

100 TypeScript Mistakes and How to Avoid Them
MEAP V01

1. Copyright_2023_Manning_Publications
2. welcome
3. 1_README
4. 2_Basic_TypeScript_Mistakes
5. 3_Types_and_Interfaces
6. 4_Functions_and_Methods

MEAP Edition Manning Early Access Program 100 TypeScript Mistakes and
How to Avoid Them Version 1

Copyright 2023 Manning Publications
©Manning Publications Co. We welcome reader comments about anything in
the manuscript - other than typos and other simple mistakes. These will be
cleaned up during production of the book by copyeditors and proofreaders.
https://livebook.manning.com/#!/book/100-typescript-mistakes-and-how-to-
avoid-them/discussion

For more information on this and other Manning titles go to

manning.com

welcome
Hi there, I'm Azat MARDAN, your tour guide on this merry adventure of
TypeScript faux pas. If you're wondering who the heck I am and why you
should trust me, that's a fantastic question. I'm the author of the best-selling
books Pro Express.js, Full Stack JavaScript, Practical Node.js and React
Quickly. For those who are not in the habit of browsing bookstores, those are
indeed about JavaScript, Node.js, and React, not TypeScript. But don't let
that lead you into a false sense of security. I’ve seen enough TypeScript in
the wild during my tech stints at Google, YouTube, Indeed, DocuSign and
Capital One to fill an ocean with semicolons. Or maybe more accurately, to
forget to fill an ocean with semicolons... but more on that later.

If you're still wondering, "Well, Azat, how did you manage to master yet
another web technology to the point of writing a book about it?" I'll let you in
on my secret. The secret is, I make a lot of mistakes. An impressive amount,
really. Enough to write a book about them. And every mistake, from the
tiniest comma misplacement to the catastrophic data type mismatches, has
added a new layer of depth to my understanding of the JavaScript and
TypeScript ecosystem. One might think after writing code at such high-
profile companies like Google, I'd be too embarrassed to publicly document
the many ways I've goofed up. But you see, dear reader, I believe in the
power of failure as a learning tool. Therefore, this book is an homage to my
countless mistakes and the invaluable lessons they've taught me.

To be clear, I wrote "100 TypeScript Mistakes and How to Avoid Them" not
because I like pointing out people's mistakes, but because I wanted to help
you avoid the same pitfalls I encountered when I was in your shoes. I also
wanted to reassure you that making mistakes is just a part of the learning
process. Every single typo, missed semicolon, and misuse of a null vs
undefined (yes, they are different, very different) is a step toward becoming
a TypeScript maestro.

In this book, we'll confront those mistakes head-on, dissect them, learn from
them, and hopefully have a few laughs along the way. And don't worry, I've

committed most of these blunders at least once, some of them probably twice,
and in rare embarrassing cases, three times or more!

So, whether you’re a TypeScript greenhorn or a seasoned code gunslinger,
get your code editors ready, grab a cup of your strongest coffee, and prepare
to embark on a journey through the treacherous terrain of TypeScript that is
hopefully as enlightening as it is entertaining. Here's to a hundred mistakes
that you'll never make again. Without further ado, let's embark on this
adventure that we’ll call "100 TypeScript Mistakes and How to Avoid Them".
Happy reading and happy coding!

Please let me know your thoughts in the liveBook Discussion forum - I can't
wait to read them! Thanks again for your interest and for purchasing the
MEAP!.

Cheers,

Azat Mardan

In this book

Copyright 2023 Manning Publications welcome brief contents 1 README 2
Basic TypeScript Mistakes 3 Types and Interfaces 4 Functions and Methods

1 README
This chapter covers

How this book will help you, the reader
Why this book and not some other resource
Why TypeScript is a must language to learn for web development
A brief overview of how TypeScript works
Why you should “listen” to the author of this book

Did you open this book expecting to immediately delve into the 100
TypeScript mistakes to avoid? Surprise! You've already stumbled onto the
first mistake—underestimating the entertainment value of an introduction.
Here you thought I'd just drone on about how you're holding in your hands
the quintessential guide to TypeScript and its pitfalls. That's half correct. The
other half? Well, let's just say I wrote the introduction while sipping my third
cup of coffee, so hold onto your hats because we're going on a magical carpet
ride through the benefits that this book provides and touch upon how this
book can help you, before we arrive at TypeScript land.

Navigating the world of TypeScript can be a challenging and yet a rewarding
journey at the same time. As you delve deeper into TypeScript, you’ll quickly
discover its power and flexibility. However, along the way, you may also
stumble upon common pitfalls and make mistakes that could hinder your
progress. This is where this book comes in, serving as your trusty companion
and guide to help you avoid these obstacles and unlock the full potential of
TypeScript.

Here's a little programmer humor to lighten the mood: Why did the developer
go broke? Because he used up all his cache. Just like that joke, TypeScript
can catch you off guard.

Consider the following as the key benefits you will gain from this book:

Enhance your understanding of TypeScript: By studying the common

mistakes, you’ll gain a deeper insight into TypeScript’s inner workings
and principles. This knowledge will allow you to write cleaner, more
efficient, and more maintainable code.
Improve code quality: Learning from the mistakes covered in this book
will enable you to spot potential issues in your code early on, leading to
a higher quality codebase. This will not only make your applications
more robust but also save you time and effort in debugging and
troubleshooting.
Boost productivity: By avoiding common mistakes, you can accelerate
your development process and spend more time building features and
improving your application, rather than fixing errors and dealing with
technical debt.
Strengthen collaboration: Understanding and avoiding these mistakes
will make it easier for you to work with other TypeScript developers.
You’ll be able to communicate more effectively and collaborate on
projects with a shared understanding of best practices and potential
pitfalls.
Future-proof your skills: As TypeScript continues to evolve and gain
popularity, mastering these concepts will help you stay relevant and in-
demand in the job market.

Maybe you’ve tried mastering TypeScript before and didn’t quite get there.
It’s not your fault. Even for me some TypeScript errors are perplexing and
the reasoning behind them (or a lack of thereof) confusing. I suspect the
author of TypeScript intentionally made the error messages so cryptic as to
not allow too many outsiders to enlighten in the mastery of types.

And TypeScript is a beast, it’s powerful and its features are vast! Learning
TypeScript deserves reading a book or two to get a grasp on it and then
months or years of practice to gain the full benefits of its all features and
utilities. However, as software engineers and web developers, we don’t have
a choice not to become proficient in TypeScript. It’s so ubiquitous and
became a de facto standard for all JavaScript-base code.

All in all, we must learn TypeScript, because if we don’t do it, it’s easy to fall
back to just old familiar JavaScript that would cause the same familiar and
painful issues like type-mismatch, wrong function arguments, wrong object

structure and so on. Speaking of old JavaScript code, let’s see why we even
should bother with TypeScript.

1.1 Why TypeScript?

Believe it or not, TypeScript has been climbing the popularity ladder at an
impressive pace in recent times. Heck, it became one of the most widely used
programming languages in the software development world, if not THE
MOST popular one. At this rate, I wouldn't be surprised if people started
naming their pets TypeScript. Can you imagine? "Come here, TypeScript,
fetch the function!"

As a pumped-up superset of JavaScript, the language with the most runtimes
in the world (i.e., browsers), TypeScript builds upon the foundation of it and
enhances it with static typing, advanced tooling, and other kick-ass features
that improve developer experience and code quality. No wonder it's the apple
of every developer's eye, albeit an apple with fewer bugs! It allows
developers to have a JavaScript cake and eat it too! But what exactly makes
TypeScript so irresistibly attractive to developers and businesses alike? Is it
its charisma? Its stunning looks? Or perhaps its irresistible charm? Let’s
explore some of the key reasons behind TypeScript’s growing popularity.

Static typing: TypeScript introduces static typing to JavaScript, which
helps catch errors early in the development process. By providing type
information, TypeScript enables developers to spot potential issues
before they become runtime errors. This leads to more reliable and
maintainable code, ultimately reducing the cost and effort of debugging
and troubleshooting.
Improved developer experience: TypeScript’s static typing also
empowers editors and IDEs to offer better autocompletion, type
checking, and refactoring capabilities. This tooling and editor support
enhances the development experience, making it easier to write,
navigate, and maintain code. As a result, developers can be more
productive and efficient in their work.
Codebase scalability: TypeScript is designed to help manage and scale
large codebases effectively. Its type system, modular architecture, and
advanced features make it easier to organize and maintain complex

applications, making TypeScript an excellent choice for both small
projects and enterprise-level applications.
Strong community and ecosystem: TypeScript has a vibrant and growing
community that continually contributes to its development and offers
support through various channels. The language is backed by Microsoft,
ensuring regular updates, improvements, and long-term stability.
Additionally, TypeScript’s compatibility with JavaScript means
developers can leverage existing libraries and frameworks, simplifying
the adoption process and reducing the learning curve (see 6. Gradual
adoption).
Future-proofing: TypeScript often incorporates upcoming JavaScript
features, enabling developers to use the latest language enhancements
while maintaining compatibility with older browsers and environments.
This keeps TypeScript projects on the cutting edge and ensures that
developers are prepared for the future evolution of the JavaScript
language.
Gradual adoption: One of the key benefits of TypeScript is that it can be
adopted incrementally. Developers can introduce TypeScript into
existing JavaScript projects without having to rewrite the entire
codebase. This allows teams with existing JavaScript code to gradually
transition to TypeScript and realize its benefits at their own pace, or
keep the old JavaScript code and start using TypeScript for new
development.
Improved employability, job prospects and salary: As TypeScript
become the de-facto standard for web development (a vast if not the
biggest part of software development), not being proficient in it could be
detrimental to your career. Moreover, survey data indicates that
TypeScript developers generally bring home heftier paychecks than their
JavaScript counterparts.

In conclusion, TypeScript is a powerful and flexible programming language
(and tooling) that combines the popularity and strengths of JavaScript with
additional features aimed at reducing bugs, improving code quality,
developer experience, developer productivity, and project scalability. By
choosing TypeScript, developers can write more robust, maintainable, and
future-proof applications, making it an excellent choice for modern software
development projects. Next, let’s see how TypeScript actually works.

1.2 How does TypeScript work?

So, here's a joke for you: Why didn't JavaScript file a police report after
getting mugged? Because TypeScript said it was a superset, not a suspect!
TypeScript is a statically typed superset of JavaScript that compiles to plain
JavaScript. In other words, TypeScript extends the JavaScript language by
adding optional static types and other features, like interfaces, classes, and
decorators. These enhancements and additions of TypeScript aren't merely to
show off, but were designed to make it easier to write and maintain large-
scale applications (or as they're formally known at black-tie events,
"enterprise apps"). These additions provide better tooling, more rigorous
error checking, and superior code organization.

Here’s a mental model of how TypeScript works at a high-level:

Code writing: A developer writes TypeScript code. TypeScript code is
written in files with a .ts extension. You can use all JavaScript features
as well as TypeScript-specific features like types, interfaces, classes,
decorators, and more. Depending on the editors, project configurations
and build tools, the developer sees prompts, early warnings and errors
(from static type checking).
Type checking: TypeScript helps catch errors during development. You
can add optional type annotations to variables, function parameters, and
return values. TypeScript’s type checker analyzes your code and reports
any type mismatches or potential issues before the code is compiled.
Type checking is done on the fly by the editor (IDE) or a compile tool in
watch mode.
Build compilation: TypeScript code must be compiled (or “transpiled”)
to plain JavaScript before it can be executed in browsers or other
JavaScript environments. The TypeScript compiler (tsc) is responsible
for this process. It takes your TypeScript source files and generates
JavaScript files that can run in any compatible environment.
Execution: Once your TypeScript code has been compiled to JavaScript,
it can be executed just like any other JavaScript code. You can include
the generated JavaScript files in your HTML files, serverless functions
or run them in a Node.js environment, for example.
Code sharing: Because TypeScript has types, it’s safer, more reliable

and less error prone to use modules written in TypeScript in other
modules, programs and apps. The quality goes up and the cost&time go
down. The developer experience is also greatly improved because of
autocompletion and early bug catches. TypeScript is amazing for code
sharing and code reuse, be it externally as open source or internally as
inner source (to the company the developer works at).

Alongside of all the five steps of our mental model of how TypeScript works
at a high level, TypeScript provides an excellent tooling support in all most
popular modern code editors (IDEs) like Visual Studio Code (VS Code),
Eclipse, Vim, Sublime Text, and WebStorm. These tools are like the magic
mirror in Snow White—always ready to give real-time feedback on type
errors, autocompletion, and code navigation features to make your
development faster and more efficient. Here's a joke for you: Why don't
developers ever play hide and seek with their IDEs? Because good luck
hiding when they keep highlighting your mistakes!

In summary, TypeScript works by extending the JavaScript language with
optional static types and other features, providing better tooling and error
checking. The process is simple: You craft your TypeScript code, which then
goes through a robust type-checked and gets compiled to plain JavaScript,
which can be executed in any JavaScript environment. Like a chameleon,
TypeScript blends in, working its magic anywhere JavaScript can.

Yet, TypeScript isn't all sunshine, error-free rainbows, and sweet-smelling
roses. It has its quirky, often misinterpreted, and slippery aspects. That's
precisely the reason this book came into existence. Now, let's delve into how
this tome is structured to lend a helping hand in your TypeScript journey.

1.3 How this book is structured

For the ease and fun of the readers, this book on 100 most common and
critical TypeScript blunders is categorized into these main classifications:
basics, patterns, features, and libraries/frameworks:

Figure 1.1 100 TypeScript Mistakes structure and categories

The different chapters are based on their nature and impact. Each mistake
will be thoroughly explained, so you can grasp the underlying issues and
learn how to avoid them in your projects. We'll provide examples that are as
eloquent as a Shakespearean sonnet (but with more code and fewer iambic
pentameters), followed by practical solutions and best practices that you can
seamlessly integrate into your codebase.

In the appendices, you’ll set up TypeScript (for code examples), TypeScript
cheat sheet and additional TypeScript resources and further reading. Now we
know what to expect but how to use the book most effectively, you, my dear
reader may ask.

1.4 How to use this book

I recommend reading, or at least skimming, the book from beginning to the
end starting with chapter 2 Basics. “This chapter cover” and Summary bullets
that each chapter has, are extremely useful for skimming the content. Even
my publisher just read those bullets, not the entire book, before okaying the

book. At least that’s what I’ve heard.

As far as the code is concerned, most of the code is runnable in either a
playground or files on your computer. There are plenty of free TypeScript
playground/sandbox browser environments. I used the one at the official
TypeScript website located at: typescriptlang.org/play. If you want to run
code on your computer, I wrote the step-by-step instruction for the simplest
TypeScript set up and installation in Appendix A: TypeScript Setup.

I recommend reading a paper book with a cup of coffee in a comfortable
ergonomic position (sofa, armchair) and void of distractions. This way you
can comfortably skim the book and get a grasp of ideas. It’s hard to read this
book on a plane, train, metro, or café due to noise and distractions but
definitely possible. Or alternatively, I recommend reading a digital book on
your computer with the code editor or playground open and ready for
copy/pasted code to be run. This way you will get a deeper understanding of
topics and be able to play around with the code. Experimentation with code
will make the examples live and the reading more interactive and engaging.
Experimentation with code can lead to that “Aha!” lightbulb in your head
moment.

And lastly, please don’t be frustrated with typos, omissions, and errors.
Hopefully there won’t be many because Manning has a stellar team!
However, after I’ve wrote 20 books and learned that typos and mistakes are
inevitable no matter how many editors and reviewers (at readers) looked at
them. Simply submit errata to Manning for future editions. We’ll be glad you
did.

1.5 For whom this book is intended

It’s worth noting that the 100 TypeScript Mistakes book is for TypeScript
advanced beginners. It is also for engineers who worked with TypeScript and
can get around but haven’t had time or the opportunity to understand what the
heck is going on. The book is perfect for those TypeScript enthusiasts who've
dipped their toes in the water but are still occasionally puzzled by what on
earth is happening. Maybe they've worked with TypeScript, and can
generally navigate its waters, but haven't yet had the chance to dive deep.
This is a great book for them!

On the other hand, if you're a TypeScript virtuoso, someone who can recite
the TypeScript docs and its source code like your favorite song lyrics, then
this book might not be your cup of tea. No offense, but I didn't write it for the
TypeScript rockstars who've already had their own world tour. Why? Well, I
wanted to keep this book as succinct as a stand-up comedian's punchline.
Speaking of comedy: Why did the TypeScript developer get a ticket while
driving? Because they didn't respect the "type" limit!

This book should not be seen as a substitute for TypeScript documentation.
By design, the documentation is comprehensive, lengthy, and let's face it, as
exciting as watching paint dry. It's a rare breed that finds joy in perusing
technical documents, and I’m not one of them. I'd rather watch an infinite
loop in action. Unless you're armed with a book like this, you're stuck with
those sleep-inducing documents. Here's the last joke of the chapter to lighten
things up: why don’t developers ever read the entire TypeScript
documentation? Because it’s not a “type” of fiction they enjoy!

Technical documentation, while necessary, is rarely riveting. That's where
this book strides in, promising to be a shorter, focused, and significantly more
enjoyable read than the docs. We've carefully crafted small, digestible, yet
illustrative examples—think of them as appetizing coding tapas, perfect for
better understanding without the indigestion.

1.6 Why this book will help you

To encourage readers, I wanted to begin by saying something profound, like,
"To err is Human; to Fix errors through your TypeScript codebase, Divine."
But you probably didn't buy this book for my philosophical meanderings or
half-baked humor. You're here to learn, or, more accurately, unlearn - the
TypeScript mistakes you've been making and didn't even know about. Don't
worry, we've all been there. It’s not your fault! Some of us are still there,
hopelessly lost in a labyrinth of transpiled JavaScript. 0

Remember that a mistake is not a failure; it's simply proof that you're trying.
And if you're trying, you're improving. To those who have ever shouted,
"WHY, TypeScript, WHY?" at your monitor in the early hours of the
morning, I want you to know something: I've been there too. It’s not your
fault that TypeScript oftentimes has this cryptic error messages. Having
worked in the tech industry for years, at small startups to tech behemoths, I've
had the privilege (or misfortune?) of committing a myriad of JavaScript and
TypeScript mistakes at a scale that is, quite frankly, frightening. I’ve stared
into the abyss of untyped variables, fought the battle with the legion of
incompatible types, and been led astray by the enigmatic "any". Heck, I've
got the emotional debugger scars to prove it. But don't worry, I'm not here to
remind you of the nightmares; I'm here to tell you that there's a TypeScript
oasis, and together, we'll find it.

Think of this book as your TypeScript best friend - a best friend who will tell
you if you've got a metaphorical spinach in your teeth (read: a glaringly
obvious bug in your code), and who'll laugh about it with you instead of
letting you walk around all day like that. You're about to delve into the
minefield of TypeScript. It’s a journey of a hundred steps, each one a pitfall
I've tripped into so that you don't have to.

The difference between this book and other books is in that this book has
short bit-sized nuggets of practical tips and knowledge; this book is recent
and full of latest TypeScript features (some other TypeScript books are 3-5
year old); this book is free of ads, news or funny cat videos comparing to
YouTube or free blog posts; this book is almost free of typos and has decent

grammar, thanks to the wonderful team of expert editors at Manning
Publications; this book is entertaining (at least it tries to be). If you dream of
being fluent in TypeScript, quicker building out product features and with a
higher quality so that you can sleep soundly at night and not be disturbed by
pesky on call rotation, then this is the resource for you. This book will give
you piece of mind and expertise needed to eat your cake and have it too.
After all, what’s the point of having a cake if you can’t eat it!

