

DevOps

DevOps

by Emily Freeman
foreword by Nicole Forsgren

DevOps For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2017 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019945514

ISBN: 978-1-119-55222-2

ISBN 978-1-119-55223-9 (ebk); ISBN 978-1-119-55224-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Foreword . xvii

Introduction . 1

Part 1: Demystifying DevOps . 5
CHAPTER 1: Introducing DevOps . 7
CHAPTER 2: Designing Your Organization . 15
CHAPTER 3: Identifying Waste . 31
CHAPTER 4:	 Persuading	Colleagues	to Try	DevOps . 43
CHAPTER 5: Measuring Your Organization . 59

Part 2: Establishing a Pipeline . 69
CHAPTER 6: Embracing the New Development Life Cycle . 71
CHAPTER 7: Planning Ahead . 79
CHAPTER 8: Designing Features from a DevOps Perspective . 95
CHAPTER 9: Developing Code . 111
CHAPTER 10:	Automating	Tests	Prior	to	Release . 129
CHAPTER 11: Deploying a Product . 139

Part 3: Connecting the Circuit . 159
CHAPTER 12:	Implementing	Rapid	Iteration . 161
CHAPTER 13: Creating Feedback Loops around the Customer 175
CHAPTER 14:	DevOps	Isn’t	a	Team	(Except	When	It	Is) . 189
CHAPTER 15: Empowering Engineers . 205

Part 4: Practicing Kaizen, the Art
of Continuous Improvement . 217
CHAPTER 16: Embracing Failure Successfully . 219
CHAPTER 17: Preparing for Incidents . 229
CHAPTER 18:	Conducting	Post-Incident	Reviews . 251

Part 5: Tooling Your DevOps Practice . 261
CHAPTER 19:	Adopting	New	Tools . 263
CHAPTER 20: Managing Distributed Systems . 275
CHAPTER 21: Migrating to the Cloud . 295

DevOps

Part 6: The Part of Tens . 307
CHAPTER 22:	Top	Ten	(Plus)	Reasons	That	DevOps	Matters . 309
CHAPTER 23:	Top	Ten	DevOps	Pitfalls . 315

Index . 323

Table of Contents vii

Table of Contents
FOREWORD . xvii

INTRODUCTION . 1
About	This	Book .1
Foolish Assumptions .2
Icons	Used	in	This	Book .2
Beyond	the	Book .3
Where to Go from Here .3

PART 1: DEMYSTIFYING DEVOPS . 5

CHAPTER 1: Introducing DevOps . 7
What Is DevOps? .7

DevOps evolved from Agile .8
DevOps focuses on people .8
Company culture is the foundation of DevOps 9
You learn by observing your process and collecting data 9
Persuasion is key to DevOps adoption .10
Small, incremental changes are priceless .10

Benefitting	from	DevOps .10
Keeping CALMS .11
Solving	the	problem	of	conflicting	interests 13

CHAPTER 2: Designing Your Organization . 15
Assessing Your Culture’s Health .16
Integrating DevOps .18
Establishing DevOps Values .18

Encourage teamwork .19
Reduce	silos .19
Practice systems thinking .20
Embrace failure .20
Communicate, communicate, communicate20
Accept feedback .21
Automate	processes	(when	appropriate) .21

Modeling Company Culture .22
Avoiding the worst of tech culture .23
Crafting your vision .25

Incentivizing Your Values .26
Evaluations .27
Rewards .28

viii DevOps For Dummies

CHAPTER 3: Identifying Waste . 31
Digging	into	the	Seven	Types	of	Waste .32

Unnecessary process .32
Waiting .33
Motion .33
Costs of defects .33
Overproduction .33
Transportation .34
Inventory .34
Understanding waste in DevOps .34

Rooting	Out	Waste .36
Discovering bottlenecks .36
Focusing on impact .39

CHAPTER 4: Persuading Colleagues to Try DevOps 43
Fearing Change .44
Persuading	Those	around	You	to	Shift	to	DevOps 45

Earning executive support .48
Creating a groundswell in the engineering group 49
Managing the middle managers .50
Persuading the stubborn .50

Understanding the Adoption Curve .51
Pushing for change .54
Responding	to	pushback .55
Navigating the chasm .56
Asking “Why?” .56

CHAPTER 5: Measuring Your Organization . 59
Measuring Your Progress .59

Quantifying DevOps .61
Collecting the data .64
Developing internal case studies .66

PART 2: ESTABLISHING A PIPELINE . 69

CHAPTER 6: Embracing the New Development Life Cycle 71
Inviting	Everyone	to	the	Table .72
Changing Processes: From a Line to a Circuit .73
Shifting	Ops	“Left”:	Thinking	about Infrastructure 77

Shifting deployments left, too .78
Mimicking production through staging .78

Table of Contents ix

CHAPTER 7: Planning Ahead . 79
Moving beyond the Agile Model .80
Forecasting Challenges .81

Identifying	project	challenges	and constraints 82
Gathering	Requirements .84
Designing an MVP .85

Discovering the problem for your MVP to solve 86
Identifying your customer .86
Scrutinizing the competition .87
Prioritizing features .87
Designing the user experience .88
Testing	your	hypothesis .89
To	beta	or	not	to	beta? .90

Determining Your Customer by Designing a Persona 91
What is a persona? .91
Designing a persona .92

CHAPTER 8: Designing Features from a DevOps Perspective . . . 95
Constructing Your Design . .96
Designing for DevOps .99

Designing software for change .99
Improving software constantly .100
Documenting your software .101

Architecting	Code	for	the	Six	Capabilities of	DevOps 102
Maintainability .103
Scalability .103
Security .105
Usability .106
Reliability .107
Flexibility .108

Documenting Design Decisions .108
Avoiding Architecture Pitfalls .109

CHAPTER 9: Developing Code . 111
Communicating about Code .111
Engineering for Error .114
Writing Maintainable Code .114

Testing	code .115
Debugging code .115
Logging code .116
Writing immutable code .117
Creating readable code .117

x DevOps For Dummies

Programming Patterns .117
Object-oriented programming .117
Functional programming .118

Choosing a Language .119
Avoiding Anti-Patterns .119
DevOpsing Development .121

Writing clean code .121
Understanding the business .122
Listening to others .122
Focusing on the right things .122
Getting comfortable with being uncomfortable 123

Establishing Good Practices .124
Organizing your source code .124
Writing tests .124
Documenting features .125
Having peers review your code .126

CHAPTER 10: Automating Tests Prior to Release 129
Testing	Isn’t	Optional .129
Automating	Your	Testing .130
Testing	in	Different	Environments .131

Local environment .132
Development environment .133
Testing	environment .133
Staging environment .134
Production environment .135

Going	beyond	the	Unit	Test .135
Unit tests: It’s alive! .136
Integration tests: Do all the pieces work together? 136
Regression	tests:	After	changes,	does	the	
code behave the same? .137
Visual tests: Does everything look the same? 137
Performance testing .137

Continuous	Testing .138

CHAPTER 11: Deploying a Product . 139
Releasing	Code .139
Integrating and Delivering Continuously .140

Benefitting	from	CI/CD .141
Implementing	CI/CD .141

Managing Deployments .143
Automating the right way .143
Versioning .144

Table of Contents xi

Mitigating Failure .146
Rolling	back .146
Fixing forward .147

Democratizing Deployments .147
Choosing a Deployment Style .148

Blue-green:	Not	just	for	lakes .149
Schrodinger’s	canary:	The	deploy’s	not	dead	(or	is	it?) 150
Rolling	the	dice .152
Toggling	with	feature	flags .153

Monitoring Your Systems .154
Understanding telemetry .154
Recording	behavior .155
SLAs, SLIs, and SLOs .156

PART 3: CONNECTING THE CIRCUIT . 159

CHAPTER 12: Implementing Rapid Iteration . 161
Prioritizing the Important .162

Important and urgent .163
Important, not urgent .164
Urgent, not important .166
Neither important nor urgent .167

Increasing Velocity .167
Improving Performance .171

Eliminating perfection .172
Designing small teams .172
Tracking	your	work .173
Reducing	friction .173
Humanizing alerting .174

CHAPTER 13: Creating Feedback Loops around
the Customer . 175
Creating a Customer Feedback Process .176
Creating a Feedback Loop .177

Receive .177
Analyze .178
Communicate .179
Change .179

Collecting Feedback .180
Satisfaction surveys .180
Case studies .181
Dogfooding .182

Asking for Continual Feedback .184
Net	promoter	score	(NPS) .185
Finding a rhythm .185

xii DevOps For Dummies

CHAPTER 14: DevOps Isn’t a Team (Except When It Is) 189
Forming	DevOps	Teams .189

Aligning functional teams .190
Dedicating a DevOps team .191
Creating cross-functional product teams .192

Interviewing	Quickly	(But	Not	Too	Quickly) .194
Deciding	on	a	Job	Title .195
Recruiting	Never	Ends .197

Finding the right folks .198
Passing along great candidates .199

Evaluating	Technical	Ability .199
Whiteboarding revisited .199
Offering	take-home	tests .200
Reviewing	code .201

Firing Fast .202
The	jerk .202
The	martyr .203
The	underperformer .204

CHAPTER 15: Empowering Engineers . 205
Scaling	Engineering	Teams	with	DevOps .205

Three	stages	of	a	company .206
Motivating Engineers .210

Researching	motivation .211
DevOpsing motivation .212
Avoiding reliance on extrinsic rewards .212
Autonomy .213
Mastery .213
Purpose .214
Making work fun .214
Allowing people to choose their teams .215

Measuring Motivation .215

PART 4: PRACTICING KAIZEN, THE ART
OF CONTINUOUS IMPROVEMENT . 217

CHAPTER 16: Embracing Failure Successfully . 219
Failing	Fast	in	Tech .220

Failing safely .220
Containing failure .221
Accepting	human	error	(and	keeping	it	blameless) 222

Failing Well .222
Maintaining a growth mindset . .223
Creating the freedom to fail .224

Table of Contents xiii

CHAPTER 17: Preparing for Incidents . 229
Combating	“Human	Error”	with Automation .230

Focusing on systems: Automating realistically 231
Using automation tools to avoid code integration problems 233
Handling deployments and infrastructure 234
Limiting overengineering .235

Humanizing	On-Call	Rotation .237
When on-call duties become inhumane .237
Humane on-call expectations .238

Managing Incidents .239
Making consistency a goal .240
Adopting standardized processes .241
Establishing a realistic budget .242
Making it easy to respond to incidents .243
Responding	to	an	unplanned	disruption .244

Empirically Measuring Progress .248
Mean	time	to	repair	(MTTR) .248
Mean	time	between	failures	(MTBF) .248
Cost	per	incident	(CPI) .249

CHAPTER 18: Conducting Post-Incident Reviews 251
Going	beyond	Root	Cause	Analysis .252
Stepping through an Incident .253
Succeeding	at	Post-Incident	Reviews .254

Scheduling it immediately .254
Including everyone .255
Keeping it blameless .255
Reviewing	the	timeline .255
Asking	tough	questions .256
Acknowledging hindsight bias .258
Taking	notes .258
Making a plan .259

PART 5: TOOLING YOUR DEVOPS PRACTICE 261

CHAPTER 19: Adopting New Tools . 263
Integrating with Open Source Software .264

Opening community innovation .264
Licensing open source .265
Deciding on open source .266

Transitioning	to	New	Languages .268
Compiling and interpreting languages .268
Parallelizing and multithreading .269

xiv DevOps For Dummies

Programming functionally .270
Managing memory .272
Choosing languages wisely .272

CHAPTER 20: Managing Distributed Systems . 275
Working with Monoliths and Microservices .276

Choosing	a	monolithic	architecture	first .277
Evolving to microservices .278

Designing Great APIs .280
What’s in an API .280
Focusing on consistent design .281

Containers:	Much	More	than	Virtual Machines 284
Understanding containers and images .285
Deploying microservices to containers .285
Comparing	orchestrators:	Harmonize the	hive 287
Configuring	containers .289
Monitoring containers: Keeping them alive until
you kill them .290
Securing	containers:	These	boxes	need	a	lock 292

CHAPTER 21: Migrating to the Cloud . 295
Automating DevOps in the Cloud .295

Taking	your	DevOps	culture	to	the	cloud .296
Learning through adoption .296
Benefitting	from	cloud	services .297

Cumulus,	Cirrus,	and	Steel:	Types	of	Clouds .298
Public cloud .298
Private cloud .299
Hybrid cloud .299

Cloud as a Service .300
Infrastructure as a Service .300
Platform as a Service .301
Software as a Service .301

Choosing	the	Best	Cloud	Service	Provider .302
Amazon	Web	Services	(AWS) .303
Microsoft Azure .303
Google	Cloud	Platform	(GCP) .303

Finding	Tools	and	Services	in	the	Cloud .304

PART 6: THE PART OF TENS . 307

CHAPTER 22: Top Ten (Plus) Reasons That DevOps Matters 309
Accepting Constant Change .309
Embracing the Cloud .310
Hiring	the	Best .310

Table of Contents xv

Staying Competitive .311
Solving Human Problems .311
Challenging Employees .312
Bridging	Gaps .312
Failing Well .313
Continuously Improving .313
Automating	Toil .314
Accelerating Delivery .314

CHAPTER 23: Top Ten DevOps Pitfalls . 315
Deprioritizing Culture .315
Leaving	Others	Behind .316
Forgetting to Align Incentives .317
Keeping Quiet .317
Forgetting to Measure .318
Micromanaging .318
Changing	Too	Much,	Too	Fast .319
Choosing	Tools	Poorly .320
Fearing Failure .320
Being	Too	Rigid .321

INDEX . 323

Foreword xvii

Foreword

W

hat is DevOps?

This question is one of the most common questions I get in my work — and I hear
it from experts and novices alike. I’ve worked in technology for almost two decades
and have been a DevOps researcher, strategist, and expert who has guided
 hundreds of technology leaders and engineers to make their software better,
allowing them to deliver value to their customers faster and safer. Yet, many of us
in this field still hear this question.

Unfortunately, a single, universally accepted definition of DevOps doesn’t exist —
much to everyone’s chagrin. But if we’re honest, it probably doesn’t matter; after
all, having one clear definition codified in the Agile Manifesto didn’t help the Agile
community much, either.

With DevOps For Dummies, Emily Freeman has written a book about DevOps that
you can read from cover to cover as a book, or use as a reference, or jump around
in for a choose-your-own adventure exploration through DevOps concepts. It’s a
brilliant way to structure the content because DevOps covers some development,
some operations, and a whole lot of culture — plus a whole lot more. In this book,
Emily has done a great job of digging into important concepts for teams imple-
menting this new way of work, whether you’re greenfield or brownfield or have
no idea of what the words greenfield or brownfield mean.

Emily brings clear eyes and a fresh voice to the topic, crafting insightful narra-
tives and breaking down concepts into clear writing. By coming into technology
mid-career, she brings an understanding and comprehension that others who
were “born” into the tech sometimes take for granted. Her writing communicates
these (sometimes hidden) details effortlessly, walking the reader through the
landscape with ease and wit.

Some of my favorite sections are those on developing code so that it’s clear and
maintainable (check out Chapter 9, especially the part about peer review) and
empowering teams to help you scale. I have too many favorite chapters and sec-
tions to list, so I urge you to find your own favorites and not to run out of sticky
notes and highlighters!

xviii DevOps For Dummies

I wish you the best of luck on your DevOps journey. Remember that where you
start doesn’t matter; what matters is that you keep going and keep improving.

— Nicole Forsgren, Research & Strategy at Google Cloud and co-founder
and CEO of DevOps Research and Assessment (DORA)

Introduction 1

Introduction

I believe that the greatest challenges facing the tech industry aren’t technical;
they’re human. Think about it: Hardware and computing are more powerful
than they ever have been. Automated tools remove the drudgery of rote work.

Robust frameworks and libraries build shortcuts and functionality into applica-
tions for you. You can do more, faster, than ever before.

The problem that organizations face now is that of the social dynamics of humans
on engineering teams. Specifically, those dynamics are the natural friction that
arises from misaligned incentives and poorly communicated goals; the frustration
in attempting to explain a concept or approach to someone who has a different
expertise than you; and the fear people feel when they think about looking stupid
in front of their colleagues or being automated out of a job.

DevOps addresses all these issues, and this book explains how.

About This Book
I’ve designed this book to be a resource that someone who has never heard of
DevOps — or doesn’t know what it actually means — can walk through to gain a
broad understanding of DevOps and how it fits into the software development life
cycle (SDLC) — that is, the entire process of how software is developed and
released. Although SDLC has traditionally used the word development, I prefer
delivery because it removes the possible elevation of developers over other
disciplines.

I’ve ordered the information in this book to be both approachable chronologically
as well as selectively. You can read it straight through and allow each section to
build on the last or you can hop around to your heart’s content.

I use the following conventions throughout the book:

 » Web addresses and programming code appear in monofont. If you’re reading
a digital version of this book on a device connected to the Internet, you can
click or tap the web address to visit that website, like this: www.dummies.com.

http://www.dummies.com

2 DevOps For Dummies

 » New terms that I define appear in italics.

 » This book uses they (and its derivatives) as a gender-neutral, singular pronoun
throughout.

Foolish Assumptions
When I first started writing this book, I struggled to identify my main audience.
Developers? Operations people? Executives? It was important to me to make
DevOps approachable and real. Too often, people talk about DevOps only in the
context of greenfield projects and companies with nearly endless resources. I
wanted to pull back the shine and get to the substance of DevOps as a discipline —
one that helps engineers do their job better and faster. I also wanted to ensure that
I met the reader where they were and spoke to people who had never heard of
DevOps as much as I spoke to the engineers who are well on their way to advanced
DevOps practices. In the end, I focused on anyone who needs to deliver business
priorities as much as retain engineering talent. They need realistic solutions to
real-world problems. They see the benefits of automation but also need to ensure
security and compliance with regulatory bodies.

Regardless of whether you fit that exact profile, I hope that you can glean what
you need from this book and that it may play a small part in your success as you
evolve and improve your engineering practice.

Icons Used in This Book
The Tip icon marks tips (duh!) and shortcuts that you can use to make imple-
menting DevOps practices easier.

Remember icons mark the information that’s especially important to know. To
siphon off the most important information in each chapter, just skim through
these icons.

The Technical Stuff icon marks information of a highly technical nature that you
can normally skip over.

Introduction 3

The Warning icon tells you to watch out! It marks important information that may
save you headaches and unnecessary conflict.

Beyond the Book
This section describes where readers can find book content that exists outside the
book itself. A For Dummies technical book may include the following, although
only rarely does a book include all these items:

 » Cheat Sheet: You can find the Cheat Sheet for this book by searching its title
at www.dummies.com.

 » Updates: If this book has any updates, you can find them on this book’s page
at www.dummies.com.

Where to Go from Here
I’ve written this book in such a way that you can skip around if you so choose. If
you’re a developer, you may find that you know most of the information in Part 2,
which covers the development pipeline (though I suggest skimming it to catch a
few new ideas!). If you’re an operations engineer, you may feel more confident in
some of the more infrastructure-focused chapters.

A DevOps transformation is no small feat, nor is it an overnight process. It will
take hours of planning, honest conversations, brainstorming, reflection, and
technical changes. Don’t rush through the process. Simply learning and thinking
about your everyday work from a different perspective is a healthy way of waking
up your mind. The journey is just as valuable as the outcome.

http://www.dummies.com
http://www.dummies.com

1Demystifying
DevOps

IN THIS PART . . .

Understand DevOps values and priorities, which focus
on people, process, and technology.

Design your organization’s culture with DevOps in mind
through encouraging teamwork, reducing silos, and
embracing failure.

Identify waste and locate bottlenecks along your
software development life cycle to locate the easiest
(and most immediate) wins for your DevOps
transformation.

Persuade your colleagues, from executives to engineers,
of the benefits of DevOps for an engineering organization.

Measure your work and track your DevOps successes,
allowing everyone to see the incremental improvements.

CHAPTER 1 Introducing DevOps 7

Chapter 1
Introducing DevOps

DevOps has transformed the way engineering teams collaborate to create
and ship software. It’s a broad and encompassing philosophy that inspires
diverse implementations across the industry.

I define DevOps as an engineering culture of collaboration, ownership, and
learning with the purpose of accelerating the software development life cycle
from ideation to production. DevOps can enable you to reduce interpersonal
friction, eliminate bottlenecks, improve collaboration, increase job satisfaction
through engineer empowerment, and accelerate team productivity. DevOps is no
silver bullet, but it can have massive impact on your organization and your
products.

In this chapter, I emphasize the importance of culture over process and tooling,
discuss the principles and values of DevOps, and dive into how your organization
will benefit from a DevOps approach.

What Is DevOps?
This book has no exact DevOps prescription for you — because none exists. DevOps
is a philosophy, one that that prioritizes people over process and process over
tooling. DevOps builds a culture of trust, collaboration, and continuous
improvement. As a culture, it views the development process in a holistic way,

IN THIS CHAPTER

 » Surveying the main tenets of DevOps

 » Understanding DevOps values

 » Seeing how your organization
benefits

8 PART 1 Demystifying DevOps

taking into account everyone involved: developers, testers, operations folks,
security, and infrastructure engineers. DevOps doesn’t put any one of these groups
above the others, nor does it rank the importance of their work. Instead, a DevOps
company treats the entire team of engineers as critical to ensuring that the
customer has the best experience possible. (You can find more about company
culture in Chapter 2.)

DevOps evolved from Agile
In 2001, 17 software engineers met and published the “Manifesto for Agile
Software Development,” which spelled out the 12 principles of Agile project
management (see the sidebar “The origins of Agile” in Chapter 7 for more details).
This new workflow was a response to the frustration and inflexibility of teams
working in a waterfall (linear) process. Working within Agile principles, engineers
aren’t required to adhere to original requirements or follow a linear development
workflow in which each team hands off work to the next. Instead, they’re capable
of adapting to the ever-changing needs of the business or the market, and
sometimes even the changing technology and tools.

Although Agile revolutionized software development in many ways, it failed to
address the conflict between developers and operations specialists. Silos still
developed around technical skill sets and specialties, and developers still handed
off code to operations folks to deploy and support.

In 2008, Andrew Clay Shafer talked to Patrick Debois about his frustrations with
the constant conflict between developers and operations folks. Together, they
launched the first DevOpsDays event in Belgium to create a better — and more
agile — way of approaching software development. This evolution of Agile took
hold, and DevOps has since enabled companies around the globe to produce better
software faster (and usually cheaper). DevOps is not a fad. It’s a widely accepted
engineering philosophy.

DevOps focuses on people
Anyone who says that DevOps is all about tooling wants to sell you something.
Above all else, DevOps is a philosophy that focuses on engineers and how they can
better work together to produce great software. You could spend millions on every
DevOps tool in the world and still be no closer to DevOps nirvana. Instead, focus
on your most important engineering asset: engineers. Happy engineers make
great software. How do you make happy engineers? Well, you create a collaborative
work environment in which mutual respect, shared knowledge, and
acknowledgement of hard work can thrive. See Chapters 2 and 15 for more about
how to create teams of happy, empowered engineers who embody a growth
mindset and take pride in their work.

CHAPTER 1 Introducing DevOps 9

Company culture is the foundation
of DevOps
Your company has a culture, even if it has been left to develop through inertia.
That culture has more influence on your job satisfaction, productivity, and team
velocity than you probably realize.

Company culture is best described as the unspoken expectations, behavior, and
values of an organization. Culture is what tells your employees whether company
leadership is open to new ideas. It’s what informs an employee’s decision as to
whether to come forward with a problem or to sweep it under the rug.

Culture is something to be designed and refined, not something to leave to chance.
Though the actual definition varies from company to company and person to
person, DevOps is a cultural approach to engineering at its core.

A toxic company culture will kill your DevOps journey before it even starts. Even
if your engineering team adopts a DevOps mindset, the attitudes and challenges of
the larger company will bleed into your environment.

With DevOps, you avoid blame, grow trust, and focus on the customer. You give
your engineers autonomy and empower them to do what they do best: engineer
solutions. As you begin to implement DevOps, you give your engineers the time
and space to adjust to it, allowing them the opportunities to get to know each
other better and build rapport with engineers with different specialties. Also, you
measure progress and reward achievements. Never blame individuals for failures.
Instead, the team should continuously improve together, and achievements
should be celebrated and rewarded.

You learn by observing your process
and collecting data
Observing your workflow without expectation is a powerful technique to use to see
the successes and challenges of your workflow realistically. This observation is
the only way to find the correct solution to the areas and issues that create
bottlenecks in your processes. Just as with software, slapping some Kubernetes
(or other new tool) on a problem doesn’t necessarily fix it. You have to know
where the problems are before you go about fixing them. As you continue, you
collect data — not to measure success or failure but to track the team’s
performance. You determine what works, what doesn’t work, and what to try next
time. In Chapter 3, you learn how to identify bottlenecks in your development
process.

10 PART 1 Demystifying DevOps

Persuasion is key to DevOps adoption
Selling the idea of DevOps to your leaders, peers, and employees isn’t easy. The
process isn’t always intuitive to engineers, either. Shouldn’t a great idea simply
sell itself? If only it were that easy. However, a key concept to always keep in mind
as you implement DevOps is that it emphasizes people. The so-called “soft skills”
of communication and collaboration are central to your DevOps transformation.
Persuading other folks on your team and within your company to adopt DevOps
requires practicing good communication skills. Early conversations that you have
with colleagues about DevOps can set you up for success down the road —
especially when you hit an unexpected speed bump.

Small, incremental changes are priceless
The aspect of DevOps that emphasizes making changes in small, incremental
ways has its roots in lean manufacturing, which embraces accelerated feedback,
continuous improvement, and swifter time to market. When I talk about DevOps
transformations, I like to use water as a metaphor. Water is one of the world’s
most powerful elements. Unless people are watching the flood waters rise in front
of them, they think of it as relatively harmless. The Colorado River carved the
Grand Canyon. Slowly, over millions of years, water cut through stone to expose
nearly two billion years of soil and rock.

You can be like water. Be the slow, relentless change in your organization. Here’s
that famous quote from a Bruce Lee interview to inspire you (https://www.
youtube.com/watch?v=cJMwBwFj5nQ):

Be formless, shapeless, like water. Now you put water into a cup, it becomes the
cup. You put water into a bottle, it becomes the bottle. You put it in a teapot, it
becomes the teapot. Now, water can flow or it can crash. Be water, my friend.

Making incremental changes means, for example, that you find a problem and you
fix that problem. Then you fix the next one. You don’t take on too much too fast
and you don’t pick every battle to fight. You understand that some fights aren’t
worth the energy or social capital that they can cost you.

Benefitting from DevOps
This entire book dives into how you and your team can benefit from implementing
DevOps in your organization. Beyond the human component, which enables faster
delivery, improved functionality, and fearless innovation, DevOps has technical
benefits.

https://www.youtube.com/watch?v=cJMwBwFj5nQ
https://www.youtube.com/watch?v=cJMwBwFj5nQ

CHAPTER 1 Introducing DevOps 11

Continuous integration and continuous delivery (CI/CD) are closely aligned with
DevOps. Continuous software delivery removes many of the bottlenecks often
seen in teams that deploy infrequently. If you create automated pipelines that
pass new code through a robust test suite, you can feel more confident in your
deployments. (I talk more about CI/CD in Chapter 11.)

DevOps also enables faster recovery from incidents. You will inevitably experience
a customer-impacting service disruption at some point, no matter how well tested
your code is. But teams who work in a DevOps methodology find resolutions faster
through better coordination, more open accessibility, shared learning, and better
performance monitoring.

Engineering is not the only side of your organization that benefits from DevOps.
The business side of your organization will see fewer customer complaints, faster
delivery of new features, and improved reliability of existing services.

DevOps enables you to do more with the resources you already have. It accepts the
reality of constraints and shows you how to succeed within your unique
environment.

Keeping CALMS
As you begin to get familiar with DevOps, you’ll likely come across a model called
CALMS. It stands for culture, automation, lean, measurement, and sharing, and
it’s a helpful framework through which to understand the DevOps principles and
evaluate your DevOps success as you apply those principles throughout your
organization.

Culture
Your culture needs to be collaborative and customer centered, which means your
engineers understand that the purpose of technology is to make your customers’
lives easier. If customers don’t find value in the product, the product will fail.
Technology is secondary to this goal. The best DevOps cultures are extremely
collaborative and cross-functional, with people from different teams and varying
skill sets working together to engineer a better product. Listening is a major
component of communication, and an easy litmus test of culture is to listen to
conversations. Are people constantly talking over each other? If so, I bet you have
opportunities for major cultural improvements ahead.

Automation
Rote tasks are an engineer’s worst nightmare, not only because they’re, well, boring,
but because they’re inefficient. Engineers speak computer so that they can make
computers do the jobs that people don’t want to do. Usually the lowest-hanging fruit

12 PART 1 Demystifying DevOps

for improvements in automation are code builds, automated testing, deployments,
and infrastructure provisioning. I dig deeper into identifying low-hanging fruit in
Chapter 3.

Lean
Lean doesn’t refer just to lean manufacturing. It applies more widely to the nature
of DevOps teams, which are agile and scrappy. Lean teams eschew low-impact
activity because it doesn’t provide value to the customer. Another aspect of lean is
how it keeps to the goal of continuous improvement. Everyone embraces a growth
mindset and earnestly wants to improve.

Measurement
Data is critical to DevOps. Measuring progress through data will inform nearly
every aspect of your organization’s transformation. Keep in mind, though, that
progress should never be tied to individual performance. Think of it as tracking
your progress along an endless marathon rather than as a way of knowing when
you’re “done.” You’re never done. No one is.

Instead of regarding the data you collect as a measure of how poorly you’re doing,
think of it as gauging your improvement. Celebrate the wins. That approach
bolsters the entire team and keeps your engineers happy, motivated, and
productive. I guarantee you’re doing some things well, and highlighting the good
is important. I talk about what you can measure in Chapter 5.

Sharing
DevOps was founded because operations and development had some conflict.
They lacked common ground and were incentivized based on different standards.
Operations folks are typically measured on the reliability and availability of an
application, whereas developers are, more often than not, incentivized to create
new features for the application. (I talk more about how operations and
development are measured in the next section.) You know what the biggest threat
to uptime is? Deployments. Developers initiate deployments with new code
releases. Thus, operations folks hate developers. Now, it’s not usually that bleak,
but there’s a seed of truth in that. The friction makes solving problems nearly
impossible and turns everything into a blame game. DevOps seeks to change that
atmosphere completely and create an environment in which both teams teach
each other and feel empowered — thus building a single team through which
everyone contributes.

CHAPTER 1 Introducing DevOps 13

Solving the problem of conflicting interests
On traditional engineering teams, developers (those who write the code) and
operations engineers (those who deploy systems and maintain infrastructure) are
on opposing sides of a never-ending war. Okay, that’s not exactly accurate. But
they don’t get along, and that’s because they’re measured by different criteria.

AN ENGINEER’S TALE: WHAT DROVE
ME TO DEVOPS
I want to let you in on a little secret. I came to DevOps by accident. Yep! Totally an
accident. But I think my story speaks volumes about the power of the DevOps
movement and community.

I was a backend Java engineer at a small company with a traditional engineering team.
The team consisted of a dozen developers and two operations folks. (Sounds to be
about the usual ratio, right?)

The code had a bug. I updated the code that selected preview images in the application.
Yet, the home page wasn’t displaying the changes, and ops blamed me. I looked into
it and concluded that it was a content delivery network (CDN) issue. Because of
access constraints of the developers on my team, I couldn’t mitigate the problem
myself. I needed the ops team.

The ops expert felt that this was a code issue and refused to help me. We went back
and forth three times before I went into a closet and angrily typed an abstract. Humpty
Dumpty: A Story of DevOps Gone Wrong was my first tech talk and was inspired by my per-
sonal experiences and frustrations with developers facing off against operations folks.

In that company, and so many others, the operations team was a bottleneck. They pre-
vented me from doing my work. It wasn’t their fault, though. The people involved high-
lighted the problem, but the problem itself was a process issue.

My experience at that job led me to DevOps, which piqued my interest. In the course of
learning about DevOps, I found incredible relief in the discovery that the issues I had
encountered weren’t about just me! I wasn’t a bad developer. I was just a human, and
other engineers felt the same frustrations in their jobs. It is my greatest wish that this
book can both reassure you that your experience is valid and common as well as show
you some approaches that can make your job just a little bit more awesome.

14 PART 1 Demystifying DevOps

Developers are typically measured by the number of features they release or the
number of bugs they fix. (Evaluating developers by lines of code written is a terri-
ble idea. Many times, the best developers delete more lines of code than they add.)

Unfortunately, code quality and reliability aren’t typically measured. As a result,
developers naturally prioritize the work that will make them look productive.
They don’t spend time refactoring code to make it more readable or paying off
technical debt accrued from the last big product push.

In contrast to how developers are measured, operations teams are typically meas-
ured by site reliability and uptime. You’ve likely heard of the five 9s: 99.999 percent
availability. The five 9s means that your site can be down for only five minutes per
year. Five minutes . . . per year. That’s a lot to ask. It’s also expensive to maintain
because of the number of storage and compute resources you must have at your
disposal, not to mention the personal impact it has on the operations individuals
tasked to keep availability at that level. Those people are often asked to take on
heroic efforts and respond to problems regardless of the day, time, existing
workloads, or personal obligations.

To make the conflict clear: In traditional engineering organizations, developers
must deploy new code to release new features. But deploys are the most common
action that initiates service disruptions and site outages.

Two problems come from this situation:

 » Responsibility is siloed. Developers don’t know how to release or support
their code, and they lack systems knowledge that enables them to understand
infrastructure requirements. Most developers don’t know (or care) how their
code actually runs. Their job is done.

 » The goals and incentives are in opposition. Developers toss code over the
operations team and expect them to deploy the code and ensure that it runs
perfectly. Operations folks are incentivized by uptime, availability, and
reliability. They often assume that the code is poorly written and they’ll be
yelled at (or fired) for an incident that isn’t their fault.

Do you see why you hear audible sighs when developers and operations teams
interact? DevOps seeks to eliminate both the challenges created by siloed
responsibility and opposing goals. By aligning incentives, sharing knowledge,
removing barriers, and respecting different roles, DevOps can dramatically
improve the interpersonal communication and cooperation on your team.

CHAPTER 2 Designing Your Organization 15

Chapter 2
Designing Your
Organization

Company culture is best described as the unspoken expectations, behavior,
and values of an organization. Culture is what tells your employees whether
company leadership is open to new ideas. It informs an employee’s decision

on whether to come forward with a problem or sweep it under the rug.

Your employees and colleagues make a thousand decisions a day — all without the
help of management. (This is great! Who wants a micromanager?) Culture is what
informs those small but incessant decisions, so it behooves you to make sure your
company culture is one that benefits the employees and ensures that their working
environment is a happy place to be.

I’ve worked for companies with great culture. I’ve also worked at places in which
the tension of the environment was palpable. The difference is stunning. In the
former, I performed at a higher level, thought outside the box and took risks, and
was happy to stay with the company for years. In the latter, I was miserable.
I started to plan lunch with colleagues at 10 o’clock and couldn’t wait to take every
single minute until I returned. Then I suffered through the afternoon before
I could leave. I wasn’t motivated. I didn’t do great work. I did just enough to not
get fired.

IN THIS CHAPTER

 » Evaluating your company’s culture

 » Understanding DevOps values

 » Crafting a vision statement

 » Incentivizing your values

16 PART 1 Demystifying DevOps

Look around you. What kind of culture do you think your company has? This
chapter gives you specific ways to accurately evaluate your company’s culture.
Also in this chapter, you find out how to develop a vision for your company culture,
apply DevOps values to your engineering teams, and incentivize and reward the
values you prioritize.

Assessing Your Culture’s Health
One of the greatest challenges for companies — specifically older and larger
organizations — is identifying the true state of their culture. Even young
companies can easily overestimate the quality of their culture. If you think you
have a healthy culture, that’s a great start. But look at it with a cynic’s eye. It’s
easy to see culture through rose-colored glasses.

A few years ago, Gallup released the 2017 State of the American Workplace Report.
The poll found that only 33 percent of employees felt engaged at work, and a mere
22 percent of workers believed that leadership had a clear direction for the
company. Those statistics aren’t exactly encouraging. Here are some ways you can
start to home in on the true state of your company’s culture:

 » Survey your employees. A survey is perhaps the easiest way to evaluate the
state of your company culture. You must ensure that the survey is anonymous
so that employees feel free to be honest with you without fear of retaliation.
Include only important questions that will reveal how your employees and
colleagues actually feel.

The best surveys ask questions about an employee’s satisfaction and happi-
ness. These are questions like, “On a scale of 1–10, how likely would you be to
leave for a 10 percent raise from another company?” and “On a scale of 1–10,
how would you rate your direct supervisor’s job performance?

 » Observe interpersonal communication. You can learn a lot from simply
observing how a team communicates with itself. Are colleagues spoken to
with respect? Do people assume positive intent? Does everyone seem
engaged in meetings? Pay close attention to disagreements. If employees
are quick to generalize, name call, or escalate the conflict to anger, these
behaviors can hint at an inability for people to express their frustrations
in a more professional way.

 » Take a hard look at leadership. Company culture flows down from the top.
The standards and priorities set by leadership have an enormous impact on
the overall culture of the company. If your CEO behaves like a jerk, chances
are you have a culture of fear on your hands.

CHAPTER 2 Designing Your Organization 17

After you gain a clear view of what your company culture says in the present, you
can take action and ensure that the message being sent to employees is the one
you want. And don’t be afraid to find out that your culture is in rough shape.
Opening your eyes to the honest state of your work environment is empowering.
Don’t think of yourself as being at the bottom of a mountain. Instead, imagine
yourself kicking off from the bottom of the ocean.

Company cultures often fall into four categories: apathetic, caring, exacting and
integrative:

 » Apathetic: Very little concern is shown for people or performance.

 » Caring: People are top priority and cared for deeply while performance issues
can fall by the wayside.

 » Exacting: The reverse of caring, this culture prioritizes performance over
everything else.

 » Integrative: High concern is shown for both people and performance. This
culture is ideal because both the employees and the product can thrive.

SURVEY THE RIGHT WAY
Many years ago, a tech company sent out a company-wide survey and stated that
responses would remain anonymous. Employees were free to rate the company’s
success in a number of areas as well as express any concerns they had. Many women in
particular were brutally honest and wrote of experiencing sexual harassment — a
common problem in all workplaces but especially prevalent in the male-dominated
world of tech.

The company misled its employees. The survey wasn’t anonymous. Instead, the results
were sent directly to leadership. One C-level executive took it upon himself to interview
the men named as sexual harassers and to inform the women who expressed concern
that he had investigated the issue and found no wrongdoing.

Let this story serve as a warning. This incident was an egregious violation of trust, one
that you should never inflict on your company. If a survey is anonymous, make it truly
anonymous, because after trust is lost, regaining it is almost impossible.

18 PART 1 Demystifying DevOps

Integrating DevOps
In the novel The Phoenix Project, Gene Kim notes the following:

A great team doesn’t mean that they had the smartest people. What made
those teams great is that everyone trusted one another. It can be a powerful
thing when that magic dynamic exists.

DevOps, above all else, is a cultural shift that empowers engineers to learn freely,
share responsibility, and succeed — as well as occasionally fail — together. If you
take only one thing away from DevOps For Dummies, I want it to be the list of the
core values that are central to the DevOps movement, as described in the next
section.

Integrating these values into your everyday workflow and overall company culture
results in phenomenal impacts to engineer happiness and productivity. People
begin to trust each other, and through trust, collaboration can become the norm.
Only then can innovation take place.

No matter how you integrate DevOps into your company’s culture, of critical
importance is for you to recognize that culture is central to any DevOps transfor-
mation. DevOps is a cultural revolution that unites the traditionally adversarial
sides of development and operations. It encourages teamwork, collaboration,
communication, and — above all else — trust in the people with whom you work.

Establishing DevOps Values
DevOps is centered around a few core principles. In this section, I highlight
what I think are the seven most important values of DevOps. Some resources you
find will list fewer; others, more. Here are the values I describe throughout this
section:

 » Encourage teamwork.

 » Reduce silos.

 » Practice systems thinking.

 » Embrace failure.

 » Communicate, communicate, communicate.

CHAPTER 2 Designing Your Organization 19

 » Accept feedback.

 » Automate processes (when appropriate).

The descriptions in the following sections serve as an overview of these values. If
you have questions about each one, fear not! You dive into these more deeply
throughout the rest of the book. Think of this as an introduction to the heart of
DevOps.

Encourage teamwork
Empower your team members to make independent decisions based on their
expertise. Ideally, teams will share responsibility so that everyone is accountable
with regard to both celebrations and failures. Collaboration is a core principle of
any DevOps culture. It’s also foundational to the practice. Without this one value,
your team will struggle to adopt DevOps.

Teams must trust each other. Create opportunities for your employees and
colleagues to get to know each other and build rapport. For example, if you know
the birthday of your coworker’s daughter, you probably have a healthy relationship,
which makes struggling through product decisions and working through conflict
are a lot easier. Trust is the foundation of all relationships, including in engineering.

Reduce silos
Share information freely among colleagues, teams, and skill sets. Ideally, you
should build cross-functional teams in which members have varying and
complementary skill sets that, together, support a single product line or software
service.

You may have heard of the “Wall of Confusion,” which traditionally existed
between developers and operations folks. Managers used to group highly
specialized developers, who engineered new features and then tossed that code
over to operations to deploy and support. That approach created silos of knowledge
that limited collaboration. Instead of following that tactic, you want to ensure that
information is shared freely among people and departments. Everyone is
responsible for creating and delivering great software. “It’s not my job” is a
phrase that should never, ever be uttered by anyone on your team.

Think of technical skill sets as being T-shaped. You’re looking for developers who
have deep knowledge of their area of engineering. Perhaps they’re a Python
engineer or a front-end engineer skilled in React. That same developer should
have shallow knowledge of areas like automated testing, database storage,
deployment pipelines, and infrastructure. Your ops folks are never going to be

20 PART 1 Demystifying DevOps

your best coders, and the reverse is also true. That’s not the point of DevOps.
Instead, the point is remove barriers and allow information and knowledge to be
shared freely.

Practice systems thinking
View everything your engineering team touches as part of a greater whole. This
holistic view gives you a better understanding of how the team functions and
where you can improve. Instead of viewing the whole as a grouping of individual
elements, think of the team as an ecosystem.

The human body has a circulatory system, a digestive system, and many other
separate functions, but these systems and functions all work together, and all
parts are necessary for survival. Your engineering team is the same. Yes, members
of the team have different areas of focus and specialization, but they aren’t simply
the sum of their parts. The team works together like a living, breathing organism.

Embrace failure
Failure is unavoidable. It happens. And yet, you likely spend much of your time
attempting to avoid failure at all costs. But failure isn’t always a bad thing. In fact,
small failures hint at a culture that encourages risk — trying new things and
innovating. Innovating and moving quickly is impossible without a few hiccups
along the way.

By embracing failure, you turn the societal pressure to avoid failure on its head.
Empowered by this growth mindset, you can budget for error and integrate
recovery into your feedback loop. I talk more about this loop in the Chapter 13.

The key here is to view failure as a natural part of life, as well as of the development
life cycle. That way, when you’re faced with an unexpected and potentially large
failure, you can recover quickly and continue to innovate.

Communicate, communicate,
communicate
As mentioned earlier, teamwork is crucial to DevOps, and teamwork goes hand in
hand with communication. Yet communication is something that engineers tend
to undervalue. Despite the general belief that communication is a “soft skill,” the
best engineers are those who can convey technical concepts to others clearly.

CHAPTER 2 Designing Your Organization 21

Some folks may seem to be naturally good at communication, whereas others
aren’t. It can seem as though some are born natural communicators and the rest
are destined to struggle. But the truth is that communication is a practiced skill.

Most teams struggle to communicate well. Often, engineers miss each other, or
the message isn’t received as intended. Because of the impact of these
communication struggles can have real impact on speed, quality, and profitability,
these so-called “soft skills” are important for teams to consider and prioritize. I
loathe the term because I consider the “soft” skills of communication, relationship-
building, project management, and conflict resolution to be some of the hardest
challenges you can take on. Still, the term encompasses a need for technical folks
to better engage with one another, build rapport, and establish trust.

Communication doesn’t have to take place in a meeting. Overtaxing engineers
with endless meetings quickly erodes any progress you’ve made on your DevOps
journey to that point. Instead, meet your engineers where they are. Where do they
prefer to meet? What methods of communication do they prefer to use? Utilize
communication tools and techniques to adapt to the team’s preferred style.

Accept feedback
Feedback is a gift. It doesn’t always feel like it. (Believe me, I’ve felt some negative
feelings when receiving feedback from my editors on this book.) But feedback is
what enables you to realistically study and improve your software.

You don’t build software to show off your coding skills. In fact, the vast majority
of users will never read the code on which you spent hundreds of hours working —
even on an open source project. Your users care only about whether your product
actually works. Can they check their email? Can they view their invoices? Can they
pay their clients? Can they buy shoes from you? The businesses vary, but the
expectations of your customers don’t.

Listening to your customers is the best way to quickly identify what areas of your
application need improvement. If you pay attention, you can learn a lot from
customers. They will tell you what they like, what they hate, and what they want
from you. If you follow up and fulfill those expectations, you’ll earn their loyalty.

Automate processes (when appropriate)
Have you noticed that the most technical principle is last in this list of values? As
you continue in this book, you’ll notice that I deprioritize technology. Why?
Because technology is the least complicated and least critical aspect of creating a
DevOps culture. Improved technical practices are the result of a DevOps transfor-
mation, not the journey itself.

22 PART 1 Demystifying DevOps

That said, automation is married to DevOps. (This situation is true in part because
vendors have products to sell, and selling ideas is hard. But that’s a different
book.) Automation is a tool used to practice the values of DevOps. With automation,
you develop better software faster and maintain applications with better reliability.
You build, deploy, and monitor your software with automation tools to improve
accuracy and eliminate manual bottlenecks.

The important part of automation is that it’s employed only when appropriate,
and only after you’ve understood and manually solved the problem. Automating a
failure-ridden process only helps you fail more spectacularly and abstract the
source of the failure — which makes resolution more difficult. Automation is the
last step in a long process, but it is still vital to enable you to use DevOps with
increasingly complex software systems.

Modeling Company Culture
Organizational structure plays an enormous role in your company’s culture. At an
earlier time, all companies were mostly the same because most of them were in
some type of manufacturing. The manufacturing industry demanded a certain
type of setup, which usually involved having some sort of boss overseeing a small
group of middle managers and the (typically) men on the manufacturing floor.

Then a service economy emerged and new organizational structures began to
surface, with new kinds of problems. Unfortunately, this book can’t give you a
silver bullet for all organizational challenges. Instead, I show you a variety of
solutions to the problems you face and help you choose which might be the best
solutions for you and your organization. Don’t stress if you try one and it doesn’t
quite work out. Humans are complicated, and finding a culture that allows
everyone to thrive can take some time. Your company culture will evolve and you
will deal with some trial and error along the way. The following list presents four
types of structures into which most companies fall. As you read, consider which
one your company most resembles, and which one you prefer to work in.

 » Clan: Think of this company culture as a family-like structure of people.
This culture is most often found in early-stage startups. Colleagues are
collaborative, and managers (if they exist) are dedicated to their employees.
Engagement is high, but sometimes a desire for agreement and harmony may
drown out dissenting opinions, making way for a homogeneous perspective
to emerge.

CHAPTER 2 Designing Your Organization 23

 » Meritocracy: In this culture, great ideas are prioritized — whether the
idea comes from the CEO or the lowest-level junior engineer. This principle
sounds amazing on paper, but the meritocracy isn’t all sunshine and rainbows.
Meritocracies don’t acknowledge the natural human instinct toward hierarchy
and authority bias (which means that an executive’s idea is bound to be
overvalued). Because of power structures, both conscious and unconscious,
not all ideas are perceived as equal.

 » Holacracy: This type of culture is as simple as company culture gets.
Employees manage their work independently, with full autonomy, and
the company structure is completely flat. You have no bureaucracy and
no micromanagement — because you have no managers. This style of
organization has mixed reviews. Some companies claim to thrive in it.
Others tend to use it in the early days and then integrate more hierarchy
and management into the company as it grows.

 » Traditional hierarchy: Many people argue that the hierarchical culture is
outdated. Yet, most of our organizations reflect this structure (sometimes
with bits and pieces of the other structures thrown in). Often in a hierarchy,
communication flows down from managers to engineers. If employees
haven’t been empowered by the managers, this downward flow can quickly
cause employees to stop innovating and suggesting new ideas because the
friction encountered is simply too high.

A new type of structure is emerging as some companies merge a flat holacracy
with a traditional hierarcy. In this flatarchy — typically seen in startups — some
management layers are eliminated to provide a flatter structure, and employees
are expected to communicate ideas up the chain of command and challenge
downward information flow.

What style is your company now? Do you think it’s the best organizational
structure in which to begin your DevOps journey? Think about what advantages
you might have based on your organizational values and how employees relate to
each other. Also consider your disadvantages. For example, a company with a
strong management layer will likely need buy-in from managers because the
engineers likely defer to their judgment. A holacracy or flatter structure, on the
other hand, requires a groundswell of excitement from the engineers closest to
the keyboard.

Avoiding the worst of tech culture
Tech culture hasn’t received the best press in recent years. Multiple scandals at
numerous large tech companies have not put those companies in a particularly
flattering light.

24 PART 1 Demystifying DevOps

The culture of engineering is casual and centered around intelligence. So casual,
in fact, that in the greater population, developers are better known for their
hoodies and jeans than for their great code.

Traditional tech culture is known to be composed of engineers who are male, pale,
and overworked. (Perhaps a little curmudgeon-y, too!) The tech landscape is
changing, however, and DevOps is leading the way toward a more balanced and
diverse engineering culture. The following tips can help you avoid some of the
worst tech scandals in recent years and instead build a company known for its
happy and productive employees — not to mention great software:

 » Demand diversity. Social diversity — differences of age, race, religion, sex,
and sexual orientation — is vital to producing great products and ensuring a
welcoming environment. Engineers who are passionate about DevOps appreci-
ate and encourage social diversity as well as diversity of experience and skill sets
because all these features increase innovative thinking and successful problem
solving. Social diversity helps to guarantee that your software is free of uncon-
scious bias. This diversity is even more critical for companies working in machine
learning (ML), artificial intelligence (AI), and big data.

 » Ensure that employees go home at a reasonable hour. It’s such a simple
gesture. Make sure that your employees don’t work more than 40 hours a
week. Yes, your engineers know that if the site goes down, they might not
make it home for dinner. Those situations should be few and far between,
however. “Off hours” work and deployments are unnecessary and a symptom
of larger challenges within your organization. Engineering work is incredibly
taxing, and breaks are absolutely required to avoid burnout. That means
restful weekends, evenings free of texts and emails, and laptop-free vacations.

 » Provide great insurance and other benefits. If you’re in the United States,
you know how much medical insurance matters to your employees and their
families. Many other benefits also help keep your engineers healthy and
happy. Engineers are disproportionately affected by anxiety and depression.
Provide opportunities for employees to improve their mental health, such as
through therapy, yoga, exercise, or anything else. Give them the time (and if
you can manage it, the money) to pursue activities to keep themselves
healthy — physically and mentally.

 » Encourage alternative thought. Creating a diverse and inclusive environment
to work in requires that all ideas and perspectives are welcome. This diversity
goes beyond what people look like and instead pulls from their experiences,
stories, and perspectives. DevOps emphasizes creative problem solving, which
means that you have to create space for people to share ideas — even if they’re
a little out of the box. In this way, junior engineers are sometimes even more
valuable than your senior engineers because they bring a raw and drastically
different perspective.

CHAPTER 2 Designing Your Organization 25

Crafting your vision
You may be wondering how a vision differs from a mission statement. I like to
think of a vision as being the keynote of your mission. It sets out the ambitious
goals of your organization. A vision is inspirational and meant to unify people
behind a single, focused idea. The mission statement then fills in the gaps with a
more detailed strategy and idea.

Your vision is how you pull together a focused goal for your company culture. It is
the most ambitious view of where you would like to see your company go — for
customers, employees, and stakeholders. It should reflect the principles of the
founders and evolve as the company grows.

Ultimately, culture is what allows employee enthusiasm to thrive. Your vision
statement will focus you and inform decisions for you and everyone who works for
the company. You can consider it a beacon, calling you back to the principles you
believe in during moments when you have to choose between the right thing and
the easy thing.

A vision statement should always include three components:

 » Who you are

 » What you do

 » Where you need to go

The more focused your vision, the more alignment you can expect to see from
your organization. Having a vision ensures that your company will make decisions
based on long-term goals, even at the cost of a short-term win — and staying on
track for long-term goals is critical for any tech business.

If you don’t have a vision statement or think that your vision statement isn’t
serving your organization well, it’s time to build one or change the one you have!
I suggest that you gather your executives first to discuss and debate what they
think the focus of the company should be. Don’t be afraid of a little chaos. Instead,
embrace the messiness of the process. Have each stakeholder answer each of the
aforementioned components of the vision statement. Ask them, “Who are we?
What do we do? Where are we headed?” Then share the answers as a group. You
may find harmony, or you may find that each executive has a different idea (most
likely focused on their sector or area of expertise). Form an amalgam from all
these ideas. After you have a rough draft, engage the entire population of the
organization. What do people think? How do the answers of the folks in sales
differ from those of engineering? Beyond helping to form a vision, this exercise
will highlight the challenges in your organization and the areas needing the most
alignment.

26 PART 1 Demystifying DevOps

Ideally, the vision should be integrative — prioritizing people in the organization
(and customers outside the company) as well as the technology and product itself.
Excellence in both areas is essential to forming a balanced and focused vision,
which you need before you can engage in a DevOps transformation.

Incentivizing Your Values
Values are meaningless if you don’t incentivize the behavior that lives up to them.
Worse yet is to incentivize behavior that goes counter to your organization’s
vision. So your top priority after creating your vision is to communicate it to the
wider organization — and not just the what of your vision statement, but the why.
Communicating your vision is a perfect opportunity to gather the entire team
together and get everyone excited about the direction of the company.

VISION STATEMENTS FROM
FAMOUS BRANDS
The global impact of software enables technology companies to have some of the
most ambitious vision statements in the world. Here are a few inspirational visions
by companies you’re familiar with to inspire you on your journey to build a DevOps
culture and create a vision to unify your team:

• Microsoft: “Our mission is to empower every person and every organization on the
planet to achieve more.”

• Google: “Our mission is to organize the world’s information and make it universally
accessible and useful.”

• Amazon: “Our vision is to be earth’s most customer-centric company; to build a
place where people can come to find and discover anything they might want to buy
online.”

• PayPal: “To build the Web’s most convenient, secure, cost-effective payment
solution.”

• BBC: “To enrich people’s lives with programmes and services that inform, educate,
and entertain.”

• Whole Foods Market: “Our deepest purpose as an organization is helping support
the health, well-being, and healing of both people — customers, Team Members,
and business organizations in general — and the planet.”

CHAPTER 2 Designing Your Organization 27

Your second priority is to ensure that the behavior you want to see from your team
is rewarded. I’m a big fan of positive reinforcement because negative reinforce-
ment can be permanently damaging to morale. The focus here is on what you can
to do incentivize your values, not how to drag your employees to the proverbial
principal’s office when they’re in trouble. You want employees focused on pursu-
ing excellence, not simply avoiding certain behaviors.

Evaluations
Depending on your company, evaluations can be a time of healthy feedback and
personal reflection or a chaotic and panic-stricken period designed to instill fear
and dread. You should aim for the former, of course. (If you disagree with my last
statement, you should put down this book. I don’t want you quoting me.)

Your organization’s evaluation rubric must reflect the uniqueness of your com-
pany. But I encourage you to include, at the very least, two sections:

 » Team Impact: This concept refers to the greater impact of the team as a
whole. You want to consider the outward impact, such as an increase in the
number of users of a service or application, or the launch of a new feature
that increased revenue by 10 percent year over year. You also want to
consider the internal impact that speaks to DevOps values. This impact
includes improved collaboration, better teamwork and communication,
reduced silos, and so on. Some of this aspect of the evaluation is difficult to

SOUTHWEST AIRLINES: A COMPANY WITH
STRONG VALUES
I’m loyal to Southwest Airlines for the same reasons most of their frequent flyers are:
Southwest is the happiest way to fly. (In fact, I wrote this sidebar while on a flight!) I
associate Southwest with smiles and happy people. I used to be terrified of flying, and
Southwest flight attendants were always the most patient with me. They offered me
water, told me everything was going to be okay, poured me generous amounts of
vodka. Southwest doesn’t have the best frequent flyer benefits, but I fly with them
because they make me feel safe, cared for, and happy. Who doesn’t want that?

These values didn’t come about by happenstance. It’s not as if Southwest just lucked
into hiring fabulously happy flight attendants. Instead, the company developed a set of
values, built a culture around those values, and then communicated those values to
their employees. That is strong company culture.

28 PART 1 Demystifying DevOps

measure empirically or prove causally. That’s okay. The key here is that the
team gets a grade as a whole, which encourages the team members to
evaluate their performance and improve their impact together.

 » Individual Output: The output of an individual contributor is the summary of
their activities. This summary could include features developed, bugs fixed,
infrastructure improved, uptime increased, and more. An engineer’s output is
closely tied to their role within the greater team.

As you may know, I work in Developer Relations (DevRel, for short) for Microsoft.
The exact meaning of DevRel varies from organization to organization, but it
generally comprises a group of software engineers (or operations specialists,
SREs, and others) who sit somewhere between marketing and engineering. It’s
not a sales engineering role, and those of us in DevRel are never incentivized by
sales. Instead, we sit above the sales funnel, gain goodwill for the company we
work for within the community, and reflect the wishes of the community back to
the product team, ensuring that our applications and tools are as close to what
customers want as we can possibly get.

As you might imagine, DevRel is extremely difficult to measure for efficacy. I’ve
settled on this dual evaluation of team impact and individual output, and I think
it works really well for DevOps cultures as well. Many of the aspects you love about
DevOps, and want to encourage on your teams, are really difficult to measure —
especially when evaluating individuals.

Rewards
You may be tempted to throw money at your employees who perform well in your
new DevOps culture, and fair market salaries are an absolute requirement. But
often, money isn’t the best motivator. I know that this idea is a bit counterintuitive.
Everyone loves money, right?

Well, yes, to a point. In 2010, Timothy Judge and colleagues published a paper titled
“The relationship between pay and job satisfaction: A meta-analysis of the litera-
ture” (https://www.sciencedirect.com/science/article/abs/pii/S000187911
0000722?via%3Dihub). The authors looked at 120 years of research from 92 studies.
The results found a rather weak association between salary and job satisfaction. You
can read more in the paper published by Tomas Chamorro-Premuzic, “Does Money
Really Affect Motivation? A Review of the Research” (https://hbr.org/2013/
04/does-money-really-affect-motiv), which delves further into the research.

https://www.sciencedirect.com/science/article/abs/pii/S0001879110000722?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0001879110000722?via%3Dihub
https://hbr.org/2013/04/does-money-really-affect-motiv
https://hbr.org/2013/04/does-money-really-affect-motiv

CHAPTER 2 Designing Your Organization 29

In addition, a 2011 Gallup poll (https://news.gallup.com/poll/150383/
majority-american-workers-not-engaged-jobs.aspx) found that pay didn’t
have a significant impact on employee engagement. Essentially, you need to
ensure that your salaries are equitable and (if you want to retain your best talent)
on the middle to high end of market value. Also, because DevOps values diversity,
you should analyze your company’s salaries and make sure that everyone is fairly
paid. You should have no significant differences in pay among men, women, and
people of color. The same work should receive the same pay.

If salary or financial incentives aren’t sufficient rewards, your best bet is to reward
performance around DevOps and company values by getting a little creative.
Following are some ideas I’ve found to be successful. Remember that your
employees and colleagues love to be recognized and appreciated. The more
frequently you can highlight performance through a small reward, the happier
your engineers will be in the long term.

 » Idea prizes: Give engineers on both the development and operations sides
the opportunity to propose new ideas. The company or team then votes for
the best idea and, if the executives agree, gives the person who suggested the
idea a small reward. The reward can be a gift card to their favorite coffee
place or tickets to a baseball game. Honestly, the reward doesn’t even have to
be worth anything monetarily. I’ve seen companies reward ideas with coveted
stickers and LEGO pieces that engineers can then show off on their machines
and desks.

 » Hack time: Listen, engineers love to do just that — engineer. You’ll earn their
loyalty if you give them dedicated time to work on the side projects that excite
them. When the team accomplishes something, give them a week or two to
work exclusively on something of their choice. It could be an open source
project, an idea for something to improve their everyday work, or something
altogether unrelated to your business. If the hackathon produces something
usable by the company, it’s a bonus. The purpose is to give your engineers
paid time to work on passion projects.

 » Fun off-sites: Sometimes the team needs to step away from the office and
engage in a different activity to build rapport and trust. No, this isn’t your
average foray into a ropes course or trust falls. Don’t try to design trust; it
doesn’t work that way. Instead, give your team the opportunity to get to know
each other in a more informal way. The activity needs to be inclusive so that
everyone can participate, but beyond that, anything goes! I love bowling
because it can be silly and I’m terrible at it. But you could volunteer, take
dance lessons, go to a yoga class, or take a trip to the mountains. The specific
activity means much less than the opportunity to have fun together away
from the office.

https://news.gallup.com/poll/150383/majority-american-workers-not-engaged-jobs.aspx
https://news.gallup.com/poll/150383/majority-american-workers-not-engaged-jobs.aspx

30 PART 1 Demystifying DevOps

Inclusive off-sites can be a blast but require a bit of consideration. Ensure that
you’re providing your employees with what they need to travel. At a basic level,
provide every employee their own hotel room, transportation, and food. After you
have the basic issues managed, consider the needs of each individual. Single
parents might need financial or logistical help to find childcare. Breastfeeding
mothers may need you to pay for shipping breast milk home on dry ice. Newly
sober alcoholics may need help staying away from alcohol. Employees with
disabilities will need environments that work for them. Paying attention to the
tiny details is what will help everyone relax and have fun.

CHAPTER 3 Identifying Waste 31

Chapter 3
Identifying Waste

After you have a clear idea of what your DevOps culture will look like, it’s
time to review your current processes and look to the future for improve-
ment. DevOps has three focuses: people, process, and technology. Process

is second only to culture in a DevOps transformation.

Process is the area in which you’ll see the most quantitative improvement in the
speed of your organization’s software delivery. But this chapter doesn’t focus on
how you improve your processes. (I discuss making process improvements to
every phase of your software delivery life cycle in Part 2 of this book.) For now,
think about your team’s software development processes holistically. Step back
and see it as an ecosystem of people implementing processes with technology.

Waste is any activity that does not directly impact the experience of the customer.
If an action, activity, or process doesn’t add value to your customers, it’s wasteful.
Increasing your team’s velocity with DevOps requires you to identify and eliminate
waste.

You would be shocked at how much waste you have in your development process.
In fact, the Lean Enterprise Research Centre (LERC) at Cardiff University in the
U.K. has found that up to 60 percent of the activities that engineers routinely
engage in are wasteful and have zero impact on the end user. That’s . . . disturbing.

IN THIS CHAPTER

 » Digging into the lean manufacturing
foundation of DevOps

 » Removing the seven types of waste

 » Getting to market faster than your
competition

32 PART 1 Demystifying DevOps

Understanding the different categories of waste helps you identify the easily
improved processes of your system. Think of this initial list as the low-hanging
fruit by which you can see quick wins in your DevOps transformation. The faster
you can apply the benefits of DevOps, the more smoothly your transformation
will go.

In this chapter, you discover the seven categories of waste in complex systems,
learn how to collect data and identify bottlenecks, and prioritize the customer by
focusing on impact.

Digging into the Seven Types of Waste
I believe that the average farmer puts to a really useful purpose only about 5%
of the energy he expends Not only is everything done by hand, but seldom
is a thought given to a logical arrangement. A farmer doing his chores will
walk up and down a rickety ladder a dozen times. He will carry water for
years instead of putting in a few lengths of pipe. His whole idea, when there
is extra work to do, is to hire extra men. He thinks of putting money into
improvements as an expense It is waste motion — waste effort — that
makes farm prices high and profits low.

— HENRY FORD, MY LIFE AND WORK (1922)

Many DevOps principles are rooted in lean manufacturing, a principle that
emphasizes identifying and eliminating waste in order to improve production
velocity. Lean manufacturing identifies seven types of waste. I’ve ordered the
types of waste in this section by most-to-least impactful. In other words, the first
type of waste listed is likely your lowest-hanging fruit and the one that you should
tackle first.

Unnecessary process
Process is a huge component of DevOps because it streamlines activity, behavior,
and expectations in every aspect of your business. But process can quickly become
an enemy. How many meetings are your engineers required to be in every week?
Do your daily standups take fewer than ten minutes, or does the time spent make
sitting down necessary? Another insidious cause of unnecessary process takes
place when product requirements aren’t clarified at the beginning and work has
to be, well, reworked.

CHAPTER 3 Identifying Waste 33

Waiting
Inaction at any part of the development life cycle — the time from when you plan
to develop a piece of software to the time you deploy it — is waste. Yet, your
organization is probably riddled with waiting. Engineers wait for QA to test a new
code. Infrastructure waits for developers to build products for deployment.
Developers wait for infrastructure to provision new machines. Everyone waits for
everyone else to supply siloed information. Waiting is common and difficult to
combat.

Motion
Think of motion as busy work. It’s the wasted activity that you and your team
complete. In site reliability engineering (SRE), this work is referred to as toil. If an
activity doesn’t have impact on your customers, its purpose could be to “look”
good. This work could also be the result of inefficient processes. The former,
“looking good,” relates to your incentives and review processes. The latter points
to where automation can begin to speed up your team’s efficiency in a major way.
Technology itself can also produce the waste of motion. Perhaps you’re paying for
infrastructure or tools you don’t use.

Costs of defects
Defects are one of the most easily recognized types of waste. In car manufacturing,
one type of waste might be scrap metal. In software, defect waste includes bugs
and technical debt. You should also include service downtime in this category.
Anytime an engineer has to “fix” completed work, you’re in defect territory. I’m
not a big fan of the “just engineer better” approach because there will always be
unknowns and edge-case bugs. Your ability to combat this waste will be in your
team’s forethought in architecture to ensure expected behavior and responsiveness
to quick iterations. You want to ensure that the “blast zone” — that is, the
customers and services impacted — is small and that every engineer has the
ability to respond to bugs easily. (See more about responding to bugs in Chapter 17.)

Overproduction
In manufacturing, overproduction refers to any excess parts or products produced
that the company can’t use or the customer is unwilling to purchase. In software,
overproduction comes in two forms: wasteful code and products that don’t meet
the market’s needs. You want to avoid having software developers work on solving
problems that don’t exist or overengineering the solutions. But you also want to
make sure that the products you produce and bring to market are desired by the
customers you’re trying to reach.

34 PART 1 Demystifying DevOps

Transportation
Transportation waste takes place anytime a product, person, or tool is moved
from one location to another. Now, unlike Toyota, for example, you don’t have to
ship cars from the assembly plant to dealers across the country. But you do move
code between servers and repositories. You also move people between teams,
which requires time to adjust and get up to speed.

Inventory
Most likely, inventory is much less of a challenge for you and your company than,
say, a car manufacturer. Few companies ship physical software these days, and
inventory has become less of a problem. Still, you can have inventory, and any valu-
able product that is waiting to be sold or used is wasteful. Think about something as
simple as the five laptops you have sitting in a room somewhere in the office because
you’ve had engineer turnover and are waiting to hire new employees. You could also
eschew the concept of physical inventory and consider code and proprietary infor-
mation to be your inventory when evaluating waste in your organization.

Understanding waste in DevOps
Waste comes in many forms. No two pieces of waste will be the same, and your
approach to eliminating waste will need to adapt to new challenges. In fact, after
you get started tackling waste in your software delivery life cycle, you discover that
it’s occasionally like playing the game of whack-a-mole: You eliminate one piece
of waste only to see another pop up later in the life cycle as a result of your change.

DevOps takes several of its core ideas from lean manufacturing, a management
philosophy distilled from the Toyota Production System (see the “Principles of the
Toyota Production System” sidebar for more information). Lean manufacturing
uses three separate Japanese words to describe waste:

 » Muda: Waste

 » Muri: Overburden

 » Mura: Unevenness (or irregularity)

Start considering how you would approach muri versus mura. Where do you see
these three definitions of waste in your current processes? Do you have employees
who have been overburdened to the point of burnout? Are all your engineers
carrying the weight of your workload evenly or do you have extremely high and
low performers? How might these definitions of waste apply to all three areas of
DevOps — that is, people, process, and technology?

