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PREFACE

One of the most important events in the history of complex analysis
was B. Riemann’s discovery in the 1850s, viz., that each simply connected
region which is not the whole complex plane can be mapped one-to-one
and conformally onto the interior of a circle and that consequently two of
such regions are conformally equivalent. First of all it became apparent
that holomorphic functions are intimately related to certain geometrical
structures, and at the same time their discovery had a stimulating effect
when it became clear that Riemann’s proof showed a serious logical gap,
the removal of which appeared to be far from obvious.

Later developments revealed that many striking properties of complex
functions and the mappings defined by them can be seen in their true
perspectives, if in geometrical formulation non-euclidean metrics are
uvsed. G. Julia’s investigations with respect to the generalisation of
Schwarz’s lemma serve as a classic example. In chapter nine the reader is
introduced to the theory of these metrics and their geometrical back-
ground.

In the 1920 s A. Bloch discovered that each function holomorphic in
the interior of the unit circle, the derivative of which has the value 1 at the
origin, represents a one-to-one mapping of a subregion onto another
region which covers an open circular disc, the radius of which is not smal-
ler than a universal constant. This theorem opened up the possibility for
finding an “elementary” proof of the famous theorem of E. Picard, which
is a refinement of the Casorati-Weierstrass theorem. The problems con-
nected with Bloch’s theorem have been treated in chapter nine as well,
because the most elegant proof known for this theorem is based on a
generalization of Schwarz’s lemma due to L. Ahlfors, which has a very
general metric as its underlying principle.

In chapter ten the theory of conformal mapping comes under review in
some detail, while special attention is being paid to the treatment for
finding the mapping functions in actual situations. The end of this chapter
consists of a proof of Riemann’s mapping theorem and of some elemen-
tary considerations on the difficult problem of the correspondence be-
tween the boundaries of regions mapped onto each other. Only that which
is needed further on has been mentioned here.

Chapter eleven has been devoted to the theory of univalent functions,
one of the most fascinating parts of the theory of functions of a complex
variable. Proceeding from simple geometrical considerations a large
number of remarkable properties of univalent functions can be found,
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The problem of the uniformization is closely related to the theory of
automorphic functions. A discussion of this theory is to be found in
chapter thirteen. Extensive use has been made of the concept of the
isometric circles, introduced by L. R. Ford, through which the theory
became accessible for the aﬁplication of elementary means.

A beautiful illustration of the theory of automorphic functions is pro-
vided by the inverses of the so-called triangle functions of H. A. Schwarz,
which are brought up in chapter fourteen. The relations between the
theory of functions and certain geometrical figures is beautitully exempli-
fied especially by the polyhedral functions of F. Klein.

E. Picard’s classic proof of his famous theorem is based on the theory of
modular functions. Owing to the work of C. Carathéodory the theory of
these functions and the theorems connected with them have been essen-
tially improved and space has been accorded to the subject in this chapter.

Schwarz’s functions are obtained in relation to the problem of mapping
a triangle bounded by circular arcs or straight line segments onto the
interior of a circle (or onto a half plane). These mapping functions satisfy
the wellknown hypergeometric differential equation. However, before
we treat the theory connected, in chapter fifteen, detailed attention is
paid to the theory of homogeneous linear differential equations in as far
as it is relevant. A dominating part is played here by the theory of L.
Fuchs. We also availed ourselves of the opportunity to discuss some
important examples, in particular the Bessel functions and the Legendre
functions. Obviously, the stress has been laid on the most general
equation of the Fuchsian type, which does not have accessory parameters
yet, viz., Riemann’s differential equation.

By means of a suitable linear fractional transformation Riemann’s
equation can be put in the form of the hypergeometric differential equa-
tion and the last chapter has been devoted to the many aspects arising
with the study of this equation. We also thought fit to pay attention to
the hypergeometric polynomials and those polynomials attainable from
them through confluence. Their great importance in practical applications
is well-known. Moreover, the fact that the theory is clearly selfcontained
and dominated by an equation of the Rodrigues type, encountered in
the theory of the Legendre polynomials, renders study of these objects
attractive.

No extensive treatment of the general problem of mapping defined by
hypergeometric functions has been given, for it can hardly be summarized
yet and requires the discussion of many details. However, some special
cases are considered, partly with the intention of describing the elegant
method of L. Ahlfors and H. Grunski, through which an upper estimate
of Bloch’s constant can be obtained which is close to the lower bound.
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CHAPTER 9

APPLICATIONS OF GENERAL METRICS TO THE THEORY OF
FUNCTIONS

9.1. — Topological considerations
9.1.1. — EXTENSION OF THE NOTION OF REGION

In the beginning of section 3.12.1 we remarked that a function f(z) can
be interpreted geometrically as a mapping. By stressing the mapping
properties of a function we consider it from a geometric point of view,
which has many advantages. It is often possible to obtain a lot of informa-
tion about a function by studying the geometric correspondence given
by it.

In this connection it will appear convenient to extend the notion of
region to sets of points including the point at infinity. This point is
considered as an interior point of a set if a neighbourhood of this point
(being the set of points outside a sufficiently large circumference around
the origin together with the point at infinity itself) is included in the set.
The difference between ordinary points and the point at infinity may
often be eliminated by introducing the notion of chordal distance (section
1.1.5).

First we wish to state a theorem of a general topological character.
Let f(z) denote a single-valued function defined throughout the extended
plane (or, which amounts to the same, throughout the complex sphere,
see section 1.1.3). If & is any set of points then f ~*(&) denotes the set
of all points which have images under the mapping as given by f belonging
to ©. We shall say that £ ~*(®) is the original of © with respect to the
mapping f. After these preliminaries we assert

The function f, defined throughout the extended plane, is chordally
continuous at every point if and only if the original with respect to f of
every open set is open.

The term “chordally continuous” has been explained in section 1.2.1.

The condition is necessary. Let f be chordally continuous throughout
the extended plane. Let, further, £ ~*(2) denote the original of an open
set 9 and a a point of this set. Then b = f(a) is a point of A and there is a
neighbourhood B of b included in A. Since f is chordally continuous
there is a neighbourhood 1 of a such that f(11) is included in B. Hence
all points of 11 are mapped onto points of U and, consequently, U is a
subset of £~ (A). Thus we see that this set is open.

[1]















6 APPLICATIONS OF GENERAL METRICS 9

carried out it is clear that C does not meet %, for any side which meets %
is a common side of two squares contributing to the sum (9.1-2). Since
the two squares induce opposite orientations for the common side it
does not appear in the reduced expression for C. Hence C is a cycle of R
which is not homologous to zero. This concludes the proof of the theorem.

Accordingly we may define: A region in the extended plane is simply
connected if its complement is connected. Proceeding as in the proof of
the first theorem of section 9.1.2. we easily can prove

A simply connected region is an invariant under topological mapping
of the extended plane onto itself.

Indeed, connectedness of a closed set is a topological invariant.

It should be noticed that in a simply connected set as generalized
above not every cycle is necessarily homologous to zero. Thus, for in-
stance, the exterior of a circumference is simply connected, for the closed
disc bounded by the circumference is connected. But the winding number
of any larger concentric circumference with respect to the centre is not
Zero.

9.1.4 — A MONODROMY THEOREM

We wish to prove a useful theorem which is a particular case of a general
statement to be considered in section 12.2.3.
In section 1.11.2 we pointed out that all solutions of the equation

expw =z 9.1-3)

do not constitute the values of a single-valued function. By restricting,
however, the values of z to a principal region (section 1.2.2.) it is possible
to define a function satisfying (9.1-3) and which is holomorphic in
this region.
We proceed to investigate a more general problem, viz. the solution
of the equation
exp w = f(2), 9.1-4)

where f(z) is holomorphic throughout a certain region R. We recall
that f(2) is regular at z = oo if f(1/z) is regular at z = 0. As we shall see
the restriction that R is simply connected will enable us to obtain a single
valued function satisfying (9.1-4), provided f(z) has no zeros within
the region. Thus

If f(2) is regular at every point of a simply connected region R and
vanishes nowhere at any point of R, then we can find a function w(z)
also regular at every point of R and which satisfies the equation (9.1-4).

The theorem is trivial in the case that R coincides with the extended
plane, for a function regular at every point, the point at infinity included,
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is necessarily a constant ¢ (section 3.2.2.). Then we may take w(z) = log c,
where the logarithm is not necessarily a principal value.

Henceforth we assume that R is not the extended plane. The theorem
is rather obvious if the region f(R) is included in a principal region, for
then we can take the composite function w(z) = log f(2). In all other cases
we may proceed as follows. By a preliminary topological transformation
of the type (9.1-1) we may assume that & does not contain the point at
infinity. For if we have proved the theorem for this case then the general
statement follows easily. Since f(z) is holomorphic in R and vanishes
nowhere in R the function f7(z)/f(z) is also holomorphic throughout R,
In view of the theorem of section 2.11.4 (which is valid for every region
leaving the point at infinity outside, as follows by analyzing the proof of
the theorem of section 2.10.1) this function is the derivative of another
function A(z). That is to say, there is a function A(z) such that

, J'(2)

h(z) ="—"2~. 9.1-5
@="5 ©.1-5)

Next we consider the function

N0

9(2) exp h(z)

Its derivative is
o L @SERE) _
9 = exp h(z) 0

throughout R. Hence it is equal to a constant ¢ (section 2.11.3) and
¢ # 0, for f(z) vanishes nowhere in .
Accordingly we may introduce the function

w(z) = h(z)+logec,

where log c¢ is not necessarily a principal value of the logarithm. It follows
that
exp w(z) = cexp h(z) = f(z).
The function w(z) is not uniquely determined, for besides w(z) also

w(z)+2nni, where n is a fixed integer, satisfies the equation. There are,
however, no other solutions. In fact, if

exp wy(z) = exp w,(2),
then

exp (wy(2)—wy(2)) = 1.
By differentiation we find

wi(z)—wi(z) = 0.
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Hence w,(z)—w,(2) is a constant and this must be an integral multiple
of 2mi. Thus
The solutions of (9.1-4) are determined up to an integral multiple of 2ni.
All solutions of (9.1-4) constitute the general logarithm logf(2)
of the function f(z). Any single valued function satisfying this equation
will be called a branch of the logarithm of f(z) and denoted by

log f(2). (9.1-6)

This symbol has a definite meaning if z ranges through a simply
connected region, f(z) has no zeros in the region and one of the possible
values of (9.1-5) is assigned.

As a particular result we mention

In any simply connected region which does not contain the origin and
the point at infinity a branch of log z can be defined.

It is clear that a branch of log f(z) may be written as

logf(z) = log f(zo)+ f A de, (9.1-7)
2 f(0)
where z, is a point of the region and the integration is performed along
any path in the region connecting z, and z.
It is easy to state similar theorems for other functions which are inti-
mately related to the logarithm.

A branch
fAz) (9.1-8)
of the general power of f(z) is defined as
exp (A log f(2)). 9.1-9)
Here A may denote any complex number.
By a branch
arg f(z) (9.1-10)
of the general argument arg f(z) is understood the function
Im log f(z). (9.1-11)

The various branches of the argument differ by integral multiples of 27.

9.2 — Conformal mapping

9.2.1 -~ THE SYMBOLIC PARTIAL DIFFERENTIATION
A function f(z) of a complex variable is a function of two independent
variables x and y, if z = x+iy:

(@) = ulx, y)+iv(x, y). 9.2-1)
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whence

dargz -1

oz 2iz
Thus we see that arg z is not holomorphic.
In many cases the symbolic partial derivative may be used to simplify
calculations as we shall presently.
Since

¥y oY
ox ox’ Jy By’

it follows easily from (9.2-6)

d_F g3

=, = 9.2-9
Jz 0z 0z ( )

We wish to apply this result to the following problem. Let f(z) be
holomorphic within a certain open set 9, and let ; denote the symmetric
set with respect to the real axis. Now we define a function

9(2) = f(2), (9.2-10)

where Z runs through ,. We assert that g(z) is holomorphic in 2;.
In fact, putting w = Z, we have

29(z) _of @) _ W) _ T _,

oz oz ow  ow
Finally we observe that if zis a differentiable function of a real variable
t and we put g() = f(z(¢)), then

dg _of dz  of d

= . (9.2-11)
dt 0z dt 0z dt

For many applications expressions for the Laplace operator and the
Cauchy-Riemann equations in polar form turn out to be very useful.
It is not difficult to obtain them in a straight forward manner by elemen-
tary computations, but we prefer to derive them by making use of the
symbolic method as discussed before.

From (9.2-6) we obtain at once

i Ga 5

0202 ot ay?




9.2]

and thus the Laplace operator occurring in (1.4-3) appears as

CONFORMAL MAPPING

A .
f ax? oy’ 020z

11

(9.2-12)

It is now easy to write down a transformation formula, if we introduce
a new variable w = w(z) such that w(z) is regular at a given point. For,
taking into account (9.2-7) and (9.2-9) we find, if we write f(z) instead

of g(w(z))

Similarly

Hence

Since

o _og 0w, g 08 _ o ow
6z ow dz Ow oz Ow oz

o _egow, g ow_ 09 0w
0z ow 6z oOw 0z ow 07

@g o*w
020z Owow 0z 0z Ow 02037

= — =0,

we have in an obvious notation

| 8. = WEE A |

Next we introduce polar coordinates by z = re®.
Then, evidently, if we set g(r, 0) = f(z) = f(re'?),

%9 _ o _;
60

%9 _ e +re_"’g =7 +2£jz

r =

or 0z 0z oz 037
e"’"a—f; = i(zg —za—f-) .

ir
0z 0z

0z 0z

Solving for df/0z and 9f]oz

whence

)

}.(r?g _laﬁ) s
dz 2\ or a0

(9.2-13)

(9.2-14)
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and so

10 69) 1 8%
=-—|r-)+ 5 = 9.2-15
‘ Af rar( or. r? 06? ( )

Let finally f(z) be regular at a given point. Then df/0z = 0. If we put
f(re’®y = Re®

we have in view of (9.2-14)

0=ﬁgﬁmg3+%—R@,
r or 90 o0
whence
OR ¢ 1 4R 0P
L L U L (9.2-16)
R Or 08 R 00 or

These are the Cauchy-Riemann equations in polar form.

9.2.2 — CONFORMAL MAPPING

Consider a correspondence as given by
w = f(2) 9.2-17)

in a neighbourhood of z = z,, where f(z) possesses continuous partial
derivatives. It is not yet assumed that f(z) is holomorphic near z,. To
z = z, corresponds w = w, = f(z,) and we suppose that z,and w,
are finite. Let z(¢), where ¢ is a real variable, denote a curve passing through
zg such that z, = z(¢,). We make the assumption that z(¢) is differentiable
at ¢ = t, and that the derivative at this point is different from zero.

z(to+h)

@

Zo =Z(to)

Fig. 9.2-1. The tangent of a curve at a given point.
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This means that the angle between the image curves is equal to that
between the original curves at the corresponding points. We express
this by saying that the mapping is isogonal at z = z,.

It may also occur that df/oz = 0. In view of (9.2-9) this means that
f(@) is regular at z = z,. Then we find

—= = (9.2-24)

and we shall say that the mapping is anti-isogonal at z = z,, (fig. 9.2-2).
Isogonality is restored if we first reflect the angle at z, with respect to a
horizontal line passing through z,.

Next we assume, conversely, that the mapping as given by (9.2-17),
where f(z) has continuous partial derivatives, is isogonal at z = z,.
By equating the right hand sides of (9.2-22) and (9.2-23) we readily find

(@,a,— 01‘12)]; 0

and since a, and a, can be chosen arbitrarily, it follows that 6f/0Z = O,
i.e. that f(2) is regular at z = z,. In the same way we conclude that
df]0z = 0 if the mapping is anti-isogonal.

A related property of the mapping is derived by considering the deriv-
ative of the arc length of a curve through z, and comparing it with its
image. The derivative of the arc length of z(¢) at ¢t = 14 is |a| = |2/(#y)].
The same quantity for the image curve is |6} and we have the relation

||_)l LA A B LA (9.2-25)
dt 0z 0z 0z 0Z a
The expression
o oda (9.2-26)
0z 0Z a

is called the distortion at the given point in the direction (zy,a). It
measures the infinitesimal change of scale at this point provoked by the
mapping. A necessary and sufficient condition that this mapping be
independent of _the direction number a is expressed by the fact that
0f]0Z = 0 or 3f]0z = 0. In fact, the point represented by the number
(9.2-26) between the bars moves along a circle with centre df/0z and
radius [Jf]0Z|. In order that its modulus is independent of q, either the
radius must vanish, or the centre must be the origin. This proves the
assertion.

A mapping having the same non-zero distortion in all directions issuing
from this point is usually called conformal. It behaves like a homothetic
transformation in an infinitesimal neighbourhood of the centre zg.



9.2] CONFORMAL MAPPING 15

It is either isogonal or anti-isogonal. Summing up we may say

A function, regular at a point z,, such that its derivative does not vanish,
is conformal and preserves the sense of the angles. The distortion is | f'(z,)|.

We conclude this section by making some remarks about the point at
infinity. A half ray issuing from z = 0 may also be considered as a half
ray issuing from z = co. If it represents a direction (0, @) at the origin
then we shall say that it represents a direction (oo, 1/a) at z = co. The
angle at z = oo defined by two half rays representing at the origin the
directions (0, a,), (0, a,) is by definition

Y = argLa2 =arg™ = —g,
1/a, a,

if ¢ = arg(a,/a,). Hence it is the negative of the angle at z = 0. This is
in accordance with the fact that the mapping carries the two half rays into

[

@ ®

Fig. 9.2-2. Isogonality of the mapping w = 1/z at z = c0.

two others making an angle —¢ at the origin (fig. 9.2-2). Hence this
mapping is also isogonal at z = 0.

Accordingly we shall say that a function f(z) defines a mapping
conformal at z = oo if the mapping as given by f(1/z) is conformal at
z = 0. In addition a function f{(z) having a singularity at z = z, defines a
conformal mapping at this point if this is the case with the function 1/f(z).

Some counter-examples may illustrate the previous considerations.
The function w = z2 defines a mapping which transforms the region
Rez > 0,Im z > 0, i.e., the first quadrant, into the half plane Im w >0.
The function is holomorphic throughout the z-plane. It is not conformal
at z =0, for f'(z) = 2z = 0 at the origin. Conversely the function
w = ,/z, transforms the principal region into the right half plane. It is
not conformal at z = 0 for there the function is not regular.
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9.3 — Automorphisms of the extended plane

9.3.1 — A LEMMA

A one-to-one bicontinuous mapping of a region R (in the extended
plane) onto itself is called a homeomorphism of R. If f1(z) and f,(2)
define homeomorphisms then evidently f,(f; (z)) alsodoes. This is called the
product of the homeomorphisms f; and f, and denoted by f, f,. The
inverse of a homeomorphism f is again a homeomorphism and denoted
by £~ 1. The homeomorphism f~'f = ff ~! leaves each point of R at rest.
It is the identity.

The product of two homeomorphisms is associative:

fs(fzfl) = (fsfz)fl,

for each member stands for f3(f2(f1(2))). The following statement is
now clear:

A family of homeomorphisms of a region R such that with each element
also the inverse belongs to the family and with each two elements also their
product is a group. It is clear that the identity belongs to the group.

It is understood that the algebraic structure of the family is given by
the product rule as defined above.

A group of homeomorphisms of R is called transitive if there is always
an element in the group which transforms an arbitrarily given point z,
of R into any other given point z, of R.

More generally we may consider a group G of one-to-one transforma-
tions of a set & of arbitrary things onto itself. The subgroup of all trans-
formations of G leaving a given element a invariant is called the subgroup
of isotropy associated with a. Next we wish to establish the following
useful lemma:

Let G denote a group of one-to-one transformations of a set & onto
itself and H a transitive subgroup. Assume, moreover, that the subgroup
of isotropy associated with a certain element a is contained in H. Then H
coincides with the whole group G.

Since H is transitive we can find a transformation 4 of H which trans-
forms a in g(a), where g is an arbitrarily given element of G, i.e., #(a)
= g(a). Hence a is invariant under the transformation A~ g and this trans-
formation, being an element of the subgroup of isotopy associated with a
belongs to H, by hypothesis. As a consequence g = (hh~1)g = h(h™'g)
also belongs to H and this proves the assertion. We shall have the oppor-
tunity to apply this lemma many times.

9.3.2 — UNIVALENT FUNCTIONS

A function providing a one-to-one mapping of a certain open set
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is called univalent or simple. Some authors also use the German word
“schlicht”, which has no adequate translation in English.

At each point of an open set where the univalent function f(z) is regular
the derivative is different from zero.

Suppose that f'(z) = 0 and let wy = f(2,). Then the function f(z) —w,
has a zero of order &k > 1 at z = z;. From the theorem of section 3.12.5
we deduce that around z = z, and around w = w, we can describe two
circles such that to any point w # w, inside the second circle corre-
spond precisely & different points inside the first circle for which f(z)
takes the value w. This is in contradiction with the assumption of uni-
valence.

The theorem remains true if z; = oo in the following sense: The
derivative of f(1/z) tends to a finite limit different from zero as z — 0.
In fact, f(z) has the Laurent expansion

(@) =ag+ L+ ...
z

Hence f(1/2) is regular at z = 0 and univalent. This implies a; # 0.

The converse of the above theorem need not be true. Thus, for
instance, the derivative of z2 is different from zero if |z| > 0, but the func-
tion is not univalent in this region. If, however, f(z) is regular at z = z,
and f'(zo) # 0, then it is univalent in a sufficiently small neighbourhood
of z,. This is again a direct consequence of the theorem of section 3.12.5.
If zo = o0 we must assume that f(1/z) has a derivative which tends to
a finite number different from zero as z — 0.

A univalent function which is meromorphic throughout an open set A
cannot have other singularities than simple poles in .

Indeed, if z = z, is a pole of order n then

f@) = (2—20)""h(2),

where :h(z) is regular at z = z, and different from zero. Hence 1/f(2)
= (z2—2z)"/h(2) = (z—2zy)"g(z) is regular at z = z, and has a zero
of order n there. Since 1/f(2) is again univalent we conclude that n = 1.
The theorem remains true in the case that z, = oo.

In view of the preceding considerations we may state

A simple map as given by a meromorphic function is conformal and
preserves the sense of the angles.

9.3.3 — THE GROUP OF AUTOMORPHISMS OF THE EXTENDED PLANE

A particular example of a homeomorphism is an automorphism of an
open set % which is a mapping of A onto itself provided by a meromorphic
univalent function. It is clear, in the light of the previous considerations,
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that the product of two automorphisms is again an automorphism, as
well as the inverse of an automorphism. Hence the automorphisms of A
constitute a group.

It is our aim to investigate the group of all automorphisms of the
extended plane. The problem of determining all these automorphisms
has a very simple solution.

First we observe that a linear fractional transformation, i.e. a transfor-
mation of the type

_az+b {a b

= , # 0, 9.3-1
cz+d lc d ( )

is an automorphism of the extended plane. It is clear that the determinant
(9.3-1) must be different from zero, for in the contrary case the denomi-
nator and the numerator would be proportional and hence w constant
for general values of z. The transformation is uniquely invertible, the
inverse is

dw—>b

zZ=—, (9.3—2)

—cw+a

To z = —d/c corresponds w = o0 and to z = oo the point afe.
The product of two transformations as given by

_ a,z+b, ’ w = a,z+b, (9.3-3)
¢, z+d, c,z+d,
is the transformation
a,z+b,
a, — +
_ 2ez4d, 2=a3z+b3 (9.3-4)
e alz+b1_|_d2 c3z+d;
c,z+d,
with
az = a;a;+bycy, by = ay b +b,d,, (9.3-5)
¢y = ¢a,+dycy, dy = ¢,by+d,d,. '
Hence
as b, "12 byla; by _
e dy " ley dolle, a ™ (.3-6)

This rule of composition can be formulated in a more concise way.
We agree to write (9.3-1) symbolically as

w = Az, (9.3-7)
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Here A symbolizes an operaror which assigns to every number z a
uniquely determined number w. This operator is characterized by the

matrix
fa b
L: d] (9.3-8)

which shall also be denoted by the same symbol A, Now the effect of
the transformation is not influenced by multiplying all coefficients
occurring in (9.3-1) by the same number different from zero. We agree
that A may represent any of this class of matrices. In many cases it is
convenient to assume that the determinant of (9.3-1) is unity. Then the
linear fractional transformation is called unimodular and from (9.3-6)
follows that the product of two unimodular transformations is unimod-
ular again. The same is true for the inverse transformation.

It follows from (9.3-5) that the matrix representing the transformation
(9.3-4) is the product of the matrices representing the tranformation
(9.3-3), respectively, i.e.,

as bs _ | a2 bz] |:a1 b1:|

[c3 dj - |:c2 d,le, diJ° (9.3-9)
Hence the law of composition is essentially the multiplication law for
matrices: the rows of the first matrix are multiplied by the columns of

the second matrix according to (9.3-5).
The inverse of the transformations (9.3-7) is written as

z = A"y, (9.3-10)
with
- d —b
1 _ —_
Al = [_c i } (9.3-11)
In the unimodular case we always have
AA™! = AT1A = E, (9.3-12)
where E denotes the identity operator represented by
10
= . .3-13
E [o 1] (9.3-13)

In view of the results obtained we may state

The family of all automorphisms represented by linear fractional trans-
Jormations is a group.

Next we wish to establish the fact that this group is already the whole
group of automorphisms of the extended plane. To this end we investigate
the subgroup of isotropy of the group of all automorphisms with fixed
point z = oo first.
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Next we wish to prove that two conjugate automorphisms have a
characteristic in common. By the zrace of the matrix (9.3-8) we under-
stand the number

trA = a+d. (9.3-22)

If A is unimodular it is determined within sign.
Let P be represented by the unimodular matrix

-[ 9
MR e

we find by straight forward computation

If

d+d = a+d, (9.3-23)
ie.,
tr PAP™! = tr A.

By the fundamental number of an automorphism represented by the
unimodular matrix (9.3-8) we shall understand the modulus of the trace,
i.e. |a+d|. Hence

Two conjugate automorphisms have the same fundamental number.

As we shall see in the next section it plays an important part in the
problem of classifying automorphisms.

9.3.6 — CLASSIFICATION OF THE AUTOMORPHISMS

It is always possible to perform a transformation which carries two
given different points into 0 and co respectively. An automorphism with
these latter points as fixed points is given by

W= Kz (9.3-24)

where x is a constant different from unity (for we wish to exclude the
identity). We can normalize it by writing

w = T2 (9.3-25)
+1/J/x
and the trace appears to be equal to +(/x+1/\/x). Hence
2 1
(a+d?—2 = k+ = (9.3-26)
K

An automorphism with a fixed point of multiplicity two is conjugate
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_az+b

cz+d

1) hyperbolic, if a+d is real and |a+d| > 2;
2) elliptic, if a+d is real and la+d| < 2;

3) parabolic, if a+d is real and la+d| = 2;
4) loxodromic, if a+d is complex.

Since each of these cases excludes the remaining ones there are no
other types of automorphisms of the extended plane.

9.3.7 — ROTATIONS OF THE COMPLEX SPHERE

By means of stereographic projection a rotation of the complex sphere
about its centre induces a homeomorphism of the extended plane. It is
characterized by the property that the chordal distance of two points
remains invariant. In particular two diametral points on the sphere are
carried into two other diametral points. The chordal distance between
the image z, and z, of two diametral points is 2. Hence (cf. 1.1-15)

lzy—25| = 1+2121\/1—;2_ﬂ—2,
or
(21— 2202 —2;) = (1+2,Z,)(1+2,Z,).
This is equivalent to
0 = (1+2,Z,)(1+2,2,) = |[1+2, 7,
Hence

[z,2, = —1. (9.3-28)

Fig. 9.3-1. Construction of the images of diametral points in the plane.
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Finally we wish to show that the group of isometric automorphisms is
isomorphic to the group of rotations of the complex sphere.

The isometric automorphisms induce rotations of the sphere, for the
chordal distance of two points in the extended plane is the euclidean
distance of the corresponding points on the sphere. Consider now the
rotations of the sphere around the vertical axis. They are given by

¥ =Ccosp—nsing ,

n* = E&sing+ncos o, 9.3-32)
{* = L.
1t follows that
. .
fl Ié’!‘* = ?T? (cos @ +isin @),
or, in view of (1.1-12),
2* = zei.

Hence these rotations are induced by a subgroup of those induced by
the isometric automorphisms and they constitute the subgroup of isotropy
of the group of all rotations which have the north pole as a fixed point.
This proves the assertion.

It should be noticed that isometric automorphisms do not induce a
reflection of the sphere with respect to a plane through the centre, for
they tend continuously to the identity if ¢ - 1, b — 0.

9.3.8 = THE INVARIANT AXIS AND THE EULERIAN ANGLES

It is well-known that a rotation of a sphere around its centre is a
rotation through a certain angle w around a line passing through the
centre, the invariant axis of the rotation. This may be verified by analyzing
more closely the isometric automorphisms.

First we observe that they are elliptic, for a+d = a+4 is real and

(a+d)®>—4 = (a+d)?>—4(ad+bb) = (a—a)?—4bb < 0.

The fixed points are obtained from equation (9.3-15) which now takes
the form

bz? 4 (a—a)z+b = 0. (9.3-33)
Since la+a| < 2, we may put
a+ad = 2cos o, 0< w<2nm (9.3-34)

Hence w is uniquely determined. The cases @ = 0 and w = 27 are of
no interest, for they correspond to the identity (for parabolic transforma-
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tions do not occur). Hence we can write
a = cos tw+iysin to, (9.3-35)
where y is a uniquely determined real number. In addition we put
ib = (a+if)sin fw (9.3-36)

and, evidently, « and f are also uniquely determined. Inserting the expres-
sions (9.3-35) and (9.3-36) into (9.3-33) we get, since sin fw # 0,
(x—if)z2 429z — (a+if) = 0. (9.3-37)
In addition we deduce from (9.3-35) and (9.3-36)
1 = aa+bb = cos?tw+9?sin*tw+ (2?4 2) sin? o
= 1+ @®+p2+y2—-1)sin*}o.

Since sin?4w # 0, we must have
a?+BE 492 =1, (9.3-38)
Solving (9.3-37) we find the roots
e e S b
a—ip a—if
provided the denominator is not zero. This denominator vanishes,
however, if @ = § = 0 and this implies » = 0. But this case is directly

accessible, for then we have a rotation about the vertical axis.
Let us take

21,2 =

1-y  oa+if
Zl = = )
a—if  1+y
and
2y = 21y _ maiB
a—if 1—y

It appears that the fixed points z; and z, correspond to the diametral
points {«, 8,7} and {—o, —f, —y} on the sphere.
Since a+a = 2 cos L is the trace of the transformation we find that

K+ } = 2 oS W. (9.3-39)
K

Hence we may take
K =¢® (9.3-40)

and since the stereographic projection is isogonal we may interpret o
as the angle of rotation as seen at the image of z, on the sphere.
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By geometric arguments it can be shown that any rotation of the sphere
can be considered as the product of three rotations. A first rotation around
the {-axis through an angle {, a second rotation around the &-axis
through an angle @ and a third rotation around the {-axis again through

Fig. 9.3-2. The Eulerian angles.

an angle ¢, (fig. 9.3-2). The angles Y, 0 and ¢ are called the Eulerian
angles of the resulting rotation. We wish to investigate how they appear
in the image under stereographic projection onto the extended plane.

Rotations around the {-axis through angles ¢ and i respectively are
represented by automorphisms with matrices

et et o
D, = [ 0 e—w] » Dy = [ 0 e—w] (9.3-41)

respectively (section 9.3-7). A rotation around the £-axis is induced by
an automorphism whose fixed points are +1 and —1 and, therefore, is
given by the transformation

vl ol
w1 z+1
whence
_z(1+€)+(1—¢%)  zcos10—isin 30
T 2(1-e9)+(1+¢€®) —izsiniB-+cosdf
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This automorphism is represented by the matrix

[ cosi6 —isin J}G]
Do = l:—i sin 10 cos 30 (0-3-42)

and the resulting rotation by

efet ¥ o510 —iet® W 5in 19
D, D, D, = |:__,~e~&t(¢—w) sind0 e HO o %9] - (93-43)

It is an automorphism of the type (9.3-31) with
a=e""Wcos1h,  ib =@ ¥ sin 10, (9.3-44)

These expressions are called the Cayley-Klein parameters of the rotation.

Conversely it is possible to find Eulerian angles such that the Cayley-
Klein parameters have prescribed values, provided that ad-+bb = 1,
This follows from the fact that

ad = cos?30,  bb = sin240.

Since 0 < 30 < = the angle 0 is uniquely determined. From (9.3-44)
follow ¢ +y and ¢—y and we are ready.

From (9.3-35) and (9.3-36) we may derive expressions for the para-
meters o, B, y, @ of the rotation in terms of the Cayley-Klein para-
meters, Vviz.:

costw = i(a+a),
asin do = }i(b—D),
Bsindw = 3(b+b), (0:3-43)

y sin 30 = —1i(a—a).

Taking into account (9.3-44) we deduce from these equations the follow-
ing
cos w = cos 3(p+y) cos 30,
o sin 3@ = cos $(¢ —¥) sin 36,
Bsin 40 = sin (¢ —y) sin 36,
y sin 4 = sin 1(@+¥) cos 46,

expressing the parameters of the rotation in terms of the Eulerian angles.

9.4 — Mibius geometry
9.4.1 — THE MOBIUS PLANE

The group of all automorphisms of the extended plane impose on it a
certain geometric structure which is called the Mdbius geometry. The
extended plane considered as a support of the Mébius geometry is called
the Mébius plane. Two configurations of points in the Mbius plane are



30 APPLICATIONS OF GENERAL METRICS o

said to be equivalent if there is an automorphism which carries one of
the configurations into the other. If we wish to emphasize the geometric
side of the automorphisms we also refer to them as Mobius transforma-
tions. Only those geometric assertions are relevant which remain equally
valid for all entities which are equivalent under Mébius transformations.

In the Mobius plane we cannot distinguish between circles and straight
lines. This is a consequence of the following theorem.

Z3 Z3
z, 25
Zy
Zq
24
25
T
R (0
O O- O- O———
z, z, z, z,

Fig. 9.4-1. Invariance of the circle with respect to a Mobius transformation.

Fig. 9.4-2. The angles at the intersection points of two oriented circles.
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A Mobius transformation transforms a circle or a straight line into a
circle or a straight line.
A geometric proof runs as follows. If z,, z,, z; and z, are four points
on a circle or a straight line then
Zy—

Za—Z
and arg=> ~2

Z4—2Z4 Z4—2y

arg

are either equal or their sum is 7, (fig. 9.4-1). In the case of a straight line
each of these angles is 0 or n. In all cases the cross ratio (zy, z,, z3, z,)
is a real number. Since the converse is also true the theorem follows
from the invariance of the cross-ratio (section 9.3.3). A straight line
shall be considered as a circle through the point at infinity.

Since the M&bius transformations are conformal, preserving the sense
of angles, the notion of angle belongs to the Mobius geometry. In this
respect the following remark deserves mention. Consider two circles
passing through the finite points z, and z,, (fig. 9.4-2). Imposing an
orientation on two arcs connecting these points, the tangent half-rays
are uniquely determined. It is clear that the angle between the half rays
issuing from z, is the negative of the angle formed by the half rays at z,.
This is in accordance with the fact that a Mobius transformation having
z; and z, as fixed points rotates the half rays at z, in a sense which is
opposite to the sense of rotation at the other point. It is, therefore,
natural to define the angle between two half-rays at z = oo as the negative
of that at the finite vertex (see also section 9.2.2).

9.4.2 — INVERSION

We encountered the mapping w = 1/z several times. For many
purposes the mapping

w=1/z (9.4-1)

deserves mention. Combined with a reflection with respect to the real
axis it yields the former mapping. Let z = re'. Then w = ¢*/r. Hence
corresponding points are on the same ray issuing from the origin in
such a way that the product of their distances from the origin is equal
to unity (fig. 9.4-3). The transformation (9.4-1) is called an inversion with
respect to the unit circle. It is an anti-isogonal mapping.

We may enlarge the circle and translate its centre to a point z = a,
i.e., we may transform (9.4-1) by the transformation

w = Rz+a. 9.4-2)
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Fig. 9.4-3. Inversion of a point with respect to a unit circle.

Then we get a transformation conjugate to (9.4-1):

2

(9.4-3)

This is an inversion with respect to a circle around z = a4 having a
radius R. If z = a+re® then w = a+R*e™®|r and we see that w and z
are two points on a ray issuing from the centre of the circle in such a way
that the product of their distances from the centre is equal to the square
of the radius.

Let us now perform the transformation

w=i¥? (9.4-4)

1—z

It is easily seen that the unit circle is transformed into the real axis,

for the points z = —1, —i, 1 correspond to w = 0, 1, oo respectively.
Transforming the transformation (9.4-1) according to (9.4-4) we get
w=2Z (9.4-5)

This is a reflection with respect to the real axis. For this reason the
transformation (9.4-1) is called a reflection with respect to the unit circle
and, more generally, any inversion is called a reflection. Two correspond-
ing points are said to be symmetric with respect to the circumference which
defines the inversion.
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A characteristic property of two points symmetric with respect to a
straight line is the following. Allcircles which pass through these points are
orthogonal to the line and circles passing through one point and being
orthogonal to the line pass through the other point. Since orthogcnality
is preserved under Mobius transformation we have

All circles passing through two points which are symmetric with respect
to a circle are orthogonal to the circle. All circles which pass 1hroughi a point
and are orthogonal to a given circle also pass through t}e point which is
symmetric with respect to this circle.

Fig. 9.4-4. Invariant characterization of the symmetry of two points with respect to
a circle.

This is an invariant characterization of symmetric points, (fig. 9.4-4).
Hence if a Mobius transformation carries a circle C, into a circle C,,
then points which are symmetric with respect to C, are carried into points
which are symmetric with respect to C,.

9.4.3 — PENCILS OF CIRCLES

We wish to prove the following theorem

There are infinitely many circles which are orthogonal to two given
circles Cy and C,.

Let us first assume that C, and C, intersect in two different points. By a
suitable Mobius transformation we can carry one of them to infinity
and we thus obtain two straight lines through a finite point z,. All
circles with z, as centre are orthogonal to these lines and they correspond
to circles orthogonal to C; and C,. Sccondly we suppose that C, and
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C, have one point in common, i.e., that they are tangent at this point.
Bringing this point to infinity we obtain two parallel lines and all lines
orthogonal to them correspond to circles orthogonal to the given circles.

Fig. 9.4-5. Proof of the existence of circles orthogonal to two non intersecting circles.

The case that the circles do not intersect remains to be investigated.
Then we may bring a point of one of these circles to infinity and we obtain
a line and a circle which have no points in common, (fig. 9.4-5). Let M
denote the centre of the circle and M, the foot of the perpendicular through
M on the line. The circle with centre M, and of radius equal to the seg-
ment on a tangent through M, at the circle determined by M, and the
point of contact is orthogonal to the circle and the line. Bringing now
one of the points where this latter circle cuts the line MM, to infinity
we obtain two orthogonal lines and the line and the circle transform into
circles which meet these lines under right angles. Thus we see that the
given circles can be transformed into two concentric circles. The lines
through the common centre correspond to circles orthogonal to the given
circles.

The set of all circles orthogonal to two given circles is called a pencil.
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From the above considerations it is clear that there are three types.
First a pencil of circles which can be transformed into a system of
concentric circles. A pencil of this type is called elliptic. No two circles
of the pencil have a point in common and there are two points symmetric
with respect to any circle of the pencil. They are the limiting points of the

"
-
A
~

Fig. 9.4-6. Pencils of circles.

Secondly a pencil of circles which can be transformed into a system of
parallel lines. The circles touch each other at the same point. A pencil of
this type is called parabolic.
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Thirdly a pencil of circles which can be transformed into a system of
lines through a finite point. A pencil of this type is called hyperbolic
All circles have two points in common, the base points of the pencil.

From the standard types (i.e. pencils of straight lines or of concentric
circles) it is also clear that

A given pencil is always connected with a second pencil such that each
circle of one pencil is orthogonal to all circles of the other. If one pencil
is elliptic then the other is hyperbolic. The limiting points of the first pencil
are the base points of the second pencil. If one pencil is parabolic, then the
other is also parabolic, (fig. 9.4-6).

In addition we find

Through every point of the plane which is neither a limiting point nor a
point common to all circles of a pencil there passes exactly one circle of
the pencil.

From the standard forms (9.3-24) and (9.3-27) we deduce:

A hyperbolic transformation leaves all circles of a hyperbolic pencil
invariant, the base points being the fixed points of the transformation.

An elliptic transformation leaves all circles of an elliptic pencil invariant,
the limiting points being the fixed points of the transformations.

A parabolic transformation leaves all circles of a parabolic pencil
invariant. The fixed point of the transformation is the point of common
contact of the circles.

In all these cases the circles of the orthogonal pencil are interchanged,
i.e., the pencil as a whole remains unaltered.

Finally we shall establish

If two circles do not intersect, but intersect a third circle, then there is
exactly one circle orthogonal to all three.

Let C;, C, and C; denote these circles and assume that C, and Cj,
intersect as do C, and C;. Hence C and C, do not intersect. By a suitable

Fig. 9.4-7. Existence of a circle orthogonal to three circles.
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transformation (if necessary) we may bring one of the intersections of
C, and C; to infinity. They become straight lines L, and L; and C,
another proper circle C;, (fig. 9.4-7). Since L, has no point in common
with C; the intersecting point of L, and L; is outside C{. This point is
centre of a circle orthogonal to C;. Transforming back we obtain the
desired circle.

9.5 — Hyperbolic geometry
9.5.1 — THE AUTOMORPHISMS OF THE UNIT CIRCLE

It is our aim to construct a plane geometry which can be described
by the same postulates as the ordinary Euclidean geometry, except the
postulate of parallels.

This geometry has played an important part in the development of
function theory. Our main task will consist of defining a group of trans-
formations which will enable us to introduce the notion of congruence
with the same properties as the corresponding notions in ordinary
geometry. As we shall see this group will appear as the group of auto-
morphisms of the unit circle.

On the transformation

az+b
w = ,
cz+d

ad—be = 1, (9.5-1)

we impose the condition that zz = 1 implies ww = 1. Hence the circum-
ference |z| = 1 remains invariant as a whole. In addition we wish that
zz < | implies ww < 1, that is to say, the points in the interior are
carried into points also in the interior.

The first condition yields

(az+b)(@z+b) = (cz+d)(cz+d),
or, taking into account zZ = 1,
ab = cd 9.5-2)

and

ad—ct = dd—bb. (9.5-3)

Now we have
w1 = (aa—ct)(zz—1)
lez+d)?

and the second condition gives rise to
ad—ct > 0. 9.5-4)
It follows that ¢ # 0 and from (9.5-2) also & # 0. For from (9.5-2)
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we deduce @b = ¢d, and d = 0 implies b = 0, in contradiction to (9.5-3)
and (9.54). From (9.5-2) follows

=k, A (9.5-5)

Loy

Qe

say, and from (9.5-4) follows |k| < 1. Hence (9.5-3) may be written as

aa(1—kk) = dd(1—kk),
whence
la| = ld|,  1b] = lcl. (9.5-6)
Now we write

az+b az+bla
W= =

cz+d dl+ze/d

Then, according to (9.5-6), ajd = &°. Put z, = —bfa. In view of (9.5-5)
and (9.5-6): z, = —bdjag = —idjdd = —¢|d, z, = —k(bjc), whence
lzol =k < 1.

Hence

The transformations

w=e? 2750 2 < 1, (9.5-7)

1—-2zZ,

represent automorphisms of the interior of the unit circle. They transform
the circumference into itself.
Introducing the numbers

o =et\1-2,2,, B= —az,,

the transformations appear in the form

w = az+p ’
Bz+a

wa—pf =1, (9.5-8)

which are quite similar to the isometric automorphisms (9.3-31) of the
extended plane.

It is clear that the automorphisms (9.5-7) or (9.5-8) constitute a
transitive group. Next we investigate the subgroup of isotropy of all
automorphisms of the interior of the unit circle with fixed point
at the point z = 0. If z — f{(z) is such an automorphism, then |z| < 1
entails | f(z)| < 1. But Schwarz’s [emma (section 2.21.1) implies | f(2)] < |z].
Since the same argument holds for the inverse automorphism we also
have |z| < [f(2)|. Hence |z| = [f(2)|, and then Schwarz’s lemma states
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that f(z) = e®z. Thus we see that the subgroup of isotropy is included in
the group of transformations (9.5-7) and according to the lemma of
section 9.3.1 this group is the group of all automorphisms of the interior
of the unit circle.

