


Endorsements

Physics manifests itself in our lives, like the metamorphoses

of a kaleidoscope. The book of famous physicists — Attilio

Rigamonti, Andrey Varlamov and Jacques Villain — carries us

away from the very first chapter. The curious reader will find

out why the sky and the sea are blue (but not only), why the

rivers are meandering, how natural waveguides work, why

the climate changes, with what forces tides associated…

Furthermore, the path of knowledge leads from the

beauties and uncovered mysteries of nature to the physics

of everyday life — from the train in the gallery to the secrets

of a glass harmonica and a good violin. Over the aperitif, the

authors ask questions about the secrets of bubbles of

champagne and wine tears on the walls of the glass,

knowing the answers to which will help you to be known as

an experienced sommelier. Then you enter the kitchen: the

physical phenomena around ovens and stoves are endless,

from microwaves to cooking, with corresponding phase

transformations. Making pizza requires deep thought, not to

mention pasta, where Italian and German philosophies

collide. The physics behind making good (or bad) coffee is

very interesting, and you can’t go wrong.

After an excursion to the kitchen, the authors invite us to

a strange quantum world. The quality of the text and the

splendour of the illustrations convey the aesthetics of the

physics of the atomic and subatomic world. The chapter

entitled Physics, Geometry and Beauty deals with fullerenes,

Leonardo, Piero della Francesca and Luca Pacioli. Even



though our senses are already heightened by wine, cooking

and good coffee, perhaps it is in the field of quantum

physics that two cultures, once united, and then separated

by Aristotelian constructions, again merge into world

harmony.

Giorgio Benedek, Member of the Lombard Institute

Academy of Science and Letters, and of the Italian Academy

of Science “Dei Lincei”

This book talks about physics and its role in the world

around us. It was written by professional scientists who have

devoted their entire lives to finding answers to the riddles

posed by Nature. Riddles that authors find in a seemingly

mundane world, and riddles of the quantum world, which

they manage to penetrate, continuing the path of many

generations of scientists.

The book has an unusual history. It originated back in the

1980s on the pages of the “Kvant” magazine of the

Academy of Sciences of the USSR for schoolchildren, widely

known in those years.

Then, together with its first author, the famous

theoretical physicist and popularizer of science Andrey

Varlamov, the book moved to Italy where it was gradually

enriched with its culinary part and other chapters. This

happened thanks to his many years of collaboration with

another author of the book — the remarkable experimental

physicist Attilio Rigamonti.

Scientific meetings and joint work of the authors at the

Lombard Academy of Literature and Science in Milan with its

foreign member, the French theoretical physicist Jacques

Villain, ended with the enrichment of the Italian “Il Magico

Caleidoscopio della Fisica” with new chapters and ideas and,

most importantly, an appeal to a much wider audience. In



2014, it was published as Le Kaleidoscope de la Physique by

the publishing house Belin. The following year it received

the Roberval prize, an international award for the best

popular science book of the year in French. Its Russian

language version, published in 2020 was recognised among

the best scientific popular books in the same year and

awarded the Diploma of Russian Academy of Sciences.

Today, thanks to the efforts of the World Scientific Publishing

Company, the book, having been considerably expanded,

becomes available to the English-speaking reader.

Lev Pitaevskii, Member of Russian Academy of Sciences

I wish to tell you how much I had appreciated Le

Kaléidoscope de la Physique which I discovered when I was

a member of the jury of the Prix Roberval (sponsored by the

Académie des Sciences). This yearly prize is awarded to

books in French devoted to technology and science, and one

of them is addressed to a wide audience. The large variety

of subjects of your book, which stimulate the curiosity of the

readers, the spirit in which they are presented, and the

pleasure that anyone can take in discovering each topic, the

nice illustrations, had led the jury, a few years ago, to

rapidly focus on your book in the discussions and to readily

select it. This is remarkable as I was the only physicist in the

jury, which contained scientists and engineers from all

specialities and from all French-speaking countries.

Roger Balian, Member of the French Academy of Sciences
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Introduction

Physics touches several aspects of our lives in ways that

appear like the changes in a kaleidoscope. This book is for

readers wishing to understand some of the strange and

astonishing phenomena they commonly see. Why the sky is

blue? How do rainbows form? What is the driving force of

the tides? Why do we see a head on top of a glass of beer or

a frothy white mousse over a creek? These are some of the

questions we shall answer and explain in the first part of the

book.

We as humans have considerably increased the number

of the physical phenomena that are nowadays sources of

wonder: how do microwave ovens work in comparison to

induction plates? How is electricity generated? These and

other devices we have created ourselves will be the topics

addressed in the second part of the book.

The third part is more relaxed. It has been written mostly

for the friends who like cooking. If one turkey is twice as big

as another, should we double the time it spends in the

oven? We have no intention to teach the art of cuisine but

simply to answer some of the more scientific questions that

might arise when cooking. At the very least, we shall offer

some recreation while fine dishes are produced by high-

class cooks.

The fourth and final part of the book is the most

ambitious. We wish to describe some of the mysterious

aspects of modern science, in order to emphasize how our

view of Nature has been drastically changed by the new



area of physics known as quantum mechanics. We explore

how, around the turn of the millennium, some revolutionary

ideas have been illustrated and experimentally supported.

We hope we are not being too ambitious, considering the

first three parts will have provided the reader with the drive

and the courage required to attack the fourth.

We shall assume some basic scientific knowledge, say at

high-school level. However, we shall try to avoid complexity

by using simple language. Correspondingly, the number of

equations has been reduced to the bare minimum, leaving

only those that should favour real understanding in a simple

way. Even though many equations are undesirable, a few

may occasionally help break up the text and might even

stimulate a reader’s attention when appropriate. In

comparison to a high-school graduate, the general reader

might have the advantage of being able to skip steps

considered too hard, too high level or too elementary,

instead referring to other chapters or to other sections they

may enjoy more. In such places, we have suggested a few

exercises to stimulate our readers’ attention. They are

straightforward equations to write and solve or very simple

experiments.

This book is largely a translation of Le kaléidoscope de la

Physique published in the French language by Belin (Paris)

in 2014. That book was itself based on previous editions of

articles, papers or books published by one or more of the

authors. In particular, some chapters are largely based on

Magico Caleidoscopio della Fisica published in 2007 by La

Goliardica Pavese or from Wonders of Physics published in

2012 by World Scientific. All chapters have been extended

and updated.



Part 1

Open-Air Physics

According to etymology, Physics is the science of Nature (in

ancient Greek φύσις) or at least of natural phenomena.

Indeed, it is the very spectacle of Nature that offers human

beings their first physics problems, for example, the tides,

that astonished the sailor Pytheas when navigating his

familiar Mediterranean sea; the rainbow, that Descartes was

able to explain; the apparent motions of the planets in the



sky, that Aristotle wrongly explained and which caused

troubles to Galileo; and the shape of bubbles or droplets,

that worried Pierre-Simon Laplace and Thomas Young.

Many of these problems, apparently simple, could not be

properly explained until the 19th century. More recently,

Albert Einstein was still asking himself about the shape of

the meanders in a river. We are going to devote the first

part of the book to some of those phenomena.



Chapter 1

Rivers, Meanders and Lakes

A river is a complex system that has evolved in a complex

environment. Although science cannot explain all the details

of its movement, still it gives some clues that allow us to

understand several properties of this phenomenon.

Often, when walking beside a creek or a river, we might ask

ourselves why the flow of the water does not follow the

most direct path (namely a straight line), instead making a

series of meanders. Of course, some parts of the river do

follow a straight path, when the local topography or the

work of humans dictates this. However, when the river is

free to choose its path on an almost flat area, it proceeds

through zigzags. The curves follow one after the other with

a certain regularity (Fig. 1). How do we explain the

meanders?

Some Tea Leaves in a Cup…

One of the first scientists who tried to explain the reason for

the formations of these curves in a river was Albert Einstein

in 1926. Temporarily leaving behind the difficult

mathematical physics of general relativity and its curved

space–time, at the meeting of the Prussian Academy of

Sciences Einstein presented a note without any equations,

entitled Causes of the meanders formation in the stream of



the river banks and about the Baer law. What is this famous

Baer law? Based on the observations by outstanding 19th-

century geographers, naturalist Karl Baer concluded that in

the Northern hemisphere, in the absence of mountain

reliefs, the right-hand bank of a river has the tendency to

become increasingly eroded compared with the left bank;

the opposite happens in the Southern hemisphere.

Before dealing with the sinuosity of rivers and the shape

of their banks, Einstein proposed a simple experiment,

reproducing a common everyday movement: when with the

swirl of a small spoon we encourage sugar to dissolve in a

cup of tea. What Einstein was interested in was a

phenomenon scarcely intuitive at first glance: the rotation of

the liquid induced by the teaspoon and the subsequent

creation of vertical vortices (Fig. 2).

Figure 1. Meanders of Siberian River from aircraft porthole.

Source: Prof. Keizo Murata.



Figure  2. When the water in the cup is moved by the little spoon, vertical

vortices are induced in the liquid.

In order to give evidence for the vortices, Einstein

dispersed some fragments of tea leaves. When the rotation

of the liquid is instigated by means of the spoon, the leaves

start to gather in the centre of the bottom of the cup (Fig.

3). Readers can practise the experiment themselves.

Einstein’s explanation was as follows: as a consequence

of the rotation, a centrifugal force acts on the liquid,

towards the exterior of the trajectory. This force increases

with the increase of the velocity (see Chapter 4). Within the

boundary of the cup, the liquid is slowed down by friction

and therefore rotates more slowly than in the centre of the

cup. In particular, Einstein added, the angular velocity and

then the centrifugal force are slower at the bottom

compared with the layers higher up. In this way, the

circulation of liquid indicated in Fig. 2 arises, dragging the

fragments of the tea leaves towards the centre.



Figure 3. Einstein’s experiment. Fragments of tea leaves are forced to rotate by

the little spoon (a). Quickly the fragments gather at the center of the glass (b)

and then they deposit at the bottom (c). This motion is evidence of the

counterintuitive occurrence.

How the Riverbed Evolves

We are going to examine the motion of the water when the

river reaches a bend. Here, the analogous motion inside the

cup occurs, as Einstein remarked. As in the experiment, the

river water is slowed down by friction at the walls and the

velocity of the water flow decreases near the bottom: the

centrifugal force, directed towards the outside of the bend,

is lower in the vicinity of the riverbed. Thus a vertical

circulation is induced towards the outside of the meander,

close to the surface, and instead towards the inner curve

close to the bed (Fig. 4).

This circulation leads to some transfer of ground and

stones, pulled out from the external bank towards the

interior of the curve. A deposit of materials at the interior of

the curve occurs, just as there was a deposit of tea leaves at

the centre of the bottom of the cup in the experiment

described above. In both cases, when the water rises,

precipitation occurs, the liquid depositing the heavier

material due to gravity. The erosion of the external bank and

the deposit on the internal bank induces an elbow in which

the exterior is rougher while the interior is smoother.



Sometimes, after continued erosion, the riverbed can be

so dramatically affected at the entrance and exit of the

meander that the ground is wiped out and an island is

formed (Figs. 5 and 6).

Figure 4. Water circulation in a river with a curve, from Einstein. A centrifugal

force from the internal towards the external bank is acting on every part of the

liquid. Due to friction, the force decreases in the vicinity of the bottom and a

vertical circulation is superimposed on the main flow. The material pulled out

from the external bank is carried towards the interior of the curve.



Figure 5. The sinuosity of a river, first moderate (1), progressively increases due

to the deposit of material on the internal bank (2) until finally it can lead to the

origination of an island (3).

The considerations we have developed cannot explain

everything. For instance, how do we explain the Baer law in

regards to the difference between the two banks, even

when the river is not affected by any sinuosity? And how to

justify the observations of the geographers describing the

way the effect is inverted between the Northern and

Southern hemispheres? The reader may already guess that

the rotation of the Earth is somehow involved: we shall

return to this in Chapter 4.

What Is the Shape of the Meanders?

The path of a riverbed is strongly related to the relief of the

area in which it runs. Where the ground is irregular, the river

proceeds in such a way as to avoid asperities, and it takes

the path characterised by the pronounced slope. When the

ground takes the form of a plane, a straight path is not so

stable. Any little avalanche, or the fall of a tree over the

bank, forces the flow into a curve that is progressively

increased so that a meander is induced, as explained in the

previous section.



Figure 6. Meander of the river Seine at Andelys and the island, as seen from the

Gaillard castle. The external bank is steep while the internal bank is smooth.

More generally, what is the shape that characterises the

sinuosity of a river flowing on flat ground? In the 1960s,

geologists argued that the sinuosity tends to take a

particular shape: the one of a rod that is curved when its

two extremities are brought near (Fig. 7). The shape

assumed by the rod is a curve described by the Swiss

mathematician Leonhard Euler (1707–1783), who studied its

properties. The analysis by Euler is still widely reported in

texts dealing with buckling when the weight being borne is

increased by too much (see Panel on page 9). That

hypothesis is in good agreement with experiments carried

out in laboratories by simulating the flow of a river and

studying the changeover of its bed. Initially straight, in ideal

conditions, some meanders quickly appeared; the final

distribution was in good agreement with Euler’s law (Fig.

8(a)). We remark that real rivers do not show the

regularities appearing in the lab (for instance, because of

irregularities in the ground). Several times, similar patterns,

approximately periodic, spontaneously occur when the river



runs across flat land (Fig. 8(b)). In general, the sinuosity has

long periods when the river is large.

Figure 7. The shape assumed by an elastic rod at fixed extremities is called the

Euler curve. The angle between the tangent and the line AB allows one to define

the curvature dθ/ds, namely the derivative of the angle with respect to the line.

The Euler curve minimises the mean square curvature of the line: in other

words, it minimises the integral ∫(dθ/ds)
2
ds, where θ is the angle of the tangent

with respect to a fixed direction.



Figure  8. (a) Meanders observed in a water flow in the laboratory. In a

homogenous environment, the flow is initially straight. After some hours, due to

the erosion, curves occur in the channel, and the meanders appear. The Euler

curve is given by the dotted line. (b) Sketches for a real river (the Potomac at

Paw in USA) and the Euler curve (dotted line) approximately fitting it. From L. B.

Leopold and W. B. Langbein, (1966) “River Meanders”, Scientific American, 214,

60–70. http://dx.doi.org/10.1038/scientificamerican0666-60.

http://dx.doi.org/10.1038/scientificamerican0666-60


An especially winding river is found in Turkey, the Büyük

Menderes that is at the origin of the term meander for the

sinuosity of the rivers: its name comes from the Greek

“Maiandros”. However, the name meander also applies to

the sinuosity of those streams that arise at the surfaces of

the glaciers as well as to ocean currents such as the Gulf

Stream. For all these phenomena occurring in homogeneous

environments, random processes contribute to the

formation of an approximately periodic sinuosity; other

causes may play a role.

An experiment about buckling

Let us place a plastic ruler on a table, keep it vertical and

press on its top. When we do not push too severely, the

ruler remains vertical and straight. When a certain force

is reached, the ruler starts to form a curve: this is the

phenomenon of buckling. It occurs when the force acting

at the extremities has reached a certain value, below

which the ruler maintains the straight shape. Architects

and builders are careful to not exceed that limit, for

instance, when a terrace is supported by metal columns.

In our experiment, the ruler bends towards the right-

hand side when the force is increased above that limit. In

the same way, the ruler could obviously bend towards the

left-hand side! One may compare this situation to that of

a traveller when a bifurcation appears in front of them.

Bifurcation is just the name mathematicians give to the

physical phenomena that can occur in two equivalent

ways under the variation of a certain parameter.



The phenomenon of buckling: (a) When the vertical force F is smaller than a

certain value F0, the ruler does not bend. (b) When the force is above F0, the

ruler bends and could even break if the force is increased. (c) Variation of the

angle θ0 between the ruler and a vertical plane as a function of the value of

the force F. When the force F0 is increased, the ruler bends to the right (θ0 <

90°) or to the left (θ0 > 90°): the curve of the variation of the angle exhibits

two branches that display a bifurcation.

A Lake, One River

Usually, several rivers are tributaries of a large lake. For

instance, Lake Geneva receives the Rhone but also other

small rivers such as the Dranse from South and the Veveyse

from North. However, only one river, the Rhone, is effluent.

More generally, independent of the number of water flows

entering a lake, only one comes out! How do we explain

this?

The reason is that the water from the lake flows out along

the deepest channel it finds. Excluding exceptional cases of

floods, the water surface in the lake is usually at a lower

level than all other possibilities of channel formation,

therefore only one stream emerges from it. Even if more

than one flow is temporarily possible, this situation is

unstable, and we could only possibly find it for lakes

recently formed. In fact, the flow of water at the lowest level

and with the strongest current will cause an increase in the

erosion. Thus a decrease in the level of the lake will occur.

The amount of water contributed by other rivers will



progressively decrease, just to fill the bottom. Therefore,

only one flow of water, the deepest of the flows, will survive.

Rivers are characterised by analogous properties. It is

well known that there are confluences, while very seldom

they spontaneously split. The flows generally follow the

steepest line, and there is little chance that this line will

split. An exception is represented by a particular situation:

where rivers are about to enter the sea, they split to create

a delta (Fig. 9). In fact, when far from the sea, water courses

have to travel across pleats in the ground that has a long

geological history, going back several millions of years. On

the contrary, at the delta, the river makes the banks by

depositing flood materials in a shallow sea.

Figure  9. The delta of the Rhone. On approaching the Mediterranean Sea, the

river splits into several branches.

This chapter is at the end since our river has now arrived

at the sea. We shall find the sea again in Chapter 5 when

describing the astonishing physical phenomena represented

by the tides.



Chapter 2

Artificial and Natural Waveguides

How can a sound that originates on the Australian coast

arrive at the Bermuda islands, tens of thousands of

kilometres away? In order to understand why, we are going

to make an analogy between sound propagation and light

propagation, for the latter, the concept of “ray” being more

familiar. We will go deep in the ocean, searching the

mysterious waveguide that is capable of propagating the

sound over very long distances.

For about the last 20 years, an enormous and increasing

amount of data has been transmitted from continent to

continent, thanks to the optical fibres that crisscross the

ocean (Fig. 1). These fibres drive light waves which carry

information over large distances (Fig. 2). This is the way in

which a message instigated by your computer or telephone

is transmitted to a colleague in the USA or Japan. Obviously,

those light waves are dampened as they travel along their

path, but the reduction is relatively weak, and only a few

relays are required.



Figure 1. Bunch of optical fibres inside a protection sheath. The single fibre, in

glass or in plastic material, measures 125 μm in diameter, including its core,

cladding, and outer jacket.

Figure 2. Trajectory of a light ray inside an optical fibre. The propagating ray is

totally reflected at the interface between the heart and the sheath, thus being

driven along the fibre. The data are codified by means of variation in the

intensity of the light.

The Propagation of Sound Waves

Without the addition of technology, the ocean is capable of

working as a sound waveguide. This is the astonishing

phenomenon was discovered by Russian and American

scientists around 1940 and 1950, respectively; sound waves



propagated in the ocean and could sometimes be detected

at a distance of tens of thousands of kilometres from the

source! During one of the most spectacular experiments,

the sound due to an explosion in the deep sea near the

Australian coast could make half a circuit around the Earth

and be detected at the Bermuda islands, an archipelago in

the Atlantic Ocean. Thus, the sound signal could propagate

underwater for more than 19,600 km. This is indeed a

record!

The intensity of a sound signal inexorably decreases on

moving away from the source. In fact, the energy emitted

by the source has to divide approximately along all the

possible directions. By neglecting the frictional damping, the

total energy of the sound wave is conserved during the

propagation: at the distance R, the energy is distributed

over a surface proportional to R2. Therefore, the intensity of

the sound decreases as 1/R2 on moving away from the

source (Fig. 3). And this is without taking into account the

dissipation, absorption, and scattering of the sound from the

medium where the sound is propagating! Therefore, in order

for the explosion near Australia to reach Bermuda, with the

intensity of the sound wave still being sufficiently strong, it

had to be the case that the energy was driven towards the

archipelago without scattering along other directions (Fig.

4). That means that the ocean includes a kind of acoustical

waveguide, namely, a channel along which the propagation

can occur with weak attenuation. For the waveguide to work

in a proper way, it is essential that the walls are perfectly

reflective: not permeable or absorbent.



Figure  3. The intensity of sound emitted by a speaker (assumed as a point

source and propagating in all the directions) decreases as 1/R
2
 on leaving the

source, in the absence of guides as well as of obstacles. The total energy

remains the same, but is distributed over the surface of the sphere of radius R,

given by 4πR
2
.



Figure 4. An example of directional propagation of acoustic waves in air. The two

young girls are exchanging secrets. While placing the hand in the vicinity of the

mouth, the sound signal cannot longer propagate along all directions.

What is the principle that supports the existence of an

“acoustic waveguide” inside the ocean? We can guess that

it is a principle similar to the one for optical waveguides,

namely, based on the total internal reflection of the waves

from the walls (see Panel on page 16). Could the total

reflection of the acoustic waves occur at the interface of

water and air? No! The speed of sound is greater in water

than in air (in the cold Greenland Sea, it averages 1,411 m

s–1, in the warm Mediterranean Sea, it is 1,554 m s–1, while

the speed of sound in the air under normal conditions is 335

m s–1). This means that water is a much less “dense”

environment for sound than air — the situation is exactly

the opposite of the case of light propagation. Therefore, the

conditions for the total reflection cannot be met for a sound

wave passing from the water to the air. When a sound wave

coming from the deep sea arrives at the surface, there is

still a reflected and a transmitted wave. Another related

consequence is that instead of departing from the vertical



direction in the case of the acoustic wave, it approaches the

vertical.

Do we have to give up on the idea that the surface of the

ocean can be reflective? Not so fast. In fact, the fraction of

the energy that is reflected at the water–air interface

strongly depends on the angle of incidence and on the ratio

of the corresponding velocities. When the two velocities are

markedly different, as in the present case, the refracted

(outgoing into the air) wave intensity is indeed small for any

angle of incidence. Thus, the reflection is almost total at the

surface anyway: it can be proved that no more than 1% of

the intensity of the sound wave propagating almost

horizontally can pass from the water to the air. Therefore, in

principle the ocean surface can be capable of reflecting the

sound coming from the deep.

So, do we have an explanation of why the sound can

propagate for such a long distance within the ocean? No,

and for two reasons. First, a certain amount of energy is lost

anyway when the wave arrives at the surface. Second, the

surface of the sea is practically always affected by

fluctuations, and thus the reflection of the waves is

perturbed. In conclusion, the surface of the sea does not

offer the upper part of the oceanic waveguide we are

looking for, unless the sea is really very calm. On the other

hand, the bottom of the ocean is even less capable of being

the lower part of the waveguide. The bottom sediments do

not reflect the sound; on the contrary, they more frequently

absorb it. Thus, the oceanic waveguide we are looking for

has to be found elsewhere, in between the bottom and the

surface of the ocean, and we are going to find it in what

follows. To that end, let us study the process of propagation

of the sound in the ocean in more detail.

Reflection and refraction of the light waves



Let us recall the properties of reflection and refraction in

optics. When a light ray propagating in a medium 1 hits

an interface (assumed a plane) with a medium 2, part of

the light is reflected back towards medium 1, while part

enters medium 2 (figure): it is the phenomenon of

refraction. The angle of refraction α
2
 is related to the

angle of incidence α
1
 by the Snell–Descartes law:

where c
1
 and c

2
 are the velocities of the light in the media

1 and 2.

One can also write this law by resorting to the

refraction indexes of the two media, respectively, n
1
 =

c/c
1
 and n

2
 = c/c

2
, where c is the velocity of the light in

the vacuum.



When the ray arrives at the interface with an incidence

angle sufficiently high, the term  becomes larger

than 1 and no value of α
2
 can satisfy the equation given

above. In this case, we no longer have any refraction, and

the internal reflection is said to be total (see figure). This

is the phenomenon we take advantage of in optical

waveguides: the light beam undergoes a series of total

reflections inside the guide, and thus the light propagates

with minimum loss. Optical fibre is the most popular

example of optical waveguide.

Similar to light waves, even sound waves can undergo

reflection and refraction. If we consider a “sound ray”

(the ray corresponds to the direction of the propagation

of the energy), the Snell–Descartes equation is again

valid, where evidently c
1
 and c

2
 represent the speed of

sound in the different media rather than that of light.

The Speed of Sound in Seawater



In a liquid such as seawater, the speed of sound is a

function of its properties, which are not the same in every

point in the ocean. This is the key to the problem!