CHAPTER 3 Identifying Waste 35

An important point to keep in mind when tackling waste is to improve efficiency
through optimization and simplification. But also remember that waste almost never
originates from a place of bad intentions. In fact, most waste exists because of
inertia. Habit is the worst enemy of efficiency in an engineering organization. “We’ve
always done it this way” is poison that rots fresh ideas at the root. Do your best to
eliminate that phrase from the minds of everyone in your organization. When you
eliminate waste, you improve quality, reduce development time, and lower costs.

PRINCIPLES OF THE TOYOTA
PRODUCTION SYSTEM
Originally referred to as “just-in-time production,” the Toyota Production System (TPS)
was built on the manufacturing philosophy of Toyota founder Sakichi Toyoda. The TPS
business philosophy predated lean manufacturing and emphasized continuous
improvement and eliminating waste.

The TPS management approach is detailed in the book The Toyota Way and breaks the
system into 14 principles, all of which can buttress your DevOps practice:

• Emphasize long-term reputation, even at the expense of short-term financial losses.

• Reveal problem areas by creating a continuous process flow.

• Focus on your key value-add and avoid the overproduction caused by executing
every “good” idea.

• Don’t burn out people or overburden equipment.

• Prioritize quality and empower everyone to stop the process when necessary.

• Standardize processes to provide consistency.

• Create visual tools for everything so that problems can’t be hidden.

• Put technology second to people and processes.

• Train and educate employees.

• Grow employees who believe in the company’s culture and philosophy.

• Help business partners improve.

• Managers must “go and see” the work first-hand so that they understand the
challenges of their engineers.

• Decide slowly and implement decisions quickly.

• Reflect (hensei) on feedback and continuously improve (kaizen) to serve the customer.

36 PART 1 Demystifying DevOps

Successful tech companies understand their customer’s pain points and respond
to those needs through well-designed products. Continuously improving quality
is what separates those organizations from others that fizzle out (or burst into
flames). Software delivery takes time, but if you can reduce your time to market,
you reduce engineering costs and increase the likelihood of capturing more mar-
ket share. Reaching customers as quickly as possible provides the opportunity for
feedback and iteration.

Each of the wastes identified in lean manufacturing have associated costs. Tack-
ling even one will significantly impact your organization’s bottom line and allow
you to reduce total costs.

Rooting Out Waste
How do you go about identifying waste, simplifying your process, and reducing
costs? Well, you could play pin the tail on the waste donkey and just pick an area
of waste to focus on. Or (and this is the path I personally recommend) you can be
more purposeful in observing your software development life cycle holistically
and identify the most impactful areas to mitigate first.

Making sweeping changes and measuring your success are impossible without
knowing where you started, especially if you need to coax executive buy-in for
your DevOps transformation. Here are the three types of actions to identify within
your software development processes:

 » Wasted actions to be eliminated

 » Wasted actions that are necessary within the current system

 » Actions that add value to the process

Observing will be the best use of your time at this stage. Start with people. For
example, are the meetings that engineers attend wise uses of time or pointless
motion? Next, look at process. Does a manager have to sign off on releases before
a developer can deploy code to production? Could that be unnecessary process and
waiting? Finally, observe your tooling. How many bugs make it into production?
What are your costs of defects?

Discovering bottlenecks
One of the most insidious forms of waste is a bottleneck. The term bottleneck refers
to a congestion or blockage along a process. Just as a bottle narrows at the neck, so

CHAPTER 3 Identifying Waste 37

too can processes. Imagine a wide river that is capable of allowing a dozen boats to
sail in parallel. If at some point the river narrows (illustrated in Figure 3-1), the
boats will have to sail one at a time, creating congestion (shown in Figure 3-2).
This narrowing slows (or sometimes halts) production. Ideally, you identify the
bottlenecks in your own processes and enable engineers to use DevOps to make the
proverbial river wider and allow for more work to flow at the same time.

Bottlenecks can occur at any point in a process. Two of the most common bottle-
necks I see come in the form of approval processes and manual tasks. These
bottlenecks can result from mandated manager approval before releases, or reli-
ance on a manual deployment process that is owned by one person (who gets busy
and occasionally goes on vacation).

Congestion can also occur when you fail to address concerns early on in the soft-
ware delivery life cycle. If you wait until you release code into a staging environ-
ment to confirm that the code is secure, you’ll likely have to kick the code all the
way back to the development phase. Addressing security concerns in the planning
process can avoid wasting time and engineering resources.

FIGURE 3-1:
A wide river is

about to narrow.

FIGURE 3-2:
A bottleneck

significantly slows
the flow.

38 PART 1 Demystifying DevOps

After you start looking for bottlenecks, you might feel overwhelmed by just how
many exist in your current system.

Tech companies experience two forms of bottlenecks:

 » Short-term bottleneck: Caused by a temporary hiccup. Your most reliable
engineer goes on vacation, for example.

 » Long-term bottleneck: Results from consistent, compounding friction in the
production process, such as a slow machine that results in a long queue of
inventory.

The cause of a bottleneck usually comes down to one (or more) of three reasons:

 » Capacity limits: The machine or tool has reached its highest capacity. It needs
to be replaced or improved, or additional resources need to be added to the
system. Sometimes a bottleneck occurs because a team has few engineers.
This lack is particularly visible when a team’s skill sets are unbalanced, such as
when one or two operations engineers are supporting the work of dozens of
developers.

 » Inefficient use: The resource is not fully utilized. If the bottleneck is caused by a
tool or machine, you might have a tuning issue or are perhaps using the wrong
technology. In the case of humans, you could be underutilizing someone’s talent
by pigeonholing them into a specific role when they would excel elsewhere.

PANAMA CANAL: THE WORLD’S LARGEST
BOTTLENECK
The Panama Canal was completed in 1914 and is possibly the most important waterway
on the globe. Approximately 5 percent of all trade flows through the canal. On average,
34 ships go through the canal every day, and each ship requires 52 million gallons of
water to move through the waterway. Ships have evolved significantly since the canal
was built and, unsurprisingly, those ships have become a lot bigger. A few years ago,
the canal underwent major construction to double capacity and accommodate the lat-
est generation of enormous container ships. Prior to the expansion, long lines of ships
waited to pass through. The queues reached such lengths that Disney Magic, a cruise
ship, paid more than $300,000 just to jump the line. If the Panama Canal Authority
hadn’t addressed this bottleneck, it would have lost out to its competitors, the Suez
Canal and U.S. railways.

CHAPTER 3 Identifying Waste 39

 » Underqualified engineer: Software engineers are under constant pressure
to learn the next greatest technology. Sometimes fixing a bottleneck is as
simple as providing the necessary training and continuing education. (I discuss
empowering engineers in Chapter 15.)

Anytime a bottleneck occurs — whether from wait times, overloaded machines, or
exhausted humans — it stalls production. In other words, that one bottleneck
slows the entire production chain and creates a queue of units that need to be
processed. The situation is not exactly fun when a bunch of executives are breath-
ing down your neck.

When you’ve identified your bottlenecks, evaluate the degree of impact. Major
bottlenecks should be addressed as soon as possible, whereas minor bottlenecks
are much less concerning.

Perfection in your production flow is impossible. If you chase perfection, you’ll
spend more time trying to locate every single bottleneck instead of removing the
waste that’s causing the biggest problems. Don’t worry about each little thing.
Instead, focus on the one or two things that have the biggest impact on your
development process.

Focusing on impact
One of the best ways to reduce waste and eliminate bottlenecks in your development
cycle is to focus on impact, which you do by prioritizing the work that has direct
impact on your customers. If something doesn’t matter to your users, it shouldn’t
matter to you. (Or it shouldn’t matter much!)

When faced with solving for a bottleneck, you have a couple of options, as described
in the following sections.

Increase your number of employees
Adding head count to your organization can seem like an easy fix for a bottleneck
situation, and sometimes it’s just what you need. People-centered bottlenecks left
untreated are like poison to teams. Your engineers burn out and morale across the
team suffers. Adding fresh contributors (and new ideas) to the team can breathe
new life into your engineering processes. Here are the pros and cons of increasing
your head count:

 » Pros: Human redundancy helps significantly with responding to increased
demand as well as with managing employee vacation time, unexpected
illnesses, and planned family leave.

40 PART 1 Demystifying DevOps

 » Cons: Having more cooks in the kitchen can increase communication
complexity and requires time to bring those new employees up to speed.
Hiring and training takes both time and money.

Eliminate unnecessary activities
If an activity doesn’t add value, cut it. I guarantee that your team completes work
daily that is almost entirely unnecessary. Such pointless jobs often stem from
“the way we’ve always done it” or a lack of automation. If a redundant task is
manually completed, automate it. Occasionally you’ll discover that you can
completely remove the activity from your process with no impact. Here are some
issues that arise when you start eliminating unnecessary activities:

 » Pros: Eliminating unnecessary activities is one of the easiest steps you can
take to reduce waste. Just give your engineers permission to stop doing work
that doesn’t matter. If an activity turns out to matter after all, you can always
add it back.

 » Cons: Make sure that you understand the problem and the solution before
you automate a fix. The wrong solution can create a problem that’s much,
much worse than the waste it was meant to fix.

Provide a buffer
Make your team asynchronous. That is, if a single point in your development cycle
requires waiting, put enough buffer work in place for the engineer or team to be
doing something while they wait. For example, you should have a backlog of
engineering work that needs to be completed, but not urgently. Often this backlog
will include technical debt — work that was deprioritized or deferred in order to
make deadlines. (Technical debt includes work like refactoring a poorly
implemented function, adding tests to ensure functionality and consistent
performance, and creating shared libraries to eliminate duplicate functionality.)
Another option for creating a bottleneck buffer is to encourage engineers to learn
new skills or experiment with new technology while they’re waiting. Here are
issues to consider when providing engineers with work to do while waiting:

 » Pros: If you can’t remove a bottleneck, having a buffer is a good solution to
make the entire production system work together. You still want to try to
eliminate the bottleneck at some point, but the buffer buys you some time.

CHAPTER 3 Identifying Waste 41

 » Cons: Context switching can absolutely crush productivity, and although a
quick fix can be addressed while waiting, this is not the time to throw extremely
complicated problems at your engineers. Make sure to break extra tasks into
manageable pieces.

Ultimately, the best way to prevent bottlenecks is to train your engineers on every
aspect of the process. No, I don’t expect developers to be experts in Kubernetes.
I also don’t expect operations folks to be pumping out features in Java every week.
But cross-training provides a certain level of adaptability that enables your
engineers to find workarounds and reduce downtime. It also reduces confusion
when work is handed off from one team to another.

CHAPTER 4 Persuading Colleagues to Try DevOps 43

Chapter 4
Persuading Colleagues
to Try DevOps

When I’m on the road a lot, talking to engineers, they often ask where
they should start. “DevOps sounds great,” they say, “but what’s the
first step?” or, “My boss has decided we should ‘do the DevOps,’ and

has reorganized us into a DevOps team, but what are we supposed to be doing?”

Everyone’s DevOps journey is different —unique to you as an individual, to your
team, and to your company. You will pick and choose (to a certain extent) which
aspects of DevOps will benefit you most and apply those aspects to your team. One
thing is certain, however: You can’t go it alone. Your DevOps transformation will
fail if you attempt to force the new way of thinking onto your team without first
persuading them. You must sell your colleagues on the benefits of DevOps and
energize the organization around new possibilities.

In this chapter, you dig into why humans loathe change, work on perfecting the
art of persuasion in order to effect change, practice explaining DevOps to
leadership, and see how to respond to doubting minds.

IN THIS CHAPTER

 » Understanding the human aversion
to change

 » Persuading your peers

 » Gaining executive buy-in

 » Responding to pushback

44 PART 1 Demystifying DevOps

Fearing Change
Humans don’t like change, and the reason is based in our brains. Habits are
powerful because they’re efficient. Your brain can think less and still achieve the
same amount of productivity. Your brain is extremely proficient at processing
information.

Psychology offers information on why people resist change so strongly. Inertia is
powerful and change is expensive. People are likely to stay on the path they’re
already on because shifting that path takes quite a bit of effort. Staying the course
is much easier. When you do decide to climb your way out of your current groove,
persisting at it takes an extraordinary amount of brain energy. (Ever notice that
you’re a little more hungry when you’re learning something new?)

In addition to the inertia aspect of change resistance, two other key aspects make
people fear change. Keep both these things in mind as you go through this chapter:

 » Past experience: Every single person in your organization comes to their
job with years of history that have chalked up successes, failures, and fears.
Some people within your company have likely watched changes made in their
past workplaces succumb to failure. Failure stings. Some of your colleagues
may have even lost their job over a massive failure. Fear of repeating such
experiences doesn’t just disappear.

 » Uncertainty: Your brain is more likely to categorize uncertainty as a threat
rather than an opportunity. Evolutionarily, this tendency was important to
keep humans, well, alive, and that tendency persists even though most of
us aren’t chased by lions these days. Also, change usually doesn’t happen
overnight, which forces people to take a wait-and-see approach although
their brain desires to know the outcome now. This situation creates conflict.
Sometimes the conflict is internal as someone weighs their fear of failure
against new possibilities for success. Other times, the conflict surfaces
between people. You may adapt to change more quickly than your colleague,
and that delta in time required to transition can introduce interpersonal
friction.

Despite the natural fear of change, the capacity for change is critical to the survival
of any business. Examples abound of businesses whose internal resistance to
change sealed their eventual fate. To cite just one example: Remember Blockbuster?
(My family had a Friday night tradition of hopping in the car and heading toward
the royal-blue sign down the road. Each of us would spread out over the store,
pick our individual favorite, and then have it out over which one or two we should
rent.) At its peak, Blockbuster had nearly 10,000 stores. In 2000, Netflix offered

CHAPTER 4 Persuading Colleagues to Try DevOps 45

Blockbuster a deal to acquire Netflix for $50 million. The Blockbuster CEO declined;
Blockbuster wasn’t interested in the “niche business.” You know how that story
ended.

The leaders of Blockbuster weren’t idiots — far from it. But they, and many
others, failed to see the writing on the wall and correctly predict where the market
was headed. They also failed to communicate with customers and, ultimately,
failed to change their business to conform to what the market wanted.

Persuading Those around
You to Shift to DevOps

Empathy is a powerful tool, and showing true understanding of the fears and
doubts that people around you experience can help your DevOps transformation
succeed. Simply acknowledging the potential fears of your colleagues can go a
long way toward assuaging their anxiety and persuading them to get excited about
the new possibilities that DevOps provides.

One way of working with the natural human resistance to change is, first, to
understand and expect it (see the preceding section, “Fearing Change”) and then
to hone your skills at persuasion. I like to think of persuasion as tailored messaging.
It’s presenting an idea in a way your audience can understand. That doesn’t mean
that you have to build separate arguments and pitches for every person with
whom you come in contact. Instead, keep in mind the four most common styles of
leadership that people embody in problem-solving. Basing these styles on the
Myers-Briggs personality types, you can group people as visionaries, strategists,
administrators, or counselors. (Obviously, these categories oversimplify people,
but they enable you to ensure that your arguments for DevOps persuade even the
most stubborn.) Keep in mind the four personality types when you talk about
DevOps to your executives, peers, employees, and business stakeholders. Each of
these personality types will relate best to the following approaches:

 » Hope and imagination for visionaries: The thinkers are intellectually curious
more than anything else. They want to see the data. But they also want to
hear about a world of tech that doesn’t exist yet — a world that they have
the chance to build themselves. How has DevOps improved the processes
at other companies? What are the big advantages? After you’ve given them
enough information to get over their initial hesitation, you can think of
them as mental petri dishes. All you have to do is prime them and they’ll
inquisitively dig in further — growing your argument for you.

46 PART 1 Demystifying DevOps

 » A high-level plan for strategists: You don’t need to dig into the details for
these people. These quick-witted folks are creative problem-solvers. They are
also your risk-takers, which makes them some of the easiest to persuade.
They’ll find the change to DevOps exciting, and their natural curiosity will
energize them to your side. Just be sure to have room for them to contribute.
They’ll likely want to know how the transformation is progressing and how
they can be called on to energetically persuade others.

 » Detailed direction for administrators: The worker bees keep the hive
buzzing. These people do the work diligently and will be responsible for
carrying out the strategy set before them. They are meticulous, dependable,
and organized. Use the fact that DevOps is an incredibly practical way to
ensure that the system runs smoothly, from determining requirements to
shipping software.

 » People-centric pathos for the counselor types: Pathos — emotion —
will be the most effective persuasion tool for people who tend toward being
caregivers. They put people first, no matter what. Understanding how DevOps
helps to smoothe communication, reduce interpersonal friction, and increase
collaboration will soothe this group’s fears.

In addition to knowing how to approach the various personality types, it helps to
have a clear sense of the three main groups within your company that you’ll need
to win over to the DevOps philosophy: executives, managers, and engineers.
Figure 4-1 represents these three groups. The hourglass shape with managers in
the middle isn’t meant to suggest that the managers in your organization aren’t
important to your mission; quite the opposite: They’re critical to full adoption.
But they can be the most difficult group to persuade, so I suggest that you tackle
them last. (They’re the last to come out of the hourglass either way you turn it.)

FIGURE 4-1:
Persuading each

group in your
organization.

CHAPTER 4 Persuading Colleagues to Try DevOps 47

The reason I focus on executives and engineers first is that managers sit between
a rock and a hard place, constantly facing scrutiny from executives and mutiny
from engineers. As a result, they are naturally conservative decision-makers.
They are comfortable within the status quo because they know that any change
will ripple through them and cause strife somewhere along the chain of command.
If you can get buy-in from executives and support from engineers, managers will
have zero reason to protest. Finally, if engineers float DevOps to their managers
and expect the manager to relay the message to executives, the purity and passion
of the argument is easily lost. Direct contact between engineers and executives
prevents miscommunication and unnecessary friction introduced by fearful
managers.

For executives and engineers, you have a choice of which group to approach first.
If you’re effective, either will provide a great groundswell of excitement. Executives
will provide clout and affirmation around your vision. Engineers will provide a
massive amount of people who are more than willing to explain why they need
smoother development processes to produce better software faster. Just be careful
to focus your energy.

IDENTIFY EVANGELISTS
One of the keys for getting a DevOps mindset under way in your organization is to
identify evangelists. You can’t transform a company alone, and you certainly won’t
accomplish a full-fledged culture change by yourself. You need others to believe in the
mission you’re working toward and help you spread the message.

Beyond the obvious benefits of creating excitement and earning buy-in from your
colleagues, building a small team of evangelists hedges you against burnout. Leading
your team to the DevOps promise land is quite the journey. It’s long, exhausting, and
full of landmines. Maintaining your excitement and passion is critical to your success.
Surrounding yourself with people equally motivated toward a DevOps transformation
will keep you going.

Evangelists are people whose influence ripples out among the rest of the team. They act
as multipliers, and igniting one evangelist will earn you the support of many rather than
one. Locating potential evangelists on your team is a better way to focus your time early
on. If you face too much pushback too quickly, you risk burning out and giving up. Look
for evangelists who are different from you and can communicate well with those with
whom you may struggle to find common ground. For example, if you’re a front-end
engineer, look for an evangelist on the operations side who can talk about aspects of
DevOps that you can’t.

48 PART 1 Demystifying DevOps

Earning executive support
Of the main groups that you need to get on board with DevOps, executives may be
the most important to your cause. A DevOps transformation is nearly impossible
without their buy-in. Other groups can subvert your efforts and quietly create
friction, but executives are the only group that can squash the project altogether —
and in just a few sentences.

In Chapter 3, I talk about the various types of waste in engineering teams and
about identifying bottlenecks along your process. This information is crucial to
executive support for your DevOps transformation. Executives often focus on
vision, the big picture, but they also love data. You can hook them with your
enthusiasm and then finish selling them with data, analysis, and a plan. As Brené
Brown says, “Maybe stories are just data with a soul.”

Gaining the support of your executive leadership is a big win. You will be Sisyphus
without it. Executive leadership gives you key advantages that will help the
transformation process go more smoothly. They control budgets and team head
count (the number of people allocated to a project). They can also lend quick fixes
to conflict. Also, if you managed to convince one or two executives that DevOps is
a worthwhile cause, they will help you persuade the others from inside the
boardroom.

You need more than vision to convince these folks. You also need to tap into their
dreams for the company, as well as their fears. Think of the pressure your
executives are under from a public perspective. Your CEO can’t be the one to lose
the company. Your CTO can’t afford to lose out to your competitors. You can
acknowledge those fears and use them to tap into executives’ emotion and hook
them. Then you can provide the supporting evidence.

Every year, DevOps Research and Assessment (DORA) releases the State of DevOps
Report (https://cloudplatformonline.com/2018-state-of-devops.html). It
provides diligently collected and analyzed data from the tech industry and provides
rich data for you to use in your argument for DevOps. According to the report, elite
performers — companies who deploy on demand and generally recover from
incidents in under an hour — outperform companies that have low DevOps
adoption by significant amounts.

In 2018, Elite DevOps organizations

 » Deployed code 46 times more frequently

 » Had a 2,555 times faster lead time from commit to deploy to production

 » Recovered from incidents 2,604 times faster

https://cloudplatformonline.com/2018-state-of-devops.html

CHAPTER 4 Persuading Colleagues to Try DevOps 49

Creating a groundswell in
the engineering group
I like the word groundswell because it embodies the imagery to think about as you
advocate for DevOps within your organization. A groundswell is a series of tightly
grouped waves — adored by surfers — that last more than 15 seconds and are
caused by a storm thousands of miles away.

Imagine sitting on a calm beach and then seeing a slow momentum building in
the water, eventually rushing toward shore. It’s unstoppable. That is the power
your team of engineers will give you if they adopt your view of DevOps and buy
into the culture, the philosophy, and the approach. I use three tactics when
approaching (sometimes doubtful) engineers about a DevOps transformation:

 » Ask questions. What are your engineers struggling with right now? Find out
where their pain points are, and then discuss how DevOps may be able to
address them. If they’re already doing well with code management, releases,
and production deploys, talking about continuous integration and continuous
delivery won’t get you the traction you need. Instead, talk about how annoy-
ing it is for developers to go through an operations person to get certain log
files and application performance data. Or how frustrating it is that a handful
of ops folks are on call and engineers don’t contribute to maintaining the
applications and services they build. (See Chapter 19 for how those issues are
handled, or don’t even occur, in a DevOps system.)

 » Offer concrete suggestions. Engineers like evidence. They also like to see
you’ve thought about how to address issues before talking about them. If
you go to the engineers with a bunch of lofty ideas and no execution strategy,
the conversation might not go the way you expect it. Instead, think through
which challenges you want to tackle first. If you’ve identified waste in your
development process (explained in Chapter 3), you have a good idea of
where the low-hanging fruit is. If you haven’t taken the time to look at
potential bottlenecks, take a good guess and come up with a few DevOps
approaches to improving the current situation.

 » Encourage your engineers to experiment. The best part of persuading
your company to adopt DevOps is that you don’t always have to do it with
words. Instead, you can simply start practicing the philosophy and approach.
Allowing engineers to experiment through small projects allows them to
experience the visible difference firsthand. Sometimes it’s best to beg for
forgiveness instead of asking for permission. Just do it. Keep it small and
be sure to brag about how awesome your little experiment went.

50 PART 1 Demystifying DevOps

Managing the middle managers
Middle managers often comprise the most difficult group of people to convince
that DevOps is a smart approach to software development. They were promoted to
their current position because of their prior work, so getting them interested in
shifting directions from the path that has brought them success can be a tall order.

Kodak serves as a great example of this challenge. Before it became a dinosaur,
Kodak was a highly inventive company. It consistently adopted new technologies
quickly, including digital technologies in photography. Part of Kodak’s problem,
though, was that its advances were too spread out through the market. People —
even employees — simply couldn’t see how innovative Kodak was because the
company’s small, yet impressive, innovations were hidden in a vast web of
products. The company lacked focus and an organized strategy.

When George Fisher came on as CEO at Kodak, he moved everything into a single
division whose sole purpose was to launch new products. Internally, Fisher faced
pushback for his “aggressive” strategy. Middle management never got on board.
They fundamentally didn’t understand that the industry was shifting and Kodak
was quickly losing market share. The situation was urgent and needed quick
action to mitigate. Yet the Kodak middle managers felt threatened by the changes,
and their resistance was one of the last nails in Kodak’s coffin.

Middle managers matter. A lot. They’re the individuals who will pass the vision
of the executives down to the engineers who are closest to the keyboard. They’re
also the intermediaries who help executives understand what is and isn’t possi-
ble from an engineering perspective, so getting them on board is important. Still,
I suggest that you work on persuading this group last. The process of convincing
them will flow much more smoothly if you take advantage of the peer pressure
from the other groups. Get executives and engineers excited about the potential
problem-solving that DevOps brings to your organization and then capture the
attention of managers. After you have everyone else on board, it will be an
easy sell.

Persuading the stubborn
So, how do you persuade the executives, engineers, and managers who remain
stubbornly resistant? I once read about a sales approach that involved identifying
two people in any room you enter. One of those people is your advocate — the
person who will pull for you, speak for you, and protect your point of view in
meetings to which you won’t be invited. The other is the person who is the least
impressed with you. That person will quietly argue against your suggestions.

CHAPTER 4 Persuading Colleagues to Try DevOps 51

I try to apply that technique, and although I don’t always get it right, it’s an
interesting exercise to try it. Some of your colleagues are likely to be on your side
immediately. They’ll be thinking, “Wow! Fewer ineffective meetings and stressful
deploys, less downtime, more cooperation, and faster development? Where do
I sign?”

Others, however, will be extremely slow to come around to your way of thinking.
They’ll drag their feet and suggest alternatives. They’ll wonder how your
suggestions are any different from the thousands of approaches they’ve seen
companies adopt before — approaches that have either failed miserably or not
produced impressive improvements.

Look at the situation from their point of view. What’s the point of putting in all
this effort for minimal results? From their perspective, the company might as well
keep going in the direction it’s currently headed, and keep doing things the way
they’ve always been done. After all, the company’s situation is not that bad. It
deploys good software. It has bugs, sure, but doesn’t everyone? The customers are
mostly happy. What’s the impetus for changing?

Well, you can supply them with all the facts you’ve learned after you’ve completed
this book.

Or you can choose not to do that. Seriously, at some point you may have to decide
to abandon your persuasion efforts and simply get on with implementing changes,
adopting new practices, and automating manual tasks. Where that point is,
exactly, will depend on you and your company. But you’re likely to know when
your ideas have gained enough of a foothold to make turning back the tide
impossible, such as after you’ve convinced 70–80 percent of the key influencers
in your company. But you’ll know. You won’t be able to get everyone excited about
these ideas, and that reality has nothing to do with your presentation or the
merits of DevOps. Some people are simply stuck in their ways, and no amount of
groundswell or data will change that fact.

Understanding the Adoption Curve
Sociologists use adoption curves to model how people adopt new innovations.
Though adoption curves have been adapted for many industries and purposes over
the years, the clusters of adopters were first grouped by agricultural researchers
George M. Beal and Joe M. Bohlen in their 1957 paper The Diffusion Process on how
innovative farming practices are adopted.

52 PART 1 Demystifying DevOps

The original curve clustered people into five groups: innovators; early adopters;
early majority; majority; and non-adopters. The original names were meant to
associate the groups with the overall adoption by the larger population. For
example, “early majority” refers to the group that sits at the cusp just before the
majority of the population has adopted the innovation.

After the work of Beal and Bohlen, Geoffrey Moore popularized the adoption
curve for tech by in his book Crossing the Chasm. The numbers at the bottom of
Figure 4-2 refer to the percentage of the population. Trendsetters and early
adopters represent about 30 percent of total adoption, whereas the late majority
adopter group represents almost 80 percent adoption.

For Figure 4-2, I’ve tailored the adoption curve to DevOps to show you how you
can expect your colleagues to warm to DevOps as you persuade them. The early
innovators, trendsetters, and trailblazers in your organization will dive head first
into DevOps without a care in the world. Others will follow them soon after. Later,
after you’ve built some momentum with your new system, you’ll see the early and
late majority join the club. At that point, you can feel confident that DevOps will
embed itself in your company regardless of whether the curmudgeons get on
board.

FIGURE 4-2:
The DevOps

adoption curve.

CHAPTER 4 Persuading Colleagues to Try DevOps 53

COMMUNICATING THE MESSAGE
The “people” aspect is the largest and most important part of DevOps. And yes, if you’re
technical, the emphasis on persuasion skills can feel a bit juvenile — maybe even
beneath you. You’re not an outlier in feeling like that. In my experience in working with
organizations, a lot of engineers have that reaction when they start digging into DevOps.

But my job with this book is to arm you with the tools you need to successfully
transform your organization to one that follows DevOps principles, and persuasion is
one of the biggest tools you’ll need in your arsenal. DevOps is a huge, encompassing
philosophy that, like Agile, you can apply in a thousand ways. The application and
implementation of DevOps is far less important than the outcomes. Your outcomes
depend heavily on your customers, your current culture, and your industry. Your job is
to understand all the aspects of DevOps, choose the parts that work well for you, and
then put the other pieces to the side. Your choices don’t have to be permanent. Nothing
is. But those choices will allow you to focus on the pieces of DevOps that are most likely
to give you the best outcomes.

When talking to anyone at your company about DevOps, remember that so much of the
philosophy is about collaboration. There is no one-size-fits-all approach. There also
aren’t any must-haves or requirements. So be open to suggestions and allow flexibility
in your approach, and you’ll be amazed at how much consensus you can build rather
effortlessly.

In park management and transportation planning, natural paths formed by erosion
from animals or humans walking over the same piece of soil over and over and over are
called “desire paths.” They form naturally along the paths that are the most efficient.

Communication tends to follow similar patterns to such desire paths. It’s difficult to
predict who will jell most with others on a team and who will communicate most
seamlessly. That knowledge comes with observation over time. Yes, some people seem
to be natural communicators, but effective communication is also a learned skill — one
that you or anyone can master with practice.

If persuasion isn’t your natural talent, don’t worry. Remember to identify evangelists
(see the “Identify evangelists” sidebar, earlier in this chapter) and know that leading
your team in a DevOps transformation doesn’t require a natural propensity toward
 persuasion or oration skills. Most of the conversations you’ll have over the first

(continued)

54 PART 1 Demystifying DevOps

Pushing for change
Gartner, a technology research firm, created the graphic presentation of what it
calls the hype cycle, representing the stages of maturity and adoption of specific
technologies.

You can see a version of Gartner’s hype cycle displayed in Figure 4-3. Though the
hype cycle is generally used to describe the public’s perception of a technology,
I believe that it also applies to what you may feel during the first few months of
introducing and implementing DevOps. The cycle has five main phases:

 » Trigger: The project kicks off. You’ve made no major changes yet and haven’t
received feedback.

 » Peak of Inflated Expectations: You’re beginning to talk to some people and
have generated excitement. Everyone seems to love the impact that DevOps
could have on the team, and you’re expecting a relatively frictionless cultural
transformation.

 » Trough of Disillusionment: Curiosity and excitement begin to wane. The
reality of implementation complications and failures are beginning to weigh
on you, and you’re receiving more executive pushback than expected.

 » Slope of Enlightenment: The realities and hardship of transforming your
organization into a DevOps culture are leveling, and the team begins to have
a clearer vision of what needs to be done. You’ve received some excellent feedback
and know how to get the team to work together to iterate and improve.

part of this transformation will be with one or two people. You’re most likely not pre-
senting to large audiences. But you should do two things before you approach a col-
league about DevOps:

• Prepare: Know whom you’re talking to and do your best to predict their concerns
or questions. That way, you can be prepared for anything that comes up. If some-
thing unexpected happens, simply say, “That’s a great question. Let me do some
research and get back to you.”

• Practice: Know what you want to say, how you want to say it, and — most
important — the one thing you want your audience to leave thinking. Jot down
what you want to say. Write it out word for word, make bullet points, or do
 whatever else works best for you. It may feel silly, but stand in front of the mirror
and imagine talking to one of your colleagues or an executive. Practice helps you
feel more confident before you ask people to adopt a new development
philosophy.

(continued)

CHAPTER 4 Persuading Colleagues to Try DevOps 55

 » Plateau of Productivity: Production and emotion level off into a steady state
of continual improvement. You’re on your way and can see small but impor-
tant changes taking place.

Expect a surge of excitement at the beginning of your mission. If you can get
through the trough of unexcited (and often messy) conversations about what
exactly is needed, you’ll begin to see the progress you want. By then, you’ll have
the executive buy-in, engineering groundswell, and management adoption needed
for your DevOps transformation process to enter a steady state.

Don’t give up. Feeling frustrated is natural. You might even think about quitting,
which is also normal. Going with the flow and allowing inertia to determine your
future are so much easier. But making your job awesome is your job, and I believe
in your ability to transform your organization in a meaningful way for you, your
colleagues, and your customers.

Responding to pushback
Pushback will be a natural part of taking on the challenge of transforming your
organization’s culture into a DevOps organization. Sometimes the pushback is
quiet; at other times, it’s loud. No matter how the pushback happens, expect that
people will push back against the idea of DevOps from all departments and groups
of the company: sales, marketing, engineering, business stakeholders — you
name it. The reasons will vary. Some people will have valid concerns; other rea-
sons will be absolutely outlandish. Most will be rooted in fear.

FIGURE 4-3:
My version of

Gartner’s hype
cycle, applied to

the initial phases
of DevOps
adoption.

56 PART 1 Demystifying DevOps

Navigating the chasm
Earlier in this section, I present an adoption curve (refer to Figure 4-2). Geoffrey
Moore popularized the adoption curve and highlighted the most vulnerable portion
of the innovation adoption life cycle in Crossing the Chasm. The chasm is a portion
of the adoption curve between the early adopters and the early majority. This is
where you’ll experience a tipping point of adoption just as you reach the Trough
of Disillusionment in the Hype Cycle (refer to Figure 4-3). Dealing with this
chasm, depicted in Figure 4-4, is perhaps the most challenging portion of DevOps
adoption. At this point, you experience either full executive support or a
groundswell of engineering excitement but have yet to hit majority adoption.

Early adopters enjoy being first, and because of that added advantage, they don’t
care as much about the details. On the other hand, the folks in the early majority
want to know that DevOps actually works. They may need some additional evi-
dence. If you get stuck in this chasm, I recommend that you take your small band
of innovators and early adopters and start practicing DevOps yourselves. Encourage
engineers to experiment with the possibilities. Show them how much DevOps can
improve productivity and collaboration. Most of all, don’t get discouraged. Rely on
the information this book arms you with. Part 2 looks at the entire software deliv-
ery life cycle linearly to equip you with what you need to inject DevOps along every
stage of software development. In Part 3, you see how to connect the circuit and
transform that linear pattern into a cycle of continuous improvement focused on
the customer. Along the way, you discover everything you need to move from the
persuasion phase to the implementation phase of a DevOps transformation.

Asking “Why?”
You may have heard about a technique known as the 5 Whys, an exercise to
uncover the root cause of a problem. This exercise was — surprise! — developed
at Toyota. It’s often seen in kaizen, lean manufacturing, and Six Sigma — all of

FIGURE 4-4:
The chasm in

the DevOps
adoption curve.

CHAPTER 4 Persuading Colleagues to Try DevOps 57

which are approaches to project management. Although the “root cause” concept
is an antiquated approach to post-incident reviews (refer to Chapter 18), the 5
Whys technique is still a useful way of thinking through problems.

For an example of using the 5 Whys technique, imagine that someone expresses
doubts over DevOps. Here are some “why” questions to ask, followed by possible
answers (you’re not restricted to just five):

 » Why are you hesitant to adopt DevOps? Because I’ve seen Agile fail. What’s
the difference?

 » Why did Agile fail? Because we went through the motions but never truly
embraced an agile approach to software development.

 » Why did your team struggle to become agile? Because sales and marketing
determined the release schedule and we had no insight into customer
feedback.

 » Why couldn’t you talk to other departments or customers? The product
owners acted like gatekeepers and everyone stayed in their silos.

 » Why couldn’t we learn from that failure and invite sales and marketing
to our team meetings? That might help them get insight to the challenges
of engineering.

 » Why don’t we use feature flags to ensure that products are released
at a regular cadence for sales engineering but that we can adopt for
continuous delivery? That might actually work. (Refer to Chapter 11 for
more information on continuous delivery and feature flags.)

Rarely do problems present themselves in an obvious way. Instead, someone may
appear to be hesitant about DevOps but is actually worried about automating
themselves out of a job. Or they don’t want to put energy into something, only to
have a manager tell them “no.” Digging into the underlying fears that buttress
your opposition gives you insight into how to best address the concerns and unify
the team.

If you come up against someone who is vehemently against DevOps — either sub-
verting your efforts or openly challenging you — don’t take those reactions or
challenges personally. They’re most likely driven by fear: of the unknown, of
failure, of success, of becoming irrelevant. Showing empathy for that person’s
fear and gently trying to discover the root of it can persuade all but the most cyn-
ical engineers on your team.

CHAPTER 5 Measuring Your Organization 59

Chapter 5
Measuring Your
Organization

When considering how to make improvements in your organization, you
can easily get a bit overwhelmed or, after deciding on a plan, you can
want to jump in all at one time. It’s a bit like setting a New Year’s reso-

lution to lose 15 pounds: You’re tempted to cut calories dramatically and head to
the gym every day. Although such an approach may seem ideal, it’s likely to be
unsustainable. For most people, it’s too much change, too fast. DevOps
transformations are a bit of the same. You have to leverage small wins and build
momentum.

In this chapter, I suggest ways to get a baseline idea of where you’re starting from
and track your progress as you continue implementing DevOps. You also find out
specific questions for employee surveys and understand the difference between
quantitative and qualitative case studies.

Measuring Your Progress
A popular meme is floating around the Internet about the difference between what
you think success looks like and what it looks like in practice. In Figure 5-1, you
find my version of that meme. Your DevOps transformation will not be a straight

IN THIS CHAPTER

 » Gauging your progress

 » Quantifying DevOps

 » Creating DevOps case studies

60 PART 1 Demystifying DevOps

line to success. You will have victories, setbacks, and headaches. At some moments,
you’ll want to throw your computer out the window. (But you’re an engineer, so
you’re used to this.) Just keep with it.

Before you start adopting practices and implementing changes, you want to be
sure to have a baseline from which to measure your success. This idea is similar to
some types of medical tests. Every year when you go in for your annual checkup,
you most likely get your blood drawn. Your doctor doesn’t order this test because
something is wrong, but rather to establish your baseline numbers for comparison
year over year. That way, if something jumps or drops unexpectedly, you know
what’s “normal” for you and what needs additional follow-up.

I’m extremely hesitant to list a series of key performance indicators (KPIs) for you
to track. The reason for my reluctance is Goodhart’s law. Named after economist
Charles Goodhart, this law states that when a measure becomes a target, it ceases
to be a good measure. Goodhart wrote about the topic in his 1981 paper, “Problems
of Monetary Management: The U.K. Experience.” (He included this paper as a
chapter in his book, Monetary Theory and Practice, in 1984.) He stated, “Any
observed statistical regularity will tend to collapse once pressure is placed upon it
for control purposes.” (I like the layperson’s version better.)

This idea contrasts with the thinking of Peter Drucker, a famous American
management consultant, who consistently stated that what isn’t measured can’t
be managed. The clash between Goodhart and Drucker leaves you and everyone
else in a bit of a crunch. Should you measure or not?

I think there’s a tension between these two positions that is right where you want
to sit. It’s a bit like tight-rope walking on a piece of floss. You’re going to fall off
occasionally. I have a friend, Reverend Jasper Peters, who always says we should
hold things with an open hand. I really like that phrase. If you’ve ever played with
fireworks, you know the difference between a closed palm and an open palm if
something goes wrong and a firework goes off in your hand. One leaves you with
burns; the other takes off your hand. The same applies if you’ve ever been on the
receiving end of a punch. (This got dark.)

FIGURE 5-1:
The picture of

success.

CHAPTER 5 Measuring Your Organization 61

But the answer to whether you should measure your progress is yes. You should
track performance metrics, too. But hold those measurements with an open hand.
In other words, use them as points of reference that give you some perspectives
(among others) of your success or failure.

I do list some KPIs in the next section that you can consider tracking when you
first get started. As I say elsewhere, however, you should never use these KPIs to
measure individual or team performance in a review of any kind. Nor should you
tie bonuses or other monetary incentives to these measurements. That’ll get you
bad results in a heartbeat. Also, like the Constitution, these KPIs are akin to a
breathing, living document. They should evolve.

Do not feel limited by suggestions, nor should you feel that you must track each
and every one. They are a sampling upon which to build your internal DevOps
culture and measure your team’s progress. Add, remove, play, experiment. Have
fun! (And if you just snickered at the thought of work being fun, we have work to
do, my friend.)

Quantifying DevOps
If you’re unsure of the meaning of any of the terms in this section, don’t fret. Nor
should you worry if you aren’t sure whether your company needs to improve in a
certain area, or how to implement a change. The information in this section is
meant to be a starting list for you to begin to track your progress.

Note that I divide potential measurements by people, process, and technology.
This is the tripod of DevOps, and you’ll see this pattern repeat itself in this book
and within the DevOps community.

People
Your team should be your first priority. Ensuring that they’re happy and fulfilled
with their work, as well as that they’re using their time productively, should drive
your initial data collection. But don’t forget about your customers! They do pay
the bills, after all. You want to ensure that customer satisfaction ranks high and
stays high.

 » Employee satisfaction: Survey the team. Are they happy? What do they
love about their job? Where do they see room for improvement? Keep it
anonymous and keep it open-ended. Allowing people to comment in a
free-form manner in the beginning will help inform you on what you should
be tracking in a more quantitative sense throughout the process.

62 PART 1 Demystifying DevOps

 » Average meeting cost: Engineers are expensive. Try running this experiment:
Next time you have a requirements meeting or a sprint planning meeting, add
up the estimated hourly salary of everyone in the room. Then multiply that
number by the total time of the gathering. The number will be big. Endless
meetings are a sign of poor collaboration, distrust, and an ineffective process.
You can never eliminate meetings entirely, but watch the length of time you
take engineers away from their desks. If such activities aren’t adding value, cut
them.

 » Customer usage: How many users did you have sign up this week? How
many cancelled their accounts? Do the cancellations track against any new
feature release, or an outage? What features do customers use the most?
Do you have some features that almost no one uses and that should be
deprecated? Maintaining code is expensive. Here are a few terms regarding
customer usage that are worth keeping an eye on:

• MRR: Monthly recurring revenue

• MRR churn: Monthly recurring revenue lost from customers who cancel

• Contraction: Customers who downgrade their paid plan

• Expansion: Customers who sign up for a more expensive plan

 » Number of customer tickets: Typically, customers call only when some-
thing’s wrong, so the number of calls is a good general measure of how
intuitive your site is and how good your documentation is. Find out which
areas of the site are difficult to use or which features are the least helpful.
Identify which services are brittle or slow.

 » Customer satisfaction: Sometimes referred to as CSAT, customer feedback is a
key indicator for you. Determining your customer satisfaction can involve simply
asking customers whether they’re satisfied with the overall service or if they felt
happy with the level of support received during a customer support call.

Process
Procedure drives much of your daily work. After you measure people, measuring
the processes you’ve developed as organizational habits will help you determine
where you’re succeeding and where you need improvement.

 » Deployment frequency: Do you deploy every day? Multiple times a day?
Maybe every week or every month? Every . . . (shudder) year? Often, the
continuous delivery approach is the lowest-hanging fruit at a company when
they first decide to adopt DevOps as an engineering process. (I tell you about
continuous integration/continuous delivery, or CI/CD, in Chapter 11.)

CHAPTER 5 Measuring Your Organization 63

 » Size of deploys: Tracking the size of your deploys is tied very closely to
deployment frequency. Typically, infrequent deploy schedules hint at large
deploys. The larger the deploy, the more likely it is for something to go wrong,
and the harder it will be to identify what exactly may have caused the error.
Small, frequent deploys are ideal.

 » Deployment length: How long does actually releasing software to your
customers take? Seconds? Minutes? Hours? Is it a manual process? Can
developers release their code to production or does someone from opera-
tions have to initiate a deploy? I dig further into the topic of speeding up
your deployment time in Chapter 11, but you want to automate deploys as
much as possible. It eases the burden and removes some opportunity for
error.

 » Defect escape rate: How many bugs do you find in production after going
through automated testing and a review by QA?

 » Recurring failures: How often do bugs show up twice (or more)? Recurring
failures are a sign of bugs slipping through the cracks. It could be that bugs
aren’t tracked well, aren’t fully fixed, or aren’t thoroughly tested.

 » Lead time: How long does your team take to develop software? In other
words, how much time passes between when you start work and when you
deploy to production?

 » Mean time to detection (MTTD): How quickly do you determine that
something went wrong? Waiting for 100 customers to notify you on Twitter
that your site is down is not an ideal way of discovering a problem. MTTD
measures the time from when a problem begins to impact customers to
when you discover it.

 » Mean time to recovery (MTTR): Related to MTTD, MTTR averages how
long you take to recover from a failure from the time it began to impact
customers to the time you put a fix in place. MTTR uses an arithmetic mean,
which assumes a normally distributed data set. The flaw of MTTR (and using
any one measurement to evaluate performance) is that one major incident
can make your MTTR plummet and skew your data inaccurately.

Technology
The technology and automation tools that you utilize in your system will determine
the remainder of what data you should track, including test coverage, availability,
reliability, error rates, and usage:

 » Automated test coverage: How much of your application is tested? Are all
the tests valuable in that they test something real? Does your test suite

64 PART 1 Demystifying DevOps

include only happy path tests (verifying expected functionality with expected
inputs) or does it also include sad paths (validating how a function handles
unexpected behavior)? Does someone write a test every time a bug is fixed?

 » Availability: What is the uptime of your application? Often, companies have
a service-level agreement (SLA) with customers that addresses uptime and
availability. Are you meeting the expectations set by your SLA?

 » Failed deploys: How many deploys go awry? How many cause incidents?
Do they ever cause an outage? Which services are affected if a deploy causes
service to be disrupted? Are you prepared to roll back any deploy quickly?

 » Error rates: How many exceptions get thrown in production? It’s a good idea
to track database connections, time-outs, and other errors. An application
performance management (APM) tool can help you identify which areas of
your application are providing a suboptimal experience for your customers.
Datadog, New Relic, Dynatrace, and AppDynamics (along with other competi-
tors) all provide APM services.

 » Application usage and traffic: Along with error rates, application perfor-
mance management (APM) can help you track how much traffic your site is
experiencing. Often, a surge of traffic or a sudden dearth is a sign that
something might be wrong. As microservices (covered more in Chapter 20)
become more popular, it’s important to track dependencies. One critical
service can impact others and have a cascading impact on your site’s
availability.

Collecting the data
It’s extremely common for engineering teams to have absolutely zero data on
their current performance. How long does a deploy take on average? No one
knows. What’s the monthly recurring revenue of your most popular application or
service? Anyone’s guess. What’s the average weekly cost of meetings on your
team? Uhhh . . .

If what I just described sounds a lot like your current team, don’t worry too much.
Again, you’re in the majority of teams. But you don’t want to be average, do you?
You want to be the best. And to be the best, you’ve got to measure your actual
output. You need to track your performance as an engineering team.

DevOps emphasizes metrics not as a measuring stick against some abstract
version of success or failure but instead to inform you on how to keep making
continuous improvement.

CHAPTER 5 Measuring Your Organization 65

I recommend automating as much data collection as possible. You should also
 collect as much data as you can afford. You don’t have to start collecting data on
every metric described in the previous section tomorrow. Such a goal would be
overwhelming and likely impossible. Instead, pick one to three metrics to focus on
and work on setting up automated data collection.

These analytics will inform your continuous improvement. You can track them
slowly over time and see how far you’ve come since you started.

If you still have some folks in your company who need convincing of the effective-
ness of DevOps, this data will be an absolutely priceless tool for winning them
over.

MAKING INCREMENTAL CHANGES
DevOps transformation is not an overnight process. After you begin applying DevOps
principles, it will be weeks or months before you see measurable progress. Just as you
wouldn’t expect to lose 15 pounds overnight (that would be more concerning than
elating), you shouldn’t expect to see massive changes in your organization too quickly.
But after you hit a stride, you’re likely to see consistent improvement.

Many of the foundational principles of DevOps — trust, rapport, respect — take time to
build. You can begin to influence this behavior through process, but much of it requires
space and time — for your employees to step away from their desks, get to know each
other, and talk about things. Some of the topics they talk about will relate to work; some
of them won’t, but all of it will be valuable.

Think about having to receive bad news. Say that the project you’ve been working on for
three days needs to be scrapped. How would the conversation go if your best friend
told you about this situation? What about a stranger? Chances are that the conversation
with the former would be much more respectful than with the latter. When you have
rapport with someone, it’s easier to not take things so personally and instead focus on
the facts. You don’t feel the need to defend yourself because you know you’re safe. Your
friend knows you and loves and accepts you. That’s the mindset you want your
engineers to have with each other.

Of course, not everyone’s going to love and adore each other. People are people, and
some people just don’t get along. You can, however, inspire mutual respect and
understanding in any scenario.

66 PART 1 Demystifying DevOps

Developing internal case studies
One approach that can be extraordinarily helpful in building up morale internally
and showcasing improvements externally is to create internal case studies. If you
decide to go this path, the impact will far outweigh the time you invested in
 building the case studies.

You can create a case study out of literally any metric. The general process involves
choosing a metric that you want to measure, tracking progress, establishing your
current baseline, and collecting data as you slowly improve your performance.

I highlight two potential case studies in this section. I mean these not as a
 prescription but rather to inspire you to think about how you can group certain
metrics and begin to link the impact of one activity on another. As you begin to look
at your engineering organization more holistically, you’ll start to see just how much
influence one activity has on others. Negative cascading effects can cost your team
in morale, time, and resources, not to mention their impact on the customer.

A qualitative case study: Focus
on your employees
For a qualitative case study, you focus wholly on your engineers’ satisfaction with
their jobs and perceived level of collaboration.

Measure employee satisfaction

To measure employee satisfaction, create an open-ended survey and send it to
your employees. The first time you do a survey like this, give ample opportunity
for employees to speak their minds freely through comments to help you uncover
areas that are ripe for improvement but that you may not have expected.

Following are questions to start with, but tailor them as you see fit. Be sure to
emphasize that the survey is anonymous. Ideally, no one will be able to tie specific
answers to an employee. If avoiding that situation is absolutely impossible, opt to
have a single person oversee the process of removing identifying information.

Here are the questions I suggest you ask:

 » On a scale of 1–10, how do you rank your pride in working at this company?
What would make you feel more proud, inspired, or happy at work?

 » On a scale of 1–10, how do you rank your feelings of empowerment and
autonomy to make decisions at work? What would improve your score?

 » On a scale of 1–10, how do you rank your supervisor’s performance? What
would improve their ranking?

CHAPTER 5 Measuring Your Organization 67

 » On a scale of 1–10, how comfortable do you feel asking for help when you
need it? What stops you from asking for help? What would make you feel
more comfortable?

 » On a scale of 1–10, how do you rank this organization’s leaders at informing
you about mission, vision, and values? How could this be improved?

 » On a scale of 1–10, how satisfied are you that you receive appropriate
recognition for good work? What else do you want us to know?

 » What do you think is working well?

 » In which areas do you see room for improvement?

 » Is there anything else you think this survey should have asked?

Calculate average meeting cost

Over the course of two to three weeks, track the time spent in various meetings.
Estimate the average hourly salary of everyone in the room and multiply that
number by the number of hours you spend gabbing to each other in a conference
room. You’re only estimating, and you don’t need to have actual salary information.
The purpose is to discover a baseline of meeting costs, and estimations will serve
you plenty well enough.

Also, your goal here isn’t to eliminate meetings. Some level of communication is
critical to passing information effectively. You’re extremely likely, though, to
have plenty of meetings that don’t create impact, either for your engineers or your
customers. Productive meetings should create positive output — for example,
clarified requirements and key architecture decisions.

Track development lead time

The goal of tracking development lead time is to establish your current baseline
and then slowly reduce it. This type of tracking may apply more to the long term,
but you can likely get a pretty good idea of development lead time by looking at
single features created by the team.

Look for bottlenecks along the process so that you can more easily identify how
lead time can be reduced. Here are the questions to consider.

 » Are overarching architecture decisions understood by everyone on the team?

 » Are requirements clearly stated and is context communicated to the individ-
ual developers?

 » Do junior engineers need more training on specific tools?

 » Would code reviews or pair programming increase velocity?

68 PART 1 Demystifying DevOps

 » What’s the process that a feature must go through after it has been
developed? Is there testing? A security review?

 » How often do features get kicked back to the developer from testing or
security?

 » Is the code sufficiently well documented that a second engineer could pick it
up if necessary or does the original engineer have to be the one to finish?

 » Is code deemed production-ready deployed immediately? Or is it held in a
queue for a larger release?

 » Can developers deploy their own code or do they rely on an operations
engineer?

A quantitative case study:
Home in on deployments
This case study is much more quantitative than the last. It looks at raw numbers
to give you a better idea of your team’s performance in relation to deploying
software to production. Specifically, how often do you deploy? How long does a
deployment take on average? What’s the average size of the release?

Or, collect data on deployments going forward. If you’re using any kind of release
software, such as Jenkins, you likely have (at least) weeks of data on past
deployments. If you don’t, set up some type of tooling to help you automatically
collect deployment analytics. Here are questions to consider:

 » What is the average deployment frequency? Days, weeks, or months?

 » What is the average size of a deploy? How many features or services are
impacted? Does the deploy typically affect only a single portion of the
codebase or does it often include large, sweeping changes?

 » Can you tell whether a release goes poorly? Does alerting or some way of
confirming the new software was successfully deployed take place? How can
you tell whether your application looks and behaves the same way? Do you
feel confident in your testing process or do you often have people click
around the site after a deployment to make sure it looks all right?

 » What time of day is software released? Do you have a set time? Do you
require engineers to deploy during off hours? If so, how often are you asking
people to work in the evenings or weekends for planned deploys?

 » How often do you have to roll back a deploy? Or create a hotfix? Is your team
prepared to manage problematic releases? If you can roll back, how long does
it take for the revision to take effect?

2Establishing a
Pipeline

IN THIS PART . . .

Think about the software development life cycle as
a linear process throughout which you may optimize
with DevOps by addressing concerns earlier in the
process and beginning a CI/CD practice.

Invite everyone to the planning table when first
gathering requirements and designing features for
a new product or service.

Architect your system to be flexible and resilient, and
document design decisions as you work.

Choose specific languages, frameworks, and
programming patterns to develop well-written code
that is more easily understood and maintained.

Automate testing to utilize every type of test and
ensure that code is functional across multiple
environments.

Take CI/CD to the next level and release software
using deployment strategies proven to facilitate small,
frequent releases of code with increased service
availability.

CHAPTER 6 Embracing the New Development Life Cycle 71

Chapter 6
Embracing the New
Development Life Cycle

In this chapter, I describe what’s often called the software development life
cycle, or pipeline. Although some nuanced differences may exist between the
two concepts (depending on whom you ask), I use development life cycle and

development pipeline interchangeably.

The tech industry uses the term software development life cycle (SDLC) to describe
the process from creating an idea for a new product, application or feature to
actually deploying the new software to customers in a production environment. I
actually prefer delivery over development because that word removes any implication
that developers are the star player in the software life cycle, which would reinforce
the old ideas of silos and divisions between developers and operations people.

Many iterations of the development life cycle exist, with various steps, and some
involve more steps than mine whereas others involve fewer. In this chapter, I
explain how DevOps changes the approach of the development life cycle. I also
briefly explain the various phases of that life cycle, each of which is covered in
separate chapters throughout this part of the book.

IN THIS CHAPTER

 » Understanding the steps in the
development life cycle

 » Shifting operations to earlier (“left”)
in the development cycle

72 PART 2 Establishing a Pipeline

Inviting Everyone to the Table
The most important purpose of creating the development process is that it
provides a framework for everyone to work within. Your engineers won’t
necessarily fit perfectly within one stage of the pipeline and only do that one bit
of work; that scenario would just be creating more silos, with the engineers in one
section simply doing their work and lobbing it over to the next section. That’s the
exactly opposite of what you’re trying to build.

Instead, you create a recipe for success for your team: a way of breaking down the
development process like an algorithm — or recipe — so that everyone understands
how your company and your DevOps culture develops the best software and
delivers it to your customers quickly and reliably.

This pipeline framework that you’ll develop is a process through which all your
engineers can learn new skills and pitch in at various stages. The most important
benefit of the development pipeline is that it invites everyone to the table. It gives
everyone the opportunity to get involved as they see fit and to learn new skills if
they’re interested. It also gets your team using a common language. You’ll be able
to discuss the same concepts using the same words, which is vital for smooth
communication.

Figure 6-1 shows a software development life cycle drawing often seen in DevOps.

FIGURE 6-1:
The DevOps

tool chain.

CHAPTER 6 Embracing the New Development Life Cycle 73

Changing Processes: From a
Line to a Circuit

Development processes have changed radically over the last few decades, and for
good reason. In the 1960s, Margaret Hamilton led the engineering team that
developed the software for the Apollo 11 mission. You don’t iteratively launch
humans into space — at least they didn’t in the 1960s. It’s not an area of software
in which “fail fast” feels like a particularly good approach. Lives are on the line,
not to mention millions of dollars.

Hamilton and her peers had to develop software using the waterfall methodology.
Figure 6-2 shows an example of what I think of as a waterfall development process
(occurring in a straight line), and Figure 6-3 adds the phases. Notice how the
arrows go in one direction. They show a clear beginning and a clear end. When
you’re done, you’re done. Right?

Nope. As much as many people would like to walk away from parts of their code-
bases forever (or kill them with fire), they usually don’t get the privilege.

The software developed by Hamilton and her team was a wild success (it still
blows my mind that they developed in Assembly with zero helpers like error
 messaging). Not all projects were equally successful, however. Later, where
waterfall failed, Agile succeeded. (As mentioned in Chapter 1, DevOps was born out
of the Agile movement.) Agile seeks to take the straight line of waterfall and bend
it into a circle, creating a never-ending circuit through which your engineering
team can iteratively and continuously improve. Figure 6-4 depicts how to think of
the circular development life cycle.

FIGURE 6-2:
Drawing the line

of waterfall
development.

FIGURE 6-3:
The waterfall
development

pipeline.

74 PART 2 Establishing a Pipeline

Often, the various loops prescribed by different organizations are influenced by
the products those vendors sell. For instance, if the vendor sells infrastructure
software and tooling, they likely emphasize that portion of the development life
cycle, perhaps focusing most on deploying, monitoring, and supporting your
software.

I have nothing to sell you. The stages I focus on are the ones that I saw as being
the most critical as a developer, along with the ones I see people struggling with
the most as I teach organizations to better manage their software development
and adopt DevOps.

The six stages of the software development life cycle that I highlight in this part
of the book (Part 2) are

 » Planning: The planning phase of your DevOps development process is
perhaps the most key to your DevOps mission. It sets you up for success
or failure down the road. It’s also the most fertile time to bring everyone
together. By everyone, I mean business stakeholders, sales and marketing,
engineering, product, and others. Chapter 7 covers the planning phase.

 » Designing: In most companies, the designing phase is merged into the coding
phase. This monstrous amalgam of design and code doesn’t permit a separa-
tion of the architectural strategy from implementation. However, if you leave
things like database design, API logistics, and key infrastructure choices to
the end of the development pipeline — or, perhaps worse, to the individual
developers working on separate features — you’ll quickly find your codebase
to be as siloed as your engineering team. Chapter 8 covers the designing
phase.

FIGURE 6-4:
Creating a circuit.

CHAPTER 6 Embracing the New Development Life Cycle 75

 » Coding: The actual development of features is the face of the process
and gets all the glory. But I argue that it’s one of the least important steps
in your development life cycle. In many ways, it’s simply the execution of
the preceding areas of your pipeline. If done well, coding should be a rela-
tively simple and straightforward process.

Now if you’re a developer and just gasped at that last sentence because
you’ve dealt with hundreds of random and difficult-to-solve bugs, I know how
you feel. Coding is hard. Nothing about software development is easy. But by
mastering the planning, design, and architecture (and separating them from
the actual implementation of code), you ensure that the hardest decisions of
software development are abstracted away. Chapter 9 discusses the coding
phase.

 » Testing: Testing is an area of your pipeline in which engineers from all areas
of expertise can dive in and get involved, enabling a unique opportunity for
learning about testing, maintainability, and security. There are many different
types of tests to ensure that your software works as expected. Chapter 10
covers various types of tests for this phase.

 » Deploying: Deploying is the stage that is perhaps the most closely associated
with operations. Traditionally, your operations team would take the code
developed by your developers and tested by your quality assurance (QA)
team and then release it to customers — making them alone responsible for
the release process. DevOps has had an enormous impact at this phase of the
development process. Also, deploying is one of the areas from which to find
the most automation tools to pull. From a DevOps perspective, your priority
is simplifying the deployment process so that every engineer on your team is
capable of deploying their code. This is not to say that operations doesn’t have
unique knowledge, or that operations teams may be disbanded.

Operations folks will always have unique knowledge about infrastructure,
load balancing, and the like. In fact, removing the manual task of deploying
software from your operations team will allow them to save you time and
money elsewhere. They will have the time to work on improving your
application’s reliability and maintainability. In Chapter 11, I discuss how to
smooth out your deployment process and create a continuous integration
and continuous delivery (CI/CD) environment.

The most important aspect of a delivery life cycle within the DevOps framework is
that it is a true loop. When you get to the end, you go right back to the beginning.
Also, if you receive support feedback from customers at any point along the way,
go back to a subsequent phase (or the planning stage) so that you can develop
software in a way that best serves your customers.

76 PART 2 Establishing a Pipeline

Think of the content of this part of the book as two-dimensional, and the content
of Part 3 as three-dimensional — the evolution of that pipeline or delivery life
cycle.

The first part of building a pipeline is to treat it linearly. You are building a straight
line with set stages and checkpoints along the way. Within this framework, you
can view the software development life cycle as something you start and some-
thing you finish. Waterfall lovers would be proud.

But reality doesn’t let you work in a straight line. You can’t just start producing
code, finish, and walk away. Instead, you’re forced to build upon the foundational
software you released on your first iterative loop and improve it through the
second cycle. And so on and so on. The process never ends, and you’ll never stop
improving.

This book helps you connect the start and finish of that straight pipeline so that
you begin to understand it as an entire circuit, or loop, for you to continuously
develop and improve.

DEPRIORITIZING TECHNOLOGY
(IT’S NOT HERESY!)
At every stage of this development life cycle, you will find a dozen or so odd tools all
claiming to be absolutely necessary to your success at that particular stage. Don’t get
me wrong: Tools are incredibly useful. This is why I’ve dedicated an entire section to
tooling your pipeline (which you can find in the chapters in Part 5).

Unsurprisingly, the tools are the least important aspect of building your development
pipeline. The most important facet of this process is that it is continuous. At no point
along this life cycle is your team stagnant. The fact that one engineer is releasing
software to customers doesn’t mean that all your developers have stopped coding.
Instead, everyone continuously develops, tests, deploys, and improves your software.
DevOps focuses on continuously improving and creating a pipeline, with an emphasis
on continual flow.

For now, don’t stress about the tech you’ll use. Instead, stay focused on your people and
the processes you’re building to better support those people in their work.

CHAPTER 6 Embracing the New Development Life Cycle 77

Shifting Ops “Left”: Thinking
about Infrastructure

“Shifting left” as a term first appeared in the 1990s when people realized that
waterfall development created inferior software for the market, and products that
often required expensive fixes. The problem was that testing was too far to the
right, or late, in the software development life cycle. This realization doesn’t just
apply to testing anymore. It’s important to shift ops (and other specializations)
left, too.

If you dig into other DevOps literature, you occasionally come across the phrase
“moving left” in regard to teams like operations, security, and quality assurance
(QA). This idea simply refers to moving the work completed by these teams
leftward in the development pipeline, or sooner in the process. Traditionally, the
work of operations was the last thing anyone thought of. Most of the organizations
I have worked for have involved operations only after code has been developed.
This situation is unfortunate because it strips operations engineers of their ability
to properly plan and design infrastructure to support the code.

Many failures seen in production are expensive, typically costing $5,000 per
minute. The cost of your production outage will vary, but it’s expensive no matter
how you cut it. Often the cause of an outage is a lack of consistency in your
infrastructure as well as the development process. When you bring operations into
the conversation early, you give them the opportunity to use their area of expertise
to inform the rest of the team on things to look out for and how to best prepare for
the successful deployment of software.

Shifting ops left refers largely to a philosophy of prevention rather than reaction.
You don’t wait to detect a failure and then try to fix it. Instead, you think through
the potential failures of the system and do what you can within the constraints of
your resources to prevent unfortunate surprises at the end of your delivery life
cycle — when those potential failures are most likely to impact customers.

Automated continuous testing is a critically important aspect of this approach.
Everyone on your team, especially developers creating new code, should be
 running your automated test suite throughout the entire development process.
I cover how to create an automated test suite in Chapter 10, but for now, remem-
ber that taking the time to write tests will save you hours of expensive headaches
down the road.

78 PART 2 Establishing a Pipeline

Shifting deployments left, too
Deploying continuously — meaning that developers release their software as it’s
developed — is ideal for many teams. But continuous deployment takes a great
amount of work to implement and do successfully. Don’t take continuous
deployment lightly, and realize that it’s not right for everyone. I like to tell people
to keep the idea of continuous deployment as a type of long-term goal. Like
nirvana, the point isn’t necessarily to actually get there or achieve it, but instead
to work toward it and accomplish things along the way.

One way to involve operations earlier in the process of development is to have the
operations team develop patterns and checklists to help developers design
software ready for deployment. Often, operations folks have to go through a series
of manual steps to deploy code into production. If you’re not ready for automated
releases, you should aim to transfer the steps into a checklist so that developers
can validate that their code is ready for the production environment.

In addition to using checklists, you should build the patterns set by your operations
team into your automated test suite. That way, developers don’t have to necessarily
“code better” but they can validate their work as they build it.

Automation eases the burden of shifting operations left in your software
development life cycle. Automating the consistency of the deployment process
will improve your confidence in each deployment. (Who likes to stress-sweat?)
Make each deployment environment as similar as possible within the constraints
of your resources. Do the same for development environments, testing
environments, staging environments, and production environments — including
cloud environments, whether public or private.

Mimicking production through staging
Almost all production environments are more robust than developing or staging
environments. A development environment is what each of your engineers uses to
run code on their machine as they build it. Development environments are typically
the most lightweight of all the environments. The staging environment is what
used to test (occasionally there is a testing environment as well) and validate
software before it’s released into production. Staging environments should have
as much parity with production as possible.

CHAPTER 7 Planning Ahead 79

Chapter 7
Planning Ahead

DevOps was born of the Agile movement. In fact before Andrew Clay Shafer
and Patrick Dubois decided on the term DevOps, Shafer preferred “agile
project management” — a bit of a mouthful. (Shh! Don’t tell Andrew

I said that.)

Because you’re reading this book, you’re likely somewhat familiar with the Agile
style of product management. You can think of DevOps as an evolution of Agile.
It is an iterative process that allows you to plan, develop, and release code quickly.
You adapt to changes faster in an evolving market, out-innovate competitors, and
respond to failures at a more rapid pace.

This chapter aims to help you approach planning in a DevOps organization.
Because of DevOps’s origins in Agile, you’ll notice many similarities to Agile if
your company already works within that framework. If it doesn’t, you might also
encounter more friction in implementing DevOps — even in a highly tailored
fashion for your company.

In this chapter, I discuss collecting product requirements, uniting the team around
a shared vision, and understanding your constraints.

IN THIS CHAPTER

 » Planning in a DevOps organization

 » Gathering requirements

 » Creating a minimum viable product
(MVP)

 » Designing personas to identify your
customers

80 PART 2 Establishing a Pipeline

Moving beyond the Agile Model
Agile is so generally accepted today that it’s hard to imagine a project manage-
ment style before it. Whereas Agile’s style is iterative, its predecessor’s, waterfall,
was linear. The waterfall model, described in Chapter 6, is a sequential series of
events. In the days of shippable software — think ISPs on CDs — companies had
to plan and develop software sometimes two years (or more!) ahead of a planned
release.

THE ORIGINS OF AGILE
Agile was born from frustration with the waterfall model’s inflexibility and constraining
framework. In the 1990s, the software ecosystem changed and the management
approach needed to change with it, resulting in the emergence of scrum, extreme
programming and feature-driven development (some implementations of Agile
principles). Although some of these methodologies originated prior to the signed Agile
Manifesto, many people think of them as an offshoot of agile software development.