Finally we remark that there are no loxodromic automorphisms of
the interior of the unit circle. This is a direct consequence of the fact that
the trace of the matrix of the transformations (9.5-8) is a+4, i.e., real.

9.5.2 — THE HYPERBOLIC PLANE

A model of the hyperbolic geometry is obtained if we consider the
interior points of the unit circle around the origin as “points”. This
interior is called the hyperbolic plane. The circumference of the unit circle
shall be denoted by Q. The part of a circle orthogonal to © (a diameter
not being excluded) which is in the interior of Q shall be considered as a
hyperbolic “straight line”, (fig. 9.5-1). This can be motivated as follows.
A point within Q is paired with its symmetric point outside. All circles
through these points constitute a pencil of circles orthogonal to Q.
Through a point different from the given point there passes just one
member of the pencil, (section 9.4.3).

L~

e AN
/ AN
/ A\
/ |

Fig. 9.5-1. The hyperbolic plane is the interior of the circumference £2.

We have a group of automorphisms of the hyperbolic plane at our
disposal. This group can be extended with the so-called reflections with
respect to a hyperbolic line. If C, is a circle cutting Q orthogonally then
an inversion with respect to C; leaves Q invariant but interchanges the
regions into which the interior of @ is divided by C,. Such an inversion
will be called a reflection. The group of automorphisms and reflections
is taken as the group of congruent transformations. Two configurations
in the hyperbolic plane are said to be congruent if one can be derived
from the other by a congruent transformation. Since the congruent
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transformations constitute a group the relation “congruent” is reflexive,
symmetric and transitive.

A hyperbolic line divides the hyperbolic plane into two half planes.
Hence a point on a hyperbolic line divides this line into two half lines.
Each half line determines a point on , the ideal point of the half line.

Let 4 and B denote two points on a hyperbolic line. The first point 4
is the endpoint of a half line passing through B while B is the endpoint of a
half line passing through A. The intersection of these half lines is called
the segment with end points A and B.

With this new concepts it is not difficult to build up that part of the
Euclidean geometry which is independent of the postulate of parallels.
As regards the angles we notice that angles equal in Euclidean sense
are also hyperbolically equal. This is a consequence of the fact that
byperbolic congruent transformations preserve Euclidean angles.

For the sake of illustration we prove

Through a point there passes just one perpendicular on a given line.

If C, is the circle on which the given hyperbolic line lies then there is a
pencil of circles orthogonal to C, and . This pencil is elliptic, its limiting
points are the ideal points of.the given line. Hence through an arbitrary
point inside © there passes exactly one member of the pencil.

9.5.3 — PARALLELS AND HYPERPARALLELS

The Euclidean axioms of parallels state that through a point not ona
given line there is exactly one line which has no point in common with
the given line. The situation in hyperbolic geometry is quite different.
In order to clear this up we assume that the point is the centre O of Q.
This can always be achieved by a suitable congruent transformation.
Hence the line does not pass through O and O is exterior to the circle
on which the hyperbolic line lies. The tangents of this circle at the
points where it intersects @ pass through O. Now it is easy to see that
these tangents separate the hyperbolic lines through O and intersect the
given line from those through O which do not meet this line. The tan-
gents through O have the ideal points with the line in common, (fig.
9.5-2).

Lines of the first category through O are lines which meet the given
line at a hyperbolic point. The two tangents through O are called parallels.
They have an ideal point in common with the given line. The lines of the
third category are called Ayperparallels to the given line. Otherwise
stated: Two lines which do not intersect and are not parallel are hyper-
parallel. They have an interesting property which has no counterpartin
Euclidean geometry.

Two hyperparallels have exactly one common perpendicular.
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‘\_/r

Fig. 9.5-2. Intersecting line, parallels and a hyperparallel through a point with respect
to a given line.

Fig. 9.5-3. The three types of pencils of lines.

This is a direct consequence of the last theorem of section 9.4.3.
In hyperbolic geometry we may distinguish three types of pencils of
lines, (fig. 9.5-3):
1) All lines through a hyperbolic point.
2) All lines parallel to a given line (tending to the same ideal point).
3) All lines orthogonal to a given line.
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They are defined by means of the three types of pencils of circles.

There are also three types of direct congruent transformations, i.e.,
automorphisms of the hyperbolic plane.

First the elliptic automorphisms. Each has a fixed point in the interior
of Q. They are called the rotations around their fixed point.

Secondly the parabolic automorphisms. The fixed point of each is
necessarily on Q and they are called parallel displacements.

Thirdly the hyperbolic automorphisms. The fixed points of each are
on Q and there is just one hyperbolic straight line connecting these fixed
points. These transformations are called translations and the line men-
tioned above associated with a translation is called the axis of the trans-
lation.

In the Euclidean geometry parallel displacements and translations
coincide and they have infinitely many axes.

9.5.4 - CYCLES

By a cycle we understand an orthogonal trajectory of a pencil of hyper-
bolic lines. These lines are called the diameters of the cycle, (fig. 9.5-4).

Fig. 9.5-4. Circles in hyperbolic geometry.
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If the pencil consists of lines passing through a hyperbolic point then
a cycle associated with it is a hyperbolic circle with this point as its centre.
A circle in our model is also a circle in the Euclidean sense, but in general
it has not the same centre. This is only the case for circles around the
origin.

If the pencil consists of lines through the same ideal point an associated
cycle is called a horicycle. It is a Euclidean circle which touches Q.

All horicycles are congruent.

First we observe that all horicycles through O are congruent, for they
are interchanged by a rotation about O. Secondly it is clear that by a
transformation (9.5-7) any horicycle can be carried into a horicycle
through O, for we may take z, as a point of the horicycle.

Fig. 9.5-5. A fundamental arc.

Finally we have a pencil of straight lines orthogonal to a given line.
Their orthogonal trajectories are invariant for the translations with this
line as their axis. They are called Aypercycles with axis the given line.
The distances of the points of a hypercycle are evidently equal; a hyper-
cycle is a locus of points equidistant to a given line.

The cycles have many properties in common. Thus, for instance,

At a point of a given cycle there is always a tangent perpendicular to
the diameter through this point.

If z, is a point of the cycle we can always perform a transformation
which brings this point to O. Then the desired tangent corresponds to the
Euclidean straight line through O which touches the transformed cycle.

A remarkable figure is a fundamental arc, an arc of a horicycle such
that the tangent in one end point is parallel to the diameter through the
other end point, (fig. 9.5-5). It is not difficult to prove that all funda-
mental arcs are congruent (see e.g. section 9.5.8).
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9.5.5 — HYPERBOLIC METRIC

Now we turn to the problem of introducing a measure for angles and
line segments.

As regards the measure of an angle there is no difficulty, for we can
define it as its Euclidean measure. As we know this is an invariant for
hyperbolic congruent transformations.

In order to introduce the notion of length we shall need an invariant
intimately connected to the line on which the segment liecs. We observe
that a segment gives rise to two ideal points and the two end points of
the segment are associated with a quadruple. In order to avoid ambigui-
ties we shall make the following agreement. Let z, z, denote the end points
of a given segment. By z, o we denote theideal point of the half ray issuing

\‘ Zq Z5 /

250 2
252\\ %z 182

~—.

Fig. 9.5-6. The hyperbolic distance of two points.

from z, and passing through z,, by z,, the ideal point of the half ray
issuing from z, and passing through z,, (fig. 9.5-6). Then, evidently,
the cross ratio

Zi0— 2 :229—21

(21,225 210, Z20) = (9.5-9)
Z10—22 Z20— 22
is an invariant, (section 9.3.4). We shall prove that it is always greater

than one. In fact, it is possible to transform the segment in such a way

that z;, =r >0, 2z, =0, 2,0 = —1, z0 = 1. Then
(20+ 22, Z1p» Z29) = (1, 0, —1, 1) = i—“ >1. (9.5-10)
—-r

This proves the assertion.

Next we consider a point z5 on the same line such that z, is between
z, and z5. This means that z, is on the half line issuing from z, and point-
ing to z,, and also on the half line issuing from z5 and pointing to z,q.
An easy calculation shows that

(215 225 2105 220)(225 235 219, Z20) = (21, 23, Z10s Z20).  (9.5-11)
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Since the notion of arc length is to be additive it is natural to define
the distance between the points z, and z, (or, which amounts to the same,
the length of the segment between these points) by the formula

l dist (21, 25) = log (21, 22, Z10, Z20)- l (9.5-12)

It follows from (9.5-10) that dist (zy, z,) > 0. Hence, if z, is between
z, and z;

dist (z,, z,) < dist (z,, z3). (9.5-13)

In particular, if in (9.5-9) we let tend z, —» z,, the distance increases
beyond any bound. Thus we may say that the ideal points have an in-
finite distance to any other point.

The triangle inequality

dist (z4, z5) £ dist (z4, z,)+ dist (23, z3), (9.5-14)

holds for the measure defined above, equality occurring only if z, is
between z, and z5. A direct verification of this inequality is not easy.
But we may recall that the analogous result in Euclidean geometry can
be obtained without reference to the axiom of parallels. Hence it must
also be valid in hyperbolic geometry. (See, however, also section 9.5.8).

It should be noticed that the expression on the right of (9.5-12) may be
multiplied by a positive constant without the fundamental properties of
distance being affected. This is, however, only a matter of scaling and
not very important.

It is not very satisfactory that in (9.5-12) the ideal points z,, and z,o
occur, for it is not always a simple matter to find them when z; and z,
are given. There is, however, a possibility to express dist (z;, z,) in terms
of z,, z, only.

Let us consider an automorphism which carries z,, z, to z¥, z5 respec-
tively. According to (9.5-7) we have

* *
DI i BT (9.5-15)
1—2z5%] 1—2,7Z;

whence
|23 — 2] — |z, — 2] . (9.5-16)
1-z1Z3  |1-2,2,|

Thus we have another invariant. In the particular case considered above,
where z, = r, z, = 0 this expression turns out to be equal to r and from
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(9.5-10) we deduce
1+ Iz =z,
1=2,%
_ |24 — 2,

1=z, 2,

dist (z,, z,) = log (9.5-17)

This is the desired formula.

9.5.6 — THE FORMULA OF LOBATCEVSK1J

In the hyperbolic geometry a point is the endpoint of two half rays
pointing to the ideal points of an assigned line not through this point.
The half of the angle between these half rays is called the parallel angle

A

— I

A
' A\N
/ /\‘\
| A Lo~
| o] A /' B
: &/
\\ -

S~ |

Fig. 9.5-7. The parallel angle.

associated with this point and by elementary geometry it can be shown that
that it is uniquely determined by the distance of the point from the line.
Lobatéevskij, the founder of hyperbolic geometry, has discovered a
simple relation between this angle and the distance of the point to the
line.

Without loss of generality we may assume that the point coincides
with O and that the parallels issuing from O are symmetric with respect
to the positive real axis. Denoting by A the parallel angle it is easily seen
that the Euclidean distance between O and the given line is, (fig. 9.5-7),




9.5] HYPERBOLIC GEOMETRY 47

Hence
ﬁ' _cosA—sin A+1

= - = ctn 1.
1—r cosA+sini—1

If p denotes the hyperbolic distance from 0; to theline we have in view
of (9.5-10),

ef = Lr = ctn 4,
1—-r
or, writing n(p) for A,
| tan 4n(p) = 7. | (9.5-18)

This is the famous formula of LobatCevskij. Alternative expressions are

tan n(p) = LM
P 1—e™?* sinhp’
-p
sinn(p) = _2e__2 = L >
1+e™P coshp
1—e7??

cos n(p) = 1+:_2p = tanh p.

Thus we see that in hyperbolic geometry there is a coupling between the
measure of angles and the measure of line segments.

9.5.7 - THE LINEAR ELEMENT AND THE ELEMENT OF AREA

Dividing both members of (9.5-17) by |z, —z,| and making z, tend to z,,
we get

dist (21,22)_) 2 -, (9.5-19)
|z, —2z,| 1—|z,|

the denominator on the right being positive. It is, therefore, convenient
to consider

ds, = 24 (9.5-20)
1—|z}2

as the linear element at the point z, in the hyperbolic plane. It is easy to
verify directly that the expression on the right is a differential invariant
for hyperbolic motions. It is sufficient to check this for automorphisms.
Let z§, z5 correspond to zy, z, then the transformation is

2'=2 _ 0 272 (9.5-21)
1—-2%z% 1—-2zZ,
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and these transformations are of the type (9.5-29). The group of auto-
morphisms can be extended to a group of congruent transformations
just as in section 9.5.2.

On applying the transformation (9.5-28) it is not difficult to obtain the
line element in Poincaré’s model. But we can also proceed in the following
way. We seek a differential invariant for the transformations (9.5-29).
An easy computation yields

* dz
z" =
(cz+d)*
and
% =% _ z—Z
(cz+d)(cZ+d)
Hence
dzdz
lz—z2|

is an invariant of the desired kind. Thus we may arrive at the following
result. Putting z = x+iy, we have

The line element in Poincaré’s model is given by
dx* +dy*

2

y

dst = (9.5-31)

In order to prove this conjecture we verify formula (9.5-12). For the
line we take a vertical through the origin, i.e., the upper half of the

imaginary axis and on it two points (0, y,), (0, v,)-
The length of the segment with these points as end points is

y2
j ‘—il=log&.
¥t y yl

But

Thus, we see that (9.5-31) is the right formula. We may connect the points
y1 and y, by a curve x = x(¢), y = y(¢) with x(¢;) = x(¢,) = 0, y(¢,)
= ¥y, ¥(t;) = y,. If this curve does not coincide with the vertical axis
then its arc length is

j”x’“ry s [0 [

1 y » y

This is essentially the triangle inequality.



(0,b) (a,b)

Fig. 9.5-9. Area of a sector of a horicycle.




COoS @ o) d cos a
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-1 1—-x2 V -1 \/1"3‘2

1cosa

= (4m—arccos x) =n—q

-1



Fig. 9.5-12. Area of a triangle in the hyperbolic plane.
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which are images of diametral points on the sphere. Thus we obtain a
model of the so-called elliptic plane. In space it is the surface of the unit
sphere with identified diametral points. In the extended plane we may take
for it the points of the interior of the unit circle completed with the
circumference on which diametral points are identified, (fig. 9.6-1).

Fig. 9.6-1. Model of the elliptic plane with straight lines.

It is clear that in elliptic geometry there are no parallels. The group of
congruent transformations is provided by the isometric homeomorphisms
of the extended plane completed with reflections with respect to the elliptic
lines.

Let us represent the points of the complex sphere by

¢ =cosgsin
= sin ¢ sin 9, 9.6-1)
{= cos 9.

Then the corresponding point in the z-plane is (see 1.1-10)

;= E+in - sin §

e’ = '’ tan 19. (9.6-2)
1+¢{ 1+cos$
The line element on the sphere is
ds* = sin?3dep? +d92. (9.6-3)

An easy calculation shows

dzdZ = tan®19dp? +1 sec* 19492
and
142z = 1+4+tan?49 = sec?19.
Hence
The line element in the elliptic plane may be taken as
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. 4|dz|? dr* +r2do* e
s; = Lt = oy z = reé®. (9.6-4)

Next we evaluate the elliptic distance of a point z to the origin. From
(9.64) we deduce

r,=2 d—pz = 2 arctan r,
ol+p
hence
r = tan 4r,. (9.6-5)

Comparing this with (9.6-2) we see that r, = §.

Fig. 9.6-2. Area of a 1-gon in the elliptic plane.

We can also relate the elliptic distance with the chordal distance, for it
is clear from the result just obtained that

x(zy, 2z5) = 2sin 4r,, (9.6-6)
where r, is the elliptic distance between z; and z,. In particular, when
x(z4, 2z;) = 2, l.e.,, when z, and z, are diametral, then r, = n. Thus

All elliptic straight lines have the finite length =.
Inserting (9.6-5) into (9.6-4) we obtain

ds? = drl+sin’r,do>. (9.6-6)

The surface element is
dA, = sinr,dr,do. (9.6-7)
It is now possible to develop elliptic geometry along the same lines as
hyperbolic geometry. The similarity between the pertinent formulas is

striking.

The problem of finding the area of a triangle in elliptic geometry is solved
very easily. First we consider a part of the elliptic plane inclosed by












0

Fig. 9.6-4. The angle y.
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Now it is an easy matter to derive the formula for the area of a triangle
in absolute geometry. Assume that the vertex C is at the origin. Along

the side 4B the radius vector is a function of 6. At 4 the value of V is
n—o and at B its value is 8, (fig. 9.6-5). Hence, according to (9.6-14)

1 ™ ra . 1 _
4= ﬁfod()fo sin (p\/K)dp = Rfo(l—cos (ro/K))do

which is the desired result.

C A

Fig. 9.6-5. The area of a triangle in absolute geometry.

In the foregoing considerations we tacitly assumed K # 0. But a
geometry with K = 0 also makes sense. Now (9.6-9) expresses that every
finite point of the plane must be paired with the point at infinity and
then the straight lines are the ordinary straight lines of Euclidean
geometry. In fact, this parabolic geometry is the same as Euclidean
geometry and by passage to the limit K — 0 we obtain the usual
formulas. The parabolic metric differs from the original Euclidean
metric only by a scaling factor. Thus, for instance the parabolic distance

Fig. 9.6-6. Proof of (9.6-17) for the case K = 0.
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which, in accordance with (9.5-7), represents an automorphism of the
interior of the unit circle and as an automorphism of the extended plane
leaves the circumference [z{ = I invariant. This fact may be verified
directly, for if zz = 1 then

la—z|  |z—al 1 [z—a] _

[1—za] |zZ—za| |z| |z—a]

The expression on the right of (9.7-4) is called a Blaschke factor.

Let now f(z) denote a function holomorphic within the unit circle
and having infinitely many zeros. If this function does not vanish identi-
cally its zeros have no accumulation point in the unit circle and, therefore,
constitute an enumerable set. We may arrange them in order of increasing
moduli, multiple zeros being repeated as many times as their multiplicity
indicates. In addition we assume that the function is bounded. Without loss
of generality we may suppose that | f(z)| < 1, forif|f(z)| < M we consider
the function f(z)/M.

Let (9.7-1) represent the sequence of zeros of f(z). If z = 0 is a zero
of multiplicity k£, we consider the function z~¥f(z), that is to say, the
numbers (9.7-1) are all different from zero.

Continuing we consider the functions

n

94(2) =[]

ve1 1—zad,

1=zlay 1 n=12... (9.7-5)

The expressions on the right are Blaschke factors. Hence every g,(z) is
holomorphic throughout the interior of the unit circle and |g,(z)| = 1,
if |z] = 1.

Let & denote an arbitrary positive number and keep » fixed. Since
g.(2) is uniformly continuous on the disc |z| £ 1, we can find a circle
C, about the origin inside |z| = 1 such that |g,(z)| > 1—¢ for z on the
circumference of C,, provided the radius of C, is sufficiently close to 1.
On the other hand we have | f(z)] < 1. Hence, for the same values of z

S b (9.7-6)

g 1-¢
and, as a consequence of the maximum principle of section 2.13.3, this
equation holds also inside C,. Since ¢ is arbitrary, we even have

f

9n

for all z within the unit circle. Equality is only possible if f/g, is a
constant, (section 2.13.3). Taking z = 0, we get

19.(0)] 2 [£(0),

A

1 (9.7-7)
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i.e., the series Y 321 £,(2)| is dominated by the series (9.7-9). If this series
is convergent then the series ) o= f,(z) is uniformly convergent on every
disc |z] £ r < 1 and hence (9.7-10) represents a function g(z), holo-
morphic throughout the region [r| < 1. From (9.7-7) we deduce that

V = lim

ey,
lgl e

gl

provided that f(z) does not vanish at the origin. If, however, f has a zero
of multiplicity & there, then

2’ )
9(2)
The function f/z*g has no zeros within the unit circle. It may, therefore,

be represented as exp G(z), with Re G(z) < 0, (section 9.1.4). Thus we find
the following canonical representation for f(z)

1- z/a

J(z) = 2% H ReG(z) < 0. (9.7-11)

which exhibits all zeros of f(z).

9.7.3 — AN EXTENSION OF VITALI'S THEOREM

The identity principle in the version of section 9.7.1 gives rise to an
extension of Vitali’s theorem also due to Blaschke.
Let the functions of the sequence

Fo(@), Fi(2),... 9.7-12)

be holomorphic throughout the region |z| < 1 and uniformly bounded.
The sequence has a finite limit at the points of a subset (9.7-1) which is
such that the series (9.7-9) is divergent. Under these assumptions the
sequence (9.7-12) is convergent throughout the interior of the unit circle
and uniformly convergent on every closed subset of this interior.

In view of Vitali’s theorem (section 2.22.1) it is sufficient to show that
the sequence (9.7-12) is convergent at an arbitrary point within the unit
circle. Suppose that the series is not convergent at a certain point zo.
Then the sequence Fy(z,), F;(zo), . . ., has at least two different accumu-
lation points &, and b,. Then there is a subsequence Fyo(zo), F11(Z0)s
Fi5(20), . . . tending to b, and a subsequence F,o(Z,), F21(2o); F22(20) - +»
tending to b,. In view of the theorem of section 2.22.2 we can select from
the sequence F,o(z), Fy1(2), Fi2(2), . . . a subsequence f;0(2), /11(2), - - -
converging to a holomorphic function f;(z), and from the sequence
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Fy0(2), F21(2), F55(2), . . ., a subsequence f50(2), f2:(2), . . ., converging
to a holomorphic function f,(z). In particular f(zo) = by, f5(z¢) = b,.
Since the given sequence (9.7-12) is convergent at each of the points
a,,d,, ..., thesameis true for the subsequences and hence f, (z) —f,(z)
vanishes at all these points. From the identity principle of section 9.7.1
follows that f;(z) = f>(z) identically, i.c., by = b,. Thus we arrived at a
contradiction and we may conclude that (9.7-12) is convergent throughout
the interior of the unit circle.

9.8 - Schwarz’s lemma

9.8.1 — JENSEN’S LEMMA

Using simple geometry we may give various extensions of Schwarz's
lemma. First we shall make an application of formula (9.7-11). We retain
the assumptions of sections 9.7.1.

Let H(r) denote the maximum of exp G(z) on a circle of radius r < 1,
Then for any z on this circle

@) = BT 2ol (9.8-1)
v=1 Il"_zavl
The ratio
2l g <, 9.8-2)
|z~1/al

represents the ratio of the distances of the point z to the points a and
1/a respectively. If z describes the circle of radius r this ratio attains its
maximum at z, on the half ray opposite the one passing through a,
(fig. 9.8-1).

In order to prove this we denote the points @ and 1/ by 4 and B
respectively. We assume that the point z, denoted by P, inside the unit
circle is not on the line AB. Through P passes an Apollonian circle with
respect to 4 and B. Its centre O’ is between O and A. If P, is the point z,
then P,O' = P,O+ 00" = PO+ 00’ > PO’ and it follows that the
Apollonian circle through P cuts the line 4B in a point Q between P and
O. The assertion follows from PoA/PyB = (PoQ+QA)/(P,Q+QB)
> QA/QB = PA/PB.

The value of the maximum of (9.8-2) is

r+|al
r+1/a)’

evidently < 1. Hence

1@ s HOA [T %‘l" (9.3-3)
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and, on account of the maximum principle, this is true for all z within
the circle |z| = r < 1. Retaining only the first # zeros and omitting
H(r) (whichis = 1), we obtain the less strong, however more manageable
form

If@) < |2f* fl ::lr“ll lzZ/<r<1.  (9.8-4)

Fig. 9.8-1. Determination of the maximum of (9.8-1) for |z| = constant.

This is Jensen’s lemma. In the case that k = 1 we obtain Schwarz’s lemma
by omitting the product on the right.

9.8.2 — INVARIANT STATEMENT OF SCHWARZ’S LEMMA

In the original statement of Schwarz’s lemma we assumed that f(0) = 0.
It follows that |f(z)| £ |z| and, moreover, from (2.21-5) |f'(0)] £ 1
Equality can occur only if [f(z)| = |z|.

Now we omit the condition that f(0) = 0. Denoting by z, any point
within the unit circle we may apply the transformations

4= 7% W = f(2)—f(z0)

, 0/ (9.8-5)
1-zZ, 1-£(z) f(zo)
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The function w(z*) obtained by eliminating z satisfies the conditions of
Schwarz’s lemma, hence

[wl = |z*,
or
f(2)=f(z0) , < IZ—z_ol . (9.8-6)
1—f(2) fzo)| ~ I1-2Z|
Differentiating w(z*) with respect to z, we get
dw 1—20Z, _ 1-f(20)f(z0)
) =\2 AN zf (2).
dz* (1-z2%,) (L=f(2) f(z))
If z = z, then z* = 0. Hence |dw/dz*| £ 1 at z = z,, i.e.,
, 1=1f(z0)*
el < TEN < (9.8-7)
1~z

In these more general cases equality can only occur if f(z) is an auto-
morphism of the unit circle.

A very interesting formulation of Schwarz’s lemma in its more general
form is based on the notion of hyperbolic distance. Observing that

is an increasing function of 7 if 0 £ r < 1, the inequality (9.8-6) expresses
that (taking into account (9.5-17))

dist (f(z),f(zo)) é dist (ZO ’ Z)'

Now we may enunciate Schwarz’s lemma in the following geometric
form due to G. Pick.

If f(2) is holomorphic within the circle |z| < 1 and such that |f(z)| < 1
and if z,, z, denote any two points inside the unit circle then, measuring
the distances in the hyperbolic metric,

dist (f(z,), f(z,)) < dist (zy, z,). (9.8-8)

Equality can occur only if f(z) is an automorphism of the interior of the
unit circle.

An alternative statement is

If 2y and f(z,) are the hyperbolic centres of two circles having the same
hyperbolic radius, then to a point z inside the first circle corresponds a
point f(2) inside the second circle. If z is on the circumference of the first
circle then f(z) is in the interior or on the circumference of the second circle.
If it is also on the circumference of the second circle for a certain value
of z then z is on the circumference of the first circle and for every value of z
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where « is finite, and all circles C,, n = 1, 2, ... pass through the same
point x on the real axis. Then the circles C, pass through the points x,
determined by
1-x,  (2—uu, 1-x
1+x, (-upu, 1+x '

(9.8-14)

Making n — o0 we see that the circles of each sequence tend to horicycles
Co and Cg, passing through z = 1 and the points xand x’ respectively,
where x’ depends on x according to

1-x' 1-x

=0 —". 9.8-15
1+x' 1+x ( )

If r and r’ denote the Euclidean radii of Cy and Cg, then x = 1-2r,
x' = 1—2r and by (9.8-15)

, or

" = Taa (9.8-16)

Now let f(z) be a holomorphic function in the interior of the unit circle,
such that |f(z)| < 1. Suppose that there is a sequence of numbers z,,
Z3,..., such that

limz, =1, limf(z,) =1 (9.8-17)
n—+ow n—w
and
tim L= _ (9.8-18)
n—o 1 - IZ,,I

where « is finite. It follows from (9.8-10) that

=01, (9.8-19)
1+1£(0)]

Introducing the numbers u, = 1—|z,|, u, = 1—-|fiz)l, n=1,2,...,
we may construct the circles C,, C,, considered above. They tend to hori-
cycles Cy and Cj, with z = 1 as anideal point. We might also construct
circles C,, C, with equal hyperbolic radii about the points z,, f(z,).
These are obtained from those constructed before by a rotation around
the origin. But since by (9.8-17) the angles of rotation tend to zero as
n — o0, the new circles tend to the same horicycles C, and Cj.

Let z lie inside Cy. From a certain index upwards it lies within C,.
Hence f(z,) lies within C; and, therefore, within Cg. Thus we have Julia’s
theorem:

If there exist sequences zy, z,, . . . and f(2y), f(23), . . . tending simul-
taneously to +1 under the condition (9.8-18) and if f(2) is inside a hori-

o

%
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cycle Cy touching |z| = 1 at z = 1, then f(2) is inside a horicycle Co
which is the image of C, under the tranformation
1-z' 1—z

=a s o> 0. (9.8-20)
142 1+2z

In addition we may assert that if z is on the boundary of C,, then f(z) is
inside or on the boundary of Cgandin the latter case f(z) is an automorphism
of the interior of the unit circle.

Fig. 9.8-2. The shortest distants between two horicycles.

The last part of this theorem deserves still a proof, which is not trivial.
To this end we observe that two horicycles having the same ideal point
intersect equal hyperbolic segments on the diameters. This is at once
clear by considering the Poincaré model for horicycles having their ideal
point at z = oo, (fig. 9.8-2). It is also seen that this segment represents
the shortest distance between two points on the horicycles. In fact, let
C; be inside Cy, 4 on Cy and 4’ on C; such that 44’ is a common dia-
meter. If any other hyperbolic line through A intersects Cg in B then the
hyperbolic circle about A through B has A’ in its interior. Hence
dist (A, B) > dist (4, 4).

Assume now that z, is a point on Cq such that f(z,) is on Cy, (fig. 9.8-3).
Let C§ denote a horicycle within C, and C§’, its image under the
transformation (9.8-20). Through z, passes a diameter of C, which cuts
C% in z§. By the first part of Julia’s theorem f(z¥) is on or within C2".
Now dist (z,zg) is equal to the shortest distance between f(z,) and the
points of Cj. Hence

dist(z,, zg) < dist (f(z0), f(23))-
But from (9.8-8) follows
dist (2o, 28) 2 dist (/(z0)./(23))-



9.8] SCHWARZ’S LEMMA 71

Hence equality occurs and f(z) is an automorphism. This entails that for
every z on C, the point f(z) is also on Cj.

D

Fig. 9.8-4. Geometric proof of (9.8-21).

By two rotations we can extend the theorem to the case that z, and
f(z,), n=1,2,..., tend simultaneously to two arbitrary points on the
circumference of the unit circle.
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From Julia’s theorem an interesting inequality follows, which can be
derived by geometric arguments. In fig. (9.8-4) we see that
AP _ ljx
BP  1+4x
If P, P’ denote the points z, f(z) then according to Julia’s theorem

AP < 1—x

PB™ 14x

In view of (9.8-20) we have

AP’ _ AP
Sa—.
P'B~ PB
But
AP AP? AP? |1-z)?

PB AP-PB CP-PD 11—z

and a similar expression for, AP'/P'B in terms of f(z). Thus we obtain
the inequality

I CINE
1=If(2)* 1—|z]
Finally we wish to mention that Julia has also established a similar
theorem for hypercycles.

(9.8-21)

9.8.4 — A CONVERSE OF JULIA’S THEOREM

The following theorem is a converse of Julia’s theorem

Let f(z) be holomorphic and of modulus < 1 throughout the region
|z} < 1. If the inequality (9.8-21) is satisfied at every point of this region
Jor a certain positive number o, then it is possible to find a sequence z,
tending to 1 such that f(z,) also tends to 1 as n — o and that

has a limit not exceeding o.

Let us take z on the real axis at x and construct a horicycle Cy including
x passing through the ideal point z = 1 with radius r. The inequality
(9.8-21) expresses that f(x) is on or in a horicycle C; with ideal point at
z =1 and of Euclidean radius r’ given by (9.8-16):

, ar
rr=s————.
1—(1~a)r
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The remarkable feature of this theorem is that despite the vastness of
the family @ there is an absolute positive constant B and an open disc of
radius = B which is the one-to-one image of a subregion of |z] < 1 under
a mapping w = f(z). The exact value of B is unknown.

An interesting and important application of Bloch’s theorem is an
“elementary” proof of Picard’s theorem, already stated in section 6.11.1.
The original proof of this theorem was based on the elliptic modular
function and we shall discuss it in paragraph 14.4. Proofs avoiding the use
of the modular function are considered as elementary (which is not
synonymous with easy!). The shortest elementary proof of Picard’s
theorem is due to E. Landau, who observed that Bloch’s theorem is not
needed in its sharpest form, but that a weaker statement suffices.

To this end we introduce the Landau number L, of a function of &,
being the least upper bound of the set of positive numbers r such that the
image of |z| < 1 contains an open disc of radius r. The Landau constant
is the number

L =infL,. (9.9-2)
It is clear that B, < L, and so B < L. We shall prove that L = 1/16.

9.9.2 — THE BLOCH-LANDAU THEOREM

We start with the following lemma.

Let ¢(z) be holomorphic in the disc |z| < R, R > 0. We assume that
@0) =0, |¢'(0) =p > 0and |9’ (2)| < M throughout the disc. If ¢ is a
number not taken by @(z) for |z| < R, then

Rp?
=z —. 9.9-3
le] = Y (9.9-3)

From Darboux’s inequality (2.4-17) applied to

o) = [ o0,

the path of integration being a rectilinear segment connecting 0 and z,
lz] < R, we deduce

lp(@)| = Mzl < MR. (9.9-4)
By assumption ¢ # 0. Hence 1—¢(z)/c is holomorphic in |z] < R with

no zero. In view of the monodromy theorem of section 9.1.4 we may infer
that there is a function

¥(z) = 1—?%0)z+ cen
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holomorphic in |z| < R such that

W) =1- 2O o123
C

From (9.9-4) we deduce

Wi2) < 1+ MR, lz] < R. (9.9-5)

If 0 < r < R we have by Parseval’s theorem (2.18-5)

[<P(0)| J’ 02 MR
1+ < re”)|°df < 1+ —

P <) [ (re”)l

whence

r’lo'O)® _ r*p?

le] > .
4MR 4MR

Since we can take r as near R as we please, we finally have

as asserted.
Now we can prove the Bloch-Landau theorem which states
If g(2) is holomorphic in the disc |z| < 1 and if g’'(0) = 1, then the
image of the disc as given by g(z) covers a circular disc of radius 1/16.
We set

M(s) = max |g'(z), O<s<r<1, r>0.

lz] €5
It is clear that the function
u(s) = sM(r—s)

is continuous, takes the value 0 at s = 0 and the value r at s = r. Hence

there is a least value of s, say 2R, for which u(2R) = r; we have 0 < 2R
<r

Now we take a number a with
la| = r—2R, |g'(a)] = M(r—2R) = r[2R.
The function
@(z) = g(z+a)—g(a) (9.9-6)
is holomorphic for |z} < 2R, because
|z4+a| < |z]+]a} < 2R+ (r—2R) = r.
It takes the value 0 at z = 0 and
lo’(0)] = lg’(@)| = r[2R > 0.
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mine successively functions 4(z), u(z), v(z) and g¢(z) all holomorphic in
R which satisfy the conditions listed below. In each case it is necessary
to make a definite choice among the various possibilities, but it suffices to
make this choice at z = 0; the function in question is then uniquely
determined throughout R.

Since f(z) has no zero we can find a function A(z) such that

f(2) = exp (2nik(2)).
Since f(z) # 1 implies A#(z) # 0, we can choose u(z) such that
h(z) = u*(z2).

The condition f(z) # 1 implies also #(z) # 1 and, consequently, there
exists a function v(z) so that

h(z) = L+0%(2).

1t is clear that u(z) # v(2), for #%(z)—v%(z) = 1. Hence there exists a
function g(z) such that

u(z) —v(z) = exp g(z).
As a consequence

1
e +ole) = st = exp (~a(e)
whence
u(z) = cosh g(z)
and
cosh 2g(z) = 2 cosh? g(z)—1 = 2u*(z)-1.

It follows that

2nih(z) = 2miu*(z) = mi cosh (29(2))+ni
and finally
f(z) = —exp (ni cosh (2¢(2))),

as asserted. It is clear that g(0) depends only on f(0).

In order to prove the last assertions of the theorem we construct a
set of points not taken as images of the points of i under the mapping
as given by g(z) with the property that each open disc of radius unity
covers at least one of the points of this set. We contend that these are the
points represented by

b = + log (m+/m—1)+}nni, (9.9-8)

where m and » are integers, m = 1. These points form the vertices of a
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rectangular net. The height of each rectangle is in < \/3; the width is
log (/m+ 1+ /m)—log (Jm+m—1)
*{=log(\/§+1)<l, ifm=1,

<long—+——11 <log.3<1, if m>1.
m—

As a consequence to every point a there is a point b with
[Reb—Real <4, [Imb—Ima| < 1/3
ie.,
lb—al < Ji+3 =1
It remains to be proved that g(z) does not take any value b as long as z is
in R. Suppose this were not true. Then we could find a z, in R such that
g(zo) = b and
cosh (2g(z9)) = H(Wm+ym=1)2+(Jm—Jm=1)? = 2m—1,
so that
fzo) = —exp @m—1)ni = 1.

This is contradictory to the hypothesis.

It is now an easy matter to prove Picard’s theorem

An integral function which omits two different values is a constant.

This theorem is sharp as the function exp z which omits only the
value O shows.

Without loss of generality we may assume that f(z) omits the values
0 and 1. For if f(z) omits the values a and b, a # b, then

fz)—a
b—a
is again an integral function and is constant if and only if f(2) is constant.
We apply the lemma to f(z), where R is now the open plane. Suppose
f(2) is not constant. Then the same can be asserted about the auxilary
function g(z) of the lemma which is also an integral function. It is possible
to find a number a with g’(a) # 0 and the function

Ted (1‘;2 +a) = fsg9(a)+z+ ...
g'(a)

is an integral function whose values do not cover any open disc of radius

1/16. This contradicts, however, the covering theorem of the previous sec-

tion. We conclude that f(z) is a constant, as asserted.

9.9.4 — LANDAU’S THEOREM

The lemma of the previous section leads to astonishing results concerning
the influence of the first two terms of a power series on the properties of
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9.9.5 — SCHOTTKY’S THEOREM

Another application of the lemma of section 9.9.3 is Schottky’s theorem.
Let
f(z) = ap+az+ . .. (9.9-11)

be holomorphic throughout |z| < 1 and omit the values 0 and 1. Let 3 be a
number between O and 1. Then a number ¢(ay, 3) exists depending only
on ay and 3 such that for |z| < 9

/@) £ @(ao, ). (9.9-12)

Let g(z) be the auxiliary function of the lemma of section 9.9.3.
Take r such that § < r < 1. It is clear that the function

M:co-{-z—i—..., la] < 8
(1=9/r)g’(a)
is holomorphic in |z| < r, provided that g'(a) # 0, for
la+ (1 =9/z|Zlaj+ (1 =9/Mz} < 3+r—F =r.

It does not cover a disc with radius 1/(1 —3/r)|g’(a)| and it follows from
the Bloch-Landau theorem that
1 1
(1-9/r)lg'(a)l
or

, 16
a)| < ——-.
lg’(a)l i

This is also true if g’(a) = 0. If |z] £ 3 then

z 169 16
2)=g(0) = || g | < < to
0@ = | [ | = 22 < 10
and since this is true for all r as near 1 as we please, it follows that
16
9(z2)-9(O)l = —,
9(2)-9(0)l =
whence
16
lg(2)l £ lgO)+ —
(@) < 16O+
and so

(@) < exp (n exp (19(O)) + i%) = olag, 9),

since g(0) depends only on a,.



folp(w(z(l))lw'(z(t)l|z'(t)|dt = f:l(z(t))lz'(t)ldt
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17 Kz
—logM(z) = — ,
oz g4(z) 1+ KzZ
J Kz 4K
Alogi(z) = —4 — = — = — KiA*(2).
g iz) 07 1+ Kz% (1+Kzz)? @

A metric A(z) is called regular at a point z = g if in some neighbour-
hood of this point A(z) has derivatives of at least the second order which
are continuous in this neighbourhood.

The expression

; (9.9-17)

evaluated at a point where A(z) is regular and different from zero is called
the Gaussian curvature of the metric at this point. Thus the metric (9.9-15)
has the constant Gaussian curvature K throughout the disc |z < 1.
Let now A(z) be a metric within the open disc |z] < 1. Suppose that
A(a) # 0 at a point z = a of the disc. A metric 4,(z), which is regular
at z = a and satisfies the conditions:
(i) 4,(z2) £ A(2) in some neighbourhood of z = a;
(i) A,(a) = Aa);

(iii) in some neighbourhood of z = a we have
A log 7,(2) = A2(2), (9.9-18)

will be said to support the metric 1 at z = a.

The third condition expresses the fact, that the Gaussian curvature of
the metric at the point z = & does not exceed the Gaussian curvature of
the hyperbolic metric, of Gaussian curvature —1.

Ahlfors’s theorem states

Let there be given a non negative continuous function A(z) in the disc
lz| < 1. Suppose that for each z = a in the disc for which A(a) # O there
exists a supporting metric A,. Then

Nz) = |2 . 2] < 1. 9.9-19)

We set

u(z) = log X(z), v(z) = log "2&2 , lzf < R < 1.
R”—|z]
It is clear that u(z) is continuous at all points of |z| < 1 which are not
zeros of A(z). We contend that throughout the disc |z] < R the inequality
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Integrating from r = 0 to r = ry yields
2n R 2n
f o(a+roe?)do— f o(a)d0 > 0,
0

[}
whence

1 2x .
o(a) < 2_7Jo @(a+ree”)do. (9.9-24)

Since ¢(z) has a maximum at z = a we have

o(a) 2 o(a+rye”)

and
2

@(a+roe’)df,

o(a) 2 217J

0
in contradiction with (9.9-24).
We conclude that

2R

A(z)éma lzl <R

and since we may take R as near 1 as we please, we get the desired in-
equality (9.9-19).

Let, as in Schwarz’s lemma, f(z) denote a holomorphic function in
Iz| < 1 and |f(z)] < 1. If in the circle [w| < 1 we are given a hyperbolic
metric it induces by w = f(z) a metric

A
M = 1 er

in accordance with (9.9-14). Using (9.2-13) and (9.9-15) with K= —1 we
readily find that

Alog A(z) = A%(2)

at every point where f'(z) # 0. Hence this metric supports itself and as
a consequence of Ahlfors’s inequality (9.9-19) we have

@ 1
L=/~ 1=z

in accordance with (9.8-7).

lz| <1,

9.9.7 - PROOF OF BLOCH’S THEOREM

We start with a function f(z) holomorphic throughout the unit disc
|z] < 1 and normalized by the condition f'(0) = 1. Let z, be a point of
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Now we observe that p tends to zero as z — Re®o, while 4% remains above
a certain positive value if {is on C,. Hence for all z sufficiently near Re%o

1 U
— 1 =do <
2nte, d* ¢

2M

and for these values of z we have |Re g(z)| < &. This concludes the
proof of the theorem.

10.1.3 — THE SYMMETRY PRINCIPLE

It is our aim to obtain a far reaching generalization of the elementary
symmetry principle which has been discussed in section 9.4.2. As in
section 9.2.1 we denote by U; the set obtained by reflecting an open set
A, in the real axis. In the section mentioned we proved that if f(z) is
holomorphic throughout %, then g(z) = f(Z) is holomorphic throughout
QIZ'.

We suppose first that 9; is a region R, such that R, = R;, in which
case R, is said to be symmetric with respect to the real axis. Let f(z)
be holomorphic throughout R, and real on the real axis. Then f(z)—f(Z)
is holomorphic throughout %, and vanishes on the real axis. By the
identiry principle (section 2.11.2) this function is identically zeroin R,, i.e.,

f(2) = f2). (10.1-11)

Examples are provided by the elementary functions. Thus, for instance,

logz = logr+if = log r—if = log z;

log z is defined throughout the principal region |z[+z # 0 and real on
the positive real axis which belongs to the region.

The meaning of (10.1-11) is that f(z) takes conjugate values at conju-
gate points. Functions obeying the condition (10.1-11) are called
symmetric.

Continuing our considerations we only require that R, meets the real
axis. Then the join R, + R; is a symmetric region and the intersection of
R, and NR; is a union of symmetric regions. If f(z) is holomorphic in R,
and real on the real axis then f(z) = f(Z) in each component of the inter-
section of R, and R;. Now we can define a function g(z) on R,+R;
which is equal to f(2) in R, and equal to f(Z) on R;, for these functions
coincide in the intersection of these regions. Thus we see that f(z) has a
symmetric holomorphic extension to R, + R;. Very often there is no fear
of confusion if we designate this extension also by f(z). Summing up
we have the following elementary version of Schwarz’s symmetry principle
(or reflection principle).















ty (t
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Fig. 10.1-4. Independence of symmetry of the parameter
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R} denote a subregion consisting of all points on the same side of C,.
Let further R denote a region and a a subset of C, subject to the con-
dition: every z, on a has a neighbourhood U such that the intersection of
11 and C, is in a and the intersections of 1l and R coincides with the
intersection of 11 and R}. Now we contend:

If f(2) is holomorphic in R and if the limits of f(z) as z approaches points
of a all lie on an analytical Jordan arc C,, in the w-plane, then f(z) has a
holomorphic extension to a region which contains R+ a.

