

  i

Hem Dutt

www.bpbonline.com

Full Stack iOS
Development with

Swift and Vapor
Full stack iOS development made easy

ii 

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-323

www.bpbonline.com

  iii

Dedicated to
This book is dedicated to students and software engineers embarking

on their journey as full-stack developers or exploring the dynamic
iOS domain. May it inspire and empower you to unlock your

full potential in this exciting field.
Together, let’s embrace the world of full-stack iOS development

and strive for excellence.

iv 

About the Author

Hem Dutt started his software engineering career in 2010 as a macOS (OS X) and
iOS application developer and thereafter designed and developed numerous
native macOS and iOS applications for various clients across the globe while
working in multiple MNCs. With more than a continuous decade of experience
working in macOS and iOS, Hem Dutt has developed and managed applications in
multiple domains, including healthcare, insurance, VPN clients, publishing, IOT,
and VoIP. His passion for designing and developing secure, reliable, and modular
software is evident from his blogs, client awards/recommendations, and open-
source projects. Prior to this book, he authored “Interprocess Communication with
macOS: Apple IPC Methods,” cementing his expertise in the Apple ecosystem.

  v

Acknowledgements

I have to start by thanking my beloved wife, Payal Bhardwaj, for keeping me
motivated throughout my journey as a writer. She is always by my side and
supports me to fulfill my dreams, however impossible they seem to others. Thank
you a ton, my dear, for being the pillar of my strength. You are a superwoman.

I must offer a very special thanks to my parents, who nurtured my childhood and,
despite their limited means, provided me with the best they could possibly do and
shaped my character.

I would also like to thank BPB Publications for giving me this opportunity, and
a big thanks to technical reviewers and editors for helping me in shaping the
chapters and content of this book.

I would also like to thank my colleagues and friends, who always believed in me
and encouraged me.

Finally and most importantly, I would like to acknowledge my two beautiful
children, Adwit and Anika. Thanks, Adwit, for being such a sweetheart and
adorable baby and filling the environment with unconditional love, and Anika,
for being such a powerhouse and my super girl!!. I love you both so much.

vi 

Preface

Welcome to “Full Stack iOS Development with Swift and Vapor.” In this book, we
embark on an exciting journey that combines the power of Swift programming
language, Vapor framework, and iOS development to delve into the realm of full-
stack iOS development.

In today’s interconnected world, the demand for versatile developers who can
seamlessly bridge the gap between the backend and frontend is skyrocketing. As
the boundaries between server-side and client-side become increasingly blurred,
mastering full-stack development has become a valuable skill set.

This book is designed to cater to a wide range of readers, from aspiring developers
and students to seasoned iOS professionals seeking to expand their expertise.
Whether you are taking your first steps in Swift or are already well-versed in the
language, this book equips you with the knowledge and tools to navigate the
world of full-stack iOS development with confidence.

We begin by laying the foundation, exploring the essentials of Vapor, Swift, and
iOS app development. From there, we delve into backend development, covering
topics such as persisting data, working with models, and integrating APIs.
Simultaneously, we dive into frontend development, unraveling the intricacies of
creating compelling user interfaces, networking, and authentication.

Throughout this journey, we emphasize best practices, security considerations, and
performance optimization techniques to ensure that you not only build functional
applications but also create robust, secure, and high-performing ones.

Real-world projects and hands-on exercises will guide you, allowing you to apply
your newly acquired knowledge in practical scenarios. You will witness the power
of integrating Swift and Vapor, leveraging their synergistic potential to develop
cutting-edge full-stack iOS applications.

I invite you to embark on this transformative journey of becoming a full-stack iOS
developer.

Chapter 1: Full-stack Development Overview – This chapter aims to give a basic
understanding of the term Full Stack Development, a brief history of the term, and
the concept of a minimum viable product. We will also explore the problems and

  vii

advantages of Full stack development and provide a brief introduction to Swift on
the server.

Chapter 2: Setting Up the Environment – This chapter aims to give a basic
understanding of tools and SDKs to start with Vapor and iOS development. In this
chapter, we will cover the installation of Xcode, Vapor Toolbox, and starter projects
in Vapor as well as for iOS.

Chapter 3: Routing, MVC and JSON in Vapor – This chapter aims to give a basic
understanding of creating Routes for the server application, a brief understanding
of the MVC design pattern, and creating Controllers in a Vapor application. We
will also explore JSON format and handling JSON in a Vapor app and extend this
discussion, and we will also cover the Postman app for testing the Routes.

Chapter 4: Async and HTML Rendering in Vapor – In continuation of the last
chapter, This chapter aims to extend the basic understanding of Async, Logging,
Capturing Errors and Stack Traces, and finally, handling HTML rendering in
a Vapor project. In this chapter, we will implement a small part of the code to
showcase HTML rendering on a webpage using Leaf and Vapor routes.

Chapter 5: PostgreSQL Integration in Vapor – In this chapter, we will study the
integration of PostgreSQL with Vapor. PostgreSQL is an open-source, relational
database system that focuses on extensibility and standards. It is designed for
enterprise use and also has native support for geometric primitives, such as
coordinates which comes in handy working with Fluent, which also supports these
primitives and saves nested types, such as dictionaries, directly into PostgreSQL.

Chapter 6: Building User Interfaces for iOS – The aim of this chapter is to
understand the basic building blocks of iOS UI development and complete the
circle of Full Stack Development with Swift.

Chapter 7: Data Persistence with Core Data and SQLite in iOS – Implement
data persistence on iOS using Core Data with SQLite as a persistent store. In this
chapter, we will write our very first Core Data implementation for storing data in
an iOS app. After reading this chapter, readers will be able to Model data using
Xcode’s model editor, Add new records to Core Data, Fetch a set of records from
Core Data, Display the fetched records, and learn the basics of Networking.

viii 

Chapter 8: Full Stack Implementation – We implemented small sample codes to
understand working on Vapor and iOS app. All these samples were discussed in
isolation to make it simple for you to grab specific concepts without worrying
about the larger picture. In this chapter, we will specifically look into the larger
picture and will look into Full Stack implementation of an app.

Chapter 9: Advanced Full-stack Concepts – In this chapter, we will explore some
advanced topics related to full stack, which are very important with respect to
overall system design and system architecture. These concepts are a must for
commercial application development.

Chapter 10: Deploying iOS and Vapor Applications – The objective of this chapter
is to study and understand the deployment process/es for our iOS and Vapor apps
to the public. For Vapor apps, we will study deployment through Heroku and
Docker, whereas for iOS, there is only one way, and that is through App Store,
which will also be covered in this chapter.

  ix

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/yqsj4yl

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Full-Stack-iOS-Development-with-Swift-
and-Vapor. In case there's an update to the code, it will be updated on the existing
GitHub repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

x 

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

  xi

Table of Contents

	 1.	 Full-stack Development Overview... 1
Introduction... 1
Structure... 1
Introduction to full-stack development... 2
Brief history... 4

Full-stack: what does it mean?...5
Minimum viable product (MVP).. 5

Airbnb...6
Foursquare..6

Problems with full-stack development... 6
Advantages of full-stack development.. 9
Swift on server and Vapor.. 10
Swift packages for back-end development... 13

SwiftNIO...14
AsyncHTTPClient..15
Swift AWS Lambda Runtime...15
Soto—AWS SDK Swift...16

Conclusion... 17

	 2.	 Setting Up the Environment..19
Introduction... 19
Structure... 19
Installation of Xcode... 20
Installation of Vapor toolbox... 21
Hello world project (Vapor)... 22

Build and run project...22
Folder structure..24

Public folder...25
Sources...25
Run..25
Tests...26

xii 

Swift Package Manager... 26
Hello World project (iOS).. 27

Project structure...31
Add Hello World label...32

Run Xcode project... 35
Conclusion... 39

	 3.	 Routing, MVC and JSON in Vapor..41
Introduction... 41
Structure... 41
Objectives... 42
Routes... 42
Router methods... 43

Basic routes...43
Nested routes..44
Route parameters...47
Anything routes and CatchAll routes..50
Query strings..52
Route groups...53

Model-View-Controller (MVC).. 54
Working with JSON.. 63

Posting JSON and Postman app..67
Conclusion... 72

	 4.	 Async and HTML Rendering in Vapor..73
Introduction... 73
Structure... 73
Objectives... 74
Async.. 74

Async await..74
Migrating to async/await...74

Logging... 75
Environment.. 77
Errors.. 78

Abort...78

  xiii

Abort Error..79
Debuggable Error..81

Stack traces... 83
Swift Backtrace¶..83

Error traces..83
ErrorMiddleware...84

Leaf.. 85
Conclusion... 91

	 5.	 PostgreSQL Integration in Vapor..93
Introduction... 93
Structure... 93
Objectives... 94
Data persistence with Vapor.. 94
Installing and setting up PostgreSQL... 94
Fluent ORM...102

Adding Fluent to a new project...102
Adding Fluent to an existing project...105

CRUD operations..105
Migrations..108
Postico...110
Create and save model..114

Create model...114
Save model..114

Conclusion...119

	 6.	 Building User Interfaces for iOS..121
Introduction...121
Structure...121
Autolayout with Storyboards...122
Swift UI...134

Working with text...135
Working with images..138
Working with Stacks...142

Conclusion...146

xiv 

	 7.	 Data Persistence with Core Data and SQLite in iOS...................................147
Introduction...147
Structure...147
Core Data...148

Core Data stack..148
Include Core Data in a new project...149
Include Core Data in an existing project...150
CRUD operations...152

Codegen...156
Category/extension...157

Core Data migrations...159
Lightweight data migration...160
Networking..162
Protocol support..163
Conclusion...163

	 8.	 Full Stack Implementation..165
Introduction...165
Structure...165
Objectives...166
Project outline...166
Setup remote database..166
Server app...169

Models...171
Migrations..173
Controllers..175
Config and routes...178

iOS app...181
Models...182

Networking..184
User interface...188
Test run...196
Conclusion...198

  xv

	 9.	 Advanced Full-stack Concepts...199
Introduction...199
Structure...199
Objectives...199
Middleware..200

Creating middleware..201
WebSockets..203

Messages...203
Sending..204
Receiving..204
Closing...205

APNS..205
Security...210

Authentication..210
Basic authentication..211
Bearer authentication...212
Composition..214
Session..215
JWT...218

KeyChain..220
Adding password to Keychain..221

Conclusion...222

10.	 Deploying iOS and Vapor Applications..223
Introduction...223
Structure...223
Objectives...224
Vapor app deployment...224

Heroku..224
Docker...228

Set up Docker..229
Build and run..230
Production deployment...231

iOS app deployment..231

Code signing...231
Create App Store Connect record for the app..233

Add new app...233
Archive and upload the app..234
Configure app’s metadata in App Store Connect.....................................235
Submit app for review...237

Conclusion...238

Index...239

Introduction
This chapter aims to give a basic understanding of the term full-stack development,
a brief history of the term, and that of a minimum viable product. We will also
explore the problems and advantages of full-stack development and provide a brief
introduction to Swift on the server.

Structure
In this chapter, we will cover the following topics:

•	 Introduction to full-stack development
•	 Brief history
•	 Minimum viable product (MVP)
•	 Problems with full-stack development
•	 Advantages of full-stack development
•	 Swift on server and Vapor
•	 Swift packages for back-end development

Chapter 1
Full-stack

Development
Overview

2  Full Stack iOS Development with Swift and Vapor

Introduction to full-stack development
We have heard the term full-stack developer in the software industry, typically
referring to a Web developer who can build the front-end and back-end for a Web
app. Instead of specializing, a full-stack developer is able to work across the back-
end and front-end spectrum of app development.

It is an already established fact that being a specialist in one field or technology
and gaining mastery in that particular aspect of technology has distinct advantages,
but in the modern world, as technology is rapidly changing and evolving, many
companies are seeking talented developers who are able to understand and work
on the entire spectrum of the front and back-end technologies and are able to create
a usable end product. Hacker Rank’s survey on the most sought-after talent pool in
2020 provides a good insight into the demand for full-stack developers.

As per Hacker Rank Report: Across company sizes, hiring managers agree that
full-stack developers are a top priority: 38% of hiring managers say it is the #1 role
to fill in 2020. Back-end developers and data scientists were ranked second and
third priorities, respectively.

The emphasis on full-stack developers was most pronounced in small companies
(1–49 employees), 43% of which ranked the role as their top priority.

Though the qualities that define a full-stack developer are a subject of debate,
most agree that they should have a basic understanding (or better) of all layers of
a tech stack and should be able to generate a minimum viable product on their
own. It is why they are especially important in small organizations, where fewer
employees often have to do the job of many.

See the following figure (source: https://info.hackerrank.com/rs/487-WAY-049/
images/HackerRank-2020-Developer-Skills-Report.pdf).

Full-stack Development Overview  3

Figure 1.1: The 2020’s most in-demand talent pool

As is clear from the report, these developers, also known as full-stack developers, are
once again in demand. Does this mean this is not a new phenomenon? Yes, this role
has a long history and has had its share of ups and downs, as well as arguments
and disagreements from all kinds of people about what full-stack developer really
means and what should be the level of expertise of the developer in different aspects
of the stack.

Full-stack developers are useful as generalists who can quickly come up with a
minimum viable product (MVP) on their own. They can also be very helpful in
providing insight into the entire application infrastructure and contributing to all its
parts. It is a sought-after ability for many roles in the software development industry.

4  Full Stack iOS Development with Swift and Vapor

Brief history
If we look at it from a high level, full-stack development has been part of the
programming world since the very beginning, but it was not understood in its
current context before.

The full stack development in the public domain only came to light in 2008, when
designing for the Web as well as mobile became mainstream. Earlier, this term was
used with varying understandings regularly in the 1970s as well as the 80s.

The main reason for this was that, at that time, there was not much difference
between a back-end programmer and a front-end programmer. Slowly, with time,
the distinction between front-end and back-end became defined, and two different
streams of application development came into existence, that is, front-end and back-
end development. In 2008, the term full-stack Web development gained momentum,
and with passing years it has come to become one of the most in-demand job roles
of present times.

According to Stack Overflow’s 2021 developer survey, over 49.47% of developers
describe themselves as full-stack. See the following figure (source: https://insights.
stackoverflow.com/survey/2021#developer-profile-developer-roles):

Figure 1.2: Developer roles

Full-stack Development Overview  5

While during all these times, the term full stack has gained traction in the Web
developer community, an obvious question is whether it can be applied to mobile
application development. It is an interesting question, what a full-stack mobile app
developer would mean?

As we know that mobile app developers work on the client side of the application
or, in loose terms, front-end, and therefore, it might look perfectly sensible to assume
that a mobile app developer simply needs the skill to develop a back-end to be a
full-stack developer.

But this is not as simple as it looks, and we are going to explore why it is a lot more
complicated in the context of an iOS developer.

Full-stack: what does it mean?
The term stack here refers to the collection of technologies needed to build an
application. For example:

LAMP (Linux, Apache, MySQL, and PHP) or MEAN (MongoDB, Express, Angular,
and NodeJS) or MERN (MongoDB, Express, ReactJS, and NodeJS), and so on are
technology stacks having all the parts needed to build a minimum viable product of
Web app.

To understand the term full-stack in terms of iOS development, let us use the MERN
preceding example and substitute React with Swift to replace the front-end part in a
Web app stack with native Swift. Therefore, a full-stack on iOS will look something
like MESN (MongoDB, Express, Swift, and NodeJS).

Minimum viable product (MVP)
As discussed in previous sections, full-stack developers are useful as generalists
who can quickly come up with a minimum viable product (MVP) on their own. Let
us understand what an MVP is.

A minimum viable product, or MVP, is a product with only enough features to
onboard initial targeted customers and validate a product-market fit for a business
idea early in the product development cycle. In the software industry, the MVP can
actually help the product team receive early user feedback and make it possible to
iterate and improve the product.

The basic idea of agile methodology is built on a process for validating and iterating
products based on short user input cycles, and so the MVP plays a central role in
agile development.

6  Full Stack iOS Development with Swift and Vapor

MVP can be understood as the initial version of a new product that allows a team to
get the maximum feedback and customer validation from customers with the least
amount of effort.

A company might decide to develop and release a minimum viable product because
of the following:

•	 The company wants to release the product to the market as quickly as
possible with basic features to gain an early-mover advantage.

•	 The company wants to test the idea with real target customers before
committing a large budget to the product’s full development.

MVP has the following two distinct features:
•	 It has enough features for consumers to purchase the product.
•	 It has a feedback mechanism for users so that the company can collect real

data for product-market fit.

If you are still wondering what this would look like in the real world? Let us go
through the stories of a couple of brands that launched successful MVPs.

Airbnb
With no money to build the business, the founders used their own apartments to
validate their idea of creating a market offering for peer-to-peer rental housing
online. They created a minimalist website, did marketing about their property, and
found several customers almost immediately.

Foursquare
The location-based social network Foursquare started with just a one-feature MVP,
that is, offering only check-ins and gamification rewards. Foursquare’s development
and product team then added recommendations, city guides, and other features
until they validated the idea with an ever-growing user base.

Problems with full-stack development
One of the problems with the term full-stack is that it does not exactly define the skill
level needed from the developer across the stack. For example, how can we gauge
the threshold skill needed from a full-stack iOS developer to develop a website at
a bare minimum? A full-stack iOS developer should know how to put together a
simple static website using HTML and CSS, let us say, for playing a YouTube video
URL within the App.

Full-stack Development Overview  7

But if the developer is working on a complex social networking app that will require
an admin portal to control user’s permissions based on various parameters and
which will also require a lot of other complex user flows such as authentication, data
storage, and APIs.

Both of these scenarios will need a huge shift in terms of expertise needed in various
stacks. Generally speaking, the expectation from a full-stack iOS developer is to have
deep expertise in the iOS domain and basic knowledge of how to put together simple
Web apps using HTML and CSS.

At the other end of iOS app development, there are hybrid app developers who
use frameworks like React Native and Flutter to develop Web and mobile apps. It
seems much easier to earn the title “full-stack” going the hybrid way, but native
iOS app development has its own merits, and hybrid and native app developers are
generally not the same.

We also need to understand that, in practice, a full-stack iOS developer might
not complete a real project on his/her own. Although theoretically possible, an
individual developing all parts of a project means a lot of risks. In practice, a full-
stack iOS developer is a generalist who has a deep understanding of one or two
components of the full-stack and a high level of knowledge of the rest. This makes
a full-stack iOS developer suitable for creating minimum viable projects, proof of
concepts, and leading an overall project from a high level.

The fact that there is no well-defined and concrete definition of a full-stack developer
and the role requires continuous juggling of technologies is validated by Hacker
Rank’s survey 2020. As per the survey, full-stack developers are required to learn
new skills most often.

As per Hacker Rank Report: Full-stack developers may be in the highest demand,
but their role is also one of the most professionally demanding. Sixty percent
of full-stack developers were required to learn a completely new framework or
platform in the last year—more than any other role polled.

Full-stack developers also have to learn the most languages: 45% reported that
they had to pick up a new one within the last year. Their peers have to learn more
about theoretical concepts; data scientists and DevOps engineers were required to
learn new concepts most often (33%).

With expertise that spans front-end, back-end, and more (depending on whom
you ask), full-stack developers have one of the more nebulous job descriptions
in the technical world. The relative flexibility of their role—and the breadth of

8  Full Stack iOS Development with Swift and Vapor

technologies they have to keep up with as a result—means learning on the job
never stops.

See the following figure (source: https://info.hackerrank.com/rs/487-WAY-049/
images/HackerRank-2020-Developer-Skills-Report.pdf):

Figure 1.3: Full-stack developers are required to learn new skills most often

As is evident from the data, full-stack development is gaining traction, but it has
its own unique problems, even more aggravated in the case of Full-stack mobile
development. So, as it always happens in such cases, the industry is divided on this.

People on the anti-full-stack developer side are raising their voices with an argument
for what does or does not constitute full-stack development. The anti-full-stack
argument is pivoted around the idea that a full-stack developer should have the
ability to easily navigate between the back-end and front-end development with a
high level of expertise.

Full-stack Development Overview  9

The anti-full-stack argument says that to be really effective, full-stack developers
should be able to:

•	 Write high-quality code for the client side and should be at par with a senior
client-side developer.

•	 Write equally high-quality code for the server side and should be at par with
a senior server-side developer.

•	 Manage the infrastructure and deployment on the server side.
•	 Manage client application releases (on App Store in case of iOS app).

And while many developers can do some work that covers both disciplines, very
few can do both well.

So, against full-stack development, the argument is that a truly full-stack developer
is almost impossible to find, and while too many people boast of themselves as full-
stack developers, they do not have full-stack qualifications in reality.

In a way, it seems that it is an unrealistic demand. A true full-stack developer should
have dual mastery of both the client and server side, which is almost impossible, given
the speed at which new technology is evolving. The against full-stack developer
argument is that this encourages wide breadth, shallow depth knowledge and does
not allow an individual to attain expertise.

Advantages of full-stack development
As discussed in the previous section, there are visible problems in understanding full-
stack development and what the expectation should be from a full-stack developer.
For all practical purposes, we can understand full-stack development with a broader
interpretation of the term. The idea that a full-stack developer has to be an expert
in every layer of the tech stack is an expectation, and instead, if they have working
knowledge of the entire stack, with expertise in only a few layers, this should be
good enough for all practical implications.

We can see the definition of full-stack development for a less strict set of requirements,
described as follows:

•	 Comfortable with writing both client-side and back-end code with moderate
expertise in one and deep expertise in another.

•	 Can Generate a minimum viable product (MVP) with minimal support from
others.

•	 Provide expert-level specialty in either client or server side.

10  Full Stack iOS Development with Swift and Vapor

•	 Have at least a high-level understanding of technologies throughout the
stack.

If we follow this definition, a full-stack developer does not have to be an expert in
every layer of the tech stack. Instead, here, a “full-stack developer” means someone
effective and seasoned generalist who has a wide knowledge base, a deep specialty
in a particular domain, and the willingness to learn and adapt to new technologies.

The argument in a pro for a full-stack developer is that, while most developers are either
client-side or server-side specialists, a full-stack developer understands both stacks.
This argument is rooted in the thought that forcing a strict distinction between the
client and server-side discourages developers from learning beyond their specialty,
and this artificial boundary prevents them from thinking of a complete end-to-end
solution for a problem, thus making them less effective.

Also, expertise is not required at all stages of projects. For example, in the discovery
phase, a POC of the system might be required, and having all specialists assigned
to this task will bulk up the team size and expense. Small companies and start-
ups sometimes need broad domain knowledge and full-stack capabilities to build
projects with limited people and resources. Large companies, on the other hand,
tend to hire more specialists but can still effectively use full-stack developers for
project management as they can visualize the complete system.

No doubt, specialized developers have their own place, but developers with full-
stack knowledge help to bridge the gap between the two stacks and have a system-
level vision. In a way, full-stack developers complement the work of specialists.
Their core value lies in their ability to understand and work on the full breadth of a
project.

Swift on server and Vapor
Swift is a general-purpose programming language that suits the modern approach
to safety, performance, and software design patterns.

Swift has various characteristics that make it suitable for server applications:
•	 One of the major goals of a modern cloud platform is to maximize resource

utilization. Services built with Swift have a very small memory footprint and
are also CPU-efficient as compared to other popular server languages with
automatic memory management.

Full-stack Development Overview  11

•	 Swift-based applications have a quick start-up time. This makes it a great fit
for cloud services, which are often re-scheduled onto new VMs or containers
to address platform formation changes. It also helps in streamlining
continuous delivery pipelines, and quick boot times make it a perfect fit for
serverless applications with negligible cold start times.

•	 Swift’s use of ARC and its lack of JIT gives it a deterministic performance.
•	 The Swift server work group promotes the use of Swift for developing and

deploying server applications.
•	 If you come from an iOS background, Swift gives an edge and a less steep

learning curve.

Vapor is a Web framework for Swift, which allow us to write back-ends, Web apps,
app, and HTTP servers in Swift.

Vapor share key practices built up over years of PHP, JavaScript, and Ruby Web
framework development, including the model view controller (MVC) pattern. Just
as in iOS, server-side Swift is also a type-safe language. Swift’s type safety is enforced
by the compiler, and in a Web development context, this differentiates Vapor from
modern frameworks based on JavaScript, Rails, PHP, and so on.

Swift’s type system might feel constricting initially to developers who are not used
to type-safety requirements, but for someone from an iOS background, this will look
familiar. Swift’s type of safety leads to a Web code that is more immune to many of
the most common errors in other Web frameworks.

As Server-side Swift Web apps are statically compiled, hence, are safer by design.
Compiled apps are also more performant relative to their just-in-time-compiled
counterparts. A series of benchmarks early in server-side Swift’s evolution showed
significant level performance enhancements relative to common alternatives. For
example, the Vapor team presented this platform comparison shortly after the
release of Vapor 1, demonstrating superior performance even at that early stage.

Source: (Server-Side Swift vs The Other Guys—2: Speed) https://medium.com/@
codevapor/server-side-swift-vs-the-other-guys-2-speed-ca65b2f79505

12  Full Stack iOS Development with Swift and Vapor

Plaintext:

Figure 1.4: Plaintext comparison

JSON:

Figure 1.5: JSON comparison

Full-stack Development Overview  13

SQLite Fetch:

Figure 1.6: SQLite Fetch comparison

But even if you do not need screaming speed, microservices written in the Vapor
framework are typically expected to be exceptionally efficient in their energy and
resource use.

Swift packages for back-end development
A tech stack, whether it is dependable or not, can be identified by the community
that supports it and how active that community is. Swift Package Manager (SPM) is
a great way to distribute Swift packages, and we have so many open-source options
to build a back-end. Let us go through a list of some of the most widely useful open-
source projects that can be used to develop the server application in Swift. Many of
these libraries are backed by Apple, so it is an assurance that Apple is supporting
them.

14  Full Stack iOS Development with Swift and Vapor

SwiftNIO
(Source: https://github.com/apple/swift-nio)

SwiftNIO is a cross-platform, event-driven, and asynchronous network application
framework used for the rapid development of high-performance and maintainable
protocol servers and clients. It is a high-performance and low-level network
framework that we can use to build our own server or client using a non-blocking
approach.