Remember, you don’t have to be great to start, but you have to start to
become great. The only way out is through, and if there’s one thing, I
promise it’s this: you’re going to make it to the other side. Because here's the
thing about mistakes: everyone makes them, but the real jesters are those who
don’t learn from them (pun intended: jesters are not related to a popular
testing framework).

1.7 Summary

TypeScript is popular and powerful language that offers myriads of
benefits such as static typing, Codebase scalability, improved developer
experience, gradual adoption, futureproofing, strong community and
ecosystem, and improved employability, job prospects and salary.
TypeScript is a superset of JavaScript meaning TypeScript can do
everything that JavaScript can and then much, much more.
This book is designed to be a quick, fun and accessible resource for
advanced-beginner level TypeScript developers.
By identifying, analyzing, and rectifying the 100 most common and
critical TypeScript mistakes, you’ll be well-equipped to tackle any
TypeScript project with confidence and skills.
The book contains chapters that can be group into four categories:
TypeScript basics, TypeScript patterns, TypeScript features, and how
TypeScript works with libraries/frameworks.
The author of the book, Azat MARDAN, has tons of experience with
TypeScript, wrote best-selling books (Practical Node.js, Pro Express,
React Quickly), and worked at tech juggernauts (Google, Capital One),
medium-sized tech companies (DocuSign, Indeed) and small startups
(two exits).
It’s not your fault that you TypeScript is hard. Once you know it, you’ll

gain a lot of power.

2 Basic TypeScript Mistakes
This chapter covers

Using any too often, ignoring compiler warnings
Not using strict mode, incorrect usage of variables, and misusing
optional chaining
Overusing nullish
Misusing of modules export and inappropriate use of type
Mixing up == and ===
Neglecting type inference

“You know that the beginning is the most important part of any work” said
Plato. I add: “especially in the case of learning TypeScript”. When many
people learn basics (any basics not just TypeScript) the wrong way, it’s much
harder to unlearn them than to learn things from the beginning the proper
way. For example, alpine skiing (which is also called downhill skiing, not to
confuse with country skiing) is hard to learn properly. However, it’s easy to
just ski with bad basics. In fact, skiing is much easier than snowboarding
because you can two boards (skis) not one (snowboard). In skiing, things like
angulation (the act of inclining your body and angling your knees and hips
into the turn) don’t come easy. I’ve seen people who ski for years wrongly
which leads to increase chance of trauma, fatigue and decrease control. We
can extend the metaphor to TypeScript. Developers who omit the basics
suffer more frustration (not a scientific fast, just my observation). By the
way, why did the JavaScript file break up with the TypeScript file? Because it
couldn't handle the type of commitment.

2.1 Using any Too Often

TypeScript’s main advantage over JavaScript is its robust static typing
system, which enables developers to catch type-related errors during the
development process. However, one common mistake that developers make
is using the any type too often. This section will discuss why relying on the

any type is problematic and provide alternative solutions to handle dynamic
typing more effectively.

2.1.1 The any type

In TypeScript, the any type allows a variable to be of any JavaScript type,
effectively bypassing the TypeScript type checker. This is basically what
JavaScript does—allows a variable to be of any type and to change types at
run time. It’s even said that variables in JavaScript don’t have types, but their
values do. While this might certainly seem convenient in special situations, it
can lead to issues such as:

Weaker type safety: Using any reduces the benefits of TypeScript’s type
system, as it disables type checking for the variable. This can result in
unnoticed runtime errors, defeating the purpose of using TypeScript.
Reduced code maintainability: When any is used excessively, it becomes
difficult for developers to understand the expected behavior of the code,
as the type information is missing or unclear.
Loss of autocompletion and refactoring support: TypeScript’s intelligent
autocompletion and refactoring support relies on accurate type
information. Using any deprives developers of these helpful features,
increasing the chance of introducing bugs during code changes.

Let’s consider several TypeScript code examples illustrating the usage of any
and its potential downsides: using any for a function parameter, for a variable
and in an array:

function logInput(input: any) { // #A

 console.log(`Received input: ${input}`);

}

logInput("Hello"); // #B

logInput(42);

logInput({ key: "value" });

let data: any = "This is a string"; // #C

data = 100; // #D

let mixedArray: any[] = ["string", 42, { key: "value" }]; // #E

mixedArray.push(true); // #F

In these examples, we use any for function parameters, variables, and arrays.
While this allows us to work with any kind of data without type checking, it
also introduces the risk of runtime errors, as TypeScript cannot provide any
type safety or error detection in these cases.

To improve type safety, consider using specific types or generics instead of
any:

Using specific types for function parameters:

function logInput(input: string | number | object) {

 console.log(`Received input: ${input}`);

}

logInput(true) // Error: Argument of type 'boolean' is not assignable to parameter of type 'string | number | object'.

logInput('yes') // Okay

logInput([1, 2, '3']) // Okay

Using specific types for variables:

let data: string | number = "This is a string";

data = 100; // Okay: TypeScript checks that the assigned value is of the correct type

data = false // Error: Type 'boolean' is not assignable to type 'string | number'.

Using generics in an array:

type MixedArrayElement = string | number | object;

let mixedArray: MixedArrayElement[] = ["string", 42, { key: "value" }];

mixedArray.push(true); // Error: Argument of type 'boolean' is not assignable to parameter of type 'MixedArrayElement'.

mixedArray.push('1') // Okay

As you saw, by avoiding any and using specific types or generics, you can
benefit from TypeScript’s type checking and error detection capabilities,
making your code more robust and maintainable.

Instead of resorting to the any type, developers can use the following
alternatives:

Type annotations: Whenever possible, specify the type explicitly for a
variable, function parameter, or return value. This enables the
TypeScript compiler to catch type-related issues early in the
development process.
Union types: In cases where a variable could have multiple types, use a
union type (e.g., string | number) to specify all possible types. This
provides better type safety and still allows for flexibility.
Type aliases and interfaces: If you have a complex type that is used in
multiple places, create a type alias (e.g., type TypeName) or an interface
to make the code more readable and maintainable.
Type guards: Use type guards (e.g., typeof, instanceof, or custom type
guard functions) to narrow down the type of a variable within a specific
scope, improving type safety without losing flexibility.
Unknown type: If you truly don’t know the type of a variable, consider
using the unknown type instead of any or omitting the type reference to
let TypeScript infer the type. The unknown type enforces explicit type
checking before using the variable, thus reducing the chance of runtime
errors.

All in all, while the any type can be tempting to use for its flexibility, it
should be avoided whenever possible to maximize the benefits of
TypeScript’s type system. By using type annotations, union types, type
aliases, interfaces, type guards, type inference and the unknown type,
developers can maintain type safety while still handling dynamic typing
effectively.

2.2 Ignoring Compiler Warnings

TypeScript’s compiler is designed to help developers identify potential issues
in their code early on by providing insightful error messages and warnings.
Ignoring these compiler warnings can lead to subtle bugs, decreased code
quality, and runtime errors. Ignoring warnings kind of defeats the benefits of
TypeScript. This section will discuss the importance of addressing compiler
warnings and suggest strategies for effectively managing and resolving them.

It’s good to review the consequences of ignoring compiler warnings, because
ignoring compiler warnings can result in various problems, including:

Runtime errors: Many compiler warnings indicate potential issues that
could cause unexpected behavior or errors during runtime. Ignoring
these warnings increases the likelihood of encountering hard-to-debug
issues in production.
Code maintainability: Unresolved compiler warnings can make it
difficult for other developers to understand the code’s intent or identify
potential issues, leading to decreased maintainability.
Type safety: TypeScript’s type system is designed to catch potential
issues related to types. Ignoring warnings related to type safety may
result in type-related bugs.
Performance: Some compiler warnings may signal performance
concerns and ignoring them can lead to less efficient code.
Increase noise: Having unsolved warnings in the code can quickly
snowball into a massive technical debt that will pollute your build
terminal with noise that is useless because no action is taken on them.

Here are TypeScript code examples illustrating the potential issues of
ignoring compiler warnings:

Example 1: Unused variables:

function add(x: number, y: number): number {

 const result = x + y;

 const unusedVar = "This variable is never used.";

 return result;

}

// TypeScript warning: 'unusedVar' is declared but its value is never read.

Example 2: Unused function parameters:

function multiply(x: number, y: number, z: number): number {

 return x * y;

}

// TypeScript warning: 'z' is declared but its value is never read.

Example 3: Implicit `any`:

function logData(data) {

 console.log(`Data: ${data}`);

}

// TypeScript warning: Parameter 'data' implicitly has an 'any' type.

Example 4: Incompatible types:

function concatStrings(a: string, b: string): string {

 return a + b;

}

const result = concatStrings("hello", 42);

// TypeScript warning: Argument of type 'number' is not assignable to parameter of type 'string'.

Example 5: No return:

function noReturn(a: number): string {

 if (a) return a.toString()

 else {

 console.log('no input')

 }

}

// TypeScript warning: Function lacks ending return statement and return type does not include 'undefined'.

In these examples, we saw different types of compiler warnings that might
occur during TypeScript development:

Unused variables: Declaring a variable that is never used can lead to
unnecessary code and confusion.
Unused function parameters: Declaring a function parameter that is
never used can indicate that the function implementation is incomplete
or incorrect.
Implicit any: Using an implicit any type can lead to a lack of type safety

and make the code less maintainable.
Incompatible types: Assigning or passing values with incompatible
types can lead to unexpected behavior and runtime errors.
No return: Not providing return statement for all cases when return type
does not include undefined.

By addressing these compiler warnings, you can improve the quality,
maintainability, and reliability of your TypeScript code. Ignoring compiler
warnings can result in unintended consequences and harder-to-debug issues
in the future. Most importantly, having the warnings present and unsolved
increases the decay and reduces the code quality (see theory of broken
windows).

To combat the warnings, let’s take a look at some strategies for managing
and resolving compiler warnings:

Configure the compiler: Adjust the TypeScript compiler configuration
(tsconfig.json) to match your project’s needs. Enable strict mode and
other strictness-related flags to ensure maximum type safety and catch
potential issues early on. Make no-warnings part of the build, pre-
commit, pre-merge and pre-deploy CI/CD checks.
Treat warnings as errors: Configure the TypeScript compiler to treat
warnings as errors, enforcing a policy that no code with warnings should
be pushed to the repository. This approach ensures that all warnings are
addressed before merging changes.
Regularly review warnings: Periodically review and address compiler
warnings, even if they don’t seem critical at the time. This practice will
help maintain code quality and reduce technical debt. If you have a huge
backlog of current warning, have weekly or monthly TS warnings
“parties” where you get engineers for 1-2 hours on a call to clean up the
warnings.
Refactor code: In some cases, resolving compiler warnings may require
refactoring the code. Always strive to improve code quality and
structure, ensuring that it adheres to the best practices and design
patterns.
Educate the team: Make sure that all team members understand the
importance of addressing compiler warnings and are familiar with

TypeScript best practices. Encourage knowledge sharing and peer
reviews to ensure that the entire team is aware of potential issues and
how to resolve them. Be reletless in code review by educating and
guarding against code with warnings.

Compiler warnings in TypeScript are designed to help developers identify
potential issues early in the development process. Ignoring these warnings
can result in runtime errors, decreased maintainability, and reduced code
quality. By configuring the compiler correctly, treating warnings as errors,
regularly reviewing warnings, refactoring code, and educating the team,
developers can effectively manage and resolve compiler warnings, leading to
a more robust and reliable codebase… and hopefully fewer sleepless nights
being woken up by a “pager” while being on call to try to keep the systems
alive.

2.3 Not Using Strict Mode

TypeScript offers a strict mode that enforces stricter type checking and other
constraints to improve code quality and catch potential issues during
development. This mode is enabled by setting the “strict” flag to true in the
tsconfig(e.g., "strict": true in the tsconfig.json json file configuration
file). Unfortunately, some developers overlook the benefits of using strict
mode, leading to less robust codebases and increased chances of encountering
runtime errors.

The benefits of using strict mode as follows:

Enhanced type safety: Strict mode enforces stricter type checks,
reducing the likelihood of type-related errors and making the codebase
more reliable.
Better code maintainability: With stricter type checking, the code
becomes more predictable and easier to understand, which improves
maintainability and reduces technical debt.
Improved autocompletion and refactoring support: Strict mode enables
TypeScript’s advanced autocompletion and refactoring features, making
it easier for developers to write and modify code.
Reduced potential for runtime errors: The stricter checks introduced by

strict mode help catch potential issues early, reducing the chances of
encountering runtime errors in production.
Encouragement of best practices: By using strict mode, developers are
encouraged to adopt best practices and write cleaner, more robust code.

Now, here are TypeScript code examples illustrating the differences between
strict and non-strict modes:

Non-strict mode:

function logMessage(message) {

 console.log(`Message: ${message}`);

}

logMessage("Hello, TypeScript!"); // No error, but the 'message' parameter implicitly has an 'any' type.

Strict mode (enable by setting "strict": true in the tsconfig.json file):

function logMessageStrict(message: string) {

 console.log(`Message: ${message}`);

}

logMessageStrict("Hello, TypeScript!"); // The 'message' parameter now has an explicit 'string' type.

Example with a class:

class Person {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 greet() {

 console.log(`Hello, my name is ${this.name}.`);

 }

}

Non-strict mode:

const person = new Person("Anastasia");

person.greet(); // No error, but the 'name' property might be uninitialized.

Strict mode (enable by setting "strict": true in the tsconfig.json file):

class PersonStrict {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 greet() {

 console.log(`Hello, my name is ${this.name}.`);

 }

}

const personStrict = new PersonStrict("Anastasia");

personStrict.greet(); // Error: Property 'name' has no initializer and is not definitely assigned in the constructor.

In these examples, we demonstrate the differences between strict and non-
strict modes in TypeScript. In non-strict mode, some type-related issues may
be overlooked, such as implicit any types or uninitialized properties.

Strict mode enforces a variety of checks and constraints, including:

No implicit any: Variables without explicit type annotations will have an
implicit any type, which can lead to type-related issues. Strict mode
disallows this behavior and requires explicit type annotations.
No implicit this: In strict mode, the this keyword must be explicitly
typed in functions, reducing the risk of runtime errors caused by
incorrect this usage.
Strict null checks: Strict mode enforces stricter checks for nullable
types, ensuring that variables of nullable types are not unintentionally
used as if they were non-nullable.
Strict function types: Strict mode enforces stricter checks on function

types, helping catch potential issues related to incorrect function
signatures or return types.
Strict property initialization: In strict mode, class properties must be
initialized in the constructor or have a default value, reducing the risk
of uninitialized properties causing runtime errors.

To get the most out of TypeScript’s features, it is highly recommended to
enable strict mode in the tsconfig.json configuration file. By doing so,
developers can enhance type safety, improve code maintainability, and
reduce the likelihood of runtime errors that is helps you catch potential issues
early and improves the quality and maintainability of your TypeScript code.
This practice ultimately leads to a more robust and reliable codebase,
ensuring that the full potential of TypeScript’s static typing system is utilized.

2.4 Incorrect Variable Declaration

TypeScript provides various ways to declare variables, including let, const,
and var. However, using the incorrect variable declaration can lead to
unexpected behavior, bugs, and a less maintainable codebase. This section
will discuss the differences between these variable declarations and best
practices for using them.

The differences between let, const, and var:

let: Variables declared with let have block scope, meaning they are
only accessible within the block in which they are declared. let
variables can be reassigned after their initial declaration.
const: Like let, const variables have block scope. However, they
cannot be reassigned after their initial declaration, making them suitable
for values that should not change throughout the program’s execution.
var: Variables declared with var have function scope, meaning they are
accessible within the entire function in which they are declared. This can
lead to unexpected behavior and harder-to-understand code due to
variable hoisting, which occurs when variable declarations are moved to
the top of their containing scope.

Here are TypeScript code examples illustrating incorrect variable declaration

and how to fix them.

Example 1: Using var instead of let or const:

var counter = 0;

for (var i = 0; i < 10; i++) {

 counter += i;

}

console.log(i);

When we output i which is 10, the i variable is accessible outside the loop
scope, which can lead to unexpected behavior. The fix is to use let or const
for variable declaration:

let counterFixed = 0;

for (let j = 0; j < 10; j++) {

 counterFixed += j;

}

console.log(j); // Error: Cannot find name 'j'. The `j` variable is scoped to the loop and not accessible outside.

Example 2: Incorrectly declaring a constant variable:

let constantValue = 42;

// Later in the code, a developer mistakenly updates the variable

constantValue = 84;

Fix: Use const for constant variables:

const constantValueFixed = 42;

constantValueFixed = 84; // Error: Cannot assign to 'constantValueFixed' because it is a constant.

Example 3: Incorrectly using let for a variable that is not reassigned:

let userName = "Anastasia";

console.log(`Hello, ${userName}!`);

Fix: Use const for variables that are not reassigned”

const userNameFixed = "Anastasia";

console.log(`Hello, ${userNameFixed}!`);

The best practices for variable declaration include:

Prefer const by default: When declaring variables, use const by default,
as it enforces immutability and reduces the likelihood of unintentional
value changes. This can lead to cleaner, more predictable code. Use let
when necessary: If a variable needs to be reassigned, use let. This
ensures the variable has block scope and avoids potential issues related
to function scope.
Avoid var: In most cases, avoid using var, as it can lead to unexpected
behavior due to function scope and variable hoisting. Instead, use let or
const to benefit from block scope and clearer code. Use descriptive
variable names: Choose clear, descriptive variable names that convey
the purpose and value of the variable. This helps improve code
readability and maintainability.
Initialize variables: Whenever possible, initialize variables with a value
when declaring them. This helps prevent issues related to uninitialized
variables and ensures that the variable’s purpose is clear from its
declaration.

By following these best practices for variable declaration, developers can
create more maintainable, predictable, and reliable TypeScript codebases. By
preferring const, using let when necessary, avoiding var, and choosing
descriptive variable names, developers can minimize potential issues related
to variable declaration and improve the overall quality of their code.

2.5 Misusing Optional Chaining

Optional chaining is a powerful feature introduced in TypeScript 3.7 that
allows developers to access deeply nested properties within an object without
having to check for the existence of each property along the way. While this
feature can lead to cleaner and more concise code, it can also be misused,
causing unexpected behavior and potential issues. This section will discuss
the proper use of optional chaining and common pitfalls to avoid.

2.5.1 Understanding Optional Chaining

Optional chaining uses the ? operator to access properties of an object or the
result of a function call, returning undefined if any part of the chain is null
or undefined. This can greatly simplify code that involves accessing deeply
nested properties.

In this example we use three approaches. The first is without optional
chaining and can break the code. The second is better because it uses &&
which will help to not break the code. The last example uses optional
chaining and more compact than example with &&:

const user = {

 name: "Sergei",

 address: { // optional field

 street: "Main St",

 city: "New York",

 country: "USA",

 },

};

// Without optional chaining - breaking code if user or address are undefined

const city = user.address.city;

// Without optional chaining - working code

const city = user && user.address && user.address.city;

// With optional chaining

const city = user?.address?.city;

The proper use of Optional Chaining includes the following:

Use optional chaining to access deeply nested properties: When
accessing properties several levels deep, use optional chaining to
simplify the code and make it more readable.
Combine optional chaining with nullish coalescing: Use the nullish
coalescing operator ?? in conjunction with optional chaining to provide
a default value when a property is null or undefined.