If C, is given by z = z(#) and C,, by w = w(z), then w(r) = f(z(r))
defines a relation between t and ¢ which is a holomorphic function in
R;}. If ¢ tends to real values, then 7 also tends to real values. Hence the
conditions of the second theorem of the previous section are satisfied
and we may conclude that 7 is extensible beyond the real s-axis. As a
consequence f(z) can be extended beyond the arc C,.

10.2 — Examples of conformal mapping

10.2.1 — INTRODUCTION

In the subsequent sections we shall list some illustrative examples of
the images of the interior of the unit circle as effected by functions which
are meromorphic in the interior. Our examples are, however, of a restrict-
ed type, since they are continuous on the circumference. The case that
they take an infinite value on the circumference is included, provided the
function is chordally continuous there. This infinity can then be removed
by combining the mapping with a suitable Mobius transformation.

Instead of using a circular disc we can also start with a half plane, for
these two domains are univalently equivalent. We consider this fact in

Coo

Fig. 10.2-1. The mapping (10.2-1)
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more detail by directing our attention to the mapping

_z+1

. (10.2-1)
z—1
The inverse mapping is
2=t (10.2-2)
w—1

Hence the mapping is involutory. We contend that the half plane Rez < 0
corresponds to the region |w| < 1, (fig. 10.2-1). In fact
wiv—1 = z+1 Z+1 1= 2(z+2)
z—12-1 |z—1]*
if Rez = 3(z+2) < 0. Of course Rew < 0 is also transformed into
|z| < 1. This can be verified directly as follows

<0,

_=z+1+2+1_2 zz—1

w+w = <0,
z—1 Z-1 |lz—1]?

ifand only if zZ = |z]*> < 1. Finally we observe that Re w > 0 corresponds
to the exterior of the unit circle.
Combining the transformations

z+1
W, = ——
z—1
and
W= —iw,,

the latter denoting a rotation through a right angle to the right, we obtain

.1 —i
w=it2 =Y (10.2-3)
1—-z w+i

which maps the interior of |z| = 1 onto the upper half of the w-plane.
This is the mapping (9.4-4).
Another involutory mapping is

(10.2-4)

£
If
N

which transforms the interior of the unit circle onto the exterior of the unit
circle.

The mapping (10.2-1) has still another remarkable property: it maps
the upper half plane onto the lower half plane. This follows from
z+1 zZ+1 ) Z—z

z—1 z-1 lz—1)*"
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and the image of the half ray 6 = constant in the z-plane corresponds to
the halfray ¢ = af = constant in the w-plane. Hence the regionImz > 0
corresponds to an angular region of width ar. If we agree that (10.2-5)
represents the branch of the power function which takes real values if z
is real and positive, then the positive real axis in the z-plane corresponds
to the positive real axis in the w-plane and to the negative real axis in the
z-plane corresponds the half ray ¢ = an. The case « = 1 corresponds to
the identity mapping. If « = 2 the image of the upper half of the z-plane
is the w-plane slit along the positive real axis.

If we suppose that in (10.2-5) « is negative —2 < a < 0, we consider

®

:
p

//////

(>
i\

A
//l///////

7 N

o>
2
=

Fig. 10.2-3. The mapping w = zt
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the combination of the mappings

zZ, ==, w=z7%

z

The first mapping interchanges the upper and the lower half of the z-

plane. Hence, on account of Schwarz’s symmetry principle the image of

the upper half of the z-plane is mapped onto a region obtained from that

found above by reflecting with respect to the real axis in the w-plane.
Of particular interest is the case that a = 1/n, where n is a natural

number. We obtain an angular region with width n/x. In fig. 10.2-3 this

region is shaded. The inverse function
z=w (102—6)

is regular everywhere in the angular region and also on the boundary.
Since the bounding leg which is not the positive real axis is transformed
into the negative real axis we can extend the function (10.2-6) beyond
this leg by means of Schwarz’s symmetry principle. Thus we obtain a
congruent region, unshaded in the figure, which corresponds to the
lower z-plane. The union of these regions and the common boundary
correspond to the whole z-plane slit along the positive real axis.

Repeating the process of reflection we obtain » shaded and unshaded
regions which correspond to the upper and lower half plane respectively
by means of (10.2-6) and which cover the w-plane without gaps or
overlappings. Thus we have verified that w" is a single-valued function
defined throughout the whole w-plane.

The pattern plotted in fig. 10.2-3 illustrates a remarkable property of’
symmetry of the functions w", viz.,

w' = (qw)" (10.2-7)

with n = exp(2ri/n). In fact, multiplying by #™ means a rotation through
an angle equal to a multiple of 2n/n and this leaves the pattern in the
w-plane as a whole invariant.

In this example we encounter the important notion of fundamental
domain of a group related to a function. It is clear that the rotation

w = nw, n = exp (2=ni/n) (10.2-8)

generates a cyclic group of order n. Two points in the w-plane are said
to be “congruent” with respect to the group if they correspond under a
transformation of the group. Now a fundamental domain may be charac-
terized as follows:

i) No two points of the domain are congruent;

il) Every point of the w-plane is congruent to precisely one point of the
domain, (see also section 13.2.1).
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It should be noticed that a fundamental domain is not uniquely deter-
mined by the group, for from a given domain we may delete a certain
part and add a part congruent with this.

It is easy to verify that the domain 0 < arg w < 2z/n (w = 0 included)
is an example of a fundamental domain of the cyclic group generated by
(10.2-8).

The function w", invariant under the transformations of this group,
is said to be automorphic with respect to this group. The automorphic
functions constitute a remarkable class of functions; in subsequent
sections we shall encounter other interesting examples and chapter 13 is
devoted to the general theory of these functions.

10.2.3 — THE EXTERIOR OF AN ELLIPSE

We start with the problem of representing the z-plane, cut along the

[ @ @

Y A
7B Z //A/ 7

777, 7.

B
(R

) o

cé
7

Fig. 10.2-4. The mapping (10.2-9)

segment —1 < z < 1 onto the exterior |w| > 1 of the unit circle, so
that the points z = o0 and w = oo correspond. In view of the results
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A:w—onw, n = exp (2rni/n)
B:w- 1l/w,
with the defining relations
A"=E, B2 =E, AB=BA"l (10.2-16)

The transformation as given by (10.2-15) is the product of
1 ( 1 )
z==|w+ —
2 w,

W1=w"’

and

and it is easily seen that the region Im z > 0 is transformed into the
region 0 < argw < =n/n outside the circle |w| = 1. On applying the
symmetry principle we obtain a pattern of shaded and unshaded regions
(fig. 10.2-8) which correspond to the upper and lower half of the z-plane
respectively. A fundamental domain consists of an angular region con-
taining a shaded and an unshaded part together with a bounding half ray.

Fig. 10.2-8. The pattern associated with the dihedral function with n = 6



(W+1)2
zZ = —_—
w—1

W= \/z—l
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hence the negative real axis in the z-plane corresponds to the circular
part of the boundary

@

W7
B Coo

Fig. 10.2-9. The’mapping (10.2-19)

777
D |4 B Cw

Fig. 10.2-10. The mapping (10.2-20)

10.2.6 — THE INFINITE STRIP

The mapping functions so far employed (except for (10.2-5) if « is
not rational) are all algebraic. A greater variety of possibilities is obtained
by considering the elementary transcendental functions too. We start
with the mapping (10.2-5) and observe that it does not differ essentially
from

w= , a>0. (10.2-21)

R

Now z = 0 corresponds to w = —1/a. If & — 0 the angular region
tends to a strip, for the angular width tends to zero and the vertex to
- 0. Since

-1 _ exp (x log z)—1 — log z

o o

as a — 0, it is natural to consider the mapping

w = log z, (10.2-22)
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Fig. 10.2-11. The pattern associated with the logarithmic function
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the upper half of the z-plane by means of

z=1 (w1+ i) (10.2-25)
2 w,

and it follows by eliminating w, from (10.2-24) and (10.2-25) that
z = coshw (10.2-26)

maps the half strip described above onto the region Im z > 0. Replacing
w by w/i means a rotation in the w-plane to the right through a right
angle.

Hence the function

Z = Ccos W (10.2-27)

maps the half strip 0 < Re w < =, Im w < 0, onto the upper half of the
z-plane. Replacing w by 7 —w means a reflection in the origin followed
by a shift through the distance iz to the right. As a consequence the
function

z =sinw (10.2-28)

maps the strip —in < Rew < in, Imw > 0, onto the upper half of
the z-plane. Applying the symmetry principle we obtain a pattern of
shaded and unshaded half strips, (fig. 10.2-13) which is invariant under
the transformation

W T—w, (10.2-29)

Hence the sine function is automorphic with respect to this group of
transformations generated by (10.2-29).
The inverse of the function (10.2-28) may be represented as

o dt
w = p———— 10.2-30
L J1-r2 ( )

We remove the ambiguity if we agree that the argument of the denomina-
tor is equal to %(0,+60,—mn), where 0, = arg(z+1), 0, = arg(z—1),
0 < 0,, 0, £ = The integral does not depend on the path of integration.
If z moves from —1 to +1 along the real axis then w describes the
horizontal segment —in £ w < i, for then 8, = 0, #, = =, whence
0 =0. If z> 1 we may write, since § = —in,

W_f dt _H_f’ dt
o JI-12 ) yrr=1’

the argument of the second integrand being 4= if z > 1, so w describes
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the half line Re w = 4n from below to above. If z < —1 we may write
; J" dt N f° dt
W= — — —
=1 Jo 1=
“odt bodr

z \/tl__l— 0\/1_t2

for 0 = 4=, i.e., the argument of the first integrand is —3n if z < —1.

10.2.8 — THE MAPPING OF AN INFINITE STRIP ONTO A CIRCLE
It is easily verified that the relation
wy = €™ = e7%" cos 2u+ie”*" sin 2u (10.2-31)

effects the mapping of the infinite strip —1n < Re w < %7 onto the right

A
y | 7 /
7 = .
o
Z 7
A 7
7 7 / .
7 7
v
7 7 7 Z,
7 7 i o
1 1 7 o
. iT| Ya™ (
Z 7/ 7 7
’ / //
//'// 74

Y

Fig. 10.2-14. The mapping as given by (10.2-33)
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half plane Re wy, > 0. By an argument employed in section 10.2.1 we
deduce that

1w —1

iwi+1

(10.2-32)

maps Re w; > 0 onto the interior of the unit circle. Eliminating w, from
(10.2-31) and (10.2-32) we get

z=tanw (10.2-33)

representing the mapping of —in < Re w < im onto the region |z| < 1.
Applying the symmetry principle we see that 47z < Rew < 3n
corresponds to the exterior |z| > 1 of the unit circle and proceeding in
the usual way we obtain a pattern of shaded and unshaded strips, (fig.
10.2-14). This pattern is invariant under the group of transformations
generated by

w— w+m,

illustrating the fact that the tangent is periodic with period =.
The inverse function is

W= f d_ (10.2-34)
o Lt

defined throughout the disc |z] < 1 except at z = +i. If z moves on the
right half of the circumference we have

Lodt e gl ¢ df
o 1+t o 1+e* o cos @

in—3ilogtan ({n—30¢).

Thus we see that w describes the line Re w = in. A similar expression
is- obtained if z describes the left half of the circumference.
If z = iy, then the integral (10.2-34) becomes

>t

w=1i -
2
o l—1t

i.e., Re w = 0. Hence the right half of the unit circle is transformed onto
the strip 0 < Re w < in. Applying the symmetry principle to the right
half of the circumference we see that (10.2.34) can be extended beyond
this arc to the right half of the z-plane. A similar argument holds for the
left half of the circumference. We conclude that the integral can be defined
as a single valued function in the whole z-plane slit along two vertical
halflines issuing from +iand —i respectively. This result is in accordance
with that obtained in section 1.12.3.
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and is, therefore, a parabola whose focus is at the origin and whose vertex
is the point w = 1, (fig. 10.2-15). If x > 1 then

0? = 4x%p? > 4y? = 4(x*—u) > 4(1—uw)
and thus we see that the exterior of the parabola corresponds to Re z > 1.

It follows that
w = (iz+1)2 (10.2-38)

maps the exterior of the parabola onto the upper half of the z-plane.
Toz=0,1, —1 correspond w = 1, 2i, —2i respectively.

‘ g

Y

Y 000000

'

TS

Fig. 10.2-16. The mapping of a vertical strip onto the interior of a parabolic slit
along the negative real axis
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real axis we obtain a parabola slit from 0 to 1, (fig. 10.2-17), which
corresponds to the semi strip —1 < Re z < 1. It is now clear that the
relation

z = sin in\/w (10.2-41)
4
7
7 . ©
{i;’
/ oA
B

,IIHW

.

AN

\\\‘

\Q“”Ih

By, B

Fig. 10.2-18. The mapping as given by (10.2-43).

maps the parabolic region slit from the focus to the vertex onto the
region Im z > 0. In particular the line v = 0, u < 0 corresponds to

z = }i(e¥™Vi— ™) = jsinh in./u,
that is to say the positive part of the imaginary axis. Writing

z, = sin {n/w (10.2-42)
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fhese equations are remarkable since it is possible to solve sn®a, cn2a
and dn?a rationally. We need only an expression for sn?a. Some compu-
tation yields, taking into account (5.14-8) and (5.14-10),

2 1-cn2a
sn“g=—"—"—.
1+dn2a
In this equation we put @ = u+3iK’. Using (5.16-11) we easily find

sn2(u+4iK’) = 1ksn2u+idn2u ]

k sn2u—icn2u

Referring again to (5.14-8) and (5.14-10) we see that the modulus of
the numerator and that of the denominator in the second fraction are
both unity provided u is real. Hence

1
Jk’
that is to say: the image of the segment connecting the midpoints of the

vertical sides is the arc of a circle with radius 1/\/k above the real axis,
(fig. 10.2-20).

fsn (u+3iK') |= (10.2-52)

e

k 1 Wk /K

Fig. 10.2-20. The image of the midline of a rectangle which is mapped onto the
upper half plane by means of (10.2-48)
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10.2.11 — THE RECTANGLE (continued)

An alternative approach to the problem of mapping a rectangle is
possible by means of Weierstrass’s elliptic integral

@
W= f S (10.2-53)
z \/4t3—g2t—g3

where g, and g, are real and such that the polynomial in the denominator
has real roots e, , €,, €3, (€3 < €, < e;). Again z varies throughIm z = 0
and it is easily verified that the integral is continuous at z = co. The
path of integration may be any curve connecting z with a point on the
real axis, combined with a half ray on the real axis issuing from this point.
As we shall see presently it is of no importance whether this half ray
tends to the right or to the left. It is necessary to select a branch of the
square root occurring within the sign of integration. Let 8,, 8, and 0,
denote the arguments between 0 and = (these values included) of z—ej,
z—e,; and z—e, respectively. We take the argument of the dominator
as 0 = 3(0,+0,+0,), i.e., that of the integrand as —0.

The further discussion will be facilitated by the following considera-
tions. The integrand is holomorphic in the region Im z > 0 and regular
at each point of the real axis, except at e,, ¢,, 5 and co. At these points,
however the integral is continuous. Let C denote a contour consisting
of a semicircle z = |R|,Im z > 0, completed by the segment —R < z <R,
Along this contour the integral

fCW(t)dt,

where
1

Va(z—e,)(z—e,)(z—e3)

is zero (possible singularities can be avoided by small indentations).
On the other hand the integral tends to zero like R™* as R — co. Hence
the integral taken along the whole real axis is zero.

If z increases from e, to co the argument of the denominator is 0 and

1
‘/4(2 —e;)(z—er)(z—e3)
where the square root is positive. Hence w decreases from
® dt
e1 \/413—921—93

(compare (5.13-9)) to zero along a linear path.

W(z) =

W(z) =

w =






e2

e3 ‘\/47

o _J""’ dt
i —e1 \/4t3—g2t+93
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solution is not known. In the particular case of a rectangle we are able
to solve this problem by means of the Jacobian thetafunctions as we
have seen in the examples of section 10.2.10 and 10.2.11.

In particular applications it is sometimes convenient to change the
sign of one or more monomials in the denominator of W(¢). This means
only a change in the argument. Thus, for instance, (a,—2)** contributes
(B +7) or A, (0,—m) to 6.

By a simple transformation we can also derive a formula which effects
the mapping of the interior of a circle onto a polygonal region. The
linear fractional transformation (10.2-3), now written as

A4z
z=1 ,
1-z

(10.3-8)

maps the interior of |z’| = 1 onto the region Im z > 0. Performing the
substitution we have, if a; corresponds to a,

,(1+t' 1+a;) 2i t'—a;
t“ak =1 bl =
1—-t 1—gq l—a; 1-¢
and
dt = 2idt .
(1-1)

Taking into account (10.34), omitting the multiplicative and additive
constants and dropping the primes, we arrive at

w __fz dt
o t—a ... (t=a) ,

A’l+ e +ﬂ.,,=2,
(10.3-9)

where now a,, ..., a, are on the unit circle. Thus, formally, we have an
expression similar to (10.3-2).

10.3.4 — ILLUSTRATIVE EXAMPLES

i) A simple application of the use of (10.3-9) is the construction of a
function w(z) which maps the upper half plane Im z > 0 onto the interior
of a triangle. In this case we are sure that the boundary is a simple poly-
gon. Let the interior angles of the triangle be «,7, a,7, a;n. Then
a o, +oy =1 and, if we take 4, = 1—ay, 4, = 1—0,, 43 = 1 —a3,
the conditions (10.3-3) and (10.3—4) are satisfied. We may take a; = 0,
a, = 1 and the desired formula will be

w(z) = f d =fz“l'1(1—t““‘dt, (10.3-10)

o H(1—1)* 0









i dt
W =f (e (=a) 5,
Zo
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Next
tan }(0—a) tan $(6+4) = — cos 0 —cos o _ 1 cos 20 —cos 20; .
cos 0+cos o 2 (cos 8+cos )
From
| —tan 30 tan 3o = <2330 +2)
cos 36 cos 3a
follows

cos 8+ cos o

1—tan? 16 tan® 3o = .
: ¥ 2 cos? 40 cos? 1a

Thus the expression we started with takes the form

cos 20 —cos 2¢  (cos 8+ cos a)? cos® 10
2(cos 8+ cos ) 4 cos* 10 cos* o tan? $a

cos 20 —cos 2o
= cos* 10 = os* 10
229 2 2 2

8 sin” 1o cos” $u 2sin” a

cos 20 —cos 2o

and the integrand of (10.3-19) becomes

_1 V2(cos 26— cos 2) cos? 30.
2sin o
Because
dt = ;2 dé,
2 cos” 10
the truth of (10.3-21) follows.
Next we put

dn ¢t = cos 0, dnw; = cosy, ksnw, =sing, (10.3-22)
where the modulus &k of the elliptic functions is determined by
k = sin o, (10.3-23)

Performing the substitution we find
W= kf cn? tdt = lf (dn? t—k'*)dt
(o] k 0
or, in view of (5.17-2) and (5.17-14),
= .1_ (zn wi+ (—E —k'2> Wl) . (10.3—24)
k K

The desired mapping function is obtained by eliminating x and wy.
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2a = 241 @ _ k),
k
or
iak
A=- 2 10.3-29
E'—Kk*K’ ( )

Hence A is purely imaginary and, therefore,
B=a. (10.3-30)
From the first of the equations (10.3-28) it also follows

—ibk

= T (10.3-31)
and thus k is determined by
_ L2
S - -E% (10.3-32)

By the aid of numerical tables k can be evaluated if b/a is known. The
constant ¢ is determined by (10.3-27).

The special case of a square deserves some extra consideration.
Now we have a = b, k = k' = %\/Z whence

=21, lje=2+1

The quarter period K of the associated elliptic functions is

K= —_—— ._—-——-—‘—':
f J(l—rl)a ) f J(l—rl)(z
Performing the substitution x? = 2—¢%, we find
K = \B ! =31 _+\" % =i2__ F(&)r(‘})
f e R R a v
whence, by (10.2-59)

K=-—T%3). (10.3-33)

and since K is known, we can evaluate 4 if a is given.
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10.3.6 — DEGENERATE CASES

The scope of the Schwarz-Christoffel formula is wider than is implied
by the theorems of section 10.3.3. Various generalizations depend on a
particular choice of the exponents 4,; we then obtain a transformation
of the half plane (or the unit disc) into generalized polygonal regions
the boundaries of which may consist not only of segments, but also of
half lines. Also the mapping onto the boundary needs not be one-to-one
either. It should be pointed out that the use of the Schwarz-Christoffel
formula in this degenerate cases requires special justification and very
often it is easier to verify the result directly. If we retain the condition
(10.3-4) we can interpret the figures as degenerate polygons.

We wish to discuss some typical examples which may serve as an illus-
tration.

First we consider again the mapping

-4

w = z% O<axs2
which we shall write in the form

di

w=a .
tl—-a

(10.3-34)
V]

In this case we satisfy (10.3-4) by taking 4, = 1—a, 1, = 1+a. The

angular region which is the image of Im z > 0 may be considered as a

2-gon with internal angles aw at w = 0 and —an at w = oo (compare

section 9.2.8). In accordance with (10.3-6) the sum of the internal angles

is zero.

A similar example is

w = log z,

written as
w = f a, (10.3-35)
t
1

The values of L are 4; = 1, 4, = 1 and the internal angles (at the vertices
coinciding with w = ) are both zero. This situation can be pictured in
a more illustrative form on applying a linear fractional transformation
which transforms the point at infinity into a finite point. The infinite
parallel strip which is the image of Im z > 0 under (10.3—4) becomes the
region between two circles with internal contact, (fig. 10.3-8).

A somewhat more complicated example is the following: the function

wy = % (\/2 + 1__) (10.3-36)
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oy

N\
]
A\

Fig. 10.3-8. Linear equivalence between an infinite strip and a region
bounded by two circles with interval contact

is defined throughout Im z > 0. We agree that the square root is such
that \/T = 1. This may be written as an integral

1*t-1
1+ —f ——dt. 10.3-37
4, ¢ ( )

The transformation z, = /z maps the upper half of the z-plane onto
the first quadrant in the z,-plane. Let z; = re. Then

wy = J}(r+1) cost9+%i(r— 1) sin 6.

r r
If 8 = 0 then w, decreases from + oo to 1 if r moves from O to 1 and in-
creases from 1 to + oo if r moves from 1 to co. If, however, 8 = 4n,
then w; moves from ooi to — coi along the imaginary axis. Thus we see
that the image is the half plane Re w; > 0 slit along the half ray
wy 21, (fig. 10.3-9). The integral (10.3-16) suggests the values
A1 = A, = 3%, 23 = —1. Hence the figure is a degenerate triangle with a
vertex at w, = 1, corresponding to z=1 and a doubly counted vertex
at w; = oo (corresponding to z = 0 and z = o). The internal angles are
—3in, —in, 2n. By means of
-l (10.3-38)
w;+1
the half w-plane is transformed into the unit circle slit along the radius
w < 1. Inserting (10.3-36) into (10.3-38) we obtain (10.2-20).
Now let us consider the mapping defined by means of

w = logz—z. (10.3-39)
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Fig. 10.3-9. The mapping as provided by the combination of (10.3-36) and
(10.3-38)

We put z = re”® and find
u=logr—rcos@, v=~0-rsin6.

To the positive real axis in the z-plane corresponds v =0, u = logr—r.
This function u increases from — oo to —1 as r increases from Oto 1 and
decreases from —1 to — oo as r increases from 1 upwards. The negative
real axis corresponds to the line » = n described from o to —oo if
z increases from —oo to 0. Thus the image of the upper half of the
z-plane is the half plane Imw < = slit along the half ray u £ —1,
(fig. 10.3-10). Expressed as a Schwarz-Christoffel integral the function
(10.3-18) appears as
4
w= —1-— j t—j—l dt.

1t

Ifwetake 4, = —1,4, = 1, 1; = 2 we can interpret the image described
above as a triangle with the angles 2z, 0, —n, the last two at coinciding
vertices at infinity. Transforming this point to a finite point we find a
figure as pictured in fig. 10.3-11.

A similar function is

w = log z—2z2. (10.3-40)
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denoted by
z =slw, (10.4-2)

It is called the lemniscate sine. A complementary function, the lemniscate
cosine, is defined as the inverse of

Voodt

2 11

z=clw. (10.4-4)

The length of the diagonal of the square in the w-plane shall be denoted
by #. It is equal to

w =

(10.4-3)

and denoted by

=2 a1 1t‘*(l—t)"*dt = 1B}, 1)
o JI—14  2J, AR
whence, by (10.2-59) and (10.3-30)
7= 3) = K3, (10.4-5)

2,/2x
where K is the real quarter period of the Jacobian elliptic functions with
nodulus 4,/2.
|

Fig. 10.4-1. The lemniscate
The integral (10.4-1) appears in the problem of rectifying the arc of
'e lemniscate. This curve can be represented in polar coordinates as
r* = cos 20. (10.4-6)

The curve consists of two loops and has a double point at the origin,
1g. 10.4-1). The arc length is calculated from
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2 2
) =1 (%) =i
dr dr 1—r*

Hence the perimeter of the half of a loop is

_ Yodr

RV

It is clear that the complementary lemniscate functions are related as
follows

it

cdw =sl(3f—w), slw = cl(Ff—w). (10.4-7)

10.4.2 — LEMNISCATE FUNCTIONS AS DOUBLY PERIODIC FUNCTIONS

If we reflect the square which is mapped onto the interior of the unit
circle in the z-plane with respect to one of its sides we obtain another
square which corresponds univalently to the exterior of the unit circle.
In a figure the first square is shaded. Repeating this process indefinitely
we obtain a regular pattern of shaded and unshaded squares, covering
the whole w-plane without gaps or overlappings, (fig. 10.4-2). In two

Fig. 10.4-2. The pattern associated with the lemniscate sine (n = zero, p = pole)
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shaded squares we can find homologous points, i.e., points which corre-
spond to the same point inside the unit circle. A similar remark holds
for the unshaded squares. Each point of the w-plane belongs to a lattice
of homologous points.

It is now clear that the lemniscate functions can be extended beyond
the boundary of the original square by applying the symmetry principle
repeatedly. It follows that these extended functions (also denoted by
sl and cl) are defined throughout the w-plane and take the same values
at homologous points. Since the pattern remains unchanged if we shift
it horizontally or vertically through a distance 27, it follows that the
lemniscate functions are doubly periodic with periods 2% and 27i.

The zeros of the lemniscate sine are at the centres of the shaded squares,
whereas the centres of the unshaded squares are the poles of this function.
It is clear that the order of a pole is unity. The pattern of the zeros and the
poles of the lemniscate cosine is obtained from that of the lemniscate
sine by the transformation w — 17 —w.

The investigation of the pattern of the zeros and the poles of the
lemniscate functions reveals that the pattern of the zeros of the lemniscate
sine is similar to that of the zeros of the first theta function 9,, (fig.
5.8-1) and that of the poles is similar to that of the zeros of the third
theta function &;. The quotient 3,/3; is doubly periodic and we may
deduce from Liouville’s theorem (section 5.2.2) that

9,(Aw)
95(Aw)’

slw = ¢, (10.4-8)
where ¢, and 1 are constants. Since the periods of the theta quotient are 1
and 7, we find that A = 1/& (the distance between two consecutive zeros
being %) and t = i, for the network of zeros and poles consists of squares
with horizontal and vertical sides. Taking into account (5.8-27) and
(5.15-8), we find
N _
o dur o B 80 1/k

2

=Cy = = .
9:(3) 9,(0) k'

But since 7 =i Jacobi’s iznaginary transformation (5.10-1) is the identity
now and k =k’ = 1,/2. Hence ¢, = 1. Proceeding along the same
lines, and taking into account the fact that ¢l 0 = 1, we finally have,

slw = ‘M@ , clw= M-\@ ,
93(w/K\/2) 94(w/K\/2)

where we have replaced # by its value (10.4-5).
It is not difficult to relate the lemniscate functions to the Jacobian

(10.4-9)
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elliptic functions with modulus k = %ﬁ. From (5.15-10) we deduce at
once

slws= — — V=2 clw = cn wy/2. (10.4-10)

Finally from (5.14-16), (5.14-18) and (5.13-12) we find that

1
Z2=sPw=— (10.4-11)
p(w; 4,0)
this result being in accordance with (10.2-63).
In a wider sense all elliptic functions related to t = i are called lemni-
scate functions.

10.5 — Riemann’s theorem

10.5.1 — PRELIMINARY LEMMAS

We are going to prove one of the most important theorems in the
theory of functions of a complex variable: the fact that any simply
connected region whose boundary is not empty and which does not reduce
to a single point can be mapped conformally onto the interior of the unit
circle. As a consequence two regions of this kind are always conformally
equivalent, that is to say there always exists a univalent and meromorphic
function defined in one of these regions which provides a mapping of
this region onto the other region. For the sake of brevity we shall call a
mapping provided by a univalent and meromorphic function a conformal
mapping.

This theorem, although formulated by Riemann, was not completely
proved by him. The first complete proof we owe to Koebe and Carathéo-
dory. Since then many mathematicians have simplified the original proof
considerably.

It is worth noting that the situation in the case of multiply connected
regions is not quite so simple. For instance, not every two doubly connect-
ed regions are conformally equivalent, as we illustrated in an example
exhibited in section 10.2.13.

The theorem is not valid for a region which coincides with the extended
plane or has only one boundary point. Without loss of generality we may
assume that in this latter case the boundary point is at infinity. A map-
ping of either region of the kind under consideration onto the interior
of the unit circle is provided by a function f{z) holomorphic throughout
the z-plane and bounded. Hence, by Liouville’s theorem this function
reduces to a constant, and is, therefore, not univalent.
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@,(¢,(0)) into the origin. The function ¢(z)= ¢ 3(¢,(¢1(z))) is obviously
holomorphic in R and univalent. In particular ¢(0) = ¢ 3(@,(¢,(0))) =0
and ¢'(0) # 0. If we take

lo’(0)i
z) ="z
1) =1 5ot
then, evidently, f'(0) > 0.

The inverse of the function ¢ is the function ¥(z) = |l/1(|p2(1//3(z)))
where ¥/, ¥,, Y5 are the inverses of ¢, ¢,, @3 respectively. It is clear
that this function is defined throughout |z| < 1. Moreover |{/(2)] < 1
as |z} < 1, whilst (0) = 0. Since ¥,(z) = 22, the function ¥ is not a
linear fractional transformation. By virtue of Schwarz’s lemma we have
[¥'(0)} < 1, and it follows that

1
—>1
¥'(0)
This concludes the proof of the second lemma.
Finally we need the lemma
Let f,(z), n = 1,2,..., be holomorphic and univalent in an open set U

and suppose that the sequence of this function is uniformly convergent in
every bounded and closed subset of U. If

lim £,(0) # 0,

n— o

f0) =

then

f(2) = limf,(z)
n= o
is holomorphic and univalent throughout 9.

By virtue of Weierstrass’s theorem of section 2.20.1 f,(z) tends to a
holomorphic limiting function f(z) as n — o and f;(z) tends to f'(z).
Hence f'(0) # 0, that is to say, f(z) is not constant. If f(z) is not univalent
a value b exists such that f(z,) = f(z,) = b, z; # z, in U. Hence the
function f(z)—b has at least two zeros inside . By Hurwitz’s theorem
(section 3.11.1) there are infinitely many functions f,(z) —b which admit
a zero inside an arbitrarily small circle around z,, i.e., there is a sub-
sequence tending to f(z) —b consisting of functions with at least one
zero in the considered circle. By the same argument there are among
these functions infinitely many which also admit a zero inside an arbitrar-
ily small circle about z,. Hence among the given functions there are
infinitely many which take the value 4 at different points. Thus we obtain
a contradiction.
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10.5.2 — STATEMENT AND PROOF OF RIEMANN’S THEOREM

Now we are sufficiently prepared to establish the following fundamental
theorem:

Given a simply connected region R which is not the whole z-plane and
a point zy in R, there exists a unique holomorphic and univalent function
w(z) in R, normalized by the conditions

w(zy) = 0, wi(zg) > 0 (10.5-1)

which provides a conformal mapping of R onto the open disc |w| < 1.

In view of the results obtained in the previous section we may assume
that R is bounded. After a suitable translation we may suppose that
2o = 0 and, applying a dilation with centre O, if necessary, that R is
within the unit circle around the origin.

Now we consider the family ¥ of univalent and holomorphic functions
f(z) on R with the additional property that f{0) = 0, f'(0) > 0, [f(z)] < 1.
Let m denote the least upper bound of all numbers f7(0). We do not
claim at this stage that m is finite. We can extract a sequence f;(z),
f,(z), ... from this family such that lim,_, . £, (0) = m. The functions of
this sequence are bounded and by virtue of the theorem of section 2.22.2
we can select a subsequence which converges uniformly in any closed set
contained in . This sequence tends to a holomorphic function w(z)
and it is clear that w'(0) = m > 0. Hence m is finite. Moreover w(0) = 0,
{w(z)] < 1. From the last lemma of section 10.5.12 it follows that w(z)
is univalent.

It remains to show that w(z) takes every value w with |[w| < [ as z
is in M. According to the second lemma of the previous section we can
construct a function ¢(w) on w(R), such that |p(w)| < 1, ¢(0) = 0,
9'(0) > 1 provided w(R) does not coincide with the open disc [w] < 1.
The function f(z) = ¢(w(z)) belongs to the family ¥, as may be verified
at once, whereas

f(0) = ¢'(0), w'(0) > m.

This contradicts the definition of m and, consequently, w(z) fills out the
whole disc {w| < 1, if z runs through R.

The uniqueness is obvious, for if w; and w, are functions with the
property stated in the theorem then x(w) = w,(W,(w)) is univalent,
where W,(w) is the inverse of w,(z), whilst x(0) = 0, [x(w)| £ 1. It
follows from Schwarz’s lemma that |y(w)] < [w|. Since x(w) is
invertible, we also have |w| < |x(w)|, whence [x(w) = |w|. From
X' (0) = wi(0)/w5(0) > O follows x(w) = w, i.e., x the identity mapping
and, therefore, w,(z) = w,(z). This concludes the proof of Riemann’s
mapping theorem.
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10.5.3 — THE MAPPING OF THE BOUNDARY

The mapping theorem of Riemann states that it is always possible to
establish a one-to-one conformal mapping between two simply connected
regions R, and R, whose boundaries contains at least two points.
However, it yields no information regarding the points of the boundaries
of these regions. In particular the mapping theorem does not say that the
mapping is continuous in the closure of R, and that it establishes a one-to-

|

o

Fig. 10.5-1. Inaccessible boundary points

one correspondence between the closures of R, and R,,. That this cannot
be expected follows from the fact that the concept of a region with more
than one boundary point is very general and that quite peculiar cases
may occur.

To illustrate what might happen consider the region indicated in
fig. 10.5-1. The region R consists of thesquare 0 < x < 1,0 <y < 1,
from which the vertical segments
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x I<y<li,

1
0<y<§s x=2—2_,;5

= Tt
k =1,2,..., have been removed. The remaining set represents a region
whose boundary consists of the perimeter of the square and all indicated
segments. Obviously no point of the set x =0, 0 £y <1 can be
connected with an interior point by a Jordan arc which is entirely in Q.
For if we accept the possibility of such an arc we must take for the
ordinates of its points a continuous function y(z) which tends to
y(ty) = b, 0 £ b =1, as ¢ > 1, which is impossible, for it must take
infinitely many times values greater than % and values less than 3.

Points of the boundary which can be connected by a Jordan arc with
interior points, with only one point in common with the boundary,
are called accessible boundary points. Points without this property are
called inaccessible boundary points of the region R. In our example the
points x =0, 0 £ y £1, are inaccessible (from the interior) and all
other boundary points are accessible. It is clear that the conformal
mapping of the interior of the unit circle onto R cannot be continuous
at all points of the circumference.

In order to obtain continuity it becomes necessary to make restrictive
assumptions which exclude such phenomena as described above.

Let f(z) denote a univalent conformal mapping of the open disc |z] < 1
onto a region R,, in the w-plane (compared with the previous section
we have interchanged the roles of the z- and the w-plane). We consider
a sequence z;, Z,, ..., of points in the region R, described by |[z] < 1
converging to a point z,, on |z} = 1. As regards the corresponding points
Wy, Wa,..., we can only assert that the accumulation points of this
sequence belong to the boundary of i,,. In fact, such an accumulation
point cannot be an exterior point of R,,, for all points w, belong to R,,
and an exterior point possesses a neighbourhood which has no points in
common with R,. Neither can it be an interior point, for a suitably
chosen neighbourhood of an interior point is mapped by the inverse
function jv”(w) onto an open set within R,. This region would contain
infinitely many points z, in contradictions with the assumption that they
converge to a point on the circumference.

In particular cases the sequence w,, w,, ..., corresponding to z;, z,,
..., may have one accumulation point w,. If, however, we consider
another sequence zj, z5, .. ., in R, which also converges to z,, there is
no reason to believe that also the sequence w}, w}, . . ., of the correspond-
ing points in R, converges to w,. It may happen that it does not
converge, or converge to a point w,, different from w,,.

Next we consider two points z,, and w_, having the property: fo every
Sequence zy, z,, ... which converges to z, corresponds a sequence
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Wi, W,, ... Which converges to w,. In this case we shall say that the
boundary point w,, corresponds sequentially to the boundary point z, by
the mapping w = f(z).

Suppose that this situation is realized for every point of the circum-
ference |z| = 1. We may extend the mapping function f(z) defined in
|z] < 1 to a function defined on the closed disc |z] = 1 if we assign
to every point z,, on |z|] = 1 the point w, as described above. This
function shall also be denoted by f(z). Now we assert:

If every boundary point of R,, corresponds sequentially to a point of
|z| = 1 then the extended mapping function f(z) is continuous throughout
the closed disc.

Suppose that f(z) is not continuous at a certain point z,, of |z| = 1.
Then we can find a sequence z,, 25, . . ., tending to z,, of points in |z{ £ 1
such that [f(z,)—f(z,)| = «, where o is a positive number. There are
infinitely many points z, on |z| = 1, for, if not, then we could omit them
and obtain a sequence in |z| < 1 tending to z,, and hence f(z,) tends to
wo = f(z,) according to the definition of w,. As a consequence we
may assume that all points of the sequence z, are on |z| = 1. By
hypothesis f(2) is defined at every point of |z| = 1. To every point z, on
|z} = 1 we can take a point z, in |z| < 1 such that |z,—z,| < 1/n and
|f(z,)—f(2))] £ 1. Then we have |f(z;)—f(z,)| = 3o > 0 and this is
impossible, for the sequence zi, z3,... consists of points in |z| <1
tending to z . This concludes the proof of the theorem.

If z describes the circumference |z| = 1 then f(z) describes a contin-
uous curve C,, consisting of boundary points of R,,. We shall prove that
C,, exhausts the whole boundary of ®,,. Assume that w' is a boundary
point of R,, which does not belong to C,,. It is always possible to find a
sequence w}, wj, ... consisting of inner points of R, converging to w'.
The corresponding points zy, 23, . .. are in |z] < 1 and the accumulation
points of this sequence are on |z} = 1. Consider one of the accumulation
points z,, and extract from the above sequence a subsequence z,, z,, . . .
tending to z,. The corresponding points w¢, w,, . . . constitute a sequence
tending to the point w, = f(z,,) of the curve C,,, but also to w’ # w,,.
This is impossible. Hence

If by means of w = f(2) to every point of the circumference |z| = 1
corresponds a boundary point in the above described manner, then the
boundary of R,, is a continuous curve C,,.

The curve C,, may have multiple points, i.e., to different points of
|z| = 1 may correspond the same point of C,,. The last example of sec-
tion 10.2.5 provides an illustration.

The general problem of the boundary behaviour of the Riemann
mapping function and its inverse is not easy and it has received consider-
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Fig. 10.5-4. Proof of the central theorem

contains infinitely many points z, corresponding to wj, and C.' contains
infinitely many points z,’ corresponding to w,'. Both have z, as accumu-
lation point.

Let d denote the positive number |w' —w"’|. About w' and w' we
describe two discs & and & having a radius equal to }d. On C,, we
determine a closed initial part C;,, such that the remainder C,,, on C,, is
in &', Similarly we define C;,, and Cj.,. The originals C;,, C,. of CJ,,,
C/.,, respectively, are closed sets in |z| < 1 and they do not contain z,.
Hence we can separate z,, from these sets by means of a circular arc
C, about z, of radius p within |z| < 1, (fig. 10.5-4) with end points
a and b on the circumference (z| = 1. It is clear that C;, and C;; meet C,
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CHAPTER 11

UNIVALENT FUNCTIONS

11.1 — Preliminary lemmas
11.1.1 -~ AREA ENCLOSED BY A CONTOUR

We consider a function f(z) which is regular at every point of the cir-
cumference |z| = r and univalent. Then the image of this circle as given
by the function is a closed simple curve, a contour, (section 1.2.5). The
equation of this curve is

w = Re”®
and by an elementary formula, the area enclosed by it is
A4, =%} R*de, (11.1-1)
c,

the integration being performed along C,, the image of |z| = r, percorsed
in the counter clockwise sense. This may also be written as

2z
A, = %f R? oo de. (11.1-2)
o a6
From (9.2-16) we deduce
Ap2
Rza-dj=rR€13=%r£.
a0 or or
Hence
27 2
A, =3%r 6£ do. (11.1-3)
o Or

11.1.2 — THE INTERIOR AREA THEOREM

We wish to apply the formula (11.1-3) to the following problem.
Assume that f(z) is holomorphic and univalent throughout the region
|z] < 1. What can be said about the area of the image of this region as
given by f(z)?

The Taylor expansion is

f(z) = ioavz“, (11.1-4)

[185]
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derivative there is equal to one. Every univalent function f(z) can be
reduced to a function of this kind if we replace it by

[2-1O) (11.1-25)
1(0)
Univalent functions, holomorphic for |z] < 1 and satisfying the above

conditions will be referred to as univalent normalized functions. Their
expansions in series are of the type

f(2) =z+a2*+ ... =2+ Y a,z" (11.1-26)

Every such function gives rise to a class of associated funtions of the
same kind, introduced by Faber. In many considerations about univalent
functions they present themselves as very useful.

In order to define them we observe that in

£ =201+ i a,z0 ) (11.1-27)

k =1,2,... the series between brackets represents a function which is
holomorphic for |z] < 1 and has no zero. According to section 9.1.4
we can find a holomorphic function

h(z) =1+ 2224 .,
k
such that

H(2) = 14a,72%+ .. ..

The function

fulz) = zh(z) = z+ “—kzz"“+ (11.1-28)

is holomorphic for |z| < 1 and satisfies the equation

1@ = (L)) (11.1-29)

We will prove that this function is univalent. In fact, it vanishes at
z =0 only and from

Si(z1) = filzz)
follows
fZ) =1z5)
whence

Zy = 2Z;
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Now we take k such that A4+1—1/k > 0. Then we may apply (11.1-22)

and we find
2iA+2-2/k
(21+2 k) f MO L (11-34)
0 P

For Q we find

(Vk+ 1)2Iav,kl2r2v+2/k

[ngk:]

Q:

(vk+1)r"+”"(vk+1)la [Pk DIk,

< <
"Ms L

Our next task will be estimating the expression
(nk+ 1)+ 1E,
This may be done as follows. If m is any positive number the function
x"(1—x)

takes it maximums on the interval 0 < x < 1 at x = m/(m+1). Hence
this maximum is

m™ 1 1 < 1
m+1 m+1 s
(m+1) m (1+ l) me
m
whence
x" < 1 0<x<l, m>0
e(1—x)
If we take
1
m=n+ -, X=r,
k
we get
(nk+1)m i < K (11.1-35)
e(l—r)
and thus
Q< (lk EP) Z(vk+1)[a 2tk Dk

According to (11.1-5) the sum on the right is equal to the area of the
image of the disc |z| = r/?* divided by = as determined by the function
fi(2). This area does not exceed that of a circle with radius the maxi-
mum of |f,(2)] if |z| = r'/2*. But this maximum is also that of |f(z)|'/*
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and it follows from (11.1-18) that

]

_1 + > @v—-Dle,)2r?*"2 <0
r? 1

y=

or

- .
Y @v=Dielrr? S 1.
v=1

By making r — 1 we find

Y (@v=1le)* £ 1.
v=1

In particular |¢,{ £ 1 and in view of (11.2-4) we find again |a,| < 2.
The estimate (11.2-1) is the best possible. Equality occurs if f(z) is
Koebe’s function

k(z) = (11.2-5)

z
(1-2°"
We have investigated the mapping as given by this function in section
10.2.3 and we remarked that the expansion in series is

k(z) = z+22%+ ... =Y vz". (11.2-6)
v=1

This led Bieberbach to the conjecture that for all n = 2
la,l = n, (11.2-7)

provided the function is normalized. It is one of the deepest unsolved
problems in the theory of univalent functions whether (11.2-7) holds
for all n > 1. Beyond the case n = 2 only the cases = 3 and n = 4
have been established. The case n = 3 will be considered in section 11.5.3.