SwiftNIO is a low-level tool for building high-performance networking applications
in Swift. Using SwiftNIO, we can particularly target those use cases where using a
thread-per-connection model of concurrency is inefficient. This is a common limitation
while building servers that use a large number of low-utilization connections, such
as HTTP servers.

To achieve these goals, SwiftNIO uses non-blocking I/O. Non-blocking I/O differs
from the more common blocking I/O model because the application does not need
to wait for data to be sent to or received from the network. SwiftNIO asks the kernel
to notify it when I/O operations can be performed without waiting.

SwiftNIO does not target to provide high-level solutions, for example, Web
frameworks. Instead, SwiftNIO’s sole focus is on providing the low-level building
blocks for these higher-level applications. For building a Web application, most users
will not want to use SwiftNIO directly; instead, they will want to use high-level
frameworks available in the Swift ecosystem. Those Web frameworks, however,
may choose to use SwiftNIO underneath to provide their networking support.

SwiftNIO is designed as a powerful tool for building networking applications and
frameworks, but it does not provide abstraction at all levels. SwiftNIO is highly
focused on providing the basic I/O primitives and protocol implementations at low
levels of abstraction and thus leaving more expressive and slower abstractions for
the wider community to build. The intention here is that the SwiftNIO will be a
building block for server-side applications, not necessarily the framework for these
applications to use directly.

Applications needing extremely high performance from their networking stack
may choose to use SwiftNIO directly in order to reduce the overhead, but these

Full-stack Development Overview  15

applications should be able to maintain extremely high performance with relatively
little maintenance cost. SwiftNIO also provides abstractions for this use case. For
example, extremely high-performance network servers can be built directly.

The core SwiftNIO repository contains a few extremely important protocol
implementations, such as HTTP. SwiftNIO developer group believes that most
protocol implementations should be decoupled from the release cycle of the
underlying networking stack, and they encourage the community to develop and
maintain their protocol implementations.

AsyncHTTPClient
(Source: https://github.com/swift-server/async-http-client)

This package provides an HTTP Client library built on top of SwiftNIO. This library
provides the following:

•	 Top-class support for Swift Concurrency (since version 1.9.0)
•	 The asynchronous and non-blocking architecture of request methods
•	 Simple follow-redirects and cookie headers are dropped
•	 Streaming body download
•	 TLS support
•	 Automatic HTTP/2 over HTTPS
•	 Cookie parsing

Swift AWS Lambda Runtime
(Source: https://github.com/swift-server/swift-aws-lambda-runtime/)

Many modern software systems have client components such as iOS, macOS, or
watchOS applications as well as server components with which clients interact.
Serverless architecture is often the easiest and most efficient way for client application
developers to extend their applications into the cloud.

Serverless architecture is increasingly becoming a popular choice for running
event-driven or ad hoc computing tasks in the cloud. The power mission-critical

16  Full Stack iOS Development with Swift and Vapor

microservices and data-intensive workloads. In many cases, the serverless
architecture allows developers to easily scale and control computation costs, given
their on-demand nature.

When using serverless architecture, special attention must be given to resource
utilization as it directly impacts the costs of the system. This is where Swift helps
with its low memory footprint, deterministic performance, and quick start time.
Swift is a tremendous match for the serverless functions architecture.

Combine this with Swift’s developer friendliness, expressiveness, and safety, and
we have a solution that is great for developers at all skill levels, scalable, and cost-
effective.

Swift AWS Lambda Runtime was designed to make building Lambda functions
in Swift simple and safe. This package is an implementation of the AWS Lambda
Runtime API and uses an embedded asynchronous HTTP Client based on SwiftNIO,
which is fine-tuned for performance in the AWS Runtime context. This package
provides a multi-tier API that allows building a range of Lambda functions from
quick and simple closures to complex, performance-sensitive event handlers.

Soto—AWS SDK Swift
(Source: https://github.com/soto-project/soto)

Soto is an SDK written in Swift language for Amazon Web Services (AWS). It
works on Linux, macOS, and iOS. This package provides access to all AWS services.
The service APIs it provides are a direct mapping of the REST APIs that Amazon
publishes for each of its services. Soto is a community-supported project and does
not have any affiliation whatsoever with AWS.

The library consists of the following three parts:
1.	 soto-core, which does all the core request encoding and signing, response

decoding, and error handling.
2.	 The service API files define the individual AWS services and their commands

with their input and output structures.
3.	 The CodeGenerator builds the service API files from the JSON model files

supplied by Amazon.

Full-stack Development Overview  17

Conclusion
As we have observed during this chapter, the server-side Swift infrastructure is
evolving really fast. Swift is available on all major platforms Windows, Linux, and
Unix.

Why opt for Swift as your main language for the back end? Because Swift is modern,
fast, and safe. It is available on all major platforms, and it has a great learning curve.
Swift has a bright future not just because of support from Apple but also because of
the huge community that supports it.

For someone coming from an iOS background and wanting to go full-stack, Swift
and Vapor should be a natural choice because of a relatively easy learning curve and
a great support community.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
Vapor is a Web framework that allows us to write backends, Web apps APIs, and
HTTP servers in Swift. Vapor is written in Swift, which provides a number of
benefits over the more traditional server languages being a modern, powerful, and
safe language.

As, in this book, we are exploring full stack development for iOS, we will only focus
on Vapor on macOS. We will skip Vapor on Linux from the scope of this book.

In this chapter, we will create our first Hello World projects in Vapor for the backend
and in Swift for iOS. This chapter aims to give a basic understanding of tools and
SDKs to start with Vapor and iOS development. In this chapter, we will cover the
installation of Xcode, Vapor Toolbox, and starter projects in Vapor as well as for iOS.

Structure
In this chapter, we will cover the following topics

•	 Installation of Xcode
•	 Installation of Vapor toolbox

Chapter 2
Setting Up the

Environment

20  Full Stack iOS Development with Swift and Vapor

•	 Hello world project (Vapor)
	 o	 Build and run project
	 o	 Folder structure
•	 Swift package manager
•	 Hello World project (iOS)
	 o	 Project structure
	 o	 Run project

Installation of Xcode
We need Swift 5.2 or greater to use Vapor on macOS. Swift and all of its dependencies
come bundled with Xcode. The minimum required version for working with Vapor
on macOS is Xcode 11.4:

1.	 To install Xcode, go to Mac App Store and install the latest version of Xcode,
as shown in the following figure:

Figure 2.1: Install Xcode

Setting Up the Environment  21

2.	 After Xcode has been downloaded, open it to complete the installation. This
will take a while.

3.	 Open the terminal and check the Swift’s version:
	 swift –-version

4.	 You will see Swift’s version information printed on the terminal as follows:
	 swift-driver version: 1.45.2 Apple Swift version 5.6

(swiftlang-5.6.0.323.62 clang-1316.0.20.8)

	 Target: x86_64-apple-macosx12.0

Installation of Vapor toolbox
1.	 Now that we have Swift installed, let us install the Vapor toolbox. The Vapor

toolbox is distributed through Homebrew. If you do not have Homebrew
installed, first install Homebrew. Open the terminal and run the following
command to install Homebrew:

	 $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

2.	 Now, it is time to install the Vapor toolbox:
	 brew install vapor

3.	 Run the help command to double-check that the installation of the Vapor
toolbox is successful and to list available commands:

	 vapor –-help

4.	 You will see the output on the terminal as shown in the following figure:

Figure 2.2: Vapor Help

22  Full Stack iOS Development with Swift and Vapor

Hello world project (Vapor)
1.	 Now that we have installed Xcode and Vapor, continuing the customary

tradition of the programming world, we will create a Hello World project.
Open the terminal and use Vapor toolbox’s new project command as follows:

	 vapor new Hello -n

	 The -n flag creates a bare-bones template by automatically answering no
to all questions.

2.	 This will create a new folder in the current directory with the project, as
shown in the following figure:

Figure 2.3: Hello World

3.	 Change the directory to the newly created folder in the terminal:
	 cd Hello

Build and run project
1.	 Open the project in Xcode by running the following command:
	 open Package.swift

2.	 This command will automatically start downloading Swift Package Manager
dependencies. This will take some time for the first time you try to open the
project. After dependency resolution is complete, Xcode will populate the
available schemes and will open the project as shown in the following figure:

Setting Up the Environment  23

Figure 2.4: Open project

3.	 At the top of the Xcode window, to the right of the Play and Stop buttons,
click on the project name to select the project’s Scheme if not already selected,
and run Target, My Mac. Click the Play button to build and run the project.

	 We should see the console output at the bottom of the Xcode window, as
shown in the following figure:

Figure 2.5: Console output

4.	 Open your Web browser and visit http://127.0.0.1:8080 or localhost:8080.
You should see the page shown in the following figure:

24  Full Stack iOS Development with Swift and Vapor

Figure 2.6: Browser output

5.	 If we visit http://127.0.0.1:8080/hello or localhost:8080/hello. You
should see the page shown in the following figure:

Figure 2.7: Hello World Output

Folder structure
Now that we have created and built our “Hello World” Vapor app let us familiarize
ourselves with the project’s folder structure which is based on SPM's folder structure.
See the following figure:

Figure 2.8: Folder structure

Setting Up the Environment  25

Public folder
This folder contains all public files that will be served by the Vapor app if
FileMiddleware is enabled. These files are usually images, style sheets, browser
scripts, and so on. We need to enable FileMiddleware in the configure.swift file for
making Vapor to serve public files.

// configures your application

public func configure(_ app: Application) throws {

 // Serve files from /Public folder

 �app.middleware.use(FileMiddleware(publicDirectory: app.directory.
publicDirectory))

 // register routes

 try routes(app)

}

Sources
The sources folder contains all Swift source files for the project. The top-level
folders are App and Run. App folder is where all the application logic goes. Within the
App folder, the Controllers folder should be used for grouping together application
logic. Most controllers have functions that accept a request and return some response.

The file configure.swift contains the configure(_:) function, which is called by
main.swift to configure the newly created Application. This is where we should
register services such as routes, databases, providers, and so on.

The routes.swift file contains the routes(_:) method, which is called near the end
of configure(_:) to register routes to the Application.

Run
This is the main executable target. This contains just the code needed to get the
application up and running. The main.swift file creates and runs a configured
instance of the Vapor Application.

26  Full Stack iOS Development with Swift and Vapor

Tests
Every module in the Sources folder should have a corresponding folder in Tests.
This contains test cases built on the XCTest module for testing the package. AppTests
folder contains the unit tests for code in the App module.

Swift Package Manager
The Swift Package Manager (SPM) is used for building the project’s source code and
dependencies. As Vapor relies heavily on SPM, let us just understand the basics of
SPM.

It is similar to Cocoapods or NPM. It can be used from the command line or with
compatible IDEs. However, it does not have a central package index for SPM
packages. It leverages URLs to Git repositories and version dependencies using Git
tags.

The first place SPM looks in the project is the package manifest. This file should
always be located in the root directory of the project and named Package.swift, as
shown in the following figure:

Figure 2.9: Package manifest

Setting Up the Environment  27

The first line of the package manifest indicates the minimum version of Swift that
the package supports. The first argument to Package is the package’s name. If the
package is public, it should be the last segment of the Git repo’s URL as the name.

The platforms array specifies which platforms this package supports. By specifying
.macOS(.v12) this package requires macOS Mojave or greater. When Xcode loads
this project, it will automatically set the minimum deployment version to macOS 12.

Dependencies are SPM packages other than that your package relies on. All Vapor
applications rely on the Vapor package, but we can add as other dependencies as well.
In the following figure 2.9, observe that vapor version 4.0.0 or later is a dependency
of this package.

The targets specify all of the modules, executables, and tests that the package
contains. Most Vapor apps have three targets, but we can add as many as we like to
organize the code. Each target declares which modules it depends on. We need to
add module names here to be able to import them into the code. A target can depend
on other targets in the project or on modules exposed by packages we have added to
the main dependencies array.

While building a project for the first time, SPM creates a Package.resolved file that
stores the version of each dependency. To update the dependencies, run a swift
package update.

For Xcode 11 or greater, changes to dependencies, targets, products, and so on will
happen automatically whenever the Package.swift file is modified.

Hello World project (iOS)
1.	 To create our first Hello World project for iOS, launch Xcode again. You will

land on the Xcode’s welcome page, where you can click on Create a new
Xcode Project link to start creating a new project, as shown in the following
figure:

28  Full Stack iOS Development with Swift and Vapor

Figure 2.10: Create a new iOS project

2.	 After clicking on the Create a new Xcode Project, you will land on the next
page, where you can select the platform, such as iOS , macOS , watchOS, and
so on, for your Hello World project. Select iOS from the platform list and
select App as a template, as shown in the following figure:

Setting Up the Environment  29

Figure 2.11: Select the iOS project template

3.	 After selecting the platform and template, you will land up on the next page,
where you will be able to name your project. For this sample, we will name
the project as Hello World, as shown in figure 2.12.

4.	 At this point, you do not need to add the Team, so we can leave it untouched.
5.	 In the organizer identifier, you can use the reverse domain name of your

organization, like com.yourCompanyName.
6.	 For the interface, use Storyboard, and for language, choose Swift.
7.	 We do not need Core Data and Unit Test cases for this sample project, so we

will keep them unchecked.

30  Full Stack iOS Development with Swift and Vapor

Figure 2.12: Project configuration

8.	 Click on the Next button and select a directory to save your project. As soon
as you will click on the Next button, a modal window will appear to select
a directory for the project. In this window, you can navigate to the desired
directory location on the machine and save the project, as shown in the
following figure:

Figure 2.13: Select project directory

Setting Up the Environment  31

9.	 As soon as you click on the Create button, Xcode will create a new project in
the directory, as shown in the following figure:

Figure 2.14: New project

Project structure
Now, let us discuss the project structure of our newly created Hello World project:

Figure 2.15: Project structure

32  Full Stack iOS Development with Swift and Vapor

As shown in the preceding figure, the first two files in the project structure are
AppDelegate and SceneDelegate. The AppDelegate is responsible for the application
lifecycle and setup, whereas SceneDelegate is responsible for what is shown on the
screen (Windows or Scenes) and handle and manage the way your app is shown.

In all the iOS apps, AppDelegate is the main entry point for the app, and it is the
place for handling app states. From iOS 13, as a result of the new multi-window
support feature that is introduced with iPad-OS, SceneDelegate is introduced to
handle Windows and Scenes.

ViewController is the default view controller created in the project template. Main.
storyboard is the default storyboard provided by the template. We will add our
Hello World label here.

The Assets folder holds the image assets required in the application bundle.
LaunchScreen.storyboard is the very first screen presented to the user on App
launch. Generally, the company logo or similar branding stuff is presented on this
screen.

To provide a better experience for users, iOS and macOS rely on the presence of
special metadata in each app or bundle. Info.plist is a configuration file that holds
this metadata. This metadata is used in many different ways. Some of it is displayed
to the user, some of it is used internally by the system to identify your app and the
document types it supports, and some of it is used by the system frameworks to
facilitate the launch of apps.

Add Hello World label
Now, let us create the UI for our Hello World project. Click on Main.storyboard, as
shown in the following figure:

1.	 In the right panel, you will see ViewController Scene. Expanding the scene
will show the View Controller hierarchy, which by default contains a view
where we can place the UI elements. Also, notice that in the following figure,
the rightmost panel shows an iPhone-like screen, where we can design and
visualize the UI before launching the simulator.

Setting Up the Environment  33

Figure 2.16: View controller scene

2.	 Next, as shown in the following figure, click on the + button at right most
top corner to open the window for browsing the available UI objects. For
our Hello World project, we need a static string, so a Label would be a good
choice.

3.	 Click on the search field and type Label to access the label object for the UI.

34  Full Stack iOS Development with Swift and Vapor

Figure 2.17: UI object library

4.	 Drag the Label object from the browser window and place it on the iPhone
screen below. Drag the label on the iPhone screen to place it at the place of
your desire on the screen. We will drag it to the center of the screen for our
example, as shown in figure 2.18.

5.	 Double-click or press Enter key on the Label, and it will become editable.
Edit and type Hello World in the Label object.

6.	 Notice that when you add Label on the screen, it also updates the
ViewController scene hierarchy as well. Notice that a Label is added as a
child of the View Controller’s view.

Setting Up the Environment  35

Figure 2.18: UI design

7.	 Rightmost panel is the Attribute inspector, where you can view and customize
the UI element’s property. In this case, you can see that Label has various
customizable properties such as text color, background color, text truncation
behavior, and so on. You can play with these properties to see how they
affect the UI of the label.

Run Xcode project
1.	 Now we are done with a basic Hello World label UI, let us prepare to run this

project. Refer to the following figure.
2.	 At the Xcode top bar, you will see a target Hello World (highlighted with the

red circle in the figure). If you do not see this target, click on the Link and
select this Target.

36  Full Stack iOS Development with Swift and Vapor

3.	 Next to the target, there is a link for selecting the simulator for testing the
code.

Figure 2.19: Set up run environment

4.	 As you can see in figure 2.19, the simulator by default selected is the iPod
touch. If you click on this link, it will open a drop-down list for all available
Simulator options with the Xcode. Refer to the following figure:

Figure 2.20: Simulator options

5.	 Now, after all this hard work, it is time to run the project. Refer to the following
figure; at the top bar of Xcode, you will see a Play button (highlighted with
the red circle in the figure):

Setting Up the Environment  37

Figure 2.21: Run project

6.	 Press the Play button to run the project. This will first build the project and
then will launch the selected iPhone Simulator, as shown in the following
figure:

Figure 2.22: iPhone simulator

7.	 After few seconds, our App will launch and will display “Hello World” text
on UI. See the following figure:

38  Full Stack iOS Development with Swift and Vapor

Figure 2.23: App launch

8.	 As you can see on the title bar of simulator, it says iPhone 8, which is our
selected simulator. Also, notice that, while during design, we placed Label
in the center, it is not in the center in the simulator. At the top right corner of
the Simulator title bar, there is a rotation icon. Click on this icon to rotate the
phone into Layout mode, as shown in the following figure:

Figure 2.24: Simulator layout mode

Setting Up the Environment  39

9.	 As you can see, as soon as we rotated the Simulator, Hello World Label was
not visible now. This issue and the first issue we discussed where the Label
is not center aligned have the same root cause, and that is because we have
not handled auto layout yet.

We will read in detail about auto layout in upcoming chapters. For now, let us enjoy
success and run our first Hello World project.

Conclusion
In this chapter, we covered the installation of Xcode and Vapor Toolbox, which are
essential tools to start with Swift for server and iOS development. We also covered
creating a starter project with Vapor for the server and a starter project for iOS, along
with their respective folder and project structures.

In the upcoming chapters, we will dive deep into the concepts of server development
in Vapor and iOS application development.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In this chapter, we will go through the basics of creating a Web API using Vapor
and the fundamentals of working with routes. We will also explore how to create
controllers in Vapor for implementing Model View Controller (MVC) design
pattern. Later, we will learn about working with JSON with Vapor APIs.

Structure
In this chapter, we will cover the following topics:

•	 Routes
•	 Router methods
	 o	 Basic routes
	 o	 Nested routes
	 o	 Route parameters
	 o	 Anything routes and CatchAll routes
	 o	 Query strings
	 o	 Route groups

Chapter 3
Routing, MVC and

JSON in Vapor

42  Full Stack iOS Development with Swift and Vapor

•	 Model-View-Controller (MVC)
•	 Working with JSON
	 o	 Posting JSON and Postman app

Objectives
This chapter aims to give a basic understanding of creating Routes for the server
application, a brief understanding of the MVC design pattern, and creating
Controllers in a Vapor application. We will also explore JSON format and handling
JSON in a Vapor app and extend this discussion. We will also cover the Postman app
for testing the Routes.

Routes
The first question which comes to mind when one hears Route is, what are Routes?
Routes are also known as API endpoints. So, if someone is talking about routes or
API endpoints, s/he basically means the same exact thing. Route or API endpoint is
basically a URL to a resource. This means that you will hit a particular route and get
some results out of it. It could be a list of movies, a list of restaurants near you, or a
menu of your favorite restaurant.

So, if we are building a Restaurant lister API and we want to create a new route that
will give us all the Restaurants, we can write a route that will look something like
the following: https://www.mydomain.com/restaurants.

Generally, when people talk about the routes, they only talk about the last part only.
The domain name mydomain, in this case, is pretty much the same for all the different
routes or API endpoints.

So, in a nutshell, we can say that routing is the process of finding the appropriate
request handler for the incoming service request. At the core of Vapor’s routing is
RoutingKit (https://github.com/vapor/routing-kit).

Before going further into the details of routing, let us understand the basics of HTTP
requests first. Let us again take a look at our route https://www.mydomain.com/
restaurants. This is a simple GET request for which the browser will make a request
like the following:

GET /restaurants HTTP/1.1

host: mydomain

Routing, MVC and JSON in Vapor  43

content-length: 0

The first part of the request is the HTTP method. GET is the most common HTTP
method, but there are several others that we will use often. These HTTP methods are
often associated with CRUD semantics, as shown in the following table (table 3.1):

Method CRUD Route example
GET Read https://www.mydomain.com/restaurants
POST Create https://www.mydomain.com/restaurants
PUT Replace https://www.mydomain.com/restaurants/Id
PATCH Update https://www.mydomain.com/restaurants/Id
DELETE Delete https://www.mydomain.com/restaurants/Id

Table 3.1: HTTP methods and CRUD

Right after the HTTP method comes the request’s URI. URI consists of a path starting
with a / and an optional query string after ?. The combination of the HTTP method
and path is used to route requests.

Router methods
Let us look at the various router methods of Vapor:

Basic routes
Now that we know what the Routes are, let us go ahead and start creating some very
basic routes. But before that, let us create a new Vapor project which we will enhance
and continue to work on during the course of this book.

1.	 As described in Chapter 2, Setting Up the Environment, follow the steps to
create a new project by typing the following Vapor command in the terminal:

	 vapor new VaporApp -n

2.	 Then launch the project by typing the following commands in the same
terminal window:

	 cd VaporApp

	 open package.swift

3.	 Next, in the project hierarchy, open Sources | App | routes.swift file as
shown in the following figure:

44  Full Stack iOS Development with Swift and Vapor

Figure 3.1: Routes

4.	 As you can see, there are two routes already created by the template by
default. We will remove these template routes and will start afresh. But first,
let us understand what these routes are.

5.	 The first route is a root route that takes a request in and returns a string It
works!. We have already tested this route in our Hello World project. This
route can be accessed by accessing http://localhost:8080.

6.	 Another example of the template function is a route with a name; in
this case, the route name is hello. This route can be accessed at http://
localhost:8080/hello.

Nested routes
In the section, Basic Routes, we learned about root route and named route. But in our
daily life, we do not encounter such simple URLs. For example, what if you want
to get the best restaurants with a speciality in Chinese food? We cannot create root
routes for such requests. The answer to this is nested routes.

So, for our restaurant query, the URL would be something like the following: http://
localhost:8080/restaurants/speciality/chinese.

One immediate thought which comes to our mind is that it would be possible to
create a route like the following:

app.get("restaurants/speciality/chinese") { req -> String in

}

But Vapor syntax does not work like this. To create such a route, we have to pass in
multiple parameters like the following:

Routing, MVC and JSON in Vapor  45

app.get("restaurants", "speciality", "chinese") { req -> String in

 return "restaurants/speciality/chinese"

}

Now, let us run this code and see if this route works or not.
1.	 Click on the play button on Xcode to run the project, as shown in the following

figure:

Figure 3.2: Nested routes

2.	 As soon as you see [NOTICE] Server starting on http://127.0.0.1:8080
on the Xcode console screen, as shown in the following figure, we can test the
nested route in the browser:

Figure 3.3: Starting server

46  Full Stack iOS Development with Swift and Vapor

3.	 Open the browser, and in the address bar, type http://localhost:8080/
restaurants/speciality/chinese. You should see a string restaurants/
speciality/Chinese on the Web screen as shown in the following figure:

Figure 3.4: Nested route

Now, the obvious question that comes to our curious minds is that, specialty could
be anything; it could be Chinese or Indian or Thai or French, and so on.

One way of handling this is to create multiple functions for each specialty, like the
following examples:

app.get("restaurants", "speciality", "indian") { req -> String in

 return "restaurants/speciality/indian"

}

app.get("restaurants", "speciality", "thai") { req -> String in

 return "restaurants/speciality/thai"

}

Now, if we run the project and access these routes, it will give us desired results, as
shown in the following figure:

Figure 3.5: Indian cuisine

Routing, MVC and JSON in Vapor  47

And in the following figure:

Figure 3.6: Thai cuisine

But as any experienced developer would know, this solution is not scalable as this
means having hundreds of APIs for this trivial feature.

So, what is the solution? Let us explore this in the next section.

Route parameters
Let us revisit the problem statement from the last section. We want to create an
API endpoint that can take a variable speciality parameter so we do not have to
hardcode a bunch of routes just to get the best restaurants for a particular speciality.

So, our API should look something like the following: http://localhost:8080/
restaurants/speciality/region, where the region is variable.

In Vapor, we can write this route as follows:

//http://localhost:8080/restaurants/speciality/region

app.get("restaurants", "speciality", ":region") { req -> String in

 guard let region = req.parameters.get("region") else {

 throw Abort(.badRequest)

 }

 return "restaurants/speciality/\(region)"

}

Here, if you notice, in app.get, we have three parameters; the first two parameters
restaurants and speciality are nested routes, whereas the third parameter :region
is a route parameter. Delete the three routes we created in the last section, Nested
Routes, and now our routes.swift will look as in the following figure:

48  Full Stack iOS Development with Swift and Vapor

Figure 3.7: Route parameter

Now, to test our Route parameter, Run the project, and when you see the message [
NOTICE] Server starting on http://127.0.0.1:8080 in console, open Browser
and type http://127.0.0.1:8080/restaurants/speciality/chinese in the address
bar. You should see a Web page, as shown in the following figure:

Figure 3.8: Parameterised routes

You can try more URLs like http:// localhost:8080/restaurants/speciality/
french, http://localhost:8080/restaurants/speciality/italian , and so on to
validate the route.