In 2001, 17 software engineers met and published the “Manifesto for Agile Software
Development” (https://agilemanifesto.org/authors.html), which spelled out
the 12 principles of Agile project management, paraphrased as follows:

• Satisfy the customer by continuously delivering beneficial software.

• Accept and welcome changing requirements along the process.

• Deliver working software frequently.

• Enable developers and business stakeholders to work in daily cooperation.

• Trust your engineers to get the work done.

• Convey information face to face.

• Realize that working software is the most important measure of success and
progress.

• Maintain a constant pace of work.

• Strive for technical excellence.

• Simplify requirements and features.

• Allow teams to self-organize for the best product.

• Regularly reflect, as a team, on how to become more effective and adjust behavior
accordingly.

https://agilemanifesto.org/authors.html

CHAPTER 7 Planning Ahead 81

The ultimate downfall of this approach was that it simply took too long. By the
time the product shipped, the market had changed. Companies wasted endless
amounts of money, resources, and time chasing an idea without any feedback
from customers. In contrast, Agile prioritizes the customer and introduces the
idea of continuous improvement. (See the earlier sidebar “The origins of Agile”
for an overview of Agile principles.)

In DevOps, as in Agile, teams adapt to the ever-changing needs of the business or
the market, and sometimes even the changing technology and tools. Teams set
milestones, plan features, and develop code continuously.

In addition to its important role in shortening the long development cycle, Agile
spurred companies into adopting a rhythm of continuously building products
based on feedback from current customers. This rhythm consists of short periods
of time called sprints that last usually no longer than two weeks, during which a
team decides what work to finish and ship to customers.

Over time, though, the dramatic impact of Agile has lessened. In many ways,
development teams had the greatest acceleration of productivity with Agile,
whereas operations teams didn’t see the same results. The lack of collaboration
between these two sides of an engineering team only made the gap more evident.

In the wake of these frustrations, DevOps seeks to solve the problems left unad-
dressed by Agile. Above all else, it emphasizes the collaboration of all specialists
in engineering — from product managers to testers to operations engineers.

Forecasting Challenges
Iterative or not, your product development has to start somewhere. The planning
stage of any new product provides a unique opportunity to invite everyone to the
table to share ideas and brainstorm —without the stress of approaching deadlines
that occurs later on in a project.

At the beginning of planning a new product, everyone is generally relaxed and
open to suggestions. If your current culture doesn’t reflect the openness you
expect to see in the planning stage, I highly suggest that you apply a DevOps
mentality to the problem. Ease the tension between people throughout the product
development life cycle. Assumption of malice, lack of curiosity, and defensive egos
are some of the greatest threats to your organization during your DevOps
transformation.

82 PART 2 Establishing a Pipeline

If your company doesn’t currently work within the framework of Agile, don’t fret!
It’s never too late to adopt a new project management style. Don’t let anyone
persuade you that you’re too late to the party to reap the benefits. You can
absolutely continuously improve. Throughout the planning process, educate your
colleagues on Agile and, specifically, the concept of sprints. Emphasize the
importance of producing a lean minimum viable product (MVP) and breaking the
work into smaller pieces. (See “Designing an MVP,” later in this chapter, for
details on how to design an MVP.)

Identifying project challenges
and constraints
Every company has limitations — constraints around resources, compliance
requirements, and market trends. Write down the constraints you must work
within to get the project done. Ask your engineers to do the same, and then
compare your answers. This exercise illuminates the different perspectives,
motivations, concerns, and predictions of your entire team.

Every project is controlled by four constraints: scope, deadline, quality, and
budget. You often hear an impossible-to-attribute saying that goes something
like, “It can be done well, fast, or cheap. Pick two.” Adopting DevOps requires you
to integrate a project management style that agrees with the basic tenets of a
DevOps philosophy. You should also tailor the general prescriptions in this chapter
to your team and your specific constraints.

The two most common challenges facing any software project are schedule and
budget. If you’re a startup, leadership will likely want to be first to market with
your project in order to gain the most market share. Venture capitalists (private
investors who often fund tech startups) prefer companies that are fast and
aggressive in their release cycle. If you’re an enterprise, the constraints can
become a little more interesting. You have other products and services that can’t
be impacted for the development of a new project. You may also have service-level
agreements (SLAs), which dictate what your customers can legally expect to
receive from your service, as well as compliance concerns.

Every project has constraints, and you should see a huge red flag if a stakeholder
can’t list the challenges or limitations facing a company while undertaking a
software project.

Schedule
What schedule limitations does your team face? The answer is never “none.” Root
out schedule constraints by interviewing people outside the engineering and product
teams. For example, marketing likely has an event coming up in a few months at

CHAPTER 7 Planning Ahead 83

which they would like to demo something. Also, someone in sales may well have
already talked to a customer who would be more than excited about your new fea-
ture or product. That customer might even want to be a beta user (someone who
“test drives” software before a public release) to more rapidly produce user feedback.

You might also encounter scheduling constraints because of a financial goal or
challenge. If you’re a startup, leadership may want to raise another round in
6–12 months, which means that the product would need to be usable and in the
hands of customers by then. Or maybe you just raised money and have a year’s
worth of financial runway (the time during which your company can sustain itself
with the money in the bank). If your company is publicly traded, perhaps the busi-
ness stakeholders want to schedule a product launch around an upcoming SEC filing.

This part of the development life cycle is an information-gathering phase. You
don’t necessarily need to take action just yet on these constraints. Instead, you are
creating a context at the start of your project that will inform your decisions as
you move forward. If your schedule is tight, you can negotiate to have fewer
features appear in the initial customer release.

Budget
Budgets are the second most common constraint. And for good reason, right?
Most companies aren’t Google or Amazon and made of money. Instead, they have
to get creative and develop working software efficiently. (Not that Amazon isn’t
efficient, Mr. Bezos.)

The trickiest dynamic around budgets is that the budget constraints aren’t always
obvious. Often, businesses obfuscate actual budgets and costs to keep other parts
of the organization from knowing about them. Or, in many large organizations,
departments must fight for budget share once a year and then work within that
budget until the next cycle. Here are a few aspects of budgeting to consider:

 » Head count: Do you have enough employees to get the job done? If not, do
you need to increase the number of engineers on a team? What is most cost
effective? For example, are you better off with one senior engineer or two
more inexperienced developers?

 » Infrastructure costs: The new feature or product will likely need to be
hosted. Keep in mind the costs of whatever hosting solution you choose,
whether it’s private, managed, hybrid, or cloud. I discuss moving to the cloud
in Chapter 21.

 » Intersection of cost and time: How much does it cost every week that you
go over schedule? The number you calculate won’t be perfect but it will help
you make more educated decisions as you move forward in the project and
come up against unexpected delays.

84 PART 2 Establishing a Pipeline

Gathering Requirements
DevOps emphasizes continuous planning, which is an Agile approach to integrating
customer feedback into the future planning process throughout the project. But
even in the most Agile scenario, a project almost always has a set of basic
requirements for you to meet to fulfill the needs of your customers. I suggest you
approach the requirements-gathering phase using three steps:

 » Share business objectives. Create a product requirements document (PRD)
that emphasizes the business objects of this project. This document should be
one page and easily consumed by anyone in your company. The reason for a
PRD is to provide the “why” and highlight the purpose behind the project. The
shared understanding and infectious passion can carry the team during times
of stress.

 » Create user stories. Interview customers, if you haven’t already. Include
team members from design and engineering. First-hand experience with
talking to customers can help bridge gaps of information that form when
only product owners are allowed that contact. When you encourage a variety
of people to ask questions and interact with customers, you build a much
deeper understanding of the users’ challenges and desires. I discuss gathering
customer feedback in Chapter 13. The same approaches for contacting and
interviewing customers after a product is released apply to asking for their
feedback before you design a new service.

 » Set scope. Ending up with an enormous pile of feature ideas at this stage
is perfectly normal. In fact, it’s great! You want people’s imaginations working
overtime and getting them excited. Allow everything to be added to the list.
Then, refine it. Designing a lean MVP, discussed in the next section, will help
you limit scope.

After you’ve set scope, stick with it. You need a product owner who is capable
of saying “no” to be in charge of evaluating potential features and deciding
which get put into the product, and when. Although being agile in your
development and continuously integrating feedback are important, make
the process of adding new features rather difficult. Doing so discourages
scope creep and prevents a thousand “great ideas” from being added at the
last minute. You know what the project needs to accomplish, so do that and
no more. Later, after it’s released, you can always go back and add new
features with each sprint.

CHAPTER 7 Planning Ahead 85

Designing an MVP
A minimum viable product (MVP) is the bare minimum of a product that still
accomplishes its most basic objectives without the excessive bells and whistles of
additional features.

MVPs are critical to DevOps organizations because they don’t require the
significant up-front planning that a large-scale enterprise product did in the past.
With an MVP, you don’t work on a product for two years and hope that it succeeds
when finally launched to customers. Instead, businesses can quickly test ideas and
adapt to changing markets. If the first MVP doesn’t quite hit the mark or wasn’t
received well, it didn’t cost you much and you’re able to pivot to another direction
using the customer feedback you gleaned from the first MVP.

SUCCESSFUL MVPs
Many of the modern hegemonic tech companies started as extremely simple sites
that did one thing. They just happened to do that one thing extremely well. By focusing
on their most valuable aspect of the business, they attracted loyal early adopters who
evangelized on behalf of the company. Two of those companies are Facebook and
Airbnb.

Facebook

Mark Zuckerberg’s product didn’t start out as the verbose ecosystem it is now. It was
a simple service that connected students by which college they had in common. Users
could post messages to boards, and that was about it. Facebook didn’t have chat, or
photo storage, or timelines at its start. Instead, it launched as the most basic iteration
of the product and attracted enough users to gain traction. After it had the users, the
company expanded and added additional features.

Airbnb

The extremely popular rental booking site was born out of the difficulty its founders
had in paying their expensive San Francisco rent. To try to make ends meet, the
founders provided accommodation to friends who came into town, took pictures of
their place, and advertised it. The idea took off, partly because one of the founders,
Paul Chesky, lived exclusively through booked Airbnb rentals for a year.

86 PART 2 Establishing a Pipeline

If you’re in the process of transitioning to a DevOps methodology, you need to get
in the habit of developing MVPs for your new products. Removing excessive fea-
tures and preventing scope creep are two of the biggest contributing factors of
success in high-performing companies. Scope creep will absolutely murder team
morale as more and more features are added at the last minute.

An astute planning process and hard lines around what can be added to the initial
release will benefit the efficacy and longevity of your team.

Discovering the problem
for your MVP to solve
Problems exist in almost every process. In fact, people often just ignore them until
someone comes up with a solution. Only then, with the benefit of 20/20 hindsight,
do they see the value of that solution. (One of the arguments against Ford’s auto-
mobiles was essentially, “But what’s wrong with a horse?”)

You’ve likely already identified the problem in your process, or what you think is
the problem. But the root issue often eludes people. If you’ve ever done a client
consultation, you know that sometimes the problem isn’t what people think it is.
Often it’s a symptom of a greater issue that lies beneath the surface. Do your best
to unearth that issue. The closer you get to the root of the problem, the more suc-
cessful your MVP will be. Here are some questions to consider:

 » What is the challenge you want to solve?

 » Why does the challenge exist?

 » In which industry is it most commonly experienced?

 » Does the problem affect the majority of people or is it niche?

 » If you’re the customer, why do you need this product?

 » What’s the value of solving this problem?

Identifying your customer
Your customers will drive every decision you make as a DevOps organization, but
how do you figure out who struggles with the issue that your product is supposed
to solve? In the “Determining Your Customer by Designing a Persona” section,
later in this chapter, I talk about the importance of customer personas and how
they can help you identify your customer to better understand how they think.

CHAPTER 7 Planning Ahead 87

When you not only identify your potential early adopters — the people most
willing to try new products — but also dive into their psyche, you help all the
details emerge that will help you think and feel as they do.

If the problem affects you, awesome! That’s extremely valuable insight to your
customer — because your customer is you! (The problems you experience might
be related to software, or . . . your dog. Every engineer is also a customer of a
thousand other products.) Regardless, you need to speak to your customers. Even
better is to hire engineers who have experience with your customer base or fit the
profile of your customer themselves. Those engineers can then give you unique
understanding as you design your product.

Scrutinizing the competition
If your company has no competitors, take that as a huge red flag. This idea may
seem counterintuitive at first. Daymond John, founder of the company FUBU and
investor on the TV show Shark Tank, says, “Pioneers are slaughtered and settlers
prosper.” It is almost impossible and incredibly risky to be the first company in a
new industry space. It’s much safer to enter an established market and differentiate
yourself, just as Airbnb did. Airbnb may seem like a novel idea, but the problem it
addresses, that of needing a place to stay, was already solved by hotels. Airbnb
differentiated itself by giving homeowners the opportunity to earn extra cash and
customers the chance to discover unique spaces in which to spend the night.

When you discover your competitors, dive deep into their product and their
messaging. Here are some questions to consider:

 » Who are their customers?

 » Is your product in line with theirs?

 » How will you differentiate your product to customers?

 » Can you see any opportunities to steal customers? Or reach customers that
your competitors have been unable convince?

Insight into the products already on the market can help you design the product
with that context in mind and potentially avoid pitfalls previously experienced by
your competitors.

Prioritizing features
It’s great to dream big. In fact, I think it’s really important. Dreaming big enables
your entire team to really stretch their ideas and brainstorm everything that a

88 PART 2 Establishing a Pipeline

product could be. This way, you invigorate your project and help ignite your team.
When they’re excited about the possibilities, they come up with unique innovations
and points of view that can drive your product further.

A great exercise in product development is to list every feature you want to include
in your product. Have everyone at your company do the same, merge the duplicates
into single line items, and then stack-rank them — put them in order of
importance.

In the end, you want to prioritize your list in order of importance. Consider which
features you can’t live without. Cut out any feature that isn’t absolutely necessary
to solve the problem you’re attempting to mitigate.

If you’re struggling to prioritize the potential list of features, make three lists:

 » Features you can’t live without: These are the items most vital to the
product’s capability to solve a problem for the user.

 » Features that are nice to have: These are the ideas that will improve the
product but aren’t critical to its overall efficacy.

 » Features that don’t matter: These are the items that no one on your team
is willing to fight for. They’re ideas that simply died on the vine. It’s nice to
have a list to pull from in the future (who knows when your iterations will
demand such a list of features?) but for now, tuck this list into a desk drawer
and move on.

Designing the user experience
In this section, I’m not referring to building high-fidelity wireframes just yet.
That’s a bit down the road(map). Instead, in this part of the planning process, you
should think about how the user will interact with your product. What is the main
driving force that will bring users to the site and keep them there? What’s the
main activity will they be completing? What are the steps or tasks involved in that
process? How will the user flow from one activity to the next?

Imagine that your product is a photo storage MVP. You want to think through
the user flow and which features will enable the user to step through each phase
of using the product. Take your list and categorize the features by the steps your
user will go through in the flow of your product. Figure 7-1 demonstrates this
process.

CHAPTER 7 Planning Ahead 89

After you have the features sorted by category, you need to order the features
within each category by importance. Remember, a feature that you love might not
be the most important. Emotional attachment to the ideas you have is much less
important than the pertinence that a particular feature has to your users. How
does it help them? Is it vital to making the MVP a usable product for customers?
Order the feature ideas within each category, as visualized in Figure 7-2.

Testing your hypothesis
When you feel comfortable that you’ve planned well, talked to customers, and
integrated their feedback into your product plan, it’s time to get building!
 Remember, watch out for scope creep (see the “Gathering Requirements section,
earlier in this chapter). Only the must-have features — the ones that your MVP
won’t function without — should be integrated into this first iteration. The point
isn’t to necessarily knock the socks off your users. Instead, it’s to prove the viabil-
ity of your product.

FIGURE 7-1:
Organizing

features by user
experience

(UX) flow.

FIGURE 7-2:
Prioritizing

features by user
experience

(UX) flow.

90 PART 2 Establishing a Pipeline

In fact, in a few years, you should probably be pretty embarrassed about your
MVP. That’s ideal because it means that your MVP was stripped down enough to
be a legitimate MVP. When you adopt DevOps, you accept that your development
life cycle will be an iterative process. You will build something, release it, listen to
feedback from customers, and then iterate based on the feedback. This cycle
 continues throughout the life of the product. It never ends. Figure 7-3 can serve
as a graphic reminder of this release, listen, and iterate loop.

To beta or not to beta?
An alpha release is almost always exclusively to friends and family. These are the
people you trust to be kind and not smear you in the media for an absolute boon-
doggle of a product. They’re also the people whom you know (or hope) will be
brutally honest with you. Some companies do an alpha release as a final gut check
before releasing software to potential customers in a beta.

A beta release might be limited — or it might not. But it creates the expectation
with customers that it’s not necessarily a polished product. Instead, it’s a test.
Now, a few of you might be thinking, “Why the heck would I announce that my
product isn’t finished?”

Well, do you want your customers to trust you? Do you want them to advocate for
you? Do you want to attract those early adopters? If so, you have to bring them
into the fold. You have to treat them as though they’re some of your closest
friends. Consumers are smart and won’t be fooled by any lipstick you put on the
pig. Instead, be brutally truthful. Explain that you’ve built a thing that you think
is helpful, but you’re not sure. Ask for help. Give them the space to evaluate your
product and give you feedback. Then listen to them. If you don’t listen, your
 customer feedback is absolutely worthless.

FIGURE 7-3:
Testing your

hypothesis with
customers.

CHAPTER 7 Planning Ahead 91

Determining Your Customer
by Designing a Persona

In DevOps, product requirements exist in large part to bring everyone to the table
and establish a shared vision. At the planning stage, you should focus on high-
level requirements and trust your engineers to develop the features in the most
responsible way given the context provided to them.

The more stakeholders you can involve at the start of the process, the less likely
you are to run into unexpected changes down the road. The purpose of gathering
requirements isn’t necessarily to think of every possible scenario and list every
feature you’ll ever want to include. Instead, it serves as a way to ensure that
everyone involved in the project is aligned with the purpose. When everyone
shares one clear direction and a general understanding of the problem that a
product should solve, business and engineering stakeholders encounter much less
conflict with one another.

Creating a unified vision requires you to fully understand your customer. Who is
your customer? What are their problems? How do they interact with products?
This is just the start of truly understanding the people who use or will use your
products.

Collaboratively developing customer personas is one of the best ways to establish
the shared vision of who your user is. In this section, you find out how to design
personas to categorize your customers and design features with them in mind.

What is a persona?
The natural inclination of a company is to target its product to everyone. However,
“everyone” isn’t an audience. Sure, your product might be useful to everyone, but
they’re not your audience. Instead, your audience is comprised of people who are
so excited and enthusiastic about your product that they will evangelize its benefits
their friends. To tailor their marketing messaging to these specific users,
marketing departments develop profiles of fake people, called personas.

The more detailed you make a persona, the more useful it is in the planning pro-
cess. In many ways, the persona is a composite of key segments of your audience.
It helps you deliver the targeted features and user experience that are the most
useful to your customers.

92 PART 2 Establishing a Pipeline

Your persona is a fictional human being with a name, job, background, and
preferences. Typically, three to five personas will cover the vast majority of your
potential customers. From an engineering perspective, thinking of your audience
like this may feel odd. You’re used to simply building the products and shipping
them. Yes, you’re abstractly aware that people use the product, but you’re likely
not used to thinking about them and their specific preferences before you start
coding.

Considering user preferences from the start is why a planning phase exists. It
highlights and prioritizes the need to understand the user experience and the
values of your customers. Thinking about these aspects from the beginning will
inform decisions as you move forward and keep everyone in the organization on
the same page.

Designing a persona
Any persona you develop will have a basic profile that includes all the details of
their life that are relevant to you. This profile includes basic demographics as well
as abstractions such as values, fears, and goals. Your personas should include the
basic information in the following list:

 » Name

 » Job title

 » Gender

 » Salary

 » Location

I included gender in this list, but I encourage you to consider nonbinary folks and
ensure that your database is set up in a way that allows for people who don’t
identify as male or female. Also, make sure that someone’s name can be updated
in a user-friendly way. This capability is vitally important to trans people as well
as other underrepresented and marginalized groups.

I also encourage you to think about the deeper and more emotional aspects of a
person. Although a user’s job title and salary help you frame your product, the
more human aspects of a person influence decision making. These aspects include
education, experience, aspirations, and principles, and these are the key qualities
that you want to unlock and understand:

CHAPTER 7 Planning Ahead 93

 » Education: What is your persona’s educational background? Are they college
educated? If they’re developers, do they have a CS degree or did they attend a
bootcamp? Education informs what we know but it also influences how we
learn — something important in documenting your product and designing the
user experience.

 » Goals: What are their aspirations? These could be professional or personal.
Perhaps they want to learn another language or get a promotion. If you
can solve a user’s problem and help them achieve a goal, you will have
earned a customer for life.

 » Challenges: What does this person struggle with? What do they find hard
about their job or their life? What do they absolutely hate doing? The more
you can unearth someone’s pain points, the better positioned you will be
to help relieve them.

 » Values: What principles guide this person? What are they concerned
about? What are their politics? You may think that these issues have noth-
ing to do with your product, but they can influence a user’s decision to
purchase something from you. Perhaps you do business with a company
or government that they consider unethical. Think through potential con-
flicts of interest and how they may impact you and this project.

 » Fears: Everyone fears something, and most of us carry around many deep-
seated fears. Many engineers, for example, fear being made to look stupid.
This fear prevents them from asking “dumb” questions which, if answered,
could save time and money down the road. If you can discover the fears
of your customers, you can address them before they even have to ask.
Doing so establishes a tremendous amount of trust.

CHAPTER 8 Designing Features from a DevOps Perspective 95

Chapter 8
Designing Features from
a DevOps Perspective

Adopting DevOps is a commitment to infecting every person, process, and
product with the core philosophies of DevOps. The software your team
produces is in many ways an artifact of the values and principles of your

team. If they don’t embody the methodology, neither will your technology.

One of the key missteps of a product team is to bring engineering into the design
process too late. You’ve already ensured that everyone at your organization is
aware of the product, understands the core business objectives, and has been
involved — or made to feel welcome — in the planning process. Your colleagues
have collaborated in the brainstorming process, offered suggestions, and come to
appreciate which features are most critical to the products success.

Don’t let that information sharing stop when the designing of the system begins.
Yes, decisions must be made, and sometimes it can feel like there are too many
cooks in the kitchen. I’m not suggesting that you hold a democratic vote every
time you come to a fork in the road. Hierarchy plays a critical role in most
engineering teams, and leadership should be willing to make clear choices when
presented with all the options.

IN THIS CHAPTER

 » Designing systems with DevOps
in mind

 » Architecting for change

 » Documenting design decisions

96 PART 2 Establishing a Pipeline

But that’s the key: They’re presented with all the options. Presenting all the options
requires having everyone involved. The momentum you build throughout the
planning phase should be continued through the design phase.

In this chapter, I take you through thinking about software design from a DevOps
perspective. I also introduce continuous improvement and show you how to design
software flexible enough to adapt to the ever-changing needs of your business.

Constructing Your Design
Architecture, in software, refers to designing the high-level structure of a system.
It encompasses not only the actual design but also architectural documentation —
the latter being a quality often missing in software systems. Think of it as a
blueprint for your entire software product, showing each of the pieces required to
make it work and how they relate to each other.

Though you’re working with a high-level design, dozens of considerations go into
building a solid framework. Handling all these considerations requires more than
the skill of a product owner. Strong participation by engineers is fundamental to
your success in building a thoroughly developed and maintainable software
product.

People have lots of ways to describe “good” code. I prefer to say that well-
developed software is performant, meaning that it can perform at the level you
need it to in the manner in which you desire. This definition is purposefully vague
because it depends heavily on your product and user. Performant can refer to the
speed at which your application loads and delivers usability to the user. It can also
mean data reliability and availability — for example, is your customer data
accurate and accessible at any time? Before you proceed, think through what
“performant” code would mean to you, your team, and your customers. How can
you design your software to prioritize your specific performance needs?

In traditional engineering teams, developers — those who wrote the code — were
separated from operations specialists, that is, the people responsible for deploying
and maintaining the infrastructure required to run the application. This separation
created what people in tech refer to as the “Wall of Confusion,” the proverbial
wall over which developers tossed code to operations for deployment and
maintenance.

Many organizations — even those who think they’ve adopted Agile or DevOps —
still silo their teams and pass work between each. The business folks decide what
product the market needs; sales interjects with features that customers have

CHAPTER 8 Designing Features from a DevOps Perspective 97

requested (or been promised); project owners get to work designing the product
flow and architecture, only then passing it off to engineering to build.

This type of workflow is an anti-pattern of DevOps (refer to Chapter 9 for more on
anti-patterns) and will absolutely corrupt what you are trying to build. Engineers
are not code monkeys. Their job isn’t to pump out 40 hours’ worth of code every
week. Instead, their job is to be subject-matter experts, and you will never be able
to build a maintainable software product without their input.

Figure 8-1 depicts how engineering teams have traditionally lobbed work at each
other in a linear way. Roles were clearly defined, and the space between those
roles created friction. Instead of working together to ensure that a feature worked,
quality assurance (QA) engineers and developers argued over whose job it was to
deal with a bug.

With DevOps, your teams should continuously share knowledge and collaborate.
Roles refer to a specialization rather than specific boundaries that someone must
work within. Previously, roles were essentially air-gapped; no cross-over occurred
between roles. DevOps creates an environment of knowledge sharing and a
responsibility bleed between each role and stage of software delivery. That way,
developers write automated tests for their code and rely on test engineers to find
edge cases or suggest improvements.

In this part of the book, I discuss each stage as if it were linear. I take this linear
approach to look granularly at the specific ways to inject DevOps into every phase.
In Part 3, I connect the circuit and begin to visualize the software delivery life
cycle as a truly continuous cycle of improvement.

Unsurprisingly, project owners sometimes come up with ideas that aren’t possible
or simply aren’t feasible within the project’s resource constraints. Because of
their education and experience, engineers can quickly identify how best to go
about solving the problems of your users. They can also evaluate features for
complexity and give general advice on the potential costs of time and resources.

FIGURE 8-1:
Handoffs
between

engineering
roles.

98 PART 2 Establishing a Pipeline

In my time as an engineer, I’ve never seen a single estimate of development time
turn out to be accurate. The amount of time needed is always an educated guess.
The inaccuracy of time estimates is compounded if engineers feel that they must
adhere to a specific timeline, even if that expectation is unspoken. I always rec-
ommend doubling time estimates to give yourself plenty of room for unexpected
roadblocks and troublesome development challenges. Trust me, your customers
will not complain if you deliver a product six months ahead of schedule. But
deliver late and you’ll almost certainly face unhappy users.

The best way to mitigate potential roadblocks later in the development process is
to invite everyone to the table at the beginning. This planning and design phase
gives you the opportunity to collect everyone’s ideas, opinions, and concerns.
Although the process of collecting information can seem chaotic, with a cacophony
of experts all vying to be heard, the result, when applied, often leads to better
software. Here are three specific approaches to keep in mind when designing
software:

 » Invite initial feedback from engineers. Allow engineers to give their
insight into how complex each feature will be to build during this discovery
and design process. Product managers benefit from the expertise, and
engineering gets a sneak peek into what they may be building (and which
technologies they need to brush up on).

 » Allow time for analysis. Schedule time in your engineering team’s calendars
to ensure that they have the bandwidth to speak with product managers,
study the proposed ideas, and think through possible solutions. You might
not be able to get all your answers during a three-hour meeting every
Wednesday. Most likely, your engineers will have to think through the
problems and get back to you. Allow them to do some research to give you
the most educated and thorough advice they can.

 » Consider appointing a special team of engineers for the design level.
Some companies are large enough to support the creation of an architecture
team. Again, with DevOps in mind, this is not a team that gets tossed a bunch
of features and then sorts them out. Instead, they are a specialized group of
engineers whose experience or interests make them uniquely qualified to
design high-level systems. Instead of diving deep into low-level feature design
or infrastructure, they think of the product as a whole — a network of
different features that interact in specific ways.

Creating architecture positions gives your engineering team two paths toward
promotion: management and technical expertise. Engineers who don’t want to be
managers should never feel that they must go that route simply to get a raise or a
new title. Career growth for an engineering professional should include a path

CHAPTER 8 Designing Features from a DevOps Perspective 99

toward becoming a principal engineer. Systems architects require knowledge from
many areas along with the experience to know what works (and what doesn’t).

Designing for DevOps
In DevOps organizations, software isn’t just built; it’s designed. Each part of it is
carefully considered and designed to benefit the end user as much as possible. As
you and your team work through the capabilities of the software, keep these three
principles in mind:

 » You should design and build updatable software.

 » You should constantly improve your software.

 » Your software should support learning.

Designing software for change
The reason most developers loathe working on extremely old codebases isn’t that
the original engineers were a bunch of idiots. That’s far from the truth. It’s that
the context and circumstances have changed so drastically that the old code is
radically different from what it should be. It’s antiquated, and that happens at
record speed.

Unlike some other industries, software development hasn’t existed for hundreds
of years, and software developers haven’t had the luxury of having the
fundamentals already figured out. In many ways, software is still in its infancy. It
evolves rapidly, and developers are along for the ride.

Build your software so that it can be updated as the software changes and grows
to meet the new demands of your customers. If you need to pivot, ensure that your
architecture is flexible enough to endure those changes gracefully.

In addition to designing for change, you need to build your software in ways for it
to be reused. Component-Based Development (CBD) is an approach of developing
components that are reusable and more easily maintained than large-scale,
tightly coupled systems.

100 PART 2 Establishing a Pipeline

Although the code will change a lot in the future, you want to limit the changes
you make to your overall architecture because those types of changes will have a
more dramatic impact on all areas of your system. Designing a flexible and
resilient architecture takes more time upfront but benefits you during acceleration
in the later stages of your development life cycle.

To design for change, make the components of your system

 » Self-contained

 » Independent

 » Well-documented

 » Standardized

 » Portable

Each of these qualities enables code to be lifted up and easily adapted for another
location within your software, or to run on a different piece of hardware. These
qualities also improve your ability to maintain software over time because the
code is easily understood by new engineers on your team. While I’m on the subject
of change . . .

Improving software constantly
You need to be continuously improving your software and systems, including
checking new designs and expanded code for consistency. Does a given decision fit
in with the overall architecture? Is the design standardized to look like other
services or components?

The more your system scales and the larger your team becomes, the more likely
your codebase is to start looking as though dozens of developers are working on it
rather than one. At first, this doesn’t sound like such a problem, right? I mean,
dozens of developers are working on your software. Isn’t that just natural? Yes.
But natural isn’t always good.

Ideally, your codebase (including infrastructure code) should be as uniform as
possible. In a perfect world, it would look like one person wrote the entire thing.
Now, that level of perfection is unachievable, but that fact doesn’t mean that you
can’t strive for it.

Writers have editorial guidelines. They rely on these style guides to ensure that
their language is uniform with their peers. In a similar vein, software engineers
have linting tools, which are a godsend for helping their codebase achieve

CHAPTER 8 Designing Features from a DevOps Perspective 101

uniformity. Installing linting tools allows your team to decide on basic principles
of style, set the configurations, and let the linter fix minor things, such as ensuring
that a semicolon appears on every line.

If your team isn’t willing to come together and decide on some basic guidelines,
well, you’ve got bigger collaboration problems, and I suggest that you look over
Part 1 of this book and start persuading some of these folks to move on to the
DevOps way of thinking.

A linter is great for small things. But bigger decisions, like what your base API
design should look like, require more forethought and much more discipline. I
can’t recommend code reviews strongly enough for effective API design. The
reviewer doesn’t even need to be a senior (though that is often extremely helpful).
By reading the code, the reviewer can ask questions and bring up scenarios that
the original developer didn’t consider. This approach prevents siloed development
and keeps major (and possibly mistaken) assumptions from being coded into your
system.

Have your architects or most senior engineers attend all code reviews. I talk more
about the code-review process in Chapter 9, but having an architect review new
code before it’s integrated into the larger codebase will keep the overall architecture
standard as well as allow both the architect and the engineer to benefit from the
shared knowledge. The architect learns how the feature was developed and by
which tools. The engineer learns how to keep their code uniform with their peers
and ensure a tidy, well-maintained codebase.

Documenting your software
Well-documented software is incredibly rare, and for a reason. You have deadlines.
I’ve never met a developer whose documentation was tied to their promotions or
rewards. Maybe that should change.

Documentation serves multiple purposes, but it should be for more than simply
putting what the code says into English. Look at the Ruby method, add(), in the
code that follows. The function itself is simple enough that the comment is
unhelpful.

returns the sum of x and y
def add(x,y)
 x + y
end

102 PART 2 Establishing a Pipeline

Comments in the code like the preceding example could arguably be useful
depending on who has access to your codebase. For example, a JavaScript developer
will appreciate some translation of C++ code. The risk, however, is that excessive
comments will stop people from reading them because of comment fatigue, or
that technical debt will accrue. Documentation must be updated as code changes.
Unnecessary commenting can quickly become outdated and lead to more
confusion.

Your code needs to be documented in a way that teaches the developer looking at
the code about that code. Also, the developer needs to understand not just a
particular section but also how that section fits into the whole. What assumptions
were made? What were the alternatives? Why was this implementation chosen?
What TODO items are still needed? How much technical debt did this one piece of
software add?

Transferring knowledge from one developer to another (or the developer to their
future self) is the most compelling benefit of documentation, and certainly
embodies the values of DevOps.

If you build your software to endure change, continuously improve it, and treat
the code as a living document that transfers knowledge about the code and prod-
uct among engineers, you’ll be well positioned to maintain your software over
the long term. High-quality design leads to less conflict and faster cycles down
the road.

Architecting Code for the Six
Capabilities of DevOps

When an engineer and product owner collaborate on the technical design of a
new product, the engineer advises on the functional elements as well as on how
they interact. The architecture set at the beginning of a project ripples out into the
decisions made down the road. The framework determines to what degree
the system is flexible for changes and how limited it will be to the addition of
 certain elements.

Architects influence how the system is structured, which features are prioritized,
and how to standardize code. They ensure reusability as well as how the engineering
team will tackle the work ahead of them.

Generally, the architects will consider and weigh the six key categories of
performance discussed in the following sections.

CHAPTER 8 Designing Features from a DevOps Perspective 103

Maintainability
Code changes. New features must be added, old ones must be deprecated (left
functional but unmaintained), and current features must evolve. Software must be
upgraded. Change is inevitable and should be planned for. The maintainability of
your system is tied to how resilient it is in the face of change.

Your code must be thoroughly tested through an automated test suite. Manual
testing gets you only so far. Systems are way too complex these days to have one
or two people clicking around a site to see whether everything works. I dive further
into testing in Chapter 10, but for now, remember that the code needs to fulfill the
acceptance criteria. In other words, how do you know that a feature works? You
must also test it for edge cases. You can imagine some. What happens when an
array is a parameter but it expects a hash? What if the email address is missing an
@ sign? Then, every time a bug arises, you need to add at least one test to verify
that the bug is fixed. These tests alert you to when new code has broken current
features before customers are affected.

You must document your code. Documenting code is something that almost all
engineering teams struggle with, and the problem is rooted in the fact that
engineers know they aren’t measured by their documentation. They’re almost
always stressed about getting a feature out or squashing a bug. Those are the
measurements they’re evaluated against. You can encourage documentation by
adding it as an evaluation criteria in your review process. Emphasize documentation
in code reviews. Make sure that the decision matrix is documented as well as the
end result. What alternatives did the developer consider? Why did they choose this
specific implementation over others? That context is extremely valuable for
developers (even the ones who originally worked on it!) later down the road. And
remember that when code changes, tests and documentation should, too.

Scalability
The scalability of your system is defined as its resiliency when it comes to
(sometimes extreme) growth. The best way to think about scalable systems is
this: If your system performs better after new resources are added, it is scalable.
If not, you may have some work ahead of you.

Attempting to scale an application is tricky early in the process. It can trip up
startups and products in the early stages because if you don’t even have 200 users,
your first concern isn’t scalability — it’s getting more users — any users. Thinking
about potential options for the software to withstand growth as you expand is a
good idea so that you create the potential to handle accelerated customer adoption
and usage. But don’t let the goal of growth impede progress on the items that are
most critical to your business right now.

104 PART 2 Establishing a Pipeline

One of the advantages of building cloud-native applications — systems designed
to run in the cloud — includes their addition of a number of improvements to the
capabilities. Resilience, flexibility, and — you guessed it — scalability can be
automated and improved iteratively. Whereas manual scaling involves engineers
who manage servers, networking, and storage, cloud vendors automate much of
this process so that the same configurations are applied to every deployment.

Scalability has an element of elasticity as well. Can your application handle a spike
in traffic without falling over? Do your performance metrics stay relatively the
same before, during, and after a surge in your application’s load?

When evaluating your application’s scalability, consider the peak load that your
application can currently handle. What impact does an overloaded database have
on other areas of the application?

Here are two approaches to scaling infrastructure:

 » Scale up: You can improve the nodes you already have in use by adding more
compute, memory, storage, or network to it. Public cloud providers typically
handle this by shifting the application to more powerful instances. From an
application perspective, you can play with cache sizes, threading, and
increasing connections.

 » Scale out: Horizontal scaling is most commonly seen in globally distributed
systems. It adds nodes of preconfigured infrastructure to your system as
needed. If you’ve ever heard the term “pay as you grow” from a cloud vendor,
horizontal scaling is what that term refers to. Scaling out enables you to tailor
your scaling to specific geographical regions.

No matter how you choose to design your system to scale, ensure that it fails
gracefully (see the “Usability” section, later in this chapter, for what I mean by
failing gracefully) if it doesn’t scale as expected.

The term cloud native refers to building applications with the cloud in mind. It
means more than just having an application that is deployed to the cloud. Yes, that
is a component. But even applications built before the cloud can be hosted there.
Cloud-native applications are developed and deployed with specific cloud-based
architecture choices. The teams that build cloud-native applications use a variety
of the tools discussed in this book: DevOps, microservices, continuous integration
and continuous delivery (CI/CD), and containers. I cover CI/CD in Chapter 11, and
containers and microservices in Chapter 20.

CHAPTER 8 Designing Features from a DevOps Perspective 105

Security
DevSecOps was born out of the DevOps movement and exists to remind the
community that security is everyone’s responsibility. Just as developers and
operations folks have traditionally had an adversarial relationship, security has
been forgotten by both. Although you can’t just interject anything you want into
“DevOps,” the term DevSecOps serves as a good reminder that engineering has
many other specializations than just development and operations.

Previously, software was reviewed by security at the very end of the development
life cycle. Security had the job of blocking the release of insecure code. As you
might imagine, developers don’t love hearing that their code is insecure and needs
to be fixed only after they’ve completed it. To address this problem of late notice,
the DevOps community has pushed the idea to “move security left.” This phrase
refers to addressing security concerns earlier in the development life cycle, or if
viewed linearly, left on the pipeline.

Securing your software isn’t a choice. But securing it at the last minute is too late.
It becomes a blocker and reduces your overall flow. With DevOps, you’re enabled
to bring security into the planning and design process much earlier.

Planning for security
It’s important to assess and respond to threats before they become security
incidents. Security issues are best researched and evaluated in the planning
process. More threats are out there than you know or that you may have the
resources to mitigate. But when you come across a threat, you have three choices:

 » Reduce the threat. Add safeguards into your application and eliminate
vulnerabilities. Train your developers to avoid simple security holes like
privilege escalation and SQL injection.

 » Transfer the threat. In some situations, placing the onus of the threat on
another organization may make more sense. You can purchase insurance or
outsource certain security needs. Still, those actions don’t replace the need for
basic application security.

 » Accept the threat. If you evaluate the cost of counteracting the threat and it
outweighs the cost of actually dealing with an incident, it might be best to
simply accept certain risks as part of doing business in tech.

106 PART 2 Establishing a Pipeline

Security threats
I am not an expert in security, but in case you don’t know where to start, here are
a few basic security principles to keep in mind when you’re designing your system:

 » Privilege escalation: Bad actors gain access to parts of your system and then
escalate their security privileges.

 » Viruses and worms: Software can be built to replicate itself and infect entire
systems. Worms replicate so frequently that they crash the system by taking
up too much memory.

 » Ransomware: This is a type of malware that blocks your access to your own
system and holds it hostage.

 » Out-of-date software: Security holes are regularly patched with updates.
Ensure that your systems stay up to date with third-party software updates. If
you can’t update for some reason, ensure that you know what vulnerabilities
exist and attempt to mitigate them in alternative ways.

 » Poor passwords: Pass good security habits on to your customers. Enforce
password rules that make your users choose difficult-to-guess passwords.

You can discover and mitigate security threats at every point in the development
life cycle. Be sure to enable your security team to be part of this DevOps journey
with you and give them a seat at the table at each stage.

Usability
The concept of usability describes how easily a customer can use your site. Ease of
use is at the core of user interface and user experience (UI/UX) design. Any
interaction of the user with your application should be designed for usability. In
Chapter 7, you see how to plan for the basic flow of your application. You also see
how each action of the user leads them to the next and, taken together, these
actions encompass the main feature and add value to your service. Now, during
the design phase, you ensure that the flow of these actions goes smoothly. Here
are some questions you should ask yourself as you design your application:

 » Is it intuitive? Do users need training to use your application? Do they
require previous knowledge? Can a user quickly learn how to interact with the
site without much assistance?

 » Is it quick? Does the site respond in a time frame that is acceptable to the
user? Speed performance is important to keep customers from dropping off,
but you also don’t want the spinning wheel of death — that wheel icon you

CHAPTER 8 Designing Features from a DevOps Perspective 107

see when waiting for an action to complete — to be their main takeaway from
your service.

 » Does it fail gracefully? When an error occurs, what happens? Does the user
see a clear error message that explains what went wrong and how to fix it?

 » If a process went smoothly, does the user see a validation message?
Communicating with the customer via messages is a way of failing gracefully.
In other words, the application encountered an error and passed the error
along to the customer instead of simply crashing. I discuss engineering for
error in Chapter 10 and failing well in Chapter 16.

Not sure where to start with usability? Evaluate your signup process first. It’s kind
of like cleaning the bathroom if you’re short on time and have guests coming over.
That’s the one room you can be pretty sure everyone’s going to see. If your signup
process is usable, you’ll be able to iteratively improve on the usability of other
aspects of your site through various tracking tools. But if they never sign up, you
won’t know whether your product is a flop or your site simply wasn’t user friendly.

Reliability
The reliability of your system comes down to the availability of your software to
users. This reliability includes the accuracy and integrity of data stored in your
database as well as what’s visible to the user. If data becomes inaccurate or out of
sync, the system is not reliable.

If the system does go down, how easy is it to restore? What is your mean time
between failure (MTBF)? (I cover MTBF in Chapter 17.) What expectations of
availability do your customers have? These expectations could be assumed or
legally binding via a service-level agreement (SLA). Data inconsistency can
become a problem if backup data is used to restore a system after an incident. How
do you ensure consistency in those situations? What are your redundancies?

Here are some terms to keep in mind when planning and evaluating your software
for reliability:

 » Availability: The percentage of time your system is functioning and accessible
by customers.

 » Latency: The time between when a user makes a request and your
application responds.

 » Throughput: How many transactions an application can manage per second.

108 PART 2 Establishing a Pipeline

 » Fidelity: The level to which your application represents the actual state of an
object.

 » Durability: Your application’s capability to meet the expectations of your
customer over the long term.

Flexibility
A flexible system is one that is the most capable of evolving to meet the needs of
the customer. Flexible codebases can absorb new code without the possibility of
major disruptions. Here are questions to ask yourself and your team as you’re
designing for flexibility:

 » If you’re using a SQL database, can the scheme accommodate change well?
How difficult will updates be?

 » What does your dependency tree (the visualization of tools or other software
that a piece of code depends on to run) look like? Which services are
vulnerable to chained failures because of dependencies?

The term chained failures refers to the impacts on your application based
on failures “upstream” in tools on which you depend. For example, if
AWS experiences an outage, and your application is hosted in AWS, your
application experiences an outage as well.

 » How easily can new components be integrated into the overall system? How
do components communicate?

Documenting Design Decisions
I touch on documentation in some previous sections in this chapter because
documenting your process is so important to the planning portion of the
development life cycle. Teams often make decisions at the beginning with the
benefit of all the information and then forget that their future selves won’t benefit
from the same context.

Creating great architecture is not enough. You must go one step further. Document
the alternatives you considered, the costs of the path you chose, and the reasons
you made the decisions you did. If you don’t write down these aspects, that knowl-
edge will be lost. You will not remember it — I promise you. And even if you’re
lucky enough to possess eidetic memory, that knowledge should not be kept in
your head. You’re adopting DevOps and must share information with your peers.

CHAPTER 8 Designing Features from a DevOps Perspective 109

If you give your team all the tools you used to make the architecture decisions and
design the system, you enable them to reuse the design. Take the time to write it
down. Even disorganized notes are more useful to your team than nothing at all.

You could use a documentation tool to store your thoughts, but I recommend a
different approach. Store your design decisions — and the thought process behind
them — with your code. Yep, right in your codebase. Create a markdown file in the
root directory titled “Architecture Decisions” and do a brain dump.

The impact of the decisions you make early in the process ripple out. Those
decisions impact every part of the system, from the code to the infrastructure.
Those components and the things that link them are intertwined. If you want your
team to maintain this design, or be empowered to change it with all the context
needed, please clarify everything they need to know. Otherwise, your architecture
will drift away from the original design and unnecessary complexity will begin to
strangle your system.

Avoiding Architecture Pitfalls
Keep in mind the following basic architecture fundamentals that will carry you
and your team through this design phase of your development life cycle. Each
suggestion isn’t necessarily rooted in DevOps. Instead, all the ideas support the
DevOps philosophy and enable your team to collaborate more fluidly, take
responsibility for the quality of system as a whole, and develop better software
faster.

 » Understand your full stack. People in the industry use the term full-stack
engineer a lot and never seem to quite agree on what it means. I’ve met only a
handful of people I would describe as full-stack engineers — that is, people
who understand the system from the hardware to the operating system to
the language and frameworks used.

 » Isolate components. If you adopt CBD or build system microservices, ensure
that they are scalable and modular. Reduce or eliminate shared state and
prevent accidentally coupling microservices into what I like to call “macroser-
vices.” The last thing you want is to have all the downsides of microservices
(see Chapter 20 for more about microservice architecture) with none of the
benefits.

 » Don’t make difficult choices configurable. Future you — and others — will
choose wrong. Take the time to gather your senior and principal engineers, as
well as relevant subject-matter experts as needed, and decide on the best
course of action for every scenario you can think of. Ideally, you will make

110 PART 2 Establishing a Pipeline

choices automatically for the developer; using a configuration setting (and
suggested default) can be a second option. The more choices you can remove
from a developer as they’re coding, the less likely they are to make poor
choices.

 » Document configurations. Always include a default and add a few examples
to help the engineer understand the potential impacts of their choices. This
approach improves uniformity, reduces human error, and teaches engineers
more about areas of your system with which they may not be familiar.

 » Keep your system dynamic. Avoid developing your software for a specific
ecosystem or tool whenever possible. This type of vendor lock-in is dangerous
to your long-term outlook because it makes transferring to better tools down
the road difficult. It also impedes your ability to make changes and evolve.
Generic and stateless components are the most flexible and can be picked up
out of one environment and run in an entirely different one.

 » Use a log aggregator. Don’t log directly to the file system. In the event of a
crash, restoring valuable information from the logs that will help you remedy
the issue will be impossible. The same applies to VMs and containers that are
destroyed. With an aggregator, the logs outlive the nodes and provide you
with opportunities to customize how much information is stored.

 » Avoid calling infrastructure APIs from your app. Calling from your app
makes switching infrastructure tools or hosting providers more difficult.
Instead, look into open source Platform as a Service (PaaS) tools or vendor
products that can help you abstract the infrastructure from the application
running on it.

 » Go with the crowd. There’s a time for building your own tool from scratch,
but it’s extremely rare. Don’t use obscure, self-made tools or protocols unless
you absolutely have to. Take advantage of the tools and protocols used by
thousands of developers every day. This suggestion applies to everything
from HTTPS to standard database connections to REST-based APIs. These are
the tools that provide the most capability out of the box as well as have the
best documentation around the tool. That documentation includes questions
that are posted to forums like Stack Overflow, where you can get answers
from Google quickly rather than think through a simple problem for hours.

CHAPTER 9 Developing Code 111

Chapter 9
Developing Code

I wrote this chapter with operations folks in mind. I hope to empower them and
managers who don’t have an engineering background to understand the process
of developing software — and the hundreds of decisions it requires. It will enable

operations people to feel more confident discussing code and increase their empa-
thy for the decisions (and accompanying mistakes) that developers make daily.

If you’re a developer, a lot of the content in this chapter may feel familiar to you
(though I might argue that you could still use a refresher on good development
practices). Chapter 11 goes into depth on releasing code, choosing a deployment
style, and versioning — topics about which most developers are less confident.

In this chapter, I show you how to talk about code in a collaborative way, write
code that is agile in the face of change, and make software decisions from a DevOps
perspective.

Communicating about Code
The caricature of the basement-dwelling hacker is antiquated. Although sufficient
diversity and inclusion in tech remain a challenge, the situation has improved.
More and more people from nontraditional backgrounds have joined and brought
their diverse education and experience to the industry. One of the benefits of this
diversity has been the emphasis on communicating about code, which is wholly in
line with the values of DevOps.

IN THIS CHAPTER

 » Communicating around code

 » Writing maintainable code

 » Making decisions with DevOps

 » Implementing good practices

112 PART 2 Establishing a Pipeline

I discuss code reviews — the process of having a peer review your code prior to
merging into the master branch — later in this chapter, in “Having peers review
your code.” But communicating about code starts much earlier than the code
review stage. Developers used to be handed requirements and expected to develop
the appropriate features, only to hand the code off to QA and security for review
and operations for deployment. DevOps has changed all of that.

Today, developer communication is critical to the acceleration required to
differentiate your business from competitors. Engineers on the development side
work closely with different areas of the business to understand the context of a
feature or product before requirements are set and user stories are created.

A user story is an Agile approach to describing a feature from the user perspective.
Traditionally, you would have been lucky to get vague requirements like “Create
user signup process. Require email and password.” Instead of creating enormous
tasks with vague requirements, user stories give the developer specific detail from
the viewpoint of the end user and break large features into small pieces. Here’s an
example of a user story: “As a site visitor, I want to click a link on the home page
and be directed to the signup form.” That story could be followed by, “As a site
visitor, I want to fill out a signup form with my email and password, click Submit,
and receive a verification message that my account was created for me.”

If your team doesn’t communicate well, you need to take time to implement some
of the practices that influence good communication. Code reviews and post-
incident reviews provide the opportunity to practice communicating as a team. As
I say elsewhere in the book, communication is a skill just like any other. It can be
learned, but it takes time to master.

Give your team the tools they need to improve in the “soft skills” needed to be a
great developer. Speech coaches and improv classes can radically improve the
skills of someone who struggles to communicate. The fact is that most people
could benefit from some kind of coaching on how to relate with others and show
more empathy to their team.

DevOps brings all stakeholders together, and communication is a critical
component of that goal. If you find that your development team is homogenous,
and you have room for increased head count, breathe life into it by hiring some
developers who bring different viewpoints to the team.

I highly discourage you from hiring one woman or one person of color onto a pale
and male development team — especially if that person is a junior developer. People
from underrepresented and marginalized groups do much better when they have
the ability to vent and amplify the voices like their own. A single developer who
represents a specific group is likely to be discriminated against, sidelined, and gas-
lighted by the rest of the team. I’ve been that person. It’s an extremely difficult

CHAPTER 9 Developing Code 113

position to be in and one in which that person is unlikely to thrive. Having the one
“other” in the group as a junior only reinforces old stereotypes that certain groups
are less qualified or talented in engineering. DevOps is an extremely inclusive
community, and for good reason: It’s the best way to build great products. Make
sure that you emphasize the same on your teams.

IMPOSTER SYNDROME
When I work with teams looking to adopt DevOps methodologies into their everyday
work, I often find that the developers on the team feel a little self-conscious about their
lack of operations knowledge. Likewise, many operations folks feel self-conscious
because they don’t know how to develop software from scratch. Even as they’re
learning, both sides can suffer from some degree of imposter syndrome, which describes
high-achieving individuals, like you, who struggle to internalize their accomplishments
and experience a persistent fear of being exposed as a fraud. I struggle with this fear,
and many people in the tech industry struggle with a feeling of being less than — of not
producing fast enough or not working hard enough.

Imposter syndrome can impact your ability to create a DevOps learning environment in
a couple of ways:

• It makes you feel less than. If you feel less knowledgeable or talented than your
colleagues, you will be less likely to ask questions that you think might make you
look “dumb.” Not asking questions is the absolute worst thing you can do because
it cheats you of learning and your colleague of teaching. Further, it compounds the
unspoken fear of asking questions across your team.

• It cheats you of the confidence to teach. You know more than you think you
do. You also have much more to contribute to your team than you currently feel
confident in doing. Imposter syndrome is that tiny whisper that says, “You’re not
the expert.” (So what if you’re not?) Just because something is “easy” to you doesn’t
mean it’s not hard for your colleagues.

In a perfect DevOps culture, engineers will fearlessly embrace what they can teach and
openly receive what they need to learn. Until you’re there, the traditional friction
between developers and operations people can surface in the development phase of
software delivery because it’s the developer’s domain. At the development stage,
developers feel the most confident and the operations people feel the most vulnerable,
and each side’s imposter syndrome and pride can stifle collaboration. The truth is that
both sides are an absolute necessity to each other; one without the other would be lost.

114 PART 2 Establishing a Pipeline

The more your team practices communicating the way they think about code
and write software, the better work they’ll produce. The team starts to understand
how each person goes about solving problems, questioning assumptions, and
building code that is human readable rather than simply machine ingestible.

Engineering for Error
Error handling is an important part of writing maintainable code. Silent errors are
one of the most dangerous things lurking in your codebase.

Programming graceful exits can sometimes make code more verbose but will
allow the code to handle an error by printing out a descriptive message rather
than just quitting or slowing down significantly. Programs without proper error
handling often display strange, unexpected behavior that is difficult to debug.

Part of handling errors is ensuring that messages to customers make sense. A 418
status code and an obscure message about a null pointer doesn’t assist the average
customer, and even the technical ones will likely roll their eyes at you. Build your
user interface (UI) to display messages that help the customer understand what
went wrong, where to go next, or whom to call for help.

Aside from providing a clear message that allows the developer to understand
both what happened and where in the code it failed, ensure that any data impacted
is recoverable and consistent. You can’t get by with writing programs that work
only when everything happens as expected. Great developers think through
potential exceptions and edge cases that enable them to write code to handle those
conditions. (The term edge case refers to an improbable but possible scenario.)

Writing Maintainable Code
You don’t write code to run for a day. (Although I often think if an apocalypse
somehow spared the Internet, most of your systems would fall over within days.)
The software your team writes will most likely be run for years — a particularly
daunting thought for anyone who’s been embarrassed by code they wrote a few
months ago.

Maintainable code is never in its final state. It’s alive! (But hopefully it’s in better
health than Frankenstein’s monster). Like the U.S. Constitution, code is,
metaphorically, a living, breathing document — and it requires care and
forethought.

CHAPTER 9 Developing Code 115

Testing code
I cover different types of code tests in Chapter 10, so the main point for now is that
you should get in the habit of writing testable code. For software to be testable, it
needs to be modularized into small components and functions. If x is expected to
do y, you can write a test to ensure that x actually does y.

Legacy codebases (sometimes referred to as the “brownfield”) often don’t have
tests, or testing is sparse. One of the challenges of maintaining these older systems
is that even if you wanted to write tests, the code isn’t designed in a way that
easily enables you to do that. If this is your situation, you don’t have to flush the
whole thing down the toilet and start over. Instead, think of it as an old car. You
don’t replace parts that are working. When something breaks, fix that part and
add a test to ensure that the fix is stable.

Debugging code
Debuggers are key to seeing what’s going on in your code in (almost) real time. As
you may know, debugging tools freeze your program at a specific point that you
choose, which is a great way to uncover unexpected results and see what’s
different from what you expected. For instance, the value of a variable could have
been mutated unexpectedly or the wrong type passed in by accident.

The example code that follows demonstrates how a debugging tool or debugging
statement (shown in bold) is inserted into the middle a function so that developers
can check their assumptions and understand what’s happening while the program
is running. This example comes from “The Little Guide of Linked List in
JavaScript,” by Germán Cutraro (https://hackernoon.com/the-little-guide-
of-linked-list-in-javascript-9daf89b63b54) (Don’t be overly concerned
with the functionality.)

LinkedList.prototype.addToTail = function(value) {
 const newNode = new Node(value, null, this.tail);
 if (this.tail) {

 // insert debugging tool or console.log() statement here

 this.tail.next = newNode;
 }
 else {
 this.head = newNode;
 }
 this.tail = newNode;
}

https://hackernoon.com/the-little-guide-of-linked-list-in-javascript-9daf89b63b54
https://hackernoon.com/the-little-guide-of-linked-list-in-javascript-9daf89b63b54

116 PART 2 Establishing a Pipeline

Most IDEs (integrated development environment) and browsers have debugging
tools out of the box. Debuggers can be extremely useful for less experienced
engineers even when no bug exists. The debugger permits you to “step through”
the program so that you begin to think more like a machine and become quicker
at reading code.

Logging code
Logging can be a developer’s most valuable tool or their worst nightmare. Where
debuggers become obsolete, logging provides answers. You can’t always step
through code at runtime. Instead, your code may be distributed or deployed to the
cloud.

Logging is like debugging but instead of putting a breakpoint into the code, you
add logging statements that you can read through as a program runs. The logs
display the actions and state of the program.

Logging frameworks are tools that classify log messages and help you comb through
the logs quicker than you could if the code was simply outputted as raw data.
Logging isn’t free, though. You have to store the logs somewhere, so you need to
log data based on what you need to know. Logging everything would be both a
poor use of resources and overwhelming to consume.

What you log, how often you log it, and how you organize it is up to you and highly
dependent on your application. Here are three guidelines that I recommend you
implement:

 » Format your logged messages. Include pertinent information such as the
session ID or user account information as well as the time stamp
and message.

 » Provide context. Sometimes you need more than the immediate data.
Simply knowing that something went wrong is not enough. What activity
happened before an error was encountered? What data was impacted?

 » Avoid side effects. Your logging should not impact your application’s
performance. Logging everything is tempting but comes at a cost. Instead,
start slow. You’ll find that you can more easily add logging than remove it after
it’s in place.

CHAPTER 9 Developing Code 117

Writing immutable code
One of the biggest benefits to functional programming (discussed in the upcoming
“Programming Patterns” section) is its emphasis on immutable code. Basically,
all variables are assigned once and do not change. In case threading is a concern,
immutability creates more resilient code. Also, the software is much easier to
debug because variables don’t change in the middle of the program. Instead, a
new value is assigned to a new variable. The fewer moving parts you can put into
your code, the easier it will be to debug and maintain.

Creating readable code
Your application’s code must be readable by the machines on which it runs. But
the machines don’t maintain it. Instead, humans have to read it, parse meaning,
and make changes that won’t cause a black hole.

When you think about writing code to be readable by humans, you should consider
more than just your colleagues. You should also consider future “you.” You won’t
have the context you have now in six months when you try to unravel why
something was stored in an array.

Also, the more legible your code is to humans, the less trouble they’ll have making
changes and fixing bugs. Sometimes it’s fun to make code so concise that it takes
up only a few lines. But if your code takes someone else hours to deduce what is
actually happening, the maintenance cost is too high.

Programming Patterns
Many more programming paradigms exist than the two I cover in this section,
which are object-oriented programming (OOP) and functional programming.
Both of these paradigms are simply two approaches to the same end, which is to
organize logic into a software program that provides utility to the end user.
I choose to highlight OOP and functional programming because they’re both
 popular and give you a wider view of possible approaches because of their
 contrasting features.

Object-oriented programming
Object-oriented programming (OOP) is based on the concept of — you guessed
it! — objects. Objects are anything, really, but usually contain data. Objects may
have attributes or associated qualities. In OOP, people typically refer to procedures

118 PART 2 Establishing a Pipeline

as functions or methods. Most object-oriented languages — Java, C++, Python,
JavaScript, Ruby, and Scala — are class based. Objects are instances of classes.

The goals of object-oriented development are reusability and modularity. Keeping
pieces of logic small and with other associated objects and methods is ideal. You
can easily reuse functions that have been developed within an object-oriented
program, which aids in efficiency and enables you to recycle work already done.
This capability for reuse can, however, lead to problems if the developer is
undisciplined about ensuring that the method is actually reusable in an intuitive
and flexible way.

Object-oriented programs encapsulate logic in such a way that an object does not
need to know the details of its implementation for it to be used. Objects can hide
certain attributes from programmers, which prevents the visibility of values that
no one should tamper with. This approach provides design benefits that reduce
the burden of maintaining large programs via relatively easy modifications.

Functional programming
The functional approach to programming avoids changes to state and emphasizes
the immutability of data. The output of a function in functional programming may
be impacted only by the arguments passed into a method. This approach has no
side effects. If you call a function with the same parameters a thousand times, it
will always produce the same result. Side effects are avoided because these
functions cannot be influenced by local or global state that would impact the
result.

Functional programming is extremely modular and easy to test. Its practice allows
the engineer to make fewer decisions about writing clean code than is possible
with OOP. Clean code is so ingrained into the principles of avoiding side effects
and preventing mutable state that functions end up being written in a clean and
readable fashion. Additionally, the code has fewer moving parts, which makes
identifying where a bug might be relatively simple.

Functional programming was born out of lambda calculus, but developers don’t
need to be math geniuses to write functional code. Though you don’t need to write
code in a functional language to benefit from the practices, functional languages
include Lisp, Haskell, Scala, Erlang, Rust, and Elm.

CHAPTER 9 Developing Code 119

Choosing a Language
Choosing the right language for any project is a difficult decision. You have
countless options, and each one has its pros and cons. Also difficult is knowing
how to separate hype from genuine praise to determine which language will give
you the best tools for the job.

No single language is superior to all others, no matter what the evangelists of any
particular community may tell you. Each one always has trade-offs to consider.

I can’t list every language and its potential benefits (and costs) to your team, but
here are some aspects to consider:

 » Performance: Will the language be performant in the way you need it to be?
Benchmarks are available to give you an idea of a language’s performance,
but keep in mind that the quality of the code also impacts performance. A
well-developed Ruby application outperforms a poorly executed Java
application no matter what the language benchmarks are.

 » Comfort: Does the team know the language already, or will they be able to
pick it up quickly?

 » Community: Can you easily find answers to questions online and locate
community resources formed around the language?

 » Platform: Does the language require a specific machine or tool? For instance,
programs developed in Java may be run only on machines with a Java Virtual
Machine (JVM) running.

 » Framework: Some languages are tied heavily to the framework. Ruby is a
perfectly useful language on its own, and lightweight frameworks like Sinatra
exist, but Rails is married to Ruby in many ways. Think through how that fact
will impact development.

If you opt for a microservice architecture and have a large enough team, you might
be able to build your application using multiple languages. Each service can inter-
act with services written in another language through a standard protocol or API.

Avoiding Anti-Patterns
Anti-patterns describe behavior in software development that highlights poor
practices. Anti-patterns frequently appear to make sense at first glance and often
seem to be commonly practiced in the industry. The consequences can be severe,

120 PART 2 Establishing a Pipeline

however, and other solutions have proved more effective. Although many more
anti-patterns exist than those in the following list, here are the software
engineering anti-patterns to avoid in your DevOps practice:

 » Design by committee: Because of its emphasis on collaboration and
communication, sometimes people can interpret DevOps as being a
design-by-committee pattern of software development. It is not. That type
of decision-making results in horrible outcomes. Instead, come to the table
having already thought through the process as individuals. When multiple
parties come together to share the ideas they’ve individually thought of and
then discuss them, the outcomes are vastly different than when a group of
people get together without any forethought and must come to a consensus.

 » God objects: This anti-pattern surfaces when too much logic is contained in a
single part of your application. This omnipotent object or class wields too
much power and forces other objects to rely on it. Maintenance becomes
difficult because the code becomes so tightly coupled and the god object so
large that the code is difficult to debug.

 » Cargo culting: This term refers to implementing a specific pattern of
development or tool without understanding whether or why it’s the best
solution. Though the pattern or tool is most likely implemented by a more
inexperienced developer, even senior engineers implement a cargo cult
solution if they’re influenced by vogue tools or constrained by tight deadlines.

 » Law of the hammer: If your engineers rely too heavily on a language,
framework, or tool that they’re intimately familiar with, they may be suffering
from this anti-pattern. Your engineers should be comfortable with their tools,
but if comfort becomes complacency, the time has come to reevaluate
whether you’re using the best tools for the job.

 » Bleeding edge: This term describes engineering teams who opt to be early
adopters of technology and integrate it into their applications. These new
technologies, although novel and occasionally amazing, can be unreliable,
poorly documented, and buggy. You also risk using a technology that’s
incomplete or a beta that pivots hard before release and thus impacts your
code.

 » Overengineering: Any time you’re designing a product, you must discipline
your team to solve only the problem at hand and to do so in an efficient
manner. Making a process unnecessarily complex is overengineering.
Although overengineered safety functions are necessary when lives are at
stake, this scenario is rare and should be avoided by most developers building
products. Keep it simple.

CHAPTER 9 Developing Code 121

 » Spaghetti code: This term refers to any object or application whose code is
unstructured to the point of being barely readable. The code may function
(barely) but it’s twisted like spaghetti on a plate.

 » Copypasta: This anti-pattern is simply copying and pasting existing code — or
code you found on the Internet — into your application. If this is a solution,
create a generic solution that can take parameters for customized handling.

 » Premature optimization: Engineers can be tempted to make something as
efficient as possible right from the start. But optimizing prematurely is often
not the best use of resources and can make code more difficult to maintain —
especially if you’re not completely sure that you’ve solved the problem. MVPs
should never be optimized, and optimizations should take place only after
they’ve been identified as necessary.

 » Vendor lock-in: I mention this issue several times in this book. A lock-in
situation occurs when switching vendors would cost so much that it becomes
a barrier to opting for a new, and perhaps better, tool.

DevOpsing Development
No one is in charge of your career but you. Sometimes managers fail you and peers
disappoint you, but when you come up against disappointments at work, you
shouldn’t let it sidetrack you from your mission. DevOps requires collaboration,
but you have no guarantee that collaboration will always be pleasant.

Being excellent at what you do is a choice, and I believe that hard work beats talent
when talent doesn’t work hard. When it comes to developers, possessing certain
key characteristics makes them both excellent engineers and exceptional DevOps
practitioners.

DevOps can’t exist on an engineering team without the buy-in of developers, and
developers are some of the people who can benefit the most from the DevOps
approach. When hiring developers, keep the characteristics described in the
following sections in mind. A developer’s attitude about their work is as important
as their technical expertise.

Writing clean code
Clean code is human readable and simple to test. Each function (or method, in
some languages) should do only one thing. This single-responsibility principle
modularizes your code so that you can quickly deduce what a function does and
where a bug might be.

122 PART 2 Establishing a Pipeline

Functions that lack focus create difficulties in reading the code and fully under-
standing what purpose a section serves. The lack of focus also makes reusing the
logic or abstracting into a generic method for use in multiple areas of the codebase
difficult. Ensure that functions are named for what they do. If you catch yourself
adding “and” to a function name, take that as a sure sign that the function is
breaking the principle of single responsibility.

Understanding the business
An anti-pattern that I didn’t mention earlier in this chapter is mushroom
management, which describes blind development in which developers are given
limited information and expected to develop based on manager decisions alone.
The name comes from how mushrooms are grown. Mushrooms are kept in the
dark and occasionally fed some manure. In mushroom management, no collective
understanding exists of the reason behind a product. The situation is made worse
by the fact that managers and developers often have trouble communicating.

If developers don’t fully understand the business, they fail to write code in a way
that fully serves the right purpose. Conversely, developers who have a handle on
the business side feel empowered to suggest alternatives, push back on ideas, and
take pride in their work.

Listening to others
In business and engineering, the art of listening is perhaps the most underrated
skill of all — especially for developers. If you watch highly productive teams
interact, you often find that the senior and principal engineers do the least amount
of speaking. In fact, the best technical leaders on engineering teams allow
everyone else to contribute their thoughts, consider everything carefully, and then
give clear guidance on how the team should execute a plan.