Example:

const city = user?.address?.city ?? "Unknown";

Here is the list of common pitfalls to avoid when working with TypeScript’s
Optional Chaining:

Overusing optional chaining: While optional chaining can simplify code,
overusing it can make the code harder to read and understand. Use it
judiciously and only when it provides clear benefits.
Ignoring potential issues: Optional chaining can mask potential issues in
the code, such as incorrect property names or unexpected null or
undefined values. Ensure that your code can handle these cases
gracefully and consider whether additional error handling or checks are
necessary.
Misusing with non-optional properties: Be cautious when using optional
chaining with properties that should always be present. This can lead to
unexpected behavior and may indicate a deeper issue in the code that
needs to be addressed.

By using optional chaining properly and avoiding common pitfalls,
developers can write cleaner and more concise code while accessing deeply
nested properties. Combining optional chaining with nullish coalescing (??)
can further improve code readability and ensure that default values are
provided when necessary. However, it is crucial to use optional chaining
judiciously and remain aware of potential issues that it may mask.

2.6 Overusing Nullish Coalescing

Nullish coalescing is a helpful feature that allows developers to provide a
default value when a given expression evaluates to null or undefined. The
nullish coalescing operator ?? simplifies handling default values in certain
situations. However, overusing nullish coalescing can lead to less readable
code and potential issues. This section will discuss when to use nullish
coalescing and when to consider alternative approaches.

2.6.1 Understanding Nullish Coalescing

The nullish coalescing operator ?? returns the right-hand operand when the
left-hand operand is null or undefined. If the left-hand operand is any other
value, including false, 0, or an empty string, it will be returned.

Example:

const name = userInput?.name ?? "Anonymous";

Appropriate use of Nullish Coalescing:

Providing default values: Use nullish coalescing to provide a default
value when a property or variable might be nullor undefined.
Simplifying conditional expressions: Nullish coalescing can simplify
conditional expressions that check for null or undefined values,
making the code more concise.
Combining with optional chaining: Use nullish coalescing in
conjunction with optional chaining to access deeply nested properties
and provide a default value when necessary.

Pitfalls and alternatives

Misinterpreting falsy values: Nullish coalescing only checks for null
and undefined. Be cautious when using it with values that are
considered falsy but not nullish, such as false, 0, or an empty string. In

these cases, consider using the logical OR operator || instead.

Example in which 0 could be a correct input, e.g., 0 volume, 0 index in an
array, 0 discount, but because of the truthy check of || our equation will
fallback to the default value (which we don’t want). The following code is
incorrect because defaultValue will be used if inputValue is 0:

const value = inputValue || defaultValue;

In this case (where 0 could be a valid value), the correct way is to use ?? or
check for null. The following two alternatives are correct because
defaultValue will be used only if inputValue is null or undefined, but not
when it’s 0:

const value = inputValue ?? defaultValue;

const value = inputValue != null ? inputValue : defaultValue;

Overusing nullish coalescing: Relying too heavily on nullish coalescing
can lead to less readable code and may indicate a deeper issue, such as
improperly initialized variables or unclear code logic. Evaluate whether
nullish coalescing is the best solution or if a more explicit approach
would be clearer.
Ignoring proper error handling: Nullish coalescing can sometimes be
used to mask potential issues or errors in the code. Ensure that your code
can handle cases where a value is null or undefined gracefully and
consider whether additional error handling or checks are necessary.

By using nullish coalescing appropriately and being aware of its pitfalls,
developers can write cleaner and more concise code when handling default
values. However, it is crucial to understand the nuances of nullish coalescing
and consider alternative approaches when necessary to maintain code
readability and robustness.

2.7 Misusing of Modules Export or Import

Modularization is an essential aspect of writing maintainable and scalable
TypeScript code. By separating code into modules, developers can better
organize and manage their codebase. However, a common mistake is
misusing of modules export or import, which can lead to various issues and
errors. This section will discuss the importance of properly exporting and
importing modules and provide best practices to avoid mistakes.

A module is a file that contains TypeScript code, including variables,
functions, classes, or interfaces. Modules allow developers to separate code
into smaller, more manageable pieces and promote code reusability.

Exporting a module means making its contents available to be imported and
used in other modules. Importing a module allows developers to use the
exported contents of that module in their code.

The best practices for exporting and importing modules:

Use named exports: Prefer named exports, which allow for exporting
multiple variables, functions, or classes from a single module. Named
exports make it clear which items are being exported and allow for
better code organization.

// Exporting named items

export const user = { /*...*/ };

export function createUser() { /*...*/ };

// Importing named items

import { user, createUser } from './userModule';

Use default exports for single exports: If a module only exports a single
item, such as a class or function, consider using a default export. This
can simplify imports and make the code more readable.

// Exporting a default item

export default class User { /*...*/ };

// Importing a default item

import User from './User';

Organize imports and exports: Keep imports and exports organized at
the top of your module files. This helps developers understand the
dependencies of a module at a glance and makes it easier to update or
modify them.
Be mindful of circular dependencies: Circular dependencies occur when
two or more modules depend on each other, either directly or indirectly.
This can lead to unexpected behavior and runtime errors. To avoid
circular dependencies, refactor your code to create a clear hierarchy of
dependencies and minimize direct coupling between modules.
Avoid importing unused variables: Importing variables that are not used
in the code can lead to code bloat, decreased performance, and reduced
maintainability. Many IDEs and linters can warn you about unused
imports, making it easier to identify and remove them. Additionally,
using tools like Webpack or Rollup can help with tree shaking, which is
the process of removing unused code during the bundling process. By
being mindful of unused imports and addressing them promptly,
developers can keep their code clean and efficient.

Some common mistakes to avoid when importing and exporting modules:

Forgetting to export: Ensure that you export all necessary variables,
functions, classes, or interfaces from a module to make them available
for import in other modules.
Incorrectly importing: Be cautious when importing modules and double-
check that you are using the correct import syntax for named or default
exports. Misusing import syntax can lead to errors or undefined values.
Missing import statements: Ensure that you import all required modules
in your code. Forgetting to import a module can result in runtime errors
or undefined values.

By properly exporting and importing modules, developers can create
maintainable and scalable TypeScript codebases. Following best practices
and being cautious of common mistakes helps avoid issues related to module
management, ensuring a more robust and organized codebase.

2.8 Inappropriate Use of Type Assertions

Type assertions are a feature in TypeScript that allows developers to override
the inferred type of a value, essentially telling the compiler to trust their
judgment about the value’s type. Type assertion uses the as keyword. While
type assertions can be useful in certain situations, their inappropriate use can
lead to runtime errors, decreased type safety, and a less maintainable
codebase. This section will discuss when to use type assertions and how to
avoid their misuse.

2.8.1 Understanding Type Assertions

Type assertions are a way of informing the TypeScript compiler that a
developer has more information about the type of a value than the type
inference system. Type assertions do not perform any runtime checks or
conversions; they are purely a compile-time construct.

Example:

const unknownValue: unknown = "Hello, TypeScript!";

const stringValue: string = unknownValue as string;

The appropriate use of Type Assertions include:

Working with unknown types: Type assertions can be helpful when
working with the unknown type, which requires explicit casting before it
can be used.
Narrowing types: Type assertions can be used to narrow down union
types or other complex types to a more specific type, provided the
developer has a valid reason to believe the type is accurate.
Interacting with external libraries: When working with external libraries
that have insufficient or incorrect type definitions, type assertions may
be necessary to correct the type information.

Pitfalls and alternatives:

Overusing type assertions: Relying too heavily on type assertions can
lead to less type-safe code and may indicate a deeper issue with the
code’s design. Evaluate whether a type assertion is the best solution or if
a more explicit approach would be clearer and safer.
Ignoring type errors: Type assertions can be misused to bypass
TypeScript’s type checking system, which can lead to runtime errors and
decreased type safety. Always ensure that a type assertion is valid and
necessary before using it.
Bypassing proper type guards: Instead of using type assertions, consider
implementing type guards to perform runtime checks and provide better
type safety. Type guards are functions that return a boolean value,
indicating whether a value is of a specific type.

Example:

function isString(value: unknown): value is string {

 return typeof value === 'string';

}

if (isString(unknownValue)) {

 const stringValue: string = unknownValue;

}

Chaining type assertions with unknown: In some cases, developers may find
themselves using a pattern like unknownValue as unknown as knownType to
bypass intermediary types when asserting a value’s type. While this
technique can be useful in specific situations, such as working with poorly
typed external libraries or complex type transformations, it can also introduce
risks. Chaining type assertions in this way can undermine TypeScript’s type
safety and potentially mask errors. Use this pattern cautiously and only when
necessary, ensuring that the assertion is valid and justified. Whenever
possible, consider leveraging proper type guards, refining type definitions, or
contributing better types to external libraries to avoid this pattern and
maintain type safety.

By using type assertions appropriately and being aware of their pitfalls,
developers can write cleaner, safer, and more maintainable TypeScript code.
Ensure that type assertions are only used when necessary and consider

alternative approaches, such as type guards, to provide better type safety and
runtime checks.

2.9 Mixing Up ‘==’ and ‘===’

When comparing values in TypeScript, it is crucial to understand the
difference between the equality operator ‘==’ and the strict equality operator
‘===’. Mixing up these two operators can lead to unexpected behavior and
hard-to-find bugs. This section will discuss the differences between the two
operators, their appropriate use cases, and how to avoid common pitfalls.

2.9.1 Understanding ‘==’ and ‘===’

‘==’: The equality operator ‘==’ compares two values for equality,
returning true if they are equal and false otherwise. However, ‘==’
performs type coercion when comparing values of different types, which
can lead to unexpected results.
Example:

// Returns true because the number 42 is coerced to the string "42"

console.log(42 == "42");

‘===’: The strict equality operator ‘===’ compares two values for
equality, considering both their value and type. No type coercion is
performed, making ‘===’ a safer and more predictable choice for
comparison.
Example:

// Returns false because 42 is a number and "42" is a string

console.log(42 === "42");

The best practices for using ‘==’ and ‘===’ as follows:

Prefer ‘===’ for comparison: In most cases, use ‘===’ when comparing
values, as it provides a more predictable and safer comparison without

type coercion.
Use ‘==’ with caution: While there might be situations where using ‘==’
is necessary, be cautious and ensure that you understand the implications
of type coercion. If you need to compare values of different types,
consider converting them explicitly to a common type before using ‘==’.
Leverage linters and type checkers: Tools like ESLint and TSLint can
help enforce the consistent use of ‘===’ and warn you when ‘==’ is
used, reducing the risk of introducing bugs.

The common pitfalls to avoid when comparing values:

Relying on type coercion: Avoid relying on type coercion when using
‘==’. Type coercion can lead to unexpected results and hard-to-find
bugs. Instead, use ‘===’ or explicitly convert values to a common type
before comparison.
Ignoring strict inequality ‘!==’: Similar to the strict equality operator
‘===’, use the strict inequality operator ‘!==’ when comparing values
for inequality. This ensures that both value and type are considered in
the comparison.
Not doing deep comparison on objects and array with nested properties:
When comparing objects or arrays, it’s important to remember if you
need to perform a deep comparison, that is a comparison that is
performed for each child value no matter how deep the nested structure
is. Methods such as lodash.deepEqual or at the very least
JSON.stringify() can come in handy.

By understanding the differences between ‘==’ and ‘===’ and following best
practices, developers can write more predictable and reliable TypeScript
code. Using strict equality and strict inequality operators ensures that type
coercion does not introduce unexpected behavior, leading to a more
maintainable and robust codebase.

In certain cases, you may want to perform a deep comparison of objects or
complex types, for which neither ‘==’ nor ‘===’ is suitable. In such
situations, you can use utility methods provided by popular libraries, such as
Lodash’s isEqual function. The isEqual function performs a deep
comparison between two values to determine if they are equivalent, taking
into account the structure and content of objects and arrays. This can be

particularly helpful when comparing objects with nested properties or arrays
with non-primitive values. Keep in mind, though, that using utility methods
like isEqual may come with a performance cost, especially for large or
deeply nested data structures.

Here’s a simple implementation of a deep equal comparison method for
objects with nested levels in TypeScript:

function deepEqual(obj1: any, obj2: any): boolean {

 if (obj1 === obj2) {

 return true;

 }

 if (typeof obj1 !== 'object' || obj1 === null || typeof obj2 !== 'object' || obj2 === null) {

 return false;

 }

 const keys1 = Object.keys(obj1);

 const keys2 = Object.keys(obj2);

 if (keys1.length !== keys2.length) {

 return false;

 }

 for (const key of keys1) {

 if (!keys2.includes(key)) {

 return false;

 }

 if (!deepEqual(obj1[key], obj2[key])) {

 return false;

 }

 }

 return true;

}

This deepEqual function compares two objects recursively, checking if they
have the same keys and the same values for each key. It works for objects
with nested levels and arrays, as well as primitive values. However, this
implementation does not handle certain edge cases, such as handling circular
references or comparing functions.

Keep in mind that deep comparisons can be computationally expensive,
especially for large or deeply nested data structures. Use this method with
caution and consider using optimized libraries, such as Lodash, when
working with complex data structures in production code.

2.10 Neglecting Type Inference

TypeScript is known for its strong type system, which helps developers catch
potential errors at compile-time and improve code maintainability. One
powerful feature of TypeScript’s type system is type inference, which allows
the compiler to automatically deduce the type of a value based on its usage.
Neglecting type inference can lead to unnecessarily verbose code and missed
opportunities for leveraging TypeScript’s full potential. This section will
discuss the benefits of type inference and provide best practices for utilizing
it effectively.

2.10.1 Understanding Type Inference

Type inference is the process by which TypeScript automatically determines
the type of a value without requiring an explicit type annotation from the
developer. This occurs in various contexts, such as variable assignments,
function return values, and generic type parameters.

Example:

// TypeScript infers the type of x to be number

const x = 42;

// TypeScript infers the return type of the function to be number

function double(value: number) {

 return value * 2;

}

The best practices for utilizing type inference:

Embrace type inference: Whenever possible, allow TypeScript to infer
the type of a value. This reduces code verbosity and allows the compiler

to catch potential issues related to the inferred type.
Provide type annotations when necessary: In some cases, TypeScript’s
type inference may not be able to deduce the correct type, or you might
want to enforce a specific type. In these situations, provide an explicit
type annotation to guide the compiler.
Use contextual typing: TypeScript’s contextual typing allows the
compiler to infer types based on the context in which a value is used.
For example, when assigning a function to a variable with a specific
type, TypeScript can infer the types of the function’s parameters and
return value.

type Callback = (data: string) => void;

const myCallback: Callback = (data) => {

 console.log(data);

};

Leverage type inference for generics: TypeScript can infer generic type
parameters based on the types of arguments passed to a generic function
or class. Take advantage of this feature to write more concise and
flexible code.

function identity<T>(value: T): T {

 return value;

}

// TypeScript infers the type parameter T to be string

const result = identity("Hello, TypeScript!");

The common pitfalls to avoid when utilizing type inference in TypeScript
come down to:

Over-annotating: Avoid providing type annotations for values when
TypeScript can already infer the correct type. Over-annotating can make
the code more verbose and harder to maintain.
Ignoring type inference capabilities: Be aware of TypeScript’s type
inference capabilities and utilize them to write cleaner, more concise

code. Neglecting type inference can lead to missed opportunities for
leveraging TypeScript’s full potential.

By understanding and embracing type inference, developers can write more
concise and maintainable TypeScript code. Utilize type inference to let the
compiler deduce types automatically, and only provide type annotations
when necessary. This will lead to a more efficient and robust codebase,
taking full advantage of TypeScript’s powerful type system.

2.11 Summary

We shouldn’t use any too often to get increase the benefits of
TypeScript
We shouldn’t ignore TypeScript compiler warnings
We should use strict mode to catch more errors
We should correctly declare variables with let and const
We should use optional chaining when we need to check for
existence of a property
We should use nullish coalescing to check for null and undefined,
instead of ||
We should export and import modules properly
We should understand type assertions and not over rely on unknown
We should use === in places of == to ensure proper checks.
We shouldn’t ignore the type inference capabilities

3 Types and Interfaces
This chapter covers

Understanding and benefiting from the difference between types and
interfaces
Making sense of the readonly property modifier
Putting into practice type widening
Ordering properties and extending interfaces correctly
Applying mapped types and type guards
Utilizing keyof and Extract effectively

Getting to grips with TypeScript can feel a bit like being invited to an
exclusive party where everyone is speaking a slightly different dialect of a
language you thought you knew well. In this case, the language is JavaScript,
and the dialect is TypeScript. Now, imagine walking into this party and
hearing words like "types" and "interfaces" being thrown around. It might
initially sound as though everyone is discussing an unusual art exhibition!
But, once you get the hang of it, these terms will become as familiar as your
favorite punchline.

Among the array of unique conversations at this TypeScript soirée, you'll find
folks passionately debating the merits and shortcomings of types and
interfaces. These TypeScript enthusiasts could put political pundits to shame
with their fervor for these constructs. To them, the intricate differences
between types and interfaces are not just programming concerns—they're a
way of life. And if you've ever felt that a codebase without properly defined
types is like a joke without a punchline, well, you're in good company.
Speaking of jokes: Why did the TypeScript interface go to therapy? —
Because it had too many unresolved properties!

In the TypeScript world, types and interfaces can be thought of as two sides
of the same coin—or more aptly, two characters in a comedic duo. One might
be more flexible, doing all sorts of wild and unpredictable things (hello,
types), while the other is more reliable and consistent, providing a predictable

structure and ensuring that everything goes according to plan (that's you,
interfaces). But like any good comedy duo, they both have their strengths and
weaknesses, and knowing when to utilize each is key to writing a script—or
in this case, code—that gets the biggest laughs (or at least, the least number
of bugs).

Types in TypeScript are like the chameleons of the coding world. They can
adapt and change to fit a variety of situations. They're versatile, ready to
shape-shift into whatever form your data requires. And yet, they have their
limitations. Imagine a chameleon trying to blend into a Jackson Pollock
painting - it's going to have a tough time! So, while types are handy, trying to
use them for complex or changing structures can lead to messy code faster
than you can say "type confusion".

On the other hand, we have interfaces. If types are chameleons, interfaces are
more like blueprints for a house or piece of furniture. They give you a
concrete structure, a detailed plan to follow, ensuring that your objects are
built to spec. However, like a blueprint, if your construction deviates from the
plan, you're going to end up with compiler errors that look more frightening
than your unfinished IKEA furniture assembly. And let's face it, nobody likes
to be halfway through a project only to find out they're missing a 'semicolon'
or two!

Now, you may be asking yourself, "Which should I use? Types or
interfaces?" It's a bit like asking if you should have cake or ice cream. The
answer, of course, is it depends on your tastes (and perhaps, the state of your
waistline). With TypeScript, it depends on the situation. But don’t worry.
This chapter will guide you through the bustling crowd at the TypeScript
party, ensuring you know just when to be the life of the party and when to
responsibly drive your codebase home. After all, in TypeScript as in comedy,
timing is everything. We're going to deep dive into these tasty TypeScript
treats, learning when each one shines and how to use them without causing a
stomach problem. Along the way, we'll learn to avoid some of the most
common pitfalls like type widening, readonly, keyof, type guards, type
mapping, type aliases and others that can leave your codebase looking like a
pastry after kindergarteners. And while we are on the dessert theme, I can’t
withhold another joke: A TypeScript variable worried about gaining weight,

because after all those desserts it didn't want to become a Fat Arrow
Function!