Now, let us see what will happen if we have multiple variable parameters for a route.
For example, if we want to search for a restaurant with a specialty in a particular
place, how would we go about it?

Let us say we need an API that will look something like: http:// localhost /
restaurants/delhi/speciality/italian, http:// localhost /restaurants/
newyork/speciality/italian , and so on.

Routing, MVC and JSON in Vapor  49

To implement such API, we will go about it with the same approach as mentioned in
the previous example with a slight variation as follows:

//http://localhost:8080/restaurants/state/location/speciality/region

app.get("restaurants", ":location", "speciality", ":region") { req ->
String in

 guard let location = req.parameters.get("location"), let region = req.
parameters.get("region") else {

 throw Abort(.badRequest)

 }

 return "restaurants in \(location) with speciality \(region)"

}

So, now, our routes.swift file will look as in the following figure:

Figure 3.9: Multiple route parameters

Let us test this. Again, Run the project, and as you see the message [NOTICE]
Server starting on http://127.0.0.1:8080 in the console, launch the browser
and in the address bar type http://localhost:8080 /restaurants/state/newyork/
speciality/italian. You should see a Web page as shown in the following figure:

50  Full Stack iOS Development with Swift and Vapor

Figure 3.10: Route with two parameters

This is great so far. But what if we want to match anything kind of like a wild card?

So, in a way, we want to create some sort of wild card parameters where people can
just pass in anything they want. But how?

Anything routes and CatchAll routes
In this section, we will cover two more cases and two more different ways in which
you can create routes. One is called anything route, and the other one is called catch
all route.

So, first, let us talk about what exactly is anything route?

Anything route basically means that, let us say, your route is routeany/bar/
endpoint, or your route is routeany/xyz/endpoint, then the middle part, that is,
bar or xyz could be anything. So, let us see how we can create a route for such cases.

//Anything route

app.get("routeany", "*", "endpoint") { req -> String in

 return "This is anything route"

}

Here, * represents that you can pass anything in that parameter. Let us now run this
code and see how it works.

Again press the Play button on your Xcode, and when you see the message [NOTICE
] Server starting on http://127.0.0.1:8080 in console, open the browser and
test anything route with different parameters as shown in the following figure:

Figure 3.11: Anything Route 1

Routing, MVC and JSON in Vapor  51

And in the following figure:

Figure 3.12: Anything Route 2

The catch all route is similar, but in this case, the whole remaining part of the route,
which comes after routeany, can be replaced with anything.

So, an example of that route could be where we have route routeany/xyz and
routeany/xyz/bar. Let us see how we can create such a route:

//CatchAll route

app.get("routeany", "**") { req -> String in

 return "This is Catch All route"

}

Here, ** represents that you can pass anything in that parameter. Let us now run this
code and see how it works.

Again press the Play button on your Xcode, and when you see the message [NOTICE
] Server starting on http://127.0.0.1:8080 in console, open the browser and
test anything routes with different parameters as shown in the following figure:

Figure 3.13: Catch All Route 1

And in figure 3.14: Catch All Route 2:

Figure 3.14: Catch All Route 2

52  Full Stack iOS Development with Swift and Vapor

Query strings
Now, let us talk about how we can access query string values when we are using
Vapor for situations like the following.

Say that we have some sort of route search, and then we say the keyword that we
are searching for, and let us say we are searching for Italian food, and the page
number for that is 10 or something. In this case, the URL will look something like
the following:

http://localhost:8080/search?keyword=italian&page=10

So, in this case, we have two different query string values, which are a keyword and
the page number. The value is italian for the keyword and 10 for the page.

The following steps will guide you on how to access these values when we are using
Vapor:

1.	 A route for this sort of requirement can be created as follows:
	 //http://localhost:8080/search?keyword=italian&page=10

	 app.get("search") { req -> String in

	 �guard let keyword = req.query["keyword"] as String?, let page
= req.query["page"] as String? else {

	 throw Abort(.badRequest)

	 }

	 return "Search for Keyword \(keyword) on Page \(page)"

	 }

2.	 Again press the Play button on your Xcode, and when you see the message
[NOTICE] Server starting on http://127.0.0.1:8080 in console, open
the Browser and test query parameters with different parameters shown as
follows:

Figure 3.15: Query Strings 1

Routing, MVC and JSON in Vapor  53

3.	 Now, change the page number in the query string to 21 and refresh the page.

Figure 3.16: Query Strings 2

4.	 Now, again, change the keyword in the query string to french and refresh
the page.

Figure 3.17: Query Strings 3

Route groups
Let us talk about route groups, what they are, and how they can help you organize
better your route in Vapor. Let us revisit the examples discussed in sections Basic
routes, Nested routes, and Route parameters. Say we have to reorganize the following
routes:

/restaurants

/restaurants/speciality/region

Route groups basically allow you to create a prefix. As we can see in the preceding
routes, restaurants are the prefix. So any route we are going to create for restaurants
will begin with restaurants.

Let us create a group for this as follows:

let restaurants = app.grouped("restaurants")

So, if we want to create a base route that will look like: http://localhost:8080/
restaurants, we will create a route like the following:

restaurants.get { req -> String in

 return "restaurants base route"

}

54  Full Stack iOS Development with Swift and Vapor

Again, if we want to create a parameterized route like: http://localhost:8080/
restaurants/starRating/5 , we will create a route like the following:

restaurants.get("starRating", ":stars") { req -> String in

 guard let stars = req.parameters.get("stars") else {

 throw Abort(.badRequest)

 }

 return "restaurants/starRating/\(stars)"

}

Press the Play button on your Xcode, and when you see the message [NOTICE]
Server starting on http://127.0.0.1:8080 in the console, open the browser and
test route groups for different routes shown as follows:

Figure 3.18: Route Groups 1

Refer to the following figure:

Figure 3.19: Route Groups 2

With this, we can conclude our discussion on Routes. Now is the time to understand
some basic design patterns and other nuances of Swift Vapor.

Model-View-Controller (MVC)
MVC is a software development pattern that divides software architecture into the
following three main components:

1.	 Model: Model is a class where your data resides. Things such as persistence,
model objects, parsers, managers, and networking code live there.

Routing, MVC and JSON in Vapor  55

2.	 View: View layer is the user interface of your app. It is what users see on
the screen. Its classes are often reusable as they do not contain any domain-
specific logic.

3.	 Controller: Controller is a mediator class between the view and the model
via the delegation pattern. All the business logic resides here. A Model
communicates its state to view via Controller and vice versa.

When put together, this system looks like as shown in the following figure:

Figure 3.20: MVC

MVC is a design pattern and not as a strict rule that you must always adhere.
Use MVC and other design patterns as needed as architectural guidelines and
foundations for your app.

In the previous sections covering the basics of Routes, we wrote all the route handlers
in routes.swift. This off-course is not sustainable for large projects as the file will
quickly become too big to handle.

In this section, we will introduce the MVC pattern in our project to help manage our
routes and models.

As described preceding, MVC is a design pattern, and so controllers in Vapor serve
a similar purpose to controllers in iOS. They handle interactions with a client, such
as requests, process them, and return the response. This provides a way to organize
the code in a better way. Following the MVC practice, we will have all interactions
with a model in a dedicated controller.

MVC pattern was also used, making it easy to organize the application. For example,
there could be one Controller to manage an older version of the APIs and another to

.

56  Full Stack iOS Development with Swift and Vapor

manage the current version. This allows the separation of responsibilities in the code
and keeps the code maintainable.

So, let us get started with our first Controller. Open the terminal, go to the project
directory, and open Xcode project.

1.	 Open Package.swift.
2.	 Now create a new Swift file as shown in the following figure:

Figure 3.21: Create a new controller

3.	 After clicking on the New File… in the Context menu, select Swift file and
name it UserController for our example, as shown in the following figure:

Routing, MVC and JSON in Vapor  57

Figure 3.22: New Swift file

4.	 A new file will be created under the Controller folder as shown in the
following:

Figure 3.23: UserController

5.	 Import Vapor in the controller file. Now, let us look into the details of creating
routes in the Controller now.

6.	 Inside the Controller, we will define different route handlers. To access these
routes, we need to register these handlers with the router. A crude way to

58  Full Stack iOS Development with Swift and Vapor

do this is to call the functions inside the Controller from routes.swift. For
example:

	 app.get(

	 "api",

	 "Users",

	 use: userController. getAllUsers)

This example calls getAllUsers (_:) on the userController. Instead of passing a
closure as the final parameter, you pass the function to use.

This approach works well for small applications. But if we have a large number of
routes to register, routes.swift again becomes unmanageable. It is a good practice
to make controllers to be responsible for registering the routes they control. Vapor
provides the protocol RouteCollection to enable this.

So now we are going to go ahead and create a structure, which is called
UserController, and it will conform to RouteCollection. As discussed, we will be
using a RouteCollection inside this Controller and will implement all of our roots.

struct UserController : RouteCollection {

}

As soon as we confirm UserController to RouteCollection, there is an error saying
that Controller is not really conforming RouteCollection as shown in the following
figure.

If we need to conform to the RouteCollection successfully, we need to implement
the boot function. Click on the fix button on the error box shown in the following
figure, and this will add the boot function in the Controller:

Figure 3.24: RouteCollection conforms to error

Routing, MVC and JSON in Vapor  59

The boot has parameter routes, which is a RouteBuilder, and you can use these
routes to create your routes:

struct UserController : RouteCollection {

 func boot(routes: RoutesBuilder) throws {

 }

}

Now, we will go ahead and use the grouping feature, which we learned in earlier
sections.

1.	 We will create a group for users so that all the routes in the Controller that
we are going to create will go to the users.

2.	 Now, let us create a function in the Controller, named getAllUsers, which
will take a Request and can throw an exception and let us make it to return a
string.

	 func getAllUsers(request: Request) throws -> String {

	
	 }

3.	 For now, let us just return a constant string All Users.
	 func getAllUsers(request: Request) throws -> String {

	 return "All Users"

	 }

4.	 Now, let us create a route for this function in boot function:
	 func boot(routes: RoutesBuilder) throws {

	
	 //users Group

	 let users = routes.grouped("users")

	

	 //Routes

	 users.get(use: getAllUsers)

	 }

5.	 But we still need to connect all these things together. That is, we still have
to tell the Vapor application that we are using UserController for the /user
route group.

60  Full Stack iOS Development with Swift and Vapor

	 So how can we do that?
6.	 Let us go out of this Controller and open routes.swift file, and inside the

route file, you can see that app is already passed.
7.	 So, we can simply use the register function of the app; when you will type

that, you can see that it takes in a RouteCollection type of parameter, as
shown in the following figure:

Figure 3.25: Register Controller

8.	 Because our UserController conforms to this protocol, we can simply pass
in the UserController.

	 func routes(_ app: Application) throws {

	

	 try app.register(collection: UserController())

	 }

	 And make sure that you call the register function with a try because it is a
throwable function.

9.	 Now, it is time to check it out our first route. We are just going to go ahead and
run the server, and once the server is running, we can simply go to http://
localhost:8080/users, which is going to trigger the UserController and it
is going to go to this particular route as shown in the following figure:

Figure 3.26: All users

	 Now, what if we want to create the routes for going to a particular user Id
and where the second part will be the route parameter?

Routing, MVC and JSON in Vapor  61

	 So, let us see how we can build that, we are going to go ahead and create a
group.

	 // /user/userId

	 users.group(":userId") { user in

	 user.get(use: show)

	 }

10.	 In this group, we are grouping all the routes that go to the user ID. The get
function here will call the show function when the user ID is passed in the
route, such as http://localhost:8080/users/123.

11.	 Now let us create the show function like the following:
	 func show(request: Request) throws -> String {

	 �guard let userId = request.parameters.get("userId") as
String? else {

	 throw Abort(.badRequest)

	 }

	

	 return "Show user for user id = \(userId)"

	 }

12.	 In the show function, we can extract the user ID value from the request
parameter.

13.	 Let us go ahead and stop the server and start the server again for testing our
new route. This time we are going to go and check out our user id route.

14.	 So, we are going to go to the same user route, but I am going to enter, say, 21
as the route parameter, and you can see that we have the value of 21 in the
response, as shown in the following figure:

Figure 3.27: User with id 21

So, with this exercise, the main idea that we want to convey is that we should use
Controller to structure our code better.

62  Full Stack iOS Development with Swift and Vapor

If you see the route.swift file as shown in the following figure, you will notice that
it is now almost empty.

Figure 3.28: Route file

The route file is simply delegating all the routes to the UserController or any other
controller we have. Also, the Controller itself is going to be dictating what kind of
routes that will be built and also what to display on each of these routes, as shown
in the following figure:

Figure 3.29: Controller

Routing, MVC and JSON in Vapor  63

Later on, we will also see that how the use of Controller can use a repository or a
model to fetch the information from a database and then return some sort of a page
or some API, and so on.

But, by all means, start using the controllers because, as is evident, it is really useful
when you are structuring your application, and it will be very, very beneficial in the
long run when you will enter into the maintenance phase of your code.

Working with JSON
Till now, we have learned that how we can return a string as a response from
our route. But in actual iPhone applications, you do want to return some sort of
structured data.

Now, if we want to return usernames in the getAllUsers API mentioned previously,
we can go ahead and modify the API to return an array of dictionaries with key as
name and value as username.

The new function would be something like the following:

func getAllUsers(request: Request) throws -> [[String:String]] {

 return [["name":"User1"], ["name":"User2"]]

}

1.	 Re-run the code again, and in the browser, type the address at http://
localhost:8080/users to test the API. This should return an array of user
dictionaries on the browser, as shown in the following figure:

Figure 3.30: List of users

2.	 But what if we also want each dictionary to have the age of the user as well.
So, if we go ahead and put the age as well like the following:

	 func getAllUsers(request: Request) throws -> [[String:String]] {

	 return [["name":"User1", "age":32], ["name":"User2", "age":56]]

	 }

64  Full Stack iOS Development with Swift and Vapor

3.	 So the key is age, and the value is an integer; the compiler will start giving
errors because it can only return dictionaries having a String type value
only, but the age value is an integer.

	 So what should we do?

Can we go over here and say that dictionary value will be of type Any, But Any does
not really conform to codable/decodable.

Here, JSON format comes to our help. Because this format is text only, JSON data can
easily be sent between computers and used by any programming language. So how
can we return JSON data from our Vapor API?

First of all, instead of returning an array of dictionaries, we will return Response from
the function. So now we can return anything which is codable. Now, we will use
JSONSerialization to convert the user array into JSON format. Create a Response
from JSON data and then return the response shown as follows:

func getAllUsers(request: Request) throws -> Response {

 let users = [["name":"User1", "age":32], ["name":"User2", "age":56]]

 �let data = try JSONSerialization.data(withJSONObject: users,
options: .prettyPrinted)

 return Response(status: .ok, body: Response.Body(data: data))

}

Re-run the code again, and in the browser, type address at http://localhost:8080/
users to test the API. This should return JSON for user data on the browser, as
shown in the following figure:

Figure 3.31: List of users JSON 1

Routing, MVC and JSON in Vapor  65

Now, this is not a very nice approach to convert user data to JSON as we are storing
data in dictionaries. Vapor framework does provide with some protocols that can be
used to easily pass around and convert the actual object into JSON. The first thing
we are going to do is, create a structure for the user like the following:

struct User : Content{

 let name : String

 let age : Int

}

As you can see, User conforms to Content. If we go to the definition of content, we
see that it is a protocol conforming Codable, RequestDecodable, ResponseEncodable,
AsyncRequestDecodable, and AsyncResponseEncodable, as shown in the following
figure:

Figure 3.32: Content

Now, let us modify our getAllUsers function to use this struct as follows:

func getAllUsers(request: Request) throws -> [User] {

 �let users = [User(name: "User1", age: 32), User(name: "User2", age:
32)]

 return users

}

66  Full Stack iOS Development with Swift and Vapor

Re-run the code again, and in the browser, type the address at http://
localhost:8080/users to test the API. This should return JSON for user data on the
browser, as shown in the following figure:

Figure 3.33: List of users JSON 2

This is all good, but what if we have a complex object structure. We can assume that
the user will have an address, and to capture the user address, we will create another
struct as follows:

struct Address : Content{

 let street : String

 let state : String

 let zip : String

}

Also, let us add a new property address in User struct as follows:

struct User : Content{

 let name : String

 let age : Int

 let address : Address

}

Now, back to the getAllUsers function and update the initializer for User object:

func getAllUsers(request: Request) throws -> [User] {

 �let address = Address(street: "Road 8 Rohini sec 8" , state:
"Delhi", zip: "110085")

 let users = [User(name: "User1", age: 32, address: address)]

 return users

}

Routing, MVC and JSON in Vapor  67

Re-run the code again, and in the browser, type the address at http://
localhost:8080/users to test the API. This should return JSON for user data on the
browser, as shown in the following figure:

Figure 3.34: List of users JSON 3

Posting JSON and Postman app
We have looked at the get routes and how we can return JSON using a get request.
But what about the POST requests? So, let us go ahead and see that how we can
implement a post request that will accept a JSON. Our route is going to get the JSON
decoded return a status.

In the UserController, create a new function, say createUser, which will be used
by a POST route.

func createUser(request: Request) throws -> HTTPStatus {

 let user = try request.content.decode(request.content)

 print(user)

 return .ok

}

Next, in the boot function, create a POST route for creating users.

//POST

users.post("create", use: createUser)

Re-run the code again to test our POST API.

All good so far, but how do we test this API? For GET requests, we simply hit the
routes in the browser, but in the case of POST requests, we need to send a POST body
with user data to create a new user.

Here, Postman.app comes to the rescue. You can download the Postman.app for
macOS from here (https://www.postman.com/downloads/)

68  Full Stack iOS Development with Swift and Vapor

After download and install, launch the app, and you will land on the window as
shown in the following figure:

Figure 3.35: Postman

Click on the dropdown at left and select POST as shown by the red circled area in the
following figure. Also, in the URL field, type the URL for the create route as http://
localhost:8080/users/create, as shown by the box area in the following figure:

Figure 3.36: POST Request 1

Routing, MVC and JSON in Vapor  69

Now, as this is a POST request, we will have to provide a request body for the content
in which we will pass our JSON. For that, click on Body and then raw link in the
Postman window, as shown by the two circled areas in the following figure:

Figure 3.37: POST Request 2

Now, go to the Header section left to the Body link, and under the KEY column, type
Content-Type as shown in the following figure:

Figure 3.38: POST Request 3

After selecting the key, in the VALUE column, type application/json as shown in the
following figure to specify the content type attached in the body of the POST request:

70  Full Stack iOS Development with Swift and Vapor

Figure 3.39: POST Request 4

Now, it is the time to provide the user object as JSON in the body of the POST request.
Go back to the Body section, as shown in the following figure, and type your JSON
in the text area as shown in the following:

{

 "name":"New User",

 "age":32,

 "address": {

 "street":"Road 8 Rohini sec 8",

 "state":"Delhi",

 }

}

We have provided a wrong JSON syntax for which Postman’s editor will highlight
the error with a ~ as shown in the figure, and also, if you see closely, we have not
provided zip code in the JSON.

Now run the code, and when the service is up and running, press Send button to
execute the POST request. In the response section, you will see a failure response with
status code 400 Bad Request and an error response as follows:

{

 "error": true,

Routing, MVC and JSON in Vapor  71

 "reason": "Value required for key 'address.zip'."

}

Refer to the following figure:

Figure 3.40: POST Request 5

Now, let us correct our JSON structure and provide the following JSON to the POST
request:

{

 "name":"New User",

 "age":32,

 "address": {

 "street":"Road 8 Rohini sec 8",

 "state":"Delhi",

 "zip" : "110085"

 }

}

72  Full Stack iOS Development with Swift and Vapor

Again, press Send button and execute the POST request. This time service will respond
with status 200 OK and response as 1; see the following figure:

Figure 3.41: POST Request 6

Conclusion
To recap, we covered Routes and Controllers in Vapor and also covered working
with JSON and Postman for GET and POST requests. With this chapter, we have made
a base for our journey in the domain of full-stack development on iOS.

In the upcoming chapter, we will cover concepts covering async, logging, error
handling, and Leaf.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In this chapter, we will continue with understanding the other base concepts of
Vapor in continuation of Chapter 3: Routing, MVC, and JSON in Vapor.

Structure
In this chapter, we will cover the following topics:

•	 Async
•	 Logging
•	 Environment
•	 Errors
•	 Stack traces
•	 Leaf

Chapter 4
Async and HTML

Rendering in Vapor

74  Full Stack iOS Development with Swift and Vapor

Objectives
In continuation of the previous chapter, this chapter aims to extend the basic
understanding about async, logging, capturing errors and stack traces, and finally,
handling HTML rendering in a Vapor project. In this chapter, we will implement a
small part of the code to showcase HTML rendering on a Web page using Leaf and
Vapor routes.

Async
Asynchronous programming is an essential part of developing scalable Web
applications. With Vapor, developers can leverage Swift’s native concurrency
features to write asynchronous code that efficiently handles multiple concurrent
requests. In Vapor, asynchronous programming is typically achieved using the
async and await keywords, which allow developers to write non-blocking code
that can handle I/O-intensive operations, such as network requests and database
queries, without blocking the main thread. This makes it possible to handle a large
number of requests concurrently, improving the performance and scalability of the
Web application.

Async await
Swift 5.5 introduced concurrency to the language with async/await. This provided a
highly efficient way of handling asynchronous code in Swift and Vapor applications.

As discussed before, Vapor is built on top of SwiftNIO, which provides primitive
types for low-level asynchronous programming, and these were center staged
throughout, even before async/await arrived. With Swift 5.5, it is recommended to
use async/await instead of using EventLoopFutures for simplifying the code and
make it much easier to read and debug.

Vapor’s APIs now offer both EventLoopFuture and async/await versions. As a best
practice, you should only use one programming model per route handler and not
the mix and match of both approaches.

Migrating to async/await
There are a few steps we need to take care of for migrating to async/await. To start
with, you must be on macOS 12 Monterey or greater and should have Xcode 13.1
or greater. For other platforms, we may use Swift 5.5 or greater running on that
platform.

Async and HTML Rendering in Vapor  75

In Package.swift, set the tools version to 5.5 at the top of the file, set the platform
version to macOS 12, and update the run target to mark it as an executable target, as
shown in the following figure:

Figure 4.1: Set tool versions

Logging
Vapor’s logging API uses SwiftLog (https://github.com/apple/swift-log) underneath,
which makes it compatible with all of SwiftLog’s backend implementations (https://
github.com/apple/swift-log#backends).

Vapor provides a few easy ways to use instances of Logger for outputting log
messages. Each incoming Request has a unique logger associated with it that we
should use for any logs specific to that request shown as follows:

app.get("hello") { req -> String in

 req.logger.info("Hello, logs!")

 return "Hello, world!"

}

The request logger includes a unique UUID identifying the incoming request to
make tracking logs easier.

76  Full Stack iOS Development with Swift and Vapor

For log messages during app boot and configuration, use the following application’s
logger:

app.logger.info("Setting up migrations...")

There could be situations where we do not have access to the Application or the
Request. In such cases, we can initialize a new custom Logger:

let logger = Logger(label: "dev.logger.myAppLogs")

logger.info("some info log")

While custom loggers still output to the configured logging backend, they lack
important metadata attached, like request UUID. Hence, it is advisable to use the
request or application-specific loggers wherever possible.

SwiftLog also supports several different logging levels:

Log-level Description
trace This log level should be used for messages that contain information for

tracing the execution of a program.
debug This log level should be for messages that contain information for the use

of debugging a program.
info This log level should be used for informational messages.
notice This log level should be used for conditions that are not error conditions

but that may require special attention and handling.
warning This log level should be used for messages that are not error conditions

but more severe than notice.
Error This log level should be used for error conditions.
critical This log level should be used for critical error conditions that require

immediate attention.

Table 4.1: SwiftLog logging levels

When a critical message is logged, the logging backend can perform more heavy-
weight operations to capture the system state and facilitate debugging. By default,
Vapor will use the info level for logging. When running with the production
environment, notice level will be used to improve performance.

Regardless of by default environment mode, we can override the logging level as
per the need of our application for increasing or decreasing the amount of logs
produced.

Async and HTML Rendering in Vapor  77

One way is to pass the optional --log flag while booting our application:

vapor run serve --log debug

Another way is to set the LOG_LEVEL environment variable:

export LOG_LEVEL=debug

vapor run serve

SwiftLog is configured by bootstrapping the LoggingSystem once per process, and
this is typically done in main.swift:

import Vapor

var env = try Environment.detect()

try LoggingSystem.bootstrap(from: &env)

The bootstrap(from:) is a helper method that will configure the default log handler
based on command-line arguments and environment variables. Default log handler
can output messages to the terminal.

But that is not all. We can override Vapor’s default log handler and register our own
like the following:

import Logging

LoggingSystem.bootstrap { label in

 StreamLogHandler.standardOutput(label: label)

}

All SwiftLog’s supported backends will work with Vapor. But changing the log level
using command-line arguments and environment variables is only possible with
Vapor’s default log handler.

Environment
Vapor’s Environment API helps us to configure our app dynamically. By default, the
app will use the development environment. We can define other useful environments
like production or staging and change how the app is configured in each case. We
can also load the variables from the process’s environment or .env files, depending
on the app’s needs.

78  Full Stack iOS Development with Swift and Vapor

We can access the current environment using app.environment. We can switch this
property in configure (_:) to execute different configuration logic:

switch app.environment {

case .production:

 app.databases.use(....)

default:

 app.databases.use(...)

}

By default, the app run in the development environment. This can be changed by
passing the --env (-e) flag during app boot:

vapor run serve --env production

The following environments are included in Vapor:

Name Short name Description
production prod Deployed to end users.
development dev Local development.
testing test Unit testing.