A characteristic I look for in hiring is a person’s comfort level with admitting what
they don’t know. Engineers who think they’re the smartest person in the room
can absolutely destroy collaboration. They will silence their colleagues and
steamroll anyone who disagrees with them. The cost to the team is too high to
employ engineers who cannot admit when they’re wrong or listen to the ideas of
their peers.

Focusing on the right things
I almost never use the word “coder” because it implies someone who mindlessly
types code without thinking through larger implications. Possessing the discipline
and gumption to push back on ideas coming from different areas of the business

CHAPTER 9 Developing Code 123

in a way that invites discussion is critical. These capabilities require developers to
translate technical language into words that non-engineers can understand.

Developers who focus on the right things almost never sacrifice the quality of
their work for unreasonable deadlines. Instead, they communicate hiccups early
and keep everyone informed of the deadlines for when work is expected to be done
(with an emphasis on expected).

These types of engineers are cautious about taking on technical debt and quick to
pay it off. They focus on architecting and building features that are important to
the business, are maintainable, and are implemented in a way that makes the
codebase flexible to change. They avoid rabbit holes by keeping the customer in
mind and avoiding overengineered solutions.

Getting comfortable with being
uncomfortable
Curiosity is a characteristic of all great developers. They aren’t afraid of new
things and embrace new ideas with a childlike joy. Great developers recognize that
new industry tools or trends aren’t always the best idea for any particular
 company, but they keep up with tech news and learn the basics of new tools so
that they can make good decisions about those technologies and trends.

Ongoing education is another key component of teams that produce great software.
They emphasize the importance of reading, talking to other developers, going to
conferences, and taking courses. If you are a manager, be sure to advocate for your
developers and block off part of the budget for continuing education. Your
developers are more than a way to pump out code. They’re a knowledge resource
that, if cultivated, can provide years of valuable advice and guidance to your
company.

In addition to providing your engineers with educational opportunities, ensure
that they have quiet time to develop. An engineering manager I know allows
meetings to take place only on Mondays and Fridays. Instead of scattering
meetings throughout the week and taking developers away from focused work, he
protects them from interruption. Developing software takes intense focus.
A single break in that focus can sideline a developer for hours.

124 PART 2 Establishing a Pipeline

Establishing Good Practices
Now that you know what not to do, you can focus on how to implement good
practices in your organization. And, no, I didn’t say “best” practices. A best practice
is an approach that is viewed as superior across the industry because it produces
better results than any other technique. In other words, it’s the accepted way of
doing things.

I don’t like the “best practices” approach because it stifles innovation. If you
accept that something is the best practice, will you challenge it or iterate on it? On
the other hand, good practices are standard methods of approaching certain
challenges that are generally accepted as battle tested. Good practices give you
guidance without imposing rigid constraints.

Organizing your source code
Every engineer on your team should have, at a minimum, read-only access to
every line of code in your organization. This access includes the source code of
your application’s features all the way to infrastructure code. This shared
repository (or, more likely, repositories) enables everyone to feel empowered to
find their own answers and read parts of the application that they’re not necessarily
intimately familiar with. With this shared access, every engineer can be useful
during day-to-day work and, most important, during incidents and outages.

For most organizations, git and a hosting service like GitHub or GitLab is ideal.
These tools are much lighter weight than older source control tools and serve as
great collaboration tools — even for meeting agendas and brainstorming!

Be sure to keep related code together. Builds should be simple and repeatable.
Also, as you advance, automate your builds as you move toward continuous
integration.

Writing tests
If you don’t have a testing framework already set up, do that now. Giving your
developers the ability to write automated tests as they write features is imperative.
Some people opt for test-driven development (TDD), in which you write a test that
confirms the function you need to write and then you make code pass the test.
This approach is effective but heavy-handed enough that many avoid it. At a
minimum, developers need to write unit tests that confirm that a piece of logic
performs as expected.

CHAPTER 9 Developing Code 125

You can use happy path tests, which are scenarios in which everything goes as
expected. You can also use sad path tests, which are scenarios into which
something odd is introduced.

The automated testing framework that you use will depend on your language.
Find one that is robust enough to meet the needs of your organization but simple
to learn and execute. If you make testing difficult, your developers won’t do it.

Following is code from two example files: add.js and testAdd.js. The only
function in add.js takes two parameters and returns the sum. The test file
testAdd.js accompanies this piece of logic and contains two tests — one with a
happy path and one with a sad path. The happy path test provides two expected
parameters: 2 and 2, which returns 4. The sad path test introduces a string of 2 as
one of the parameters. Although this result is not expected, it is possible, and your
logic must account for it.

// add.js
function add(x, y) {
 return x + y;
}

// testAdd.js
const assert = require('assert');

// happy path test
it('correctly calculates 2 plus 2', () => {
 assert.equal(add(2, 2), 4);
});

// sad path test
it('correctly calculates 2 plus 2', () => {
 assert.equal(add('2', 2), 4);
});

The preceding sad path test will fail because of how JavaScript attempts to help you
handle strings. Adding a string of 2 to an integer of 2 will result in a string of 22.

Documenting features
Making notes above a piece of code is a way of reminding future developers what
the function does (if it’s necessarily complex), what the context of the code is,
what parameters it expects or produces, and what, if anything, could be improved
with more time. (Hey, sometimes you have to do things in a hurry.)

126 PART 2 Establishing a Pipeline

The code itself should be clean and readable enough to serve as a type of
documentation even though you’re writing it in a machine language, not a human
language. Just as with everything else in DevOps, you can and should automate
 documentation — to a point. Just remember to manually solve your problems
before you automate them. Otherwise, you’ll be automating broken systems. If you
do choose to automate your documentation, create the framework and allow devel-
opers to configure specific values to tailor the documentation to the specific code.

When I write APIs, I have a script that loads the boilerplate API format with the
actions I know I’ll probably need (GET, POST, PATCH, DELETE) as well as the basic
documentation (including examples) for each action. That way, I don’t have to
type the same things repeatedly. I save time and know that I’m not making (as
many) mistakes. Then I take the boilerplate and add to it or adjust it as needed,
based on the specific code I wrote. Getting into the habit of automating small
pieces of redundant work is a very DevOps-y thing to do!

Another type of documentation is external and customer facing. That
documentation typically isn’t managed by developers because it requires much
more verbose technical writing and assists engineers with getting up and running.
As someone who works in developer relations, some of the work I do is showcasing
the APIs made by the product engineering team into documentation and tutorials
that anyone can understand and use.

Having peers review your code
I believe strongly in code reviews. I also believe that developers should never
merge their changes into the master branch themselves. A code review can take
place through comments in the repository where the code lives or in person with
two (or more!) engineers reviewing the code together on the screen.

The practice of reviewing code is important on many levels because it

 » Helps junior engineers level up more quickly

 » Reduces errors by having more than one pair of eyes look it over

 » Unifies the codebase by standardizing formatting

 » Forces reviewing engineers to question assumptions and ask questions

 » Enables people to become familiar with code they didn’t write

 » Helps senior engineers (who sometimes code quite a bit less) stay in touch
with how the less experienced think

CHAPTER 9 Developing Code 127

The process of a code review is simple. Assuming that you utilize git as I recom-
mend, your code will live on a feature branch while it’s a work in progress. You will
then submit a pull request (PR) to merge your code from the feature branch into
the master, or trunk, branch. (Depending on your deployment approach, the mas-
ter branch may or may not be the version currently running in production, but it
will be the most up-to-date version running in the development environment.)

You should tag a particular party in the PR. If you’re on GitHub, you can simply
include @username in the comment of the PR, thereby sending an alert to the other
engineer. How you organize who reviews what is up to you. Some companies
assign particular people to a team; others leave it more ad hoc.

If time is limited for you and your team, you can still benefit from even a
lightweight code review in which both engineers quickly discuss the purpose and
glance over the code. They’ll still find plenty of bugs.

If it’s a remote or asynchronous code review, the reviewer will look at the code
and respond to the PR with any comments or concerns. If you opt to review
the code in person (or remotely through a video chat), find a quiet space to review
the code as a dyad or small group without interruption. If you are in person, use a
large monitor to aid you in easily reading and discussing the proposed code. At
this point, the original developer and the reviewer(s) read the code and ensure
that it follows your team’s code standards, functions as expected, is written in a
readable manner, and is properly tested.

After the reviewer is confident that the code is ready to be merged, they merge
the code into the master branch. This shared ownership encourages everyone on
the team to work collaboratively and treat the entire codebase, instead of only the
code they worked on, as their responsibility.

CHAPTER 10 Automating Tests Prior to Release 129

Chapter 10
Automating Tests Prior
to Release

Testing and development overlap to some degree because developers should
absolutely be writing tests as they write code. I gave the subject of testing
its own chapter to highlight just how important testing is to DevOps envi-

ronments. You can’t have automation or continuous anything without robust
automated testing.

In this chapter, you glean the importance of testing in DevOps, see how to test
code in multiple environments, and find out what types of tests to consider.

Testing Isn’t Optional
If you jump into continuous integration or delivery without taking the time to
establish a strong automated testing practice on your team, you face disaster.
Things will break frequently and catastrophically. Testing buttresses your ability
to automate and reassures you that new changes don’t break existing functionality.

IN THIS CHAPTER

 » Using automated testing

 » Looking at the various testing
environments

 » Understanding what types of tests
to do

130 PART 2 Establishing a Pipeline

Software testing has three core purposes:

 » To confirm that application logic fulfills its desired functionality: Does
the current functionality meet requirements and complete the task in a
reasonable time?

 » To discover bugs — errors — in code: Does the logic respond to all types of
inputs? Is the code usable by your customers?

 » To verify that previous functionality is unchanged by new code: Has
anything been accidentally impacted due to unforeseen dependencies?

Automating Your Testing
Manual testing is becoming obsolete. Our systems and codebases are simply too
complex and run in too many different types of environments for a human to
confirm that everything works as expected. If you’re adopting DevOps and all its
associated practices, automated testing isn’t a choice; it’s the next step.

Continuous integration requires an automated test suite that runs tests every time
code is committed to git. This approach requires not only that your team writes
tests but also that you treat your test code as code.

Automation is key to enabling a “shift-left” mentality similar to the one I talk
about in Chapter 6. Done well, testing allows you to fail early and often. You catch
more bugs, avoid regressive functionality, and prevent incidents in production
through continually testing your system.

Manually testing each change is labor intensive and inefficient. You should shift
the QA team’s efforts from running tests and — face it — clicking around the site
manually to developing automated tests. If you’re lucky enough to have dedicated
testers, treat them as testing specialists. They are the experts in the best testing
frameworks and tools, as well as how to automate the test suite for accuracy and
performance. Developers should absolutely always write tests to accompany their
code. Similar to a code review, QA engineers can go one step further to ensure
tests. Automated testing enables your team to continuously integrate changes and
rapidly execute quality checks against those changes. Start automating by looking
for the areas that are:

 » Repetitive

 » Labor intensive

 » Prone to defects

CHAPTER 10 Automating Tests Prior to Release 131

If you’re starting from scratch and don’t currently have any test suite, you’re not
alone. You have nothing to be ashamed of, but it’s time to evolve and begin
adopting DevOps practices that are proven to accelerate your delivery.

Your mission to build an automated test suite should start with prioritizing the
areas of your codebase that have the biggest impact to customers. Which are the
features or areas of logic that are most often hit while the average user is
interacting with your product?

Treat the issue of building out a robust test suite as you would any other type of
technical debt that you have to slowly pay back. Create tasks specific to
implementing an automated test framework and write tests to provide coverage
for the areas of your codebase that are the most vulnerable to breaking. Schedule
time in your Agile sprints or project workflow to ensure that the work is prioritized,
and then slowly add it in.

Building the tooling required for testing as well as developing the habit of writing
tests for new features takes time. These are not overnight tasks, so prioritize and
slowly work through it.

Testing in Different Environments
The concept of quality control in DevOps applies to more than just the code. It
exercises your deployment processes and architecture as well. Each target
environment will have small differences that may impact how your application
runs. You want to strive to make your testing or staging environments as close to
production as possible so that you can establish repeatable processes in reliable
environments. Staging enables you to identify and resolve any issues with the
process or infrastructure, making it easier to identify and fix changes that break
any part along the way.

No ubiquitous standard exists for naming environments. Nor is a set number of
environments used by every team. Every deployment process is unique to the
organization implementing it.

If you’re diligent about tooling and resource parity, you can force issues to surface
early in the development life cycle through tests. If you’re not diligent in
these areas, you’ll pay the price by having more issues to deal with after you release
code to production (not to mention the frustration created when developers
repeatedly have tickets returned to them).

132 PART 2 Establishing a Pipeline

The environments and steps your code travels through on its way from develop-
ment to production is called the release pipeline. Although the release pipeline can
vary because of many factors, including your application, organization, and exist-
ing tool set, a typical architecture consists of five environments:

 » Local

 » Development

 » Testing

 » Staging

 » Production

Each of the four environments preceding production serves to challenge the code
against increasingly difficult (and expensive) tests to ensure that the code is
production ready:

 » Local: Does the feature work in isolation?

 » Development: Does the feature play well with the other components in the
service? Does the feature respond as expected when connecting with external
services?

 » Testing: Is the feature free of security concerns? Does the user experience
meet feature requirements and development standards?

 » Staging: Does the feature meet or exceed all business requirements?

Some teams add a sandbox environment to test experimental ideas. Also, many
developers work on a local environment that’s unique to their machine. Keep
reading for more about these various environments.

Local environment
A local environment is a single developer’s machine (laptop or desktop). One of
the advantages of developing and running code locally is that you don’t need the
Internet to run your software. The phrase “Works on my machine!” is spoken by
a developer who has functionality on their computer even though the code may
break in another environment. This discrepancy can happen because environments
can have vast differences in technical dependencies, data, and other resources.

Require developers to write unit tests to accompany each component they write.
Depending on the feature and how much it interacts with other components (in
your system or third-party services), integration tests with stubbed responses
may also be written and run locally.

CHAPTER 10 Automating Tests Prior to Release 133

Sometimes you need to interact with other services and tools through HTTP
requests when working on your local machine. If you need to work offline, those
responses can usually be stubbed. In other words, you can trick your algorithm
into thinking that it received a response. Stubbing or mocking is especially
important to use in your automated unit tests (refer to “Going beyond the Unit
Test,” later in this chapter) to speed the time that tests take to run and to ensure
a consistent response for the code to ingest. Remember to update your stubbing if
the API you’re calling changes its response!

Development environment
The development environment is where the first phase of testing for new code
takes place. This environment is often referred to as “DEV.” After developers
know that a feature works on their local machine, they deploy new code to DEV to
test it there.

When the code is in DEV, engineers run unit tests and integration tests to ensure
that the new code still works as expected when merged into the main master or
trunk branch in git. Developers often also play around manually with the new
functionality to double-check that it’s ready for a code review by a peer and
deployment to the testing environment. In other words, the development
environment is where developers can determine whether they think they’ve
accomplished what they needed to do or they need to rework it.

The development, or DEV, environment is the least stable environment in the
release pipeline. Changes are constantly being integrated by developers working
on multiple areas of the codebase. Developers must confirm that the code works
and the tests pass consistently before passing it on to the next environment.

Testing environment
This stage is sometimes referred to as quality assurance (QA). Traditionally, after
a developer felt confident in their work, they would submit a pull request to check
in their code, undergo a code review, and then hand the code over to the QA team
to test it in the testing environment. But that’s not very DevOps-like. In DevOps,
people work together and share responsibility.

Depending on how far along in your DevOps transformation you are, the QA team
may still “own” the testing environment. Although this situation isn’t ideal, it’s a
fine place to start. QA teams commonly fear automating themselves out of a job.
Reframe the opportunity to show the QA team how they’ll transition from the
reactive and rote toil of manual testing to becoming experts in automated testing
and continuous integration.

134 PART 2 Establishing a Pipeline

DevOps fundamentally changes the role of QA on an engineering team. No longer
does a QA engineer “own” the testing environment, test code, and then pass it off
to operations after it’s deemed functional. Instead, DevOps empowers people in
QA to act more like engineers. Today, QA teams assist in writing automated tests
and serve as experts in testing practices, procedures, and approaches.

The DevOps emphasis on automation and continuous improvement make the
hand-off to QA more nuanced. As you consider how DevOps will impact your
testing practices, take time to think through what your QA team might look like in
the next year. How will you level up your QA engineers? And how will you take
advantage of their unique knowledge to teach developers how to write better,
more reliable tests?

No matter who deploys the code to the testing environment — or whether
deployment happens automatically in a CI/CD setup — it’s a slightly more robust
environment than development (more resources and data) in which additional
tests are run. Although unit tests can verify functionality in logic, they lack the
whole picture. The testing environment is an ideal place to start running user
interface tests and security challenges.

Tests may be run in two ways: serially, with each test being run sequentially, one
at a time; or in parallel. A parallelized testing environment is advanced but is a
differentiator between high-velocity engineering teams and those with slower
software delivery.

Staging environment
The staging environment should be a mirror of the production environment.
These two environments should have data and resource parity (or as close as you
can get) so that you can confirm that the infrastructure does not have an
unexpected impact on the code being released. The only difference between
staging and production is that staging does not serve customer traffic. This
approach enables you to ensure that the code is performant, and you can check for
potential bugs with external services and database interactions. In addition to
being the place for final testing, staging is where certain configuration or
migration scripts can be run.

Although staging should mirror production as much as possible, it will never fully
emulate the production environment because it lacks customer interaction and
usage. Different approaches to testing in production and releasing software
(discussed in the next chapter) have evolved from this fact. Testing isn’t fail-safe,
but it will give you and your team confidence in your software and limit the blast
radius of potential failures.

CHAPTER 10 Automating Tests Prior to Release 135

Production environment
The production environment is the final stage for your code, and it’s the one in
which you have the most to lose. Your production environment serves customer
traffic. After a build is released to production, it’s supposed to work as expected.
Of course, in the real world, things go wrong all the time. As long as you have a
way of handling rollbacks or deploying in a phased manner, you should be fine.
(I discuss deployment approaches in Chapter 11.)

Being notified by customers of an incident is not ideal because it damages trust.
Application insights, monitoring, logging, and telemetry are all tools that provide
you with information on your system’s on performance, server load, and memory
consumption. Ideally, your incident alerting system (discussed in Chapter 17)
brings issues to your attention before your customers reach out. Even so, make
sure that your customers can easily get your attention when they’re impacted.

Going beyond the Unit Test
In unit testing, developers make sure that each component does its job and then
continues to do its job after updates and changes. But what happens when those
components get combined? And what happens when they are migrated to the next
environment in the pipeline?

Your development life cycle should include time for the following:

 » Developing test cases

 » Writing automated tests

 » Running manual tests (if still required)

 » Reflecting on the delivery

 » Making adjustments

I highlight some of the most insightful and critical tests to include in your
 automated test suite in the following sections. It’s far from an exhaustive list, but
it will get you started on your path to continuous testing and serve as a baseline
as you continue to grow and refine your approach to testing.

136 PART 2 Establishing a Pipeline

Unit tests: It’s alive!
Developers write unit tests as they work to test the functionality of the logic they
just built. A single function may have a dozen associated tests. Just as functions
should do only one thing, so, too, should tests. Each test should ensure that the
algorithm works as expected through a variety of scenarios.

Unit tests give developers immediate feedback and eliminate multiple loops of the
traditional development life cycle. Instead of writing code, passing it to the QA
team, and having them kick it back repeatedly, an engineer can check their work
within seconds.

Unit tests are cheap, meaning that they require fewer dependencies (they test the
functionality of only one piece of code) and they run quickly. A unit test can run in
milliseconds, as compared to certain user interface or end-to-end tests that,
depending on the complexity of the component, can take minutes to run.

Code coverage refers to how much of your codebase is “covered” by tests. Many
tools evaluate your codebase against your test suite and give you a percentage of
coverage, but that approach is flawed because it doesn’t measure the quality of
those tests and is easily gamified. I think code coverage is more useful as a data
point for stubborn executives than as a real measure of the efficacy of your
engineering team. Trust them to write quality tests and to verify that work in code
reviews. Provide continuing education opportunities for engineers to share
knowledge and learn how to write better tests, not just more tests.

Integration tests: Do all the
pieces work together?
Integration tests are typically the most useful in staging (see the “Staging
environment” section, earlier in this chapter), where the application has access to
the network, databases, and file systems. Unlike unit tests that validate function-
ality of a single piece of logic, integration tests confirm that multiple components
communicate as expected.

Though a bit more complex than other tests to set up, integration tests catch bugs
that are hard to track down. Not only do all the pieces of code need to work
together, but they have to work with the rest of the environment as well. In
integration testing, you are looking for all the little variables that can make things
go awry. How does the code work with real data? What about with heavy user
traffic? Do problems arise when the code interacts with mail servers?

CHAPTER 10 Automating Tests Prior to Release 137

Stubs are snippets of code that mimic a user action in a test. Drivers, on the other
hand, mimic a server response.

Regression tests: After changes, does
the code behave the same?
Regression testing verifies that after you make changes to the code, key metrics
for how your application works and runs haven’t changed as well. This verification
includes previous functionality. Have old bugs resurfaced? Did a new change
impact a previous version of an API?

This testing might check that the accuracy or precision hasn’t degraded. Sometimes
regression tests are as simple as ensuring that a simple CSS color change didn’t
make the site a different color or cause a link to break.

Visual tests: Does everything look
the same?
Visual testing is relatively new and fascinating. It’s essentially automated testing
for the user interface (UI) and ensures that the application appears the same to
users (tailored to specific browsers and devices) — down to the pixel. Every other
kind of test verifies an expected function. Visual tests are unique in that they test
the UI for consistency. I highly recommend that you don’t roll your own visual
testing tool and instead opt for one of the dozens of open source or enterprise
tools available.

Visual testing works by establishing a visual baseline through a screenshot, which
serves as the expected display. When you merge a change into the master code
branch, the testing library will take a screenshot of the new results and compare
it to the baseline. If the test detects differences, the test fails. Some tools even go
so far as to highlight the differences so that you can see exactly what changed —
which is a front-end developer’s dream.

Performance testing
Performance tests verify the overall application performance. Is the app respon-
sive? Stable? Does it scale as expected and use a reasonable amount of resources?
Performance testing can also include security tests and load tests. Security tests
verify that no known vulnerabilities were introduced in the latest build, and load
tests mimic a large number of users or data that will stress the system.

138 PART 2 Establishing a Pipeline

Don’t forget security! Security tests should look at network security and system
security as well as client-side and server-side application security. The world of
security testing is vast and deep. I highly recommend the Open Web Application
Security Project (OWASP) testing guide found at https://www.owasp.org/index.
php/Category:OWASP_Testing_Project.

Continuous Testing
From a developer perspective, testing has traditionally been overlooked. DevOps,
however, emphasizes the importance of testing. As developers deliver software
faster and in an automated fashion, the quality of the work can’t degrade. Mistakes
can be costly.

An untested and buggy release can have a permanent impact on your reputation
or open you up to security and compliance risks. Although continuous delivery and
continuous integration are more well known than continuous testing in DevOps,
continuous testing is finding its place.

Continuous testing starts in the development stage, and developers can spearhead
its use in order to get immediate feedback on their work and prevent late nights
resulting from incidents and outages. When organizations embrace DevOps,
taking care of quality becomes everyone’s job — not just QA’s.

Continuous testing can guide software development teams when it comes to
meeting their business goals, managing business expectations, and providing
data for decisions that require a trade-off. As with many things in DevOps,
continuous testing will shorten your cycles and enable you to rapidly iterate.

No matter what approach you take to testing, your code will need to make its way
to production eventually, and how you deploy a product is the subject of the next
chapter.

https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project

CHAPTER 11 Deploying a Product 139

Chapter 11
Deploying a Product

As I discuss in Chapter 10, you should thoroughly test all code before releas-
ing it to customers. The deployment process refers to releasing that code
to customers. That process can be as simple as clicking a button or as

complex as a series of pipelines and gates through which the code must pass to
reach customers. Sometimes you hear the term release used interchangeably with
deployment.

A deployment is the movement of code from one environment to another. A devel-
oper can deploy their code from their local machine to the development (DEV)
environment. At that point, the code may pass through several more environ-
ments, like user acceptance testing (UAT) or quality assurance (QA), staging, and
production (PROD). The deployment to production — specifically, a deployment
to customers — is the purest form of the word release.

In this chapter, you find out how to implement continuous integration and con-
tinuous delivery (CI/CD), decide on a deployment strategy, and manage releases.

Releasing Code
If code is accessible by customers, it has been released. If code is exposed to a new
environment, it has been deployed. Still, deployments have enough shades of grey
to render this bifurcation of meaning unhelpful. So although the terms released

IN THIS CHAPTER

 » Releasing versus deploying code

 » Implementing CI/CD

 » Managing deployment incidents

 » Choosing a deployment style

140 PART 2 Establishing a Pipeline

and deployed aren’t perfectly synonymous, for the purposes of this chapter, I use
them to mean the same thing.

Releasing a build (an artifact of the packaged code) to the production environment
does not necessarily mean that is serving all customers — or any customers, for
that matter. Release simply means that a version of the application is now receiv-
ing production traffic and has access to production data.

I’ve seen more than one conversation get sidelined over the use of release and
deployment to mean different things. As with all things in DevOps, communication
is key. Never assume what someone means by either term without asking for
clarification.

Another term often thrown around is shipped. This term derives from the time
when companies literally shipped CDs to customers with updated software for
installation. In fact, developers will often joke with each other when one asks
about whether something is ready to be released to customers. “Ship it!” they say.

Although the origins of “shipping” software typically referred to delivering a new
version of software to customers, people use it interchangeably with deploying and
releasing. The bottom line is that the meaning of all these words depends on the
message intended by the person using them. If you’re unsure, ask.

Integrating and Delivering Continuously
The growth of DevOps culture has changed the way developers build and ship
software. Before the Agile mindset emerged, development teams were assigned a
feature, built it, and then forgot about it. They tossed the code over to the QA
team, who then threw it back because of bugs or moved it along to the operations
team. Operations was responsible for deploying and maintaining the code in
production.

This process was clumsy, to say the least, and it caused quite a bit of conflict.
Because teams existed in silos, they had little to no insight into how other teams
operated, including their processes and motivations.

CI/CD, which stands for continuous integration and continuous delivery (or
deployment), aims to break down the walls that have historically existed between
teams and instead institute a smoother development process.

CHAPTER 11 Deploying a Product 141

Benefitting from CI/CD
CI/CD offers many benefits. However, the process of building a CI/CD pipeline can
be time consuming, plus it requires buy-in from the team and executive
leadership.

Some benefits of CI/CD include:

 » Thorough automated testing: Even the most simple implementation of CI/
CD requires a robust test suite that can be run against the code every time a
developer commits their changes to the main branch.

 » Accelerated feedback loop: Developers receive immediate feedback with CI/
CD. Automated tests and event integrations will fail before new code is
merged. This means that developers can shorten the development cycle and
deploy features faster.

 » Decreased interpersonal conflict: Automating processes and reducing
friction between teams encourages a more collaborative work environment in
which developers do what they do best: engineer solutions.

 » Reliable deploy process: Anyone who’s rolled back a deploy on a Friday
afternoon can tell you how important it is that deploys go smoothly.
Continuous integration ensures that code is well tested and performs reliably
in a production-like environment before it ever reaches an end user.

Implementing CI/CD
CI/CD is rooted in agile methodologies. You should think of implementing CI/CD
as an iterative process. Every team can benefit from a version of CI/CD, but cus-
tomizing the overall philosophy will depend heavily on your current tech stack
(the languages, frameworks, tools, and technology you use) and culture.

Continuous integration
Teams that practice continuous integration (CI) merge code changes back into the
master or development branch as often as possible. CI typically utilizes an inte-
gration tool to validate the build and run automated tests against the new code.

The process of CI allows developers on a team to work on the same area of the
codebase while keeping changes minimal and avoiding massive merge conflicts.

142 PART 2 Establishing a Pipeline

To implement continuous integration:

 » Write automated tests for every feature. This prevents bugs from being
deployed into the production environment.

 » Set up a CI server. The server monitors the main repository for changes and
triggers the automated tests when new commits are pushed. Your CI server
should be able to run tests quickly.

 » Update developer habits. Developers need to merge changes back into the
main codebase frequently. At a minimum, this merge should happen once
a day.

Continuous delivery
Continuous delivery is a step up from CI in that developers treat every change to
the code as deliverable. However, in contrast to continuous deployment, a release
must be triggered by a human, and the change may not be immediately delivered
to an end user.

Instead, deployments are automated and developers can merge and deploy their
code with a single button. By making small, frequently delivered iterations, the
team ensures that they can easily troubleshoot changes.

After the code passes the automated tests and is built, the team can deploy the
code to whatever environment they specify, such as QA or staging. Often, a peer
manually reviews code before an engineer merges it into a production release
branch.

To implement continuous delivery:

 » Have a strong foundation in CI. The automated test suite should grow in
correlation with feature development, and you should add tests every time a
bug is reported.

 » Automate releases. A human still initiates deployments, but the release
should be a one-step process — a simple click of a button.

 » Consider feature flags. Feature flags hide incomplete features from specific
users, ensuring that your peers and customers see only the functionality you
desire. (I discuss feature flags more later in this chapter.)

CHAPTER 11 Deploying a Product 143

Continuous deployment
Continuous deployment takes continuous delivery even one step further than
continuous delivery. Every change that passes the entire production release pipe-
line is deployed. That’s right: The code is put directly into production.

Continuous deployment eliminates human intervention from the deployment
process and requires a thoroughly automated test suite.

To implement continuous deployment:

 » Maintain a strong testing culture. You should consider testing to be a core
part of the development process.

 » Document new features. Automated releases should not outpace API
documentation.

 » Coordinate with other departments. Involve departments like marketing
and customer success to ensure a smooth rollout process.

Managing Deployments
Release management is a core component of DevOps and an area in which you’re
likely to see the most improvement when adopting DevOps practices. As men-
tioned elsewhere in the book, developers and operations folks used to be isolated
from each other, existing in silos of knowledge and responsibility. Developers
wrote code, added functionality, and then tossed it to operations for deployment
and maintenance — all without properly communicating technical considerations
important to the release.

Often, manual deployments, compounded by poor collaboration, lead to
less-than-stellar outcomes. In 2016, the research company Gartner estimated
that a lack of effective release management contributed 80 percent of service
outages in large organizations.

Releasing software in an automated and well-orchestrated fashion is key to
reducing service outages and incidents.

Automating the right way
Although automation is key to accelerating your software delivery, use caution when
automating your release processes. You need ensure that you’re automating the
appropriate procedures. The worst thing you could do is to abstract a problematic

144 PART 2 Establishing a Pipeline

process and implement it in a way that removes humans from the process. High-
performing engineering organizations use automated tooling in their release pro-
cesses, but they take a lean approach, adapting the tooling as necessary.

If you have a relatively small engineering organization, I recommend standardizing
release and deployment processes across the company, at least at the start. Your
release procedures will change and evolve as you grow. Organizations like Amazon
assign a site reliability engineer or operations specialist to each engineering feature
team. Because so much of Amazon’s infrastructure and architecture is microservice-
based, those teams can operate independently. Until you feel that your team is at this
level of performance, keep your release and deployment processes consistent.

Versioning
You version software upgrades by assigning a unique version name or version
number to identify different states of an application. You can even differentiate
states of source code internally looking at the code commit history in git. You can
identify and even select the previous states of the code — the revision history
using the unique SHA-1 hash that accompanies every commit.

Versioning deployments is equally important. If you utilize CI/CD, you should
check version numbers identifying software state into your source control.

Semantic versioning
Ad hoc versioning never goes well. The various humans on your team all think
differently from each other, and those subtle differences — without versioning
standards — can lead to confusion. Semantic versioning is a relatively simple
approach that everyone on your team should be comfortable getting behind.

The real benefit of semantic versioning is how the version number gives you impor-
tant information when viewed in relation to the version numbers of the preceding
and subsequent releases. The actual version number distinguishes patches from
minor releases and major version updates by how the version numbers increment.

Semantic versioning uses three numbers in every version number. The number
that increments depends on the type of release. For example, the currently released
version of ACME APP is 1.3.4, so here’s what various versioning would look like:

 » A patch update would make the current release 1.3.5.

 » A minor update would increment to 1.4.0.

 » A major update would put the release version at 2.0.0.

CHAPTER 11 Deploying a Product 145

The term patch refers to a deployment that fixes bugs. The changes are minor and
simply reinforce previously released functionality. Minor version updates contain
new features. Major updates aren’t backward compatible and include code that
would break previous versions.

This system helps you easily track versions internally as well as inform your users,
depending on how and when you choose to announce releases publicly.

Versioning for continuous deployment
Semantic versioning gets a little more tricky than how I describe it in the preced-
ing section if you’re deploying ten times per day — or even once per day. It’s
complicated when you quickly increment while having extremely minor differ-
ences between versions released.

At this point, I recommend adding a dynamic component to your versioning.
Because continuous delivery and continuous deployment are automated, a code
check-in will trigger a new build. When completed, that build will then trigger a
release pipeline that deploys the build to the various environments. Every releas-
able build should have a unique version number.

Variables enable you to implement more complex versioning while still maintain-
ing a semantic approach. Build tools allow for you to add global or build variables
to a release number, thus distinguishing it from the others.

Most automation tools permit variable groups that set the values and definitions
across the entire release pipeline. You typically format variables like this: ${vari-
able}. The pipeline tooling helps you ensure that no two releases are identically
named. Here are some examples:

 » ${developer}: v1.3.4-efreeman

 » ${team-project}: v1.3.4-serverless

 » ${email}: v1.3.4-emily@microsoft.com

 » ${commit}: v1.3.4-bc0044458ba1d9298cdc649cb5dcf013180706f7

Depending on the tool you’re using, you can get extremely granular and mix and
match variables however you like. I advise adding enough information to uniquely
identify state and provide context to reviewers while maintaining readability:

 » v1.3.4-serverless-emily@microsoft.com

 » v1.3.4-release-54-bc0044458ba1d9298cdc649cb5dcf013180706f7

 » v1.3.4-efreeman-critical-security-patch

146 PART 2 Establishing a Pipeline

Tracking application packaging
Releasing microservice architecture and distributed systems involves significantly
more moving parts than deploying a monolith. As a result, you can’t simply track
the state of each service or component; you must track the entire application as a
package, including all the components and database changes.

If you have different components of an application deployed to various containers
or clusters, deploying each piece every time a new version is released is wasteful,
and risks the possibility of errors. Instead, you need to use a configuration man-
agement tool to track the deltas — that is, the changes and differences between
versions. If an element of a component changed, you rerelease the component. If
not, you leave it in its current (and up-to-date) state. This approach minimizes
downtime and reduces failure.

Standardizing infrastructure configuration allows developers to stand up new
infrastructure (servers, containers, VMs) without the assistance or approval of an
operations specialist, empowering developers with more autonomy and allowing
them to take more ownership of their work.

Mitigating Failure
No other activity opens a development team to failure as much as deployments
and releases. That risk of failure is one of the reasons that traditional engineering
teams avoided deployments and made them occur as infrequently as possible.
Releasing software was a headache — one that they wanted to avoid.

But that avoidance of deployments is what causes a lot of the problems that occur
with them. You improve on the activities that you do frequently. Frequent deploy-
ments mean smaller changes. A few dozen lines of code are less likely to cause
service interruptions than heavy amounts of code. Finding bugs in small releases
is easier than digging through hundreds of lines of code in dozens of files.

No matter how frequently you deploy or how you approach deployments and
releases, they can cause failure. You can use DevOps to mitigate that failure.

Rolling back
Rolling back is the easiest and most frequent way of restoring service after a
deployment outage. You essentially roll the current deployment version back to
the last stable build. You have two ways to do this: restore a previous deployment
or create a new deployment with a unique identifier as a copy of the previous
stable version.

CHAPTER 11 Deploying a Product 147

A rollback is called for when a build is released and breaks the production envi-
ronment, likely impacting customers. If application performance or availability is
impacted, the quickest fix could be to redeploy a previous version known to be
stable. Other times, teams choose to troubleshoot live and create a hotfix in real
time. That approach isn’t typically ideal for customers or engineers because it’s
stressful, to say the least. However, as the next section explains, sometimes it’s
the only viable option.

Cloud providers can enable you to quickly roll back using release pipeline tools.

Rollbacks are typically initiated manually. Automation tooling can use monitoring
thresholds on performance and other application metrics to detect a potential
problem and alert engineers. If you’re using a release pipeline, a rollback is some-
times as simple as a click of a button.

Fixing forward
Occasionally, rolling back isn’t possible. Most often, database changes make it
difficult or impossible to simply move backward in builds. If you release a new
schema, migrate data, and allow customer data to populate the new columns,
you’ve got a challenge ahead of you.

In the scramble to fix a production issue on the fly, you risk breaking other func-
tionality, accumulating technical debt, and hindering development of other engi-
neers by freezing work while fixing forward. I recommend taking this approach if
it’s the only option you have. Then, use your post-incident review to explore
architecture changes that would ease recovery for future outages.

Democratizing Deployments
Traditional engineering organizations commonly had deployment roles — even
release engineers who specialized in deploying software. That is not an ideal
approach because it strips power from the team as a whole and silos responsibil-
ity. Remember, in DevOps, you share as much information as possible. Specializ-
ing in specific areas of engineering or having an expert in a particular language,
framework, or tool are absolutely reasonable, but you want to avoid making the
“expert” the only individual capable — or allowed — to do a specific job.

Enough tools are available today for literally anyone to be capable of learning how
to package and release your application. If your release process is so complicated
that only two people can manage it by following 13 pages of instructions, then it’s
time to start at the beginning and completely redo your release process.

148 PART 2 Establishing a Pipeline

I talk about transitioning to the cloud in Chapter 21. That move, although poten-
tially time-consuming, is an excellent opportunity to revamp and modernize old
processes. Just because you’ve always done it a certain way doesn’t mean that it’s
going to carry you into the next phase of your business. Operations is accelerating,
and you must adapt to remain competitive.

It’s okay if you have specific security or compliance concerns that don’t allow you
to move to continuous deployment tomorrow. Please don’t get overwhelmed with
what you’re “supposed” to do. Instead, evaluate where your organization is real-
istically and then make a plan to continuously improve and adapt.

Many companies simply aren’t capable continuous deployment, nor are they will-
ing to allow new code into production as soon as it has been merged. It requires
an enormous amount of upfront work to build robust testing, security gates, and
pipelines. I don’t want to understate that. This isn’t easy.

CI/CD is the end goal, but the journey is equally, if not more, important. Slowly
move your team toward continuous integration and continuous delivery — and
forget the pressure to modernize overnight. Remember, if you attempt to change
everything too quickly, your DevOps transformation will fail. Accept where you
are and make a plan to grow and continuously improve.

As you adopt CI/CD, it’s absolutely fine to create human gates in release pipelines
to ensure quality — especially as you’re getting used to this new approach. Just be
sure to apply reliability calculations to your people as well as your machines.
Select three people (n + 1) who can approve builds for release. This approach allows
one person to go on vacation and another to get sick without creating a bottleneck
in engineering productivity. (See Chapter 3 for details on dealing with bottle-
necks.) You want to remove bottlenecks, not create them.

Choosing a Deployment Style
Many approaches to releasing software to customers are available, and the prac-
tices considered to be good have evolved. Choosing a deployment style is where
infrastructure knowledge becomes much more important for your engineering
team. It’s also why I’m vehemently against NoOps.

NoOps — short for no operations — is the suggestion that automation can and
should replace operations specialists. This idea is foolish because no matter how
robust your automation becomes or how much you abstract the underlying infra-
structure for developers, core infrastructure and operations knowledge will always
be vital to an engineering team.

CHAPTER 11 Deploying a Product 149

The operations people on your team are experts in infrastructure. They under-
stand the history of system administration and hosting software — which pro-
vides context for the deployment styles we think of as ideal today. Software
infrastructure has built upon itself and adapted to new challenges.

Deployment styles are no different. You have plenty to choose from, and each one
has advantages and disadvantages. But the options described in the following sec-
tions are intended to minimize the risk of negative customer impact.

Blue-green: Not just for lakes
Blue-green deployments are one of many release styles that seek to reduce service
outages resulting from a bad deployment. In this case, blue and green have no
particular meaning. They could just as well have been called pink-red deploy-
ments or yellow-purple deployments. This name is simply a way of identifying
the two versions of your application running in production.

And that’s just what blue-green deployments do — release two versions of your
software to the production environment. You utilize a router to determine which
version customers have access to.

Imagine that the current release running in production is v2.0.4. Everything’s
going great and you’re ready to release a minor update, which will take you to
v2.1.0. Before you release the new version, only v2.0.4 is running in production, as
shown in Figure 11-1.

To ensure that the new version behaves as expected in your production
environment — without negatively impacting customers if something goes
poorly — you release v2.1.0 to production but route all traffic to the stable v2.0.4.
You can see what this looks like in Figure 11-2.

FIGURE 11-1:
Blue-green

deployment
pre-release.

150 PART 2 Establishing a Pipeline

Both versions are running in production, but nothing has changed for customers.
You can leave the new release running in production for as long as you like (taking
into account resource consumption). I recommend running tests on v2.1.0 in pro-
duction and ensuring that everything performs as expected.

After you’re confident that the new version of your software is stable and ready for
customer traffic, it’s time to make the switch. The router will then trigger all cus-
tomers to reach the latest stable version (v2.1.0) and stop sending traffic to the
previous release (v2.0.4). At this point, your production environment will look
something like Figure 11-3.

You can feel confident that the new release is stable and won’t cause service out-
ages or performance impact when customer traffic is routed to it.

For me, one of the most important benefits of a blue-green deployment is the ease
of rolling back. The latest stable version is already running in production. You
simply need to reverse the router cutover and send traffic back to the previous
version.

Schrodinger’s canary: The deploy’s
not dead (or is it?)
Before modern detection tools came into use, coal miners took canaries into the
mines with them. If poisonous gas began to collect, the canary was the first to die.

FIGURE 11-2:
Blue-green

deployment
bifurcated

release.

FIGURE 11-3:
Blue-green

deployment
cutover.

CHAPTER 11 Deploying a Product 151

Its death warned the humans to the danger and initiated an evacuation of the area.
Macabre, to be sure, but effective.

Luckily, no canaries are harmed in the process of a canary deployment. This style
of release takes blue-green deploys one step further: It slowly transitions between
the two versions rather than cutting over all at one time. Canary releases ship
software changes to select customers as a way of testing functionality and reli-
ability in production while limiting the number of customers potentially impacted.

Refer back to Figure 11-2, which shows the blue-green deployment bifurcated
release. You’ve released the newer version, v2.1.0, into a production environment
but the router is blocking traffic. If everything looks good after a period of time,
you’re ready to begin slowly introducing customer traffic.

Unlike a blue-green deploy, the router will send customer traffic to both versions
until 100 percent of traffic is directed to the new version. The number of custom-
ers (or type of customer!) you select to be the canaries is up to you. I recommend
starting with a percentage, but some companies prefer to select customers based
on demographic information or location. The latter is useful if you’re deploying a
new version of your application to a specific region first.

Imagine that you decide on 10 percent. You direct the router to send 10 percent of
customer traffic to the new version, as in Figure 11-4, which shows the start of a
canary deploy. After you’re satisfied that no negative customer impact is occur-
ring, you can slowly increase the number of customers who receive the new ver-
sion of your application. How quickly you deploy the updated version or how many
customers are included in each chunk is completely up to you. It can be as smooth
and slow as you like.

You can tailor canary deploys to the type of release. If it’s a bug patch, you’ll likely
be able to release much faster, whereas with a major update, you’d be wise to take
your time when increasing traffic.

FIGURE 11-4:
Starting a

canary deploy.

152 PART 2 Establishing a Pipeline

Many companies choose to dogfood their own products — meaning that they use
the software they sell internally. Canary deploys (and the related option of feature
flagging I discuss in “Toggling with feature flags,” later in this chapter) offer a
uniquely wonderful solution. You can deploy the new version to selected users and
test the functionality included in the update for days or weeks before releasing to
your entire customer base.

Rolling the dice
The final type of release I want to highlight is called a rolling deployment. Instead
of releasing a new version to select customers in small incremental chunks, roll-
ing deployments replace the version of an application running on a specific
instance. The new version is deployed to each instance one at a time (or in clus-
ters) until all instances or machines are running the latest version.

Some companies choose to implement rolling deployments by cutting over mul-
tiple machines at the same time. The size of your grouping is referred to as the
window size. A window size of one will proceed one machine at a time whereas a
window size of four will deploy the new version to four servers at the same time.
Figure 11-5 shows what the beginning of a rolling deployment might look like.

The real advantage of a rolling deployment is the contrast between it and a tradi-
tional upgrade. Historically, you would have to take all servers offline and deploy
the update — praying everything went well.

FIGURE 11-5:
Starting a rolling

deployment.

CHAPTER 11 Deploying a Product 153

Figure 11-6 gives you an idea of what your system will look like toward the end of
a rolling deployment.

Now, with a rolling deployment, you can use a load balancer or router to direct
traffic to the servers still running the current version of your application. The
machines being upgraded won’t see any traffic until you’re satisfied, allowing all
nodes to be updated with zero customer impact. In addition, rolling deployments
require fewer structural resources than blue-green deployments and canary
releases.

I recommend that you take time to think about how sessions will persist during a
rolling deployment.

Toggling with feature flags
A feature flag or feature toggle is a conditional feature that can be hidden from
customers. This is an excellent solution for maintaining continuous delivery or
continuous deployment while not releasing the functionality to customers until
you’re ready.

Feature flags enable marketing and sales organizations to release a feature or
feature set to customers with a coordinated release while not impacting engineer-
ing’s ability to continuously develop and deploy the functionality.

FIGURE 11-6:
Finishing a rolling

deployment.

154 PART 2 Establishing a Pipeline

If you and your team feel extra radical, you can deploy partially completed work to
production. Deploying this way reduces the number of feature branches and
merging you have to manage throughout the process and alerts other developers
of your work long before it’s finished. With a toggle, you’re in complete control of
user access. Although the feature code is visible to developers, the actual func-
tionality is hidden in the user interface until you decide to reveal it. You can even
select to reveal it to certain users — like internal testers — while keeping it hid-
den from customers.

If using feature flags, a developer first assigns the feature as a toggle either in the
database (0 for “off” and 1 for “on” works well) or in a configuration file. Then
the developer builds out a conditional statement that determines whether a user
can see or access the feature from the user interface.

You can also use toggles to separate old business logic from new code. This isn’t a
good practice, however, and you should refactor or delete old code if possible.
Otherwise, it’s likely to cause bugs or undesired outcomes in the future.

You can use feature flags for

 » Releasing new features in development to specific users

 » Updating or enhancing current functionality

 » Disabling or deprecating a feature

 » Extending an interface

Monitoring Your Systems
After you release the software, you need to monitor your software for perfor-
mance, availability, security, and more.

Understanding telemetry
Telemetry is just a fancy word for collecting data on the behavior of your systems.
Telemetry enables your system to regularly update you on how things are going,
which keeps you from digging into logs only when something goes wrong. Telem-
etry creates records on its own behavior independently.

CHAPTER 11 Deploying a Product 155

The real benefit here is you have a working baseline for application and system
performance. If you release a new version of your software, you can watch your
telemetry and look for odd behavior. If you see a spike in load time seconds after
the release, it’s a good indicator that something went wrong.

Telemetry is also handy in the case of a service-level agreement (SLA), which is
essentially your promise of availability to customers. An SLA is typically a legal
contract that promises a certain level of performance, such as 99.9 percent avail-
ability. Telemetry can help you track whether you’re meeting your objectives and
communicate appropriately with customers.

Recording behavior
To benefit from telemetry, you must set your application and infrastructure up in
such a way that data collection and reporting are possible. Telemetry requires two
components:

 » Data collection: High-performing DevOps organizations collect data on
hundreds, if not thousands, of key indicators. The metrics originate at every
layer of your system: the application, environment, and network operations.

 » Metrics management: You need a central place to store and analyze the
data you collect. This platform should go beyond listing events. Ideally, you’ll
have a way of visualizing the data and highlighting trends. You can integrate
this capability into your alerting system to ensure that engineers are notified
of potential problems.

If you’re not sure what to store, I suggest starting with customer events and sys-
tem performance. Examples of customer events are the number of logins, sales
numbers, and page load times. If sales suddenly stall during the busiest time of
the day, you want to know as soon as possible. System performance includes data-
base performance, network operations, CPU, and security.

After you have a gauge for telemetry and how it fits into your system, you can
expand the areas in which you collect data:

 » Number of new user signups

 » Completed sales

 » Abandoned checkouts

 » Monthly recurring revenue (MRR)

156 PART 2 Establishing a Pipeline

 » Response times

 » Number of exceptions

 » Server traffic

 » Disk usage

 » Deployment lead times

 » Deployment frequency

Telemetry provides you with insight into your entire system at every layer and in
each component. This insight ensures that you catch small issues before they cas-
cade into system errors and reduces the frequency of having customers alert you
to service outages.

I recommend that you categorize telemetry data and make it easy for your engi-
neers to dig into various areas of your system. You can even do so by categorizing
data by urgency: DEBUG, INFO, WARN, ERROR, and FATAL.

SLAs, SLIs, and SLOs
Site reliability engineering, which is a prescriptive and operations-focused inter-
pretation of DevOps, uses three terms that are important for you to keep in mind
when monitoring your systems. Each measurement assists you in determining
whether your team is meeting business objectives from an engineering
perspective.

 » Service-Level Agreement (SLA): Availability — your service being up and
running — is key to success in operations. Customers have to be able to
access your applications. In other words, is the application functioning as
expected? A service-level agreement is the availability you agree to maintain
with your customers over a set period of time. It is typically part of your
service contracts and is legally enforceable.

If you set an SLA, be careful that it is not too rigid. You can easily promise a
certain level of uptime and realize down the road that it’s simply impossible to
maintain (especially given how much your clients pay for the service). Many
companies offer SLAs only to enterprise clients to ensure that they can
dedicate additional resources — human and hardware — to maintaining that
commitment. Violating an SLA can both cause financial consequences and
damage the long-term client relationship. If you have no idea what level to
start at, look at your current uptime. Industry SLAs typically range between
99.9 and 99.99 percent.

CHAPTER 11 Deploying a Product 157

 » Service-Level Objective (SLO): SLO is the measurement you set as what is
an acceptable level of availability internally. Typically, your SLO is internal and
harsher than the SLA — giving you some wiggle room. If your SLO is 99.99
percent availability, your SLA might be 99.9 percent uptime. Set reasonable
SLOs. If you aim too high and overstretch your resources, you’re setting
yourself up for failure because you’ll never meet the standard.

I refer to availability often in this section because I consider availability to be
the most important measurement; other measurements, such as service
latency, don’t matter if the service can’t even respond to a request. Keep in
mind, however, that availability is just one aspect of service reliability. Refer
to Chapter 8 for more information on latency, throughput, fidelity, and
durability — which are all measurements of your overall site reliability.

 » Service-Level Indicator (SLI): This is the medium through which you
measure your success at meeting your SLOs. The indicators are feedback
from your systems that give you reasonable insight into your actual availability
percentage in each service you measure. If SLIs dip below expected thresh-
olds (SLOs), you need to dig in further and determine whether changes to the
system are necessary.

Beyond your telemetry tooling, additional monitoring tools include dashboards,
logs, and third-party analytics that look for data patterns and security threads.
A parsing tool for logs will allow you to more easily and rapidly gather important
information as needed.

3Connecting the
Circuit

IN THIS PART . . .

Create an iterative cycle of continuous improvement and
increased velocity by prioritizing critical work and
improving performance.

Develop a feedback process that enables customers to
quickly alert you to what they love (and hate) about a
product, ensuring your ability to integrate feedback into
your product road map continuously.

Hire and retain DevOps talent, and organize your
engineering organization to maximize skill sets.

Permit your engineering team autonomy to scale your
organization with DevOps-focused incentives.

CHAPTER 12 Implementing Rapid Iteration 161

Chapter 12
Implementing Rapid
Iteration

The term fail fast became a mantra of startup culture in the early 2000s and
became widely used thanks to the ubiquity of Eric Ries’s 2011 book, The Lean
Startup. Facebook, one of the grand successes of Silicon Valley startups, even

went so far as to make its motto “Move fast and break things” — in other words,
fail fast. The fail fast mentality became popular in Silicon Valley because of its
emphasis on quick innovation, something critical to companies looking to disrupt
industries with novel innovations.

The original intent of the term fail fast was to encourage startups to build mini-
mum viable products (MVPs) — small subsets of features designed to satisfy early
adopters — to experiment, verify assumptions, and collect customer feedback
before dedicating capital to large-scale projects. Innovation and iteration are
tenets of DevOps, but failing too fast and too often can cause more problems than
it solves.

For Facebook, this fact became so apparent that Mark Zuckerberg announced an
update to the motto in 2014. Facebook now embraces, “Move fast with stable
infra.” (Infra refers to infrastructure.) Innovating at the cost of reliability and
availability for your customers is problematic, especially if moving fast loses your
company money.

IN THIS CHAPTER

 » Failing fast (it’s not what you might
think)

 » Prioritizing important work over false
urgency

 » Increasing velocity through improved
performance

162 PART 3 Connecting the Circuit

In this chapter, I discuss rapid iteration, but keep in mind that “moving fast”
will depend on the context and constraints in which your team operates. To
understand rapid iteration, you need to prioritize important, proactive work
to limit urgent, reactive responses. You need to recognize the three constraints
of any project — speed, price, and quality — as well as adopt the practices of
high-velocity engineering teams.

Prioritizing the Important
One of the most significant aspects of rapid iteration isn’t choosing what to do
next but rather choosing what not to do. President Dwight D. Eisenhower said,
“I have two kinds of problems, the urgent and the important. The urgent are not
important, and the important are never urgent.” Steven Covey took Eisenhower’s
philosophy and created the Eisenhower Decision Matrix for his book, The Seven
Habits of Highly Effective People. Figure 12-1 shows my version of this decision
matrix.

The matrix is divided into quadrants. The upper left is important and urgent; the
upper right is important but not urgent. The lower left box is urgent but not
important and the lower right is neither important nor urgent.

FIGURE 12-1:
The Eisenhower
Decision Matrix.

CHAPTER 12 Implementing Rapid Iteration 163

I love this decision matrix for engineering teams because it forces you to consider
what is important to your business and what is simply noise — distractions from
your mission. Dozens of distractions bombard your team every hour. Slack,
 Twitter, email. A tap on the shoulder to come look at something. An impromptu
meeting. All these distractions put your engineers in the mindset of being reactive
and makes them feel incredibly unproductive.

Think about how you feel after days like that that are filled with random to-dos.
You feel busy, tired, and like you did absolutely nothing — my least favorite
 feelings. If I keep days like this up for too long, I start to feel as if I’m not contrib-
uting to my team, not growing. I feel unfulfilled.

Busy work should be eliminated from your engineers’ schedules as much as
humanly possible. Engineers who are allowed to think in a free, fluid, and proac-
tive manner build better software.

Important and urgent
Crises of any kind fall under the category of important and urgent. If an outage is
impacting customers, the issue is both time sensitive and critical to your business.
A crisis will always require immediate attention while having an impact on your
long-term mission.

In addition to crises, certain deadlines fall into this category. I want to warn you
away from manufactured crises. If you set a soft deadline or pick an arbitrary date
by which you plan to complete something, the approach of that date is not a crisis.
Occasionally, though, a deadline can be both urgent and important. If you have an
annual conference and plan to release a set of new features, that deadline is
extremely time sensitive and important.

Here are some additional examples of areas with deadlines that are both impor-
tant and urgent:

 » Potential partnerships

 » Hiring

 » Financial reporting

 » Annual raises and rewards

 » Personal emergencies

Usually you have an idea of when deadlines will become urgent, especially if
they’re an annual occurrence. Be sure to plan ahead so that you’re not caught off

164 PART 3 Connecting the Circuit

guard or unnecessarily stressed. Emergencies happen, both to the business and its
employees. Ideally, you’ll move anything expected to the second quadrant.

Important, not urgent
Important but not urgent tasks are vital to the long-term health of your employees,
products, and organization. These items are mission critical but lack specific
deadlines.

In DevOps, these tasks include planning, continuing education, paying down
technical debt, and strengthening team trust.

Additional examples of important but not urgent tasks are

 » Building relationships

 » Long-term product planning

 » Practicing new skills

 » Reducing bottlenecks

 » Practicing failure

 » Training

 » Reading

The tasks that dwell in this quadrant are some of the most likely to be dropped.
Because the urgency doesn’t exist, people put them off indefinitely. Even when
the tasks themselves could make you more effective for the things you do that are
urgent, it’s difficult to complete a task without having someone standing over
your shoulder.

Even as I write this book, I depend on my editor to send me occasional emails as a
reminder that I need to deliver chapters. This encourages me to write, even when
I don’t want to. The lack of this time-sensitive accountability is what leaves the
items in this quadrant at risk of being forgotten.

Here are a few things to think about when considering important tasks without a
specific deadline:

 » Clean code is easier to maintain. It doesn’t matter whether it’s application
or infrastructure code. Reducing technical debt by refactoring code or
simplifying a process will quickly pay dividends to your team’s overall velocity.

CHAPTER 12 Implementing Rapid Iteration 165

 » Engineers who trust each other are more effective. Taking time to build
rapport as a team and allowing relationships to form will create a more fluid
process in the future. Trusting relationships remove friction, which in turn
makes accomplishing difficult tasks easier.

 » Continual learning ignites neurons. The worst thing you could do for your
team is to make your engineers commodities — empty code monkeys who
simply pump out work 40 hours a week. Instead, you want to create an
environment in which engineers can continually push their skills, learn new
technologies, and creatively solve problems.

 » Planning creates a road map. Even if you end up having to adjust, pivot, or
abandon a plan altogether, it will serve you to build one. Having a plan creates
a vision for what’s coming next, which allows people to ruminate and prepare.
The discussions around planning are absolutely priceless in a DevOps
organization because they can spur new ideas, important discussions, and
creative problem-solving.

Perhaps the greatest challenge around this quadrant’s items is that you don’t
know what’s important. You can easily to fall into the habit of putting out fires.
Checking email. Looking at Twitter. Responding to whatever is most pressing at
the moment.

It’s much harder — and takes a lot more discipline — to be aware of the things
that need to get done that will improve your team’s overall performance. Although
delivering features is important and urgent, paying down technical debt is abso-
lutely critical to building a healthy DevOps organization.

Leadership must have a clear vision of what’s important for your organization.
Remember, the how is not nearly as important as the what. If you clearly commu-
nicate what’s important to everyone in the company, they can prioritize the work
that best suits those goals.

One of the best strategies I have to combat the power of urgency over importance
is scheduling time for email, Slack, and Twitter. This strategy applies to anything.
Slack and Twitter are the big offenders for me; yours could be different. Recognize
what continually prioritizes “urgent” tasks for you and create systems to prevent
the reactive nature of that work.

Limit yourself to checking email two to three times a day at set times. Do the same
with social media or chat applications. Let your colleagues, employees, and
 managers know that you do your best work when left uninterrupted and you
therefore check these applications at specific times during the day. If they need
you, they can call you. Also, your company should have a humane on-call rotation
that allows for breaks and time away from being responsive to incidents. That

166 PART 3 Connecting the Circuit

rotation frees time for you to focus on long-term planning, continual education,
and other team priorities.

Urgent, not important
The urgent but not important tasks are perhaps the most dangerous to your
 mission. They require immediate attention but don’t help you achieve any of
your team’s long-term goals. In fact, spending time on these tasks may cause
you to ignore tasks that are important to the overall health and velocity of your
organization.

Interruptions that fall into this quadrant of the matrix include:

 » Unscheduled interruptions

 » Getting tapped on the shoulder

 » Phone calls

 » Some meetings

 » Last-minute meetups

The hardest challenge around these tasks is they feel important. Knowing the dis-
tinction between what feels important and what is important is honed by experi-
ence and dedicated practice.

Ask yourself the following questions:

 » Does this need to be done?

 » Does this need to be done right now?

 » Does this need to be done by me right now?

If you can defer a task or delegate it — without simply pushing the stone downhill —
do it. Keep in mind the time frame when you do your best work. I try to leave the
urgent but not important tasks for mid-to-late afternoon. I do my best work in the
morning, especially if the work is creative in nature or particularly challenging. In
the afternoon, I’m still around but I try to schedule rote tasks that need less brain
to compute. Afternoon coffee meetings are a great way to handle the tasks that
often find themselves in this quadrant of urgent but not important tasks.

Be wary of adding work to your engineers’ plates that isn’t important but seems
urgent. Sometimes this decision has more to do with understanding and holding
to the organization’s priorities. I’ve seen many teams agree to seemingly small
tasks to appease customers or high-paying clients. Be careful of making this type

CHAPTER 12 Implementing Rapid Iteration 167

of work a habit. It does not serve the greater mission of the organization, plus it
distracts your employees from other work and often does not appease the client to
the extent you think it will.

One way of checking in on how much urgent but not important tasks are interfer-
ing with your goals is to regularly review your quarterly goals and key perfor-
mance indicators (KPIs). Every Friday, for example, you might sit down and
reflect on how this week contributed to the goals you have roughly 12 weeks to
accomplish. What went well? What went poorly? What actions were neutral?

This regular self-reflection requires you to be diligent about tracking your work.
If you don’t have something like a ticket system for tracking work, consider using
your calendar or — my favorite — a simple notebook to jot down what you worked
on and when.

Neither important nor urgent
These tasks are the SQUIRREL! moments that distract people from their work.
They are neither important nor urgent. This mindless activity is typically getting
lost in the Internet. It could be scrolling through Instagram with no purpose. Or
watching TV. Or getting lost on Reddit. Whatever the activity, it provides you with
no personal or professional value.

My solution? Schedule time for these tasks. Seriously. I love watching lousy reality
TV. Real Housewives is my (admittedly ridiculous) happy place. Now, I don’t watch
it during work hours, but because it serves as neither important nor urgent to
even my personal goals, I schedule time to enjoy my mindless TV show. I take a
bath once or twice a week and watch that week’s episode.

Increasing Velocity
Velocity is one of those popular tech words that get thrown around a lot by
“thought leaders.” You may hear it frequently but not know exactly to what it
refers. Its roots, like much of DevOps, are found in Agile software development.

Velocity is a measure used in sprint planning. Put simply, if you track your team’s
performance over a number of sprints, you can (within reason) predict the veloc-
ity of work in the coming sprints. Predicting velocity improves planning because
you can roughly sketch out how much your team will be able to accomplish over n
sprints.

168 PART 3 Connecting the Circuit

In reality, I’ve seen few teams track performance in a way that allows for a pre-
dictable velocity. In fact, using it as a predictor is problematic for a number of
reasons. For the reasons I explain in the following list, I encourage you to think of
velocity as a single data point. Avoid using it as a single measure of your team’s
performance. If you put too much emphasis on velocity, you miss the other quali-
ties and data that give you insight into the areas in which your team thrives and
the areas in which it can improve.

 » It’s impossible to “size” work. Any sizing done in Agile — approximating how
long completing a specific task will take — is an estimate. You should double
or triple that estimate before even suggesting a deadline to an executive or
stakeholder.

As an engineer, I’ve sized stories thinking they would take days, only to have
them turn out to be much easier than expected and only take a few hours.
Likewise, I’ve estimated work to take only half a day and ended up in a rabbit
hole of nested problems that took weeks to untangle. And it’s not just me.
Sizing is an industry-wide challenge. Because the sizing doesn’t match up,
measuring velocity based on stories completed gets tricky.

 » Team performance is more than speed. A team of engineers can crank out
dozens of features within a week or two. But the code will be a poorly tested
mess of spaghetti code that is so impossibly complicated and sloppy that
refactoring it would take longer than simply rewriting the original work. When
you increase speed without automation, quality often suffers.

Increasing velocity requires optimizing your team performance while respecting
the constraints and context your team experiences daily. Every engineering project
must be completed in the constraints of your particular team and organization.
I discuss the constraints of scope, deadline, quality, and budget in Chapter 7.
A way to visualize these common constraints is with a triangle whose three
boundaries represent speed, quality, and cost, as shown in Figure 12-2. Generally,
you can choose two of the three. Quick, high-quality work will be expensive.
 Inexpensive, quick work will be poor quality. And inexpensive, high-quality work
will likely be slow.

FIGURE 12-2:
Three boundaries

of engineering
work.

CHAPTER 12 Implementing Rapid Iteration 169

You calculate velocity using two data points: unit of work and interval. The unit of
work is simply what gets accomplished. You can use engineer hours (my prefer-
ence) or something more abstract like Agile story points. Interval is the time
duration.

Agile story points are arbitrarily assigned values that serve as a way of each team
to create shared understanding. Teams typically use t-shirt sizing (extra small,
small, medium, large, extra large) or the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21).
The sizes are relative to the others in the sequence. For example, a story sized as
a 2 will take double the effort of a story sized as a 1. However, sizing never
 correlates cleanly to developer hours. You should never use story points as a way
of comparing teams across the company because what constitutes a particular size
will vary from team to team.

Sizing is beneficial because it gives engineers and product managers a way of
talking about the developer resources required to accomplish a particular feature
or bug fix. Engineers size work while keeping in mind the complexity of the work
(or the area of the codebase that requires updating), the uncertainty around the
work (engineers need time to figure out how to execute more verbose tasks), and
the estimate on the time required to complete the work.

Take, for example, a week-long Agile sprint during which your engineering team
plans to complete 32 story points. Now imagine that because of unexpected speed
bumps, the team accomplished 27 story points’ worth of work. For that week, the
team velocity was 27 — the value of the story points associated with completed
tickets.

You can begin to measure velocity over time by tracking the velocity week over
week. Following is an example of how velocity can vary week to week, typically as
a result of unexpected complexity in completing large tickets. Although Sprint 4
saw a dip in story points completed, the velocity over time stays roughly the same.

Sprint 1: 32 story points

Sprint 2: 28 story points

Sprint 3: 30 story points

Sprint 4: 14 story points

Calculation: (32 + 28 + 30 + 14) / 4 = 26

Velocity: 26

Although you should never use velocity as a way of comparing engineering teams
across an organization (and thus never report it up the chain to executives who
will do just that), it can serve as a baseline through which you can measure how
DevOps practices improve your team productivity.

170 PART 3 Connecting the Circuit

LOSING MONEY FAST
On August 1, 2012, an engineer forgot to replicate new code onto one of eight produc-
tion servers at Knight Capital. Because of the speed of high-frequency trading, that one
mistake caused the company to lose $440 million in less than an hour. That’s not what
I mean when I say fail fast. I love the Knight Capital fiasco as an example of why DevOps
is vital to high-velocity organizations:

• It involved human error. You might say that one cause of the issue was that
one “dumb” engineer who should have done their job better. The thing is, humans
make mistakes. Humans are actually better at making mistakes than doing any-
thing else. The systems you create in your DevOps organization must take that fact
into account and work toward preventing human error — creating checks and
redundancies to reduce the possibility.

• The incident happened fast. It happened so fast that by the time the team
 realized something was wrong, identified the issue, and fixed it, the damage was
done. The software executed more than 4 million trades during the incident. The
company lost nearly a third of its market value. As a result, the stock price tanked
and the company had to raise $400 million a few days later to stay solvent.

• Poor decisions led to cascading impacts. The New York Stock Exchange (NYSE)
received Securities and Exchange Commission (SEC) approval for a dark pool called
the Retail Liquidity Program (RLP) in June 2012. The RLP would launch on August 1,
2012, which gave Knight Capital just over 30 days to prepare. The company devel-
oped the software in a scramble. Dead (unused) code — which was never intended
for a production environment — was left in the system. They repurposed a flag to
activate the RLP code rather than the dead code. The repurposed flag and unused
code was the ultimate cause of the poor trade executions.

• It highlights the need for automation. A single engineer manually deployed the
new code. No one conducted a review process. They had no automated verification
in place to ensure that the correct builds were released to each server.

• Initial alerting failed to notify engineers. An hour and a half prior to initial trad-
ing, the system sent 97 emails with a vague error report to Knight Capital employ-
ees. But, as is apparent, email is a terrible vector for alerting. People don’t prioritize
email and generally don’t open it in a timely manner. Despite the system’s warn-
ings, engineers did not take action.

This scenario is a nightmare. Seriously. Engineers wake up sweating just thinking about
a technical Armageddon like the one Knight Capital endured. Preventing this doomsday

CHAPTER 12 Implementing Rapid Iteration 171

Improving Performance
Improving engineering performance can have sweeping impacts on the entire
business. Streamlining the development life cycle and removing bottlenecks will
serve to accelerate the overall performance of the business — ultimately increas-
ing the bottom line. And if you think, as an engineer, that you shouldn’t have to
care about the business performance, you’re wrong.

