;

 overflow: hidden;

}

Building a WYSIWYG Editor for the Desktop Using Electron 116

7. Open the main HTML file of the Angular application, index.html, and remove the <base>

tag from the <head> element. The browser uses the <base> tag to reference scripts and CSS

files with a relative URL. Leaving it as is will make our desktop application fail because it

will load all necessary assets directly from the local filesystem. We will learn more in the

Integrating Angular with Electron section.

Let’s see what we have achieved so far. Run ng serve and navigate to http://localhost:4200

to preview the application:

Figure 5.2 – Application output

Our application consists of the following:

• A toolbar with buttons that allows us to apply different styles to the content of the editor

• A text area that is used as the main container to add content to the editor

We have now created a web application using Angular with a fully operational WYSIWYG editor.

In the following section, we will learn how to convert it into a desktop one using Electron.

Integrating Electron in the workspace
The Electron framework is an npm package that we can install using the following command:

npm install -D electron

The previous command will install the latest version of the electron npm package in the An-

gular CLI workspace. It will also add a respective entry into the devDependencies section of the

package.json file of our project.

Electron is added to the devDependencies section of the package.json file because

it is a development dependency of our application. It is used only to prepare and

build our application as a desktop one and not during runtime.

Chapter 5 117

Electron applications run on the Node.js runtime and use the Chromium browser to render.

A Node.js application has at least a JavaScript file, usually called index.js or main.js, which is the

main entry point of the application. Since we are using Angular and TypeScript as our development

stack, we will start by creating a separate TypeScript file that will be finally compiled in JavaScript:

1. Create a folder named electron inside the src folder of the Angular CLI workspace. The

electron folder will contain any source code that is related to Electron.

2. Create a main.ts file inside the electron folder with the following content:

import { app, BrowserWindow } from 'electron';

function createWindow () {

 const mainWindow = new BrowserWindow({

 width: 800,

 height: 600

 });

 mainWindow.loadFile('index.html');

}

app.whenReady().then(() => {

 createWindow();

});

In the preceding code, we first import the BrowserWindow and app artifacts from the

electron npm package. The BrowserWindow class is used to create a desktop window for

our application. We define the window dimensions, passing an options object in its con-

structor that sets the width and height values of the window. We then call the loadFile

method, passing the HTML file we want to load inside the window as a parameter.

We can think of our application as two different platforms. The web platform

is the Angular application, which resides in the src\app folder. The desktop

platform is the Electron application, which resides in the src\electron

folder. This approach has many benefits, including that it enforces the sep-

aration of concerns in our application and allows each one to develop inde-

pendently from the other. From now on, we will refer to them as the Angular

and Electron applications.

Building a WYSIWYG Editor for the Desktop Using Electron 118

The app object is the global object of our desktop application, just like the window object

on a web page. It exposes a whenReady Promise that, when resolved, allows us to run any

initialization logic for our application, including creating the window.

3. Create a tsconfig.json file inside the electron folder and add the following contents:

{

 "extends": "../../tsconfig.json",

 "compilerOptions": {

 "importHelpers": false

 },

 "include": [

 "**/*.ts"

]

}

The main.ts file must be compiled into JavaScript because browsers do not understand

TypeScript. The compilation process is called transpilation and requires a TypeScript con-

figuration file. The configuration file contains options that drive the TypeScript transpiler,

which is responsible for the transpilation process.

The preceding TypeScript configuration file defines the path of the Electron source code

files, using the include property, and sets the importHelpers property to false.

4. Run the following command to install the Webpack CLI:

npm install -D webpack-cli

The Webpack CLI invokes webpack, a popular module bundler, from the command line.

We will use webpack to build and bundle our Electron application.

The index.html file that we pass in the loadFile method is the main HTML

file of the Angular application. It is loaded using the file protocol, which is

why we removed the <base> tag in the Adding a WYSIWYG editor library for

Angular section.

If we enable the importHelpers flag, it will include helpers from the tslib

library in our application, resulting in a larger bundle size.

Chapter 5 119

5. Install the ts-loader npm package using the following command:

npm install -D ts-loader

The ts-loader library is a webpack plugin that can load TypeScript files.

We have created all the pieces needed to convert our Angular application into a desktop one using

Electron. We only need to put them together to build and run our desktop application. The main

piece that orchestrates the Electron application is the webpack configuration file that we need

to create in the root folder of our Angular CLI workspace:

webpack.config.js

const path = require('path');

const src = path.join(process.cwd(), 'src', 'electron');

module.exports = {

 mode: 'development',

 devtool: 'source-map',

 entry: path.join(src, 'main.ts'),

 output: {

 path: path.join(process.cwd(), 'dist', 'my-editor'),

 filename: 'shell.js'

 },

 module: {

 rules: [

 {

 test: /\.ts$/,

 loader: 'ts-loader',

 options: {

 configFile: path.join(src, 'tsconfig.json')

 }

 }

]

 },

 target: 'electron-main'

};

Building a WYSIWYG Editor for the Desktop Using Electron 120

The preceding file configures webpack in our application using the following options:

• mode: Indicates that we are currently running in a development environment.

• devtool: Enables source map file generation for debugging purposes.

• entry: Indicates the main entry point of the Electron application, which is the main.ts file.

• output: Defines the path and the filename of the Electron bundle that will be generated

from webpack. The path property points to the same folder used by the Angular CLI to

create the bundle of the Angular application. The filename property is set to shell.js

because the default one generated from webpack is main.js, and it will cause a conflict

with the main.js file generated from the Angular application.

• module: Instructs webpack to load the ts-loader plugin to handle TypeScript files.

• target: Indicates that we are currently running in the main process of Electron.

The webpack module bundler now contains all the information needed to build and bundle the

Electron application. On the other hand, the Angular CLI takes care of building the Angular ap-

plication. Let’s see how we can combine them and run our desktop application:

1. Run the following command to install the concurrently npm package:

npm install -D concurrently

The concurrently library enables us to execute multiple processes together. In our case,

it will allow us to run the Angular and Electron applications in parallel.

2. Open the package.json file and add a new entry in the scripts property:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "start:desktop": "concurrently \"ng build --delete-output-
path=false --watch\" \"webpack --watch\""

}

The start:desktop script builds the Angular application, using the ng build command

of the Angular CLI, and the Electron application, using the webpack command. Both ap-

plications run in watch mode using the --watch option, so every time we change the code,

the application will rebuild to reflect the change.

Chapter 5 121

The Angular CLI will delete the dist folder by default whenever we modify the Angular

application. We can prevent this behavior using the --delete-output-path=false option

because the Electron application is also built in the same folder.

3. Click on the Run menu that exists in the sidebar of Visual Studio Code:

Figure 5.3 – Run menu

4. In the RUN AND DEBUG pane that appears, select the Add Configuration… option from

the drop-down menu:

Figure 5.4 – RUN AND DEBUG pane

We did not pass the webpack configuration file to the webpack command

because it assumes the webpack.config.js filename by default.

Building a WYSIWYG Editor for the Desktop Using Electron 122

5. Visual Studio Code will open a drop-down menu that allows us to select the environment

to run our application. Select the {} Node�js: Electron Main configuration.

6. In the launch.json file that opens, set the value of the program property to

${workspaceFolder}/dist/my-editor/shell.js. The program property points to the

absolute path of the Electron bundle file.

We are now ready to run our desktop application and preview it. Run the following command

to build the application:

npm run start:desktop

The previous command will first build the Electron application and then the Angular one. Wait

for the Angular build to finish, select the Electron Main option from the drop-down menu of the

RUN AND DEBUG pane, and click the Play button to preview the application:

Figure 5.5 – Application window

In the preceding screenshot, we can see that our Angular application with the WYSIWYG editor is

hosted inside a native desktop window. It contains the following characteristics that we usually

find in desktop applications:

• The header with an icon

• The main menu

• The minimize, maximize, and close buttons

The Angular application is rendered inside the Chromium browser. To verify that, click the View

menu item and select the Toggle Developer Tools option.

Well done! You have successfully managed to create your own desktop WYSIWYG editor. In the

following section, we will learn how to interact between Angular and Electron.

Communicating between Angular and Electron
According to the specifications of the project, the content of the WYSIWYG editor needs to be

persisted in the local filesystem. Additionally, the content will be loaded from the filesystem

upon application startup.

Chapter 5 123

The Angular application handles any interaction between the WYSIWYG editor and its data using

the renderer process, whereas the Electron application manages the filesystem with the main

process. Thus, we need to establish an IPC mechanism to communicate between the two Electron

processes as follows:

• Configuring the Angular CLI workspace

• Interacting with the editor

• Interacting with the filesystem

Let’s start by setting up the Angular CLI project to support the desired communication mechanism.

Configuring the Angular CLI workspace
We need to modify several files to configure the workspace of our application:

1. Open the main.ts file that exists in the src\electron folder and set the webPreferences

property in the BrowserWindow constructor accordingly:

function createWindow () {

 const mainWindow = new BrowserWindow({

 width: 800,

 height: 600,

 webPreferences: {

 nodeIntegration: true,

 contextIsolation: false

 }

 });

 mainWindow.loadFile('index.html');

}

The preceding flags will enable Node.js in the renderer process and expose the ipcRenderer

interface, which we will need to communicate with the main process.

2. Run the following command to install the ngx-electronyzer npm package:

npm install ngx-electronyzer

The ngx-electronyzer library allows us to integrate the Electron API into an Angular

application.

The Angular and Electron applications are now ready to interact with each other using the IPC

mechanism. Let’s start implementing the necessary logic in the Angular application first.

Building a WYSIWYG Editor for the Desktop Using Electron 124

Interacting with the editor
The Angular application is responsible for managing the WYSIWYG editor. The content of the

editor is kept in sync with the filesystem using the renderer process of Electron. Let’s find out

how to use the renderer process:

1. Create a new Angular service using the following command of the Angular CLI:

ng generate service editor

2. Open the editor.service.ts file and inject the ElectronService class from the ngx-

electronyzer npm package:

import { Injectable } from '@angular/core';

import { ElectronService } from 'ngx-electronyzer';

@Injectable({

 providedIn: 'root'

})

export class EditorService {

 constructor(private electronService: ElectronService) { }

}

The ElectronService class exposes part of the Electron API, including the ipcRenderer

interface we are currently interested in.

3. Create a method that will be called to get the content of the editor from the filesystem:

getContent(): Promise<string> {

 return this.electronService.ipcRenderer.invoke('getContent');

}

We use the invoke method of the ipcRenderer property, passing the name of the com-

munication channel as a parameter. The result of the getContent method is a Promise

object of the string type, since the content of the editor is raw text data. The invoke

method initiates a connection with the main process through the getContent channel.

In the Interacting with the filesystem section, we will see how to set up the main process to

respond to the invoke method call in that channel.

Chapter 5 125

4. Create a method that will be called to save the content of the editor to the filesystem:

setContent(content: string) {

 this.electronService.ipcRenderer.invoke('setContent', content);

}

The setContent method calls the invoke method of the ipcRenderer object again but

with a different channel name. It also uses the second parameter of the invoke method

to pass data to the main process. In this case, the content parameter will contain the

content of the editor. We will see how to configure the main process to handle data in the

Interacting with the filesystem section.

5. Open the editor.component.ts file and create a myContent property to hold editor data.

Also, inject EditorService in the constructor of the EditorComponent class, and add

the OnInit interface from the @angular/core npm package:

import { Component, OnInit } from '@angular/core';

import { EditorService } from '../editor.service';

@Component({

 selector: 'app-editor',

 templateUrl: './editor.component.html',

 styleUrls: ['./editor.component.css']

})

export class EditorComponent implements OnInit {

 myContent = '';

 constructor(private editorService: EditorService) {}

}

6. Create a method that calls the getContent method of the editorService variable and

executes it inside the ngOnInit method:

ngOnInit(): void {

 this.getContent();

}

private async getContent() {

 this.myContent = await this.editorService.getContent();

}

Building a WYSIWYG Editor for the Desktop Using Electron 126

We use the async/await syntax, which allows the synchronous execution of our code in

Promise-based method calls.

7. Create a method that calls the setContent method of the editorService variable:

saveContent(content: string) {

 this.editorService.setContent(content);

}

8. Let’s bind those methods that we have created with the template of the component. Open

the editor.component.html file and add the following bindings:

<ngx-wig placeholder="Enter your content" [ngModel]="myContent"
(contentChange)="saveContent($event)"></ngx-wig>

We use the ngModel directive to bind the model of the editor to the myContent component

property, which will be used to display the content initially. We also use the contentChange

event binding to save the content of the editor whenever it changes, that is, while the

user types.

9. The ngModel directive is part of the @angular/forms npm package. Import FormsModule

into the app.module.ts file to use it:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { FormsModule } from '@angular/forms';

import { NgxWigModule } from 'ngx-wig';

import { AppComponent } from './app.component';

import { EditorComponent } from './editor/editor.component';

@NgModule({

 declarations: [

 AppComponent,

 EditorComponent

],

 imports: [

 BrowserModule,

 NgxWigModule,

 FormsModule

],

Chapter 5 127

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

We have implemented all the logic for our Angular application to communicate with the main

process. It is time to implement the other end of the communication mechanism, the Electron

application, and its main process.

Interacting with the filesystem
The main process interacts with the filesystem using the fs library, which is built into the Electron

framework. Let’s see how we can use it:

1. Open the main.ts file that exists in the src\electron folder and import the following

artifacts:

import { app, BrowserWindow, ipcMain } from 'electron';

import * as fs from 'fs';

import * as path from 'path';

The fs library is responsible for interacting with the filesystem. The path library provides

utilities for working with file and folder paths. The ipcMain object allows us to work with

the main process of Electron.

2. Create a variable that holds the path of the file containing the content of the editor:

const contentFile = path.join(app.getPath('userData'), 'content.
html');

The file that keeps the content of the editor is the content.html file that exists inside the

reserved userData folder. The userData folder is an alias for a special purpose system

folder, different for each OS, and it is used to store application-specific files such as con-

figuration. You can find more details about the userData folder and other system folders

at https://www.electronjs.org/docs/api/app#appgetpathname.

The getPath method of the app object works cross-platform and is used to

get the path of special folders, such as the home directory of a user or the

application data.

https://www.electronjs.org/docs/api/app#appgetpathname

Building a WYSIWYG Editor for the Desktop Using Electron 128

3. Call the handle method of the ipcMain object to start listening for requests in the

getContent channel:

ipcMain.handle('getContent', () => {

 if (fs.existsSync(contentFile)) {

 const result = fs.readFileSync(contentFile);

 return result.toString();

 }

 return '';

});

When the main process receives a request in this channel, it uses the existsSync method

of the fs library to check whether the file with the content of the editor exists already. If it

exists, it reads it using the readFileSync method and returns its content to the renderer

process.

4. Call the handle method again, but this time for the setContent channel:

ipcMain.handle('setContent', ({}, content: string) => {

 fs.writeFileSync(contentFile, content);

});

In the preceding snippet, we use the writeFileSync method of the fs library to write the

value of the content property in the file.

Now that we have connected the Angular and the Electron application, it is time to preview our

WYSIWYG desktop application:

1. Execute the start:desktop npm script, and press F5 to run the application.

2. Use the editor and its toolbar to enter some content, such as the following:

Figure 5.6 – Editor content

Chapter 5 129

3. Close the application window and rerun the application. If everything worked correctly,

you should see the content you entered inside the editor.

Congratulations! You have enriched your WYSIWYG editor by adding persistence capabilities to

it. In the following section, we will take the last step toward creating our desktop application

and learn how to package and distribute it.

Packaging a desktop application
Web applications are usually bundled and deployed to a hosting web server. On the other hand,

desktop applications are bundled and packaged as a single executable file that can be easily dis-

tributed. Packaging our WYSIWYG application requires the following steps:

• Configuring webpack for production mode

• Using an Electron bundler

We will look at them in more detail in the following sections.

Configuring webpack for production
We have already created a webpack configuration file for the development environment. We now

need to create a new one for production. Both configuration files will share some functionality,

so let’s start by creating a common one:

1. Create a webpack.dev.config.js file in the root folder of the Angular CLI workspace

with the following content:

const path = require('path');

const baseConfig = require('./webpack.config');

module.exports = {

 ...baseConfig,

 mode: 'development',

 devtool: 'source-map',

 output: {

 path: path.join(process.cwd(), 'dist', 'my-editor'),

 filename: 'shell.js'

 }

};

2. Remove the mode, devtool, and output properties from the webpack.config.js file.

Building a WYSIWYG Editor for the Desktop Using Electron 130

3. Open the package.json file and pass the new webpack development configuration file

at the start:desktop script:

"start:desktop": "concurrently \"ng build --delete-output-path=false
--watch\" \"webpack --config webpack.dev.config.js --watch\""

4. Create a webpack.prod.config.js file in the root folder of the Angular CLI workspace

with the following content:

const path = require('path');

const baseConfig = require('./webpack.config');

module.exports = {

 ...baseConfig,

 output: {

 path: path.join(process.cwd(), 'dist', 'my-editor'),

 filename: 'main.js'

 }

};

The main difference with the webpack configuration file for the development environment

is that we changed the filename of the output bundle to main.js. The Angular CLI adds

a hashed number in the main.js file of the Angular application in production, so there

will be no conflicts.

5. Add a new entry in the scripts property of the package.json file to build our application

in production mode:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "start:desktop": "concurrently \"ng build --delete-output-
path=false --watch\" \"webpack --config webpack.dev.config.js
--watch\"",

 "build:electron": "ng build && webpack --config webpack.prod.
config.js"

}

Chapter 5 131

The build:electron script builds the Angular and Electron application in production

mode simultaneously.

We have completed all the configurations needed to package our desktop application. In the

following section, we will learn how to convert it into a single bundle specific to each OS.

Using an Electron bundler
The Electron framework has various tools created and maintained by the open-source community.

One of these tools is the electron-packager library, which we can use to package our desktop

application as a single executable file for each OS (Windows, Linux, and macOS). Let’s see how

we can integrate it into our development workflow:

1. Run the following command to install electron-packager as a development dependency

for our project:

npm install -D electron-packager

2. Add a new entry in the scripts property of the package.json file to package our appli-

cation:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "start:desktop": "concurrently \"ng build --delete-output-
path=false --watch\" \"webpack --config webpack.dev.config.js
--watch\"",

 "build:electron": "ng build && webpack --config webpack.prod.
config.js",

 "package": "electron-packager dist/my-editor --out=dist --asar"

}

In the preceding script, electron-packager will read all files in the dist/my-editor

folder, package them, and output the final bundle in the dist folder. The --asar option

instructs the packager to archive all files in the ASAR format, similar to a ZIP or TAR file.

Building a WYSIWYG Editor for the Desktop Using Electron 132

3. Create a package.json file in the src\electron folder and add the following content:

{

 "name": "my-editor",

 "main": "main.js"

}

The electron-packager library requires a package.json file to be present in the output

folder, which points to the main entry file of the Electron application.

4. Open the webpack.prod.config.js file and add the CopyWebpackPlugin in the plugins

property:

const path = require('path');

const baseConfig = require('./webpack.config');

const CopyWebpackPlugin = require('copy-webpack-plugin');

module.exports = {

 ...baseConfig,

 output: {

 path: path.join(process.cwd(), 'dist', 'my-editor'),

 filename: 'main.js'

 },

 plugins: [

 new CopyWebpackPlugin({

 patterns: [

 {

 context: path.join(process.cwd(), 'src',

 'electron'),

 from: 'package.json'

 }

]

 })

]

};

We use the CopyWebpackPlugin to copy the package.json file from the src\electron

folder into the dist\my-editor folder while building the application in production mode.

Chapter 5 133

5. Run the following command to build the application in production mode:

npm run build:electron

6. Now run the following npm command to package it:

npm run package

The preceding command will package the application for the OS you currently run on,

which is the default behavior of the electron-packager library. You can alter this behavior

by passing additional options, which you will find in the GitHub repository of the library,

listed in the Further reading section.

7. Navigate to the dist folder of the Angular CLI workspace. You will find a folder called my-

editor-{OS}, where {OS} is your current OS and its architecture. For example, in Windows,

it will be my-editor-win32-x64. Open the folder, and you will get the following files:

Figure 5.7 – Application package (Windows)

In the preceding screenshot, the my-editor.exe file is the executable file of our desktop appli-

cation. Our application code is not included in this file but in the app.asar file, which exists in

the resources folder.

Run the executable file, and the desktop application should open normally. You can take the whole

folder and upload it to a server, or distribute it by any other means. Your WYSIWYG editor can

now reach many more users, such as those that are offline most of the time. Awesome!

Building a WYSIWYG Editor for the Desktop Using Electron 134

Summary
In this chapter, we built a WYSIWYG editor for the desktop using Angular and Electron. Initially,

we created an Angular application and added ngx-wig, a popular Angular WYSIWYG library. Then,

we learned how to build an Electron application and implemented a communication mechanism

to exchange data between the Angular and Electron applications. Finally, we learned how to

bundle our application for packaging and get it ready for distribution.

In the next chapter, we will learn how to build a mobile photo geotagging application with An-

gular and Ionic.

Practice questions
Let’s take a look at a few practice questions:

1. Which class is responsible for creating a desktop window in Electron?

2. How do we communicate between the main and renderer processes in Electron?

3. Which flags enable the use of Node.js in the renderer process?

4. How do we load Electron in an Angular application?

5. Which interface do we use to interact with Electron in an Angular application?

6. How do we pass data to the main Electron process from an Angular application?

7. Which package do we use for filesystem manipulation in Electron?

8. Which library do we use to package an Electron application?

Further reading
Here are some links to build upon what we learned in the chapter:

• Electron: https://www.electronjs.org

• Electron quick start: https://www.electronjs.org/docs/tutorial/quick-start

• ngx-wig: https://www.npmjs.com/package/ngx-wig

• Webpack configuration: https://webpack.js.org/configuration

• ts-loader: https://webpack.js.org/guides/typescript

• ngx-electronyzer: https://www.npmjs.com/package/ngx-electronyzer

• Filesystem API: https://nodejs.org/api/fs.html

• electron-packager: https://www.npmjs.com/package/electron-packager

• concurrently: https://www.npmjs.com/package/concurrently

https://www.electronjs.org
https://www.electronjs.org/docs/tutorial/quick-start
https://www.npmjs.com/package/ngx-wig
https://webpack.js.org/configuration
https://webpack.js.org/guides/typescript
https://www.npmjs.com/package/ngx-electronyzer
https://nodejs.org/api/fs.html
https://www.npmjs.com/package/electron-packager
https://www.npmjs.com/package/concurrently

6
Building a Mobile Photo
Geotagging Application Using
Capacitor and 3D Maps

Angular is a cross-platform JavaScript framework that can be used to build applications for differ-

ent platforms such as web, desktop, and mobile. Moreover, it allows developers to use the same

code base and apply the same web techniques to each platform, enjoying the same experience

and performance. In this chapter, we will investigate how we can build mobile applications

using Angular.