Depending on the amount of salt, temperature, and

pressure, the speed of sound in the water can vary from

1,450 m s–1 to 1,540 m s–1. For instance, the pressure

increases with increasing depth, and therefore the sound

travels faster. In the same way, the speed of sound

increases with increasing temperature. Cold water, being

more dense, is trapped at the bottom of the ocean. These

two competing effects mean that the speed at which sound

can travel is dependent on the ocean’s depth, as depicted in

Fig. 5. In the immediate vicinity of the surface, a sharp drop

in temperature first leads to a gradual decrease in the

speed of sound c(z). At great depths, the temperature

change is not so noticeable, the effect of increasing

pressure dominates, and this leads to an increase in c as we

approach the bottom. The velocity reaches a minimum at a

depth zm, often found between 1,000 and 1,200 m, but it

can go down as far as 2,000 m at low latitudes, where the

water is warm even at relatively large depths. On the

contrary, zm can be at 500 or 200 m or even less in the

region of the poles. The variation in the salt concentration

with depth in general is small and results in practically no

effect.



Figure  5. Example of the variation of the sound velocity as a function of the

depth, due to the increase of the pressure and the reduced temperature on

approaching the bottom. The speed is characterized by a minimum at depth zm

often around 1,000 m.

Sound waveguides due to man

The sound propagation in a fluid is characterized by a

perturbation temporarily affecting the density of the

particles microscopically representing the fluid itself.

Locally, a given layer of the fluid experiences a periodic

succession of compressions and of dilatations. In solids,

the sound is transmitted through a succession of local

vibrations that propagate.

In general, the speed of sound is greater in solids and

liquids in comparison with that in gases. This is not

surprising, considering that the particle density in a gas is

somewhat in between that in condensed matter and in a

vacuum (where it is zero), if one takes into account that

in a vacuum sound is not transmitted at all. Furthermore,

when the speed of sound is very different in two media,

then the transmission of the sound from one to the other

is rather hampered at the interface. This phenomenon is

something we see at work in a stethoscope, the

instrument used by the medical doctors in order to

auscultate the sound effects coming from the chest of the



patient. Long ago, the stethoscope was simply a long

wooden funnel.

Other waveguides are based on the phenomenon of

total reflection, occurring when a sound has to pass from

air into a solid or a liquid. For example, one can mention

the ancient way of transmitting words from different parts

of a ship by resorting to a long pipe. Usually, this was

made of copper or brass and used by the commander to

send orders from the stateroom to the engine

department. In such a device, the sound propagation is

almost mono-dimensional, meaning that the intensity of

the sound wave remains almost constant along the pipe,

regardless of the distance from the source. The

attenuation of the sound is indeed very weak, and it

would be possible to make a pipe 750 km long without

almost any absorption from the walls, so that a telephone

call from Paris to Marseille could be achieved.

Unfortunately, the speed of the sound in air being 340 m

s–1, the words would take about half an hour to travel

from the source to the end of the pipe, and thus

communication would be rather difficult!

When Sound Propagates in Zigzags

Consider now a sound ray whose source is at a depth of zm.

Regardless of whether it goes up or down, in the area in

which it finds itself, the speed of sound is greater than at

origin. Thus, as a result of the successive passage of layers

of water along its path, the sound ray is gradually bent, up

to a grazing incidence for which total reflection occurs (see

Panel on page 16). Then, it begins to bend in the direction of

increasing (or decreasing) depth, until it reaches the depth

zm again, where the change in the speed of sound changes

sign. Thus, the ray moves along a zigzag path between two

planes (Fig. 6). The reader, if they have some knowledge of



differential equations, can find the equation of the curve

from the Snell–Descartes relation (see Panel on page 16),

which can be written as

These two planes are the equivalent of the upper and the

lower walls of a waveguide, still lacking the lateral walls to

be really complete. However, thanks to the phenomenon

that we have described, the sound can propagate over very

large distances in the ocean. Our study is complete!

Efficiency of the oceanic waveguide

Not all the sound rays emitted by a given source can take

the “oceanic waveguide”. A source initially emits in all

directions, and the destination of the sound rays depends on

the angle that they form with the vertical. When this angle

is sufficiently large, the acoustic ray propagates indefinitely.

If the angle is small, then the ray can reach either the

bottom or the surface. The bottom of the ocean is rough,

and the sound is dispersed, and in general, this is also the

case for the surface, unless the sea is exceptionally calm

and flat. Thus, in general, the sea by itself cannot work as a

waveguide. In practice, it has been verified that there are

acoustic channels where the sound is driven at long

distances, or other regions where the sound does not arrive

at all.



Figure  6. The acoustic ray emitted at depth zm propagates in between two

planes where total internal reflection occurs. The dependence of the speed of

the sound in the ocean versus distance from the surface c(z) is shown by the

dark curve. The values z1 and z2 (assuming zero at the level of the surface)

depend on the angle of incidence at depth zm and are given by the Snell–

Descartes law.

The study of sound propagation in the oceans was the

cause of serious worries for American and British scientists

during the Second World War. The problem was to be able to

detect the presence of German submarines before they

could arrive at a distance sufficient for the launch of their

torpedoes. The submarine detection by acoustic means,

such as sonar, played a major role during the Battle of the

Atlantic: in 1943, after heavy losses, the Allies could finally

destroy a significant number of German U-boats, thus

sounding the death knell for their supremacy over the seas.

A simple model

It is interesting to consider the case when the sound velocity

is a simple function of the depth z. The simplest function

granting a minimum at zm is

where k is a constant.

The curve yielding the dependence of the speed of sound

as a function of the depth (see curves in Figs. 5 and 6) is

then a parabola. In practice, this is valid for a depth not too



far from zm. Thus, for an acoustic ray that is propagating

along a direction not so different from the horizontal one, it

is found that the propagation takes a sinusoidal path, with a

period independent of the inclination. Thus, all the sound

rays lying on a given vertical plane converge to points of the

axis of the waveguide z = zm (Fig. 7). These points are

analogues of the focuses of optical instruments such as

lenses, points where the incident optical rays converge: this

is the phenomenon of the acoustic wave focalization. The

parabolic form describes pretty well the variation of the

sound velocity as a function of the depth in the deep ocean.

However, the parabolic form c(z) is not always strictly valid,

and in these cases, the focalization cannot be perfect.

Figure 7. The phenomenon of the focalization of acoustic rays.

Conclusion

When a sound is emitted at a particular depth in the sea, a

relevant part of the acoustic energy remains inside an

“acoustic channel”. Is this sufficient to explain how a sound

can reach Bermuda after being emitted from Australia? One

can ask that. The mechanism we have described certainly

confines the sound in the vertical plane, but still other

directions of propagation remain possible. A sound wave

emitted in a given place in the ocean at a time t can

propagate a distance R of the order of ct, where c is the

average speed of the sound in the water, say 1,500 m s−1.

Even given the assumption that there are no losses, the



energy of the sound wave has to be distributed

approximately on a surface of a cylinder, namely, 2πRh, h

being the height between the upper and the lower walls of

the acoustic channel that may be of the order of the ocean

depth itself. The intensity of the sound decreases as 1/R

when the distance from the source increases. This decrease

is less rapid than, 1/R2, that of the sound in the air (see Fig.

2), still leaving some doubts that the propagation of a sound

can reach Bermuda starting from Australia. However, if

these islands should fall in a region where the sound rays

are focused (Fig. 7), then the height h can still weaken it.

Even if one should think that the horizontal variations of

temperature and salt amount can contribute to the vertical

reflecting walls, still it is amazing that the sound can reach

Bermuda, considering it must overcome obstacles such as

the Cape of Good Hope, and that in the ocean the plankton

and air bubbles should cause a certain amount of

absorption.



Figure 8. An example of mirage in the Libyan desert. As the light rays get closer

to the ground and approach layers of ever warmer air (and therefore of

increasingly small refraction index), they are progressively deviated, in a way

similar to the sound rays in Fig. 7, until they are reflected. Then, an observer

would think they are seeing a layer of water along the direction of these rays.

The sound propagation along natural submarine channels

is not the only example of waveguides realized by nature.

Electromagnetic waves offer other examples. The most

spectacular is that of a mirage: this is the consequence of a

non-rectilinear propagation of light in an atmosphere

warmed in an irregular way (Fig. 8). One could also recall

the short radio waves that can travel long distances, thanks

to the reflection onto the ionosphere in between 60 and 800

km altitude. Within certain conditions, a receiver can receive

a signal emitted by a radio station located in another

country.



Chapter 3

The Colours of the Sea and the Sky

The sky is blue in good weather and red at sunset. A few

hours after dark, the sky sparkles with stars. During

daytime, the clouds are white or more or less grey. When it

rains, sometimes we see a rainbow… Which physical

principles explain all those colours? In this chapter, we shall

address these questions. In addition, we will study the flying

habitants of the sky: the birds and the insects.

Seas and skies offer a variety of colours that have inspired

many artists. The Russian painter Arkady Rylov has

represented several of those colours in a painting exhibited

at the gallery Tretyakov in Moscow (Fig. 1). White and

somewhat dark clouds appear in the sky with different tones

of blue. The surface of the sea is a darker blue. The body of

the waves is almost black, while their tops are often white,

thus forming “white horses”.

The Colour of the Sea and the Strength of the

Wind

The number and the amplitude of the small waves looking

like white horses depend on the speed of the wind. This

information is important for sailors: to determine it, they

have a table of empirical correspondences written by the

British Admiral Sir Francis Beaufort (1174–1857). For



instance, the presence of a small number of small white

waves indicates a wind blowing between 12 and 19 km h–1,

namely 7 to 10 knots. This is defined as a gentle breeze,

and it corresponds to force 3 according to the Beaufort scale

(Table 1).

The luminosity of the sea’s surface is also related to the

angle of observation. In fact, a light ray hitting the surface

of the sea is in part reflected and in part refracted (see

Chapter 2). The fraction of the light reflected, among other

things, depends on the refraction index of the water and the

angle of incidence of the light ray. The more oblique the

angle of incidence, the more the reflection is increased.

Therefore, the sea’s surface appears brighter near the

horizon than near the observer.

Figure 1. “In the Blue Space”, the painting by the symbolist artist Arcady Rylov

(1870–1939).

Table 1. Beaufort scale.

    Speed of the

wind at the

height of 10 m

 



Force Terminology in

knots

in km/h Appearance of sea

0 Sea calm <1 <1 The sea like a mirror

1 Very gentle

breeze

1 to 3 1 to 5 A few waves without any foam

2 Gentle

breeze

4 to 6 6 to 11 Very small waves that do not break

3 Small breeze 7 to 10 12 to 19 Small waves (<60 cm), some sheep-

like

4 Sensible

breeze

11 to

15

20 to 28 Small waves (<150 cm) many sheep-

like

5 Good breeze 16 to

20

29 to 38 Moderate waves and weak sprinkling

6 Fresh wind 21 to

26

39 to 49 Billows (4 m), crests of foam and

sprinkling

7 Strong winds 27 to

33

50 to 61 Trains of billows up to 5.5 m that

initiate to break

8 Hits of wind 34 to

40

62 to 74 Tornado-like foam and sprinklings,

waves as high as 7.5 m

9 Strong hits of

wind

41 to

47

75 to 88 High waves break and the billows

reduce the visibility. Waves can be

as high as 10 m

10 Storm 48 to

55

89 to

102

Waves up to 12.5 m with crests

covered by foam and sprinklings

11 Violent storm 56 to

64

103 to

117

The sea is covered by foam and

sprinklings moved by the wind,

waves can reach 16 m

12 Hurricane >65 >118 The sea is white, the air is full of

foam and sprinklings, and the

visibility is practically zero

Note: An idea of the wind speed can be found by resorting not only to the

Beaufort scale but also to the contrast between the lightening of the sea

compared with the sky. They are the same when the sea is totally calm, in which

case, the horizon is hardly distinguishable. Usually, even a gentle wind can

move the surface of the sea, making a certain contrast observable: thus, the sky

is lighter than the sea, and the horizon appears as a well-defined line. The

contrast has been studied for many years by Russian scientists on board the

research ship R/V Dimitri Mendeleev.

What about the colour? On the surface, it is hard to

define since it depends on a number of factors including the

depth, the position of the sun, the colour of the sky, the

presence of particles or algae in suspension, etc. All these

factors affect the reflection at the surface, the scattering of



the light inside the sea, and its absorption. But most of the

time, the sea is blue. The reason for this is because water

absorbs less light between 400 and 500 nm (blue) than the

rest of the visible spectrum (see Panel below on this page).

Yes, water absorbs little blue! A glass of water appears

perfectly transparent. Only after a thickness of some metres

does the absorption of the water become noticeable.

Colours of the Sky in a Good Weather Day

While the colour of the sea can be difficult to predict, in

good weather, the colour of the sky can be explained

according to the principles developed by English physicist

Lord Rayleigh (1842–1919). In the absence of clouds, the

colour of the sky is determined by the interaction of sunlight

with components of the Earth’s atmosphere, namely with

inhomogeneities (fluctuations) of the density of nitrogen and

oxygen molecules.

How do these molecules react when irradiated by

sunlight? Let us refer to a monochromatic incident light,

namely light of a defined wavelength or in other words of

definite frequency ν and hence defined colour.

The vision of the colours

The human eye is sensitive to electromagnetic radiation

in the range of 400–700 nm (see figure). The colours of

objects are related to the light that they emit. This

emission occurs because they are somewhat hot (like a

piece of iron that is red) or because they scatter part of

the light received from other sources. The light arriving at

our eyes is in general polychromatic, namely it is the

superposition of different wavelengths in different

proportions. This composition fixes the so-called

“perceived colour”. An object absorbing all radiation thus

appears black: an object emitting all electromagnetic



radiation of different wavelengths between 400 and 700

nm with comparable intensity appears white.

Inside the eye, the colour perception is granted by cells

called “cones” that cover all of the retina. There are three

types of cones (see figure), and they transmit to the brain

the signal that makes it to yield the sensation of colour.

The different intervals of electromagnetic radiation and their applications.

The narrow range, which extends between 400 and 800 nm (at frequencies

between about 800 and 400 THz), corresponds to the visible range. Each

radiation or “spectral colour” is identified by its wavelength λ, which is

related to the frequency ν by the relation λ = c/ν, where c is the speed of

light in a vacuum.

The colours that are perceived are not only the ones of

the rainbow, namely the “spectral colours” that one can

obtain by decomposing the white light. The magenta

colour, for instance, is obtained by combining red light

around 680 nm with blue light around 480 nm.

Furthermore, the same perceived colour can result from

the composition of very different components. For

example, an object can appear yellow because it emits

monochromatic radiation of wavelength around 580 nm

or by irradiation of white light that has been deprived of

the short-wavelength radiations or as well by red light

with superimposed green light.



Sensitivity of the three types of cones versus the light wavelength.

Figure 2. Relative intensity of Rayleigh scattering. For monochromatic incident

light, (a) the molecules themselves emit radiation of the same frequency in all

the directions. Blue light falls at a wavelength around 450 nm and red at about

650 nm. As a consequence of the Rayleigh law, (b) the fourth power of the ratio

650/450 is 4.3, and therefore the intensity of scattering in the blue range is

about four times stronger than in the red.

The light is a combination of a magnetic and an electric

field, oscillating at frequency ν, both of which are

perpendicular to the direction of propagation. Due to the

effect of the oscillating electric field, the electrons of the

molecule also oscillate at the same frequency. Therefore,

the molecule itself emits light at the same frequency ν in all

directions (although not always with the same intensity in

different directions). It is by a similar mechanism that TV



antennas or radio transmitters emit radio waves. In the case

of sunlight, the wavelength is much greater than the size of

the molecules, and even variations in their density: we

speak of Rayleigh scattering. The calculation shows that for

a given intensity of incident radiation, the intensity of the

scattered light is proportional to ν4 (or to 1/λ4): this is the

Rayleigh law (Fig. 2).

What is the relationship to the colour of the sky? As a

consequence of this law, the intensity of the scattered

electromagnetic radiation is much greater for the high-

frequency components rather than for the low-frequency

ones. Therefore, the molecules of the atmosphere scatter

more the blue in comparison to the red, green or yellow

components. Thus, it is the blue light rays which mainly

arrive at our eyes. This is why the sky is blue! One could

object that according to this argument, the sky should be

violet since violet falls at a frequency even higher than blue.

It is true that the eye receives more violet than blue, but

there are also components of other colours, in particular,

green: the final visual result is a matter of physiology (see

Panel on page 27).

The Sky at Sunset and Twilight

At sunset, the sky close to the horizon turns a beautiful red

colour (Fig. 3). Once again, this colour is related to the

scattering of sunlight by the atmosphere. The light is being

scattered in all directions, and we receive a part of it, while

another fraction is irradiated into space. This latter portion

is small, but not negligible (Fig. 4).



Figure  3. (a) During daytime, a sky free of clouds appears blue since the

molecules of the atmosphere strongly scatter the blue components of sunlight.

(b) At sunset, the sunlight that arrives at our eyes has passed through a large

layer of the atmosphere.

In the range of visible radiation, the difference between

the energy received by the upper layers of the atmosphere

and that arriving at the ground is, in large part, due to

scattering. We find that during daytime, the energy arriving

at the ground is about 25% in the blue range while 10% is in

the red. At sunset, these proportions are modified since the

light has to pass through a very large part of the

atmosphere (Fig. 5). The blue light is almost totally

scattered, and an observer on the ground practically

receives only red radiation. After the sun disappears

beneath the line of the horizon, night progressively takes

hold. The colour of the sky during nighttime is another

matter (see Panel on page 32).

The Colour of the Clouds



In the Rylov painting, the clouds are white, grey or almost

black, depending on their thickness and also from the

position we are seeing them. In all cases, they are opaque:

we do not see the Sun through a cloud, but we receive its

light more or less strongly, depending on the cloud’s

thickness. This light is transmitted after scattering by the

drops of water that form the cloud. This scattering is very

strong, much more so than that by the variation in the

density of the oxygen or nitrogen molecules discussed

above. Why? The basic reason is that large objects scatter

radiation more than small ones. For example, if a drop of

water contains a million molecules (corresponding to a

diameter of 0.04 micron), it scatters about a million times

more strongly than would happen with a million isolated

molecules. Should we then suppose that if the drop contains

a billion molecules, then it would scatter a billion times

more than if we were considering a billion isolated

molecules? Not exactly! The diameter of this latter drop

would be 0.4 μm, no longer negligible compared to the

wavelength of visible light. In this case, the Rayleigh law no

longer holds since the rays scattered by the different

molecules are no longer in phase and cause destructive

interference, as we shall describe in the following. The

evaluation of the intensity of scattering by a spherical drop

of radius R was performed by German physicist Gustav Mie

in 1908. His result is an infinite series of terms that can be

evaluated numerically. For a small drop (R ≪ λ), we can limit

the attention to the first term, corresponding to Rayleigh

scattering. When the radius of the drop increases, we have

to take into account more and more terms. When R ≫ λ, the

case is again rather simple: in this condition, geometrical (or

ray) optics hold. What is found using geometrical optics? It

predicts that the amount of energy intercepted by a sphere

of radius R is proportional to the cross-section, namely to

R2. A large droplet intercepts a larger amount of energy



than a small one. Furthermore, the calculation shows that

the total intensity of the scattering by large droplets does

not depend on the wavelength of the light. This explains

why scattered light appears to become white when the

incident light is white. Thus, sunlight being white, the light

scattered by clouds is also white.

Figure  4. Light energy received by the upper layers of the atmosphere (in

yellow) and at sea level (in red) during the day, considering scattering and

absorption. The labels H2O and O2 report the absorption bands of the water and

the oxygen, respectively. The energy on the y axis is reported in W m
–2

 of the

surface and for nm of the wavelength.



Figure 5. The radiation at long wavelengths emitted by the Sun in the red range

is less scattered than the short-wavelength radiation in the blue range.

Therefore, falling at dusk at a low angle, the blue ray is strongly scattered by the

atmosphere and arrives at the Earth muffled unlike red. During the day hours, all

the colours of solar light reach the Earth surface (proportions not real).

Mysteries on a moonless night

During a moonless night, the sky is black, apart from a

few scattered stars. This can seem normal, but we remark

that there are a huge number of stars, possibly an infinite

number. An infinite number of stars should imply an

infinite amount of light. Could the black sky suggest that

the Universe is finite? This is what a German scientist,

Johannes Kepler, thought at the beginning of the 17th

century. During the 19th century, another German,

Heinrich Olbers, argued that the closer stars could mask

the ones farther away, so that, even in the case of infinite

Universe, the intensity of light during the night would still

not be infinite, even if it would be very great! The

contemporary explanation is that the universe is not

infinite in time. Since the Big Bang, a very dense and hot

period about 13.8 billion years ago, the Universe has

been in continuous expansion. As a consequence, the

light emitted by remote galaxies is shifted towards the

red. When we view something from far away, we are

looking back in the time since the speed of light is finite:



thus we see the galaxies in the state they were in when

their light was emitted, namely billions of years ago. From

a certain distance, we can look back in time to almost the

moment of the Big Bang, when the galaxies were not yet

born and the Universe was dark: we reach the

“cosmological horizon”, the limits of the Observable

Universe. We therefore cannot observe the entire

Universe, whether finite or infinite, and the night sky

appears black. In reality, it is not exactly black but full of

electromagnetic radiation of wavelengths much greater

than visible light (of the order of magnitude of millimetres

instead of micrometres). This weak radiation is not visible

to our eyes. It can be measured by a radiotelescope of

sufficient sensitivity (see figure). Its fortuitous discovery

by the USA scientists Arno Penzias and Robert Wilson in

1964 granted them the reward of the Nobel prize for

Physics in 1978. It represents “a diffuse cosmological

radiation” that is not emitted by the stars, nowadays,

known as the Cosmic Microwave Background or CMB. It is

the result of the expansion of the Universe following the

Big Bang, and it is itself expanding. Thus, the wavelength

of this radiation is increasing with increasing time.

The first image of the Universe, namely the cosmological microwave

background radiation, about 14 billion years old. The picture reflects the

temperature fluctuations present in the Universe about 380,000 years after



its birth, which correspond to the embryos of future galaxies. After the

discovery in 1965, this relic from the very early universe has been studied by

means of radiotelescopes on the Earth and by instruments carried by the

satellites or balloons. This figure reports the first detailed image obtained by

the satellite Wilkinson-Microwave Anisotropy Probe.

Interference and Coherence

The phenomenon of interference was demonstrated in the

19th century by means of a famous experiment performed

by the English scientist Thomas Young. At that time,

physicists were divided as to the nature of light: was it a

wave-like phenomenon, as Young’s experiment suggested or

a flux of particles? In the fourth part of the book (see

Chapter 22), we shall emphasise how both interpretations

were correct.

The equipment used by Young (Fig. 6) included a

monochromatic point-like light source placed behind an

opaque plate with two small slits (of the order of 0.1 mm)

spaced a little apart (a few mm). The light passing through

the holes falls onto a screen. The image on the screen was a

surprise: not a specific region of continuous light but a

series of alternate light and dark. Why is this?

The intensity of the light at a given point M of the screen

is the result of the superposition of waves passing through

holes A and B. This phenomenon of the algebraic sum of the

waves originating from different points is called

interference.

The result of the sum can lead to a null or a very weak

intensity. In this case, one speaks of destructive

interference. It could also lead to a stronger intensity: the

interference then is called constructive. The constructive or

destructive character of the interference depends on the

displacement of waves one from the other, namely the

phase shift when they arrive at the screen (Fig. 7).



Along the axis SO, the waves due to holes A and B arrive

in phase, and thus one observes a bright fringe. Once we

move away from this axis, depending on the point we are

referring to on the screen, the waves coming from the holes

will have travelled different distances. Their phases are

becoming different, and a periodic sequence of bright and

dark fringes is observed. We see destructive interference

(dark fringes) when the difference in distance travelled is

equal to a half-wavelength or to a multiple of that. We see

constructive interference (bright fringes) when the

difference in the paths is a multiple of the wavelength.

Figure  6. The Young experiment showing interference with the two holes. A

source of coherent light illuminates the holes: on the screen, one observes

alternating dark and light fringes. The rays arriving from the two holes A and B

are said “to interfere”. With a single hole, one would observe a single spot that

cannot be a neat circle because of diffraction.



Figure 7. (a) Two waves having the difference φ in their phases. (b) Two waves of

opposite phases interfere in a destructive way; the maximum amplitude of one

corresponding to a minimum in the amplitude of the other.

In the visible spectrum, the wavelength is about a

micrometer, namely about one-tenth of the diameter of a

human hair. However, the difference between two fringes on

the screen is larger than that when the screen is at an

appropriate distance d. The position OM = x of the bright

fringes can be obtained from the condition AM − BM = nλ,

with n being an integer. If a = AB is the distance between

the holes, one finds that the distance between the fringes is

λd/a. For λ = 0.5 μm, d = 3m and a = 0.5 cm, then the

fringes are 3 mm apart. Thus, we can distinguish the fringes

with the naked eye, even though it is not easy. Experiments

to show interference can be performed by students in a

laboratory. We should therefore admire Young for his

successful achievement in its original detection.

Instead of using two holes with the same bright source,

we might try to use two different point-like sources emitting

the same colour. However, in this case, the experiment fails!