According to DevOps Research and Assessment (DORA), high-performing teams
consistently outpace their competitors in four key areas:

 » Deployment frequency: This term refers to how often your engineers can
deploy code. Improving performance aligns with deploying multiple times per
day as desired.

 » Lead time: Lead time is how long you take to go from committing new code
to running that code in a production environment. The highest performers,
according to DORA, have a lead time of under an hour, whereas average
performers need up to a month.

 » MTTR (Mean Time to Recover): MTTR refers to how long you take to restore
a service after an incident or outage occurs. Ideally, you want to aim for under
an hour. An outage costs serious money, especially when it impacts profit
centers of the application. Long outages destroy trust, decrease morale, and
imply additional organizational challenges.

 » Change failure: This term refers to the rate at which changes to your system
negatively impact the performance. Although you will never reach a change
failure rate of zero percent, you can absolutely approach zero by increasing
your automated tests and relying on a deployment pipeline with continuous
integration checks and gates — all of which ensure quality.

scenario — along with hundreds of significantly smaller incidents — is one of the great
benefits of DevOps.

High-frequency trading is relatively new and explosively fast, but the problems it pres-
ents aren’t new, which is why DevOps has become such an important solution for many
organizations. The industry as a whole has recognized the problems engineers face on a
daily basis and, through DevOps, attempts to mitigate those challenges.

172 PART 3 Connecting the Circuit

Eliminating perfection
I believe strongly in the mantra “Done is better than perfect.” It seems to be one of
these impossible-to-attribute quotations, but the words nonetheless speak truth.
Attempting to attain perfection is an enemy of effectiveness and productivity.
I think most engineers suffer from some version of analysis-paralysis — a mental
affliction that limits your productivity in an attempt to overanalyze your work and
sidestep any potential mishap.

Training imperfection into your work requires you to embrace the possibility of
failure and the inevitability of refactoring. In Chapter 13, I talk about creating
feedback loops around the customer and looping back to various stages of the
pipeline. In Part 2 of this book, I dedicate a chapter to each phase of the software
development pipeline in a linear flow. Here, you’re connecting the ends to bend
the line into a circle.

When you think iteratively and circularly, pushing out code that’s not perfect
seems a lot less scary because the code isn’t carved into stone. Instead, it’s in a
temporary state that you improve frequently as you gather more data and feedback.

Designing small teams
You’ve likely heard of Amazon’s “two-pizza” teams. The concept broadly speaks
to the importance of small-sized teams. Now, the exact number of people that
comprise a two-pizza team varies according to your appetites.

I grew up Methodist, and one of the things the Methodist church emphasizes is
small groups. All small groups are kept under 12 people — the number of original
disciples. I tend to keep that principle in mind even now. When a group approaches
9, 10, or 11 people, I split it into two. I find that the sweet spot for group size is
around 4–6 people. Your exact number may vary depending on the people
involved, but the point is this: When groups get too large, communication becomes
challenging, cliques form, and the teamwork suffers.

I’ve added one other bonus goal when forming teams: even numbers. I believe
strongly that people need a “buddy” at work — someone they can trust above all
others. In even-numbered groups, everyone has a buddy and no one is left out.
You can pair off evenly and it tends to work well. Forming even-numbered groups
isn’t always achievable because of personnel numbers, but it’s something to keep
in mind.

CHAPTER 12 Implementing Rapid Iteration 173

A formula for measuring communication channels is n (n – 1) / 2, where n
 represents the number of people. You can estimate how complex your team’s
communication will be by doing a simple calculation. For example, the formula for
a two-pizza team of 10 would be 10 (10 – 1) / 2 = 45 communication channels. You
can imagine how complex larger teams can become.

Tracking your work
If you can get over the small overhead of jotting down what you do every day, the
outcomes will provide you with exceptional value. Having real data on how you
use your time assists you in tracking you and your team’s efficacy. As Peter
Drucker famously said, “If you can’t measure it, you can’t improve it.”

How many days do you leave work feeling like you did nothing? You just had
meeting after meeting or random interruptions all day. I have the same problem.
I’m fairly terrible at tracking my time, and when I’m not disciplined about writing
down what I do each day, I can quickly feel much less effective than I actually am.
The divergence between our feelings of efficacy and the reality of our efficacy is
dangerous territory for any team.

I encourage you to use pen and paper rather than some automated tool for this.
Yes, you can use software to track how you use your time on your computer. It can
tell you when you’re reading email, when you’re slacking, and when you’re cod-
ing, but it lacks nuance and often misses or incorrectly categorizes large chunks
of time.

After you have an idea of what you’re doing and when, you can start to identify
which activities fall into which quadrants of the Eisenhower Decision Matrix.
What busy work are you doing routinely that provides no value to you or the
organization?

Reducing friction
One of the best things a manager can do for an engineering team is to leave them
alone. Hire curious engineers who are capable of solving problems independently
and then let them do their job. The more you can reduce the friction that slows
their engineering work, the more effective your team will be. Reducing friction
includes the friction that exists between teams — especially operations and devel-
opment. Don’t forget specialists like security, either.

Aligning goals and incentives increases velocity. If everyone is focused on achiev-
ing the same things, they can join together as a team and move methodically
toward those goals. Flip to Chapter 15 to read more about aligning incentives.

174 PART 3 Connecting the Circuit

Humanizing alerting
Every engineering team has alerts on actions or events that don’t matter. Having
all those alerts desensitizes engineers to the truly important alerts. Earlier in this
chapter, I describe how Knight Capital got into trouble by ignoring 97 emails from
the system. I’d venture a guess that they had become conditioned to ignore email
alerts because of an overabundance of messages. Alert fatigue ails many
 engineering organizations and comes at a high cost. If you’re inundated daily,
picking out the important from a sea of the unimportant is impossible. You could
even say that these messages are urgent but not important

Email is not an ideal vehicle for alerting because it’s not time sensitive (many
people check email only a few times a day) and it’s easily buried in other minutiae.

Applying what you’ve learned about rapid iteration, reevaluate your alerting
thresholds regularly to ensure an appropriate amount of coverage without too
many false positives. Identifying which alerts aren’t necessary takes time and
work. And it’ll probably be a little scary, right? Deleting an alert or increasing a
threshold always comes with a bit of risk. What if the alert is actually important?
If it is, you’ll figure it out, I promise. Remember, you can’t fear failure in a DevOps
organization. You must embrace it so that you can push forward and continuously
improve. If you let fear guide your decisions, you stagnate — as an engineer and
as an organization.

CHAPTER 13 Creating Feedback Loops around the Customer 175

Chapter 13
Creating Feedback Loops
around the Customer

I believe that the age of the MBA CEO is over and that engineers represent the
next generation of company leadership.

These claims may seem bold, but hear me out. Every company is adopting tech-
nology to remain relevant, improve services, and compete for customer attention.

Who understands tech more than an engineer? Engineers understand the tiny
details that, together, make up the larger picture. But this engineers-as-leaders
future requires engineers to appreciate two aspects that they used to be able to
ignore: the mission and business of the greater organization; and the importance
of customer experience and feedback.

In Chapter 6, I talk about why the mission of your business is important for
DevOps organizations and how inviting other areas of the business to participate
in collaborative planning benefits your engineering team. In this chapter, I talk
about the importance of customer experience and feedback, including how to cre-
ate a customer feedback process so that you can you begin to integrate that feed-
back into your software development process. In this chapter, you find out how to
create a feedback loop, collect customer feedback, and accelerate your iteration
through continual feedback.

IN THIS CHAPTER

 » Creating a feedback process

 » Collecting and communicating
feedback

 » Accelerating your iteration

176 PART 3 Connecting the Circuit

Creating a Customer Feedback Process
Build-Measure-Learn is a concept introduced by Eric Ries in his book The Lean
Startup. Customer feedback falls into the loop depicted in Figure 13-1. You want to
build a prototype, collect data to measure success, and learn from the failures.
This never-ending learning process makes way for numerous iterations of your
product. And I mean what I say. The process never ends. You don’t reach a desti-
nation where you may hang up your hat and announce you’re finished. You must
constantly learn, adapt, and refine.

This idea of continual learning and improvement is one of the most important
concepts for a DevOps organization and is often overlooked. Continuous integra-
tion, continuous delivery, and continuous deployment means nothing if those
decisions aren’t informed by actual customer feedback. Thus, continuous feed-
back is central to your DevOps practice.

Customer feedback has three main purposes:

 » Retaining customers: Keeping a customer is significantly cheaper than
acquiring new users.

 » Empowering employees: In DevOps, people talk a lot about ownership and
accountability, although not in a punitive sense. Instead, these concepts refer
to giving your engineers a sense of pride in their work. You give them the
power to gather and act on customer feedback.

 » Improving products: No better way exists to iterate on your assumptions
than to ask the people who use your products (and, you hope, pay you).
Listening to honest feedback is a characteristic of any high-performing team.

FIGURE 13-1:
Build-Measure-

Learn.

CHAPTER 13 Creating Feedback Loops around the Customer 177

I work in developer relations, and feedback is the most important aspect of my job
as an advocate at Microsoft. I talk to engineers and listen to community feedback.
Then I deliver that same feedback to the appropriate Microsoft product teams.

I believe strongly in listening to customers. No, the customer is not always right.
But they will always give you useful information. Whether you act on it is a sepa-
rate consideration, but collecting it is one of the most useful actions you can
take — as an engineer and especially as a manager.

Creating a Feedback Loop
In this section, I expand on Reis’s initial concept as well as shift the startup
 philosophy of Build-Measure-Learn to the feedback philosophy of Receive-
Analyze-Communicate-Change, as shown in Figure 13-2.

Receive
I touch on a few ways you can receive feedback in the “Collecting Feedback”
 section, later in this chapter, but here I want to emphasize one thing: There is no
one way to collect feedback. In fact, opening your organization to multiple ways of
receiving feedback is the most helpful and thorough process.

You have many ways to receive feedback via unofficial channels. A friend might
mention that a feature seems slow or doesn’t quite work as expected. A beta user
might send a random email. Someone might stop one of your engineers at a
 conference to let them know they love (or hate) a particular product.

FIGURE 13-2:
Receive-Analyze-

Communicate-
Change.

178 PART 3 Connecting the Circuit

However you receive feedback, you need to create a process through which
 anyone — truly anyone in your organization, from the engineers to the
executives — can receive and pass along feedback. If you don’t have a particular
process in mind, start with a simple feedback form. It should collect in one place,
where one person can own it. The shorter, the better. It doesn’t need to be exhaus-
tive. Shorter forms have a higher likelihood of actually being filled out.

Potential questions could include:

 » Name (and contact information): Who is submitting this feedback? Ensure
that you have a way of following up.

 » Method: How was this feedback conveyed? Tracking the method gives you
information about how customers usually reach out to you and your
employees.

 » Feedback: Leave this part as open-ended as possible. You can categorize and
analyze the feedback in the next phase.

Analyze
This phase of your feedback loop is critical and should be left to someone who
feels passionate about the topic, is close to the tech, and feels a sense of ownership
over the product. Because feedback in its most raw state is often given relatively
free-form, you categorize and analyze the data in the analyze phase.

Start to create categories in which you can group pieces of feedback. You can group
items by feature or quality (for example, slow). Set up the categories so that you
can quickly discern how many pieces of feedback you receive per category. Also a
good idea is to identify which features on your website are most critical to your
business and which are most often used by customers. All these efforts help you
to prioritize work as you proceed.

Finally, make sure to keep this process relatively open. Although one person
should own the analyze phase, provide as much sunlight to the process as possible.
Ensure that everyone can access documents and that anyone can join the feedback
process if they’re interested. This open access is especially useful when onboard-
ing new employees. There are few better ways of introducing your product to new
colleagues than by having them read customer feedback.

CHAPTER 13 Creating Feedback Loops around the Customer 179

Communicate
The third phase of your customer feedback process must include communicating
the feedback to your engineering and product teams. This phase can be even
more tricky than collecting the feedback in the first place. This communication
phase is where most organizations stumble.

How you communicate the feedback determines its impact. You should never
approach an engineering group or product team with a sense of condescension.
You are not smarter than they are. You are not more important than they are —
even if you’re the CEO. Engineers and product managers make hard decisions
within (sometimes extremely tight) constraints with the information they have at
the time. Have some empathy and respect for their work.

As hostile as some customers may be, you can feel assured that you will likely
never have to face their wrath again. Colleagues, on the other hand, are a bit more
tricky, and effectively communicating negative feedback requires extreme trust.

Always communicate feedback gently. Although you don’t need to sugarcoat neg-
ative feedback, be careful of your attitude — even your body language — when
conveying it. Also be sure to pass along positive feedback as quickly as you do
negative. Not only will it make everyone feel good about their work, it will also
help them determine the correct direction for their team and their product.

Engineers, especially developers, tend to view their code as their babies — even if
those babies are particularly ugly. Telling an engineer that their baby is ugly isn’t
an easy or fun process. It’s really hard.

Communicating feedback to engineers requires striking a balance between posi-
tive and negative reviews of a product. It also requires an acknowledgement that
creating any product is really, really, really hard. The humans behind mediocre to
terrible products are still humans who are doing their best. That work and effort
deserves respect.

Change
Implementing change in a technical product comes down to having clear priori-
ties. What is the vision for your product? Which services are most critical to main-
taining your current customers? What about reaching new users? What is the core
problem your product solves?

Just because one user complains that a service is slow doesn’t mean that it is. Nor
does it mean that you should change anything — even if it is slow. What are your
performance standards? Is this a feature many people use?

180 PART 3 Connecting the Circuit

This sense of priority is why I’m a big fan of Kanban boards. (A Kanban board is a
visual depiction of work in progress at various stages and the work coming up
next.) Continually ranking and tracking work helps engineers do their jobs more
easily. Ranking and tracking remove some of the pressure of figuring out what
work is most important to do next or will give them the best shot at a
promotion.

Finally, be cautious of how quickly you change. Yes, you have moments in your
business when you need to react, and fast. But those moments are few and far
between. Change should be a measured decision, with customer feedback acting as
one piece of data.

Collecting Feedback
You have many options for collecting feedback from customers, and I discuss the
pros and cons of each option in the following sections. Consider each option
thoughtfully and choose the best plan for your organization. Often, casting a wide
net and using a combination of methods provide the most diverse and holistic
viewpoints.

Satisfaction surveys
The first option that likely comes to mind is a customer survey. Send your
 customers a series of prepopulated questions via email and collect the responses.

Surveys are perhaps the lowest-hanging fruit when it comes to collecting
feedback. They require relatively little work, and you can send them to nearly
every customer and package the results in neat little bundles for executives and
other stakeholders.

You can measure customer satisfaction via a survey in a relatively empirical
 manner. Though the opinions are just that, the scores are more quantitative in
nature, allowing for nearly limitless ways to analyze the data.

However, can you think of a worse way to spend your time than to fill out a detailed
and yet oh-so-sterilized 30-question survey? I loathe surveys, and I doubt I’m
alone.

Surveys are time intensive to answer. Sure, some of your customers may take their
time and answer thoughtfully. The majority, though, will Christmas-tree the
answers, popping ratings randomly, or mark the same answer for each question.

CHAPTER 13 Creating Feedback Loops around the Customer 181

Although the price of online surveys ranges from free to relatively cheap, the
vendors that offer to conduct more formal surveys and analyze the results are
budget-breakingly expensive.

Finally, determining whether you’re asking the right questions is extremely diffi-
cult. Because surveys produce a single response with ranked opinions, digging
into the actual problems is a challenge. Do you know how your customers use your
product? Perhaps they’re satisfied with the product because it’s the best option on
the market, but far from ideal. What about your service can customers not live
without? What features are just so-so? These questions are hard to answer via a
survey. Here are the pros and cons of a survey:

Pros Cons

Easy to produce Takes a long time to answer

Quantitative data is simple to package
and analyze

Answers may contain misleading data

Ultimately, I think surveys are useful to measure a customer’s satisfaction with
small interactions. Did your user feel that a customer support representative
helped them? Did your user feel that documentation fully explained how to use
an API?

Most products require more complex and multifaceted feedback vehicles to gather
detailed quantitative and qualitative data around your customer’s satisfaction
with your product.

Case studies
Another option for collecting feedback is to bring in big-spending customers
and make a day of it. You and your sales team can wine and dine them a bit,
thank them for being customers, and then ask questions that instigate healthy
conversation around the product. An event like this provides ample opportunities
to allow the customer to upgrade their service or hear about other offerings that
could benefit them (and your bottom line).

In addition to offering potentially fruitful conversations, case study meetings
 create — with client permission — great marketing stories. You get a better idea
of how a high-paying customer uses your product, thus allowing you to potentially
replicate that type of client.

One of the major flaws with case study meetings relates to the people involved.
You’re unlikely to invite your $5-per-month customers into the office to talk in

182 PART 3 Connecting the Circuit

depth on how they use the product. But those customers — in aggregate — make
up a sizable chunk of your business. Don’t underestimate the importance of mar-
ket share and the power of a large number of people using your product, especially
if they speak about it favorably.

In case study meetings, you speak almost exclusively to enterprise clients, and the
people outside engineering, specifically executives and salespeople, dominate the
conversations. This situation reduces or eliminates the opportunities for engi-
neers to dive deep with a customer’s engineers and talk tech. Here are the pros
and cons of case studies meetings:

Pros Cons

Great for customer face time Likely limited to enterprise customers

Provide more in-depth conversation Typically involve executives over engineers

Can potentially sell additional services Travel costs add up

Difficult to package, analyze, and communicate

Dogfooding
Perhaps the easiest way to receive feedback is to use the product yourself!
That’s what dogfooding means. Many companies utilize their own (often
 developer-centric) products internally. Dogfooding is simply an industry term to
describe the practice of doing just that. For example, at Microsoft, all of Azure is
hosted on Azure, which means that Microsoft is invested in the future of its prod-
uct. Employees are the first to get access to new features and services, which gives
Microsoft employees key insights into which areas need improvement.

Dogfooding has two qualities that you’ll struggle to find in other methods of
feedback:

 » It’s close to home. If you have a healthy culture, your employees are more
likely to feel free to provide harsh feedback and initiate product changes
internally — often long before customers complain.

 » It’s faster than other methods. Dogfooding acts as a mixture of QA testing
and beta testing. Typically, when you dogfood a product, you use a preview
mode of your own product.

You can accomplish a preview of your product through certain deployment pro-
cesses (see Chapter 11 for details on deployment) or by utilizing feature flags to
determine which customers see which features. For example, if you put all your

CHAPTER 13 Creating Feedback Loops around the Customer 183

employees under a particular set of permissions — likely grouped into the role
“employee” — you can open the preview features to employees without revealing
them to your average user.

In addition to allowing your employees to dogfood your product, I highly recom-
mend opening this preview to customers who select to preview or beta test advance
features. These users are typically extreme early adopters who like to play at the
absolute bleeding edge of technology. Not only will they provide you with
extremely valuable feedback earlier in your development cycle, they may also
become evangelists for your product — turning more users into customers.

Here are the pros and cons of the dogfooding method of collecting feedback:

Pros Cons

Faster and cheaper than customer feedback Can lack diversity of thought

More likely to provide honest feedback Requires some redundancy to reduce
the risk to your business

Contained to a small set of users

The speed at which you can iterate on dogfood feedback will vary based on your
internal processes. But I’ve highlighted the extreme examples in Figure 13-3,
which shows a customer feedback pipeline, and Figure 13-4, which shows a
 dogfooding feedback pipeline.

With customer feedback, you have to wait until your product is fully deployed to
production to hear from customers. You might wait for days or weeks before you
get the first piece of feedback. Then you must take that feedback, put it through
your analysis process, and start planning to integrate any necessary changes into
the next appropriate sprint or release.

FIGURE 13-3:
Customer
feedback
pipeline.

184 PART 3 Connecting the Circuit

If you dogfood your own product, the feedback cycle is condensed and you can
potentially iterate much more quickly. The example shown in Figure 13-4, in
which you immediately return to coding after receiving feedback, is extreme —
you may instead choose to put the feedback into the planning process and proceed
accordingly. But if just a small change is needed — perhaps a button is displaying
oddly, or an engineer finds a typo in the text — engineers can feel empowered to
make small, inconsequential decisions freely and immediately.

Small changes are extremely quick to implement, can make engineers feel more
involved and accountable to the product, and can avoid potentially embarrassing
mishaps with customers — especially if the bug isn’t deployed to users yet.

Asking for Continual Feedback
From a DevOps perspective, continual improvement requires continual feedback.
Your organization would be wise to build feedback loops around your customers
as you transform your engineering culture and development life cycle with
DevOps.

One of the goals of continual feedback is to make receiving feedback a daily pro-
cess. Achieving this goal might not happen overnight. If you’re currently conduct-
ing an annual survey, aim for monthly contact with customers. Then make it
weekly and keep increasing the frequency until you reach the point where you talk
to customers so frequently that it’s second nature.

In addition to collecting continual feedback, letting your customer know that their
feedback had an impact on the product is an incredibly rewarding experience —
for everyone.

FIGURE 13-4:
A dogfooding

feedback
pipeline.

CHAPTER 13 Creating Feedback Loops around the Customer 185

Net promoter score (NPS)
Created by Fred Reichheld, the concept of the net promoter score puts customers
into three groups:

 » Promoters

 » Passives

 » Detractors

The major benefit of NPS is its simplicity. You ask your customers a single ques-
tion: “How likely would you be to recommend this product to a friend?” The
scores categorize your customers as follows:

 » Promoters: Scores of 9 or 10

 » Passives: Scores of 7 or 8

 » Detractors: Scores of 6 and under

The follow-up is perhaps the most important aspect of NPS. You must ask your
customers why they gave the score that they did. That qualitative information is
absolute gold and should inform your decisions moving forward on product
improvements, service deprecations, and new-feature planning.

Consider how many interactions your users have with your product. Those inter-
actions may be monthly, weekly, or daily. Each time a customer logs in, you have
another opportunity to turn that customer into a promoter. A customer who has
become an evangelist is, just like the internal DevOps evangelists discussed earlier
in this book, incredibly valuable in persuading others.

Finding a rhythm
In collecting customer feedback, the following steps are the ones I’ve found to be
the most effective:

1. Ask for feedback.

You can ask directly or indicate a general openness to feedback. The former
strategy will collect more feedback from a wider audience. Either way, ensure
that you make it easy for customers to get in touch with you. Add a chat dialog
box to your website or list an email address that gets answered in a reasonable
time frame.

186 PART 3 Connecting the Circuit

2. Listen and take notes.

One of the worst things you can do in a conversation with a customer is to shut
them down, argue, or assume that they’re wrong — even if you genuinely think
they are. Saying “no” is the fastest way to end a productive conversation.
Instead, embrace the fundamental phrase of improvement: “Yes, and. . .” Take
notes so that can communicate the feedback faithfully to others later.

3. Analyze the data.

It’s great if you can collect quantitative data from the customer, but don’t press
them. Instead, learn to adapt the qualitative complaints into quantitative data
points. For example, if someone says they hit API limits within minutes, you can
deduce how many times they’re likely making API requests based on your rate
limiting for the specific API.

4. Follow up.

If something isn’t clear after speaking to the customer, or you can’t replicate
the problem, call them back. You’re not bothering them; you’re engaging with
them. In these initial conversations, be sure not to give assurances of a
fix — unless you’re absolutely sure that you can provide that fix.

5. Categorize and track.

Come up with specific categories into which you can group pieces of feedback.
Sometimes a customer complaint is a one-off and isn’t representative of your
greater customer base. Here’s the rule I use: “If one person says you have a tail,
ignore them. If a hundred people say you have a tail, look behind you.” Keeping
track of how many people have complained or praised a particular feature
gives you a better picture of not only which features are most used but also
which are most problematic (or wonderful).

6. Communicate with product teams.

If you don’t have your actual engineers owning this feedback loop, you need to
bring this information to them in a palatable way. Even if one of the engineers
is the messenger, that individual still needs to convey the feedback and help
the team decide what action, if any, is needed. It’s vitally important to form
trusting relationships before giving and receiving hard feedback. If you fail to
invest in establishing rapport, it doesn’t matter how much feedback you bring
back to the team. It will fall on deaf ears.

7. Rinse and repeat.

Meet frequently, and even if you have no tangible feedback to give, you should
meet with the product team on a regular basis. The cadence will help you
maintain collaboration as a regular and “normal” process. Meeting frequently

CHAPTER 13 Creating Feedback Loops around the Customer 187

prevents teams from feeling like they’re in trouble if an impromptu meeting is
called and allows you to learn from your teams. You can figure out what
they’re working on, see what they’re passionate about, and learn what they
want to see in the road map. Listen to them. This effort is a collaborative one
and it’s important to balance listening with talking.

These are the basic steps for collecting feedback, but I encourage you to experi-
ment. Think through what you believe will work for your team, your organization,
your product, and your customers.

In DevOps, everyone’s accountable but not everyone is an owner. Be sure that one
person “owns” customer feedback for a specific product or service. Ideally, if
you’ve designed your engineering organization to have product teams, each team
can collect feedback for the services they build. Even so, encourage one person to
own the process. You don’t give someone ownership so that you have a neck to
wring. (Remember, you’re creating a learning organization.) Instead, the idea is
to empower the team to become fully autonomous in collecting feedback and
implementing changes. When you release control and trust your engineers to be
excellent, amazing things can happen.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 189

Chapter 14
DevOps Isn’t a Team
(Except When It Is)

Forming teams that support your DevOps culture can be one of the trickier
parts of your DevOps transformation. If your broader organization continues
to encourage silos via misaligned goals and incentives, your team structure

won’t matter. You will struggle to get your DevOps approach off the ground.

In this chapter, I focus on how you set your team up for success. There are gener-
ally three ways of approaching team structure in a DevOps culture: aligning teams,
dedicating teams, and creating cross-functional product teams. Each approach
has advantages and disadvantages. This chapter delves into forming teams with
DevOps in mind, along with recruiting, interviewing, deciding on job titles, and
dealing with problematic employees.

Forming DevOps Teams
DevOps has no ideal organizational structure. Like everything in tech, the “right”
answer concerning your company’s structure depends on your unique situation:
your current team, your plans for growth, your team’s size, your team’s available
skill sets, your product, and on and on.

IN THIS CHAPTER

 » Forming your DevOps teams

 » Deciding on job titles

 » Hiring and interviewing for DevOps
roles

190 PART 3 Connecting the Circuit

Aligning your team’s vision should be your first mission. Only after you’ve
removed the low-hanging fruit of obvious friction between people should you
begin rearranging teams. Even then, allow some flexibility.

If you approach a reorganization with openness and flexibility, you send the mes-
sage that you’re willing to listen and give your team autonomy — a basic tenet of
DevOps. You may already have a Python or Go developer who’s passionate and
curious about infrastructure and configuration management. Maybe that person
can switch into a more ops-focused role in your new organization. Put yourself in
that person’s shoes. Wouldn’t you be loyal to an organization that took a risk on
you? Wouldn’t you be excited to work hard? I certainly would. And that excitement
is contagious. In the next few sections, I describe how to align the teams you
already have in place, dedicate a team to DevOps practices, and create cross-
functional teams — all approaches from which you can choose to orient your
teams toward DevOps.

You can choose one approach and allow it to evolve from there. Don’t feel that this
decision is permanent and unmovable. DevOps focuses on rapid iteration and
 continual improvement. That philosophy applies to teams as well.

Aligning functional teams
In this approach, you create strong collaboration between your traditional
development and operations teams. The teams remain functional in nature — one
focused on ops, one focused on code. But their incentives are aligned. They will
grow to trust each other and work as two teams yoked together.

For smaller engineering organizations, aligning functional teams is a solid choice.
Even as a first step, this alignment can reinforce the positive changes you’ve made
so far. You typically start the alignment by taking the time to build rapport. Ensure
that each person on both teams not only intellectually understands the other
team’s role and constraints but also empathizes with the pain points.

I recommend enforcing a policy of “You build it, you support it.” This policy
means that everyone — developer and operations person alike — participates in
your on-call rotation. This participation allows developers to start understanding
the frustrations of being called in the middle of the night and struggling while
foggy-eyed and caffeine-deprived to fix a bug that’s impacting customers. Opera-
tions folks also begin to trust your developers’ commitment to their work. Even
this small change builds an extraordinary amount of trust.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 191

A word of caution: If developers fight hard against being on call, a larger problem
is at play in your organization. The pushback is not uncommon because being on
call is wildly different from their normal day-to-day responsibilities. The push-
back often comes from a place of discomfort and fear. You can help mitigate this
reaction by addressing the fact that your developers may not know what to do the
first few times they’re on call. They may not be familiar with the infrastructure,
and that’s okay. Encourage them to escalate the incident and page someone with
more experience. Finally, create a runbook with common alerts and what actions
to take. Providing this resource will help to assuage some fear until they begin to
get the hang of things.

Another tactic to help spur collaboration is to introduce a day of shadowing, with
each team “trading” a colleague. The traded person simply shadows someone else
on the team, sits at their desk (or in their area), and assists in their day-to-day
responsibilities. They may help with work, discuss problems as a team (pair pro-
gramming), and learn more about the system from a different point of view. This
style of teaching isn’t prescriptive. Instead, it lends itself to curiosity and building
trust. Colleagues should feel free to ask questions — even the “stupid” variety —
and learn freely. No performance expectations exist. The time should be spent
simply getting to know each other and appreciating each other’s work. Any pro-
ductive output is a bonus!

In this alignment approach, both teams absolutely must be involved in the plan-
ning, architecture, and development processes. They must share responsibilities
and accountability throughout the entire development life cycle.

Dedicating a DevOps team
A dedicated DevOps team is more an evolution of the Sys Admin than a true DevOps
team. It is an operations team with a mix of skill sets. Perhaps some engineers are
familiar with configuration management, others IaC (infrastructure as code) and
perhaps others are experts in containers or cloud native infrastructure or CI/CD
(continuous integration and continuous delivery/development).

If you think that putting a group of humans into an official team is enough to
break down silos, you’re mistaken. Humans are more complex than spreadsheets.
Hierarchy doesn’t mean anything if your silos have entered a phase in which they
are unhealthy and tribal. In toxic cultures, a strongman style of leadership can
emerge that is almost always followed by people taking sides. If you see this on
your own team, you have work to do.

Although any approach may work for your team, this dedicated team approach is
the one I suggest you think through the most. The greatest disadvantage of a ded-
icated DevOps team is that it easily becomes a continuation of traditional

192 PART 3 Connecting the Circuit

engineering teams without acknowledging the need to align teams, reduce silos,
and remove friction. The risks of continuing friction (or creating more) are high
in this approach. Tread carefully to ensure you’re choosing this team organization
for a specific reason.

The benefits of this approach is having a dedicated team to address major
 infrastructure changes or adjustments. If you’re struggling with operations-
centered issues that are slowing down your deployments or causing site reliability
concerns, this might be a good approach — even temporarily.

I also like a dedicated team if you’re planning on moving a legacy application
to the cloud. But rather than calling this team a DevOps team, I’d label it an auto-
mation team. This dedicated group of engineers can focus completely on ensuring
that you’ve set up the correct infrastructure and automation tools. You can then
proceed with confidence that your application will land in the cloud without major
disruption. Still, this approach is temporary. If you keep the team isolated for too
long, you risk going down a slippery slope from rapid growth to embedded silo.

Creating cross-functional product teams
A cross-functional team is a team formed around a single product focus. Rather
than have separate teams for development, user interface and user experience
(UI/UX), quality assurance (QA), and operations, you combine people from each of
these teams.

A cross-functional team works best in medium to large organizations. You need
enough developers and operations folks to fill in the positions of each product
team. Each cross-functional team looks a bit different. I recommend having at a
minimum one operations person per team. Do not ask an operations person to
split their responsibilities between two teams. This scenario is unfair to them and
will quickly create friction between the two product teams. Give your engineers
the privilege of being able to focus and dig deep into their work.

If you’re organization is still small or in the startup phase, you can think of your
entire engineering organization as a cross-functional team. Keep it small and
focused. When you begin to approach having 10–12 people, start thinking about
how you can reorganize engineers.

Figure 14-1 shows what your cross-functional teams could look like. But keep in
mind that their composition varies from team to team and from organization to
organization. Some products have a strong design focus, which means that you
may have multiple designers in each team. Other products are technical ones
designed for engineers who don’t care much for aesthetics. Teams for that kind of
product may have one designer — or none at all.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 193

If your organization is large enough, you can certainly create multiple teams using
the ideas and approaches described in this section of the chapter. Remember that
your organization is unique. Feel empowered to make decisions based on your
current circumstances and adjust from there. Here are some possible combina-
tions of various types of product teams.

 » Legacy Product Team: Project Manager (PM), Front-end Developer, Back-end
Developer, Back-end Developer, Site Reliability Engineer (SRE), Automation
Engineer, QA Tester

 » Cloud Transformation Team: SRE, SRE, Operations Engineer, Automation
Engineer, Back-end Developer

 » MVP Team: PM, Designer, UX Engineer, Front-end Developer, Back-end
Developer, Operations Engineer

The downside of a cross-functional product team is that engineers lose the cama-
raderie of engineers with their same skill sets and passions. Having a group of
like-minded individuals with whom you can socialize and from whom you can
learn is an important aspect of job satisfaction. I offer a solution to this issue in
Figure 14-2.

As shown in the figure, you can give your engineers dedicated work time to spend
with their tribes. You can do something as generous as paying for lunch once
every week so that they can get together and talk. Or you might provide
10–20 percent of work time for them to work on projects as a tribe. Either way,

FIGURE 14-1:
Forming product

teams.

194 PART 3 Connecting the Circuit

you need your engineers to stay sharp. Tribes share industry knowledge, provide
sound feedback, and support career growth. Provide time for your engineers to
learn from people with whom they share education, experience, and goals. This
time provides a safe place where they can relax and feel at home.

No amount of perfect finagling will overcome the shortfalls of a bad organiza-
tional culture. But if you’ve paid attention so far and made the appropriate strides,
the next step is to form teams that reinforce the cultural ideals you’ve already put
in place.

Interviewing Quickly (But Not Too Quickly)
No matter how you organize your teams internally, you still need to hire people.
Whether the reason for hiring is to expand your team or replace an engineer
who moved on, hiring is always time intensive, expensive, and —face it —
exhausting.

One of the challenges of this booming tech economy is that finding and hiring the
best has become increasingly difficult. It’s an engineer’s market. Engineers of all
kinds are in demand and every company faces a shortage of quality employees.
The demand is even higher for the few magical engineers who are generalists,
those who have wide-ranging experience and interests. These engineers are the
ones you need most in a DevOps organization.

FIGURE 14-2:
Making space

for tribes.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 195

When you’ve found someone you want to hire, you need to move fast. Otherwise,
you risk losing your newly found talent to competitors. But moving fast has its
risks, including hiring someone who appeared wonderful and turned out to be
disappointing. I cover how to handle hiring mistakes in the “Firing Fast” section,
later in this chapter.

Deciding on a Job Title
DevOps is not a job title. It’s a philosophy, a methodology, and an approach to
removing friction in the software delivery life cycle. Yet, “DevOps Engineer” is an
in-demand role at hundreds, if not thousands, of companies.

The war against DevOps as a job title has been lost, and the time has come to
accept that fact. Adding DevOps to a title or role allows engineers to ask for
$10,000–$15,000 more in annual salary (though I’ve seen as high as a $35,000 pay
bump) as well as have a stronger negotiating position when interviewing for a
new role. I would never cheat an engineer from utilizing every possible angle to
progress toward their career goals.

When I set out to research common job titles for a DevOps-related engineering
role, some of the results surprised me. I started at Google Trends and compared
three roles:

 » DevOps Engineer

 » Release Engineer

 » Site Reliability Engineer

You can see more data around this research at https://g.co/trends/gZACs as
well as view the summary in Figure 14-3, which shows job titles that are associ-
ated with DevOps. DevOps Engineer is the clear winner, beating the others by a
significant margin.

The role of Site Reliability Engineer is increasing in popularity. In many ways, SRE
represents the evolution of DevOps and will continue to grow. I’ll be shocked if
SRE doesn’t approach the popularity of DevOps Engineer as a job title over the
next few years, if not surpass it. I suggest tracking this evolution closely.

The real surprise came when I added Automation Engineer to the list of job titles.
In my anecdotal experience, Automation Engineer isn’t a particularly popular job
title. Yet, the results of my comparison via Google Trends contradict my initial
belief. You can dig more into the data in Figure 14-4 and directly at https://g.
co/trends/5x6wY.

https://g.co/trends/gZACs
https://g.co/trends/5x6wY
https://g.co/trends/5x6wY

196 PART 3 Connecting the Circuit

I wondered whether the popularity of Automation Engineer was unique to the
United States, so I expanded my comparison to include data globally. Figure 14-5
shows the results of that comparison, and you can find the data for the figure at
https://g.co/trends/VDtFB.

To substantiate the results from Google Trends, I looked at LinkedIn job postings
in the U.S. At the time of writing, DevOps Engineer again came out as the clear
winner, with Automation Engineer following shortly after. Here are some addi-
tional job titles and the corresponding number of job postings:

 » DevOps Engineer: 4,918

 » Automation Engineer: 3,316

FIGURE 14-3:
Common

U.S. DevOps
job titles.

FIGURE 14-4:
Common

U.S. DevOps job
titles adding
Automation

Engineer.

https://g.co/trends/VDtFB

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 197

 » Site Reliability Engineer (SRE): 1,513

 » Cloud Engineer: 1,403

 » Infrastructure Engineer: 1,266

 » Release Engineer: 610

 » Sys Admin: 261

Recruiting Never Ends
Finding the best employees isn’t as simple as putting an ad in the paper and col-
lecting résumés, nor can you solve the problem by simply hiring a recruiter to do
all the hard work for you.

Recruiters can be a great asset during the hiring process. They are experts in
interviewing, complying with employment laws, and negotiating a salary.
 However, because of aggressive hiring practices, many software engineers have
grown to distrust recruiters. Reach out to candidates directly before introducing
them to a recruiter. This simple step builds trust and shows that your recruiters
are part of a well-thought-out hiring process. Without an introduction, you may
lose candidates who worry that they’re one of hundreds of candidates in a large
pool that will go nowhere.

FIGURE 14-5:
Common DevOps

global job titles.

198 PART 3 Connecting the Circuit

The key to hiring quality candidates is to always be . . . recruiting. That’s right.
This idea doesn’t exactly sound like the pep talk you might remember from the
movies, but it works. I keep two lists of people in my head at all times: people
I would love to work with and people I would never work with. Each list grows as
I meet more and more engineers.

Your lists are likely to be quite different from mine for a thousand different
 reasons, but start thinking about whom you would want to hire or work with if you
ever got the chance. Then, when the opportunity presents itself, you’ll be ready.

Finding the right folks
If your search for candidates is coming up short, consider your broader commu-
nity and network. Think about the people you know directly and then also con-
sider those second- and third-level connections — friends of friends who might
be a good fit or know someone interested in the job. When you feel stuck, make
lists of your personal connections and ask for community referrals.

The tech community is a thriving one. Well-attended conferences, meetups, and
other get-togethers are happening every day. Reach out to organizers as well as
influencers who are deeply involved in the community. They have enormous net-
works and are sure to know someone who might be looking. If not, ask whether
they would be willing to post your job on social media or in their newsletter.
(Many newsletters and podcasts need sponsors, which is a great way to get the
word out about your position while supporting the community.) Also, don’t forget
to attend meetups and announce you’re hiring. Meetups typically allow a few
minutes at the start for job announcements.

Be pointed in your approach to ensuring that you create a diverse candidate pool.
Referrals have a tendency to work against marginalized and underrepresented
communities. Reach out to candidates who don’t look like you, don’t sound like
you, and don’t think like you. If you’re not sure how to go about finding such
candidates, ask for help. Hire one of the many consultants in tech who focuses on
diversity and inclusion. Even a short engagement can help coach you and your
team toward better hiring practices.

Word of mouth is a great way to find candidates. (It’s how I’ve found every job I’ve
had in tech.) Word of mouth networking is basic. In addition, I work hard to be as
helpful as I possibly can because I currently have more reach than others. If you
have connections in tech, use them to get people jobs. Few activities are more
fulfilling and impactful.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 199

Passing along great candidates
Sometimes you have to make a hard choice between two people who are inter-
viewing with you. One of the best ways of keeping candidates in your solar system
is to help those people find great employment. I can’t hire everyone I want to hire
because of resource constraints, but I love introducing them to friends, colleagues,
and acquaintances whom I know are hiring.

For some reason, few people participate in this practice, but if you can make an
introduction that leads to a great opportunity, you’ll have made a loyal friend —
one on whom you can count for referrals in the future.

Check with your company to ensure that engaging in this practice doesn’t break
some kind of internal policy.

Evaluating Technical Ability
The age of obtuse riddles and sweat-inducing whiteboard interviews is waning —
and for good reason. If a whiteboard interview is facilitated by an engineer who
cares more about tricking the candidate than they do about discussing a technical
conversation, you’ll go nowhere fast.

Whiteboarding interviews have taken a lot of heat recently for putting underrep-
resented and marginalized groups — which includes women and people of
color — at a disadvantage. In this age, it’s absolutely vital for tech companies to
hire diverse workforces, so this situation is unacceptable. However, you have to
somehow gauge a person’s technical ability.

What’s the answer? Well, the good news is you have options. (The bad news
is . . . you have options.)

How you hire will determine who you are.

Whiteboarding revisited
The whiteboard interview was never intended to be what it has become. In my
first whiteboard interview, I was handed a computer program printed on eight
sheets of paper. The instructions? “Debug the program.” Umm . . . excuse me?

The whiteboard interview has become a situation in which you give a candidate a
seemingly impossible problem, send them up to the board with a marker, and

200 PART 3 Connecting the Circuit

watch them sweat profusely while four or five people observe their panic. This
type of interview provides no one with quality information on whether either the
employer or the interviewee is a good fit for the other party.

Although others have called for the elimination of the whiteboard interview, I
have a more nuanced suggestion: Change it. Make it a discussion between two
people about a piece of code or a particular problem. Don’t make the problem
something crazy, such as balancing a binary search tree. Unless the job you are
interviewing for is literally writing code in Assembly, you do not — I repeat, you
do not — need to evaluate the candidate’s ability to write Assembly.

Be cognizant of the job you are looking to fill, the skill sets required, and the best
way to measure those skills in a candidate. Have a single engineer on your team
sit down with the candidate and talk about the problem. How would you start the
conversation? What problems do you run into along the way? How would you both
adapt your solutions to the challenges you encounter?

This conversational approach accomplishes two things:

 » It reduces panic. Most people don’t think well under pressure. Plus, you don’t
do your job everyday while someone stares over your shoulder, criticizing
every typo or mistake. You’d quit that job in an instant. So don’t force people
to interview that way. Instead, give your candidates the chance to show off
what they can do. You’ll gain insight into how they think and communicate.

 » It mimics real work. The conversational interview gives you an idea of what it
would be like to work with this person. You don’t solve hard problems at work
by watching each other struggle. (At least, you shouldn’t. Really. That’s not very
collaborative or DevOps-y, leaving your colleagues to suffer in their silo.)
Instead, you work together, trade ideas, think things through, make mistakes,
recover, and find a solution — together.

The best whiteboard interviews are collaborative, communicative, and centered
around curiosity — all the things I love most about DevOps.

Offering take-home tests
An alternative to a more traditional whiteboard interview is the take-home test.
This type of test is particularly friendly to people who have any kind of anxiety or
invisible disability that impacts their ability to participate in a whiteboard inter-
view. This style of interview is also friendly to engineers who struggle intensely
with imposter syndrome.

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 201

Imposter syndrome describes high-achieving individuals who struggle to internal-
ize their successes and experience a persistent feeling of being exposed as a fraud.

A take-home test consists of some type of problem that a candidate can solve at
home in their own time. Take-home tests are often set up as a test suite for which
the candidate must write code to make the tests pass. Alternatively, the problem
could be something relatively small, such as, “Create a program in [your language
of choice] that takes an input and reverses the characters.” The options are end-
less, and you can tailor the test to your tech stack as you see fit. You can even ask
candidates to deploy their application. Ensure that you allow candidates to use
open source tools or provide them with the necessary subscriptions to use partic-
ular technologies.

The major drawback to take-home tests is that you’re asking people to take time
during their evenings or weekends to do what is essentially free work. Even if you
pay them for their work on the take-home test, this style of interview can unfairly
impact someone who has other responsibilities outside of work, including caring
for children, a partner, or ailing parents. Not every great engineer has unlimited
time to commit to their craft. But if you limit your candidate pool to people who
can afford to dedicate 5–10 hours to a take-home test, you’ll quickly find your
team becoming homogenous and stagnant.

Reviewing code
The interviews I love most are ones in which I sit down with an engineer, or a
group of engineers, to solve real bugs in real code together. You can take a few
approaches to a real-time code interview. You can mimic a take-home test and
give the candidate an hour or so to create a program or write a function to make a
series of tests pass. You can also stage the interview like a code review in which
you pull up an actual PR and dig into what the code is doing as well as what could
be improved. In many ways, the pair-programming nature of a code review com-
bines the best parts of both a whiteboard interview and a take-home test — but
without some of their major drawbacks.

Pair programming is an engineering practice in which two engineers sit down and
work through a problem together. Typically, one person “drives” by owning the
keyboard, but they collaboratively decide what approach is best, what code to add,
and what to take away.

If the job position involves an operations-focused role, using this real-time
 coding approach is even better. Although many ops folks are learning to imple-
ment infrastructure as code or manage configurations, they don’t have the same

202 PART 3 Connecting the Circuit

experience as developers. Reviewing what something does and how it might work
is a fantastic way to confirm that the candidate has experience in the tools and
technologies list on their résumé as well as ensure that the candidate can commu-
nicate with a team.

Firing Fast
Occasionally, someone who doesn’t work out will slip through your interview pro-
cess. They’ll appear to be talented, collaborative, and an all-around great addition
to your team. No one hires a candidate who is likely to be an undesirable employee.
However, the results sometimes don’t match the process.

You should act quickly in these situations. Allowing someone to exist on your team
whom you know is not a good fit can have dire consequences. However, I also
strongly believe in giving people a fair shake, which requires you to do several
things:

 » Explicitly communicate your expectations.

 » Address deficits in performance quickly.

 » Recognize and reward people who meet or exceed expectations.

If you’re not a manager, you can still take these actions. Leaders don’t always
have a management title. You can absolutely have a conversation with someone
about adjusting their work behavior, or thank someone for their hard work — no
matter what your title is.

When you run into an issue with a new hire (or any employee or colleague), you
should address the issue quickly and directly. Though interpersonal conflicts and
poor employee performance can take many forms, three types of challenges arise
the most frequently, as described in the following sections.

The jerk
No amount of brilliance can make up for an jerk’s cost to the team. It doesn’t mat-
ter if they’re a genius, or if they created a tool, technology, or language. If they
can’t work with your team, they shouldn’t be on it.

Jerks can destroy morale and drive great engineers away. In the worst-case
 scenarios, a manager’s inaction to rectify a team issue serves to reinforce a team’s

CHAPTER 14 DevOps Isn’t a Team (Except When It Is) 203

belief that the situation won’t be addressed. People will leave, often more quickly
than you think.

Robert I. Sutton, author of The No Asshole Rule: Building a Civilized Workplace and
Surviving One That Isn’t, identifies two tests that you can use to recognize a jerk:

 » Do people feel oppressed, humiliated, or otherwise worse about themselves
after encountering the person?

 » Does the person target people who are less powerful?

In his work, Sutton found specific behaviors that are often found in these work-
places. He termed this list the Dirty Dozen, which includes insults, unsolicited
touching, threats, sarcasm, humiliation, shaming, interrupting, and snubbing. If
you recognize any of this behavior on your team, take action as soon as possible.

The first step toward addressing a jerk is to clearly state that their behavior is
unacceptable. Communicate your expectations for professionalism and mutual
respect in all employees and explain what the consequences will be if the jerk
doesn’t adjust their behavior. Then, if you don’t see improvements, consider
removing them from the team (and possibly the company).

The martyr
This type of employee fights every disagreement to the death. The conflict could
involve the language or framework to use to write an MVP, or whether to add a
particular feature, or whether a bug arose from a code issue or from user error.
The content of the disagreement doesn’t matter.

Often, these martyrs either fear change or view themselves as a bit of a rebel. In
their own way, they’re trying to help guide the team toward the solution they feel
is best. They don’t behave this way out of malice. Instead, they have a communi-
cation issue. They have a tendency to talk over people or simply talk until other
people give up.

The constant arguing and fighting that the martyr brings to a team is disruptive.
It’s a distraction and can be extremely time consuming — so much so that other
employees may stop participating in conversations, especially in discussions
around complicated problems or architecture.

The benefit of these employees is that they actually tell you what they think.
This kind of problem is much easier to seek out and address than a problem caused
by an employee who suffers silently. The trick to addressing the martyr is to be
sensitive of their ego. If they resist team decisions passive-aggressively, call the
behavior out in a private conversation.

204 PART 3 Connecting the Circuit

The underperformer
Starting a new role always involves a learning curve, but occasionally someone’s
skills or efforts clearly don’t match your expectations. This situation can be tricky.
You want to avoid micromanagement and give employees enough room to suc-
ceed. However, you don’t want to let someone’s less-than-stellar performance
become the norm.

Before acting, ensure that you’ve done the following:

 » Explicitly communicated your expectations about the role. Be specific in
your communication, as in “Complete x feature within n days,” “Resolve n bugs
each week,” or, “Rearchitect our deployment pipeline using x tool.”

 » Asked whether they need help. Occasionally everyone gets in over their
head. Sometimes people just need a nudge to get going in the right direction.
Perhaps they’re afraid of looking stupid. Starting the conversation without fear
of repercussions opens the discussion and allows you to discover solutions
together.

 » Ensured that the issue relates to performance. During periods of my divorce,
I was not the world’s best employee. I had bad weeks. I felt emotionally empty
and scared. You employ and work with humans, and humans get sick, or they
have partners dealing with disabilities or chronic illnesses. They may have
parents who get hospitalized, or have children whose caregivers bail at the last
minute. Don’t immediately conflate temporary poor performance with a chronic
mismatch. Ask the employee, “Is there any stress outside of work that I can help
with?” Sometimes people just need to vent and know they’re safe at work.

 » Provided training. Onboarding isn’t easy, and I’ve been thrown into the fire more
than once. If you’re expecting your employees and colleagues to sink or swim,
you’re not doing your job. Explain the institutional knowledge you’ve acquired but
have come to think of as second nature. Partner new employees with senior
engineers who can serve as a single resource for questions. Be patient.

If you’re confident that you’ve done your due diligence and are convinced that the
employee’s problem truly is a performance issue, communicate that fact. Request
some time to sit down with them, one on one, and explain that they aren’t meet-
ing performance expectations. Be specific, as in “The code you’ve committed isn’t
meeting our quality standards because x.” Or, “If you can’t meet a deadline,
I expect you to communicate the problem well before that date.”

If an underperformer makes progress, reward it! That outcome is the best you
could hope for. When a manager calls a meeting only to criticize performance but
never recognizes good work, employees can quickly become demoralized. A simple
“Thank you for your hard work” goes much further than you might think.

CHAPTER 15 Empowering Engineers 205

Chapter 15
Empowering Engineers

Engineers are the engine of any tech business; they power the entire opera-
tion. Taking care of your engineers is vital to their continued health,
 happiness, and productivity. It behooves businesses to understand the moti-

vations of engineers and create environments in which they can thrive. Happy
engineers product better software, faster. It’s just that simple.

This chapter focuses on scaling an engineering team through DevOps, motivating
engineers to produce their best work, enabling your engineering team to allow
engineers of diverse backgrounds to work collaboratively, and measuring your
success.

Scaling Engineering Teams with DevOps
Growing your teams is one of the hardest challenges of tech — one DevOps
attempts to assuage. I believe the greatest challenges in tech aren’t technical,
they’re sociotechnical. Our systems have evolved beyond our machines. The
 challenges we face now have more to do with human behavior than with bits
and bytes.

The type of business formed at the beginning stage of a startup is radically differ-
ent from the one that evolves after years of trial and error — so different that you
could say that each was a distinctive company. Scaling involves much more than

IN THIS CHAPTER

 » Scaling teams through DevOps

 » Motivating engineers

 » Creating self-motivating teams

206 PART 3 Connecting the Circuit

simply adding personnel. You can’t just make your startup bigger and announce
you’re an enterprise.

One of the challenges of scaling a company — at any stage — is communication.
Figure 15-1 shows how quickly complexity in a system can grow. In the early
stages, you’re likely to be one of a few engineers, each of whom has a hand in
building an application and its infrastructure. Perhaps you all work in the same
room or are a merely quick call away from each other. The team and system are
small and contained enough that you can keep track of all the moving parts in
your head.

As you add people and components, more intersections of communication develop.
A formula exists for measuring the total pathways of communication on a team:
n (n – 1) / 2. For a team of 5 people, there are 10 communication pathways. This
size is entirely manageable. It escalates quickly, though. A team of 100 people has
4,950 communication connections, which is overwhelming.

Scaling will almost always be a messy process, and there’s no way around that
likelihood. But this chapter looks at some organizations outside of tech that man-
aged these kinds of growing pains admirably, and how you can do the same
through DevOps.

Three stages of a company
I give a talk called “Scaling Sparta: Military Lessons for Scaling a Development
Team,” in which I compare the three stages of a company to three militaries: the
Spartans, the Mongols, and the Romans. Spartans serve as my analog for a startup.
Evaluating the Mongols can illustrate what it means to thrive as a late-stage
startup or mid-sized company. And, finally, Rome serves as an ancient example of
an enterprise.

FIGURE 15-1:
Communication

complexity in
large teams.

CHAPTER 15 Empowering Engineers 207

Scaling is an important facet of DevOps because companies aren’t stagnant.
You experience periods of high growth as well as contractions. You’ll likely see
your company hire, and fire, over the years. Staying true to your DevOps principles
and continuing to evolve your processes will define your success through those
stages of expansion and contraction.

Startup
At its largest, the Spartan army numbered around 10,000. Despite its modest size,
Sparta was obsessed with war and nurtured this obsession in a child from the
moment that child was born. Throughout their lives, Spartan citizens had to prove
their worth to their nation and their unit. In many ways, their lives were defined
by their usefulness on the battlefield.

The Battle of Thermopylae pitted 300 Spartans against (supposedly) 100,000
 Persians. In one sense, that’s the challenge that a startup faces. How do you iter-
ate quickly to challenge companies with 10 times your resources? Here’s how:

 » Differentiate yourselves. Identify the product or value-add you do best and
do that really well. Adding pointless features exhausts your engineering team
and frustrates your customers. More rarely equates to better.

 » Hire generalists. At the startup stage, you need your engineers to have pretty
good and diverse skills. Look for engineers with a natural curiosity and a
willingness to dive into new technologies. You want people who can adapt
and solve problems using any tool — not necessarily the one they’re an
expert in.

 » Be bold. Do the scary thing. Take risks. Disrupt. Be inventive. The advantage
of being small is that you’re agile; you can adapt more quickly than your more
established competitors. Use that agility to your advantage and stay small for
as long as you can.

Late-stage startup or mid-sized company
The Mongols are a fascinating military to study, and their success is forever cred-
ited to Genghis Khan. To this day, it remains the largest geographic empire in
history. At its peak, the Mongol army was 100,000 strong. They conquered more
land in 25 years than Rome did in 400. The brutal conditions in which the Mongols
lived made them tough and resilient — the very qualities that late-stage startups
need to survive through the awkward teenage years.

Under Genghis Khan, the Mongols embraced religious tolerance. In other words,
they accepted people as they were, allowed them to thrive, and respected their
autonomy. They promoted people on merit. If someone did well and benefitted the

208 PART 3 Connecting the Circuit

greater tribe, they reaped rewards. Mongol society was egalitarian. Both men and
women contributed and everyone’s work was respected. Finally, Mongols adapted
quickly. Living on the land in rugged plains, they had no experience with walled
cities but mastered the art of siege warfare.

Genghis clearly wasn’t without flaws, and I don’t recommend following in his
homicidal tendencies, to say the least. But his leadership has some key qualities
from which to glean important lessons:

 » Focus on the what. Not the why. I’ve said this before and I’ll say it again. It is
vital that you set the mission for your company, your organization, and your
team. Wherever you sit on the chain of command, set the mission — even if
that mission is for you and you alone.

 » Enable autonomy. Allow everyone the room to complete the mission as they
see fit. Mongol soldiers kept three to four horses at all times, which permitted
them to travel long distances at fast speeds without exhausting their animals.
Give your engineers the tools and resources they need to thrive.

 » Think strategically. Reactionary businesses rarely survive. Colonel John Boyd
of the U.S. Air Force created the OODA loop, which stands for observe, orient,
decide, and act. Use this method to think through problems and prevent
yourself from being slowed down by fear, uncertainty, and doubt.

 » Keep structure simple. If you’re a late-stage startup or midsized company,
you need to introduce structure but keep it simple. Start with a quick daily
standup. Track features and bugs using a simple tracking tool. Avoid as much
complexity as possible, especially if the complexity exists only to make you
feel more like a “real” company — whatever that means to you.

Enterprise
Rome is perhaps the greatest example of an enterprise organization ever known to
humankind. In a large-scale organization, reliability and predictability outweigh
the novelty of taking risks in hopes of big rewards. In an empire, protecting what
you’ve built becomes increasingly important.

The activities most abhorred by startups — administration, management, and
process — are the bread and butter of enterprises, and for good reason: The
potential pathways for miscommunication at a company of 100,000 employees is
astronomical. (I’ll spare you the math; it comes out to 4,999,950,000 links
between people. Whew.)

Rome was an incredibly complex civilization, and compressing its key military
strategy into a section of a book is impossible, so I focus on the Imperial Roman

CHAPTER 15 Empowering Engineers 209

army under Caesar Augustus, which is when the Roman army reached its peak size
of nearly half a million soldiers. Rome started by giving its soldiers grants of land.
As those resources became more scarce, they switched to awarding soldiers with a
set amount of denarii (roughly 13 years’ salary) after their service. Sounds a lot
like a pension, doesn’t it? They divided the military into three components:

 » Legions: Heavy infantry made up of Roman citizens. Soldiers served terms of
25 years and conscription was used only in emergencies.

 » Auxilia: Troops recruited from noncitizen residents called the peregrine. These
soldiers held positions in infantry, cavalry, archery, and special forces. At the
end of their service, auxiliaries were awarded Roman citizenship.

 » Numeri: Mercenaries from allied tribes outside the Roman empire. I like to
think of these folks as contractors.

Organizationally, Rome split its command into provinces, overseen by legion
commanders called legati who reported to the provincial governor and then up the
chain directly to the emperor in Rome.

Legions had a higher status but depended heavily on the auxilia for support on the
battlefield. This dependence reveals the importance of methodologies like DevOps
in large organizations. DevOps doesn’t promote the idea that everyone needs to do
every job. Instead, you need to have a general understanding of every job and —
here’s the really important part — respect the people who do the jobs you don’t.

The lessons Rome teaches are endless. (If you love history, as I do, I highly
 recommend that you look further into each of these fascinating militaries.)
 Meanwhile, here are the key takeaways from the Roman enterprise for this book’s
purposes:

 » Break into small teams. Think about your application. When a component
becomes too large, you break the logic into smaller pieces. The same principle
applies to the people on your teams. Small teams enable engineers to move
quickly and effectively, which makes intuitive sense for a DevOps organization.
Sharing and collaboration — key principles of DevOps — become impossible
past a certain scale. You must provide your team with the framework to make
these rather lofty goals possible.

 » Allow independence. Each unit in the Roman army had its own standard —
represented by a pole with a variety of decorations. The practical use was
to visually communicate where the bulk of the unit was located on a vast
battlefield, but the standards held deep meaning for the soldiers. They
believed that their standards represented a divine spirit, and they prayed to it.

210 PART 3 Connecting the Circuit

Each unit also had its own unique culture. Applying that “small” approach to
your own teams will permit like-minded people to work seamlessly together.

 » Master logistics. Rome invested heavily in an extensive and well-maintained
road system. This infrastructure allowed the transport of troops and supplies
throughout the vast empire. This approach is perhaps best summarized by
Facebook’s latest internal motto: “Move fast with stable infrastructure.” The
infrastructure of Rome was one of its greatest advantages over its peers.

 » Invest in your employees. The longer your employees stay at your organiza-
tion, the more informed every team becomes on institutional knowledge and
systems. Despite all attempts to get engineers to document everything —
and you should encourage this practice — people naturally internalize
information. This type of knowledge is the most valuable because people
don’t even think about it as knowledge. To retain employees, encourage
work-life balance and pay them fair salaries. Avoid burning them out at all
costs because it will cost you heavily in lost productivity.

 » Introduce specialists. At the enterprise scale, specialists become an advan-
tage and should have their place alongside the generalists that you hired
during earlier stages of your company. In addition, allow generalists to
become specialists through training and employment opportunities. Get to
know the members of your small teams and understand their goals, both
professionally and personally. Keep those goals in mind when making
changes, providing new career opportunities and thinking about continuing
education.

Motivating Engineers
Startups have a hard time transitioning into a large company, and that’s because
it’s really hard. The quick wins you experience daily, sometimes hourly, at a tiny
startup fade as you grow. Your plans extend from surviving one hectic period of
time to thriving over weeks, months, and even years. Features become more com-
plex and therefore slower to release.

This transition from the quick pace of a startup to the slow churnings of an enter-
prise can be demotivating to everyone. You simply don’t get the same dopamine
rewards at large organizations that you do at small, scrappy companies. If you’re
not careful, this lessening of rewards can cause motivation and overall job satis-
faction to plummet.

Daniel Pink has compiled some of the best research on this topic in his book, Drive:
The Surprising Truth about What Motivates Us. In many ways, science has proved the

CHAPTER 15 Empowering Engineers 211

business methods of the 20th century to be simply wrong and often counterpro-
ductive. You don’t work in a factory and you don’t need a line boss. You work in an
intensely intellectual and creative industry within a greater knowledge economy.

Researching motivation
Whatever your size, I suspect you want to use DevOps to become more productive,
as well as to attract the best talent and outwit your competitors. To accomplish
those goals, doing things the same way as they’ve always been done isn’t going to
cut it. In Drive, mentioned previously, Daniel Pink focuses on three principles:

 » Autonomy

 » Mastery

 » Purpose

Simply throwing money at your employees isn’t sufficient (although that fact
won’t stop some companies from trying). Instead, you must delve into their
motivations.

Some of the greatest challenges in a DevOps transition involve motivating your
team to produce high-quality work quickly and changing their unhelpful or harm-
ful approaches to problem solving. The best managers aren’t people who tell their
employees what to do and then enforce that with a carrot or a stick. Instead, they
persuade their employees to self-motivate. They encourage their employees to
think independently and to get excited about their work.

You need to be aware of the two categories of motivation: intrinsic and extrinsic.
Intrinsic motivation is the kind that pushes people to take action based on internal
drivers. People naturally do work that they find rewarding. Extrinsic motivation is
work done to obtain a reward or avoid a punishment. The former, intrinsic, is a
much more powerful and long-lasting form of motivation.

If you view your employees as naturally lazy, I encourage you to step away from
management. Perhaps no attitude is more damaging to the delicate nature of
human relationships than contempt. Engineers don’t sit still on weekends. Yes,
they watch Netflix; I do, too. But they also take up sports, commit to open source
projects, play with their kids, race cars, cook, and any number of other energy-
demanding activities. Engineers aren’t great at sitting still. They’re thinkers and
tinkerers. Some of the most knowledgeable people I know outside of tech are
engineers. Never underestimate an engineer’s ability to dive deep — I mean really
deep — into a new hobby. They read every book about a topic that interests them,
unlock every secret, experiment, break it apart, and become an expert.

212 PART 3 Connecting the Circuit

Much of the research that Pink highlights originates with Mihaly Csikszentmihalyi,
summarized in the book Flow: The Psychology of Optimal Experience. Csikszentmihalyi
found that people enjoy the feeling of pursuing a difficult endeavor and attempting
to accomplish a task they believe to be worthwhile. Through an incredible amount
of research, he found that people thrived in the experience of pursuit and
purpose — a feeling he described as flow.

DevOpsing motivation
You can use the DevOps approach to put your engineers into an environment in
which they can achieve the flow mentioned in the previous section. Daniel Pink
distilled Csikszentmihalyi’s research by suggesting that managers and employees
seek out “Goldilocks tasks.” Such jobs are neither too easy nor too hard; they’re
just right. Finding this tension between extreme stress and extreme boredom is a
tricky but worthwhile pursuit in your workplace, and it’s one that the DevOps
approach supports. By permitting your engineers the autonomy to own their work
and feel pride in their contributions to their team, you enable them to achieve
purpose.

Engineers — and all humans — want to be the masters of their own lives. They
want to feel as though they are making decisions and have a reasonable amount of
control over their lives and their work. This is autonomy. In addition, they thrive
when they can continuously improve throughout their career. Continuously
improving is a bedrock principle of DevOps. Engineers want to get better at what
they do, and then keep getting better and better. This is mastery. Finally, engi-
neers desire purpose. They want to know that their work and their contributions
have meaning beyond the basics of subsistence. This is purpose.

Fully consider these three principles of motivation: autonomy, mastery, and
 purpose. Think about the last time you felt truly fulfilled. When you think about
that time, what were you doing? Who were you doing it with? Did these principles
play a role in your happiness?

Avoiding reliance on extrinsic rewards
You can think of a reward as the dangling of the carrot; it’s what people give
 others when they do a job well. Rewards come in many forms: money, public rec-
ognition, and other awards. The challenge of rewards is that they change the way
people’s minds work. Dan Pink highlights a study he calls the “Candle Problem,”
a social experiment in which participants are asked to attach a candle to a wall
with a box of thumbtacks and matches. When participants were offered money for
performance, they solved the problem more than three minutes slower than the

CHAPTER 15 Empowering Engineers 213

control group that was not offered a reward. You can watch Pink explain this phe-
nomenon in his TED talk at https://www.youtube.com/watch?v=rrkrvAUbU9Y.

This result of offering rewards runs counter to what people have been taught
about business. The more you pay employees, the better they perform, right?
Actually, no. You can apply this psychological research to tech and understand it
as one of the key values of DevOps in your organization.

Offering a fair market wage and benefits is a baseline for ensuring that your
employees can support themselves (and their families). But money is not a
reward. Pay your employees what is fair. By providing a fair salary, health insur-
ance, retirement plans, and other benefits, you remove a key stress in people’s
lives: money. No one wants to think about how they’re going to pay a bill, buy a
new car, put their kids through college, pay for their parent’s cancer treatment, or
survive a divorce. Your goal is to both remove the stress of having too little money
while also eliminating money as the only reward for good work.

Autonomy
DevOps flips the switch on traditional management. Instead of deciding on a
detailed course of action and then instructing your employees to do the work,
DevOps managers create a vision and allow their employees the autonomy to
 create a plan for the work. Engineers work together to plan features as a team,
think through the potential pitfalls and concerns with engineers from other areas
of expertise, and then divide the work in a way that suits their strengths as a team.
This approach is a powerful way to give your engineers autonomy. You allow them
to direct their own work, and that empowerment pays dividends.

Mastery
DevOps creates an environment of rapid iteration and continuous improvement.
You can divide this continuous improvement into five categories:

 » Continuous planning

 » Continuous development

 » Continuous delivery

 » Continuous feedback

 » Continuous learning

https://www.youtube.com/watch?v=rrkrvAUbU9Y

214 PART 3 Connecting the Circuit

You can probably add even more, but that forward movement is what satisfies the
basic human need for mastery. Your engineers are empowered to take control over
their work and hone their skills. No one wants to feel stagnant, and I can’t think
of something more stifling than being given a list of features to implement, hand-
ing them off, and then grabbing the next assignment. This is the traditional tech
environment that DevOps is changing.

In that environment, engineers are little more than code monkeys. They write
code, deploy it, and go home. Ugh. It makes me sad just thinking about it. Most
engineers have worked (or known someone who worked) at a company that
believed in this process. In such an environment, engineers are powerless to take
pride in their work, appreciate the bigger picture and mission, and take ownership
over their process, which undermines their ability to grow. Engineers in such a
situation will either leave or stagnate — neither of which is a desirable outcome.

Purpose
You may think of having a purpose as meaning to work for a great cause. Don’t
limit your understanding of purpose to writing software for charities or working
for a nonprofit whose mission is to solve hunger, though. If that’s your passion,
great! Do that. But you can find purpose in more ways than are obvious. Giving
engineers time to mentor less experienced engineers on the team or in their com-
munity is one way of giving them purpose. Allowing them time to work on open
source software while at work is another. You can also give people time to prepare
and give talks at conferences or run meetups as well as hire people who care about
your customers. However you enable it, a sense of purpose keeps engineers work-
ing hard — even when the project is hard and the challenges are overwhelming.