Ionic is a popular UI toolkit that allows us to build mobile applications using web technologies

such as Angular. The Capacitor library greatly enhances Ionic applications by enabling them to

run natively on Android and iOS devices. In this chapter, we will use both technologies to build

a mobile application to take geotagged photos and display them on a 3D map.

We will cover the following topics in detail:

• Creating a mobile application with Ionic

• Taking photos with Capacitor

• Storing data in Firebase

• Previewing photos with CesiumJS

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps136

Essential background theory and context
Capacitor is a native mobile runtime that enables us to build Android and iOS applications with

web technologies, including Angular. It provides an abstraction API layer for web applications to

interact with the native resources of a mobile OS. It does not include a UI layer or any other way

of interacting with the user interface.

Ionic is a mobile framework containing a collection of UI components we can use in an application

built with Capacitor. The main advantage of Ionic is that we maintain a single code base across all

native mobile platforms. That is, we write the code once, and it works everywhere. Ionic supports

all popular JavaScript frameworks, including Angular.

Firebase is a Backend-as-a-Service (BaaS) platform provided by Google that contains tools and

services for building applications. Cloud Firestore is a database solution provided by Firebase

that features a flexible and scalable NoSQL document-oriented database that can be used in web

and mobile applications. Firebase Storage is a service that allows us to interact with a storage

mechanism and upload or download files.

CesiumJS is a JavaScript library for creating interactive 3D maps in the browser. It is an open-

source, cross-platform library that uses WebGL and allows us to share geospatial data on mul-

tiple platforms. It is powered by Cesium, a platform for building high-quality and performant

3D geospatial applications.

Project overview
In this project, we will build a mobile application that can take photos according to the current

location and preview them on a map. Initially, we will learn how to create a mobile application

using Angular and Ionic. We will then use Capacitor to take photos using the camera of the mobile

device and tag them with the current location via GPS. We will upload those photos to Firebase

along with their location data. Finally, we will use CesiumJS to load location data on a 3D globe

along with a preview of the photo. The following diagram depicts an architectural overview of

the project:

Chapter 6 137

Figure 6.1 – Project architecture

Build time: 2 hours

In this chapter, you will learn how to build a mobile application with Angular and

Ionic. To follow up with the project and preview your application, you must follow

the getting started guide for your development environment (Android or iOS), which

you can find in the Further reading section.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps138

Getting started
You will need the following software and tools to complete the project:

• For Android development: Android Studio with the latest Android SDK.

• For iOS development: Xcode with the iOS SDK and Xcode Command Line Tools.

• A physical mobile device.

• Angular CLI: A command-line interface for Angular that you can find at https://angular.

io/cli.

• GitHub material: The related code for this chapter can be found in the Chapter06 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Creating a mobile application with Ionic
The first step toward building our application is creating a new mobile application using the Ionic

toolkit. We will start building our application with the following tasks:

• Scaffolding the application

• Building the main menu

Ionic has a pretty straightforward process for creating a new mobile application from scratch

without entering a single line of code.

Scaffolding the application
To create a new Ionic application, complete the following steps:

1. Install the Ionic tooling that we will need using the following command:

npm install -g @ionic/cli native-run cordova-res

The Ionic CLI is used to build and run an Ionic mobile application. The native-run library

is used to run native libraries on mobile devices and emulators. The cordova-res library

generates the icons and splash screens of our application for native mobile devices.

2. Run the following command to create a new Angular application that uses the sidemenu

starter template from Ionic and also adds Capacitor:

ionic start phototag sidemenu --type=angular --capacitor

3. The preceding command will ask you if you want to use Angular modules or standalone

components. Select Standalone and press Enter.

https://angular.io/cli
https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Chapter 6 139

Ionic will create a sample application for us with some ready-made data. In the following section,

we will learn how to modify it according to our needs.

Building the main menu
We will start building the main menu of our application according to our specifications:

1. Load the Ionic project we built in the previous section within VSCode and open the main

HTML file of the application, index.html.

2. Add the name of your application in the <title> tag:

<title>Phototag App</title>

3. Open the template file of the main component, app.component.html, and remove the

second <ion-list> element. An <ion-list> element displays items in a list view.

4. Add the name of your application in the <ion-list-header> element and change the text

of the <ion-note> element accordingly:

<ion-list-header>Phototag</ion-list-header>

<ion-note>Capture geotagged photos</ion-note>

An <ion-list-header> element is the header of a list. An <ion-note> element is a text

element used to provide additional information, such as the subtitle of a list.

5. Open the TypeScript file of the main component, app.component.ts, and modify the

AppComponent class as follows:

export class AppComponent {

 public appPages = [

 {

 title: 'Take a photo',

 url: '/capture',

 icon: 'camera'

 },

 {

 title: 'View gallery',

 url: '/view',

 icon: 'globe'

 }

];

 constructor() {}

}

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps140

The appPages property contains all the pages of our application. Each page has a title,

a url from which it is accessible, and an icon. Our application will consist of two pages,

one that will be used for taking photos using the camera and another for displaying them

on a map.

6. Run the serve command of the Ionic CLI to start the application:

ionic serve

The preceding command will build your application and open your default browser at

http://localhost:8100.

You should see the following output in the side menu of the application:

Figure 6.2 – Main menu

We have learned how to create a new Ionic application using the Ionic CLI and make modifica-

tions according to our needs.

If we try to click on a menu item, we will notice that nothing happens since we have not created

the necessary pages to be activated in each case. In the following section, we will learn how to

complete this task by building the functionality of the first page.

Suppose you adjust your browser window size to achieve a more realistic view for

a mobile device or use an emulator like the device toolbar in the Google Chrome

developer tools. In that case, you must click the application menu button to see the

preceding image.

Chapter 6 141

Taking photos with Capacitor
The first page of our application will allow the user to take photos using the camera. We will use

the Capacitor runtime to get access to the native resource of the camera. To implement the page,

we need to take the following actions:

• Create the user interface.

• Interact with Capacitor.

Let’s start building the user interface of the page.

Creating the user interface
Each page in our application is a different Angular component. To create an Angular component

in Ionic, we can use the generate command of the Ionic CLI:

ionic generate page capture

The previous command will perform the following actions:

• Create an Angular component named capture.

• Create a related routes file.

Let’s start building the logic of our new page now:

1. First, make our page the default when the user opens the application. Open the app.

routes.ts file and change the first entry of the routes property to:

{

 path: '',

 redirectTo: 'capture',

 pathMatch: 'full',

}

The empty path is called the default routing path and is activated when our application

starts up. The redirectTo property tells Angular to redirect to the capture path, which

will load the page we created.

You can also remove the folder/:id path as it is no longer needed and the

whole src\app\folder directory from the application, which is part of the

Ionic template layout.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps142

2. Open the capture.page.html file and replace the contents of the first <ion-toolbar>

element as follows:

<ion-header [translucent]="true">

 <ion-toolbar>

 <ion-buttons slot="start">

 <ion-menu-button color="primary"></ion-menu-button>

 </ion-buttons>

 <ion-title>Take a photo</ion-title>

 </ion-toolbar>

</ion-header>

The <ion-toolbar> element is part of the <ion-header> element, which is the top navi-

gation bar of the page. It contains an <ion-menu-button> element for toggling the main

menu of the application and an <ion-title> element that depicts the title of the page.

3. Modify the title of the second <ion-toolbar> element as follows:

<ion-title size="large">Take a photo</ion-title>

The second <ion-header> element will be displayed when the page is expanded, and the

main menu is displayed on the screen.

4. Add the following HTML code immediately after the second header:

<div id="container">

 <strong class="capitalize">Take a nice photo with your camera</
strong>

 <ion-fab vertical="center" horizontal="center" slot="fixed">

 <ion-fab-button>

 <ion-icon name="camera"></ion-icon>

 </ion-fab-button>

 </ion-fab>

</div>

It contains an <ion-fab-button> element, which, when clicked, will open the camera of

the device to take a photo.

5. Finally, let’s add some cool styles to our page. Open the capture.page.scss file and enter

the following CSS styles:

#container {

 text-align: center;

Chapter 6 143

 position: absolute;

 left: 0;

 right: 0;

 top: 50%;

 transform: translateY(-50%);

}

#container strong {

 font-size: 20px;

 line-height: 26px;

}

#container ion-fab {

 margin-top: 60px;

}

Let’s run the application using ionic serve to get a quick preview of what we have built so far:

Figure 6.3 – Capture page

The camera button on the page needs to open the camera to take a photo. In the following section,

we will learn how to use Capacitor to interact with the camera.

Interacting with Capacitor
Taking photos in our application involves using two APIs from the Capacitor library. The Camera

API will open the camera to take a photo, and the Geolocation API will read the current location

from the GPS. Let’s see how we can use both in our application:

1. Execute the following npm command to install both APIs:

npm install @capacitor/camera @capacitor/geolocation

2. Create an Angular service using the following Ionic CLI command:

ionic generate service photo

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps144

3. Open the photo.service.ts file and add the following import statements:

import { Camera, CameraResultType, CameraSource } from '@capacitor/
camera';

import { Geolocation } from '@capacitor/geolocation';

4. Create a method in the PhotoService class to read the current position from the GPS device:

private async getLocation() {

 const location = await Geolocation.getCurrentPosition();

 return location.coords;

}

The getCurrentPosition method of the Geolocation object contains a coords property

with various location-based data such as the latitude and the longitude.

5. Create another method that calls the getLocation method and opens the camera of the

device to take a photo:

async takePhoto() {

 await this.getLocation();

 await Camera.getPhoto({

 resultType: CameraResultType.DataUrl,

 source: CameraSource.Camera,

 quality: 100

 });

}

We use the getPhoto method of the Camera object and pass a configuration object to de-

fine the properties for each photo. The resultType property indicates that the photo will

be in a data URL format to save it to Firebase later easily. The source property indicates

that we will use the camera device to get the photo, and the quality property defines the

quality of the actual photo.

6. Open the capture.page.ts file and inject PhotoService in the constructor of the

CapturePage class:

import { Component, OnInit } from '@angular/core';

import { CommonModule } from '@angular/common';

import { FormsModule } from '@angular/forms';

import { IonicModule } from '@ionic/angular';

import { PhotoService } from '../photo.service';

Chapter 6 145

@Component({

 selector: 'app-capture',

 templateUrl: './capture.page.html',

 styleUrls: ['./capture.page.scss'],

 standalone: true,

 imports: [IonicModule, CommonModule, FormsModule]

})

export class CapturePage implements OnInit {

 constructor(private photoService: PhotoService) { }

 ngOnInit() {

 }

}

7. Create a component method that will call the takePhoto method of the photoService

variable:

openCamera() {

 this.photoService.takePhoto();

}

8. Open the capture.page.html file and bind the click event of the <ion-fab-button>

element to the openCamera component method:

<ion-fab-button (click)="openCamera()">

 <ion-icon name="camera"></ion-icon>

</ion-fab-button>

We have now added all the necessary pieces to take a photo using the camera of the device. Let’s

try to run the application on a real device to test the interaction with the camera:

1. First, we need to build our application using the following Ionic CLI command:

ionic build

The preceding command will create a www folder in the root folder of your project that

contains your application bundle.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps146

2. Run the following command to open the application in the development environment

of your chosen platform:

ionic cap open <os>

In the previous command, <os> can be either android or ios. Upon execution, it will open

the native mobile project in the respective IDE, Android Studio, or Xcode, depending on the

platform that you are targeting. The IDE must then be used to run the native application.

3. Click on the camera button. The application may ask your permission to use the GPS

and the camera. Alternatively, you may need to enable location settings on your device

before continuing.

The first page of our application now has a sleek interface that allows the user to interact with

the camera. We have also created an Angular service that ensures a seamless interaction with

Capacitor to get location-based data and take photos. In the following section, we will see how

to save them in the cloud using Firebase.

Storing data in Firebase
The application will be able to store photos and their location in Firebase. We will use the Storage

service to upload our photos and the Cloud Firestore database to keep their location. We will

further expand our application in the following tasks:

• Creating a Firebase project

• Integrating the AngularFire library

First, we must set up a new Firebase project for our application.

Whenever you want to rebuild the application, you must run the ionic cap

copy command to copy the application bundle from the www folder into the

native mobile project.

You will probably need to add additional permissions in the native mobile project

of your development environment. Check the respective documentation of the APIs

on the Capacitor website.

Chapter 6 147

Creating a Firebase project
We can set up and configure a Firebase project using the Firebase console at https://console.

firebase.google.com:

1. Click on the Add project button to create a new Firebase project:

Figure 6.4 – Create a new Firebase project

2. Enter a name for your project and click the Continue button:

Figure 6.5 – Enter the project name

Firebase generates a unique identifier for your project, which is located un-

derneath the project name and is used in various Firebase services.

https://console.firebase.google.com
https://console.firebase.google.com

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps148

3. Disable Google Analytics for this project and click on the Create project button:

Figure 6.6 – Disable Google Analytics

4. Wait for the new project to be created and click the Continue button. You will be redirected

to the dashboard of your new project, which contains a list of options:

Figure 6.7 – Select the type of your application

Click the third option with the code icon to add Firebase to a web application.

5. Enter a name for your application in the App nickname field and click on the Register

app button:

Figure 6.8 – Application registration

Chapter 6 149

6. Firebase will generate a configuration that we will use later in the mobile application:

const firebaseConfig = {

 apiKey: "<Your API key>",

 authDomain: "<Your project auth domain>",

 projectId: "<Your project ID>",

 storageBucket: "<Your storage bucket>",

 messagingSenderId: "<Your messaging sender ID>",

 appId: "<Your application ID>"

};

Copy the firebaseConfig object and click the Continue to console button.

7. Back in the dashboard console, select the Cloud Firestore option to enable Cloud Firestore

in your application.

8. Click on the Create database button to create a new Cloud Firestore database:

Figure 6.9 – Create a database

The Firebase configuration can also be accessed later at https://console.

firebase.google.com/project/<project-id>/settings/general,

where project-id is the ID of your Firebase project.

https://console.firebase.google.com/project/<project-id>/settings/general
https://console.firebase.google.com/project/<project-id>/settings/general

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps150

9. Select the operation mode of your database. Choose Start in Test mode for development

purposes and click the Next button:

Figure 6.10 – Select operation mode

Choosing a mode is nothing less than setting rules for your database. Test mode allows

faster setup and keeps your data public for 30 days. When you are ready to move your

application into production, you can modify the rules of your database accordingly to

make your data private.

10. Choose a location for your database according to your regional settings and click the

Enable button.

Congratulations! You have created a new Cloud Firestore database. In the next section, we will

learn how to use the new database for saving data with our mobile application.

Integrating the AngularFire library
The AngularFire library is an Angular library that we can use in an Angular application to interact

with Firebase family products such as Cloud Firestore and the Storage service. To install it in our

application:

1. Run the following command in a terminal window to install Firebase tools:

npm install -g firebase-tools

2. Run the following command in the same terminal window to authenticate with the Fire-

base CLI:

Chapter 6 151

firebase login

3. Finally, run the following command of the Angular CLI to install the @angular/fire npm

package in your Angular CLI project:

ng add @angular/fire

The preceding command will find the latest version of the library and prompt us to install it.

4. First, it will ask what features of Firebase we want to enable:

? What features would you like to setup?

Make sure that you select only the Firestore option and press Enter.

5. Then, it will ask us to select which Firebase account we want to use:

? Which Firebase account would you like to use?

Ensure the account you used earlier is selected, and press Enter.

6. In the next question, we will choose for which project we are going to use Firestore:

? Please select a project:

Select the phototag project that we created earlier and press Enter.

7. Finally, we must choose the app that has Firestore enabled:

? Please select an app:

Select the phototag app that we created earlier and press Enter.

8. Open the main.ts file and add the following import statements:

import { provideFirebaseApp, initializeApp } from '@angular/fire/
app';

import { getFirestore, provideFirestore } from '@angular/fire/
firestore';

import { getStorage, provideStorage } from '@angular/fire/storage';

The preceding command may throw an error stating that the app.module.

ts file does not exist. Please ignore it and continue with the next step.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps152

9. Finally, modify the providers array in the bootstrapApplication method as follows:

bootstrapApplication(AppComponent, {

 providers: [

 { provide: RouteReuseStrategy, useClass: IonicRouteStrategy },

 importProvidersFrom(IonicModule.forRoot({})),

 provideRouter(routes),

 importProvidersFrom(provideFirebaseApp(() =>
initializeApp(<firebaseConfig>))),

 importProvidersFrom(provideFirestore(() => getFirestore())),

 importProvidersFrom(provideStorage(() => getStorage()))

]

});

Replace <firebaseConfig> with the Firebase configuration object that you copied in the

previous section.

Let’s see now how we can use the AngularFire library in our application:

1. Open the photo.service.ts file and add the following import statements:

import { Firestore, collection, addDoc } from '@angular/fire/
firestore';

import { Storage, ref, uploadString, getDownloadURL } from '@
angular/fire/storage';

The Firestore service contains all the necessary methods that we will need to interact

with our Cloud Firestore database. The Storage service contains methods for uploading

files to the Storage service.

2. Inject both services into the constructor of the PhotoService class:

constructor(private firestore: Firestore, private storage: Storage)
{}

3. Create the following method to save a photo in Firebase:

private async savePhoto(dataUrl: string, latitude: number,
longitude: number) {

 const name = new Date().getUTCMilliseconds().toString();

 const storageRef = ref(this.storage, name);

 await uploadString(storageRef, dataUrl, 'data_url');

 const photoUrl = await getDownloadURL(storageRef);

Chapter 6 153

 const photoCollection = collection(this.firestore, 'photos');

 await addDoc(photoCollection, {

 url: photoUrl,

 lat: latitude,

 lng: longitude

 })

}

First, we create a random name for our photo and use the uploadString method to upload

it to Firebase storage. As soon as uploading has been completed, we get a downloadable

URL using the getDownloadURL method, which can be used to access that photo. Finally,

we use the addDoc method to add a new photo in the photocollection property of the

Firestore database.

4. Modify the takePhoto method to call the savePhoto method that we created in the pre-

vious step:

async takePhoto() {

 const {latitude, longitude} = await this.getLocation();

 const cameraPhoto = await Camera.getPhoto({

 resultType: CameraResultType.DataUrl,

 source: CameraSource.Camera,

 quality: 100

 });

 if (cameraPhoto.dataUrl) {

 await this.savePhoto(cameraPhoto.dataUrl, latitude, longitude);

 }

}

We are now ready to check the full functionality of the photo-shooting process:

1. Run the following command of Capacitor to copy the application bundle to the native

mobile project:

ionic cap copy

2. Open the native mobile project using the open command of Capacitor and run the project

using the respective IDE.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps154

3. Open the Firebase console of your application and select the Storage option in the Build

section. Click on the Get started button, select the Start in Test mode option, and click

Next. Finally, click Done to complete the process of setting up cloud storage.

4. Use the application to take a nice photo. To verify that your photo has been successfully

uploaded to Firebase, refresh the page in the Firebase console. You should see an entry

like the following:

Figure 6.11 – Firebase storage

5. Similarly, select the Firestore Database option in the Build section, and you should see

something like the following:

Figure 6.12 – Cloud Firestore

In the preceding screenshot, the 1oFxxWgQseIwqWUrYBkN entry is the logical object of

the photo that contains the URL of the actual file and its location data.

The first page of our application is now feature-complete. We have gone through the full process

of taking and uploading a photo to Firebase, along with its location data. We started by setting up

and configuring a Firebase project and finished by learning how to use the AngularFire library to

interact with that project. In the next section, we will reach our final destination by implementing

the second page of our application.

Previewing photos with CesiumJS
The next feature of our application will be to display all the photos we have taken with the camera

on a 3D map. The CesiumJS library provides a viewer with a 3D globe that we can use to visual-

ize various things, such as images in specific locations. This new feature of our application will

consist of the following:

• Configuring CesiumJS

• Displaying photos on the viewer

Chapter 6 155

We will begin by learning how to set up the CesiumJS library.

Configuring CesiumJS
The CesiumJS library is an npm package that we can install to start working with 3D maps and

visualizations:

1. Run the following npm command to install CesiumJS:

npm install cesium

2. Open the angular.json configuration file and add the following entries in the assets

array of the build architect option:

{

 "glob": "**/*",

 "input": "node_modules/cesium/Build/Cesium/Workers",

 "output": "/assets/cesium/Workers"

},

{

 "glob": "**/*",

 "input": "node_modules/cesium/Build/Cesium/ThirdParty",

 "output": "/assets/cesium/ThirdParty"

},

{

 "glob": "**/*",

 "input": "node_modules/cesium/Build/Cesium/Assets",

 "output": "/assets/cesium/Assets"

},

{

 "glob": "**/*",

 "input": "node_modules/cesium/Build/Cesium/Widgets",

 "output": "/assets/cesium/Widgets"

}

The preceding entries will copy all CesiumJS source files into a cesium folder inside the

assets folder of our application.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps156

3. Also, add the CesiumJS widgets style sheet file into the styles array of the build section:

"styles": [

 "node_modules/cesium/Build/Cesium/Widgets/widgets.css",

 "src/theme/variables.scss",

 "src/global.scss"

]

The viewer of CesiumJS contains a toolbar with widgets, including a search bar and a

dropdown for selecting a specific type of map, such as Bing Maps or Mapbox.

4. Open the main entry point file of our application, main.ts, and add the following line:

(window as Record<string, any>)['CESIUM_BASE_URL'] = '/assets/
cesium/';

The CESIUM_BASE_URL global variable indicates the location of the CesiumJS source files.

5. Install a custom webpack builder using the following npm command:

npm install -D @angular-builders/custom-webpack

A builder is an Angular library that extends the default functionality of the Angular CLI.

The @angular-builders/custom-webpack builder allows us to provide an additional

webpack configuration file while building our application. It is beneficial in cases where

we want to include other webpack plugins or override existing functionality.

6. Create a new webpack configuration file named extra-webpack.config.js in the root

folder of the project and add the following content:

module.exports = {

 resolve: {

 fallback: {

 "https": false,

 "zlib": false,

 "http": false,

 "url": false

 }

 },

 module: {

 unknownContextCritical: false

 }

};

Chapter 6 157

The configuration file will ensure that webpack will only try to load CesiumJS code that

it can understand. CesiumJS uses modules in a format that cannot be statically analyzed

using webpack.