Interference is possible only when the sources are coherent,

namely their phase difference maintains a constant value

over time. Yet, unless we take specific precautions, two

sources selected at random are not coherent. This difficulty

in observing light interference could lead the reader to think

it is an exotic phenomenon. This is not true! The colours of a

soap bubble are an example (see Chapter 6). In that case,

the interference is produced between the light directly

reflected from the surface of the film before the entrance

into the bubble and the ray reflected before its exit. Since

the observation is ordinarily made by resorting to white

light, the radiation that is in phase opposition cannot be

seen, and so the light appears coloured. The particular

colour depends on the position of the observer with respect

to the ball and on the depth of the film. These interferential

colourations seem to occur on the wings of butterflies such

as the Morpho, and the plumage of the hummingbird as well

as the cuticles of certain insects.

The Colours of the Rainbow

The rainbow is the result of the interaction of sunlight with

water drops suspended in the atmosphere (Fig. 8). These

drops of water have a size of the order of 0.1 mm, much

larger than the wavelength of the light. As a consequence,

the trajectories of the rays within the drop can be described

by resorting to geometrical optics, namely one refraction at

the entrance and another refraction at the exit, possibly

separated by one or more reflections. The principal rainbow,

usually the only observable one, corresponds to an internal

intermediate reflection, while the secondary rainbow,

sometimes observable, is due to rays that have been

reflected twice inside the drop of water (Fig. 9).



Figure  8. Principal rainbow (the brighter, on the right) and the secondary

rainbow. It is noted that their colours have a reverse order.

Figure 9. Trajectories of the light rays for a principal rainbow and a secondary

rainbow. The average angles of deviation are 42° and 51°, respectively.

Consequently, the rays that create the principal rainbow form a cone of

revolution, its axis being given by the right direction sun-observer. From B.

Valeur, La couleur dans tous ses éclats, Belin (2011).

For a given wavelength, the deviation of a ray from a

water drop depends on the place where it hits the drop and

is determined by the refraction law. Note the angles of exit



and entrance cannot take arbitrary values. For the principal

rainbow, the angle is between 0° and a value of the order of

42°, as the reader can confirm with a few calculations.

Deviations by an angle less than 42° are permitted, but in

the vicinity of 42°, the intensity is at a maximum. The same

happens for the secondary rainbow in correspondence to

the angle of roughly 51°. With the Sun behind us, we see

two circular shining arcs. Between these two arcs, there will

be a dark band: in fact, no ray can come out of the drop

after one or two reflections within the range of the two

angles given above. Thus, in the area between these two

angles, the sky appears dimmer than elsewhere.

We have explained the occurrence of the two arcs but not

yet their colours. In reality, the angle of deviation depends

on the colour since the refractive index of the water

increases with decreasing wavelength. Therefore, for a

given angle of incidence, the angle of refraction increases

with the wavelength, that is, moving from the blue towards

the red. Thus, the deviation at the entrance and exit from

the drop for the blue is larger than for the red. So, red is

found at the exterior of the principal rainbow. The opposite

happens for the secondary arc where the colours are

interchanged: the red is at the interior. These peculiarities,

related to the geometry and the law of refraction, are

examples of the surprises that scientific calculations offer.

Snell, Descartes and Fermat

Let us return to the law that in some places is named

Snell–Descartes or simply Descartes while elsewhere is

the Snell law. It would seem that Descartes was the first

to have published his treatise “Dioptrique” in 1637

although it was already known by the Dutch

mathematician Willebrord Snell (1580–1626).

Snell was likely relying on experimental data, while

Descartes wanted to demonstrate his law by assuming



that the propagation of light rays was similar to the

trajectories of a ball. Descartes’ formulation, not so

understandable, was criticised by Pierre de Fermat in a

paper published in 1662, entitled “Synthése pour les

refractions”. The “Fermat principle” formulated in that

manuscript stated that light follows the path that takes

the shortest time to move from point A to point B (see

figure). We leave for the reader the exercise to derive the

Snell law on the basis of the Fermat principle. This should

not be difficult if somewhat familiar with trigonometry

and calculus. It is only necessary to search for the point C

that minimises the time required by the light to travel

along the trajectory ABC, which is equal to AC/c + BC/v,

where c is the speed of the light in air and v = c/n the

speed in water. The formulation by Descartes is mainly

interesting from an epistemological point of view, while

the Fermat principle also has a certain interest for

modern Physics. In any case, it was Descartes who first

explained the genesis of the two arcs in the rainbow,

additionally providing an estimate of the corresponding

angle of deviation.



Analogy with the problem of a rescuer A who runs faster on the beach than

they swim in the sea and must save a person B in danger, as quickly as

possible. The shortest path, a straight line, is not the fastest since the

rescuer has to spend too much time in the sea (1). If they limit the part of the

path in the sea as much as possible (3), then they have to increase the path

on the beach too much. The fastest path turns out to be the one (2) predicted

by the Snell–Descartes.

What About the Birds?

In our analyses of the Rylov painting, until now, we have not

taken into account the birds, which contribute to the charm

of the sea. Now we will make up for that with the following

riddle: knowing the mass of a bird, what is the frequency of

the wing beat required for flying? Maybe the reader will not

wish to search for the relation between the two quantities

and will give up the attempt to understand?

Let m be the mass of the bird, S the total area of the

wing, v the average velocity of a wing, t the time for a full

beat, and ρ the specific mass of the air. During one beat of

the wing, the bird forces a mass of air given by M = ρSvt to

move, giving it a speed v, corresponding to an average

acceleration v/t, and therefore to a force F = Mv/t = ρSv2

that must be in equilibrium with the weight mg of the bird, g

being the gravity acceleration. Thus,

The velocity of the wing is proportional to the number v of

beats of the wing per second, and at the length of the wing,

i.e., to the square root of the surface √S. By assuming, with

certain arbitrariness, that the proportionality factor is 2π,

one derives



The mass of a heron (Fig. 10) is of the order of 1 kg. Its

wingspan is about 2 m, and one can assume S = 0.2 m2.

With the approximate values ρ = 1 kg m−3 and g = 10 m

s−2, the frequency of beats is about 3 bps, in good

agreement with observation (from 2 to 3 bps during flight).

Going further, let us assume the bird’s body is roughly the

same shape and with the same density. Then the area of the

wing is proportional to m2/3, and thus we can deduce that

the frequency of the beats is proportional to 1/m1/6 from the

equation above. In reality, we observe that the frequency of

the beats decreases when the mass of the bird increases:

the sparrow, whose mass is of the order of 20–30 g, flies

with a frequency of 13 bps, the dove (having a mass of the

order of 500 g) with one around 8–9 bps, while the buzzard

(mass of the order of 1 kg) at 3 bps.

Figure 10. The wings of the ash-coloured heron have a surface of the order of 0.2

m
2
.



And what of insects? In the Rylov painting, we do not see

any insects since they are too small. We would guess that

the frequency of beats is very strongly increased for insects

compared with that of birds, and this is in qualitative

agreement with our estimate. An extreme situation is that of

the mosquito which flies at about 400 bps. This is a pretty

high frequency, meaning an audible sound is associated

with the beats, and thus that we can hear when a mosquito

attacks. Knowing that the mass of a mosquito is 2 mg and

assuming that its wings have an area of the order of 10

mm2, we would conclude that the frequency is about a

factor 10 greater than the one evaluated by our formula.

This should not be a great surprise, taking into account that

such a small mass may be outside the threshold of validity

of our description, being only approximately valid. Rather, it

should be astonishing that it yields insights that are

qualitatively correct even for quite different orders of

magnitudes, from large birds to small insects. Might the

painter Rylov have suspected, while painting his tableau,

that he would evoke so many laws of Physics?



Chapter 4

Foucault’s Pendulum and the Coriolis

Force

By the beginning of the 19th century, practically everywhere

in the world held the firm conviction that the Earth was

spherical and was rotating on its axis. However, a real

experimental proof was still missing. The demonstration was

provided by a famous experiment suggested by Léon

Foucault. The rotation of the Earth around its axis explains

several meteorological and oceanographic phenomena, in

particular. In order to understand these phenomena, we

need to model them. For this, physicists appeal to a

fictitious force that was introduced by Gaspard Coriolis.

In the year 1851, the Pantheon, in Paris, was the scene of an

experiment carried out by physicist Léon Foucault (1819–

1858). A ball weighing 28 kg was suspended at the top of

the dome by means of a wire 67 m long, in this way,

forming a pendulum somewhat similar to the one in an old-

fashioned grandfather clock (Fig. 1). However, a pendulum

can only swing in a given vertical plane: Foucault’s

pendulum could oscillate along any direction.

The experiment consisted of shifting the pendulum away

from its equilibrium position (vertical) and then letting it

oscillate. Friction being rather weak, the pendulum could

oscillate a pretty long time without a noticeable decrease in



the amplitude of the oscillations. What would the

experimenters observe? In the beginning, it seemed that

the pendulum remained swinging in the same vertical plane,

the one defined by the axis of the pendulum and its initial

position, as would be expected in light of the simple

calculation learned in high school. However, after several

minutes, it could be seen that the plane of oscillation of the

pendulum was slowly rotating! And it always rotated in the

same way, in a precise manner, that we are now going to

describe.

Figure 1. A Foucault pendulum placed in the hall of the Pantheon in Paris, where

the experiment designed by Foucault was carried out in 1851. The pendulum,

once shifted from its equilibrium position, swings in a plane that is progressively

rotating.

Foucault’s Pendulum at the North Pole

Why is the plane of oscillation rotating? The Foucault

experiment can easily be understood if we consider placing

it at the North pole (or at the South pole). Let us imagine a

pendulum whose equilibrium position coincides with the

Earth’s axis passing through the pole. We deviate it from the



initial position, and allow to initiate the oscillations (Fig.

2(a)). For an observer whose position is fixed with respect to

the Sun and the stars (the relative positions of the stars

have to be considered fixed, namely, with a good

approximation, time-independent), the pendulum oscillates

along a fixed vertical plane (Fig. 2(b)). This is not the case

for a terrestrial observer, since the Earth rotates around its

axis, here assumed to be along the vertical at the point

where the pendulum is suspended.

Then the Earth rotates with respect to the plane of

oscillation of the pendulum, and the terrestrial observer,

who does not realise he is rotating with the Earth, gets the

impression that the oscillation plane of the pendulum is

rotating; the ball appears to deviate towards the west.

Remember, for us, the Sun appears to rise in the east and

move westward across the sky, whereas in fact the globe

rotates east while the Sun remains almost motionless. The

reader can figure out that at the South pole, the deviation

would be towards the east. For an object in vertical freefall

at the pole, there will not be any apparent deviation related

to the Earth’s rotation. On the contrary, at the equator, the

apparent deviation of a falling object seen by an observer

on the Earth would be at a maximum and towards the east

(see the following). Returning to the pendulum oscillating at

the pole, the pendulum will complete a full rotation in 24

hours. In contrast, in London, it would take more than a day

to see the plane of oscillation complete a full rotation.

Again, we shall discuss these aspects later on.



Figure 2. Evidence for the Earth’s rotation by means of a Foucault pendulum. (a)

Initial position of the pendulum at the North pole and of the observer located on

the Earth. (b) After 1 hour, the Earth has rotated with respect to the stars

(towards the east, as indicated by the arrow); the support is rotated, but the

oscillation plane of the pendulum stays fixed. For the observer located on the

Earth, the support has maintained its initial position, while the plane of

oscillation of the pendulum yields the impression of having turned.

The Force Devised by Coriolis

It may be annoying having the requirement of an observer

immobile with respect to the fixed stars in order to figure

out what is seen by an observer on the Earth, who is

rotating with the Earth itself. It would obviously be simpler

for this terrestrial observer to discuss the motion of the

pendulum by just considering that a force is acting on the

ball which pushes it towards the west. We can indeed make

this choice! Then we can analyse the motion of the Foucault

pendulum in a frame of reference tied to the Earth, namely

a “terrestrial frame of reference”. In order to account for the

Earth’s rotation, we have to assume that another force,

besides gravity, is acting on the ball. This pseudo-force is

known as “Coriolis force”, after the French mathematician

Gaspard-Gustave Coriolis (Fig. 3).



Figure 3. Gaspard-Gustave Coriolis (1792–1843). This portrait, made by Belliard

from a painting by Roller, is one of the few known nowadays. The name of

Coriolis, together with another 71 scholars, is celebrated in an engraving on the

first floor of the Eiffel tower.

In order to go into more detail, let us now forget about

the pendulum, where the oscillations complicated the

understanding, and rather let us consider a bullet of mass m

fired by a rifle. For further simplicity, let us assume that the

bullet moves forward along a straight line, and we shall be

concerned only with the effect of the Earth’s rotation on its

trajectory. This assumption is indeed unrealistic, as we shall



see, just being a device to simplify the analysis. Let us

imagine that the shooter is located at the North pole, in N

(Fig. 4).

A bullet P having initial velocity ν is fired towards the

target C. The Earth rotates around its axis at angular

velocity Ω, corresponding to one revolution a day.

After a time t, the Earth has rotated by angle Ωt and the

target has been shifted with it. Therefore, from the point of

view of the shooter at the North pole and looking towards

the target, everything appears as though the target is fixed

and the bullet has been deviated from the desired direction

NC. The distance of P from the line NC, at a time t and when

t is rather small, is approximately given by the product of

the angle Ωt and the distance covered by the bullet, namely

Ωvt2, having measured the angle in radians (the most

convenient unit).

Then, with respect to the Earth, and for a small time, the

bullet is moving linearly along the direction NC and in the

meantime is being accelerated towards its right, along a

direction perpendicular to NC (it would occur towards its left

if this were taking place at the South pole). Along this

direction, the acceleration, called Coriolis acceleration, is 2

Ων (having differentiated twice, with respect to t, the

distance Ωνt2 covered by the bullet). From Newton’s second

law of motion (see Panel on page 46), this means that the

bullet is subjected to the force 2mΩν, directed along the

Coriolis acceleration. This is the Coriolis force.



Figure 4. Deviation of a bullet due to the Coriolis force, in a frame of reference

tied to the Earth. The bullet, shot along the direction of the target C from the

North pole, is deflected towards the West with respect to the target. For an

observer outside the Earth, the trajectory of the bullet is a straight line. For an

observer fixed on the Earth, the trajectory of the bullet is deflected (the

curvature being exaggerated). The bullet is subject to an acceleration FCO, the

Coriolis acceleration, reported at two different times.

In general terms, the Coriolis acceleration is

perpendicular to the instantaneous velocity (Fig. 4).

Meanwhile, we have to remember that there is a vertical

acceleration, directed downwards, that we have disregarded

(but is not ignored when actually firing munitions!).

Let us clarify that the Coriolis force is a “fictitious” force,

or, as often they say the force of inertia, because it is not

caused by the physical impact of one body on another.

When describing the motion of a body in a rotating

coordinate system, the Coriolis force must always be taken



into account when the body’s velocity is not directed along

the axis of rotation.

Could a shooter disregarding the Coriolis force fail to hit

the target? Let us assume that the target is at a distance d

of 100 m, and the velocity ν of the bullet is 1,000 m s–1. The

time required for the bullet to reach the target is t = d/v =

0.1s. The angular velocity Ω of the rotating Earth is 2π

radians per day, namely 0.7 × 10−4 rad s–1. The deviation y

due to the Coriolis force is y = Ωνt2 = 0.7mm. Then the

shooter does hit the target and does not realise that it has

moved with respect to the line of the shot. We can also

estimate the Coriolis acceleration that results in 2 Ων,

namely 0.14 m s–2.

In meteorology, where the velocities are smaller while the

distances are much greater, the Coriolis force must be taken

into account in order to describe the movements of masses

of air or water. In fact, the deviation y = Ωνt2 due to the

Coriolis force can also be written y = Ωx2/ν having

introduced the distance x = νt covered by the body. When

the distance x is of the order of a hundred kilometres, for a

velocity around 20 km h–1, the deviation y turns out of the

same order of the distance x. For instance, for a sea current

with a velocity of 6 m s–1, namely 22 km h–1, the deviation

due to the Coriolis force after 100 km of travel is 10 km! We

shall return to the consequences of these effects in the

subsequent part of this chapter.

Newtonian mechanics

At the beginning of the 17th century, the Italian scientist

Galileo Galilei (1564–1642) made a first step towards the

understanding of dynamics and gravitation. He showed

that a free-falling body is being uniformly accelerated as

it moves. At the same time, Galileo formulated the

inertia principle that “a body which is not subjected to



any force moves along a straight line at constant velocity,

if in motion, while it remains immobile if this is its current

state”. Nowadays, this statement appears self-evident.

However, in the Aristotelean age, it was thought that a

body was necessarily immobile when no force was acting

on it. A short time after Galileo, the German astronomer

Johann Kepler (1571–1630) discovered the laws

controlling the motion of the planets: they describe

ellipses with the Sun at one of the foci. The English

scientist Isaac Newton (1643–1727) set out the basis for

the mechanics we now call “classical”, showing that those

properties could be derived from a few rather simple

hypotheses.

As the first, he adopted Galileo’s principle of inertia.

Second guess, or second Newton law, which is often

called the basic law of dynamics, says that a = dv/dt of a

point-like object, multiplied by the mass m, is equal to the

sum of the external forces F applied to it

This law gives us the basic equation of motion and

allows us to predict the position and speed of an object at

any given time, provided that we know where it was and

what speed it had at time t = 0. It is noted that the

acceleration is defined as the derivative of the velocity

with respect to the time, and it can correspond to a

slowing down, at variance with normal language (in the

case, when the vector a is opposite to the sense of the

trajectory)!



Page of the title of Philosophiae Naturalis Principia Mathematica

(Mathematical Principles of Natural Philosophy) published in the year 1687,

where Newton presented the fundamental results for mechanics.

It would seem that Newton’s first law follows from his

second law, by setting the sum of applied forces to zero.

However, the principle of inertia has its own deep

meaning which gives it the status of a law. The modern

formulation goes something like this: “there are certain

frames of reference, called Galilean, for which a moving

object maintains a constant speed when no forces act on

it, or when the sum of the external forces is zero”. In



other words, this law allows one to select such frames of

reference, in which the second and the third laws are

valid.

Newton’s third law is the principle of action and

reaction and states that “all the bodies that create a

force acting on any other undergo an opposite force, of

the same strength and same direction of the one created

by those bodies”.

Finally, Newton wrote the form of the force that the

gravitational attraction creates on an object and

formulated the law of the universal gravitation. This

states that two massive bodies attract each other by a

force proportional to the inverse of the square of the

distance between them.

Newton’s laws of motion and the law of universal

gravitation could explain with a great precision all the

problems of mechanics that were known at that time, for

instance, the fall of an apple (see figure) or the motions of

the planets! They have been used with a great deal of

success in astronomy in order to evaluate the trajectories

of satellites around the planets as well as to predict the

return of Halley’s comet in the year 1759. Unfortunately,

real problems are often of such severe mathematical

complexity that only approximate solutions are possible.

This is the case, for instance, of the three-body problem

(Sun, Earth and Moon, for example) under the reciprocal

gravitational attractions, for which no strictly exact

solution is possible.

Far from the poles

Until now, we have assu med our experiments are carried

out at one pole. What happens if we move far from the

poles?



With a few lines of equations, the texts of classical

mechanics derive the following: for a bullet of mass m

moving at the velocity v, the Coriolis force referred to the

Earth is a vector perpendicular to the rotation axis of the

Earth itself and to the velocity v having modulus

ϕ being the angle between v and the axis of rotation. In

order to find the orientation of this force, one can apply the

“left-hand rule” (see Panel on page 49).

The direction of the Coriolis force and the

vector product

The Coriolis force acting on an object of mass m can

easily be expressed on the basis of the vector product of

the velocity  and the rotation vector :

The left-hand rule in order to define the direction of the vector product  × 

. The left hand is placed perpendicular to the vector  so that this vector

passes through the palm while the forefinger is directed as the vector . By

opening the thumb, this indicates the direction of . (a) Case when  is

perpendicular to the rotation axis; (b) general case.



We remind readers that  is a vector associated with

any rotating object (here the Earth), parallel to its rotation

axis, having modulus given by the angular velocity Ω.

What is the result of a vector product? The vector product

of two vectors  and  with angle α between them is a

third vector, perpendicular to both of them and having

modulus Ων sin α. Its direction is given by the “rule of the

left hand” (see figure). The vector product is a very useful

formalism to describe several other physical phenomena,

in particular when studying electromagnetism.

The Coriolis force has a horizontal component that causes

the rotation of the plane of oscillation of Foucault’s

pendulum and that, in more general terms, causes the

deviation of the object in motion towards the right in the

Northern hemisphere and toward the left in the Southern

hemisphere. However, the Coriolis force also has a vertical

component, namely parallel to the vector of the force of

weight of the object. This component can often be

disregarded since, for the usual velocities, it is negligible in

comparison to the weight.

By returning to the case of the bullet travelling at the

velocity of 1,000 m s–1 the vertical component of the

Coriolis acceleration can take a maximum value of 0.14 m s–

2, which is weaker than the acceleration due to gravity g by

a factor of 70. For a tennis ball, which travels much more

slowly, the ratio is even larger than 1,000.

Now let us go back to Foucault’s pendulum and in

particular to the rotation period of the plane of oscillation.

From the equation FCO = 2mΩvsin ϕ, we can deduce the

horizontal component of the Coriolis force, which turns out

to be FCO = 2mΩvsin α, where α is the latitude of our

experiment. This component is maximum at the North pole,

where sin α = 1, and, in this case, we obtain the previous

result: the plane of oscillation of the pendulum makes a full



turn in 24 h. At the equator, α being zero, a Foucault

pendulum does not turn at all. In other places around the

Earth, the period of rotation is the one at the pole multiplied

by sin α and therefore the duration of a day has to be

multiplied by 1/sin α. The period of rotation of Foucault’s

pendulum is then a function of the latitude, being 24 h/sin α,

while at the poles, it is just 24 h. At the 45th parallel,

approximately close to much of Switzerland or the city of

Montreal, sin α being 1/ , a Foucault pendulum will rotate

slower than at the poles by a factor : instead of

completing a revolution in 24 h, it will take 24 h times ,

namely about 34 h.

Foucault, Galileo and Aristotele

Among the many Foucault pendulums that have been

functioning in the world, a special mention should be

reserved for the one at the Saint-Isaac Cathedral in

Leningrad, before this town became Saint Petersburg

again in the year 1991. That Cathedral had been modified

into a museum of atheism. What is the relationship

between Foucault’s pendulum and religion?

The presence of a Foucault pendulum in an anti-

religious building recalls the conviction of Galileo by the

Saint Office in the year 1633 (see figure). Galileo was

claiming that the Earth is rotating around the Sun for over

a year, while it is also rotating around its own axis once a

day. The Cardinals instead were convinced that according

to the Bible the Sun was rotating around the Earth with no

rotation of the Earth around itself. Moreover, the following

statement was claimed: “We judge and proclaim that you,

Galileo Galilei, are strongly suspected of heresy with

respect to the Saint Office for having believed and

declared a doctrine untrue and contrary to the saint and

divine Scripta, by claiming that the Sun is at the centre of

the universe, that is not moving from East to West and



that the Earth is moving while is not at the centre of the

world.”

Galileo facing the Inquisition.

As a consequence of this judgement, Galileo was

forced to renounce his theory. However, in claiming that

the Earth was rotating around its axis, he did not have

real experimental evidence. He had only extrapolated the

observations by Copernicus and Kepler who had claimed

how astronomical motions were better described in a

consistent way in the assumption that the Earth was

rotating! The experiment by Foucault in the year 1851

provided direct evidence of the rotation of the Earth

around itself and finally ended a controversy that had

begun nearly 2200 years before, when Aristotle had

described a universe perfect and eternal, with the Earth

at its centre.

In fact, Foucault was not the first to provide an

experimental proof of the Earth’s rotation. In the year

1833, the German scientist Ferdinand Reich had let some



stones fall inside a deep mineshaft, detecting a deviation

from the strictly vertical (about 28 mm for a fall of 158 m)

that was in agreement with the hypothesis of Earth’s

rotation, as it could be derived on the basis of the Coriolis

force (it is noted that for a body in freefall, the deviation

from the vertical due to the Coriolis force is towards the

East, as can be calculated from the rather complicated

solution of the equations of motion; the deviation would

be zero at a pole and a maximum at the equator).

Furthermore, in the year 1661, a few years after Galileo’s

death, the outstanding scholar Vincenzo Viviani had

carried out an experiment very similar to the one of

Foucault. Unfortunately, he could not provide a complete

explanation, in part because he was unable, but also

perhaps being afraid of the Holy Inquisition.

Where to see a Foucault pendulum?

A Foucault pendulum is such a fascinating object that the

reader should certainly visit a museum where it is in

operation. In Paris, the pendulum was returned to the

Pantheon in 1995 and can be visited when is not in repair.

Another one can be seen at the Museum of Arts and Metiers.