Monetary rewards seem to offer an easy fix to the problem of motivation. They’re
not effective, however, and can potentially have negative impact on your team’s
productivity and motivation. Your job — whether you’re a manager or an individ-
ual contributor — is to look beyond the easy fixes and find what works. The indi-
viduals will vary as much as their preferences, but at their core, all engineers
desire independence and purpose. Protect them from the elements of your orga-
nization that would deny them that fulfillment and you’ll find yourself with a
happy, productive team.

People don’t quit jobs. They quit managers.

Making work fun
The engineering industry constantly measures and compares people based on
their technical skill and knowledge. In a healthy environment, this atmosphere

CHAPTER 15 Empowering Engineers 215

can serve as a great way to keep people sharp. Grindstones keep blades sharp.
But when an environment takes a turn from healthy collaboration to competition,
the fun of learning is stripped away and replaced with fear.

Engineers who fear looking stupid are less likely to pick up new skills, attempt a
new language, or suggest a new tool. New technologies take them out of their
comfort zone. Their productivity slows down and initially they struggle. You must
accept an initial slowdown when encouraging engineers to continuously learn and
improve. Speed, after all, is not the only indicator of a healthy and productive
engineering organization, and curious engineers can thrive only in healthy, fun
environments.

Allowing people to choose their teams
At age 20, Spartan soldiers became eligible to join a syssitia, a sort of club.
Members of the syssitia had to vote to accept a man into their group and the vote
had to be unanimous. The Spartans may have been onto something with this
approach. Allowing engineers choice as to whom they work with and what they
work on can be a powerful tool in your quest to increase autonomy.

Although I believe in the fundamental quality of allowing people to work with
whomever they prefer, an opportunity for practicing exclusion arises with this
approach. If you try this route, watch carefully to ensure that people aren’t
 bifurcating along lines of social diversity — race, gender, ethnicity, religion, and
sexual orientation. This behavior is a warning of larger challenges existing under
the surface, and you need to step in as soon as you see it.

Bonding with the people you work with is critical, and not just on a professional
level. You want to be able to like, admire, and respect them as people. Healthy
teams don’t know each other’s birthday because it’s their job but because they
care about their colleagues. The same goes for knowing each other’s kids’ names,
hobbies, and personal stresses. When you allow engineers the ability to choose
their teams, you enable a deeper level of bonding through self-selection.

Measuring Motivation
As with everything in DevOps, tracking your experiments and measuring the
 output is critical to continuous improvement. I highly recommend that you survey
your team regularly to ascertain their general level of happiness, motivation, and
job satisfaction. As you measure your progress in the happiness department, track

216 PART 3 Connecting the Circuit

productivity during the same time. If you don’t add productivity as a part of
your data, it can be easily dismissed by others. Not all executives are created equal,
and some still thrive in the old-school way of thinking about business and
motivation.

Ensure that your way of measuring productivity is aligned between teams.
 Measuring developers on features shipped and operations folks on flawless
deploys is not a DevOps-like approach. If measured simultaneously, these goals
can quickly become a source of friction. Instead, use a measure such as the
number of user stories (descriptions of features from the user perspective)
released to customers. Focusing on user stories that make it to production empha-
sizes delivery as a team and removes siloed responsibility and incentives. My
guess is you’ll see a substantial increase in your team’s overall productivity.

4Practicing
Kaizen, the Art
of Continuous
Improvement

IN THIS PART . . .

Improve your on-call procedures, manage incidents
better, and minimize processes that lead to human
error.

Prepare your systems to fail well, and embrace a growth
mindset by learning from failure through productive
post-incident reviews.

Consider the contributing factors of failure and how to
run a post-incident review.

CHAPTER 16 Embracing Failure Successfully 219

Chapter 16
Embracing Failure
Successfully

One of the gifts of software engineering is that the industry has emerged
far later than other engineering disciplines. If you look to those older,
more experienced industries, you can see many of the problems you face

have been solved — or at least identified. (And isn’t it nice to put a name to a
problem?)

At some point along the way, executives adopted this concept of fail-fast and
 tailored it to startups. (You may recognize the term from Eric Ries’s book, The
Lean Startup.) Although perhaps overused and misunderstood, failing fast origi-
nates from system design. A fail-fast system quickly notifies the administrator of
any indication of failure. This requires advanced detection of even a whiff of
 danger. These systems verify state along the entire process to ensure safety.

In this chapter, I dig into the origins (and misconceptions) of the commonly heard
phrase failing fast. Chapter 17 offers ways to prepare for failure and learn from
mistakes, and Chapter 18 tackles post-incident reviews.

IN THIS CHAPTER

 » Failing fast (and well!)

 » Embracing a growth mindset

 » Reviewing incidents as a team

220 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Failing Fast in Tech
In software, a fail-fast system is ideal. In modern development, system compo-
nents act independently and can change behavior if a failure is detected in a
neighboring component. These features can make your system more fault toler-
ant, allowing it to function even as failure is occurring.

If you implement your system well with failure checks at each potential breaking
point, it will show failure earlier than would be typical because you’re made aware
of the failure far before a cascading series of failures can cause catastrophic
 consequences. In other words, each component is treated independently in failure
detection, so a domino effect is less likely to occur.

Failure checks provide more information about the issue, and closer to the source
of failure. How many times have you triaged an outage or thought you had fixed a
bug and assumed that everything was fine, only to discover — usually hours
later — that the issue was caused by another component in the system, some-
times completely unrelated? These service interruptions are costly, so determin-
ing where a bug or outage originates from pays dividends well beyond the initial
cost of architecting a fail-fast system.

When I say “source of failure,” I do not mean root cause. Complex systems simply
have no root cause. They have only triggers of failure — that is, the final steps in
cascading errors. Executives typically love (or demand) to know a root cause
because it’s simpler to take to the board and customers as an explanation. It’s up
to you to explain why attempting to determine a root cause is a flawed exercise.
Read more in the section, “Going beyond root cause analysis,” in Chapter 18.

Failing safely
A step beyond fail-fast is fail-safe, which is a system that shuts down operation
immediately on discovering a failure to ensure the safety of humans, equipment,
data, and any other assets that could be damaged. For example, had Knight Capital
implemented appropriate checks on trading, the system would have halted opera-
tions and prevented the catastrophic failure of losing $440 million in under an
hour. (See Chapter 12 for more details on the Knight Capital financial catastrophe.)

Creating a fail-fast system is less complicated than you might think. It simply
involves thinking about handling failure rather than attempting to avoid it at all
costs. In software, a fail-fast component will fail at the first sign of a problem. It
could happen when a user inputs bad data into a form, for example. Rather than
fail at the database layer (or later!), you design the form to ensure data quality

CHAPTER 16 Embracing Failure Successfully 221

before transferring the data to other components. Code designed to fail fast is
easier to debug, reduces the number of components involved in a failing process,
and prevents lag before the user receives an error message.

The opposite of fail-safe is fail-deadly. Although you probably don’t engineer
software for ballistic missile submarines, nuclear reactors, or pacemakers, juxta-
position of fail-safe and fail-deadly is worth considering. Your result may not
qualify as fail-deadly but instead be fail-fail or fail-bad or — my personal
 favorite — fail-fired. The decisions you make have repercussions, so considering
the knowns and unknowns of your system is a valuable exercise.

Containing failure
Much of the preparation for failure isn’t about trying to avoid failure. Instead, the
idea is to expect and control for it. Though exceedingly rare in software systems,
catastrophic failure occurs in systems that fail badly because of a single point of
failure. This one Achilles’ heel, if shattered, brings down the entire system.
An example of a catastrophic failure is the 1836 fire at the U.S. Patent Office. The
system had no data redundancy, and any patents lost in the fire were lost forever.
(Fittingly, the patent for the fire hydrant was destroyed in the fire.) A more recent
example of failing poorly, this time in civil engineering, was the Nipigon River
Bridge. As a result of a partial failure, the bridge outage completely disconnected
road access between eastern and western Canada. No alternate route existed along
the Trans-Canada Highway.

Ship hulls are containerized (pun intended) to allow for a breach of water in one
without sinking the entire vessel. Elevator brakes are fail-safe because tension
from the elevator cable above the car holds the brakes away from the brake pads.
If something severs the cable, the brakes latch and the elevator comes to a stop.

THE OTIS SAFETY ELEVATOR
Elisha Otis first showcased his elevator brakes in 1853 at America’s first World’s Fair,
held in New York City. He rode an elevator platform high above the cheering crowd and
ordered the rope that held him be cut. You can imagine the excitement and tension
building in the crowd as people watched this demonstration unfold. I like to think of a
collective gasp rippling out as the rope was severed and Otis fell, for a moment, and
then halted to a complete stop (https://www.6sqft.com/elisha-otis-now-
162-year-old-invention-made-skyscrapers-practical/).

https://www.6sqft.com/elisha-otis-now-162-year-old-invention-made-skyscrapers-practical/
https://www.6sqft.com/elisha-otis-now-162-year-old-invention-made-skyscrapers-practical/

222 PART 4 Practicing Kaizen, the Art of Continuous Improvement

You can consider data centers to be fail-safe. Cloud providers achieve
99.999 percent availability by implementing n+2 redundancy. Data is stored in
three separate places to allow for access even in the event of failure in one server
while another is down for planned maintenance. That type of redundancy is
expensive but worth it for some companies.

Accepting human error (and
keeping it blameless)
Human error is a flawed term. It implies that humans can be the single source of
failure of an incident, rather than the complex sociotechnical systems in which
those humans operate. If something goes wrong, and you determine a human was
the “root cause,” you just fire them, right? Problem solved!

Nope. Wrong. You cannot fire your way to a great engineering team. If a human
was allowed to err, your system failed, and you have a system problem, not a
human problem. Humans are catalysts that exist within a system. Although
humans make mistakes, they are part of a whole. One of your goals in a DevOps
culture is to eliminate the possibility of human error. Although planning for every
potential failure is an impossible task, chasing the goal will improve your systems
and processes immensely.

Failing Well
The most important aspect of a DevOps-focused engineering team is the ability to
fail well. This ability has more to do with the people than with your tooling.

I talk at length in this book about iteration and continuous improvement. The
Japanese word kaizen means improvement or change for the better. In the context of
DevOps, kaizen means to continuously improve all areas of your business. This
ancient concept of kaizen is applied in lean manufacturing and The Toyota Way.

Kaizen isn’t some grand, sexy process. Instead, it refers to tiny decisions, made
every day, to slowly improve productivity and eliminate wasteful work. Lao Tzu
captured this beautifully in the Tao Te Ching: “The journey of a thousand miles
begins with one small step.” This work to improve daily can’t succeed by one
individual’s efforts alone. Like any DevOps transformation, it requires adoption by
the entire team. Everyone in your organization must pitch in and take ownership
of the process by applying the philosophy of kaizen.

CHAPTER 16 Embracing Failure Successfully 223

The most interesting aspect of kaizen is that it embraces failure. Not catastrophic
failure, mind you, but it accepts that the process isn’t perfect and you always have
room to refine and improve. The realization that everyone has a role to play in
continuous improvement is a healthy first step in establishing accountability as a
team. People usually think of accountability punitively, but in DevOps, account-
ability means to take ownership over your work, your team, and your organiza-
tion. Everyone, from the most junior engineer to the CEO, has the ability to have
impact. Using the kaizen approach, everyone makes small changes, monitors
results, and adjusts continually.

Maintaining a growth mindset
In her book Growth Mindset, Carol Dweck describes two groups of people: those
with a fixed mindset and those with a growth mindset. Dweck stumbled on this
finding when conducting research on students’ response to failure. Dweck and her
colleagues observed that some students rebounded from failure and others were
crushed by the weight of it. When they dug into the underlying belief structure
that resulted in these outcomes, they realized that some students viewed failure
as a necessary step in learning whereas others felt that failure was indicative of
whether they were good at something. In the former, failure is a stepping stone.
In the latter, failure is a definitive and terminal blow. Figure 16-1 steps through
the process that someone with a fixed mindset goes through when confronted
with failure. Contrast Figure 16-1 with Figure 16-2, which shows the internal
 dialogue of someone with a growth mindset.

A fixed mindset isn’t an immutable state. I started life with a fixed mindset.
I struggled initially with math, especially when under time constraints. Although
studies involving history, people, and language came easily to me, math never did.
It still doesn’t. My brain has to fight to understand the concepts and solve the
problems. I naturally concluded that I simply wasn’t good at math and shouldn’t
pursue it. Any hesitation I may have experienced was silenced when my trigo-
nometry teacher called me “stupid.” I proceeded through the next 10 years of my
life thinking I was terrible at math and should never be allowed anywhere near
math, science, or technology.

It wasn’t until I started at code school that I fully accepted a growth mindset. I was
desperate to finish and change careers, and that provided me enough motivation
to push through the rough patches. Then something remarkable happened.

FIGURE 16-1:
The thoughts of a

fixed mindset.

224 PART 4 Practicing Kaizen, the Art of Continuous Improvement

I learned. I’m still not a math savant. I can’t add two numbers together under
pressure. I simply freeze. But guess what? I’m a great engineer. And when I need
to learn a math concept to do my job, I do just that. I learn. No matter how uncom-
fortable the process feels.

You can learn to develop a growth mindset as you can any other skill. It simply
takes time to adjust your thinking from reactionary and defeatist to curious and
optimistic.

Creating the freedom to fail
Most of the time when you try something new, you fail, and there’s no shame in
it. The first time I tried to drive a stick shift, my mother’s grey truck lurched
 forward and stalled in the street in front of our driveway. I didn’t even bother to
try to park it. I simply got out of the car, returned to the house, and left my father
to deal with the car left in the middle of the road. It took me another eight years
to buy a car with a manual transmission and finally learn. (My mother had to drive
it off the lot for me. I’m stubborn.) But now I have two six-speeds and can’t imag-
ine driving an automatic.

The first software program I ever wrote was a 200-line mess of nested loops.
It was so bad that it would have made you cry. But then I learned OOP (object-
oriented programming) and division of responsibility. The code I’ve written over
subsequent years is significantly more readable and functional.

You likely have countless stories like mine: moments of temporary setback,
 failure, and then a (sometimes) arduous process of slowly learning. But unless you
cultivate a company culture that embraces failure, your engineers will continue to
live out the patterns they’ve learned throughout their lives:

 » Reduce risk as much as possible.

 » Avoid failure at all costs.

 » Cover up mistakes.

 » Look to blame others instead of accepting accountability.

FIGURE 16-2:
The thoughts of a

growth mindset.

CHAPTER 16 Embracing Failure Successfully 225

Everyone carries the scars formed from a lifetime of bad bosses, stressful jobs,
and personal hurt. Part of being a great manager and colleague is recognizing
those scars and working to create a safe work environment while respecting the
fears and knee-jerk reactions of those around you.

Encouraging experimentation
When left alone, and given the time and resources to experiment, engineers make
all sorts of fascinating discoveries. Google’s famous 20 percent time — which
gives engineers one day a week to work on whatever project they want — resulted
in Gmail and AdSense, two significant products.

Atlassian takes the concept of 20 percent time a step further and allows different
teams to implement their own versions of innovation time. Some teams have an
innovation week once every five weeks. Also, the entire company can participate
in a 24-hour hackathon called ShipIt during which they create and deploy both
technical and nontechnical projects in a day.

However you choose to implement it, encouraging experimentation is core to
 creating a safe work environment that embraces failure.

Balancing challenging work with
fulfilling achievements
In his book Drive, Daniel Pink describes the research of Mihaly Csikszentmihalyi,
who found that people who were guided by purpose experienced a feeling he called
“flow.” This feeling requires what Pink calls “Goldilocks tasks” — work that is
neither too easy nor too hard, but just right. When you experience flow, you are
fully immersed in your work, driven forward not by your salary or potential
extrinsic rewards but instead by the purpose you derive from your work.

If you’re an individual contributor, seek out tasks that you find challenging but
that don’t throw you into a spiral of stress-induced self-doubt. Finding this bal-
ance isn’t easy and involves trial and error. The trick is to trust yourself and your
colleagues enough to ask for help when you need it and to take on increasingly
harder work when you’re ready.

If you’re a manager, note that helping your team achieve balance is how great
managers overtake those who care more about this quarter’s bottom line than the
longevity of their team. Talk to your engineers. Find out where they feel confident
and where they feel they need some work. Verify these qualities in your team
members yourself or ask your senior engineers to assess their colleague’s
strengths and weaknesses. The goal here isn’t to root out the runt of the litter.
Instead, use this activity to balance the team as a whole. Everyone has both

226 PART 4 Practicing Kaizen, the Art of Continuous Improvement

strengths and weaknesses as an engineer and an employee. Being honest about
those and structuring the team for balance and growth is essential to reap the
benefits of DevOps.

Rewarding smart risk-taking
Failure is an outcome. Risk-taking is an action — the input in an innovative
 culture. Discussing smart risk-taking and setting boundaries is a healthy part of
planning for failure. Managers can model this behavior by taking small risks
themselves. When managers embrace innovation and shed the instinct to main-
tain the status quo, they create a culture of taking chances and learning from
failure.

Part of smart risk-taking is controlling the blast zone, which is the radius of
 services or users affected by a failure. Instead of allowing every user access to a
test in production, release it to a small set of randomly selected customers.
Another aspect of smart risk-taking is thinking through the potential wins and
losses from a particular experiment. Release small changes frequently for the best
results.

The late Randy Pausch of Carnegie Mellon University often reminded students
that one penguin had to be the first to make the plunge into the water without
knowing what predator might lurk just beneath the surface. He rewarded the
“First Penguin” award to the student who took the boldest risk during the
 semester. I love this and wish every engineering team had a reward like this
because it makes failure light-hearted and normal. It makes it part of everyday
life instead of something foreboding and to be avoided at all costs.

Building a soft landing
You can’t kick the baby bird out of the nest and then leave it to struggle on its
own when it doesn’t fly on the first go. You must shield your team from the
 consequences of failing from stakeholders outside engineering. This includes
executives, colleagues from other departments, and sometimes customers.

If you’re a manager, your job is to provide cover for your team to do their work. Be
confident in the larger, long-term benefits of having a culture in which failure
isn’t something to be ashamed of. A learning culture pays dividends in employee
job satisfaction, innovation, and collaboration. A team that successfully fails
together has a level of trust most teams will never achieve.

CHAPTER 16 Embracing Failure Successfully 227

Perfecting the art of done
You can rewrite bad code, but you can’t rewrite nothing. Perfectionism is the
greatest enemy of productivity because of its paralyzing effect on work. You
become so afraid of being bad at something that simply doing nothing at all feels
better.

Logically, you know that doing nothing isn’t wise. Your neocortex recognizes that
you need to do the work. Yet, the oldest part of your brain fights against doing it.
The oldest part of the human brain skews heavily toward safety, and doing noth-
ing is safer than doing something and risking failure.

Getting a first draft done is much more important than making that draft even
remotely high in quality. If you’re a developer, you know all too well how you
struggle with a hard-to-solve problem. You write a hundred lines of embarrass-
ingly poor code. It mostly works. Yay! Now that you know how to solve the prob-
lem, you can throw your first draft away and rewrite the solution in a few lines of
divine code.

Give yourself (and your team) permission to suck. It’s not a permanent state but
instead is part of a larger journey. The faster you allow yourself to suck, the faster
you get to work and, ultimately, perfect your art of getting work done.

Failure is wasteful only if you don’t learn from it. A learning culture goes hand in
hand with an engineering team that accepts and encourages taking risk that may
result in failure.

CHAPTER 17 Preparing for Incidents 229

Chapter 17
Preparing for Incidents

What’s an incident or service outage? Good question! Essentially, an
incident is any technical disruption of your business. Incidents come in
all shapes, sizes, and severities. For example, if your business is bank-

ing, members of your financial institution might not be able to access their bank
accounts online. If your business is online photo storage, a potential incident
might prevent users from uploading new photos. If your business is retail, maybe
users can’t make purchases because your payment processor is down.

Sometimes an incident can be rather tame. Perhaps the “Add to Cart” button is
duplicating requests and adding two items to customers’ carts instead of one.
Irritating, yes. But the situation isn’t dire because the customer can edit the
 quantity in the cart. Other times, incidents can be much more traumatic. Perhaps
your sign-up form is preventing users from joining your site or your payment
processor service is down. Or a database error has erased critical user information.
Yikes!

In this chapter, I show you how to prepare for incidents and service outages of all
kinds. I walk you through how to ensure that your processes reduce the possibility
that humans will be the cause of an incident, how to better prepare your on-call
team for incident response, and what to do when an incident strikes. Along the
way, I share a few use cases that might help you better prepare yourself and your
team for when an inevitable incident hits.

IN THIS CHAPTER

 » Minimizing the processes that lead to
human error

 » Improving on-call response

 » Managing incidents when they occur

 » Measuring your success

230 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Combating “Human Error”
with Automation

Human error can quickly lead you to believe that humans are the “root cause” of
a failure. (Read more in Chapter 18 about why root cause is a problematic term.)
Instead, if a human happened to be a trigger of failure, look at the situation this
way: Judgments and decisions made by an engineer may have contributed to
the disruption. Perhaps even more important, consider that the systems and
 processes of your engineering organization led to (or did not prevent) those
 judgments or decisions.

Incidents will always be a part of developing and maintaining software. People are
only human. It happens. Stuff breaks. The problem with incidents isn’t that they
happen. Yes, this reality is unfortunate and uncomfortable, but the real issue is
that the same incident (or incidents that are eerily similar) consistently reoccur.
These incidents are often long, drawn-out, and stressful events for everyone
involved — including customers — and they often repeat themselves.

By now you’ve likely realized that more often than not, humans are the challenge
in DevOps. “Human error” is the label that people put on the common (and
 frequent) occurrence of human mistakes. If you’re thinking that the solution for
incidents that were triggered by a human’s decision is to fire all your humans,
please don’t do that. (Are you a robot overlord?) Humans, for all our flaws, are still
the most capable tool for solving technical challenges. Engineers who set the
 figurative fires that cause incidents are also the best firefighters for solving the
problems.

The most thorough answer the academic world has formed to respond to engi-
neering mistakes is human factors, also referred to as ergonomics, which is the
study of human psychology and physiology in design. This field of study applies
knowledge about humans from many disciplines — psychology, sociology, user
experience, engineering, industrial design — and enables people to design better
products and systems, all with the main goal of reducing human error.

If you’re thinking, “I thought ergonomics had something to do with my chair,”
you’re right! Physical ergonomics is what improves the products you use every
day, from your chairs to your computer screens. What you should be concerned
about in DevOps is cognitive ergonomics and organizational ergonomics:

CHAPTER 17 Preparing for Incidents 231

 » Cognitive ergonomics is the study of how humans perceive and reason
about their environment. How do people make decisions or react to certain
stimulus? What makes one person extremely reliable and another flaky?

 » Organizational ergonomics is the study of systems and structures inside
organizations. How do teams communicate and work together? What makes
some teams cooperative and others competitive?

Focusing on systems: Automating
realistically
Unfortunately, deploying changes to the human brain is still something you may
struggle to accomplish. Instead of focusing on preventing humans from making
mistakes — an impossible task — DevOps processes recommend that you turn
your attention to creating and implementing automated systems along the entire
development process.

NOOPS
Occasionally the term NoOps gets thrown around in the DevOps space. NoOps doesn’t
mean a lack of operations engineers. Instead, it indicates a focus on automating every-
thing related to operations — deployment processes, monitoring, and application
 management. Whereas DevOps focuses on helping developers and operations folks
work together more seamlessly, NoOps aims to prevent developers from ever interact-
ing with an operations engineer.

In many ways, NoOps is a part of the DevOps movement, but with a different approach.
DevOps focuses on people, processes, and technology. NoOps relies on specific soft-
ware solutions to manage things like infrastructure and deployment pipelines — solving
only the technical challenges we face. You can think of DevOps as a fully encompassing
cultural shift and NoOps as a much more narrow technical solution.

I am not personally a proponent of NoOps because the skills and experience of
 operations professionals go beyond manual deployments and other processes primed
for automation. Operations engineers are the most qualified for automating toil (or
rote work) but also for architecting systems with complex infrastructure components
in mind.

232 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Automation is the best-known way to combat human error. If you asked humans
to write their name a million times in a row, they would eventually misspell their
names. Their own names! (They’d also develop a repetitive stress injury.) But if
you asked a robot to complete the same task, it would accomplish the job flaw-
lessly, identically printing a name a million times, without error.

The same concept applies to your applications. If asked to repeat rote tasks,
humans will make mistakes. Four areas primed for automation:

 » Code: Software developers design and build solutions via code. Developers
manage their source code and often work on the same portion of a codebase
simultaneously.

 » Integration: Code changes must be merged from multiple developers into
the master branch of a code repository.

 » Deployment: After being merged, the code must be deployed. This can often
mean releasing updates, changing configurations, and even deprecating
services.

 » Infrastructure: An application must be run on hardware. Depending on the
updates to code, infrastructure may need to be instantiated, provisioned, or
terminated.

The automation tools in each of these spaces experience a quick rate of churn.
Don’t be surprised if your beloved solution loses favor a year or two from now.
Tech will always have a “hot new technology” that everyone’s talking about, but
don’t be distracted by the latest new thing. Focus instead on the best solution for
you and your team regardless of how popular the tool is.

Embracing the best solution for your team is always the best answer. That said,
sometimes you do find some benefits of moving with the crowd:

 » Popular tools often have the best documentation and answers on
technical forums. The more people that use a project, the more likely
someone is to have documented the code, built a demo, created an instruc-
tional video, or answered questions on forums like StackOverflow, a web-
site with nearly endless answers to technical questions. Popular tools are
also likely to be accompanied by published documentation and examples.
I encourage you to read the docs of any tool before you select it because
the tool you choose will determine how smoothly your development goes
as you move forward.

 » Popular tools are often open source software (OSS). Open source software
is a broad term to describe tools that are (usually) free to use and open to
community input. You can actually go into the tool’s source code, implement a

CHAPTER 17 Preparing for Incidents 233

change, and submit a request for the change to be approved. OSS communi-
ties are often run by a small team of volunteer engineers. OSS has many
benefits, but in this case, you can actually tailor the tool to you. You can clone
the current code and build a tool on top of it, or you can commit your code to
the project and help others solve the same problem you’re solving. Read more
about integrating with OSS in Chapter 19.

Using automation tools to avoid
code integration problems
The more automated monitoring and responses you can build into your incident
management, the less you’ll have to depend on human escalation and resolution.

Before you can automate any type of incident response, you must identify the
key metrics that you want to monitor. Obvious choices might include availability,
initial response times, uptime, traffic, and revenue. Others might also add SSL
expiration, DNS resolutions, and load balancer health checks. Many of the granular
metrics that your team monitors and responds to will be based on your company’s
key performance indicators (KPIs).

The best things to automate are processes your engineers manually engage with
regularly. Configure your monitoring tools to inject relevant information into your
alerts. Status pages are fantastic tools for updating stakeholders at regular inter-
vals. You can build slash commands into chat tools to automatically update your
status page. Finally, don’t forget about automating data collection. Logging tools
can help you identify what went wrong on a diagnostic level as well as what was
impacted. In hindsight, you’ll be able to better understand which areas of your
application and infrastructure are brittle and what action you need to take to pre-
vent similar incidents in the future.

Following are some automation tools that you and your teams can use to mitigate
incidents at every stage of development. These tools are handy, but you should
never rely solely on them to solve the challenges your team faces. Tooling will
never remove the need to build a culture, processes, and systems that avoid human
error.

 » CircleCI: A cloud alternative, CircleCI supports many mainstream languages
and offers up to 16x parallelization. It is container based, so pricing is based
on the number of containers you use. Circle is one of the fastest (and most
expensive) options.

234 PART 4 Practicing Kaizen, the Art of Continuous Improvement

 » Jenkins: Written in Java, Jenkins is open source and extremely flexible. The
Jenkins plug-in list is lengthy, to say the least. The learning curve can be a bit
steep but is definitely worth the time. You can control Jenkins via the console
as well as a graphic user interface (GUI).

 » Go CD: Like Jenkins, Go has mastered pipelines to help you implement
continuous delivery. Its parallelized execution eliminates build bottlenecks.
Go is completely free and offers paid support.

You likely already use some kind of source code management or version control
tool like Git. In fact, these tools are so ubiquitous that you probably don’t think of
them as automation. But they do! Imagine if your engineers had to merge code
manually. It’d be a nightmare.

Even if your team hasn’t yet adopted Git (don’t stress!) you may use something
like SVN or Mercurial. Whatever the tool, it enables you to manage the work of
multiple developers who are making changes to the same codebase. Such tools,
make it relatively easy to visualize the differences between two branches, choose
the most recent changes, and merge them into one branch — usually the main
branch called trunk or master. (I said relatively; don’t curse my name the next
time you have a merge conflict.)

I highly recommend adding a continuous integration (CI) tool to your toolset as
well. You can consider some of the tools that follow as deployment tools. In fact,
most of the tools mentioned in this book are difficult to classify into only one
 category because they span a number of areas. For this book, I highlight and
 categorize tools based on their core competency — the feature for which they are
best known.

Handling deployments and infrastructure
When it comes to application deployment and configuration management, the
available tools aren’t always familiar to people and often require some degree of
integration into your current infrastructure and deployment processes. Examples
include Ansible, Chef, Puppet and Salt, although this list is far from exhaustive.

As infrastructure becomes exponentially more complicated, observing your sys-
tems in real time becomes ever more difficult and the importance of automation
in deployments (and infrastructure) increases.

 » Ansible: Written in Java, Ansible is a Red Hat suite of DevOps-focused
products that help teams deploy applications and manage complex systems.
Ansible attempts to unify the teams of developers, operations, quality
assurance (QA), and security as well as to simplify their repetitive tasks.

CHAPTER 17 Preparing for Incidents 235

 » Chef: Bridging the gap between engineers and operations folks, Chef is a
leader in the continuous automation space. Chef can manage up to 50,000
servers by turning infrastructure configurations into code.

 » Puppet: Puppet products seek to deliver real-time information about your
infrastructure, automate tasks driven by models and events, and create
continuous integration and continuous deployment (CI/CD) pipelines that are
easy to set up. Puppet helps teams support traditional infrastructure as well
as containers.

Limiting overengineering
Imagine two bakers. One produces a perfectly warm and airy loaf encrusted by a
crisp exterior. Breaking it releases the irresistible, yeasty smell of fresh bread car-
ried by just a touch of steam. The other produces a dense, dry bread encased by a
rock-hard crust. Yuck. The bakers followed the same recipe and used the same
ingredients. So what went wrong?

In the latter case, the baker overkneaded the dough. The overworked gluten
 produced a dense, unappealing product. Although both loaves might be equally
 nutritious, eating the second loaf would be more like gnawing on a rock than bit-
ing into bread.

ALL COMPANIES ARE TECH COMPANIES
Whether you want to admit it or not, your business is in tech, which can be hard to
internalize. Here’s a story that illustrates the point. Recently I went to LabCorp, which is
a company that draws blood, evaluates the sample against various tests, and sends the
results to your doctor. Not very technical, right? Only when I went in for my blood work,
LapCorp’s coding system was down nationwide. LabCorp had no analog redundancy.
Unless the technicians and phlebotomists had memorized the specific code that they’re
required to put on a blood sample for processing, they could not see a patient.

This situation meant that almost all customers had to leave and return another day,
which was a lot of lost business. Yet, you might have been tempted to not characterize
LapCorp as a tech company. Tech enables all companies to scale their services to more
customers than would be possible without it, but the very tech you depend on every
day will occasionally fail you. The truth is that you don’t have the option to pretend
you’re not a tech company, no matter what business you’re in.

236 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Code isn’t all that different from making bread. Styles vary but most recipes
require the same basic ingredients and follow one of a handful of formulas. More
often than not, the simplest solution is the best. But no matter how many great
ideas you come up with, you’ll have some fairly terrible ones as well. The trick
is to recognize the terrible ones quickly and invest heavily in the great ideas.
 Discerning the difference is a learned skill.

An engineer loves few activities more than, well, engineering. Engineers love
solving problems. The more complex, the better. Upon hearing about a problem,
most engineers want to immediately dive into the first solution that pops into
their head.

This instinct, although admirable, doesn’t always lend itself to finding the best
solution — only the most obvious one. Often when you hear the term overengi-
neering, the reference is to code that’s overworked or solutions that are unneces-
sarily verbose or complex.

Here are a few warning signs that a solution is overengineered:

 » The problem is more easily managed manually. Not every problem needs
to be automated. Do you need to write a to-do app when pen and paper work
just fine? Maybe, but probably not. Make sure that a technical solution is
efficient and necessary before developing it.

 » The code is unusually verbose. If the lines of code required to solve
something are double the amount needed for typical bug fixes and feature
implementations, look into why.

 » The solution wasn’t peer-reviewed. All implementations should be dis-
cussed with a peer prior to development or reviewed by a peer before being
merged into the rest of your source code. This prevents myopic and unneces-
sary code.

 » The code is difficult to understand. If a junior engineer can’t interpret what
a piece of code is doing within an hour, take that as a warning sign. Code must
be maintained, and all engineers need to ensure not only that their code
works but also is readable by their colleagues and their future self.

 » A free or cheap tool exists that solves the problem. Spending time
engineering a solution to a problem that has already been solved is foolish.
Research the tools that already exist to ensure that writing code is necessary.

Before you automate something, solve the problem manually first. Even if it
requires — gasp! — pen and paper or, arguably worse, a spreadsheet. Making sure
that your approach works before you automate it is important. Otherwise, you end
up wasting time and engineering resources on unused, ineffective solutions.

CHAPTER 17 Preparing for Incidents 237

Humanizing On-Call Rotation
Being on call is akin to being available to handle emergencies. If the site goes
down or your customers are impacted by a technical failure, you are the desig-
nated person to manage the issue — no matter when it happens.

Imagine that you have to rush your toddler to the ER at midnight because he
decided to swallow your wedding ring. The on-call surgeon affiliated with the
hospital might be paged to come in and treat your child. They are physically close
to the hospital and prepared to go in when necessary. You can apply the same
principle to on-call engineers in a DevOps organization.

When on-call duties become inhumane
One of the most significant cultural and organizational shifts in adopting DevOps
revolves around a shared on-call responsibility. Traditionally, developers would
write the code to implement a feature and pass it to the operations team to deploy
and maintain. This meant that only a handful of operations engineers were on call
for when a poorly developed piece of code failed.

Having too few people on call is one of the key problems DevOps attempts to solve.
By sharing responsibility, both teams can have autonomy and mastery over their
work. That shared responsibility also means that the burden of being on call is
distributed over a much larger group of people, which prevents burnout.

Site reliability has become increasingly important. Many companies lose hun-
dreds of thousands of dollars for every hour their sites are offline. Companies can
build resilient systems to avoid catastrophic failure, but every company must also
keep engineers on call to handle unexpected emergencies.

The typical process for responding to an incident looks something like this:

1. Customers are impacted. Maybe your monitoring software has alerted you
that the site’s taking 20 seconds to load. Maybe there’s a regional outage and
European customers are yelling at you on Twitter. The types of incidents are
nearly limitless, but someone’s mad.

2. The primary person on call is alerted. Services like PagerDuty and VictorOps
allow you to customize who gets alerted and how. If the primary person on call
does not respond within a set amount of time, the secondary contact is paged.

3. An engineer attempts to fix the problem. Sometimes the issue isn’t critical
enough to address in the middle of the night and can be fixed the next
morning. Other times, the server room is literally flooding and someone needs
to get a bucket. (Hurricane Sandy in 2012 flooded two major data centers in
lower Manhattan.)

238 PART 4 Practicing Kaizen, the Art of Continuous Improvement

This all sounds great. Sites stay online and responsibility is shared, right? Not
usually. Unfortunately, being on call can quickly become inhumane. Traditionally,
system administrators and operations engineers are the only folks who end up on
call, which goes against core DevOps principles and reinforces silos. I believe
strongly in shared responsibility. You build it; you support it.

Humane on-call expectations
Making a true jump to a DevOps model for creating, deploying, and supporting
sites requires that on-call duties be shared by every engineer involved in a product.
On-call rotation is an opportunity, not a punishment. It’s an opportunity for
engineers to think differently, learn new skills, and support their team and for the
organization to build better systems and processes to:

 » Document code better

 » Create runbooks (step-by-step guides of what to do) for common issues that
still require manual work

 » Empower individuals to ask questions and take risks

Developers who are empowered to support their own code build better products,
period. These developers begin to think about their code in terms of reliability and
resiliency while they develop, rather than as an afterthought, if they think about
those aspects at all.

When you’re on call, you’re expected to be available to respond to any incidents
that may arise. Some folks split workdays into on-call shifts. For example, Tim is
on call from 8:00 a.m. to 10:00 a.m. every morning. Others cover nights and
 weekends on a rotating schedule. If this approach works for you and your team, go
for it!

Based on my experience, I suggest something a little different. People do their
best work when they have extended periods of time away from being “on,” and
that means having full days without having to worry about being paged.

In 2010, LexisNexis conducted a survey of 1,700 office workers in several countries.
The study found that employees spend more than half their day receiving infor-
mation rather than putting that data into practice. Half the respondents said that
they were approaching a mental breaking point from being overwhelmed with
information. Breaks are a critical aspect of productivity and work-life balance.

Figures 17-1 and 17-2 show some example schedules. Figure 17-1 shows how two
people can share daily, on-call duties while keeping at least three clear days in

CHAPTER 17 Preparing for Incidents 239

their week. Figure 17-2 divides the duties among four people. Each is required to
be on call at least one day per week but no more than three days per week. Each
shade represents a different person. The columns are days of the week and the
rows are weeks (four rows represent a typical month).

Each person is on call from 5:00 p.m. to 5:00 p.m., which is simple if you’re all in
the same office. If your organization is remote-first or remote-friendly, you need
to choose a single time zone for everyone to follow to ensure 24/7 coverage.

On-call rotations come many forms. The examples I provide are intended to help
you get going, not limit you. You should tailor the schedule to make it work best
for your team. If you have a globally distributed team, you can adopt a follow-the-
sun rotation that puts engineers on call during normal business hours before they
pass the responsibility to those working normal business hours in a different time
zone. Find the days, times, and frequency of on-call rotations that can balance
incident management with humane on-call practices.

Managing Incidents
In my talk “This Is Not Fine: Putting Out (Code) Fires,” (https://www.youtube.
com/watch?v=qL2GFB3mSs8&t=69s), I speak a lot about incident management
and how it relates to another type of firefighting — the kind with actual flames.
Engineers and operations pros can take a lesson from the way firefighters priori-
tize how they combat incidents that are way more dangerous than tech failures
and apply those steps to addressing incidents. (See the sidebar “Putting out code
fires” for more info on how firefighting principles can work in tech.)

FIGURE 17-1:
An example of a

two-person
on-call schedule.

FIGURE 17-2:
An example of a

four-person
on-call schedule.

https://www.youtube.com/watch?v=qL2GFB3mSs8&t=69s
https://www.youtube.com/watch?v=qL2GFB3mSs8&t=69s

240 PART 4 Practicing Kaizen, the Art of Continuous Improvement

The incidents you deal with in tech can sometimes be as simple as an odd user
interface bug in a drop-down list, which isn’t exactly life-threatening or worthy
of a hotfix at 4 o’clock in the morning. Sometimes, though, your software goes
wrong in spectacularly terrible ways. For example, in 2003, a performance issue
in utility software caused a blackout in the American Northeast. And in 2000,
radiation therapy software in Panama failed to account for a workaround used by
doctors, resulting in eight patient deaths and another 20 radiation overdoses.

These situations are vastly different from simple bugs and performance issues.
Yes, a slow site loses money and causes customer disruption. But having people
express anger at you on Twitter is much less stressful than having people die or
watching your company go bankrupt by the minute.

Making consistency a goal
If you’ve ever flown in a private plane, you know how much pilots love checklists.
Well, maybe they don’t love them, but they certainly use them. Checklists are a big
part of why air travel is by far the safest way to get from point A to point B.

For pilots, these checklists are part of a preflight flow that checks switches, circuit
breakers, and emergency equipment. Pilots run through this process before every

PUTTING OUT CODE FIRES
After a series of extremely destructive and deadly wildfires in California during the
1970s, a task force called the Firefighting Resources of California Organized for Potential
Emergencies (FIRESCOPE) was formed. FIRESCOPE distilled its findings into four priori-
ties that you can also use when approaching incident management:

• Flexibility

• Consistency

• Standardization

• Procedures

These principles have helped fire departments around the globe to consistently address
the broad number of incidents they’re required to handle — from rescuing ducklings
from a drain to rescuing people from a burning high-rise — using proven procedures.
As you make the move into a DevOps culture, your team’s success will hinge on the
same principles when addressing incidents.

CHAPTER 17 Preparing for Incidents 241

flight, with no exceptions. This consistency moves the process beyond regular
consciousness and into muscle memory. Pilots with even just a few years of expe-
rience don’t need to think about their preflight flow; it’s automatic.

Along the same lines, you should create an incident checklist for your team that
your team will automatically follow when it’s needed. If you’re not sure what to
include, start with these actions:

 » Notify appropriate colleagues. Depending on who is involved in the
incident, keep up-to-date contact information for everyone on your team.

 » Deploy a status page. Inform customers what service or features are
affected. Be sure to include the contact information for your support team
and the time of the last update.

 » Rate the incident. Your checklist should include clearly defined severity
ratings to help the first responders appropriately escalate an incident to legal
or executive management.

 » Schedule a post-incident review. Post-incident reviews are a key part of
reducing human error and building resilient systems. How else do people
learn if not through mistakes? If possible, schedule it within 36 hours of the
incident.

Adopting standardized processes
The more you standardize your emergency preparation, the more people you can
rely on to step in and help fix the problem. If only one person can address a certain
issue, that person becomes a single point of failure, which is absolutely unaccept-
able in modern tech companies.

Make the checklists and incident response protocols available to everyone on your
team — even the folks who aren’t on call. Making them available to everyone
ensures that the entire company is on the same page and eliminates needless
questions from teams like customer support during an incident.

To fully adopt DevOps practices, developers must store the source code in a place
that the ops teams can access. Also, give developers access (at least read-only) to
all logs and machines. This approach enables both sides to dig into all areas of the
tech — source code and infrastructure — without asking for permission. The
alternative is to rely on people from other teams to be couriers of information — a
time-intensive and inefficient process.

242 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Establishing a realistic budget
The roots of many of the popular trends in tech are in large companies that
adopted a certain tool or practice. For example, site reliability engineering wasn’t
a well-known concept or role until Google published Site Reliability Engineering:
How Google Runs Production Systems. React, a JavaScript library, took off in popular-
ity largely because Facebook developed and promoted it.

Your company may not have the financial resources of companies like Microsoft,
Google, Amazon, and others, so your incident response procedures need to be
designed with a budget in mind. Monitoring every service is impossible. Instead,
focus on the ones that your company uses the most frequently or that have the
greatest impact to your customers. I strongly recommend centralized logging to
create a way for logs to be captured at increasingly larger intervals as time goes
on. In other words, find a balance between visibility and budget in storing log data
and performance metrics.

LESSON LEARNED: NETFLIX RESILIENCY
In February 2017, Amazon’s S3 (web-based storage) experienced widespread issues in
the US-EAST-1 region. It effectively brought down much of the Internet — including
Amazon’s own status page. Netflix was one of the only major websites not to experi-
ence any issues, even as a customer of AWS.

Netflix, it turns out, had learned this lesson five years earlier when a storm knocked the
site offline for about three hours. In the post-incident review, Netflix realized that it was
vulnerable to regional outages. A company like Netflix loses hundreds of thousands of
dollars for every hour of downtime, if not more.

The solution, for Netflix, is to switch availability zones in AWS automatically when one
goes down. Users will never be affected by regional service disruptions. This solution is
expensive, however, because you can never max out capacity and balance your users
efficiently across zones. Otherwise, you wouldn’t have the volume available to move
users to another region when one fails.

The costs for this type of solution add up quickly and are prohibitive for many compa-
nies. Budget constraints are a vital piece of your overall strategy and should inform
many of your decisions.

CHAPTER 17 Preparing for Incidents 243

Making it easy to respond to incidents
Incident management protocols must be generic enough to respond to events with
varying levels of urgency and importance. They should also maintain clear proce-
dures for people to follow while they’re rubbing sleep from their eyes in the mid-
dle of the night and trying to wrap their brains around the problem. Following are
a few tips that can help your engineers master incident management:

 » Make it easy and acceptable to escalate. You’re better off overreacting
rather than underresponding to a situation. The primary person on call
should be able to page the secondary engineer on call without retribution.

 » Use a single communication tool. When different teams within an engineer-
ing organization use multiple communication tools, absolute chaos during an
incident can ensue. Engineers must be on the same page, and being able to
scroll back through conversations or reach a colleague quickly via a video
conferencing tool is essential. Always use the same medium to reach your
coworkers. I highly recommend using a chat app like Slack or hopping on a
set incident video conferencing call via a tool like Zoom.

Every method of communication comes with pros and cons. Using video calls
to communicate during an incident creates a more fluid experience for the
engineers on call but limits your ability to include that information in the
post-incident review. Group chats, such as Slack, aid you in better capturing
the timeline of an incident response but may create confusion for the
engineers responding. (Messages written in haste tend to be short and lack
the detail and context that you could provide verbally in a fraction of the time.)
Two compromises exist: Record the video calls or have someone summarize
events for the group in a written format.

 » Standardize the initial investigation. Create a step-by-step list so that any
engineer can quickly begin to triage a situation. Is there a widespread AWS
outage that’s causing half of the Internet to go down? If not, monitoring tools
and logs will be your best bet to home in on the problem. Only if all else fails is
it appropriate to allow engineers to “sniff test” the issue and follow their gut.

Cloud computing services like AWS and Azure host multiple locations around
the world. Every location is composed of regions and availability zones.
A region is a geographic area. AWS has US-EAST-1 in Northern Virginia and
AP-SOUTHEAST-1 in Singapore are considered regions, for example. Multiple
availability zones exist within each region.

244 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Urgency is not the same as importance. The distinction between these two qualities
comes into play when you are discussing on-call procedures. Urgency defines
how rapidly something must be resolved. The site’s down? That’s pretty urgent.
Customers can’t make purchases? Also urgent. A rarely used API is failing
 gracefully? Not urgent. Important, but not urgent.

Important incidents that lack urgency can wait until the morning when an engi-
neer can give their best effort to fix the issue. Making this simple distinction will
save your team from buggy fixes and prevent your engineers from becoming
needlessly burnt out.

Responding to an unplanned disruption
In any situation, it’s always best to assume the worst. As mentioned in the previ-
ous section, escalating a situation and treating it as a more severe incident is
always better than underreacting.

Also, decisions should be made quickly during a crisis. Hierarchy is always going
to be a controversial topic in tech. But, especially when responding to incidents,
I recommend a strong response hierarchy with designated roles. Your team should
include an incident commander (IC), a tech chief, and a communications chief.

Different resources include various version of the number and type of incident
roles. You may hear things like first responders, secondary responders, subject
matter experts, and communication liaisons. I choose to focus on the three I’ve
listed because they cover the three most important roles of an incident response:
someone to make decisions, someone to lead engineers in the technical response,
and someone to record the details of the incident. Feel free to experiment with
your incident-response procedures and find what works best for you and your
organization.

Think of the primary person on call as the first one on the scene. They will not
necessarily be the person most equipped to handle the particular issue. In fact, the
person doesn’t have to be an engineer at all. The primary person on call is simply
the person who triages the issue. This person is tasked with assigning a degree of
urgency to the alert.

Make sure that you rotate incident teams, just as you do in your on-call rotation.
Rotating teams enables people with different skills and interests on your team to
become proficient — and more confident — in other areas. Every person on your
team should have the opportunity to be trained and serve in each role. Figure 17-3
illustrates an incident response hierarchy. The incident commander will oversee
and provide resources for the tech chief and the comm chief, including supplying
them with the appropriate number of engineers to assist (represented by the small
boxes beneath each chief).

CHAPTER 17 Preparing for Incidents 245

You can see how this hierarchy is put into action in the following steps, which
outline the procedure for handling an unplanned disruption.

1. Make an initial assessment.

At the start of an incident response, the IC begins sizing up the situation. Be
sure to categorize and prioritize the incident. Categorization doesn’t have to
follow a particular pattern, but your classes of incidents should enable you to
group similar incidents and evaluate trends. Prioritization is centered around
urgency. Is this customer-impacting? How wide-spread is the incident? How
many engineers might be required to help fix it? The IC determines how many
engineers the tech chief needs to notify.

2. Communicate during triage.

I suggest hopping on a video call to discuss the disruption. Zoom and other
video conference tools help you communicate in real time. Although Slack and
other messaging tools have become part of everyday communication, the
power of face-to-face communication, especially during a crisis, is critical. Your
engineers need to communicate with each other verbally while their fingers
are busy logging into machines or digging into code. If you opt for a messaging
tool like Slack, you’ll be able to include that transcript in the post-incident
review. If you triage on a video call, be sure to designate one person to record
who said what and which solutions were attempted.

A societal norm exists for the women you work with to default into administra-
tive or non-technical roles. You can see this in who most frequently ends up
being the person to record the conversation or serve as comm chief. Be sure to
watch for this gender-biased default and counter it by ensuring that engineers
who don’t identify as male also serve as incident commanders and tech chiefs.

FIGURE 17-3:
A typical incident

response
hierarchy.

246 PART 4 Practicing Kaizen, the Art of Continuous Improvement

3. Add engineers as necessary.

After you dig into the incident, you may realize that you need a subject matter
expert who is particularly equipped to deal with the type of incident you’re
experiencing. They could be deeply trained in the particular tool or technology,
or they may be the engineer who implemented a specific function.

4. Resolve the issue.

It’s easier said than done, but the engineers responding to the incident will
eventually discover the steps necessary to restore service. At that point, the
comm chief can relay important information to key internal and external
stakeholders, the IC can schedule a post-incident review (if they haven’t
already) and the tech chief can help engineers schedule rest and recovery
before the post-incident review.

LEARNING FROM THE MISTAKES
OF OTHERS
You’re never the first to fail. Even when it feels as if you’re the only one who could
have fallen on your face in such a spectacular and unique way, you’re not, I promise.
Although tech isn’t new, it has reached saturation in the developed world, which means
that you have plenty of resources improve your avoidance of and approach to incidents.

In January 2017, GitLab, a git-repository hosting service and manager, experienced a
site outage because of the accidental removal of primary database. GitLab was down
for 18 hours. That’s enough to give any engineer heart palpitations. To its credit, the
company was extremely transparent about the event, going so far as to keep notes in a
public Google document and livestream its recovery on YouTube. The full post-incident
review of the event as well as the data loss outcomes are well worth the read.

Ultimately, GitLab discovered that it had two problems:

• GitLab.com had an unplanned disruption after the wrong directory was
removed. The primary database directory rather than the intended secondary
database directory was removed. Replication stopped because of a spike in load.
Restoring database replication, after it was stopped, required a manual process
that was poorly documented, in this case.

• Restoring the site required a copy of the staging database. This database was
stored on a slower Azure VM. Disk snapshots weren’t enabled and attempts to back
up the database failed silently because of a PostgreSQL versioning issue.

CHAPTER 17 Preparing for Incidents 247

Could there be a more perfect storm? Here’s my favorite part of the published postmor-
tem: “Why was the backup procedure not tested on a regular basis? Because there was
no ownership, [and] as a result nobody was responsible for testing this procedure.”

This cascading series of failures could affect any organization. No one is exempt from
those unknown unknowns of unplanned downtime. The distinctions between organiza-
tions that let failures overwhelm them and those that use the same incidents as learn-
ing opportunities are attitude and preparedness.

GitLab was brutally honest with its customers and has since improved its recovery pro-
cedures. Many companies would have revoked production privileges from engineers,
thus creating a bottleneck. Instead, GitLab made it more obvious for engineers which
host they’re using.

The worst incident response I’ve ever witnessed was so traumatic that I don’t even
remember what went wrong. I distinctly remember how it transpired, however. A major
disruption of service brought a small startup down for hours, and sometime in the early
morning, the CEO called the two most senior engineers — who, at that point, had been
troubleshooting without a break for half a day. I’ve never heard a man make so many
threats over the phone. The CEO assured the engineers that the situation was their fault
and promised that if they didn’t fix it soon, not only would he fire them, he would make
sure that they were never hired at a venture capital-funded startup ever again.

Put yourself in the shoes of those engineers. You’ve been working for hours. You
 haven’t eaten. You’ve barely had time to make coffee, which is the only thing keeping
you moving at this point. The CEO’s blame and threats were enough to put anyone in a
state of panic, which is about the worst thing you could do to engineers who are work-
ing on fixing the issue.

That CEO made a critical error: Distracting the engineers who were working so dili-
gently for him. He took their attention away from the emergency they were triaging
and put their attention on their future. No matter how chaotic and stressful an incident
becomes, always remember that the folks working to remedy the situation are doing
their best and care about fixing the issue as successfully and quickly as possible.

Every organization will experience a major incident at some point; it’s inevitable. But
how you prepare for those incidents and cope with them in the moment is what sepa-
rates teams who embrace DevOps and those who don’t.

248 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Empirically Measuring Progress
More and more companies are beginning to develop a DevOps culture and imple-
ment change within their organizations, yet most don’t measure incident
response. In fact, most companies don’t even know which metrics matter. Success
in incident management doesn’t go from zero to perfect, and achieving it is hard.
But the best way to improve your success is to start gathering and analyzing
 metrics. This section provides some metrics for you to start observing and track-
ing. If you’re just getting started, now is not the time to start setting goals or
adding these measurements to personnel reviews. Instead, think of them as single
points of data that together paint a broader picture of your company’s success.

I want to be clear about one thing. I’ve chosen to put this information as the last
part of this chapter for a particular reason: It’s the least important. The metrics in
this section are simply data points that serve as the foundation of a larger organi-
zational conversation. These are never meant to be the only measure of success.
Instead, track them as a way of measuring the progress of your team as they
 continuously improve their incident management.

Mean time to repair (MTTR)
The mean time to repair refers to the average time your business is impacted
 during incidents. When collecting this metric, also include latency, the time from
when the failure first occurred to when it was detected. You likely calculate latency
after the incident is resolved so that you can reasonably estimate, via logs and
other data, when the failure began to impact the affected service before an engi-
neer realized it was a problem. The formula looks like this:

MTTR = total time of impact / number of incidents

People also sometimes use MTTR to describe the mean time to recovery, the
amount of time your team takes to resolve an issue as well as mean time to
respond, or the time an organization takes to acknowledge and initiate a response
to a problem. (Remember, a mean assumes normal distribution, and an 18-hour
outage like GitLab experienced will exaggerate their response time. MTTR is just
one data point.)

Mean time between failures (MTBF)
In short, MTBF is the average uptime for a service between incidents. The higher
an organization’s mean time between failures, the longer the service can be
expected to work without interruption. Here’s the formula:

MTBF = total uptime / number of incidents

CHAPTER 17 Preparing for Incidents 249

Although MTBF can provide a helpful piece of data, many DevOps organizations
are moving away from tracking MTBF because failures simply can’t be avoided.
You could instead track customer-impacting incidents (rather than service fail-
ures of which the user is never aware).

Cost per incident (CPI)
The cost per incident is simply how much money your company lost because of
the service interruption. This calculation has two phases. The first is how much the
actual incident cost you: Were customers unable to make purchases? The second
is the cost of bringing your services back online: How many engineers were
required to address the issue? Here are the formulas:

Lost revenue (LR) = average revenue * time

Cost to restore (CR) = number of engineers * average hourly salary * time

CPI = LR + CR

CPI adds up fast. You can use these calculations to convince even the most stub-
born executives to put resources toward preparing for incidents, paying down tech
debt, testing more rigorously, and improving application security.

DevOps Research and Assessment (DORA) goes further than CPI and calculates the
cost of downtime using the following formula:

Cost of downtime = deployment frequency * change failure rate * mean time to
recover (MTTR) * hourly cost of outage

You can read more about calculating your cost of downtime at https://
victorops.com/blog/how-much-does-downtime-cost.

https://victorops.com/blog/how-much-does-downtime-cost
https://victorops.com/blog/how-much-does-downtime-cost

CHAPTER 18 Conducting Post-Incident Reviews 251

Chapter 18
Conducting Post-Incident
Reviews

Engineers are much more practiced at reacting to incidents than they are to
proactively preparing to manage and avoid them. Post-incident reviews aim
to empower engineers to look at the causes of an incident, the steps taken

while responding to an incident, and the steps necessary to avoid a comparable
incident in the future.

People used to refer to post-incident reviews as postmortems, and you can still
find a lot of valuable information if you search for this term. However, the word is
a bit morbid with its connotation of death. For most software engineers, outages
mean inconvenience to customers and loss of company money. Few engineers
deal with life-and-death situations in the use of their products, and keeping that
perspective in mind when addressing failures is important.

In this chapter, you dive into the contributing factors of failure (going beyond root
cause analysis), the phases of an incident or outage, and the way to run a post-
incident review.

IN THIS CHAPTER

 » Moving beyond the limits of root
cause analysis

 » Stepping through the phases of an
incident

 » Reviewing contributing factors in
post-incident reviews

252 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Going beyond Root Cause Analysis
If you’ve been in tech long enough, you’ve heard the term root cause. Looking for
the root cause meant to identify the single source of failure in an incident. The
problem with root cause analysis — and why it’s not typically used in modern
operations teams — is that a root cause almost never exists. It’s the same as the
trope, “It’s always the last place you look!” Well, yeah, you found the thing.
You’re not going to keep looking. In his 2017 PuppetConf talk, “The Five Dirty
Words of CI,” J. Paul Reed noted, “What you call a ‘root cause’ is simply the place
where you stop looking any further.”

Unlike simple, linear systems, the code and infrastructure you operate and main-
tain are incredibly complex. A single “root cause” simply does not exist. But
rewind to the days of waterfall processes and uncomplicated monolithic architec-
ture. In those systems, root cause analysis made more sense. You could view the
system as a whole and pick out the piece along the process that failed. Changes
were more infrequent, and root cause analysis was a way of thinking through risk.

The systems you operate are no longer simple, likely aren’t monolithic, and are
typically a mess of legacy code, new additions, multiple languages, unknown
dependencies, and a cordoned-off section of obfuscated code written in ColdFusion
that works — though no one knows why — and has been converted into an
“engine” that powers the central portion of your user-facing features. Sound
about right? Of course it does. I’ve never met a codebase older than two weeks
that’s neat and tidy. Humans are messy, and humans write code; therefore, code
is messy. You function within constraints and your code expresses symptoms of
those constraints, whether those symptoms are related to finances, safety, or
time.

The industry has moved beyond root cause analysis, and the time has come for
you to replace it with a more worthwhile process of review. You can actually have
a complex monolith, and a fair amount of companies continue to use monoliths
successfully. Modern architecture does not require that you rewrite your entire
system to be completely compartmentalized. It does, however, require you to
think about the pros and cons of each decision and recognize that every move is a
decision, even if the decision is to not take action.

Figure 18-1 compares the general complexity of monolithic and microservice sys-
tems. You can see the increased complexity of the microservice system in the
hundreds, if not thousands, of connections in a microservice architecture.

CHAPTER 18 Conducting Post-Incident Reviews 253

Stepping through an Incident
Broadly speaking, incidents can be broken into five steps: Discovery, Response,
Restoration, Reflection, and Preparation, as shown in Figure 18-2. The purpose of
breaking an incident into different phases is to better understand each step of the
unplanned work:

 » Discovery: This phase starts when the issue is detected. Services can be
impacted for a period of time before you realize it.

 » Response: This phase is the scramble of trying to determine the source of the
issue. Was it a recent deploy? Is the service that’s down the source of the issue
or could the cause be an ancillary service? Does the have a code problem or is
your infrastructure failing?

 » Restoration: At this point, you’ve identified the issue and are working on
solving it. This phase is often one of the shortest ones of the incident. After
you know what’s happening, you usually discover a straightforward fix, even if
it means rolling back a deploy or reverting to the last issue-free build.

FIGURE 18-1:
Monolithic versus

microservice
architecture.

FIGURE 18-2:
The phases of

an incident.

254 PART 4 Practicing Kaizen, the Art of Continuous Improvement

 » Reflection: This phase is where a post-incident review takes place. You and
your team get together within 48 hours of the incident and discuss the
process. What went well? What went poorly? What work needs to be done
to prevent the same type of incident in the future?

 » Preparation: During the preparation phase, engineers complete the work
determined necessary during the post-incident review. You should assign the
work to an engineer who can see the process completed as well as set a due
date for when the work should be done. Just be sure to clear enough time in
the schedule so that the work can be done.

Whereas most teams put the most work into the first three phases of an incident,
the last two often get forgotten because the urgency falls away as soon as service
is restored. Figure 18-3 depicts the phases of an incident that focus on the post-
incident review: Reflection and Preparation. The review should occur during the
reflection phase, but the work that review determines to be necessary will be
completed during the preparation phase.

Succeeding at Post-Incident Reviews
Many companies go through the motions of a post-incident review without fully
taking advantage of the entire process. (Even more companies don’t bother with it
at all, which is a massive mistake.) If you use the fundamentals of a post-incident
review listed in this section, your team will be equipped to evaluate past mistakes
and prepare for future failure.

Scheduling it immediately
Schedule the post-incident review while the incident is happening. You may feel
as though you’re scheduling a dentist appointment while your house is burning
down, but the purpose is to acknowledge that something has gone wrong and a
discussion will take place to prevent it again in the future.

You should hold the post-incident review no more than three days after you’ve
resolved an incident. Ideally, you hold the review within 36 hours. The human
brain is fickle and notoriously terrible at retaining detailed information. The sooner
you get together to discuss the incident, the more valuable the meeting will be.

FIGURE 18-3:
The phases that

focus on
post-incident

reviews.

CHAPTER 18 Conducting Post-Incident Reviews 255

Including everyone
Put the scheduled post-incident review on a shared company calendar so that
everyone can see it. It’s critical to include the first responders and those who were
directly involved in the incident in the post-incident review. But don’t stop there;
open it up to everyone. I can’t think of a better way to help other departments
understand the challenges of engineering than to invite them to a post-incident
review. If you have embraced the practices of healthy post-incident reviews,
opening the review to everyone creates a wonderful opportunity to educate others.
Just be sure that your team is ready to respond to anyone who doesn’t yet under-
stand the importance of blameless discussions in which finger-pointing is
nonexistent.

Keeping it blameless
A post-incident review must be blameless, which isn’t the same as no account-
ability. Everyone makes mistakes, and the team must share responsibility for the
decisions that led up to the incident. You are a team. You win together and you lose
together. No one individual on your team should ever be used as the scapegoat for
an outage.

Humans have an almost instinctive need to assign blame, and often that blame
comes with a designation of being a “bad person” or a “bad engineer” — as if the
person made the faulty decision out of malice. The dangers of a negative and
blame-filled post-incident review are countless. When people feel as if they’ll be
punished — or fired — for telling the truth and highlighting their mistakes, they
cover their tracks. Collaboration nosedives and much of the work you’ve done to
transform your organization to a DevOps culture is lost.

Make post-incident reviews as positive as possible. Remember, you’re looking for
failings in the systems and processes you’ve established, even if a human was the
one to discover the issue. If blame starts to seep into the conversation, leadership
must step in and remind the group why a culture of learning is important and how
blameless post-incident reviews fit into your attitude of embracing failure.

Reviewing the timeline
Earlier in this chapter, I step you through how to manage an incident as it’s hap-
pening, but one of the things I point out is the importance of establishing a time-
line. When you start your post-incident review, start with the timeline. Review
what your engineers’ first instincts were when facing the problem. What data did
they seek out? Did your monitoring, alerting, and logging all give you the infor-
mation you needed and expected? What was missing?

256 PART 4 Practicing Kaizen, the Art of Continuous Improvement

In addition, look at parallel work. Incidents aren’t linear, clean events; instead,
they’re messy, and everyone scrambles to fix the issue as quickly as possible,
which means that different people work on different things at the same time.

Figure 18-4 gives you an idea of a possible timeline. As you can see, Engineer 1
received an alert at 6:20 p.m. indicating something was wrong. A few minutes
later, they realized that they weren’t capable of handling the incident indepen-
dently and escalated it to the second engineer on call, Engineer 3. At this point,
Engineer 1 stepped back from technical contributions and instead acted as a com-
munications chief and records the incident. At 6:34 p.m., Engineer 3 created a
dedicated channel in chat for the incident. Engineer 4 quickly joined and was sub-
sequently followed by Engineer 2. While Engineer 2 dug into a service he thought
might be the issue, Engineer 3 and Engineer 4 worked together to review the log-
ging and discover the issue. After they located the problem, Engineer 2 supported
the efforts of Engineers 3 and 4 to bring the service back online. They resolved the
incident at 7:01 p.m.

You don’t have to have a perfect timeline or spend time drawing it. The point of
this illustration is to see the parallel work and identify ways in which your team
can collaborate and communicate more efficiently during an incident.

Asking tough questions
A post-incident review is most impactful when you can fully dig into the areas in
which your team needs to improve — both technically and socially. Create space
for people to share their perspectives and think through what could be better.
Here are questions to help you get the conversation started:

 » How did you discover this incident?

 » Did alerting reveal the incident alerting or did someone manually stumble
onto it?

FIGURE 18-4:
Timeline of
an incident.

CHAPTER 18 Conducting Post-Incident Reviews 257

 » Did anyone notice the incident noticed in a timely manner?

 » How long did it impact customers before the team was alerted?

 » Did the service’s telemetry provide the necessary information?

 » What changes to monitoring, alerting, logging, and dashboards would help
notify you about this particular problem faster in the future?

 » Is the service stable moving forward?

 » What work does the team need to do to reinforce the service’s resiliency?

 » What automated tests should you add to ensure that this particular incident
won’t occur again?

 » Does someone need to write additional documentation?

 » How can you help engineers on call quickly identify this type of problem?

 » Did anyone experience an access limitation during the incident that prevented
them from fixing the issue?

 » What initial actions did you take in response to this incident?

 » Which actions were a net-positive? Which attempts were a net-negative? What
work had no impact at all?

 » Did the incident impact any data? If data was lost, can you restore it?

 » Do you need to notify any customers notified of collateral damage resulting
from this incident?

 » Did a deploy kick off this incident? If so, did the engineers experience any
friction in rolling back the deploy or cherry-picking a previous release?

 » How can you decrease the time involved in discovering and resolving the
incident?

 » How can you reduce the number of customers impacted if a similar incident
occurs?

 » Do you need to make changes to your development workflow, CI/CD pipeline,
or release process to prevent future failure?

 » Does anyone want to add anything?

Be sure to allow room for additional thoughts and random ideas that don’t fit
neatly into a prescribed list of questions. You’re having a conversation, not an
interrogation. Also, the review is as much a bonding opportunity for your team as
it is a chance to uncover hidden gaps in your system.

258 PART 4 Practicing Kaizen, the Art of Continuous Improvement

Acknowledging hindsight bias
In a post-incident review, you have the gift of hindsight bias. You are reviewing
past decisions with a fine-tooth comb while knowing the outcomes. The people
who made decisions during the incident didn’t have that benefit. They made tough
decisions within the constraints in which they were forced to work.

Assume positive intent. Almost no one purposefully tries to sabotage their col-
leagues. Engineers take pride in their work, and everyone on your team is doing
the best they can. With hindsight bias, you can easily overestimate the predictive
ability of the people whose decisions you’re criticizing. The truth is that solving
hard problems is, well, hard. Really hard. Mistakes happen, so be kind to your past
self and the past selves of others.

While you’re at it, listen to dissenting views. People who disagree with the crowd
can stumble on particularly interesting theories. Everyone comes to a situation
with a different experiences, context, and viewpoints. That diversity is a gift that
can help you better understand the intricacies of your socio-technical system.

Taking notes
Have one person in the meeting record the conversation and store the notes in a
place everyone can access. You can take this note-taking idea one step further by
recording the audio of the conversation, but only if you feel that everyone will still
feel comfortable speaking openly and fearlessly. Taking notes of the meeting
accomplishes several things. First, it ensures that anyone who couldn’t make the
review can still find out the details of what was discussed. Second, it provides new
employees with insight into previous incidents as well as how the company
responds to unplanned work. Finally, the notes give you evidence of a process that
works when you’re confronted with naysayers in the organization. If an executive
wants to know why you’re spending two to three engineering hours on a meeting
to discuss something that’s already fixed, you can educate them on how this work
is a way to prevent unnecessary failure in the future and make your services more
resilient.