So, get ready to embark on this exploration of types and interfaces. By the
end of this chapter, you should be able to discern between these two, just like
telling apart your Aunt Bertha from your Aunt Gertrude at a family reunion –
it's all in the details. And remember, if coding was easy, everybody would do
it. But if everyone did it, who would we make fun of for not understanding
recursion? Let's dive in!

3.1 Understanding the Difference Between Types
and Interfaces

The main difference between type and interface is that types cannot be “re-
opened” to add new properties vs interfaces which are always extendable.
Types are also more flexible in that they can represent primitive types, union
types, intersection types, etc., while interfaces are more suited for object type
checking and class and object literal expressiveness.

Remember, TypeScript compiles down to JavaScript, so ultimately both of
these constructs are just tools to provide stronger type safety and
autocompletion in your compilers and the editor.

The following example illustrates how interfaces can be “re-opened”:

interface User {

 name: string;

}

interface User {

 age: number; // This is perfectly fine, the User interface now has a name and an age.

}

type Point = {

 x: number;

};

type Point = { // This will raise a Duplicate identifier error.

 y: number;

};

Types: The type keyword in TypeScript is used to define custom types,
which can include aliases for existing types, union types, intersection types,
and more. Types can represent any kind of value, including primitives,
objects, and functions. type creates an alias to refer to a type.

The following example defines two types, an object variable and a class that
use one of the types:

type Point = {

 x: number;

 y: number;

};

let point: Point = {

 x: 10,

 y: 20

}

type Coordinate = number | string;

class Circle implements Point {

 public x: number = 0;

 public y: number = 0;

}

Interfaces: The interface keyword is used to define a contract for objects,
describing their shape and behavior. Interfaces can be implemented by
classes, extended by other interfaces, and used to type-check objects. They
cannot represent primitive values or union types.

The following example defines an interface and then a class that implements
this interface:

interface Shape {

 area(): number;

}

let shape: Shape = {

 area: () => {return 0}

}

class Circle implements Shape {

 constructor(public radius: number) {}

 area(): number {

 return Math.PI * this.radius * this.radius;

 }

}

When to use Types vs. Interfaces:

Use interfaces for object shapes and class contracts: Interfaces are ideal
for defining the shape of an object or the contract a class must
implement. They provide a clear and concise way to express
relationships between classes and objects.
Use types for more complex and flexible structures: Types are more
versatile and can represent complex structures, such as union types,
intersection types, and mapped types. Use types when you need more
flexibility and complexity in your type definitions.
Prefer interfaces when performance is a concern: TypeScript compiles
interfaces more efficiently than types, as interfaces generate less code in
the compiled JavaScript output. If performance is a concern, consider
using interfaces over types.
Combine types and interfaces when necessary: In some cases, it may be
beneficial to combine types and interfaces to create more powerful and
expressive type definitions. For example, you can use a type to represent
a union of multiple interfaces or extend an interface with a type.

As a mental shortcut, I would recommend always using interfaces, unless you
really need more flexibility that the types can provide. This way by defaulting
to interfaces, you’ll get more type safety and remove the cognitive load of
constantly thinking type or interface.

Next, let’s see the most common pitfalls to avoid when working with types
and interfaces in TypeScript:

Mixing up types and interfaces: Be aware of the differences between
types and interfaces and choose the appropriate one for your use case.
Using the wrong construct can lead to less maintainable and less
efficient code.

Overusing union types in interfaces: While it’s possible to use union
types within an interface, overusing them can make the interface harder
to understand and maintain. Consider refactoring complex union types
into separate interfaces or using types for more complex structures.
A common error developers might encounter when working with
TypeScript is “only refers to a type but is being used as a value here.”
This error occurs when a type or an interface is used in a context where
a value is expected. Since types and interfaces are only used for
compile-time type checking and do not have a runtime representation,
they cannot be treated as values. To resolve this error, ensure that you
are using the correct construct for the context. If you need a runtime
value, consider using a class, enum, or constant instead of a type or
interface. Understanding the distinction between types and values in
TypeScript is crucial for avoiding this error and writing correct,
maintainable code.

Here is a code example illustrating the aforementioned error: “only refers to a
type, but is being used as a value here.” This will cause the error: "MyType
only refers to a type, but is being used as a value here.":

type MyType = {

 property: string;

};

const instance = new MyType(); #A

interface MyTypeI { #B

 property: string;

}

const instance = new MyType(); // Error

Solution: use a class, enum, or constant instead of a type.

class MyClass implements MyType {

 property: string;

 constructor(property: string) {

 this.property = property;

 }

}

const instance = new MyClass("Hello, TypeScript!"); #A

console.log(instance.property) #B

class MyClass implements MyTypeI {

 property: string;

 constructor(property: string) {

 this.property = property;

 }

}

const instance = new MyClass("Hello, TypeScript!"); #C

console.log(instance2.property)

In this preceding example, attempting to instantiate MyType as if it were a
class causes the error. To resolve it, we define a class MyClass with the same
structure as MyType and instantiate MyClass instead. This demonstrates the
importance of understanding the distinction between types and values in
TypeScript and using the correct constructs for different contexts.

All in all, by understanding the differences between types and interfaces,
developers can choose the right construct for their use case and write cleaner,
more maintainable TypeScript code. Consider the strengths and weaknesses
of each construct and use them in combination when necessary to create
powerful and expressive type definitions.

3.2 Not Using Readonly Properties

TypeScript provides the readonly modifier, which can be used to mark
properties as read-only, meaning they can only be assigned a value during
initialization and cannot be modified afterward. Neglecting to use readonly
properties when appropriate can lead to unintended side effects and make
code harder to reason about. This section will discuss the benefits of using
readonly properties, provide examples of their usage, and share best
practices for incorporating them into your TypeScript code.

3.2.1 Understanding Readonly Properties

The readonly modifier can be applied to properties in interfaces, types, and
classes. Marking a property as readonly signals to other developers that its
value should not be modified after initialization.

In this example, we have an interface and a class with readonly properties to
illustrate the syntax (which is similar to other modifier like public):

interface Point {

 readonly x: number;

 readonly y: number;

}

class ImmutablePerson {

 readonly name: string;

 readonly age: number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 }

}

Here is a TypeScript code example illustrating the usage of a readonly
modifier by having a readonly type with readonly properties and a class that
uses this type:

type ReadonlyPoint = { #A

 readonly x: number;

 readonly y: number;

};

class Shape { #B

 constructor(public readonly center: ReadonlyPoint) {}

 distanceTo(point: ReadonlyPoint): number { #C

 const dx = point.x - this.center.x;

 const dy = point.y - this.center.y;

 return Math.sqrt(dx * dx + dy * dy);

 }

}

const point: ReadonlyPoint = { x: 10, y: 20 }; #D

const shape = new Shape(point); #E

const anotherPoint: ReadonlyPoint = { x: 30, y: 40 }; #F

const distance = shape.distanceTo(anotherPoint);

console.log(distance); #G

point.x = 15; #H

In this example, we define a ReadonlyPoint type with readonly properties x
and y. The Shape class uses the ReadonlyPoint type for its center property,
which is also marked as readonly. The distanceTo method calculates the
distance between the shape’s center and another point. When we attempt to
modify the x property of the point object, TypeScript raises an error because
it is a readonly property.

The benefits of using read-only (readonly) properties are numerous:

Immutability: Readonly properties promote the use of immutable data
structures, which can make code easier to reason about and reduce the
likelihood of bugs caused by unintended side effects.
Code clarity: Marking a property as readonly clearly communicates to
other developers that the property should not be modified, making the
code’s intentions more explicit.
Encapsulation: Readonly properties help enforce proper encapsulation
by preventing external modifications to an object’s internal state.

To properly utilize readonly, keep in mind the best practices:

Use readonly properties for immutable data: Whenever you have data
that should not change after initialization, consider using readonly
properties. This is especially useful for objects that represent
configuration data, constants, or value objects.
Apply readonly to interfaces and types: When defining an interface or
type, consider marking properties as readonly if they should not be

modified. This makes the contract more explicit and helps ensure that
the implementing code adheres to the desired behavior.
Be cautious when using readonly arrays: When marking an array
property as readonly, be aware that it only prevents the array reference
from being changed, not the array’s content. To create a truly immutable
array, consider using ReadonlyArray<T> or the readonly modifier on
array types.

interface Data {

 readonly numbers: ReadonlyArray<number>;

}

// Alternatively

type Data = {

 readonly numbers: readonly number[];

};

Here are the most common pitfalls to avoid when using readonly in
TypeScript:

Forgetting to use readonly properties: Failing to use readonly properties
when appropriate can lead to unintended side effects and make the code
harder to reason about. Be mindful of the need for immutability and
consider using readonly properties when immutability is necessary
and/or preferred.
Modifying readonly properties through aliases: Be cautious when
passing readonly properties to functions or assigning them to variables,
as they can still be modified through aliases. To prevent this, consider
using Object.freeze() or deep freeze libraries for deep immutability.

By using readonly properties in your TypeScript code, you can promote
immutability, improve code clarity, and enforce encapsulation. Be mindful of
when to use readonly properties and consider applying them to interfaces,
types, and classes as appropriate. This will result in more maintainable and
robust code, reducing the likelihood of unintended side effects.

3.3 Type Widening

Type widening is a TypeScript concept that refers to the automatic expansion
of a type based on the context in which it is used. This process can be helpful
in some cases, but it can also lead to unexpected type issues if not properly
understood and managed. This section will discuss the concept of type
widening, its implications, and best practices for working with it effectively
in your TypeScript code.

3.3.1 Understanding Type Widening

Type widening occurs when TypeScript assigns a broader type to a value
based on the value’s usage or context. This often happens when a variable is
initialized with a specific value, and TypeScript widens the type to include
other potential values.

Example of a string variable with a specific value but widened type:

let message = "Hello, TypeScript!"; #A

In this example, the message variable is initialized with a string value.
TypeScript automatically widens the type of message to string, even though
the initial value is a specific string literal.

Implications of Type Widening:

Loss of specificity: Type widening can cause the loss of type specificity,
which may lead to unexpected behavior or make it harder to catch type-
related errors at compile time.
Unintended type assignments: Type widening can also result in
unintended type assignments, as TypeScript may widen a type more than
necessary, causing potential type mismatches.

Best practices for working with Type Widening:

Use explicit type annotations: To prevent unintended type widening, you
can use explicit type annotations to specify the exact type you want for a
variable or function parameter.

let message: "Hello, TypeScript!" = "Hello, TypeScript!";

In this example, by providing an explicit type annotation, we prevent
TypeScript from widening the type of message to string, ensuring that it
remains the specific string literal type.

Use const for immutable values: When declaring a variable with an
immutable value, consider using the const keyword instead of let. This
will prevent type widening, as const variables cannot be reassigned.

const message = "Hello, TypeScript!"; #A

Be aware of type widening in function parameters: TypeScript can also
widen the types of function parameters based on their usage within the
function. To prevent this, provide explicit type annotations for your
function parameters.

function logMessage(message: "Hello, TypeScript!") {

 console.log(message);

}

Here’s another example illustrating TypeScript type widening in action:

function displayText(text: string) {

 console.log(text);

}

let greeting = "Hello, TypeScript!"; #A

displayText(greeting); #B

let specificGreeting: "Hello, TypeScript!" = "Hello, TypeScript!"; #C

displayText(specificGreeting); #D

In this example, we define a displayText function that takes a text
parameter of type string. When we declare the greeting variable without an

explicit type annotation, TypeScript automatically widens its type to string,
allowing it to be passed as an argument to the displayText function without
any issues.

However, when we declare the specificGreeting variable with an explicit
type annotation of "Hello, TypeScript!", TypeScript does not widen the
type. As a result, passing specificGreeting to the displayText function
will raise a type error, since "Hello, TypeScript!" is not assignable to the
more general string type expected by the function. This error occurs because
we prevented type widening by using an explicit type annotation

This example demonstrates how type widening can occur in TypeScript and
how developers can use explicit type annotations to prevent it when
necessary.

type Animal = {

 species: string;

 sound: string;

};

function playSound(animal: Animal) {

 console.log(`The ${animal.species} makes a ${animal.sound} sound.`);

}

let specificDog = { species: "dog", sound: "bark" }; #A

playSound(specificDog); #B

let specificCat: { species: "cat"; sound: "meow" } = { species: "cat", sound: "meow" }; #C

 playSound(specificCat); #D

In this example, we define an Animal type and a playSound function that
takes an animal parameter of type Animal. When we declare the
specificDog variable without an explicit type annotation, TypeScript
automatically widens its type to { species: string; sound: string; },
allowing it to be passed as an argument to the playSound function without
any issues.

However, when we declare the specificCat variable with an explicit type
annotation of { species: "cat"; sound: "meow" }, TypeScript does not

widen the type. As a result, passing specificCat to the playSound function
will raise a type error, since { species: "cat"; sound: "meow" } is not
assignable to the more general Animal type expected by the function.

Here’s an example illustrating the unintentional reliance on TypeScript type
widening:

function getPetInfo(pet: { species: string; age: number }) {

 return `My ${pet.species} is ${pet.age} years old.`;

}

let specificDog = { species: "dog", age: 3 }; #A

const dogInfo = getPetInfo(specificDog); #B

specificDog.species = "cat"; #C

const updatedDogInfo = getPetInfo(specificDog); #D

In this example, we define a getPetInfo function that takes a pet parameter
with a specific shape. When we declare the specificDog variable without an
explicit type annotation, TypeScript automatically widens its type to {
species: string; age: number; }, allowing it to be passed as an argument
to the getPetInfo function without any issues.

However, later in the code, a developer mistakenly updates the
specificDog.species property to "cat". Due to type widening, TypeScript
does not catch this error, and the getPetInfo function returns an inaccurate
result. This demonstrates how unintentionally relying on type widening can
make the code less maintainable and more prone to errors.

To prevent such issues, consider using explicit type annotations or creating a
type alias to represent the expected object shape:

type Dog = {

 species: "dog";

 age: number;

};

let specificDog: Dog = { species: "dog", age: 3 };

By using an explicit type annotation or a type alias, you can prevent
unintentional reliance on type widening and make your code more robust and
maintainable.

And one more example,

type SpecificDog = { #A

 species: "dog";

 age: number;

};

function isDogOld(dog: SpecificDog): boolean {

 return dog.age > 7;

}

let pet = { species: "dog", age: 5 }; #B

const isPetOld = isDogOld(pet); #C

pet.species = "cat"; #D

In this example, we define a SpecificDog type alias and an isDogOld
function that takes a dog parameter of type SpecificDog. When we declare
the pet variable without an explicit type annotation, TypeScript automatically
widens its type to { species: string; age: number; }.

Since we overlooked the type widening, we attempt to pass the pet variable
as an argument to the isDogOld function. This raises a type error because the
widened type { species: string; age: number; } is not assignable to the
more specific SpecificDog type expected by the function.

Later in the code, a developer mistakenly updates the pet.species property
to "cat". Due to overlooking type widening, the pet object is no longer
accurate. If the type error were not present, the type system would not catch
this error, leading to potential issues and inaccuracies in the code.

To prevent such issues, be aware of when and where type widening may
occur in your code and use explicit type annotations when necessary:

let pet: SpecificDog = { species: "dog", age: 5 };

By using an explicit type annotation, you can avoid overlooking type
widening and ensure that your code remains accurate and maintainable.

To sum up, the most common pitfalls to avoid when dealing with type
widening in TypeScript are:

Overlooking type widening: Be aware of when and where type widening
may occur in your code, as overlooking it can lead to unexpected
behavior or type-related errors.
Relying on type widening unintentionally: While type widening can be
helpful in certain situations, relying on it unintentionally can make your
code less maintainable and more prone to errors. Be intentional in your
use of type widening, and use explicit type annotations when necessary.

By understanding the concept of type widening and its implications,
developers can write more robust and maintainable TypeScript code. Be
mindful of when and where type widening may occur, and use explicit type
annotations and the const keyword to prevent unintended widening. This will
result in a more precise and reliable type system, helping to catch potential
errors at compile time.

3.4 Inconsistent Property Ordering

Inconsistent property ordering in interfaces and classes can lead to code that
is difficult to read and maintain. Ensuring a consistent order of properties
makes the code more predictable and easier to understand. Let’s look at some
examples to illustrate the benefits of consistent property ordering.

In the following example, the properties are ordered inconsistently with
interface and class declarations: name, age, address, jobTitle:

interface InconsistentPersonI {

 age: number;

 name: string;

 address: string;

 jobTitle: string;

}

class InconsistentEmployee implements InconsistentPersonI {

 address: string;

 age: number;

 name: string;

 jobTitle: string;

 constructor(name: string, age: number, address: string, jobTitle: string) {

 this.name = name;

 this.age = age;

 this.address = address;

 this.jobTitle = jobTitle;

 }

}

const employee = new InconsistentEmployee("Anastasia", 30, "123 Main St.", "Software Engineer");

console.log(employee);

In this example, the InconsistentPerson interface and object of
InconsistentEmployee class (employee) have their properties ordered
inconsistently. This makes the code harder to read, as developers must spend
more time searching for the properties they need.

Now, let’s see an example with consistent property ordering:

interface ConsistentPersonI {

 name: string;

 age: number;

 address: string;

 jobTitle: string;

}

class ConsistentEmployee implements ConsistentEmployeeI {

 name: string;

 age: number;

 address: string;

 jobTitle: string;

 constructor(name: string, age: number, address: string, jobTitle: string) {

 this.name = name;

 this.age = age;

 this.address = address;

 this.jobTitle = jobTitle;

 }

}

const employeeConsistent = new ConsistentEmployee("Pavel", 25, "456 Main Ave.", "Product Manager");

console.log(employeeConsistent);

By consistently ordering properties in interfaces and classes, we make the
code more predictable and easier to read. This can lead to improved
productivity and maintainability, as developers can quickly find and
understand the properties they need to work with.

In conclusion, maintaining a consistent order of properties in your TypeScript
code is essential for readability and maintainability. By following a
predictable pattern, developers can better understand and navigate the code,
resulting in a more efficient and enjoyable development experience.

3.5 Unnecessary Interface Extension

In TypeScript, extending interfaces can help you create more complex and
reusable types. However, unnecessary interface extension can lead to
overcomplicated code and hinder maintainability. In this chapter, we’ll
discuss the issues that can arise from unnecessary interface extension and
explore ways to simplify the code.

Consider this example of interfaces Mammal, Dog and Animal:

interface Animal { #A

 name: string;

 age: number;

}

interface Mammal extends Animal {} #B

interface Dog extends Mammal {} #C

const myDog: Dog = { #D

 name: "Buddy",

 age: 3,

};

console.log(myDog); #E

The base interface was extended to include the Dog and Mammal interfaces, but
with no additional properties. This means that the new interfaces bring no
additional value. They just add unnecessary bloat to the code.