7. Open the angular.json file and change the builder property of the build architect section

to use the custom webpack builder:

"builder": "@angular-builders/custom-webpack:browser"

8. Define the path of the custom webpack configuration file in the options property of the

build section:

"customWebpackConfig": {

 "path": "./extra-webpack.config.js"

}

9. Also configure the serve architect section to use the custom webpack builder:

"serve": {

 "builder": "@angular-builders/custom-webpack:dev-server",

 "configurations": {

 "production": {

 "browserTarget": "app:build:production"

 },

 "development": {

 "browserTarget": "app:build:development"

 },

 "ci": {

 "progress": false

 }

 },

 "defaultConfiguration": "development"

}

Now that we have completed the configuration of the CesiumJS library, we can start creating the

page for our feature:

1. Run the following command of the Ionic CLI to create a new page:

ionic generate page view

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps158

2. Open the view.page.html file and modify the first <ion-header> element so that it in-

cludes a menu toggle button:

<ion-header [translucent]="true">

 <ion-toolbar>

 <ion-buttons slot="start">

 <ion-menu-button color="primary"></ion-menu-button>

 </ion-buttons>

 <ion-title>View gallery</ion-title>

 </ion-toolbar>

</ion-header>

3. Change the title of the <ion-content> element and add a <div> element that will be the

container for our viewer:

<ion-content [fullscreen]="true">

 <ion-header collapse="condense">

 <ion-toolbar>

 <ion-title size="large">View gallery</ion-title>

 </ion-toolbar>

 </ion-header>

 <div #mapContainer></div>

</ion-content>

The #mapContainer is a template reference variable we use to declare an alias for an

element in our template.

4. Open the view.page.scss file and set the size of the map container element:

div {

 height: 100%;

 width: 100%;

}

5. Let’s create our viewer now. Open the view.page.ts file and modify it as follows:

import { AfterViewInit, Component, ElementRef, OnInit, ViewChild }
from '@angular/core';

import { CommonModule } from '@angular/common';

import { FormsModule } from '@angular/forms';

Chapter 6 159

import { IonicModule } from '@ionic/angular';

import { Viewer } from 'cesium';

@Component({

 selector: 'app-view',

 templateUrl: './view.page.html',

 styleUrls: ['./view.page.scss'],

 standalone: true,

 imports: [IonicModule, CommonModule, FormsModule]

})

export class ViewPage implements OnInit, AfterViewInit {

 @ViewChild('mapContainer') content: ElementRef | undefined;

 constructor() { }

 ngOnInit() {

 }

 ngAfterViewInit() {

 const viewer = new Viewer(this.content?.nativeElement);

 }

}

We create a new Viewer object inside the ngAfterViewInit method of the component.

The ngAfterViewInit method is called when the view of the component has finished

loading, and it is defined in the AfterViewInit interface. The constructor of the Viewer

class accepts as a parameter the native HTML element on which we want to create the

viewer. In our case, we want to attach it to the map container element that we created

earlier. Thus, we use the @ViewChild decorator to reference that element by passing the

template reference variable name as a parameter.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps160

6. Run the application using ionic serve and click on the View gallery option from the

main menu. You should see the following output:

Figure 6.13 – View gallery page

We have now successfully configured the CesiumJS library in our application. In the next section,

we will see how to benefit from it and display our photos on the 3D globe of the CesiumJS viewer.

Displaying photos on the viewer
The next thing we need to do for our application to be ready is display our photos on the map. We

will get all the photos from Firebase and add them to the viewer in the specified locations. Let’s

see how we can accomplish that:

Chapter 6 161

1. Create a new Angular service using the following command of the Ionic CLI:

ionic generate service cesium

2. Open the cesium.service.ts file and add the following import statements:

import { Firestore, collection, getDocs } from '@angular/fire/
firestore';

import { Cartesian3, Color, PinBuilder, Viewer } from 'cesium';

import { Observable } from 'rxjs';

import { map } from 'rxjs/operators';

3. Inject the Firestore service in the constructor of the CesiumService class and create a

viewer property, which we will use to store our Viewer object:

export class CesiumService {

 private viewer: Viewer | undefined;

 constructor(private firestore: Firestore) { }

}

4. Create a register method to set the viewer property:

register(viewer: Viewer) {

 this.viewer = viewer;

}

5. Create a method to get the photos collection from Cloud Firestore:

private async getPhotos() {

 const photoCollection = collection(this.firestore, 'photos');

 return await getDocs(photoCollection);

}

In the preceding method, we call the getDocs method to get the data of the photos col-

lection.

6. Create the following method for adding all the photos to the viewer:

async addPhotos() {

 const pinBuilder = new PinBuilder();

 const photos = await this.getPhotos();

 photos.forEach(photo => {

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps162

 const entity = {

 position: Cartesian3.fromDegrees(photo.get('lng'), photo.
get('lat')),

 billboard: {

 image: pinBuilder.fromColor(Color.
fromCssColorString('#de6b45'), 48).toDataURL()

 },

 description: `<img width="100%" style="margin:auto; display:
block;" src="${photo.get('url')}" />`

 };

 this.viewer?.entities.add(entity);

 });

}

The location of each photo on the viewer will be displayed as a pin. Thus, we need to

initialize a PinBuilder object first. The preceding method calls the getPhotos method

to get all photos from Cloud Firestore. For each photo, it creates an entity object that

contains the position, which is the location of the photo in degrees, and a billboard

property that displays a pin of 48 pixels in size. It also defines a description property

that will show the actual image of the photo when we click on the pin.

Each entity object is added to the entities collection of the viewer using its add method.

7. The description of each photo is displayed inside an info box. Open the global.scss file

that contains the global styles of the application and add the following CSS styles for the

info box:

.cesium-infoBox, .cesium-infoBox-iframe {

 height: 100% !important;

 width: 100%;

}

8. Now, let’s use CesiumService from our page. Open the view.page.ts file and inject the

CesiumService class into the constructor of the ViewPage class:

import { AfterViewInit, Component, ElementRef, OnInit, ViewChild }
from '@angular/core';

import { CommonModule } from '@angular/common';

import { FormsModule } from '@angular/forms';

import { IonicModule } from '@ionic/angular';

Chapter 6 163

import { Viewer } from 'cesium';

import { CesiumService } from '../cesium.service';

@Component({

 selector: 'app-view',

 templateUrl: './view.page.html',

 styleUrls: ['./view.page.scss'],

 standalone: true,

 imports: [IonicModule, CommonModule, FormsModule]

})

export class ViewPage implements OnInit, AfterViewInit {

 @ViewChild('mapContainer') content: ElementRef | undefined;

 constructor(private cesiumService: CesiumService) { }

 ngOnInit() {

 }

 ngAfterViewInit() {

 const viewer = new Viewer(this.content?.nativeElement);

 }

}

9. Modify the ngAfterViewInit method to register the viewer and add the photos:

ngAfterViewInit() {

 this.cesiumService.register(new Viewer(this.content?.
nativeElement));

 this.cesiumService.addPhotos();

}

We are now ready to view our photos on the map:

1. Run the application using the ionic serve command.

2. Use the application to take nice photos, preferably in different locations.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps164

3. Select the View gallery option from the main menu, and you should get an output like

the following:

Figure 6.14 – Photos on the map

4. Click on one of the pins on the map, and you should see your photo:

Chapter 6 165

Figure 6.15 – Photo display

We now have a complete mobile application for taking geotagged photos and displaying them

on a map. We saw how to set up the CesiumJS library and get our photos from Cloud Firestore.

The API of the CesiumJS viewer provided us with an easy way to visualize our photos on the map

and interact with them.

Building a Mobile Photo Geotagging Application Using Capacitor and 3D Maps166

Summary
In this chapter, we built a mobile application for taking photos, tagging them with the current

location, and displaying them on a 3D map. Initially, we learned how to create a new mobile ap-

plication using the Ionic framework. We built the application locally and integrated Capacitor to

interact with the camera and the GPS device. The camera was used to take photos, and the GPS

to mark them with the location.

Later on, we used Firebase services to store our photo files and data in the cloud. Finally, we

learned how to retrieve the stored photos from Firebase and display them on a 3D globe using

the CesiumJS library.

In the next chapter, we will investigate another way to prerender content in Angular. We will use

server-side rendering techniques to create a GitHub portfolio website.

Practice questions
1. Which toolkit can we use to create a UI in a Capacitor application?

2. Which method do we use to take photos with the camera in a Capacitor application?

3. How do we read the current location in a Capacitor application?

4. How do we add a menu toggle button with Ionic?

5. Which Capacitor command do we use to sync the application bundle with native mobile

projects?

6. What is the difference between test and production modes in Cloud Firestore?

7. How do we initialize an application with the AngularFire library?

8. Which method do we use to fetch data from a Cloud Firestore collection?

9. How do we create a pin using the CesiumJS library?

10. How do we convert latitude and longitude to degrees using CesiumJS?

Further reading
• Getting started with Capacitor: https://capacitorjs.com/docs/getting-started

• Android getting started guide for Capacitor: https://capacitorjs.com/docs/

android#getting-started

• iOS getting started guide for Capacitor: https://capacitorjs.com/docs/ios#getting-
started

https://capacitorjs.com/docs/getting-started
https://capacitorjs.com/docs/android#getting-started
https://capacitorjs.com/docs/android#getting-started
https://capacitorjs.com/docs/ios#getting-started
https://capacitorjs.com/docs/ios#getting-started

Chapter 6 167

• Angular development with Ionic: https://ionicframework.com/docs/angular/overview

• AngularFire library documentation: https://firebaseopensource.com/projects/

angular/angularfire2

• CesiumJS quick start guide: https://cesium.com/docs/tutorials/quick-start

• CesiumJS and Angular article: https://cesium.com/blog/2018/03/12/cesium-and-
angular

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/AngularProjects3e

https://ionicframework.com/docs/angular/overview
https://firebaseopensource.com/projects/angular/angularfire2
https://firebaseopensource.com/projects/angular/angularfire2
https://cesium.com/docs/tutorials/quick-start
https://cesium.com/blog/2018/03/12/cesium-and-angular
https://cesium.com/blog/2018/03/12/cesium-and-angular
https://packt.link/AngularProjects3e

7
Building an SSR Application
for a GitHub Portfolio Using
Angular

A typical Angular application follows the Single-Page Application (SPA) approach, where each

page is created in the DOM of the browser while the user interacts with the application. A web

server hosts the application and serves only the main page, usually called index.html, at appli-

cation startup.

Server-Side Rendering (SSR) is a technique that follows an entirely different approach for ap-

plication rendering than SPA. It uses the server to prerender pages when the user requests them

at runtime. Rendering content on the server dramatically enhances the performance of a web

application and improves its Search Engine Optimization (SEO) capabilities. To perform SSR

in an Angular application, we use a library called Angular Universal.

In this chapter, we will learn how to benefit from Angular Universal by building a portfolio ap-

plication using the GitHub API. We will cover the following topics:

• Building an Angular application with the GitHub API

• Integrating Angular Universal

• Prerendering content during build

• Enhancing SEO capabilities

Building an SSR Application for a GitHub Portfolio Using Angular 170

Essential background theory and context
An Angular application consists of several pages created dynamically in the DOM of the browser

by the Angular framework while we use the application. Angular Universal enables the Angular

framework to create these pages on the server statically during application runtime. In other words,

it can create a fully static version of an Angular application that can run even without needing to

have JavaScript enabled. Prerendering an application on the server has the following advantages:

• It allows web crawlers to index the application and make it discoverable and linkable on

social media websites.

• It makes the application usable on mobile and other low-performant devices that cannot

afford to execute JavaScript on their side.

• It improves the user experience by loading the first page quickly and, at the same time,

loading the actual client page in the background (First Contentful Paint (FCP)).

The GitHub API is an HTTP REST API for interacting with GitHub data. It can be used publicly or

privately using an authentication mechanism provided out of the box.

We use the built-in HTTP client available in the @angular/common/http npm package to commu-

nicate over HTTP in Angular. Interacting with HTTP in SSR applications may result in duplicated

HTTP requests due to the page prerendering at the FCP. However, Angular Universal can overcome

this type of duplication using a mechanism called TransferState.

Project overview
In this project, we will build a portfolio application for our GitHub user profile. We will initially

use the Angular CLI to scaffold an Angular application that interacts with the GitHub API. We

will learn how to use the GitHub API and fetch user-specific data. We will also use the Bootstrap

CSS library to style our application and create a beautiful user interface.

After creating our Angular application, we will turn it into a server-side-rendered application

using Angular Universal. We will see how to install and configure Angular Universal, and we will

learn how to prerender it during build time.

Unauthorized requests to the GitHub API are limited to 60 requests per hour. For

an overview of the available authentication methods, you can find more details

at https://docs.github.com/en/rest/overview/authenticating-to-the-

rest-api.

https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api
https://docs.github.com/en/rest/overview/authenticating-to-the-rest-api

Chapter 7 171

Then, we will configure our application to render using SEO in the most popular social platforms

correctly. The following diagram depicts an architectural overview of the project:

Figure 7.1 – Project architecture

Build time: 2 hours

Getting started
The following prerequisites and software tools are required to complete this project:

• GitHub account: A valid GitHub user account.

• Angular CLI: A CLI for Angular that you can find at https://angular.io/cli.

• GitHub material: The related code for this chapter can be found in the Chapter07 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Building an Angular application with the GitHub API
GitHub contains an API that we can use to fetch various information about the profile of a GitHub

user. The Angular application we are building will communicate with the GitHub API and display

a brief portfolio for our GitHub profile. Our application will consist of the following features:

• Dashboard: This will be the landing page of the application, and it will display a summary

of our GitHub profile.

• Info: This will display personal information about us.

• Repositories: This will display a list of our public repositories.

• Organizations: This will display a list of GitHub organizations of which we are members.

https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building an SSR Application for a GitHub Portfolio Using Angular 172

The dashboard will be the main page of the application, and it will contain all the other features.

We will learn how to build the dashboard page in the following section.

Building the dashboard
Before we can start creating the main features of our application, we need to scaffold and configure

an Angular application by running the following command:

ng new gh-portfolio --routing=false --style=scss

The preceding command will use the ng new command of the Angular CLI, passing the following

options:

• gh-portfolio: The name of the Angular application that we want to create

• --routing=false: Disables routing because our application will consist of a single page

• --style=scss: Configures the Angular application to use the SCSS stylesheet format when

working with CSS styles

We will use the Bootstrap CSS library for styling our portfolio application. Let’s see how to install

and configure it in the Angular CLI application that we have just created:

1. Execute the following npm command to install the Bootstrap CSS library:

npm install bootstrap

2. Open the src\styles.scss file and import the Bootstrap SCSS stylesheet:

@import "bootstrap/scss/bootstrap";

The styles.scss file contains CSS styles that are applied globally to the application. The

@import CSS rule accepts the absolute path of a stylesheet file we want to load.

The resulting output of each feature that is displayed in the screenshots of this chap-

ter will be different according to your GitHub profile.

When we import a stylesheet format using the @import rule, we omit the

extension of the file.

Chapter 7 173

3. Execute the following command to install Bootstrap Icons, a free and open-source icon

library:

npm install bootstrap-icons

Bootstrap Icons can be used in various formats, such as SVG or font. In this project, we

are going to use the latter.

4. Import the font icon format of the Bootstrap Icons library into the styles.scss file:

@import "bootstrap/scss/bootstrap";

@import "bootstrap-icons/font/bootstrap-icons";

We have already created the Angular application and added the necessary artifacts for styling it.

We are now ready to start creating the main page of our Angular application:

1. Download an Angular logo of your choice from the press kit of the official Angular doc-

umentation at https://angular.io/presskit.

2. Copy the downloaded logo file into the src\assets folder of the Angular CLI workspace.

The assets folder is used for static files such as images, fonts, and JSON files.

3. Open the app.component.ts file and create a username property in the AppComponent

class that holds your GitHub login as a value:

export class AppComponent {

 title = 'gh-portfolio';

 username = '<Your GitHub login>';

}

4. Open the app.component.html file and replace its content with the following HTML tem-

plate:

<div class="toolbar d-flex align-items-center">

 Welcome to my GitHub portfolio

 <a class="ms-auto p-2" target="_blank" rel="noopener"
href="https://github.com/{{username}}" title="GitHub">

 <i class="bi-github"></i>

</div>

https://angular.io/presskit

Building an SSR Application for a GitHub Portfolio Using Angular 174

In the preceding template, we define the header of our application. It contains an anchor

element that links to our GitHub profile. We have also added the GitHub icon using the

bi-github class from the Bootstrap Icons set.

5. Insert the following HTML snippet after the header of the application:

<div class="content d-flex flex-column">

 <div class="row">

 <div class="col-sm-3"></div>

 <div class="col-sm-9">

 <div class="row">

 <div class="col-12 col-sm-12"></div>

 </div>

 <div class="row">

 <div class="col-12 col-sm-12"></div>

 </div>

 </div>

 </div>

</div>

In the preceding snippet, we create the container element for the basic features of our

application. The element with the col-sm-3 class selector will display the personal infor-

mation feature. The element with the col-sm-9 class selector will be split into two rows,

one for the repositories and another for the organizations features.

6. Open the app.component.scss file and add the following CSS styles for the header and

the content of our application:

.toolbar {

 height: 60px;

 background-color: #1976d2;

 color: white;

 font-weight: 600;

}

.toolbar img {

 margin: 0 16px;

}

.toolbar i {

 font-size: 1.5rem;

 color: white;

Chapter 7 175

 margin: 0 16px;

}

.toolbar a {

 margin-bottom: 5px;

}

.toolbar i:hover {

 opacity: 0.8;

}

.content {

 margin: 52px auto 32px;

 padding: 0 16px;

}

7. Run ng serve to start the application and navigate to http://localhost:4200. The

header of the application should look like the following:

Figure 7.2 – Application header

The main page of our portfolio application is now ready. It contains a header and an empty con-

tainer element for adding the main features. In the following section, we will start building the

personal information feature of our application.

Displaying personal information
The first feature of our application will be to display personal information from our GitHub profile,

such as the full name, the profile photo, and some social media links. Before creating the feature,

we first need to configure our application so that it can communicate with the GitHub API:

1. Open the main module of the application, the app.module.ts file, and add the

HttpClientModule class to the imports array of the @NgModule decorator:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

@NgModule({

Building an SSR Application for a GitHub Portfolio Using Angular 176

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

The HttpClientModule class is the main Angular module of the built-in HTTP library that

exports all the necessary services for interacting with an HTTP resource.

2. Create a new Angular service using the following Angular CLI command:

ng generate service github

3. Open the github.service.ts file and inject the HttpClient service into the constructor

of the GithubService class:

import { HttpClient } from '@angular/common/http';

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class GithubService {

 constructor(private http: HttpClient) { }

}

The HttpClient class is an Angular service of the built-in HTTP client that provides all

the primary methods for interacting with HTTP, such as GET, POST, and PUT.

4. Add the following properties in the GithubService class:

readonly username = '<Your GitHub login>';

private apiUrl = 'https://api.github.com';

Make sure that you set the value of the username property to your GitHub login.

Chapter 7 177

5. Modify the app.component.ts file so that it uses the username property from GithubService:

import { Component, OnInit } from '@angular/core';

import { GithubService } from './github.service';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent implements OnInit {

 title = 'gh-portfolio';

 username = '';

 constructor(private githubService: GithubService) {}

 ngOnInit(): void {

 this.username = this.githubService.username;

 }

}

All interaction between our application and the GitHub API will be delegated to GithubService.

Now, let’s focus on building our feature:

1. Execute the following command of the Angular CLI to create a new Angular component

for our feature:

ng generate component personal-info

2. Create a user interface to define the data model of our component using the following

Angular CLI command:

ng generate interface user

3. Open the user.ts file and add the following properties to the User interface:

export interface User {

 avatar_url: string;

 name: string;

 blog: string;

 location: string;

Building an SSR Application for a GitHub Portfolio Using Angular 178

 bio: string;

 twitter_username: string;

 followers: number;

}

4. Open the github.service.ts file and add the following import statements:

import { Observable } from 'rxjs';

import { User } from './user';

5. Create a new method to get the details of our profile from the GitHub API:

getUser(): Observable<User> {

 return this.http.get<User>(`${this.apiUrl}/users/${this.
username}`);

}

6. Open the personal-info.component.ts file and modify the import statements accord-

ingly:

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { GithubService } from '../github.service';

import { User } from '../user';

7. Inject GithubService into the constructor of the PersonalInfoComponent class and

create a component property to get the result of the getUser method:

export class PersonalInfoComponent implements OnInit {

 user$: Observable<User> | undefined;

 constructor(private githubService: GithubService) {}

 ngOnInit(): void {

 this.user$ = this.githubService.getUser();

 }

}

Chapter 7 179

8. Open the personal-info.component.html file and replace its content with the following

HTML template:

<div class="card" *ngIf="user$ | async as user">

 <img [src]="user.avatar_url" class="card-img-top" alt="{{user.
name}} photo">

 <div class="card-body">

 <h5 class="card-title">{{user.name}}</h5>

 <p class="card-text">{{user.bio}}</p>

 </div>

 <ul class="list-group list-group-flush">

 <li class="list-group-item" title="Location">

 <i class="bi-geo me-2"></i>{{user.location}}

 <li class="list-group-item" title="Followers">

 <i class="bi-people me-2"></i>{{user.followers}}

 <div class="card-body">

 <a href="https://www.twitter.com/{{user.twitter_username}}"
class="card-link">Twitter

 <a [href]="user.blog" class="card-link">Personal blog

 </div>

</div>

In the preceding template, we use the async pipe because the user$ property is an observ-

able, and we need to subscribe to it to get its values. The main advantage of the async pipe

is that it unsubscribes from the observable automatically when a component is destroyed,

avoiding potential memory leaks.

We also create the user alias for the observable to reference it easily in various locations

around the component template.

9. Open the app.component.html file and add the <app-personal-info> component to the

element with the col-sm-3 class selector:

<div class="col-sm-3">

 <app-personal-info></app-personal-info>

</div>

Building an SSR Application for a GitHub Portfolio Using Angular 180

If we run ng serve to preview the application, we should see the personal information panel on

the left side of the page:

Figure 7.3 – Personal information

The first feature of our portfolio application is now complete. It displays the personal information

of our GitHub profile along with a short bio and some social network links. In the next section,

we will build the repositories feature of our application.

Listing user repositories
The GitHub user profile contains a list of repositories the user owns, called sources, and another

list of repositories that contribute, called forks.

Chapter 7 181

The repositories feature of our application will only display the source repositories.

The repositories and organizations features will have a similar user interface. Thus, we need to

create a component for both features:

1. Execute the following command of the Angular CLI to create a new component:

ng generate component panel

2. Open the panel.component.ts file and define two input properties using the @Input

decorator:

import { Component, Input } from '@angular/core';

@Component({

 selector: 'app-panel',

 templateUrl: './panel.component.html',

 styleUrls: ['./panel.component.scss']

})

export class PanelComponent {

 @Input() caption = '';

 @Input() icon = '';

}

3. Open the panel.component.html file and replace its content with the following HTML

template:

<div class="card mb-4">

 <div class="card-header">

 <i class="bi bi-{{icon}} me-1"></i>

 {{caption}}

 </div>

 <div class="card-body">

 <ng-content></ng-content>

 </div>

</div>

The panel component is a Bootstrap card element that consists of a header and a body.