At the end of the review, have one person compose a summary of the meeting for
customers and internal stakeholders. When writing external messages, be sure to
leave out any confidential information relating to the business, including the
names of your engineers who don’t want to be identified. As the folks at Pager-
Duty point out in their post-incident review documentation, avoid using the word
outage unless it truly was a full-on site outage. Incident or service degradation gets
the point across without making the situation seem worse than it was.

CHAPTER 18 Conducting Post-Incident Reviews 259

Making a plan
After you have a good idea of what went well, what went poorly, and what areas of
your system need some work, make a plan to complete that engineering effort.
Create the necessary tickets or free time for your engineers to reinforce the areas
that will make your system more resilient and less brittle. You should prioritize
this work, including by making space for it in the next sprint or week of work. Be
sure to assign the work to specific people who can “own” the completion of it.
Then follow up. After you’ve determined an estimated due date, make sure to loop
back to see whether everything went well or more work is necessary.

5Tooling Your
DevOps Practice

IN THIS PART . . .

Discover how to modernize your software architecture
by taking advantage of open source software and
adopting new languages.

Manage distributed systems by designing decoupled
microservices, standardizing APIs, and containerizing
your applications.

Find out how to choose the best cloud provider and
migrate your systems to the cloud.

CHAPTER 19 Adopting New Tools 263

Chapter 19
Adopting New Tools

Continuous improvement and rapid iteration are fundamental to DevOps.
That means your systems will constantly be changing and you’ll need to
adapt your technical approaches. New languages, frameworks, libraries,

and tools are being developed all the time. Balancing maintenance and stability
with adaptation and iteration can be difficult. You can make all these decisions
with DevOps in mind, centering the customer and ensuring collaboration among
your team.

Any time you integrate a piece of software — open source or commercial — into
your system, you must consider the overall demands of the system and how each
piece of software will communicate and interact with every other component. The
best solution in the world is useless if you can’t seamlessly integrate it with your
existing system. Similarly, if a tool is difficult to use, problematic to extend, lacks
documentation or at risk of being deprecated, you should hesitate to select it.

Third-party software (tools created by another person or company) must be flex-
ible and resilient. Otherwise, they won’t work well with the tools you already rely
upon. In this chapter, I review what open source software (OSS) is, how you can
benefit from integrating it into your system, and how to select languages in which
to write new services.

IN THIS CHAPTER

 » Utilizing open source software (OSS)

 » Licensing in OSS

 » Running applications in containers

264 PART 5 Tooling Your DevOps Practice

Integrating with Open Source Software
Open source software provides individuals and companies with high-quality solu-
tions to difficult-to-solve problems for low or no cost. The openness often implies
that the tool is, well, open. You can go and view the code yourself as well as often
clone the repository and use the tool as a foundation on which you add function-
ality. In contrast, “closed” software is typically proprietary and owned by a com-
mercial enterprise. You cannot simply dig into the code that buttresses the
software. You must trust the company to have developed a tool that is secure,
dependable, resilient, and fault-tolerant. Each option has benefits and risks to
your business, and often you have to decide based on each tool and offering. Open
source software is not, as a rule, always better, and commercial tools don’t always
fulfill the benefits described in the sales call.

Before I talk about integrating open source software into your system, I need to
define what “open source” actually means. Too often, people use the term to
describe multiple aspects of the industry, which can lead to miscommunications
and poor decisions.

Opening community innovation
The term open computing covers a wide variety of topics related to community
innovation, but it’s used interchangeably with open source. People in the industry
have multiple points of view on this topic, so you’d be wise to seek dissenting
points of view as you make decisions about the role of open computing and open
source in your application.

Open standards
Since the Internet’s inception, people have relied on open standards to make it
function. Standard protocols are what allow the widespread network to commu-
nicate and function. These protocols include everything from HTTP (Hypertext
Transfer Protocol Secure) to SMTP (Simple Mail Transfer Protocol) to TCP/IP
(Transmission Control Protocol/Internet Protocol), all of which are used in billions
of Internet information transfers every day. The industry relies on markup
 languages like XML (eXtensible Markup Language), YAML (YAML Ain’t Markup
Language), and JSON (JavaScript Object Notation) to serialize data in a (semi-)
human readable way. Even programming languages have standards committees
that make decisions on the best ways to implement features.

If these standards weren’t open, industry innovation wouldn’t be possible. The
situation would be like a hundred road companies building an interstate without
any plan for how to orient the roads, create connections, and develop uniform
road materials.

CHAPTER 19 Adopting New Tools 265

Open architecture
Flexible architecture decisions are critical for a DevOps organization. Your techni-
cal system can grow and evolve, as can the engineers who maintain it. Open archi-
tecture describes the standard interfaces engineers use to connect independent
components. Services Oriented Architecture (SOA) is an example of a design style
that creates reusable and reconfigurable components that implement functional-
ity. Application Program Interfaces (APIs) use a variety of standards such as REST
(Representational State Transfer) or GraphQL to enable applications (or microser-
vices) to interact.

Open source
Open source software (OSS) refers specifically to software released with the source
code visible to anyone. You may copy, modify, and distribute the original work —
all without royalties to the original creator. OSS has given the industry some of the
best software currently available. Linux, Python, Eclipse, and Mozilla’s Firefox are
all examples of OSS. Open source software has formed the basis for many of the
commercial products you use every day, including the operating system for your
mobile phone.

Licensing open source
Licensing plays a key component in OSS. The term free software was defined by
Richard Stallman of MIT in the 1980s as meeting four conditions, which he
referred to as the four freedoms:

 » Use

 » Study

 » Share

 » Improve

Eric Raymond and Bruce Perens founded the Open Source Initiative (OSI) in 1998
(https://opensource.org/history) and determined the criteria of OSS. Propri-
etary software may be free, but that doesn’t make it OSS. Unless you can view and
modify its source code, a product is not open source. For a product to be consid-
ered OSS by the OSI, it must meet the following ten conditions:

 » The license must allow anyone to sell or redistribute the software with-
out royalty.

 » The source code must be distributed along with the product.

https://opensource.org/history

266 PART 5 Tooling Your DevOps Practice

 » The license must permit modifications to the original code.

 » The OSS license may permit restrictions to protect the integrity of the author’s
source code, such as requiring a different name for derived works.

 » OSI prohibits discrimination against any person or group.

 » The license must not restrict the use of the software for any particular
purpose.

 » Licensing is distributed and there is no need for additional licensing upon
redistribution.

 » The rights given through the license apply to anyone and do not depend on a
product or redistribution vehicle.

 » The license must not restrict any other software potentially distributed with
the OSS.

 » The license must be neutral to specific technologies, tools, or standards.

Hundreds of OSS licenses exist, each with its own unique spin on what’s permit-
ted. Be careful to check the licenses to ensure that you’re in compliance.

Licensing your open source software or evaluating the licenses of OSS that you
want to utilize doesn’t necessarily require a lawyer. For example, the MIT License
used in many products is rather short and readable. You can find the current MIT
License at https://opensource.org/licenses/MIT. I recommend looking at
some other common OSS licenses, such as GNU General Public Licenses (GPL) and
Apache License, to get a feel for what you can expect when adopting OSS with
 different licenses.

Deciding on open source
Often the best option is to combine open source and proprietary software. At this
point, open source has reached an adoption rate that has forced commercial
 software to ensure compatibility. OSS offers a number of benefits to companies
that take the time to research and adopt it. Still, as with any engineering decision,
you always have some gotchas to consider.

Benefits
Many of the benefits of open source software relate to its availability, cost, and
general quality:

https://opensource.org/licenses/MIT

CHAPTER 19 Adopting New Tools 267

 » Low up-front costs: OSS provides extreme monetary benefits for companies
with low-to-zero costs upon initial adoption. The software must be maintained
and integrated, so engineering hours will be required but the overall cost is
typically a fraction of developing the tool in-house.

 » Quick acquisition: Unlike some proprietary software that requires trials
and pricing negotiations, OSS is often as simple as a quick download. (Okay,
sometimes it’s a slow download; I’m looking at you, JVM.) The other benefit to
quick access is that developers can create minimum viable products (MVPs)
without difficult-to-obtain manager approval. Their curiosity can drive their
personal innovation and allow them to explore the opportunities of a product
without any buy-in.

 » High-quality engineering: With OSS, you conduct a peer review and inte-
grate all contributions into the project but another contributing engineer
performs a review. This community engagement makes for decisions that
have been well thought out and evaluated. The community-led development
ensures the involvement of a group of engineers who are both deeply
knowledgeable about the source code and community oriented. The result
is often robust communities of people who are willing to help others with
questions as well as create documentation and tutorials.

Drawbacks
Potential drawbacks to consider relate to the engineering effort you need to make
to integrate and maintain the software:

 » Lack of support: One of the main draws to commercial software is the
support provided. You can access robust documentation and help in imple-
menting the software. Depending on your contract, you can access support
employees dedicated to customer success. If this support is critical to your
success, I recommend a choice beyond most OSS offerings.

 » Integration challenges: You and your team will be solely responsible for
integrating the OSS into your existing systems. This integration is often
more complex than originally expected because of system surprises and
limitations of legacy code. If by some chance you can deliver on time or ahead
of schedule, yay! But never count on that one-in-a-million type of luck.

Build extra time into your road map for unexpected speed bumps when
integrating anything new into your system. Something always comes up
that you simply can’t foresee. Perhaps no better way exists to discover bugs,
unused code, and strange implementation choice than to begin weaving new
software into old.

268 PART 5 Tooling Your DevOps Practice

 » Maintenance: Some open source solutions are immature. They’re young and
poorly adopted, which doesn’t mean they’re bad products but does limit the
feature set and community around the product. An immature product is more
difficult to maintain and requires a more focused engineering effort. If your
business can sustain such efforts and the benefits outweigh the cost, go for it.
But think through the long-term viability of products before you integrate them.

Transitioning to New Languages
Deciding to adopt a new language or framework is a common and sometimes
 horrifying prospect. Just as with spoken languages, programming languages share
common structure. After you understand the basic parts of a software language,
you can generally transfer that knowledge to another language. Most statements
such as “Python is better than Java” have more to do with the engineer’s comfort
level than reality. Simply put, you develop faster and better in a language you
know well.

Languages differ mainly on syntax and paradigms. But requirements such as
 special considerations and operating systems can also impact your decision about
what language to adopt.

Although programming languages can have wildly different syntax, most lan-
guages allow for multiple paradigms. You can write JavaScript functionally,
imperatively, or by using object-oriented programming techniques. You can write
Go to be imperative or procedural. Python covers just about any flavor from
 compiled to interpreted. Python can be functional, object-oriented, iterative, or
reflective. If you can think it up, Python is likely flexible enough to handle it.

A few reasons exist, however, to consider some languages over others, and they
relate to the technical needs of the product and your engineering team (currently
and in the future).

Compiling and interpreting languages
C, C++, C#, Erlang, Elm, Go, Haskell, Java, Rust — along with others — are all
compiled languages. JavaScript, Ruby, and Python are interpreted languages. The
main difference between compiled languages and interpreted languages is how
the machine reads the program. People speak human (whatever version of human
you happen to speak) but machines speak, well, numbers. People have to reduce
the verbose nature of our language to ones and zeroes for the computer.

CHAPTER 19 Adopting New Tools 269

An interpreted language uses an interpreter (another program) to parse the
instructions of the program and then executes it. An interpreted language requires
no consideration of infrastructure beyond having the interpreter installed. On the
other hand, compiled languages translate a program into the assembly language
of the computer in which the program runs. The architecture of the computer
must support the language into which the program has been compiled.

A compiled language typically performs faster because it uses the native language
of the computer. Think about how much faster you can speak and comprehend
your native language than your second or third language. No translation step is
involved; you simply understand. It’s the same for computers. In addition, com-
piled languages provide an opportunity for optimizations during compilation. An
interpreted language is easier to implement and runs immediately. It needs no
compilation stage after a change or update.

The compute power and tools you have at your disposal today make this distinc-
tion between compiled and interpreted languages much less important than in the
previous decades. Although improved hardware has reduced key processing and
resource allocation decisions to allow you to focus on other things, recognizing
the differences between languages can give you a deeper understanding of the
potential benefits and pitfalls of your decision to adopt a specific language.

Parallelizing and multithreading
When I first learned to write code, I was consistently confused about the differ-
ence between a language or system that is concurrent and one that is parallel.
They seemed to be pretty much the same thing However, they are different,
though the difference is rather pedantic. A concurrent system can support more
than one action in progress at the same time, whereas a parallel system can sup-
port more than one action executing simultaneously.

In other words, a parallelized system is executing two separate commands at the
same time. A concurrent system might appear to execute in parallel but instead
assign both tasks to the same thread. Parallelism requires multiple processing
units at the hardware level.

Multithreading is a related, but slightly different, process to parallelizing. With
multithreading, the operating system (OS) executes multiple processes at the
same time while sharing computing resources. The central processing unit (CPU)
executes more than one command concurrently.

270 PART 5 Tooling Your DevOps Practice

Languages that can improve your ability to powerfully parallelize your systems
include:

 » Ada

 » C#

 » Clojure

 » Elixir

 » Erlang

 » Go

 » Java

 » Rust

 » Scala

Programming functionally
Functional programming is a style that eliminates — or significantly reduces —
mutable data by avoiding changing state. Within this paradigm, functions are
idempotent (unchanged). The result of a function is dependent only on the argu-
ments passed to the function and cannot be impacted by local or global state. If
you want clean code, adopting functional programming practices is a solid start.

Whether you adopt a functional language or simply integrate the concepts into
your code standards, you should understand three important concepts of func-
tional programming, which the following sections explain.

Higher-order functions
These functions take other functions as parameters. This type of function allows
for currying — a way of forcing functions to return new functions that accept
arguments one at a time.

function doSomeMath(n, task) {
 return task(n);
}

function addOne(n) {
 return n + 1;
}

CHAPTER 19 Adopting New Tools 271

function subtractOne(n) {
 return n - 1;
}

doSomeMath(3,subtractOne);

Pure functions
A pure function has no side effects. No dependency exists between pure functions
and one has no way of interfering with the other, so they’re thread-safe and can
be executed in parallel. The following code shows a pure function in contrast to an
impure function. In the latter, a parameter must be accessed from outside the
function, which is unacceptable in pure functions.

var pureFunction(a, b) {
 // returns the sum of two values passed into the function

 return a + b;
}

var impureFunction(a) {
 // b is not a parameter and therefore must
 // be accessed from outside the function

 return a + b;
}

Recursion
In functional programming, you accomplish iteration most often by using recur-
sion. A recursive function can invoke itself. When you can use recursion, you
should because it’s considered to be more elegant and resistant to bugs. This code
shows a simple recursive function that counts down from a specified number (and
prints the numbers in the console), stopping at zero.

function subtract(n) {
 console.log(n)

 if (n === 0) {
 return 0;
 }

272 PART 5 Tooling Your DevOps Practice

 else {
 return (subtract(n - 1));
 }
}

subtract(10);

You can adopt the preceding concepts in any language, but they are more common
in functional languages or languages that better support functional paradigms.
People consider Elm and Haskell to be purely functional languages, but you can
write Java, Scala, Closure, and even JavaScript functionally.

Managing memory
Memory management is a way of allocating memory to specific functions. Appli-
cations require memory management to ensure that a running program has the
resources available to provide any object or data structure the user demands.
Memory management involves initial allocation and recycling, or garbage collec-
tion. The allocator assigns a memory block to the program, and when a block is no
longer needed, the garbage collector makes it available.

In some languages, the programmer must manage the garbage collection process.
In other languages, the approach is automated. C#, Go, Java, JavaScript, Ruby, and
Python take care of garbage collection for you, whereas languages like Rust and C
require manual memory management.

Choosing languages wisely
The point of this section isn’t for you to memorize the pros and cons of every
language. Instead, it’s to drive home that you have a wide variety of languages
from which to choose. Some are prescriptive in their approach to programming;
others are endlessly flexible and easily manipulated. Some are specialized for a
specific use case. For example, R is best known for statistical computing. Java is
known for enterprise applications. Python is widely used by data scientists and
web developers alike. Go is especially useful for high-performance and runtime
efficiency. Swift is designed specifically for Apple devices.

Beyond language characteristics, you need to keep five questions in mind when
choosing your next language, as the following sections explain.

CHAPTER 19 Adopting New Tools 273

What is the quality of the language community?
Choose a language whose community aligns with your company culture. A small
subset of languages is known to have stellar communities. The Ruby community,
for example, is incredibly welcoming, diverse, and concerned with taking less
experienced and junior engineers to higher levels. Ruby is easy to learn simply
because of the number of engineers who are ready to pitch in and help you get the
hang of things.

A healthy language community provides a number of benefits:

 » Widely available (and usually free) mentoring

 » Blogs and tutorials to help developers get started

 » Plenty of answers to questions on programming forums

Ruby is the language in which I learned to program, and I will be forever grateful
to the groups of engineers who helped me get my start. They provided a safe
 environment in which I could ask questions — even dumb ones. Help others
 without judgment and without expectation of repayment is an important aspect of
the community. That is how you grow a tech community that is healthy and
enduring — for everyone.

How many developers know the language?
Select a language that will allow you to recruit from a large pool of candidates.
Some languages are so widely adopted that finding a talented engineer is a
 relatively easy feat. Others are either so old, deprecated, or specialized that the
engineers who can maintain legacy systems and add new code are incredibly rare
(and typically well paid). Perl and ColdFusion don’t have a ton of language spe-
cialists left. On the other hand, you can find an almost endless list of brilliant
JavaScript engineers. You don’t need to hire experts in a particular new technol-
ogy. Yes, having an anchor on your team who knows a great deal about something
super specific would be extremely helpful. However, the need to hire people with
curiosity and a passion for finding new engineering solutions rises above all other
considerations.

What frameworks and libraries are available?
Frameworks and libraries can make or break your project. Seriously. Using a lan-
guage that provides particular libraries that allow your engineers to call code out
of the box can shave months off your project. A framework is a lot like a scaffolded
application that’s ready out of the box. It’s a skeleton onto which you can add

274 PART 5 Tooling Your DevOps Practice

functionality. In many ways, a framework defines design paradigms. As a result,
you most often find frameworks in flexible languages. Python has Django; Ruby
has Rails; JavaScript has React, Vue.js, Node.js, Angular, Polymer, Backbone.js,
Ember.js, and so on. A library does the work in creating complicated but often
used algorithms for you. Mathematics and physics libraries, for example, allow
you to call complicated functionality without doing the algebra yourself.

What are the specific requirements
of the project?
As you saw in the previous section, languages come in all sorts of shapes and
sizes. Some are prescriptive whereas others will contort themselves to allow you
to do whatever janky fix you’re working on. No one language is better than the
other, but they can be better suited for specific projects.

If your project has a mobile component, how you approach your language choices
will need to take into account mobile app development for Android and iOS. You
also need to take into account the physical environment within which your project
or team will work. If much of your infrastructure is based in Azure or Microsoft
servers, a Microsoft solution will likely be more easily implemented. Finally, keep
in mind the scalability requirements of the project. Some languages scale more
simply than others.

What is the comfort and knowledge
of your current team?
Ideally, you choose a language with which your team is at least vaguely familiar,
or one that they can learn quickly.

Tossing a brand-new language or framework at your team without any founda-
tion of knowledge will fill them with imposter syndrome and some sense of dread.
What happens when they’re found out as frauds who don’t actually know what
they’re doing? Of course, they’re not frauds. You hired talented engineers who are
capable of taking on challenges. But it is the emotional response you’ll likely
receive.

If a project truly calls for something completely new, try to find a connection for
your engineers. Perhaps you’re moving your configuration management to
Chef — a tool with which no one on your team is familiar. But perhaps one of your
engineers was formerly a Ruby developer. Simply having that one piece of famil-
iarity will go a long way toward taking the team to a higher level quickly.

CHAPTER 20 Managing Distributed Systems 275

Chapter 20
Managing Distributed
Systems

A distributed system is simply a collection of components networked across
multiple computers. The components are independent (or at least should
be), can fail without impacting other services, and work concurrently.

Services communicate with each other through messaging formatted for a partic-
ular protocol (like hypertext transfer protocol, or HTTP).

Decades ago, the server that hosted a company’s application often lived in a closet
at the office. (A few of you might still have old remnants of hardware in office
closets.) Now, the majority of companies are beginning to take advantage of pay-
as-you-go cloud hosting. In large part, this move to cloud hosting is happening
because running applications at scale requires efficient use of infrastructure. The
costs of underutilizing hardware add up quickly.

Distributed systems have become the norm, mainly because of cloud services.
Multitenancy allows multiple customers to take advantage of shared resources,
which keeps costs low by maximizing the use of those resources. If you use a cloud
provider like Azure or AWS, the components of your system run on machines
spread across a particular region (or regions). Most of the time, the cloud provider
doesn’t even know which machines your application runs on.

IN THIS CHAPTER

 » Introducing microservices

 » Designing APIs

 » Running applications in containers

276 PART 5 Tooling Your DevOps Practice

I talk more about moving to cloud platforms and infrastructure in Chapter 21. For
now, I focus on the two concepts that accompany this transition to distributed
systems: microservices and containers. Microservices are a style of architecture
that separates logic into loosely coupled services. In theory, the modularity makes
the application more resilient and easier to maintain than a monolithic applica-
tion. Containers enable engineering teams to package applications with depen-
dencies and provide an isolated, ephemeral environment.

In this chapter, I dig into transitioning from a monolithic architecture to microser-
vices, explain how APIs enable distributed systems, and discuss working with
containerized infrastructure.

Working with Monoliths and Microservices
Whatever language and tooling you choose, you must merge all the pieces into a
working system. The two common architectural structures in modern applica-
tions are monoliths and microservices (with microservices leading as the popular
choice for high-performing teams).

If you’re wondering whether microservices are just service-oriented architecture
(SOA), you’re mostly right. SOA architecture has a few key characteristics:

 » Components or units of functionality logically manage business functions.

 » Every unit is self-contained.

 » Users don’t need to know how a component works, only how to interact
with it.

 » Other services can exist within a unit, but components are loosely coupled.

Microservices are a modern implementation of SOA. Although no industry stan-
dard exists for what constitutes a microservice, you can start with a few basic
principles.

Just as with SOA, microservice architecture is loosely coupled. Units of logic —
services — are reasonably separated. You can update and deploy services inde-
pendently. Microservices are small — it’s in the name! — and accomplish one
piece of business functionality. You can write services in different languages and
support them with different infrastructure. The units communicate with each
other via tech-agnostic interfaces and protocols such as APIs and HTTPS requests.
The modular nature of microservices makes an application easier to read, com-
prehend, troubleshoot, and maintain.

CHAPTER 20 Managing Distributed Systems 277

This separation of logic improves service ownership across your engineering
team. It also allows teams to independently choose language and tooling while
still applying DevOps principles across your organization — improving autonomy
and enabling collaboration. Although every single piece of logic doesn’t need to be
abstracted into a microservice because of unnecessary complexity, breaking out
logic into smaller components will benefit your team and enable you to more
smoothly adopt continuous integration and continuous delivery (CI/CD).

Choosing a monolithic architecture first
My personal preference is to start a brand new application with a monolithic
architecture. If you’re a startup or just getting started on a minimum viable prod-
uct (MVP; see Chapter 7 for details about MVPs), don’t bother overthinking your
architecture. Yes, making some key architectural decisions with growth in mind is
important, but I’d argue worrying about how to dynamically scale an application
while you have 20 users is a poor use of time.

Figure 20-1 visualizes a monolithic application. A user interface (UI) communi-
cates with business logic. The functions that make up that business logic have
access to a data layer that finally communicates directly with the database. Data
flows up and down the stack.

FIGURE 20-1:
Monolithic

architecture.

278 PART 5 Tooling Your DevOps Practice

At some point, you start to notice friction along the software delivery life cycle.
Developers step over each other when trying to fix bugs or add functionality. A bug
in user logic will cause a service disruption when users attempt to buy a product.
As these points of irritation pop up, consider slowly decoupling logic into
microservices. You will pull functionality out from the monolith into smaller
components.

Be sure to delete unused code. Failure to delete unused code is the most common
mistake I see when people begin to strangle a monolith and adopt microservices.
Don’t be afraid to delete code. You use source control, and you have access to pre-
vious commits and build. Nothing in a codebase acts more like a landmine than
unused code. A single duplicate name added months or years later that acciden-
tally calls old logic can quickly cascade into a massive failure.

As you slowly pull logic apart into neat and tiny components, at some stage
you’ll find that you have a planetlike monolith with microservice moons rotating
around it. I encourage you to sit in that stage until you know that your engineering
team can manage a fully decoupled system.

If you think you have microservices but actually have what I lovingly refer to as
“macroservices,” you will find yourself in a much more tangled situation that is
difficult to undo. Unlike microservices, macroservices are linked together by ten-
uous and nearly impossible-to-detect ways.

When you decide you’re willing and able to go full-in on microservices, it’s time
to get serious about code quality and development standards as well as ensure that
you have clear standards regarding API design and versioning so that services can
communicate with one another seamlessly.

A well architected monolith is much preferable to sloppily developed
microservices.

Evolving to microservices
Beyond the decoupling of logic, well-architected microservices offer large engi-
neering organizations the capability to split teams by components in which each
group of engineers “owns” a service (or group of services) from ideation to pro-
duction. This type of architecture enables parallel development of features by
multiple teams. (It also requires a team of product owners or project managers to
appropriately divide work.)

In contrast to a monolith, microservices can interact freely with each other, and
those services will pass information around until data needs to be saved or
retrieved from the database. Microservices involve a much more free-form archi-
tecture, as you can see in Figure 20-2.

CHAPTER 20 Managing Distributed Systems 279

A team can develop, test, and release each component through the team’s unique
CI/CD pipeline. Every team can own any technical debt they choose to take on
throughout the process. If a particular feature is best designed in Go whereas
another is ideally implemented in Python, both can exist in their independent
state and communicate through a language-agnostic protocol. In addition to
(potentially) not sharing a language, services won’t share databases or hardware.

From an operations perspective, microservices simplify deployments. Because
microservices are typically smaller in nature, with fewer lines of code, than a
monolith, you can more easily deploy small changes frequently, thus eliminating
a common challenge in adopting continuous delivery or continuous deployment.
Perhaps most important, microservices enable refined and targeted scaling.
Instead of allocating resources to the entire system, you can pinpoint specific
services that have increased demand and allocate additional resources for that
component.

You will find repeat logic throughout your application. Do not duplicate code in
different services. Instead, create libraries containing shared logic that any service
can access. Be sure to adopt a message-queuing solution that uses a format like
JSON to appropriately notify services of changes in a nonsynchronous manner.
You can design message queues to persist, thereby eliminating data loss in transit.

Any team that attempts to move from a monolith to a microservice architecture
will experience challenges. Triaging those issues is a small price to pay for the
potential gains you can achieve. When you design services in a way that creates
conflict between teams, apply DevOps processes to communicate what each team
needs and adapt the independent services to work together.

FIGURE 20-2:
Microservice
architecture.

280 PART 5 Tooling Your DevOps Practice

Designing Great APIs
An application programming interface (API) is a way to expose only the specific
objects and actions required. An API can be anything that a human (or computer)
uses to interact with a software application. When I talk about APIs and services,
however, I refer to RESTful (representational state transfer) APIs. The RESTful
approach takes advantage of HTTP (HyperText Transfer Protocol) requests that
allows applications and services to communicate with each other. HTTP has four
actions (sometimes referred to as verbs): GET, PUT, POST, and DELETE.

Before REST, the default API format was simple object access protocol (SOAP). The
advantage of REST is that it uses less bandwidth, making it preferable for transac-
tions going over the Internet. APIs allow developers to expose their services to
other developers and applications, which permits a system filled with diverse ser-
vice designs to act as a whole. An API receives requests and sends responses.

What’s in an API
In its most basic design, each API request requires two pieces of information: a
noun and a verb. In other words, what thing are you interested in and what do you
want to do to that thing? Specific identifiers may be required for certain actions.

The API then sends a response to the requester with an update as to what
happened.

For example, say that a new user fills out the Sign Up form on your website. That
form will likely collect the information inputted by the user and utilize an API
endpoint that will pass the information to a service, which in turn will parse and
validate the information. If everything checks out, the user is eventually saved to
the database by the appropriate service.

The API endpoint for this request might be

POST /users

After the user has been saved to the database, the user is assigned an ID, which
identifies that user as unique in the database. If you wanted to request that user,
and that user’s ID is 34, the endpoint might look like this:

GET /users/34

In this example, the HTTP action PUT would edit the user and DELETE would — you
guessed it! — delete the user from the database.

CHAPTER 20 Managing Distributed Systems 281

Focusing on consistent design
API design becomes critical to organizations using widespread microservice
architecture. Part of your internal structure should ensure that APIs are the only
way services may interact. Shared memory, direct access to data, or direct linking
will muddy your organization’s processes and make bugs extremely difficult to
find. APIs should serve as your system’s exclusive communication channel, and
you should design every service to use API access.

The suggestions in the following sections are far from exhaustive, but they
describe with good practices to implement when designing APIs.

Using nouns
Create your endpoints to use nouns, not verbs. GET /users is preferable to GET /
getAllUsers. Looking at it with the HTTP action should partially clarify why.
GET /users/34 is preferable to GET /getUser/34. Keep it clean. Simple, predict-
able patterns keep bugs at a minimum and ease the way for developers to design
services for integration with your APIs.

Determining verbs
Be sure to use the correct HTTP verbs for the actions requested. GET fetches a par-
ticular object or a group of objects. POST creates an object or a collection of objects.
PUT updates (or edits) an existing object or collection of objects. DELETE deletes an
existing object or collection of objects.

Pluralizing endpoints
Decide on pluralization. API endpoints can use pluralized nouns for all requests or
use singular nouns if appropriate. For example, if you use singular and plural, the
endpoint to get all users is GET /users and the endpoint to get a single user is
GET /user/34. My personal preference is to maintain consistency and use plural-
ized nouns for everything. To make sense of the idea in words, I think of it as
GET from USERS user 34 (which, from a database perspective, makes sense).

Adding parameters
Use extra parameters. You can pass as many parameters to the endpoint as you
like. If you need to set up an API to fetch a user by name instead of ID, design it to
look like this: GET /users?name='emily' rather than GET /getUserByName. The
former keeps the design consistent and limits how many one-off API endpoints
developers have to memorize or locate in documentation.

282 PART 5 Tooling Your DevOps Practice

Responding with codes
Respond with appropriate HTTP codes. API design doesn’t stop at the request.
Developers must set up response codes to let the user or service know what
 happened after the request was received. Almost everyone has encountered a
404 page on a website. The 404 message is the response code for NOT FOUND, but
you have dozens of options to include. Table 20-1 shows common response codes.

TABLE 20-1	 Using HTTP Response Codes
Code Category Code What It Means

200 - It’s All Good

The 200 codes mean everything went
as expected. But you can include extra
information for specific responses.

200 OK The most common HTTP response code.
 Everything was successful.

201 CREATED The POST request was successful. A new
resource was created.

202 ACCEPTED The request was received but no action was
taken.

300 - Please Come This Way

Responses utilizing 300 codes are
redirects.

301 MOVED
PERMA-
NENTLY

The resource requested has been changed. This
is typically accompanied by a redirect URL.

302 FOUND The resource has been changed temporarily.
Whereas 301 is permanent, 302 is not.

400 - User Error

Any response code in the 400s is a
 client error. In other words, the user
made a mistake.

400 BAD
REQUEST

The server (or endpoint) couldn’t understand the
request. This is typically seen if incorrect syntax
was used or as a default when what went wrong
isn’t clear.

401
UNAUTHOR-
IZED

Authentication is required. The client is not
signed in.

403
FORBIDDEN

The client does not have the correct authoriza-
tion credentials to access the response. This
error differs from 401 in that the client’s identity
is known.

404 NOT
FOUND

The requested resource cannot be located.

CHAPTER 20 Managing Distributed Systems 283

Versioning Your API
You should prefix the API version before the endpoint. For example, to get all
users, use GET v1/users. You can increment subsequent versions however you see
fit, although v1, v2, v3 is simple and straightforward. But prefixing the version
number ensures that a version is sent, which isn’t guaranteed if it’s sent as a
parameter. This approach eliminates strange bugs when everything in a request
looks good but the versioning is off. I strongly recommend that you account for
backward compatibility as your APIs evolve and new versions are released.

Paginating responses
Take advantage of pagination to avoid returning overwhelming amounts of data
or potentially bringing down the service. Be sure to set a default limit and offset
that’s applied to responses if none is supplied in the request. For example, the
first page would return GET /users?limit=25 — that is, the first 25 users (users
with ID 0 through 24). The next page would respond with the data from GET /
users?offset=25&limit=25 and deliver the next 25 users (users with ID 25
through 49). offset, in this case, simply tells the service to skip the first 25 users
when requesting the information from the database. You can increase the offset
with each paginated request.

Formatting data
Choose a supported format. Most modern applications prefer information to be
formatted as JSON in requests and responses. JSON uses fewer characters and is
more readable than XML, though many applications still use the more ver-
bose XML.

Code Category Code What It Means

500 - It’s Me, Not You

Finally, any response code above
500 refers to server errors.

500 INTERNAL
SERVER ERROR

The server can’t figure out what to do and needs
to try again.

501 NOT
IMPLEMENTED

The server can’t fulfill the request.

502 BAD
GATEWAY

The server received an invalid response when
acting as a gateway to process the request.

503 SERVICE
UNAVAILABLE

The request can’t be processed. Typically, the
server is down and the request needs to be
reattempted.

284 PART 5 Tooling Your DevOps Practice

Communicating errors
Add error messages to give the user extra information, tailored to your service.
Think beyond the response code. What does the user need to know? Examples
include RESPONSE 200 OK - The user was saved! or RESPONSE 400 BAD
REQUEST – Missing required field: FIRST NAME.

Containers: Much More than
Virtual Machines

Containers are instances of a runtime object defined by an image. They are light-
weight environments in which you can run your application. An image and a con-
tainer are related but different concepts, and understanding the distinction is
fundamental to deciding to containerize your application. An image is an immu-
table snapshot of a container. You can’t change or update the snapshot. An image
will produce a container if run using the appropriate command. Images are stored
in a registry and ideally layered to save disk space.

Image layers are immutable instructions that allow a container to be created using
references to shared information. For example, imagine building two containers
that are identical up until the last two lines of instructions. Instead of building two
containers from scratch, you can use layers to enable you to reference layer caches
and rebuild only the last two layers.

docker run [OPTIONS] IMAGE [COMMAND]

Containers have isolated CPU, memory, and network resources while sharing the
operating system kernel. They hold source code, system tools, and libraries. They
differ in key ways from virtual machines (VMs), but you can think of containers as
lightweight iterations of VMs.

Although containers have been around since the late 1970s, the technology wasn’t
mature enough to run applications in production until Docker debuted its plat-
form in 2013. A modern container is a self-sufficient execution environment and
repository for everything your application needs to run.

CHAPTER 20 Managing Distributed Systems 285

Understanding containers and images
Shipping containers are an often used but problematic metaphor for containers.
I like to use Harry Potter instead. (Yes, I mean the wizard with the lightning-bolt
scar on his forehead. Potter fans know that the scar is actually the motion of cast-
ing the Avada Kedavra curse.) I don’t want to talk about Harry, exactly, but rather
a concept that J.K. Rowling created for the wizarding world of Harry Potter: the
pensieve.

In Harry Potter’s world, a pensieve is a large, shallow bowl in which memories are
re-created in a way that is faithful to the original environment — down to every
detail — and can be experienced by anyone in precisely the way it originally
 happened. A memory is taken from storage and put into the pensieve. When a
wizard or witch puts their face into the pensieve, they are thrust into the memory
as if they were physically living it.

You can liken a container image to the memory that is stored without degradation
until it’s ready to be experienced by another wizard or witch through the pensieve.
The container would be the reliving experience — an instance of that memory.

Deploying microservices to containers
Microservices are the ideal architecture to take advantage of containerized infra-
structure. Because components are independent of other application functionality,
they can be released and hosted individually. Microservices communicate via APIs,
which means that different services can be released on different containers.

Figure 20-3 depicts microservice applications. Each application has many ser-
vices that, when sewn together, make up the entire application’s functionality.
One service can be focused on users whereas another can be focused on order
functionality. You have truly countless ways to divide an application’s functional-
ity into microservices.

After you divide an application into pieces that can be containerized, you can
 create immutable Docker images — those memories stored in the imaginary
pensieve — which capture everything needed to run a service. Figure 20-4 depicts
the images created for each service of an application, ready to be deployed inde-
pendently to containers.

286 PART 5 Tooling Your DevOps Practice

And finally, Figure 20-5 depicts running unrelated services in the same container.
You don’t have to group services in a particular way before releasing them.
 Containers don’t care what you run on them, and microservices don’t need to be
colocated with any other logic. You can mix and match to maximize your use of
resources, as well as group containers into clusters, as shown in the figure.

FIGURE 20-3:
Microservice
applications.

FIGURE 20-4:
Docker images.

CHAPTER 20 Managing Distributed Systems 287

Containers enable distributed applications, but large clusters require orchestra-
tion to create, manage, and update containers across multiple hosts.

Comparing orchestrators:
Harmonize the hive
Orchestrators help you manage sets of containers for applications running in pro-
duction on multiple containers or using a microservice architecture. Getting visi-
bility into complex systems through monitoring and telemetry for scaling is
difficult, and an orchestrator can help you better manage your distributed system.

An orchestrator is essentially a manager that you can use to automatically scale
(add additional resources) your cluster with multiple instances of each image,
instantiate new containers, suspend or kill instances when required, and control
each container’s access to resources such as storage and secrets.

Many container orchestrators provide the features you need to run an application
in production but refer to those features with different names. Smaller teams may
prefer an open source solution to build from, whereas larger companies will likely
prefer enterprise solutions that emphasize scalability.

FIGURE 20-5:
Containerized

application
clusters.

288 PART 5 Tooling Your DevOps Practice

The following sections describe five popular container orchestration and manage-
ment tools. The tools described here comprise far from an exhaustive list but they
highlight the largest communities and most mature solutions.

Kubernetes: The popular kid in class
Originally created by Google as a successor to Borg, Kubernetes — K8s or Kube,
for short — was donated to the Cloud Native Computing Foundation in 2015 and
is now open source. Its popularity as a Docker container orchestrator has exploded
over the last few years.

You can use Kubernetes to manage containerized applications as well as automate
deployments. Kubernetes simplifies the orchestration of containers across mul-
tiple hosts by managing the scale and health of nodes.

By sorting containers into groups referred to as “pods,” Kubernetes streamlines
scheduling workloads. It integrates well with other open source projects and enables
you to quickly customize your infrastructure management. This customization
includes maximizing resources, controlling deployments, and enabling your appli-
cations to self-heal through autoplacement, autorestart, and autoreplication.

Azure Kubernetes Service (AKS):
Kubernetes and more!
Azure Kubernetes Service (AKS) is a managed Kubernetes orchestrator. It simpli-
fies cluster management, deployment, and operations, but above all else, it sim-
plifies the effort required to deploy Kubernetes clusters in Azure. AKS manages
health monitoring and maintenance for you and helps you easily configure more
complex integrations with Azure.

OpenShift
OpenShift is Red Hat’s enterprise container application platform. Built on Kuber-
netes, OpenShift added features to enable rapid application development, easy
deployment, and life cycle maintenance. It leverages automation and dynamically
provisions storage. OpenShift is ideal for teams looking for enterprise-specific
features and multitenancy.

Docker Swarm: More than a hive
Docker Swarm is the native clustering and scheduling tool for Docker containers.
It uses the Docker CLI to deploy and manage containers while clustering nodes,
allowing users to treat nodes as a single system.

CHAPTER 20 Managing Distributed Systems 289

Users create a primary manager instance and multiple replicas. This redundancy
ensures continued uptime in case of failure. Manager and worker nodes can be
deployed at runtime. It’s a fast and scalable orchestrator. Swarm has been
 successfully scaled up to 30,000 containers.

Swarm is included in Docker Engine and, unlike other solutions, doesn’t require
initial setup and installation. Swarm enforces TLS authentication and encryption
between nodes and allows rolling updates so that nodes can be upgraded
incrementally.

Amazon ECS
Like other orchestrators, Amazon Elastic Container Service (ECS) is reliable,
 flexible, and extensible. It simplifies running Docker containers across Amazon
Elastic Cloud Compute (EC2).

ECS is compatible with a serverless architecture, and you can use the built-in
scheduler to trigger container deployment based on resource availability and
demand. ECS is capable of scaling clusters to more than 10,000 containers, which
can be created and destroyed within seconds.

Amazon ECS is ideal for small teams who rely heavily on Amazon and don’t have
the resources to manage bespoke orchestration and infrastructure.

Configuring containers
Although much of what you need to run a containerized application in production
comes out of the box with Docker and popular orchestrators, you’ll likely still need
to configure a few things specific to your application. All configuration logic lives
in a Dockerfile. If you have experience with Chef, Ansible, Puppet, or other
 configuration-management tools, a Dockerfile is the same thing that those orga-
nizations refer to as a cookbook, playbook, or manifest. It’s a list of instructions
for creating a container.

Orchestrators usually execute containers in groups — what Kubernetes calls
“pods” — and supports additional configuration specified in a configuration file.
At this execution, you can specify CPU and memory limits for each container. The
benefit of resource configurations is that your orchestrator’s scheduler can make
more informed decisions about node placement. You can use namespaces to iso-
late configurations. The scheduler specifies CPU in units of cores and memory in
units of bytes.

290 PART 5 Tooling Your DevOps Practice

Nodes have a maximum capacity for CPU and memory they can allocate to con-
tainers. The scheduler ensures that the total of all resource requests is less than
the capacity of the node, thereby eliminating resource shortages.

Monitoring containers: Keeping
them alive until you kill them
Infrastructure and its ecosystem have evolved drastically over the last few years.
A number of fundamental changes to application architecture and infrastructure
have come about in the form of microservices and containers. Many monitoring
tools and techniques are no longer relevant. Instead, engineers need solutions
that can adapt to the short-lived and isolated nature of containers and application
services.

Embracing increased complexity
The benefits of containers are flexibility, scalability, and portability, but these
benefits come at a cost. Running containerized applications in production is sig-
nificantly more complex because it involves more moving parts. Despite the
downsides, the draw of a monolithic application is that everything is in one place.
Your brain can keep track of what goes where.

Unfortunately, you don’t get to have everything in one place in a containerized
microservice application. Instead, the logic of your application is divided into
hundreds of services running on hundreds (if not thousands) of containers. Your
brain simply can’t keep up. Here are a few key considerations to evaluate and
address when adopting containers:

 » Containers are temporary. You can create and destroy containers within
seconds. The life span of a container is brief, sometimes only a few hours.

 » Containers are immutable. Containers can’t be updated. After an image is
built, it can never be changed. Instead, a new image must replace it.

 » Containers are scalable. The scalability of containers is an enormous
advantage, but it also drastically increases the number of machines in your
environment.

 » Containers lack persistent storage. Unlike VMs or bare-metal servers,
application data can’t be stored directly in a container.

 » Containers require monitoring. The performance and security of containers
requires management through the use of an orchestrator or monitoring tool.

CHAPTER 20 Managing Distributed Systems 291

Container life cycle
Containers are short lived, and Docker provides basic commands to control the
state of a container: create, run, pause, start, stop, restart, kill, and destroy. The
life cycle of a container typically includes five states: defined, tested, built,
deployed, and destroyed.

At the start of the life cycle, the container is defined via a Dockerfile that includes
runtime, frameworks, and application components. Next, the source code is
pushed through a CI system to be tested. The container is built and exposed to the
orchestration system, where it is replicated and distributed throughout the cluster.
Finally, because containers can never be patched, a container is destroyed and
replaced.

Containers run in isolation and can be fairly opaque. With containerization, teams
need to monitor services, hosts, and containers. Runtime visibility should track
inputs, outputs, resource usage, and network stats.

Ideally, your runtime monitoring tool will be a small kernel module that can
access the entire container ecosystem, which allows it to spot potential issues
before they escalate out of control.

AVOIDING CONTAINER BLOAT
Runtime container bloat stems from the inefficient use of containers and degrades
 performance and scalability. Container monitoring agents need to be able to ingest
 service response times and network utilization as well as infrastructure and application
metrics — without extra overhead within each container. You have two ways of imple-
menting monitoring in containers.

The first is a sidecar container that utilizes groups of containers like Kubernetes pods —
containers that share a namespace — and attach a monitoring agent within each pod.
It’s easy to set up, but resource consumption is high, and this approach creates another
attack vector for a potential security threat.

The other way to implement container monitoring is to use transparent instrumenta-
tion, which utilizes a monitoring agent per host. Although this approach requires a
 privileged container and kernel module, it drastically reduces the monitoring agent’s
resource consumption. Transparent instrumentation requires a more complex setup
but is well worth the effort because it allows you to collect ample amounts of data with
little overhead.

292 PART 5 Tooling Your DevOps Practice

Securing containers: These
boxes need a lock
Software security is a never-ending and often uphill battle. New security mea-
sures and patches are released just in time for the next vulnerability to be exposed.

Securing containers in production can be especially difficult. Simply put, it
involves more moving parts. You must secure every piece of the container
ecosystem:

 » Host OS

 » Container runtime

 » Orchestrator

 » Container registry and images

 » Application APIs and microservices

In addition, containers are relatively immature and evolving at breakneck speeds.
Regular releases introduce change and require new security considerations.

Container contents are partially isolated from the host system but use kernel
 features, which makes using containers much more efficient than traditional using
VMs. VMs thoroughly isolate processes and applications. In addition, containers
share resources and can be created or destroyed instantly. But the lightweight,
ephemeral nature of containers introduces new security vulnerabilities.

Securing secrets
Secrets are objects that contain sensitive information such as a username, pass-
word, token, key, or SSL certificate. This type of data should never be stored
unencrypted in a Dockerfile or source code.

Docker secrets are encrypted during transit and are accessible only by services
given explicit permission. Putting the data into a secret object reduces the risk of
exposure. Secrets are typically accessed by a pod through a volume.

Potential vulnerabilities
VMs employ a hypervisor — a layer of abstraction that sits between the VM and
the host. Containers eschew a hypervisor and instead act as the direct
intermediary.

CHAPTER 20 Managing Distributed Systems 293

Containers are lightweight because they contain less information than a tradi-
tional VM, which is great for efficiency but requires additional security consider-
ations. Here are a few areas you’ll need to address in your container security
strategy:

 » Container images. You should secure images and registries. Containers
should include only essential services.

 » Open source components. It’s important to have visibility into containers
that include open source software. Regularly scan your images for open
source vulnerabilities.

 » Shared kernel architecture. By design, containers run on the host kernel.
This shared resource makes containers extremely efficient, but it exposes
containers to kernel vulnerabilities. Make sure your host and Docker configu-
rations are secure.

 » Container breakout. This situation occurs when a container has circum-
vented isolation checks and can access secrets or upgrade privileges. If a
kernel vulnerability exists, containers can access the host.

 » Privilege escalation. If a container mounts a host filesystem or Docker
socket, the container can escalate its privileges. Limit default container
privileges and limit Docker daemon user access.

Don’t store SSH servers inside images and don’t host source code from
containers.

CHAPTER 21 Migrating to the Cloud 295

Chapter 21
Migrating to the Cloud

The cloud isn’t some empyreal plane where bits and bytes are transferred
through the atmosphere. It’s just a fancy way of saying “someone else’s
servers.”

“The cloud” refers to vendor delivery of cloud computing services. These services
include physical infrastructure such as servers, data storage, networking, soft-
ware services, deployments, monitoring, and more. Cloud services allow for faster
innovation, flexible resources, and economies of scale. You typically pay only for
cloud services you use, which helps you lower your operating costs, run your
infrastructure more efficiently, and scale as your business needs change.

In this chapter, you find out how to apply DevOps to the cloud, benefit from vari-
ous cloud services, understand the differences between private and public clouds,
and choose the cloud provider that’s best for you.

Automating DevOps in the Cloud
Marrying the cloud with your DevOps practice can accelerate the work you’ve
already accomplished. When used together, both DevOps and the cloud can drive
your company’s digital transformation. Throughout this book, I emphasize the
priorities of DevOps: people, process, and technology. The cloud — along with
other tooling — falls squarely into the technical part of your DevOps
implementation.

IN THIS CHAPTER

 » Benefitting from the cloud

 » Choosing the right type

 » Evaluating cloud providers

296 PART 5 Tooling Your DevOps Practice

Cloud computing enables automation for your developers and operations folks in
a way that simply isn’t possible when you manage your own physical infrastruc-
ture. Provisioning infrastructure through code in the cloud — which is a system
referred to as Infrastructure as Code (IaC) — enables you to create templates and
repeatable processes. When you track changes to your infrastructure code through
source control, you permit your team to operate seamlessly and track changes.
IaC is much more repeatable and automated — not to mention faster — than
 having engineers click around a portal.

Even instructions on the portal aren’t foolproof. You risk making small, yet
 significant, changes to infrastructure setup if you consistently build the same
setup through the portal rather than a YAML file.

Taking your DevOps culture to the cloud
People often speak about DevOps and cloud computing as if they are intertwined
and, in many ways, they are. Be aware, however, that you can adopt DevOps — or
begin to transform your engineering organization — without going all in on the
cloud. It’s perfectly reasonable that you first establish the standards, practices,
and processes for your team before you shift your infrastructure to a cloud
provider.

Although people speak as though everyone is already on the cloud, you are still on
the cutting edge of the shift to the cloud. Cloud providers are becoming more
robust by the day, and engineering companies are slowly transitioning their self-
hosted services to the cloud. With that in mind, an organization seeking to adopt
DevOps would be wise to strongly consider utilizing the services of a major cloud
provider.

I would never call the cloud a NoOps solution, but I do call it OpsLite. Cloud services
often abstract complex operations architecture in a way that makes that architec-
ture more friendly to developers and empowers them to take more ownership of
their components. If you’ve ever grumbled that developers should be included in
an on-call rotation, you’re right — they should be. Including developers in the
on-call rotation is a great way to ramp up their knowledge of deploying code as
well as managing and provisioning the infrastructure on which their services run.
This reduces operational overhead and frees up the time of operations specialists
to work on proactive solutions.

Learning through adoption
If your team is capable of adopting DevOps and shifting toward utilizing cloud
computing at the same time, you can use these shifts as learning opportunities for
both developers and operations folks.

CHAPTER 21 Migrating to the Cloud 297

While your team shifts to the cloud, developers have the opportunity to familiarize
operations specialists with code — perhaps even specific languages — and source
control, and operations folks can teach developers about infrastructure. When
both groups are both the experts and the newbies, neither group has to deal much
of an ego-damaging transfer of knowledge.

The trust, rapport, and healthy dynamic that emerge from these interactions will
galvanize your team and last much longer than the immediate work took. In many
ways, you’re reinforcing your DevOps culture through tooling your DevOps
practice.

Benefitting from cloud services
Modern operations is changing and evolving. Your competitors are already adopt-
ing new ways of innovating faster and accelerating their software delivery life
cycles.

Cloud computing represents a big shift from the traditional way businesses think
about IT resources. By outsourcing much of your infrastructure and operations
requirements to a cloud provider, you reduce overhead and free your team to focus
on delivering better software to your users.

Here are six common reasons organizations are turning to cloud computing
services:

 » Improving affordability: Cloud providers allow you to select only the services
you need, when you need them. Imagine if you could access cable TV but pay
for only the channels you watch. You’d love that, wouldn’t you? I would! Cloud
providers do just that while also providing you with the most up-to-date
computing hardware housed in physically secure data centers.

 » Automating deployments: Changes to the system — deployments — are the
most common contributors of outages or service disruptions. Cloud providers
make releasing code an automated, repeatable process, significantly decreas-
ing the probability of making mistakes in manual releases and introducing
bugs. Automated deployments also enables developers to release their own
code. Ultimately, automated deployments simplify the process while reducing
site downtime and reactionary triaging in production.

 » Accelerating delivery: The cloud reduces friction along nearly every phase
of the software delivery life cycle. Although setup is required, it often takes
no more than double the time required to do the process manually, and you
have to set up a service or process only once. Accelerated delivery gives you a
ton of flexibility.

298 PART 5 Tooling Your DevOps Practice

 » Increasing security: Cloud providers make security part of their offering.
Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform
(GCP) meet different compliance standards and provide policies, services, and
controls that will help you reinforce your system’s security. In addition, if you
utilize a deployment pipeline tool within the cloud, you can add security
checks before new code is released to an environment, thereby reducing the
possibility of security vulnerabilities.

 » Decreasing failure: Through cloud build and release pipelines, your team is
capable of creating automated tests to confirm functionality, code quality,
security, and compliance of any code introduced into your systems. This
capability decreases the possibility of bugs while also reducing the risk of
problematic deployments.

 » Building more resilient and scalable systems: The cloud allows organiza-
tions to scale up, scale out, and increase capacity within seconds. This
elastic scaling enables spinning up compute and storage resources as
needed, no matter where in the world your users interact with your product.
This approach permits you to better serve your customers and more effi-
ciently manage infrastructure costs.

Cumulus, Cirrus, and Steel: Types of Clouds
No, the heading for this section doesn’t refer to the material of the server rack.
With the cloud, you don’t have to worry about that anymore! In the realm of cloud
providers, there are three types of clouds from which to choose: public, private,
and hybrid. Hybrid, as you assume, is the combination of public and private clouds.
Each of the three options has its benefits and risks, which I discuss in this section.

Public cloud
The most common — and widely used — cloud is public. This type of cloud is
 provided by a third-party vendor. These vendors provide resources like virtual
machines, containers, and storage for engineers to use. In a public cloud, the
 provider owns and manages all infrastructure. You can manage your access to
those services through a portal, CLI commands, or APIs.

Public clouds are by far the most prevalent and relevant to DevOps. You accrue
almost no overhead or up-front costs. You pay only for what you use, and you can
scale up and down throughout the day at will.

CHAPTER 21 Migrating to the Cloud 299

But here’s the catch with the public cloud: It has multiple tenants, which is what
users are called. Tenants share hardware, storage, and networking with other
users. Resources, interests, and concerns are logically separated but are computed
on the same hardware.

The main advantages of a public cloud are lowered costs, lack of server mainte-
nance, extremely flexible and capable scalability, and high reliability because of a
large network of servers.

Availability is often measured in 9s. If a vendor claims a service has “5 9s” avail-
ability, it promises 99.999 percent uptime. And to achieve that, you need n + 2
resources. Any application or service with 99.999 percent availability needs to
exist on three physical resources. Why? You have to allow for one machine to be
down for scheduled maintenance, which leaves you redundancy if one of the
remaining machines goes down because of an unforeseen issue. If you had only
one machine available during maintenance, you would have no room for service
disruptions.

Private cloud
A private cloud offers resources like a public cloud but for use exclusively by a
single business. The data can be hosted from the company’s data center or through
a third-party vendor. Only one user can access all services and infrastructure. No
hardware is shared, and the private cloud eliminates (rather arbitrary) security
and compliance concerns for companies with extremely specific requirements,
including governments and banks. The three major public cloud providers specifi-
cally offer government solutions that comply with various standards.

Private clouds are more expensive and can require maintenance, but they do per-
mit more flexibility in customizing the cloud environment. You can experience
excellent security while still benefitting from the high scalability of cloud
computing.

Hybrid cloud
A hybrid approach is just what it sounds like: an amalgam of the two other options,
public and private. A potential hybrid solution can include an on-premise data
center, hosted private clouds, and public cloud resources so that companies can
benefit from all the positive aspects of every method.

300 PART 5 Tooling Your DevOps Practice

If you’re thinking that you also get all the negative aspects of every method as
well, you’re right. But hybrid works if you partition your services by volume and
security need. You can host your email on a public cloud while storing confidential
financial data on storage provided by a private cloud.

But the most interesting use of a hybrid cloud is in its approach to a DevOps trans-
formation. If you’re currently maintaining your own physical infrastructure,
transitioning your services to the cloud will take some time. Adopting a hybrid
cloud computing strategy removes the time-sensitive stress from your team,
allowing them to make sure that they do the transition right, not just quickly.

Cloud as a Service
Typically, cloud services fall into three categories of service: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
These services basically correspond to the layer of a traditional tech stack they fall
into. You can connect each of these service categories to build a full cloud comput-
ing stack and link various cloud services together.

Despite the risk of vendor lock-in — getting stuck with a cloud provider because
moving is too expensive or painful — choosing a single cloud provider has its
benefits. Azure, AWS, and GCP all design their services to work the most seam-
lessly with the other services within the provider’s portfolio.

Infrastructure as a Service
Infrastructure as a Service (IaaS) is the simplest and most straightforward cate-
gory of service in the cloud. IaaS provides rented IT infrastructure — low-level
network infrastructure via abstracted APIs. You can spin up servers and VMs,
storage, backups, and networks. Every service is set up to be pay-as-you-go. You
pay for only the resources you use.

Almost all IaaS providers also offer Platform as a Service (PaaS) and Software as
a Service (SaaS). Although the user doesn’t control the underlying cloud infra-
structure, they can manage and control everything that sits on it, including the
operating system and particular networking components.

Cloud providers provide these resources elastically from large pools of hardware
in secured data centers throughout the world.

CHAPTER 21 Migrating to the Cloud 301

Platform as a Service
The platform services that cloud providers offer cover most things you tradition-
ally think of as operations-focused, minus the hardware. Platform cloud services
include environments such as development (DEV), quality assurance (QA), user
acceptance testing (UAT), staging, and production (PROD). The production envi-
ronment is exposed to users, but the staging environment provides developers
with the opportunity to test their code before it reaches its final release to cus-
tomers in production.

Platform as a Service (PaaS) is designed to increase the speed at which engineers
develop, test, and release their code. With PaaS, developers can develop, test,
release, and maintain their applications despite having little to no knowledge
about underlying infrastructure. PaaS abstracts servers, storage, databases, mid-
dleware, and network resources.

If you’ve ever heard someone say that DevOps is leaving Ops behind, PaaS is likely
what they’re referring to. Many of the tools in this category are targeted toward
developers and enable them to act as an operations person. PaaS tools emphasize
code because it’s automated, controlled, and trackable, not because it seeks to
eliminate operations specialists from the delivery life cycle.

The main advantage of PaaS is not having to deal with the complex nature of
infrastructure. If you’re a developer, you’re free to do what you do best — develop
and release software. If you’re an operations person, PaaS eliminates unnecessary
and repeatable toil so that you can focus on solving more interesting and more
complex problems.

Going serverless is a concept that you can consider to be part of PaaS. It has
reached an adoption rate that merits some specific attention. Going serverless
requires servers — surprise! — but represents services that enable functionality
without the requirement of server management. With serverless functions, the
cloud provider manages much more of the process, including setup and resource
management, which allows you to take advantage of scalable and typically event-
driven features. Resources are only allocated when a specific function is
triggered.

Software as a Service
Software as a Service (SaaS) refers to a hosted and managed application that pro-
vides a service. The application is typically accessible through any device. Cloud
providers also offer SaaS functionality. The software is licensed and accessed
through a subscription model.

302 PART 5 Tooling Your DevOps Practice

Examples of SaaS include TurboTax, Microsoft Office, Slack, Concur, Adobe Crea-
tive Suite, Camtasia, Dropbox, and Monosnap. You likely use many more SaaS
applications than you even realize. Only when you really start to consider it do you
realize just how much functionality is abstracted by SaaS in your everyday life.

Choosing the Best Cloud Service Provider
Selecting a cloud service provider isn’t an easy choice. GCP, AWS, and Azure have
more in common than they do apart. Often, your decision depends more on your
team’s comfort level with a particular cloud provider or your current stack more
than the cloud provider itself. After you’ve decided to move to the cloud, the next
decision is to decide on a cloud provider. Here are some things to consider when
evaluating cloud providers:

 » Solid track record: The cloud you choose should have a history of responsi-
ble financial decisions and enough capital to operate and expand large data
centers over decades.

 » Compliance and risk management: Formal structure and established
compliance policies are vital to ensure that your data is safe and secure.
Ideally, review audits before you sign contracts.

 » Positive reputation: Customer trust is absolutely key. Do you trust that you
can rely on this cloud provider to continue to grow and support your evolving
needs?

 » Service Level Agreements (SLAs): What level of service do you require?
Typically cloud providers offer various levels of uptime reliability based on
cost. For example, 99.9 percent uptime will be significantly cheaper than
99.999 percent uptime.

 » Metrics and monitoring: What types of application insights, monitoring, and
telemetry does the vendor supply? Be sure that you can gain an appropriate
level of insight into your systems in as close to real-time as possible.

Finally, ensure the cloud provider you choose has excellent technical capabilities
that provide services that meet your specific needs. I go into specifics of cloud
offerings in the section, “Finding Tools and Services in the Cloud.” Generally,
look for

 » Compute capabilities

 » Storage solutions

CHAPTER 21 Migrating to the Cloud 303

 » Deployment features

 » Logging and monitoring

 » Friendly user interfaces

You should also confirm the capability to implement a hybrid cloud solution in
case you need to at some point, as well as to make HTTP calls to other APIs and
services.

The three major cloud providers are Google Cloud Platform (GCP), Microsoft
Azure, and Amazon Web Services (AWS). You can also find smaller cloud providers
and certainly a number of private cloud providers, but the bulk of what you need
to know comes from comparing the public cloud providers.

Amazon Web Services (AWS)
As do the other major public cloud providers, AWS provides on-demand comput-
ing through a pay-as-you-go subscription. Users of AWS can subscribe to any
number of services and computing resources. Amazon is the current market leader
among cloud providers, holding the majority of cloud subscribers. It offers a
robust set of features and services in regions throughout the world. Two of the
most well-known services are Amazon Elastic Compute Cloud (EC2) and Amazon
Simple Storage Service (Amazon S3). As with other cloud providers, services are
accessed and infrastructure is provisioned through APIs.

Microsoft Azure
Before Microsoft launched this cloud provider as Microsoft Azure, it was called
Windows Azure. Microsoft designed it to do just what the name implies — serve
as a cloud provider for traditionally Windows IT organizations. But as the market
became more competitive and Microsoft started to better understand the engi-
neering landscape, Azure adapted, grew, and evolved. Although still arguably less
robust than AWS, Azure is a well-rounded cloud provider focused on user experi-
ence. Through various product launches and acquisitions — notably GitHub —
Microsoft has invested heavily in Linux infrastructure, which has enabled it to
provide more robust services to a wider audience.

Google Cloud Platform (GCP)
The Google Cloud Platform (GCP) has the least market share of the three major
public cloud providers but offers a substantial set of cloud services throughout
nearly two dozen geographic regions. Perhaps the most appealing aspect of GCP is

304 PART 5 Tooling Your DevOps Practice

that it offers users the same infrastructure Google uses internally. This infra-
structure includes extremely powerful computing, storage, analytics, and machine
learning services. Depending on your specific product, GCP may have specialized
tools that are lacking (or less mature) in AWS and Azure.

Finding Tools and Services in the Cloud
Literally hundreds of tools and services are at your disposal through the major
cloud providers. Those tools and services are generally separated into the follow-
ing categories:

 » Compute

 » Storage

 » Networking

 » Resource management

 » Cloud Artificial Intelligence (AI)

 » Identity

 » Security

 » Serverless

 » IoT

Following is a list of the most commonly used services across all three of the
major cloud providers. These services include app deployment, virtual machine
(VM) management, container orchestration, serverless functions, storage, and
databases. I include additional services such as identity management, block stor-
age, private cloud, secrets storage, and more. It’s far from an exhaustive list but
can serve as a solid foundation for you as you begin to research your options and
get a feel for what differentiates the cloud providers.

 » App deployment: Platform as a Service (PaaS) solution for deploying
applications in a variety of languages, including Java, .NET, Python, Node.js,
C#, Ruby, and Go

• Azure: Azure Cloud Services

• AWS: AWS Elastic Beanstalk

• GCP: Google App Engine

CHAPTER 21 Migrating to the Cloud 305

 » Virtual machine (VM) management: Infrastructure as a Service (IaaS)
option for running virtual machines (VMs) with Linux or Windows

• Azure: Azure Virtual Machines

• AWS: Amazon EC2

• GCP: Google Compute Engine

 » Managed Kubernetes: Enables better container management via the
popular orchestrator Kubernetes

• Azure: Azure Kubernetes Service (AKS)

• AWS: Amazon Elastic Container Service (ECS) for Kubernetes

• GCP: Google Kubernetes Engine

 » Serverless: Enables users to create logical workflows of serverless
functions

• Azure: Azure Functions

• AWS: AWS Lambda

• GCP: Google Cloud Functions

 » Cloud storage: Unstructured object storage with caching

• Azure: Azure Blob Storage

• AWS: Amazon S3

• GCP: Google Cloud Storage

 » Databases: SQL and NoSQL databases, on demand

• Azure: Azure Cosmos DB

• AWS: Amazon Relational Database Service (RDS) and Amazon DynamoDB
(NoSQL)

• GCP: Google Cloud SQL and Google Cloud BigTable (NoSQL)

As you explore the three major cloud providers, you notice a long list of services.
You may feel overwhelmed by the hundreds of options at your disposal. If, by
chance, you can’t find what you need, the marketplace will likely provide some-
thing similar. The marketplace is where independent developers offer services
that plug into the cloud — hosted by Azure, AWS or GCP. Table 21-1 lists addi-
tional services provided by most, if not all, cloud providers.

306 PART 5 Tooling Your DevOps Practice

TABLE 21-1	 Common Cloud Services
Service Category Functionality

Block storage Data storage used in storage-area network (SAN) environments. Block storage
is similar to storing data on a hard drive.

Virtual Private Cloud
(VPC)

Logically isolated, shared computing resources.

Firewall Network security that controls traffic.

Content Delivery
 Network (CDN)

Content delivery based on the location of the user. Typically utilizes caching,
load balancing, and analytics.

Domain Name System
(DNS)

Translator of domain names to IP addresses for browsers.

Single Sign-On (SSO) Access control to multiple systems or applications using the same credentials.
If you’ve logged into an independent application with your Google, Twitter, or
GitHub credentials, you’ve used SSO.

Identity and Access
 Management (IAM)

Role-based user access management. Pre-determined roles have access to a
set group of features; users are assigned roles.

Telemetry, monitoring,
and logging

Tools to provide application insights on performance, server load, memory
consumption, and more.

Deployments Configuration, infrastructure, and release pipeline management tools.

Cloud shell Shell access from a command-line interface (CLI) within the browser.

Secrets storage Secure storage of keys, tokens, passwords, certificates, and other secrets.

Message Queues Dynamically scaled message brokers.

Machine Learning (ML) Deep learning frameworks and tools for data scientists.

IoT Device connection and management.

6The Part of Tens

IN THIS PART . . .

Gain a clear grasp of the top ten reasons that you and
your organization benefit from adopting DevOps.

Be prepared for the biggest challenges that can arise
as you undertake your DevOps transformation.

CHAPTER 22 Top Ten (Plus) Reasons That DevOps Matters 309

Chapter 22
Top Ten (Plus) Reasons
That DevOps Matters

This chapter presents the key points to know about how DevOps benefits your
organization. Use it as a reference to help you persuade your colleagues or
to reinforce your understanding of why you chose to go the DevOps route

when the road gets bumpy.

Accepting Constant Change
The tech landscape is an ever-changing environment. Some languages evolve and
new ones are created. Frameworks come and go. Infrastructure tooling changes to
meet the ever-growing demands for hosting applications more efficiently and
delivering services more quickly. Tools continue to abstract low-level computing
to reduce engineering overhead.

The only constant is change. Your ability to adapt to that change will determine
your success as an individual contributor, manager, or executive. Regardless of
the role you currently fill at your company or hope to eventually play, it is vital to
adapt quickly and remove as much friction from growth as possible. DevOps
enables you to adapt and grow by improving communication and collaboration.

IN THIS CHAPTER

 » Using DevOps to accelerate delivery

 » Competing with the best through
DevOps methodologies

 » Continuously improving your systems
and processes

310 PART 6 The Part of Tens

Embracing the Cloud
The cloud isn’t the future; it’s now. Although you may still be transitioning or not
yet ready to move, realize that the cloud is the way forward for all but a few
 companies. It gives you more flexibility than traditional infrastructure, lowers the
stress of operations, and (usually) costs significantly less because of a pay-as-
you-go pricing structure. Public, private, and hybrid clouds give you endless
 possibilities to run your business better. The ability to spin up (launch) resources
within minutes is something most companies have never experienced prior to the
cloud.

This agility provided by the cloud goes hand in hand with DevOps. Omri Gazitt
from Puppet, a company focused on automation and configuration management,
put it best: “As organizations move to the cloud, they are revisiting their core
assumptions about how they deliver software.” With the cloud, APIs connect every
service, platform, and infrastructure tool so that you can manage your resources
and application seamlessly. As you migrate to the cloud, you can reevaluate past
architecture decisions and slowly transition your application and system to be
cloud-native, or designed with the cloud in mind.