11.2.2 — THE KOEBE-BIEBERBACH THEOREM

A theorem due to Koebe states that the image of |z] < 1 as given by a
normalized univalent function f{(z) covers a circle whose radius is an
universal constant. Bieberbach determined the exact value of the radius.

First we observe that f(z) cannot take every complex value, for there
is no one-to-one conformal mapping onto the whole z-plane. Hence
there is a constant ¢ such that f(z) # ¢ if |z| < 1. The function

o) = LG _ (a2+ l) 24 ... (11.2-8)
c—f(z) ¢
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is again univalent and normalized. By Bieberbach’s theorem we have

a,+ 1' é 2,
c
or
L. (az+ 1) —a| = |ax+ l’ +la,] £ 4,
lef c c
whence
le] 2 1. (11.2-9)

Thus we have the so-called }-theorem

A univalent normalized function takes for |z < 1 all values ¢ with
c< i

Otherwise stated

The image of the interior of the unit circle as given by a normalized
univalent function covers an open disc about the origin with radius %.

This result is sharp, for Koebe’s function does not take the value
—Zinside |z| = 1. Hence the constant } cannot be replaced by a larger
constant.

An easily proved consequence is the following theorem

If two points are situated on a line through the origin and separated by
it and are not covered by the image of the interior of the unit circle, then
at least one has a distance from the origin not less than %.

Suppose that the function f(z) does not take the values a and b with
a # b, arg a — arg b = 7. Then, evidently, a # 0 and the function

af(2)
a—f2)

is also univalent and normalized. Since it does not take the value ab/(a—b)
we have

or

Without loss of generality we may assume that |b| < |a|. Then 2/la| £ 4
i.e., |a| = %. This proves the assertion.

11.2.3 ~ A COVERING THEOREM FOR CONVEX FUNCTIONS

In the case that the image of the unit circle as given by f(z) is convex
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(section 2.2.1) we can improve the }-theorem of the previous section.
In this case we shall say that the function f(2) is convex.

If the normalized univalent function f(z) maps |z| < 1 onto a convex
region, then this region covers an open disc about the origin with radius .

A very short and elegant proof of this theorem has recently been given
by T. H. Mac Gregor. He showed that the theorem is a direct conse-
quence of the }-theorem.

Let R denote the image of |z| < 1 as given by the normalized univalent
function f(z) and suppose that R is convex. Let ¢ be a number not taken
by f(z). We introduce the auxiliary functions

0 = (fD=cf  h(x) = (Z) (11.2-10)

It is clear that g(z) has no zero in |z| < 1. Moreover, g(z) is univalent.
For, let z; and z, denote two distinct points of the unit disc. Then

g9(z)—g9(z;) = (f(zl)—c)z—(f(zz)-—c)z
= (flz) = f2))(f(21) +/(z,) —2c).

Since f(2) is univalent we have f(z,) # f(z,). On the other hand, ¥(f(z,) +
+ f(z,)) belongs to R, for R is convex and since ¢ does not belong to R
we see that also f(z,)+f(z,)—2¢ # 0.

Now g(z) = (—e+z+ ...)2 = ¢?=2cz+ ..., whence h(z) = z+ ...
and h(z) is again univalent. It does not take the value 4c, and by the -
theorem we have i|c| = % or jc| = , as asserted.

The function

f@) = ==
1-z
shows that this result is sharp, for this function maps |z] < 1 onto the
half plane Rew > —4.

11.2.4 — GENERAL DISTORTION THEOREMS

In this section we shall develop an interesting further group of inequali-
ties for univalent functions as a direct consequence of Bieberbach’s
theorem (11.2-1). First we wish to prove the following lemma

If 0 £ x <1, then

”

_ 2x
fi(x)  1-x

where f(z) denotes a normalized univalent function.

4
1—x

IA

(11.2-11)

2
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The function
z+x

1+xz’

considered as a function of z is univalent for |z] < 1 and its modulus is
less than unity, for (1 +xz2)(1 +xZ)— (z+x)(Z+x) = (1 —x2)(1 —zz) > 0.
Hence

Z+") = botb z+byz?4 ... (11.2-12)
XZ.

W)f(

is univalent and holomorphic for |z|] < 1. By elementary computation
we have

z+x) 1-—x?
9@ =7 (1+xz) (1+xz2)*’
iy g (ZEX (=X (z4x) 1—x2
6@ =1 (1+xz) (1+x2)* / (1+xz) 2x(1+xz)3.
Hence
by = g'(0) =" (x)(1-x?), (11.2-13)

by = 3g"(0) = (/" ()1 —x*)* = 2xf"(x)(1 —x?)).
The function

g9(z)—bo -z ﬁzz
by by

+ ...

is again univalent and normalized. From Bieberbach’s theorem we may
infer that

by

1

<2

P o
2|7 T2

and (11.2-11) follows at once.
An easily deduced consequence are the inequalities

izl S r <1 (11.2-14)

1 147
|u+r—””“a )

Thus we have a limitation of the stretching of the mapping at any point
within the unit circle. It is usually referred to as Koebe's distortion
theorem.

Since f7’(z) has no zeros 1/f’(z) is holomorphic. In view of the
maximum modulus principle it is sufficient to prove (11.2-14) for |z| =
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We may even take z = r, for the general case can be reduced to this one
by considering the function
Sz
n

with suitably chosen # such that [n] = 1.
From the lemma we deduce, assuming 0 < r < 1,

loglf ()] +log (1=r%)| =

RcJ'f'l( )dx+log 1-r?

o f'(x)

J‘f(x)dx J‘idx éJ‘ dx~21g1+r.

"(x) o 1—x7 o 1—x2 1—r

Hence

log |f'(nl = "]0g(1—7‘2)+210g L7 Jog 1FT

1-r (1 r)?

loglf (] = —log (1—r2)—~2log LT = 1og 12T,

1-r @+r?

and this concludes the proof of (11.2-14).
Next we shall prove

SIf@l = (1 lzZl £ r<1.  (11.2-15)

(1+ +n*~ 2’

From the previous theorem we deduce

< . < T 1+4x _ T R
If(M)l = folf (x)ldx < . (—Ml—x)3 dx (——-~1_r)2 (11.2-16)
and as in the above proof it follows that the inequality on the right is
valid for all z with [z| < r.

The proof of the inequality on the left is not easy. As we remarked
above it suffices to prove it for z= —r, 0 <r < 1. Let w and z be related
by Koebe’s function

=" _ =k(z). 11.2-17

TR0 (11.2-17)
The inverse relation may be denoted by

z = @p(w). (11.2-18)

The function ¢ maps the w-plane slit from —} to —oo onto the
region |z| < 1. If p is a positive constant < 1, the function
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and by making p — 1 we find

r

f=nzip=——.
(-nzip )

Thus we proved the statement on the left of (11.2-15).
An alternative statement is

1 _@ . 1

< £ —, < . 2
e PR l2l £ r < 1. (11.2-21)

This is clear for |z| = r and it follows for |z| < r from the maximum modu-
lus principle since f(z)/z and z[f(z) are both holomorphic for |z| < 1.
We wish to apply this latter statement to the function

g(z)—bo,
by

where g(z) is defined in (11.2-12) in which x is replaced by r. In view
of (11.2-21) we readily find

fr+4z
e (i) o L _Iby
e z = @1-n*’

lzZl £ r < 1.

Next we replace z by —r and insert the expression (11.2-13) for b;.
Thus we get

o s M s ot
r -r
or
1-r rf’ (r) 1+r
1+r° () r’
whence, by the usual arguments
1-r df@) _ Ltr
B o < lZlgr<t1  (112-22)

All these inequalities are sharp. Equality occurs for Koebe’s function.

The inequalities (11.2-14), Koebe’s distortion theorem, are a limi-
tation for the absolute value of f'(z) inside the unit circle. Bieberbach
has also obtained a limitation for arg f'(z). Taking into account (11.1-16)
we have
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Wzl ¢ jypm-1 < 112m = M, (11.2-26)
AN
where M depends only on R and on €, but not on f(z) and the selected
points z,, z,. Interchanging z;, and z, in the inequality we obtain the
desired result.
In the case that R in a circular disc we easily obtain an explicit expres-
sion for M. Let R denote the interior of the unit circle. If z, and z, are
two points of the closed disc |z] < r < 1 we have, according to (11.2-14),

1— 1+r 1+r
(1+)3_If(1)l_(1 s (1+)3_If(z)l_( S
and it follows that
1-r\* _ ()l _ (1+r)* 3
(I——H‘) =< ]fI(ZZ)l =< (l—r) s (11.2 27)

the desired result.

11.2.6 - A TEST FOR NORMAL FAMILIES

Integrating the inequality (11.2-25), and using (11.2-24) we get,

(sic+1~sK)/0
=g = o | [T G o

< olf (5o f (”” dp = 126f"(s)] < 12Molf'(z,)!.

Taking k = 1,...,n—1, and adding the corresponding members of the
inequalities thus obtained, we easily find

[f(z:)=f(z))| < 2(n—DMolf'(z)] £ 12Mny0]f'(z,)l,
where n, is the number introduced in the previous section. Hence

|fz2)] £ | Sl +12Mng 01 f(24)]-

Writing K = 12Mngy0, we have

Let R denote a region in the open z-plane and & a closed set belonging
to R. Then there is a positive constant K, depending only on R and on €,
such that for all functions f(z) which are univalent and holomorphic
throughout R and for every pair z, z,, belonging to € the inequality

fz)] £ [fz)I+ K] f(20)] (11.2-28)
holds.
This result has an interesting consequence. Consider a family of



Imfgf dp
0 (1_17)2
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If we write

#e) =1 z 11.3-8
= 1O (11.3-8)
then, evidently, ¥(z) maps |z|] < 1 onto a region included in the half
plane Rez > —1.
In order to obtain more information about f(z) from this result we
apply the following lemma.
Suppose that

o(z) = iavf (11.3-9)

is convex and univalent (not necessarily normalized) and maps |z| < 1
onto a region R. Let

¥(2) =§llﬂvzv (11.3-10)

denote a function holomorphic throughout |z| < 1 and assume there only
values which lie in R. Then

Bal Slogl, n=12,.... (11.3-11)
Consider the function
1) = $() = ii’ 2+ (113-12)
1

where (7) denotes the inverse of ¢@. It is clear that x(z) is holomorphic
throughout |zf < 1 and satisfies [¢(z)] < 1, x(0) = 0. By Schwarz’s
lemma we have |y’'(0)] £ 1, whence [f;] £ [o4].

Let w,, | £ k £ n, denote the nth roots of unity. Since R is convex,
the centre of gravity

12 "
; Zlq)(wnzl/) = an+ﬁ2nzz+ e

is also included in R. We may apply the previous result and we find

Iﬁnl é l‘xll'
A simple corollary is
If f(2) is univalent, normalized and convex, then

Ja,l £ 1. (11.3-13)
This is clear if we apply the lemma to ¢ = = f. This result is sharp
as is shown by the function

z

— =z+Z%+ .., (11.3-14)
1—-2z
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which maps [z] < 1 onto the half plane Rez > —1.
If we take the function

o(z) = _122 = 22422+ ... (11.3-15)

-z

which maps |z| < 1 onto the half plane Rez > —1, we easily deduce

If
f@) = 1+az+a2%+ . .. (11.3-16)

is a univalent function with a positive real part then
la,| £ 2, n=12.... (11.3-17)
This result is sharp as is shown by the function

1+9¢(z) = ij = 1422422+ ... (11.3-18)

—2

An estimate for the modulus of functions of this kind has been obtained
in section 2.21.3.

Finally we wish to show that the lemma yields also a second proof for
the covering theorem of section 11.2.3.

Let R be the image of |z] < 1 as given by the convex, univalent and
normalized function f(z) and let w, = re® be a point of smallest modulus
lying outside R. Replacing, if necessary, f(z) by —u~ 'f(—nz), where
|nl =1, we may suppose that wy= —r. Then no point w with Rew < —ris
in M. Suppose, contrary to this, that R contains a point w, such that
Re wy < —r. By the convexity of R that part of the line through w, and
wy which lies on the side of w, opposite to w, lies entirely outside R.
But this part contains points of modulus less than r, which leads to a
contradiction.

The function
(p(z)=£';2—=2rz+
1—-2z
maps |z] < 1 onto the half plane Re z > —r. Since f(2) assumes all its
values in this half plane, the lemma applied to y(2) = f(z) gives 2r = 1.
This proves the assertion.

Now we return to the case of the starlike functions. For ¢(z) of the
lemma we take the function (11.3-15) which maps |z| < 1 onto the half
plane Re z > —1. For y/(z) we take the function defined by (11.3-8).
Then the lemma states that |8,| < 2,n = 1, 2,. .., as we have seen above.
If f(z) has the expansion (11.3-5) it follows from (11.3-8) that

(i a,z")(1+ iBVZ") = i va,z".
v=1 v=1 v=1
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for all points z of the set, provided #n is sufficiently large. In particular
| fazn) —fz) < de.

But since f(z) is continuous at z = z,, we also have
| f(z) = f(z0)l < %e,

provided that n is sufficiently large. It follows that from a certain index
upwards

Lfu(Za) —fz0)l < &

and this means that the sequence of the points w, = f,(z,) is convergent.
Now we return to our proof. Is clear that the points

ka = fmk(zmk)

constitute a convergent sequence, tending to the point w, = f(z,).
Hence ¢, meets |z[ = r, in contradiction to the construction of this
circumference. Thus we see that every closed and connected set containing
the point w = 0 and contained in & is contained in almost all regions R,.

Next we assume that §* is a region with the same property, i.e., it
contains the origin and every closed and connected set of &% is covered
by almost all regions R, . Then it follows that f(z) cannot be a constant.
In order to prove this, we take an arbitrary point w, of £*. Consider a
region R containing the points w = 0 and w, and such that the closure
of R is also in K. Since, by hypothesis, R is covered by almost all R,
the inverse functions f,,(w) of £,(z) are defined throughout R, provided n
is sufficiently large. These functions are uniformly bounded, for their
moduli do not exceed unity. Hence they constitute a normal family and
there is a subsequence of functions which converge to a function ¢(w),
this convergence being uniform on every closed subset of $R. Applying
again the above mentioned lemma of section 10.5.1 we may infer that
either @(w) is the constant O (for ¢(0) = 0) or the equation z = @(w)
gives a mapping of R onto a region within |z| < 1. In both cases
Zo = @(wy) is a point in the interior of the unit circle in the z-plane.
Thus, if z, = f, (w,), it follows that z, — z, and since z, is within
Iz| < 1, f,.(2,,) = f(2zo) by the strength of the same argument as used
above. Observing that f, (r,,) = wy, it follows that w, = f(z,). But
W, is an arbitrary point of §* and so f(z) cannot be a constant and
|z < 1 is mapped by f(z) onto a region K.

The following consequences are obvious now:
1) &* is a subregion of &. Hence & is the kernel of the sequence of the
images of |z| < 1 as given by the functions (11.4-3).
2) If the sequence (11.4-3) tends to a function which is identically zero,
then there is no neighbourhood of w = 0 which is covered by almost all
regions R, and in this case the kernel is the point w = 0.
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and ~
1f(2)=f(p2)lpl = (1—p)I gzavugop“fl =Q —p)v;(v— Dia,l|zl".

The radius of convergence of this latter series is the same as that of (11.4-6)
(as follows e.g. on applying the Cauchy-Hadamard test of section 1.6.5)
and, therefore, the series is bounded throughout |z| < r < 1. The truth
of the statement follows easily now.

Thus it is sufficient to state an approximation theorem for the functions
Sf2)p, 0 <p <1

Next we introduce the so-called slitregions. Let L be a simple Jordan
arc having one end point on the circumference [w| = 1 and lying other-
wise in |w| < 1. We suppose that L does not pass through w = 0. The
set R consisting of all points of [w] < 1 not on L will be a simply connect-
ed region. In fact, if P and Q are points of R near L we can pass from
P to Q along a path near L, which, if necessary, will go round the tip of
L and along the other side. Thus any two points of R can be joined to
some point near L, for instance to the tip of L. Thus (R is connected. That
it is open is evident. The complement of R with respect to the closed
z-plane consists of |w| = 1 together with L and so it is closed and connected
(last theorem of section 9.1.1). Hence R is simply connected (section
9.1.3).

Now we are in a position to prove an approximation theorem, which
will turn out to be of utmost importance. First we observe that if M
is sufficiently large the function f(pz)/pM maps |z| < 1 onto a region
within |w| < 1 bounded by a contour. Further, if L is a slit in [w| < 1
as described above then on account of Riemann’s mapping theorem
there exists a unique function

w=Bz+az*+..), B>0, (11.4-7)

which maps |z] < 1 one-to-one onto |w| < 1 except for the slit L.

Let now ¢(z) denote a function which maps |z| < 1 onto a region R
bounded by a closed contour C within |w| < 1. We define a sequence of
slits in the following way. Let L, consist of a straight line segment from
w = 1 to the nearest point P of C, (fig. 11.4-1) and a part of C which is
described from P along the whole of C in the positive sense, except for an
arc P,P of diameter 1/n. Let R, consist of |w| < 1 except for this slit
L, and let

fu2) = Bz+az .2+ .., B >0, (11.4-8)

where a,,,, etc. also depend on n, of course, map |z] < 1 onto R,.
Now it is easy to see that R is the kernel of the sequence R;, Rz, .- -»
and that this sequence converges to :. By Carathéodory’s theorem the
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Fig. 11.4-1. Lowner’s approximation theorem

functions (11.4-8) tend to ¢(z) = f(pz)/pM as n - oo and, consequently,
J1+(2)/B, to f(pz)/p, uniformly on every closed set within |z} < 1.

Our next task is proving that the functions (11.4-7) constitute a
family, dense in %. Let f(z) denote an arbitrary function of & and p,
run through an increasing sequence of numbers between 0 and 1, such
that p, = 1 as n = oo. The functions f(p,z)/p, form a sequence which
tends to f(z), uniformly on every closed subset of |z| < 1. Further we take
an increasing sequence of numbers r;, r,, ..., also between 0 and 1,
such that r, > 1 as n » oo and, additionally, a decreasing sequence of
positive numbers ¢, , &,, . . ., tending to 0. In view of the results obtained,
there is a function f;(2)/B, in & of the type described above such that

[/12)/B1=f(p12)Ip1| < &5,
for all jz| £ r. Again a function £,(z)/f, in & such that

[£2(2)[B2=f(p22)]ps| < &2

and so on. Thus we obtain a sequence

S1(2)/By, LBz, ..

of functions in & and it remains to show that they tend to f(z) uniformly
for |z| £ r < 1. Given the number r we can find a number N, such that
r, > rfor all n > N,. Given ¢ > 0 we can find a number N, such that
&, < 3¢ for all n > N,. Finally there is a number N; such that
| f(pn2) pu—f(2)] < }& for n> N, all z satisfying |z] £ r < 1. It follows
that for all » > N = max (N,, N,, N3) and |z] £ r

| /1@ Ba =S} £ 1£DBa=fPa2) Pl +1 f(0n2) pa—fD)] < €

and this proves the assertion.
Calling the functions f(z)/f, where f(2) is the function (11.4-7), bounded
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slit mappings we may state Lowner’s approximation theorem in the form
The set of bounded slit mappings is dense in &.
In the next section we will study the slit mappings more closely.

11.4.5 — INTRODUCTION OF A PARAMETER
Let L be a sectionally analytic slit inside |w| < 1 given by
w=ow(), 0=t=5t, >0, (11.4-9)

where w(t) # 0, lw(@)] <1, (02 t<t) and [w(t)} = 1. By L,,. we
denote the arc corresponding to the values ¢ which satisfy ¢/ < ¢ < ¢”
and by L, the arc L,,,. Let R, consist of |[w| < 1 except for L,. As ¢
increases from 0 to #, the region R, expands from R = R, to |w] < 1.
In accordance with (11.4-7) we denote by

w=g(zt) = BO+a()z*+ ...), BB >0 (11.4-10)

the function which maps |z| < 1 onto R,, and by 5(w, t) the inverse of
this function.

First we observe that f(¢) is continuous. In fact, R, is a subregion of
R,., if ' < ¢’" and it is easy to show that the sequence R,,, R,,,...,
converges to the kernel R., if ¢;, #,,... tends to t*. Hence g(z, ?)
— g(z, t*) as t runs through a sequence tending to ¢*, uniformly on
every closed set within |z| < 1. As a consequence S(¢) — B(t*).

Now we introduce the function

h(z, t',t") = g(g(z, t), 1), 0=t <t’'<to. (114-11)
Its expansion in series is evidently
Wz, t', ") = ILIH) .2 (11.4-12)
B(t")
The function g(z, t') maps |z] < 1 onto R, and Z(w, t""), which is the
inverse of g(z, ¢), maps R, onto |z| < 1. Hence |A(z, t', t"")| < 1, while

A0, ¢, t") = 0. Thus the conditions of Schwarz’s lemma are satisfied
and we may infer that

K@, t,t") = M <1, <t
(")

for it is clear that A(z, ¢/, t"’) is not the identity mapping. As a consequence
B(t) is a strictly increasing function as is

We may, therefore, take 7 for our parameter ¢, which has been left un-
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determined so far, With this normalization wehave, replacing again t by ¢,
gz, 1) = Be(z+az*+ ...), O0=Zt=Z1t, =log(1/B), (11.4-13)
B = B(0) being a positive constant. It follows that
Bz, t, ) =24 ... (11.4-14)
In view of the definition (11.4-11) we see intuitively that
hiz,t',t") >z (11.4-15)

as t'—t"” — 0, but the formal proof is not trivial. As we will see this
result is of paramount importance for the further development of the
theory.

11.4.6 — THE CONTINUITY PROPERTY

We recall that w = g(z, ¢') maps |z] < 1 onto R, that is |w] < 1
cut along L,.. Also that z = \é(w, t'") maps R,. onto |z} < 1 and so R,
corresponds to [z| < 1, except for the image of L,,. by E(w, t'"), for
L, lies in R,.., except for one point w(¢”’) but not in R,.. The image of
L, by }}(w, ¢"") will be denoted by S,.,... Thus A(z, ¢', t"') maps |z] < 1
onto |z| < 1 cut along Sy...

If w = g(z, t) then the inverse function z = ?q’(w, t) is continuous at
o(t), i.e. as w— (f) in any manner from R,, z approaches a point
A(?) such that |A(¢)| = 1. This point will play an important part in the
theory.

We may prove this in quite the same way as the theorem of section
10.5.5. It is clear that the points of |z| = 1 are normal boundary points of
lz| < 1. Let wy, wy, ..., denote a sequence of points in R, tending to
(?). Suppose that the sequence of points zy, z,, . . ., corresponding to
these by the mapping z = g (w, £) has two subsequences tending to z’ and
z" respectively. They are on two cuts C, and C;’ respectively, correspond-
ing to the curves C,, and C;,,. We determine closed initial parts C; and C,’
such that the remainders C; and C;’ are within two open discs & and &’
about z’ and z”” with radius 44 = 4|z’ —z"'|. Now it is not difficult to see
how to modify the discussion of section 10.5.5, (fig. 11.4-2), in order
to be applicable to the problem under consideration.

The first theorem of section 10.5.5 states that A(z, ¢’, ¢') is still continu-
ous at all points of |z] = 1. The arc on |z| = 1 which corresponds to
Sy will be denoted by B,.., (fig. 11.4-3).

Suppose first that " — ¢/, (¢’ < t""), while ¢’ remains fixed. Then the
arc L,.,.. shrinks to the fixed point w(¢'). The mapping ;(w, 1) is contin-
uous at w(¢’). Hence, given ¢ > 0, we can find a circumference about
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Y, tangent
sat Lin w(t)

Fig. 11.4-2. Proof of the continuity of the function g at w = w(?)

(t’) with radius ¢ such that all points of R,. within this circle correspond
to points z with |z—A(z")] < e. If ¢ is sufficiently near ¢’ the arc
Ly is inside jw—w(t")} < 6. If w tends to a point of this arc then
the corresponding point g(w, t) tends to a point the distance of which
from A(¢’) is not larger than &. Hence B,,. is contained in the region
lz—A(")| < .

Secondly we suppose that ¢ — ¢/, while ¢’ remains fixed. Since
G(w, t') is continuous at (¢”) it is at once clear that the tip of Syp-
approaches A(¢"") as ¢’ — ¢, for then w(t') - w(t”).



Fig. 11.4-3. The mapping of |z| < 1 onto the region [w| < 1 slit along the arc L
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If in (11.4-21) we replace z by f(z, t'), we get

1) 1 e peey 1)
logf en J Re F(e'*) 75— G D) dop.  (11.4-22)

Referring to the expansion (11.4-14) we see from this by taking z = 0
that
1 (* ;
vt = - f Re F(c*)d. (11.4-23)
T a

Now we apply a mean value theorem of integral calculus (stating: if
7(¢) and g(¢) are continuous in the interval o < ¢ £ f and g(¢) does not
change sign, then there is a number @ in the interval such that [% £(¢) g(t)dt
= f(0)J2g(£)dt) and we obtain

f@t) 1 (o Hf(z0) € (2 O [P e
log @0 = (Re i) +ilm ey t’))f Re F(e**)do,

-4

(11.4-24)

where 6; and 8, are in « £ ¢ £ §. Dividing corresponding members of
(11.4-24) and (11.4-23) we find

17; ' i0s ’ i, r
logf(z, t")=logf(z,1) _ g "' +f(zt) _; e"+f(z1)
t//_t/ e'o‘—f(z, t’) eu‘);_f(z’ t/)
(11.4-25)

Making ¢ - ¢ = ¢', then, on account of the fact that e — A(¢), e — A(¢)
simultaneously, the expression on the right of (11.4-25) tends to

M) (D) 1+k(0f ()
HO—f(z, 1) 1-x()f(z, 1)
where x(¢) = 1/A(t), |x(#)] =1 and is continuous for 0 < ¢ < ¢,. Since

we may interchange the réles of ¢’ and ¢, the expression on the left of
(11.4-25) tends to

(11.4-26)

= logf(z,1) = Y njot,
ot fz, 1)
Summing up, we may state the following fundamental theorem
The function f(z, t), defined by (11.4-19), satisfies the differential equation

ow _ w 1+x(t)w
ot 1—w(t)w’

(11.4-27)

with the initial condition f(z, 0) = z. The functions e°f(z, t,) for varying
positive ty and functions k(t) form a dense subclass of . The functions
k(t) are continuous for 0 < t £ty and k()] = 1.
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The differential equation (11.4-27) will be referred to as Léwner’s
differential equation.

11.4.8 — THE EXISTENCE THEOREM

We shall complete the foregoing considerations by proving the theorem
Let x(t) be a continuous function of the real variable t throughout an
interval 0 < t < 1y, satisfying the condition \k(t)| = 1. There exists a
unique solution w = f(z, t) of the differential equation
0 1 t
w_ ., +x(t)w

(11.4-28)
ot 1—x(t)w

such that f(z, 0) = z, |z| < 1. For any fixed t the function €f(z, t)
belongs to the class .

The differential equation (11.4-28) with initial condition w = z at
t = 0 is equivalent to the integral equation

W = zexp (— fm" dr) . (11.4-29)

o l—=x(t)w

We may solve this equation by applying Picard’s method of successive
approximations. To this end we construct a sequence of functions by the
recurrent relations

t
wo=z,w,,=w,,(z,t)=zexp(—fl—ix—(z)&—_1dr), n>0.
o 1=x(t)w,_y

(11.4-30)

An casy calculation shows that Re (1+xw)/(1—xw) > 0 if [w| < 1. Then
it follows by induction that |w,| < |z|, as |z| < 1 and that w,(z, ?),
n > 0 considered as a function of z is holomorphic throughout |z] < 1
and considered as a function of ¢ is continuous in the interval 0 < ¢ < ¢,.
In particular

wi(0,8) =0, wi(0,8) =e"?, n>0.

If ¢ = 0 all functions reduce to z. Differentiating (11.4-30) we get

ow, 14+xw,_,

—-w, 11.4-31
ot T—rw,_y ( )
and thus
a(wn wn—l) (W —w _1) 1+KW,,_1
ot v 1—kw,—,

2KW, 4

—(Wpe1—Wyz) (T—xw,— Y1 —kw,_5)



11.4] LOWNER’S THEORY 231

All functions w, coincide at ¢+ = 0. Hence, by integrating,

1
w, 1——j<w Wat) Tl
—KW" 1
t 2Kw, _
—f(wn—l_wn—Z) !
0 (l_an l)(l KW, 2)

Now we use the additional assumption that |z} < r < 1. Since |xw,|
Lzl £r,n=0,1,..., we have evidently

t t
lwn—wn—ll = Af |W,,—W,,_1Id‘C+Bf lW,,_l—W,,_zldT,
0 0

or
t t
lwn_wn—ll_Af IW,,—W,,_lldT é Bf |Wn—1—'Wn—2|dT,
(/] 0
with
a=1*r g (11.4-32)
1—r (1-r)

This remains true if we multiply both members on the left by e~4'. We
obtain

t t
J‘ _a" e_Atlwn_Wn—lldr = Bf lwn—l —‘W,,_zld‘l.',
0

00T

or

t
e_Atlwn_wn—ll é Bf Iwn—l_wn—Zlde
0
so that we finally have
t
lwn_wn—ll = eA'OBf |W"_1'—W"_2|d1.'.
0

By direct computation we see that |w, —wy| < K, where K is again a
constant depending only on r. By induction we find

(e**oBr)~ ! (e**°Bt,)" ™!
(n—-1)! — (n—1)!

It follows with reference to Weierstrass’s test (section 1.5.4) that the
series

IA

Iwn—wn—ll .S_ K

W0+(W1'—WO)+(W2—W1)+ .

is uniformly convergent as regards z in |z] £ r and as regards ¢ in the
interval 0 < ¢ £ ¢,. Hence the partial sums w,(z, #) tend to a function
w = f(z, ) as n - oo .which is holomorphic throughout |z] < 1 (section
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and f(z,, t) take equal values for some ¢ = #; then f(z,, ) = f(z;, ©)
throughout the whole interval 0 < ¢t £ ¢, and in particular f(z, 0)
= f(z5,0), i.e., z; = z,. Since f'(0, t) = e™* the function e'f(z, #) belongs
to the class <.

It should be noticed that the mapping of the unit circle as given by
e'f(z, t) is not necessarily always a slit mapping.

We conclude this section with a final remark.
Suppose that the conditions of the above theorem are fulfilled for all.
From (11.4-33) we deduce

ef(z, 1) = zexpf; (1— ii:j;) dt = zexp (—J: 12_K£f dr) .

Since | f(z, #)| < |z| the integral in the last member is uniformly con-
vergent as f — oo and z remains in a closed subset of |z| < 1. We may
apply Weierstrass’s theorem of section 2.20.5 and it follows that the
limiting function

£(2) = lim e (z, 1) (14.4-35)

is holomorphic throughout |z| < 1.

11.5 — Applications of Lowner’s theory
11.5.1 ~ THE SHARP FORM OF BIEBERBACH’S ROTATION THEOREM

At the end of section 11.2.4 we obtained a limitation of arg f’(z), if
f’(2) belongs to the class &. But the result (11.2-23) is not sharp. The
exact form of the rotation theorem has been obtained by Golusin by
using Lowner’s theory. We know that the class of the solutions
of Léwner’s differential equation, by taking all possible functions k()
includes the slit mappings and with them we may approximate a given
function of the class & as closely as desired. Hence we may confine
ourselves to the functions €'f(z, t), where f(z, t) satisfies a differential
equation of Lowner.

In the case that we wish to estimate the argument we can omit the
factor €' and it suffices to consider a function f(z, £) which satifies the
equation

of(z, 1 , 2
M) g,y LS G) 2 ,
ot 1-x(0)f(z, 1) K K(l—Kf)
while f(z, 0) = z, writing f = f(z, t), k = «(¢) for short. Differentiation
with respect to z yields

8 2
1) = £ (1

)
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or
_ 2

d . 4
a—tlogf (z)=1 )

Equating imaginary parts we obtain

o . o 2Im(1—xf)? .
aargf (z,1) = “H—Kfld' . (11.5-1)

On the other hand we also have
_benf (4w )(1-xf)

0
—logf =
ot e/ 1—xf [1—xf]?
Equating real and imaginary parts we get
d 1-|f?
—lo = — 11.5-2
py glfl T ( )
and
0 2Im«f
—argf = — . 11.5-3
ot ef I1—xf]? ( )
Combining (11.5-1) and (11.5-2) we deduce
— 2 —
2argf’=2lm(1 ';f) 1 2M'
L=xf]* IfIL=If])* ot

ot
From De Moivre’s theorem we deduce, since |k(?)] = 1,

Iiljl(—l;—;[{)z = sin (2 arg (1 —«f)).

Hence, since |«(¢)] = 1, (fig. 11.5.1),

kf

Fig. 11.5-1. The inequalities (11.5-4)
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sin 2 arcsin {f]) = 2If[J1=1f12, if |f] <

lm (1—1f | _ J
[1—xf1? .
L if |fl z-5z
\/
(11.54)
Because of —3]f1/0¢t > 0, we have

-4 alfl . 1
——— T, if Ifl£—
s < | VITUT G 2
ot -2 -0lf1 iU 2 1
I =172 o’ J2

Integrating from ¢ = 0 to ¢ = ¢, > 0, we obtain for |z] £ /\/2

to _ |1z]
|argf’|§f ——;Mdt=f @c_
o 1112 ot et /1= X2

and for |z| = 1/,/2
N2

< 4 arcsin |z|,

S nt+log——.
13 X(1—x%) 1—|z?

jargf] < f

Gt /1= %2
Thus we proved:
If £(z) belongs to the class & then we have the inequalities

4dx +J"zl 2dx 2|2

4 arcsin |z, lz| < 1/4/2,

argf'(z)l £ 2
el = {n+log ﬂ~2 1>z = 1/y2. | 1:5-3)
1-|z]

These inequalities are sharp. To prove this we must find x(#) such that
if f(zo, t) is the solution of (11.4-28) with f(z,, £) = z,, 2z, being a value
of z within the unit circle, then equality holds in (11.5-4). The resulting
equation enables us to calculate xf(zq,?) in terms of |f(zq, )|, and
| f(zo, )| in terms of ¢ by means of (11.5-2) and (11.5-3). We can then
choose x(t), so that equality holds in (11.5-4). When this is done for
0 =t £ t, then (11.5-2) and (11.5-3) and equality in (11.5-4) will hold
simultaneously and we shall have

|zol _
f ddx it 1zol < 142
|£(zo, 10)| \/1 —x2

‘J‘l/ﬁ 4dx +o ERK
|£(zo, to)] \/1 —x2 1—|zo

and if | f(zo, #o)] < 1/4/2, and so for all large #,. For, f(zo, ) — 0 as

argf'(zo, to) =

a0l 2 IV
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11.5.2 — THE RADII OF CONVEXITY AND STARSHAPEDNESS

In section 11.3.5 we obtained the result that a function f(z) of class &
maps the circumference [z] = r < 1 onto a convex curve if and only if

1+Rez—j{7'('£—;) >0, Jzd=r<l1 (11.5-7)

The inequality (11.2-11) gives for f(2)

ReZ @) 5 T0r=8)
f'@ — 1-r
Hence our condition (11.5-7) is satisfied for those values of r for which
2r*—4r > r*—1 holds, or r®*—4r+1> 0, ie., r <2-./3.
If
z
zZ) = —o

16 =
then

zf"(z) 22 +4z

fa  1-2°

and this is real and less than —1 for —1 < z < /3 —2. Thus this func-
tion does not map |z| = r onto a convex curve for r = 2-—\/.";. Summing
up we have

By all functions f(z) beloning to the class & the circumference
|zl = r <1 is mapped onto a convex curve if

O<r<r,

r, = 2——\/3

is called the radius of convexity.

A similar but much more difficult problem arises if we ask for the
radius of the largest circle |z| = r such that the image of it by f(2) (this
being again any function of class &) bounds a starshaped region with
respect to the origin. The condition for this was seen in section 11.3.4
to be (comp. (11.3-7) and (11.3-6))

where

ReZX @0, z=r<t,
| 1@
ie.,
zf'(z) _8
\ arg —f(z) < in. (11.5-8)

In order to obtain sharp bounds for the expression on the left of (11.5-8)
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we apply (11.5-6) to the function

((5) e
(A=lzol)f"(zo)

this function belonging to the class & if and only if f(z) belongs to .#.
At z = —z, we have

a(z) =

g(—2o) - £(zo)
—Z (1—|20|2)Zofl(zo)

and thus (see (11.5-6))

‘ arg 20 f'(20) = |arg 9(—2o) < log 14|z ,
f(20) —~Zo 1~z
This result is sharp, for replacing in the first member fbygatz = — z,

we obtain (11.5-6) agains, whence:
By all functions f(z) belonging to the class & the circumference
|zl = r < 1 is mapped onto a curve which bounds a starshaped region
with respect to the origin if

0<r<r,

where the radius of starshapedness r, satisfies the equation

147

lo
gl—n

— 1

i.e., 7, has the sharp value

ry = tanh in.

11.5.3 — THE THIRD COEFFICIENT

Loéwner’s theory enables us to obtain an exact upper bound for |as]
in the Taylor expansion of f(z), this function belonging to the class &.
We may confine ourselves to functions of the type €'f(z, t), where
f(z, 1) is a solution of Léwner’s differential equation with f(z,0) = z.

Let

o0
Sz, t0) = €"(z+ Y a,2"), B=e" (11.5-9)
v=2
It is convenient to introduce the function

92, 1) = F(F(z, 1), o) = pei(z+ izcv(t)zv) (11.5-10)
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where f denotes the inverse of f. Thus

gto(f(z$ t), t) =f(Z’ tO)
and differentiation with respect to ¢ yields
%90 o | 990 _
oz ot ot
It follows that in a neighbourhood of z = 0 we must have (comp.

(11.4-24))
09, 6g,o 1+1c(t)f

ot 1—x(O)f
In view of (2.16-7) we have

et_'ocn(t) = -2_LTCiJ‘ gtO(g, t) C’ n = 2’ 33 LR ]

Cn+1

C denoting a small circle around the origin. Differentiation with respect
to t (section 2.9.1) yields for n = 2

agto(cs t) dC
i c ot Cn+1

L+ 3 ve, (23 e L
c v=2 v=1 C

e (eu(t)+ (D) =

_ 1 [ 0g, 14Kl df _ g’
2m c 00 1=kt "t

n—-1
=& nc,(N+26" () +2 Y pe(Ox"TH(1), 0=t St
p=1
Hence
n=1
i) = (n—1D)c,()+26" () +2 Y pe ()" "H(2). (11.5-11)
n=2
If ¢t = 0, then f(z,0) = z, g,,(z,0) = f(z, to), ¢,(0) = a, and if 7 = £,

then g,(z, %) =z and so c¢,(t) =0, n= 2. Thus we have the
boundary conditions

Cn(o) = a,, Cn(to) = 09 n g 2.

From (11.5-11) we can determine successively the coefficients. In fact
to n—1

et) = —2e7 1> f e 1)+ Y pe, (k" H(x))dr,  (11.5-12)
¢ n=1

as may be verified by differentiating both members. In particular

cy(t) = —2e'Jl'°e"'1c(r)dr, c,(0) = —-ZJtoe_’x(r)dt. (11.5-13)
t 0



2% ( f:oe’ i (r)dr—2 (Jjoe"’x(t)dr) 2)
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Let C denote a small circumference about w = 0. From

1
v = = 2
C

C"+ 1
we obtain by differentiating with respect to ¢

- _ 1 [ 9edl) dl _ 1 [ d9(0) 1+x(t) dl
e(b"(t)+b"(t))_2ni c Ot ™Y 2mide o 1-w(t) (n

= & [+ S e a2y e “
2niJe vz v=1 &

= e'(nb()+2x" (1) + Z:g:vbv(t)x"' (1),
whence )
(1) = (n— Db+ 27O +2 T vb (), (11:5-20)

throughout the interval 0 < ¢ < ¢.
Taking into account (11.5-18) we see that the initial conditions for the
coeflicients are

b 0) =0, b,(to) =", nxz2

Thus the equations (11.5-20) are equivalent to
t 0
b,(1) = 2e("‘”'f e O D)+ Y vb ()" (1))dr.  (11.5-21)
0 v=2

By induction on # we may prove that the b,(¢) attain their maximum
possible value for any fixed ¢, > 0if x(#) = 1 identically. Then all these
coefficients are real and positive. Moreover, b, = e~ """ p (¢,) in-
creases with increasing ¢, as follows again from (11.5-21). As a conse-
quence of this the upper bounds for the coefficients b, are obtained in the
limit if ¢, — co.

The extremal function may be obtained by solving Léwner’s differential
equation with x(¢) = 1 identically. In this case it takes the form

ow w41
_=w__’
ot w—1
or
?LV(E_L) - 1
ot \w w4+l ’

A solution w(z, t) with w(z, 0) = z satisfies the relation

w

(]_Tv)—i = C_tC(Z),



11.5] APPLICATIONS OF LOWNER’S THEORY 243

where ¢(z) does not depend on ¢. By taking # = 0 we find
clz
(=) = (1 +z)2
and it appears that f(z, t) satisfies the relation
ef(z,t)  z
(1+7(z 0} (L+2)

Since ¢'f(z, t) remains bounded as t — o0, we conclude that lim,_, , f(z, #)
= 0, whence

tlimef(z 1) = (1+ )2

Thus we see that the extremal function for the problem under consid-
eration is, therefore, the inverse l\c'(w) of this function.

It remains to evaluate the coefficients of the expansion of Iz(w) near
w = 0. Let us write

Ew) =Y k,w
v=1

According to (3.12-8) we have

27rm (1+C)2n ﬁfc vgo ( v ) = (nz-:l)

In particular, k1 = 1. Thus we have proved:
If w = f(2) is a function of the family & and if

z=f(w)=w+ }__:vawv

is the expansion of its inverse near w = 0, then

bl < L (2”) n2
n+1

(11.5-22)

Equality holds for the coefficients of the expansion of &(w), the inverse of
the function k(z) = z/(1+2z)*. It should be noticed that this function is
essentially Koebe’s function (11.2-5).



CHAPTER 12

ANALYTIC FUNCTIONS - RIEMANN SURFACES

12.1 - Analytic continuation

12.1.1 - INTRODUCTION

Strictly speaking the notion of a function is a pair of two things, viz.
a set & of complex numbers (possibly including o) and a rule f which
assigns to every element of & a complex number or oo, called the value
f(z) of f. Sometimes it is convenient to exhibit the set © and we denote
the function defined on it by (f, ©). It is clear that the rule f applies to
every subset &' of €. The pair (f; &) is then called a restriction of the
function. It may happen that another rule yields the same values of the
restriction. Thus, for instance, the function defined by the rule

e
1-z
applies to the whole z-plane, from which z = 1 is excluded (supposed we

do not admit the value c0). The restriction to the region |z| < 1 can be
obtained by means of the rule

(12.1-1)

Y 2 (12.1-2)
v=0

It is natural to consider the inverse problem. Given a function (f, &')
and a set € including &', we may ask: is there a function (g, &) such that
its restriction with respect to &' is the same as (f;, &')? If so, this new
function is called an extension of the given function, It is true that this
problem can be solved in many ways, e.g., by assigning arbitrary values
to the elements of & which are not in &’. It is clear that the interest of
the problem lies in the fact that the extension also belongs to a certain
class of functions. In our case we consider only holomorphic functions
and the process of extension is then called analytic continuation.

Let R, and R, be overlapping regions, i.e., the intersection of these
regions is not empty. Let £;(z) be holomorphic in R, and f;(z) in R,.
If now f] and f, define the same restriction in the intersection of &R, and
R,, that is, if £,(z) = f,(2) for all z in this intersection, then f; is said
to be a direct analytic continuation of f, into R, . It is clear that according
to this definition f, is a direct analytic continuation of f, into R;.