In London, there is one at the Science Museum and many in

America, although the one at the Smithsonian Institute has

sadly been permanently removed. Why not make your own

Foucault pendulum? Unfortunately, the difficulties are rather

serious. First, the pendulum should be sufficiently big that

the effects of the friction can be limited. The one in

Leningrad is 98 m long. Thus you would need a support

sufficiently tall from which to suspend the pendulum. Once

the pendulum is properly suspended and then set in motion,

the pendulum has the tendency to take the privileges of

freedom that are not allowed to its counterparts in common

watches: it could develop some twisting, and this would



increase the friction. Even worse, instead of remaining in a

plane of oscillation that slightly rotates, the pendulum will

have a tendency to describe a cone around that original

plane. The difficulties related to the phenomena recalled

above can be appreciated by the students who visit the

pendulum at the University of Grenoble, for instance.

Another Fictitious Force: The Centrifugal Force

Another example of force being “fictitious” is provided by

the centrifugal force, where the consequences are more

easily realised than those due to the Coriolis force. That

force appears in a rotating frame of reference with respect

to the fixed stars, and it tends to force the objects outward

from the centre of rotation of this frame. In everyday life, for

example, that force allows us to dry household linen in a

washing machine: the water is forced out through the holes

of the rotating drum. We also experience the centrifugal

force when travelling in a motorcycle (Fig. 5) or in a bus

when going along a narrow curve, and we are projected

towards the outside of the curve and often finish up on a

neighbouring traveller.

What is the value of this centrifugal force? Let us refer to

a child on a merry-go-round of radius R rotating at angular

velocity ω radians per second. The child lets go of a teddy

bear. By neglecting the weight, the bear moves along a

straight line at the speed v = Rω with respect to the ground

(by definition of angular velocity). For a short time, for the

child, the bear travels by uniform accelerated motion, with

acceleration given by v2/R = ω2R. This acceleration is

related to the fact that one describes the motion of the bear

with respect to the rotating frame of reference. From the

fundamental principles of dynamics in the rotating frame,

the bear of mass m would experience a force Fce arising

from the centre of the merry-go-round and having modulus

mω2R. This is the centrifugal force!



Figure 5. The motorcyclist is leaning towards the interior of the curve in order to

cancel the effect of centrifugal force. In a narrow curve, the speed of rotation is

increased, and therefore the centrifugal force also increases and becomes

relevant.

As with the child and their bear, we are subjected to a

centrifugal force due to the rotation of the Earth. It is about

300 times weaker than the gravitational force experienced

due to our weight, and we are hardly aware of it. It has also

the effect of causing a slight swelling of the Earth, which at

the equator is about 43 km larger than the distance from

pole to pole, and this difference is about 0.3% and therefore

without any spectacular consequences.



On the other hand, the centrifugal force due to the

Earth’s rotation has no influence on the motion of objects

with respect to it, for instance, on the motion of the wind,

that is the movement of air with respect to the ground. In

fact, the centrifugal force is acting at the same time on the

air and on the ground, and it only depends on the distance

from the centre of rotation. In contrast, the Coriolis force is

zero for an object connected to the ground in the terrestrial

frame of reference, but it acts on the air in motion. As a

consequence, it plays a significant role in meteorology, as

we are going to address.

Meteorological Manifestations of the Coriolis

Force

An important effect of the Coriolis force is that vortices form

in the atmosphere around high-pressure or low-pressure

zones and rotate in a well-defined sense, though in different

directions in the Northern and Southern hemispheres (Fig.

6).

We might think that masses of air flow directly into an

area of low pressure (also defined as de-pressure, often

written D in meteorological maps). In reality, the winds

deviate due to the Coriolis force. In the Northern

hemisphere, the winds rotate around the de-pressure area

in an anticlockwise direction. In the case of an anticyclone,

centred around an area of high pressure, the winds rotate in

a clockwise direction. In practise, they do not create a

complete vortex as represented in Fig. 6. However, we can

formulate the rule that in the Northern hemisphere the

winds have the low-pressure area to their left and the high-

pressure area to their right (Fig. 7). The opposite happens in

the Southern hemisphere (see Panel on page 56).

Another manifestation of the Coriolis force is the direction

of the trade winds that systematically, between the 30th

parallel South and the 30th parallel North, flow towards the



West. The major cause of these winds is convection (see

Chapter 7): the warm equatorial air rises and leaves room

for colder air coming from higher latitudes. As a

consequence, winds arise and are directed from North to

South in the Northern hemisphere and from South to North

in the Southern hemisphere. The Coriolis force pushes both

these winds towards the West (Fig. 8).

Figure 6. The winds around the centre D of a low-pressure region in the Northern

hemisphere. The pressure difference causes a flow of air towards the centre of

low pressure, as indicated by four entering external arrows. This wind deviates

because of the Coriolis force and moves towards the centre with an

anticlockwise rotation (grey arrows). The black arrows indicate the approximate

direction of the wind resulting from the equilibrium of the Coriolis force and the

force due to the pressure.



Figure 7. The Irene tornado approaching the Bahamas (Northern hemisphere) in

August 2011, as seen from a satellite. (a) The masses of air rotate in an

anticlockwise direction in the Northern hemisphere; the opposite would happen

in the Southern hemisphere. (b) The tempest Bingiza over Madagascar in

February of the same year.

The Coriolis force does not act only on the winds but also

on the ocean currents and the tides (see Chapter 5). The

effect of the Earth’s rotation on the displacements of water

masses was already addressed by Laplace in the 18th

century, well before Coriolis’ observation. However, Laplace

did not introduce a fictitious force to take it into account.

The idea of Coriolis was not accepted without reservations.

A member of the Academie des Sciences in the year 1859

wrote, “These fictitious forces lead to exact results;

however, just because they are fictitious, they are not suited

to achieve a good understanding of the mechanisms of the

phenomena by providing analysis of the real causes.” This

remark lets us realise the innovative character of the

concept developed by Coriolis, its role and usefulness being

nowadays undisputed.

In the bathrooms of different hemispheres

Anybody can see that when a sink is emptying, a vortex is

formed. What is the direction of rotation? A common error

is the belief that in the Northern hemisphere, the rotation

is always anticlockwise (Fig. 7), while in the Southern

hemisphere, it is the opposite. Evidently, a certain effect



of the Coriolis force is acting when a vessel is emptying,

but it is necessary for the container to be very large for

the effect to dominate.

Vortices can arise during the emptying of the container: at variance with the

usual belief the direction of rotation depends on other circumstances and not

the hemisphere in which the sink is located.

The experiment was carried out at the Massachusetts

Institute of Technology by Ascher Shapiro in 1962. His

container had a diameter of 2 m and a depth of around 15

cm. It took about 20 min for the container to empty, and a

vortex (evidenced by a floating object) rotating

anticlockwise was indeed formed after about 15 min.

For our own washbasins of much smaller size and

faster emptying, the direction of rotation of the vortex is

more closely related to the geometry of the vessel (like

asperities or the impulsion initially given to the water,

etc.). Thus, in practise, rotation in both directions is

possible.



Figure  8. Trade winds are directed towards the West for the Earth’s rotation

because of the Coriolis force (a), as can be understood by applying the left-hand

rule (b).

Returning to the Baer Law

According to the Baer law, the right bank of the rivers in the

Northern hemisphere is more rugged than the left one, while

the opposite effect occurs in the Southern hemisphere. This

observation has been made for Siberian rivers, the Danube

and the Nile. A possible explanation of this phenomenon

rests on the Coriolis force that implies a deviation of the

water in the rivers towards the right-hand bank (Fig. 9).

Due to friction at the banks, the current is faster at the

surface than at the bottom of the river, and therefore the

Coriolis force is stronger at the surface. As a consequence,

we see a vertical circulation of the water that favours the

erosion of the right-hand bank and the depositing of

materials on the left-hand bank. The mechanism has a

certain analogy to the formation of meanders (see Chapter

1). However, if one tries to estimate the effect of the Coriolis

force, it turns out to be very small. For this reason, it is

difficult to believe that the problem which was the aim of

the article by Einstein and of the related controversy for

many weeks at the French Academie des Sciences has been

fully solved.



Figure  9. The Coriolis force FCO diverts the currents of the rivers towards the

right-hand bank in the Northern hemisphere and towards the left-hand bank in

the Southern hemisphere.

Figure 10. The Coriolis platform in Grenoble. It was deconstructed in 2011 and

rebuilt in 2017.

Conclusion



In the attempt to solve a problem of mechanics, researchers

have the choice between two methods. In general,

astronomers opt for the system of non-rotating coordinates,

referring to the faraway stars, being conventionally fixed.

The other method is to choose the frame of reference fixed

to the Earth, and this requires the introduction of fictitious

forces such as the Coriolis force or the centrifugal force. This

is done in meteorology. It isn’t always simple to take the

Coriolis force into account in the calculations, and thus it

appears convenient to look for experimental confirmation.

This is the purpose of the “Coriolis platform” installed in

Grenoble, a basin 13 m diameter, rotating up to six

revolutions a minute (Fig. 10).



Chapter 5

The Ebb and Flow of the Tides

It is claimed that the sailor Pytheas, from Marseille, in the

4th century BC, already suspected that the Moon had some

role in driving the tides, having noted that the rhythm of the

tides corresponded to the rotation of the Moon around the

Earth. Nowadays, it is known that the tides are indeed due

to the action of the gravitational forces by the Moon and the

Sun on the great masses of water. In this chapter, we are

going to describe in detail their behaviour.

The tides are a spectacular phenomenon in particular areas,

for example, on the sides of the English Channel (Fig. 1),

and they can even be dangerous for walkers who like to

venture on the beaches.

From Newton (see Chapter 4), we know the law of physics

that is at the origin of the tides. Just after the formulation of

the law of the universal gravitation, it was argued that the

tides were an application of gravity. The Moon attracts the

water in the ocean, and a kind of large bulge is formed. This

bulge remains directed towards the Moon while the Earth is

rotating around its axis.

When this mass of water meets the coast, it ascends, and

the tide rises as the water flows in. Then it ebbs away, the

tide receding when the Moon has rotated. This description

raises some questions. First, the Earth rotates with a period

of 24 hours, while the Moon does not effectively change its



position during a day (it takes about 27 days to rotate

around the Earth). Thus, we should expect just one tide a

day. Instead, there are two tides in 24 hours! Second, why is

the role of the Moon so relevant for the phenomenon of the

tides despite the fact that the Earth is much more attracted

by the Sun?

The answers to these questions can be found in the

phenomenon of gravitation, the laws of which were

discovered by Newton.

Figure 1. Reefs at Étretat during the high and the low tides. The difference in the

height of the water between the two states in a given place can be around 10 m.

In a sea almost entirely closed, like the Mediterranean, that difference is only of

the order of 12 cm.



Figure  2. Newton, a fraction of seconds before his discovery of the law of

universal gravitation. The same fruit that one day had caused Eve’s misfortune

made the fortune of Newton.

Newton, the Founder of the Modern Physics

The story goes that Newton figured out the law of universal

gravitation when an apple fell down from the tree while he

was relaxing beneath it (Fig. 2). This was considered proof

that the Earth acted on the apple with an attractive force.

Obviously, this force was not acting only on apples, but, in

the same way, on all the objects that are close to the Earth.

Why only the Earth? Newton had an ingenious intuition: the

attraction had to be universal and thus also acting between

the Sun and the planets and more generally involving all

massive objects!

The fall of the apple and the motions of the planets can

be explained with the assumption that two objects of mass

M and m, at the distance D, act on each other by an

attractive force given by



where G is a constant, called the gravitational constant (Fig.

3).

From the fundamental principle of dynamics (see Chapter

4), by considering the force that the Earth exerts on the

apple, assuming we can neglect friction, then the apple

moves towards the ground with uniformly accelerated

motion, in agreement with Galileo’s discovery a few years

before (see Chapter 4). Then, the acceleration is 

where RT is the radius of the Earth and MT its mass. The

radius (about 6,400 km) had been known for a long time,

and the gravitational acceleration (around 10 m s−2) was

experimentally measurable. By assuming that the density of

the Earth is approximately uniform, Newton could estimate

the order of magnitude of the mass of the Earth and, at the

same time, estimate the gravitational constant G.

The precise value of G, as it is known nowadays, is G =

6.674 × 10−11 m3 kg−1 s−2. It is not that large! For a proton

and an electron, gravitational attraction is negligible in

comparison to the electrostatic attraction that also involves

the inverse of the square of the distance. For a large object

such as the Earth, it is just sufficient to keep us fixed to the

ground or to cause serious problems if we fall from a certain

height!



Figure 3. The law of gravity. Two objects A and B at the distance D exert on each

other an attractive force proportional to 1/D
2
.

The Sky Falls on Us

As opposed to the apple, the Moon does not fall to the

Earth, and the Earth does not fall into the Sun. Why, in spite

of the fact that gravitational attraction applies to any

object? A simple calculation can explain this, but we can

understand that, in Newton’s time, this apparent paradox

was astonishing to many people. And in a certain way, it still

remains a little surprising for us. Thus we are going to

provide the explanation.

If the Earth were suddenly to lose the gravitational

attraction due to the Sun, it would continue its path by

uniform motion because of the inertial principle (see

Chapter 4). Therefore, the Sun’s attraction does not allow

the Earth to fly away, but it is insufficient to cause the Earth

to fall into it. In order to understand this, we must recall the

concept of centrifugal force (see Chapter 4) that occurs

when the fundamental principle of the dynamics is applied

to a rotating frame of reference. If the system rotates with

an angular velocity Ω around a fixed center O, then the

centrifugal force acting on a body of mass m at a distance D

from the center is



The direction of this force is outwards with respect to the

circular trajectory. For the Earth, rotating around the Sun,

the centrifugal force F2 exactly balances the gravitational

force F1 due to the Sun, and thus the planet does not fall

into the Sun itself. This equilibrium occurs when the Earth

rotates around the Sun along a circular path of radius Ds,

with the angular velocity

where Ms is the mass of the Sun.

In reality, the orbit of the Earth around the Sun is not a

circle but an ellipse.1 That can be deduced from the law of

universal gravitation, but, in this case, the calculations are

more complex.

As remarked by Newton, the law of gravity explains both

the motion of the Earth around the Sun and also of the Moon

around the Earth. We can show that it explains the tides as

well.

The Origin of the Tides

In analysing the tides, if we take into account the

interactions involving the Earth, Moon and Sun, the

calculations are too complex. Thus we shall start by

assuming that the Moon does not exist, and the Earth and

the Sun are isolated bodies. This assumption is obviously

unrealistic in dealing with the tides, but it simplifies a

preliminary calculation.

We already argued that the centrifugal and gravitational

forces acting on the Earth balance each other. This is true at

the Earth’s centre, but it is incorrect if we consider a point

on the surface of the Earth. At a point closer to the Sun



(such as the point A in Fig. 4), the distance D to the Sun is

smaller, and the attraction by the Sun (proportional to 1/D2)

is therefore stronger, while the centrifugal force

(proportional to D) is weaker. Therefore, the resulting force

is directed towards the Sun. The water at A is attracted

towards the Sun, and a high tide occurs!

At a point more distant from the Sun (such as point B)

where the distance R is larger, the attraction towards the

Sun is weaker, and the centrifugal force can push the mass

of water farther away from the Sun. Thus, another high tide

is produced. If the Sun were the only celestial body causing

the tides, we would observe exactly two high tides a day,

one at noon when the gravitational attraction dominates

and one at midnight when the centrifugal force is strongest.

As a consequence, assuming the Earth is a purely water

world with no land masses, then it would take the shape of

an ellipse (a little bit stretched out, as we will see) or rather

the shape of a rugby ball (see Fig. 4). The stretching out of

the points of the ellipse is limited by the gravitational

attraction of the Earth on the masses of water, obviously

much stronger than that due to the Sun or the Moon.

Figure 4. Attraction due to a celestial body (Sun or Moon) at the ground of the

Earth. At the centre of the Earth (at O), the gravitational force is balanced by the

centrifugal force. At A, the gravitational force is stronger than the centrifugal

force. At B, the gravitational force is weaker than the centrifugal force.

Therefore, the ocean water masses are attracted by the celestial body at A,

while they are repelled at B.



The analysis made in regard to the action by the Sun is

equally valid for the Moon: the bodies of water closer to the

Moon are attracted, while the ones farther away are

repelled. Which is the more effective action, that due to the

Sun or the one due to the Moon? To find out, a simple

calculation is required (see Panel on page 77). It transpires

that the force acting at the point A closer to the attracting

celestial body (Moon or Sun) is proportional to M/D3, where

M is the mass of the attractor and D the distance from the

Earth. The quantity MS/  is about half of MM/ . Thus, the

influence of the Moon on the tides is roughly a factor two

stronger than that due to the Sun! Since the Moon does not

move quickly around the Earth, two tides do occur around

every 24 h. However, because of the rotation of the Moon

around the Earth, there is a little more than 12 h between

the two tides (12 h and 25 min).

Thus the effect of the Sun on the tides is far from being

negligible. When the three celestial bodies lie approximately

in a straight line, which happens a little more than once a

month (Fig. 5), the effect of the Moon combines with that of

the Sun, and therefore the tides are particularly marked.

These “spring tides” correspond to the full Moon or the new

Moon, while the weak tides, also known as “neap tides”,

occur in the first and the last quarters (Fig. 6). On the other

hand, the tides are particularly strong at the equinoxes

since, at that time, the Sun is in the equatorial plane of the

Earth.



Figure 5. Phases of the Moon. For a terrestrial observer, the fraction of the Moon

that is in bright light is related to its position along the orbit with respect to the

Sun. About 15 days separate the new Moon from the subsequent full Moon.

Figure 6. At the full Moon and at the new Moon, the effects of the Moon and the

Sun sum together, and the tides are particularly strong. Conversely, the tides

are attenuated in the first and the last quarters.

The fight between the Moon and the Sun for

greater influence



Does the Moon or the Sun have the most influence on the

tides? To estimate that, let us consider a small quantity of

matter (for instance, water) having mass δm at a point M

on the Earth’s surface at a distance r from the centre O.

This matter is attracted towards the Sun by the force f
S
 =

−GM
S
δmr′/(r′)3, where M

S
 is the mass of the Sun, G is the

Newton gravitational cstant and r′ = D
S
 + r is the vector

joining the centre of the Sun to the point M, while D
S
 is

the vector connecting the centre of the Sun to O. At the

point O, the force is  At any point M, one

can write f
S
 = f

0
 + δ f

S
, where δ f

S
 is related to r as shown

in Fig. 4. This is the driving force causing the tides. From

a simple calculation, we derive, at the surface of the

Earth,

where  For the Moon, we obtain an equivalent

equation where the term  is substituted by .

Thus in order to compare the effects of the Sun and the

Moon, we must compare the terms  and . From

the Table below, we immediately see that the force

related to the Moon is a little more than twice the one

related to the Sun.

Taking into account that  (r
M,S

 is the

radius of the Moon or the Sun, respectively), we can

conclude that the tidal force is proportional to the product

of the density of the celestial body ρ
M,S

 and the cube of

the angular size  of the latter. Coincidentally, the

Sun and the Moon appear the same size in our skies,

meaning their angular sizes are the same, while the

average density of the Moon (3.34 gcm–3) is

approximately twice that of the Sun (1.41 gcm–3), which

again justifies our above estimation of their relative



contributions to the tidal forces.

Mass (kg) Distance from the

Earth (km)

M/D
2

M/D
3

Sun 1.99 × 10
30 149,598,000 0.89 × 10

14 0.59 ×

10
6

Moon 7.35 × 10
22 384,400 0.50 × 10

12 1.30 ×

10
6

Earth 5.98 × 10
24 – – –

Data for the Sun, the Moon and the Earth. The ratios in

columns 4 and 5 allow us to compare the relative

effectiveness of the gravitational attractions that the Sun

and the Moon produce on the Earth and their effects on

the tides.

The Moon during the night in a clear sky has inspired a number of beliefs and

superstitions. While the Moon to a large extent has an effect on the tides, the

effects on the sap flow of the trees or on the mood of human beings, as well

as on werewolves, are still awaiting a scientific demonstration.

However, the gravitational force due to the Moon on

the Earth is much weaker than that due to the Sun. This is



because the force due to a mass M at the distance D is

proportional to M/D2 and the quantity  is about 200

times the value of  as reported in the table. And

what about the influence of the Sun on the motion of the

Moon? We must compare  to  where M
T
 is the

mass of the Earth. These two quantities are of the same

order of magnitude (see table). Therefore, we cannot

neglect the effect of the Sun on the motion of the Moon. I.

Martin, C. Gutzwiller, Rev. Mod. Phys. 70, 589–639 (1998).

Tidal Heights and Predictions

The ingenious and simple theory by Newton cannot predict

the height of the tides. In fact, it would predict a tidal range

(the difference between the high and the low tides) of some

tens of centimetres. In reality, the tidal range can reach tens

of meters at the coast. Furthermore, it varies considerably

from site to site, and this can hardly be explained on the

basis of what has been addressed above. Newton had to

assume that the surface of the ocean was always in

equilibrium and could strictly obey the forces acting on it.

About a century later, it was a French mathematician and

physicist, Pierre-Simon Laplace (1749–1827), who

emphasised that a correct theory had to be dynamical.

Resonance phenomena indeed play a great role in the

mechanisms of the tides: the tides on a certain day are

affected by those on previous days and influence

subsequent ones. The Coriolis force also plays a role by

shifting the currents within bodies of water: this is the

reason why the tides at the coast of the English Channel

vary by some tens of meters on the French side, while on

the English coast are limited to several meters.

The height of the tides is related not only to the motions

of the Moon and the Sun with respect to the Earth but also

to the structure of the coasts and underwater relief. It would



require a very complex and difficult calculation to take these

factors into account. Fortunately, it is possible to predict the

tides with high confidence by considering the sea level, at a

given point, as a sum of sinusoidal functions of the time, ∑ai

sin(ωit − αi). About 12 terms are sufficient. The frequencies

ωi are well known, while the coefficients ai and the de-

phasing factors αi are experimentally estimated, for each

point of the coast.

Days Lasting Longer… and a Moon Getting Ever

Farther Away

Observations reveal the tides occur about 12 min later

compared with the real motion of the Moon. By assuming

the Earth is an elliptical shape, this delay means that its

major axis is not exactly aligned towards the Moon. In fact,

it forms an angle ϕ of the order of 3° with the Earth–Moon

axis (Fig. 7). Indeed, the water, due to the inhibition of its

movement by friction of the bottom of the ocean and the

coast, does not have time at each moment to take the most

energetically favourable position. This friction leads to the

conversion of some of the kinetic energy of the Earth’s

rotation into heat. The tides slow down the rotation of the

Earth! As a consequence, the length of the day is

increasing, as was claimed in the 19th century by English

physicist Lord Kelvin. This increase has been estimated with

rather good precision, by looking at fossil corals present in

the Indian Ocean for 400 million years. These corals exhibit

a succession of rings, related to the alternation of day and

night (daily rings). By studying these rings, scientists have

found that the solar year, namely the time for the Earth to

complete one full revolution around the Sun (which is the

same today as it was 400 million years ago), took 395 days

in that earlier time. This means that the length of each day

was only 22 h!



Figure 7. The consequence of the tidal delays for the movement of the Moon.

The Earth and the Moon are seen by an observer above the North pole. The

Moon rotates in the same direction as the Earth but with a much slower angular

velocity (about one revolution a month). The tides on the Earth are delayed by

an angle ϕ (not to scale) with respect to the motion of the Moon. Because of this

delay, the attraction force implies a small component  perpendicular to the

axis Earth–Moon, that pushes the Moon farther away from the Earth.

The delay of the tides has another consequence: the

Moon is moving away from the Earth! In fact, one can refer

to a rugby ball with its axis not oriented along the line

Earth–Moon. Then, the attraction force by the Earth on the

Moon is not directed exactly towards the centre of the Earth:

a component perpendicular to the Earth–Moon axis arises.

This force can push the Moon away from the Earth at a rate

of 3.8 cm a year … we are moving away more and more

from our neighbour, the Moon.

Energy from the tides

The tides involve a great amount of energy that we could

try to benefit from. This is the purpose of tidal power

stations (see figure) that take advantage of the water

currents flowing due to the difference in the heights of

the tides, to produce electric energy. Is tidal energy really

inexhaustible and cost-free in the same way as solar or

wind power? We have seen how the tides cause a certain

slowing down of the rotational motion of the Earth. In

principle, the use of tidal energy should accelerate this

slowing down.



Let us estimate the maximum energy that we could

obtain from tides. We will give an order of magnitude

rather roughly by assuming that each day the tide raises

the height of the water by h = 1 m for a surface given by

R
T

2. We obtain energy of the order of  where ρ is

the specific mass of the water, which is 1018 J day–1. Over

the course of a year, this value corresponds to about the

total energy budget of the entire world in 2008 (about 5

× 1020 J). Now let us compare this value to the rotational

kinetic energy of the Earth. This energy turns out to be of

the order of  the mass of the Earth being M
T
 = 6

× 1024 kg, its radius R
T
 = 6.37 × 106 m and ω the angular

velocity of one revolution per day, namely 7 × 10−5 rad s–

1. We obtain about 2.4 × 1029 J. Dividing this result by 5 ×

1020 J, we can deduce that, even if human beings

extracted all the energy from the tides (which sounds

practically impossible), the Earth could still continue to

rotate for half a billion years.