The header uses the caption and icon input properties to display text with an icon. The

body uses the <ng-content> Angular component to define a placeholder where the content

from our features will be displayed.

Building an SSR Application for a GitHub Portfolio Using Angular 182

We can now start using the panel component to create our feature:

1. Create an interface for representing the data model of a GitHub repository:

ng generate interface repository

2. Open the repository.ts file and add the following properties in the Repository interface:

export interface Repository {

 name: string;

 html_url: string;

 description: string;

 fork: boolean;

 stargazers_count: number;

 language: string;

 forks_count: number;

}

3. Open the github.service.ts file and import the Repository interface:

import { Repository } from './repository';

4. Now, it is time for some refactoring in our service. The URL we will use for getting re-

positories is similar to that of the getUser method. Extract the URL of that method in a

property of the GithubService class:

export class GithubService {

 readonly username = '<Your GitHub login>';

 private userUrl = 'https://api.github.com/users/' + this.username;

 constructor(private http: HttpClient) { }

 getUser(): Observable<User> {

 return this.http.get<User>(this.userUrl);

 }

}

5. Create a new method to fetch repositories of the current GitHub user:

getRepos(): Observable<Repository[]> {

Chapter 7 183

 return this.http.get<Repository[]>(this.userUrl + '/repos');

}

Now that we have created the prerequisites for fetching the user repositories from the GitHub

API, we can start building the component that will display those repositories:

1. Execute the following command to create a new Angular component using the Angular CLI:

ng generate component repositories

2. Open the repositories.component.ts file and modify the import statements accordingly:

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { map } from 'rxjs/operators';

import { GithubService } from '../github.service';

import { Repository } from '../repository';

3. Inject GithubService into the constructor of the RepositoriesComponent class and

create a component property to get the result of the getRepos method:

export class RepositoriesComponent implements OnInit {

 repos$: Observable<Repository[]> | undefined;

 constructor(private githubService: GithubService) { }

 ngOnInit(): void {

 this.repos$ = this.githubService.getRepos().pipe(

 map(repos => repos.filter(repo => !repo.fork))

);

 }

}

In the preceding class, we use the pipe RxJS operator to combine the observable returned

from the getRepos method with the map operator to filter out fork repositories and get

only sources. Filtering is accomplished using the standard filter method for arrays.

4. Open the repositories.component.html file and replace its content with the following

HTML template:

<app-panel caption="Repositories" icon="archive">

 <div class="row row-cols-1 row-cols-md-3 g-4">

Building an SSR Application for a GitHub Portfolio Using Angular 184

 <div class="col p-2" *ngFor="let repo of repos$ | async">

 <div class="card h-100">

 <div class="card-body">

 <h5 class="card-title">

 <a [href]="repo.html_url">{{repo.name}}

 </h5>

 <p class="card-text">{{repo.description}}</p>

 </div>

 </div>

 </div>

 </div>

</app-panel>

In the preceding template, we wrap the main content of the component inside the <app-

panel> component and set the caption and icon properties for the header.

Our component iterates over the repos$ observable and displays the name and the

description of each repository. The name is an anchor element that points to the actual

GitHub URL of the repository.

5. Add the following list immediately after the element with the card-body class selector:

<ul class="list-group list-group-flush list-group-horizontal">

 <li class="list-group-item border-0">

 <i class="bi-code me-2"></i>

 {{repo.language}}

 <li class="list-group-item border-0">

 <i class="bi-star me-2"></i>

 {{repo.stargazers_count}}

 <li class="list-group-item border-0">

 <i class="bi-diagram-2 me-2"></i>

 {{repo.forks_count}}

In the preceding snippet, we display the language of each repository, how many have

starred it, and how many have forked it.

Chapter 7 185

6. Open the app.component.html file and add the <app-repositories> component in the

first HTML element with the col-12 col-sm-12 class selector:

<div class="col-sm-9">

 <div class="row">

 <div class="col-12 col-sm-12">

 <app-repositories></app-repositories>

 </div>

 </div>

 <div class="row">

 <div class="col-12 col-sm-12"></div>

 </div>

</div>

7. Run ng serve to preview the application, and you should see the new panel next to the

personal information feature:

Figure 7.4 – Repositories

The second feature of our application has been completed. It displays a list of public repositories

that exist in our GitHub profile. Our application now also features a panel component that we

can use to build the organizations feature of our application in the following section.

Visualizing the organization membership
A GitHub user can be a member of a GitHub organization. Our application will display a list of

user organizations and additional information about each.

Building an SSR Application for a GitHub Portfolio Using Angular 186

Let’s start building our organization list:

1. Create an interface to define the properties of an organization:

ng generate interface organization

2. Open the organization.ts file and add the following properties in the Organization

interface:

export interface Organization {

 login: string;

 description: string;

 avatar_url: string;

}

3. Open the github.service.ts file and import the Organization interface:

import { Organization } from './organization';

4. Create a new method to get organizations of the current GitHub user:

getOrganizations(): Observable<Organization[]> {

 return this.http.get<Organization[]>(this.userUrl + '/orgs');

}

5. Execute the following command to create an Angular component for our feature:

ng generate component organizations

6. Open the organizations.component.ts file and modify the import statements accord-

ingly:

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { GithubService } from '../github.service';

import { Organization } from '../organization';

7. Inject GithubService into the constructor of the OrganizationsComponent class and

set the result of its getOrganizations method to an observable component property:

export class OrganizationsComponent implements OnInit {

 orgs$: Observable<Organization[]> | undefined;

 constructor(private githubService: GithubService) { }

Chapter 7 187

 ngOnInit(): void {

 this.orgs$ =

 this.githubService.getOrganizations();

 }

}

8. Open the organizations.component.html file and replace its content with the following

HTML template:

<app-panel caption="Organizations" icon="diagram-3">

 <div class="list-group">

 <a href="https://www.github.com/{{org.login}}" class="list-
group-item list-group-item-action" *ngFor="let org of orgs$ |
async">

 <div class="row">

 <div class="col-sm-9">

 <div class="d-flex w-100 justify-content-between">

 <h5 class="mb-1">{{org.login}}</h5>

 </div>

 <p class="mb-1">{{org.description}}</p>

 </div>

 </div>

 </div>

</app-panel>

In the preceding HTML template, we place the main content of our component inside

the <app-panel> component, passing an appropriate caption and icon. We display the

login and description of each organization. Each organization is wrapped in an anchor

element that points to the GitHub page of the organization.

9. Open the organizations.component.scss file and add the following CSS styles for the

organization logos:

img {

 width: 60px;

 height: 40px;

}

Building an SSR Application for a GitHub Portfolio Using Angular 188

10. Open the app.component.html file and add the <app-organizations> component in the

second element with the col-12 col-sm-12 class selector:

<div class="col-sm-9">

 <div class="row">

 <div class="col-12 col-sm-12">

 <app-repositories></app-repositories>

 </div>

 </div>

 <div class="row">

 <div class="col-12 col-sm-12">

 <app-organizations></app-organizations>

 </div>

 </div>

</div>

11. Run ng serve to start the application, and you should see the organization list under the

repositories feature:

Figure 7.5 – Organizations

Our application now features a complete portfolio for the profile of a GitHub user. It displays

the following:

• Personal information, a short biography, and social media links

• A list of public user repositories that contains links to each one for more information

Chapter 7 189

• A list of organizations where the user is a member with links to each one for further details

In the next section, we will learn how to integrate Angular Universal and render our application

on the server.

Integrating Angular Universal
Angular Universal is an Angular library that enables an Angular CLI application to be rendered

on the server. An SSR application increases the loading speed of an Angular application and im-

proves the loading of the first page.

To install Angular Universal in an existing Angular CLI application, we will use the following

command of the Angular CLI:

ng add @nguniversal/express-engine

The previous command uses the ng add command of the Angular CLI to install the @nguniversal/

express-engine npm package. The @nguniversal/express-engine package is the heart of the

Angular Universal library and consists of a Node�js Express web server at its core.

When we execute the preceding command to install Angular Universal, we are not only installing

the library but also modifying our Angular CLI workspace with the following files:

• angular.json: This creates new entries in the architect section to build and enable

our Angular Universal application. One of these entries is the server property, which is

responsible for building our application with SSR. It outputs the generated bundle into a

separate server folder inside the standard output folder of the Angular CLI application:

"server": {

 "builder": "@angular-devkit/build-angular:server",

 "options": {

 "outputPath": "dist/gh-portfolio/server",

 "main": "server.ts",

 "tsConfig": "tsconfig.server.json",

 "inlineStyleLanguage": "scss"

 },

 "configurations": {

 "production": {

 "outputHashing": "media"

 },

 "development": {

Building an SSR Application for a GitHub Portfolio Using Angular 190

 "buildOptimizer": false,

 "optimization": false,

 "sourceMap": true,

 "extractLicenses": false,

 "vendorChunk": true

 }

 },

 "defaultConfiguration": "production"

}

The original application bundle is now generated into the browser folder inside the stan-

dard output folder of the Angular CLI application, as described in the outputPath property

of the build section.

Thus, an Angular Universal application generates two versions of the same Angular ap-

plication, one for the server and another for the browser.

• package.json: This adds all the necessary npm dependencies and creates a handful set

of npm scripts to start building with Angular Universal:

"scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "watch": "ng build --watch --configuration development",

 "test": "ng test",

 "dev:ssr": "ng run gh-portfolio:serve-ssr",

 "serve:ssr": "node dist/gh-portfolio/server/main.js",

 "build:ssr": "ng build && ng run gh-portfolio:server",

 "prerender": "ng run gh-portfolio:prerender"

}

Scripts that contain the :ssr suffix are related to building and serving the Angular Uni-

versal application. The prerender script will create a prerendered version of an Angular

application during build time. We will learn about the prerender script in the Prerendering

content during build section.

• server.ts: This contains the Node.js Express application that will host the server-side-ren-

dered version of our portfolio application.

• main.server.ts: This is the main entry point of our Angular Universal application.

Chapter 7 191

• app.server.module.ts: This is the main application module of the server-side-rendered

application.

• tsconfig.server.json: This is the TypeScript configuration for our Angular Universal

application.

We can now run our GitHub portfolio application on the server using the following npm command:

npm run dev:ssr

To preview your GitHub portfolio application on the server, open your browser at http://

localhost:4200.

You should typically see the application as it was before. So, what have we gained here? Angular

Universal applications do not reveal their full potential when running on a development machine

with a powerful processor and a lot of memory. Instead, we need to run and preview them in

real-world cases like a slow network. We can use Google Chrome developer tools to emulate a

slow network in a development environment:

1. Open the Google Chrome browser.

2. Toggle the developer tools and select the Network tab.

Global JavaScript objects such as window and document are unavailable when render-

ing an Angular application in the server because there is no browser. Angular provides

abstraction APIs for some objects, such as the DOCUMENT injection token. If you need

to enable them conditionally, you can inject the PLATFORM_ID token and use the

isPlatformServer or isPlatformBrowser methods from the @angular/common

npm package to check on which platform your application is currently running:

import { Inject, PLATFORM_ID } from '@angular/core';

import { isPlatformBrowser } from '@angular/common';

export class CheckPlatformComponent {

 isBrowser: boolean;

 constructor(@Inject(PLATFORM_ID) platformId: any) {

 this.isBrowser = isPlatformBrowser(platformId);

 }

}

Building an SSR Application for a GitHub Portfolio Using Angular 192

3. Select the Slow 3G option from the Throttling dropdown.

4. Enter http://localhost:4200 in the address bar of your browser.

The server first loads a static version of your application to display to the user until the actual

Angular application loads in the background. When fully loaded in the background, Angular

Universal will switch to the complete application.

In the following section, we will investigate how to improve the loading speed of our application

even more, using prerendering.

Prerendering content during build
The package.json file of our Angular CLI workspace contains the prerender npm script, which we

can use to improve the first loading of our application. The script runs the prerender command

from the architect section of the angular.json configuration file and prerenders the content of

our application during build time. Let’s see the effect that prerendering will have on our GitHub

portfolio application:

1. Execute the following npm command to generate a prerendered version of the application:

npm run prerender

The preceding command will output a production bundle of the application into the dist\

gh-portfolio\browser folder.

2. Navigate to the dist\gh-portfolio\browser folder and you should see two HTML files,

the index.html and index.original.html files.

3. Open the index.original.html file and locate the <app-root> HTML element. This is

the main component of our Angular application, where Angular will render the content

of our application in the browser.

4. Open the index.html file now and look again at the <app-root> element.

The main component is not empty this time. Angular Universal has made all HTTP re-

quests to the GitHub API and prefetched the content of our application during runtime. All

component templates and styles have been prerendered in the main HTML file, meaning

we can view our application on a browser even without JavaScript enabled!

5. Execute the following command to start the prerendered version of our GitHub portfolio

application:

npm run serve:ssr

Chapter 7 193

The preceding command will start a Node.js Express server that hosts our application at

http://localhost:4000.

6. Disable JavaScript from the settings of your browser and navigate to http://

localhost:4000.

Our GitHub portfolio application remains fully operational without having JavaScript enabled.

The main page of the application is also rendered instantly without having the user wait for the

application to load.

The previous scenario is a perfect fit for users who cannot afford to enable JavaScript on their de-

vices. But what happens when a user with JavaScript enabled uses the same prerendered version

of the application? Let’s learn more about that:

1. Enable JavaScript in your browser and toggle the developer tools.

2. Navigate to http://localhost:4000. Nothing different seems to happen at first sight.

Nevertheless, the application loads instantly due to the prerendered content.

3. Inspect the Network tab, and you will notice the following:

Figure 7.6 – Network tab (Google Chrome)

Our application initiates all HTTP requests to the GitHub API as if it were rendered from a browser.

It duplicates all HTTP requests the application needs, even if data has already been prerendered

on the HTML page. Why is that?

The application makes one HTTP request for the browser-rendered version and another for the SSR

application because both versions have a different state. We can prevent the previous behavior by

sharing the state between the server and the browser. More specifically, we can transfer the state

of the server to the browser using a special-purpose Angular module of the Angular Universal

library called TransferHttpCacheModule.

Building an SSR Application for a GitHub Portfolio Using Angular 194

If we use TransferHttpCacheModule, the server will cache responses from the GitHub API, and

the browser will use the cache instead of initiating a new request. TransferHttpCacheModule

solves the problem by installing an HTTP interceptor in the Angular application that ignores

HTTP requests that have been handled by the server initially.

To install TransferHttpCacheModule in our GitHub portfolio application, follow these steps:

1. Open the main module file of the Angular application, app.module.ts, and import

TransferHttpCacheModule from the @nguniversal/common npm package:

import { TransferHttpCacheModule } from '@nguniversal/common';

2. Add the TransferHttpCacheModule class to the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent,

 PersonalInfoComponent,

 PanelComponent,

 RepositoriesComponent,

 OrganizationsComponent

],

 imports: [

 BrowserModule,

 HttpClientModule,

 TransferHttpCacheModule

],

 providers: [],

 bootstrap: [AppComponent]

})

3. Execute the following command to prerender your application:

npm run prerender

An HTTP interceptor is an Angular service that intercepts HTTP requests and respons-

es originating from the built-in HTTP client of the Angular framework.

Chapter 7 195

4. Run the following command to start your prerendered application:

npm run serve:ssr

If you preview the portfolio application and inspect the Network tab of your browser, you will

notice that it does not make additional HTTP requests. TransferHttpCacheModule intercepted all

HTTP requests and stored them in the TransferState store of our application. TransferState is a

key-value store that can be transferred from the server to the browser. The browser version of the

application can later read the HTTP responses directly from the store without making an extra call.

We now have a fully prerendered version of our GitHub portfolio. But how can we optimize it

further to share it on a social media platform? We will learn more about SEO optimization tech-

niques in the following section.

Enhancing SEO capabilities
SEO optimizes a website to be correctly indexed by a web crawler. A web crawler is special-pur-

pose software on most search engines and can identify and index websites so that they are easily

discoverable and linkable through their platforms.

Angular Universal does a great job of SEO by prerendering content during build time. Some web

crawlers cannot execute JavaScript and build the dynamic content of an Angular application. Pre-

rendering with Angular Universal eliminates the need for JavaScript, thus allowing web crawlers

to do their best to identify the web application.

We can also help SEO by defining several tags in the <head> element of the main index.html file

of an Angular application, such as title, viewport, and charset:

<head>

 <meta charset="utf-8">

 <title>GhPortfolio</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

You can find a list of available tags at https://developer.mozilla.org/docs/Web/HTML/Element/

meta/name.

https://developer.mozilla.org/docs/Web/HTML/Element/meta/name
https://developer.mozilla.org/docs/Web/HTML/Element/meta/name

Building an SSR Application for a GitHub Portfolio Using Angular 196

However, setting a tag in the index.html file is inadequate, especially when an Angular applica-

tion has routing enabled and contains several routes. The Angular framework provides a couple

of handy services that we can use to set tags programmatically. First, let’s see how to set the title

tag in our application:

1. Open the app.component.ts file and add the following import statement:

import { Title } from '@angular/platform-browser';

2. Inject the Title service into the constructor of the AppComponent class:

constructor(private githubService: GithubService, private
titleService: Title) {}

3. Call the setTitle method of the titleService variable in the ngOnInit method:

ngOnInit(): void {

 this.username = this.githubService.username;

 this.titleService.setTitle('GitHub portfolio app');

}

4. Run npm run dev:ssr to preview the application, and you should see the title in the

browser tab:

Figure 7.7 – Browser tab title

Similar to the Title service, we can use the Meta service to set meta tags for our application:

1. Open the app.component.ts file and import Meta from the @angular/platform-browser

npm package:

import { Meta, Title } from '@angular/platform-browser';

2. Inject the Meta service into the constructor of the AppComponent class:

constructor(private githubService: GithubService, private
titleService: Title, private meta: Meta) {}

Chapter 7 197

3. Use the addTags method of the meta variable to add some meta tags to the ngOnInit

method:

ngOnInit(): void {

 this.username = this.githubService.username;

 this.titleService.setTitle('GitHub portfolio app');

 this.meta.addTags([

 {

 name: 'description',

 content: `${this.username}'s GitHub portfolio`

 },

 {

 name: 'author',

 content: this.username

 }

]);

}

In the preceding code, we added two meta tags. The first one sets the description that

contains the username of the current GitHub profile. The second one sets the author tag

to be the same as the username of the GitHub profile.

4. Run npm run dev:ssr to start the application and navigate to http://localhost:4200.

5. Use your browser to inspect the page, and you should see the following meta tags in the

<head> element of the page:

Figure 7.8 – Application head element

Building an SSR Application for a GitHub Portfolio Using Angular 198

Each popular social platform, such as Twitter, Facebook, and LinkedIn, requires its own meta tags

so that the URL of an SSR application can be correctly displayed on their platforms.

Summary
In this project, we built a portfolio application for our GitHub profile. Initially, we learned how

to interact with the GitHub API in a new Angular application. We also used Bootstrap CSS and

Bootstrap Icons to provide a beautiful user interface for our portfolio application.

We then saw how to convert our Angular application into an SSR application using Angular

Universal. We learned how to benefit from prerendering content when users have low-end and

slow-performing devices and some of the potential pitfalls of this technique.

We used some of the available SEO techniques that the Angular framework offers to improve the

discoverability of our application.

In the next chapter, we will learn about the monorepo architecture and how we can manage the

state of an Angular application.

Practice questions
Let’s take a look at a few practice questions:

1. How do we subscribe to an observable in the template of a component?

2. What command do we use to install Angular Universal?

3. How can we differentiate programmatically between browser and server platforms?

4. What command generates a prerendered version of an SSR application?

5. What Angular module do we use to transfer the state from the server to the browser?

6. What Angular service do we use to set the title of an Angular application?

7. What Angular service do we use to set meta tags in an Angular application?

Further reading
Here are some links to build upon what we learned in the chapter:

• Angular Univeral guide: https://angular.io/guide/universal

• GitHub REST API: https://docs.github.com/rest

• Bootstrap CSS: https://getbootstrap.com

• Bootstrap Icons: https://icons.getbootstrap.com

https://angular.io/guide/universal
https://docs.github.com/rest
https://getbootstrap.com
https://icons.getbootstrap.com

Chapter 7 199

• Angular HTTP guide: https://angular.io/guide/http

• TransferHttpCacheModule: https://github.com/angular/universal/blob/master/
docs/transfer-http.md

https://angular.io/guide/http
https://github.com/angular/universal/blob/master/docs/transfer-http.md
https://github.com/angular/universal/blob/master/docs/transfer-http.md

8
Building an Enterprise Portal
Using Nx Monorepo Tools and
NgRx

Typical enterprise applications usually consist of a backend and a frontend system. The back-

end is responsible for interacting with a database for data persistence and exposes a REST API.

The frontend communicates with the backend system via the REST interface to exchange data.

The frontend system can sometimes consist of multiple applications, including a web interface

or a mobile application. Keeping all these applications and systems in separate source control

repositories scales poorly and is difficult to maintain and build. Alternatively, we can follow a

monorepo architecture for large enterprise applications, where each application resides in a

separate location inside the same repository.

A popular tool in the Angular ecosystem that embraces monorepo architecture is Nx. Combining

an Nx monorepo application with a state management library can significantly improve your

application. NgRx, a popular state management library for Angular applications, can help us

maintain a consistent and manageable global state.

In this chapter, we will investigate both technologies by building an enterprise portal application

for visiting points of interest (POIs). We will cover the following topics:

• Creating a monorepo application using Nx

• Creating user-specific portals

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 202

• Managing application state with NgRx

• Visualizing data with graphs

Essential background theory and context
Nx is a suite of development tools and libraries for building web applications based on monorepo

architecture. A typical Nx application can contain many applications and shared libraries inside

a single workspace. The flexibility of monorepo architecture allows any application, backend or

frontend, to use the same libraries inside the workspace.

Nx provides developers with the following features:

• Centralized management of application dependencies: Each application has the same

version of the Angular framework, making it easy to update all at once.

• Fast builds: The build process of an Nx application involves only those artifacts that have

been changed and does not do a complete rebuild of the entire monorepo.

• Distributed caching: Each application build can be cached locally or to the cloud, using

Nx Cloud, to improve the build process of other developers that build similar artifacts.

Maintaining a consistent global state is tedious in a large Angular enterprise application. Using

@Input and @Output decorators to communicate between Angular components is not always

viable, especially when many components need to share the same state.

NgRx is a library that efficiently manages the global application state powered by the RxJS library.

The main building blocks of NgRx are the following:

• Store: The central storage that keeps the global state of the application.

• Reducer: A function that listens to a specific event and interacts directly with the store.

Reducers derive a new application state based on the existing one from the store.

• Action: A unique event dispatched from components and services that triggers a reduc-

er. Actions can be any interaction initiated by the user or an external source, such as an

HTTP call.