[244]
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to the distance of the boundary to the origin. The function fis regular at
those points of the circumference which are not boundary points. Without
loss of generality we may assume that the radius of convergence of
(12.1-7) is unity.

The sequence of partial sums

sfz) = Z:Ocvz“, n=0,1,..., (12.1-8)

is divergent at every point outside the circumference of convergence.
In certain cases, however, we can find a subsequence of partial sums
which is also convergent at points of a region which extends the region
of convergence of the initial series (12.1-7). A power series with this
property is called hyperconvergent. It is obvious that a power series can
only be hyperconvergent in a neighbourhood of a point of the circum-
ference of convergence where the function f(z) is regular. We call a
point of this kind a regular point of the series (12.1-7).

As we shall see the phenomenon of hyperconvergence can occur in the
case of power series which possess gaps i.c., certain coefficients are zero.
Thus we consider series of the type

@
Y e,z*, (12.1-9)
vy=0
where 0 < A, < 4; < ...Is an increasing sequence of integers. Now we
shall prove the following theorem due to A. Ostrowski:
Suppose that the power series (12.1-9) has the radius of convergence 1
and that there exists an increasing sequence g, [y, . . ., of suffixes such
that

Appr1— Ay, = 94, , n=012,... (12.1-10)
where § > 0 is a fixed number. Then the sequence of partial sums
HUn
$,(2) = Y ¢,z (12.1-11)
v=0

is convergent in a region of which every regular point of (12.1-9) on the
circumference of convergence is an interior point.

Let f(z) denote a function coinciding with the sum of (12.1-9) for
|]z] < 1 and being holomorphic in a larger region. Without affecting the
generality we may assume that it is regular at z = 1. If § > 0 is small
enough, it is regular at the points in and on a circle with radius 3 +6
about the point z = 3. We apply Hadamard’s three circles theorem (sec-
tion 2.13.4) to the function

9u(z) = f(2)—s,,(2) (12.1-12)

and the circles with centre z = }and radiir, =1 —6,r = i +e¢,r, = 1+9,



IA

s\ S\ Aup 1 s\ (1+8)2,
<K Z (1 5) _ K (1 5) K, (1 (5)
v=Au 41 1—‘77 1— 1-6 1—’1 1—7’]
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where we have employed (12.1-10). The constant K, depends only on
4 and 7, but not on r. If A * is the maximum modulus of f(z) on the cir-
cumference with radius r,, we have for z on this circumference

* " " 14+8\*
M,=M +§ leJlzi* € M +K§ .
-n

< (e K (L@)‘“nd (1+5)‘“"
- 1_1—71 1-7n 1—n

140

v=0 v=0

where K is again independent of n. Inserting the estimates for M, and
M, thus obtained into Hadamard’s inequality (12.1-13) we find

(1+8)log 1729

5 long‘:
Mlogr2/r < K,K, {(1 é) 1+25(1+5) 1—25;1%‘
1-n 1-n

The expression between the braces tends to

(1_5)(14-3) log (1 +26)(1 +5)—10g(1—26)

as ¢ — 0, n —» 0, and the logarithm of this last expression may be written
as

((1 9)log(1+25)log(1 5) _ log (1—28)log (1+9)

-8 Y 5 )(_252)'

For sufficiently small é this expression is negative. As a consequence we
may take ¢ and # so small that the original expression between braces is
less than 1. Since 4,, » o0 as n — oo it is possible to make M as small
as desired, provided that n is large enough. This concludes the proof of
the theorem.
The following example may serve as an illustration. Consider the series
of polynomials
] 2\4V
fo) =3 G (12.1-14)
v=1 Av
where A4, is the maximal coefficient in the polynomial (z+z%)*". Evidently,
in each of the polynomials occurring in (12.1-14) the coefficients do not
exceed unity and one of them is actually equal to 1. The highest term in
the polynomial corresponding to n is of degree 2 x 4* and the lowest of
the next polynomial of degree 4"*!. Hence, if we expand f(z) in powers of
z, each term is a single term of one of the polynomials occurring in
(12.1-14). On applying the Cauchy-Hadamard test (1.6-11) we deduce
that the radius of convergence of the power series is unity. As a conse-
quence, the series of polynomials is convergent for |z| < 1. But since
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does not belong to this collection. In fact, it cannot coincide with
(12.1-23), nor with (12.1-24), etc. There is, however, according to assump-
tion, a root p, at which this series is regular. Hence, among the series
(12.1-22) there are at least two which are regular at a point of the circum-
ference of convergence (for the set of roots of unity is enumerable and
the collection of series (12.1-22) is not) and the same is true for the
difference of these series. In this difference, however, f(z) is cancelled,
and it is therefore a power series satisfying Hadamard’s condition and
being still regular at a point of the circumference of convergence. This
means a contradiction.

The proof reveals that the collection of the series (12.1-22) is not
enumerable. Hence, in a certain sense, the non-continuability of a series
beyond the circle of convergence is the most common situation.

12.1.6 ~ ANALYTIC CONTINUATION ALONG A PATH

Let L denote a path leading from z = a to z = . We may assume that
L is represented by the function z(¥), 0 £ ¢ < 1, such that z(0) = q,
2(1) = b and that z(¢) is continuously differentiable for 0 < ¢z < 1 and
still continuous at the terminal points. Suppose further that to each ¢
we may associate a power series f(z) whose disc of convergence &, has
the centre z(¢). For any ¢,, if ¢ has the property that z(¢) lies within &,,
for all #, £ £ £ t,, we shall require that £,(z) be a direct analytic contin-
uation of f, , (fig. 12.1-3). We then say that f, has been obtained by
analytically continuing f, along the path L. Now we state

Analytic continuation of a given power series f, along a path L leads to a
uniquely determined power series f.

Let £, and g, denote two continuations of f, = g, along L. For any ¢,
the power series f;, and g,, converge in a disc |z—z(¢,)| < r(t,), where
r(t,) is the smallest of their radii of convergence. Thereisa é = §(¢,) > 0
such that |z(£) —z(,)| < r(t,) for all [t—¢,| < 6. Hence for these values
of ¢ the series f, and g, are direct continuations of f;, and g,, respectively.
Let now ¢, denote the greatest lower bound of the ¢ for which £, and g,
disagree. Clearly ¢, > 0. As a consequence there is a ¢, with |¢; —1,]
<d(1o) such that f, = g,,. But the discs of convergence of f;, and those of
f:, and g, overlap. In the overlapping area the power series under con-
sideration are identical. It follows that Jfio = 1o i-€., the series agree
at 7, and, consequently, for all ¢ satisfying |t —7y| < J. It follows that
to < 1 leads to a contradiction.

The radius of convergence of a power series is either identically infinite,
or a continuous function of the centre of the disc of convergence, where it
is understood that the elements (f, a) and (g, b), a and b being the centres
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z(ty) L z(t)

L *
z*(ty) z*(t2)

Fig. 12.1-4. Analytic continuation along different paths.

In order to prove this we consider the partition 0 = ¢, < t; < ...
< t, =1, such that for all ¢ in the interval t, =t £ £, k=0,...,n—1
we have [z(£)—z(#)] < %p. The sequence of discs &, |z—z(f,)| < ry,,
gives us the continuation of f; to f; by a finite succession of direct con-
tinuations. Let L, represent the line segment joining z(z,) to z*(z,).
Continuation along any path, lying entirely within the disc of convergence
of a power series, leads to the same series, for each direct continuation is
merely a rearrangement of the original series. Thus continuation of f;
from z = a to z(¢,) along L and along the composite path composed of
L* from z = ato z*(¢,) and then to z(z,) along — L, (thatis L, percorsed
in the opposite direction) both lead to the same series f,, . Now we con-
tinue f,, from z(¢,) to z(¢,) along the path L, followed by L* from z*(z,)
to z*(z,) and then —L,, obtaining the same series f;,, (fig. 12.1-4).
In this process we traced L, successively in both directions, the net
effect being that we get the same result as we left out L,. Thus we have
continued f, along two paths to get f;,, namely L from z = a to z(¢,) or
L* from z = a to z*(z,), followed by —L,. We repeat this stepwise
process to b in a finite number of steps and end with f; = g,.

This theorem implies that for purposes of analytic continuation we can
always replace a path L by a polygon approximating L and which has its
vertices on L. We do not need to consider all elements on the broken
line, for if the vertices are sufficiently dense it will be sufficient to use only
the elements whose centres are vertices. Otherwise we may have to inter-
polate intermediary points.

12.1.7 — PERMANENCE OF FUNCTIONAL RELATIONS
Consider a collection of function elements
(91> %), - (94, %)
defined throughout a disc f. Let
fwy,..ouw,) (12.1-28)

denote a function of # variables such that its first order partial derivatives
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element (fy, &) throughout a region R, then every point of R is the centre
of at most an enumerable set of function elements of F.

Thus the set of values assigned to a given value of z is at most enum-
erable.

We start with (fy, &), where &, is included in . The various elements
of F with the same centre z = a as the initial element are obtained by
analytic continuation along suitably chosen paths in &. With each such
a path we associate a finite sequence

(fO ’ @0)3 (fl s S%1)’ »ees (f,., S{n) (122—1)

where &, has the same centre as &,. Without loss of generality we may
assume that the centres of the intermediary discs are rational points
The minimum number of elements in (12.1-1) performing the same con-
tinuation be m. This number shall be called the length of the sequence.
The number of sequences of a given length is enumerable, for we have
for the choice of the centres certain subsets of rational points at our
disposal. Since the lengths are natural numbers we finally obtain an at
most enumerable set of sequences joining two function elements with a
given centre.

Let :R* denote a subregion of a region R on which an analytic function
F is defined. Starting with a function element whose centre is in :i* and
performing only analytic continuation throughout Ji* it may happen
that the analytic function F* thus obtained assigns only one value to an
arbitrary point of $*. Then F* may be interpreted as a single-valued
function which is referred to as a single-valued branch of F defined on R*.

12.2.2 — THE DERIVATIVE AND THE INVERSE OF AN ANALYTIC FUNCTION

If the function elements (f;, &) and (f, &,) are direct analytic con-
tinuations of each other, so are (f;, &) and (f;, &,), where the prime
denotes differentiation. Hence

The derivatives of the elements of an analytic function F(z) are equivalent
and constitute again an analytic function.

This latter function is called the derivative F'(z).

The proof of the following theorem requires more attention. We recall
that a function element (f, &) is invertible throughout & if it possesses
an inverse there. In section 3.12.3 we proved that fis invertible at z = z,
if f'(z5) # 0. Otherwise stated, if f(z) assumes its value f(z,) only once.
Now we assert

The inverses of the invertible elements of an analytic function F are
elements of an analytic function F , called the inverse of F.

Excluding the trivial case that F is a constant we observe that every
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analytic function has invertible elements, for the derivatives of the
elements are not identically equal to zero. Let

@

flz=z0) = 3 ez—zo)

be a power series. Referring to section 3.12.5 we may conclude that
f(z—z,) assumes the value f(z; —z,) only once if z, is sufficiently near z,.
The point z, may be an exception. Hence the rearrangement g(z—z,)
is invertible at z, as is shown in section 3.12.3.

Next we consider two invertible elements (f,, &) and (f;, &,) of the
same analytic function F, having the centres z, and z; respectively. We
contend that they can be joined by means of a sequence consisting
exclusively of invertible elements. There is certainly a collection (f;, &),
0 < ¢t =1, where &, has its centre at the point z(f) on a path joining
z(0) and z(1). By ¥ we denote the set of those values of ¢ of the interval
0 < ¢ £ 1 for which the element (f;, &,) can be joined to (fy, &) by a
sequence of invertible elements. Let ¢, be the least upper bound of &
and let 8* denote a sufficiently small disc around z(#,) so that the function
[, assumes everywhere in &%, with possible exception of the point z(z,),
each of its values once, i.e. with multiplicity equal to one. It is our aim
to show that ¢, = 1.

There is certainly a value ¢, in & for which z(¢,) belongs to &* and for
which f,, is a direct analytic continuation of f; . Let C, denote a path
along which a collection of invertible elements joins f,, to f,,. Supposing
to < 1 we should be able to find a value ¢, such that 1, < ¢, < I,
z(t,) in &* and f,, a direct continuation of £, . Let C, denote an arbitrary
path in §* joining z(#,) and z(¢,). If z(¢,) # z(¢,) we could assume that
C, does not pass through z(z,). Then, continuing along C; and C, succes-
sively, we should obtain a sequence of invertible elements joining fy
and f;,. We should therefore have that also ¢, belongs to ¥, which is
impossible since #, is the least upper bound of ¥. Hence ¢, = 1. The
function f;(z) assumes its values at all points of the segment joining
z(ty) and z(1) in ®* only once and the direct continuations of the element
Jf1 with centres on the segment are invertible. Hence continuing £, along
the path consisting of C, and this segment we obtain a sequence of
invertible elements joining f, and f;. Thus we see that there is always a
path connecting z(0) with z(1), such that continuation along this path is
effected by invertible elements.

Finally we consider the function w(r) = f,(z(¢)) and denote by Few)
the inverse of f,(z) in a neighbourhood of z(¢). The elements f, form a
collection along the path w(#), 0 £ ¢ < 1, joining the elements fo and fi-
These elements therefore belong to an analytic function.
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12.2.3 - THE MONODROMY THEOREM -

An analytic function Fis said to be arbitrarily continuable in a region R
if each element of the function has a continuation along every path
emanating from the centre of the element and lying in R. It is clear that
every point of this region is the centre of the same number (finite or
infinite) of elements of the function.

Assume further that R is not the entire z-plane. Then the disc of
convergence & of every element of the analytic function F has, inside or
on its boundary points of the complement of the region R. For, let us
assume that & and also its closure is inside . Then the element, having
R as its disc of convergence, can be continued to every point of the bound-
ary of § and by an argument similar to that employed in section 8.2.1.
we see that the power series under consideration converges in a disc
larger then the disc §. This is an absurdity. If the closure of & is not
entirely in R the assertion is trivial. If R coincides with the whole z-
plane then this latter is the disc of convergence of every element of the
function F.

An analytic function F which is arbitrarily continuable in a disc & is
a single-valued function. In order to prove this, we consider an element
Jfo of F with the centre of & as centre. From the above consideration
follows that & is contained in the circle of convergence of f, and fj, is
holomorphic in &. Therefore, the function F has for each point in &
exactly one element with centre at this point.

These preliminary considerations enable us to prove the general
monodromy theorem:

An analytic function in a simply connected region and arbitrarily con-
tinuable in this region, is single-valued in this region.

Let & denote an open disc in the w-plane and assume that the region R
in the z-plane has at least two boundary points. By Riemann’s mapping
theorem we can find a univalent function w(z), holomorphic throughout
&, which maps R onto &. If £,(z), 0 £ ¢ £ 1, is a collection of elements
along a path z = z(¢) lying in R then the elements g,(w) = f,(z(w))
form a collection along the path w = w(z(¢)). Therefore, if f,(z) is a
continuation of fj(z) effected by the above collection, then g,(w)
= f>(z(w)) is a continuation of g, (w) = f,(z(w)) in &. The same is true if
we interchange the roles of R and . Hence, if F is an analytic function
in R the set of all g(w) = f{z(w)), where f(z) is an element of F, is an
analytic function G in &. If f(z) is arbitrarily continuable in R then g(w)
=f(z(w)) s arbitrarily continuable in . The consideration in the first part
of this section leads to the result that G is single-valued. As a consequence,
also Fis single-valued. The case that R has only one boundary point or is
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start with a function element of /z which takes the value 1 at the point
z = 1. The path may be represented by

z = e*™¥, 01,

In accordance with (12.2-15) we have

t
9(1) = f ™t 2mie*™dr = (e’ —1) (12.2-18)
o

Hence the value of (12.2-17) is —4%. Percorsing the circumference twice,
we must take into account that after one encirclement the integrand has
changed sign. Hence the contribution to the integral by performing the
integration a second time, starting with the final value of the integrand
after the first integration, is 4. The sum is zero, that is to say, (12.2-17)
takes the value zero if C is the unit circle percorsed twice.

If in (12.2-16) C is a closed curve and imbedded in a simply connected
region such that F(z) is arbitrarily continuable in this region, then
the integral vanishes. In fact, starting with a given function element
we obtain a single-valued function, as follows from the monodromy
theorem, and now Cauchy’s theorem is applicable. This result gives
us the possibility to modify the path of integration without affecting the
value of the integral.

In our illustrative example we may replace the circumference of the
unit circle by a path consisting of a rectilinear segment from 1 to &,
with 0 < ¢ < 1, a circumference of radius ¢ about z = 0 and finally a
segment from ¢ to 1. The integral along the small circle tends to zero as
e — 0, since the integrand remains bounded (Darboux’s inequality
(2.4-17)). On the second segment it has changed sign and so we have to
evaluate

o _ .
j Vxdx — j Vxdx = —%,
1 0

in accordance with the result obtained above.

12.2.6 - THE MONODROMY GROUP OF AN INTEGRAL

An extension of the integral considered in the preceding section is an
integral of the type

f (u—a)...(u—a,) du, (12.2-19)

the integration being performed along a path connecting z, and z, but
avoiding the points a,, ..., a,. From the z-plane we omit » half rays
emanating from a,, ..., a,, no two of them having a point in common,
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ay
ds

(:R (13

/ ) N

Fig. 12.2-1. Cuts in the z-plane issuing from the singular points

(fig. 12.2-1). There remains a simply connected region R. We suppose, of
course, that none of the rays pass through z,.

Consider now a simple closed curve starting at z, encircling one of the
points a4, ..., a,, say &, once in the counter-clockwise sense and having
only one point in common with the half ray L,, the half ray beginning at
a;. It arrives at a point z_ on L, and starts again from the same point,
now denoted by z, , on the “opposite” border of R along L,. The distinc-
tion between z_ and z, will be clarified presently.

Selecting one of the possible arguments of the integrand at z, we obtain
a certain function element

fo@) = @=ap)”. .. @—a)™
which can be continued throughout H. Continuing along the part
connecting z, and z_ we arrive with an element f. (z); continuing along
the part connecting z, and z, we arrive with an element f, (z). On the
other hand, if we start at z, with £,(z) and percorse the closed curve in its
full extend in the counter-clockwise sense, we arrive at z, with the
element
&, 2).

It follows that

f-(z) = e*™*f (2). (12.2-20)
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2w

z, av@

2w’ 2w+lw'

Fig. 12.2-8. The periods of (12.2-41) evaluated along closed paths
20w = 2(ay—og), 20" = 2(0y — ), 20+2w" = 2(ot; —o3)

respect to analytic continuation, as depicted in fig. 12.2-9. It starts from
a point z, between 0 and 1, encircles the point +1 once in the positive
sense, then 0 in the positive sense, then again + 1, but now in the negative
sense and finally again O in the negative sense. It may be replaced, without
affecting the value of the integral by four loops beginning and ending
at z, and percorsed in succession. Since the initial value of the integral

(o N )
ANV,

Ko

(4) : (3)
20

Fig. 12.2-9. The Jordan-Pochhammers contour
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Fig. 12.2-10. Analytic continuation around a singular point

These function elements are connected by analytic continuation and form
a part of the given analytic function F. This part may be analyzed by the
introduction of a local uniformizing variable ¢ such that

z=a+t" (12.2-48)

In the case that @ = oo, we put z = ¢ %, Every element in the disc §; and
related by analytic continuation to one of the functions of (12.2-47) is
holomorphic in z (except possibly at z = a) and, therefore, also in ¢
(except possibly at ¢ = 0). If ¢ describes a circle about ¢ = 0 in the t-plane
then z describes a circle about z = @ in the z-plane & times. Since f;, . . ., /},
are cyclically permutated after one encirclement, we find that they are
reproduced after 4 encirclements and, consequently, they are the elements
of a single-valued function of ¢ in a neighbourhood of ¢ = 0. Hence
these function elements may be expanded in a series of Laurent

k-]
fi= Z ity
v=—o00

........... (12,2_49)
fi= 2 cut’

If ¢ percorses only an arc ¢ = re”?, 0 £ 0 < 2z, then z percorses a whole
circle once and f; changes into f, f; into f; etc. Finally £, into f; . Hence
every series (12.2-49) is obtained from the preceding one by replacing ¢
by 7, where n = ¢*/% If we put

t = (z—a)'/






12.3] ALGEBRAIC FUNCTIONS 275

cients must satisfy in order that the polynomial may have repeated
zeros. It is clear that f(w) has repeated zeros if and only if Vander-
monde’s determinant

1owy..owi !
n—1
P = 1 .Wz.. W'z = H (wi—w,) (12.3-2)
A>qu
L ow,...wi™!
vanishes. If we put
o, =wd ... +w, k=0,12,.., (12.3-3)

we easily find that the square of this determinant is

(o) G100,

g 0y ...0 )
Pr= b R (123-4)

Op—1 Op+:-02p-2

The elements of this determinant are symmetric expressions of the zeros
of (12.3-1) and we shall describe a method for expressing them rationally
in terms of the coefficients.

Since

f) = a(w=wi) ... (w—w,)

we find by logarithmic differentiation

S _ 5 1

flw) CErwew,

or
rom=3 I
v=1 W=—w,
Now
FO0) _ T =f(w) _ a(w'—wD)+ ... +a,(w—w)
w—wyg w—wy W—=Wg

= a, W (@ Fa,w W T b (e tay Wt a, W),
where k = 1,...,n Hence
f'(w) = na,w™" +(na,- +a,o)w?
+ ... +(na,+ao.+ ... +a,0,-1)
Since also

f'w) = na,w '+ (n—1a,_ w" *+ ... +a,
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12.3.5 — BEHAVIOR AT THE CRITICAL POINTS

In a neighbourhood of a non-critical point z = a (or z = ) the ele-

ments w;(z) are regular and may be expanded in power series

w; = Co;+Cyit+ .. o, i=1,...,n
with ¢t = z—a (or t = 1/z). They converge in each circle which does
not contain a critical point.

In the case of a critical point the situation is more complicated. Let
now z = a denote a critical point. We consider the same circles as describ-
ed in section 12.2.7, (fig. 12.2-10). Since there are in each disc §;,i=1,
2, 3 only r function elements we must get back an initial function element
in one of the discs after 4 < n encirclements about the point z = q.
Thus we see that the set of » function elements is divided into a certain
number of cycles. Suppose that w is defined in & and belongs to a cycle
of & elements. Introducing the uniformizing variable ¢t by z = a+:",
we see that w is holomorphic in a disc about # = 0 in the #-plane, except
possibly at ¢ = 0. If a,(a) # O then w is also regular at ¢ = 0. This may
be seen as follows. Let w denote a root of the equation

ap+a,w+ ... +a,w" =0
and let
M=max(ﬂ,...,w).
|aa| la,|
Then {w| < 1+ M. For we have

ao

—l=——4 ——+... +=
a,w"  a,w a,w
and if {w] = 1+ M we should have
1<|%| Ly ol o M
a,| [wl" las) wl — M+1

Hence the functions w, remain bounded as ¢ — 0 and by the Riemann’s
theorem (section 2.8.3) they are regular at ¢ = 0. In this case the point
z = a is an ordinary branch point.

There is only the need of a slight modification of the reasoning if
a,(a) =0. Then we consider the function a,(z)w instead of w. The values
of this function remain bounded as z — 0 and it follows that z =a
is an algebraic pole.

Summing up we may state

The singularities of an algebraic function are algebraic and they occur
at the critical points.

In the next section we shall prove that a converse of this theorem also
holds.
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denoted by a,(z) we find that all function elements w;(z) must satisfy a
polynomial equation f(z, w) = 0, where f(z, w) is an expression of the
type (12.3-6). Thus it is proved that F is algebraic.

Suppose now that the function element (w, &) satisfies the equation
f(z,w) = 0, where f is an irreducible polynomial of degree n in w.
The corresponding analytic function has only algebraic singularities and
at each point a finite number of elements. We have just shown that the
elements of F will satisfy a polynomial equation whose degree is equal to
this number of function elements. It will hence satisfy an irreducible
equation whose degree is not higher. But the only irreducible equation
it can satisfy is f(z, w) = 0: and its degree is n. Therefore the number
of function elements centred around a non-critical point is exactly »
and it follows that all solutions of f(z, w) belong to the same analytic
function.l

Summing up we have established

An analytic function is an algebraic function if at each point it has a
finite number of elements centred at this point and no other than algebraic
singularities. Every algebraic function satisfies an irreducible polynomial
equation f(z,w) = 0, unique up to a constant factor and every such
equation determines a corresponding algebraic function uniquely.

12.3.7 - NEWTON’S DIAGRAM

The problem of determining the expansion of an algebraic function
at critical points can be handled with the aid of a device known variously
as Newton’s diagram or as the method of Puiseux. Newton introduced the
device as an aid in curve tracing. It was adapted to the discussion of
algebraic functions by Puiscux.

Without loss of generality we may assume that the point under con-
sideration is at z = 0. The equation f(z, w) = 0 is written as

f(z,w) = ag(2)+ ... +a,zw" =0, (12.3-14)

where the a,(2), .. ., a,(z) are polynomials of z. Let the initial term of
a,(z), arranged in ascending order of the power of z, be ¢, z*. Hence
we may write our equation as

fzw) = (coz+ .. )+ ... +(cuz™+ .. Jw" = 0. (12.3-15)

We insert into this equation a series with indeterminate coefficients and
exponents
w=bzM4+b,2"4 ., (12.3-16)

assuming that 8, < 8, < ... and the coefficients b, b,, . . . differ from
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Let us denote the point (k, o) by 4, k=0, ..., n. If in f(z, w) one or
more powers of w are absent the corresponding points 4, are omitted.
Next we determine an angle 0 by the equation

tan 0 = B, . (12.3-21)

The exponents (12.3-19) can be represented geometrically if we draw
straight lines through the points 4, which enclose the angle 6 with the
negative horizontal axis. The line through 4, cuts the vertical axis at B, .
Then OB, = o, +ktan 0 = o, +kf,. Hence the inclination 6 of the
lines must be chosen in such a way that at least two of the segments
OB, are equal and that none of the other segments OB, are smaller. If,
for instance, B, and B, coincide, then A; and A4, are on the same line
and 6 is the angle between 4, 4, and the negative horizontal axis. More-
over, # taken in this way, none of the other points 4, is allowed to be
situated below the line 4; 4,. All lines of this kind may be found as
follows. We take a straight line through A4, and rotate it about 4, in the
counter-clockwise sense until a second point 4, is on the line, say 4,,.
If there are more points 4, on this line we denote by A4, the point, which
is the farthest to the right. The line 4,4, is then one of the desired lines.
We rotate again this line in the same sense, but now about 4, until a
point 4, is encountered. If there are other points 4, on this line 4,4,
we denote by 4, the point which is the farthest to the right. The line 4,4,
is again one of the desired lines. It is now clear how we can continue this
process. Finally we obtain a line which contains 4,.

For every 8, which we found in the above manner we find the corre-
sponding value of b, if we select among the terms (12.3-18) those which
have for this 8, the same power of z as factor. For this value of §,; all
those exponents o, +kp, are equal whose corresponding points 4, are
on a line 4,4,, in particular o,+pf; and a,+gpf;. This leads to an
equation

b+ ...+ b =0,

or, since b, #0,p<...<q,
cpt o+ b7 =0,

which is an equation of degree g—p. Thus we find a finite number
of possible exponents B, and to every B, corresponds a finite number
of coefficients b,.

The determination of more terms of the series expansions may be
effected in a similar way. Is b, z** one of the initial terms, we insert

w=bz+w,
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into the relation between z and w. We obtain an equation
(coz°+ .. )+ ... +(pz¥ "+ .. W =0, (12.3-22)

in which possibly fractional exponents of z are involved, but which is
similar to (12.3-19). We insert

wy = by L.

into this equation and determine 5, and b, as before. It should be noticed
that only those values of B, are accepted which are greater than 8,.
If B, and b, are corresponding values we insert

= b,z 4w,

into (12.3-22) and we obtain an equation in terms of w, which can be
handled in the same way as the equations (12.3-19) and (12.3-22).
In this way we obtain a finite number of series which satisfy (12.3-14),
at least formally. Our method, however, yields all expansions of this
kind and among them occur the n convergent series whose existence
has been proved previously. It might occur, however, that our method
produces other developments which satisfy (12.3-14) only formally.
It is not difficult to prove that this case does not occur. The reasoning
rests on the following remark. If the formal product of two power series
is zero, i.e., if all its coefficients obtained formally vanish, then at least
one of the series is identically zero. Let wy, ..., w, denote Puiseux-series
corresponding to the roots of the equation f(z, w) = 0; we have identically

flz,w) =cw—w))...(w=—w,).
If now wy is a formal Puiseux series satisfying f(z, w) = 0 we have

identically in z
(Wo—wy) ... (wo—w,) = 0.

Hence, for at least one k follows that wy = w,.

12.4 — Riemann surfaces
12.4.1 — INTRODUCTORY EXAMPLES

The definition of an analytic function as an equivalence class of power
series is satisfactory from a logical view-point, but does not visualize the
function in concrete cases. Riemann introduced a certain geometric
intuitive model of the behaviour of an analytic function which can also
be defined in a more abstract way. It is our aim to construct such models
in a few simple cases in order to prepare the way for more general
considerations.
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(i) The function

w=logz

maps the upper half of the z-plane onto an infinite strip 0 < Imw < zn
of the w-plane and the lower half on the strip —n < Im w < 0. Since
the positive real axis in the z-plane corresponds to the real axis in the
w-plane, the z-plane cut along the negative real axis (including the origin)
is mapped onto the strip —n < Imw < n. Applying the Schwarz
symmetry principle we see that the same region in the z-plane can be
mapped onto the strip # < Im w < 37 and so on. Thus to every point
2z, in the z-plane correspond the points w,+2nni, where » is an arbitrary
integer. This is in accordance with the fact that log z is a single-valued
branch of the general logarithm Log z, which assigns the values log z,
+2nni to each value z, # 0.

Let us now take a sequence {{R,}, k =0, =1, £2, ..., infinite in both
directions, of identical replicas of the cut z-plane. The first region R,
is related as described above to the strip ©,: —n < Im w < =, the region
R, is related to the strip &,: 7 < Im w < 3=, the region R_, to the strip
S_;: —3n < Imw < —=n. In general the region R, is related to S,:
—n+2kn < Imw < n+2kzn. Next we give :, two boundaries. If we
approach the negative real axis in the z-plane from below its correspond-
ing point in the w-plane tends to a point whose imaginary part is
(—mn+2kmn)i. The points of the negative real axis in correspondence with
the line w = (—n+2kn)i constitute the lower boundary of R, . Similarly
the points of the negative real axis in correspondence with the line
(n+ 2kn)i — and those points are obtained if we approach the negative
real axis from above — constitute the upper boundary of R,.

Now we may identify the lower boundary of R,,.; with the upper
boundary of R, for all integral values of k. Then we obtain a connected
surface consisting of an infinity of sheets covering the z-plane. If we
describe a circle about z = 0 we arrive at a point above the intitial point
and in the w-plane we move from a point in a certain strip to a point in
an adjacent strip along a vertical line, (fig. 12.4-1). Thus we see that to a
point of the surface as constructed above corresponds precisely one point
in the w-plane. Otherwise stated: the gemeral logarithmic function is
single-valued on the surface. This configuration is called the Riemann
surface of the logarithmic function.

Every point of the Riemann surface is above a certain point of the
z-plane and above each point of the z-plane (with exception of the
points z = 0 and z = ) there are infinitely many points of the surface.
Any point of the Riemann surface will be called a place, denoted by 3
and the multiply-valued function log z turns out to be a single-valued
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such that different points have different traces is called a sheet if it
cannot be enlarged to a region with the same property. It visualizes a
branch of the logarithm above R.

(ii) The function

w= {/E,

where 7 is an integer > 1, maps the upper half of the z-plane onto the
angular region 0 < arg w < =/n in the w-plane and the lower half onto
the region —n/n < argw < 0. The positive real axis in the z-plane
corresponds to the positive real axis in the w-plane such that z = 0
corresponds to w = 0. By the symmetry principle the z-plane cut along
the negative real axis also corresponds to the region n/n < arg w < 3n/n,
etc., (fig. 12.4-2).

Again we consider a sequence {:,}, k=0,...,n—1, of n identical
replicas of the cut z-plane, such that R, is mapped onto &y: —n/n < argw
< mjn, R, onto &,: n/n < argw < 3n/n, R,—, onto &,_;: 2n—3)xn/n
< argw < (2n—1)n/n. If we approach the negative real axis in the z-
plane from below its corresponding point in the w-plane tends to a point
on the line arg w = (2k—1)n/n (or —=/n if k = n). The points of the
negative real axis in correspondence with this half ray constitute the
lower boundary in the z-plane. Similarly the points of the negative real
axis in correspondence with the line arg w = (2k+ 1)n/n constitute the
upper boundary.

Next we identify the lower boundary of R, , , with the upper boundary
of &, for all values of k, 0 £k < n—1, where R, means R,. If we try to
make a material model of the surface thus obtained we see that it must
penetrate itself. From a logical point of view this is not of importance.
There appears a surface which covers the z-plane with n sheets and
above every point of the z-plane (except above z = 0 and z = ©)
there are n places of the Riemann surface. Above z =0 and z = ©
there is only one place. These places also belong to the surface and are
called ramification points or branch points of order n—1. In the case
of the logarithm the points z = 0 and z = oo are not traces of corre-
sponding places, i.e., the Riemann surface of the logarithmic function
has two boundary points. In the example under consideration the
Riemann surface is closed.

If 3, is a place on the surface, where the trace is not z = 0 or z = 0,
then it is clear that a sufficiently small part containing 3, can be mapped
one-to-one onto a disc in the w-plane around the corresponding point
wo. Itis also in one-to-one correspondence with the set of traces of all
places belonging to this part.

Consider now the place above the origin. The part of the Riemann



Fig. 12.4-2. The Riemann surface of the function z®
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ag

Fig. 12.4-3. Cutting the z-plane to prepare the construction of the Riemann surface
for an algebraic function

correspond to the z-plane cut along from 1 to + o0 and from -1 to
— 0. Again we take a sequence of identical replicas and identify the
various boundaries in accordance with the situation of the images in
the w-plane. Thus we see that above z = 1 as well as above z = —1
there are infinitely many branch points of order one. At z = oo the
function behaves like the logarithm. Hence there is no place above
z = co. We express this by saying that at z = oo the function presents
a logarithmic branch point.

In a similar way Riemann surfaces can be constructed for the functions
of Schwarz to be studied in Chapter 14, Their mapping properties give a
clear insight into the structure of these surfaces and the character of their
branch points.

(iv) Finally we wish to describe the Riemann surface of an algebraic
function defined by an irreducible polynomial

f(z,w)

whose degree in w is n > 1.

We now imagine the finite critical points a,, ..., a, to be joined in
any order, and then joined to the point co, by a simple line L composed
of rectilinear segments and a half-line, (fig. 12.4-3). If z, is not on L
we can find # function elements satisfying f(z, w) = 0 which can be con-
tinued throughout the cut plane so that, according to the monodromy
theorem, each gives rise to a single-valued holomorphic function. We
shall denote the resulting functions by w,(2), ..., w,(z). Corresponding
to these functions we take » replicas of the cut plane, whose points
bear the values of the functions w,(2), . . ., w,(2), respectively. If we con-
tinue these functions one at a time across one of the segments of the cut L,
connecting two successive critical points, each of these goes over again
into a definite one of these. We join the n replicas to one another in
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Fig. 12.4-4. Schematic representation of the connection of the sheets of the Riemann
surface of (12.4-2) between 0 and 1 (cross cut AA) and between — o0 and 0
(cross cut BB)

Additionally we have the expansion
wy = —i4z 4 Liz+3iz%+ ...

which is obtained from the series for w,, if we take the other value of
\/ z—1. In the same way as above we get the expansions for ws and wg.
Thus we see that above z = 0 there are two branch points of order two.
In a neighbourhood of z = 1 we have, if we expand i/} in powers

of z—1,

wi = 1+(z—1)+3(z-1)—-3(z—-1)*+ ...,

wy, = A+(z=1D)+1A(z—1)—2A(z—-1)*+ ...,

wy = A2+ (z— 1)+ 3% (2= 1)=322%(z— 1)+ .. .,

and w,, ws, we are obtained by replacing (z—1)* by —(z—1)*. Thus
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we see that above z = 1 there are three branch points each of order one.
In a neighbourhood of z = o0 we have

w = z*+z*V1—% A A TR PR S
R IR A o Bb T U

an expansion in terms of z~ %, The others are obtained by multiplying by
B, 1%, ..., 1%, where now

u = exp (2xi/6).

Thus we see that above z = oo there is a single branch point of order 5.
The values of the function at z = 0 are i and —i respectively, at z = 1
the values are 1, A, A2 and at z = oo the function takes the value co.
Hence the branch point at z = oo is an algebraic pole.

If we encircle z = 1 once in a positive sense, leaving z = 0 on the left,

the functions wy, ..., wg are permutated according to
(14)(25)(36).
Encircling z = 0, leaving z = 1 outside, yields the permutation
(123)(456).

Hence the encirclement of both critical points gives rise to the product
of these permutations, viz.,
(123456)
564231/

Now we take 6 sheets R,,..., Rg corresponding to wy,..., ws.
Along the segment between z =0 and z = 1 we join R, and R,
crosswise, N, and R crosswise and R; and Ry crosswise. Along the
segment between z = 0 and z = co we identify the upper boundary of
R, with the lower boundary of R, the upper boundary of R, with the
lower boundary of R;, etc. A schematic picture is shown in fig. 12.4-4.

12.4.2 — DEFINITION OF A RIEMANN SURFACE

For the construction of a Riemann surface of an analytic function
F(z) the following general method suggests itself: We start with a
function element which may be assumed to be a power series. We imagine
its circle of convergence to be cut out of paper and to its points are
assigned the values of the element. If we continue the initial element
directly by means of a second power series, we also think of its circle of
convergence as being cut out and pasted in the proper position on the
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first disc. The parts pasted together are counted as a single sheet covered
once with values. If we succeed in carrying out another continuation,
we paste the new disc on it an entirely similar manner, and so on. Each
new disc is pasted on the preceding one from which it was obtained by
means of direct continuation in the manner described.

Suppose that, after repeated continuation, we arrive with one of the
new circles over a circular disc not immediately preceding. Then the new
disc shall be pasted together with the old one if and only if in the over-
lapping part the function elements take the same values. If, however,
this is not the case, then they remain disconnected. Obeying this rule we
imagine our procedure to be continued as long as possible. Then there
results a surface-like configuration which covers the z-plane with several
sheets which can have the most varied forms, and can be joined together
in the most varied manners. In the course of pasting sheets together,
it is sometimes necessary to join two sheets which are separated by others
lying between them. We must imagine this to take place without cutting
the intermediary sheets. This is impossible for concrete execution but
causes no difficulty for the purely mental construction. As we shall see
further on the more rigorous definition of a Riemann surface avoids
this difficulty.

It should be noticed that it is immaterial whether we continue by means
of circular discs or by means of any other regions, provided only that we
adhere to the agreements we have made. The examples dealt with in the
previous section may serve as an illustration.

In general the way in which the sheets are joined together may become
very complicated. For our purposes the Riemann surface lays no claim
to being an end in itself, but is in most cases intended as an aid to the
imagination. As far as the general case is concerned, it is sufficient to
know that for a given function a Riemann surface can be constructed
at all events, on which its values form a single-valued function of position.
Every point is covered by as many sheets as there are different elements
for a neighbourhood of this point, and these sheets hang together in a
perfectly definite manner. This means that if we begin at a certain point
30 of a particular sheet and describe any definite path (that is a path
whose projection on the z-plane is given), its course on the surface is
fully unique, and consequently leads us to a perfectly definite point.

It is possible to give a definition of a Riemann surface which meets all
requirements of rigour. But then we must employ a lot of topology and
the study of Riemann surface from this point of view is a separate branch
of mathematics.

We proceed to give a definition of a Riemann surface in a more abstract
way which is quite satisfactory for our purposes. We recall that an ana-
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Fig. 12.5-2. Triangulability of the Riemann surface of an algebraic function

the surface. Next we take in the z-plane a point z, which is not on a
segment connecting two points a,. We connect z, with all these critical
points and extend these connecting segments beyond these points to the
point oo (which may or may not be under a branch point), (fig. 12.5-2).
The half-rays are used as cuts in the z-plane. Starting with a function
element above z, we may continue it analytically throughout the cut
plane (which is simply connected) and the function elements thus obtained
define the places of a sheet of the Riemann surface. By suitable identifica-
tion of the various sheets which can be obtained in this way along the
half-rays emanating from the final critical points we get the whole
Riemann surface. On every sheet we may define segments whose points
are places above the segments zqay, k = 1,...,r in the z-plane. In
addition we connect a,, . .., a, in cyclic order and draw corresponding
segments in either sheet. In the case that there are only algebraic branch
points (and no boundary points at all) every sheet and consequenty also
the whole Riemann surface is divided into triangles, i.e. the surface is
triangulated. The total number of triangles is finite and the surface is
said to be closed.

In the case that there are also logarithmic branch points we may assume,
after eventual subdividing triangles, that no more than one vertex is a
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Fig. 12.5-4. The joining of two sheets of a Riemann surface

Continuing in this way we may combine all sheets deformed into convex
polygons into a single polygon by identifying appropriate sides. Then we
have transformed the original surface into a convex polygon. In general
not all identifications along the cuts on the Riemann surface are repro-
duced by joining the polygons. Every transfer from one sheet to another
which is not realized by joining the corresponding polygons corresponds
to two sides of the polygon which must be considered as identical if we
will get a topological model of the surface. Hence the number of sides of
the polygon is even. We shall denote the sides of a pair which must be
identified by the same type, from which one is primed.

The classification of Riemann surfaces of algebraic functions will be
simplified considerably after the construction of so-called normal forms
of the polygons representing the surfaces. They are obtained by applying
some elementary transformations.

Going around the boundary in the positive sense of the polygon as
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Fig. 12.5-9. Normal form of an algebraic Riemann surface

true, there must be a side ¢ such that all letters between ¢ and ¢’ are
identified among themselves, so that none of the corresponding sides lie
outside the letters c¢...c. Then we may select a point on the side c,
not the vertex P and join it by a line segment d in the polygon to an equiv-
alent point on the other side c'. This line divides the polygon into two
parts which have P and the points on d identified. But one vertex of c lies
in the first part and the other vertex P in the second part, which is impos-
sible since P would not have a euclidean neighbourhood in the surface.
Thus each side of the polygon is linked with another. By the process
shown in fig. 12.5-8 the polygon can be transformed so that the linked
pair (12.5-1) is brought together in the sequence cdc’d’. The further
combination of linked pairs does not destroy those already combined, so
that we finally have:

The normal form of an algebraic Riemann surface is a polygon with
symbol

(i) aa,’

(i) a,bjajbja,b,azb;...a,b,a b, (12.5-2)

In case (i) we say that the normal form has the genus zero, while in case
(ii) the normal form has the genus p, (fig. 12.5-9).

12.5.3 ~ VISUALIZATION OF THE NORMAL FORMS

We now wish to discover what the normal forms look like when we
actually paste together the identified sides.



P Q P
af..______g.__;_-
b ob o ] b
P a'
P a P




[ Yo







12.5] CLASSIFICATION OF ALGEBRAIC RIEMANN SURFACES 311

triangulated surfaces are homeomorphic if their normal forms have the
same genus. On the other hand, to find the normal form we used a specific
triangulation of the surface. And the question arises, if we would get the
normal form of the same genus if we had taken a different triangulation
of the same surface. The answer on this question is embodied in the fact
that the genus of a normal form depends only upon the surface and not
upon the triangulation used, so that homeomorphic normal forms have
the same genus. To prove this assertion we shall relate the genus to a
topological invariant of the surface, the so-called Euler characteristic.

On a Riemann surface §§ we consider a system of finitely many closed
curves, such that each pair of them meet in a finite number of points.
These curves may decompose ¥ in a finite number of pieces such that
each piece is homeomorphic to a region in the z-plane bounded by a
simple closed polygon. Such a piece is called a polygon on ; the images
of the sides of the polygon in the z-plane are called the sides of the
polygon on , their end points are the vertices of the polygon. A poly-
gonal decomposition of the surface is effected if:

1) Each point of ¥ is in at least one polygon.

2) Two polygons are either disjoint, or have precisely one vertex,
or one side in common.

3) Every side belongs to exactly two polygons.

Every algebraic Riemann surface possesses a polygonal decomposition,
e.g., a triangulation.