In Northern France (the Bretagne), this tidal barrage on the river Rance has

been operating since 1967. The barrage, which also serves as a bridge,



functions in two senses: the turbines are rotating twice a day, both in the ebb

and in the flow. The installation uses the variation in the level of the tides in

order to produce electric energy.

1
 The eccentricity of the terrestrial orbit (ratio of the distance between the foci

and the major axis) is 0.017, not far from the value zero pertaining to a circle.

The one of the ellipse that the Moon describes around the Earth is 0.055.



Chapter 6

Bubbles and Droplets

Bubbles and droplets are fascinating objects for children, for

grownup children, and for scientists. “Blow a soap bubble

and observe it. You may study it all your life and draw one

lesson after another in physics from it.” This was written by

English physicist Lord Kelvin. Therefore, we shall devote our

attention to the subject in this chapter. We shall see why

droplets, as well as bubbles, like to take a spherical shape,

how to obtain bubbles with a cylindrical shape or a saddle

horse and also how to create a microphone by means of

water flowing from a tap!

Why the Rain Falls Drop by Drop

Often water takes the shape of droplets, with a size of the

order of millimetres. This can easily be seen just by looking

at the falling rain. Why does this happen? Why does water

from a dropper come out while light pressure is applied and

always in the form of droplets with a rather well-defined

diameter?

Minimising potential energy and surface

tension

Objects have a tendency to minimise their potential energy,

namely the energy that they have acquired as a



consequence of their position in space and interactions with

neighbours. It is a consequence of this principle that a

billiard ball will fall down a hole, as sometimes happens to

human beings: they minimise their potential energy due to

the gravitational attraction of the Earth.

On the other hand, droplets have a tendency to acquire

the geometrical form that minimises their surface energy. In

fact, in order to increase the surface of a liquid, one has to

provide energy. This is what we call “surface energy” (or

“interfacial energy”). What is the reason for this behaviour?

Molecules near the geometrical surface of a liquid are in

a specific situation: instead of being surrounded by

molecules of the same type, as happens for molecules in

the interior of the liquid, they have identical neighbouring

molecules on only one side, with a few molecules of air as

neighbours too. We note that, in general, the molecules of a

liquid attract each other and thus the molecules at the

surface, being more isolated, are in a less favourable

energetic state. This is why energy is required in order to

increase the surface area of a liquid (this also explains why

egg whites have to be whisked in order to form peaks). This

energy, for a unit area of surface, is called the coefficient of

surface tension. It keeps the surface of a liquid as a taut

layer and prevents wrinkles. The coefficient of surface

tension of most liquids has been evaluated (see Table 1),

and it is usually expressed in joules per square meter.

Table 1. Surface tension coefficients for different liquids.

Liquid Surface tension (in mJ m
–2

 or mN m
–1

)

Water (25°C)   72

Water (100°C)   59

Ethanol (25°C)   22

Mercury (25°C) 485

One can consider the coefficient of surface tension as a

force per unit length, expressed in newtons per meter. This



way of considering the surface tension suggests a simple

experiment that allows us to visualise this phenomenon (Fig.

1).

Using metal rods, we shall construct a rectangular frame,

with one of the sides of length being a movable rod. The

frame is immersed in water with soap powder diluted in it.

Then we extract the frame so that a rectangular film is

obtained. Under the action of the surface tension, the film

begins to contract by attracting the mobile rod.

Figure 1. A film of soapy water creates a force 2F (since the film has two faces)

acting on a mobile rod. When the rod has been shifted by a length x, the work

2Fx is equal to the decrease of the potential energy 2σLx of the film. Therefore,

the surface tension σ is given by the force per unit length F/L.

Similar to surface tension, we can define an interfacial

tension between two immiscible liquids (two liquids that do

not mix each other), as well as between a solid and a liquid.

The equilibrium shape of a single drop is the one

minimising the surface energy. This energy is given by the

product of the surface area with the coefficient of surface

tension. Therefore, the equilibrium shape is the one that for

a given amount of liquid minimises the surface area. This

condition defines a sphere! Thus water droplets or those of

other liquids have to take a spherical shape (Fig. 2). That

said, this shape may be perturbed by several factors, which

we shall address as we progress through this chapter.



Size of the drops

The equilibrium form of a droplet in air is to be spherical.

What about the size of this sphere? The growth of a drop is

usually affected by its weight. As an example, let us

consider the formation of a drop in a typical medical dropper

(Fig. 3). When a certain pressure is applied to the ring nut,

the liquid comes out from the dropper. The drop is not

exactly spherical, but still has a dimension roughly equal to

R in all directions (Fig. 3(a)). Therefore, its mass is of the

order of ρR3 (ρ being the specific mass of the liquid) and its

weight is of the order of gρR3 (where g is the acceleration

due to gravity). Its surface energy is about σR2, σ being the

surface tension of the liquid. Because of its weight, the drop

begins to detach (Fig. 3(b)). Meanwhile, it has moved by a

length of the order of R, and its gravitational potential

energy has decreased by a term of the order of gρR4 (the

variation in the potential energy being given by the product

of the weight times the difference in the height). During this

process, the surface energy of the drop is increased by a

term of the order of σR2.



Figure  2. Water droplets on a spider’s web. The shape is spherical, with the

exclusion of the bigger drops which are more affected by gravity due to their

greater weight.

Figure 3. Detachment of a drop. The drop, its shape being a portion of sphere, if

affected only by its surface tension, in turn is stretched out by its weight.

Due to its weight, the fall of the drop can only happen

when the decrease in potential energy is larger than the

increase in the surface energy; therefore, at the condition,

when the radius R is larger than an amount R1 of the order

of



a drop of smaller radius would still remain attached to the

dropper.

More generally, the value R1, called the “capillary

length”, is the length above which the role of the weight

becomes more relevant than the surface energy. For

example, if we place a small amount of liquid on a plane

surface, then a drop is formed having a free surface of

roughly spherical shape. However, when the radius of the

drop is larger than R1, a flat coating is obtained. In

conclusion, the radius of the drops is not larger than R1 (see

Panel on page 67). In the case of water, by taking g = 9.8 m

s−2 and ρ = 1,000 kg m−3, the capillary length is of the

order of 3 mm.

Soapy Bubbles

We can create drops of water in air as well as bubbles of air

inside water, and also bubbles of air within air itself using

soapy water. In fact, bubbles created in this way are

relatively stable, unlike those made just by using pure water

(Fig. 4).

Why raindrops do not get big

Why we do not see big raindrops? In Paris, a group of

physicists decided to study the problem by letting drops

of water of different radii fall from a height of 8 to 12 m,

while photographing them (see figure). Small drops were

found to retain their spherical shape. The bigger drops

were instead observed to flatten, and, above a certain

critical size, they became like sacks. The researchers

noticed that air enters this “sack” during the fall of the



drop, which eventually tears it. Thus, a droplet larger than

a certain critical size could not reach the ground whole.

Therefore, we could thank our good luck that allows us to

avoid drops as big as centimetres when raining!

The critical size is of the order of the capillary length.

This could be surprising since the role of air resistance is

clearly relevant in the experiments, while in Eq. (1) it

does not appear. However, when a drop is falling from the

height of 12 m, after some time, it reaches a constant

(terminal) velocity of some metres per second (about 9 m

s–1 for the big drops and some m s–1 for the smallest

drops), due to the equilibrium between its weight and the

air resistance. Thus the force due to the air resistance is

equal, in absolute value, to the weight, even though its

distribution on the surface is different. While we are

fortunate not to experience large raindrops, unfortunately

large hailstones can reach the ground. This happens

when the initial drops are becoming large because of

several upwards currents. Some attempts have been

made in the hope of preventing that process; the idea has

been to crush the clouds by means of particles that

should induce the formation of usual-sized drops but has

not led to any real successes.



(a) Shape acquired by a drop of water falling in air as a function of its size.

From the top, drops having diameter D less than the capillary length, about

equal to it and finally larger than it [from Reyssat et al., Europhys. Lett. 80,

34005 (2007)].  

(b) Shape of the sack acquired by an initially spherical droplet having radius

around 18 mm, during its fall. The droplet was progressively filled with air,

and finally had to break into pieces (Ibidem).

The molecular structure of the film in soap water offers

enough material for a lecture on physical chemistry. The

soap provides particular molecules, defined as surfactant,

characterised by a part, the head, known as a hydrophile

(namely something that likes water) and a tail that does not

like water, called a hydrophobe. In order to keep the head in

the water and the tail outside it, these molecules favour the

formation of a surface by aligning themselves perpendicular

to it (Fig. 5).

The presence of these molecules decreases the surface

tension. The equilibrium shape of a soap bubble is the one

that minimises the surface energy: a sphere. The little

bubbles, just as with the little drops, are therefore spherical!

But the large bubbles are also spherical since they are

hardly affected by gravity: the film is very thin and therefore



light. Thus, they are suitable objects for the study of surface

tension and its effects. If the shape of the bubble depended

only on surface tension, then it would continue to reduce its

surface: the bubble would become smaller and smaller and

in the end would disappear. Since the bubble contains air, a

decrease in the diameter implies an increase in pressure:

when the internal pressure becomes larger than

atmospheric pressure, then the walls of the bubbles are

repelled, and an equilibrium sets in.

Figure 4. Soap bubbles. The beautiful colours are due to interference processes

(see Chapter 3).



Figure 5. Scheme of the film of soap water. The surfactant molecules decrease

the surface tension and make it difficult for the bubbles to dissolve. The

hydrophile head is in general electrically charged and strongly interacts with the

water molecules. Thus a kind of electric dipole is created (see Chapter 16).

The Laplace formula

What is the extra pressure that stabilises a soap bubble? For

a spherical bubble of radius R, the calculation is simple. The

surface energy is given by the product of the surface

tension multiplied by the surface area, namely Sσ′ = 4πR2σ′,

where σ′ = 2σ is twice the surface tension of the soapy

liquid since the film has two faces. A small increase in the

radius δR implies a variation in the surface area given by

8πRδR and therefore a variation in the surface energy equal

to 8πRδRσ′ (Fig. 6).

This variation of the surface energy must be

compensated by the work done by the pressure forces on

the walls when the increase in the radius of the bubble

occurs (the work done by a force is the energy transferred

to the system when this force is moved). This work is equal

to the overpressure ΔP multiplied by the variation in the

volume of bubble, namely 4πR2δRΔP.

Therefore, a soap bubble having radius R is in equilibrium

when the pressure of the air inside is larger than the

pressure outside by the amount



This equation is known as the “Laplace formula”, in

honour of the physicist who derived it in the year 1806 (see

Chapter 5). The overpressure increases as the radius of the

bubble decreases. You can easily test its validity by

connecting two bubbles of different sizes with a thin tube:

the smaller bubble will immediately grow, and the larger

bubble will shrink!

For a bubble of the order of one millimetre in size, the

overpressure is of the order of one-thousandth atmospheric

pressure. For a gas bubble inside water, σ′ = σ, and the

excess pressure turns out to be half that of a soap bubble of

the same radius.

Figure  6. For an infinitesimal variation in the radius of the bubble in its

equilibrium state, the variation of the energy must be zero.

Bubbles in contact and foams

Thanks to the Laplace formula, we can predict the form of a

system of many bubbles as it occurs in a foam. Let us

consider two bubbles of radii R1 and R2 (Fig. 7).



The overpressure inside each bubble is ΔP1 = 2σ′/R1 and

ΔP2 = 2σ′/R2, respectively. The film separating the two

bubbles is the upper portion of a sphere whose radius R3

obeys Eq. (2) with R = R3 and ΔP =ΔP2 −ΔP1, and therefore

This relation allows us to establish the geometry of the

two bubbles and the interface. Another geometric property

is obtained by writing that the surface tension forces act at

any point A of the circle Γ that limits the equilibrium of the

interfaces (namely that the sum of their vector forces is

zero). There are three of these forces, each being tangent to

one of the spheres 1, 2 or 3, and they tend to restrict the

corresponding top portion of the sphere. Now these forces

per unit length are given by σ′. To achieve equilibrium, they

must define, two by two, an angle of 120° (Fig. 8).

Figure 7. Two bubbles in contact. The planes tangent to the spheres and their

interface (line Γ) must define an angle of 120°, and the radii of the bubbles

follow the relation 1/R1 = 1/R2 – 1/R3, R2 being the radius of the smaller bubble.

An equilibrium sets in between the forces of surface tension F1 and F2. acting at

the interface that tends to reshape the two spheres, and the pressure inside the

bubbles, which is higher than atmospheric pressure.



Figure 8. Layer of soap bubbles on a flat surface. The angles which join three

bubbles together are all 120°. In a thick foam, the six walls in contact with four

neighbouring bubbles take on a tetrahedral symmetry: their corners forming an

angle of 109.5°.

Similar considerations allow us to derive the form of a

drop lying on a plane (see Panel on page 82). When the

foam contains a large number of bubbles, the resulting

structure must obey conditions that generalise the ones we

have derived for two bubbles.

A droplet on a flat board

What is the shape taken by a droplet when deposited on a

board? In contrast with the case of contact between two

bubbles where only the surface tension plays a role, in

this case, we have here different interfacial tensions: σ
lg
,

σ
ls
, and σ

sg
 respectively corresponding to the interfaces

between liquid and gas, between liquid and the

supporting board, and finally between the board and gas.

Depending on the values of these parameters, the drop

takes a certain form on the board. The corresponding



distribution can be defined according to the value of the

angle α of contact of the drop (see figure).

A liquid drop partially wetting the solid board.

On the line Γ common to all the three phases, two forces

per unit length are active: σ
ls
 and σ

sg
 parallel to the board,

and a third force of value σ
lg
, which is tangent to the drop.

The line Γ cannot be detached from the board, that is

fixed. In order to have equilibrium, it is just necessary

that the component of net force parallel to the board is

zero, namely



Mercury drops that do not wet their supporting board. The smallest drops are

spherical: others are flat because of their relatively large weight.

This is the Young–Dupré equation. The cosine of the

angle α is between 1 and –1: this requires −σ
lg
 < σ 

sg
 −σ

ls

< σ
lg
. If this condition is met, we can say that partial

wetting is occurring. Then, the drop forms a spherical

top portion.

If σ
sg

 −σ
ls
 > σ

lg
, then the drops spread out as much as

possible, forming a very thin layer. So-called total wetting

occurs. If σ
sg

 −σ
ls
 < −σ

lg
, the drop is no longer attached to

the board, and no wetting occurs.



The reader has perhaps had the chance to see little

drops of mercury (for instance, when an old-type

thermometer was broken) running across a board (see

figure) or water drops running down the feathers of a

duck: these are examples of the latter case.

Strange soap bubbles

The list of soap bubble shapes does not only include the

sphere. When a film of the solution is not free but is

constrained on a particular framework, it can take very

strange forms that we might not expect! Let us begin by

immersing two rings of about the same size in soap water.

By careful manipulation, we can obtain a cylindrically

shaped bubble with spherical ends (Fig. 9).

The pressure difference ΔP between the interior of the

bubble and the outside is related to the radius of the

cylinder by an equation analogous to the Laplace formula,

without the factor 2:



Figure  9. Cylindrical soap bubble made using two rings. Two spherical ends

complete the bubble.

The two ends are spherical, and the radius of each

corresponding sphere is 2R as follows from Eqs. (2) and (3).

What happens if we break the ends? Then the pressure

difference between the interior and the exterior of the film

falls to zero. The film held by the two rings cannot remain

cylindrical but deforms in order to reduce its surface energy

and therefore its surface (Fig. 10).

The surface created in this way, with the shape of a

saddle, is called a catenoid. From a mathematical point of

view, this surface is obtained by rotation around an axis of a

hanging chain or cable, suspended at its two ends and

curved by its weight. If we change the support, for any

given geometry, the shape acquired by the film (when the



pressure at the ends is the same) will always be the one

minimising: a minimal surface (see Panel on page 85).

Figure 10. Surface formed by a soap bubble between two parallel rings is called

catenoid. Any of its longitudinal section is concave, while any transverse section

(circle) is convex.

Bending, average bending, chain and

catenoid

A plane curve (under certain conditions of continuity,

derivability, etc.) at each point possesses a curvature of

radius R that can be defined as the radius of the circle

that best approximates the curve around that point. We

can also define the curvature (or bending) ρ = 1/R at

each point. In turn, the surface at any point A (see figure)

is characterised by two principal radii of curvature: R
1
 and

R
2
. They correspond to the minimum and maximum

curvature radii at this point when the surface is cut by a

plane passing through the normal at point A. The radius

of curvature is considered positive when the section is



convex, and negative if it is concave (in figure, R
2
 < 0

while R
1
 > 0). Then the average curvature γ is defined: 2

γ = 1/R
1
 + 1/R

1
. A necessary and sufficient condition to

have a minimal surface is that the average curvature is

zero everywhere. In other words, the two principal radii of

curvature are equal in absolute value and of opposite

sign. A large variety of minimal surfaces exist. However,

in the group of revolution surfaces, only the catenoids

have that property. The reader having some familiarity

with differential calculus will easily derive the equation for

the hanging chain: y = α cosh(kx). Then a rotation around

the x-axis generates a catenoid with zero average

curvature. At the same time, we can demonstrate that

this surface is the equilibrium form of a film of soap water

bounded by two parallel rings when they are not too far

apart (see Fig. 10). If the rings are separated by too

much, then we end up with two discs in the interiors of

the rings while the catenoid disappears. When the

pressure on the two sides of the film of soap water is not

the same, the surfaces have uniform average curvature,

but, in this case, it is not zero. For example, this happens

when the soap bubbles are formed on a wireframe. The

cylindrical bubble capped by two spherical ends (Fig. 9)

provides a particularly simple example of such a surface:

the average curvature γ is everywhere equal to 1/(2R),

where R is the radius of the rings.



Geometry of a minimal surface (form of a film of soap water when the

pressure on both sides is equal). At all the points A on this surface, the

curves drawn on it have curvatures turned upwards (dark curve) or turned

downwards (light curve). Geometry of a minimal surface (form of a film of

soap water when the pressure on both sides is equal). At all the points A on

this surface, the curves drawn on it have curvatures turned upwards (dark

curve) or turned downwards (light curve). The dark curve minimises the

curvature upwards, while the light curve minimises the curvature downwards.

For a minimal surface, the two curvatures 1/R1 and 1/R2 have the same

absolute value.

At the Exit from a Tap

Let us leave bubbles behind and instead return to droplets,

specifically to the familiar situation of a poorly fitted kitchen

tap, which lets drops fall at a regular rate (Fig. 11).

Their fall is very fast, and often we are unable to

distinguish the details that instead a suitable high-speed

camera can detect. However, even without such a high-

speed camera, Belgian physicist Joseph Plateau (1801–

1883) examined the form of the drops in detail. A fine

experimentalist, he decided to compensate for the weight

so that the drops could fall at a more moderate speed,

allowing the human eye to observe the detail. Instead of

having the drops fall in air, he had them fall in an immiscible



liquid, with density close to one (the value for water) — see

Panel on page 88. The Archimedes force (see Chapter 15)

acting on the drops almost exactly compensates for their

weight. Things appear as if the drops have lost almost all

their weight, and their fall is strongly slowed down.

Thus, Plateau was able to observe the formation of the

drops at the outlet of the tap. It turned out that a liquid

thread is set up between the forming drop and the tap,

which gradually becomes thinner and thinner until the drops

separate. Then the filament forms a second “satellite” drop

as can be seen in the last part of Fig. 3 in this chapter. This

satellite drop, which is systematically present in drop

formation, is the discovery of Plateau.

Figure 11. A badly fitted tap lets drops fall. The dynamics of the formation of the

drops is complex and was studied in detail during the 1990s.

Two experiments along the Plateau tracks

In the following, we describe two experiments that,

without having the accuracy of the one carried out by

Plateau, can be performed in our kitchens.











After some centimetres, the cylindrical flow of the water breaks up into

drops.

Experiment 1

Avoiding the weight of the drops

Fill a glass at least 12 cm deep with oil and by means of a

pipette add a solution of alcohol in water (70% by

volume) having previously slightly coloured this. The

small drops take several seconds to reach the bottom,

while larger ones may take a second or so, so you will

have the chance to make a suitable observation. As

Plateau observed, you will be able to see that pretty large

drops (of the order of one centimetre across), have a

near-spherical shape. On the contrary, drops of this same

size would be strongly deformed if falling through air, due

to their weight. This is not too surprising, because if we

introduce an analogy of “capillary length”, similar to the

term in Eq. (1), we need to substitute the density with the

difference between the densities of the two liquids: the

capillary length becomes very much longer. We can

estimate the speed of the falling drops, by comparing it to

the Stokes formula, which we will deal with in Chapter 15.

Experiment 2

To demonstrate the Rayleigh–Plateau instability

Let us gently open a tap. We see that the drops fall one

after another. Then open the tap a little more so that a

thin and continuous flow of liquid occurs. In order to show

the fragmentation of the flow related to the Rayleigh–

Plateau instability, take one of the many plastic cards that

nowadays have invaded our life, and place it well below

the tap, in the water flow. You will hear the noise of falling

drops, and your fingers holding the card will begin to

shake. This phenomenon will disappear if the card is

placed in the upper part of the flow, which has a well-

defined cylindrical shape (see figure).



Now we shall describe another of the experiments he

carried out. When a tap is open in such a way that we have

a very thin flow, we can see that it is cylindrical and lasts

only in the upper part. A little lower down the flow loses its

regular shape, without it being possible for our eyes to see

what is really happening (see Panel above on this page). But

we can at least imagine it. The cylindrical shape requires a

large surface energy. Thus the filament can reduce its

energy by breaking up into drops (see Fig. 11). A cylindrical

filament is unstable! This instability has been called

Rayleigh–Plateau instability, the theory having been

previously developed by Lord Rayleigh (see Chapter 3).

The fragmentation of the flow is anticipated by the

appearance of swelling and shrinking which occurs while the

drop is formed. High-speed photography reveals that a small

drop is created in between two drops of normal size, an

analogue of the Plateau satellite. In reality, before their

separation, the two drops remain connected by a thin

filament that, after some time, changes its shape to a small

drop. The dynamical behaviour of the flow from the tap is

relatively complex. The drops oscillate between two shapes,

namely long and flat ellipses, before turning into a spherical

shape. These oscillations have been revealed by modern

photographic techniques as well as by using the old-

fashioned stroboscope invented by Plateau that can

illuminate the object being observed in rapid steps.

Physicist–Musicians

The first observations of the fragmentation of liquid jet were

made by French physicist Felix Savart (1791–1841), who

gave his name to the unit measuring the pitch of musical

notes. Being an expert in acoustics, he wanted to study the

effect of sound waves on liquid jets. He observed that the

generation of a musical sound of the appropriate frequency

in the vicinity of a jet could cause its fragmentation: the



cylindrical part of the jet disappeared, and the jet was

divided into drops from the very top. According to Savart,

the drops started to form as they exited the tap. At the

beginning, these are simple bumps that become more and

more pronounced as the liquid falls to the point where they

completely separate. These swollen drops, near to each

other, cause a faint sound at a precise frequency (Fig. 12). A

musical note, emitted in unison, can interact with the jet

and transform it into a sequence of drops!

British physicist John Tyndall (1820–1893) repeated

Savart’s experiment on one jet 27 m high. Due to this

height, he could obtain a uniform cylindrical and transparent

jet: in fact, the sound emitted by one organ can induce

turbulence and split the jet into a number of small drops.

Tyndall allowed the jet to fall on targets placed at different

heights, above and below the “critical point” where the jet

would break up. Here is what he observed: “When a water

jet falls on a liquid surface placed above the critical point

and the pressure is not too great, then the water enters in

the liquid without noise, but when the surface of the liquid is

below the critical point, then one can hear the noise, and a

large number of small droplets is observed.” That comment

gave American inventor Alexander Bell the idea of the water

microphone (Fig. 13). His jet was much smaller than 27 m

and high and was falling on a rubber membrane instead of

the liquid surface. The membrane was set at the top of a

tube in which another funnel-shaped tube was embedded.

In agreement with the experiment by Tyndall, the lower part

of the water jet was broken into drops upon reaching the

basin. Due to the resonator represented by the tube and the

funnel, the tapping of the drops was amplified. When a

vibrating tuning fork was placed in the vicinity of the water

flow, it could induce a splitting choir of drops: the tick-tock

of a clock could be heard in a large hall.



Figure  12. A cylindrical water jet tends to fragment into drops (a) in order to

decrease the surface energy. In fact, under some conditions, a small drop (the

Plateau satellite) appears in between two large drops. Because of the

deformation when the drop leaves the tap, oscillations occur, and this explains

the nonspherical shape which is observed at a precise moment (b).