We can pass either the full or short name to the --env (-e) flag like the following:

vapor run serve -e prod

Errors
Vapor build upon Swift’s Error protocol for handling errors. Route handlers in Vapor
can either throw an error or return a failed EventLoopFuture. Throwing or returning
a Swift Error will result in a status response of 500, and the error will be logged.
AbortError and DebuggableError are used to change the resulting response and
logging, respectively. ErrorMiddleware handles the errors. The ErrorMiddleware is
added to the application by default and can be replaced with custom logic if desired.

Abort
Vapor provides a default error struct Abort. Abort conforms to both AbortError and
DebuggableError. We can initialize this with an HTTP status and optional failure
reason as follows:

Async and HTML Rendering in Vapor  79

// 404 status code, default "Not Found" reason used.

throw Abort(.notFound)

// 401 status code, customised reason used.

throw Abort(.unauthorized, reason: "Invalid Credentials")

In old asynchronous architecture, where throwing was not supported, the method
must return an EventLoopFuture, like in a flatMap closure, we can return a failed
future:

guard let user = user else {

 req.eventLoop.makeFailedFuture(Abort(.notFound))

}

return user.save()

Vapor provides a helper extension for unwrapping futures with optional values:
unwrap(or:):

User.find(id, on: db)

 .unwrap(or: Abort(.notFound))

 .flatMap

{ user in

 // Non-optional User supplied to closure.

}

In the case of User.find returning nil, and the future will fail with the supplied error.
Else, the flatMap will be supplied with a non-optional value. If we are using async/
await, then we can handle optional as follows:

guard let user = try await User.find(id, on: db) {

 throw Abort(.notFound)

}

Abort Error
By default, any Swift Error thrown by a route closure will result in a 500 Internal
Server Error response. While running the program in debug mode, ErrorMiddleware

80  Full Stack iOS Development with Swift and Vapor

includes a description of the error, which is stripped out when the project is built in
release mode for security reasons.

To configure the reason or HTTP response status for a particular error, it should
conform to AbortError:

import Vapor

enum CustomUserError {

 case userNotLoggedIn

 case invalidEmail(String)

}

extension CustomUserError: AbortError {

 var reason: String {

 switch self {

 case .userNotLoggedIn:

 return "User not logged in."

 case .invalidEmail(let email):

 return "Email address not valid: \(email)."

 }

 }

 var status: HTTPStatus {

 switch self {

 case .userNotLoggedIn:

 return .unauthorized

 case .invalidEmail:

 return .badRequest

 }

Async and HTML Rendering in Vapor  81

 }

}

Debuggable Error
When routes throw errors, ErrorMiddleware uses the Logger.report(error:)
method for logging errors. This method checks the conformance to protocols such
as CustomStringConvertible and LocalizedError for logging readable messages.

For customized error logging, we need to conform errors to DebuggableError. This
protocol includes properties such as unique identifier, source location, and stack
trace. Most of these properties are optional to make adopting the conformance easy.

The custom error conforming to the DebuggableError should be a struct so that it
can store source and stack trace information if needed. The following is an example
of the CustomUserError enum updated to use a struct and capture error source
information:

import Vapor

struct CustomUserError: DebuggableError {

 enum Value {

 case userNotLoggedIn

 case invalidEmail(String)

 }

 var identifier: String {

 switch self.value {

 case .userNotLoggedIn:

 return "userNotLoggedIn"

 case .invalidEmail:

 return "invalidEmail"

 }

 }

82  Full Stack iOS Development with Swift and Vapor

 var reason: String {

 switch self.value {

 case .userNotLoggedIn:

 return "User not logged in."

 case .invalidEmail(let email):

 return "Email address not valid: \(email)."

 }

 }

 var value: Value

 var source: ErrorSource?

 init(

 _ value: Value,

 file: String = #file,

 function: String = #function,

 line: UInt = #line,

 column: UInt = #column

) {

 self.value = value

 self.source = .init(

 file: file,

 function: function,

 line: line,

 column: column

)

Async and HTML Rendering in Vapor  83

 }

}

Stack traces
In Swift Vapor, stack traces provide a detailed report of what went wrong in your
code, making it easier to identify and fix errors. Stack traces can be generated for
unhandled errors and exceptions, and they can be configured to include various
levels of detail, depending on your needs.

When an error occurs, Vapor generates a stack trace that includes information such
as the file and line number where the error occurred, the function that was executing
at the time of the error, and the call stack leading up to the error. This information is
presented in a clear and easy-to-read format, making it easier to identify the source
of the problem.

By default, stack traces in Vapor include detailed information, such as the values
of variables and arguments at each step of the call stack. This level of detail can be
very helpful when debugging complex issues, but it can also make stack traces very
long and difficult to read. For this reason, Vapor provides a number of configuration
options that allow you to customize the level of detail included in stack traces.

Overall, stack traces in Swift Vapor provide an essential tool for debugging your
code and improving the reliability of your applications. By providing detailed
information about errors and exceptions, stack traces help you quickly identify and
fix issues in your code, ensuring that your applications are always running smoothly.
Vapor supports viewing for stack traces for both normal Swift errors and crashes.

Swift Backtrace¶
Vapor uses SwiftBacktrace library to provide stack traces after a fatal error or
assertion. For using SwiftBacktrace, the app must include debug symbols during
compilation:

swift build -c release -Xswiftc -g

Error traces
By default, Abort captures the current stack trace when initialized. To achieve
this with custom error types, they need to conform to DebuggableError and store
StackTrace.capture().

import Vapor

84  Full Stack iOS Development with Swift and Vapor

struct CustomUserError: DebuggableError {

 var identifier: String

 var reason: String

 var stackTrace: StackTrace?

 init(

 identifier: String,

 reason: String,

 stackTrace: StackTrace? = .capture()

) {

 self.identifier = identifier

 self.reason = reason

 self.stackTrace = stackTrace

 }

}

When application’s log level is set to debug or lower, error stack traces will be included
in the log output. Stack traces are not captured when the log level is greater than
.debug. This behavior can be overridden by setting StackTrace.isCaptureEnabled
manually in configure.

// Capture stack traces regardless of log level.

StackTrace.isCaptureEnabled = true

ErrorMiddleware
ErrorMiddleware is added to the application by default. ErrorMiddleware converts
Swift errors that have been thrown by the route handlers into HTTP responses.
Without ErrorMiddleware, errors thrown will result in the connection being closed
without a response.

To customize error handling beyond AbortError and DebuggableError, we can
replace ErrorMiddleware with our own error-handling logic. To achieve this, first,
we need to remove the default error middleware by setting app.middleware to an

Async and HTML Rendering in Vapor  85

empty configuration. Then, add custom error handling middleware as the first
middleware to the application.

// Remove all existing middleware.

app.middleware = .init()

// Add custom error handling middleware first.

app.middleware.use(MyErrorMiddleware())

Leaf
What exactly are Leaf templates? Consider that we have a page that consists of a
header and footer. But on Web pages, we also have content, and we are going to
represent content with data. This content is getting there from the server as the server
is responsible for getting the content, probably from the database, and somehow
putting it on the page.

But how does the server put the content on the page? Here, Leaf comes to help us.
Leaf is a powerful templating language with Swift-inspired syntax. We can use it to
generate dynamic HTML pages for a front-end website.

For using Leaf in the project, the first step is to add it as a dependency to the project in
the SPM package manifest file. Go to Package.swift file and add Leaf dependency.

dependencies: [

 //Other dependencies.......

 .package(url: "https://github.com/vapor/vapor.git", from: "4.0.0"),

]

Also, add dependency in the target as well:

targets: [

 .target(

 name: "App",

 dependencies: [

 .product(name: "Vapor", package: "vapor"),

 .product(name: "Leaf", package: "leaf")],

86  Full Stack iOS Development with Swift and Vapor

After this Package.swift file will look like as shown in the following figure:

Figure 4.2: Add Leaf dependency

Now in Configure.swift, configure Vapor to use it as follows:

import Leaf

app.views.use(.leaf)

After this Configure.swift file will look like as shown in the following figure:

Figure 4.3: Configure Leaf dependency

Now, the next thing would be for us to create or render a page using Leaf templates.
By default, when we are using Vapor, it is going to be looking for Leaf pages inside
a directory called Resources. This directory has to be on the project level, so I can go
ahead and add a new folder that folder should be named as Resources.

Async and HTML Rendering in Vapor  87

Let us go ahead and add a folder named Resources, as shown in the following figure:

Figure 4.4: Leaf Resources

Now, inside the Resources folder, we will have to create another folder called Views,
as shown in the following figure. All the views that we are going to be creating will
be living inside this folder:

Figure 4.5: Leaf Views

88  Full Stack iOS Development with Swift and Vapor

After this, we will add a new file in Views folder, as shown in the following figure:

Figure 4.6: View File

This is going to be a swift file, as shown in the following figure:

Figure 4.7: View File 1

Async and HTML Rendering in Vapor  89

Once the file is added, rename it to index.leaf. The extension we will use is Leaf
because it is a Leaf template file. In this file, we are going to be writing our HTML
code. We can start from a very simple template shown as follows:

<html>

 <h1>Hello Vapor Leaf!!</h1>

</html>

At the end, the index.html file will look like as shown in the following figure:

Figure 4.8: Index File

Next, we will have to go to our routes, and we have to make sure that we are
rendering the file based on an appropriate route. So I am going to go to my route file
and create a route for rendering the new Leaf file, as shown in the following figure:

Figure 4.9: Route

Now, it is time to run the project and test the HTML rendering through Leaf. Press
the Play button to run the project and wait for the following message in the console.

90  Full Stack iOS Development with Swift and Vapor

[NOTICE] Server starting on http://127.0.0.1:8080

Open the browser, and in the address bar, type http://localhost:8080 and press
Enter. You should see the HTML message in the browser as shown in the following
figure:

Figure 4.10: HTML Rendering

While this is all good, it is still a static HTML page. Let us dive a bit deeper to render
a dynamic HTML page. First, let us create a struct Movies (say) with properties such
as name and year of release and which will conform to Content protocol.

struct Movies: Content {

 let name: String

 let releaseYear: String

}

Note: For the sake of simplicity of this example, I am creating this struct in routes.
swift, but in a practical example, this should be in a separate controller.

Now go back to index.html and modify the HTML to expect properties from this
struct dynamically. Using the following HTML template, now we should be able to
pass Movie information to the HTML page dynamically through our route:

<html>

 <h1>Hello Vapor Leaf!!</h1>

 <h2>Movie #(name) released in #(releaseYear)</h2>

</html>

Async and HTML Rendering in Vapor  91

Now, let us update the renderer function in the routes shown as follows:

app.get { req -> EventLoopFuture<View> in

 req.view.render("index", Movies(name: "Harry Potter and the
Philosopher's Stone", releaseYear: "2001"))

}

Run the project by pressing the Play button again and refresh the page with the
address http://localhost:8080. You should see a page as shown in the following
figure:

Figure 4.11: Dynamic HTML Rendering

We will limit discussion on Leaf here as we will not use Leaf with the iOS frontend.
But if you want to create a Web-based project, it is highly recommended to go deep
with Leaf implementation.

Conclusion
To recap, we covered async, error handling, logging, stack traces, and HTML
rendering using Leaf and routes in this chapter. While we will not use Leaf in our
final project with the iOS frontend, this was a much-needed topic to understand the
workflows and internals of the Swift Vapor in continuation with Chapter 3: Routing,
MVC, and JSON in Vapor.

In the upcoming chapter, we will explore Data management basics with Fluent on
the Vapor side and Core Data on the iOS side.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
While APIs are what we need to establish communication between client and server,
there is always a need to store and persist data in some database. Databases provide
reliable and persistent storing and performant retrieving of data. In the absence of
any persistent data store, applications will have to store information in memory,
which will be lost once we stop the application. As a best practice, we should
decouple storage from the application to allow it to scale across multiple application
instances, all backed by the same database.

In this chapter, we will explore Database operations, ORMs, and Data Modelling
techniques available with Vapor.

Structure
In this chapter, we will discuss the following topics:

•	 Data persistence with Vapor
•	 Installing and setting up PostgreSQL
•	 Fluent ORM
•	 CRUD operations

Chapter 5
PostgreSQL

Integration in Vapor

94  Full Stack iOS Development with Swift and Vapor

•	 Migrations
•	 Postico
•	 Create and save model

Objectives
In this chapter, we will study the integration of PostgreSQL with Vapor. PostgreSQL
is an open-source, relational database system that focuses on extensibility and
standards. It is designed for enterprise use and also has native support for geometric
primitives, such as coordinates which comes in handy working with Fluent, which
also supports these primitives and saves nested types, such as dictionaries, directly
into PostgreSQL.

Data persistence with Vapor
Vapor supports Swift-native drivers for the following databases:

Relational databases:
•	 SQLite
•	 MySQL
•	 PostgreSQL

Non-relational databases:
•	 MongoDB

Relational databases store their data in structured tables with defined schema, and
hence, these are efficient at storing and querying structured data. While relational
databases are good for defined structures, it is cumbersome to change the data
structure. Non-relational databases, on the other hand, can store large amounts of
unstructured data.

For the scope of this chapter, we will use a relational database, PostgreSQL, which is
an open-source, relational database. It is designed for enterprise use and also comes
in handy working with Fluent.

Installing and setting up PostgreSQL
In this section, we will integrate our Vapor server-side application with the
PostgreSQL database.

1.	 Open the browser and open the website at https://www.postgresql.org.

PostgreSQL Integration in Vapor  95

2.	 Click on the Download link as shown in the following figure:

Figure 5.1: PostgreSQL.org

3.	 As shown in the following figure, PostgreSQL is available on multiple
platforms. As we are working on macOS, we will select the macOS platform
on the page:

Figure 5.2: PostgreSQL install options

96  Full Stack iOS Development with Swift and Vapor

4.	 As we will land on the next page, we will see multiple macOS packages on
the page. The easiest of these options would be to install the Postgres.app,
shown in the following figure:

Figure 5.3: Postgres.app

5.	 Click on the Postgres.app link to land on the Introduction page, as shown
in the following figure:

Figure 5.4: Postgres.app introduction page

PostgreSQL Integration in Vapor  97

6.	 Go to the Downloads tab and download the Latest Release as shown in the
following figure:

Figure 5.5: Postgres.app downloads

7.	 After download, open the dmg file and install the app in the Application
folder. Launch the app. After launch, you will see an App Window and a status
menu in the top menu bar, as shown in the following figure:

Figure 5.6: Postgres.app launch

98  Full Stack iOS Development with Swift and Vapor

8.	 Click on the + button shown in figure 5.6 and enter server details to create a
PostgreSQL server, as shown in the following figure:

Figure 5.7: Creating a PostgreSQL server

9.	 Once the server is created, we can start the server using the Start button, as
shown in the following figure:

Figure 5.8: Start the PostgreSQL server

10.	 As soon as you start the PostgreSQL server, you will see a few default
databases already available, as shown in the following figure:

PostgreSQL Integration in Vapor  99

Figure 5.9: PostgreSQL server databases

11.	 Double-click on the default database created by your username, in this case,
hdutt. This will prompt you with a system alert, as shown in the following
figure. Press OK.

Figure 5.10: PostgreSQL system alert

100  Full Stack iOS Development with Swift and Vapor

12.	 Pressing OK on the alert will launch a terminal, as shown in the following
figure:

Figure 5.11: PostgreSQL terminal

	 This terminal is very important because this is actually the PostgreSQL
terminal through which we can interact with PostgreSQL.

13.	 As shown in figure 5.11, right now, we are connected to the hdutt database.
If we do not want to use this default database, we can create a brand-new
database, and for that, we can go ahead and run the command CREATE
database and then the name of the database as shown in the following figure:

Figure 5.12: Create a new database

PostgreSQL Integration in Vapor  101

14.	 Press Enter after writing the CREATE statement, and this will print CREATE
DATABASE in the terminal on success, as shown in the following figure:

Figure 5.13: Database created 1

15.	 We can verify the creation of this new database, NewPostgreDB, in the
postgres.app, as shown in the following figure:

Figure 5.14: Database created 2

102  Full Stack iOS Development with Swift and Vapor

Fluent ORM
Fluent is an ORM framework for Swift that takes advantage of Swift’s strong type
system to provide an easy-to-use interface for the persistent database. Using Fluent,
we can create model types that will represent data structures in the database. These
models are then used to perform create, read, update, and delete operations instead
of writing raw queries.

Adding Fluent to a new project
There are two ways to add Fluent to your project. One is to add at the very inception
of the project, and another is to add after project creation once you realize that your
project needs ORM.

So first, let us see how we can add Fluent while creating a new project.
1.	 Open the terminal and cd to the desired directory.
2.	 Create a new Vapor project using the command vapor new

samplePostgreProject. This will present an option to add Fluent to the
project, as shown in the following figure:

Figure 5.15: Add fluent

3.	 Type y and press Enter to add Fluent. This will present options for databases,
as shown in the following figure:

PostgreSQL Integration in Vapor  103

Figure 5.16: Add database

4.	 To add PostgreSQL (Postgres), type 1 and Enter. This will add Postgres to
your project and ask for other options, as shown in the following figure:

Figure 5.17: Postgres selected

5.	 For options like Leaf and other such options, select as per project needs. Now,
let us open the newly created project by again cd to the project directory
and typing open Package.json. As the project opens, you will find Fluent
dependencies under the dependencies section, as shown in the following
figure:

104  Full Stack iOS Development with Swift and Vapor

Figure 5.18: Fluent dependencies in the project

6.	 If we open Package.swift file, we will see an entry for Fluent under the
dependencies, as shown in the following figure:

Figure 5.19: Fluent dependencies in Package.swift

PostgreSQL Integration in Vapor  105

Adding Fluent to an existing project
If you do not include Fluent at the inception of the project but realize later in the
project development that you need Fluent, you can easily do that. Go to the Package.
swift file and include Lines 12, 13, 20, and 21, as shown in figure 5.19. Build the code
again.

CRUD operations
CRUD is an acronym for Create, Read, Update, and Delete operations for creating
and managing persistent data elements in relational and NoSQL databases.

The first thing we need to perform CRUD operations is to create a database. In
previous sections and figure 5.12, we have already created a new database. Now in
this section, we will create a new table in our database using Migration.

But before that, open the project by running the following commands in the terminal:

cd path to project directory

open Packages.swift

If you have added Fluent at the time of the creation of the project, you will get some
boilerplate example code in docker-compose.yml file and configure.swift file. In
case you have added Fluent later in the project, you can still follow these templates
to connect the project to the database.

Let us look at and understand the boilerplate code. As shown in the following figure,
the boilerplate code in docker-compose.yml has some constants that are needed to
make a connection to the database. Refer to the following figure.

Note: Docker Compose is a way to specify the list of different containers that work
together as a single unit while using Docker containers. Using Docker Compose,
we can spin up your Vapor app and a PostgreSQL database instance, which can
communicate with each other but are isolated from other instances running on the
same host, and that too using a single command.

106  Full Stack iOS Development with Swift and Vapor

Figure 5.20: Boilerplate environment variable—Docker

Now, let us update this boilerplate code as per the configuration we require, as
shown in the following figure. In the DATABASE_HOST, we will put localhost as our
server will be running on a local host. Similarly, we can update DATABASE_NAME to
newpostgredb, which is the name of our newly created database:

Figure 5.21: Custom environment variable—Docker

PostgreSQL Integration in Vapor  107

Note: Configuration changes in docker-compose.yaml will be used only when we
are working with Docker.

Now, let us check the boilerplate code in configure.swift as shown in the following
figure:

Figure 5.22: Configure.swift—Boilerplate

Here, in figure 5.22 Lines #1–2, we see that in order to create a database connection,
we first need to import both Fluent and FluentPostgresDriver.

Then, in the configure function, we will write code to use our database. As we are
using postgres (PostgreSQL) database in our project, in the use function, we will
pass .postgre.

Here, if you observe, for each parameter, this code is fetching values from
Environment variables defined in docker-compose.yaml, and if the value is not
found in Environment variables, it is passing some default values.

As we are not using Docker as of now, Environment variables defined in docker-
compose.yaml will not be available here, so default parameter values will be used.
Hence, we need to update these default values to make the connection with the
database, as shown in the following figure:

108  Full Stack iOS Development with Swift and Vapor

Figure 5.23: Configure.swift—Custom database configuration

In figure 5.23 Line #19, you will observe that we are adding a migration named
CreateToDo. Let us understand what is the Migration and how to use it with models
to save data in the database.

Migrations
Migrations are version control systems for the database. Each Migration defines a
change made to the database and how to undo it. By modifying the database through
migrations, we create a consistent, testable, and shareable database that can evolve
over time.

In the previous section, we studied the code which allows us to connect to postgres
database. Our next task is to define the schema and create tables in the database.
When using Fluent, it is always a good idea to write migrations for the table so that
later on, we can do changes in the table schema and easily navigate through the
version control problems.

Note: Do not use any database editor or tool to make the changes in your tables
when you are using fluent with migrations. Any changes done manually or using
some tools will not be captured in migrations and will cause corruption of the
database when the Migration will run.

Let us now checkout the boilerplate code for the Migration in our sample code. Go to
the Migrations folder in the project hierarchy, and there you will find CreateTodo.

PostgreSQL Integration in Vapor  109

swift file. Click on the file, and we will see the boilerplate migration code for creating
a table todos, as shown in the following figure:

Figure 5.24: Migration—boilerplate

As can be seen in this boilerplate code, this Migration is written for creating a table
todos with id as the primary key and title as another column of type string. Also,
there is a revert function to undo the creation of this table.

Now, as our Migration to create the todos table is ready, let us run this Migration.
Again, go to the terminal and type the following commands:

cd project directory

vapor run migrate

Press Enter, and you will see an output as shown in the following figure:

Figure 5.25: Run the Migration

110  Full Stack iOS Development with Swift and Vapor

As you can see, it is asking permission to run Migration CreateTodo. Type y and
press Enter. This will run the Migration and will create todos table in newpostgredb,
as shown in the following figure:

Figure 5.26: Migration complete

Great!! We have completed our first Migration. But how can we check the table and
data visually?

Postico
Postico is an application that provides an easy-to-use visual interface for making
Postgres more accessible to users, whether newcomers or specialists. To install this
application, visit https://eggerapps.at/postico/ and press the download button as
shown in the following figure:

Figure 5.27: Download Postico

PostgreSQL Integration in Vapor  111

After the application gets downloaded, move it to the Applications folder and
launch the app. It will launch a user interface as shown in the following figure:

Figure 5.28: Launch Postico

As we are using localhost and port 5432, we need not to change anything and press
Connect button. This will open the newpostgredb as shown in the following figure:

Figure 5.29: Open DB

112  Full Stack iOS Development with Swift and Vapor

As can be seen in the following figure, it has opened hdutt DB, but we need to
open newpostgredb. To do that, click on the localhost button with the elephant icon
highlighted in red color. This will land us on the page where we can select other DBs,
as shown in the following figure:

Figure 5.30: Select DB

Double-click on newpostgredb to open the DB, as shown in the following figure:

Figure 5.31: Open newpostgredb

PostgreSQL Integration in Vapor  113

We can see two tables here _fluent_migrations and todos. todos are the table we
created, but what is _fluent_migrations?

_fluent_migrations is the table that holds the history of migrations on the table.
Double-click on _fluent_migrations to open the table, as shown in the following
figure:

Figure 5.32: Open _fluent_migrations

Never update this table directly, as one Migration only run once, and updating this
will lead to the corruption of Migration data. To go back to the table list, click on
newpostgredb and then double-click on the todos table to open the DB, as shown in
the following figure:

Figure 5.33: Open todos

114  Full Stack iOS Development with Swift and Vapor

As we can now verify that todos table has been created with id as the primary
column and title as another column.

Create and save model
Now after creating the table, we will have to save data into the table, and so we need
a Model which can map data to the schema of the table.

Create model
The boilerplate code also has boilerplate code for the todo model, which can be
found under the Model folder, as shown in the following figure:

Figure 5.34: Todo model

As shown in figure 5.34, a Todo model class conforms to both Model and Content
protocols. We will use property wrappers in Lines #7 and #10 to map table columns
with the associated model properties.

Note: At line #10, title in the key value is the actual table column name. This
should not be confused with the property name title of Todo model.

Save model
To understand how we can save our Todo model in the database, let us again take
advantage of the boilerplate code provided by Vapor. Open TodoController present
in the Controller as shown in the following figure:

PostgreSQL Integration in Vapor  115

Figure 5.35: TodoController

We have already gone through the concepts of RouteCollection, Routes, Encode/
Decode, and so on, so we will not revisit those. As can be seen in this boilerplate
TodoController class, there is an index route to get all Todo entries from the table.
Then there is a create route to save a Todo model into the database and, last, a delete
route to delete entries from the table.

Now, we will register this controller in the routes.swift, as shown in the following
figure:

Figure 5.36: routes.swift

116  Full Stack iOS Development with Swift and Vapor

Great!! We have come so far. Now let us run the code and test the APIs. Press Cmd +
R or Play button in Xcode to run the project. As soon as you see the following log in
the console, your server is up and running.

[NOTICE] Server starting on http://127.0.0.1:8080

Open the browser and type URL http://localhost:8080/todos in the address bar,
and press Enter. You might get an error like shown in the following figure:

Figure 5.37: Browser error

A closer look into the error shows that the Postgres server is not running. You
can verify that by clicking the Postgres app icon in the status bar, as shown in the
following figure:

Figure 5.38: Postgres server

Click the start button and start the Postgres server, and hit the URL http://
localhost:8080/todos again. This time we will get an empty response array, as
shown in figure 5.39, as we do not have any data in the database yet, as shown in the
following:

PostgreSQL Integration in Vapor  117

Figure 5.39: Server running

Now it is time to test the APIs. Launch Postman.app to Post Todo objects and save
them in the database, as shown in the following figure:

Figure 5.40: Post request

Press Send button to execute the POST request. This will result in success with status
200 OK, as shown in the following figure:

Figure 5.41: Create Todo response

118  Full Stack iOS Development with Swift and Vapor

To test it against the GET request, open a new tab in Postman and create a GET request,
as shown in the following figure:

Figure 5.42: GET request

As can be seen in figure 5.42, we got the same title back in the response, which we
saved in the POST request. We can also test it in the browser by again typing the URL
http://localhost:8080/todos in the address bar and hitting Enter. This time we
will get a response as shown in the following figure:

Figure 5.43: Browser test

Great!! With this, we are done with the basics of creating a Model and saving the
data in a persistent store using Fluent ORM. From here, you can try different APIs to
update, delete, and so on, on data.