Hiring the Best
Because of increased demand, great engineers are scarce. There simply aren’t
enough engineers to fill all the jobs currently open or to meet market demand over
the next decade and beyond. Although finding engineers can be difficult, it’s not
impossible, especially if you focus on discovering engineers who embrace curios-
ity and aren’t afraid to fail. If you implement DevOps in your overall engineering
culture, you can level up engineers and train them in the methodology and tech-
nology that supports continuous improvement.

It’s difficult to measure potential in an interview. I believe talent whispers. The
most talented engineers I’ve ever met aren’t gregarious or braggarts; they let
their work speak for them. DevOps enables you to listen more closely to the
 personal and professional interests of the engineers you interview. I choose
 candidates based on their level of curiosity, communication skills, and enthusi-
asm. Those qualities can see your team through the troughs of fear, uncertainty,
and doubt. They can carry the team through hard decisions, made within con-
straints, in their attempt to solve difficult problems.

You can teach someone a skill, but teaching someone how to learn is an entirely
different matter. The learning culture you create in your DevOps organization
enables you to prioritize a growth mindset over technical prowess. In DevOps,

CHAPTER 22 Top Ten (Plus) Reasons That DevOps Matters 311

 hiring for the team is critical. Every individual is a piece of a whole, and the team
must have balance holistically. Achieving this balance means that sometimes you
don’t hire the “best” engineer, you hire the best engineer for the team.

When you hire for the team you can, like draft horses yoked together, pull more
weight than you could individually. With DevOps, you can multiply the individual
components of your team and, as a whole, create a powerhouse of a team.

Staying Competitive
The yearly “State of DevOps Report” released by DevOps Research and Assessment
(DORA) makes it clear: Companies across the world are using DevOps to adjust
their engineering practices and are reaping the benefits. They see increases in
engineering production and reductions in cost. With DevOps, these companies are
shifting from clunky processes and systems to a streamlined way of developing
software focused on the end user.

DevOps enables companies to create reliable infrastructure and utilize that infra-
structure to release software more quickly and more reliably. The bottom line is
this: High-performing organizations use DevOps, and they’re crushing their
competition by increasing their deployment frequency and significantly decreas-
ing their failures that occur because of changes in the system. If you want to com-
pete, you must adopt the methodologies described in this book. Maybe not all of
them, and definitely not all at one time — but the time to wait and see whether
DevOps is worthwhile has passed.

Solving Human Problems
Humans have reached a point in our evolution at which technology is evolving
faster than our brains. Thus the greatest challenges humans face are due to human
limitations — not the limitations of our software or infrastructure. Unlike other
software development methodologies, DevOps focuses holistically on your socio-
technical system.

Embracing DevOps requires a shift in culture and mindset. But if you achieve a
DevOps culture and mindset, you and your organization reap almost limitless
benefits. When engineers are empowered to explore, free of the pressure and fear
of failure, amazing things happen. Engineers discover new ways to solve prob-
lems. They approach projects and problems with a healthy mindset and work
together more fluidly, without needless and negative competition.

312 PART 6 The Part of Tens

Challenging Employees
DevOps accelerates the growth of individual engineers as well as that of the
 engineering team as a whole. Engineers are smart people. They’re also naturally
curious. A great engineer who embraces a growth mindset needs new challenges
after mastering a particular technology, tool, or methodology or they often feel
stagnant. They need to feel as if their brain and skill sets are being stretched —
not to the point of being overwhelmed or stressed, but enough to feel that they’re
growing. That is the tension described by Dan Pink in Drive. If you can strike that
balance, your engineers will thrive — as individuals and as a team.

The methodology of DevOps promotes T-shaped skills, which means that engi-
neers specialize in one area with deep knowledge and have a broad understanding
of many other areas. This approach allows engineers to explore other areas of
interest. Perhaps a Python engineer has an interest in cloud infrastructure, for
example. No other engineering methodology permits and encourages engineers to
explore as much as DevOps does, and it’s a huge contributor to hiring and retain-
ing talent.

Bridging Gaps
One of challenges of modern technology companies is this gap between the needs
of the business and the needs of engineering. In a traditional company, with
 traditional management strategies, a natural friction exists between engineering
and departments like marketing, sales, and business development. This friction
stems from a lack of alignment. Each department is measured by different indica-
tors of success.

DevOps seeks to unify each department of a business and create a shared under-
standing and respect. That respect for each other’s jobs and contributions is what
allows every person in the company to thrive. It removes the friction and improves
acceleration.

Think about a team of sled dogs. If each dog is moving in separate directions, the
sled goes nowhere. Now imagine the dogs working together, focused on moving
forward — together. When you lack friction internally, the only challenges you
face are external, and external challenges are almost always more manageable
than internal strife.

CHAPTER 22 Top Ten (Plus) Reasons That DevOps Matters 313

Failing Well
Failure is inevitable. It’s simply unavoidable. Predicting every way in which your
system can fail is impossible because of all the unknowns. (And it can fail spec-
tacularly, can’t it?) Instead of avoiding failure at all costs and feeling crushed
when failure does occur, you can prepare for it. DevOps prepares organizations to
respond to failure, but not in a panicky, stress-induced way.

Incidents will always involve some level of stress. At some point along your com-
mand structure, an executive is likely to scream at the money being lost during a
service outage. But you can reduce the stress your team experiences by using fail-
ure as a way of learning and adapting your system to become more resilient. Each
incident is an opportunity to improve and grow, as individuals and as a team.

DevOps embraces kaizen, the art of continuous improvement. When your team
experiences flow in their work, they can make tiny choices every day that contrib-
ute to long-term growth and, ultimately, a better product.

Continuously Improving
I talk a lot about acceleration and continuous improvement throughout this book.
Use the visualization of a never-ending cycle from Chapter 6 and apply it to your
organization. The cycle shouldn’t invoke fears through thoughts of Sisyphus,
pushing a boulder up a hill for all eternity. Instead, think of this cycle as move-
ment, like a snowball rolling downhill, gathering momentum and mass.

As you adopt DevOps and integrate more and more of its core tenets into your
everyday workflow, you’ll witness this acceleration first-hand. The cycle of con-
tinuous improvement should always center around the customer. You must con-
tinuously think about the end user and integrate feedback into your software
delivery life cycle.

Fundamental to this cycle is CI/CD (explained in Chapter 11). Adopting CI/CD isn’t
an all-or-nothing requirement of DevOps; instead, it’s a slow process of imple-
mentation. You should focus on mastering continuous integration first. Encour-
age engineers to share code freely and merge code frequently. This approach
prevents isolation and silos from becoming blockers in your engineering
organization.

After your organization masters continuous integration, move on to continuous
delivery, the practice of automating software delivery. This step requires automa-
tion because code will move through multiple checks to ensure quality. After all

314 PART 6 The Part of Tens

your code is secure and accessible in a source code repository, you can begin to
implement small changes continuously. Your goal is to remove manual barriers
and improve your team’s ability to discover and fix bugs without customer impact.

Automating Toil
Acceleration and increased efficacy are at the core of the DevOps methodology.
By automating labor-intensive manual processes, DevOps frees engineers to
work on projects that make the software and systems more reliable and easily
maintained — without the chaos of unexpected service interruptions.

Site reliability engineering (SRE) deals with toil, which is the work required to
keep services up and running but is manual and repetitive. Toil can be automated
and lacks long-term value. Perhaps most important of all, toil scales linearly,
which limits growth. Note that toil doesn’t refer to the overhead of administrative
necessities such as meetings and planning. This type of work, if implemented
with a DevOps mentality, is beneficial to the long-term acceleration of your team.

One of the core tenets of tooling your DevOps practice is automation. You can
automate your deployment pipeline to include a verbose test suite as well as other
gates through which code must pass to be released. In many ways, SRE is the next
logical step in the evolution of DevOps and should be your next step after you and
your organization master the core concepts of DevOps and implement the practice
in your team.

Accelerating Delivery
The software delivery life cycle has evolved from the slow and linear Waterfall
process to an agile and continuous loop of DevOps. You no longer think up a prod-
uct, develop it fully, and then release it to customers, hoping for its success.
Instead, you create a feedback loop around the customer and continuously deliver
iterative changes to your products. This connected circuit enables you to continu-
ously improve your features and ensure that the customer is satisfied with what
you’re delivering.

When you connect all the dots of this book and fully adopt DevOps in your
 organization, you watch as your team can deliver better software faster. The
changes will be small at first, just like the changes you release. But over time,
those seemingly insignificant changes add up and create a team that accelerates
its delivery of quality software.

CHAPTER 23 Top Ten DevOps Pitfalls 315

Chapter 23
Top Ten DevOps Pitfalls

Fostering a DevOps culture and selecting tools to support your DevOps
approach will benefit your organization. It galvanizes your engineering team
and focuses your product development on your customer.

However, any time you attempt to make a massive change to the undercurrent of
your organization, you face challenges and have to deal with setbacks. As you
transform to DevOps, you’ll discover unique speed bumps for you and your team to
get over. Although I can’t possibly predict every obstacle you’ll face, this chapter
can prepare you for the ten most common DevOps pitfalls. Remember that how-
ever you approach your DevOps practice, your priorities should remain focused on
people, process, and technology — in that order.

Deprioritizing Culture
More than anything else, DevOps is a cultural movement. The culture you build at
your organization will make or break your DevOps practice. Your DevOps culture
must emphasize collaboration, trust, and engineering empowerment. If you nail
automation but miss those cultural components, you will likely fail.

In truth, tooling doesn’t matter that much. The tools you have at your disposal are
more similar than not. Although the problems they solve are important, none of

IN THIS CHAPTER

 » Putting technology over culture

 » Forgetting to measure

 » Fearing failure

 » Implementing DevOps too rigidly

316 PART 6 The Part of Tens

those problems can compare to the nearly endless frustration of trying to unite
developers and operations folks — as well as other teams, like security — in a
traditional engineering organization.

DevOps seeks to galvanize engineers (as well as business groups). It creates
a foundation on which everyone can learn, share, and grow. That personal
 acceleration will fuel your entire engineering organization to create better
 software, faster. The engineers you have on your team are the most valuable asset
you have. Treat them well by giving them respect and the room to do what they do
best — engineer solutions.

Leaving Others Behind
Making the case internally for DevOps will determine the type of foundation you
build for your culture. Look for fertile soil. If you move too quickly and don’t
 convince key people of the importance of a DevOps transformation, people will
watch your movements with skepticism and leap at the first opportunity to show
everyone you’re wrong. That is not a fun position to be in, and you never want to
start this journey with people waiting for you to fail.

To be successful, you need everyone on board, even the naysayers and skeptics.
Engineers can be skeptical. After a decade or two in this industry, they’ve seen a
lot of ideas and new approaches come and go. They can easily shrug off DevOps as
“just another failed approach” to the same old problems. And if you implement it
poorly, DevOps will indeed be just another failed approach. You and your team
must persuade others of the potential and take action in ways that invite everyone
to the table.

I recommend convincing executives with data and the potential for accelerated
software delivery. But engineers need to know how DevOps will make their jobs
more enjoyable. Show them how DevOps aligns with business needs and reduces
friction along the software delivery pipeline. Just be sure not to oversell the
 concept. DevOps is not a silver bullet and requires intense work at the beginning
to ensure that the team creates a learning culture in which engineers are free to
make mistakes and grow.

After you reach an event horizon where enough people believe in DevOps, you can
proceed with the knowledge that you have the support of your organization and
the people within it.

CHAPTER 23 Top Ten DevOps Pitfalls 317

Forgetting to Align Incentives
If you don’t set out to align incentives with what you expect from certain teams or
specific engineers, more challenges arise. The real tool of DevOps, if you can mas-
ter it, is empowerment. You want to empower your engineers to do their job well,
free from interference. You hired talented engineers, so trust their ability to fulfill
their responsibilities.

For example, when developers serve on an on-call rotation, some organizations
frame it as a bit of a punishment. “You built it, you support it” doesn’t exactly fill
people with happy feelings. Instead, it feels like just another form of siloed
responsibility. But a humane and evenly distributed on-call rotation not only
empowers developers to take ownership of their work, but it also creates learning
opportunities for the entire team.

In DevOps, you don’t punish engineers for imperfect work; instead, you share
responsibility and cultivate an organization that values learning and empowers
everyone to be curious as well as participate in areas of tech in which they’re less
familiar.

Aligning incentives and creating opportunities for collaboration drives your goal
of improving your products and better serving your customers. If everyone is
aligned toward the goal of creating amazing services for your customers, you will
see the group begin to galvanize.

Keeping Quiet
DevOps is the antithesis of secrets and backroom negotiations. Instead, it lays
everything out on the table and forces you to trust the integrity of the people in
your organization. When you first introduce open communication, conflict may
seem to increase. It doesn’t. Instead, you’re simply seeing the friction points for
the first time. Instead of leaving conflict to brew beneath the surface, people feel
safe enough to raise their concerns and express their opinions.

An important aspect of open communication is to keep it going throughout the
entire product life cycle — from ideation to production. You must include engi-
neers in planning discussions, architecture decisions, development progress
updates, and deployments. Although this emphasis on communication creates
more verbose discussions, it also enables engineers to have visibility outside of
their core area of expertise, which in turn empowers them to advise others while
equipped with the context necessary to make sound decisions.

318 PART 6 The Part of Tens

Keep the customer — and what they expect from the product you’re building — at
the center of every discussion and decision. If you stay aligned on that goal, you’re
sure to move forward together as one unit.

Forgetting to Measure
Measuring your progress is crucial to DevOps success. It lends you validation
when making the argument for DevOps to doubting stakeholders, helps you con-
vince holdout executives, and reminds your engineering team how much they’ve
accomplished.

Before you make a single change, create a baseline. Choose a small set of data you
want to track through your entire process. This data informs your decisions and
serves as fuel to continue pushing when you hit setbacks. Potential measurements
include:

 » Employee satisfaction: Do your engineers love working at your organization?

 » Monthly recurring revenue (MRR): How much money are you making from
customers?

 » Customer tickets: How many bugs are reported by your customers?

 » Deployment frequency: How many deployments do you have every week or
month?

 » Mean time to recovery (MTTR): How long does take to recover from a
service disruption?

 » Service availability: What is the uptime of your application? Are you hitting
your current service-level agreements?

 » Failed deployments: How many releases cause service disruptions? How
many have to be rolled back?

Micromanaging
One of the quickest ways to undermine your engineers is to micromanage their
work. Dan Pink, author of the book Drive, believes that motivation at work is driven
by three factors:

CHAPTER 23 Top Ten DevOps Pitfalls 319

 » Autonomy

 » Mastery

 » Purpose

Extrinsic motivators like high salaries, bonuses, and stock options may work in
the short-term, but long-term job satisfaction depends more on personal and
professional growth. You want your engineers to exist in the tension of feeling
highly challenged but not overwhelmed by stress. That sweet spot is different for
every person. If you can evoke someone’s passion, they’re sure to work
enthusiastically.

Trust is critical to DevOps organizations. You must trust your colleagues, peers,
engineers, managers, and executives. You must also trust the roles and responsi-
bilities of the various departments in your organization — which isn’t to say that
you will never have conflict. Of course moments of friction will happen between
human beings. But minimizing those moments and enabling healthy conflict res-
olution is what distinguishes DevOps-focused engineering teams from their
competition.

Changing Too Much, Too Fast
Many teams make too many changes too quickly. Humans don’t like change. (I
certainly don’t.) Although DevOps is beneficial over the long term, quick changes
to the normal way of doing things can be jarring to engineers.

One failing of DevOps is that it implies that everyone lives in the greenfield (new
software) with rainbows and unicorns. It can sound like, “If only you can get your
team to work together, software development will be easy!” That’s not true. Soft-
ware engineering is hard and will always be hard. That’s one thing most engineers
like about it. You enjoy a challenge. But challenges should be stimulating, not
stressful.

DevOps doesn’t aim to remove all the intellectual challenges of engineering.
Instead, it offers to minimize the friction between humans so that everyone can
focus on their work. If you attempt to make too many changes too quickly, you can
find yourself in the middle of an all-out revolt — Mutiny on the Binary.

320 PART 6 The Part of Tens

Choosing Tools Poorly
Although I deprioritize tooling in DevOps — and rightfully so — tooling is still a
factor. Even the least important aspect of DevOps contributes to your overall
 success. The tools you select should solve the problems your engineering team
experiences, but should also align with the style, knowledge, and comfort areas of
your existing team.

Don’t be afraid to try several solutions and see which one fits the best. Dedicating
a few weeks to a minimum viable product (MVP) or proof of concept (POC) to test
a tool is well worth the effort. Even if you end up throwing it away, “wasting” the
engineering resources is preferable to going all-in on a particular technology only
to find out a year later that it’s not a good fit.

Fearing Failure
Failing fast is a short way of saying you should constantly be iterating to identify
problems early in the process without spending a ton of time and money. I discuss
failing fast more in Chapter 16. It’s something that a lot of people in tech talk
about and few actually implement because it requires rapid iteration in an envi-
ronment in which mistakes have a small blast radius and are easily corrected. Too
often, companies claim a fail-fast mentality and instead fire the first engineer to
delete a production database. (As if any engineer out there has never deleted a
production database)

In the context of DevOps, however, you’re better off failing well than failing fast.
Failing well implies that you have monitoring in place to alert you to potential
problems long before the situation impacts customers. Failing well also implies
that you’ve designed your system in a segmented way that prevents one service
that’s falling over from cascading into a systemic outage. But organizations that
fail well go one step further as well: They don’t blame people. Instead, they look
for failures in systems and processes.

Kaizen is the Japanese word for continuous improvement. In DevOps, kaizen
means to continuously improve your processes. It’s not some sexy transformation
that has a beginning and an end. The goal isn’t to go from zero to perfect. Instead,
DevOps encourages working slowly and gradually toward making one thing bet-
ter, every day. If you leave work each evening knowing that just one small aspect
of work is better because of you, wouldn’t you feel satisfied? I would and do, and
I’m willing to bet that a lot of engineers feel the same.

CHAPTER 23 Top Ten DevOps Pitfalls 321

Instead of attempting to avoid failure at all costs, DevOps insists on a growth
mindset. Failure isn’t a marker of stupidity or poor preparation. It’s a marker of
growth and a necessary step in innovation. Innovation is an outcome that I hope
you’re willing to pursue, even if it means that you occasionally fail.

Being Too Rigid
DevOps is not prescriptive, and that’s both the best and worst thing about it.
DevOps would be so much easier to implement if I could give you ten actions
to take to achieve DevOps nirvana. I wish I could! But humans don’t work that
way, and groups of humans — such as on engineering teams and in large
organizations — create even more complexities that need to be addressed.

Although no blueprint for building a DevOps organization exists, you are
 empowered to tailor the methodology to practices that work for you and your
team. You know your organization, and I encourage you to think out of the box
when applying the fundamentals. Some of the things in DevOps will fit you
 perfectly. Others will feel like wearing a jacket that’s just one size too small. That’s
okay.

You’re going to make mistakes. No one is perfect. But if you let go a bit, empower
your engineers, and trust your team, you will see awesome outcomes. Just get
started. And remember: Invite everyone to the table, measure your progress,
 prioritize culture over technology, and empower your engineers to do what they
do best.

Index 323

Numbers
5 Whys technique, 56–57
12 principles of Agile, 80

A
achievements, balancing work and, 225–226
administrators (Myers-Briggs personality type), 46
adoption, learning through, 296
adoption curves, 51–54, 56
affordability, improving, 297
aggregators, 110
Agile

12 principles of, 80
evolution of DevOps from, 8
origins of, 80
pros and cons of, 80–81
story points, 169
waterfall methodology and, 73

Airbnb (MVP example), 85
AKS (Azure Kubernetes Service), 288
alerts, 170, 174
alpha release, 90
alternative thought, encouraging, 24
Amazon DynamoDB, 305
Amazon Elastic Compute Cloud (EC2), 289, 303
Amazon Elastic Container Service (ECS), 288–289, 305
Amazon Relational Database Service (RDS), 305
Amazon Simple Storage Service (S3), 242, 303
Amazon vision statement, 26
Amazon Web Services (AWS), 298, 303
analysis, 98, 178
Ansible (Red Hat suite), 234
anti-patterns, avoiding, 119–121
Apache License, 265
apathetic company culture, 17
APIs (Application Program Interfaces), 265, 280–284
APM (application performance management), 64

app deployment, 304
application logic, 130
applications

calling infrastructure APIs from, 110
scalability of, 103, 104

architects, 102
architectural documentation, 96
architecture

flexibility, 108
maintainability, 103
pitfalls, 109–110
reliability, 107–108
scalability, 103–104
security, 105
usability, 106–107

Architecture Decisions, 109
architecture teams, 98–99
asynchronous code review, 127
Atlassian, 225
authority bias, 23
automated continuous testing, 77
automated releases, 142, 143–144
automated tests. See also tests

continuous testing, 138
coverage, 63
in different environments, 131–135
to implement continuous delivery, 142
to implement continuous deployment, 143
to implement continuous integration, 142
unit testing, 135–138
why necessary, 129–130

automation, 21–22, 78, 143–144, 170, 314
of deployments, 297
of documentation, 126
of manual processes, 314

Automation Engineer, 195–197
automation teams, 192
autonomy, 208, 213

Index

324 DevOps For Dummies

auxilia, 209
availability, 107
average meeting cost, calculating,

62, 67
AWS (Amazon Web Services), 243, 298, 303
Azure, 243, 298, 303
Azure Kubernetes Service (AKS), 288

B
baseline, establishing, 60, 318
BBC vision statement, 26
benefits, providing, 24
best practices. See good practices
beta release, 90
beta user, defined, 83
bias, 23
bifurcated release, 150
big-spending customers, 181
blast zone, 33, 226
bleeding edge, 120
block storage, 306
Blockbuster example, 44–45
blue-green deployments, 149–150
boilerplate, 126
boldness, 207
bottlenecks, 36–39
brownfield, 115
buddy groups, 172
budgets, 83, 242–243, 267
buffer, providing, 40–41
bugs, 115–116, 130, 151. See also viruses
Build-Measure-Learn, 176
business objectives, sharing, 84
business structure, 208

C
C# programming language, 304
CALMS (culture, automation, lean,

measurement, and sharing), 11–12
canary deployment, 150–151
Candle Problem, 212
capacity limits, 38
cargo cult solution, 120
caring company culture, 17

case studies, 181–182
CBD (Component-Based Development), 99
CD (continuous deployment), 77, 143,

145, 146
CDN (Content Delivery Network), 306
change failure, 171
changes

constant, acceptance of, 309
designing for, 99–100
fast, problems with, 320
implementing from feedback, 179–180
resistance to, 44–45, 50–51

chasm, 56
checklists, 241
CI (continuous integration), 140–143, 234
CI/CD (continuous integration and continuous

delivery), 11, 75, 141–143, 277
CircleCI tool, 233
clan structure, 22–23
classes, improv, 112
clean code, 121–122, 164
CLI (command-line interface), 306
clients. See also companies

being honest with, 90
enterprise clients, 181
feedback from, 176–177, 181
identifying, 86–87
product testing on, 183
retaining, 176
satisfaction of, 180–181
surveys, 180–181

Cloud, 147, 222
Cloud Native Computing Foundation, 288
cloud services

automating DevOps in, 295–298
categories of, 300–302
embracing, 310
providers, choosing for, 302–304
tools and services in, 304–306
types of, 298–300

cloud shell, 306
cloud storage, 305
Cloud Transformation Team, 193
cloud-native applications, 104
coaches, speech, 112

Index 325

code
automating, 232
avoiding anti-patterns, 119–121
choosing language, 119
clean, 164
communicating about, 111–114
coverage of, 135
for DevOps development, 121–123
difficult to understand, 236
error handling, 114
“fires” in, putting out, 240
flexibility of, 108
good practice, 124–127
integration problems, 233–234
maintainability of, 103, 114–117
old, 99
programming patterns, 117–118
releasing for deployment process, 139–140
reliability, 107–108
review process, 101, 126–127, 201–202
scalability of, 103–104
security of, 105, 106
usability of, 106–107
verbose, 236

coding phase, 75
cognitive ergonomics, 231
collaborative work environment, 8–9
colleagues

feedback from, 179
incidents involving, 241
persuading to try DevOps

5 Whys technique, 56–57
adoption curves, 51–54
change, fearing, 44–45
chasm, 56
despite stubbornness, 50–51
earning executive support, 48
groundswell, creating in engineering groups, 49
hype cycle, 54–55
middle managers, 50
overview, 43, 45–47
pitfalls in, 316
responding to pushback, 55

trading, 191

command-line interface (CLI), 306
commenting on code changes, 102
committees, design by, 120
communication

about code, 111–114
desire paths and, 53
feedback, 179
importance of, 20–21
interpersonal, 16
measuring channels, 173
on teams, 206
tools for, 243
unopen, 317–318

companies
accepting failure, 224–225
big-spending customers, 181
business structure, 208
enterprise clients, 181
mid-sized, 207–208
product testing on, 183
scaling, 205–210
stages of, 206–207
tech companies, 235

company culture
accessing health of, 16–17
exacting, 17
importance of, 15–17
influence of, 9
modeling, 22–23
structures of, 22–23
tech culture, avoiding, 23–24
vision statement, 25–26

competition, 87, 311
compiled languages, 268–269
complexity, embracing, 290
Component-Based Development (CBD), 99
components, isolating, 109
configuration management tools, 146, 289
configuration settings, 110
conflicting interests, solutions to, 13–14
conflicts, with employees, 202–204
connections, 198
consistent design, 280–284
contact information, from feedback, 177

326 DevOps For Dummies

container breakout, 293
containerized application clusters, 286–287
containers

adopting, 290
bloat, avoiding, 291
configuring, 289–290
deploying microservices to, 285–287
description of, 276
ecosystem of, 292
monitoring, 290–291
orchestrators, comparing, 287–289
securing, 292–293
sidecar, 291

Content Delivery Network (CDN), 306
continual feedback, 184–187
continual learning, 165, 176
continuous delivery, 140–143
continuous deployment (CD), 77, 143, 145, 146
continuous integration and continuous delivery (CI/

CD), 11, 75, 141–143, 277
continuous integration (CI), 140–143, 234
continuous testing, 77, 138
contraction, defined, 62
copypasta, 121
cost per incident (CPI), 249
costs of defects, 33
counselors (Myers-Briggs personality type), 46
Covey, Steven, 162
CPI (cost per incident), 249
crises, prioritizing, 163–164
cross-functional team, 192
Crossing the Chasm (Moore), 52, 56
crowd sourcing, 110
CSAT (customer satisfaction), 62
Csikszentmihalyi, Mihaly, 212, 225
culture

company
accessing health of, 16–17
importance of, 15–17
influence of, 9
modeling, 22–23
structures of, 22–23
tech culture, avoiding, 23–24
vision statement, 25–26

DevOps, 9, 296, 315–316

culture, automation, lean, measurement,
and sharing (CALMS), 11–12

curiosity, 123
customer personas, 91
customer satisfaction (CSAT), 62
customer tickets, number of, 62
customer usage, quantifying, 62
customers. See clients

D
data

collecting, 64–65, 155, 233
formatting, 283

databases, 110, 305
days off, 238
dead code, 170
deadlines, 163
Debois, Patrick, 8
debugging, 115–116, 130
decisions

documenting, 108–109
poor, 170–171

defect escape rate, 63
defects, costs of, 33
delivery

accelerating, 297, 314
continuous, 140–143

departments
coordinating with, 143
unifying, 312

deployed term, 139–140
deployment process, 232

avoiding failure, 146–147
choosing style for, 148–154
for continuous integration and continuous

delivery (CI/CD), 140–143
frequency, 171
maintenance, 143–146
monitoring software, 154–157
releasing code, 139–140
sharing deployments, 147–148

deployments
automating, 297
continuous, 77

Index 327

failed, 64, 318
frequency of, 62
length of, 63
microservices and, 279
overview, 12
size of, 63

design
AP, 280–284
consistent, focusing on, 280–284
MVP, 85–90
organizations

company culture, 16–17, 22–26
establishing values, 18–22
incentivizing values, 26–30
integrating DevOps, 17–18
overview, 15–16

UX, 89–90
design phase

architecting code for, 102–108
architecture pitfalls, 109–110
construction, 96–99
designing for changes, 99–100
documenting decisions, 108–109
documenting software, 101–102
improving software and systems, 100–101
storing decisions, 109

design-by-committee pattern, 120
designing phase, 74
desire paths, communication and, 53
detractors, 185
Developer Relations (DevRel), 28
developers. See also employees

on-call rotation and, 317, 318
description of, 13–14
focus of, 123
knowledge of languages, 273
skillsets of, 19
updating for continuous integration (CI), 142

development environments (DEVs), 78, 132, 133, 139
development lead time, tracking, 67–68
development processes, changing, 73–76
DevOps

author’s introduction to, 13
automating cloud services in, 295–298
benefits of, 10–14, 309–314

culture, 9, 296, 315–316
development, 121–123
engineers, focusing on, 8
evolution from Agile, 8
hiring, 194–202
importance of persuasion for, 10
integrating, 17–18
making changes in, 10
measuring progression, 61–64
overview, 7–8
persuading colleagues to try

5 Whys technique, 56–57
adoption curves, 51–54
change, fearing, 44–45
chasm, 56
earning executive support, 48
groundswell, creating in engineering groups, 49
hype cycle, 54–55
middle managers, 50
overcoming stubbornness, 50–51
overview, 43, 45–47
responding to pushback, 55

pitfalls in, 315–321
teams, 189–204
workflow, observing, 9

DevOps Engineer, 195
DevOps Research and Assessment (DORA), 48, 171,

249, 311
DevOpsDays event, 8
DevOpsing motivation, 212
DevRel (Developer Relations), 28
DEVs (development environments), 78, 132, 133, 139
DevSecOps, 105
differentiating oneself, 207
The Diffusion Process (Beal, Bohlen), 51
Discovery step, 253
discrimination, 112–113
display messages, 114
disruptions. See incidents
distractions, 163
distributed systems, 146. See also containers

designing API, 280–284
microservices, 276–279
monoliths, 276–278
overview, 275–276

328 DevOps For Dummies

diversity, demanding, 24
DNS (Domain Name System), 306
Docker Swarm, 288–289
documentation

automating, 126
code, 103
configurations, 110
decisions, 108–109
features, 125–126, 143
software, 101–102

dogfooding, 182–184
Domain Name System (DNS), 306
DORA (DevOps Research and Assessment), 48, 171,

249, 311
Drive (Pink), 210–211, 225, 318
durability, 108
Dweck, Carol, 223
DynamoDB, 305

E
early majority group, 52
EC2 (Amazon Elastic Compute Cloud), 289, 303
ECS (Amazon Elastic Container Service), 288–289, 305
edge case, 114
education, 123

continual learning, 165, 176
improv classes, 112
speech coaches, 112
teaching operations knowledge, 113
training imperfection, 172

Eisenhower Decision Matrix, 162, 173
Elastic Compute Cloud (EC2), 289, 303
Elastic Container Service (ECS), 288–289, 305
elevator brakes, 221
email alerts, 174
employees. See also developers; engineers

on-call responsibilities, 237–239
challenging, 312
communicating expectations, 204
communicating feedback, 179
cross-functional teams, 192–194
dedicated DevOps team, 191–192
empowering, 176

finger-pointing, 255
firing, 202–204
functional DevOps teams, 190–191
giving surveys to, 16
helping, 204
hiring, 194–203
investing in, 210
managers, 225–226
post-incident reviews, 255
pros and cons to increasing number of, 39–40
salary, 213
satisfaction of, 66–68
training, 204

endpoints, designing APIs with, 280, 281
engineering, high-quality, 267
engineers, 205–216. See also employees

adding work to, 166–167
allowing time for analysis, 98
architecture teams, 98
boundaries of work, 168
career growth, 98–99
communicating feedback, 179
company stages, 206–210
DevOps Engineer, 195
feedback from, 98
finger-pointing, 255
focus of, 123
focusing on, 8
groundswell in engineering groups, 49
hiring, 310–311
improving performance, 171–174
incident management, 243
mistake at Knight Capital, 170–171
motivating, 210–215
operations, description of, 13–14
persuading to try DevOps, 46–48
reducing friction for, 173
scaling engineering teams, 205–210
subject-matter experts, 97
trusting one another, 165
underqualified, 39

enterprise clients, 181
enterprise organization, 208–210

Index 329

environments, 8–9, 75, 78, 301
development environment, 133
local environment, 132–133
production environment, 135
quality assurance (QA), 133–134
staging, 131, 134

ergonomics, 230, 231
error rates, 64
errors, 130. See also failure

communicating, 284
handling in code, 114
by humans, 170–171
learning from others, 246–247
silent, 114

evaluations, establishing values with, 27–28
evangelists, 47
even-numbered groups, 172
executives, persuading to try DevOps, 46–48
expansion, defined, 62
experimentation, 225
eXtensible Markup Language (XML), 264
extrinsic motivation, 211, 222, 319

F
Facebook, 85, 161
failure. See also errors

change failure, 171
decreasing, 298
in deployments, 146–147, 318
embracing, 19
fail-deadly, 221
fail-fast system, 161, 220–222
failing well, 222–227
preparing for, 313
recurring, 63

feature flags, 142, 153–154
feature toggle, 153–154
features

documenting, 125–126, 143
prioritizing, 88–89

feedback, accepting, 21
feedback loops

collecting feedback, 180–184
continual feedback, 184–187

for continuous integration and continuous
delivery (CI/CD), 141

creating, 177–180
customer feedback process, 176–177

fidelity, 108
financial runway, defined, 83
finger-pointing, 255
Firefighting Resources of California Organized for

Potential, 240
firewall, 306
firing employees, 202–204
“First Penguin” award, 226
5 Whys technique, 56–57
fixed mindsets, 223
fixing forward, 147
flag feature, 142, 153–154
flatarchy, defined, 23
flexibility, 108
Flow (Csikszentmihalyi), 212
frameworks, 120, 273–274
free software, 265
friction, reducing, 173
full-stack engineers, 109
functional programming, 117, 118, 270–272

G
garbage collection process, 272
GCP (Google Cloud Platform), 298, 303–304
gender-biased defaults, 245
generalists, 207
Genghis Khan example, 207–208
GitLab, 246–247
global job titles, 197
GNU General Public Licenses (GPL), 265
Go CD tool, 234
Go programming language, 304
goals, opposing, 14
god objects, 120
Goldilocks tasks, 212, 225
good practices, 126–127
Google, 225, 242
Google Cloud BigTable, 305
Google Cloud Platform (GCP), 298, 303–304
Google statement, 26

330 DevOps For Dummies

GPL (GNU General Public Licenses), 265
GraphQL, 265
groundswell, creating in engineering

groups, 49
Growth (Dweck), 223
growth mindset, 223–224

H
hack time, rewarding with, 29
happy path test, 125
higher-order functions, 270–271
high-frequency trading, 170–171
high-velocity organizations, 170–171
hindsight bias, 258
hiring

interviews before, 194–195
job titles, 195–197
recruiters for, 197–199
technical abilities and, 199–202

holacracy structure, 23
hourglass shape example, 46
HTTP (HyperText Transfer Protocol), 110, 264, 280
human error, 170–171, 222

combating with automated systems, 231–233
combating with automated tools, 233–234
deployment and configuration management,

234–235
limiting overengineering, 235–236

human limitations, solving, 311
Humpty Dumpty talk (Freeman), 12
hybrid cloud, 299–300
hype cycle, 54–55
hype cycle phase, 55
HyperText Transfer Protocol (HTTP), 110, 264, 280
hypervisor, 292

I
IaaS (Infrastructure as a Service), 300
IaC (Infrastructure as Code), 296
idea prizes, rewarding with, 29
Identity and Access Management (IAM), 306
image layers, 284
images, containers and, 285
immutable code, 117

immutable instructions, 284
impact, focusing on, 39–41
important tasks, 164–166
imposter syndrome, 113, 201
improv classes, 112
inaction, 33
incentives, aligning, 14, 317
incidents, 170–171. See also post-incident reviews

on-call responsibilities, 237–239
checklists for, 241
combating human error, 230–236
managing, 236, 239–247
measuring progress, 248–249
teams for, 244

independence, 209–210
individual output, 28
information-gathering phase, 83
infrastructure, 83, 100, 146, 232
Infrastructure as a Service (IaaS), 300
Infrastructure as Code (IaC), 296
insurance, providing, 24
integration, 267

automating, 232
continuous, 140–143
tests for, 136–137

integrative company culture, 17
internal case studies, developing, 66–68
Internet of Things (IoT), 306
interpersonal communication, 16
interpersonal conflicts, 141, 202
interviews

real-time code interviews, 201
when hiring, 194–195
whiteboard interviews, 199–200

intrinsic motivation, 211
inventory, 34
investigations, 243
IoT (Internet of Things), 306
iterative process, 90

J
Java programming language, 304
JavaScript Object Notation (JSON), 264
Jenkins tool, 234

Index 331

jerk types, 202–203
job roles, 13–14
job titles, 195–197
JSON (JavaScript Object Notation), 264
junior developers, 112–113

K
K8s. See Kubernetes
kaizen, 222–223, 313, 320
Kanban boards, 180
kernel architecture, shared, 293
kernel features, 292
key performance indicators (KPIs), 60, 167, 233
Knight Capital, 170–171
Kodak example, 50
KPIs (key performance indicators), 60, 167, 233
Kubernetes, 288, 305

L
labor-intensive manual processes, automating, 314
languages

choosing for code, 119
communities for, 273
transitioning to new, 268–274

Lao Tzu example, 222
latency, 107
late-stage startup, 207–208
lead time, 63, 171
leadership, 45–46, 165
Lean Enterprise Research Centre (LERC), 31
lean manufacturing, 34
The Lean Startup (Ries), 161, 176, 219
lean teams, 11
legacy codebases, 115
Legacy Product Team, 193
legati, 209
legions, 209
LERC (Lean Enterprise Research Centre), 31
libraries, 273–274
licensing open source software, 265–266
limitations, human, 311
linear development workflow, defined, 8

listening skills, 11
load tests, 137
local environment, 132–133
lock-in situation, 121
log aggregator, 110
logging

code, 116
frameworks, 116
tools for, 233

logistics, 210
long-term bottleneck, 38

M
Machine Learning (ML), 306
macroservices, 278
maintenance

of code, 114–117
deployment process, 143–146
maintainability, 103
open source software (OSS), 267

major updates, 151
male development teams, 112–113
managers

balancing achievements and work, 225–226
covering for team, 226
persuading to try DevOps, 46–47, 50

Manifesto for Agile Software Development, 8
manual processes, automating labor-intensive, 314
manual testing, 130
marginalized groups, 112–113
market, changing, 81
martyr types, 203
mastery, 213–214
matrix, 162
mean time between failures (MTBF), 107, 248–249
mean time to detection (MTTD), 63
mean time to recovery (MTTR), 63, 171, 318
mean time to repair (MTTR), 248
measuring communication channels, 173
meeting cost, calculating average, 62
memory management, 272
meritocracy structure, 23
message queues, 306

332 DevOps For Dummies

metrics, 155, 248
micromanaging, 318–319
microservice architecture, 146, 253
microservices, 109, 276–279
Microsoft Azure, 243, 298, 303
Microsoft vision statement, 26
middle managers, persuading to try DevOps, 50
mid-sized companies, 207–208
mindsets, 223
minimum viable product (MVP), 82, 85–90, 161, 320
MIT License, 265
ML (Machine Learning), 306
mocking, 133
modern container, 284
monetary rewards, 214
Monetary Theory and Practice (Goodhart), 60
Mongols example, 207–208
monitoring

containers, 290
software, 154–157

monoliths, 252–253, 276–278
monthly recurring revenue (MRR), 62
motion, eliminating, 33
motivation

autonomy and, 213
avoiding reliance rewards, 212–213
choosing teams, 215
DevOpsing motivation, 212
making work fun, 214–215
mastery, 213–214
measuring, 215–216
purpose of, 214
researching, 211–212

motivators, extrinsic, 319
moving left, defined, 77
MRR (monthly recurring revenue), 62
MTBF (mean time between failures), 107, 248–249
MTTD (mean time to detection), 63
MTTR (mean time to recovery), 63, 171, 318
MTTR (mean time to repair), 248
muda (waste), 34
multithreading, 269–270
mura (unevenness), 34
muri (overburden), 34
mushroom management, 122

MVP (minimum viable product), 82, 85–90, 161, 320
MVP Team, 193
Myers-Briggs personality types, 45–46

N
negative feedback, 179
.NET programming language, 304
net promoter score (NPS), 185
Netflix, 44–45, 242
Nipigon River Bridge, 221
The No Asshole Rule (Sutton), 202
no operations (NoOps), 148, 231
Node.js programming language, 304
NoOps (no operations), 148, 231
NoSQL databases, 305
nouns, designing APIs with, 281
NPS (net promoter score), 185
numeri, 209

O
object-oriented programming (OOP), 117–118, 268
off-site activities, 29–30
on-call responsibilities, 191

incidents, 237–239
rotation, 245
schedules, 239

on-call rotation, 296, 317
OOP (object-oriented programming), 117–118, 268
open architecture, 265
open computing, 264
open source components, 293
Open Source Initiative (OSI), 265
open source software (OSS), 232

choosing, 266–268
licensing, 265–266
open computing, 264–265

open standards, 264
Open Web Application Security Project (OWASP), 138
OpenShift, 288
operations engineers, 13–14
operations knowledge, 113
operations teams., 190
OpsLite, 296
optimizing prematurely, 121

Index 333

orchestrators, comparing, 287–289
organizational ergonomics, 231
organizations

benefits of DevOps in, 309–314
designing

company culture, 16–17, 22–26
establishing values, 18–22
incentivizing values, 26–30
integrating DevOps, 17–18
overview, 15–16

planning
Agile, pros and cons to, 80–81
challenges of, 81–83
gathering requirements, 84
minimum viable product (MVP), designing, 85–90
overview, 79
personas, determining customers by designing,

91–93
progression of

collecting data, 64–65
internal case studies, developing, 66–68
measuring DevOps, 61–64
overview, 59–61

OSI (Open Source Initiative), 265
OSS. See open source software (OSS)
Otis, Elisha, 221
outage, 258
out-of-date software, 106
overburden (muri), 34
overengineering, 120
overproduction, 33
overreacting, 243
OWASP (Open Web Application Security Project), 138

P
PaaS (Platform as a Service), 301
pair programming, 201
pale development teams, 112–113
panic, reducing with whiteboard interviews, 200
parallelized testing environment, 134
parallelizing, 269–270
parameters, designing APIs with, 281
parsing tool, 157
passives, 185

passwords, 106
patches, 143–144
pathos, defined, 46
patterns, programming, 117–118
Pausch, Randy, 226
PayPal statement, 26
peak of inflated expectation (hype cycle phase), 54
pensieve, 284
people-centered bottlenecks, 39
peregrine, 209
Perens, Bruce, 265
perfectionism, 172, 227
performance

improving, 171–174
of teams, 168
tests, 137–138

performance of programming language, 119
person of color, discrimination against, 112–113
personas, customer, 91
persuasion, 10
phases, 54–55, 74–76
Pink, Daniel, 210, 212, 225
pipeline framework, developing, 72
pitfalls, 87
planning, 74, 98, 165
Plateau of Productivity (hype cycle phase), 55
Platform as a Service (PaaS), 301
platforms, 119
POC (proof of concept), 320
pods, 288, 289
positive feedback, 179
positive intent, 258
post-incident reviews. See also incidents

asking questions, 256–257
entire process, 254–259
hindsight bias, 258
include everyone, 255
making blameless, 255
making plans, 259
review timelines, 255–256
root cause analysis, 252–253
scheduling, 254
stepping through incidents, 253–254
taking notes, 258

334 DevOps For Dummies

PR (pull request), 127
PRD (product requirements document), 84
Preparation step, 253–254
priorities, in rapid iteration, 162–167
private cloud, 299
privilege escalation, 106, 293
problems. See incidents
Problems of Monetary Management (Goodhart), 60
processes

automating, 20–21, 314
in development, changing, 73–76
iterative, 90
software development, 35
unnecessary, 32
waterfall development, 73

PROD (production), 139, 301
product requirements document (PRD), 84
product teams, 193
production (PROD), 139, 301
production environment, 78, 134, 135
products

employees using first, 182
improving, 176
testing on clients, 183

programming languages, 119, 304
programming patterns, 117–118
progress, measuring, 248–249, 318
project constraints, 82
promoters, 185
proof of concept (POC), 320
providers, for cloud services, 302–304
public cloud, 298–299
pull request (PR), 127
Puppet tool, 235
pure function, 271
purpose, 214
pushback, responding to, 55
Python programming language, 304

Q
quality assurance (QA), 75, 97, 133–134, 139, 192, 301
questions

for operations knowledge, 113
post-incident reviews, 256–257

R
ransomware, 106
rapid iteration

improving engineering performance, 171–174
prioritizing, 162–167
velocity, 167–169

Raymond, Eric, 265
RDS (Amazon Relational Database Service), 305
readable code, 117
real-time code interviews, 201
Receive- Analyze-Communicate-Change, 177
recruiters, 197–199
recursive function, 271–272
Reed, J. Paul, 252
Reflection step, 253–254
regression testing, 137
Reichheld, Fred, 185
Relational Database Service (RDS), 305
releases

automated, 142
blue-green deployments, 149
management of, 143
pipeline, 132, 146
terms, 139–140

reliability, 107–108
remote code review, 127
Representational State Transfer (REST), 265
representational state transfer (RESTful) APIs,

110, 280
requirements, gathering, 84
resistance to change

causes of, 44–45
persuading those with, 50–51

response codes, 282
Response step, 253
responses, paginating, 283
REST (Representational State Transfer), 265
RESTful (representational state transfer) APIs,

110, 280
Restoration step, 253
Retail Liquidity Program (RLP), 170
reviewers, 101, 126–127, 236
rewards, 28–30, 212–213
Ries, Eric, 161, 176, 219
risk-taking, 226

Index 335

RLP (Retail Liquidity Program), 170
road maps, 165
rolling back, 146–147
rolling deployment, 151–153
Rome example, 208–209
root cause, 222, 252–253
Ruby programming language, 273, 304

S
S3 (Amazon Simple Storage Service), 242, 303
SaaS (Software as a Service), 301–302
sad path test, 125
satisfaction surveys, 180–181
scalability, 103–104
scaling companies, 205–210
“Scaling Sparta” talk (Freeman), 206–207
schedule limitations, 82–83
scheduling post-incident reviews, 254
scope, 84, 86
scrum, defined, 80
SDLC. See software delivery life cycle
secrets storage, 306
securing containers, 292–293
security

increasing, 298
planning, 105
tests, 137, 138
threats, 106

self-reflection, 167
semantic versioning, 144–145
sensitive information, securing containers from, 292
sequentially testing environment, 134
serverless, 301, 305
servers, to implement continuous integration

(CI), 142
Service (PaaS) tools, 110
service degradation, 258
service disruption, 278
Service-Level Agreement (SLAs), 64, 82, 107, 155,

156, 302
Service-Level Indicator (SLI), 157
Service-Level Objective (SLO), 157
service-oriented architecture (SOA), 276

services, cloud
automating DevOps in, 295–298
categories of, 300–302
finding tools and services in, 304–306
providers, choosing for, 302–304
types of, 298–300

Services Oriented Architecture (SOA), 265
The Seven Habits of Highly Effective People (Covey),

162
Shafer, Andrew Clay, 8
shared kernel architecture, 293
sharing deployments, 147–148
shifting left

defined, 77–78
mentality of, 130

shipped software, 140
short-term bottleneck, 38
side effects, 116
sidecar container, 291
silent errors, 114
silos, 14, 19–20
Simple Mail Transfer Protocol (SMTP), 264
simple object access protocol (SOAP), 280
Simple Storage Service (S3), 242, 303
Single Sign-On (SSO), 306
site reliability, 237–238
Site Reliability Engineering (Google), 242
site reliability engineering (SRE), 33, 314
Site Reliability Engineers, 195
sizing work, 168, 169
skills, T-shaped, 312
SLAs (service-level agreements), 64, 82, 107,

155, 156, 302
SLI (Service-Level Indicator), 157
SLO (Service-Level Objective), 157
slope of enlightenment (hype cycle phase), 54
small teams, 172–173, 209
SMTP (Simple Mail Transfer Protocol), 264
SOA (service-oriented architecture),

265, 276
SOAP (simple object access protocol), 280
socio-technical challenges, 205
soft deadlines, 163
soft skills, 20–21

336 DevOps For Dummies

software
building for reuse, 99
documenting, 101–102
improving, 100–101
monitoring for deployment process, 154–157
out-of-date, 106

Software as a Service (SaaS), 301–302
software delivery life cycle (SDLC)

changing development processes, 73–76
defined, 1, 71
overview, 71
pipeline framework, developing, 72
shifting ops left, 77–78

source code, organizing, 124
source of failure, 220
Southwest Airlines, values of, 27
spaghetti code, 121
Spartans, 206–207
specialists, 210
speech coaches, 112
sprints

defined, 81
planning, 167

SQL databases, 305
SRE (site reliability engineering), 33, 314
SSO (Single Sign-On), 306
staging environments, 78, 131, 132, 134, 139, 301
standard database connections, 110
standardized processes, 146, 241
startups, 207, 219
status pages, 233, 241
strategic thinking, 208
strategists (Myers-Briggs personality type), 46
stubbing, 133
stubbornness, overcoming, 50–51
stubs, 137
styles, for deployment process, 148–154

blue-green deployments, 149–150
canary deployment, 150–151
feature flag or feature toggle, 153–154
rolling deployment, 151–153

subject-matter experts, 97
surveys, 16, 17, 66–67, 180–181
Sutton, Robert I., 202

syssitia, 215
systems

building, 298
distributing, 146
fail-fast system, 161, 220–222
improving, 100–101
keeping dynamic, 110

systems thinking, 20

T
take-home test, 200–201
Tao Te Ching (Lao Tzu), 222
TCP/IP (Transmission Control Protocol/Internet

Protocol), 264
TDD (test-driven development), 124
teaching operations knowledge, 113
teams

choosing, 215
DevOps teams, 190–194
even-numbered groups, 172
firing, 202–204
hiring, 194–203

evaluating technical abilities, 199–202
interviews, 194–195
job titles, 195–197
recruiters, 197–199

of languages, 274
performance of, 168
scaling engineering teams, 205–210
small-sized, 172–173, 209
trusting one another, 165
working together, encouraging, 19

tech companies, 235
tech culture, 24
technical abilities, evaluating, 199–202
technical forums, 232
technology

deprioritizing, 76
tracking progression of in organizations,

63–64
telemetry, 154–156, 157
test coverage, automated, 63
test suite, automated, 77, 78
test-driven development (TDD), 124

Index 337

testing phase, 75
tests. See also automated tests; quality

assurance (QA)
code, 115
frameworks, 124–125
happy path test, 125
for integration, 136–137
load tests, 137
manual, 130
performance, 137–138
products, 183
regression testing, 137
sad path test, 125
security, 137, 138
sequentially testing environment, 134
take-home test, 200–201
test-driven development (TDD), 124
unit testing, 135–138
user acceptance testing (UAT), 139
visual testing, 137

threats, 105
throughput, 107
time estimates, 98
timelines, in post-incident reviews, 255–256
time-sensitive accountability, 164
toggle feature, 153–154
tools, 263–274

automated, 233–234
for communication, 243
configuration management tool, 146
for configuring-management, 289
for container orchestration, 288
evaluating best for job, 120
finding in cloud, 304–306
for logging, 233
open source software (OSS), 232–233, 265–268
parsing tool, 157
reading about, 232
release pipeline tools, 146
researching, 236
selecting, 320–321
transitioning to new languages, 268–274

Toyoda, Sakichi, 35
Toyota Production System (TPS), 35

The Toyota Way, 35
tracking

continuous deployment, 146
work, 173

trading
colleagues, 191
high-frequency, 170–171

traditional development, 190
traditional hierarchy structure, 23
training, 172, 204
Transmission Control Protocol/Internet Protocol

(TCP/IP), 264
transparent instrumentation, 291
transportation, 34
tribes, 194
trigger (hype cycle phase), 54
trough of disillusionment (hype cycle phase), 54
T-shaped skills, 312
12 principles of Agile, 80
two-pizza team, 172

U
UAT (user acceptance testing), 139, 301
UI (user interface), 277
UI/UX (user interface and user experience), 89–90,

106, 192
underperformers, 204
underqualified engineer (bottleneck cause), 39
unevenness (mura), 34
unit testing, 135–138
unnecessary activities, 40
unnecessary process, 32
unopen communication, 317–318
unused code, 278
unutilized (bottleneck cause), 38
uptime, 64
urgent situations/tasks, 166–167, 244
U.S. Patent Office example, 221
usability, 106–107
user acceptance testing (UAT), 139, 301
user interface and user experience (UI/UX), 89–90,

106, 192
user interface (UI), 277
user stories, 84, 112

338 DevOps For Dummies

V
values

establishing, 18–22
incentivizing, 26–30

variables, 145
velocity, in rapid iteration, 167–169
vendor availability, 299
vendor lock-in, 121, 300
venture capitalists, defined, 82
verbs, designing APIs with, 281
versioning API, 283
versioning deployments

for continuous deployment, 145
semantic versioning, 144–145
tracking continuous deployment, 146

video calls, 243
virtual machines (VMs), 284, 304, 305
Virtual Private Cloud (VPC), 306
viruses, 106. See also bugs
visionaries (Myers-Briggs personality type), 45
visual testing, 137

W
Wall of Confusion, 19, 96
waste

in code, 33
eliminating, 36–41

overview, 31–32
types of, 32–36

waste (muda), 34
waterfall development process, 73
whiteboard interview, 199–200
Whole Foods Market vision statement, 26
window size, 152
Windows Azure. See Microsoft Azure
women

discrimination against, 112–113
gender-biased defaults, 245

work
balancing achievements and, 225–226
making fun, 214–215

work environments, collaborative, 8–9
worms, 106
writing code, 114–117. See also code

X
XML (eXtensible Markup Language), 264

Y
YAML (YAML Ain’t Markup Language), 264

Z
Zuckerberg, Mark, 161

About the Author
Emily Freeman is a technologist and a storyteller who helps engineering teams
improve their velocity. She believes the biggest challenges facing developers
aren’t technical, but human. Her mission in life is to transform technology orga-
nizations by creating a company cultures in which diverse, collaborative teams
can thrive.

Emily is a Senior Cloud Advocate at Microsoft, and her experience spans both
cutting-edge startups and some of the largest technology providers in the world.
Her work has been featured in outlets such as Bloomberg and she is widely recog-
nized as a thoughtful, entertaining, and professional keynote speaker. Emily is
best known for her creative approach to identifying and solving the human
challengesofsoftwareengineering.Itisrareinthetechnologyindustrytofind
individualsequallyadeptwithcodeandwords,buthercareerhasbeendefinedby
precisely that combination.

Emily lives with her daughter in Denver, Colorado.

Dedication
For Clara, my North Star; and for all those who came before me, whose seemingly
inconsequential decisions led to this moment of joy and accomplishment.

Acknowledgments
Thisbookwasfarfromasoloeffort.Ican’tpossiblythankeveryonewhogaveme
small notes of encouragement or who believed in me when I didn’t believe in
myself. From the bottom of my heart, thank you.

First, to my reader. Thank you for investing your precious time to reading my
thoughts on the fundamentals and implementation of DevOps. It’s my sincere
hope that you’re able to walk away from this book feeling empowered to make
changes for yourself and your colleagues.

Many thanks toStevenHayes,who tooka chanceonafirst-timeauthor.This
opportunity meant the world to me. To Susan Christophersen, who edited this
book diligently. This book is better because of her work. Thank you also to Nicole
Forsgren for her amazing foreword (and sage advice) and to Jason Hand for his
technical edits.

Aspecialthankstomyparents,BarryandPamelaFreeman,whowalkedmeoff
the ledge of quitting more times than I can say. Thank you for your love, for
teaching me the importance of creative work, and for giving me the gift of empa-
thy. I love you.

I owe much of my success to the authors who have encouraged me along the way.
They spent hours acknowledging the pain of writing and cheering me on. Thank
you to John Allspaw, David Blank-Edelman, Sarah Drasner, Chad Fowler, Stephen
O’Grady, Mike Julian, Gene Kim, Niall Murphy, Erik St. Martin, Mary Thengvall,
and James Turnbull.

I want to thank those of you in the community who believed in me long before the
thousands of Twitter followers. I was a backend engineer fresh out of code school
andyourconfidenceinmypotentialcarriedmefurtherthanyou’lleverknow.I
owe so much to people like Aaron Aldrich, Kent Dodds, James Governor, Nathen
Harvey,ChristianHerro,BridgetKromhout,KenMugrage,CoreyQuinn, J. Paul
Reed, Matt Rogers, Michael Stahnke, Matty Stratton, and Joshua Zimmerman.

I’m convinced I have some of the most stellar personal friends on the planet. I’d
be typing all day if I listed everyone, but I want to highlight a few particular people
who played an important role in this book. Thank you to Jessica West for being my
mosttrustedfriendandconfidant.(Idon’tknowwhatI’ddowithoutyou.)Scott
Church, thank you for letting me be me without judgement. Melanie Parish, you
are my sound advisor. Rachel Stephens, your contagious joy is a gift. Heidi Water-
house, thank you for checking in on me and grounding me. Chris Short, thank you
for your dark humor and candor. Lovisa Svallingson, thank you for giving me
unconditional love when I feel empty. Kristin Jones, Amber Rivera, and Mary
MacCarthy,youinspiremeandkeepmeafloat.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Manager and Copy Editor:
Susan Christophersen

Technical Editor: Jason Hand

Editorial Assistant: Matthew Lowe

Proofreader: Debbye Butler

Production Editor: Siddique Shaik

Cover Image: © Graiki/Getty Images

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://Dummies.com

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://Dummies.com

Available Everywhere Books Are Sold

Learning Made Easy

9781119293576
USA $19.99
CAN $23.99
UK £15.99

9781119293637
USA $19.99
CAN $23.99
UK £15.99

9781119293491
USA $19.99
CAN $23.99
UK £15.99

9781119293460
USA $19.99
CAN $23.99
UK £15.99

9781119293590
USA $19.99
CAN $23.99
UK £15.99

ACADEMIC

9781119215844
USA $26.99
CAN $31.99
UK £19.99

 9781119293378
USA $22.99
CAN $27.99
UK £16.99

9781119293521
USA $19.99
CAN $23.99
UK £15.99

9781119239178
USA $18.99
CAN $22.99
UK £14.99

9781119263883
USA $26.99
CAN $31.99
UK £19.99

dummies.com

http://Dummies.com

Unleash Their Creativity

Small books for big
imaginations

9781119177173
USA $9.99
CAN $9.99
UK £8.99

9781119177272
USA $9.99
CAN $9.99
UK £8.99

9781119177241
USA $9.99
CAN $9.99
UK £8.99

9781119177210
USA $9.99
CAN $9.99
UK £8.99

9781119262657
USA $9.99
CAN $9.99
UK £6.99

9781119291336
USA $9.99
CAN $9.99
UK £6.99

9781119233527
USA $9.99
CAN $9.99
UK £6.99

9781119291220
USA $9.99
CAN $9.99
UK £6.99

9781119177302
USA $9.99
CAN $9.99
UK £8.99

dummies.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Demystifying DevOps
	Chapter 1 Introducing DevOps
	What Is DevOps?
	DevOps evolved from Agile
	DevOps focuses on people
	Company culture is the foundation of DevOps
	You learn by observing your process and collecting data
	Persuasion is key to DevOps adoption
	Small, incremental changes are priceless

	Benefitting from DevOps
	Keeping CALMS
	Solving the problem of conflicting interests

	Chapter 2 Designing Your Organization
	Assessing Your Culture’s Health
	Integrating DevOps
	Establishing DevOps Values
	Encourage teamwork
	Reduce silos
	Practice systems thinking
	Embrace failure
	Communicate, communicate, communicate
	Accept feedback
	Automate processes (when appropriate)

	Modeling Company Culture
	Avoiding the worst of tech culture
	Crafting your vision

	Incentivizing Your Values
	Evaluations
	Rewards

	Chapter 3 Identifying Waste
	Digging into the Seven Types of Waste
	Unnecessary process
	Waiting
	Motion
	Costs of defects
	Overproduction
	Transportation
	Inventory
	Understanding waste in DevOps

	Rooting Out Waste
	Discovering bottlenecks
	Focusing on impact

	Chapter 4 Persuading Colleagues to Try DevOps
	Fearing Change
	Persuading Those around You to Shift to DevOps
	Earning executive support
	Creating a groundswell in the engineering group
	Managing the middle managers
	Persuading the stubborn

	Understanding the Adoption Curve
	Pushing for change
	Responding to pushback
	Navigating the chasm
	Asking “Why?”

	Chapter 5 Measuring Your Organization
	Measuring Your Progress
	Quantifying DevOps
	Collecting the data
	Developing internal case studies

	Part 2 Establishing a Pipeline
	Chapter 6 Embracing the New Development Life Cycle
	Inviting Everyone to the Table
	Changing Processes: From a Line to a Circuit
	Shifting Ops “Left”: Thinking about Infrastructure
	Shifting deployments left, too
	Mimicking production through staging

	Chapter 7 Planning Ahead
	Moving beyond the Agile Model
	Forecasting Challenges
	Identifying project challenges and constraints

	Gathering Requirements
	Designing an MVP
	Discovering the problem for your MVP to solve
	Identifying your customer
	Scrutinizing the competition
	Prioritizing features
	Designing the user experience
	Testing your hypothesis
	To beta or not to beta?

	Determining Your Customer by Designing a Persona
	What is a persona?
	Designing a persona

	Chapter 8 Designing Features from a DevOps Perspective
	Constructing Your Design
	Designing for DevOps
	Designing software for change
	Improving software constantly
	Documenting your software

	Architecting Code for the Six Capabilities of DevOps
	Maintainability
	Scalability
	Security
	Usability
	Reliability
	Flexibility

	Documenting Design Decisions
	Avoiding Architecture Pitfalls

	Chapter 9 Developing Code
	Communicating about Code
	Engineering for Error
	Writing Maintainable Code
	Testing code
	Debugging code
	Logging code
	Writing immutable code
	Creating readable code

	Programming Patterns
	Object-oriented programming
	Functional programming

	Choosing a Language
	Avoiding Anti-Patterns
	DevOpsing Development
	Writing clean code
	Understanding the business
	Listening to others
	Focusing on the right things
	Getting comfortable with being uncomfortable

	Establishing Good Practices
	Organizing your source code
	Writing tests
	Documenting features
	Having peers review your code

	Chapter 10 Automating Tests Prior to Release
	Testing Isn’t Optional
	Automating Your Testing
	Testing in Different Environments
	Local environment
	Development environment
	Testing environment
	Staging environment
	Production environment

	Going beyond the Unit Test
	Unit tests: It’s alive!
	Integration tests: Do all the pieces work together?
	Regression tests: After changes, does the code behave the same?
	Visual tests: Does everything look the same?
	Performance testing

	Continuous Testing

	Chapter 11 Deploying a Product
	Releasing Code
	Integrating and Delivering Continuously
	Benefitting from CI/CD
	Implementing CI/CD

	Managing Deployments
	Automating the right way
	Versioning

	Mitigating Failure
	Rolling back
	Fixing forward

	Democratizing Deployments
	Choosing a Deployment Style
	Blue-green: Not just for lakes
	Schrodinger’s canary: The deploy’s not dead (or is it?)
	Rolling the dice
	Toggling with feature flags

	Monitoring Your Systems
	Understanding telemetry
	Recording behavior
	SLAs, SLIs, and SLOs

	Part 3 Connecting the Circuit
	Chapter 12 Implementing Rapid Iteration
	Prioritizing the Important
	Important and urgent
	Important, not urgent
	Urgent, not important
	Neither important nor urgent

	Increasing Velocity
	Improving Performance
	Eliminating perfection
	Designing small teams
	Tracking your work
	Reducing friction
	Humanizing alerting

	Chapter 13 Creating Feedback Loops around the Customer
	Creating a Customer Feedback Process
	Creating a Feedback Loop
	Receive
	Analyze
	Communicate
	Change

	Collecting Feedback
	Satisfaction surveys
	Case studies
	Dogfooding

	Asking for Continual Feedback
	Net promoter score (NPS)
	Finding a rhythm

	Chapter 14 DevOps Isn’t a Team (Except When It Is)
	Forming DevOps Teams
	Aligning functional teams
	Dedicating a DevOps team
	Creating cross-functional product teams

	Interviewing Quickly (But Not Too Quickly)
	Deciding on a Job Title
	Recruiting Never Ends
	Finding the right folks
	Passing along great candidates

	Evaluating Technical Ability
	Whiteboarding revisited
	Offering take-home tests
	Reviewing code

	Firing Fast
	The jerk
	The martyr
	The underperformer

	Chapter 15 Empowering Engineers
	Scaling Engineering Teams with DevOps
	Three stages of a company

	Motivating Engineers
	Researching motivation
	DevOpsing motivation
	Avoiding reliance on extrinsic rewards
	Autonomy
	Mastery
	Purpose
	Making work fun
	Allowing people to choose their teams

	Measuring Motivation

	Part 4 Practicing Kaizen, the Art of Continuous Improvement
	Chapter 16 Embracing Failure Successfully
	Failing Fast in Tech
	Failing safely
	Containing failure
	Accepting human error (and keeping it blameless)

	Failing Well
	Maintaining a growth mindset
	Creating the freedom to fail

	Chapter 17 Preparing for Incidents
	Combating “Human Error” with Automation
	Focusing on systems: Automating realistically
	Using automation tools to avoid code integration problems
	Handling deployments and infrastructure
	Limiting overengineering

	Humanizing On-Call Rotation
	When on-call duties become inhumane
	Humane on-call expectations

	Managing Incidents
	Making consistency a goal
	Adopting standardized processes
	Establishing a realistic budget
	Making it easy to respond to incidents
	Responding to an unplanned disruption

	Empirically Measuring Progress
	Mean time to repair (MTTR)
	Mean time between failures (MTBF)
	Cost per incident (CPI)

	Chapter 18 Conducting Post-Incident Reviews
	Going beyond Root Cause Analysis
	Stepping through an Incident
	Succeeding at Post-Incident Reviews
	Scheduling it immediately
	Including everyone
	Keeping it blameless
	Reviewing the timeline
	Asking tough questions
	Acknowledging hindsight bias
	Taking notes
	Making a plan

	Part 5 Tooling Your DevOps Practice
	Chapter 19 Adopting New Tools
	Integrating with Open Source Software
	Opening community innovation
	Licensing open source
	Deciding on open source

	Transitioning to New Languages
	Compiling and interpreting languages
	Parallelizing and multithreading
	Programming functionally
	Managing memory
	Choosing languages wisely

	Chapter 20 Managing Distributed Systems
	Working with Monoliths and Microservices
	Choosing a monolithic architecture first
	Evolving to microservices

	Designing Great APIs
	What’s in an API
	Focusing on consistent design

	Containers: Much More than Virtual Machines
	Understanding containers and images
	Deploying microservices to containers
	Comparing orchestrators: Harmonize the hive
	Configuring containers
	Monitoring containers: Keeping them alive until you kill them
	Securing containers: These boxes need a lock

	Chapter 21 Migrating to the Cloud
	Automating DevOps in the Cloud
	Taking your DevOps culture to the cloud
	Learning through adoption
	Benefitting from cloud services

	Cumulus, Cirrus, and Steel: Types of Clouds
	Public cloud
	Private cloud
	Hybrid cloud

	Cloud as a Service
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Choosing the Best Cloud Service Provider
	Amazon Web Services (AWS)
	Microsoft Azure
	Google Cloud Platform (GCP)

	Finding Tools and Services in the Cloud

	Part 6 The Part of Tens
	Chapter 22 Top Ten (Plus) Reasons That DevOps Matters
	Accepting Constant Change
	Embracing the Cloud
	Hiring the Best
	Staying Competitive
	Solving Human Problems
	Challenging Employees
	Bridging Gaps
	Failing Well
	Continuously Improving
	Automating Toil
	Accelerating Delivery

	Chapter 23 Top Ten DevOps Pitfalls
	Deprioritizing Culture
	Leaving Others Behind
	Forgetting to Align Incentives
	Keeping Quiet
	Forgetting to Measure
	Micromanaging
	Changing Too Much, Too Fast
	Choosing Tools Poorly
	Fearing Failure
	Being Too Rigid

	Index
	EULA