Figure 13. The water microphone of Alexander Bell.

A man named Donat claimed in a popular text that at the

end of the 19th century he tried to use such a device to

transfer his voice. In fact, the jet had projected his speech

but in a way so unpleasant that all those present had left!



The water microphone is not the most important

invention by Alexander Bell, better known for the

achievement of the telephone. It should be added that the

paternity of the telephone seems to be jointly assigned to

Elisha Gray (1835–1901) and to Antonio Meucci (1808–

1889). These three brilliant inventors were American, but

the first was born in Edinburgh and the third near Florence.

After a conflict over the patent, nowadays the paternity is

generally assigned to Bell.



Chapter 7

The Climate: Why Summers Become

Hotter?

Over time, a climate became established on the Earth that

was favourable for the origin and continued existence of life.

This is due to the Sun warming our planet with its rays, and

the natural greenhouse effect, plus the complex dynamic

balance between the oceans and the atmosphere. In this

chapter, we shall look at the basic physical mechanisms for

maintaining the temperature of the Earth’s surface, making

it comfortable for the human body. However, human

activities and industries now take place on such a scale that

they nowadays have a measurable and significant impact on

the natural world.

The weather is mainly controlled by the laws of physics,

although chemistry and biology also play a part. These laws

are well known, and meteorologists apply them in an

attempt to predict the weather for the coming days. As

everybody knows, sometimes they fail. They use

deterministic laws that in principle should allow them to

predict the future so long as the present state is known.

However, the present is never exactly known, and

furthermore the equations can be solved only numerically,

to a certain level of precision. Their solutions may also be

extremely sensitive to even small errors in the data. It is



now common to claim (by exaggerating!) that the simple

beat of a butterfly wing, by slight modification of the

atmosphere, could induce radically different meteorological

conditions, for instance, causing a storm in another part of

the Earth. This extreme sensitivity to a small lack of

precision is defined as “deterministic chaos”.

The task of the climatologist seems, in a sense, simpler

than that of the meteorologist. If he makes predictions, then

the latter should be applicable over fairly large regions and

over long periods of time. So, in climatology, climate

predictions are made, which will be established in 50 or 100

years. Does this mean that deterministic chaos has no effect

on the climate? Hardly. However, chaos is not the main

enemy of a climatologist — first of all, he must take into

account the complex, diverse and interdependent physical

phenomena that form the climate. These phenomena occur

on different, up to cosmic, scales, in very different time

intervals (they can last for days, months, centuries,

millennia — see Fig. 1). Certain processes essential for the

formation of the climate can occur at any altitude of the

atmosphere, at any depth of the seas, etc.



Figure 1. Climate history is revealed by ice cores drilled in the Antarctic. Over

the last 450,000 years, five glacial–interglacial cycles have occurred. These

cycles are strictly connected with the orbital parameters of the Earth, the

interval in between two glaciations being around 100,000 years (Courtesy of ©

Thibaut Vergoz/CNRS Images).

Terrestrial Radiation Balance

One of the easier physical quantities to predict is the

temperature. The Earth’s temperature depends in large part

on the heat received from the Sun, which drives all climate

mechanisms. This heat is arriving to us in the form of

electromagnetic radiation, part of it being in the visible

range (see the figure in Chapter 3). The Earth returns part of

this energy by itself emitting electromagnetic radiation back

into space. This irradiation, being in the range of relatively

low frequencies, cannot be seen by our eyes but has the

crucial role of moderating the temperature at the surface,

thus allowing human life to exist.

Before analysing the climate further, let us pause to

examine some characteristics of electromagnetic radiation.



From atomic to black body spectra

All bodies, brought to a certain temperature, emit light or

more generally electromagnetic radiation. The radiation

emitted by a body at a given temperature is characterised

by its spectrum, namely by the plot of the power emitted as

a function of the wavelength λ or the frequency ν = c/λ. A

simple method to examine the light emitted by a body is to

place a prism in the trajectory of the beam and analyse

what happens on a screen: the different spectral colours

that form the light are separated (see Chapter 3).

The radiation spectrum of a body depends on its

chemical nature, temperature and aggregation state:

whether it is a gas, a liquid or a solid. An atomic gas (for

example, mercury vapour) at low pressure emits radiation of

well-defined frequencies; its spectrum consists of clear lines

(Fig. 2). This fact expresses a fundamental property of

atoms: the portions of energy that the latter can emit or

absorb are discrete (it is explained by quantum mechanics,

see Chapter 22).

Each line of the emission spectrum corresponds to the

transition of an atom from a state with energy E2 to another

state with a lower energy E1. This transition is accompanied

by emission of radiation of frequency ν = (E2 − E1)/h, where

h = 6.67 · 10–34 J·s is Planck’s constant.

This single act of irradiation corresponds to a “quantum

of light”, a photon. On the contrary, if a monochromatic ray

of frequency ν is sent on the atom, it can absorb the photon

only when the frequency corresponds to the transition

between two energy states differing by ΔE = hv. Therefore,

the atoms can absorb only the radiation that they can emit.

Thus an emission spectrum is somewhat similar to the

absorption one: the emission rays appear as dark lines in

the absorption spectrum. This holds for a gas composed of

atoms. What about a gas given by an assembly of oxygen



molecules O2 or nitrogen molecules N2, as with the air

around us? The principle is similar to that of atoms: a

generic frequency cannot be absorbed or emitted. However,

for certain frequency ranges, the energy levels in the

molecules are very close to each other so that the molecular

emission spectra are quite different from the ones in atoms,

as we shall address later on.

Figure  2. Emission (top) and absorption (bottom) spectra of mercury vapour

obtained by letting the light beam pass through a prism. Similar to the

generation of the rainbow by water droplets, the prism causes the dispersion:

the refraction index depends on the wavelength (see Chapter 2). The spectrum

emitted by a monoatomic gas excited by the temperature is composed of

monochromatic radiation (spectral rays) that is characteristic of its chemical

nature.

What about solids or liquids? Their spectra do exhibit

ranges of frequency where they cannot absorb or emit

radiation. On the other hand, the emission spectrum (and

the absorption as well) is practically a continuum in other

frequency ranges, with some alternation of maxima or

minima so that the spectrum is usually a complex curve.

Among 19th century physicists, particularly in Germany,

there was some controversy regarding that difference. They

referred to a particularly simple emitter of radiation. For

instance, a body capable of absorbing all the radiation

hitting its surface. This conceptual object was introduced by

German physicist Gustav Kirchhoff (1824–1887). It was

defined as black body: in fact, if a body should absorb all



the visible radiation, it would appear black. We shall see

that the Sun, and to a certain extent the planets, can be

approximately a black body.

The Planck formula

In reality, a black body appears black only at low

temperatures. When heated, it emits light. What is the

colour of this light? In order to answer this question, we

must derive the distribution of radiation by a black body, for

a given temperature T, as a function of the wavelength λ.

This was the problem addressed by Kirchhoff in the year

1859.

It is not obvious that there is a solution: we might think

that the problem is absurd, in the sense that there could be

a body that absorbed light with no emissions. Such a body,

placed in front of a black body emitting radiation, would

represent a refrigerator without any energy cost: the black

body would become colder by transferring heat to the other

body just by means of irradiation. This refrigerator with no

cost would contradict the principle formulated by Sadi

Carnot in the year 1824 (see Fig. 3). According to this

principle, in order to be able to transfer heat from a cold

object to a warm one, namely to achieve refrigeration,

energy, whether chemical, electrical or mechanical, must be

expended. From the Carnot principle, which became the

second law of thermodynamics after reformulation by

physicist Rudolf Clausius (1822–1888), Kirchhoff was able to

deduce that all black bodies emit light in the very same way

(see Panel below on this page). More precisely, the amount

of energy emitted in the wavelength interval between λ and

λ + dλ by a given surface element dS of an absolutely black

body with a temperature T is equal to the value of Q(T, λ)

dSdλ, whatever it may be.



Figure  3. Physicist Nicolas Léonard Sadi Carnot (1796–1832) with the dress of

polytechnic student. The Carnot family includes a number of eminent persons:

Lazare Carnot (1753–1823), war Minister during the First Republic and

mathematician; his nephew Marie-Francois Sadi Carnot, President of the

Republic from 1887 to 1894; also the chemist Marie-Adolphe Carnot (1839–

1920), brother of the President, gave his name to a mineral, carnotite.



Proof of the Kirchhoff principle and the

properties of a black body

Imagine two black bodies A and B of the same

temperature. Let’s place them in a thermally insulated

closed chamber with reflective walls. According to

Carnot’s principle, in the absence of work produced by

external forces, heat transfer always goes from a hotter

body to a colder one. Since both bodies have the same

temperature, there is no net heat transfer from one to the

other, which means that the energy received by body A

from body B is equal to the energy emitted by it in the

direction of body B. Therefore, if we replace one of the

perfect black bodies, for example, body A with a perfect

black body C of the same shape, but of a different

chemical nature, then it will have to emit the same

amount of energy as body A since it receives this same

amount. Thus the amount of energy emitted from a unit

surface per second at a given temperature (that is, the

radiation power) for any perfect black body C will be the

same as for a perfect black body A. Thus, the radiation

power from a unit surface for all black bodies is

determined only by temperature.

Now we place a colour filter between two perfect black

bodies, which allows only light with wavelengths close to

a certain value of λ to pass through. The same reasoning

as with the absence of a filter shows that the radiation

power at a given temperature within a given range of

wavelengths (those the filter transmits) is the same for all

perfect black bodies. Furthermore, it will be understood

that the total radiated power of the radiation is

proportional to the surface area of the body. Therefore,

we can conclude that the power Q(T, λ) dλ emitted by a

unit area of a perfect black body in the wavelength

interval dλ depends only on the temperature T and the



selected wavelength λ (the function Q(T, λ) is called the

spectral density radiation power). With equal

temperatures, this power is approximately the same for

both a coal block and a tungsten wire since both of these

objects, with some assumptions, can be considered to be

perfect black bodies.

(a) Two black bodies in equilibrium have the same temperature, which means

that each receives as much energy as it emits. If one of the perfect black

bodies is replaced by another perfect black body of the same shape but of a

different chemical nature, it will absorb the same energy, and therefore must

emit the same energy. Thus the energy emitted by any perfect black body of

a given shape at a given temperature does not depend on its nature.  

(b) If you add a colour filter, the reasoning remains valid. Thus the energy

emitted in a given frequency band by a perfect black body of a given shape

at a given temperature does not depend on its composition.

Therefore, in order to derive the function Q(T, λ), we can

consider a system where the calculations are the the

simplest, specifically a cubic cavity where the

electromagnetic radiation (or if one prefers, the photons) is

embedded. From the small hole made in a face of the cavity,

the photons can escape. From this model situation, it is

possible to derive the expression for Q(T, λ):

where c is the speed of light in a vacuum, h is the Planck

constant and kB = 1.38 × 10–23 J K–1 the Boltzmann

constant. It should be remarked that to derive the above



expression, the quantum mechanical properties of the

oscillator (the light wave inside the cavity) have to be taken

into account. Thus, this famous derivation given by Max

Planck (1858–1947) in 1900 not only provided the solution

to a difficult problem that many experimentalists as well as

theoretical physicists had been involved with. In addition,

the expression for Q(T, λ) given above marked the

beginning of the era of quantum mechanics (see Chapter

22). In fact, at the heart of Planck’s solution was the

hypothesis that radiation energy takes only discrete values

which are multiples of a certain quantum of energy. This

hypothesis inspired Einstein to postulate the existence of

the photon and allowed him to explain the photoelectric

effect. For that, he received the Nobel reward in Physics in

the year 1921. The historical importance of the black body

is clearly evident.

From black bodies to stars

In accordance with the Planck formula, the emission

spectrum of a solid is continuous, at variance with that of

atoms which are given by discrete lines. The power emitted

by a black body is maximum for a wavelength λmax that is

inversely proportional to the absolute temperature:

This is the Wien law. The maximum of the wavelength

shifts towards ever smaller values when the temperature of

the black body is increased (Fig. 4). Thus on increasing

temperature, the black body progressively changes colour

from red to white according to the progressive shift of its

spectrum towards the blue.

The emission spectrum of solid metals corresponds pretty

well to that of the black body. This is the case for the



filaments of the incandescent bulbs that were used in our

homes during the 20th century (Fig. 5). The metal normally

used is tungsten since its melting temperature is rather high

(3422°C), thus being able to sustain temperatures that lead

to the emission of a practically white light.

Figure  4. Emission spectra of a black body at different temperatures as a

function of the wavelength. It should be noted that absolute temperature T is

related to the Celsius scale C by T(K) = T(C) + 273.15. The temperature

reported in the figures can be compared to that of the surface of the Sun (5,800

K) or that of the tungsten filament inside old-fashioned incandescent lightbulbs

(about 3,000 K).



Figure 5. The filament of an incandescent bulb is not very different from a black

body, and when it is warmed up to about 2,000°C, it emits a white light. The

filament is heated due to the Joule effect (Chapter 16). At the same time, a large

portion of the emission spectrum lies beyond the visible range. This represents a

significant energy waste, leading to the production of incandescent bulbs being

halted at the end of the 20th century.

Thanks to the Wien law, it is possible to estimate the

temperature of an incandescent body just by looking at the

maximum in its emission spectrum. That law has also an

important application in astronomy, letting us estimate the

temperature of the surface of stars. Like other stars, the Sun

displays an emission spectrum similar to that of a black

body (we can compare the curve in Fig. 4 corresponding to

6,000 K to the one in Chapter 3), with the addition of the

absorption rays characteristic of those elements present in

its atmosphere. What about the radiation emitted by planets

such as the Earth?

The Temperature of the Earth

We have seen that the Earth receives energy from the Sun

and loses a large part of it by emitting electromagnetic



radiation back towards space, after having made use of that

energy. This “use” is of particular importance since solar

energy enables life on Earth. The minimal use that occurs

on all planets is to keep them cool. Radiation from the Sun

maintains a more or less constant surface temperature,

which would otherwise inexorably decrease. The

electromagnetic power emitted by planets towards space is

a function F(T, λ) of the temperature T of the surface. On

the other hand, the power P(λ) received by the planet from

the Sun is well known. Since the two powers are

approximately equal,1 we can write F(T, λ) = P(λ), and this

equation in principle determines the temperature T of the

surface. We still have to find the function F(T, λ). Are we

allowed to assume that this function is close to that of a

black body? This hypothesis is approximately correct when

the planet does not have an appreciable atmosphere.

Fortunately for us, the Earth does have an atmosphere (Fig.

6). Without this protecting layer, the average temperature

of the Earth would be –16°C, not so favourable for life.

Instead, it is 15°C.

The greenhouse effect

What is the role of the atmosphere in causing such a

difference of about 30°C? The atmosphere collects a good

fraction of the radiation emitted by the ground, through a

mechanism that was explained by Joseph Fourier (1768–

1830), at the beginning of the 19th century. He wrote, “the

temperature is increased by means of the interposition of

the atmosphere because the heat does not find a great

obstacle in penetrating the atmosphere when it arrives from

the Sun in form of visible light, rather than the case when

that heat is in non-visible form”. Nowadays, the non-visible

heat is known as infrared radiation (with wavelengths

approximately in the range of 0.7–500 microns);



disregarding the detail of the vocabulary, the analysis by

Fourier is correct. The atmosphere allows solar radiation to

pass through in large part unimpeded, the maximum

intensity being in the visible range which can “penetrate the

air”, while the infrared radiation emitted by the ground back

towards space is, to a large extent, absorbed by the

atmosphere and only reaches space after a long pathway

(Fig. 7): instead, it is absorbed and then reemitted a number

of times. This mechanism is called “greenhouse effect”

since in a garden greenhouse, we want to limit the energy

lost through the use of glasses or plastic sheets, which are

opaque to infrared radiation.
1
 This description is simplified. In fact, an appreciable part (on average 30%) of

the energy received by the Earth is reflected (by clouds or by sand) or scattered

(by the air and clouds). Thus in the equation F(T) = P, P must be considered to

be the power which is absorbed by the Earth not the one globally received.

Figure 6. Picture of the atmosphere surrounding the Earth, taken from space. Its

density decreases with increasing height. Its depth is much smaller than the

radius of the Earth: 90 percent of its mass lies within a layer only 16 km wide

around the Earth.



Thermal heating of the terrestrial atmosphere

by convection

As described above, the temperature at the surface of the

Earth is determined by the equilibrium of the heat received

from the Sun and the energy that is irradiated towards

space. This energy is in part emitted by the ground but to a

large extent by the atmosphere, at a height that depends on

the wavelength. Therefore, we have to study how the

atmosphere is organised. The pressure P of the atmosphere

is a decreasing function of the height z since the force

acting on a surface is due to the weight of the column

towering above. The mechanical equilibrium implies that

dP/dz = –gρ, where g is the acceleration due to gravity,

while ρ is the density of the air. This latter value is

proportional to P/T, according to the Gay-Lussac law, T being

the absolute temperature. Therefore, the decrease in

pressure with increasing altitude is described by an

exponential function. Very approximately, the pressure

decreases by a factor of 2 when the height is increased by

6,000 m. However, the atmospheric pressure at altitude can

vary by several percent during the day, while at sea level, it

varies from one point to another with respect to the “normal

pressure” of 101.3 kPa even at the same time. It might be

surprising to learn that the low pressure we may detect in a

given place is not suddenly compensated for by air coming

from regions where the pressure is higher. Often it is the

Earth’s rotation that hampers a quick compensation and the

Coriolis force (see Chapter 4) and can stabilise the low or

the high-pressure regions for several weeks.



Figure 7. Radiation balance in heat exchanges between the surface of the Earth

and the terrestrial atmosphere. Heat arriving from the Sun is in part reflected, in

part scattered and in part absorbed. From R. Delmas et al., Atmosphere, Oceans

and Climate, Belin (2012).

In low layers of the atmosphere, the temperature

generally decreases with increasing altitude. The reason is

that the heat coming from the Sun is mainly absorbed by

the surface of the Earth. Then it is distributed along the

atmosphere. This redistribution in part occurs through

irradiation, but mainly because of the convection (Fig. 8). In

other words, the warm air near the surface of the Earth

rises, while the cold air from the layers at higher altitudes

tends to come down.



Figure 8. Evidence of convection currents by heating a glass of water. The liquid

in contact with the bottom is getting warm and goes up, inducing a circulation in

the vessel.

In the atmosphere, large masses of air are in motion,

sometimes on the scale of the entire globe (Fig. 9). These

masses of warm air rise into regions of lower pressure and

therefore their volume expands. According to the laws of

thermodynamics, the expansion implies a reduction in the

temperature (air is a poor conductor of heat, so the

expansion is adiabatic, see Chapter 13; expansion of a gas

is just one of the classical procedures for the cooling

process).

For dry air, the extent of the cooling can easily be

estimated: it is found that the temperature decreases by

about 6.5°C for an increase in altitude of about 1 km.



However, the decrease of temperature on increasing

altitude is not an absolute law: fluctuations can change the

local temperature. Furthermore, it is important to note that

the temperature only decreases up to a certain altitude. In

fact, at about 11 km, the average temperature is around –

56°C, but on ascending further, the temperature increases!

(see Fig. 10).

Indeed, convection only involves the part of the

atmosphere called the “troposphere”, that portion below a

certain altitude. Above it, we enter the “stratosphere” where

heating is no longer provided by the irradiation from the

surface of the Earth but by the Sun. Ultraviolet rays can

maintain a temperature of around 0°C at an altitude of

roughly 50 km. These rays are absorbed by molecular

oxygen O2 which reacts to form ozone O3 and also some

heat.



Figure  9. The large convective motions of the air in the atmosphere and the

circulation of the winds. The motions near the Equator have characteristics, with

convection channels known as Hadley cells. They are responsible, through the

Coriolis force, for the trade winds which are systematically directed from East to

West (see Chapter 4).

The water cycle plays an important role in heat

exchanges at a global level. Air near the surface of the

oceans acquires water vapour originated by evaporation.

The cooling of this related to its upwards motion causes it to

condense and produce water vapour which, in turn, provides

some heat (see Chapter 15). Thus clouds are formed and

possibly the small droplets that will create rain and thus

return to the ground.

Other heat exchanges occur through ocean currents. In

the climate, they play a role that’s less evident than the

atmosphere, but it is well known that just ocean circulation

can transport heat to regions that are at the same latitude

but at different longitudes. For instance, the Gulf Stream

provides considerable warming to the European coasts so



that the climate is more gentle than that of Canada. Those

currents have worldwide amplitude and great stability.

Even if convection is the main mechanism for

transporting heat within the troposphere, we should not

disregard the importance of radiation. This is entirely

responsible for the loss of energy towards space and at the

same time for the transport of the energy stored in the

ground or in the oceans towards the lower layers of the

atmosphere.

Figure 10. Variation of average temperature with altitude (dark line), in the lower

layers of the atmosphere. The troposphere, which measures approximately 12

km is the place where most atmospheric phenomena occur.

Responsibility of the Various Molecules in the

Greenhouse Effect



The atmosphere is composed mainly of nitrogen (N2) by a

fraction of about 78% and oxygen (O2) by 21%. At variance

with what Fourier wrote, it is not these gases that absorb

the infrared radiation. The absorption is mainly due to water

vapour (H2O), carbon dioxide (CO2) and methane (CH4)

(these so-called greenhouse molecules make up just over

1% of air by mass), as well as clouds. It was John Tyndall in

the middle of the 19th century who realised that nitrogen

and oxygen molecules do not absorb infrared radiation.

The emission (or absorption) of electromagnetic rays by

molecules is due to the oscillatory motion of the negative

electric charge with respect to the positive charge. In the

visible range, these oscillations involve transitions among

the electronic levels. In the infrared range, it is the chemical

bonds between atoms that are vibrating: the lengths of the

bonds and the angles between them are involved in the

vibrations around their average values. Thus, in a water

molecule, we have oscillations of the positively charged

hydrogen atoms with respect to the negative oxygen atoms

(these charges are related to the different values of the

electronegativity for the hydrogen and oxygen atoms, see

Chapter 16). In an analogous way, in the carbon dioxide

molecule, it is the carbon atom (positively charged) that

oscillates with respect to the oxygen atoms, negatively

charged. These two molecules lose their symmetry during

the vibration, and this implies a displacement of the

negative charges with respect to the positive electric

charges (Fig. 11).

On the contrary, when molecules of oxygen or nitrogen

vibrate, their centre of symmetry (also the centre of gravity

of the positive and negative charges) is conserved. This

inhibits the absorption and the re-emission of infrared

radiation in these two molecules.

The absorption of infrared radiation by the greenhouse

molecules (H2O, CO2 and CH4) depends on the wavelength



in a complex way. The difference between the absorption

spectrum of these molecules and the atomic line spectra

(Fig. 2) or the continuous blackbody spectrum (Fig. 4) is

striking. In certain ranges of wavelength, the “forbidden

bands”, absorption and emission, are not possible. In

contrast, in the ranges defined as “permitted bands”, the

intensity can change in a regular way by a factor of 10 (Fig.

12).

Figure  11. Some of the molecules present in the atmosphere. The dioxide

molecule O2 is symmetric, and it keeps this symmetry during vibrations. It

cannot absorb or emit infrared radiation. The same occurs for the nitrogen

molecules N2. The water molecule is asymmetric, and when it vibrates, the

positions of the negative electric charges change with respect to the positive

ones, which allows the molecule to absorb or emit infrared radiation. The

molecules of carbon dioxide and methane are on average symmetric, but when

they vibrate they lose their symmetry, and this allows them to absorb or emit

infrared radiation.



Figure  12. Absorption coefficient of carbon dioxide at 20°C and at pressure of

10
5
 Pa, at two different scales. The wavenumber k is given along the x-axis,

namely the inverse of the wavelength multiplied by 2π (i.e., k = 2π/λ). The

absorption coefficient is defined by the relation kρ (ρ being the density of the

absorption medium) equal to the probability of absorption of a photon per unit

length. The sizeable variations of the absorption coefficient (by a factor of 10)

imply considerable fluctuations in the contribution to the greenhouse effect

corresponding to small variations of the wavelength. From R. T. Pierrehumbert,

Principle of Planetary Climate, Cambridge University Press (2010).



Independent of their wavelengths, infrared photons

emitted from the Earth’s surface can take very different

paths. They can travel through the terrestrial atmosphere

without any absorption when the wavelength corresponds to

a forbidden band (for water vapour as well as for carbon

dioxide). When the wavelength corresponds to a maximum

for absorption by a greenhouse gas molecule, the photons

are rapidly captured, within every few metres. The photons

are immediately re-emitted by the molecules at the same

altitude, and so on. The photons that are finally directed

towards space are the result of processes at high altitudes,

where the temperature is much less than that at the ground.