We can simplify the preceding version by removing empty interfaces Dog and
Mammal:

interface SimplifiedAnimal {

 name: string;

 age: number;

}

const mySimplifiedDog: SimplifiedAnimal = {

 name: "Buddy",

 age: 3,

};

console.log(mySimplifiedDog);

The SimplifiedAnimal interface is more concise and easier to understand.

Here’s another example with an empty interface Manager:

interface Person { #A

 name: string;

 age: number;

}

interface Employee extends Person { #B

 title: string;

 department: string;

}

interface Manager extends Employee {} #C

const myManager: Manager = { #D

 name: "Anastasia",

 age: 35,

 title: "Project Manager",

 department: "IT",

};

console.log(myManager);

The Manager interface adds no additional value, because the body of interface
Manager is empty. There are no properties Thus, we can simplify our code
base. We can keep Person and Employee (more specific person with
properties specific to an employee) or just simplify into a single interface:

interface SimplifiedEmployee {

 name: string;

 age: number;

 title: string;

 department: string;

}

const mySimplifiedManager: SimplifiedEmployee = {

 name: "Anastasia",

 age: 35,

 title: "Project Manager",

 department: "IT",

};

console.log(mySimplifiedManager);

The final SimplifiedEmployee interface is more concise and easier to
understand than the initial code. It doesn’t have an empty interface. Of
course, you maybe be thinking, “Hey, I’ll need that empty interface in the
future” and this can be true. However right now the code become more
complex. The same principle of simplicity applies to not just empty interfaces
but to interfaces that can be combined or merged into other interfaces.

In conclusion, it’s essential to avoid unnecessary interface extension in your
TypeScript code. By keeping your interfaces concise and focused, you can
improve code readability and maintainability. Always consider whether
extending an interface adds value or complexity to your code and opt for
simplicity whenever possible.

3.6 Failing to Use Type Guards

Type guards are a powerful feature in TypeScript that allows you to narrow
down the type of a variable within a specific block of code. Failing to use
type guards can lead to code that is less safe, less efficient, and more prone to
errors. In this chapter, we will discuss the importance of type guards and
show examples of how to use them effectively.

Next, we have an example in which we fail to use type guards:

interface Circle {

 type: "circle";

 radius: number;

}

interface Square {

 type: "square";

 sideLength: number;

}

type Shape = Circle | Square;

function getArea(shape: Shape): number { #A

 if (shape.type === "circle") {

 return Math.PI * (shape as Circle).radius ** 2;

 } else {

 return (shape as Square).sideLength ** 2;

 }

}

const myCircle: Circle = { type: "circle", radius: 5 };

console.log(getArea(myCircle)); // 78.53981633974483

In the preceding example, we have a Circle and a Square interface, both
belonging to the Shape type. The getArea function calculates the area of a
shape, but it doesn’t use type guards. Instead, we have to use type assertions
(shape as Circle and shape as Square) to access the specific properties of
each shape, which can be less safe and less efficient. This is because type
assertions in TypeScript are a way to tell the compiler "trust me, I know what
I'm doing." It's a way of specifying a more specific type when the actual type

is something more general.

Now, let’s see an improved example that uses type guards instead of less type
safe type assertions (as):

interface Circle {

 type: "circle";

 radius: number;

}

interface Square {

 type: "square";

 sideLength: number;

}

type Shape = Circle | Square;

function isCircle(shape: Shape): shape is Circle {

 return shape.type === "circle";

}

function getArea(shape: Shape): number {

 if (isCircle(shape)) { #A

 return Math.PI * shape.radius ** 2;

 } else {

 return shape.sideLength ** 2;

 }

}

const myCircle: Circle = { type: "circle", radius: 5 };

console.log(getArea(myCircle)); // 78.53981633974483

In this example, we’ve introduced a type guard function called isCircle,
which narrows the type of the shape within the if block. This makes the code
safer and more efficient, as we no longer need to use type assertions to access
the specific properties of each shape.

In the given example, the typeof operator is not suitable for discriminating
union members since the typeof operator can only check the type of a
variable or value and not the structure of an object. However, if you want to
see an example using typeof with a type guard, we can create a new example
with primitive types:

type PrimitiveType = string | number;

function isNumber(value: PrimitiveType): value is number {

 return typeof value === "number";

}

function describeType(value: PrimitiveType): string {

 if (isNumber(value)) { #A

 return `The number is ${value.toFixed(2)}`;

 } else {

 return `The string is "${value.toUpperCase()}"`; #B

 }

}

const myNumber: PrimitiveType = 42;

const myString: PrimitiveType = "hello";

console.log(describeType(myNumber)); // The number is 42.00

console.log(describeType(myString)); // The string is "HELLO"

In this example, we use a type guard function isNumber that checks if the
value is a number using the typeof operator. The describeType function
then uses this type guard to distinguish between number and string values and
provide a description accordingly.

Although it may appear unassuming, there is actually a significant amount of
activity happening beneath the surface. Similar to how TypeScript examines
runtime values through static types, it also performs type analysis on
JavaScript’s runtime control flow constructs, such as if/else statements,
conditional ternaries, loops, and truthiness checks, all of which can impact
the types.

Within the if statement, TypeScript identifies the expression typeof value
=== "number" as a specific form of code known as a type guard. TypeScript
analyzes the most specific type of a value at a given position by tracing the
potential execution paths that the program can take. It is similar to having a
single starting point and then branches of possible outcomes. TypeScript
examines these unique checks, called type guards, and assignments to create
outcomes. This process of refining types (string or number) to be more
precise than initially declared (string | number) is referred to as narrowing.

In conclusion, using type guards in your TypeScript code is essential for
writing safer, more efficient, and more readable code. By narrowing the type
of a variable within a specific context, you can access the properties and
methods of that type without the need for type assertions or manual type
checking.

3.7 Overcomplicated Types

Overcomplicated types can be a common pitfall in TypeScript projects.
While complex types can sometimes be necessary, overcomplicating them
can lead to confusion, decreased readability, and increased maintenance
costs. In this chapter, we will discuss the problems associated with
overcomplicated types and provide suggestions on how to simplify them.

3.7.1 Nested types

When you have deeply nested types, it can be challenging to understand their
structure, which can lead to mistakes and increased cognitive load when
working with them. The following example has three levels of nested
properties:

type NestedType = {

 firstLevel: {

 secondLevel: {

 thirdLevel: {

 value: string;

 };

 };

 };

};

To simplify nested types, consider breaking them down into smaller, more
manageable interfaces or types.

interface ThirdLevel {

 value: string;

}

interface SecondLevel {

 thirdLevel: ThirdLevel;

}

interface FirstLevel {

 secondLevel: SecondLevel;

}

type SimplifiedNestedType = {

 firstLevel: FirstLevel;

};

3.7.2 Complex union and intersection types

Union and intersection types are powerful features in TypeScript but
overusing them can lead to convoluted and difficult-to-understand types.

type ComplexType = (string | number | boolean) & (null | undefined | Array<string>);

To simplify complex union and intersection types, consider using named
types or interfaces to improve readability.

type PrimitiveType = string | number | boolean;

type NullableType = null | undefined | Array<string>;

type SimplifiedComplexType = PrimitiveType & NullableType;

3.7.3 Overuse of mapped and conditional types

Mapped and conditional types offer great flexibility but overusing them can
create overly complicated types that are difficult to read and maintain.

type Overcomplicated<T extends { [key: string]: any }> = {

 [K in keyof T]: T[K] extends object ? Overcomplicated<T[K]> : T[K];

};

To simplify these types, consider using more explicit types or breaking them
down into smaller, more focused types.

interface Example {

 key1: string;

 key2: number;

 key3: {

 key3a: boolean;

 };

}

type Simplified<T> = {

 [K in keyof T]: T[K];

};

type SimplifiedExample = Simplified<Example>;

In conclusion, it’s essential to strike a balance between the complexity and
simplicity of your types. Overcomplicated types can decrease readability and
increase maintenance costs, so be mindful of the structure and complexity of
your types. Break down complex types into smaller, more manageable parts,
and use named types or interfaces to improve readability.

3.8 Misusing Mapped Types

Mapped types are a powerful feature in TypeScript that allows you to create
new types (and avoid code duplication), based on existing ones by iterating
over their properties and using modifiers such as readonly or ?. However,
misusing mapped types can lead to confusion, increased complexity, and
potential bugs. In this chapter, we will discuss some common pitfalls when
working with mapped types and provide guidance on how to avoid them.

3.8.1 Unnecessary complexity

When using mapped types, it’s essential to ensure that they serve a clear
purpose and don’t introduce unnecessary complexity to your code. Overusing
mapped types can make your code harder to read and maintain.

type UnnecessarilyComplex<T> = {

 [K in keyof T]: T[K];

};

type MyType = { a: number; b: string };

type ComplexType = UnnecessarilyComplex<MyType>; #A

In this example, the UnnecessarilyComplex mapped type adds no value and
is essentially equivalent to the original type. Instead, use the original type
directly:

type MyType = { a: number; b: string };

Here’s another example of unnecessary complexity in mapped types:

type ComplexMappedType<T, U> = { #A

 [K in keyof T]: T[K] extends U ? K : never;

}[keyof T];

interface Person {

 name: string;

 age: number;

 city: string;

}

type StringKeys = ComplexMappedType<Person, string>;

In the example above, the ComplexMappedType can be simplified to achieve
the same result:

type SimplifiedMappedType<T, U> = { #A

 [K in keyof T]: T[K] extends U ? K : never;

};

type StringKeys = keyof SimplifiedMappedType<Person, string>;

Keep mapped types as simple as possible to enhance readability and

maintainability.

3.8.2 Over-generalization

Avoid using overly general mapped types that apply to a broad range of
situations, as this can lead to confusion and potential bugs. Instead, create
specific, purpose-driven mapped types that clearly communicate their intent.

type OverGeneralized<T> = {

 [K in keyof T]: T[K] | null;

};

type User = {

 id: number;

 name: string;

 email: string;

};

type GeneralizedUser = OverGeneralized<User>;

In this example, the OverGeneralized mapped type makes all properties of
the User type nullable. This might not be the desired behavior, and it can be
error prone. Instead, create a more specific mapped type:

type PartiallyNullableUser = {

 [K in keyof User]: K extends "email" ? User[K] | null : User[K];

};

The end result is a new type that is identical to User, except that the "email"
field can also be null. In the PartiallyNullableUser type which is derived
from another type User by mapping over its keys (properties) using the
mapped type syntax. The conditional type works in this way: if the current
key K is "email", then the type of that key in PartiallyNullableUser will be
User[K] | null (meaning it can be the same type as in the User type or it
can be null). For all other keys, their types will remain the same as in the
User type

3.8.3 Misuse of modifiers

Mapped types allow you to add, remove, or modify modifiers such as
readonly, ?, or !. However, misusing these modifiers can lead to unintended
behavior and potential issues.

type MisusedModifiers<T> = {

 -readonly [K in keyof T]: T[K];

};

type ImmutablePoint = Readonly<{

 x: number;

 y: number;

}>;

type MutablePoint = MisusedModifiers<ImmutablePoint>;

const mp: MutablePoint = {x: 10, y: 100}

console.log(mp.x) // 10

mp.x = 100

console.log(mp.x) // 100

const ip: ImmutablePoint = {x: 10, y: 100}

ip.x = 100 // Cannot assign to 'x' because it is a read-only property.

In this example, the MisusedModifiers mapped type removes the readonly
modifier from the properties of the ImmutablePoint type, making it mutable.
This could lead to unintended side effects if you meant for the point to
remain immutable. Be cautious when using modifiers in mapped types and
consider their impact on the resulting types.

3.8.4 Inappropriate use of mapped types

Mapped types should be used to create new types based on existing ones.
However, they should not be used to perform runtime transformations or
manipulate values directly.

The following example shows an inappropriate use of mapped types because
while the & operator is used for intersection of types (combine multiple types
into one), it’s not valid if T[K] is not an object type:

type InappropriateMappedType<T> = {

 [K in keyof T]: T[K] & { id: number };

};

interface Car {

 make: string;

 model: string;

}

type InappropriateExample = InappropriateMappedType<Car>;

let car: InappropriateExample = {

 make: "Lada", #A

 model: "Niva" #A

}

In the example above, the InappropriateMappedType is attempting to add an
id property to each property of the Car interface, which is not a proper use of
mapped types. Instead, consider updating the original interface or creating a
new one to include the required properties. If you just want to add an id field
to the Car type, you can simply extend the Car interface so that, CarWithId is
a type that includes all the fields from Car and also an id field:

interface Car {

 make: string;

 model: string;

}

interface CarWithId extends Car {

 id: number;

}

If you want all properties of a type to have an id, then those properties must
be objects. Here's an example of how you might do it:

interface Car {

 make: { name: string, id: number };

 model: { name: string, id: number };

}

In conclusion, when using mapped types in TypeScript, ensure that they serve
a clear purpose, avoid over-generalization, and be mindful of the modifiers
you use. By following these guidelines, you can effectively use mapped types
to create more maintainable and expressive TypeScript code.

3.9 Ignoring Type Aliases

Type aliases are a useful feature in TypeScript, allowing you to create a new
name for a type, making your code more readable and maintainable. A type
alias is, in essence, an assigned name given to any specific type. Ignoring
type aliases can lead to code duplication, reduced readability, and increased
maintenance effort. In this section, we will discuss the importance of type
aliases and provide guidance on how to use them effectively.

3.9.1 Code duplication

Repeating complex types throughout your codebase can lead to duplication
and make your code harder to maintain. Type aliases help you avoid this
problem by providing a single point of reference for a type. In the following
example, we don’t use type aliases and end up with code duplication:

function processText(text: string | null | undefined): string {

 // do something

 return text ?? "";

}

function displayText(text: string | null | undefined): void {

 console.log(text ?? "");

}

function customTrim(text: string | null | undefined): string {

 if (text === null || text === undefined) {

 return '';

 }

 let startIndex = 0;

 let endIndex = text.length - 1;

 while (startIndex < endIndex && text[startIndex] === ' ') {

 startIndex++;

 }

 while (endIndex >= startIndex && text[endIndex] === ' ') {

 endIndex--;

 }

 return text.substring(startIndex, endIndex + 1);

}

In the example above, the complex type string | null | undefined is
repeated in both function signatures. Using a type alias (NullableString)
can simplify the code:

type NullableString = string | null | undefined;

function processText(text: NullableString): string {

 return text ?? "";

}

function displayText(text: NullableString): void {

 console.log(text ?? "");

}

function customTrim(text: NullableString): void {

 // …

}

3.9.2 Improving readability

Using type aliases can make your code more readable by providing
descriptive names for complex types or commonly used type combinations.

Consider this code without type alias:

function rectangleArea(

 dimensions: { width: number; height: number } | number[]

): number {

 // ...

}

function squareArea(

 dimensions: { width: number; height: number } | number[]

): number {

 // ...

}

Now, with type alias the readability is greatly improved, especially if we have
to use RectangleDimensions over and over again in many places:

type RectangleDimensions = { width: number; height: number };

function rectangleArea(dimensions: RectangleDimensions | number[]): number {

 // ...

}

function squareArea(dimensions: RectangleDimensions | number[]): number {

 // ...

}

In the example above, using a type alias for RectangleDimensions improves
the readability of the rectangleArea and squareArea functions signature.

3.9.3 Encapsulating type logic

Type aliases can also help encapsulate type-related logic, making it easier to
update and maintain your code.

Consider this code without type alias:

type ApiResponse<T> = { data: T; error: null } | { data: null; error: string };

Now, this code with two type aliases that are unionized into the final
ApiResponse type.

type SuccessResponse<T> = { data: T; error: null };

type ErrorResponse = { data: null; error: string };

type ApiResponse<T> = SuccessResponse<T> | ErrorResponse;

In the example above, using type aliases for SuccessResponse and
ErrorResponse makes the unionized ApiResponse type easier to understand

and maintain. ApiResponse<T> type represents any API response. It's a union
type, so an ApiResponse can be either a SuccessResponse or an
ErrorResponse. T is again a placeholder for the type of data in the
SuccessResponse. If you have an API endpoint that returns a User, you
might use these types like this:

interface User {

 id: number;

 name: string;

 email: string;

}

function getUser(): ApiResponse<User> {

 // ...implementation here...

}

In this case, getUser is a function that returns a ApiResponse<User>. This
means the returned object could either be a SuccessResponse<User> (with
data being a User object and error being null), or an ErrorResponse (with
data being null and error being a string).

Keep in mind that aliases simply serve as alternative names and do not create
unique or distinct “versions” of the same type. When employing a type alias,
it functions precisely as if you had written the original type it represents.

In conclusion, type aliases are an essential tool in TypeScript for promoting
code readability and maintainability. Avoid ignoring type aliases in favor of
duplicating complex types or using less descriptive type combinations. By
using type aliases effectively, you can create cleaner, more maintainable
TypeScript code.

3.10 Not Leveraging keyof and Extract

TypeScript provides a variety of powerful utility types that can enhance your
code’s readability and maintainability. Two of these utility types are keyof
and Extract. Neglecting to use these utility types when appropriate can lead
to increased code complexity and missed opportunities for type safety. In this

section, we will discuss the benefits of using keyof and Extract and provide
examples of their effective usage.

3.10.1 Leveraging keyof

The keyof utility type is used to create a union of the property keys of a
given type or interface. It can be particularly useful when working with
object keys, enforcing type safety, and preventing typos or incorrect property
access.

Consider the following example in which we define an interface and then use
it with keyof to enforce that only the properties (keys) of this interface would
be used. If not, then we’ll get an error “Argument of type … is not
assignable”:

interface Person {

 name: string;

 age: number;

 city: string;

}

function getProperty(person: Person, key: keyof Person): any {

 return person[key];

}

const person: Person = {

 name: "Sergei Doe",

 age: 30,

 city: "New York",

};

const name = getProperty(person, "name"); #A

const invalid = getProperty(person, "invalidKey"); #B

In the example above, using keyof Person for the key parameter enforces
type safety and ensures that only valid property keys can be passed to the
getProperty function.

3.10.2 Leveraging Extract

The Extract utility type is used to create a new type containing only the
elements that are common between two types. This can be useful when
filtering types or working with overlapping types. In the following example,
we define two interfaces and then use extract to create type
SharedProperties to enforce that only the properties (keys) of both
interfaces will be used. Otherwise, if would get an error like we have in the
example when we try to use email that is not present in one of the interfaces
(but id is present in both so it’s fine).

interface User {

 id: number;

 name: string;

 email: string;

 role: string;

}

interface Admin {

 id: number;

 role: string;

 permissions: string[];

}

type SharedProperties = Extract<keyof User, keyof Admin>;

function compareUsers(user: User, admin: Admin, key: SharedProperties): boolean {

 return user[key] === admin[key];

}

const user: User = {

 id: 1,

 name: "Sergei Doe",

 email: "Sergei.doe@example.com",

 role: "user",

};

const admin: Admin = {

 id: 1,

 role: "admin",

 permissions: ["read", "write"],

};

const isSameID = compareUsers(user, admin, "id"); #A

const isSameEmail = compareUsers(user, admin, "email"); #B

In the example above, using Extract allows us to create a SharedProperties
type that includes only the properties common to both User and Admin. This
ensures that the compareUsers function can only accept shared property keys
as its third parameter.

In conclusion, leveraging utility types like keyof and Extract can help you
write cleaner, safer, and more maintainable TypeScript code. Be sure to take
advantage of these utility types when appropriate to enhance your code’s
readability and type safety.