PostgreSQL Integration in Vapor  119

Conclusion
This chapter is a very important milestone in this book as this is the foundation
block for a server that actually stores data in the persistent store. Without the
capability of storing data in a persistent store, a remote server is not very useful.
In this chapter, we understood the techniques to persist data with Vapor using a
Postgres (PostgreSQL) database and Fluent ORM. Understanding of these concepts
will further be enhanced when we will study about data persistence and ORM on
the iOS platform. With this, we can conclude this chapter.

In the upcoming chapter, we will dive into understanding the basic building blocks
of iOS UI development.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the previous chapters, we have gone through various aspects of server-
side development with server-side Swift and Vapor. In Chapter 2: Setting Up the
Environment, we touched upon the topic of client-side development with the creation
of the Hello World project for iOS.

As we have become familiar with Swift syntax and Xcode in the previous chapters
and created the Hello World project in Chapter 2: Setting Up the Environment, we can
move faster in this chapter. The aim of this chapter is to understand the basic building
blocks of iOS UI development and complete the circle of full-stack development
with Swift.

Structure
In this chapter, we will discuss the following topics:

•	 Autolayout with Storyboards
•	 SwiftUI
	 o	 Working with text
	 o	 Working with image
	 o	 Stacks

Chapter 6
Building User

Interfaces for iOS

122  Full Stack iOS Development with Swift and Vapor

Autolayout with Storyboards
Developing apps that look great in all orientations and across multiple device sizes
is a daunting task. In Chapter 2: Setting Up the Environment, figure 2.24: Simulator
Layout mode, recall how in layout mode, the Hello World label got disappeared.
That happened because we did not apply Auto Layout constraints on the label. Auto
Layout is the rescuer that makes it possible to support different screen sizes and
orientations of iPhone and iPad devices in your apps.

Auto Layout also makes internationalization easy. We need not create new XIBs or
storyboards for every language we wish to support in the app, including right-to-
left (RTL) languages such as Arabic.

To understand Autolayout, let us again revisit the Hello World project discussed in
Chapter 2: Setting Up the Environment again and go to Main.storyboard. Select the
Hello World label on the storyboard, as shown in the following figure. As indicated
in the figure by a red arrow, Add New Constraints menu is at the bottom-right of the
editor. We can use this menu to add new constraints to UI elements like the label in
the following example:

Figure 6.1: Add new constraint menu

Building User Interfaces for iOS  123

As you can see, Add new constraint menu provides an option to anchor UI elements
from left, right, top, and bottom. Also, height and width properties can also be set
along with the aspect ratio. At just left of this menu is another menu Align menu
shown in the following figure:

Figure 6.2: Align menu

This menu is used to create alignment constraints for a UI element with respect to
another UI element.

In this example, we will center align the Hello World label on the container view.
Apart from the menus described previously, there is another way to provide
alignment constraints to a UI element. Select the label on the storyboard, press the
Control Key, and drag the mouse pointer from the label to the container view, as
shown in the following figure:

124  Full Stack iOS Development with Swift and Vapor

Figure 6.3: Drag to align

Once you will release the drag on the container view, it will open a context menu, as
shown in the following figure. In the context menu, you will see various alignment
options. As we are interested in the central alignment of the label on the container
view, we will select Center Horizontally in Safe Area and Center Vertically
in Safe Area.

Figure 6.4: Center aligns the label

Building User Interfaces for iOS  125

As soon as we are done applying these constraints, the storyboard will show T-Bars
around the selected UI element to visualize the applied constraints, as shown in
the following figure. These T-Bars also indicate any warnings or errors in applying
constraints by turning yellow or red, respectively. As shown in the following figure,
there are some warnings for the constraints we have applied on the Hello World
label:

Figure 6.5: T-Bars

Click on the Constraint Warning icon shown in the left corner in figure 6.5. This will
open another panel with the list of warnings and errors, as shown in the following
figure:

126  Full Stack iOS Development with Swift and Vapor

Figure 6.6: Constraint warning/error panel

In this case, the warning is about a misplaced view, which is because when we placed
the label on the screen, it was not centered, but now we have applied constraints to
put it in the screen’s center. The actual position of the label and the constraints are
conflicting here, and that is why it is showing the warning. To fix this warning, we
will have to update the position of the label within the container view. Click on the
warning row on the left panel in figure 6.6, and this will open a pop-up panel with
options to fix this warning, as shown in the following figure:

Building User Interfaces for iOS  127

Figure 6.7: Fix misplacement

In the pop-up, choose Update frames and press the Fix Misplacement button. As
soon as we are done with fixing the constraint warning, T-Bars will become blue, as
shown in the following figure:

128  Full Stack iOS Development with Swift and Vapor

Figure 6.8: T-Bars without conflicts

Now, run the code again and put the simulator in layout mode. This time, we will
see Hello World label in the center of the screen, as shown in the following figure:

Figure 6.9: Simulator result after fixing constraints

Building User Interfaces for iOS  129

So far, we have seen the process of applying constraints on a UI element with respect
to whether it is a container or container view. Let us now understand the techniques
involved in applying constraints between UI elements at the same hierarchy level.
To start with, drag another label from the object library and place it below the Hello
World label, as shown in the following figure:

Figure 6.10: Add new label

For distinguishing between two Hello World labels, let us make a new label’s text
in green color. As we did in the previous section, press the Control key and drag the
mouse pointer from the green label to the old Hello World label, as shown in the
following figure:

130  Full Stack iOS Development with Swift and Vapor

Figure 6.11: Control + Drag to add constraints

This will pop a context menu with multiple constraint parameters to choose from, as
shown in the following figure:

Building User Interfaces for iOS  131

Figure 6.12: Align two views

We are interested in setting vertical spacing between the two labels so that they will
always be at a constant vertical distance from each other, and we want to align the
leading edge of these two labels as well so that they are always aligned from the
leading edge.

As we can see, Vertical Spacing and Leading constraints are available in the context
menu. We will apply both of these constraints, and as soon as we do that, we can see
T-Bars for the green label as shown in the following figure:

132  Full Stack iOS Development with Swift and Vapor

Figure 6.13: T-Bars for green-colored label

Let us run the code which will launch the simulator. We can verify the results of
applying constraints in portrait mode as shown in the following figure:

Building User Interfaces for iOS  133

Figure 6.14: Constraints in portrait mode

We can verify the results of applying constraints in layout mode as shown in the
following figure:

Figure 6.15: Constraints in layout mode

We have now achieved a stable UI in both orientations. Now, you can play with
different UI arrangements to explore more about setting constraints on a view with
respect to the container view and/or the other UI elements.

134  Full Stack iOS Development with Swift and Vapor

Swift UI
In WWDC 2019, Apple surprised everyone following Apple’s tech space by
announcing a completely new framework for UI called SwiftUI. It changed the
way we used to develop iOS apps. This was one of the biggest shifts in the Apple
developer’s ecosystem since the debut of Swift.

With SwiftUI, we can now develop the app’s UI with a declarative Swift syntax in
Xcode. It means that we now do not need to mess around with XIBs, and Storyboards
and UI code is similar to writing any other code in Swift.

Another landmark is the canvas and preview feature which has always been a weak
point of Xcode. With SwiftUI, we can now preview the complete UI without running
the app in the simulators. And hence, with SwiftUI, we get immediate feedback on
the UI we are coding. This instant preview feature simply makes UI development an
easy and fun play, and we can make iterations much faster.

The new canvas also lets us design the user interface visually using drag and drop,
and Xcode automatically generates the SwiftUI code as we add the UI components.
This makes code and the UI always in sync.

Starting from Xcode 11, we can choose between SwiftUI and Storyboard to build
the user interface for our app, as shown in the following figure. If we have already
built an app before, we can continue using Interface Builder to layout the UI on the
storyboard:

Figure 6.16: SwiftUI project

Building User Interfaces for iOS  135

With SwiftUI, Interface Builder and storyboards are not needed. It is replaced by a
code editor and a preview canvas like the one shown in the following figure. You
write the code in the code editor. Xcode then renders the user interface in real-time
and displays it in the canvas:

Figure 6.17: SwiftUI Canvas

Working with text
The sample code generated in ContentView shows you how to display a single line
of text and a globe image embedded in a VStack. Now, we will discuss all these
components in detail to understand the working of SwiftUI better.

To display text on screen, we just need to initialize a Text object and pass to it the
display text, for example, Hello World, as already shown in figure 6.17.

In SwiftUI, we can change the properties, for example, color, font, and so on, of the
control by calling Modifier methods. For example, if we want to make the Hello World
text bold, we can use the modifier fontWeight and specify .bold like the following:

Text("Hello World").fontWeight(.bold)

136  Full Stack iOS Development with Swift and Vapor

We can chain multiple modifiers together, like, if we want to make the font rounded
and specify some other parameters such as font type and size, and so on, we can
specify the following:

Text("Hello World")

 .fontWeight(.bold)

 .font(.system(size: 20))

 .foregroundColor(Color.green)

Refreshing the Canvas will show the updated text label, as shown in the following
figure:

Figure 6.18: SwiftUI text properties

While we can customize the properties of control directly by writing code, we can
also use the design canvas to edit the properties. By default, the preview run in the
Live mode, as shown in the following figure:

Building User Interfaces for iOS  137

Figure 6.19: SwiftUI Canvas modes

To edit the view’s properties, we first have to switch to Selectable mode. After that,
hold the Command key and click the text to bring up the pop-over menu, as shown
in the following figure:

Figure 6.20: Inspect and edit properties 1

138  Full Stack iOS Development with Swift and Vapor

Choose Show SwiftUI Inspector menu, and it pops out the view for editing the text
and font properties, as shown in the following figure:

Figure 6.21: Inspect and edit properties 2

The great part is that the code will update automatically upon making changes to
the font properties in the edit view.

Working with images
Other than text, images are another basic element that is being used in iOS app
development. SwiftUI provides an Image class for rendering and drawing images
on the screen. First, let us pull an image from the disk into assets of the Xcode project
by dragging and dropping it into the assets folder as shown in the following figure:

Building User Interfaces for iOS  139

Figure 6.22: Sample Image

Next are some examples to show how we work with Image in SwiftUI:

var body: some View {

 Image("scene")

}

As shown in figure 6.23, image is rendered successfully on the Canvas. But the image
is extending beyond the screen size, and only a portion of it is visible.

140  Full Stack iOS Development with Swift and Vapor

Figure 6.23: Render Image

In order to fix this image size overflowing issue, we need to apply the .resizable()
modifier as follows:

Image("scene") .resizable()

This will make it to fit in the entire available screen, but as shown in the following
figure, this disturbs the aspect ratio of the image:

Building User Interfaces for iOS  141

Figure 6.24: Render Image within screen bounds

To scale the image to fit within the screen and maintain its aspect ratio, we can either
use scaledToFit modifier as follows:

Image("scene")

 .resizable()

 .scaledToFit()

Or we can also use aspectRatio modifier with .fit mode as follows:

Image("scene")

 .resizable()

 .aspectRatio(contentMode: .fit)

142  Full Stack iOS Development with Swift and Vapor

Now, as shown in the following figure, image looks great within the screen bounds:

Figure 6.25: Render Image with the preserved aspect ratio

Let us jump on to another important element of Swift UI, that is, Stacks.

Working with Stacks
Stacks in SwiftUI are similar to the stack views in UIKit. By using different
combinations of views in horizontal and vertical stacks, we can construct complex
user interfaces for the apps. While working with UIKit, it is mandatory to use auto
layout in order to build interfaces that fit all screen sizes, which might feel like a
complicated subject and hard to learn for beginners. But with SwiftUI, using stacks
including VStack, Hstack, and Zstack, we can create complex Uis without learning
the complexities of auto layout.

Building User Interfaces for iOS  143

To understand this, let us revisit our Text and Image examples discussed in previous
sections and combine them in a single UI. Let us first put the Text and Image in a
vertical alignment with respect to each other as the following:
Vstack {

 Text("Hello World")

 .fontWeight(.bold)

 .font(.system(size: 20))

 .foregroundColor(Color.green)

 Image("scene")

 .resizable()

 .scaledToFit()

 Spacer()

}

As shown in the following figure, Text label and Image are aligned vertically on the
screen:

Figure 6.26: Vstack

144  Full Stack iOS Development with Swift and Vapor

Similarly, if we want to place these two UI elements horizontally with respect to each
other, we can use Hstack as the following:
Hstack {

 Text("Hello World")

 .fontWeight(.bold)

 .font(.system(size: 20))

 .foregroundColor(Color.green)

 Image("scene")

 .resizable()

 .scaledToFit()

 Spacer()

}

As shown in the following figure, Text label and Image are aligned horizontally on
the screen:

Figure 6.27: Hstack

Building User Interfaces for iOS  145

This is working out great. Now, what if we want to place Text on top of the Image.
In this case, we can use Zstack to overlay Text over the Image component as the
following:
Zstack {

 Image("scene")

 .resizable()

 .scaledToFit()

 Text("Hello World")

 .fontWeight(.bold)

 .font(.system(size: 20))

 .foregroundColor(Color.green)

 Spacer()

}

As shown in the following figure, Text is overlayed over Image on the screen:

Figure 6.28: Zstack

146  Full Stack iOS Development with Swift and Vapor

We have understood the basics of Storyboard with Autolayout as well as SwiftUI.
We are good with the basics of UI development on iOS. Next, let us look at the basics
of data storage and management on iOS using the CoreData framework.

Conclusion
In this chapter, we learned about the basic building blocks of iOS UI development
and are now inching closer to completing the circle of full-stack development with
Swift. We have touched basics of two available frameworks for iOS UI development,
namely, UIKit and SwiftUI. It is expected that the readers go deep into the functioning
of these frameworks to be able to appreciate these powerful UI development
frameworks fully.

Next, we will understand two more important building blocks of iOS app
development, that is, CoreData and networking frameworks, in the upcoming
chapter before proceeding to the development of our first app.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the previous chapter, we learned about the various UI aspects of the iOS app. Apart
from the UI, an iOS app also deals with data for offline use and data persistence.

Structure
In this chapter, we will discuss the following topics:

•	 Core Data
	 o	 Core Data stack
	 o	 Include Core Data in a new project
	 o	 Include Core Data in an existing project
	 o	 CRUD operations
	 o	 Core Data migrations
•	 Lightweight data migration
•	 Networking

Chapter 7
Data Persistence

with Core Data and
SQLite in iOS

148  Full Stack iOS Development with Swift and Vapor

Core Data
Core Data is an object graph and persistence framework by Apple for the macOS and
iOS platforms. It provides the capability to serialize data organized by the relational
entity–attribute model into XML, binary, or SQLite files.

We can use Core Data to save the application’s permanent data for offline use, cache
temporary data, and/or to add undo functionality for the app on the device. In case
sync of data across multiple devices is needed for a single iCloud account, Core Data
automatically mirrors the schema to the CloudKit container.

Through Core Data’s Data model editor, we define the data types and relationships
and generate respective class definitions.

Core Data stack
Core Data provides a set of classes that collaboratively create a Core Data stack given
as follows:

•	 NSManagedObjectModel describes the app’s types, including their properties
and relationships. A Core Data application has a data model which describes
the data of the application. An instance of the NSManagedObjectModel class
loads the data model and exposes it to the Core Data stack. When the Core
Data stack of the application is set up, the managed object model loads the
data model from the application bundle. It is comparable to the schema of a
database.

•	 NSManagedObjectContext tracks changes to instances of your app’s types. An
instance of the NSManagedObjectContext class is the slate of the Core Data
stack. It keeps a reference to the persistent store coordinator, and a developer
very rarely interacts with the managed object model or the persistent store
coordinator.

•	 NSPersistentStoreCoordinator saves and fetches instances of your app’s
types from stores. The persistent store coordinator is like the glue of the Core
Data stack. It keeps a reference to the managed object model and the managed
object context, and it is in charge of the persistent store of the application.

We can use the NSPersistentContainer instance to set up the model, context, and
store coordinator simultaneously.

Data Persistence with Core Data and SQLite in iOS  149

Include Core Data in a new project
We can include Core Data in the project at the time of creating the project by clicking
the Use Core Data checkbox as shown in the following figure:

Figure 7.1: Include Core Data in a new project

Once the project is created, we will see a file CoreDataSample.xcdatamodeld added
to the project.

On clicking it, we will see tools to configure entities that represent data models, as
shown in the following figure:

Figure 7.2: CoreDataSample.xcdatamodeld

150  Full Stack iOS Development with Swift and Vapor

Include Core Data in an existing project
While it is easier to add a Core Data framework at the time of creating the project, it
is possible to add a Core Data framework in the project at some later stage. Steps to
add Core Data to an existing project are listed as follows:

1.	 Open the project in Xcode and right-click on the project folder. Click New
File… context menu as shown in the following figure:

Figure 7.3: New file

2.	 This will pop up the file template selection window. Choose the Data Model
from the templates as shown in the following figure:

Figure 7.4: Data model

Data Persistence with Core Data and SQLite in iOS  151

3.	 Click on the Next button and name the data model as shown in the following
figure:

Figure 7.5: CoreDataSample

4.	 Click Create button and, finally, the new CoreDataSample.xcdatamodeld file
will be created as shown in the following figure:

Figure 7.6: CoreDataSample.xcdatamodeld

152  Full Stack iOS Development with Swift and Vapor

CRUD operations
For understanding CRUD operations with the CoreData framework, let us study the
sample project CoreDataSample created in the section titled Include Core Data in new
project. There are two things to be noted in this Xcode project template:

1.	 A new file named CoreDataSample.xcdatamodeld
2.	 The Persistence.swift file with Core Data Stack code

First, let us check CoreDataSample.xcdatamodeld. Here you will notice an entity
named Item with only one attribute, that is, timestamp, which is of type Date, as
shown in the following figure:

Figure 7.7: Core Data entity

You can add more attributes using the + button in the Attributes section. There are
other sections on the window as well that define the relationships between entities
and their fetch properties.

Relationships in Core Data: In Core Data, relationships define how entities are
connected to each other. There are three types of relationships: to-one, to-many, and
many-to-many. Here’s an example to illustrate these relationship types:

Consider two entities: “Department” and “Employee.” Each department can have
multiple employees, while each employee belongs to a single department. This
represents a to-many relationship from the “Department” entity to the “Employee”
entity and a to-one relationship from the “Employee” entity to the “Department”
entity.

Data Persistence with Core Data and SQLite in iOS  153

Fetching Properties using Relationships: Fetching properties in Core Data involves
retrieving specific data based on certain criteria or conditions. Let’s explore how
properties can be fetched using relationships with the above example.

1.	 Fetching All Employees in a Department: Suppose we want to fetch all
employees working in a particular department. We can use the relationship
property defined in the “Department” entity to retrieve the associated
employees. Here’s an example code snippet:

	 let departmentFetchRequest: NSFetchRequest<Department> =
Department.fetchRequest()

	 departmentFetchRequest.predicate = NSPredicate(format: "name ==
%@", "Sales")

	 do {

	 	 let departments = try context.fetch(departmentFetchRequest)

	 	 if let salesDepartment = departments.first {

	 	 if let employees = salesDepartment.employees {

	 		 for employee in employees {

	 		 // Access employee properties

	 		 print(employee.name)

	 		 // Perform operations with employee data

	 		 }

	 	 }

	 	 }

	 } catch {

	 		� print("Error fetching departments: \(error.
localizedDescription)")

	 }

2.	 Fetching Department of an Employee: To fetch the department associated
with a specific employee, we can use the inverse relationship property
defined in the “Employee” entity. Here’s an example code snippet:

154  Full Stack iOS Development with Swift and Vapor

	 let employeeFetchRequest: NSFetchRequest<Employee> = Employee.
fetchRequest()

	 employeeFetchRequest.predicate = NSPredicate(format: "name ==
%@", "John Doe")

	 do {

	 let employees = try context.fetch(employeeFetchRequest)

	 if let johnDoe = employees.first {

	 if let department = johnDoe.department {

	 // Access department properties

	 print(department.name)

	 // Perform operations with department data

	 }

	 }

	 } catch {

	 �print("Error fetching employees: \(error.
localizedDescription)")

	 }

	 In both examples, we utilize the relationships defined in the data model to
access the associated objects and their properties. These relationships enable
us to efficiently fetch and manipulate related data in Core Data.

	 In essence, Core Data relationships allow developers to establish connections
between entities, providing a powerful mechanism for modeling complex
data relationships. By leveraging these relationships, developers can fetch
properties and navigate through the associated data, enhancing the flexibility
and efficiency of data retrieval in Core Data.

As shown in the following figure, in the right panel of Xcode, you can see more
details about the entity. The most important attribute in this window is the Codegen
section, which shows a dropdown with the default value Class Definition.

Data Persistence with Core Data and SQLite in iOS  155

Figure 7.8: Core Data Codegen

If you click on the Codegen dropdown, you will see two more options, as shown in
the following figure:

Figure 7.9: Core Data Codegen options

156  Full Stack iOS Development with Swift and Vapor

Codegen
Apple’s Codegen setting in the Xcode data model editor is to help developers
manage and maintain their NSManagedObject subclasses. The Codegen setting has
three possible configurations:

Manual/none
This was the default behavior prior to Xcode 8 to manually create and maintain
the changes of the NSManagedObject subclasses. We have to click on Create
NSManagedObject Subclass manually, as shown in the following figure:

Figure 7.10: Core Data Codegen manual

If you follow the step correctly, Xcode will generate two files for a newly created
entity (say, Item entity):

Item+CoreDataClass.swift

Item+CoreDataProperties.swift

Class definition
This configuration is the default Codegen configuration when you create an entity
in the data model editor. With this configuration, Xcode will automatically generate
the required NSManagedObject subclass for the project. To see the auto-generated file,
cmd + click on the entity (in our case, Item), then select Jump to Definition as shown
in the following figure:

Data Persistence with Core Data and SQLite in iOS  157

Figure 7.11: Autogenerated Core Data Class 1

Now, right-click on the opened Item+CoreDataClass.swift and select Navigate |
Show in Finder as shown in the following figure:

Figure 7.12: Autogenerated Core Data Class 2

Now, you will find both Item+CoreDataClass.swift and Item+CoreDataProperties.
swift in the finder.

Note: Autogenerated files are not located in the Xcode project but in the Derived
Data folder of Xcode. That is why you should never edit the auto-generated files,
as they are managed by Xcode, and so they will be overwritten by Xcode every
time you build the project.

Category/extension
This configuration is a trade-off between Class Definition and Manual/None. Xcode
will automatically generate only Item+CoreDataProperties.swift, and you will
have to manage and maintain Item+CoreDataClass.swift yourself.

Now, moving to Persistence.swift, We can observe the template code for Core
Data Stack. As shown in the following figure, Persistence.swift has an init
function in which we are creating the Core Data Stack:

158  Full Stack iOS Development with Swift and Vapor

Figure 7.13: Core Data stack

Next, let us look at ContentView.swift. Here, in the template code, you will see the
setting up of NSManagedObjectContext for the ContentView and Crud operations, as
shown in the following figure:

Figure 7.14: CRUD operations

Data Persistence with Core Data and SQLite in iOS  159

Checking the template code in the preview will show up UI with data fetched from
the database like shown in the following figure:

Figure 7.15: DB operation and UI

Core Data migrations
In the development phase of a project, we keep on adding new features with every
new version of the app. These features might include new business requirements
which need to update our data models and entities.

In order to do core data migration, we need to keep on versioning our .xcdatamodeld
file rather than making new changes in the existing data model. There are two types
of migrations available.

•	 Automatic data migration or lightweight migration. Lightweight migration
refers to the migration automatically done from the differences between the
source, and the destination managed object models.

•	 Heavyweight migration is the manual migration that handles the cases
when changes to the data model go beyond the capabilities of lightweight
migration, such as the split of data from one column into more than one
column.

160  Full Stack iOS Development with Swift and Vapor

Lightweight data migration
Automatic or lightweight migration can be used in the following cases:

•	 Add an entity
•	 Remove an entity
•	 Renaming an entity
•	 Add an attribute
•	 Remove an attribute
•	 Renaming an attribute
•	 Add a relationship
•	 Remove a relationship
•	 Renaming a relationship

To execute lightweight migration, we need to go through the following steps:
1.	 Go to the Editor | Add Model Version… as shown in the following figure:

Figure 7.16: Add model version

2.	 Step 1 will prompt a modal window where you can name your new model
and select on which model you want to base your new model version, as
shown in the following figure:

Data Persistence with Core Data and SQLite in iOS  161

Figure 7.17: Version model

3.	 This will create another model CoreDataSample 2.xcdatamodel based on
CoreDataSample.xcdatamodel, as shown in the following figure. Also, notice
in the rightmost panel, under Model Version, the current version is still
CoreDataSample, which we need to change to CoreDataSample 2 to make the
new version operational with the new code:

Figure 7.18: New version model

That is all for the lightweight migration, and most of the model changes in the project
can be catered through lightweight migration. But there are certain cases where
migration needs to be manually defined, and so data model migration also needs
to be manually done. For example, Let us consider a scenario of a name attribute

162  Full Stack iOS Development with Swift and Vapor

in an entity where the attribute is now split into two attributes, say, first name and
last name. This situation cannot be handled by automatic migration, and we need to
implement a data model and migration model manually.

To study heavyweight migration in detail, please visit https://developer.apple.com/
documentation/coredata/heavyweight_migration

Networking
More often than not, an iOS app is not a standalone app and needs to communicate
with a remote server for various of its functional features. Whether it retrieves
application data from a server, updates a status, or downloads remote files to disk,
network requests are an essential aspect of an iOS app. To help with the many
requirements and use cases for network requests, Apple provides URLSession, a
complete networking API.