Thus, in the infrared range, there are fewer photons directed

towards space than are absorbed, and the Earth warms, for

a greenhouse effect that can be defined as “natural”.

The Influence of Human Activity

During the 19th century, an additional greenhouse effect

was initiated that has been added to the “natural” one

related to the water vapour and carbon dioxide naturally

present in the atmosphere. Humans have burnt

combustibles defined as “fossil fuels” that have taken

nature millions of years to produce: coal, oil and gases.

Their combustion generates carbon dioxide, and, in just a

short time, there is nowhere it can be stored. Through rain,

it could reach the oceans, but the ability of the sea to store

carbon dioxide is limited (fortunately for the fish). The

concentration of this gas has increased pretty much from

the industrial age (Fig. 13). If no changes regarding energy

use are taken at political levels, there is the risk that levels

could increase even more. It is likely this would raise the

temperature in the lower atmospheric layers above

dangerous levels.

Additionally, human activities are going to increase the

amount of other gases that normally would be negligible. In



fact, current intensive agriculture practises produce

significant amounts of methane. This is a “new” gas in the

atmosphere. It has long been known, for instance, that

methane produces explosions in coal mines, often known as

“firedamp” shots. Its concentration in the atmosphere has

jumped from the middle of the 20th century onwards. This

increase in the concentration of methane, due to the

intensive growth of ruminants, has created novel barriers for

the passage of infrared radiation towards space. Methane

has become a further aggravating factor for global warming.

Figure  13. Evolution of the CO2 concentration in the atmosphere, in parts per

million (ppm) as measured at the observatory of Mauna Loa, in the Hawaii

archipelago.

Figure 14. Evolution of the temperature from 1880 to 2010. The dark line tracks

the values averaged over five years, smoothing fluctuations from year to year.



This warming is absolutely proven (Fig. 14): practically, it

is half a degree from 1970 to the present. Can it be

definitively linked with the increase of carbon dioxide and

methane, due to human activities? Very likely yes, according

to the experts of the IPCC (Intergovernmental Panel on

Climate Change) although the precise estimate of its impact

is not easy to determine. The direct effect of carbon dioxide

is relatively weak, but a number of indirect factors can

amplify or even compensate for it.

One amplifying factor involves the concentration in the

atmosphere of water vapour: the excess carbon dioxide

causes a certain increase in temperature, raising the

pressure of the water vapour. This implies a sizeable

increase in the water vapour in the atmosphere which

aggravates the greenhouse effect!

Conclusion

In the future, the climate will certainly depend on human

activities. Even if the warming throughout the 20th century

has only been half a degree, the calculations indicate that

the 21st century could experience warming between 1 and

4 degrees, depending on the different scenarios assumed.

The calculations are not entirely reliable, but given the

estimates of the consequences of human activities, it is

extremely unlikely that there will not be some consequences

for the climate. Global warming would certainly lead to sea-

level rise (it rose 3 mm between 1990 and 2010), because

of the thermal dilatation and extra melting of the glaciers

and other consequences more difficult to estimate and

possibly even worse.

According to the IPCC, since 1970, there has been a

significant increase in the frequency of so-called “extreme

events”, namely heat waves or heavy rains. An analogous

tendency is present in several regions in terms of droughts

or, by contrast, tropical cyclones. Another qualitative issue,



involving droughts or heavy rains, is the following: as a

consequence of the increase in average temperatures, we

should also expect temperature gradients to increase,

causing stronger convective currents. This would be the

case, for example, with the Hadley cells in Fig. 9 and their

related trade winds. The effects of these convective currents

would become more marked: humid areas would become

more humid and dry areas drier.

Will humans be able to control this increase in

temperature? The reduction of greenhouse gases conflicts

with economical and sociological difficulties that are beyond

the scope of this book. However, we note the increased

awareness of the problems, as emphasised by the creation

of the IPCC mentioned above. This organisation, collecting

scientists from all over the world, advises governments and

is a topical example. The IPCC, in conjunction with the

former American Vice President Al Gore, was awarded the

Nobel Peace Prize in 2007.



Chapter 8

Footprints in the Sand

What is more commonplace than a footprint in the sand? On

the other hand, grains of sand display counterintuitive

properties. Laboratory materials are not required to

demonstrate this: simple kitchen tools will allow you to

perform experiments, and for those lucky enough, to try on

the beach!

British physicist Osborne Reynolds (1842–1912) was a

distinguished specialist in the field of hydrodynamics.

Perhaps with the aim of studying the motion of the waves,

he walked on sandy beaches. He made the following

observation, presented in 1885 at the meeting of the British

Science Association: “When a foot is put on the sand left

compact by a descendent tide, the area nearby the foot

becomes immediately dry” (Fig. 1). According to Reynolds,

the pressure made by the foot causes the sand to spread

out, and, as a result, the water is pulled through the larger

gaps between the surrounding grains of sand, causing the

sand to become dry.

This loosening phenomenon seems contrary to common

sense. Why does the pressure increase the space between

the grains of sand, thereby forcing the water to leave? The

answer has to do with the structure of this mixture of water

and sand. For simplicity, we will assume that the grains of

sand are spherical and the same, and this will lead us to the



problem of packing hard balls. And later in this chapter, we

will ask ourselves: how to stack atoms?

Stacking the Spheres

Could we fill all a space by stacking hard spheres? Obviously

not, as some room is always left in between the spheres.

The fraction of the space filled defines the density of

stacking. The less room left free in between the spheres, the

more compact the stacking and the greater the density. How

do we achieve the maximum density in stacking identical

hard spheres? The response to this question will make clear

why sand dries out when a foot is placed on it.

Figure 1. Dry area formed around a foot placed on the sand.

If the World Were Flat…

To begin, let us consider the problem in two dimensions

instead of three: in this case, we are placing identical discs

onto a plane. First, we take three discs. The most compact

arrangement is when each disc is in contact with the other

two, therefore when the centres of the three discs form an



equilateral triangle. If we have many discs, the most

compact arrangement will be achieved by placing together

multiple such triangles of three discs (Fig. 2(a)). As can be

easily determined, the fraction of the plane covered by the

discs is π/(2√3), namely 90.7%. It is interesting to compare

this value with the one obtained with the arrangement of

discs in Fig. 2(b), where they cover only the fraction π/4,

namely 78.5%.

Our intuition suggests that the maximum packing is the

one in Fig. 2(a). Each disc is in contact with six others, and it

is not possible to place a larger number of discs in contact

with any given one. However, the fact that the number of

discs in contact is the maximum does not guarantee that

the fraction of the plane covered by the discs is really the

maximum possible. The exact proof was only found in the

20th century.

Stacking and Tiling a Plane

It is noted that for the most compact stacking, the discs are

situated within hexagons that totally cover the plane, as

with paving tiles (Fig. 2(a)): one says that the hexagons tile

the plane. This hexagonal disposition is the one created by

bees to stack the alveolus of their nest (Fig. 3). There are

only two other ways to tile the plane by means of identical

regular polygons: by means of squares (Fig. 2(b)) or

triangles (Fig. 4).



Figure 2. Two arrangements of identical discs on to a plane. (a) The arrangement

is the most compact; (b) a less compact disposition, in which the discs are

situated within squares.

Figure  3. Bees achieve the tiling of the plane by hexagons when they are

building up their nest. It is likely that this arrangement is even comfortable for

their larva. Furthermore, it allows them to economize on beeswax. In fact, the

shortest lattice of walls to mark the limits of a given planar area is just the tiling

by regular hexagons.

This result can easily be proved. In a regular polygon

having n sides, each angle is given by α = 180°–360°/n. On



the other hand, if each vertex of the polygon is common to

(m – 1) other polygons, then α = 360°/m. The integer

numbers n and m must satisfy the condition 2/m = 1 – 2/n,

which is possible (as can be easily verified) only by choosing

n = 3, 4 or 6. In other words, it is not possible to tile a floor

by regular pentagons!

Figure 4. Tiling a plane by means of triangles. The centres of the discs in Fig.

2(a) form such a “triangular lattice”.

The software assisting the proof

At odds with classical mathematical demonstrations

written in the human languages, the proof provided by

Hales was in part based on computational language.

Using computer software to achieve some proofs is

something that’s developed over recent decades. The

software helps mathematicians provide formal

verification.

The complete proof given by Hales takes the form of a

series of articles covering more than 250 pages, and the

software requires three gigabits of memory. Did anyone

completely read and understand these articles by Hales?

The Referees having to check the articles (published in

the Annals of Mathematics in 2005) were not confident

that the proof did not have any errors, given the reliance

on computer assistance. Only in 2014, did the team led

by Hales provide a proof that was considered conclusive!



Regardless, everybody was convinced that the stacking

originally devised by Kepler was the most compact

possible. If not, during the course of three centuries,

somebody would surely have found a better arrangement,

wouldn’t they?

If the compact stacking of discs does not have many

practical applications, one can consider an equivalent

problem in the real three-dimensional world: it is simply

necessary to substitute the discs with regular cylinders. For

instance, cylindrical electric wires are usually assembled in

compact bundles. This is also the case for superconducting

cables, as we shall see in Chapter 25, which are made by

bundles of superconducting wires, each wrapped by a

sheath of copper. In the beginning, the wires have the

classical cylindrical shape, but, after a strong pressure, they

take on the form of hexagonal prisms!

Spheres in the Real World

Now, let us step out of the plane and enter the three-

dimensional world, the real space for both our spheres and

of the world as well. How can we stack the spheres in the

most compact fashion? Let us try by considering it

reasonable to begin with a layer as suggested in Fig. 2. Then

we place on top of it a second identical layer, taking care to

ensure that the contact points are the most numerous

possible. In this case, each sphere of the layer above is in

contact with three in the layer below and vice versa (Fig.

5(a)). Then we place a third layer so that each of these

spheres is in contact with three in the second layer, and so

on. The result is that every sphere is in contact with 12

other spheres, six from the same layer, three in the layer

above and three in the one below (Fig. 5(b)). Then we

continue with the same procedure.



Have we solved the problem? Is the volume occupied by

the spheres really the minimum possible? Yes, claimed

Johann Kepler in the 17th century, better known for his

discovery that the planets move on elliptical orbits around

the Sun, which is at one of the two foci. However, Kepler did

not have a proof for his claim. In contrast to the situation in

the plane, rigorous proof in three dimensions is really very

difficult! So difficult that the problem of stacking spheres

(sometimes called “the Kepler problem”) is included in the

famous list given by the German mathematician David

Hilbert in an address at the beginning of the 20th century

which outlined, in his opinion, the most important

mathematical problems of the day. Only rather recently, in

1998, the American mathematician Thomas Hales claimed

that he had solved the problem (see Panel on page 120).

Unsurprisingly, Kepler was right, the stacking of compact

layers as suggested is the most compact possible

arrangement (Fig. 6).

Figure 5. Building for stacking spheres in the most compact fashion. (a) First, we

place one layer compacted as much as possible (light spheres) and onto it an

identical layer is deposited (dark spheres), in the way that each dark sphere is in

contact with three light ones. (b) The third layer can be deposited in two

different ways, six spheres being in vertical contact with the spheres in the first

layer (as the striped sphere) or displaced as the spotted sphere.



Figure 6. Practical example of stacking of hard spheres, on a stall of oranges.

The percentage of space filled by the spheres is about

74%. More precisely, a rather courageous reader could

evaluate that it corresponds to π/(3 ) ≈ 0.74.1 We see that

the fraction of space occupied is not that large.

A Problem with Multiple Solutions

Surprisingly, the stacking solution defined above is not

unique. When the second layer is deposited on top of the

first, there are two ways to do it, which are equivalent. In

contrast, the third layer can be deposited in two ways that

are not equivalent. It could be placed on the vertical of the

first layer (Fig. 7(a)) or a little displaced (Fig. 7(b)). These

two choices appear anytime a new layer is added. Thus the

Kepler problem has infinite solutions. This nonsingular

solution is at the core of the difficulty of the problem (see

Panel on page 120). Two solutions are of particular interest:



(a) the one obtained by placing the nth layer vertically

above the (n – 2)th one, this for each n;

(b) the one obtained by placing the nth layer shifted with

respect to the (n – 2)th layer.

Figure 7. Compact packaging balls. (a) The case when the third layer is placed

strictly above the first one (hexagonal packing). (b) The case when the third

layer is displaced regarding the first. Wherein the fourth layer turns over the first

(cubic face-centred lattice).

The natural world displays several examples of

constructions that follow one of the rules mentioned above,

as in certain crystals. The crystals are formed by packing

atoms, molecules or ions, arranged periodically in the space

(see Chapter 9). Rule (a) leads to the formation of the

“hexagonal compact” crystal; Rule (b) gives rise to a “face-

centred cubic” crystal. Several elements, for instance,

cobalt, obey such an atomic arrangement.

Randomly Packed Balls

Let us return to the problem mentioned at the beginning of

this chapter. What is the relation of the compact packing of

balls with footprints in the sand?



When the reader finds themself on a sandy beach, they

could perform the following simple experiment to clarify the

observation made by Reynolds. First, take a jar made of

somewhat flexible plastic material and fill it with sand. Then

add water to just slightly above the level of the sand (Fig.

8).

From spheres kissing to the Kepler problem

In the stacking described above, each sphere is in contact

with 12 neighbours. But if we consider only the ball in the

centre, would it be possible to place more balls around it?

If so, how many in total? This maximum number is known

in English as the kissing number (the number of contacts

between the spheres).

The corresponding problem in two dimensions has

already been addressed a few pages above. It is easy to

visualise, by reasoning as well as by experience, that the

kissing number in the plane is 6. If we duplicate the

arrangement, we can tile a plane.

In three dimensions, the solution is not so apparent. To

develop an understanding of it, nothing works better than

an experiment. First, get a sufficient number of billiard

balls or ping-pong balls and fix them using some glue (not

too rapid-acting): in order to not get dirty, you can put the

balls in a transparent sack and try to obtain a compact

pile. You will see that is not possible to place more than

12 balls around a central one. However, you will see some

room in the pile and might think that another ball could

be packed if someone had a particularly brilliant idea. In

the 17th century, this was the subject of a dispute

between Isaac Newton and the mathematician David

Gregory. This thought that it should be possible to find a

way to include an additional ball around the central one.

Nowadays, we can demonstrate that Newton was right;

however, the first proof wasn’t given until 1953.



Could the discovery of the possible number of contacts

in the space provide the response to the Kepler problem?

No! There is an infinite number of ways to place the 12

balls around the central one, and this implies the difficulty

of the problem. One of the ways corresponds to the face-

centred cubic lattice (see Chapter 9). Then the centres of

neighbouring balls form a polyhedron that is not regular,

defined as a Kepler cubic-octahedron (see below). It has

14 faces, with eight equilateral triangles and six squares.

On the triangular faces of the cubic-octahedron, the three

balls have the maximum packing since their edges are

equal to the diameter of the spheres, and then they

cannot get any closer. It is not the same for the faces of

the squares.

If we were to place the 12 peripheral balls without any

particular rule, in general, their centres form

icosahedrons (a polyhedron with 20 triangular faces) that

can be regular or not. If we calculate the length of the

edges, we find a value greater than the diameter of the

ball. Therefore, we can modify the position of the

peripheral balls, always with the condition that they touch

the central one.1

Even when we accept that the packing of those

polyhedrons is the most compact, there remains the

question: cubic-octahedrons or icosahedrons? The regular

icosahedrons have a volume a little smaller, but it is not

possible to fill up the space by means of a stacking

regular icosahedrons. This highlights the difficulty of the

Kepler problem…



How many identical coins can be placed on a table in a way that they touch

the central one? It is easy to demonstrate that the maximum number is six.

In three-dimensional space, we can place a maximum of 12 balls around a

central ball. The external balls still leave some room in between them, and



this might make us think that another ball could be placed.

(a) The figure obtained by an atom’s nearest neighbours in a body-centred

cubic crystal is the Kepler cubic-octahedron. (Remark: We need to shift this

polyhedron in such a way that the vertical axis of Fig. 7(a) is not the one of

Fig. 7(b).)  

(b) Another polyhedron with 12 vertices, the regular icosahedron.

1
 Here are the main steps in the calculation for regular icosahedrons. The

volume of the cubic-octahedron is  a being the diameter of the ball.

The volume of the icosahedrons is 5(3 + √5)b
3
/√12, where b is the length of

the edges. The square of the ratio b/a is 8 sin
2
(π π/5)/[3 + sin

2
(π/5) –

cos(π/5)], with the angles given in radians. The ratio b/a = 1.044.

Figure  8. Evidence of the effect related to spreading out of the sand under

pressure. (a) The plastic jar containing sand filled with water up to the level of

the sand; (b) when the plastic jar is pressed in the middle, the water disappears

from the surface of the sand.

Then squeeze the top of the jar, and the water will

disappear, penetrating into the gaps between the grains of

sand. Everything happens as if the sand “expands”, and its



upper boundary rises above the water level. This expansion

effect only occurs if the initial arrangement of the grains of

sand was compact enough.

Why should the departing tide leave the sand in a

particularly compact configuration? In order to answer this

question, we have to consider the mechanisms that can

make the sand more or less compact. Let us begin with a

simple experiment that can even be performed in a kitchen

(maybe you have already done it!). We take a glass tankard,

possibly with a graduated scale, and fill it with powder

sugar. When we slightly shake this vessel, we will note that

some room for a new amount of sugar will appear. In 1960,

the Britain C. David Scott studied this effect quantitatively.

He put identical small spheres in vessels of different sizes

and evaluated the degree of filling. He found that the

degree of filling is related to the way the spheres are added.

If the spheres are allowed to fall into the vessel one by one,

the degree of filling is about 60%, much smaller than the

74% in the case of a compact arrangement of the spheres.

By shaking the vessel while it is being filled, then the degree

is 64%, better but still less than the maximum value of the

compact configuration.

Physics and fakirs

A counterintuitive property of granular media was already

empirically known by the Indian fakirs. One of their tricks

was to push a knife several times inside a vessel

containing rice, filled up to the top. After some time, the

knife was firmly fixed inside the rice, and, by lifting it, the

entire vessel could be seen to lift. The craft of the fakir

was to shake the vessel while adding the rice so that a

reasonable packing was achieved. While pushing the

knife, the grains of the rice were moved, and the room in

between them was increased. The increase of the

pressure and the friction produced on the knife could



make it hard to remove the knife itself. During one of his

conferences, physicist Pierre-Gilles de Gennes presented

this very simple experiment: the knife was substituted

with a piece of a broom handle and the rice with sand,

while the fakir was substituted by the award of a Nobel

prize.

The variant of the experiment of the Indian fakir.  

(a) Fill the container tightly with sand with a stick held in the middle.  

(b) Gradually compact the sand by tapping on the sides of the container.  

(c) Grab the stick and pull it up: the container rises with it!

Figure 9. Explanation of the sand loosening. Due to the force applied by the foot,

one of the grains (here the light one) is shifted under another grain (grey

colour). From E. Guyon et al., What Fluids Say, Belin (2011).

Therefore, the results obtained by Scott confirmed, in a

quantitative way, our observation: the compactness of

granular samples, such as the sand, is indeed increased



when we shake the vessel. What is the role of this shaking?

A ball at the bottom of a cavity is in stable equilibrium and

will remain there if the shaking of the system is moderate.

By contrast, a ball that is near the top of a pile is in a

condition of unstable equilibrium. This is approximately

what happens in our case: when we shake the balls in the

vessel, some slip into an available space. The overall level

of the filling material is then decreased, the centre of

gravity of the whole system is lowered, and its gravitational

potential energy is decreased.

We now have the explanation of the problem pointed out

by Reynolds. As a consequence of the ebb and flow of the

waves, the sea shakes the sand so that the grains attain the

condition of compact configuration (although likely not the

most compact). When the foot of Mr Reynolds is placed on

the sandy beach, it induces a kind of deformation: the

grains are somewhat shifted, and an increase of the free

space in between them occurs (Fig. 9). Then the water is

sucked into the cavities created in between the grains, and

a dry area is formed around the foot.

Conclusion

In this chapter, a pleasant walk along the beach allowed us

to study the mathematical problem of the optimal way to

pack hard spheres in order to minimise the free space

around them. Even though atoms are not balls, certain

properties are similar to them. In Chapter 9, this

correspondence will drive us to deal with the properties of

matter.

1
 The main steps of the calculation are the following: in each layer, the N1

centres of N1 balls of radius R form a lattice of N1 lozenges having area 2R
2
√3

(the fraction of the plane covered by the discs, as estimated above, being

π/(2√3)). The distance between two layers is  Having N balls, they



occupy the volume 4NR
3
√2, being 4πNR

3
/3 the total volume of the balls.



Chapter 9

From Crystal Snowflakes to Vitreous

Glass

In the 5th century BCE, the Greek philosopher Democritus

formulated the atomic theory of matter. Even before that,

the existence of atoms had been universally accepted. The

hypothesis that matter was the assemblage of hard small

balls attracting each other was the source for understanding

the structure of the elements.

At the beginning of the 17th century, Johannes Kepler found

himself drawn towards snowflakes. As the stars in Fig. 1

show, the majority of the snowflakes display hexagonal

symmetry: the angle between two branches is 60°. This

angle of 60° was already encountered in the compact

packing of discs (Fig. 2 of Chapter 8), where the centres of

neighbouring circles form equilateral triangles; in the same

way as is found in the compact packing of hard spheres (Fig.

5 of Chapter 8). It is probably this observation that

prompted Kepler to suppose that snowflakes are formed by

microscopic balls in a compact packing arrangement. As we

shall see, this hypothesis was not true. However, it opened

the way to other theories that began with the study of the

crystals and contributed to providing a solid basis for the

atomic theory of matter.



The Crystalline Order

A French scientist, the abbot René Just Haüy (1743–1822), is

considered the founder of the study of crystals, the science

known as crystallography. In his Essay sur la structure des

crystaux published in 1784, he suggested that all crystals

are made by the repetition of small identical bricks (Fig. 2).

This microscopic vision had been inspired by the

macroscopic appearance of the large number of crystals he

studied, cut and observed (Fig. 3).

Figure  1. Some snowflakes. The forms taken by the snowflakes are extremely

varied: among other things, they depend on humidity and temperature.

Figure 2. Drawings by René Just Haüy giving his interpretation of two forms of

pyrite crystal (FeS2). According to Haüy, the crystal is an assembly of small

identical parallelepipeds placed with faces set in contact. These parallelepipeds

being very small, their edges are not visible to the eye, and the faces appear

smooth.



The idea that a crystal is purely a three-dimensional

packing was taken up a little later (1824) by German

physicist Ludwig August Seeber. In addition, he supposed

that the basic unit of packing was small hard balls

interacting with each other. In many materials, to a rather

good approximation, we can indeed suppose that the atoms

are hard spheres attracting each other. Even though atoms

are not hard spheres, they have some analogous properties.

In fact, it is rather difficult to push two atoms together

beyond a certain distance, which is the sum of their so-

called “atomic radius”. This expression, commonly used in

laboratories and textbooks, indicates that researchers have

not entirely lost the habit of imagining atoms as small hard

balls! These atomic radii are of the order of 10–10 m (a little

smaller for the atoms of hydrogen, oxygen and carbon, and

a little larger for the common metals).

Figure 3. A pyrite crystal (FeS2) also known as “fool’s gold”. This crystal naturally

adopts very different geometries, from the simplest (a cube) to the more

elaborate, which makes collectors happy.



Let us return to the crystals. Let us suppose the atomic

hard balls are formed by attracting each other, in order to

minimise their distance and so their attractive potential

energy, to adopt a compact structure of the type studied in

Chapter 8. In fact, there are several elements whose stable

form at low temperature is the face-centred cubic

arrangement of Fig. 7(b). For example, we can list silver,

gold, copper and nickel, and around about 35 elements in

total, with this form of packing. However, not all crystals are

really compact, as we are going to address.

Crystallography and Its Instruments

Nowadays, crystallography can rely on very efficient

experimental devices to investigate crystal structures. We

have already shown that crystals are spatially periodic

arrangements of atoms, molecules or ions (Chapter 8). One

of these elementary units can describe the entire crystal:

these units, called cells, are in fact periodically repeated

along all three spatial directions. Furthermore, we can say

that a long-range order exists. Electron microscopy

(particularly the electron tunnelling microscopy) provides

images where atoms can be observed individually (see

Chapter 28), providing further evidence of their regular

arrangement. The atoms appear as small balls, but we

should not forget that they are far more complex objects,

being formed of a nucleus with electron clouds around

them.

Electron microscopy, on the other hand, allows us to

study only the surface of the crystals. In order to study their

insides, the most commonly used methods rely on X-ray

diffraction (see Panel on page 129). On irradiating the

crystal, the rays are diffracted and are creating interference

phenomena that vary in intensity in specific directions.

When a photographic plate is placed on their trajectory, we



obtain an image, the diffraction pattern, that reveals the

structure of the crystal.