In this project, we will consider only frontend applications built with the Angular

framework.

Chapter 08 203

• Effect: Handles interaction with external sources, such as making an HTTP call or ex-

changing data with the local storage. Effects take care of side effects in an application by

hiding the business logic from components.

• Selector: A function that selects the application state or a specific part of it (slice) from the

store. Selectors support memoization, a technique where they can return the same state

if called with the same parameters, greatly enhancing the performance of an application.

Project overview
In this project, we will build an Angular enterprise application to manage POI visits on a map.

The application will consist of two portals, where one will allow a visitor to select a POI from

a list and view its location on a map. Another portal will enable an administrator to view the

visiting traffic of each POI.

First, we will build an Angular application from scratch using Nx. We will then create the skeleton

of each portal by adding the essential components of our application. After we have scaffolded

our application, we will start adding the functionality of the visitor portal using NgRx. Finally,

we will implement the administrator portal and learn how to use an Angular library to visualize

data in a graph. The following diagram describes an architectural overview of the project:

Figure 8.1 – Project architecture

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 204

Build time: 3 hours

Getting started
The following software tools are required to complete this project:

• Nx Console: A VSCode extension that provides a graphical interface to work with Nx. You

can learn more about installing it in Chapter 1, Creating Your First Web Application in Angular.

• GitHub material: The code related to this chapter can be found in the Chapter08 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Creating a monorepo application using Nx
Nx provides developers with tools to work with monorepos, including the following:

• create-nx-workspace: An npm package that scaffolds a new Nx monorepo application.

• Nx CLI: A command-line interface that runs commands against a monorepo application.

The Nx CLI extends the Angular CLI to provide more commands, which is faster due to

the distributed caching mechanism.

To install the Nx CLI, run the following command in a terminal:

npm install -g nx

The preceding command will install the nx npm package globally on our system. We can now

scaffold a new Nx monorepo workspace using the following command:

npx create-nx-workspace packt --appName=tour --preset=angular-monorepo
--style=css --linter=eslint --nx-cloud=false --routing

It is recommended to use the Quick Open feature of VSCode when working with

Nx monorepos. The number of generated folders and files will significantly in-

crease, and it will be challenging to navigate through them. You can find out more

at https://code.visualstudio.com/docs/editor/editingevolved#_quick-

file-navigation.

https://github.com/PacktPublishing/Angular-Projects-Third-Edition
https://code.visualstudio.com/docs/editor/editingevolved#_quick-file-navigation
https://code.visualstudio.com/docs/editor/editingevolved#_quick-file-navigation

Chapter 08 205

The preceding command will do the following:

1. Find the latest version of the create-nx-workspace npm package and request us to in-

stall it.

2. Ask if we want to use standalone components in the application. Ensure that No is selected

and press Enter to continue.

The execution of the create-nx-workspace package involves the following options:

• packt: The name of the Nx monorepo workspace. In large enterprise environments, we

typically use the organization name.

• --appName=tour: The name of the application.

• --preset=angular-monorepo: Nx supports applications built with various JavaScript

frameworks. The preset option defines what type of application we want to build.

• --style=css: Indicates that our application will use the CSS style sheet format.

• --linter=eslint: Configures our application to use ESLint as the default linter.

• --nx-cloud=false: Disables Nx Cloud for our application.

• --routing: Enables Angular routing in the application.

After the creation of the workspace has been completed, we can run it to verify that everything

has been set up correctly:

1. Open the project in the VSCode editor and click on the Nx Console menu in the VSCode

sidebar.

Standalone Angular components are a simpler and modern approach to a more

component-centric Angular application without using Angular modules. In this

project, we will use Angular modules by default.

Creating a new Nx workspace may take some time, as it installs all the necessary

packages for an enterprise environment.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 206

2. Select the serve command from the PROJECTS pane and click the play button to execute it:

Figure 8.2 – Serve option

3. Open your browser at http://localhost:4200, and you should see the following output:

Figure 8.3 – Minimal Nx application

Congratulations! Your new application has been configured correctly! Nx creates a minimal skel-

eton application, just like Angular CLI does, for our convenience so that we can build our features

on top of that.

In the next section, we will dive deeper into Nx by creating the administrator and visitor portals

in our workspace.

Chapter 08 207

Creating user-specific portals
Our application will consist of two portals that different users will use. Visitors will be able to

view a list of POIs and select them on a map. Administrators will be able to view statistics for

each POI. We will learn more about how to use Nx in the following sections:

• Building the visitor portal

• Building the administrator portal

Each portal will be a separate Nx library that will be loaded according to the URL entered in the

address bar of the browser. Organizing our code in libraries allows us to reuse it between differ-

ent applications and build and test it individually. We will start building the visitor portal in the

following section.

Building the visitor portal
The visitor portal will be a library inside the Nx workspace that will be loaded by default. Let’s

see how we can build that library with Nx Console:

1. Run Nx Console from the VSCode sidebar and select the generate option from the GEN-

ERATE & RUN TARGET pane:

Figure 8.4 – The generate option

2. Select the @nrwl/angular – library option from the dialog that appears. The @nx/an-

gular namespace contains schematics we can execute in an Nx monorepo for Angular

applications.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 208

3. Enter visitor as the name of the library and click the Run button:

Figure 8.5 – Library name

Nx will create the visitor library inside the libs folder of our workspace. The library does not

contain any components yet. According to the project specifications, the visitor portal will have

a list of POIs where users can select and view their location on a map. Thus, we need to create an

Angular component with the following layout:

Figure 8.6 – Visitor portal layout

In the previous diagram, the portal consists of the sidebar that displays a POI list and the main

content area to display the map. Instead of creating the layout from scratch, we will use Angular

Material, which contains a handful of ready-made layouts, including one with a sidebar.

When you were typing the name of the library, you may have noticed that Nx was

running the generate command in the terminal. Well, it did not run it. Instead, it

mimicked the effect of running the command in your system, a technique called a

dry run.

Chapter 08 209

Before working with Angular Material, we need to install it in our application with the following

command:

npm install @angular/material

After the installation completes successfully, we can configure Angular Material in our Nx work-

space using the following command:

nx generate @angular/material:ng-add --project=tour --theme=deeppurple-
amber --animations=enabled --typography

The preceding command will configure the @angular/material npm package for use in our work-

space, passing additional options. You can learn more about these options in Chapter 4, Building

a PWA Weather Application Using Angular Service Worker.

Configuring Angular Material in our project will also install the @angular/cdk npm package,

which contains specific behaviors and interactions used to build Angular Material.

The Angular Material library contains the following component templates that we can use:

• address-form: This uses Angular Material form controls to enter address information.

• navigation: This contains a side navigation component along with a content placeholder

and a title bar.

• dashboard: This consists of multiple Angular Material card and menu components or-

ganized in a grid layout.

• table: This displays an Angular Material table with sorting and filtering enabled.

• tree: This represents a visual folder structure in a tree view.

In our case, we will use the navigation component because we need a sidebar. Let’s see how we

can generate that component:

1. Open Nx Console from the VSCode sidebar and select the generate option.

2. Select the @angular/material – navigation option from the dialog that appears. The

@angular/material namespace contains schematics that we can run to create Angular

Material components.

The Angular CDK can be used to build custom UI libraries without relying on Angular

Material. We will learn how to build such libraries in Chapter 9, Building a Component

UI Library Using Angular CLI and Angular CDK.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 210

3. Enter the name of the component:

Figure 8.7 – Component name

4. Select the visitor library from the project dropdown that we created earlier:

Figure 8.8 – Project selection

5. Check the flat option so that the component will not be generated in a separate folder:

Figure 8.9 – The flat option

The component will be the main one of the library, so we want to have it in the same

folder with its related module file.

6. Enter the folder where the component will be created:

Figure 8.10 – Component folder

Click the Show more button if the option is not displayed.

Chapter 08 211

7. Click the Run button to generate the component.

Nx Console will create the visitor component in the visitor library of the Nx workspace. We now

need to connect it with the main application of the workspace:

1. Open the app.component.html file and remove the <packt-nx-welcome> selector.

2. Open the app.routes.ts file and add a route configuration that will load the visitor portal

when the URL contains the tour path:

export const appRoutes: Route[] = [

 {

 path: 'tour',

 loadChildren: () => import('@packt/visitor').then(m =>
m.VisitorModule)

 },

 {

 path: '',

 pathMatch: 'full',

 redirectTo: 'tour'

 }

];

The route configuration contains two paths. The default path, denoted by the empty string,

redirects to the tour path. The tour path lazily loads the module of the visitor library.

3. Open the visitor.module.ts file and add a route configuration to load the visitor com-

ponent that we created:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { VisitorComponent } from './visitor.component';

import { MatToolbarModule } from '@angular/material/toolbar';

import { MatButtonModule } from '@angular/material/button';

import { MatSidenavModule } from '@angular/material/sidenav';

import { MatIconModule } from '@angular/material/icon';

There is no need to define the module where the component will be created

because the Angular CLI can deduce it directly from the path option.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 212

import { MatListModule } from '@angular/material/list';

import { RouterModule } from '@angular/router';

@NgModule({

 imports: [CommonModule, MatToolbarModule, MatButtonModule,
MatSidenavModule, MatIconModule, MatListModule,

 RouterModule.forChild([

 { path: '', component: VisitorComponent }

])

],

 declarations: [

 VisitorComponent

],

})

export class VisitorModule {}

The route configuration will activate VisitorComponent by default as soon as

VisitorModule is loaded, using the tour path described in described in the step 3.

If we now run the serve command from Nx Console and navigate to http://localhost:4200,

we should see the following output:

Figure 8.11 – Visitor portal

The Angular router will redirect us to http://localhost:4200/tour and display the visitor por-

tal. It currently contains some demo data that Angular Material entered when we generated the

navigation component. We will revisit it in the Managing application state with NgRx section to

implement the full functionality using NgRx. For now, we will continue building the administrator

portal in the next section.

Chapter 08 213

Building the administrator portal
The administrator portal will be an Nx library with a single component, just like the visitor portal,

except it will not be based on an Angular Material template. Let’s start scaffolding the structure

of the library using Nx Console:

1. Run Nx Console from the VSCode sidebar and select the generate option.

2. In the dialog that appears, select the @nx/angular – library option.

3. Enter admin as the library name and click the Run button:

Figure 8.12 – Library name

4. Click the generate option again and select the @schematics/angular – component op-

tion. The @schematics/angular namespace contains schematics that we can run in an

Angular application using the Angular CLI.

5. Enter the same name for the component as in step 3:

Figure 8.13 – Component name

6. Select the library that we created from the project drop-down list:

Figure 8.14 – Project selection

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 214

7. Check the flat option so that the component will be created in the same folder as the

module file of the library:

Figure 8.15 – The flat option

8. Enter the folder where the component will be created and click the Run button:

Figure 8.16 – Component folder

The Angular CLI will create the admin component inside the folder of the admin library. We now

need to wire it up to the main application:

1. Open the app.routes.ts file and add a new route configuration object for the admin path:

export const appRoutes: Route[] = [

 {

 path: 'admin',

 loadChildren: () => import('@packt/admin').then(m =>
m.AdminModule)

 },

 {

 path: 'tour',

 loadChildren: () => import('@packt/visitor').then(m =>
m.VisitorModule)

 },

 {

 path: '',

Click the Show more button if the option is not displayed.

Chapter 08 215

 pathMatch: 'full',

 redirectTo: 'tour'

 }

];

2. Open the admin.module.ts file and add a route configuration to activate AdminComponent

by default:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { AdminComponent } from './admin.component';

import { RouterModule } from '@angular/router';

@NgModule({

 imports: [

 CommonModule,

 RouterModule.forChild([

 { path: '', component: AdminComponent }

])

],

 declarations: [

 AdminComponent

],

})

export class AdminModule {}

3. Use the serve option of Nx Console to run the application, and navigate to http://

localhost:4200/admin:

Figure 8.17 – Administrator portal

The page will display the default template of the main component of the admin library.

We have now completed the scaffolding of our enterprise application. First, we created the Nx

monorepo workspace that will host the portals of the application. Then, we used Nx Console to

generate our portals and their main components. We also installed Angular Material to use its

UI elements in our components.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 216

In the next section, we will implement the functionality of the visitor portal using NgRx.

Managing application state with NgRx
The visitor portal will allow the user to see a list of available POIs and select one to view its location

on a map. The list of available POIs and the selection of a POI is the global state of our application.

We will integrate NgRx to manage the application state in the visitor portal by completing the

following tasks:

• Configuring the state

• Interacting with the store

Let’s begin by configuring the state of our application in the following section.

Configuring the state
Our application will consist of a root state for the whole application and a feature state for the

visitor portal. We will start by executing the following command to create the root state:

nx generate @nx/angular:ngrx app --root --no-interactive --parent=apps/
tour/src/app/app.module.ts

The preceding command uses the generate command of the Nx CLI, passing the following options:

• @nx/angular:ngrx: Indicates that we want to set up an NgRx state

• app: The name of the state

• --root: Indicates that we want to configure a root state

• --no-interactive: Disables interactive input prompts

• --parent=apps/tour/src/app/app.module.ts: Registers the state with the main Angular

module of our application

The previous command will add all necessary NgRx npm packages in the package.json file and

install them. It will also modify the app.module.ts file to configure all NgRx-related artifacts,

such as the store and effects.

The visitor library will not manage the data for the state of the visitor portal. Instead, we will

create a new library in our Nx workspace to fetch and store data in the feature state. Execute the

following command of the Nx CLI to create a new library:

nx generate @nrwl/angular:library poi

Chapter 08 217

The preceding command will generate the poi library in our Nx monorepo. Now, we can set up

the feature state using the following command:

nx generate @nx/angular:ngrx poi --no-interactive --parent=libs/poi/src/
lib/poi.module.ts --barrels

The preceding command uses the generate command of the Nx CLI to register a feature state,

passing additional options:

• @nx/angular:ngrx: Indicates that we want to set up an NgRx state.

• poi: The name of the state.

• --no-interactive: Disables interactive input prompts.

• --parent=libs/poi/src/lib/poi.module.ts: Registers the state with the Angular mod-

ule of our library.

• --barrels: Indicates using barrel files to re-export NgRx artifacts such as selectors and

state. The name of a barrel file is usually index.ts by convention.

The preceding command will create a folder, named +state by convention, inside our library,

which contains the following files:

• poi.actions.ts: Defines NgRx actions for the feature state

• poi.effects.ts: Defines NgRx effects for the feature state

• poi.models.ts: Defines an entity interface for POI data

• poi.reducer.ts: Defines NgRx reducers for the feature state

• poi.selectors.ts: Defines NgRx selectors for the feature state

The Nx CLI has done most of the job by adding the necessary content in the previous files, elim-

inating the boilerplate code for us. We now need to create an Angular service in the library that

will fetch the POI data:

1. Open the poi.models.ts file and add the following properties to the PoiEntity interface:

export interface PoiEntity {

 id: string | number; // Primary ID

 name: string;

 lat: number;

 lng: number;

 description: string;

 imgUrl: string;

}

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 218

2. Execute the following command to generate the Angular service:

nx generate service poi --project=poi

The preceding command will create an Angular service called poi in the poi library.

3. Open the poi.service.ts file and add the following import statements:

import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs';

import { PoiEntity } from '..';

4. Inject HttpClient in the constructor of the PoiService class and create a method to get

POI data from the assets/poi.json file:

export class PoiService {

 constructor(private http: HttpClient) {}

 getAll(): Observable<PoiEntity[]> {

 return this.http.get<PoiEntity[]>('assets/poi.json');

 }

}

We use the built-in HTTP client of the Angular framework to get POI data by initiating a

GET HTTP request.

5. Open the poi.effects.ts file and import the map and PoiService artifacts:

import { Injectable, inject } from '@angular/core';

import { createEffect, Actions, ofType } from '@ngrx/effects';

import { switchMap, catchError, of, map } from 'rxjs';

import * as PoiActions from './poi.actions';

import * as PoiFeature from './poi.reducer';

import { PoiService } from '../poi.service';

You can get the poi.json file from the GitHub repository in the Getting started

section and copy it to the apps\tour\src\assets folder of your workspace.

Chapter 08 219

6. Inject PoiService in the PoiEffects class:

private poiService = inject(PoiService);

7. Modify the init$ property to use the poiService variable:

init$ = createEffect(() =>

 this.actions$.pipe(

 ofType(PoiActions.initPoi),

 switchMap(() => this.poiService.getAll()),

 switchMap(pois => of(PoiActions.loadPoiSuccess({ poi: pois }))),

 catchError((error) => {

 console.error('Error', error);

 return of(PoiActions.loadPoiFailure({ error }));

 })

)

);

An NgRx effect is responsible for listening to all actions dispatched in the store. When a

PoiActions.initPoi action is dispatched, the init$ property is triggered and calls the

getAll method of the poiService variable. The init$ property knows which action to

listen for by the parameters in the ofType operator.

If the data is fetched successfully, the effect will dispatch a new action in the store,

PoiActions.loadPoiSuccess, with POI data as the payload. If there is a failure when

getting the data, it will dispatch a PoiActions.loadPoiFailure action in the store.

8. Open the app.module.ts file and import HttpClientModule from the @angular/common/

http namespace. Also add the HttpClientModule class in the imports array of the

@NgModule decorator.

The global state of our application is now configured and ready to be used. In the following sec-

tion, we will create additional Angular components in the visitor library that will interact with

the feature state of our application.

The ofType operator can accept more than one action.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 220

Interacting with the store
The visitor portal will interact with the feature state of our application through two Angular

components. One component will display the list of POIs and allow the user to select one. The

other component will display the selected POI inside Google Maps.

Initially, we will build the component that displays the list of POIs:

1. Open the visitor.module.ts file and add the following import statement:

import { PoiModule } from '@packt/poi';

2. Add PoiModule in the imports array of the @NgModule decorator:

@NgModule({

 imports: [CommonModule, MatToolbarModule, MatButtonModule,
MatSidenavModule, MatIconModule, MatListModule,

 RouterModule.forChild([

 { path: '', component: VisitorComponent }

]),

 PoiModule

],

 declarations: [

 VisitorComponent

],

})

We import PoiModule so that the poi feature state is registered in the store as soon as the

visitor portal is loaded.

3. Execute the following command of the Nx CLI to create the Angular component:

nx generate @schematics/angular:component poi-list --project=visitor

4. Open the poi-list.component.ts file and modify the import statements accordingly:

import { Component, OnInit } from '@angular/core';

import { Store } from '@ngrx/store';

import { PoiActions, PoiSelectors } from '@packt/poi';

5. Modify the PoiListComponent class so that it dispatches the PoiActions.initPoi action

in the store to fetch POI data when the component is initialized:

Chapter 08 221

export class PoiListComponent implements OnInit {

 constructor(private store: Store) {}

 ngOnInit(): void {

 this.store.dispatch(PoiActions.initPoi());

 }

}

We execute the action as a method and pass its result to the dispatch method of the

store variable.

6. Create a component property that invokes the PoiSelectors.selectAllPoi selector to

list POI data from the store:

pois$ = this.store.select(PoiSelectors.selectAllPoi);

We use the select method of the store variable to execute the selector.

7. Open the poi-list.component.html file and replace its content with the following HTML

template:

<mat-action-list *ngFor="let poi of pois$ | async">

 <button mat-list-item>{{poi.name}}</button>

</mat-action-list>

We use the <mat-action-list> component of the Angular Material library to display each

POI as a single action item. We subscribe to the pois$ property using the async pipe and

create a <button> element with the mat-list-item directive for each POI.

8. Open the visitor.component.html file and replace the <mat-nav-list> component with

the <packt-poi-list> component we created.

We did not create the PoiSelectors.selectAllPoi selector. NgRx did it

for us when we generated the feature state in the poi library.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 222

Use Nx Console to start the application, and you should see the following output in the menu

sidebar:

Figure 8.18 – List of POIs

We have already created the Angular component to display the available POIs. Let’s see now how

to create the component to display a POI on the map using Google Maps.

The Angular Material library contains a component for Google Maps that we can use in our ap-

plication:

1. Run the following command of the npm client to install the Google Maps component:

npm install @angular/google-maps

2. Open the visitor.module.ts file and add the following import statement:

import { GoogleMapsModule } from '@angular/google-maps';

3. Add GoogleMapsModule to the imports array of the @NgModule decorator:

@NgModule({

 imports: [CommonModule, MatToolbarModule, MatButtonModule,
MatSidenavModule, MatIconModule, MatListModule,

 RouterModule.forChild([

 { path: '', component: VisitorComponent }

]),

 PoiModule,

 GoogleMapsModule

],

 declarations: [

 VisitorComponent,

 PoiListComponent

Chapter 08 223

],

})

4. Open the index.html file of the application and add the Google Maps JavaScript API

inside the <head> element:

<script src="https://maps.googleapis.com/maps/api/js"></script>

Now that we have installed and registered Google Maps in our application, let’s create the Angular

component that will host it:

1. Execute the following command of the Nx CLI to create a new Angular component:

nx generate @schematics/angular:component map --project=visitor

2. Open the map.component.ts file and add the following import statements:

import { Store } from '@ngrx/store';

import { PoiSelectors } from '@packt/poi';

3. Inject the Store service in the constructor of the MapComponent class and declare a prop-

erty to get the selected POI from the store:

export class MapComponent {

 poi$ = this.store.select(PoiSelectors.selectEntity);

 constructor(private store: Store) { }

}

4. Open the map.component.html file and replace its content with the following HTML tem-

plate:

<google-map height="100%" width="auto" *ngIf="poi$ | async as poi"
[center]="poi">

 <map-marker [position]="poi"></map-marker>

</google-map>

In the preceding template, we subscribe to the poi$ property using the async pipe. As

soon as we get a selected POI from the store, we display a <google-map> component and

set the center of the map to the POI coordinates. Furthermore, we add a marker on the

map in the specified POI coordinates.

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 224

5. Open the visitor.component.html file and replace the <!-- Add Content Here -->

comment with the <packt-map> selector.

The Angular component we created will show the location of a POI on the map as soon as we

select it from the list. If you try to choose a POI from the list, you will notice that nothing happens.

Why is that?