Before we begin, it is important to understand URLSession and its constituent classes.
URLSession is the key object responsible for sending and receiving requests to/from
a remote server. We create it with URLSessionConfiguration, which can be further
categorized as follows:

•	 default: Creates a configuration object which uses disk-persisted global
cache, credential, and cookie storage objects.

•	 ephemeral: Similar to the default configuration, but stores all of the session-
related data in memory. This is like a private session.

•	 background: This configuration lets the session perform upload or download
tasks in the background. Data transfers continue even when the app itself is
suspended or terminated by the system.

Another important class URLSessionTask is an abstract class that denotes a task
object. A session creates one or more tasks to do the actual work for fetching data
and uploading or downloading files.

There are the following three types of session tasks:
1.	 URLSessionDataTask: This task is used for GET requests to retrieve data from

remote servers.
2.	 URLSessionUploadTask: This task is used to upload a file from disk to a

remote server using a service via a POST or PUT method.
3.	 URLSessionDownloadTask: This task is used to download a file from a remote

service to a temporary file location.

Data Persistence with Core Data and SQLite in iOS  163

We can also suspend, resume and cancel tasks. URLSessionDownloadTask also has
the extra ability to pause for future resumption.

URLSession can return data in two ways, either via a completion handler when a
task finishes, either successfully or with an error, or by calling methods on a delegate
that we can set when we create the session.

Protocol support
The URLSession class off the shelf supports the data, file, FTP, HTTP, and HTTPS
URL schemes, with transparent support for proxy servers and SOCKS gateways, as
configured in the user’s system preferences.

We can also add support for proprietary networking protocols and URL schemes by
subclassing URLProtocol.

iOS 9.0 and macOS 10.11 onwards, App Transport Security (ATS) for all HTTP
connections made with URLSession, which requires that HTTP connections use
HTTPS.

Enough of the theory. We will see URLSession in action in the upcoming chapter,
where we will create our full-stack project.

Conclusion
In this chapter, we learned about data persistence using the Core Data framework
for iOS applications. In the process, we learned about CRUD operations and Data
migrations with the Core Data framework. We also touched basics of networking
using URLSession for iOS application to perform communication with a remote
server. Next will be the most important chapter of this book, where we will implement
our full-stack project.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
Till now, in this book, we have learned all the basic principles and architectures
involved in Vapor and iOS apps. But all these topics were discussed in isolation
to make it simple for you to grab specific concepts easily. In this chapter, we will
implement a full-stack iOS app to execute knowledge gained so far.

Structure
In this chapter, we will discuss the following topics:

•	 Project outline
•	 Setup remote database
•	 Server app
	 o	 Models
	 o	 Migrations
	 o	 Controllers
	 o	 Config and routes

Chapter 8
Full Stack

Implementation

166  Full Stack iOS Development with Swift and Vapor

•	 iOS App
	 o	 Models
	 o	 Networking
	 o	 User interface
•	 Test run

Objectives
Till now, in this book, we have learned all the basic principles and architectures
involved in Vapor and iOS apps. We implemented small sample codes to understand
working on Vapor and iOS apps. All these samples were discussed in isolation to
make it simple for you to grab specific concepts without worrying about the larger
picture. In this chapter, we will specifically look into the larger picture and will look
into the full-stack implementation of an app.

Project outline
For the purpose of implementing a full-stack project, let us first discuss an outline for
the proposed project. In this chapter, we will create a sample project where user can
add Restaurants and their review through the iOS app. Also, if there is restaurant
data available on the server, it should be synced with the iOS app, and more reviews
can be added to those Restaurants.

Setup remote database
We will not go into the nitty gritty of this process as this has already been discussed
in Chapter 5: Persist Data, ORM and Models—Vapor.

1.	 Open Postgres.app and create a server.
2.	 Create a database named restaurantdb, as shown in the following figure:

Full Stack Implementation  167

Figure 8.1: restaurantdb database

3.	 Open Postico.app and create new tables named restaurant and reviews in
restaurantdb as shown in the following figure:

Figure 8.2: new tables in restaurantdb

168  Full Stack iOS Development with Swift and Vapor

4.	 For the restaurant table, we will create four columns:
	 i.	 id: Autogenerated, primary key, integer
	 ii.	 title: String
	 iii.	 poster: String (this will store the image as base64 string)
	 iv.	 address: String
	 For the purpose of testing, let us create one row in this table as well as shown

in the following figure:

Figure 8.3: restaurant table

5.	 Similarly, for the reviews table, we will create four columns:
	 i.	 id: Autogenerated, primary key, int
	 ii.	 title: String
	 iii.	 body: String (this will store the image as base64 string)
	 iv.	� restaurant_id: Foreign key pointing to the id column of the restaurant

table
	 For the purpose of testing, let us create two reviews in this table as well as

shown in the following figure:

Full Stack Implementation  169

Figure 8.4: reviews table

Great!! Now our database is setup, so let us move to another task, which is to create
a server app that can interact with this database to perform CRUD operations in
these tables.

Server app
Again, the basics of creating a vapor project are already covered in Chapter 2: Setting
Up the Environment, so we will not revisit them again here. Open the terminal, and

1.	 Create a new Vapor project named “Restaurant-Server”.
2.	 Include Fluent.
3.	 Include Postgres DB.
4.	 Include Leaf.

The commands in the terminal for Steps 1–4 will look like as shown in the following
figure:

170  Full Stack iOS Development with Swift and Vapor

Figure 8.5: Create Restaurant-Server

To open the project in Xcode, in the terminal, type the following:

Open package.swift

This will open the Restaurant-Server project in Xcode, as shown in the following
figure:

Figure 8.6: Restaurant-Server

Full Stack Implementation  171

Models
Now let us create models for Restaurant and Reviews, which will map to the
database schema as follows:

1.	 Create a new group called Models.
2.	 Under this group, add a new file Restaurant.swift.
3.	 Inside the file, import Fluent and Vapor:
	 import Fluent

	 import Vapor

4.	 Create a final class Restaurant:
	 final class Restaurant: Model, Content {

	 }

5.	 Inside the class, create fields to map the schema in the restaurant database.
The class will finally look like the following:

	 import Fluent

	 import Vapor

	 final class Restaurant: Model, Content {

	 static let schema = "restaurant"

	
	 @ID(custom: "id", generatedBy: .database)

	 var id: Int?

	 @Field(key: "title")

	 var title: String

	 @Field(key: "poster")

	 var poster: String

	
	 @Field(key: "address")

	 var address: String

	
	 @Children(for: \.$restaurant)

172  Full Stack iOS Development with Swift and Vapor

	 var reviews: [Review]

	
	 init() { }

	
	 �init(id: Int? = nil, title: String, address: String, poster:

String) {

	 self.id = id

	 self.title = title

	 self.address = address

	 self.poster = poster

	 }

	 }

6.	 Similarly, create another file, Review.swift and model class for reviews
inside Model group.

7.	 Inside the Review.swift file, create the review model as follows:
	 import Foundation

	 import Vapor

	 import Fluent

	 import FluentPostgresDriver

	 final class Review: Model, Content {

	 static let schema = "reviews"

	
	 @ID(custom: "id", generatedBy: .database)

	 var id: Int?

	 @Field(key: "title")

	 var title: String

	 @Field(key: "body")

	 var body: String

	 @Parent(key: "restaurant_id")

Full Stack Implementation  173

	 var restaurant: Restaurant

	 init() { }

	
	 �init(id: Int? = nil, title: String, body: String,

restaurantId: Int) {

	 self.id = id

	 self.title = title

	 self.body = body

	 self.$restaurant.id = restaurantId

	 }

	

	 }

Migrations
Next, let us write migrations for the models we created in the previous section,
which will come in handy when you will extend this project.

1.	 Create another group, Migrations.
2.	 Inside the group, create migration for the Restaurant model by creating a

new file CreateRestaurant.swift.
3.	 Inside CreateRestaurant.swift, write migration for Restaurant as follows:
	 import Foundation

	 import Fluent

	 import FluentPostgresDriver

	 struct CreateRestaurant: Migration {

	 func prepare(on database: Database) -> EventLoopFuture<Void> {

	 database.schema("restaurant") // table name

	 .id()

	 .field("title", .string)

	 .field("poster", .string)

	 .field("address", .string)

174  Full Stack iOS Development with Swift and Vapor

	 .create()

	 }

	
	 // undo

	 func revert(on database: Database) -> EventLoopFuture<Void> {

	 database.schema("Restaurant").delete() // drop the table

	 }

	
	 }

4.	 Similarly, create another file, CreateReview.swift, to write migration for
Review:

	 import Foundation

	 import Vapor

	 import Fluent

	 import FluentPostgresDriver

	 struct CreateReview: Migration {

	 func prepare(on database: Database) -> EventLoopFuture<Void> {

	 database.schema("reviews")

	 .id()

	 .field("subject", .string)

	 .field("body", .string)

	 �.field("restaurant_id", .int64, .references
("restaurant", "id"))

	 .create()

	 }

	 func revert(on database: Database) -> EventLoopFuture<Void> {

	 database.schema("reviews").delete()

	 }

	
	 }

Full Stack Implementation  175

5.	 By now, the project structure will look like as shown in the following figure:

Figure 8.7: Create models and migration

Controllers
After the model and migrations, let us jump on the controllers where the logic will
reside:

1.	 Create a group called Controllers.
2.	 Create a new file, RestaurantController.swift, in the group.
3.	 Inside RestaurantController.swift, write the controller logic as follows:
	 import Fluent

	 import Vapor

	 final class RestaurantController {

	 �func create(_ req: Request) throws -> EventLoopFuture
<Restaurant> {

176  Full Stack iOS Development with Swift and Vapor

	 let restaurant = try req.content.decode(Restaurant.self)

	 return restaurant.create(on: req.db).map { restaurant }

	 }

	 �func all(_ req: Request) throws ->
EventLoopFuture<[Restaurant]> {

	 Restaurant.query(on: req.db).all()

	 }

	 // /restaurant/:restaurantId/reviews

	 �func getById(_ req: Request) throws ->
EventLoopFuture<Restaurant> {

	 �Restaurant.query(on: req.db).filter(.id, .equal,

req.parameters.get("restaurantId", as: UUID.self)
).with(\.$reviews).first().unwrap(or: Abort(.notFound))

	 }

	
	 �func delete(_ req: Request) throws ->

EventLoopFuture<HTTPStatus> {

	 �Restaurant.find(req.parameters.get("restaurantId"), on:

req.db).unwrap(or: Abort(.notFound))

	 .flatMap {

	 $0.delete(on: req.db)

	 }.transform(to: .ok)

	 }

	 }

Full Stack Implementation  177

4.	 Similarly, create another file, ReviewsController.swift, to write controller
logic for Review as follows:

	 import Foundation

	 import Vapor

	 import Fluent

	 final class ReviewsController {

	 �func create(_ req: Request) throws -> EventLoopFuture<Review>

{

	 let review = try req.content.decode(Review.self)

	 return review.save(on: req.db).map { review }

	 }

	
	 �func getByRestaurantId(_ req: Request) throws ->

EventLoopFuture<[Review]> {

	 �guard let restaurantId = req.parameters.

get("restaurantId", as: Int.self) else {

	 throw Abort(.notFound)

	 }

	 �return Review.query(on: req.db).filter(\.$restaurant.$id,

.equal, restaurantId)

	 .with(\.$restaurant)

	 .all()

	 }

	 }

178  Full Stack iOS Development with Swift and Vapor

5.	 After this, the project structure will look like as shown in the following figure:

Figure 8.8: Create controllers

Config and routes
At last, we are at the stage to update the config as per our project needs and creating
routes for the server:

1.	 Go to configure.swift file and update the configuration as follows:
	 import Fluent

	 import FluentPostgresDriver

	 import Leaf

	 import Vapor

	 // configures your application

	 public func configure(_ app: Application) throws {

	 // uncomment to serve files from /Public folder

	 �// app.middleware.use(FileMiddleware(publicDirectory: app.
directory.publicDirectory))

Full Stack Implementation  179

	 app.databases.use(.postgres(

	 hostname: Environment.get("DATABASE_HOST") ?? "localhost",

	 �port: Environment.get("DATABASE_PORT").flatMap(Int.
init(_:)) ?? PostgresConfiguration.ianaPortNumber,

	 �username: Environment.get("DATABASE_USERNAME") ??
"postgres",

	 �password: Environment.get("DATABASE_PASSWORD") ??
"postgres",

	 database: Environment.get("DATABASE_NAME") ?? "restaurantdb"

), as: .psql)

	 app.migrations.add(CreateRestaurant())

	 app.migrations.add(CreateReview())

	 app.views.use(.leaf)

	 // register routes

	 try routes(app)

	 }

2.	 Now, go to routes.swift, and create routes as follows:
	 import Vapor

	 func routes(_ app: Application) throws {

	 let restaurantController = RestaurantController()

	 let reviewsController = ReviewsController()

	 // localhost:8080/restaurant POST

	 app.post("restaurant", use: restaurantController.create)

	 // localhost:8080/restaurant GET

	 app.get("restaurant",use: restaurantController.all)

	 // localhost:8080/restaurant/:restaurantId DELETE

180  Full Stack iOS Development with Swift and Vapor

	 �app.delete("restaurant",":restaurantId", use:
restaurantController.delete)

	 // localhost:8080/reviews POST

	 app.post("reviews", use: reviewsController.create)

	 // localhost:8080/restaurant/:restaurantId/reviews

	 �app.get("restaurant",":restaurantId","reviews", use:
reviewsController.getByRestaurantId)

	 }

3.	 Next, run the project and test the routes. GET will run perfectly fine, but as
soon as you will try the POST for the restaurant with a poster payload of
more than 16 KB, you will get the error as shown in the following figure:

Figure 8.9: Payload too largep0

	 This happened because, by default, Vapor limits streaming body collection
to only 16KB in size:

	 •	 We can configure this using app.routes for all routes:

Full Stack Implementation  181

		 // Increases the streaming body collection limit to 500kb

		 app.routes.defaultMaxBodySize = "5mb"

	 •	� To configure the request body collection strategy for individual routes,
we can use the body parameter like the following:

		� // Collects streaming bodies (up to 5mb in size) before calling
this route.

		� app.on(.POST, "restaurant", body: .collect(maxSize: "5mb")) {
req in

		 // Handle request.

		 }

4.	 Great, send the POST request again, and this time, it should succeed without
any error.

iOS app
Again, the basics of creating an iOS project are already covered in Chapter 6: Building
User Interfaces for iOS, so we will not revisit them again here. Open Xcode, and follow
the following steps:

1.	 Create a new iOS app project named RestaurantApp.
2.	 Check SwiftUI option while creating the project.
	 This will create the project as shown in the following figure:

Figure 8.10: RestaurantApp

182  Full Stack iOS Development with Swift and Vapor

Models
As in the case of the server app, let us create model classes for the client iOS app:

1.	 Create a new group named Models.
2.	 Create a new swift file Reviews.swift for mapping Reviews from the server

response. Create a codable struct review as follows:
	 import Foundation

	 struct Review: Codable {

	 var id: Int?

	 var title: String

	 var body: String

	 var restaurant: Restaurant?

	 }

3.	 Create another swift file Restaurant.swift, for mapping Restaurant from
the server response. Similar to the previous step, create a codable struct
Restaurant as follows:

	 import Foundation

	 import SwiftUI

	 struct Restaurant: Codable {

	 var id: Int?

	 var title: String

	 var poster: String

	 var address: String

	 private enum RestaurantKeys: String, CodingKey {

	 case id

	 case title

	 case poster

	 case address

	 }

	 }

	 extension Restaurant {

	 init(from decoder: Decoder) throws {

	 �let container = try decoder.container(keyedBy:

Full Stack Implementation  183

RestaurantKeys.self)

	 self.id = try container.decode(Int.self, forKey: .id)

	 �self.title = try container.decode(String.self, forKey:
.title)

	 �self.poster = try container.decode(String.self, forKey:
.poster)

	 �self.address = try container.decode(String.self, forKey:
.address)

	 }

	 func posterImage() -> Image? {

	 guard let stringData = Data(base64Encoded: self.poster),

	 let image = UIImage(data: stringData) else {

	 print("Error: couldn't create UIImage")

	 return nil

	 }

	 return Image(uiImage: image)

	 }

	 }

4.	 After adding these model files, the new project structure will look like as
shown in the following figure:

Figure 8.11: Models

184  Full Stack iOS Development with Swift and Vapor

Networking
Now, let us discuss the networking aspect of the iOS client app, which needs to
communicate with the remote server for fetching the restaurant and reviews. For
this, create another group in the project, and in that group, add a new swift file
HTTPClient.swift. After adding this file, the project structure will look like as
shown in the following figure:

Figure 8.12: HTTP client

Inside HTTPClient.swift, create a class HTTPClient conforming to the observable
protocol:

1.	 Create two variable lists to hold restaurants and reviews:
	 class HTTPClient: ObservableObject {

	 @Published var restaurants: [Restaurant] = [Restaurant]()

	 @Published var reviews: [Review]? = [Review]()

	 }

Full Stack Implementation  185

2.	 Create a function to delete the restaurant from a remote server as follows:
	 func deleteRestaurant(restaurant: Restaurant, completion: @escaping

(Bool) -> Void) {

	 guard let id = restaurant.id,

	 �let url = URL(string: "http://localhost:8080/
restaurant/\(id)") else {

	 fatalError("URL is not defined!")

	 }

	 var request = URLRequest(url: url)

	 request.httpMethod = "DELETE"

	 �URLSession.shared.dataTask(with: request) { data, _,
error in

	 guard let _ = data, error == nil else {

	 return completion(false)

	 }

	 completion(true)

	 }.resume()

	

	 }

3.	 Similarly, create a function to get all restaurants as follows:
	 func getAllRestaurants() {

	 �guard let url = URL(string: "http://localhost:8080/
restaurant") else {

	 fatalError("URL is not defined!")

	 }

	 �URLSession.shared.dataTask(with: url) { data, response,
error in

	 guard let data = data, error == nil else {

	 return

	 }

	 �let restaurants = try? JSONDecoder().
decode([Restaurant].self, from: data)

	 if let restaurants = restaurants {

186  Full Stack iOS Development with Swift and Vapor

	 DispatchQueue.main.async {

	 self.restaurants = restaurants

	 }

	 }

	 }.resume()

	

	 }

4.	 We also need the ability to create new restaurant entries in the remote
database, so we will create a save restaurant function as follows:

	 func saveRestaurant(name: String, poster: String, address: String,
completion: @escaping (Bool) -> Void) {

	 �guard let url = URL(string: "http://localhost:8080/
restaurant") else {

	 fatalError("URL is not defined!")

	 }

	 �let restaurant = Restaurant(title: name, poster: poster,
address: address)

	 var request = URLRequest(url: url)

	 request.httpMethod = "POST"

	 �request.addValue("application/json", forHTTPHeaderField:
"Content-Type")

	 request.httpBody = try? JSONEncoder().encode(restaurant)

	 �URLSession.shared.dataTask(with: request) { data,
response, error in

	 guard let _ = data, error == nil else {

	 return completion(false)

	 }

	 completion(true)

	 }.resume()

	 }

5.	 Next, let us get reviews for a specific restaurant by writing another function
as follows:

	 func getReviewsByRestaurant(restaurant: Restaurant) {

Full Stack Implementation  187

	 guard let id = restaurant.id,

	 �let url = URL(string: "http://localhost:8080/
restaurant/\(id)/reviews") else {

	 fatalError("URL is not defined!")

	 }

	 URLSession.shared.dataTask(with: url) { data, _, error in

	 guard let data = data, error == nil else {

	 return

	 }

	 �let decodedReviews = try? JSONDecoder().
decode([Review].self, from: data)

	 if let decodedReviews = decodedReviews {

	 DispatchQueue.main.async {

	 self.reviews = decodedReviews

	 }

	 }

	 }.resume()

	 }

6.	 Last but not least, we would also want to be able to add reviews for a
restaurant. Let us create a function for that as follows:

	 func saveReview(review: Review, completion: @escaping (Bool) ->
Void) {

	 �guard let url = URL(string: "http://localhost:8080/
reviews") else {

	 fatalError("URL is not defined!")

	 }

	 var request = URLRequest(url: url)

	 request.httpMethod = "POST"

	 �request.addValue("application/json", forHTTPHeaderField:
"Content-Type")

	 request.httpBody = try? JSONEncoder().encode(review)

	 �URLSession.shared.dataTask(with: request) { data,
response, error in

188  Full Stack iOS Development with Swift and Vapor

	 guard let _ = data, error == nil else {

	 return completion(false)

	 }

	
	 completion(true)

	 }.resume()

	 }

User interface
In the user interface, we need three views to visualize the data stored on the remote
database. As the landing page, we would like to have a list view to showcase all
restaurants fetched from the server. For this, let us create our landing page in
ContentView.swift file using Swift UI as follows:

import Foundation

import SwiftUI

struct ContentView: View {

 @State private var isPresented: Bool = false

 @Environment(\.presentationMode) var presentationMode

 let screenSize = UIScreen.main.bounds

 @ObservedObject var httpClient = HTTPClient()

 var body: some View {

 NavigationView {

 List(self.httpClient.restaurants, id: \.id) { restaurant in

 �NavigationLink(destination: RestaurantDetails-
View(restaurant: restaurant)) {

 VStack {

 restaurant.posterImage()?

 .resizable()

 .aspectRatio(contentMode: .fit)

Full Stack Implementation  189

 Text(restaurant.title)

 .frame(maxWidth: .infinity)

 .padding()

 .foregroundColor(Color.white)

 .background(Color.blue)

 .font(.system(size: 25))

 .cornerRadius(10)

 }

 }

 }

 .navigationBarTitle("Restaurant")

 .navigationBarItems(trailing: Button(action: {

 self.isPresented = true

 }){

 Image(systemName: "plus")

 })

 .onAppear {

 self.httpClient.getAllRestaurants()

 }

 }.sheet(isPresented: $isPresented, onDismiss: {

 self.httpClient.getAllRestaurants()

 }, content: {

 AddRestaurantView()

 })

 }

}

struct ContentView_Previews: PreviewProvider {

190  Full Stack iOS Development with Swift and Vapor

 static var previews: some View {

 ContentView()

 }

}

This will give some compile errors due to missing classes, as highlighted in bold,
that is, AddRestaurantView and RestaurantDetailsView.

Now let us discuss these classes. These classes are not present at the moment, but we
will need these to visualize and add Restaurant flow and view Restaurant detail
view. So, the next step would be to add a new file in the project, AddRestaurantView.
swift, and add UI for the add Restaurant flow as follows:

import SwiftUI

import PhotosUI

struct AddRestaurantView: View {

 @Environment(\.presentationMode) private var presentationMode

 @State private var name: String = ""

 @State private var address: String = ""

 @State private var posterPicker: PhotosPickerItem? = nil

 @State private var selectedPoster: Data? = nil

 private func saveRestaurant() {

 // get the selected poster

 let posterBase64 = selectedPoster?.base64EncodedString() ?? ""

 �HTTPClient().saveRestaurant(name: self.name, poster:
posterBase64, address: address) { success in

 if success {

 // close the modal

 self.presentationMode.wrappedValue.dismiss()

 } else {

 // show user the error message that save was not successful

Full Stack Implementation  191

 }

 }

 }

 private func browseImage() {

 }

 var body: some View {

 NavigationView {

 ScrollView {

 VStack(alignment: .center, spacing: 20) {

 TextField("Enter name", text: self.$name)

 .textFieldStyle(RoundedBorderTextFieldStyle())

 TextField("Enter Address", text: self.$address)

 .textFieldStyle(RoundedBorderTextFieldStyle())

 PhotosPicker(

 selection: $posterPicker,

 matching: .images,

 photoLibrary: .shared()) {

 Text("Select Poster")

 }

 .onChange(of: posterPicker) { newItem in

 Task {

 �// Retrive selected asset in the
form of Data

 �if let data = try? await newItem?.
loadTransferable(type: Data.self) {

 selectedPoster = data

192  Full Stack iOS Development with Swift and Vapor

 }

 }

 }

 if let selectedPoster,

 let uiImage = UIImage(data: selectedPoster) {

 Image(uiImage: uiImage)

 .resizable()

 .scaledToFit()

 .frame(width: 250, height: 250)

 }

 Button("Add Restaraunt") {

 // save the movie

 self.saveRestaurant()

 }

 .padding(8)

 .foregroundColor(Color.white)

 .background(Color.green)

 .cornerRadius(8)

 }.padding()

 .background(Color.black)

 }

 .navigationBarTitle("Add Restaurant")

 .navigationBarItems(trailing: Button("Close") {

 print("closed fired")

 self.presentationMode.wrappedValue.dismiss()

 })

 }

Full Stack Implementation  193

 }

}

struct AddMovieView_Previews: PreviewProvider {

 static var previews: some View {

 AddRestaurantView()

 }

}

Similarly, add a new file in the project, RestaurantDetailsView.swift, and add UI
for the Restaurant detail’s view and add review flow as follows:

import SwiftUI

struct RestaurantDetailsView: View {

 let restaurant: Restaurant

 @State private var reviewTitle: String = ""

 @State private var reviewBody: String = ""

 @ObservedObject private var httpClient = HTTPClient()

 @Environment(\.presentationMode) private var presentationMode

 private func deleteRestaurant() {

 HTTPClient().deleteRestaurant(restaurant: restaurant) { success in

 DispatchQueue.main.async {

 self.presentationMode.wrappedValue.dismiss()

 }

 }

 }

 private func saveReview() {

 �let review = Review(title: self.reviewTitle, body: self.

194  Full Stack iOS Development with Swift and Vapor

reviewBody, restaurant: restaurant)

 HTTPClient().saveReview(review: review) { success in

 if success {

 // load all the reviews again

 �self.httpClient.getReviewsByRestaurant(restaurant:
restaurant)

 }

 }

 }

 var body: some View {

 Form {

 restaurant.posterImage()?