Consider now two homeomorphic surfaces & and g* and denote a
polygonal decomposition on the first surface by € and a similar decom-
position on the other by $*. The number of vertices, sides and polygons
(which we suppose to be finite) may be denoted by o, o, «, resp.;
let ag, oF , o denote the corresponding numbers on §*. Then we assert

—QgF oy —a, = —of +or—ak, (12.5-3)

The alternating sum

L= —dg+o,—o, (12.5-4)

expresses, therefore, a topological invariant of the surface, the so-called
Fuler characteristic.

In order to prove the statement we map F* topologically onto .
The decomposition T* is carried into a decomposition of §§ with exactly
the same scheme of vertices, sides and polygons as $*. We may denote
it again by $*. It remains to prove that for two decompositions of a
surface ¥ the alternating sum (12.5-4) is the same.
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Fig. 12.6-2. A possible enumeration of the images of the sheets of the covering surface
of the Riemann surface of (12.6-8)

we identify the opposite sides and thus we see that it is topologically a
torus, in accordance with the fact that its genus is unity.

However, we can proceed in another way. We take doubly infinite
sequences of sheets

I,,,II,,,n = 0: iI’ i2,. Y

each sheet being a cut z-plane as considered above. It is assumed that the
sheets are superposed alternately, ie., I,, lies above II, and II,,
above I, .. By means of (12-6-10) we map these sheets onto rectangles
in the s-plane which we enumerate as shown in fig. 12.6-2. The free
boundaries of the sheets are pasted together in accordance with the
situation in the s-plane. That is to say: if two rectangles have a side in
common, the corresponding borders in the z-plane are identified and
pasted together. Thus we obtain a Riemann surface of the inverse func-
tion of sns, viz. the integral

S = J‘z TLt N (126—11)
o U-2)(1-7)
which covers the surface of (12.6-8). It has an infinity of algebraic
branch points of order 3 and a logarithmic branch point at infinity.
To every point of this new surface % corresponds a point of ¥ with
the same projection on the z-plane such that if p is in II, then  is in I7,
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and if P is in 7, then p is in I,. There is no ambiguity as regards the
points on the identified borders, for they can be reached from points
near any such point along a continuous path. The surface ﬁ’» is in one-
to-one correspondence with the open s-plane (s= oo is excluded) and the
covering map appears as a map of this plane upon the rectangle consisting
of the rectangles I,, II, in such a fashion that points equivalent under
the set of translations (n and »n’ being integers)

§" = s+4nK+2n'iK’ (12.6-12)

have the same image. This may also be expressed by saying that the
points of the s-plane are reduced modulo (4K, 2iK’).

The function sn s is single-valued throughout the s-plane and mero-
morphic. It is easy to see that s is a uniformizing variable, the uniformi-
zation of the function (12.6-8) being performed by the functions

z =sns, w=sn's = cnsdns, (12.6-13)

in accordance with (5.14-12).

The surface ‘Z‘y, which is in our case homeomorphic with a punctured
sphere, is an example of a universal covering surface. As we shall see
the existence of a universal covering surface is the key for the solution
of the uniformization problem.

12.6.4 — THE UNIVERSAL COVERING SURFACE

We shall now use the notion of “path” in a rather restricted sense.
By a path we understand a sequence of sides

Aiy. .. 4,

of the triangulation, such that a, and a, ., k < r, have a vertex in com-
mon. Two paths a and b connecting the points p and g, are called (com-
binatorially) homotopic if we can transform a into b by applying a finite
number of the following steps:

(i) Replacing one side of a triangle by the two others, percorsed in
order, and conversely.

(ii) Adding or removing a side which is percorsed in a certain direction
and immediately back, (fig. 12.6-3).

All paths homotopic to a path pq are the elements of a class {pq}. If to
an arbitrary pair of points p, q there corresponds only one class, the
surface is called simply connected (in the combinatorial sense).

Now we are prepared to construct a universal covering surface. Every
triangle 4 of the given surface § is covered by as many triangles as there
are classes of paths which connect a fixed point o and a vertex of 4.
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Fig. 12.6-3. Combinatorial deformation of a path

Which of the three vertices is selected is of no importance, for to every
path op of the class {op} we can add the side pq and so we see that to
this class corresponds uniquely the class {oq}. If two triangles of %
meet along pq and if we are given to either of them the same class
{op} or {oq} then the corresponding triangles are pasted together along
this side. It is clear that we obtain a smooth covering surface g Every
vertex b on {‘y is defined by a vertex p on F and a class {op} on F. We
shall say that D is above p and that  is the trace of p.

The surface % has the following fundamental property:

The universal covering surface is simply connected.

Given a side pq on ¥ and to p a covering point p then by definition
precisely one side pq is determined which covers pq. If we proceed
beyond q along an arbitrary side then the same is true. Thus, if a path b
is given, issuing from p, then it is covered by a uniquely determind path b.
Assume that } is defined by the path @ = op. Then the end point ¢ of b
is defined by the path ab which appears if we first percorse @ and then b.

Let now ¢ denote a second path from f) to T whose trace on % is c.
Then, evidently, T is also defined by ac. Since ab is homotopic to ac,
so is & homotopic to ¢, for we may multiply on the left by @ ™!, which
is the path a percorsed in the opposite direction. The transformation (i)
and (ii) which carry b into ¢ can be effected on % Hence also b is homo-
topic to &. Since b and & are arbitrary paths connecting p and a, the
proof of the theorem is completed.

12.6.5 — CHAINS

A path becomes a 1-chain if we omit all segments which occurs twice.
It is, therefore, a formal sum of segments which may be added modulo 2.
Similarly we define a 2-chain as a formal sum of a finite number of
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distinct triangles A4,,..., 4,, on % (this sum may be empty) which we
denote as
A=4,+...+4, (12.6-14)

Two 2-chains are again added modulo 2, by collecting them to one sum,
but omitting all triangles which occur twice.

The boundary 04 of a triangle 4 is the sum of its sides. The boundary
84 of a 2-chain is the sum modulo 2 of the boundaries of all its triangles.
This amounts to: the boundary 04 consists of those sides which belong
to only one of the triangles 4y, ..., 4,. This is in accordance with the
elementary geometric meaning of boundary.

Two l-chains are called homologous (in the combinatorial sense)
if one can be transformed into the other by performing the steps (i) and
(ii) of the previous section. Another characterization of this relation is
the following:

If a is homologous to b then the sum a+b (mod 2) is the boundary of a
2-chain.

In fact, by effecting the transformation (i) the chain « goes over into
a+04 (mod 2). By (ii) the chain does not undergo any change. After
performing a finite number of these steps the path a is replaced by

a+04,+84,+ ... = A+0A(mod 2),
where A is the sum A4, +4,+ ... (mod 2). If b is homologous to a then

b=a+dA (mod 2),
or
a+b = 04 (mod 2).

An immediate consequence is

On a simply connected surface every closed 1-chain is homologous
to zero.

We shall say that a 1-chain is homologous to zero if it bounds a 2-chain.
Every closed 1-chain (being a 1-chain such that every vertex is the end
point of an even number of sides) can be decomposed into two chains
a and b which, considered as paths are homotopic and hence the one can
be transformed into the other by the steps (i) and (ii).

Assume now that 4 and B have the same boundary

04 = 0B.

Then d(4 + B) =0, where 4 + B is the sum modulo 2. Since ¥ is connected
A+ B(mod 2) coincides with §§. Since 4 + B contains only a finite number
of different triangles the surface g is closed. Conversely, if 5 is closed and
A is any 2-chain on it then we may put §§ = A+ B, where 4 and B have
the same boundary. Thus we see









Fig. 12.6-5. Triangulation of a punctured triangle
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Fig. 12.6-6. The mapping of E, in a neighbourhood of 4

t is defined. This triangle corresponds to a simply connected region A’
in the ¢-plane, bounded by analytic arcs. Hence 4’ can be mapped
onto the interior of a circle in the s-plane such that there is a one-to-one
correspondence between the boundaries (section 10.5.6).

We proceed by induction and assume that E, = A;+ ... +4, (whose
boundary is stripped) is mapped onto an open disc &, in the s-plane,
such that there is a one-to-one correspondence between the boundaries.
Let s = ¢,(p) denote the mapping function. In order to obtain a map of
E, ., we employ a device due to Carathéodory. The region E, , ; consists
of E, and a triangle 4 = 4,,,; which has one or two sides with E, in
common, (fig. 12.6-6). Since 4 is in the interior of a neighbourhood 1
which corresponds one-to-one to a neighbourhood 1’ in the #-plane,
the triangle 4 is mapped onto a region 4’ in 1. A common side a of 4
and E, is continuously and in a one-to-one manner related to a circular
arc a,, on the boundary of &, and by means of the local parameter to an
arc a’ of A’. A part A of E, with a on its boundary is in 11. The image
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Fig. 12.6-7. The construction of the functions (12.6-17)

¥ = A, 14, ... 4, A1) = G(1),
S* = Ar+1 Ar L AZAI(\ﬁn(s) = g(S),
with the properties:

G(¢) maps 4’ and B’ onto 4* and B* = BT*?; g(s) maps B, and
®, =B, +B;+...+B,,, onto B* = BI*? and G* = B> +
BV 4 L +BOP; A* 4 B* +G* is an open disc. Thus the properties
3), 2) and 1) listed above are verified.

From (12.6-21) follows

g((p,,(t)) =A,414,... 4, A1‘7’n(¢n(t)) = A1 A, .. A1) = G(1)

(12.6-21)
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t—a
7:1{t) = 72 (az+ b !

(bz—az)), a, <t<b,. (127-1)

1—ay
It is easily verified that a relation of this kind has the usual properties of
an equivalence relation. A parametrized path, or briefly a path, in U is
defined to be an equivalence class of continuous mappings of closed
intervals into 9. That is to say, we shall not distinguish between equivalent
mappings.

Given a mapping of ¢ £ ¢ < b into 9 we can always find an equivalent
mapping of the unit interval 0 < ¢ < 1 into 2. Unless otherwise stated
we shall take as a representative mapping for each path a continuous
mapping of the closed unit interval. It is clear that equivalent mappings
of this interval are identical. Hence a path is wholly characterized by a
function y(¢) defined on 0 < ¢ < 1 with values in . Therefore, the path
may be denoted by the symbol 7. The set of all points z = y(¢) is called
the carrier of the path. Different paths may have the same carrier. In fact,
let pu(f) denote a non-decreasing continuous function with u(0) = 0,
u(1) = 1. In general the points y(¢) and y(u(z)) are different, but the
whole collection of image points is in both cases the same subset of .

The point y(0) is called the initial point of the path y and y(1) the
end point. A path is said to be closed, or a loop, if the initial point and the
end point coincide, i.e., if y(0) = y(1). A path is said to join the points
2o and z,; if y(0) = z, and y(1) = z,.

It is an important fact that a certain algebraic combination can be
carried out for paths, viz., the multiplication. Consider two paths y, and
72, such that the end point of y, coincides with the initial point of y,,
i.e., y1(1) = y,(0). Now we define a path y by means of the mapping

y(t) = 71(20’ 0 é t é %5

72(2t-1), st

where y, and y,, originally defined as functions on theinterval 0 £ ¢ < 1,

are replaced by equivalent mappings of suitably chosen intervals. The

mapping (12.7-2) defines a path y which is called the product of the paths
7, and y, and written as

(12.7-2)

Y =Y2V1- (12.7-3)
Notice that in (12.7-3) the product does not mean the product of two
functions in the usual sense. However, there will be no fear for confusion.
It is clear that a product is not always defined and, if so, the order of the
factors is essential.
If y(¢) defines the path y, then the path defined by y(1—1¢) is called
the inverse of y and denoted by y~*. It is clear that

™ H™ =1 (12.7-4)
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If the loop a is closed with respect to analytic continuation of the function
elements of the analytic function F(z), then

f FO)dL = f FO)dC+ f FO)dz. (12.7-33)
Ba B a

Let &,(z) denote the function element obtained from @ ,(z) by analytic
continuation along o and ®,(z) the element obtained from @,(z) by
analytic continuation along B. Then @,(z) is obtained by analytic con-
tinuation along fo from @,(z). Hence

LGF(C)dC = @y(20) — Po(zo) = P2(20)—P1(20)+ ®,(20)— Po(20).
Now
2,(20)~0olz0) = | FOL.

Let ¥(z) be the element obtained from $,(z) by analytic continuation
along . Then

¥(zo)~ Po(z0) = LF(C)dC-

Since o is closed with respect to analytic continuation of the elements
of F(z) we have @,(z) = @,(2)+c¢ and @,(z) = ¥(z)+c¢. Hence

Py(20) = P1(20) = ¥(20)— Po(20) = LF(C)dC-

This concludes the proof of the assertion.

In the case that F(z) is a single-valued holomorphic function f(z) the
equality (12.7-33) remains true if § and « are not necessarily closed paths.
Indeed if g,(¢) is a primitive of f(z) along « and gz(¢) a primitive of f(z)
along f§ then

_ {9420, 0=<t=4
90 =\ gp@i-1), 1=t=1,

is a primitive of f(z) along Bx. According to (12.7-24) we have

Il

9(1)=9(0) = g(1)=g(3) +9(2)—9(0)
i) =040)+0.)=0.0) = | @)ac+ | 1.

[ 1@

Next we suppose that o and f are elementary loops about the points
z = gq and z = b and that F(z) possesses multipliers ¢ and n at these
points respectively. In this case we have



[#nfven]_

e _d
o
l—l]

I ! N
s — X
5 <

e ._..a n+a aFo
= = ?

..__IB. +B.

5 3

-‘;'lﬁ“aﬂ



12.71 DEFORMATION OF PATHS 349
[ Foyae = [ rioyag+ [ “royae = -0 [y,

[ Fou - (t-n) [ Rz

It follows that

-9 [ ~a-n[ = a-v0-n ([ -[) = a-aa-n].

whence

(b+,a+,b~,a-) b
| Rt = (-90-n) [ FOd (12736

A particular case of this formula is (12.2-45).

12.7.8 — DETERMINATION OF THE HOMOTOPY GROUPS OF CERTAIN REGIONS

For the applications we need the knowledge of the homotopy groups of
certain regions which we shall consider in more detail. Let us first focus
our attention on a convex region (section 2.2.1).

The homotopy group of a convex region reduces to the unit element.

This is almost trivial, for any loop y can be deformed linearly into the
base point z,; indeed the base point can be joined to each point by means
of a linear segment within the region.

In particular the homotopy group of an open disc or of the finite plane
or of the extended plane reduces to the unit element.

Now we state the important theorem

A region is simply connected if and only if its homotopy group reduces
to the unit element.

By Riemann’s mapping theorem of section 10.5.2 any simply connected
region with at least two boundary points can be mapped conformly (and
hence topologically) onto an open disc. If there is only one boundary point
or if there is no boundary point then by a linear fractional transformation
the region can be mapped onto the open plane or into the extended plane.
In view of the last theorem of section 12.7.5 we conclude that the homo-
topy group reduces to the unit element.

Suppose now that R is not simply connected. Then its complement in
the extended plane is not connected (section 9.1.3) and it has at least one
finite component. As in the proof of the first theorem of section 9.1.3
we may construct a path whose winding number with respect to a point
in this finite component is not zero. Without loss of generality we may
assume that R does not contain the point at infinity. Hence the path
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Fig. 12.7-9. Elementary loop about a point

By uniform continuity we may divide j into subpaths §;, . . ., 8, such that

ﬂ = ﬂnﬁn—l . “ﬂl:

where B, k = 1,..., n, either does not contain z, or —z,. Let the ter-
minal points of f, be denoted by z,_, and z,, (fig. 12.7-8). Now S, is
in a simply connected region obtained if we delete from R the points of
the positive or the negative axis; hence it may be deformed into one of the
circular arcs joining z,_; to z,. Thus y is homotopic to a product of
circular arcs ,, . .., &,. Introducing rectilinear segments 4,,..., 4,—,,
joining z, to zy,..., z,-, respectively we readily see that

-1 -1 -1
YR an}'n—lln—lun—l . '12 alllll U1y

that is to say y is homotopic to a product of paths A; 'a;A,_,, where 4,
and 2, are constant paths with carrier z,. Now by linear deformation such
a path is either homotopic to 1,, or to a*', where « denotes the circum-
ference described in the positive direction beginning and ending at z,.
It is clear that « is not homotopic to 1, for 2,(0) = 1. Hence y is homo-
topic to a power o™ of a. Since a™ = I, entails m,Q,(0) = 0, we find
that m = 0 and we may infer that

The homotopy group of a punctured convex region in the finite plane is
the infinite cyclic group.

Sometimes it is convenient to replace o by a so-called elementary loop.
We connect the points z, = r and z = ¢ > 0 by means of a straight line
segment A, then describe a circle about z = 0 with radius ¢ beginning and
ending at ¢ and go back along A™* to z,, (fig. 12.7-9). Since the winding
number of this path with respect to the origin is again equal to 1, it is
homotopic to «, and may, therefore, be taken as a generating element of
the class 4 which generated the cyclic group.















CHAPTER 13

AUTOMORPHIC FUNCTIONS

13.1 - Groups of linear transformations

13.1.1 — COVERING TRANSFORMATIONS

The functions which solve the problem of the uniformization of an
analytic function have a remarkable property which can be brought to
the fore if we consider the so-called covering transformations of the
universal covering surface of a Riemann surface.

A covering transformation of a triangulated universal covering surface
% of a Riemann surface  is a homeomorphism of % into itself which
maps each vertex ﬁ over p onto another vertex lying over the same point
p. Thus a covering transformation interchanges the vertices having the
same trace on . Moreover, it permutes sides lying above the same side
of a triangle on .

The covering transformation which maps Py onto P, is unique.

Let p denote an arbitrary vertex on % and let C, be a path from pl
to p2 The path C, lies above a path C on . When p, transforms into
pz, then C, goes into a path C, on ‘& which starts at p2 and also lles
over C. Thus the end point of €, must be the uniquely defined image of p.

The set of covering transformations of fy clearly forms a group under
the operation of composition of mappings. It is called the fundamental
group of % and it can be proved that it is a topological invariant of ,
i.e., fundamental groups of homeomorphic surfaces are isomorphic.

A direct consequence of the above assertion is

A covering transformation which is not the identity has no fixed points.

The fundamental group is properly discontinuous, i.e., there is a point
on 1&5- which possesses a neighbourhood 11(&) such that every non-identical
transformation of the fundamental group transforms a into a point
which is outside 11(5[). This is clear if we take for q a point which is inside
a triangle of the triangulation, for the transformations interchanges
triangles.

Let us now map the surface {} onto a canonical region € in the s-
plane in conformation with the considerations of section 12.6.7. To
every covering transformation corresponds a topological transformation
of the normal region onto itself. As we proved in section 9.3.3 and in
section 9.5.1 such a transformation is a linear fractional transformation

[356)
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and none of these transformations have a fixed point in the canonical
region. Since the mapping of % onto ¢ is one-to-one the group G of these
automorphisms of the canonical region is also properly discontinuous.

By means of the mapping of {E onto § a function on $§ can be con-
sidered as a function on € with the property that it takes the same value
at points of € which correspond with respect to the transformations of G.
Hence a function of this kind is automorphic with respect to this group.
Conversely an automorphic function with respect to G gives rise to a
function on F.

This chapter is devoted to the study of properly discontinuous groups
and the associate (single-valued) automorphic functions.

13.1.2 — PROPERLY DISCONTINUQUS GROUPS

A group of linear (fractional) transformations in the s-plane is called
discontinuous if it contains no infinitesimal transformations. That means
that it does not contain a sequence of different transformations which
converge to the identity. Otherwise stated: in the group is no sequence

a, b,

n

a,s+b,

R n=12,...
c,s+d,

#0, d,#0, (13.1-1)

4

with
. a, . b, .. ¢
lim 2 =1, lim -* = lim -2 = 0.

n—w d, n~o d, n-w d,,

A group is said to be properly discontinuous if there exists a point sq
and a neighbourhood 1(s,) of this point such that all transformations of
the group carry s, of 1(s,) outside U(s,). The theory of automorphic
functions is founded on the theory of these groups.

A properly discontinuous group is discontinuous. The converse is not
true. A famous counter example is Picard’s group consisting of the
transformations
a b

c d

as+b
=

s b
cs+d

‘ =1, (13.1-2)

where a, b, ¢ and d are Gaussian integers, i.e., numbers of the form
p+qi, where p and ¢ are real integers.

Suppose the group contains a sequence converging to the identity.
We may write

a,s+p,
5, = STl

, n=12,...,
Pus+1

with o, = a,/d,, B, = b,/d,, ¥, = ¢./d, and make the additional assump-
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384 AUTOMORPHIC FUNCTIONS {13

2n(n—1). The sum of the angle of R, is 2nk (section 13.2.4; observe that
g = 1, for there are no elliptic transformations in the group) and it is
geometrically clear that

2nk < 2n(n—1),
whence
—k+n—1>0,

or x > 0. Then we deduce from (12.5-5) that p > 1. This proves the
theorem.

Now we can complete the former statement. If p = 1 then ¥ cannot be
homeomorphic to the interior of a circle, thus

An algebraic Riemann surface is parabolic if and only if its genus is 1.

Finally

An algebraic Riemann surface is hyperbolic if and only if its genus
exceeds 1.

13.4 — Automorphic functions

13.4.1 — SIMPLE AUTOMORPHIC FUNCTIONS

A function f(s) is called automorphic with respect to a group G of
linear transformations if
(i) the function is meromorphic in the region of discontinuity of the
group;

(ii) f(As) = f(s) for every element A of the group.

If a group admits non-constant automorphic functions, then the group is
properly discontinuous.

Assume that the group is not properly discontinuous. Let s, denote a
point at which f(s) is regular. Since there are infinitely many points equi-
valent to s, in an arbitrary neighbourhood of s,, the function f(s) takes
the value f(s,) infinitely often. But then f(s) is a constant (section 2.11.1).

An automorphic function f(s) is called simple if the following conditions
are fulfilled:

(i) the group G possesses a fundamental domain R, whose boundary
consists of a finite number of pairs of congruent sides;

(ii) the region of existence of the function is bounded by limit points of
the group;

(iii) at every parabolic point the function tends to a definite limiting value
(which may be finite or infinite) along every sequence of points in R,
which tend to this parabolic point.

It should be noticed that if the point counts as two parabolic points as
in fig. 13.4-1, the approach shall be from one side only. There will be a
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choose these constants in such a way that F(f;,f,) will have (m+1)x
x (n+1)—1 zeros at assigned points in the fundamental domain. This
gives rise to (m+1)(n+1)—1 linear equations for the coefficients and
since there is one more constant than equations to be satisfied it is possible
to find constants satisfying these equations not all being zero. If m and »
are large enough then

m+ D+ 1) =1 > mk, +nk,

and F(f}, f>) has more zeros than poles. This is only possible if F(f,, £,)
is identically zero.

A particular case is

If there exists a simple automorphic function f(s), having a single pole
in the fundamental domain, then any simple automorphic function connected
with the same group and having the same region of definition is a rational
function of f.

Let g(s) have k poles. Consider the polynomial

F(Z, W) = Q(Z)W_P(Z)a

where P and Q are polynomials of degree at most k. The number of
poles of F(f, g) does not exceed 2k; the number of coefficients is 2k +2.
Hence we can prescribe 2k + 1 zeros and it follows, as above, that there
is a relation of the form

2(Ng-P(f) =0,

identically in s. The coefficients of Q are not all zero, for otherwise
P(f)=0 identically, and this implies that f would be a constant. Hence

)
o(f) (13.4-9)

and this concludes the proof of the assertion.

13.4.4 — THE SCHWARZIAN DERIVATIVE

Let f(s) and g(s) denote two simple automorphic functions of the first
degree, connected with the same group and having the same region of
existence. Then, according to the last theorem of the previous section, g
is a rational function of f and f is a rational function of g. Hence the
two functions are related as

. =Af(s)+B A B
99 Cf(s)+D’ lc D

where 4, B, C and D are constants. Conversely, if f(s) is a simple auto-

| # 0, (13.4-10)



_4r_
[f]s_dsf, 'i'

(

f/
f/

,)2 l




ds

], = ~[21. / &)



z ﬂ)z +[1].

[ _ [ _ (i L, 1

= I B v L o A v )


















0(Acs) = 0(s) (‘%)_

0,(s)
flo)= 6:(5)’




d 2m
e (s+ —")
Cr

© ©
lecvl_4 =2
v=

v=1












2 G NI

a,; ap ds Q4 Qs 05







14.1) THE MAPPING OF A CURVILINEAR POLYGON

©

L ’1/7///////// 70000
a; Qj.q Oj Oj,.1

bj.y

b

Fig. 14.1-2., Successive reflections of a polygon in its sides

409

the boundary of the half z-plane or on the circumference of the unit disc.
Now we turn our attention to the discussion of the singularities. Let a
denote a singular point and b its image. The angle at b be ax. Three cases

can occur,

a) The circumferences, on which the two sides issuing from b lie, meet in a
second point 5" which is a finite point. If & = co then the circumferences

are straight lines, of course.
b) Both sides are rectilinear and issue from a finite point.

¢) The sides are tangent at b. In this case the internal angle is 0 or 7,

(fig. 14.1-3), for we exclude the case x = 2.

Case a) can be reduced to case b) on applying a linear transformation

which brings the point b’ to infinity. We consider this case first.
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(a3 = 01 (&) + 01

Now ¢t = w'/* represents a single-valued branch in some neighbourhood
of w =0. A simple calculation yields
2

1—a
[wl = 7’
whence
dt\? 1—a? 1—o? Cc
o () = e = e S
dz 2e(z—a)+ .. .) Az—a)® z-—a

where the omitted terms constitute an ordinary power series. Observing
that [t], is regular, we finally have, since [f], = [g].:

2
[f] = =2 - £ Lhe), (14.1-4)
2 z—a

(z—-a)
where A(z) is regular at z = a.

There remains the discussion of the case o = 0, 1. First we apply a
transformation (if necessary) which brings 4 to infinity in such a way
that we obtain figures as considered in section 10.3.6. If o =0 we use
the transformation

w = logt
and from
1
(wl = Pyl
we easily find
1 C
z =0 + - +h Z b
/] 2(z—a)® z—a @)

being the expression (14.1-4) with « = 0.
If « = 1 we apply the substitution

w=t"'4logt

which does not differ essentially from (10.3-33).
A simple calculation shows

t—4 2
wl, = 1~ = = - +
==
Inserting the series for ¢ we obtain (14.1-4) with oo = 1.

It is clear that the function

(D) =[fl-1y =2y &

V1 (z—a,)? YSiz—a,
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and angles nfy,, n/y, and n/y; respectively, whete y;, y, and y, have
values listed in the previous section. A triangle of this kind will be called a
Schwarzian triangle. Reflecting A in the side connecting s; and s, we
obtain an unshaded triangle A* with vertices s,, 53 and 55, (fig. 14.2-1).
Reflecting 4* in the side connecting s, and s% we get a shaded triangle
which is obtained from A by means of an elliptic or parabolic transfor-
mation A, with fixed point s,. The order of A is y,. In a similar way we
can define a transformation B with fixed point s, and order y, and a
transformation C with fixed point s; and order y5. The triangles obtained
from 4 by means of the transformation A, B, C will be denoted by
AAd, BA, CA respectively.

It is easy to see that the same construction applied to the triangle A4
yields triangles AAA, BAA, CA4, etc. Hence the shaded triangles obtained
by repeated reflections in the sides may be denoted by

A¥IBMCH, |, A*PB*CHr 4 (14.2-7)

and the group of automorphisms of the pattern of all shaded triangles is
generated by the transformations A, B and C.

Denoting by A~! the inverse of the transformation A, a simple
geometric consideration reveals that A~'4 and BCA coincide. Thus we
have

The group of linear fractional transformation, carrying any shaded
Schwarzian triangle into any other shaded triangle by a sequence of
reflections in sides, is generated by three transformations A, B, C, satis-
fying the defining relations

A" =E B”=E CPr=E ABC=E, (14.2-8)

E denoting the identity transformation.

14.2.4 — THE SCHWARZIAN TRIANGLES OF THE FIRST KIND

Let the sum of the angles of a Schwarzian triangle with vertices sy, 5,
and 54 be greater than n. There is no zero angle and the two sides which
issue from a vertex, say 55, meet again at a point s3. A linear transforma-
tion can be made which carries s3 to o0 and s, to the origin O in the
s-plane. The new triangle has two rectilinaer sides issuing from O and
making there an angle 7/y;. Since the sum of the angles of the triangle is
greater than 7, the third side is a circular arc concave towards 0. Through
O we draw a chord of the circle of the third side which is bisected by O,
(fig. 14.2-2). Without loss of generality we may assume that the length
of this chord is 2. The circle with this chord as a diameter is intersected
by each side of the triangle at diametrically situated points.
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Fig. 14.2-4. The shaded and unshaded triangles on the faces of a bipyramid

A reflection in a side of the triangle in the plane corresponds to a
reflection in a diametrical plane of the sphere. Thus it appears that the
group associated with the triangle is isomorphic to a group of rotations
of the sphere. Since the area of the sphere is a finite number and all
triangles obtained by stereographic projection have equal positive area,
we find that the group is finite. Evaluating in each case the spherical
excess, we find that the number N of the shaded triangles is

N = 2n, 12, 24, 60 (14.2-9)

in the various cases listed in section 14.2.2 under A). Thus the numbers N
are the orders of the groups corresponding to these cases. The triangles
fit together without overlappings or gaps and fill up the entire sphere.
Al) We describe in the equator of the sphere a regular n-gon; its vertices
will be denoted by 1, 2, ..., n. Connecting these vertices with the north
pole and the south pole we obtain a bipyramid having 2n triangular faces,
(fig. 14.2-3). Each of these faces can be divided into shaded and un-
shaded triangles, having the midpoint of a side of the n-gon in common,
(fig. 14.2-4). Projecting this figure from O onto the sphere we get a
division of the sphere into 2 pairs of triangles by the equator and »
complete meridians. The angles of these triangles are #/2, n/2 and =n/n
and stereographic projection onto the s-plane yields the pattern as de-
picted in fig. 14.2-5. It is understood that the point I is on the positive
£-axis.

We proceed to investigate the group of automorphism of this pattern.
The regular polygon inscribed in the equator can be looked upon as a
regular polyhedron with two coincident faces, » vertices and n edges.
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s3=p*=—34+3i/3 and §; = —p = —3—14i/8. Since 0® =1, we
can represent the transformation as

s'—p2 _ pzs_pZ

s'+p B s+p

or, since p® = —1,
1
g =1 (14.2-25)
-5
In symbolic form
1 1
C= [_1 0} . (14.2-26)

The matrix associated with the transformation B is then

0 -1 0 1 11
o[ [0 201 asem
i.e., B is the transformation
s’ =s+1. (14.2-28)

The modular group can be characterized in another way. We shall prove
The transformations of the modular group are the transformations

L (14.2-29)
cs+d
where a, b, ¢ and d are real integers such that ad—bc = 1.
It is clear that
1 k][0 -1 k -1
B*A = = .
A [o J [1 0 } [1 0 ]
If P denotes the matrix
a b
P= 14.2-30
<. (142-30)

then

bl |ky -1 kea+b —a a, b
e -t 70 20
c dJl1 0 koc+d —c ¢, dg

We can take k, such that |kga+b| < la| i.e., |a;| < [by] = |a]. Again

kya,+b, —a a, b
PBkOABk‘A — |: 141 L l] — li 2 2}
kiey+d, —b, ¢, d,

and choosing &, suitably we have |a,| < |b,| = |a;|. After a finite number
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the vertex 1. It is easy to see that the other vertices correspond to —s,,
1/s, and —1/s, and thus

Fs(s) = (s*—s3) (sz— 12) = s*— (s§+ 12) s2+1.

So So
Now
5o = e™/* tan 46,
whence
2 . 2
sg = itan” 46
and
1 . 2
- = —ictn” 16.
So
Observing that
2 tan 16
tan 6 = ——22—
1—tan” 16

and tan 0 = \/E, we see that tan 10 and —ctn 40 are the roots ¢, and ¢,
of the equation

£+t/2-1=0.
We have

=13 = (L +0)(t;— 1) = — /2% /6 = =2/3
and so
Fa(s) = s*—2i /35 +1. (14.3-10)

The zeros of F,(s) correspond to the vertices of the twin tetraeder. The
point corresponding to I’ is §, and we have immediately

Fy(s) = s*+2i/3s>+1. (14.3-11)

Finally the midpoints of the edges correspond to 1, i, —1, —i and oo,
whence

F(s) = s(s*—1). (14.3-12)
The constants 4 and B occurring in (14.3-2) are determined by the
identity
As*(s*— 1"+ B(s* - 2i\/35°+1)* = (s*+2i/3s* +1)%.
Taking s =0 we find B = 1. Taking s = i we find 4i4 +24./3

= —24,/3, whence 4 = 12i/3.
Thus

s¥(s*=1)?

o) —1 = (s*—2i/3s*+1)° |
(s*+2iy/35*+1)*’ ()~

C(s*+2i 352 +1)° J
(143-13)

z(s) = 12i/3
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14.3.2 — THE INVERSES OF THE SCHWARZIAN FUNCTIONS OF THE SECOND KIND

The problem of finding a Schwarzian function of the second kind is not
very difficult. We may suppose that the triangles are rectilinear and it is
natural to apply the Schwarz-Christoffel integral (10.3-10). It takes the

form
1 1 1 ) J" dt
s|—s —s —s z)=site| oo oo, (14342

(?1 72 Y3 o tTHN(A—g) T )

where s; is the vertex of the triangle at which the interior angle is n/y,
and c is a constant, It is understood that z varies in the domain Im z > 0.

The argument of the integrand may be determined as follows. Let
0,=argt, 0, =arg(t—1). We agree that arg (1—-7) =0, —z and that
the argument of the denominator is

(1=1/y)80+ (1=1/y5)0; — (1 = 1/yz)m.

Hence the denominator is positive for ¢ between 0 and 1.
Now we shall discuss the various cases.

Bl) Let y, =y, = 2. We take s; = 0. Then

fodt
s = CJ:) m . (143*43)

We introduce a new variable u by 1=z =%, (u>0 if 0<t<1).
We find

s = —2¢

Vi-z gy —2cf du
o A1-u? Vice/1—u?

The integral is uniquely defined if we agree that argn/1—u? = Largt?
= 46,. Taking ¢ = 4 we get the function

= J‘l du

which maps the upper half of the z-plane onto a vertical half strip with
angles in, iz and width
1
S;—8; = _du_ = im.
o V1—u?

This strip is a triangle of the pattern as depicted in fig. 14.2-19.
Inverting the integral (14.3-44) we obtain

1—2(s) = cos®s, z(s) = sin®s. (14.3-45)
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performing the substitution #® = 1/¢. Hence

L, TAr® _ V3 R )
@ =% rare) T %r (),  (14.3-50)

r3) 12n
by (10.3-13). It is geometrically clear that
@'fi = @/3. (14.3-51)

This follows also from

s boodt rr 1
w/l=3]sz—s1| =—;—J‘ n %=% (%)5(%-)=—

o t(1-1) g  4n
In view of (5.6-22) we may express the function z(s) in terms of the sigma
functions of Weierstrass

HIrQ).

2(s) = — i(s)—"gg—siig(—s) , (14.3-52)

a formula which exhibits the zeros and the poles.

B3) In the case y; = 2, y, = 4 we have to consider the integral

= dt
s=s4+¢| ——. 14.3-53
' fo tH(1—1)* ( )
We introduce the variable u by 1 —¢ = u® and we get
Vi-z 1
s =s,—4c i—=sl+4cf _‘du-
L Vu—4a® VIss VAu—au?

If we agree that argvu—u® = 4 arg t+4 arg (1—1¢) = 10, + 16, —in,

argV4u® —4u = } arg (=) + 1 arg (1—1) = 10, + 36, — 7, we have
\/u—u3 = i\/u3—u

and taking ¢ = i/4 the function s(z) appears as

Jd 2 du
s =35+ ——————
Vizv4u’—4u

Next we take
s _J‘“’ du
! L Va4 —4u (14.3-54)
and we see that
5 = f A (14.3-55)
VIZiVauP —du



20'[i = %f
0
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onto the isosceles triangle under consideration. Multiplying by #, this half
plane is rotated through a right angle about the origin. Hence the desired
function is

z(s) = —4ig'(s; 0, 4), (14.3-60)

being a doubly periodic function of the third order. The period parallelo-
grams are the same as those mentioned in B2).
In view of (5.6-22) we may also write

2(s) = i"l(s)"z(s)“s(s)
© a*(s)

an expression exhibiting clearly the zeros and the poles of z(s).

. (14.3-61)

14.3.3 — THE INVERSES OF THE SCHWARZIAN FUNCTIONS OF THE THIRD KIND

There are an endless number of the Schwarzian functions corresponding
to the solutions of the inequality (14.2—4). Their inverses are automorphic
with respect to a Fuchsian group of the first kind whose region of dis-
continuity is the interior of the circle (or the half of the s-plane). The
boundary of this region is a natural boundary (section 8.2.3); it is im-
possible to continue analytically a function of this kind across the bound-
ary. This follows from the fact that the vertices of the triangles of the
pattern obtained by any one by performing a transformation of the group
cluster towards the points on the boundary.

The most remarkable Schwarzian functions of the third kind are those
corresponding to y, = 2, y, = 00, y3 = 3 and to y; =y, = y; = .
Their inverses are automorphic with respect to the modular group and
the congruence group, discussed in section 14.2.6. They are called
modular functions because they are closely related to the modulus of
Legendre’s complete elliptic integrals to be considered in more detail in
subsequent sections.

By rather simple arguments we can obtain a lot of information of the
above mentioned functions. We start with a triangle in the upper half of
the s-plane with vertices s, = o, s, = 0, 53 = 1. Together with an
adjacent triangle along the imaginary axis it constitutes a fundamental
domain for the congruence group, (fig. 14.3-6).

The function 5(0, 0, 0; z) which maps the above triangle onto the upper
half of the z-plane such that s, 5,, 55 correspond to 0, 1, co, respectively
will be denoted by

7(2). (14.3-62)
This function is unique and we have

7(0) = o0, (1) =0, 1(o0)=1. (14.3-63)
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tray Res =1, Im s >0 and the lower border of the left cut corresponds
to the left half ray Res = —1, Ims > 0.

If z moves along the upper border of the right cut to + oo, then 1 -z
moves along the lower border of the left cut to —co. Then t(z) moves
along the right circular arc to +1 and t(1 —z) along the left circular arc
to —1. Thus

{ = A+B
C+D
Taking z = 0 we find 4 = 0 and taking z = 1 we find D = 0. It follows
that
-1
(l—z) = —. (14.3-65)
o(z)
Referring again to (14.3-64) a simple calculation affirms that this equation
remains unchanged if we replace z by 1/z, whence

()=

If z moves along the upper border of the right cut to infinity, then 7(2)
tendsto 1 and 7(1/z) to oo, since 1/z tends to zero. It follows that C+ D =0.
If z tends to O along the upper border then 1/z tends to oo along the
lower border and (1/z) tends to —1, whence 4 = — C. If, finally, z tends
to 1 so does 1/z and, as a consequence, B = 0.

Thus we also have

T (l) -9 (14.3-66)
z —1(z)+1
The inverse function of 7(z) will be denoted by

X(s). (14.3-67)

This function is a simple automorphic function with respect to the con-
gruence group mod 2 and it takes its values once at each point of the
fundamental domain.

The equations (14.3-65) and (14.3-66) can be rewritten as

,1( S ) =L (14.3-68)
and

A (— i) = 1-4(s) (14.3-69)
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We notice that F(p) = 0 and that the numerator of F(s) is a poly-
nomial of the sixth degree in 1. There can be no other zeros in the
fundamental domain and we conclude that

2 0?3

Iv-(s) =c (iz—i_t_z_ s

AA(A-1)
where the constant ¢ is determined by the condition F(i) = 1. It follows
¢ = 4/27 and so

##-i+1)?

m— (14.3-78)

IIJ(S)=7‘%

It is clear that this expression could be obtained by straight forward
calculation from (14.3-75) inserting the expression for f(s) in terms of A.
In addition we have

J)=1 = 5% (A+1(2-2 Qi1
27 12(1_1)2

(14.3-79)

14.4 — Picard’s theorem and related theorems

14.4.1 ~ PICARD’S FIRST THEOREM

In section 9.9.3 we proved Picard’s theorem for integral functions by
means of a method due to Landau. A very simple proof is the original
proof given by Picard himself based on the function (z) introduced
in section 14.3.3.

If the half plane Im s > 0 is filled by an infinity of successive reflec-
tions of the original triangle with vertices at 0, 1 and oo, the z-plane
is covered by an infinity of upper and lower half-planes which are the
conformal images of the reflected triangles as given by s = 7(z). Each
half plane has three adjacent half-planes which are connected with it
along the segment 0 <z <1 and therays —o0o <z<0Oand 1l < z < o0,
respectively. The totality of half planes which are connected with each
other in the manner indicated is known as the modular surface. There
are no points of this surface above z = 0, 1, oo, for these are logarith-
mic branch points. The modular surface is the Riemann surface of the
analytic function obtained from z(z) by analytic continuation along
paths which avoid the points z = 0 and z = 1. This analytic function
may again be denoted by (z).

Let f(z) denote a non-constant integral function omitting the values 0
and 1. Consider a single-valued branch of the analytic function (z)
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of the modulus of this function on the line Im s = 7, is attained on the
segment 0 £ Res < 2, Im s = ¢,. By the maximum principle the maxi-
mum of A(s) in the infinite strip 0 < Re s < 2, Im s = ¢, is attained on

the boundary. On the lines Re s = 0 and Re s = 2 the function A(s) is
real and tends monotonously to zeros as Im s — co. Hence

A < u(te), Ims > g

As a consequence the moduli of the values of #(z) = A(g(2)) in the disc
|zl £ 9 do not exceed the number

Moo = ([ Im (o) = 0,00 (1449)

as asserted in Schottky’s theorem.

We shall make an additional remark which will be useful in the next
section. Suppose that |qay| < 1. Then we contend that the upper bound
in Schottky’s theorem depends only on 3. For let 7(z) denote the branch
which maps the plane slit along the half rays z > [ and z < 0 onto the
fundamental domain consisting of two triangles with vertex at infinity
(fig. 14.4-2). Since 7(z)— o as z—>0the disc|z| < 4, slit along a radius to the

left, corresponds to a closed point set within the strip of the fundamental
domain. If z tends to a point of the slit then t(z) tends to a point on one

T(z)

Fig. 14.4-2. Additional remark to Schottky’s theorem
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whence [h(O)] < . (14.4-15)
Now we apply Schottky’s theorem, taking 3 = 4. We find that in the disc
the inequalit

e Ih(w)l < B

holds, where f8 is an absolute constant for according to the remark at
the end of the last section B does not depend on a, = 4(0).

The vertical segment —7 < Im w < = through b, corresponds to the
circumference |z| = {a,| in the z-plane. This segment belongs to the disc
[w—b,| < 2% and according to (14.4-15) the function does not exceed
in absolute value the constant . This means, however, that on each
circumference |z|] = |a,], n = 1, 2, ..., we also have

f@l =B
and this inequality remains true within the annulus between two such
circumferences. Since each z satisfying 0 < |z| < |a,| is in at least one
such annulus, we also have

@I B, |z £ layl,

in contradiction with the fact that z = 0 is an essential singular point.
A somewhat more general statement of Picard’s second theorem is
If f(z) is holomorphic in the region 0 < |z—zy| < R and omits the
values a and b, a + b, then z, is not an essential singular point.
Indeed, we may apply the previous theorem to the function

f(zo+R2)~a
b—a )

We conclude that in every neighbourhood of an isolated essential singu-
lar point the function omits at most one value.

Picard’s first theorem may be obtained from the above theorem by the
substitution z - 1/(z—a).

14.4.5 — NORMAL FAMILIES

An astonishing simple criterium for normality of a family of functions
has been given by Montel. It states that a family is certainly normal in a
region if the functions omit two values, say O and 1.

In order to prove this statement we will employ an elegant test for
normality due to Ahlfors.

By the chordal derivative of a function f(z) is understood

2(f) = lim ’Lf(i%f(i» (14.4-16)
k=0
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On the other hand we have

24 = |f (2l £ 17 () =f ol +1f (zo)l < 1f(21)—f(20)I + 4,

whence

4 < |f(z)=f o)l

Since p can be taken as small as desired thisleads to a contradiction. Thus
[f(2)] <24 if |z—z,| < p, provided that p is sufficiently small. 1f
|f(zg) > B for every function of the family, then [1/f(z,)| < 1/B and by
the previous result |1/f(z)| < 2/B in a suitable neighbourhood of z,.
This concludes the proof of the assertion.