The global state of the application does not currently know when a POI has been selected. We

need to add the necessary code to set the selected POI and interact with the store:

1. Open the poi.actions.ts file and add a new action to pass the ID of the selected POI:

export const selectPoi = createAction(

 '[Poi/API] Select Poi',

 props<{ poiId: string | number }>()

);

2. Open the poi.reducer.ts file and add a new statement in the reducer property that will

listen to the selectPoi action and save the selected POI in the store:

const reducer = createReducer(

 initialPoiState,

 on(PoiActions.initPoi, (state) => ({ ...state, loaded: false,
error: null })),

 on(PoiActions.loadPoiSuccess, (state, { poi }) =>

 poiAdapter.setAll(poi, { ...state, loaded: true })

),

 on(PoiActions.loadPoiFailure, (state, { error }) => ({ ...state,
error })),

 on(PoiActions.selectPoi, (state, { poiId }) => ({ ...state,
selectedId: poiId }))

);

3. Open the poi-list.component.ts file and import the PoiEntity interface:

import { PoiActions, PoiEntity, PoiSelectors } from '@packt/poi';

4. Create a new method to dispatch the selectPoi action to the store along with the selected

PoiEntity:

selectPoi(poi: PoiEntity) {

 this.store.dispatch(PoiActions.selectPoi({poiId: poi.id}));

}

Chapter 08 225

5. Open the poi-list.component.html file and bind the selectPoi method to the click

event of the <button> element:

<mat-action-list *ngFor="let poi of pois$ | async">

 <button mat-list-item (click)="selectPoi(poi)">{{poi.name}}</
button>

</mat-action-list>

To see the new functionality in action, run the application using the serve option from Nx Con-

sole and select a POI from the list. The output of the application should look like the following:

Figure 8.19 – POI selection

We have now completed all the required features for the portal of our visitors. Well done! Imple-

menting the basic functionality of the visitor portal required interacting with NgRx to manage

the global state of our application.

In this project, we use Google Maps in development mode. For production environ-

ments, you should get an API key from https://developers.google.com/maps/

get-started and include it in the Google Maps JavaScript API script that you load

in the index.html file as <script src="https://maps.googleapis.com/maps/

api/js?key=YOUR_API_KEY"></script>.

https://developers.google.com/maps/get-started
https://developers.google.com/maps/get-started

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 226

The global state was separated into the root state for the application and the feature state for the

visitor portal. The visitor library used the latter to create Angular components to display a POI

list and select one to view in Google Maps.

In the next section, we will build the administrator portal to get visit statistics for each POI.

Visualizing data with graphs
The administrator portal will display traffic visits for each POI using a chart. When visitors visit

a POI by clicking its marker on the map, traffic will be generated. The application will persist

visit data in the local storage of the browser. It will keep a record for each visit containing the

ID of the POI and the total visits. The administrator portal will consist of the following features:

• Persisting visit data in the store

• Displaying visit statistics

In the following section, we will start building the administrator portal by implementing the

mechanism to keep track of visits.

Persisting visit data in the store
Our application does not record traffic statistics for POIs yet. Let’s see how we can accomplish

this task:

1. Open the map.component.html file and add a <map-info-window> component:

<google-map height="100%" width="auto" *ngIf="poi$ | async as poi"
[center]="poi">

 <map-marker [position]="poi"></map-marker>

 <map-info-window>

 <mat-card>

 <mat-card-header>

 <mat-card-title>{{poi.name}}</mat-card-title>

 </mat-card-header>

 <mat-card-content>

 <p>{{poi.description}}</p>

 </mat-card-content>

 </mat-card>

 </map-info-window>

</google-map>

Chapter 08 227

The <map-info-window> component is a pop-up window that displays additional infor-

mation about the current map marker. It shows the title, image, and description of a POI

as an Angular Material card component.

The <mat-card> component contains a header denoted by the <mat-card-header> com-

ponent and an image denoted by the element with the mat-card-image directive.

The <mat-card-content> component indicates the main content of the card.

2. Open the visitor.module.ts file and add the following import statement:

import { MatCardModule } from '@angular/material/card';

3. Add the MatCardModule class in the imports array of the @NgModule decorator:

@NgModule({

 imports: [CommonModule, MatToolbarModule, MatButtonModule,
MatSidenavModule, MatIconModule, MatListModule,

 RouterModule.forChild([

 { path: '', component: VisitorComponent }

]),

 PoiModule,

 GoogleMapsModule,

 MatCardModule

],

 declarations: [

 VisitorComponent,

 PoiListComponent,

 MapComponent

],

})

The MatCardModule class is an Angular Material module that exposes all the components

we need to create a card component.

4. Open the map.component.ts file and modify the import statements accordingly:

import { Component, ViewChild } from '@angular/core';

import { Store } from '@ngrx/store';

import { PoiSelectors } from '@packt/poi';

import { MapInfoWindow, MapMarker } from '@angular/google-maps';

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 228

5. Declare a component property to get a reference for the information window using the

@ViewChild decorator:

@ViewChild(MapInfoWindow) info: MapInfoWindow | undefined;

6. Create a method to open the information window:

showInfo(marker: MapMarker) {

 this.info?.open(marker);

}

In the preceding code, we call the open method of the information window reference,

passing the associated map marker as a parameter.

7. Open the map.component.html file and bind the showInfo component method to the

mapClick event of the <map-marker> component:

<map-marker #marker="mapMarker" (mapClick)="showInfo(marker)"
[position]="poi"></map-marker>

We create the marker template reference variable to get a reference to the mapMarker object

and pass it as a parameter in the showInfo method.

8. Run the application using the serve option of Nx Console and select a POI from the list.

9. Click on the POI marker on the map, and you should get output similar to the following:

Figure 8.20 – Map information window

Chapter 08 229

We consider that a POI is visited when the visitor clicks on the map marker and the information

window appears. Our application will then notify the store of that action to save it in the local

storage. Let’s create the logic to interact with the store:

1. Open the poi.actions.ts file and create the following actions for the feature of visiting

a POI:

export const visitPoi = createAction(

 '[Poi/API] Visit Poi',

 props<{ poiId: string | number }>()

)

export const visitPoiSuccess = createAction('[Poi/API] Visit Poi
Success');

export const visitPoiFailure = createAction(

 '[Poi/API] Visit Poi Failure',

 props<{ error: any }>()

);

2. Open the poi.effects.ts file, and create a new effect that listens to the visitPoi action

and increases the total visits of the specified poiId by one:

visit$ = createEffect(() =>

 this.actions$.pipe(

 ofType(PoiActions.visitPoi),

 switchMap(action => {

 const stat = localStorage.getItem('tour-' + action.poiId);

 const total = stat ? Number(stat) + 1 : 1;

 localStorage.setItem('tour-' + action.poiId, total.
toString());

 return of(PoiActions.visitPoiSuccess())

 }),

 catchError((error) => {

 console.error('Error', error);

 return of(PoiActions.visitPoiFailure({ error }));

 })

)

);

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 230

In the preceding code, we fetch the local storage key that begins with the word tour-,

followed by the POI ID. If this is located, we increment it by one and update the local

storage. Otherwise, we initialize it to one.

3. Open the map.component.ts file and import PoiActions from the @packt/poi namespace:

import { PoiActions, PoiSelectors } from '@packt/poi';

4. Modify the showInfo component method so that it dispatches a visitPoi action to the

store:

showInfo(marker: MapMarker, poiId: string | number) {

 this.store.dispatch(PoiActions.visitPoi({ poiId }));

 this.info?.open(marker);

}

5. Finally, open the map.component.html file and pass the selected POI ID into the showInfo

method:

<map-marker #marker="mapMarker" (mapClick)="showInfo(marker, poi.
id)" [position]="poi" ></map-marker>

Our application can now record the visits of each POI and keep them in the local storage of the

browser. In the following section, we will create the main component of the administrator portal

that leverages visit data.

Displaying visit statistics
The administrator portal will display visit statistics on its main component with a graph. We

will use the ng2-charts library to visualize data on a pie chart. Let’s see how to add the required

functionality in that component:

1. Install the ng2-charts library using the following command:

npm install ng2-charts chart.js

The preceding command will also install the chart.js library, which is at the core of the

ng2-charts library.

In a real case, it would be better to abstract the logic of local storage in an

Angular service that would act as a wrapper over the global localStorage

object. We encourage you to create such a service while building this project.

Chapter 08 231

2. Open the admin.module.ts file, and import PoiModule from the @packt/poi namespace

and NgChartsModule from the ng2-charts npm package:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { AdminComponent } from './admin.component';

import { RouterModule } from '@angular/router';

import { PoiModule } from '@packt/poi';

import { NgChartsModule } from 'ng2-charts';

@NgModule({

 imports: [

 CommonModule,

 RouterModule.forChild([

 { path: '', component: AdminComponent }

]),

 PoiModule,

 NgChartsModule

],

 declarations: [

 AdminComponent

],

})

export class AdminModule {}

3. Open the admin.component.ts file and modify the import statements accordingly:

import { Component, OnDestroy, OnInit } from '@angular/core';

import { Store } from '@ngrx/store';

import { PoiActions, PoiEntity, PoiSelectors } from '@packt/poi';

import { Subscription } from 'rxjs';

4. Modify the AdminComponent class so that it interacts with the application store to get

POI data:

export class AdminComponent implements OnInit, OnDestroy {

 private subscription: Subscription | undefined;

 constructor(private store: Store) { }

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 232

 ngOnInit(): void {

 this.subscription = this.store.select(PoiSelectors.
selectAllPoi).subscribe();

 this.store.dispatch(PoiActions.initPoi());

 }

 ngOnDestroy() {

 this.subscription?.unsubscribe();

 }

}

In the preceding code, we manually subscribe to the selectAllPoi selector using a

subscription property instead of an async pipe. In this case, we must also unsubscribe

manually in the ngOnDestroy life cycle hook of the component using the unsubscribe

method. If we fail to do so, we may introduce a memory leak to our application.

Now that we have set up the interaction with the store, we can get statistics from the local storage

and create our pie chart:

1. Execute the following command of the Nx CLI to create a service in the admin library:

nx generate service admin --project=admin

2. Open the admin.service.ts file and add the following import statement:

import { PoiEntity } from '@packt/poi';

3. Create a method to get all saved traffic statistics from the local storage of the browser:

getStatistics(pois: PoiEntity[]): number[] {

 return pois.map(poi => {

 const stat = localStorage.getItem('tour-' + poi.id) ?? 0;

 return +stat;

 });

}

In the preceding method, we get the traffic of each POI based on its id property. We then

convert the stat property to a number by adding the + prefix.

4. Open the admin.component.ts file and add the following import statements:

import { AdminService } from './admin.service';

import { ChartDataset } from 'chart.js';

Chapter 08 233

5. Declare component properties for the labels and the actual data that we will display on

the pie graph, and inject AdminService into the constructor of the AdminComponent class:

export class AdminComponent implements OnInit, OnDestroy {

 private subscription: Subscription | undefined;

 dataSets: ChartDataset[] = [];

 labels: string[] = [];

 constructor(private store: Store, private adminService:
AdminService) { }

 ngOnInit(): void {

 this.subscription = this.store.select(PoiSelectors.
selectAllPoi).subscribe();

 this.store.dispatch(PoiActions.initPoi());

 }

 ngOnDestroy() {

 this.subscription?.unsubscribe();

 }

}

6. Create a component method to set the labels and the data of the graph:

private buildChart(pois: PoiEntity[]) {

 this.labels = pois.map(poi => poi.name);

 this.dataSets = [{

 data: this.adminService.getStatistics(pois)

 }]

}

The graph labels are the titles of the POI, and the data comes from the getStatistics

method of the adminService variable.

7. Call the buildChart method inside the subscribe method of the selectAllPoi selector:

ngOnInit(): void {

 this.subscription = this.store.select(PoiSelectors.selectAllPoi).
subscribe(pois => this.buildChart(pois));

 this.store.dispatch(PoiActions.initPoi());

}

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 234

8. Finally, open the admin.component.html file and replace its content with the following

HTML template:

<div class="chart" *ngIf="dataSets.length">

 <canvas

 height="100"

 baseChart

 [datasets]="dataSets"

 [labels]="labels"

 type="pie">

 </canvas>

</div>

In the preceding template, we use the baseChart directive to convert the <canvas> element

to a graph. The graph is set to pie using the type property.

If we now run our application using Nx Console, visit a POI from the map, and switch to the

http://localhost:4200/admin URL, we should see the following output:

Figure 8.21 – POI statistics

Chapter 08 235

An administrator can now have a complete overview of how each POI does from a visit perspective.

Our administrator portal has now been completed. The visitor portal can interact with the store

and save visit statistics for each POI in the local storage of the browser. The administrator portal

can then fetch and display that data on a pie chart.

Summary
In this project, we built an enterprise portal application to visit POIs on a map and display visit

statistics for each one. First, we saw how to use Nx to scaffold a new Nx monorepo application.

Then, we created two different portals for our application, a visitor and an administrator. We

learned how to use the NgRx library in the visitor portal to maintain and manage the state of

our application. Finally, we saw how to use a chart library in the administrator portal to display

statistics for each POI.

In the next chapter, we will use the Angular CLI to build a UI component library using the An-

gular CDK.

Practice questions
Let’s take a look at a few practice questions:

1. Which npm package creates an Nx monorepo application?

2. What are the differences between the Angular CLI and Nx CLI?

3. How can we enable NgRx in the library of a monorepo?

4. How do we select data from the store?

5. How do we interact with HTTP in NgRx?

6. Where do we modify the state of an NgRx store?

7. What is the difference between a root and a feature state?

8. Which npm package can we use for Google Maps in an Angular application?

9. How can we subscribe to an NgRx selector manually?

10. Which component do we use to display additional information on Google Maps?

Further reading
Here are some links to build upon what we learned in the chapter:

• Nx: https://nx.dev

• NgRx: https://ngrx.io

https://nx.dev
https://ngrx.io

Building an Enterprise Portal Using Nx Monorepo Tools and NgRx 236

• NgRx store guide: https://ngrx.io/guide/store

• Angular Material card component: https://material.angular.io/components/card/

overview

• Angular Google Maps: https://github.com/angular/components/tree/main/src/

google-maps

• ng2-charts: https://valor-software.com/ng2-charts

• create-nx-workspace: https://www.npmjs.com/package/create-nx-workspace

https://ngrx.io/guide/store
https://material.angular.io/components/card/overview
https://material.angular.io/components/card/overview
https://github.com/angular/components/tree/main/src/google-maps
https://github.com/angular/components/tree/main/src/google-maps
https://valor-software.com/ng2-charts
https://www.npmjs.com/package/create-nx-workspace

9
Building a Component UI
Library Using Angular CLI and
Angular CDK

An Angular application consists of Angular components that are organized into modules. When

components need to share a similar appearance or behavior across modules, we extract their

functionality into reusable components and group them in a shared module. Reusable compo-

nents may vary from complex UI structures with many controls, such as forms, to single native

HTML elements, such as buttons.

A component UI library is a collection of reusable components that can be used outside a specific

application domain. A large enterprise application built with a monorepo architecture can use

these components across all its applications. A project outside an organization can also use the

same component library as an external dependency.

The Angular CLI includes all the necessary tooling for creating libraries with Angular. The Angular

Component Dev Kit (CDK) provides a broad range of functionalities for creating accessible and

high-performant UI components. In this chapter, we will combine them with Bulma, a modern

CSS framework, to create a simple component UI library from scratch.

In this chapter, we will cover the following topics in more detail:

• Creating a library with the Angular CLI

• Building a draggable card list

• Interacting with the clipboard

Building a Component UI Library Using Angular CLI and Angular CDK 238

• Publishing an Angular library to npm

• Using components as Angular elements

Essential background theory and context
The Angular CDK contains a collection of common interactions and behaviors that we can apply

to Angular components. It is at the heart of the Angular Material library but can be used with

any CSS framework in an Angular application. The Angular CDK is available from the @angular/

cdk npm package.

The Angular CLI supports creating Angular libraries out of the box. The functionality of an An-

gular library can be used only in Angular applications, and it is decoupled from specific business

logic. If we want to use an Angular library in a non-Angular application, we must convert it into

an Angular element.

Custom elements are a web standard that allows the creation of HTML elements independent

of any JavaScript framework. It works by declaring a custom HTML tag and associating it with a

JavaScript class. The browser can identify the HTML tag and execute the JavaScript code defined

inside the class.

Angular elements are Angular components converted into custom elements using the @angular/

elements library. Packaging an Angular component as a custom element connects the Angular

framework to the DOM of the element, enriching it with data binding, a component life cycle,

and change detection features.

Project overview
In this project, we will build a component UI library for our Angular projects. Initially, we will

use the Angular CLI to scaffold a new Angular workspace for our library. We will then use the

Angular CDK and the Bulma CSS framework to create the following components:

• A list of cards that we can rearrange using drag-and-drop features

• A button that will allow us to copy arbitrary content to the clipboard

We will learn how to deploy the library into a package registry such as npm. Finally, we will con-

vert one of our components into an Angular element to share it with non-Angular applications

using the ngx-build-plus library. The following diagram provides an architectural overview of

the project:

Chapter 09 239

Figure 9.1 – Project architecture

Build time: 1½ hours

Getting started
The following prerequisites and software tools are required to complete this project:

• Angular CLI: A CLI for Angular, which you can find at https://angular.io/cli.

• GitHub material: The related code for this chapter can be found in the Chapter09 folder

at https://github.com/PacktPublishing/Angular-Projects-Third-Edition.

Creating a library with the Angular CLI
Before we can start working with Angular libraries using the Angular CLI, we need to create

an Angular CLI workspace. The Angular CLI workspace will contain our Angular library and an

Angular application for testing the library.

Use the following command to generate a new Angular CLI workspace:

ng new my-components --defaults

The preceding command will create a new Angular CLI workspace that contains an Angular ap-

plication named my-components. Navigate to the my-components folder and execute the following

command to generate a new Angular library:

ng generate library ui-controls

The preceding command will create a ui-controls library inside the projects folder of the

workspace. It will contain various files and folders similar to those when creating an Angular

application, including the following:

• src\lib: This contains the source code of the library, such as modules, components, and

services.

https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Building a Component UI Library Using Angular CLI and Angular CDK 240

• src\public-api.ts: This exports artifacts from the library that we want to make publicly

available in other Angular applications.

• ng-package.json: This contains a configuration for the ng-packagr library that the An-

gular CLI uses under the hood for building libraries.

• tsconfig.lib.json: The TypeScript configuration file for our library, which also contains

several Angular compiler options.

• tsconfig.lib.prod.json: The TypeScript configuration file used when building our

library in production mode.

The Angular CLI will generate a module, a component, and a service in the src\lib folder for us

by default. It will also export them so that they can be used by any Angular application that will

use the library. You can see an example of this here:

public-api.ts

/*

* Public API Surface of ui-controls

*/

export * from './lib/ui-controls.service';

export * from './lib/ui-controls.component';

export * from './lib/ui-controls.module';

Now that we have set up our Angular CLI workspace, we can go ahead and install the Bulma and

Angular CDK libraries as follows:

1. Execute the following command to install the Angular CDK:

npm install @angular/cdk

2. Run the following command to install the Bulma CSS framework:

npm install bulma

3. Open the angular.json configuration file and add the CSS style sheet file of the Bulma

library to the styles section of the build architect entry, as follows:

"options": {

 "outputPath": "dist/my-components",

 "index": "src/index.html",

 "main": "src/main.ts",

Chapter 09 241

 "polyfills": [

 "zone.js"

],

 "tsConfig": "tsconfig.app.json",

 "assets": [

 "src/favicon.ico",

 "src/assets"

],

 "styles": [

 "src/styles.css",

 "./node_modules/bulma/css/bulma.css"

],

 "scripts": []

}

4. Open the package.json file of the projects\ui-controls folder and modify it accordingly:

{

 "name": "ui-controls",

 "version": "0.0.1",

 "peerDependencies": {

 "@angular/common": "^16.0.0",

 "@angular/core": "^16.0.0",

 "@angular/cdk": "^16.0.3",

 "bulma": "^0.9.4"

 },

 "dependencies": {

 "tslib": "^2.3.0"

 },

 "sideEffects": false

}

We add the Angular CDK and the Bulma library to the peerDependencies section to ensure

that any consuming application has a specific version of the packages to run our library.

The version number of each package may vary if you follow along with this project.

To ensure you have the correct versions, copy them from the package.json file of

the root folder of the workspace.

Building a Component UI Library Using Angular CLI and Angular CDK 242

We have now completed the basic setup of our UI components library. We have also configured

the Angular application that comes with the Angular CLI workspace to preview and test the li-

brary. In the following section, we will build the first component of our library—a card list that

can be re-ordered.

Building a draggable card list
The first component of our UI library will be a list of Bulma card elements. Each card will display

a title, a description, and an anchor link element. We will also be able to drag a card and change

the order of the card list using the Angular CDK. Building our component will consist of the

following tasks:

• Displaying card data

• Adding drag-and-drop functionality

In the following section, we will first see how to display data on the card list.

Displaying card data
Our Angular application should pass a list of cards as an input property to the component for

displaying them. Let’s see how we can create a draggable card component as follows:

1. Execute the following Angular CLI command to create an Angular component:

ng generate component card-list --project=ui-controls --export

The preceding command will create a card-list component in the ui-controls project

of our Angular CLI workspace. The --export option will also export the component from

UiControlsModule.

The UiControlsModule class is already exported from the public-api.ts file. So, when our

Angular application imports UiControlsModule, it will also have our component available.

2. Use the generate command of the Angular CLI to create an interface for the structure of

card data, as follows:

ng generate interface card --project=ui-controls

3. The preceding command will create a card.ts file in the ui-controls project of our work-

space.

4. Open the card.ts file and add the following properties to the Card interface:

export interface Card {

Chapter 09 243

 title: string;

 description: string;

 link: string;

}

5. Open the public-api.ts file and add the following export statements to make the com-

ponent and the interface available to the library consumers:

export * from './lib/card-list/card-list.component';

export * from './lib/card';

6. Open the card-list.component.ts file and use the @Input decorator to define an input

property as follows:

import { Component, Input } from '@angular/core';

import { Card } from '../card';

@Component({

 selector: 'lib-card-list',

 templateUrl: './card-list.component.html',

 styleUrls: ['./card-list.component.css']

})

export class CardListComponent {

 @Input() cards: Card[] = [];

}

The cards property will be set later from the Angular application with the card data we

want to display.

7. Open the card-list.component.html file and replace its content with the following

HTML template:

<div>

 <div class="card m-4" *ngFor="let card of cards">

 <header class="card-header">

 <p class="card-header-title">{{card.title}}</p>

 </header>

 <div class="card-content">

 <div class="content">{{card.description}}</div>

 </div>

 <footer class="card-footer">

Building a Component UI Library Using Angular CLI and Angular CDK 244

 <a [href]="card.link" class=

 "card-footer-item">View on Wikipedia

 </footer>

 </div>

</div>

The preceding template uses the Bulma card component and iterates over the cards

component property to display each one, using the *ngFor directive.

8. Open the card-list.component.css file and add the following CSS styles:

:host > div {

 display: grid;

 grid-auto-flow: column;

 overflow: auto;

}

.card {

 width: 200px;

}

In the preceding styles, we use the :host selector to target the div element in the host

element of our component and apply a grid style to display all cards in a single row.