3.11 Summary

Types cannot be reopened, while interfaces can be. Use interfaces by
defaults and only resort to types when needed.
Types are really type aliases. Use it to alias complex types, intersections,
unions, etc.
Leverage readonly when it makes sense to prevent property mutation
that is to ensure that once a property is initialized, it can't be changed. It
helps in preventing accidental mutation of properties and enforces
immutability.
Simplify interfaces by removing empty ones, and merging others when
it makes sense. Consider using intersection types or defining entirely
new interfaces where appropriate.
Leverage keyof and extract to enforce checks on property (key) names.
keyof can be used to get a union of a type's keys, and Extract can
extract specific types from a union.
Use safe guards instead of type assertions (as). Implement type guards
where possible to provide clearer, safer code.
When needed, use explicit annotations to prevent type widening and
ensure your variables always have the expected type, because
TypeScript automatically widens types in certain situations, which can
lead to unwanted behavior.
Maintain consistent property ordering in object literals and interfaces.
Name properties consistently across the classes, types and interfaces for
improved readability

4 Functions and Methods
This chapter covers

Enhancing type safety with overloaded function signatures done
properly
Specifying return types of functions
Using rest parameters (…) in functions correctly
Grasping the essence of this and globalThis in functions with the
support of bind, apply, call and StrictBindCallApply
Handling function types safely
Employing utility types ReturnType, Parameters, Partial,
ThisParameterType and OmitThisParameter for functions

Alright, brace yourself for a deep dive into the functional world of
TypeScript and JavaScript. Why are we focusing on functions, you ask?
Well, without functions, JavaScript and TypeScript would be as useless as a
chocolate teapot. So, let's get down to business—or should I say "fun"ction?
Eh, no? I promise the jokes will get better!

Now, just like an Avengers movie without a post-credit scene, JavaScript and
TypeScript without functions would leave us in quite a despair. TypeScript,
being the older, more sophisticated sibling, brings to the table a variety of
function flavors that make coding more than just a mundane chore.

First off, we have the humble function declaration, the JavaScript original
that TypeScript inherited:

function greet(name) {

 console.log(`Hello, ${name}!`);

}

greet('Tony Stark'); // Logs: "Hello, Tony Stark!"

Then TypeScript, in its pursuit of stricter typing, added types to parameters

and return values:

function greet(name: string): void {

 console.log(`Hello, ${name}!`);

}

greet('Peter Parker'); // Logs: "Hello, Peter Parker!"

By the way, to compliment a TypeScript function just tell it that it’s very
call-able.

And we also have a concept of hosited functions. Function hoisting in
JavaScript is a behavior where function declarations are moved to the top of
their containing scope during the compile phase, before the code has been
executed. This is why you can call a function before it's been declared in your
code. However, only function declarations are hoisted, not function
expressions.

hoistedFunction(); // Outputs: "Hello, I have been hoisted!"

function hoistedFunction(): void {

 console.log("Hello, I have been hoisted!");

}

Function expressions in JavaScript are a way to define functions as an
expression, meaning the function can be assigned to a variable, stored in an
object, or passed as an argument to other functions.

Unlike function declarations which are hoisted to the top of their scope,
function expressions are not hoisted, which means you can't call a function
expression before it's been defined in your code.

Here's a simple example of a function expression:

let greet = function(): void {

 console.log("Hello, world!");

};

greet(); // Outputs: "Hello, world!"

Function expressions can also be used as callbacks parameters to other
functions or as immediately invoked function expressions (IIFE) without
being assigned to a variable. This is often used to create a new scope and
avoid polluting the global scope for a module or library:

(function(): void {

 const message = "Hello, world!";

 console.log(message); // Outputs: "Hello, world!"

})();

console.log(message); // Uncaught ReferenceError: message is not defined

And let's not forget the charming arrow functions that take us to ES6 nirvana.
Short, sweet, and this-bound, they're the Hawkeye of the TypeScript world:

const greet = (name: string): void => {

 console.log(`Hello, ${name}!`);

};

greet('Bruce Banner'); // Logs: "Hello, Bruce Banner!"

Time for a joke. The real reason why the TypeScript function stopped calling
the JavaScript function on the phone, is because it didn’t want to deal with
any more unexpected arguments!

In this chapter, we'll meander through the maze of function-related
TypeScript snafus, armed with a hearty jest or two and solid, actionable
advice. You're in for an enlightening journey! We’ll cover the importance of
types in functions, rest parameters (not to be confused with resting
parameters after a long day), TypeScript utility types, and ah, the infamous
this. It's like a chameleon, changing its color based on where it is. It's high
time we take a closer look and try to understand its true nature.

So, get comfortable, grab some espresso, and prepare for a few chuckles and
plenty of 'Aha!' moments. This chapter promises not only to tickle your funny

bone but also to guide you through the maze of TypeScript functions and
methods, one laugh at a time.

4.1 Incorrect Function Overloads

Function overloads in TypeScript allow you to define multiple function
signatures for a single implementation, enabling better type safety and more
precise type checking. In order to achieve this, create multiple function
signatures (typically two or more) and follow them with the implementation
of the function.

However, incorrect use of function overloads can lead to confusion, subtle
bugs, and increased code complexity. In this chapter, we will discuss
common mistakes when using function overloads and provide guidance on
how to use them correctly.

4.1.1 Mismatched overload signatures

When creating function overloads, it’s essential to ensure that the provided
signatures match the actual function implementation. Mismatched signatures
can lead to unexpected behavior and type errors. Mismatched overload
signatures:

function greet(person: string): string;

function greet(person: string, age: number): string;

function greet(person: string, age?: number): string {

 if (age) {

 return `Hello, ${person}! You are ${age} years old.`;

 }

 return `Hello, ${person}!`;

}

const greeting = greet("Sergei", "Doe"); // Error: No overload matches this call

In the example above, the second overload signature expects a number as the
second argument, but the function call passes a string instead. This causes a
type error, as no matching overload is found. This can be fixed by adding a

matching overload signature:

function greet(person: string): string;

function greet(person: string, age: number): string;

function greet(person: string, lastName: string): string; #A

function greet(person: string, ageOrLastName?: number | string): string {

 if (typeof ageOrLastName === "number") {

 return `Hello, ${person}! You are ${ageOrLastName} years old.`;

 } else if (typeof ageOrLastName === "string") {

 return `Hello, ${person} ${ageOrLastName}!`;

 }

 return `Hello, ${person}!`;

}

const greeting = greet("Sergei", "Doe"); #B

4.1.2 Similar overloads

Similar overloads can result in ambiguous function signatures and make it
difficult to understand which signature is being used in a specific context.

function format(value: string, padding: number): string; #A

function format(value: string, padding: string): string; #A

function format(value: string, padding: string | number): string {

 if (typeof padding === "number") {

 return value.padStart(padding, " ");

 }

 return value.padStart(value.length + padding.length, padding);

}

const formatted = format("Hello", 5); #B

In the example above, the two signatures are very similar, as both accept a
string as the first argument and have different types for the second argument.
This can lead software engineers to confusion about which signature is being
used in a given context. This is because it’s not immediately clear which
overload is being used when calling format(“Hello”, 5). While the
TypeScript compiler can correctly infer the types and use the appropriate
overload, the ambiguity may cause confusion for developers trying to

understand the code.

A better approach would be to simply remove the overloads as shown in the
following code listing:

function format(value: string, padding: string | number,): string {

 if (typeof padding === "number") {

 return value.padStart(padding, " ");

 }

 return value.padStart(value.length + padding.length, padding);

}

const formatted = format("Hello", 5); // Works!

Another approach if more parameters are needed is to enhance the overload
signatures to avoid ambiguity:

function format(value: string, padding: number): string; #A

function format(value: string, padding: string, direction: "left" | "right"): string; // Padding with a string and specifying direction

function format(value: string, padding: string | number, direction?: "left" | "right"): string {

 if (typeof padding === "number") {

 return value.padStart(padding, " ");

 } else {

 if (direction === "left") {

 return padding + value;

 } else {

 return value + padding;

 }

 }

}

const formatted = format("Hello", 5); #B

const formattedWithDirection = format("Hello", " ", "right");

4.1.3 Excessive overloads

Using too many overloads can lead to increased code complexity and reduced
readability. In many cases, using optional parameters, default values, or
union types can simplify the function signature and implementation.

function combine(a: string, b: string): string; #A

function combine(a: number, b: number): number; #A

function combine(a: string, b: number): string; #A

function combine(a: number, b: string): string; #A

function combine(a: string | number, b: string | number): string | number {

 if (typeof a === "string" && typeof b === "string") {

 return a + b;

 } else if (typeof a === "number" && typeof b === "number") {

 return a * b;

 } else {

 return a.toString() + b.toString();

 }

}

const result = combine("Hello", 5); #B

In the example above, using four overloads increases the complexity of the
function. Simplifying the implementation by leveraging union types, optional
parameters, or default values can improve readability and maintainability.

Excessive overloads can be fixed by getting rid of overloads and simplifying
the function signature using union types:

function combine(a: string | number, b: string | number): string | number {

 if (typeof a === "string" && typeof b === "string") { #A

 return a + b;

 } else if (typeof a === "number" && typeof b === "number") {

 return a * b;

 } else {

 return a.toString() + b.toString();

 }

}

const result = combine("Hello", 5); #B

In conclusion, using function overloads effectively can greatly enhance type
safety and precision in your TypeScript code. However, it’s important to
avoid common mistakes, such as mismatched signatures, overlapping
overloads, and excessive overloads, to ensure your code remains clean,
maintainable, and bug-free.

4.2 Omitting Return Types

In TypeScript, it’s crucial to have well-defined types throughout your
codebase. This includes explicitly defining the return types of functions to
ensure consistency and prevent unexpected issues. Omitting return types can
lead to confusion, making it difficult for developers to understand the intent
of a function or the shape of the data it returns. This section will explore the
problems that can arise from omitting return types and provide guidance on
how to avoid them.

4.2.1 Understanding the issue

When you don’t specify a return type for a function, TypeScript will try to
infer it based on the function’s implementation. While TypeScript’s type
inference capabilities are robust, relying on them too heavily can lead to
unintended consequences. If the function’s implementation changes, the
inferred return type might change as well, which can introduce bugs and
inconsistencies in your code.

By explicitly defining return types, you can prevent accidental changes to a
function’s contract. This makes your code more robust and easier to maintain
in the long run, as developers can rely on the return types to understand the
expected behavior of a function. Moreover, providing return types in your
functions makes your code more self-documenting and easier to understand
for both you and other developers who may work on the project. This is
particularly important in large codebases and when collaborating with
multiple developers.

Also, specifying return types helps ensure consistency across your codebase.
This can be particularly useful when working with a team, as it establishes a
clear contract for how functions should be used and what they should return.
And let’s not forget about improved developer experience because with
proper function return types, IDEs can offer timely autocompletion and auto
suggestions. Let’s look at examples illustrating the importance of specifying
return types

In the first example without a return type, the return type of the greet

function is inferred as string | undefined:

function greet(name: string) {

 if (name) {

 return `Hello, ${name}!`;

 }

 return;

}

However, by explicitly defining the return type in the second example, you
make it clear that the function can return either a string or undefined. This
enhances readability, helps prevent regressions, and enforces consistency
throughout your codebase.

function greet(name: string): string | undefined {

 if (name) {

 return `Hello, ${name}!`;

 }

 return;

}

Let’s look at a more complex example to illustrate the importance of
specifying return types in which we have interface, types and functions:

interface Book {

 id: number;

 title: string;

 author: string;

 publishedYear: number;

}

type ApiResponse<T> = {

 status: number;

 data: T;

};

function processApiResponse(response: ApiResponse<Book[]>) { #A

 if (response.status === 200) {

 return response.data.map(book => ({ ...book, age: new Date().getFullYear() - book.publishedYear }));

 }

 return;

}

type ProcessedBook = { #B

 id: number;

 title: string;

 author: string;

 publishedYear: number;

 age: number;

};

function processApiResponseWithReturnType(response: ApiResponse<Book[]>): ProcessedBook[] | undefined {

 if (response.status === 200) {

 return response.data.map(book => ({ ...book, age: new Date().getFullYear() - book.publishedYear }));

 }

 return;

}

In this example, we have a Book interface and an ApiResponse type that
wraps a generic payload. The processApiResponse function takes an
ApiResponse containing an array of Book objects and returns an array of
processed books with an additional age property, but only if the response
status is 200.

In the first version of the function, we don’t specify a return type, and
TypeScript infers the return type as ({ id: number; title: string;
author: string; publishedYear: number; age: number; }[] |

undefined). While this might be correct, it’s harder for other developers to
understand the intent of the function.

In the second version, we create a ProcessedBook type and explicitly define
the return type of the function as ProcessedBook[] | undefined. This
makes the function’s purpose and return value clearer and easier to
understand, improving the overall readability and maintainability of the code.

In this example, I’ll show you how to use the processApiResponse and
processApiResponseWithReturnType functions with sample data:

const apiResponse: ApiResponse<Book[]> = { #A

 status: 200,

 data: [

 { id: 1, title: "The Catcher in the Rye", author: "J.D. Salinger", publishedYear: 1951 },

 { id: 2, title: "To Kill a Mockingbird", author: "Harper Lee", publishedYear: 1960 },

],

};

const processedBooks = processApiResponse(apiResponse); #B

console.log(processedBooks);

const processedBooksWithReturnType = processApiResponseWithReturnType(apiResponse); #C

console.log(processedBooksWithReturnType);

Both functions will produce the same output:

[

 { id: 1, title: "The Catcher in the Rye", author: "J.D. Salinger", publishedYear: 1951, age: 72 },

 { id: 2, title: "To Kill a Mockingbird", author: "Harper Lee", publishedYear: 1960, age: 63 },

]

However, by using the processApiResponseWithReturnType function with
an explicitly defined return type, you can provide better type safety,
improved code readability, and more predictable behavior for anyone who
uses the function in the future. To illustrate it:

function processApiResponse(response: ApiResponse<Book[]>) { #A

 if (response.status === 200) {

 return response.data.map(book => {

 return {

 id: book.id,

 title: 123, #B

 age: new Date().getFullYear() - book.publishedYear,

 invalidProp: true #C

 }

 });

 }

 return;

}

The function without return type shown above is prone to have mistakes
because TS cannot catch them. In a function with type, you’ll get Type '{
id: number; title: number; age: number; invalidProp: boolean; }

[]' is not assignable to type 'ProcessedBook[]'.

In conclusion, always specifying return types for your functions is a best
practice that can improve the overall quality and maintainability of your
TypeScript code. By being explicit about the expected return values, you can
prevent potential issues, enhance readability, and promote consistency across
your projects.

4.3 Misusing Optional Parameters

Optional parameters in TypeScript are a powerful feature that allows you to
create more flexible and concise functions. However, they can sometimes be
misused, leading to potential issues and unexpected behavior. In this section,
we’ll explore common mistakes developers make when using optional
parameters in TypeScript and how to avoid them.

4.3.1 Placing Required Parameters after Optional Parameters

One common mistake is placing required parameters after optional
parameters in the function signature. This can lead to confusion and
unexpected behavior when calling the function. Here’s a bad example where
optional parameter is the last one:

function fetchData(url: string, timeout?: number, callback: () => void) {

 // Fetch data and call the callback

}

In this example, the callback parameter is required, but it comes after the
optional timeout parameter. To fix this issue, reorder the parameters so that
all required parameters come before optional ones:

function fetchData(url: string, callback: () => void, timeout?: number) { #A

}

4.3.2 Overusing Optional Parameters Instead of Default

Parameters

Another mistake is using optional parameters when default parameters would
be more appropriate. Optional parameters can lead to unnecessary conditional
logic inside the function to handle the case when the parameter is not
provided.

function fetchData(url: string, timeout?: number) {

 const actualTimeout = timeout ?? 3000; #A

}

In this example, we use an optional parameter for timeout and default to
3000 if it’s not provided. Instead, we can use a default parameter to achieve
the same effect more concisely:

function fetchData(url: string, timeout = 3000) { #A

}

4.3.3 Relying on Implicit undefined Values

When using optional parameters, it’s essential to understand that, by default,
they are implicitly assigned the value undefined when not provided. This can
lead to unintended behavior if your code relies on undefined implicitly
(without explicit checks). To avoid this issue, always provide default values
for optional parameters or handle undefined values explicitly.

Consider the following case where relying on the implicit undefined value is
problematic:

function createPerson(firstName: string, lastName?: string, age?: number) {

 const person = {

 fullName: lastName ? `${firstName} ${lastName}` : firstName,

 isAdult: age > 18 #A

 };

 return person;

}

const person1 = createPerson("Anastasia", "Smith", 30);

const person2 = createPerson("Pavel", undefined, 16);

const person3 = createPerson("Yuri");

console.log(person1); #B

console.log(person2); #C

console.log(person3); #D

In this example, the problematic usage of the implicit undefined value is
when checking if the age is greater than 18. Since undefined is falsy, the
comparison undefined > 18 evaluates to false. While this might work in
this particular case, it could potentially introduce bugs in more complex
scenarios.

A better approach would be to explicitly check for undefined to handle it
appropriately (N/A) or provide a default value for age and thus the default
value for isAdult. This is an example with a ternary expression age !==
undefined:

function createPerson(firstName: string, lastName?: string, age?: number, balance?: number) {

 const person = {

 fullName: lastName ? `${firstName} ${lastName}` : firstName,

 isAdult: age !== undefined ? age > 18 : 'N/A' #A

 };

 return person;

}

const person1 = createPerson("Anastasia", "Smith", 30);

const person2 = createPerson("Pavel", undefined, 16);

const person3 = createPerson("Yuri");

console.log(person1); #B

console.log(person2); #C

console.log(person3); #D

Note, that if we just use a truthy check isAdult: (age) ? age > 18 :
'N/A', then all the babies aged younger than 1 years of old (age is 0), will be

incorrectly assumed as undetermined (N/A) when in fact they should be
isAdult: false. This is because a truthy check considers values 0, NaN,
falsy and an empty string as falsy when in fact they can be valid values (like
our age of 0 for babies).

Optional parameters are a powerful feature in TypeScript, but it’s crucial to
use them correctly to avoid potential issues and confusion. By following best
practices such as ordering parameters, using default parameters when
appropriate, and handling undefined values explicitly, you can create more
flexible and reliable functions in your TypeScript code.

4.4 Inadequate Use of Rest Parameters

Rest parameters are a convenient feature in TypeScript that allows you to
capture an indefinite number of arguments as an array. However, improper
usage of rest parameters can lead to confusion and potential issues in your
code. In this section, we will discuss some common mistakes when using rest
parameters and how to avoid them.

4.4.1 Misplacing Rest Parameters

One common mistake is placing rest parameters at any position other than the
last one in the function signature. Rest parameters should always be placed at
the end of the parameter list, as they are meant to capture any remaining
arguments.

Here’s an incorrect usage of the rest parameter messages (array of strings)
where we put it in the middle, before mandatory/required parameter
timestamp:

function logMessages(prefix: string, ...messages: string[], timestamp: Date) { #A

 // ...

}

On the other hand, here’s the correct usage where we have messages as the
last parameter:

function logMessages(prefix: string, timestamp: Date, ...messages: string[]) {

 // ...