 .resizable()

 .aspectRatio(contentMode: .fit)

 .padding()

 Section(header: Text("ADD A REVIEW").fontWeight(.bold)) {

 VStack(alignment: .center, spacing: 10) {

 TextField("Enter Title",text: $reviewTitle)

 .textFieldStyle(RoundedBorderTextFieldStyle())

 �TextField("Enter Body",text: $reviewBody)
.textFieldStyle(RoundedBorderTextFieldStyle())

 Button("Save") {

 self.saveReview()

 }

 .frame(maxWidth: .infinity)

 .padding(10)

Full Stack Implementation  195

 .foregroundColor(Color.white)

 .background(Color.blue)

 .cornerRadius(6.0)

 .buttonStyle(PlainButtonStyle())

 }

 }

 Section(header: Text("REVIEWS").fontWeight(.bold)) {

 �ForEach(self.httpClient.reviews ?? [Review](), id: \.id)
{ review in

 Text(review.title)

 }

 }

 }

 .onAppear(perform: {

 // get reviews for restaurant

 �self.httpClient.getReviewsByRestaurant(restaurant:
restaurant)

 })

 .navigationBarTitle(restaurant.title)

 .navigationBarItems(trailing: Button(action: {

 self.deleteRestaurant()

 }) {

 Image(systemName: "trash.fill")

 })

 }

196  Full Stack iOS Development with Swift and Vapor

}

struct RestaurantDetailsView_Previews: PreviewProvider {

 static var previews: some View {

// base64ImageSmaple1 is a base64 encoded string for a sample image

 �RestaurantDetailsView(restaurant: Restaurant(title:
"IndieKitchen", poster: base64ImageSmaple1, address: "Ashok
Vihar Delhi"))

 }

}

With this, we are ready with our iOS app to communicate with the backend server.

Test run
Now that our database, server, and iOS app are ready, let us run the server on the
local host and run iOS app in the simulator. As soon as the app opens, it will open
the landing page designed in ContentView.swift in the iOS project, as shown in the
following figure:

Figure 8.13: Restaurant app landing page

Full Stack Implementation  197

As we already have a sample Restaurant entry in a remote database, the iOS app
fetched the details and showed it on the landing page. Next, if you click on the +
button at the top right corner, it will land on the UI designed in AddRestaurantView.
swift, as shown in the following figure:

Figure 8.14: Add restaurant

Select Poster button, when pressed, will open the photo picker window to select
an image from the stored photos on iPhone. Add Restaurant button will add a new
restaurant entry in the remote database through remote server APIs.

On clicking on Close button on top right corner, the app will again go back to the
restaurant list, as shown in figure 8.13. On clicking on the restaurant cell view in the
list, detail’s view will open as shown in the following figure:

Figure 8.15: Restaurant details page

198  Full Stack iOS Development with Swift and Vapor

Here, you can see that it fetched already saved sample reviews. You can also add
new reviews on this page.

Great!! After all this hard work, we finally created a working full-stack sample
project and achieved our objective.

Conclusion
In this chapter, we practically executed the knowledge gained from all the other
chapters in this book. In this chapter, we actually created and successfully completed
a full-stack project with a persistent remote database layer. With this chapter, we
achieved our objective, where we can execute a full-stack iOS project with the help
of Swift Vapor on the server side and Swift on the iOS client side.

In the following chapters, we will touch upon some advanced topics relating to iOS
and Vapor, as well as the deployment of server and client apps.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the previous chapter, we implemented our full-stack project. In this chapter, we
will extend our understanding of full stack to some more advanced topics.

Structure
In this chapter, we will discuss the following topics:

•	 Middleware
•	 WebSocket
•	 APNS
•	 Security

Objectives
In the previous chapter, we implemented our full stack project, but that is only at a
POC level. In this chapter, we will explore some advanced topics related to full stack,
which are very important w.r.t overall system design and system architecture. These
concepts are a must for commercial application development.

Chapter 9
Advanced Full-stack

Concepts

200  Full Stack iOS Development with Swift and Vapor

Middleware
Middleware is a logic chain connecting the client and a route handler to perform
operations on incoming requests and outgoing responses before the request reaches
to the route handler and before the response reaches to the client.

In a real-world application, we often need to integrate some custom logic into the
request pipeline. Implementing middleware is the most common mechanism for
accomplishing this. Using middleware, we can perform tasks like the following:

•	 Logging incoming requests.
•	 Catch and display errors and messages.
•	 Rate-limit traffic to routes.

Middleware instance is a logical layer sitting in between the router and the client,
which enables us to view and perform mutation on incoming requests before they
reach to the controllers. A middleware instance may return early or choose to
forward the request to the next responder. The last responder in the chain is always
the router.

Middleware can be registered globally using app.middleware is as follows:

app.middleware.use(CustomMiddleware())

Using route groups, it can also be added to individual routes as follows:

let group = app.grouped(CustomMiddleware())

group.get("someRoute") { req in

 // This request has passed through CustomMiddleware.

}

The order for adding middleware is important, as incoming requests will be
processed in the middleware in the order they were added. Similarly, responses
will also be processed in the middleware in reverse order. Application middleware
always takes precedence over route-specific middleware.

Vapor adds default middleware automatically, but if we want to add a middleware
before the default middleware, we can prepend the middleware as well.

app.middleware.use(customMiddleware, at: .beginning)

Advanced Full-stack Concepts  201

Creating middleware
Few useful middlewares are shipped with Vapor, but as discussed, we might need to
create our own custom middleware as per the requirements of the application. The
classic example would be to create a middleware to prevent users without admin
rights from accessing a group of routes.

A Middleware must conform to middleware or asyncmiddleware protocol. After that,
they are inserted into the responder chain and can be used to access and manipulate
an incoming request before it reaching to a route handler and access and manipulate
an outgoing response before it is returned.

For example, let us create a middleware to allow access to the user only if they are
an admin.

import Vapor

struct AdministratorMiddleware: Middleware {

 �func respond(to request: Request, chainingTo next: Responder) ->
EventLoopFuture<Response> {

 �guard let adminUser = request.auth.get(User.self), adminUser.
role == .admin else {

 return request.eventLoop.future(error: Abort(.unauthorized))

 }

 return next.respond(to: request)

 }

}

Here, the user is another model we need to create and maintain in a persistent
database. If we are using async/await, we can write our middleware as follows:

import Vapor

struct AdministratorMiddleware: AsyncMiddleware {

 �func respond(to request: Request, chainingTo next: AsyncResponder)
async throws -> Response {

202  Full Stack iOS Development with Swift and Vapor

 �guard let adminUser = request.auth.get(User.self), adminUser.
role == .admin else {

 throw Abort(.unauthorized)

 }

 return try await next.respond(to: request)

 }

}

In another example, let us say if we want to modify the response, say by adding a
custom header. We can create a middleware for this as follows:

import Vapor

struct VersionHeaderMiddleware: Middleware {

 �func respond(to request: Request, chainingTo next: Responder) ->
EventLoopFuture<Response> {

 next.respond(to: request).map { response in

 response.headers.add(name: "Version", value: "v2.5")

 return response

 }

 }

}

This middleware will add an app version to the header and can wait till the response
is received from the responder chain before manipulating the response.

Similar to the previous example, if we are using async/await, we can write our
middleware as follows:

import Vapor

struct VersionHeaderMiddleware: AsyncMiddleware {

 �func respond(to request: Request, chainingTo next: AsyncResponder)
async throws -> Response {

Advanced Full-stack Concepts  203

 let response = try await next.respond(to: request)

 response.headers.add(name: "Version", value: "v2.5")

 return response

 }

}

WebSockets
There are certain scenarios where the server needs to send information to the client
app rather than the client app requesting information from the server. WebSockets
allow two-way communication between a client and server, unlike HTTP’s request
and response pattern. WebSocket implements a peer structure where peers can
communicate and send an arbitrary number of messages in both directions.
WebSocket API provided by Vapor allows us to implement a mechanism where
clients and servers both can handle messages asynchronously.

WebSocket endpoints can be easily added to the existing Vapor application using
Routing API. We just need to use the WebSocket method like the get or post methods:

app.webSocket("restaurantSocket") { request, websocket in

 //Connected WebSocket

 print(websocket)

}

WebSocket routes can be grouped and protected by middleware similar to normal
routes. WebSocket handlers accept the newly established WebSocket connection in
addition to the incoming HTTP request.

Messages
The WebSocket class has methods for receiving and sending messages as well as
listening to events. WebSockets can transmit data using two protocols, that is, text
and binary. Text messages are treated as UTF-8 strings, whereas binary data is
interpreted as a bytes array.

204  Full Stack iOS Development with Swift and Vapor

Sending
For sending messages, we can use WebSocket’s send method:

websocket.send("Hello World")

This method sends a text message to the other side. For sending binary messages, we
can send them by passing a [UInt8].

The message sending process is asynchronous. For notifying that the message has
finished sending or failed, we can supply an EventLoopPromise to the send:

let promise = eventLoop.makePromise(of: Void.self)

websocket.send(...., promise: promise)

promise.futureResult.whenComplete { result in

 // Success or failure.

}

By using async/await, we can await on the result:

let result = try await websocket.send(...)

Receiving
Incoming messages are handled with the onText and onBinary callbacks:

websocket.onText { websocket, text in

 // String received by WebSocket.

 print(text)

}

websocket.onBinary { websocket, binary in

 // Bytes received by WebSocket.

 print(binary)

}

The WebSocket is the first parameter to these callbacks to prevent reference cycles.
For taking any action on the websocket after receiving the data, use this reference.
For example, we can send a reply as the following:

Advanced Full-stack Concepts  205

// Echoes received messages.

websocket.onText { websocket, text in

 websocket.send(text)

}

Closing
To close a WebSocket, we just need to call the close method:

websocket.close()

This method returns a future that will be completed when the WebSocket has closed.
Like send method, we can also pass a promise to this method as follows.

websocket.close(promise: nil)

And for using async/await:

try await websocket.close()

For notification when the peer closes the connection, use the onClose method. The
future will be completed if either the client or server closes the WebSocket.

websocket.onClose.whenComplete { result in

 // Success or failure to close.

}

The closeCode property gets set when the WebSocket closes:

APNS
Vapor’s Apple Push Notification Service (APNS) APIs built on top of APNSwift
(https://github.com/kylebrowning/APNSwift) make it easy to authenticate and
send push notifications to Apple devices.

To start with using APNS, first, add the package to the dependencies in Package.
swift:

let package = Package(

 name: "Restaurant-Server" ,

 dependencies: [

206  Full Stack iOS Development with Swift and Vapor

 // Other dependencies here...

 .package(url: "https://github.com/vapor/apns.git", from: "3.0.0"),

],

 targets: [

 .target(name: "App", dependencies: [

 // Other dependencies here...

 .product(name: "APNS", package: "apns")

]),

 // Other targets here...

]

)

After editing the manifest directly, it will automatically fetch the new dependency.
But if it does not happen, open the Terminal app and run swift package resolve to
fetch the new dependency.

After adding the APNS module, a new property apns will be added to the application.
To send push notifications, we first need to set the configuration property with our
credentials as the following:

import APNS

// Configure APNS with JWT authentication.

app.apns.configuration = try .init(

 let pathToP8File = "<#path to .p8 file#>"

 let keyIdentifier = "<#key identifier#>"

 let teamIdentifier = "<#team identifier#>"

 authenticationMethod: .jwt(

 key: .private(filePath:),

 keyIdentifier: keyIdentifier,

 teamIdentifier: teamIdentifier

Advanced Full-stack Concepts  207

),

 topic: "<#topic#>",

 environment: .sandbox

)

//Configure APNS with TLS based auth.

app.apns.configuration = try .init(

 let privateKeyPath = "<#path to private key#>"

 let pemPath = "<#path to pem file#>"

 let pemPassword = "<#pem password#>"

 authenticationMethod: .tls(

 privateKeyPath: privateKeyPath,

 pemPath: pemPath,

 pemPassword: pemPassword

),

 topic: "<#topic#>",

 environment: .sandbox

)

Once we are done with the APNS configuration, we can push notifications using
apns.send method:

// Send push notification.

try app.apns.send(

 �.init(title: "Notification", subtitle: "This is a test push
notification"),

 to: "Device Token"

).wait()

208  Full Stack iOS Development with Swift and Vapor

// Or

try await app.apns.send(

 �.init(title: "Notification", subtitle: "This is a test push
notification"),

 to: "Device Token"

)

Always use req.apns when inside of a route handler:

// Send push notification.

app.get("test-push") { req -> EventLoopFuture<HTTPStatus> in

 �req.apns.send(.init(title: "Notification", subtitle: "This is a test
push notification"),

 to: "Device Token")

 .map { .ok }

}

// Or

app.get("test-push") { req async throws -> HTTPStatus in

 �try await req.apns.send(.init(title: "Notification", subtitle: "This
is a test push notification"),

 to: "Device Token")

 return .ok

}

The first parameter in send method is the push notification alert, and the second
parameter is the target device token.

APNSwiftAlert is the metadata for the push notification alert. More details can
be checked here (https://developer.apple.com/library/archive/documentation/
NetworkingInternet/Conceptual/RemoteNotificationsPG/PayloadKeyReference.
html):

let alert = APNSwiftAlert(

Advanced Full-stack Concepts  209

 title: "Alert Title",

 subtitle: "Test Push",

 body: "Test Push body"

)

APNSwiftAlert type can be passed to the send method, and it will automatically
wrap in an APNSwiftPayload.

APNSwiftPayload is the actual metadata of the push notification, such as the
alert, badge count, and so on. More details can be found here (https://developer.
apple.com/library/archive/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/PayloadKeyReference.html):

let payload = APNSwiftPayload(alert: alert, badge: 1, sound: .normal("test.
wav"))

This payload can be passed to the send method. Apple also provides the ability to
add custom payload data to each notification using APNSwiftNotification:

struct CustomNotification: APNSwiftNotification {

 let custom: [String]

 let payload: APNSwiftPayload

 init(custom: [String], payload: APNSwiftPayload) {

 self.custom = custom

 self. payload = payload

 }

}

let payload: APNSwiftPayload = APNSwiftPayload(alert: alert, badge: 1,
sound: .normal("test.wav"))

let notification = CustomNotification(custom: ["test1", "test2"], payload:
payload)

This custom notification can be passed to the send method.

210  Full Stack iOS Development with Swift and Vapor

Security
Security is the utmost important aspect of any application. Without security
implementation, an app cannot be released to the public as otherwise, and it will
be a Pandora’s box of problems only. On the server side, the most important aspect
of security is Authentication. On the client side also, there is need to store sensitive
data like passwords securely. For securing sensitive data on iOS, we will study about
Keychain in this section.

Authentication
Authentication is done to establish a user’s identity. This can be done through
the verification of credentials such as username and password or a unique token.
Authentication is different than authorization as the latter is the act of verifying a
user’s permissions to perform certain app flows.

Vapor’s Authentication API supports authentication using Basic and Bearer in the
Authorization header. It also supports authentication through the data decoded
from the Content API.

For using the Authentication API, first, we need a User type conforming to the
Authenticatable protocol. User type can be a struct, class, or a Fluent Model. In the
following examples, let us create a User struct that has one property: userName:

import Vapor

struct User: Authenticatable {

 var userName: String

}

In the following example, we will use an instance of an authenticator middleware
named UserAuthenticatorMiddleware:

let protected = app.grouped(UserAuthenticatorMiddleware())

protected.get("user") { req -> String in

 try req.auth.require(User.self).userName

}

req.auth.require will fetch the authenticated User. This method will throw an
error if authentication fails.

Advanced Full-stack Concepts  211

Basic authentication
Basic authentication sends username and password concatenated with a colon like
user:secret, base-64 encoded and prefixed with Basic in the Authorization header.

GET /me HTTP/1.1

Authorization: Basic dXNlcjpzZWNyZXQ=

Basic authentication is generally used once while logging a user in the system and
generating a token. This minimizes the frequency of exposing the user’s sensitive
password. Basic authorization should never be sent as plaintext or unverified TLS
connection.

To implement Basic authentication in the app, we will create a new authenticator
conforming to BasicAuthenticator. Let us look at the example as follows:

import Vapor

struct UserAuthenticatorMiddleware: BasicAuthenticator {

 func authenticate(

 basic: BasicAuthorization,

 for request: Request

) -> EventLoopFuture<Void> {

 if basic.username == "username" && basic.password == "password" {

 request.auth.login(App.User(name: basic.username))

 }

 return request.eventLoop.makeSucceededFuture(())

 }

}

If we are using async/await, we can use AsyncBearerAuthenticator as follows:

import Vapor

struct UserAuthenticatorMiddleware: AsyncBasicAuthenticator {

212  Full Stack iOS Development with Swift and Vapor

 func authenticate(

 basic: BasicAuthorization,

 for request: Request

) async throws {

 if basic.username == "username" && basic.password == "password" {

 request.auth.login(User(name: App.User(name: basic.username)))

 }

 }

}

BasicAuthenticator protocol requires us to implement authenticate(basic:for:)
function, which gets invoked when an incoming request contains the Authorization:
Basic… header. A BasicAuthorization struct incapsulating the username and
password is passed to this method.

In this preceding example, the authenticator uses hard-coded values to test for the
username and password. In a real authenticator, we will check against a database
entry or external API. Precisely due to this, the authenticate method allows us to
return a future.

Note: We should never store Passwords in a database as plaintext. The best practice
is to always use password hashes for future comparisons.

If authentication parameters are correct (in the preceding example, match the hard-
coded values), the User is logged in. If the authentication parameters do not match,
authentication fails, and the user is not logged in.

Bearer authentication
Bearer authentication works by sending a token prefixed with Bearer in the
Authorization header. Following is an example:

GET /me HTTP/1.1

Authorization: Bearer token

Bearer authentication is generally used for the authentication of API endpoints. The
user requests a Bearer token by sending credentials such as username and password

Advanced Full-stack Concepts  213

to a login endpoint. This token has an expiry timeline based on the application’s
needs.

While the token is valid, the user can use it instead of using credentials to authenticate.
When the token expires, a new token can be generated using the login endpoint.

For implementing Bearer authentication in the app, create a new authenticator
conforming to BearerAuthenticator protocol. The following is an example
authenticator to verify the request:

import Vapor

struct UserAuthenticatorMiddleware: BearerAuthenticator {

 func authenticate(

 bearer: BearerAuthorization,

 for request: Request

) -> EventLoopFuture<Void> {

 if bearer.token == "token" {

 request.auth.login(App.User(name: "HardCodedUser"))

 }

 return request.eventLoop.makeSucceededFuture(())

 }

}

If we are using async/await, we can use AsyncBearerAuthenticator as follows:

import Vapor

struct UserAuthenticator: AsyncBearerAuthenticator {

 func authenticate(

 bearer: BearerAuthorization,

 for request: Request

214  Full Stack iOS Development with Swift and Vapor

) async throws {

 if bearer.token == "token" {

 request.auth.login(App.User(name: "HardCodedUser"))

 }

 }

}

BearerAuthenticator protocol requires us to implement authenticate(bearer:for:),
which gets invoked when an incoming request contains the Authorization: Bearer…
header. A BearerAuthorization struct having the token is passed to this method.

In the preceding example authenticator, the token is tested against a hard-coded
value. In the real world, though, we will verify the token by checking against a
database entry or using cryptographic measures, as done with JWT. Due to this, the
authenticate method allows us to return to the future.

If the authentication parameters are correct (in our example, match the hard-
coded value), a User named HardCodedUser will be logged in. If the authentication
parameters do not match, the user will not log in, and thus, authentication will fail.

Composition
Multiple authenticators can also be combined together to create much more complex
endpoint authentication. As authenticator middleware will not reject the request in
case authentication fails, more than one middleware can be chained with each other.

For the same user type, authenticators can be composed by chaining more than one
authenticator. Let us take an example:

app.grouped(UserPasswordAuthenticator())

 .grouped(UserTokenAuthenticator())

 .grouped(User.guardMiddleware())

 .post("loginUser")

{ req in

 let authenticatedUser = try req.auth.require(User.self)

 // Do something with authenticated user...

}

Advanced Full-stack Concepts  215

In the preceding example, two authenticators UserPasswordAuthenticator and
UserTokenAuthenticator, are added to the route group, and GuardMiddleware is
chained after the authenticators to require that User was successfully authenticated.

This composition results in a sort of hybrid route access where the route can be
accessed by password as well as by token. Hence, this route allows a user to login
and generate a token, which can be reused to generate new tokens.

Another way for authentication composition is chaining authenticators but for
different user types. Let us look at the following example:

app.grouped(AdminAuthenticator())

 .grouped(UserAuthenticatorMiddleware())

 .get("secure")

{ req in

 guard req.auth.has(Admin.self) || req.auth.has(User.self) else {

 throw Abort(.unauthorized)

 }

 // Do something here.

}

The preceding example assumes that after adding AdminAuthenticator and
UserAuthenticatorMiddleware authenticators to the route group, they authenticate
Admin and User, respectively. In place of using GuardMiddleware, check in the route
handler is added to check if Admin or User were authenticated. Otherwise, an error
is thrown.

This composition results in a route that can be accessed by two different types
of users with possibly different methods of authentication. Such routes allow for
normal user authentication while still giving access to an admin user.

Session
Vapor’s Session API provides the capability to automatically persist user
authentication between requests as it stores a unique identifier for the user in the
request’s session data after user login. For subsequent requests, the user’s identifier
is fetched from the session and is used to authenticate the user before calling the
route handler.

216  Full Stack iOS Development with Swift and Vapor

Sessions are advised for front-end web applications that serve HTML directly to
web browsers, whereas for APIs, stateless, and token-based authentication is
recommended.

To use session-based authentication, We first need a type conforming to
SessionAuthenticatable. For example:

struct User {

 var eMail: String

}

Conforming to SessionAuthenticatable, we need to specify a sessionID, which
will be stored in the session data and must be a unique identifier for the user:

extension User: SessionAuthenticatable {

 var sessionId: String {

 self.eMail

 }

}

For simplicity, in the preceding example, User type will use the e-mail address as the
unique identifier.

Next, we need a SessionAuthenticator for resolving instances of User from the
persisted session identifier as follows:

struct UserSessionAuthenticator: SessionAuthenticator {

 �func authenticate(sessionID: String, for request: Request) ->
EventLoopFuture<Void> {

 let user = App.User(eMail: sessionID)

 request.auth.login(user)

 return request.eventLoop.makeSucceededFuture(())

 }

}

While using async/await, use the AsyncSessionAuthenticator as the following:

struct UserSessionAuthenticator: AsyncSessionAuthenticator {

Advanced Full-stack Concepts  217

 �func authenticate(sessionID: String, for request: Request) async
throws {

 let user = App.User(eMail: sessionID)

 request.auth.login(user)

 }

}

In our example, all the information to initialize User is contained in the session
identifier, which will not hold true in real-world. In the real-world, most probably,
we will use the session identifier to perform a database or API request to fetch the
user data before authentication.

Now, let us create a simple bearer authenticator in our example to perform the initial
authentication as the following:

struct UserBearerAuthenticator: AsyncBearerAuthenticator {

 �func authenticate(bearer: BearerAuthorization, for request: Request)
async throws {

 if bearer.token == "test token" {

 let user = User(email: "examplemail@somedomain.com")

 request.auth.login(user)

 }

 }

}

This authenticator will authenticate the user with the e-mail examplemail@
somedomain.com when the bearer token test is sent.

At last, let us integrate all these pieces together in the application:
1.	 Create a route group which requires user auth.
	 let protectedGroup = app.routes.grouped([

	 app.sessions.middleware,

	 UserSessionAuthenticator(),

	 UserBearerAuthenticator(),

	 User.guardMiddleware(),

218  Full Stack iOS Development with Swift and Vapor

])

2.	 Add GET /email route for reading e-mail address for user:
	 protected.get("email") { req -> String in

	 try req.auth.require(User.self).eMail

	 }

SessionsMiddleware is added to enable session support on the application. The
SessionAuthenticator is added next to handle authenticating the user in an active
session.

If, in the session, authentication has not been persisted yet, the request will be
forwarded to the UserBearerAuthenticator, which will check the bearer token for
authenticating the user.

Finally, guardMiddleware() makes sure that the user has been authenticated by one
of the previous middleware, else an error will be thrown.

JWT
JWT provides JWTAuthenticator to authenticate JSON Web Tokens in incoming
requests. First, create a new type conforming to JWTPayload as follows:

struct JWTSessionToken: Content, Authenticatable, JWTPayload {

 let expireTime: TimeInterval = 60 * 30

 var expirationClaim: ExpirationClaim

 var userId: UUID

 init(userId: UUID) {

 self.userId = userId

 �self.expirationClaim = ExpirationClaim(value: Date().
addingTimeInterval(expireTime))

 }

 init(user: User) throws {

 self.userId = try user.requireID()

 �self.expirationClaim = ExpirationClaim(value: Date().
addingTimeInterval(expireTime))

 }

Advanced Full-stack Concepts  219

 func verify(using signer: JWTSigner) throws {

 try expirationClaim.verifyNotExpired()

 }

}

Next, we define a struct for the data encapsulated in a successful login response. For
the sake of simplicity, the response in the example only has one property, which is a
string representing a signed JWT:

struct JWTTokenReponse: Content {

 var jwtToken: String

}

Using our model for the JWT token and response, we can use a password-protected
login route to return a JWTTokenReponse and includes a signed JWTSessionToken
shown as follows:

let passProtected = app.grouped(User.authenticator(), User.
guardMiddleware())

passProtected.post("login") { req -> JWTTokenReponse in

 let user = try req.auth.require(User.self)

 let payload = try JWTSessionToken (with: user)

 return JWTTokenReponse(jwtToken: try req.jwt.sign(payload))

}

OR if you do not want to use an authenticator, follow the following code:

app.post("login") { req -> JWTTokenReponse in

 // Validate credential and get userId for provided user

 let payload = try JWTSessionToken(userId: userId)

 return JWTTokenReponse(jwtToken: try req.jwt.sign(payload))

}

After conforming the payload to Authenticatable and JWTPayload, we can actually
generate a route authenticator using the authenticator method, which can be added
to a route group for automatically fetching and verifying the JWT before the route
is called:

220  Full Stack iOS Development with Swift and Vapor

let secure = app.grouped(JWTSessionToken.authenticator(), JWTSessionToken.
guardMiddleware())

Here, the guard middleware will require that authorization to succeed. We can
access the authenticated JWT payload using req.auth inside the protected routes:

secure.post("validateLoggedUser") { req -> HTTPStatus in

 let jwtsessionToken = try req.auth.require(JWTSessionToken.self)

 print(jwtsessionToken.userId)

 return .ok

}

KeyChain
Similar to servers, the most important aspect of software development on the client
side also happens to be application security. Users expect that their applications
keep their information private and protect the information from potential threats.