9. Open the ui-controls.module.ts file and add CommonModule to the imports array of the

@NgModule decorator, as follows:

import { CommonModule } from '@angular/common';

import { NgModule } from '@angular/core';

import { UiControlsComponent } from './ui-controls.component';

import { CardListComponent } from './card-list/card-list.component';

@NgModule({

 declarations: [

 UiControlsComponent,

 CardListComponent

],

 imports: [

 CommonModule

],

 exports: [

 UiControlsComponent,

Chapter 09 245

 CardListComponent

]

})

export class UiControlsModule { }

The CommonModule class is needed for the *ngFor directive in the card list component

template.

Our component is ready to accept and display data in a card list representation. Let’s see how to

consume it from the Angular application as follows:

1. First, execute the following command to build the component UI library:

ng build ui-controls

The Angular CLI will start building the library, and it will have been completed as soon

as you see the following output on the terminal:

Figure 9.2 – Library build output

2. Open the app.module.ts file and add the UiControlsModule class to the imports array

of the @NgModule decorator, as follows:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { UiControlsModule } from 'ui-controls';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

Building a Component UI Library Using Angular CLI and Angular CDK 246

 BrowserModule,

 UiControlsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

3. Open the app.component.ts file and declare a component property of the Card[] type,

as follows:

import { Component } from '@angular/core';

import { Card } from 'ui-controls';

import { assassins } from './assassins';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'my-components';

 cards: Card[] = assassins;

}

We initialize the cards component property using demo data from the assassins.ts file,

which you can find in the GitHub repository of the Getting started section.

4. Open the app.component.html file and replace its content with the following HTML tem-

plate:

<div class="container is-fluid">

 <h1 class="title">Assassins Creed Series</h1>

 <lib-card-list [cards]="cards"></lib-card-list>

</div>

We import UiControlsModule from the ui-controls namespace, which

is the library name, and not from the full absolute path in our workspace.

Chapter 09 247

5. To preview the application, run ng serve and open your browser at http://localhost:4200.

You should then see something like this:

Figure 9.3 – Card list component

The card list component displays data that a consumer application passed using the cards input

property. In the following section, we will take our component a step further and make our cards

able to change their location in the list.

Adding drag-and-drop functionality
A feature of the card list component is that we will be able to change the location of a card by

dragging and dropping it into the list. The order of the card list should be emitted back to the

consumer application using an output property binding.

The Angular CDK contains a drag-and-drop module that we can use for this purpose. To do so,

follow these steps:

1. Open the ui-controls.module.ts file and import DragDropModule from the @angular/

cdk/drag-drop namespace, like this:

import { DragDropModule } from '@angular/cdk/drag-drop';

2. Add the DragDropModule class to the imports array of the @NgModule decorator like this:

@NgModule({

 declarations: [

 UiControlsComponent,

 CardListComponent

],

 imports: [

 CommonModule,

Building a Component UI Library Using Angular CLI and Angular CDK 248

 DragDropModule

],

 exports: [

 UiControlsComponent,

 CardListComponent

]

})

3. Open the card-list.component.html file and modify the template as follows:

<div cdkDropListOrientation="horizontal" cdkDropList
(cdkDropListDropped)="sortCards($event)">

 <div cdkDrag class="card m-4" *ngFor="let card of cards">

 <header class="card-header">

 <p class="card-header-title">{{card.title}}</p>

 </header>

 <div class="card-content">

 <div class="content">{{card.description}}</div>

 </div>

 <footer class="card-footer">

 <a [href]="card.link" class="card-footer-item">View on
Wikipedia

 </footer>

 </div>

</div>

First, we add the cdkDrag directive to each card element to be able to move it by dragging

it. Then, we add the cdkDropList directive to the container element to mark it as a drop

list. A drop list in the Angular CDK indicates that its contents can be re-ordered using

drag-and-drop actions. We set the drag-and-drop orientation to horizontal because our

card list is rendered in a single row, and we also bind a sortCards component method to

the cdkDropListDropped event of the drop list.

4. Open the card-list.component.ts file and modify the import statements accordingly:

import { Component, Input, Output, EventEmitter } from '@angular/
core';

import { Card } from '../card';

import { CdkDragDrop, moveItemInArray } from '@angular/cdk/drag-
drop';

Chapter 09 249

5. Create an output property using the @Output decorator and use it in the sortCards com-

ponent method to emit the re-ordered list to the consumer of the component, as follows:

export class CardListComponent {

 @Input() cards: Card[] = [];

 @Output() cardChange = new EventEmitter<Card[]>();

 sortCards(event: CdkDragDrop<string[]>): void {

 moveItemInArray(this.cards, event.previousIndex, event.
currentIndex);

 this.cardChange.emit(this.cards);

 }

}

In the previous code snippet, we use the moveItemInArray built-in method of

DragDropModule to change the order of the cards property. We pass the event parameter

to the moveItemInArray method containing the previous and current index of the moved

card. We also use the emit method of the cardChange property to propagate the change

back to the Angular application.

The card list component has now acquired drag-and-drop superpowers. Let’s give it a try, as

follows:

1. Open the app.component.html file and add an event binding to the cardChange event of

the <lib-card-list> component, as follows:

<div class="container is-fluid">

 <h1 class="title">Assassins Creed Series</h1>

 <lib-card-list [cards]="cards"
(cardChange)="onCardChange($event)">

 </lib-card-list>

</div>

2. Open the app.component.ts file and create an onCardChange method to log the new card

list as follows:

onCardChange(cards: Card[]) {

 console.log(cards);

}

Building a Component UI Library Using Angular CLI and Angular CDK 250

3. Run the following command to build the library:

ng build ui-controls

4. Execute the serve command of the Angular CLI to start your application like this:

ng serve

5. Try to drag and drop some of the cards from the list and notice the output in the Console

window of your browser and the actual application.

The first component of our UI library is now packed with all the functionality to make it a drag-

and-drop list. It can display a list passed from our Angular application in a Bulma card format. It

can also change the order of each item in the list using the Angular CDK drag-and-drop module,

and propagate the change back to our application.

In the following section, we will create a second component of our library for copying data to

the clipboard.

Interacting with the clipboard
The Angular CDK library contains a collection of Angular artifacts that we can use to interact with

the system clipboard. Specifically, it includes a directive for copying data to the clipboard and an

event binding for taking additional action when the content has been copied. Let’s see how we

can integrate both in to our component library, as follows:

1. Execute the following command of the Angular CLI to create a new Angular component

in the library:

ng generate component copy-button --project=ui-controls --export

2. Export the newly generated component from the public-api.ts file as follows:

export * from './lib/copy-button/copy-button.component';

3. Open the ui-controls.module.ts file and import ClipboardModule from the @angular/

cdk/clipboard namespace, like this:

import { ClipboardModule } from '@angular/cdk/clipboard';

4. Add the ClipboardModule class to the imports array of the @NgModule decorator like this:

@NgModule({

 declarations: [

Chapter 09 251

 UiControlsComponent,

 CardListComponent,

 CopyButtonComponent

],

 imports: [

 CommonModule,

 DragDropModule,

 ClipboardModule

],

 exports: [

 UiControlsComponent,

 CardListComponent,

 CopyButtonComponent

]

})

5. Open the copy-button.component.ts file and declare the following component properties:

import { Component, EventEmitter, Input, Output } from '@angular/
core';

@Component({

 selector: 'lib-copy-button',

 templateUrl: './copy-button.component.html',

 styleUrls: ['./copy-button.component.css']

})

export class CopyButtonComponent {

 @Input() data = '';

 @Output() copied = new EventEmitter<void>();

}

The data property will be used to set clipboard data, and the copied event will fire when

the data is successfully copied to the clipboard.

6. Create a component method to trigger a copied output event, as follows:

onCopy() {

 this.copied.next();

}

Building a Component UI Library Using Angular CLI and Angular CDK 252

7. Open the copy-button.component.html file and replace its content with the following

HTML template:

<button class="button is-light is-primary"
[cdkCopyToClipboard]="data" (cdkCopyToClipboardCopied)="onCopy()">

 Copy

</button>

In the preceding template, we use a Bulma button component and attach two Angu-

lar CDK bindings to it. The cdkCopyToClipboard property binding indicates that the

data component property will be copied to the clipboard when the button is clicked. The

cdkCopyToClipboardCopied event binding will call the onCopy component method as

soon as data has been copied to the clipboard successfully.

Now that we have set up our component, let’s find out how to use it in our Angular application,

as follows:

1. Open the app.component.html file and add a <div> element that consists of an <input>

element and the <lib-copy-button> component, as follows:

<div class="container is-fluid">

 <h1 class="title">Assassins Creed Series</h1>

 <lib-card-list [cards]="cards"
(cardChange)="onCardChange($event)"></lib-card-list>

 <h1 class="title mt-5">Clipboard interaction</h1>

 <div class="field has-addons">

 <div class="control">

 <input class="input" type="text" [(ngModel)]="title">

 </div>

 <div class="control">

 <lib-copy-button [data]="title" (copied)="log()"></lib-copy-
button>

 </div>

 </div>

</div>

In the previous template, we bind the title property of the component to the <input>

element using the ngModel directive. We also bind it to the data property of the <lib-

copy-button> component to copy the contents of the <input> element to the clipboard.

We also bind the copied event to the log component method.

Chapter 09 253

2. Open the app.component.ts file and create a log method for displaying an information

message when data is copied to the clipboard, as follows:

log() {

 alert(this.title + ' copied to the clipboard');

}

3. Open the app.module.ts file and import FormsModule, like this:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

import { UiControlsModule } from 'ui-controls';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 UiControlsModule,

 FormsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

The FormsModule class is part of the @angular/forms npm package and is required when

we want to use ngModel in our application.

4. Execute the following command to build the library so that our application can recognize

the new component:

ng build ui-controls

Building a Component UI Library Using Angular CLI and Angular CDK 254

5. Run the application using ng serve, and you should get the following output:

Figure 9.4 – Clipboard interaction

6. Enter the value my awesome library into the textbox and click on the Copy button. You

should get the following output:

Figure 9.5 – Alert message

We have successfully created a button that we can attach to an Angular application and use to

interact with the clipboard directly!

The Angular CDK contains various other components and behaviors that we can use in our Angular

applications. When combined with a highly customizable CSS framework such as Bulma, it can

create compelling and unique interfaces. Try them in your Angular projects and build a library

with a rich set of components. In the following section, we will learn how to publish a library in

the npm package registry.

Publishing an Angular library to npm
We have already seen how to build an Angular library and consume it in an Angular application

when both exist in the same repository or organization. However, there are cases where you may

want to make your library available to Angular projects outside your infrastructure via a public

package registry such as npm. A usual case is when you want to make your library open source

so that other members of the development community can benefit from this. Let’s see how to

publish our ui-controls library to npm, as follows:

1. If you do not have an npm account, navigate to https://www.npmjs.com/signup to create

one.

https://www.npmjs.com/signup

Chapter 09 255

2. Open the package.json file that exists in the projects\ui-controls folder of the Angular

CLI workspace and set the value of the version property to 1.0.0.

3. Open a terminal window and run the following Angular CLI command to build your library:

ng build ui-controls

4. Navigate to the dist folder where the Angular CLI has generated the final bundle of our

library, as illustrated in the following code snippet:

cd dist\ui-controls

5. Execute the following npm command to log in to the npm registry from the terminal:

npm login

6. After you have successfully authenticated with npm, run the following command to pub-

lish your library:

npm publish

Well done! Your library is now on the public npm registry and can be used by other developers

in their Angular applications.

In the following section, we will learn how to use our library in non-Angular applications using

Angular elements.

It is considered a good practice to follow semantic versioning in your library

and publish it as version 1.0.0 for the first time. Angular also follows seman-

tic versioning, and you can learn more about this at https://semver.org.

Running the preceding command will throw an error because the npm package

registry already contains a ui-controls package. If you want to preview the result

of the previous command, make sure that you change the name field in the package.

json file of the library.

Always remember to change the version number in the package.json file of your

library before publishing it. Otherwise, the npm registry will throw an error stating

that the version you are trying to publish already exists.

https://semver.org

Building a Component UI Library Using Angular CLI and Angular CDK 256

Using components as Angular elements
We have already learned how to use the Angular CLI to create an Angular library. We also saw

how to publish our library to the npm registry so that other Angular projects can use it and benefit

from it. In this section, we will go the extra mile and learn how to build our Angular library to be

used in non-Angular environments.

As we have already pointed out, the Angular framework is a cross-platform JavaScript framework

in many ways. It can run on the server using Angular Universal and on mobile platforms. It can

also run on a native desktop environment. In addition to those platforms, it can even run on web

applications that are not built with Angular, using Angular elements.

Let’s see how we can convert our clipboard component into an Angular element, as follows:

1. Execute the following Angular CLI command to generate a new Angular application in

our workspace:

ng generate application ui-elements --defaults

The preceding command will generate the ui-elements Angular application in the

projects folder using default options.

2. Navigate to the projects\ui-elements folder and run the following command to install

the @angular/elements package:

npm install @angular/elements

3. Open the app.module.ts file of the ui-elements application and modify it accordingly:

import { Injector, NgModule } from '@angular/core';

import { createCustomElement } from '@angular/elements';

import { BrowserModule } from '@angular/platform-browser';

import { UiControlsModule, CopyButtonComponent } from 'ui-controls';

@NgModule({

 imports: [

 BrowserModule,

The Angular CLI does not currently support the use of Angular elements di-

rectly on an Angular library. Thus, we need to create an Angular application

whose only purpose will be to export our components as Angular elements.

Chapter 09 257

 UiControlsModule

],

 providers: []

})

export class AppModule { }

4. Add a constructor to the AppModule class and inject the Injector service as follows:

constructor(private injector: Injector) {}

5. Implement an ngDoBootstrap method to create the custom element for the

CopyButtonComponent class, as follows:

ngDoBootstrap() {

 const el = createCustomElement(CopyButtonComponent, { injector:
this.injector });

 customElements.define('copy-button', el);

}

The ngDoBootstrap method is used to hook in the manual bootstrap process of the Angu-

lar application. We use the createCustomElement method from the @angular/elements

npm package to create a custom element, passing the class of the component and the

injector. Finally, we use the define method of the customElements object to declare the

custom element, passing the HTML selector that we want to use and the custom element

as parameters.

Now that we have put into practice all the workings for converting an Angular component into

an Angular element, it’s time to build it so that we can use it in a web application.

Building an Angular element differs from a standard build of an Angular application. When we

build an Angular application, the Angular CLI generates different JavaScript bundles that contain

the application source code, the Angular framework, and any third-party libraries. In an Angular

element scenario, we only want to generate one bundle file containing our component. For this

purpose, we will use the ngx-build-plus library, which can generate a single bundle, among

other things. Let’s see how to install it and use it in our application, as follows:

1. Execute the following command of the Angular CLI to install the ngx-build-plus package:

ng add ngx-build-plus --project=ui-elements

The preceding command will modify the angular.json file of the Angular CLI workspace

to use the ngx-build-plus library to build the ui-elements application.

Building a Component UI Library Using Angular CLI and Angular CDK 258

2. Run the following command of the Angular CLI to build the application:

ng build ui-elements --single-bundle

The previous command will build the ui-elements application and produce a single

bundle for all application code.

3. Copy the dist\ui-elements folder to another location of your choice on your hard disk

and open the index.html file, using your editor.

4. Remove the <base> tag from the <head> element and add the Bulma CSS minified file

using a content delivery network (CDN), as follows:

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/
bulma@0.9.4/css/bulma.min.css">

5. Replace the <app-root> selector with the following HTML snippet in the <body> element:

<div class="container is-fluid">

 <h1 class="title">My Angular Element</h1>

 <copy-button></copy-button>

</div>

In the preceding snippet, we added a <div> element styled with Bulma CSS classes and

the selector of the Angular element that we defined in AppModule.

6. Insert the following JavaScript code after the <div> element:

<script>

 const el = document.getElementsByTagName('copy-button')[0];

 el.setAttribute('data', 'Some data');

 el.addEventListener('copied', () => alert('Copied to clipboard'));

</script>

In the preceding script, we communicate with the component that is hidden behind the

Angular element using vanilla JavaScript. First, we query the global document object to

get a reference to the Angular element. Then, we set the data input property using the

setAttribute method of the element. Finally, we listen for the copied output event by

attaching an event listener using the addEventListener method.

Chapter 09 259

7. Use a web server to serve the ui-elements folder and open the index.html file using your

browser. You should see the following output:

Figure 9.6 – Angular element

If you do not want to install a separate web server, you can use the Live Server VSCode

extension.

8. Click on the Copy button, and you should see the following alert dialog:

Figure 9.7 – Alert dialog

We have managed to use an Angular component from our UI component library as a native HTML

element in a web application that has nothing to do with Angular! The custom element looks and

behaves the same as its Angular counterpart. The only difference is how we set up and configure

the custom element in our web application using plain JavaScript.

Summary
In this project, we built a component UI library that we can use in our Angular applications. Ini-

tially, we learned how to use the Angular CLI to create an Angular library. We scaffolded a new

Angular CLI workspace that contained our Angular library, along with an Angular application

for testing it.

We then used the Angular CDK with the Bulma CSS framework to build the UI components of our

library. We created a card list that can be re-ordered using drag-and-drop features and a button

for copying content to the clipboard.

Building a Component UI Library Using Angular CLI and Angular CDK 260

We also saw how to publish our library in the npm registry to use it in other Angular projects.

Finally, we converted it into custom elements using Angular elements for distribution to non-An-

gular applications.

In the next project, which will be the final project in the book, we will learn how to customize

the Angular CLI to create our generation schematics.

Practice questions
Let’s take a look at a few practice questions:

1. How do we generate a new Angular library using the Angular CLI?

2. How do we make an Angular artifact of our library public?

3. Which CSS selector do we use to target the host element of an Angular component?

4. How do we mark an element as draggable in the Angular CDK?

5. Which method do we use to re-order a draggable list of items?

6. Which Angular CDK directive is responsible for passing data to the clipboard?

7. How do we create a single bundle using the ngx-build-plus library?

8. How do we pass data to and from an Angular element?

Further reading
Here are some links to build upon what we learned in the chapter:

• Angular libraries overview: https://angular.io/guide/libraries

• Creating Angular libraries: https://angular.io/guide/creating-libraries

• Bulma CSS: https://bulma.io

• Angular CDK: https://material.angular.io/cdk/categories

• Drag-and-drop module: https://material.angular.io/cdk/drag-drop/overview

• Clipboard module: https://material.angular.io/cdk/clipboard/overview

• Angular elements overview: https://angular.io/guide/elements

• ngx-build-plus: https://www.npmjs.com/package/ngx-build-plus

https://angular.io/guide/libraries
https://angular.io/guide/creating-libraries
https://bulma.io
https://material.angular.io/cdk/categories
https://material.angular.io/cdk/drag-drop/overview
https://material.angular.io/cdk/clipboard/overview
https://angular.io/guide/elements
https://www.npmjs.com/package/ngx-build-plus

Chapter 09 261

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/AngularProjects3e

https://packt.link/AngularProjects3e

10
Customizing Angular CLI
Commands Using Schematics

The Angular CLI is a powerful tool and the de facto solution for working with Angular applications.

It eliminates most of the boilerplate code and configuration from the developer and allows them

to focus on the fun stuff, which is building awesome Angular applications. Apart from enhancing

the Angular development experience, it can be easily customized to the needs of each developer.

The Angular CLI contains a set of useful commands for building, bundling, and testing Angular

applications. It also provides a collection of special commands, called schematics, that generate

various Angular artifacts such as components, modules, and services. Schematics expose a public

API that developers can use to create their own Angular CLI commands or extend the existing ones.

In this chapter, we will cover the following details about schematics:

• Installing the Schematics CLI

• Creating a Tailwind CSS component

• Creating an HTTP service

Essential background theory and context
Angular schematics are libraries that can be installed using npm. They are used in various situations,

including creating components that share a standard user interface or enforcing conventions

and coding guidelines inside an organization. A schematic can be used as a standalone or as a

companion for an existing Angular library.

Customizing Angular CLI Commands Using Schematics 264

Angular schematics are packaged into collections and reside in the @schematics/angular npm

package. When we use the Angular CLI to run the ng add or the ng build command, it runs the

appropriate schematic from that package. The Angular CLI currently supports the following

types of schematics:

• Add: Installs an Angular library in an Angular CLI workspace using the ng add command.

• Update: Updates an Angular library using the ng update command.

• Generate: Generates Angular artifacts in an Angular CLI workspace using the ng generate

command.

In this project, we will focus on generating schematics, but the same rules apply to all the other

commands.

Project overview
In this project, we will learn how to use the Schematics API to build custom Angular CLI genera-

tion schematics for creating components, services, and directives. First, we will build a schematic

for creating an Angular component that uses the Tailwind CSS framework in its template. Then,

we will create a schematic to generate an Angular service that injects the built-in HTTP client

by default and creates one method for each HTTP request in a CRUD operation. The following

diagram describes an architectural overview of the project:

Figure 10.1 – Project architecture

Chapter 10 265

Build time: 1 hour

Getting started
The following prerequisites and software tools are required to complete this project:

• Angular CLI: A command-line interface for Angular, which you can find at https://

angular.io/cli.

• GitHub material: The code for this chapter can be found in the Chapter10 folder at https://

github.com/PacktPublishing/Angular-Projects-Third-Edition.

Installing the Schematics CLI
The Schematics CLI is a command-line interface that we can use to interact with the Schematics

API. To install it, run the following npm command:

npm install -g @angular-devkit/schematics-cli

The preceding command will install the @angular-devkit/schematics-cli npm package glob-

ally on our system. We can then use the schematics executable to create a new collection for the

schematics:

schematics blank my-schematics

The previous command will generate a schematics project called my-schematics. It contains a

schematic with the same name by default inside the src folder. A schematic includes the fol-

lowing files:

• collection.json: A JSON schema that describes the schematics that belong to the my-

schematics collection.

• my-schematics\index.ts: The main entry point of the schematic.

• my-schematics\index_spec.ts: The unit test file of the main entry point of the schematic.

The JSON schema file of the collection contains one entry for each schematic associated with

that collection:

collection.json

{

 "$schema": "../node_modules/@angular-devkit/schematics/collection-
schema.json",

 "schematics": {

https://angular.io/cli
https://angular.io/cli
https://github.com/PacktPublishing/Angular-Projects-Third-Edition
https://github.com/PacktPublishing/Angular-Projects-Third-Edition

Customizing Angular CLI Commands Using Schematics 266

 "my-schematics": {

 "description": "A blank schematic.",

 "factory": "./my-schematics/index#mySchematics"

 }

 }

}

Each schematic in the collection contains a short description, as indicated by the description

property, and a factory property that points to the main entry point of the schematic using a

special syntax. It contains the filename ./my-schematics/index, followed by the # character, and

the name of the function exported by that file, named mySchematics.