}

4.4.2 Using Rest Parameters with Optional Parameters

Another mistake is using rest parameters in conjunction with optional
parameters. This combination can be confusing and may lead to unexpected
behavior. It is better to avoid using rest parameters with optional parameters
and find alternative solutions.

Confusing when optional parameter is forgotten but rest parameters are
passed:

function sendMessage(to: string, cc?: string, ...attachments: string[]) {

 // ...

}

sendMessage('a')

sendMessage('a', 'b')

sendMessage('a', '1', '2') #A

sendMessage('a', undefined, 'attachment1', 'attachment2') #B

Better to always require optional parameter but allow for a null value:

function sendMessage(to: string, cc: string | null, ...attachments: string[]) {

 // ...

}

sendMessage('a') // Error: An argument for 'cc' was not provided.

sendMessage('a', 'b') // Ok

sendMessage('a', 'attachment1', 'attachment2') // Still problematic

sendMessage('a', null, 'attachment1', 'attachment2') // Explicitly null-ify cc

The best approach is to use an object parameter to a function (arguments)
instead of multiple parameters. This is helpful with complex cases such as
having multiple optional parameters including rest. In the parameters type,
we can specify optional parameters (properties of the type):

function sendMessage(params: {

 to: string

 cc?: string

 attachments?: string[]

}) {

 console.log(params)

}

sendMessage({to:'a'}) // Ok

sendMessage({to: 'a', cc:'b'}) // Ok

sendMessage({to: 'a', attachments: ['attachment1', 'attachment2']}) // Ok

sendMessage({to: 'a', cc:'b', attachments: ['attachment1', 'attachment2']}) // Ok

4.4.3 Confusing Rest Parameters with Array Parameters

Rest parameters can sometimes be confused with array parameters, which can
lead to unexpected behavior. While rest parameters collect individual
arguments into an array, array parameters accept an array as an argument.
Make sure to use the correct parameter type based on your requirements.

The following example shows an incorrect usage if you want messages to
capture rest parameters of type string:

function logMessages(...messages: string[][]) {

 console.log(messages)

}

logMessages(['1','2','3'], ['a', 'b', 'c']) #A

logMessages('1','2','3', 'a', 'b', 'c') #B

And the correct way would be to use a single [] so that messages is an array
of strings and not array of arrays of strings while the parameters are passed
one by one with commas:

function logMessages(...messages: string[]) {

 // ...

}

logMessages(['1','2','3'], ['a', 'b', 'c']) #A

logMessages('1','2','3', 'a', 'b', 'c') #B

If you want to use an array as a single parameter, that’s also okay as long as
you or other engineers invoke the function properly by passing an array
object and not separate parameters one by one with commas:

function logMessages(messages: string[]) {

 // ...

}

logMessages(['1','2','3', 'a', 'b', 'c']) #A

logMessages('1','2','3', 'a', 'b', 'c') #B

logMessages(['1','2','3'], ['a', 'b', 'c']) #C

4.4.4 Overusing Rest Parameters

Another mistake is to overuse rest parameters, especially when the function
only expects a limited number of arguments. This can make it difficult to
understand the function’s purpose and increase the likelihood of errors.

function createProduct(name: string, price: number, ...attributes: string[]) {

 // Function implementation

}

In this example, the createProduct function uses a rest parameter for
product attributes. However, if the function only expects a few specific
attributes, it would be better to use individual parameters or an object for
those attributes:

function createProduct(name: string, price: number, color: string, size: string) {

 // Function implementation

}

// OR

function createProduct(name: string, price: number, attributes: { color: string; size: string }) {

 // Function implementation

}

4.4.5 Unnecessarily Complicating the Function Signature

One mistake when using rest parameters is making the function signature
more complicated than it needs to be. For example, consider the following
function that takes an arbitrary number of strings and concatenates them:

function concatenateStrings(...strings: string[]): string {

 return strings.join("");

}

While this function works correctly, it might be more straightforward to
accept an array of strings instead of using a rest parameter. By accepting an
array, the function signature becomes more concise and easier to understand:

function concatenateStrings(strings: string[]): string {

 return strings.join("");

}

While rest parameters can be useful, overusing them can lead to overly
flexible functions that are difficult to understand and maintain. Functions
with a large number of rest parameters can be challenging to reason about
and may require additional documentation or comments to explain their
behavior.

In general, it’s best to use rest parameters sparingly and only when they
significantly improve the clarity or flexibility of your code. By being mindful
of these common mistakes and following best practices when using rest
parameters, you can create more flexible and clear functions in your
TypeScript code.

4.5 Not Understanding this

this in TypeScript, as in JavaScript, refers to the context of the current
scope. It’s used inside a function to refer to the object that the function is a
method of. When you call a method on an object, the object is passed into the

method as this.

However, this can sometimes behave in unpredictable ways in JavaScript,
especially when functions are passed as arguments or used as event handlers.
TypeScript helps manage these difficulties by allowing you to specify the
type of this in function signatures.

These are examples on how you can use this properly in TypeScript.

You can use this inside a class to refer to the class:

class Person {

 name: string;

 constructor(name: string) {

 this.name = name; #A

 }

 sayHello() {

 console.log(`Hello, my name is ${this.name}`); #B

 }

}

const person = new Person('Irina');

person.sayHello(); #C

In Person, we defined the property name with a string type. Then we set the
value of name using this.name in constructor (initializer), so that during the
instantiation of Person property name would be set to the value passed to new
Person(). The same approach can be used in other methods, not just
constructor.

You can use this in fat arrow functions. Arrow functions don’t have their
own this context, so this inside an arrow function refers to the this from
the surrounding scope. This can be useful for event handlers and other
callback-based code.

class Person {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 waitAndSayHello() {

 setTimeout(() => { #A

 console.log(`Hello, my name is ${this.name}`); #B

 }, 1000);

 }

}

const person = new Person('Elena');

person.waitAndSayHello(); #C

In this example, if we used a regular function for the setTimeout callback,
this.name would be undefined, because this inside setTimeout refers to
the global scope (or is undefined in strict mode). However, because we used
an arrow function, this still refers to the instance of the Person class.

You can use this in function signature. In fact, it’s considered the best
practices is to specify this type in a function signature. For example, we
have the greet function that requires this to be of a certain shape:

function greet(this: {name: string}) {

 console.log(`Hello, my name is ${this.name}`);

}

const person = {name: 'Nikolai', greet: greet};

person.greet(); #A

In this example, we’ve specified that this should be an object with a name
property. If we try to call greet() on an object without a name, TypeScript
will throw an error.

Last but not least, you can leverage this in TypeScript interfaces to reference
the current type. Consider the following example that implements a method
chaining for the option method.

interface Chainable {

 option(key: string, value: any): this;

}

class Config implements Chainable {

 options: Record<string, any> = {};

 option(key: string, value: any): this {

 this.options[key] = value;

 return this;

 }

}

const config = new Config();

config.option('user', 'Ivan').option('role', 'admin'); #A

In this example, option in the Chainable interface is defined to return this,
which means it returns the current instance of the class. This allows for
method chaining, where you can call one method after another on the same
object.

Always be aware of the context in which you’re using this. If a method that
uses this is called in a different context (like being passed as a callback),
this might not be what you expect. To mitigate this, you can bind the
method to this:

class Person {

 name: string;

 constructor(name: string) {

 this.name = name;

 this.sayHello = this.sayHello.bind(this); #A

 }

 sayHello() {

 console.log(`Hello, my name is ${this.name}`);

 }

}

let sayHelloFn = new Person('Ivan').sayHello;

sayHelloFn(); #B

In this example, even though sayHello is called in the global context, it still

correctly refers to the instance of the Person class because we bound this in
the constructor.

Remember that this binding is not necessary when using arrow functions
within class properties, as arrow functions do not create their own this
context:

class Person {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 sayHello = () => { #A

 console.log(`Hello, my name is ${this.name}`);

 }

}

let sayHelloFn = new Person('Ivan').sayHello;

sayHelloFn(); #B

In this example, sayHello is an arrow function, so it uses the this from the
Person instance, not from where it’s called.

Of course, there’s also the global this but it deserves its own section and I’ll
cover it later.

In conclusion, using this in TypeScript involves understanding its behavior in
JavaScript and making use of TypeScript’s features to avoid common
mistakes. By declaring the type of this, you can avoid many common errors
and make your code more robust and easier to understand.

4.6 Being unaware of call, bind, apply and
strictBindCallApply

bind, call, and apply can be very useful when working with this context.
Here’s an example that shows all three. We create a Person class, that has

greet and greetWithMood functions. These two functions use this. By
leveraging bind, call, and apply we can “change” the value of this.

class Person {

 name: string;

 constructor(name: string) {

 this.name = name; #A

 }

 greet() {

 console.log(`Hello, my name is ${this.name}`);

 }

 greetWithMood(mood: string) {

 console.log(`Hello, my name is ${this.name}, and I'm currently feeling ${mood}`);

 }

}

let tim = new Person('Tim');

let alex = new Person('Alex');

tim.greet.call(alex); #B

tim.greetWithMood.apply(alex, ['happy']); #C

let boundGreet = tim.greet.bind(alex); #D

boundGreet(); #E

In this example:

call is a method that calls a function with a given this value and
arguments provided individually.
apply is similar to call, but it takes an array-like object of arguments.
bind creates a new function that, when called, has its this keyword set
to the provided value.

As before, the key idea is that we’re able to call methods that belong to one
instance of Person (Tim) and change their context to another instance of
Person (Alex).

TypeScript 3.2 introduced a strictBindCallApply compiler option that
provides stricter checking for bind, call, and apply:

function foo(a: number, b: string): string {

 return a + b;

}

let a = foo.apply(undefined, [10]); #A

let b = foo.call(undefined, 10, 2); #B

let c = foo.bind(undefined, 10, 'hello')(); #C

In this example, TypeScript checks that the arguments passed to apply, call,
and bind match the parameters of the original function.

4.7 Misapplying Function Types

TypeScript allows developers to define custom function types, which can be
a powerful way to enforce consistency and correctness in your code.
However, it’s important to use these function types appropriately to avoid
potential issues or confusion. In this section, we’ll discuss some common
misuses of function types and how to avoid them.

4.7.1 Confusing function types with function signatures

A common mistake is confusing function types with function signatures.
Function types describe the shape of a function, while function signatures are
the actual implementation of the function. Consider the following example in
which we incorrectly confuse the function type definition with function
definition:

type MyFunction = (x: number, y: number) => number { #A

 return x + y;

};

To fix this, we must separate the type from the function definition itself (as a
function expression assigned to a variable of type MyFunction). Here’s a
correct code:

type MyFunction = (x: number, y: number) => number;

const myFunction: MyFunction = (x, y) => x + y;

4.7.2 Overloading using function types

Function overloads provide a way to define multiple function signatures for a
single implementation. However, overloading function types is not supported.
Instead, use union types to represent the different possible input and output
types or alternative solutions.

Here’s an incorrect example of a function overload with type alias
MyFunction with two functions. One takes numbers and returns a number.
Second takes strings and returns a string. This code throws “Type '(x:
string | number, y: string | number) => string | number' is not

assignable to type 'MyFunction'.”:

type MyFunction = {

 (x: number, y: number): number;

 (x: string, y: string): string;

};

const myFunction: MyFunction = (x, y) => {

 if (typeof x === "number" && typeof y === "number") {

 return x + y;

 } else if (typeof x === "string" && typeof y === "string") {

 return x+' '+y;

 }

 throw new Error("Invalid arguments");

}

console.log(myFunction(1, 2))

console.log(myFunction("Hao", "Zhao"))

The correct example would have the type with unions where the declaration
of a type alias MyFunction is defined as a function type that takes two
parameters, x and y. Each parameter can be either a number or a string (as
indicated by the | which denotes a union type). The function is expected to
return either a number or a string:

type MyFunction = (x: number | string, y: number | string) => number | string;

We can also use function declarations for overloads (instead of types):

function myFunction(x: number, y: number): number;

function myFunction(x: string, y: string): string;

function myFunction(x: any, y: any): any {

 if (typeof x === "number" && typeof y === "number") {

 return x + y;

 } else if (typeof x === "string" && typeof y === "string") {

 return x.concat(' ').concat(y);

 }

 throw new Error("Invalid arguments");

}

In this version of the code, when x and y are strings, the function uses the
concat method to combine them, which ensures that the operation is
understood as string concatenation, not numerical addition.

An alternative (and my favorite) example would have separate functions to
reduce the complexity of overload functions:

type MyFunctionNum = {

 (x: number, y: number): number;

};

type MyFunctionStr = {

 (x: string, y: string): string;

}

const myFunctionStr: MyFunctionStr = (x, y) => {

 return x.concat(' ').concat(y);

}

const myFunctionNum: MyFunctionNum = (x, y) => {

 return x+y;

}

myFunctionNum(1, 2)

myFunctionStr("Hao", "Zhao")

4.7.3 Creating overly complicated function types

While TypeScript’s powerful type system allows you to define complex
function types, it’s essential to keep them as simple and intuitive as possible.
Overly complicated function types can be challenging to understand and
maintain. When defining function types, aim for clarity and simplicity.

Here’s an overly complicated code example that declares a type alias named
MyFunction. This type represents a generic function which takes two
parameters: x, which can be of any type (T or U), and callback, which is a
function itself. The callback function also takes a single parameter (of either
type T or U) and returns a value of either type T or U.

The outer function MyFunction also returns a value of either type T or U. The
types T and U are not specifically defined and are thus considered generic,
meaning they can represent any type and will be determined based on how
the function is used.

type MyFunction = <T, U>(x: T | U, callback: (value: T | U) => T | U) => T | U;

This is a common pattern in TypeScript when you want to define a function
that can operate on different types while still providing type safety. The
specific types T and U would be determined by the arguments passed to the
function when it's called in your code. For example, if you call this function
with a number as the first argument and a callback function that takes a
number and returns a number, then T and U would both be number in that
instance.

However, a simplified can be preferred in which the function type has two
parameters: x and callback.

The first parameter, x, can be of any type, as indicated by any.

The second parameter, callback, is itself a function. This function takes a
single parameter value which can be of any type, and returns a value that can
be of any type:

type MyFunction = (x: any, callback: (value: any) => any) => any;

Strive for simplicity and clarity when defining function types while at the
same time keeping in mind that using any too liberally can often defeat the
purpose of using TypeScript, as it can potentially bypass type checking.
Where possible, it's typically better to use more specific types.

If you’re still not convinced of the benefits of simplicity, let’s take a look at
this example of a function type for a function that could be a basic calculator
operation, where a and b are the numbers to be operated on, and op
determines which operation to perform. If op is not provided, the function
could default to one operation, such as addition:

type ComplexFunction = (a: number, b: number, op?: 'add' | 'subtract' | 'multiply' | 'divide') => number;

const complexFunction: ComplexFunction = (a, b, op = 'add') => {

 switch (op) {

 case 'add':

 return a + b;

 case 'subtract':

 return a - b;

 case 'multiply':

 return a * b;

 case 'divide':

 return a / b;

 default:

 throw new Error(`Unsupported operation: ${op}`);

 }

};

console.log(complexFunction(4, 2, 'subtract')); // Outputs: 2

console.log(complexFunction(4, 2)); // Outputs: 6 (default is 'add')

This ComplexFunction function type specifies that a function assigned to it
should accept two required parameters, a and b, both of which should be of
type number. Additionally, it can accept an optional third parameter op,
which is a string that can only be one of four specific values: 'add', 'subtract',
'multiply', or 'divide'. This is achieved through the use of union types
(denoted by the | character), which allow for a value to be one of several
defined types. Finally, the function type definition also states that a function

of this type should return a value of type number.

A better example would to use a simpler function type but four different
functions. Each of these four functions is typed at CalculationOperation.
By using the CalculationOperation type, the code ensures that all these
functions follow the correct type signature. If any of these functions were
implemented incorrectly (for example, if one of them tried to return a string),
the TypeScript compiler would raise an error.

type CalculationOperation = (a: number, b: number) => number;

const add: CalculationOperation = (a, b) => a + b;

const subtract: CalculationOperation = (a, b) => a - b;

const multiply: CalculationOperation = (a, b) => a * b;

const divide: CalculationOperation = (a, b) => a / b;

By using function types correctly, you can leverage TypeScript’s type system
to enforce consistency and improve the maintainability of your code.

4.7.4 Using overly generic function types

Overly generic function types can lead to a loss of type safety, making it
difficult to catch errors at compile time. For example, the following function
type is too generic:

type GenericFunction = (...args: any[]) => any;

This function type accepts any number of arguments of any type and returns a
value of any type. Of course, as discussed previously, it lessens the benefits
of TypeScript. It’s much better to use more specific function types that
accurately describe the expected inputs and outputs:

type SpecificFunction = (a: number, b: number) => number;

4.8 Not Knowing About and How to Use globalThis

Getting to the global object in JavaScript has been kind of a mess historically.
If you’re on the web, you could use window, self, or frames - but if you’re
working with Web Workers, only self flies. And in Node.js? None of these
will work. You gotta use global instead. You could use the this keyword
inside non-strict functions, but it’s a no-go in modules and strict functions.

Let’s see these on a few examples. In TypeScript (and JavaScript), the this
keyword behaves differently depending on the context in which it’s used. In
the global scope, this refers to the global object. In browsers, the global
object is window, so in a browser context, this at the global level will refer to
the window object:

console.log(this === window); #A

In Node.js, the situation is a bit different. Node.js follows the CommonJS
module system, and each file in Node.js is its own module. This means that
the top-level this does not refer to the global object (which is global in
Node.js), but instead it refers to exports of the current module, which is an
empty object by default. So, in Node.js:

console.log(this === global); #A

console.log(this); #B

However, inside functions that are not part of any object, this defaults to the
global object, unless the function is in strict mode, in which case this will be
undefined. Here’s an example:

function logThis() {

 console.log(this);

}

logThis(); #A

function strictLogThis() {

 'use strict';

 console.log(this);

}

strictLogThis(); #B

In TypeScript, you can use this in the global scope, but it’s generally better
to avoid it if possible, because it can lead to confusing code. It’s usually
better to use specific global variables, like window or global, or to avoid
global state altogether. The behavior of this is one of the more complex
parts of JavaScript and TypeScript, and understanding it can help avoid many
common bugs.

Enter globalThis. It’s a pretty reliable way to get the global this value (and
thus the global object itself) no matter where you are. Unlike window and
self, it’s working fine whether you’re in a window context or not (like
Node). So, you can get to the global object without stressing about the
environment your code’s in. Easy way to remember the name? Just think “in
the global scope, this is globalThis”. Boom.

So, In JavaScript, globalThis is a global property that provides a standard
way to access the global scope (the “global object”) across different
environments, including the browser, Node.js, and Web Workers. This makes
it easier to write portable JavaScript code that can run in different
environments. In TypeScript, you can use globalThis in the same way.
However, because globalThis is read-only, you can’t directly overwrite it.
What you can do is add new properties to globalThis.

For instance, if you add a new property to globalThis, you’ll get Element
implicitly has an 'any' type because type 'typeof globalThis' has no index
signature:

globalThis.myGlobalProperty = 'Hello, world!';

console.log(myGlobalProperty); #A

If you try window.myGlobalProperty, then you’ll get `Property
‘myGlobalProperty’ does not exist on type ‘Window & typeof

globalThis’.What we need to do is to declare type:

// typings/globals.d.ts (depending on your tsconfig.json)

export {} #A

interface Person { #B

 name: string

}

declare global {

 var myGlobalProperty: string

 var globalPerson: Person

}

The above code adds the following types:

myGlobalProperty

window.myGlobalProperty

globalThis.myGlobalProperty

globalPerson.name

window.globalPerson.name

globalThis.globalPerson.name

In this example, declare global extends the global scope with a new
variable myGlobalProperty. After this declaration, you can add
myGlobalProperty to globalThis without any type errors.