In this section, we will dive into the basics of iOS security. We will work with the iOS
keychain to keep users’ data private and protected.

Keychain is one of the most important security elements for Apple developers, which
is a specialized database for storing metadata and sensitive information. For storing
small critical data such as secrets and passwords, using Keychain is the best practice.

Security is a difficult and specialized stream of engineering, so attempting your own
custom solution is a bad idea. Even if your app is not for a strategic or financial
institution, storing private user data should not be taken lightly; otherwise, it might
land you in legal trouble as well, apart from the hacker attack.

The keychain is not limited to passwords. We can store other secrets that are critical
for users, such as credit card information. We can also store cryptographic keys and
certificates that we manage with certificate, key, and trust services and which enable
the user to engage in secure communications and to establish trust with other users
and devices.

When we want to store a secret like a password or cryptographic key, we package
it as a keychain item. Along with the data itself, we provide a set of publicly visible
attributes to control the item’s accessibility and to make it searchable. Authorized
processes can use keychain services to find the item and decrypt its data.

Advanced Full-stack Concepts  221

Adding password to Keychain
Let us take this example, first define a structure that will hold the credentials:
struct Credentials {

 var userName: String

 var password: String

}

Next, define error enumeration, which can be used to communicate keychain access
errors:
enum KeychainError: Error {

 case noPassword

 case unexpectedPasswordData

 case unhandledError(status: OSStatus)

}

Identify the server that the app is working with:
static let server = "www.hemdutt.com"

Now, use an instance of the credentials structure and the server constant to create
an add query:
let account = credentials.userName

let password = credentials.password.data(using: String.Encoding.utf8)!

var query: [String: Any] = [kSecClass as String: kSecClassInternetPassword,

 kSecAttrAccount as String: account,

 kSecAttrServer as String: server,

 kSecValueData as String: password]

Here, the first key-value pair indicates that the item is an Internet password; from
here, keychain services infer that the data is secret and requires encryption. This is
also to ensure that the item has attributes to distinguish itself from other Internet
passwords. The next two key-value pairs in the query provide this information by
attaching the username as the account, along with a domain name to this password
as the server:

With the query complete, We can simply feed this to the SecItemAdd(_:_:)
function:

let status = SecItemAdd(query as CFDictionary, nil)

222  Full Stack iOS Development with Swift and Vapor

guard status == errSecSuccess else {

 throw KeychainError.unhandledError(status: status)

}

Although we can ignore the return data supplied by reference in the second argument
on an add operation, always check the function’s return status to ensure that the
operation succeeds.

To be able to find the item later, We can rely on the knowledge of its attributes. In our
example, the server and the account are distinguishing characteristics of the item.
As long as the app never adds similar items with varying attributes, like passwords
for different accounts on the same server, we can omit these dynamic attributes as
search parameters and rather retrieve them along with the item.

If the app does add items with varying dynamic attributes, we will need to choose
among them during retrieval. It may make sense to further characterize the item by
adding more attributes.

Conclusion
In this chapter, we covered some advanced topics related to full stack, which are
very important with respect to the overall system design and system architecture.
Concepts like Middleware, WebSocket, APNS, and Security are integral to any real-
world software system development. This chapter should be treated as a launchpad
for deep dive into these concepts and to understand the software system holistically.

In the upcoming chapter, we will discuss deployment processes for server-side and
iOS apps.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
We are done building our awesome Vapor server app and iOS app. But these are still
with us, and we definitely want to showcase these to the world. Here comes our next
challenge, that is, deploying these applications for the world and letting the world
have a taste of our full-stack application system.

There are lots of different ways to deploy our vapor application, and we will study a
few of these in this chapter. On the other side, iOS only have one way to deploy and
release app to the public, and that is through App Store. We will study this as well
in this chapter.

Structure
In this chapter, we will discuss the following topics:

•	 Vapor app deployment
	 o	 Heroku
	 o	 Docker
•	 iOS app store release

Chapter 10
Deploying iOS and
Vapor Applications

224  Full Stack iOS Development with Swift and Vapor

Objectives
The objective of this chapter is to study and understand the deployment process/es
for our iOS and Vapor apps to the public. For Vapor apps, we will study deployment
through Heroku and Docker, whereas for iOS, there is only one way, and that is
through App Store, which will also be covered in this chapter.

Vapor app deployment
We are done building our awesome Vapor server app. But it is still with us only, and
we definitely want to showcase it to the world by bringing our application online to
the world.

There are lots of different ways to deploy our application, and one of them is through
Heroku.

Heroku
Heroku is a Platform as a Service (PaaS) that will handle for arranging TLS, viewing
application logs, traffic monitoring, and much more.

To deploy your app through Heroku, first, sign up at https://signup.heroku.com/ as
shown in the following figure:

Figure 10.1: Sign up

Deploying iOS and Vapor Applications  225

1.	 Install the Heroku CLI tool using the following command:
	 brew install heroku/brew/heroku

2.	 Login into Heroku in the terminal and follow the instructions:
	 heroku login

3.	 Go to the dashboard and create a new app, as shown in the following figure:

Figure 10.2: Create a new app

4.	 Once you click on Create new app, it will land you on another page where
you can start the process for giving details of your app as shown in the
following figure:

226  Full Stack iOS Development with Swift and Vapor

Figure 10.3: App details

	 The name of the app will be the subdomain where the app can be reached.
5.	 Next, we will connect our Heroku application to our local git repository by

running the following command in the terminal.
	 $ heroku git:remote -a Restaurant-Server

6.	 Now, we are connected, so we need to create a Procfile. The Procfile is used
by Heroku to know how to run our app. To create Procfile, open the terminal
and enter the following command.

	 $ touch Procfile

We need our proc file to look like web: Run serve --env production --hostname
0.0.0.0 --port $PORT:

$ echo "web: Run serve --env production" \

 "--hostname 0.0.0.0 --port \$PORT" > Procfile

Deploying iOS and Vapor Applications  227

In our case, it is a Web process because we want to expose our application using
HTTP to the outside world.

After web: we need to define the command that Heroku should execute to launch
our application. We want to start our Run executable defined in our Package.swift
file and want to serve our application. We want to run our app in the production
environment. Next, We define the hostname, and finally, we define the port we want
to bind to. While running the app with Xcode, it automatically binds to port 8080.
However, the port Heroku decides can vary and is not guaranteed to be 8080. Due
to this, Heroku provides a PORT environment variable that can be used to bind to.

Add this file to the git repository:

$ git add Procfile

$ git commit -m "Procfile added"

Now, we are all set to deploy our application. Open the terminal, and run the
following command:

git push heroku master

You might face which states Heroku was unable to detect your buildpack. There
is a Heroku buildpack for Vapor (https://github.com/vapor-community/heroku-
buildpack) maintained by some contributors. We can add this buildpack to our
application by running

heroku buildpacks:set vapor/vapor

Again, start building the application.

$ git push heroku master

This can take a while, and after that, you should get the message that your application
has been deployed.

"https://restaurantserver.herokuapp.com/ deployed to Heroku"

So now we can hit the URL and check out our app in action.

To add a simple Postgres database to our application, we will again open a terminal
and run the following command:

$ heroku addons:create heroku-postgresql:restaurantdb

228  Full Stack iOS Development with Swift and Vapor

We now have to tell our app how to access the database. In the app directory, run the
following:

heroku config

This will output something like the following:

DATABASE_URL: postgres://someURL:5432/dfr80mvoo550b4

DATABASE_URL here represents our postgres database.

Note: We should never hard code the static URL from this as Heroku will change
it, and that will break our application.

Should always read the environment variable at runtime:

guard let databaseURL = Environment.get("DATABASE_URL") else { return }

//Connect with database as

var postgresDbConfig = PostgresConfiguration(url: databaseURL)

postgresDbConfig.tlsConfiguration = .makeClientConfiguration()

postgresDbConfig.tlsConfiguration?.certificateVerification = .none

app.databases.use(.postgres(configuration: postgresDbConfig), as: .psql)

Docker
Most developers writing server-side Vapor applications are from iOS or macOS
backgrounds. That is why their development environment is macOS, but the vast
majority of servers run on Linux. While developing Web apps with Vapor, we have
to make sure this difference does not cause issues while deploying our app.

To work around this problem, we can use containerization. For containerization, we
can use Docker, which is the most popular containerization tool. Using Docker in the
development phase, we can rest assured that what runs in the local image of our app
will run on the server.

Using Docker to deploy the Vapor app has multiple benefits, as follows:
•	 The Dockerized app can be spun up reliably with a Docker Daemon using

the same commands on any platform.
•	 We can orchestrate multiple services which are needed for a full deployment

using Docker compose or Kubernetes manifests.

Deploying iOS and Vapor Applications  229

•	 It is easy to test app’s horizontal scalability on the development machine.

In this section, we will explore how to deploy our dockerized app on a server. The
simplest deployment would involve installing Docker on the server and running the
same commands as on your development machine to spin up the application.

More complicated and robust deployments would differ depending on the hosting
solution. Solutions like AWS provide built-in support for Kubernetes and custom
database solutions.

Set up Docker
First, install Docker for the developer environment. For information on the supported
platforms, read supported platforms (https://docs.docker.com/install/#supported-
platforms)

section of the Docker Engine Overview. For macOS, we can jump straight to the
Docker for Mac install page (https://docs.docker.com/docker-for-mac/install/).

If you are working from scratch on an app, the user vapor template for Dockerization
is as follows:

vapor new my-dockerized-app

Follow the prompts to enable or disable relevant features. Your choices of these
prompts will affect the generation of the Docker resource files. If you already have an
App, copy the templates from a demo dockerized app as described previously as a
reference point for dockerizing the existing app. We can copy key resources from the
template to our app and tweak them as per our app needs. The Vapor App template
has two main Docker-specific resources, i.e., Dockerfile and docker-compose file.

The Dockerfile provides information about how to build an image of the dockerized
app to Docker. This image contains the Vapor app’s executable and all dependencies
required to run it. The Dockerfile for the Vapor app has two stages. The first stage
builds the app and sets up a holding area for the result. The second stage sets up
a secure runtime environment and transfers everything to the holding area, where
it will be there in the final image. It also sets a default entry point and command,
which will run the app in production mode on the default port. We can override this
configuration when the image is used.

The Docker Compose file defines how Docker should build multiple services w.r.t
each other. This file in the template provides the required functionality to deploy the
app.

230  Full Stack iOS Development with Swift and Vapor

Note: If in the future you plan to use Kubernetes, the Docker Compose file is not
directly relevant. But Kubernetes manifest files are conceptually similar.

The Docker Compose file in the Vapor app defines services for running the app,
running or reverting migrations, and running the database as per our app’s
requirements. The exact definitions will vary depending on the database you chose
to use:

x-shared_environment: &shared_environment

 LOG_LEVEL: ${LOG_LEVEL:-debug}

 DATABASE_HOST: dbHost

 DATABASE_NAME: database

 DATABASE_USERNAME: username

 DATABASE_PASSWORD: password

These will be there in multiple services below with <<: *shared_environment YAML
reference syntax.

The DATABASE_HOST, DATABASE_NAME, DATABASE_USERNAME, and DATABASE_PASSWORD
variables are hardcoded in the example, but the LOG_LEVEL will have a value from
the environment running the service.

Note: Hard-coding username and password are not acceptable beyond local
development. One way to handle this in production is to store these variables in
a secrets file and export these secrets file to the environment that is running your
deployment and use the lines shown as follows in the Docker Compose file.

DATABASE_USERNAME: ${DATABASE_USERNAME}

Build and run
Docker knows how to build the app through the Docker Compose file. To build a
Docker image for our app, run the following command:

cd root directory(containing docker-compose.yml) of app's project

docker compose build

App and its dependencies must be built again, irrespective if you had previously
built them or not on the development machine. When this is done, we will find app’s
image while running:

Deploying iOS and Vapor Applications  231

docker image ls

A stack of services can be run from the Docker Compose file, or we can use an
orchestration layer like Kubernetes.

The simplest way to run the app is to start it as a standalone container. Docker using
the depends_on arrays makes sure that any dependant services are also started:

docker compose up app

We will notice that both the app and db services are started. The app is listening
on default port 8080 and made accessible on the development machine at http://
localhost:8080, as defined by the Docker Compose file.

When you see both the database and app running in containers, we can check on the
logs by running the following command:

docker logs <container_id>

Production deployment
As discussed at the start of this section, we will not go into many details about
deploying the dockerized app to production as this topic is very large and varies
depending on the hosting service, such as AWS, Azure, and so on.

However, the techniques we discussed to run our dockerized app locally on a
development machine are mostly transferable to production environments. A server
instance that is set up to run the docker daemon will accept the same commands.

Copy project files to your server, SSH into the server, and run Docker-compose
deploy command to make things to run remotely.

iOS app deployment
Now our server app is deployed for the world, and it is time to deploy our iOS app
on App Store so that users can download our iOS app on their phones.

The first step toward deploying the iOS app is to enroll in Apple Developer Program
(https://developer.apple.com/programs/enroll/).

Code signing
First, we need to create an iOS distribution provisioning profile and distribution
certificate in order to distribute our app to beta testers or to users through the App
Store.

232  Full Stack iOS Development with Swift and Vapor

The easiest way to do this is through Xcode. Open the iOS project in Xcode and click
on the project and navigate to Signing & Capabilities, as shown in the following
figure. Check Automatically manage signing:

Figure 10.4: Signing and capabilities

Click on Add Account button and add your developer account, as shown in the
following figure:

Figure 10.5: Add account

Deploying iOS and Vapor Applications  233

Create App Store Connect record for the app
Create your own App Store Connect organization (https://developer.apple.com/
support/app-store-connect/#//apple_ref/doc/uid/TP40011225-CH25-SW1). Sign in
with the Apple ID, the same Id used to enroll in the Apple Developer Program.

After logging in, you will land on the App Store Connect home page, as shown in
the following figure:

Figure 10.6: App Store Connect

Add new app
In the App Store Connect dashboard, select My Apps and then click on the + button
in the upper left corner and then select New App.

Fill in all details such as platform, app name, default language, bundle Id, SKU, and
so on. These information pieces cannot be changed later, so take precautions while
entering these details.

The bundle ID must exactly match the bundle identifier in our Xcode project’s Info.
plist file. SKU is an abbreviation for a stock-keeping unit. SKU must be a unique
ID for our app in the Apple system that is not visible to users. We can use letters,
numbers, hyphens, periods, and underscores but cannot start with a hyphen, period,
or underscore. Should create a value that is meaningful to your organization.

234  Full Stack iOS Development with Swift and Vapor

Archive and upload the app
Before we can submit our app for review through App Store Connect, we first need
to upload the build through Xcode. In Xcode, select Generic iOS Device as the
deployment target, as shown in the following figure:

Figure 10.7: iOS build

Choose Product | Archive as shown in the following figure:

Figure 10.8: Archive

This will launch Xcode Organizer displaying the list of archives you have created in
the past as well. Choose the current one and click on Upload to App Store in the

Deploying iOS and Vapor Applications  235

right panel. Select your credentials and click Choose and follow the screens to finally
upload the build. After completing the upload, a success message will appear, as
shown in the following figure:

Figure 10.9: Upload archive

Configure app’s metadata in App Store Connect
Select the App Store tab in App Store Connect, and on the App Information page,
you can add metadata such as languages, categories, and your app’s Privacy Policy
URL, as shown in the following figure:

Figure 10.10: App metadata

236  Full Stack iOS Development with Swift and Vapor

You can set pricing as free or at your selected price on the Pricing and Availability
page after clicking Pricing and Availability just below the App Store tab in the
left pane.

In the Features tab under App Store, we can add configurations like Game Center
and in-app purchases.

At this stage, our app has the status Prepare for Submission and is marked with a
yellow dot in the left pane under App Store, as shown in the following figure:

Figure 10.11: Prepare for submission

Select the build we want to configure and add the information for the product page.

Upload app’s screenshots (JPEG or PNG). Scroll down and enter app’s description,
keywords, support, and marketing URLs. In the General App Information section,
add app’s icon, version number, and copyright and contact information as per
standards. Click on Edit next to Rating and select the applicable options for the
app. In the top right corner, click Save. Now We are almost ready to submit the app
for review.

Deploying iOS and Vapor Applications  237

Submit app for review
Scroll to the Build section in your app’s App Store Connect, as shown in the following
figure:

Figure 10.12: Build section

Click on Select a build before you submit your app link. Choose the build that
we uploaded through Xcode. Click the Done button in the bottom right corner, then
click the Save button in the top right corner. Finally, Submit for Review.

Select Activity in the top horizontal menu, then App Store Versions in the left-
hand panel to check on the status of the app, as shown in the following figure:

Figure 10.13: App status

In most cases, it takes about one to three days for approval. In case the app is rejected,
you have to make the necessary fixes, as mentioned in the review comments, and
resubmit again. If your app is approved, congratulations!

238  Full Stack iOS Development with Swift and Vapor

You can now download your app from the App Store and can view downloads,
sales, ratings, and so on in the App Store Connect.

Conclusion
With this chapter, we can conclude our journey of this book, and you are ready
to explore vast space related to swift full-stack development. In this chapter, we
discussed various deployment techniques relating to the deployment of the Vapor
app and iOS app. With this, we have completed our journey from inception to
deployment of our full-stack project. But this is not all; this space is vast, and there is
a lot more to learn beyond these chapters.

Happy learning!

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

A
Abort 78, 79
Abort Error 79, 80
AdminAuthenticator 215
Airbnb 6
Amazon Web Services (AWS) 16
anything route 50
APNSwiftAlert type 209
APNSwiftPayload 209
Apple Push Notification Service

(APNS) 205
configuring 206-209
using 205

App Store Connect
creating 233
metadata, configuring 235, 236

App Transport Security (ATS) 163
Async 74
async/await 74

migrating to 74, 75
AsyncHTTPClient 15
authentication 210
Auto Layout

with storyboards 122-133
AWS SDK Swift 16

Index

B
Basic authentication

implementing 211
Bearer authentication 212

implementing 213, 214

C
catch all route 51
Codegen 156

category/extension 157-159
class definition 156, 157
manual/none 156

Core Data 148
Codegen 156
CRUD operations 152-155
including, in project 149-151
migrations 159

Core Data stack
NSManagedObjectContext 148
NSManagedObjectModel 148
NSPersistentStoreCoordinator 148

CRUD operations 105-108

D
data persistence

with Vapor 94

240  Full Stack iOS Development with Swift and Vapor

DebuggableError 81
Docker

production deployment 231
setting up 229, 230
Vapor app, building through 230
Vapor app, deploying through 228, 229
Vapor app, running through 231

E
Environment API 77, 78
Error protocol 78

F
Fluent ORM 102

adding, to project 102-105
folder structure, hello world project

(Vapor) 24
public folder 25
run folder 25
sources folder 25
tests folder 26

Foursquare 6
full-stack 5
full-stack development 2, 3

advantages 9, 10
history 4, 5
problems 6-9

full stack implementation
iOS app 181
networking 184-187
project outline 166
remote database, setting up 166-169
server app 169, 170
test run 196-198
user interface 188-196

G
guardMiddleware() 218

H
Hello World project (iOS) 27

creating 28-31
Hello World label, adding 32-35
project structure 31, 32

Hello World project (Vapor) 22
building 22-24
folder structure 24
running 22-24

Heroku 224
Vapor app, deploying through 224-228

I
images, SwiftUI

working with 138-142
iOS app deployment 231

app, adding 233
app, archiving 234
app's metadata, configuring in App

Store Connect 235, 236
App Store Connect record, creating 233
app, submitting to review 237
apps, uploading 234, 235
code signing 231, 232

iOS app, full stack implementation 181
models 182, 183

iOS UI development
autolayout, with storyboards 122-133
SwiftUI 134, 135

J
JSON

posting 67
working with 63-67

JWT 218
JWTAuthenticator 218
JWTPayload 218

Index  241

K
Keychain 220

password, adding 221, 222

L
Leaf templates 85-91
lightweight data migration 160-162
logging API 75-77

M
middleware 200

creating 201, 202
migrations 108

running 109, 110
minimum viable product (MVP) 3-6

Airbnb 6
features 6
Foursquare 6

Model-View-Controller (MVC) 54-62
Controller 55
Model 54
View layer 55

model view controller (MVC) pattern 11

N
nested routes 44-47
networking 162

P
PostgreSQL

installing 94-101
Postico 110-113
Postman app 67-72

POST request 69
POST Request 2 69
POST Request 3 69
POST Request 4 70
POST Request 5 71

protocol support 163

Q
query strings 52

R
route groups 53
route parameters 47-49
Router methods 43

anything routes 50
basic routes 43, 44
CatchAll routes 50, 51
nested routes 44-47
query strings 52, 53
route groups 53, 54
route parameters 47-50

Routes 42, 43

S
security 210

authentication 210
basic authentication 211, 212
Bearer authentication 212-214
composition 214, 215
JWT authentication 218-220
KeyChain 220
session-based authentication 215-218

server app, full stack implementation 169, 170
config and routes 178-181
controllers 175-178
migrations 173, 174
models 171, 172

Server-side Swift Web apps 11
SessionAuthenticator 216, 218
SessionsMiddleware 218
Soto 16
stacks, SwiftUI

working with 142-145
stack traces 83
Swift 10

characteristics 10, 11
Swift AWS Lambda Runtime 15, 16

242  Full Stack iOS Development with Swift and Vapor

Swift Backtrace 83
ErrorMiddleware 84, 85
error traces 83, 84

SwiftNIO 14, 15
Swift Package Manager (SPM) 26, 27
Swift packages

for back-end development 13
SwiftUI 134

images, working with 138-142
stacks, working with 142-145
text, working with 135-138

T
text, SwiftUI

working with 135-138
Todo model

creating 114
saving 114-118

U
UserAuthenticatorMiddleware 215
UserBearerAuthenticator 218

V
Vapor 11, 19

data persistence 94
Vapor app deployment 224

Docker 228
Heroku 224-228

Vapor toolbox
installation 21

W
WebSocket 203

messages 203
messages, closing 205
messages, receiving 204
messages, sending 204

X
Xcode

installation 20, 21
Xcode project

running 35-39

  i

	Book title

	Inner title

	Copyright
	Dedicated
	About the Author
	Acknowledgements
	Preface
	Code Bundle and Coloured Images

	Piracy
	Table of Contents
	Chapter 1: Full-stack Development Overview
	Introduction
	Introduction
	Introduction to full-stack development
	Brief history
	Full-stack: what does it mean?

	Minimum viable product (MVP)
	Airbnb
	Foursquare

	Problems with full-stack development
	Advantages of full-stack development
	Swift on server and Vapor
	Swift packages for back-end development
	SwiftNIO
	AsyncHTTPClient
	Swift AWS Lambda Runtime
	Soto—AWS SDK Swift

	Conclusion

	Chapter 2: Setting Up the Environment
	Introduction
	Structure
	Installation of Xcode
	Installation of Vapor toolbox
	Hello world project (Vapor)
	Build and run project
	Folder structure

	Swift Package Manager
	Hello World project (iOS)
	Project structure

	Run Xcode project
	Conclusion

	Chapter 3: Routing, MVC and JSON in Vapor
	Introduction
	Structure
	Objectives
	Routes
	Router methods
	Basic routes
	Nested routes
	Route parameters
	Anything routes and CatchAll routes
	Query strings
	Route groups

	Model-View-Controller (MVC)
	Working with JSON
	Posting JSON and Postman app

	Conclusion

	Chapter 4: Async and HTML Rendering in Vapo
	Introduction
	Structure
	Objectives
	Async
	Async await
	Migrating to async/await

	Logging
	Environment
	Errors
	Abort
	Abort Error
	Debuggable Error

	Stack traces
	Swift Backtrace¶

	Leaf
	Conclusion

	Chapter 5: PostgreSQL Integration in Vapor
	Introduction
	Structure
	Objectives
	Data persistence with Vapor
	Installing and setting up PostgreSQL
	Fluent ORM
	Adding Fluent to a new project
	Adding Fluent to an existing project

	CRUD operations
	Migrations
	Postico
	Create and save model
	Create model
	Save model

	Conclusion

	Chapter 6: Building User Interfaces for iOS
	Introduction
	Structure
	Autolayout with Storyboards
	Swift UI
	Working with text
	Working with images
	Working with Stacks

	Conclusion

	Chapter 7: Data Persistence with Core Data and SQLite in iOS
	Introduction
	Structure
	Core Data
	Core Data stack
	Include Core Data in a new project
	Include Core Data in an existing project
	CRUD operations
	Core Data migrations

	Lightweight data migration
	Networking
	Protocol support
	Conclusion

	Chapter 8: Full Stack Implementation
	Introduction
	Structure
	Objectives
	Project outline
	Setup remote database
	Server app
	Models
	Migrations
	Controllers
	Config and routes

	iOS app
	Models

	Networking
	User interface
	Test run
	Conclusion

	Chapter 9: Advanced Full-stack
Concepts
	Introduction
	Structure
	Objectives
	Middleware
	Creating middleware

	WebSockets
	Messages

	APNS
	Security
	Authentication
	KeyChain

	Conclusion

	Chapter 10: Deploying iOS and Vapor Applications
	Introduction
	Structure
	Objectives
	Vapor app deployment
	Heroku
	Docker

	iOS app deployment
	Code signing
	Create App Store Connect record for the app

	Conclusion

	Index

	Back title