The main entry point of a schematic contains a rule factory method that is exported by default

and returns a Rule object, as described in the index.ts file:

export function mySchematics(_options: any): Rule {

 return (tree: Tree, _context: SchematicContext) => {

 return tree;

 };

}

A schematic does not interact directly with the filesystem. Instead, it creates a virtual filesystem

represented by a Tree object. The virtual filesystem contains a staging area where all transfor-

mations from schematics happen. This area aims to make sure that any transformations that are

not valid will not propagate to the actual filesystem. As soon as the schematic is valid to execute,

the virtual filesystem will apply the changes to the real one. All transformations of a schematic

operate in a SchematicContext object.

In the following section, we will learn how to use the Schematics CLI and create a component

generation schematic.

Creating a Tailwind CSS component
Tailwind is a very popular CSS framework that enforces a utility-first core principle. It contains

classes and styles that can be used in Angular applications to create easily composable user

interfaces.

We will use the Schematics API of the Angular CLI to build a generation schematic for Angular

components. The schematic will generate a new Angular component styled with a Tailwind

container layout.

Chapter 10 267

Let’s see how we can accomplish that:

1. Execute the following command to add a new schematic to our collection:

schematics blank tailwind-container

The preceding command will update the collection.json file to contain a new entry for

the tailwind-container schematic. It will also create a tailwind-container folder in

the src folder of our workspace.

2. Create a schema.json file inside the tailwind-container folder and add the following

content:

{

 "$schema": "http://json-schema.org/schema",

 "$id": "TailwindContainerSchema",

 "title": "My Tailwind Container Schema",

 "type": "object",

 "properties": {

 "name": {

 "description": "The name of the component.",

 "type": "string"

 },

 "path": {

 "type": "string",

 "format": "path",

 "description": "The path to create the component.",

 "visible": false

 }

 },

 "required": ["name"]

}

Each schematic can have a JSON schema file that defines the options available when

running the schematic. Since we want to create a component generation schematic, we

need a name and a path property for our component.

The schematic we will build does not need Tailwind CSS installed by default. How-

ever, the application in which we will use the schematic does require it.

Customizing Angular CLI Commands Using Schematics 268

Each property has associated metadata, such as the type and the description. The name

of the component is required when invoking the schematic, as indicated by the required

array property.

3. Open the collection.json file and set the properties of the tailwind-container sche-

matic as follows:

"tailwind-container": {

 "description": "Generate a Tailwind container component.",

 "factory": "./tailwind-container/index#tailwindContainer",

 "schema": "./tailwind-container/schema.json"

}

In the preceding file, we set a proper description for our schematic. We also add the

schema property, which points to the absolute path of the schema.json file we created

in the previous step.

4. Create a schema.ts file inside the tailwind-container folder and add the following

content:

export interface Schema {

 name: string;

 path: string;

}

The preceding file defines the Schema interface with mapping properties to those described

in the schema.json file.

We have now created all the underlying infrastructure we will use to create our schematic. Let’s

see how to write the actual code that will run our schematic:

1. Create a folder named files inside the tailwind-container folder.

2. Create a file called __name@dasherize__.component.html.template inside the files

folder and add the following contents:

<div class="container mx-auto"></div>

The preceding file denotes the component template that our schematic will generate.

The __name prefix will be replaced by the name of the component that we will pass as an

option in the schematic. The @dasherize__ syntax indicates that the name will be sepa-

rated with dashes and converted in to lowercase if passed in camel case.

Chapter 10 269

3. Create a file called __name@dasherize__.component.ts.template and add the following

contents:

import { Component } from '@angular/core';

@Component({

 selector: 'my-<%= dasherize(name) %>',

 templateUrl: './<%= dasherize(name) %>.component.html'

})

export class My<%= classify(name) %>Component {}

The preceding file contains the TypeScript class of the component that will be generat-

ed. The selector and the templateUrl properties of the @Component decorator are built

using the dasherize method and the name of the component. The class name contains a

different method called classify, which takes the name of the component as a parameter

and converts it in to title case.

4. Open the index.ts file of the tailwind-container folder, set the option type to Schema,

and remove the return statement. The resulting file should be the following:

import { Rule, SchematicContext, Tree } from '@angular-devkit/
schematics';

import { Schema } from './schema';

export function tailwindContainer(_options: Schema): Rule {

 return (_tree: Tree, _context: SchematicContext) => {

 };

}

5. Modify the import statements at the top of the file as follows:

import { normalize, strings } from '@angular-devkit/core';

import { apply, applyTemplates, chain, mergeWith, move, Rule,
SchematicContext, Tree, url } from '@angular-devkit/schematics';

import { Schema } from './schema';

6. Insert the following code into the tailwindContainer function:

_options.path = _options.path ?? normalize('src/app/' + _options.
name as string);

 const templateSource = apply(url('./files'), [

Customizing Angular CLI Commands Using Schematics 270

 applyTemplates({

 classify: strings.classify,

 dasherize: strings.dasherize,

 name: _options.name

 }),

 move(normalize(_options.path as string))

]);

In the preceding code, first, we set the path property of the component in case one is not

passed in the schematic. By default, we create a folder inside the src\app folder with

the same name as the component. We then use the apply method to read the template

files from the files folder and pass the dasherize, classify, and name properties using

the applyTemplates function. Finally, we call the move method to create the generated

component files in the provided path.

7. Add the following statement to the end of the factory function:

return chain([

 mergeWith(templateSource)

]);

In the preceding snippet, we call the chain method to execute our schematic, passing the

result of the mergeWith function, which uses the templateSource variable we created in

the previous step.

Now we can go ahead and test our new component schematic:

1. Execute the following npm command to build the schematic:

npm run build

The preceding command will invoke the TypeScript compiler and transpile the TypeScript

source files into JavaScript. It will generate the JavaScript output files into the same folders,

side by side, as the TypeScript ones.

2. Run the following command to install the schematics library into our global npm cache:

npm link

The preceding command will allow us to install the schematic without querying the

public npm registry.

Chapter 10 271

3. Execute the following Angular CLI command in a folder of your choice outside the work-

space to scaffold a new Angular application with the default options:

ng new my-app --defaults

4. Navigate to the my-app folder and run the following command to install our schematics:

npm link my-schematics

The previous npm command will install the my-schematics library in the current Angular

CLI workspace.

5. Use the generate command of the Angular CLI to create a dashboard component:

ng generate my-schematics:tailwind-container --name=dashboard

In the preceding command, we use our custom schematic by passing the name of our

collection, my-schematics, followed by the specific schematic name, tailwind-container,

separated by a colon. We also pass a name for our component using the --name option

of the schematic.

6. We can verify that our schematic worked correctly by observing the output in the terminal

or opening our component with VS Code:

Figure 10.2 – Generate Angular component

We have successfully created a new schematic to craft custom Angular components according to

our needs. The schematic that we built generates a new Angular component from scratch. The

Angular CLI is so extensible that we can hook into the execution of built-in Angular schematics

and modify them accordingly.

In the following section, we will investigate this by building a schematic for Angular HTTP services.

The npm link command is like running npm install my-schematics,

except that it downloads the npm package from the global npm cache of

our machine and does not add it to the package.json file.

Customizing Angular CLI Commands Using Schematics 272

Creating an HTTP service
We will create a schematic for our schematics library that scaffolds an Angular service. It will

generate a service that imports the built-in HTTP client. It will also contain one method for each

HTTP request involved in a CRUD operation.

The generation schematic we will build will not stand on its own. Instead, we will combine it

with the existing generation schematic of the Angular CLI for services. Thus, we do not need a

separate JSON schema.

Let’s get started by creating the schematic:

1. Execute the following command to add a new schematic to our collection:

schematics blank crud-service

2. Run the following command to install the @schematics/angular npm package:

npm install @schematics/angular

3. Open the collection.json file and modify the crud-service schematic:

"crud-service": {

 "description": "Generate a CRUD HTTP service.",

 "factory": "./crud-service/index#crudService",

 "schema": "../node_modules/@schematics/angular/service/schema.
json"

}

We set a short description for the schematic and add a schema property pointing to the

original schema.json file of Angular services.

4. Create a folder named files inside the crud-service folder of the workspace.

5. Create a file named __name@dasherize__.service.ts.template inside the files folder

and add the following code:

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs';

@Injectable({

 providedIn: 'root'

})

Chapter 10 273

export class <%= classify(name) %>Service {

 constructor(private http: HttpClient) { }

}

The preceding file is the template of the Angular service file that our schematic will gen-

erate. It injects the HttpClient service into the constructor of the class by default.

6. Define a service property that will represent the URL of the API with which we want to

communicate:

apiUrl = '/api';

7. Add the following methods for each HTTP request of a CRUD operation:

create(obj) {

 return this.http.post(this.apiUrl, obj);

}

read() {

 return this.http.get(this.apiUrl);

}

update(obj) {

 return this.http.put(this.apiUrl, obj);

}

delete(id) {

 return this.http.delete(this.apiUrl + id);

}

Creating all the methods beforehand eliminates much of the boilerplate code. The developer that

uses the schematic will only need to modify these methods and add the actual implementation

for each one.

We have almost finished our schematic except for creating the factory function that will invoke

the generation of the service:

1. Open the index.ts file of the crud-service folder and modify the import statements

as follows:

import { normalize, strings } from '@angular-devkit/core';

Customizing Angular CLI Commands Using Schematics 274

import { apply, applyTemplates, chain, externalSchematic,
MergeStrategy, mergeWith, move, Rule, SchematicContext, Tree, url }
from '@angular-devkit/schematics';

2. Rename the tree parameter and remove it from the return statement because we will

not use it. The resulting factory function should look like the following:

export function crudService(_options: any): Rule {

 return (_tree: Tree, _context: SchematicContext) => {};

}

3. Add the following snippet to the crudService function:

const templateSource = apply(url('./files'), [

 applyTemplates({

 ..._options,

 classify: strings.classify,

 dasherize: strings.dasherize

 }),

 move(normalize(_options.path ?? normalize('src/app/')))

]);

The previous snippet looks identical to the one we used for our component schematic.

The main differences are that the default path is the src\app folder and that we pass all

available options using the _options parameter to the schematic.

4. Add the following return statement to the end of the function:

return chain([

 externalSchematic('@schematics/angular', 'service', _options),

 mergeWith(templateSource, MergeStrategy.Overwrite)

]);

Knowing which options will be used to generate the Angular service before-

hand is impossible. Thus, we use the spread operator to pass all available

options to the templateSource method. That is also why the _options

parameter is of type any.

Chapter 10 275

In the preceding statement, we use the externalSchematic method to call the built-in

generation schematic for creating Angular services. Then, we merge the result from exe-

cuting that schematic with our templateSource variable. We also define the strategy of

the merge operation using MergeStrategy.Overwrite so that any changes made by our

schematic will overwrite the default ones.

Our schematic for creating CRUD services is now complete. Let’s use it in our sample application:

1. Execute the following command to build the schematics library:

npm run build

2. Navigate to the my-app folder in which our application resides.

3. Execute the following command to generate an Angular service using our new schematic:

ng generate my-schematics:crud-service --name=customers

We use the generate command of the Angular CLI, passing the name of our schematics

collection again but targeting the crud-service schematic this time.

4. The new Angular service is created in the src\app folder, as indicated by the output in

the terminal window:

Figure 10.3 – Generating an Angular service

Notice that the schematic has generated a unit test file for us automatically. How is this possible?

Recall that we merged our schematic with the built-in generation schematic of the Angular CLI. So,

whatever the default schematic does, it reflects directly on the execution of the custom schematic.

We have just added a new helpful command to our schematics collection. We can generate an

Angular service that interacts with HTTP endpoints. Moreover, we have added the fundamental

methods needed for communicating with the endpoint.

We do not need to link the schematics library again. Our application will be

automatically updated as soon as we make a new build of our schematics.

Customizing Angular CLI Commands Using Schematics 276

Summary
In this project, we used the Schematics API of the Angular CLI to create custom schematics for

our needs. We built a schematic for generating Angular components that contain Tailwind CSS

styles in their templates. We also built another schematic that creates an Angular service to in-

teract with the built-in HTTP client. The service includes all the necessary artifacts for working

with an HTTP CRUD application.

The Angular CLI is a flexible and extensible tool that enhances the development experience dra-

matically. The imagination of each developer is all that limits what can be done with such an

asset in their toolchain. The CLI and the Angular framework allow developers to create excellent

web applications.

As we have learned throughout this book, the popularity of the Angular framework in the web

developer world is so great that it is straightforward to integrate it today with any technology

and create fast and scalable Angular applications. So, we encourage you to get the latest version

of Angular and create amazing applications today.

Exercise
Use the Schematics CLI to create an Angular schematic for generating an Angular directive. The

directive should inject the ElementRef and Renderer2 services from the @angular/core npm

package in to the constructor of the TypeScript class.

You can find the solution in the Chapter10 folder of the exercise branch in the GitHub repository

for this chapter.

Further reading
• Schematics overview: https://angular.io/guide/schematics

• Authoring schematics: https://angular.io/guide/schematics-authoring

• Schematics for libraries: https://angular.io/guide/schematics-for-libraries

• Angular CLI built-in schematics: https://github.com/angular/angular-cli/tree/
master/packages/schematics/angular

You should follow the same approach as we did for the component schematic in the

Creating a Tailwind CSS component section.

https://angular.io/guide/schematics
https://angular.io/guide/schematics-authoring
https://angular.io/guide/schematics-for-libraries
https://github.com/angular/angular-cli/tree/master/packages/schematics/angular
https://github.com/angular/angular-cli/tree/master/packages/schematics/angular

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning Angular, Fourth Edition

Aristeidis Bampakos, Pablo Deeleman

ISBN: 9781803240602

• Use the Angular CLI to scaffold, build, and deploy a new Angular application

• Build components, the basic building blocks of an Angular application

• Discover new Angular Material components such as Google Maps, YouTube, and multi-se-

lect dropdowns

• Understand the different types of templates supported by Angular

• Create HTTP data services to access APIs and provide data to components

• Learn how to build Angular apps without modules in Angular 15.x with standalone APIs

• Improve your debugging and error handling skills during runtime and development

https://www.packtpub.com/product/learning-angular-fourth-edition/9781803240602#_ga=2.150610998.1081947161.1688467512-1539622708.1683286721

Other Books You May Enjoy280

Angular Cookbook, Second Edition

Muhammad Ahsan Ayaz

ISBN: 9781803233444

• Gain a better understanding of how components, services, and directives work in Angular

• Get to grips with creating Progressive Web Apps using Angular from scratch

• Build rich animations and add them to your Angular apps

• Manage your app’s data reactivity using RxJS

• Implement state management for your Angular apps with NgRx

• Optimize the performance of your new and existing web apps

• Write fail-safe unit tests and end-to-end tests for your web apps using Jest and Cypress

• Get familiar with Angular CDK components for designing effective Angular components

https://www.packtpub.com/product/angular-cookbook-second-edition/9781803233444#_ga=2.184684329.1081947161.1688467512-1539622708.1683286721

Other Books You May Enjoy 281

React 18 Design Patterns and Best Practices, Fourth Edition

Carlos Santana Roldán

ISBN: 9781803233109

• Get familiar with the new React 18 and Node 18 features

• Explore TypeScript’s basic and advanced capabilities

• Make components communicate with each other by applying consolidate patterns

• Dive into MonoRepo architecture

• Use server-side rendering to make applications load faster

• Write a comprehensive set of tests to create robust and maintainable code

• Build high-performing applications by styling and optimizing React components

https://www.packtpub.com/product/react-18-design-patterns-and-best-practices-fourth-edition/9781803233109#_ga=2.184684329.1081947161.1688467512-1539622708.1683286721

Other Books You May Enjoy282

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Angular Projects, Third Edition, we’d love to hear your thoughts! If you pur-

chased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803239115
https://packt.link/r/1803239115

Index

A
action 202
administrator portal

building 213-215
features 226
visit data, persisting in store 226-230
visit statistics, displaying 230-235

Angular 1, 2
reactive form 52
template-driven form 52
working with 13-16
WYSIWYG editor library, adding for 114-116

Angular application 170
blog capabilities, adding with Scully 38
components 2-4
creating 10-12
modules 2
routing, configuring for 30
routing, setting up 23-25
view 2

Angular application, building with GitHub
API 171

dashboard, building 172-175
organization membership,

visualizing 185-189
personal information, displaying 175-180

user repositories 180-185
Angular CDK 85, 209, 237
Angular CLI 1, 4, 5, 53

commands, automating with
Nx Console 16-18

component UI library, creating with 239-242
installation, verifying 4
installing 4
prerequisites 4
URL 113

Angular CLI, schematics
Add 264
Generate 264
Update 264

Angular CLI workspace
configuring 123

Angular component
selector property 13
styleUrls property 13
templateUrl property 13

Angular Evergreen extension 8, 9

Angular extensions for VS Code
reference link 5

AngularFire library 150
integrating, in mobile application 150-154

Angular Language Service extension 6

Index284

Angular library
publishing, to npm 254

Angular Material library 85
Angular Material library, component

templates
address-form 209
dashboard 209
navigation 209
table 209
tree 209

Angular project
overview 9
software tools 10

Angular schematics 263, 264
Angular Snippets extension 7, 8
Angular tooling ecosystem

Angular Evergreen extension 8, 9
Angular Language Service extension 6
Angular Snippets extension 7, 8
exploring 5
Material Icon Theme extension 9
Nx Console extension 5

Angular Universal 169, 189
integrating 189-192

application, prerendering
advantages 170

application state
configuring 216-219
managing, with NgRx 216

articles module 34

B
backend 201
Backend-as-a-Service (BaaS) platform 136

blog posts
displaying, on home page 43-49

Bootstrap CSS library 170
using 25

Bulma 237

C
Capacitor 135

interacting, with camera 143-145
used, for capturing photos 141

CesiumJS 136, 155
configuring 155-160

Clarity design system 52
installing, in Angular application 54, 55

Cloud Firestore 136
communication mechanism, between

Angular and Electron 122
Angular CLI workspace, configuring 123
fs library, used for interacting with

filesystem 127-129
interaction, with WYSIWYG editor 124-127

component UI library 237
Component UI project

Angular library, publishing to npm 254, 255
clipboard, interacting with 250-254
components, using as Angular

elements 256-259
draggable card list, building 242
library, creating with Angular CLI 239-242
overview 238

concurrently library 120
content

prerendering, during build 192-195
Content Delivery Network (CDN) 22
create-nx-workspace 204

Index 285

D
data

visualizing, with graphs 226
dependency injection (DI) 3
desktop application

packaging 129
draggable card list, Component UI project

building 242
card data, displaying 242-247
drag-and-drop functionality,

adding 247-249
dry run 208

E
effect 203
Electron 111

integrating, in workspace 116-122
ipcMain interface 112
ipcRenderer interface 112

Electron application, processes
main 112
renderer 112

electron-packager library 131

F
feature modules 30
Firebase 105

data storing 146
Firebase Hosting

application, deploying with 105-108
Firebase project

creating 147-150
Firebase Storage 136

First Contentful Paint (FCP) 170
forks 180
frontend 201

G
GitHub API 169, 170
Google Material Design 9
graphs

data, visualizing with 226

H
home page

blog posts, displaying on 43-49
HTTP interceptor 194
HTTP service

creating 272-275

I
injectors 3
interpolation 16
Inter-Process Communication (IPC) 112
Ionic 135
issues, reporting in issue-tracking system

issue details, validating 69-71
new issue, displaying in list 65-68
reactive forms, setting up in Angular

application 61
report issue form, creating 62-65

issue-tracking system
architectural overview 53
Clarity installation, in Angular

application 54, 55
creating 54
issue, resolving 72-76
issues, visualizing in data grid 57-60

Index286

new issues, reporting 61
overview 52
overview of issues, displaying 55
pending issues, fetching 55, 56
prerequisites 53
suggestions for new issues, enabling 77-79

J
Jamstack 21, 22

performance 22
scaling 22
security 22

JavaScript framework 1

L
lazy loading 36
Long-Term Support (LTS) 4

M
Material Design principles 85
Material Icon Theme extension 9
memoization 203
mobile photo geotagging application

AngularFire library, integrating 150-154
Capacitor, interacting with 143-146
creating, with Ionic 138
Firebase project, creating 147-150
main menu, building 139, 140
photos capturing, Capacitor used 141
photos, displaying on viewer 160-165
photos, previewing with CesiumJS 154
project overview 136
required software tools 138
scaffolding 138, 139
user interface, creating 141-143

monorepo application
creating, with Nx 204-206

monorepo architecture 201

N
ng2-charts library 230
NgRx 201

action 202
effect 203
reducer 202
selector 203
store 202
used, for managing application state 216

ngx-build-plus library 238
ngx-electronyzer library 123
ngx-wig 112
Node.js 4, 111

URL 4
npm 4
npm package registry 254
Nx 201, 202

features 202
used, for creating monorepo

application 204-206
Nx CLI 204
Nx Cloud 202
Nx Console 5, 204

Angular CLI commands, automating
with 16-18

O
observable 44
OpenWeather API

setting up 83
URL 84

Index 287

P
package.json file 192
personal blog

articles page, adding 34-38
basic layout, creating 25-30
contact page, creating 30-34
page, initializing 40-43
posts, displaying on home page 43-48
project overview 22
software tools, used for completing 23

points of interest (POIs) 201
portfolio application, for GitHub user profile

prerequisites 171
project overview 170

Progressive Web Apps (PWAs) 81
Angular application, setting up 85, 86
deploying, with Firebase Hosting 105-109
offline mode, enabling with service

worker 95-99
OpenWeather API, communicating

with 87-89
OpenWeather API, setting up 83
project overview 83
required software tools 83
update strategy, implementing 99-104
weather data, displaying 84
weather information, displaying

for city 90-95
property binding 45

Q
Quick Open feature 204

R
reactive form 52

setting up, in Angular application 61

reducer 202
required validator 69
Roboto font 86
routing

configuring, for Angular application 30
setting up, in Angular application 23-25

RxJS library 202

S
schematics 263

generating 264, 265
Schematics CLI

installing 265, 266
Scully 21, 22

installing 38-40
used, for adding blog capabilities 38

Search Engine Optimization (SEO) 169
capabilities, enhancing 195-198

selector 203
semantic versioning 255
Server-Side Rendering (SSR) 169
Seti 9
Single-Page Application (SPA) 21, 169
single responsibility principle 3
Software as a Service (SaaS) 22
sources 180
spread operator 274
store 202

T
Tailwind CSS component

creating 266-271
template-driven form 52
TransferState 170, 195

Index288

transpilation 118
tslib library 118
ts-loader library 119
TypeScript 1
TypeScript transpiler 118

U
ui-controls library

publishing, to npm 254, 255
user-specific portals

creating 207

V
visitor portal

building 207-212
interaction, with store 220-225

Visual Studio Code 1
URL 113

VS Code Marketplace 5

W
webpack 118
Webpack CLI 118
wildcard route 38
WYSIWYG application, packaging 129

Electron bundler, using 131-133
webpack, configuring for

production 129-131
WYSIWYG editor 111

adding, for Angular 114-116
project overview 112, 113

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239118

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239118