Remember that modifying the global scope can lead to confusing code and is
generally considered bad practice. It can cause conflicts with other scripts and
libraries and makes code harder to test and debug. It’s usually better to use
modules and local scope instead. However, if you have a legitimate use case
for modifying the global scope, TypeScript provides the tools to do it in a
type-safe way.

Another common use of globalThis in TypeScript and JavaScript is to check
for the existence of global variables. For example, in a browser environment,
you might want to check if fetch is available:

if (!globalThis.fetch) {

 console.log('fetch is not available');

} else {

 fetch('https://example.com')

 .then(response => response.json())

 .then(data => console.log(data));

}

In this example, globalThis.fetch refers to the fetch function, which is a
global variable in modern browsers. If fetch is not available, the code logs a
message to the console. If fetch is available, the code makes a fetch request.

This can be useful for feature detection, where you check if certain APIs are
available before you use them. This helps ensure that your code can run in
different environments.

Remember, it’s better to avoid modifying the global scope if you can, and to
use globalThis responsibly. Modifying the global scope can lead to conflicts
with other scripts and libraries and makes your code harder to test and debug.
It’s usually better to use modules and local scope instead. In modern
JavaScript and TypeScript development, modules provide a better and more
flexible way to share code between different parts of your application.

4.9 Mishandling Types in Functions

Function types in TypeScript enable you to define the expected input and
output types for callback functions, providing type safety and making your
code more robust. Not using function types for callbacks can lead to
confusion, hard-to-find bugs, and less maintainable code. This section
discusses the importance of using function types for callbacks and provides
examples of how to do so correctly.

4.9.1 Unspecified Callback Function Types

When defining functions that accept callbacks, it is important to specify the
expected callback function types, as this helps to enforce type safety and
prevents potential issues.

Bad example in which it’s easy to make a mistake that TS won’t catch by
using a wrong callback function that uses more parameters than provided:

function processData(data: string, callback: Function): void {

 // Process data...

 callback(data);

}

processData('a', (b:string, c: string)=>console.log(b+c)) #A

In the example above, TypeScript won’t be able to catch any errors related to
the callback function because it’s defined as a generic Function. A good
example in which TS will alert about mismatched types of callback functions:

type DataCallback = (data: string) => void;

function processData(data: string, callback: DataCallback): void {

 // Process data...

 callback(data);

}

processData('a', (b:string)=>console.log(b)) // Ok

processData('a', (b:string, c: string)=>console.log(b+c)) // Error: Argument of type '(b: number, c: number) => void' is not assignable to parameter of type 'DataCallback'

In the good example, we define a DataCallback function type that specifies
the expected input and output types for the callback function, ensuring type
safety.

4.9.2 Inconsistent Parameter Types

When defining function types for callbacks, it’s crucial to ensure that the
parameter types are consistent across your application. This helps to avoid
confusion and potential runtime errors.

Here’s an example in which we have two classes for callbacks for the
apiCall function. But in the actual apiCall instead of using both two types
we only use one. This leaves the function parameter success inconsistent
with the defined type (that can be used elsewhere in the code), which in turn
can lead to errors. So here’s the bad example:

type SuccessCallback = (result: string) => void;

type FailureCallback = (error: string) => void;

function apiCall(success: (data: any) => void, failure: FailureCallback) {

 // Implementation...

}

As you can see SuccessCallback represents a function that takes one
parameter of type string and does not return anything (void). On the other
hand, the first parameter, success, is a function that takes one parameter of
type any and does not return anything. It's intended to be a callback function
that gets called when the API call is successful. Let’s fix this in a good
example:

type SuccessCallback = (result: string) => void;

type FailureCallback = (error: string) => void;

function apiCall(success: SuccessCallback, failure: FailureCallback) {

 // Implementation...

}

By consistently using the defined function types for callbacks, you can ensure
that your code is more maintainable and less prone to errors.

4.9.3 Lack of Clarity with Callbacks

When you don’t use function types for callbacks, the expected inputs and
outputs might not be clear, leading to confusion and potential errors.

Here’s is a suboptimal example that defines a function named processData
that takes two arguments. The first argument, data, is expected to be a string.
This could be any kind of data that needs processing, perhaps a file content,
an API response, or any data that's represented as a string. The second
argument, callback, is a function. This is a common pattern in Node.js and
JavaScript for handling asynchronous operations. In this case, the callback
function itself accepts two arguments:

error: which is either an Error object (if an error occurred during the
processing of the data) or null (if no errors occurred).
result: which is either a string (representing the processed data) or null
(if there is no result to return, perhaps due to an error).

Inside the processData function, we are “processing” the data argument by
converting it to uppercase (and maybe doing something more), and once
that's completed, we would call the callback function, passing it the error (or
null if there's no error), and the result (or null if there's no result):

function processData(data: string, callback: (error: Error | null, result: string | null) => void) {

 let processedData = null;

 try {

 // Hypothetical processing operation

 processedData = data.toUpperCase(); // Convert the data to uppercase

 callback(null, processedData);

 } catch (error) {

 callback(error, null);

 }

}

In the example above, it is not immediately clear just by looking at the
function signature what the callback function expects as arguments or what it
returns.

A more optimal example would include a new type alias
ProcessDataCallback:

type ProcessDataCallback = (error: Error | null, result: string | null) => void;

function processData(data: string, callback: ProcessDataCallback) {

 // Process data and invoke the callback

}

By using a function type for the callback, we make the code more explicit
and easier to understand.

To sum up, using function types for callbacks in TypeScript is crucial for

providing type safety, consistency, and maintainability in your codebase.
Always define and use appropriate function types for your callbacks to
prevent potential issues and create more robust applications.

4.10 Ignoring Utility Types for Functions

TypeScript provides a set of built-in utility types that can make working with
functions and their types easier and more efficient. Ignoring these utility
types can lead to unnecessary code repetition and missed opportunities to
leverage TypeScript’s type system to improve code quality. This section will
discuss some common utility types for functions and provide examples of
how to use them effectively.

4.10.1 Using ReturnType for Better Type Inference

The ReturnType utility type extracts the return type of a function, which can
be useful when you want to ensure that a function’s return type is the same as
another function’s or when defining derived types.

Here’s a less than ideal example that defines a function and a function type.
The function named sum takes two arguments, a and b, both of type number.
This function, when called with two numbers, adds those numbers together
and returns the result, which is also of type number.

Then, the type alias named Calculation represents a function which takes
two number arguments and returns a number. This type can be used to type-
check other functions like multiply to ensure they match this pattern of
taking two numbers and returning a number.

function sum(a: number, b: number): number {

 return a + b;

}

type Calculation = (a: number, b: number) => number;

let multiply: Calculation = (a: number, b: number) => {

 return a * b;

};

In the example above, the return type of sum is manually defined as number,
and the same return type is specified again in Calculation.

Interestingly, we would reuse the return type of the function sum. By using
ReturnType, the return type of sum is automatically inferred and used in
Calculation, reducing code repetition and improving maintainability.

function sum(a: number, b: number) {

 return a + b;

}

type Calculation = (a: number, b: number) => ReturnType<typeof sum>;

let multiply: Calculation = (a: number, b: number) => {

 return a * b;

};

Of course, this example is silly because why wouldn’t you use Calculation
for sum as well and not use ReturnType? This is because functions like sum
can be defined in a different module or a library (authored by other
developers). In situations like this ReturnType can come in handy.

Here’s another more complex example of ReturnType that showcases the
declaration of a function fetchData and a type FetchDataResult, followed
by the definition of another function processData.

The function fetchData fetches some data from a given URL, a type
FetchDataResult represents the result of the fetched data, and the function
processData processes the fetched data using a provided fetch function
callback.

The fetchData function return type is exactly the same as the return type of
the callback function to processData:

function fetchData(url: string): Promise<{ data: any }> {

 // Fetch data from the URL and return a Promise

}

type FetchDataResult = Promise<{ data: any }>;

function processData(fetchFn: (url: string) => FetchDataResult) {

 // Process the fetched data

}

The fetchData function takes a url parameter of type string and returns a
Promise that resolves to an object with a data property of type any. This
function is responsible for fetching data from the specified URL. The
FetchDataResult type is defined as a Promise that resolves to an object with
a data property of type any. This type is used to describe the expected return
type of the fetchFn function parameter in the processData function. The
processData function takes a function parameter fetchFn which is defined
as a function accepting a url parameter of type string and returning a
FetchDataResult. This function is responsible for processing the fetched
data.

So, in the example above, the return type of fetchData is repeated twice,
which can be error-prone and harder to maintain. A better example would be
leverage ReturnType to avoid code duplications that can lead to errors when
modified only in one place and not all the places:

function fetchData(url: string): Promise<{ data: any }> {

 // Fetch data from the URL and return a Promise

}

type FetchDataResult = ReturnType<typeof fetchData>; #A

function processData(fetchFn: (url: string) => FetchDataResult) {

 // Process the fetched data

}

By using the ReturnType utility type, we simplify the code and make it easier
to maintain.

4.10.2 Leveraging Parameters for Clearer Argument Types

The Parameters utility type extracts the types of a function’s parameters as a
tuple, making it easier to create types that have the same parameters as an
existing function.

Consider you have some default generic function that greets people
standardGreet. Then if you want to create new custom functions, you can
define a type alias MyGreeting that would be used to greet loudly or nicely:

function standardGreet(name: string, age: number) {

 console.log(`Hello, ${name}. You are ${age} years old.`);

}

type MyGreeting = (name: string, age: number) => void;

const greetPersonLoudly: MyGreeting = (name, age) => {

 standardGreet(name.toUpperCase(), age);

};

const greetPersonNicely: MyGreeting = (name, age) => {

 standardGreet(name, age-10);

};

greetPersonLoudly('Deepak', 54) // Hello, DEEPAK. You are 54 years old.

greetPersonNicely('Deepak', 54) // Hello, Deepak. You are 44 years old.

In the example above, the parameter types of standardGreet are manually
specified again in MyGreeting. We can do better than that, right? Of course!
Let’s utilize Parameters to “extract” function parameters from
standardGreet while the rest of the code can remain the same:

type MyGreeting = (...args: Parameters<typeof standardGreet>) => void;

By using Parameters, the parameter types of standardGreet are
automatically inferred and used in MyGreeting, making the code cleaner and
more maintainable. Some other use cases can involve:

Example 1 demonstrates using Parameters<typeof standardGreet> to
assign specific arguments to params1 and then invoking standardGreet
with the spread operator.
Example 2 showcases the use of tuple types by declaring params2 with
the as const assertion to ensure the literal types of the arguments.
Example 3 declares a variable greetPerson of type MyGreeting which
represents a function with the same parameters as standardGreet. It is
then invoked with specific arguments, resulting in the expected output.

function standardGreet(name: string, age: number) {

 console.log(`Hello, ${name}. You are ${age} years old.`);

}

type MyGreeting = (...args: Parameters<typeof standardGreet>) => void;

Example 1: Using specific arguments:

const params1: Parameters<typeof standardGreet> = ['Pooja', 25];

greet(...params1); // Output: Hello, Pooja. You are 25 years old.

Example 2: Utilizing tuple types:

const params2: Parameters<typeof standardGreet> = ['Arjun', 30] as const;

greet(...params2); // Output: Hello, Arjun. You are 30 years old.

Example 3: Defining a variable of type MyGreeting:

const greetPerson: MyGreeting = (name, age) => {

 console.log(`Saludos, ${name}! Tienes ${age} años.`);

};

greetPerson('Vikram', 35); // Output: Saludos, Vikram! Tienes 35 años.

4.10.3 Marking properties as optional with Partial

In TypeScript, Partial is a built-in utility type that allows you to create a
type that makes all properties of another type optional. This is useful when
you want to create an object that doesn’t necessarily have values for all
properties initially but may have them added later on. Or, when you’re
sending an update to a data store (e.g., database) only for some properties, not
all of them.

Here’s an example of how you can use Partial to auto-magically create a
new type that will have properties of the original types and these properties

would be optional:

interface User {

 id: number;

 name: string;

 email: string;

}

type PartialUser = Partial<User>; #A

let user: PartialUser = {}; #B

user.id = 1;

user.name = "Alice";

user.email = "alice@example.com";

console.log(user); // { id: 1, name: 'Alice', email: 'alice@example.com' } #C

In this example, PartialUser is a type that has the same properties as User,
but all of them are optional. This means you can create a PartialUser object
without any properties, and then add them one by one.

This can be very useful when working with functions that update objects,
where you only want to specify the properties that should be updated. For
example:

function updateUser(user: User, updates: Partial<User>): User {

 return { ...user, ...updates };

}

let user: User = { id: 1, name: 'Alice', email: 'alice@example.com' };

let updatedUser = updateUser(user, { email: 'newalice@example.com' });

console.log(updatedUser); #A

function updateUser(user: User, updates: Partial<User>): User {

 return { ...user, ...updates };

}

let user: User = { id: 1, name: 'Alice', email: 'alice@example.com' };

let updatedUser = updateUser(user, { email: 'newalice@example.com' });

console.log(updatedUser); #B

In this example, updateUser is a function that takes a User and a
Partial<User> and returns a new User with the updates applied. This allows
you to update a user’s email without having to specify the id and name
properties.

4.10.4 Utilizing ThisParameterType for better types safety of the
this context

In this section, we will explore an advanced TypeScript feature called
ThisParameterType that provides enhanced type safety when dealing with
the this context within functions or methods. TypeScript provides a built-in
utility type called ThisParameterType that allows us to extract the type of the
this parameter in a function or method signature.

When working with functions or methods that rely on proper this context, it
is crucial to ensure type safety to prevent potential runtime errors. By
utilizing ThisParameterType, we can enforce correct this context usage
during development, catching any potential issues before they occur.

So the ThisParameterType utility type in TypeScript enables us to extract the
type of the this parameter in a function or method signature. By using
ThisParameterType, we can explicitly specify the expected this context
type, providing improved type safety and preventing potential runtime errors.
When defining functions or methods that rely on a specific this context,
consider using ThisParameterType to ensure accurate typing and enforce
correct usage.

Here’s a suboptimal example in which this is used in the function
introduce implicitly and this has type any and it does not have a type
annotation. We also use object literal to create an object person with this
function which in a sense become a method person.introduce. Thus,
providing necessary parameters name and age to the method:

function introduce(): void {

 console.log(`Hi, my name is ${this.name} and I am ${this.age} years old.`);

}

const person = {

 name: 'Andrey',

 age: 30,

 introduce,

};

person.introduce();

The above code is suboptimal because if someone tries to (incorrectly) call
the method with a different context, we won’t see any problem with it until
it’s too late. For example, this statement that don’t pass proper name nor age
will cause run-time error but not the TypeScript error:

person.introduce.call({});

A more optimal example would have type annotation for this and an
interface Person for added type safety:

interface Person {

 name: string;

 age: number;

 introduce(this: { name: string; age: number }): void;

}

function introduce(this: { name: string; age: number }): void {

 console.log(`Hi, my name is ${this.name} and I am ${this.age} years old.`);

}

const person: Person = {

 name: 'Andrey',

 age: 30,

 introduce,

};

person.introduce();

person.introduce.call({}); // Error: Incorrect 'this' context

But now let’s remember that we also have a utility called

ThisParameterType. It allows us to extract parameters. Ergo, the most
optimal (and type-safest) example would use ThisParameterType to avoid
repeating type definitions of name and age:

function introduce(this: { name: string; age: number }): void {

 console.log(`Hi, my name is ${this.name} and I am ${this.age} years old.`);

}

interface Person {

 introduce(this: { name: string; age: number }): void;

}

const person: Person & ThisParameterType<typeof introduce> = {

 name: 'Andrey',

 age: 30,

 introduce,

};

person.introduce();

A similar concept of defining this is applicable to class methods not
methods of object literals. Here’s an example in which we create a Counter
class and define the type as the class itself to avoid errors when the value of
context (this) is something different rather than our class instance.

class Counter {

 count: number = 0;

 increment(this: Counter) {

 this.count++;

 }

 decrement(this: Counter) {

 this.count--;

 }

}

const myCounter = new Counter();

myCounter.increment(); // OK

myCounter.decrement(); // OK

myCounter.increment.call({}); // Error: Incorrect 'this' context

4.10.5 Removing this with OmitThisParameter

OmitThisParameter is a utility type in TypeScript that removes the this
parameter from a function’s type, if it exists. This is useful when you’re
dealing with a function that has a this parameter, but you want to pass it to
some code that doesn’t expect a this parameter.

For instance, consider a function type that includes a this parameter:

type MyFunctionType = (this: string, foo: number, bar: number) => void;

If you try to use this function in a context where a this parameter is not
expected, you’ll get a type error:

function callFunction(fn: (foo: number, bar: number) => void) {

 fn(1, 2);

}

let myFunction: MyFunctionType = function(foo: number, bar: number) {

 console.log(this, foo, bar);

};

callFunction(myFunction); #A

Here, callFunction expects a function that takes two number parameters, but
myFunction includes a this parameter, so it’s not compatible.

You can use OmitThisParameter to remove the this parameter:

function callFunction(fn: OmitThisParameter<MyFunctionType>) {

 fn(1, 2);

}

let myFunction: MyFunctionType = function(foo: number, bar: number) {

 console.log(this, foo, bar);

};

callFunction(myFunction); #A

Here, OmitThisParameter<MyFunctionType> is a type that is equivalent to
(foo: number, bar: number) => void. This means you can pass
myFunction to callFunction without any type errors.

Note that OmitThisParameter doesn’t actually change the behavior of
myFunction. When myFunction is called, this will be undefined, because
callFunction calls fn without specifying a this value. If myFunction relies
on this being a string, you’ll need to ensure that it’s called with the correct
this value.

In conclusion, TypeScript’s utility types for functions can help you create
more efficient, maintainable, and expressive code. By leveraging utility types
like ReturnType, ThisParameterType and Parameters, you can reduce code
repetition and make your codebase more resilient to changes. Always
consider using utility types when working with functions in TypeScript to get
the most out of the language’s type system.

4.11 Summary

Always specify return types for functions to ensure proper type checking
and prevent unexpected behavior.
Use optional and rest parameters judiciously, considering their impact
on function behavior and readability. Always put optional parameters
after the required parameters in the function signature calls. And put rest
parameters last.
Always specify the return type of a function to ensure type safety and
provide clear expectations to callers.
Leverage utility types like Parameters, ReturnType, and
ThisParameterType to enhance type safety and improve code quality in
functions.
Use arrow functions or explicit binding to maintain the desired this
context. Always set the shape/type of this. Understand the differences
between bind, call, apply, and strictBindCallApply for manipulating
the this context.
Use globalThis instead of environment-specific global objects (window,

global, etc.) for better portability.
Utilize utility types like Parameters, ReturnType, and
ThisParameterType to improve code quality and correctness.

	Copyright_2023_Manning_Publications
	welcome
	1_README
	2_Basic_TypeScript_Mistakes
	3_Types_and_Interfaces
	4_Functions_and_Methods