It follows that the set of points of R at which f{(z) is bounded for all
functions of the family is open. Also the set of points of 3R at which the
f(z) are unbounded is open. Since N is connected it cannot be decomposed
into disjunct open subsets (section 9.1.1) and thus we find that the func-
tions f are either bounded at all points of %t or unbounded at all points.

Let f,, f>, . . . be any sequence of functions of the family. Then either
the sequence is bounded at every point of R, or the sequence is unbounded
on every point of R.

Consider the second case. Let z, denote a given point and B an arbi-
trary positive number. Then | £,(z,)| > Bifrn > ny and hence | f,(z)| > 1B
in a sufficiently small neighbourhood of z,. If € is a closed and bounded
subset of R, then € can be covered by a finite number of discs of the con-
sidered kind and we may conclude that | £,(z)| > 1B for all zin € and »
sufficiently large. Hence the sequence f, f3, ... tends to infinity uni-
formly on G,

By the same teasoning we may infer that the sequence is uniformly
bounded on every closed and bounded subset of R, if the sequence is
bounded at every point of R. Then there is a subsequence which converges
uniformly on every closed and bounded subset of R and thus we see
that Ahlfors’s condition implies the normality of the family.

The following theorem can be proved by means of Ahlfors’s theorem.

Assume that a family of holomorphic functions in a region is such that on
every closed and bounded subset Im f(z) > 0. Then the family is normal.

By straight-forward computation it may be verified that

29(2)) = (@),

z)—1i
g(z) 1) .
f@)+i
From (10.2-3) we deduce that |g(z)] < 1 if Im f(z) > 0. Hence the
family of the functions g(z), being uniformly bounded throughout %,
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If g(z) = +1 or —1, then g,(z) = +1 or —1 and f,(z) - <o, uni-
formly in the closed disc.

It remains to consider the case that g(z) does not have one of these
three exceptional constant values. Since g(z) is holomorphic in § the
image of this disc, as given by g, is an open set which does not meet the
real axis. The values of g(z) at points of a closed disc within & constitute
a bounded set which has a positive distance from the real axis. On this set
the functions g,(z) tend uniformly to g(z). Hence

1@ = M9,(2)) = Ag(2) = f(2),

uniformly on the closed disc within &.

Thus we proved that the given family is normal at the point z,. Since
z, is an arbitrary point of R we may conclude that the family is normal
throughout R.

14.4.6 — AN ALTERNATIVE PROOF OF PICARD’S SECOND THEOREM

The following theorem enables us to give a very short proof of Picard’s
second theorem.

If z = 0 is an essential singularity of the function f(z) then the sequence
of functions

(2 =127"z) (14.4-19)

is in no punctured disc about z = 0 a normal family.

By a punctured disc we understand a disc from which the centre is
omitted.

Suppose that the function f(z) is holomorphic in the punctured disc
0 < |z| < 1. Consider the sequence (14.4-19) in the annulus

Wo:272 < |2 < 3x272,

The values that f,(z) takes in ¥, coincide with the values of f(z) in the
annulus
N:2727" < 7] < 3x 22",

Since 2, and %,,,, overlap, each value taken by f(z) in the disc 0 < |z]|
< 3x272is taken by at least one of the functions f,(z) in %,. Supposing
that the sequence (14.4-19) is a normal family, there is a subsequence
Jar» Jugs - - - Which converges either to a holomorphic function f4(z) or
tends to co.

In the first case f,(z) is holomorphic in 9, and, consequently, bounded
on the circumference |z| = }. Since the convergence of the subsequence is
uniform on the circumference the functions f;, (z) are uniformly bounded



























1(z) =

iK'(z)
K(2)
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If z is continued along a small circumference about z = 1 in the clockwise
sense, then z’ moves along a circle about z’ = 0 in the anti-clockwise
sense and K(z) is transformed into K(z)—2iK’(z). Hence t(z) undergoes
the transformation

(2)

") = —21(z)+1

(14.5-39)
These transformations are characterized by the matrices (14.2-35) and
(14.2-32) respectively. Hence, repeating the above process in all possible
ways we see that the various values of the analytic function generated
from t(z) by analytic continuation throughout the z-plane are obtained
from one value by means of the linear transformations of the congruence
group mod 2.
Since Abel’s identity (14.5-34) is equivalent to

di(z) i

= - , 14.5-
dz 4z(1-2)K?(2) (14.5-40)
we may represent 1(z) by the integral
n dal
= . 14.5-41
©-3]  L-DK(Q) (14540

This integral is convergent at z = 1, for K(z) behaves like the logarithm
of 1 —z at this point.

14.3.5 — A COVERING THEOREM

An interesting application of the theory of the function ©(z) is the
following covering theorem
If a function

f(z) = z+ iavz" (14.5-42)
v=2

is holomorphic throughout the open disc |z| < 1 then the image of this
disc as given by this function covers an open segment of arbitrarily given
direction which contains the origin and whose length is not less than

_ 47?
r@)

0

=0228... (14.5-43)

This result is sharp.

Consider an open segment containing the origin whose end points
are not covered by the image of the disc |z| < 1. Let « denote the end
point with the largest distance to the origin. Then f(z) does not take the
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CHAPTER 15

LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

15.1 —~ General theory
15.1.1 — THE EXISTENCE THEOREM

In many problems we encounter analytic functions which are character-
ized by functional equations of a special type, viz., differential equations,
rather than by their power series expansions. We shall restrict ourselves
to an important class of differential equations, having simple properties,
the linear homogeneous equations which are of the form

WO p (WL pu (W p(Dw = O (15.1-1)

The coefficients p,(z), . . ., p,(2), are supposed to be single-valued func-
tions.

The main theorem of this section states:

If the coefficients in (15.1-1) are regular at z = z then there exists a
unique solution of the equation such that this solution and its first n—1
derivatives assume arbitrarily assigned values, at z = z,.

Consider first the case n = 1. We have to solve an equation of the form

w'+p(z)w = 0. (15.1-2)

The solution which takes a prescribed value w(z,) at z = z, is evidently

W) = wizo) exp (- f;p@)dc) , (15.1-3)

where the path of integration is included in a sufficiently small neigh-
bourhood of z = z,,.

We wish to give another proof which may be generalized to the higher
cases. Since p(z) is supposed to be regular at z = z, we can expand this
function in a power series

p(z) = 2 pz=z0)" (15.1-4)
having a positive radius of convergence. We try to find a solution
W(Z) = Z cv(z—ZO)v: (151—5)
v=0

where ¢, has a prescribed value. The other coefficients are so determined
[507]
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A set of linearly independent solutions will be called a fundamental
system at z = z,.

15.1.3 -~ THE MONODROMY GROUP

Let w(z) denote a solution of (15.1-9) in a neighbourhood of z = z,.
Consider a closed path C in the open z-plane, beginning and ending at
z, and not passing through any singularity of the coefficients. We can
apply the process of analytic continuation simultaneously to the coeffients
and the solution w(z) under consideration along C. The continuation will
not disturb the relation (15.1-9) because of the principle of permanence of
functional equations (section 12.1.7).

After completing the circuit the coefficients of the differential equation
resume their original forms as power series in z—z,, being, by hypoth-
esis, single-valued. But w(z) need not resume its original form, though
it will remain some solution v(z), say. To trace this change the process of
analytic continuation must be simultaneously applied to both solutions
wo(z) and w,(z) of a fundamental system at z = z,. They will assume
the new form

UO(Z) = aOOWO(Z)+aOIWI(Z)’ (151_21)
01(2) = azowo(2)+a11w1(2)-
Between the Wronskians of v,, v, and wy, w, respectively exists the
relation

doo Qo1

W(UO,UI) = ajo agy

W(wq, wy). (15.1-22)

If the determinant involving the coefficients a;; in (15.1-22) were zero,
then there would exist a linear relation between v, and v, . But returning
along the same path the linear relation would persist.

This can also be seen in the following way. If C is a closed path
then by Abel’s identity

Wolz0) 1(z5) = Wlwe(zs) wi(zo) x| = (O,

whence
|
doo Qor

ajo 4511

= expfc—p(C)dC. (15.1-23)

Let p,, y, be two closed continuous paths starting and ending at the
same point z,. Continuing the solutions w,, wy along y; we obtain a set
which may be represented symbolically by

|:aoo ao 1] [Wo]
G0 4y1d LWy
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The middie term vanishes if

i.e., we may take

o(z) = exp (— %fp(i)dl) .

Then

or

and (15.1-27) takes the form

u"'+4R(z)u =0, (15.1-28)

the so-called reduced form of (15.1-9). The function R(z) stands for
R(2) = 29(2)—-1p*(2)—P'(2). (15.1-29)
Let u,, uy denote a fundamental system of (15.1-28) at a regular point
of R(z). It is clear that
oy —u uy =0

identically. Introducing the function

s(z) = 1@
( ) uo(z) ’
we have

o ds _uoui—upu,

dz u2
and by logarithmic differentiation, taking the above identity between u,
and u, into account,
d , ug
Zlogs' = =222,
dz ug
Differentiating again

2 ’ r\ 2 2
d—zlogs’ = 2% 4 (lfg) = R(z)+l(1 Iogs’)
dz U Ug 2 \dz

and this leads to (15.1-26).
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In view of (15.1-18) we have
£ _ 2 (W) Ol
" W°(z)wl(20( i)
(pe2) w0(z)w1<2o(zv;o<z)wl<z>
- - (+2! ZE ;) ().

Hence s'(z) is a solution of the first order equation

+ 2wy

w'+ (p(2)+2 W°(Z)) w=0. (15.2-13)
wo(2)
To this equation we apply Fuchs’s theorem for equations of the first
order. Since wo/w, has a pole of at most the first order we deduce that
p(z) has a pole of at most the first order at z = 0.
Since wy(z) is a solution of (15.1-9) we have

q(z) = — (V:VZEZ; p(z )WZEZ;) (15.2-14)

Differentiating the coefficient of w in (15.2-13) we obtain

pe)+2 ) (M)
wo(z)  \wo(z)
a function which has at most a double pole at z = 0 and so has wg/wg.
It is now clear that g(z) has at most a double pole at the origin. This
establishes the necessity of Fuchs’s conditions.

In order to prove the sufficiency we proceed as follows. First we
assume provisionally the existence of a semi-regular solution w(z). Then
(15.2-13) satisfies Fuchs’s condition and it possesses a semi-regular
solution

s'(z) = Z(ap+az+ ...),
from which follows

a a
s(z) = —2- 2Pty LTIy tclogz,

p+1 p+2
where the logarithmic term occurs only if p is a negative integer; then
the corresponding term in the series is missing. As a consequence also

wi(z) = s(z)wo(z) is semi-regular.
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where @(z) is regular at the origin and p is chosen appropiately. In

fact, substituting (15.2-18) into (15.1-9) we find that ¢(z) must satisfy the
differential equation

o'+ (p(z)+ %5) o'+ (q(2)+ %P(z)+ ﬂ(%;—l)) ¢ =0 (152-19)

The coefficient of ¢ has only a pole of the first order if p satisfies the
indicial equation

rp(p—l)+p-1p+q_z = 0. ’ (15.2-20)

This same equation is obtained if we substitute the series

p+2

oz’ 2t ey 2 i L (15.2-21)

into (15.1-9) and collect coefficients of equal powers of z.
We shall denote the roots of the equation (15.2-20) by p, and p, and
we shall assume that p, = p, if p, and p, are real. It follows from

Po—p1 = 2po—(po+p1) = 2po+p-1~1 (15.2-22)

that 2p,+p_, cannot be zero or a negative integer. Hence our prelimi-
nary considerations allow us to conclude that to p, corresponds a regular
solution ¢, and thus a solution

wo(z) = 2°°¢4(2) (15.2-23)

is asserted. If the difference p,—p; is not an integer then 2p, +p, is not
zero, nor it is a negative integer and we find a second solution

wi(z) = 2°'9,(2), (15.2-24)

such that w, and w, are linearly independent.

If the roots differ by an integer an independent solution with respect to
w, can be found as follows. We employ the function s = wy/w,, where wo
is the solution (15.2-23) and w, has to be determined from s. Its derivative
satisfies the differential equation (15.2-13), that is

v (M +,(z)) w=0 (15.2-25)
V4

where r(z) is regular at z = 0. By assumption p,—p, = m is a non-
negative integer and from (15.2-22) follows that 2p o +p_, = m+ 1. Hence
w'(2) __ m+1 —i(z)
w(z) z
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In this case Fuchs’s condition is not satisfied at z = 0. Otherwise stated:
The point z = o0 is not a regular singular point of Bessel’s equation
(15.3-1). Else the equation has no singular points.

The indicial equation of (15.3-1) is

plo—D+p—x =p*—x> =0 (15.3-3)

whose roots are p = +x; we may assume that Re k = 0.
In accordance with the general theory there must be a solution at z =0
2"0(z) (15.34)

where ¢ is regular at z = 0. Inserting the series
o«
DICR 2 (15.3-5)
v=0

into (15.3-1) we find that the coefficients must satisfy the recursive rela-
tions

(2x+1)e, =0,

n2k+n)c,+cuay =0, n=2,3,..., (15.3-6)
The fact that the equation (15.3-1) remains the same by changing z
into —z suggests that ¢,,+, =0, =0, 1,2,.... The relations (15.3-6)
are satisfied if we take the remaining coefficients such that

Con = — Con—2 =, — (_l)n Co
n 4n(xc+n) 221k +1) ... (k+n)
=(_1)nco F(K+1) n=012,...

2"l (k+n+1)
provided that k is not a negative integer. It is common use to take
1
Co = —7,
2T'(k+1)
2" being exp (x log 2). Thus we obtain the function

L=y &Vt (z )M, (15.3-7)

v=0 v! T(k+v+1) 2

a solution of Bessel’s differential equation. It is easy to verify that
z7"J(z) is an integral function. Hence term-by-term differentiation is
permissible and the formal process for finding a solution is justified.

The function (15.3-7) is called a Bessel function of the first kind of
order k. It is assumed that z" represents its principal value in the region
z+]|z] # 0. Recapitulating:



J_i(2) = (= 1)U(2),
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Adding corresponding members of (15.3-9) and (15.3-10) we obtain

aJ,
2= Jx—l(z)_‘]x+1(z)
dz

and subtracting corresponding members

Jx+ 1(Z)+Jx—l(z) = EZE Jx(z)—\

(15.3-11)

(15.3-12)

The relation (15.3-12) may serve to prove that the Bessel functions of the
first kind whose order is half an odd integer are elementary functions.
It is sufficient to verify this for k = —% and x = }. According to

(15.3-7) we have the expansion
Z\"t = -1y 2\ %
J_4(2) = (*) ) Gl (—) .
27 v=oviI(3+v)\2

From
(2n)!
2%

I(n+}) = rg)

and I'(3) = v/ it follows that

? L (_I)VZZv
R A

or

J—&(Z) = V_Z_ cos z.
7z

If ¥ = % we have the expansion

o= (2) 5 E0 ()

2/ Vo vt I'3+v) 2

From
I'(n+3) = (n+HI(n+%)
and the above results we find that
—2_ ) _1 v22v+ 1
Lo =2y v
nzv=o (2v+1)!

or

(15.3-13)



2niv=0 v! \2

© (1) K+2v
JK(Z) = ._L Z ( 1) (i) f ert_x_v_ldt.
L(a)
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At the end of section 3.14.4 we encountered the particular case

Jo(z) = L f cos (z sin 6)d0. (15.3-22)
TtJo

15.3.4 — BESSEL’S SOLUTION OF KEPLER’S EQUATION

Bessel discovered his functions by attempting to solve Kepler’s
equation (3.13-23), viz.,

u—esinu=t, O<e<l (15.3-23)
This equation defines ¢ as a strictly increasing function of u, since
dt
du
Hence u can be considered as a strictly increasing function u() of ¢
It is clear that

=1—sgcosu > 0.

u(to)—e sin u(ty) = to
and
u(to+2m)—¢ sin u(to+27) = to+2m.
But also
u(to)+2n—e sin (u(to) +2n) = fo+2m.

Since the solution of the equation (15.3-23) is uniquely determined it
follows that

u(ty+2n) = u(ty)+2n

and, consequently, sin #(¢) is a periodic function of ¢, the period being
27n. By similar arguments it is readily seen that sin #(z) is an odd function
of ¢. Since u(n) = =n, we have sin u(n) = 0.
The theory of Fourier series asserts that ¢ sin u(f) can be expanded
in a uniformly convergent sine series. Thus we have
o0

esinu(t) = Y, A, sinvt, (15.3-24)

v=1

with

A4, = —%f esinu(t)sinntdt, n=1,2,.
TJo

Integration by parts yields

2¢ sin u(t) cos nt
A, = —# + — | cosnt

o nmWJy dt

"2 J’" d(e sin u(t)) it

nw



exp 4z (u— i)

I

=Z__ u'J (z).
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is permissible and if C is within the unit circle we may also integrate
term-by-term. We find

(3)” GtV M(Lﬂv_—l)’f“mm lexplz(u_ _) du.
2 2ri v=o0 y! c u

If x is an integer the Hankel contour in (15.3-18) may be replaced by a
circle about the origin and the above result appears in the form

(- 1)mv§0 2v+ m)(:; +v—1)!

Finally, taking account of (15.3-8)

z\" v+ m)(m+v—1)! . g
(E) vgo———v! Joen(?).  (15.3-31)

This formula has been derived under the assumption m > 0. It does not
hold for m = 0 as is clear from (15.3-29). We notice the particular case

J—(2v+m)(z)'

—;— = Ji(2)+37(2) +5T5(2)+ . . . (15.3-32)
15.3.6 — SOMMERFELD’S INTEGRAL
Bessel’s function J,(z) can be written as
J(2) = Z%¢(2), (15.3-33)

where ¢ is regular at z = 0. Starting from (15.3-1) a simple compu-
tation shows that ¢(z) satisfies the differential equation

+(2x+1)zg +2%p = 0. (15.3-34)

A method of frequent use in the theory of linear differential equations is
the application of Laplace’s integral

f e~ (t)ds, (15.3-35)

where s is a complex variable and C a suitably chosen path. We shall apply
this method to the equation (15.3-34). It is convenient to introduce the
variable s = —z2, Then (15.3-34) takes the form

21/

d’e do

s—2 +(k+1)X —1p = 0. (15.3-36)
ds* ( ) ds 4o

Replacing ¢ by (15.3-35) yields

f(stz—-(ic-}-l)t—%)e_”f(t)dt =0.






L(1) /

N
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represents a solution of Bessel’s differential equation throughout the
region 0 < argz < = i.e., the upper half plane. The path of the last
integral is obtained from L, by shifting it to the I=ft over a distance ix.

Let now z denote a point in the first quadrant. Integrating along the
perimeter of the rectangle with vertices —n, —n+iy, ~3n+in, —3n,
n > 0, (fig. 15.3-5) we obtain the value zero. Since the integrand tends
to zero as 1 — oo the integral taken along the segment from —n+ip to
—37+in tends to zero as § — oo and we may infer that

J‘-n-ﬂoo J‘ 3n f—1n+mo

Fig. 15.3-5. Analytic continuation of the Hankel functions

By a similar reasoning we find

f J‘ %n f
in—iowo
As a consequence

ol e e
[

Thus the integrals along the two paths yield the same value for all z in the
first quadrant. By shifting again to the left we can repeat the process of
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continuation and thus we find that H}(z) can be continued through-out
the whole z-plane (avoiding the origin). The reasoning for HZ(z) is quite
the same.

15.3.8 — NEUMANN’S FUNCTIONS

The function H!,(z) is represented by the integral

HL (2) = — 1 exp i( —xu—z sin u)du.
T JL,
Replacing the variable u by u—= effects the shifting of the path of inte-
gration to the right through the distance n. Denoting this new path
symbolically by L; +7 we get

ki

f exp i( —xu +z sin u)du.
Li+n

I
|
|
| Y
|
|

1
]
(=}

o

Fig. 15.3-6. Modification of the paths for the Hankel functions

Reflecting the path L, +x in the origin we obtain L,, percorsed in the
reverse sense (fig. 15.3-6). Hence replacing u by —u we get

H ' (2) = — en f exp i(xu —z sin u)du,
L

1

the integral on the right being that for Hl(z). A similar reasoning is
applicable in the case of H2,(z). Thus we arrive at

H. (2) = ™ Hy(2),

. 15.3-52
H? (2) = e 7" H(2). ( )
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The complex conjugate of H.(z) is

Hi(z) = — —71; _exp —i(icu—Z sin u)du,
Ly

where L, is obtained by reflecting L, in the real axis. Replacing u by —u
the path L, becomes —L,, (fig. 15.3-6). Hence

Hy(z) = — L exp i(<u —Z sin u)du,
TJp,
or
’ HY(z) = Hy(2)- (15.3-53)

It follows that if k and z are real the Hankel functions are comjugate
complex.
The functions

N(2) = 21; (Hx(2)—Hi(2)) (15.3-54)

are called Neumann’s functions. They are real if « and z are real.
Solving H}(z) and HZ(z) from (15.3-51) and (51.3-54) we obtain

Hy(z) = J(2)+iN(2),
<(2) = 1(2) +iN,(2) (153-55)
H{(z) = J{(2)=iN(2).
We notice that from (15.3-52) and (15.3-51) follows
T_(z) = 1HL(z) + 1 H(z) (15.3-56)

and this yield (15.3-8) if x is an integer.
Finally we wish to express Neumann’s function of order « in terms of
Bessel functions. The equation (15.3-56) may be written as

J_(2) = 3(HL(2)+ H2(2)) cos kn +}i(HL(z) — HE(2)) sin k=
= J,(z) cos kr— N,(z) sin xm,

whence

J(2) cos kn—J _,(2)
sin km

N(z) = (15.3-57)




(M _(_1)" L"(z))

0K ok

(g)ﬁzv(log % —Y(k+v+ 1))
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15.4 — Legendre’s functions

15.4.1 - SOLUTION OF LEGENDRE’S DIFFERENTIAL EQUATION

In section 3.14.1 we obtained the result that the polynomials of
Legendre satisfy the differential equation

(Z2=1)w" +2zw' —n(n+1)w = 0, (15.4-1)

where n is a non-negative integer. This equation will be referred to as
Legendre’s differential equation.

It is easily verified that the equation has regular singular points at
z = =+ 1. At these points the indicial equation is

plp—D+p =0, (15.4-2)

having the double root p = 0.
Replacing z by 1/z the equation (15.4-1) becomes

n(n+1)

(1-2w"'—2zw'— == w =0 (15.4-3)
V4

and it follows that z = oo is a regular singular point of (15.4-1). The
indicial equation at this point is
plp—1)—n(n+1) =0, (15.44)
with roots
po=n+l, py=—n

The most manageable forms of the solutions are those which proceed
in descending powers of z and are, therefore, appropriate to the singularity
ad infinity. Substituting the series corresponding to

Y e,z (15.4-5)
v=0

into (15.4-1) we obtain the recursion formulas
(n—m+2)(n—m+1)c,_,+m2n—m+1)c, =0 (15.4-6)

where m > 2. We may take ¢, = 1 and it follows from the fact that the
equation (15.4-1) remains unaltered if we change z into —z that all
coefficients with odd subscripts are zero. Hence a solution is

(o) = 2 (1 HO=D) o A=D=D0=3) )
1(2) (1 202n=1)° T 2a@an—12n-3) +)

(15.4-7)






dt L
(1-)PAr)

0(z) = P2) [




[
zol+t ro

0
dp +zf d6 = log = +i(6—6)
P 6o To
and
v o '
= _f dp —il| do = —logr—’ —i(0"—6y),
ro P

) To

g
1—t

20
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and

1) = (242, - 29)

+1 +1 prr
+J z'fﬁ) dt.
(z—1)* z—t

o1 Joy ozt

Hence

(22 =1f7(2)+22f(z) — n(n+1)f,(2)

_ J’“ (22—~ 1)P,)(t)+2zP,(t)—n(n+1)P,(t) it
1 z—t
z2—2zt+1 z2—1 .\ |*?
(-T2 R)|
_ f“ (12—1)P;,’(t)+2tP,’,(t)—n(n+1)P,,(t)dt+
-1 z—t

o [ 0P+ 2P~ P00+ P 1)~ DR+

+1

+

+1 +1
+ f P (t)dt—P,(1)
1

-1

+(z—-1)P,(—=1) = (z+1)P,(1)

+1

-1

—(z+0)P,(t)] =0.

-1

This proves the assertion. Taking into account (15.4-16) and (15.4-21)
we may conclude that

LOPYP(n) o LTV P(2)=Pu(1) ,
Qn(z)—Ef ——dz——f S I A=W, (2).

-1 z—t 2J_4 z—t

The expression on the left is a solution of (15.4-1). The right-hand mem-
ber is clearly a polynomial of degree not exceeding n—1. Since only
polynomials of exactly the degree n satisfy Legendre’s equation (15.4-1)
this right hand member is identically zero. Thus we have derived Neu-
mann’s integral

_I[T RO
On(z) = 2f_1 i (15.4-22)
and
+1 _
W,.-l(2)=1f BB 4 (15.4-23)
2J) 4 z—t

The formula (15.4-22) holds also for z between —1 and +1. It must
then be interpreted as a Cauchy principal value.



Zn—1+zn-3 (1 _
3

[

)sz( 0? d”(z —1)dt

2n+1 1




2 = f

(
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such that it crosses itself at = 0, (fig. 15.4-2). Also in this case the
function returns to its initial value if ¢ returns to its starting point on C.
Let —m <argz=<n and let arg (z—¢) » argz as #— 0 along C.
Further we shall suppose that arg (1+1) = arg (/—1) = 0 if ¢ is the
point on C on the real axis to the right of t = 1.

We proceed to prove that, after introducing an appropriate multiplier
the function f,(z) represents Q,(z) if x = n, a non-negative integer.

[
oZ

t- plane

-1 +1

Fig. 15.4-2. The path of integration (—1+4, +1—) for Legendre’s function of the
second kind

Assuming that Re x > —1 we have

(=14, +1-) (42 1)x -1 o ! 0
f (t 111 dt =f +e2muf +e2kmf +f
(t—2)" 0 -1 o J1

+1 1) 3 +1 2__ K
(: 111 dt = e""2isin an (1 2—1
-1 (t-2) ~1(t=2)

Interchanging ¢ and z in the denominator, on agreeing that
z—t = (t—2)e",
1—t = (t—1)e",

(eZm:i_ 1)

we may conclude that

(=14, +1-) 21y Pt o2 1+l
—.1 ) f +(l ) + dt=e'"”f (t+1 ) +1
2isin kn 2z =gyt .y 2P (z—0)"
1
(1
= — -t
f_12K+l(Z—t)K+1

For x = n this last integral represents Q,(z) as is clear from (15.4-26).
By this reason we define

s(~14, +1-) 2_ 4y
QK(Z)=.—.1~—J —(tLr;l (15.4-32)

2i sin k7 Xz —gy !

as Legendre’s function of the second kind of order k. The function is
single-valued and holomorphic in the plane cut along the real axis from
~o0 to +1.
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15.4.7 — ASYMPTOTIC BEHAVIOUR OF LEGENDRE’S FUNCTIONS FOR LARGE
VALUES OF |z]

As we have seen in the previous section the function Q,(z) may be
represented by

0,(z) = — JH A=) 4 (15.4-33)

2K+l 1 (Z_t)x+1

provided that Re x > —1. We may write this as

k+1 _ 1 1 (]’_tz)'C
z Qx(z) - 2x+1f_1 (l_t/Z)x+1

If we let z — oo under the condition |arg z] < 7 we get

lim 2*1Q, (z)——f (1— ) dt

4md o

1 I(k+1)IQ)

= %du =3
2t 21 I'(k+3)
or
: n I(x+1)
lim z**! ,Cz=ﬂ————, _
lim 0.(2) > (et 3) Rex > —1.  (15.4-34)

The similar problem for P,(z) requires more attention, because the
path of integration includes the point z. In

(14+,2z4) 2 1\«
J u dt
(t__z)x+1
we perform the substitutions
t—1 = (z~1)u,

t+1 =(z—1)u+2,
t—z = (z—1)(u—1).

(1e,24) 5 \¥
(z——l)"f u(u—1)"**0 (u+ —) du.

z—1

We get

If we let z > oo as above we find, taking into account (15.4-30),

. _ 1 (1+,04)
lim z KPK(Z) —_ f uZK(u_l)-(K+1)du

2= 00 2K+lni

_omrmi p(14,04)
= ————J u™(1—u)~**Pdu.

2K+17Ti



1
f u2x(1_u)—(x+1)du

0

x 1
lim z™*P(z) = \2/_% i E:ii;




Qu(z




(Gt Vi 1) i
c (t=2)"
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First we donsider an equation having only one singular point. Accord-
ing to the above remark we may suppose without loss of generality that
this point is placed at the origin. By virtue of (15.5-8), expressing that
the sum of the residues of p(z) at the finite singular points is equal to
two, we may infer that

P = 2. (15.5-24)

Since z = o0 is a regular point the function ¢(z) has a zero at least of
order four at z = 0o. On the other hand the multiplicity of its pole at z=0
does not exceed two. This is only possible if g(z) is identically zero and the
desired equation is of the form

2w 2w = 0. (15.5-25)
The indicial equation is

ple—D+2p =0

having the roots py = 0, p, = — 1. A fundamental system of solutions is

wo(2) =1,  wi(z) = z7%

In the case that there are two singularities we can place them at z = 0
and z = 0. Then, since there is only one finite singularity

A B C
p(z) = —, ‘1(2)=_2+—’
z z z
with C = 0, in accordance with (15.5-7). The desired equation is
22w+ Azw'+ Bw = 0, (15.5-26)

a linear differential equation of the Eulerian type. The indicial equation
at z =0is
plp—1)+Ap+B =0

and if the roots p, and p, are different it is easily verified that
wo(z) = z*°, wy(z) = 2

is a fundamental system of solutions. If both roots have the value p then
a linearly independent system of solutions is

wo(z) = 2%, wy(z) = z’log z.

Thus we see that the Fuchsian differential equations of the second order
with one or two singular points can be integrated in terms of elementary
functions.

The next type in order of complexity is that with three regular singular
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and the corresponding exponents by «, o’; 8, B’; y, ¥’. These exponents
satisfy Fuchs’s relation (15.5-20) which now takes the form

ata’+5+p +y+y = L. (15.6-4)

In view of (15.5-18), (15.6-2) and (15.6-3) we have
A Fuchsian equation with three singular points is

l—o—o' 1-f-8"  1—y—9'
v (L0 L )
z—a z—b z—¢

i (Eleezg , po-d0g), wemaoh) »

z—a z—b z—c ¥(z)
(15.6-5)
with
Y(z) = (z—a)(z—b)(z—c). (15.6-6)

This result is due to Papperitz.

15.6.2 — SOLUTION OF RIEMANN’S EQUATION BY MEANS OF INTEGRALS

One of the pleasant features of Riemann’s equation is the fact that it can
be solved in a closed form, i.e., we can find explicit expressions for the
solutions. The derivation of these expressions requires some heavy com-
putation but the result is worth the trouble.

First we make the substitution

w = (z—a)(z—bY(z—c)'v = f(2)v, (15.6-7)

in order to obtain a solution with exponent « at z = g, etc.
Differentiation yields

w =2 —g——f(z)v+f(z)v'
z—a

and

W' = (2 G Cank VNP S ) F@+25 2 f +f (2",
(z—a)? (z—a)(z—b) z—a
where the summation must be performed about all terms which are
obtained by cyclic permutation from the term written behind the sigma
sign.
Inserting these expressions into Riemann’s equation we may omit the
common factor f(z). The coefficients of v" becomes
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Hence the condition becomes
J (t—2)* " (up () +(t=2)x(1)) U(£)dt = 0. (15.6-13)
c

At this stage we introduce an auxiliary function

V(1) = (t—z)"W()U(D). (15.6-14)
Its derivative with respect to ¢ is
av d(y U) 4
— = (t—z)! =——— +p(t—z)" Y U.
= -2y T -2y

This is identical with the integrand in (15.6-13) if U(¢) satisfies the differ-
ential equation

o) _ 20U,
dt
or
dyuydr _ x1) _ s o' +p+y
yu ¥(1) t—a
A solution is

U(l) = (t_a)a’+ll+7—1(t_b)a+ﬂ'+y—1(t_c)u+ﬁ+y._1.

Summing up we have established the following theorem
A function of the type

(z—a)(z—bY(z—c)’ fc(t—a)ﬂa-l(z—b)"b-l(z—c)"c-l(z—z)“' dt,

(15.6-15)
where the exponents occurring in the integrand are
Ho = &'+ B+,
My = o+, (15.6-16)
He = 05+ﬁ+’}’,,

po=—a—pf—y-1,

is a solution of Riemann’s equation provided that C is a path in the t-plane
such that

f av =0, (15.6-17)
[

V being the function
V() = (t—ay(t—by*(t—cy(t—z)" (15.6-18)



A

(c+,b4,0-,b-) c
f = (1_62niub)(1_62niuc)f .
b
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these relations being rational functions of z. As a consequence each of
these functions can be expressed in terms of P and some selected one of
them. Hence between P and any two of the functions (15.6-28) exists a
linear relation with rational coefficients. Multiplying throughout by a
common multiple of the denominators these coefficients become poly-
nomials.

Starting with relations which are obtained from (15.6-25) by cyclic
permutation we can extend the result to all contiguous functions. This
concludes the proof of Riemann’s theorem.

An illustrative example is provided by the relation (3.14-11) between
Legendre’s polynomials which holds also for the general Legendre
functions as we pointed out in section 15.4.9.

Other examples are the Gaussian relations between contiguous hyper-
geometric functions to be dealt with in section 16.3.2.

15.6.4 — THE MONODROMY GROUP

The representation of the solutions of Riemann’s equation by means of
double loop integrals affords a means for obtaining the monodromy
group, as has been shown by C. Jordan.

Fig. 15.6-1. Elementary loops in the s-plane punctured at t =aq, b, ¢, z

Let ¢, be any point in the complex ¢ plane different from the singular
points and a given point z. By 4,, 4,, 4., 1 we denote simple loops starting
and ending at 7, and encircling once the points a, b, ¢, z respectively in
the positive direction, with the understanding that 4, encircles the point
a but neither of the other points, etc. (fig. 15.6-1). In most cases we can



,,,,,,,,,,,

,,,,,,,,,,,

,,,,,,,,,,,

(15.6-33)
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Fig. 15.6-2. The deformation of the ¢-plane in a neighbourhood of ¢ = a as given by
t = a+2ruexp (87 iu(1 —u)v).
The curve connecting the points a and a’, where a’ is such that z = $(a+a’) is the

deformation of the rectilinear segment connecting these points. The point z describes
a full circle

z‘O
Fig. 15.6-3. Deformation of the loops 4 and 4, into A’ and 2;
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Thus we obtain the relations of homotopy
Ao~ AT12,A
and
X ox AT A
Now it is clear that
o AT A, R AT

Since the path A~1 1; 1A4, is closed with respect to analytic continuation
of the integrand occurring in (15.6-31) (considered as a function of ¢),

t o
Fig. 15.6-5. Further deformation of the path A’

we may apply (12.7-33) and (12.7-31). We find, in view of the first
expression (15.6-31),

J;/a = —w,,+f . (15.6-34)

Since
Vo (AT TAA)A
we find, by virtue of (12.7-34),

f’ = Ew,+ L. (15.6-35)
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Notice that another fundamental system gives rise to a conjugate group,
that is essentially the same group if we do not distinguish between
isomorphic groups.

15.6.5 — RIEMANN’S METHOD FOR OBTAINING THE MONODROMY GROUP

An alternative method for finding the monodromy group goes back to
Riemann. The interesting feature of this method is that it does not need
the explicit form of the solutions of Riemann’s differential equation. It
has an algebraic character and it employs only general principles.

According to the general theory of Fuchs there exists a system of three
pairs of solutions, each pair constituting a fundamental system

P,,P,; Py, Py Py, Py, (15.6-38)

such that (z—a) " *P,(2), (z—a) * P,(z) are regular at z = g, etc., provid-
ed that none of the differences a—a’, —p’, y—y' is an integer. In the
course of this section we adopt this assumption.

Within the simply connected region bounded by the circumference
through the singular points the solutions can be defined as single-valued
holomorphic functions. The same is true for the region outside this
circumference. It is assumed that the circumference is percorsed in the
positive sense if we pass from a to b to ¢ to a. In the case that these points
are on a straight line we consider the region on the left of this line as the
interior region,

It is clear that in the interior region exist relations of the form

P, = agPg+ag Py = ayP,+ay,Py,,

15.6-39
n (15.6-39)

agPy+ap Py = a,P,+a,P,,

the others being obtained by cyclic permutation.
Consider the quotients of two coefficients occurring in (15.6-39) with

the same subscripts. Three of the four quotients
a ay 8, 4

'
Y

’ ’ ’
ag ag a
are determined by the remaining one, for the six functions (15.6-38) are
each determined up to a multiplicative constant.

Let us consider the effect upon two solutions P,, P,, of analytic
continuation along a simple closed path encircling the points z = b and
z = ¢ once. We may consider this path as a product of two loops, first
about the point z = b and then about the point z = ¢. As we pointed out
in section 12.7.8 in the extended plane this loop is homotopic to a simple






15.6] RIEMANN’S EQUATION 581

sin (o + '+ 7’) sin (e’ + ' +y) _ sin n(e’+ B +7) sin n{a+f+7y)
sin m(o + B’ +7') sin (o + B +7)  sin w(a+B+y) sin 7l +f+7')

and this equation is verified because of (15.6-4).

If we have a system of numbers a4, oy, a,, a,, a, ay, a,, a,., satis-
fying (15.6-42) there are six branches (15.6-38) presenting the desired
behaviour at the singular points. Indeed, we may multiply the six
branches by six constants, provided that the ratio of the quotients
corresponding to the new coefficients have the same value as before. We
can, therefore, consider a system of branches (15.6-38), being semi-
regular at the singular points, where the coefficients are arbitrary, save
for the mentioned restriction. If, however, the multipliers for the regular
parts are given, that is to say, if the regular parts at the singular points
take prescribed values, the coefficients are uniquely determined. Their
evaluation requires more information about Riemann’s equation than is
needed in this section. The evaluation of the coefficients will be carried
out in section 16.1.9 by an elegant method due to E. W. Barnes.

In order to find the monodromy group we focus our attention to P,,
P,. An encircling about the point z = a changes these functions into

e2vep,,  e¥™p, (15.6-43)

respectively. As regards the effect of continuation along a simple loop
about z = b we express the functions P,, P, in terms of Py, Py, as in
(15.6-39). After continuation along a loop encircling only the pointz = b
they take the form
2nip 2nip’
age” ™ Pgt+age ™ Py,

. . 15.6-44)
aye®™* P, +ap e P, (

If we replace Py, P, by their expressions in terms of P,, P,., by solving
the equation (15.6-38) we have the desired solution. In order to facilitate
the computation we write

Pa = aﬂPﬂ'i'aﬂrPﬂ',

(15.6-45)
P,

KﬁaﬂPﬂ+Kﬂoap:Pﬂ,,
with

g =28, kp=2E, (15.6-46)
aﬁ a‘r
Solving the equations (15.6-45) for a; P, and a; P, we get
a,py = P Pe p p _ KePumPe
Ky —Kg Kg—Kgs

Inserting this into (15.6-44) we see that the analytic continuation along
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Hence
o = ‘l‘(“z+°‘j+“il+°‘}—'I“i‘“j—(“il““})l),
Bij = ¥(Bi+ B;+Bi + B;—1B:—B;—(B: — B)Ds (15.6-55)
Vi = 200y Y= =y =i =)

By hypothesis the numbers «; and «; differ by an integer. We may express
this by

o; = a; (mod1).
Hence
a+a; = 2a; = 2a; (mod 1),
o—o; =0 (mod 1),
whence

o = o+ = o4 (mod 1),
Bi; = Bi+B; = B;+p; (mod 1), (15.6-56)
Vi = v+ = v;+y; (mod 1).
In view of (15.6-4) we have
The sum of the exponents (15.6-55)

oci_,-+ﬂ,-j+yij (156—57)

is an integer.
In fact, this sum is = 0 (mod 1).
From (15.6-55) follows that this sum is also

32—l — o — (o —ap)l ~ | Bi— B;— (Bi — B — Ivi— v, — (i —¥)I)
and thus the sum turns out to be negative or zero.
From (15.6-56) we deduce

o — oy = oty —(o;+aj) = 0 (mod 1).
Hence
The exponents (15.6-55) of a triad (a;;) = (%12, %33, %3,) differ among
themselves by an integer.
Going back to (15.6-54) we readily see that the functions

(z—a)™™(z—b) " Pu(z—c)""Q,; (15.6-58)

are regular at z = @, b, ¢ and have the exponent a;;+ f;;+7;; at z = oo.
Since the Q;; are regular at z = oo, it follows that the functions (15.6-58)
are polynomials of degree

Ny = —(a;;+Bij+7:5)-
Up to now it is tacitly assumed that z = oo is not a singular point.

Should this be the case, then we may apply a linear transformation to
get the case considered above.
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system (15.7-10) are not doubly periodic, but consist of a doubly periodic
function multiplied by an exponential factor. If, however, / has one of the
exceptional values e, the first solution of (15.7-12) is doubly periodic,
but the second solution is not periodic.

It can be proved that if # is an arbitrary positive integer Lamé’s equa-
tion is solved by
a(z +a,)

1 6(z)o(a,)

where a,, . . ., a, are constants to be determined.

w(z) = exp (—z{(a,)),

15.7.3 — ALTERNATIVE FORMS OF LAME’S EQUATION

If we take z; = §(z) as a new variable we easily find
"' —(h+n(n+1)p) = 0.
O e (1)
From (5.4-1) we obtain by logarithmic differentiation
1’ 1
p’ _1 ( 1 + + 1 ) o
P 2\p—e fP-e; e

and Lamé’s equation appears in the algebraic form (omitting afterwards
the subscript from z,)

1( 1 + 1 1 )w’— h+n(n+1)z

Witz +
2\z—e, z—e, z—ey 4(z—e )z—e)(z—e3)

(15.7-13)

This is a Fuchsian equation with singularities at e;, e,, e; and oo. It is
easily verified that the roots of the indicial equation are 0, 4 at the finite
singular points and {(n+1), —4n at z = co.

Another form of Lamé’s equation is obtained by introducing the
Jacobian elliptic functions. Let us write

z, = z/ e, —e;
where the square root has been defined in (5.7-5). Then
d’w _d*w
— = -— (e;—e3).
de dzf ( 1 3)
From (5.14-19) follows
pz)—ey = —A2_ =217

— z
sn?zy/e,—e; S0 2y
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z dC
wWi )"

wy(z) = ewy(2)
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The nature of the second solution, when the first solution is of the type
Sy, Cy, S, may be investigated in the same way.

The aperiodic functions associated with the periodic solutions in the
above described manner are called Mathieu’s functions of the second kind.
They are denoted by

in,(z) = ce,,,(z)f (C)

jn(z) = se (z)f ( )’ m=0,1...,

where the value of z, is not very important.

(15.8-24)

15.8.6 — THE INTEGRAL EQUATION OF WHITTAKER

We conclude our account of Mathieu’s equation with the proof of the
statement that the Mathieu functions of the first kind satisfy certain
integral equations. We confine ourselves to one example, viz., that any
Mathieu function, being either even or odd, satisfies an integral equation
with symmetrical kernel:

o(z) = xf exp (2h sin z sin 6)p(9)do. (15.8-25)
It is advisable to write (15.8-2) as

w'+(A—4h* cos? z)w = 0, (15.8-26)

where 1 is written rather than A+ 2h% Now we consider the function
9(z2) =J‘ exp (2h sin z sin 8)p(0)d0,

where ¢(0) is regular between —n and n, periodic with period 2z, and
either even or odd. Then we have

@''(z) — 4h* &(z) cos’ z =f exp (2h sin z sin 6) x

x (4h? cos® z sin® 6—2h sin z sin 6 —4h? cos? z)p(6)do.
Since
cos? z sin? f —cos? z = (1 —sin? z)(1 —cos® §) —cos? z

= sin? z cos? @—cos? 0,

the integral may be written as
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Thus we obtain the hypergeometric series

ab z  a(a+1)b(b+1) _z_2

wz) =14 16.1-19
@) c 1 ocrl) 2 ( )

This series will be denoted by
F(a, b; c; 2).

Notice that it is symmetric in a and b, as is the hypergeometric differential
equation (16.1-9).

The series terminates after a finite number of terms if at least one of
the numbers g, b is zero or a negative integer. In the remaining cases it is
convergent if |z| < 1, for it follows from (16.1-18)

. €
lim -+ =1,

n~o Cp
A function obtained by continuing analytically the series beyond its
circumference of convergence is called a hypergeometric function.
It is convenient to introduce the symbol

=F(s+n)={s(s+1)...(s+n—l), if n>0,

(S)n )

16.1-20
1, if n=0. ( )

Clearly
(8)a = (=1)"n! (;S) (16.1-21)

as follows from (2.16-19). Accordingly the hypergeometric series may
be written as

Fla, b 5 2) = i (a)b), 2" _ _I(c) < I'(a+v)I(b+v) z_",
v=0 (¢), v! TI(a(b)vso  TI(c+v) v!

(16.1-22)
where c is different from 0, —1, —2,....
A direct consequence is the formula
d
d—F(a, b; ¢; z) =@F(a+l,b+1;c+1;z). (16.1-23)
'z c

16.1.5 — SPECIAL EXAMPLES

The hypergeometric series covers a great variety of well-known func-
tions. Typical examples may be found by giving a, b and ¢ particular
values.






16.1] THE HYPERGEOMETRIC SERIES 607

Finally we consider the series (15.4-37) for the function F_,, ,(2).
The coefficient of z~ 2" may be written as
(k+1)(x+3)...(k+2n=1)(x+2)(k+4)...(x+2n)
2°n12%(k+3)(k+3+1) ... (k+3+n—1)
_ (x+3)(x+1), 1
(x+3), n!

Hence we may bring Legendre’s function of the second kind into the
hypergeometric form

Ie+1)yn 1 -
0.(z) = ZZ—£1F7(1<:)\-¥{5) ;mF(—%H%, e+l e+4, 2 2)-l (16.1-30)

An expression for Legendre’s function of the first kind in terms of hyper-
geometric series may be obtained from (15.4-42).

A simpler expression for P.(z) can be obtained by a simple trans-
formation. It is readily seen that the solutions of Legendre’s equation
(15.4-27) are characterized by the scheme

-1 oo 1
Pl O —x 0 z}.
0 x+1 O

By means of the substitution z — £(1 —z) this changes into
01 oo
PO O —x I1-2z).
0 0 x+1

Since P.(z) is regular at z = 1 and takes the value 1 there, we conclude
that

P(z) = F(—x,k+1;1;1(1-2). (16.1-31)

This is Murphy’s expression for Legendre’s function of the first kind.

16.1.6 — KUMMER’S TWENTY FOUR SERIES

By linear transformation of the variable z we may carry the singular
points of Riemann’s equation (15.6-5) into the points z = 0, 1, ©
respectively. An equation with these singular points is characterized by

the scheme
0 1 o ;
Pla B v z|= [“, I z] (16.1-32)
yl
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Since there is symmetry between a and b, we also have a solution
woa(z) = (1—2)"°F (b, c—ajc; —z—l) . (16.1-36)
z—

A solution corresponding to the exponent 1 —c at z = 0 may be found
by observing that

0 0 a 1-c 0 a
P[l—c c—a—>b b Z:l ——P[ 0 c—a-b b z]
- 0 0 a—c+1
— Sl-c
=z P[c—l c—a—b b—c+1 z:l.
The desired solution may be taken as
wor(z) = z' Fla—c+1,b—c+1;2—c;z).  (16.1-37)

Proceeding as before we may get from this solution three other solutions
Wo2:(2), Wo3:(2), Woa(2).

In order to obtain a solution corresponding to the exponentQatz = 1
we apply the transformation z — 1—z which interchanges the points 0, 1
but leaves z = oo invariant. From

0 0 a 0 0 a
P[l—c c—a-b b z]=P|:c—a—b 1—¢c b 1—2]

we deduce
wy1(2) = F(a, b;a+b—c+1;1-2) (16.1-38)

and a solution corresponding to the exponent c—a—b5 at z = 1 is repre-
sented by

wyz) = 1=z " *F(c—a,c—b;c—a—b+1;1—z). (16.1-39)

Either of these solutions gives rise to three other expressions.
Finally we perform the transformation z — 1/z, interchanging the
points 0 and o, leaving z = 1 invariant. Now we have

0 0 a _ola 0 0 _1]
P[l—c c—a—b b z] _P[b c—a—b 1—c °
- 0 0 a
— 54 -1
=z P[b—a c—a—b a—c+1 :I ’
Hence a solution corresponding to the exponent a at z = oo is
Wei(2) = 27°F(a,a~c+1;a~b+1;z7") (16.1-40)

and by reasons of symmetry a solution corresponding to the exponent b









Fig. 16.1-1. The Jordan-Pochhammer loop (o, 1,, co_, 1_)

J‘(mn 14,0-,1-)
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of the first integral on the right of (16.1-42) as z — 1 is
1 — p—
f un—l(l_u)c—a—b—ldu — F(Q)F(C a b) .
0 I'(c—b)
1t follows that

lim F(a, b; ¢; z) = I(e)r(c—a—b)

it T(e—a)[(c—b) (16.1-47)

The restrictions on the parameters a, b and ¢ can be relaxed as we shall
see in section 16.3.5.

16.1.8 — ANALYTIC CONTINUATION OF THE HYPERGEOMETRIC SERIES

We proceed to solve the problem of expressing an analytic continuation
of the hypergeometric series in terms of a fundamental system about the
singular point z = 1 or about z = 0.

Assuming that c—a—b is not an integer we see from Kummer’s table
(section 16.1.6) that the functions

wy(z) = Fa, by a+b—c+1;1—2) (16.1-48)
and
widz) = (1—2F " PF(c—a,c—b;c—a—b+1;1—z)  (16.1-49)

constitute a fundamental system of solutions of the differential equation
(16.1-9), valid in the open disc |z—1| < 1. We make the second function
definite by giving (1 —2)°~%"? its principal value.
In the intersection of the discs |z} < 1, {1—z| < 1 we must have the
identity
Wwio(z) = Awyy(2)+Bwyi(2), (16.1-50)
where 4 and B are constants. Supposing that Rea > 0, Re (a+b)
< Re ¢ < 1 we may apply (16.1-47).
If we make z tend to 1 we find
4= I'(c)[(c—a—Db)
I(c—a)[(c—b)
If we make z tend to zero we find from (16.1-47) by appropriately chang-
ing the parameters

(16.1-51)

(l+a+b—c) _ F(1+c—a—b).
Mirb—ogrita—g 90 Thra—a)

It is apparent that the coefficient of BI'(1—c) is obtained from that of

1= AIl'(l—¢)
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Applying (16.1-47) to w,,,(z) we get
I'la—b+1)[(c—a—b)

Werll) = r(L—b)I(c—b)
Hence, by virtue of (4.6-13),
_ mia_ T(r(1-b) sinmb_ _ oria I'(e)r(b—a)
I'(c—a)l(1—(b—a)) sin n(b—a) I(c—a)(b)

Interchanging a and b yields
= gmid I'(c)[(a—b) .
I'(c—b)[(a)
If we agree that —z = ze™™, then |arg (—z)| < = and
(—2)7" = z7%", (—2)7 = 27 bem,

Thus we may state

The function

Irb—a), - _ . L

m( ) °F(a,a—c+1;a—b+1;z7 )+
r(Qr(a—b), . _, 5 (16.1-56)
m(—z) F(b,b—c+1;b—a+1;z7")

is an analytic continuation of the hypergeometric series F(a, b; c; z) into
the region |z| > 1, larg (—z)| < m.

The restrictions on the parameters are quite unnecessary for the truth
of this result; they arise on account of the particular method of proof
adopted. The restrictions can be removed by an appeal to the results of
section 16.3.1 An alternative proof valid for all values of the parameters
for which the expressions involved have a meaning will be given in
section 16.5.3 by a wholly different method.

16.1.9 — EVALUATION OF RIEMANN’S COEFFICIENTS

It is clear that Riemann’s coefficient occurring in (15.6-39) are uniquely
determined if there is no doubt about the multiplier of the functions
(15.6-38). In other words: if the values of the regular parts (z—a) P,
at z = a etc. are determined without ambiguity. This is the case if we
define in accordance with (16.1-6) and (16.1-8)

P(z) = (A2f(1—A2)’F(a+f+y, a+f+7'; 1+a—o'; Az),
Py(z) = (Bz)(1—-Bz)'F(a+B+7, o' +f+y; 1+—f';Bz),  (16.1-57)
P(z) = (C2)’(1-C2)*F(a+f+y, a+ B +y; L +7—7y"; Cz),
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respectively, in the w-plane. Let us suppose that the singular points a, b
and ¢ in the z-plane are so placed that, when we go round the circum-
ference through a, b and ¢ in the counterclockwise sense we pass from
a to b to ¢. Then the interior of the circumference is mapped onto the
upper half of the w-plane. If we delete from the w-plane the negative real
axis (including the origin) we can give to arg w a uniquely defined value
between —=n and 7. The corresponding point z varies throughout the
extended z-plane cut along the smallest closed arc from ¢ to a. Further
arg Az tends to = if z tends to an interior point of this arc from the inside
of the circumference, and to — zif it tends to such a point from the outside.
On the supplementary arc we have arg Az = 0. In a similar way we
may define arg Bz by cutting the z-plane along an arc from a to » and
arg Cz by cutting the z-plane along an arc from & to ¢. In accordance
with this we define

—Az = eTMAz, (16.1-62)

etc. the upper or lower sign being taken as z lies inside or outside this
circumference. In the case that @, b and ¢ are collinear we consider the
part to the left of the line through these points as the interior, the line
being percorsed in the direction from a to b to c.

Following E. W. Barnes we may evaluate Riemann’s coefficients by
the aid of the second theorem of section 16.1.8. We apply it to the first
expression of P,(z) listed in (16.1-61). By inserting the values of the para-
meters we may simplify the result by using the relation (15.6-4). Taking
into account (16.1-62) and (16.1-59) we conclude that inside the circle the
function P,(z) is represented by the single-valued function (16.1-57) if
|Az| < 1 and by

I'(1+o—o)(y —7y)

i —A —1B £
Tt B+y)Ta+f+7) (2R

’ r 1
X F(a+ﬁ+v,<x +B+y;1+y—y ;;—) +
z

I(l+a—a)(y—7") (16.1-63)

"i%(— AZ)"7(Bz)
Tatpinlarfsy’ (6

X F<a+ﬁ+y’, o + B+ 149" —y; i) )
Az
if|Az] > 1.

If z is outside the circle we must replace e™* by e ™™, It is readily seen
that the functions occurring on the right of (16.1-63) arise from the last
two functions listed in (16.1-61) by performing two times a cyclic permu-
tation. It follows
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It is now an easy matter to verify the relations (15.6-42). We find with
the aid of (4.6-13)
ag [a, _ a5 &
i e

_ e (a4 Y (a+B'+Y) _ e " sin nfa+ B +7y)
e " a+f +9) @ +8+y) e " sinn(a +§ +y)

in accordance with the first equation of (15.6-42).

16.1.10 — THE MONODROMY GROUP OF THE HYPERGEOMETRIC DIFFERENTIAL
EQUATION

Jordan’s method for obtaining the monodromy group of Riemann’s
equation may be specialized to the case of the hypergeometric differential
equation. Inserting the appropriate exponents we obtain the first functions
of (15.6-31) in the form

(04+,24,0.,2.)
Wo =f ta—C(t_l)c—b—l(t_z)—adt’

(14,24,1-,2-) (16.1—69)
w, =f ta-c(t—l)c_b_l(t—z)_"dt,

The analytic continuation along a loop surrounding the point z = 0 once
induces a linear transformation of the quotient w,/w, characterized by

the matrix
2ni(c—a—b) __ .2ria
S, = [(1) SO } . (16.1-70)

e
The analytic continuation along a closed path surrounding z = 1 once
induces a linear transformation characterized by the matrix

e2ni((:—a—-b) 0
§; = e~ 2mic_o=2mia

The transformations S, and S, generate the monodromy group of the

hypergeometric equation.
By takingc = 1,a = 4, b = 1 we get

1 2 10
= =5 . _72

the generators of the congruence group mod 2, (section 14.2.6). In fact,
in this case the integrals (16.1-69) reduce to Legendre’s complete elliptic
integrals, for it follows from (15.6-22) that

(16.1-71)
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16.2.4 — RECURRENT RELATIONS

Proceeding as in section 3.14.3 we may derive a recurrence formula for
the Jacobian polynomials (with the same parameters o and B) which
reduces to (3.14-11) if « = B = 0. Since under the assumption ¢ > —1,
B > —1 the polynomial P{*?(z) is a polynomial of exactly the degree »
the first theorem of section 3.14.3 remains valid for Jacobian polynomials.

We start again with (3.14-9), where now Py(z) stands for P{=#(z).
Multiplying both members by )PP (2), m=0,...,n—2 and inte-
grating between —1 and +1 we find that only the coefficients c,_,,
€,, Coyq survive. (In the case of Legendre polynomials also c, = 0,
because zP?2(z) is an odd function). Thus we have

PP P(2) = ¢y PRe(2) 46, P (D) 400 PEED(2). (16.2-18)
Equating coefficients of z"*! in (16.2-18) yields
ky = cor1knt1s

where k, is the coefficient of z" in P*#(z). It follows that ¢,,, # 0 and
we may write

P&8(z) = (4,2+B)PEP(2)+ C,P(2), | n>0  (16.2-19)

with

A, = k"k“ . (16.2-20)

Let h, denote the coefficient of z*~* in P#)(z). By equating coefficients
of 2" in (16.2-19) we find
hn+1 = Anhn+Bnkn
whence
B =ty My (h_n+1 — 5) _ (16.2-21)
kn kn kn+1 kn

By g, we shall denote the value of the integral (16.2-17) for m = n.
Multiplying both members of (16.2-19) by p(z)P=#(z) and integrating
from —1 to +1 yields by virtue of (16.2-17)

1
Coter = A | PP P

1
= ks | PPN
-1

1
=4, k;c_lf PNPEP() dx = 2o g,

n -1 n—1



D (i [ g TEEE DR P CEY (i [ g B

T [n+a) (n+B)
"7\ VvV,

-O() (4n+nozj-lﬁ—1) _ 51';(’1_*_'8) <2n+:jlﬁ /

l_(a_ﬂ) (2n+oz+/3—1) .

n—1

—B (2n+oc+F ) __a—B TI(2n+a+p)
' 2"(n—1)! I'(n+a+p+1)

’ [+a-. PRW 274
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By easy computation we may evaluate the constants occurring in
(16.2-19). They are

_ (@nta+p+1)(2n+a+p+2)
T 2+ D(ntatB+1)
(®—B*)2n+a+p+1) (16.2-25)
2n+1)(n+a+B+1)2n+a+p)
(n+a)(n+B)2n+o+p+2)
(n+1)(n+a+p+1)2n+a+p)’

In order to find a generalization of (3.14-16) for the Jacobian poly-
nomials with indices « and f we observe that the coefficient of z"*! in

(z? 1) P(“ B(z)—nP®P)(z)
is nk,—nk, = 0. Hence we have a relation
(=D)L PP -nPE () = 3 0P ()
=0

Next we multiply both members of this equation by p(x)P&™#(x),
m=0,1,...,n-2. Integrating from —1 to +1 yields for the expression
on the left thus obtained

[ pwo -1 & pe oy oy
- J P(x)(* —1)( P ”’(x))P (x)dx

where P, (x) is a polynomial whose derivative is P #(x). Integrating by
parts we get

PO 1) P“‘ D) Pu(3)|
- 2 (p09-1) 2 PiP)) Pl

The first term vanishes. The second term may be evaluated if we bring the
differential equation (16.2-11) into another form. Since

B—a—Q+a+p)z = (1+p)(1—2z)—(1+a)(1-2),
we may bring this equation into the form

(=2 @ +2 ' WY +n(n+a+p+1)(1—z)(1+2)’w = 0,



PEO(1) = (n+oz)

n

o (n+oc) —a (n+oc) b, (n+oc—1)
n n n—1
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is a polynomial in cos ¢, whence

n+1l

n—=2v 2y
2v+1) (-2, (16.2-63)

[4n]
0 =3 -1y

The polynomials U,(z) are called Cebishev polynomials of the second kind.
They are Gegenbauer polynomials as follows from the expansion

ZV

s

1 —
1-z

v=0

if we replace z by re®. Equating imaginary parts yields

1 v o sin (v+1)p
1-2rcosp+r* V2o sing
whence
Ci(cos @) = U,(cos @). (16.2-64)

The first polynomials of the second kind are

Ugz) =1, U(z) =2z, U,(z) =4z°—1, Us(z) = 82°—4z,
U,(2) = 1624 —12z2 +1,.. ..

The relations of orthogonality for these functions are

! 0 if m#n
—v2\% = ’ ’ -
f—1(1 x*)2U,(x)U,(x)dx {%n, i omen (16.2-65)
They are consequences of
" . 0, if m#n,
fosm (m+1)gsin (n+1pdp = {%ﬂ, i m=n (16.2-66)

and can be obtained from (16.2-49) by taking 4 = 1.
Finally we wish to list some relations between the polynomials of the
first and the second kind, viz.,

£ 1,1(2) = (04 DUG),
’1';,(2) = Un(z)_ZUn—l(Z),
(1- Zz)Un~1(z) = zT(2)—T,+(2).

They are direct consequences of elementary relations between circular
functions.
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particular instance of Riemann’s general theorem about contiguous
functions.

It is readily seen that to pass from F to F,, we must multiply the co-
efficient of z” by a+n and remove the factor a. This is effected by the
operator 9 +a, where § has the same meaning as in section 16.1.2. To pass
from F to F,_, we must multiply the coefficient of z" by n+c¢—1 and
remove the factor ¢— 1. This is effected by the operator 3+c—1. Thus

aF,, = (3+a)F, (16.3-8)
bF,. = (3+b)F, (16.3-9)
(c—1)F._ = (8+c—1)F. (16.3-10)

Next we make use of equation (16.1-13) for F. The corresponding equa-
tion for F,_ is

(83 +c—1)—z(84+a—1)(9+b))F,- =0,
or
(9+c—a—z(3+b))9+a—1)F,. = (c—a)a—1)F,_.
With the aid of (16.3-8) with a—1 written for a we get
(¢c—a)F,. = (1—2)3F+(c—a—bz)F. (16.3-11)

The proof breaks down if a = 1. But we may assume a # 1 and then
make a tending to 1, as follows from the first theorem of the previous
section.
From (16.3-9) we obtain a similar formula with a and b interchanged.
The equation for F,, corresponding to (16.1-13) is

(83 +¢c)—z(9+a)(9+b))F.. =0,
or
(9—z(3+a+b—0))(8+c)F,s = (c—a)(c—b)zF,., .
With the aid of (16.3-10) we get
(c—a)c—b)F.y = c((1—2)F +(c—a—Db)F).  (16.3-12)
Summing up we have
2F' = a(F,, —F),
zF' = b(F,, —F),
zF' = (¢c—1)(F,.—F),
z(1—2z)F' = (¢c—a)F,_+(a~c+bz)F,
Z(1—2)F" = (c—b)F,_ +(b—c+az)F,
c(1—2)F' = (c—a)c—b)F..+c(a+b—Cc)F.

(16.3-13)
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Thus we have seen that each of the functions (16.3-7) can be expressed
in terms of F and the derivative of F. By eliminating this derivative F’ we
get fifteen relations between F and any two of its contiguous functions.

Particular examples of the relations (16.3-13) are Legendre’s relations
for the complete elliptic integrals. In fact K(z) and E(z) are contiguous,
as is seen from (16.1-29). The first of (16.3-13) yields (14.5-24), the
fourth yields (14.5-28).

16.3.3 -~ MIXED RELATIONS FOR JACOBIAN POLYNOMIALS

In the recursive relations for Jacobian polynomials derived in section
16.2.4 only polynomials with the same parameters occur. The Gaussian
relations between contiguous functions enable us to derive relations
between Jacobian polynomials which present a shift about unity in the
parameters. We shall give some striking examples.

First we find by eliminating F’ from the first two relations of (16.3-13)
the Gaussian relation between contiguous functions

(b—a)F = bF,, —aF,,. (16.3-14)
Replacing the variable z by (1 —z), the parameters a, b and ¢ by —n,
n+a+pB+1 and a+1 respectively, we find, taking into account (16.2-9),

(@n+a+B+1)PEO(2) = (n+a+p+1)PO P I(2)+(n+a)P28H(z),

which becomes, after a shift from § to f—1,
(n+a+ P& (2) = (n+a+B)PEP(2)+(n+)PEH(2). (16.3-15)
This remains true if we replace z by —z. On applying (16.2-7) and inter-
changing afterwards o and f, we also have
(2n+a+ PP 10(z) = (n+a+p)P&P(2)—(n+B)P(z). (16.3-16)
Subtracting corresponding members of (16.3-15) and (16.3-16) yields

LPf,“”’_”(z)—Pf,“'l'm(z) = P{29(2). (16.3-17)

From the fourth and the fifth equation of (16.3-13) we find the
Gaussian relation between contiguous functions

(¢c—a)F,.—(c=b)F,_ = (b—a)(1-2z)F. (16.3-18)
Proceeding as above we now find
A +2)2n+a+ B+ DPEP(2) = n4+ DFGE~D(Z)+(n+B)PE P~ (z)
or, after a shift from fto f+1,

HL+@n+at B+ 2P D) = (n+ DFEDE)+(n+ B+ DPE ()
(16.3-19)
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the coefficients ¢, do not tend to zero as n — oo and the series turns out
to be divergent at every point of the circumference |z| = 1.
Let us now consider the case

~1 < Re(c—a—b) 20 (16.3-27)

It is clear that the series F,, and F,_ satisfy the conditions needed for
convergence. By eliminating F’ from the fourth and the sixth relation
(16.3-13) we get

¢(1—z)F = z(b—c)F 4+ +cF,.. (16.3-28)
It follows that under the conditions (16.3-27) the series (16.3-22) is
convergent on |z| = 1, except possibly at z = 1. However, the con-
vergence is not absolute.

There remains the case z= 1. This is not quite so easy and we need more
information than is contained in (16.3-3). For this purpose we use
Stirlings’s theorem for the gamma function. The formula (4.9-3) may be
written in the form

log I'(z) = (z—4%) log z—z+log \/Ez+p(z)
and it follows that
L(z+a) _

lo
& I'(z)z*

(z+a—1)log (1+ 3) —a+p(z+a)—uz).
z
Now
(z+a—1%)log (1+ i) = a+0(z|™)
z
and (4.9-10) states that

uz) = 0(zI™")

and is u(z+a), provided that z — oo receding indefinitely from the
negative real axis.

Thus
I(z+a) -1
= 140(]z|7"). 16.3-29
)7 (I217%) ( )
In particular
Mla+n) _y om). (16.3-30)
r(n)n®

The convergence of the series

Eocv _ i [(a+v)(b+v)

16.3-31
v=0 TI(c+v! ( )
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As above we find that the series (16.2-31) is also divergent in this case.
Summing up we have

On the circumference of convergence |z| = 1 the hypergeometric series is
absolutely convergent, if Re (c—a—b) > 0;
conditionally convergent, if —1 < Re(c—a—b) <0, and z # 1,
and divergent at z = 1;
divergent at every point of |z = 1 if Re (c—a—b) < —1.

This theorem implies Abel’s theorem about the behaviour of the
binomial series on the circumference of convergence. In view of (16.1-25)
we may state

On the circumference of convergence the binomial series (2.16-20) is
absolutely convergent, if Re s > 0;
conditionally convergent, if —1 < Res £ 0,z # —1,
and divergent at z = —1;
divergent at each point of the circumference if Res < —1.

16.3.5 — GAUSS’S METHOD OF EVALUATING F(a, b; c; 1)

If Re (c—a—b) > 0 the series F(a, b; ¢; 1) is convergent. If, moreover»
Rea > 0 the relation (16.1-47) is valid. Hence by making z tend to 1
on the real axis from the left we find by virtue of Abel’s theorem of
section 1.8.1

I'(e)[(c—a—b)

Fa bie ) = Tep)’

(16.3-34)

Since both sides of this equation are holomorphic functions of a the
restriction Re @ > 0 may be dropped.

An interesting straight-forward method of evaluating F(q, b; c; 1) is
due to Gauss. First we observe that the series F and F,, occurring in the
last relation listed in (16.3-13) are convergent at z =1, as is (1 -z)F".
If ¢, has the same meaning as in section (16.3.4) we have

—F—(C)—— Fla,b;c;z) =3, ¢,2°
I'(a)r(b) v=1
and from (16.3-3) follows
a—-b

lim ne,n° 7" = 1.

n—oo

Hence nc, = 0 as n — oo. But

L0 $ (es—(r=1)ey- )™

(1-2)F' = o &
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Now

a 1-¢

P w(z;¢) = z' "°Fla—c+1,b—c+1;2—c¢; z)log z+

c

t-¢ a a

— F(la—c+1,b—c+1;2—c; 2)+ — F(a, b; c; z)
oc oc

and by making ¢ — 1 we have

i) 0 0 é
% w(z; ¢) F(a,b;1;z)logz + (aa + 6b+ 26c) F(a, b;c;2)
This solution has a logarithmic singularity at z = 0 and is, therefore,
independent of F(a, b; 1; z).

Thus

If ¢ =1 then a fundamental system of solutions of the hypergeometric
equation at z = 0 is given by the functions

F(a,b; 1;z)

c=1

c=1

(16.4-6)
F(a, b;1;2z)logz+F*(a, b; 1;2)
with
* ) ) 0
F¥*(a, b;1;2) = ( + — +2 =) F(a, b; ¢; 2) (16.4-7)
da 0b de e=1

Because of the uniform convergence it is legitimate to differentiate
the series F(q, b; c; z) term by term, where a, b and c are variables which
take after the process of differentiation their given values. We notice that

d d I(z+n)
—(z), = Y(z+n)—¥Y(2))2),,
= T = (G-,
where /(z) is the Gaussian function (4.8-1). A straightforward computa-
tion yields (neglecting a term involving F(g, b; 1; 2)).
Z (azl()b) z = (log z+ P(a+v)+ ¥(b+v)—-2¥(1+v)). (16.4-8)
v=0 v!

If a or b is zero or a negative integer the series on the right terminates
after a finite number of terms.

16.4.3 — THE CASE THAT THE THIRD PARAMETER IS AN INTEGER LESS THAN
UNITY

Now we focus our attention on the casethatc = —m,m =0,1,2,....
In view of (16.3-5) it is natural to consider the linear combination
w(z;c) = —Az " Fla—c+1,b—c+1;2—c¢; 2)+(c+m)F(a, b; ¢; 2),

(16.4-9)






m+v+1

v!
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This is, however, the result stated in (16.1-56). In this proof the par-
ameters are only restricted to the condition that the various expressions
have a meaning.

16.5.4 — THE COMPLEMENTARY REPRESENTATION OF THE HYPERGEOMETRIC
SERIES

An alternative representation of F(a, b; c; z) is provided by the integral

iJ‘ij(a +)I(b+s)[(c—a—b—s)[(—s)(1—-z)’ds (16.5-14)

which we shall call a complementary representation, because in the inte-
grand occurs the variable 1 —z. The path of integration is again a Barnes
contour, curved in such a way that the poles of I'(a+s)I"(b +s) are to the
left and of I'(c—a—b—s)['(—s) to the right. This is always possible if
neither ¢ - a, nor ¢—b is an integer.

Proceeding as in the sections 16.5.2 and 16.5.3 it can be proved that
the integral (16.5-14) represents a holomorphic function in the region
larg (1—2)| < =, z # 1, and is equal to the negative sum of the residues
of the integrand at the poles to the right of the path of integration,
provided that |l —z| < 1. These poles are at s =#n and s = c—a—b+n,
n=0,1,2,.... Supposing that c—a—»b is not an integer the value of the
integral turns out to be

ir(a+v)r(b+v)r(c—a—b—v)(‘v—})v(1—Z)V+

+ iF(c—a+v)F(c—b+v)F(a+b-c—v) (_—'1)v (1—z)y o,
v=0 A\

Since

MNe—a—-b—-m'a+b—c+14n) = (-1)YI'(c—a-b)[(a+b—c+1)
and

ra+b—c—nl(c—a—-b+1+n) = (—1)Ir@+b—c)[(c—a—b—-1)
the above expression may be put in the form

fleembrless-enf e

& T(c—a+wW(c—b+v)(1-2)
v=0 I'(c—a—b+1+v) v!

+F(a+b—c)r(c—a_b+1)(1_Z)c—a—b
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In a similar way we may find an expansion of K’(z) starting with
(16.5-18) and assuming again |z| < 1. By virtue of (3.3—4) the residue of
the integrand at s = nis

£<s—n)2r2(—s)r2(s+%)zs

s=n

= P(n+d)" dis (=nfTH=9)| _+ o Pt Yrn+)a+

('Y
2
( ')2 ——TI'*(n+1)z"log z,
because in view of (16.5-1)
1
lim (s—n)*r*(—s) = .
i =nr(=9) = i
In order to evaluate d/ds (s—n)*I'*>(—s)|;~, we observe that
I(=s) = I'(—s+n+1) — (—1y+ I'(—s+n+1) .
(—s)(—s+1)...(—s+n) s(s—1)...(s—n)
whence

—(s—n)’Ir*(~s) = -2 (F_’(l_) +—i— + ...+ %) 52—(1—). (16.5-20)

() (n!)?

Introducing the function (4.8-1) we may write the residue of the integrand
at s =n as

I*(n+4) ,
r(n+1)

In view of (4.8-4) we have

(logz+2‘l’(n+%) 2(?/(1)+— +—r1l—))

2 2
+

Fin+d) = 2n—1 2n-3

+...+%+Yf(%).

The equations (14.5-87) state that
Y(1)-¥(3) = 2log2.
Accordingly we have
1 1 1 1 1
Y(n+4)-P(1 ———...—~=2(———+...——) —2log2
(n+3) @ 1 n 1 2 2n
and the residue of the integrand at s = n turns out to be

Cn+d) oz (L1 _i) 6.5-21
Tz(n+1)z (log +4(1 2+... Zn) . (16.5-21)
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the lower sign corresponding to Im z > 0 or Im z < 0. Thus we obtain
the fundamental relation

K(z) = z_*K(%) +iz7* K’(l) » larg(-2)l <m| (16.5-24)

z

This result is difficult to obtain from the Legendre integrals.

16.6 — Conformal mapping

16.6.1 — THE MAPPING OF A CURVILINEAR TRIANGLE

A curvilinear triangle in the s-plane with angles a7, ¢, 7, 237, 0 < a4,
oy, 3 < 2 is mapped conformally on the upper half of the z-plane by
means of a function which, in accordance with (14.2-3), satisfies Schwarz’s
differential equation

[s], = 1—:3 + 1—a} al+as—ai—1
2z 2(z—1)? 2z(z—1)

(16.6-1)

This equation is the differential resolvent of a hypergeometric differential
equation whose parameters may be found by the method described in
section 16.1.3. Since we may take

a—b = a,, c—a—b = ay, l—c=ay (16.6-2)
whence
a=3i(1—-a;—a,+0a;), b=3(l—-a;—a,—a3), c=1—a;. (16.6-3)

The quotient of two solutions which form a fundamental system of this
hypergeometric equation maps the upper half of the z-plane onto the
interior of a curvilinear triangle with the given angles. Different funda-
mental systems lead to different triangles, but all the triangles in the set
have the same angles and we can pass from one triangle to another by a
fractional linear transformation.
We consider more closely the function
s(z) = @) (16.6-4)
woy(2)
where
wo1(2z) = Fla, b; ¢; 2), (16.6-5)
Woilz) = 2! °F(a—c+1,b—c+1;2—c; 2).

Since 1 —¢ = a; > O the corresponding triangle has a vertex at s(0) = 0.
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conditions

J0)=0, f'(@©)>0. (16.6-8)

It is clear that the function fa provides a mapping of the interior
of the unit circle onto the interior of the polygon as well. Since it
vanishes at z = 0 and its derivative thereof is also f”(0) we conclude that

1) = f@). (16.6-9)

This means that f(z) is real for real values of z. Now f"(z) # 0 every-
where in the interior of the unit circle and it follows that f'(x) >0 for
0 < x < 1. Hence f(z) is monotonously uncreasing along the radius
from 0 to 1 and since f(z) is continuous at z = 1 it follows that (1) = 1.

Fig. 16.6-1. The mapping of a regular curvilinear polygon

The function
e—2ni/t:f(e2ni/nz)

maps again the interior of the unit circle onto the interior of the polygon.
The derivative of this function takes the value f'(0) at z = 0. As a conse-
quence f(2) satisfies the functional equation

f(e%™I"z) = e*™/"f(z) (16.6-10)
and in particular

f(621riln) = eZuiln.

Thus we may infer that the #-th roots of unity

a, =e™ " k=1,...,n,

in the z-plane correspond to the vertices of the polygon.
Expanding both members of (16.6-10) in a power series of z we readily
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The solution of the equation
[fl. = R(@) (16.6-14)

may be reduced to the finding of a fundamental system of solutions of the
second order equation

znz

" 201 _ 42
u'+in*(1—a )(z"—1)2

u=0, (16.6-15)

(eq. 15.1-28).
It is natural to take ¢ =z" as an independent variable. If now primes
denote differentiation with respect to ¢ we readily find

u —
(t-1?°

Unfortunately this equation is not of the Fuchsian type. But we may
introduce the function w by

tu' + (1- %) u'+3(1—0?) 0. (16.6-16)

u=wi—1)y>*

and we get

(t—1w'' + (t (2k+1— ;11-) - (1— %)) w o+
+ (t—i—l (}(1—a2)+k(k—1)t)+k(1—- %)) w=0. (16.6-17)

The coefficient of w takes the desired form if k(k—1) = —3(1—a?). We
may take k = 1(1—a). Our final result is the equation

(1—tw' — (t (Z—oc— %) - (1—— %)) w+
+3(1-a) (%(l—a)— %) w=0  (16.6-18)

This is indeed a hypergeometric differential equation with parameters

a=31-a)- 17 b=31-2)] c=1--21.
n n
Thus we have proved the following theorem

The function f,(z) which effects the mapping of the interior of the unit
circle in the z-plane onto the interior of a regular polygon with vertices at
the n-th roots of unity and interior angle ar, and satisfying the conditions

f0) =0, f(0)>0,
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is

142) = ::‘((11)) :L‘((Zz—)) (16.6-19)

where

wou(z) = F (%(l—a)— % H(1-); 1- -i— : z") ,
. . (16.6-20)
woi{z) = zF (%(1—a)+ — 3(1—a); 1+ o z") .

For applications in the next section we need the value of £;(0). It is
readily seen by (16.3-34) that

£1(0) = lim =) - woull) r(i-)r s+ )
Ja 0z wel(l) (1+ ) (%(1_*_0()_1).

It is interesting to check the theorem for the case that the polygon is
rectilinear. Then

(16.6-21)

n—2 2

="t 1- 2

n n

and the first function (16.1-20) is identically equal to the constant 1.
The second function may be obtained from the second hypergeometric
integral (16.1-42), viz.,

T (1 + %)
(o

in accordance with (10.3-11).

1 z
zf utm i (1=2") " du =f (1=t)"2ra,
o, 0

16.6.3 — UPPER BOUND FOR THE BLOCH AND THE LANDAU CONSTANTS

L. Ahlfors and H. Grunsky have shown that the function (16.6-19)
may serve to obtain an upper bound for the Bloch constant B defined in
sections 9.9.1. By a similar method we can also obtain an upper bound
for Landau’s constant L..

We take n = 3 and denote the corresponding triangle by 4,. If f,(z)
denotes the function which effects the mapping of the open unit disc
|z] < 1 onto the interior of the triangle 4,, then evidently

F(z) = i (), (16.6-22)
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1+V3

Fig. 16.6-2. The triangle A3

where fv denotes, as usual, the inverse of f; is a function which maps the
interior of 4; conformally onto the interior of A;. The boundary circles
of 4; are orthogonal to a circle about the origin whose radius R we wish
to determine. Elongating the boundary circles through z = 1 they meet
the real axis again in a point whose distance to z = 1 is equal to a chord
of the bounding arcs of 4;; these have the length ﬁ, (fig. 16.6-2). Since
the points 1 and 1+\/§ are inverses with respect to the circle of radius R
we find that

R=+1+3. (16.6-23)

Successive reflexions in the sides of 4; and the resulting triangles
lead to a net of curvilinear triangles which fills the open disc |z] < R
without overlapping. The images as given by F(z) form a net of equi-
lateral triangles. Since six curvilinear triangles which have a vertex in
common form a full neighbourhood of this vertex, the corresponding
equilateral triangles have a vertex in common and cover a neighbourhood
of this vertex twice. The radius of the circumscribed circle of 4y is equal
to unity and the interior corresponds univalently to a subregion of |z] < R.
It is, moreover, the largest disc having this property. The function

_ F(Rz)
@)= RF(0)

is holomorphic in |z] < 1 and satisfies the condition f’(0) = 1. It follows

(16.6-24)







16.7] CONFLUENT HYPERGEOMETRIC FUNCTIONS 671

function
F (a, b;c; %) , (16.7-1)

viz.,

2(1_3) w'— (ﬁ +1+£) z—c|w—aw=0. (16.7-2)
b b b

This is a Riemannian equation with singular points at z =0, z = b,
z = o0. If b tends to oo we obtain the confluent hypergeometric equation
of Kummer

zw'' —(z—c)w'—aw = 0. (16.7-3)

If we introduce the operator 3 defined in section 16.1.2 we get
3@+ c—1w = z(§+a)w. (16.7-4)

The equation (16.7-3) has a regular singularity at z = 0, whereas the
singularity at z = co is not regular. The indicial equation at z = 0 is

plp+c—1)=0 (16.7-5)

and the exponents arep = 0, p = 1—c. Hence, if ¢ is not an integer, there
is one solution regular atz = 0.

16.7.2 — SoLuTiON OF KUMMER’S EQUATION

Let us insert the series

wo(z) = Y. ¢, 2" (16.7-6)
v=0
into the equation (16.7-3). Taking (16.1-12) into account we find
9+ c—~Dwe(z) = Y v(v+e—1)e,z" = Y (v+e)(v+1)e, 42"
v=0 v=0

and

29+ awe(z) = 3. (v +a)e, 2"

v=0

As a consequence the coefficients of the power series (16.7-6) must satisfy
the relations

(n+c)(n+ 1,4y = (n+a),, n=0,1,2,.... (167-7)

Assuming that ¢ is neither zero, nor a negative integer, we may take
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(16.8-42) remains unchanged if we replace z by — z. The coefficients of the
polynomial solution are uniquely determined by a, and this proves the
assertion. In addition we now have an explicit expression for the poly-
nomial, viz.

H,(z) = (1) Z(— ) ( =) e (22) 7P| (16.8-43)

The same result is obtained by expanding

exp (—2zw—w?) = exp (—2zw) exp (—w?),

viz.,

o Hv(z)w _Z( 1) (22) Z (_v'l)vwz

v=0 V! v=0

and equating coefficients of like powers of w.
Another interesting result may be obtained by means of the generating
function by expanding

exp (—2uw—w?) exp (—2ow—w?) = exp (—2 u\/_—i—; w\/f—(w\/i)z) .

We find

iH(u)

We now immediately have Runge’s addition formula

ye H 2o u+v) v
w —_— — | W.
v;o v%lO v! (\/2

2¥H, (uj;) —vio (Z) H(u)H,_ (v). (16.8-44)

The relations of orthogonality may be obtained in the usual way. If
u(x) is again the function (16.8-35) we have

J x"u™(x)dx f X" du®"V(x) = —mf X"y D(x)dx

o= (—l)mm!J u"™(x)dx

and this is zero if m < n. In the case m = n we have
oC [~
f X"u™(x)dx = (—1)'n !f e ¥dx = (—1)'nl\/n,

by (4.7-5). Because the coefficient k, of x" in H,(x) is (—1)"2", we may
state
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2I(1+o+n)
I'(n+3Hr«+3%)

or, by virtue of (16.8-54),

() =

z7* J (2= P H)dr (16.8-57)
0

22 (—1)"B(n+3, o+ %)ZZ“L(,T)(Z) = 2f (22 — tz)“"%Hz,,(t)dt,
0

the desired formula.
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isotropy, subgroup of —, 16

join, 331
Jordan, analytical — arc, 102

— -Pochhammer representation, 271
Julia, direction of —, 483

&

kernel, 217
Kleinian groups, 378
Klein-, Cayley- — parameters, 29
Koebe’s distortion theorem, 199
— function, 113, 196
Kummer’s series, 672
— theorem, 608
— relation, 673

Lamé’s equation, 585
Landau, Bloch- -theorem, 75
— constant, 74
— number, 74
— radius, 472

Legendre’s differential equation, 544
Legendre’s function of the first kind, 552
— function of the second kind, 546, 553
lemniscate cosine, 166
- sine, 166
limit point, 366
limiting points, 35
linear deformation, 333
— fractional transformations, 18
— homogeneous equation, 507
linearly independent, 510
linked, 306
locally constant, 343
— uniformizing parameter, 298
logarithm, general —, 8, 260
logarithmic branch point, 274, 291
loop, 331
elementary —, 331
lower boundary, 287
Ldwner’s approximation theorem, 223
— differential equation, 230
loxodromic, 23

Mathieu’s equation, 590
Mathieu’s function of the first kind, 592
— function of the second kind, 597
method of Puiseux, 283
Mobius geometry, 29
— plane, 29
— transformation, 30

INDEX

modular functions, 465
— group, 44
— surface, 471
moduli of periodicity, 260
monodromy group, 267, 513
general — theorem, 258
multiplication of paths, 331
multiplicative solution, 591
multiplier, 246
Murphy’s expression, 607

natural boundary, 246
neighbourhood, 288, 297
Neumann’s function, 541
— integral, 549
Newton’s diagram, 283
normal, 176
normalized, univalent — functions, 191
number, Bloch —, 73
characteristic —(s), 516
fundamental —, 22
Landau —, 74
ramification —, 313

octahedral function, 452
— group, 429
open, 302, 315
— plane, 2
operator, 19
ordinary, 274, 366
— cycle, 374
original, 1
orthogonality, relations of —, 626
oscillation theorem, 592

parabolic, 23, 35, 382
— cycle, 376
— geometry, 60
— cylinder functions, 676
— point, 376
parallel angle, 46
— displacements, 42
parallels, 40
parameter, accessory —(s), 413, 563
Cayley-Klein —, 29
locally uniformizing —, 298
parametrized path, 331
path, 331
constant —, 332
intermediate —, 333
pencil, 34
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single-valued branch, 256
singular, 271
— Point, 272, 217
singularity, algebraic —, 274
slit-regions, 216
smooth, 315
solution, multiplicative —, 591
Sommerfeld’s integral, 535
square, 135
deformation —, 333
starlike, 211
starshaped, 211
stretching, 23
subgroup of isotropy, 16
surface, covering —, 325
general Riemann —, 324
modular —, 471
universal covering —, 318
support, 82
symmetry, Schwarz’s — principle, 99
system, fundamental —, 512

tangent, 13
general inverse —, 261
tetrahedral function, 450
— group, 426
theorem, - —, 197
Biederbach’s rotation —, 203
Bloch-Landau —, 75
distortion —, 199
Floquet’s —, 591
Fuch’s —, 519
general monodromy, 258
Gronwall’s —, 187
Ince’'s —, 596
Koebe’s distortion —, 199
Kummer’s —, 608
Lowner’s approximation —, 223
oscillation —, 592
Picard’s —, 78, 375, 384

INDEX

Schottky’s —, 80
trace, 22, 288, 296, 319
transformation, covering —, 356
division —, 277
linear fractional —, 18
Mobius —, 30
translation, 23, 42
transitive, 16, 21
trebly asymptotic triangle, 52
triangle, 300
doubly asymptotic —, 52
trebly asymptotic —, 52
triangulability, 300
triangulated, 300
type, Fuchsian —, 483
typically real, 209

ultraspherical polynomials, 634
uniformization, problem of —, 314
uniformizing, locally — parameter, 298
unimodular, 19
unitary, 25
univalent, 17

— normalized function, 191
univalently, 73
universal covering surface, 318
unramified, 315
upper boundary, 287

value(s), 244, 255
Vandermonde’s determinant, 275
vertices, 144, 300

vertex, 371

Weber’s equation, 676
weight, 402
— function, 683
Whittaker’s differential equation, 675
Wronski, determinant of — (Wronskian),
510
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