The first diffraction patterns were obtained by German

physicist Max von Laue in 1912 and by British physicists

William and Lawrence Bragg in 1913: they justify René Just

Haüy’s theory. Thanks to the technique of X-ray diffraction,

we can also determine the structure of very complex

molecules, such as, for instance, the proteins in our bodies.

The most celebrated example is the one for DNA, whose

structure (see Chapter 28) was derived in 1953.

Inside our bodies, the proteins are obviously not crystals,

but they can be extracted and then crystallised. The

analysis of large molecules requires intense, well-collimated

and monochromatic X-ray beams. These are generated by

synchrotrons, which have been used for several decades.

European nations have jointly built such a generator in

Grenoble, called the European Synchrotron Radiation Facility

(ESRF) (Fig. 4).



Figure 4. The ESRF synchrotron ring at the confluence of the Isère (above) and

Drac rivers. Electrons under the influence of a magnetic field move in a ring at a

speed close to the speed of light. When the direction of speed changes, they

emit intense X-rays. On the right in the cylindrical domed building is the nuclear

reactor of the Laue-Langevin Institute.

X-ray diffraction from crystals

What are the principles of X-ray diffraction by a crystal?

When a radiation of wavelength λ of the same order of

magnitude as the distance between atoms (a fraction of a

nanometre), a phenomenon occurs similar to that when

light is sent through Young’s two slits (see Chapter 3): the

atoms of the crystal diffract the X-rays similar to how

Young’s slits do for visible light. The crystal behaves as a

regular lattice made of a large number of Young’s slits

(see figure). The rays diffracted by the atoms can then

interfere.

In any nonperiodic medium, in general, the

interference is destructive: the diffracted waves can be

approximately wiped out, apart from in the direction of



propagation of the incident ray. In a crystal, because of

the periodicity, there are other specific directions,

different from the propagating ray, along which the waves

emitted by the atoms are in phase. These directions

reflect the existence of crystal planes to which many

lattice points belong: the reticular planes (from the Latin

word, rete).

Constructive interference occurs when the diffracted

rays obey a condition known as the Bragg relation

Principle of X-ray diffraction from a crystal. A source S emits X-rays directed

towards the crystal at an angle θ with respect to the lattice planes. An

observer at the point O measures the intensity of the beam that is received.

Two lattice planes are separated by the distance d involved in the Bragg

relation.

where d is the distance between the two lattice planes, θ

the angle between the incident ray and two lattice planes,

and n any integer. Experimentally, we can explore the

Bragg relation by keeping the crystal fixed with respect to

the X-ray beam and by varying the wavelength. By

placing the photographic plate perpendicular to the

trajectory of the diffracted X-rays, we obtain a pattern



similar to the one reported in the following: the brilliant

spots indicate the directions for which the Bragg relation

is verified. This method was devised by Max von Laue

(1879–1960) and was awarded the Nobel Prize in Physics

in 1914.

For any direction of the lattice planes, there is always a

wavelength that satisfies the Bragg condition. By

studying the diffraction pattern, we can derive the

distance between lattice planes, thus deriving the

structure of the crystal, when rather simple. In more

complex cases, besides finding the directions along which

we obtain constructive interference and when the

intensity is non-zero, we must also measure the intensity

of the various diffraction lines.

Near the ESRF, another European facility, the Laue-

Langevin Institute, has been installed and provides very

intense neutron beams in order to study crystal structures

by means of diffraction. Neutron diffraction works according

to the same principles as for X-rays, as will be addressed in

Chapter 22.

Crystals and Geometry

Crystallography is not just an experimental technique.

Mathematics is also involved: several properties of crystals

can be demonstrated by means of theorems. One of these is

the crystal lattice, namely the three-dimensional

arrangement in which the atoms or the molecules of the

crystal are placed. Well before the research by von Laue, a

large number of mineralogists devoted their attention to the

classification of the various types of crystal lattices. A

particular case is when the cell behaves as a single atom:

such a lattice is defined as a Bravais lattice. Each Bravais

lattice is characterised by the geometrical transformations

(rotations and symmetries) that leave its configuration



unchanged. There are only 14 types of Bravais lattices (Fig.

5). This was proved mathematically by the French scientist

Auguste Bravais in 1848.

Figure  5. The three elementary cells forming three different types of Bravais

lattices by multiple repetition in space. The two forms on the right are not the

smallest units whose spatial repetition generates the complete lattice. In the

cubic-centred lattice, for instance, the elementary cell is a non-rectangular

parallelepiped having as its base the square ABCD and one of the vertices E, the

centre of the cubic lattice.

More generally, for all crystal lattices, the geometrical

transformations that leave them invariant are limited. For

example, a rotation by an angle of order 5 (namely by an

angle 72° = 360°/5) is forbidden for an infinite crystal that

must obey translational invariance: we shall address this

topic in the following section.

On the contrary, by definition, crystals are invariant for

an infinite number of translations: in fact, it is sufficient to

choose distances and directions that respect the periodicity

of the crystal itself. This property is nowadays considered

the most characteristic property of a crystal, rather than the

macroscopic symmetry that can be appreciated even by

external observation. The beauty of crystals, with their

shining faces and their various forms, continues to move us

regardless, for example, a small diamond on a ring or the

gorgeous minerals that can be admired in natural history

museums.

What is the link between the microscopic structure of a

crystal and its macroscopic geometry? The presence of



plane and shining faces, both in the natural case as well as

resulting from cutting, are connected to the regularity of the

microscopic structure. In fact, it is rather easy to obtain

well-defined and smooth planes from a crystal by the

operation of cleaving: if an atomic bond is fragile, all the

bonds in analogous positions in the lattice are also fragile.

This property is used by lapidaries in order to cut raw

diamonds (Fig. 6). In an analogous way, we can understand

how the formation of plane faces can be obtained during

crystal growth.

Symmetry of Order 5

Crystals can display symmetry of orders 2, 4, 6… but not of

order 5. The exclusion of the number 5 from this list is a

direct consequence of their mathematical character: it is

impossible to fill the space with a basic unit displaying a

fivefold symmetry. In two dimensions, we noted that it is

possible to tile a plane by means of rectangles, squares,

hexagons or equilateral triangles but not by using

pentagons.

Figure 6. In order to obtain one cut stone, the lapidary initiates with a small cut

in the raw diamond, then they strike a knife in it: the diamond splits into two

pieces along a plane of cleavage. By smoothing, the gemcutter creates many

small faces (58 for a brilliant diamond).



Figure 7. The corolla of the campanulas displays a symmetry of order 5.

This anomaly worries many researchers, and even nature

seems to accept it only reluctantly, adopting it rather

frequently elsewhere. In flowers, the symmetry of order 5 is

very frequent (Fig. 7). The same happens in small

aggregates of atoms obtained in laboratories. Researchers

have been able to create aggregates with the chemical

formula Al13 or Al12C arranged with a central atom and 12

peripheral atoms: they form regular icosahedrons with axes

of symmetry of order 5 and not the cubic octahedron that is

the basic unit for the compact arrangement.



Figure  8. A very compact arrangement of the hard balls with the 5th-order

symmetry (the first two layers are represented in white and grey). On each

pentagon, adjacent balls touch each other, being slightly shifted with respect to

two neighbouring pentagons. The sides of pentagon alternately consist,

depending on the layers, of an even or odd number of balls.

Even for an infinite medium, symmetry of order 5 is not

totally impossible. If we accept the limitations of building up

a periodic assembly, we could be happy with the

arrangement in Fig. 8, where the balls in each layer are

placed onto the sides of regular pentagons. The packing

factor that results is 72% which is not too bad compared

with the maximum possible of 74% (see Chapter 8).

Quasi-crystals

Even before the work of crystallographers in the 19th

century, the theoretical impossibility of finding a crystal with

fivefold symmetry had already been demonstrated. Thus it

came as a surprise in 1984 when a team led by Daniel

Shechtman was analysing the structure of an aluminium

and manganese alloy synthesised in their laboratory. Their

diffraction pattern displayed localised brilliant spots, as for

any crystal (Fig. 9).



But to their surprise, the alloy had symmetry of order 5,

in spite of the laws of crystallography. Indeed, the alloy was

a “quasicrystal”, with a “quasiperiodic” structure (see Panel

on page 135).

The International Union of Crystallography (IUCr) gave

the formal definition in 1991: a “solid without three-

dimensional periodicity” but displaying a diffraction pattern

“essentially discrete” as the one of crystals. The brilliant

spots of the diffraction pattern are indeed much more

numerous than in crystals: in reality, there are infinitely

many for any portion of the diffraction pattern, the majority

being so weak as to be almost invisible. That astonishing

discovery was rewarded with the Nobel Prize in Chemistry to

Shechtman in 2011.



Figure  9. (a) AlCuFe quasicrystal of icosahedral morphology (courtesy of Dr.

Annick Quivy, CECM-CNRS, Vitry, France). (b) Its X-ray diffraction pattern

(courtesy of Dr. Jacqueline Devaud, CECM-CNRS, Vitry, France). The symmetry of

order 5 that appears in this pattern is not possible for crystals.



Original tiling for a bath hall

Quasiperiodic structures are an unexpected boon for

those people who dislike monotony and would prefer to

tile the floor of their bathroom in a more original way than

the usual paving by hexagons, squares or triangles. They

could find inspiration in the scientific work of the English

mathematician Roger Penrose. In 1974, he suggested

tiling the floor by means of two types of rhombuses, thus

“locally” obtaining symmetry of order 5. The reader can

play in the attempt to form nonperiodic larger tiling. It is

not so easy as it would seem!



Amorphous Matter

We have seen that in general a crystal is the state for a

system of atoms or molecules that minimises the energy at

low temperatures, even if the size of the crystal is small. Is

it true that all the atomic assemblies display the typical

crystalline order at long range? The answer is no: some

materials are present in an amorphous form, namely they

do not exhibit any symmetry, not even locally. The

diffraction pattern does not show any spot or any structure.

Their structure is similar to that of a “frozen” liquid.

A familiar example is the glass of our windows that are

basically formed by silicon dioxide (SiO2) (Fig. 10(a)). This

silica also exists in crystalline form, for example, as quartz

that we can find in magnificent forms in nature (Fig. 10(b)),

as well as cristobalite or tridymite.

All these crystals are “built” of SiO4 tetrahedra connected

to each other by their vertices in different ways, depending

on the crystal form. In view of the different ways of placing

one tetrahedron near another, it is not surprising that the

various positions are taken at random, and this gives rise to

amorphous silica or vitreous glass. Locally, the glass retains

the structure of a crystal: thus the amorphous materials are

characterised by “short-range” order. It is noted that both in

a quartz crystal, as well as in silica, the configuration is far

from compact. Each atom, instead of having 12 nearest

neighbours, has only two (for the oxygen) or four (for the

silicon). Thus there is still much room for placing a number

of supplementary atoms.

Amorphous materials have many technological

applications. Thanks to a long-lasting capability, strong

resistance to corrosion and an optimal combination of

electrical and magnetic properties, amorphous metallic



alloys, for example, are employed in orthopaedic prostheses

or in tools for surgeons.

Conclusion

In this chapter, we have been involved with the structure of

matter, using the assumption that the constituent atoms

behave as hard spheres attracting each other and forming a

compact assembly. This hypothesis can be wrong, and

amorphous or strong crystalline materials are far from being

compact. When Kepler, in his attempt to explain the form of

snowflakes, assumed the existence of compact packing, he

was rather far from reality! In fact, the structure of ice at the

atomic level locally resembles silica (Fig. 10), by replacing

the silicon with the oxygen and the oxygen with the

hydrogen. Each water molecule tends to have four other

molecules nearby, analogous to the silicon atoms in silica

that tend to have four oxygen atoms nearby. Therefore, as

for silica, the structure of ice is not very compact, at

variance with the assumption by Kepler. However, the

hypothesis by Kepler and other scientists, such as Robert

Hooke (1635–1703) or Mikhail Lomonosov (1711–1765), who

followed the same idea, contributed to the advancement of

Physics. Often progress is achieved through errors that other

scientists attempt to correct.



Figure  10. Structure of glass (a) and quartz (b). These two forms of silica are

composed of interconnected SiO4 tetrahedra. For simplicity, the image is

projected onto a plane: each oxygen atom is bonded to two silicon atoms, and

each silicon atom is bonded to four atoms of oxygen.



Part 2

Everyday Physics

The reader is already aware of the importance of Physics in

the modern world: our technological devices are ever more

complex and numerous and require an increasing amount of

energy. However, we may be less conscious of the presence

of Physics in a variety of phenomena related to the daily

life, for example, while eating.



Why does the French aperitif “pastis” become opaque

when mixed with water? What is the origin of the bubbles

escaping a bottle of sparkling wine? Why is a sound

produced when fingers slide around the rim of a glass? All

these questions, and many others, will have responses in

this part of the book.

We will also take a train ride, during which we shall

discover that the change in pressure the passengers call

“ears popping” when entering a tunnel can be explained by

resorting to a property discovered in the 18th century by a

Swiss scientist. Do you know whether this variation of the

pressure is an increase or a decrease? You will discover it in

the following pages.



Chapter 10

A Conversation on a Train Ride

What do a train entering a tunnel and a liquid flowing

through a narrowing pipe have in common? The response

involves pressure. The area of physics called fluid dynamics,

created in the 18th century, mostly due to the work of

Daniel Bernoulli, finds many applications in our everyday

lives.

Once upon a time, when high-speed rail services did not

exist, three physicists were travelling by train. A few

minutes after departure, the train suddenly entered a

tunnel. The entrance was accompanied by an unpleasant

sensation in the ears, similar to what happens when rapidly

descending from a mountain (Fig. 1).

One of them complained that such an overpressure

should not happen in a modern train. A second physicist,

disagreeing, pointed out that it was not an over-pressure but

rather a sudden decrease of the pressure. The third one

claimed that it had to be the result of the compression of

the air when the train suddenly enters the tunnel. It

appeared that they had forgotten the principles worked out

long ago (18th century) by the Swiss scientist Bernoulli. In

1738, he published a book, Hydrodynamics, yielding

fundamental results about the behaviour of fluids. It is noted

that his name was Daniel (1700–1782) since several

members of that family obtained significant successes in



various scientific fields (his father Jean and his uncle Jacques

are equally famous for their work in Mathematics and

Physics). It is amusing to observe that Daniel was also the

name of the physicist in the group travelling on the train

who was an expert in hydrodynamics, and who decided to

provide a lecture during our trip.

Figure 1. When the train enters a tunnel at high speed, an unpleasant sensation

occurs in the passenger’s ears due to a variation of the pressure.

About the Train Travelling in the Tunnel

Daniel addressed the problem in the following way. Let us

assume that the train is moving at constant velocity while

the air in the tunnel is effectively stationary. To be precise,

the air is not at rest everywhere (Fig. 2(a)). In front of the

train, at Section A, the air isn’t moving. At the back, in

Section B, it is also at rest. As the train proceeds, the air in

front of it must vacate the place taken by the train, while, at

the back, the air moves to fill up the place the train has left



behind. Thus an air current moves in the direction opposite

to the direction of train travel, a current that forces the air

to pass from the front to the back of the train. To cause such

a movement, a force must be acting. Is this force due

directly to the train? No! The train does create a force

against the air, but it is rather the friction force that acts to

keep the air in contact with the train. In order to have a flow

of air in the opposite direction to the train’s motion, there

must be a pressure difference! The pressure is weaker in

section C than in section A in Fig. 2, thus explaining why the

air moves towards C. In the meantime, it must be stronger

in B than in C in order to push the air arriving from C. On the

other hand, the pressure in A is the same as the pressure in

B, both simply being at atmospheric pressure. Therefore,

the train passing into the tunnel creates a decrease in the

pressure around it (Fig. 3).

Figure 2. (a) The train entering the tunnel at velocity V causes an air current at

velocity – ϑ in the opposite direction. A reduction in the pressure is happening.

(b) An analogous decrease in pressure is induced when a fluid exits a narrowing

pipe at velocity –V.



Figure 3. Evolution of pressure registered by a measuring device placed 72 m

from the front, while the train is moving into the tunnel. On the whole the

pressure is smaller than atmospheric pressure, during the passage of the train.

Thus a decrease in pressure is occurring. The fluctuations present in the curve

will be explained at the end of this chapter.

The Flow of Fluids in Pipes

During the 18th century, Daniel Bernoulli evidently could

not know about trains. The problem he was analysing was

the flow of fluids in pipes (Fig. 2(b)). The analogy with the

train in a tunnel is evident. The pipe is the tunnel or, better,

the tunnel plus the train: the presence of the train inside the

tunnel is the equivalent of the narrowing of the pipe. For the

reason that we shall address in what follows, the narrowing

in the pipe causes the decrease of the pressure.

Bernoulli evaluated the drop in the pressure P by taking

into consideration the flow of an incompressible liquid with

no viscosity. His formula was very simple. Since the flow

remained the same in any section of the pipe, the velocity V

of the flow is necessarily higher in the narrow part than in

the wider parts. If ρ is the density of the fluid, then for a

stationary and non-turbulent flow, at any point in the fluid is

valid the equality:



Experimental proof of low pressure at the

pipe narrowing

The variation of the pressure for liquids flowing in a pipe

where the diameter changes can easily be experimentally

verified. Let us have the fluid circulating in a pipe with

one wide and one narrow section, with open vertical

tubes connected to the pipe as shown in the figure.

Assuming that the presence of the tubes does not perturb

the flow much, these tubes can indicate the value of the

pressure at the different parts of the pipe. Once the flow

is established (stationary state), the height of the water in

the tubes is different: in the tubes connected to the wide

sections, it is higher than in the part of the pipe which has

narrowed. By measuring the difference in height Δh in the

tubes in A and C or in B and C, the difference in pressure

can be deduced: ΔP = Δhgρ. By knowing the rate of flow

and the diameter of the pipe, one can also deduce the

velocity and thus verify Bernoulli’s theorem.

In the presence of flow from right to left in a horizontal pipe, the levels of the

liquid in A, B and C evidence the different pressure present corresponding to

the narrow section, due to the different velocity of the fluid, which is larger in

B with with respect to A and C (V′ > V). The same value of the pressure in A



and C ensures that no change in the rate of flow has occurred, namely that

the energy dissipation of the fluid due to the friction is negligible.

This equation is exact when gravity plays no role, namely

when all the points being considered are at the same height.

We shall see later on how to take gravity into account.

Compressible and Incompressible Fluids

As has been pointed out during the conversation with our

colleague familiar with hydrodynamics, the Bernoulli

theorem holds for an incompressible liquid, such as water.

The air in the tunnel is not incompressible. In fact, the

quantity P + V2/2 cannot remain rigorously constant along

the tunnel. However, the general argument remains valid:

the rate of flow is the same, so where there is a narrowing,

the air necessarily moves at a higher velocity. To induce this

acceleration, a force is involved, and this force is related to

the pressure difference and in the region of narrowing a

decrease in pressure is induced. This phenomenon is known

as “Venturi effect” after the Italian physicist who studied

some devices based on the flow of fluids along pipes of

different diameters around the time of Bernoulli.

One of the other two physicists on the train, Paul, was

still arguing: if the velocity of the flow is different in the

front and in the back of the train, why is the pressure in the

inside and outside the train the same?

Daniel admitted that the velocity of the air is different.

On the other hand, if one of the windows of the train is

badly fitted, the pressure has to be about the same. This

phenomenon is used in the Pitot tube, a device that allows

us to measure the velocity of a flow (see Panel on page

146).

It can detect the value of the pressure by means of two

ad hoc holes, and through the use of Bernoulli’s theorem the



velocity is deduced. These holes are the equivalent of the

windows in the train if not hermetically sealed.

Our train has the windows well closed, the glass being

fixed in place and not openable. The train attendant, who

has just arrived, can complete the explanation, confirming

that the windows are hermetically closed. Thus the effect of

an increase or decrease in pressure can only be felt with a

certain delay, of the order of 10 or 15 s.

One Simple Experiment

One of the other passengers remained somewhat dubious.

The Bernoulli theorem is contrary to intuition. To let an

object enter an orifice, for instance, a cork in a bottle, one

must push. Yet, in the case of the train, a decrease in

pressure occurs? It is true that some real results appear

contrary to intuition, says Daniel. However, the cases of the

cork in the bottle and the train in the tunnel are very

different in reality. The next time you are travelling by train,

just bring a barometer or even a simple device used to

measure the altitude when climbing in the mountains (Fig.

4).

Measuring the velocity of an aircraft

How do we measure the velocity of an aircraft with

respect to the air around it? Bernoulli’s theorem (with

some modifications to take into account that the air is not

incompressible) reduces this measurement to an estimate

of the pressure difference. This estimate is carried out

using a Pitot tube installed outside the fuselage. The

principle of such a measurement was proposed by French

physicist Henry Pitot (1695–1771).



Pitot tube installed under an aircraft wing. This device became infamous in

June 2009: the pilots of the flight from Rio de Janeiro to Paris reacted

inappropriately after ice froze over the Pitot tubes, thus causing the fall of the

aircraft.

The Pitot tube consists of two Γ-shaped tubes with

parallel (C) and perpendicular holes drilled (B and B′) (see

figure).

The quantity to be measured is the speed of the

airplane with respect to the air, which we denote by –V (it

is convenient to refer to the aircraft so that the air speed

immediately in front of the airplane, at point A, is equal to

V). When it enters the tube, the counter flow is split. A

small part of it, C, is filled with air, the velocity of which is

zero here since the tube is filled and closed at the other

end. The air velocity is also zero at D: thus the pressure

at points C and D coincides. Another part of the air flows

around the pipe and reaches the holes B and B’

practically without changing its speed V, which makes it

possible to determine the pressure that is established at

point F.



Next, the pressure gauge measures the pressure

difference P
D
 – P

F
 between points D and F, which is

equivalent to the pressure difference P
C
 – P

B
 between

points C and B and coincides with the pressure difference

P
C
 – P

A
. Now we just have to calculate the speed of the

plane using Bernoulli’s theorem. In the case of an

incompressible flow, the latter leads to the equality P
C
 =

P
A
 + ρV2/2. Since the measured pressure difference P

D
 – P

F

is equal to P
C
 – P

A
, the aircraft speed turns out to be

It will be possible to verify that a pressure decrease

occurs during the passage of the train through the tunnel.

This experiment is really worth setting up since

Bernoulli’s theorem assumes that the fluid is

incompressible, and its flow is laminar (i.e., without



vortices), while the train bursting into the tunnel creates a

significant disturbance of the air located there.

In reality, a certain additional pressure is registered right

at the entrance, and then the decrease predicted by the

Bernoulli theorem is followed by an increase in pressure

(see Fig. 3). Entering the tunnel produces a wave of extra

pressure in front of the train: this wave propagates through

the tunnel at close to the speed of sound and arrives at the

end of the tunnel well before the train. Furthermore, through

the capriciousness of fluid mechanics, that wave is reflected

instead of exiting the tunnel.





Figure 4. Some devices for measuring pressure. A barometer (a); a manometer

used for the pressure in car tires (b); and an altimeter (c). This latter device

measures the decrease in pressure that occurs on increasing altitude in the

atmosphere.

Thus, it meets the train again, is reflected again, and so

on. Similarly, after entering the tunnel, a low-pressure wave

forms behind the tail of the train.

The Effect of Gravity

One further observation by a passenger: another

consequence of the Bernoulli theorem goes against our

intuition. To elaborate, we assume that a fluid flows due to

the pressure difference when it would seem that it is the

flow of the fluid itself that induces such a pressure

difference. Often the flow of a fluid is due to its weight.

True, admits Daniel, and indeed the experimental setup

used by Bernoulli to derive his equation implied a role for

gravity, with the flow occurring in a vertical tube connected

to a container (see Fig. 5).



Figure  5. One of the Bernoulli experiments, described in his book

“Hydrodynamics”. The water inside the large container flows through a narrow

tube. Without any flow, the levels in A and B are the same. Once the water

flows, a difference in the levels in A and B is detected. In the container, PA +

ρgzA +  = PC + ρgzC +  while in the narrow tube of uniform cross section,

PB + ρgzB = PC + ρgzC. Since PA = PB is atmospheric pressure, we deduce g(zA

− zB ) = VC
2
/2 VB

2
/2. From the rate of flow, the velocities VC and VA can be

derived (the widths of the container and of the tube are known).

The flow is not horizontal as in the tunnel, and the

Bernoulli theorem must be formulated in the form



with g being the acceleration due to gravity, while P and V

are the pressure and the velocity at the height z.

Historically, Bernoulli paid special attention to a specific

problem: the duration of the outflow of liquid from a vessel

through a small opening (see Panel below on this page).

The astuteness of a plumber in emptying a

container

By considering the case of a container emptying, we shall

realise that the Bernoulli theorem needs to be applied

with some care. The reader can easily carry out the

following experiment (see figure).

Simply fill a plastic bottle that has a hole at the bottom

with water and measure the time taken for it to empty,

repeating with different starting levels of the water. What

is the relation between the height H of the water and the

time τ required for emptying?

With various provisos, we could write that the quantity

P + ρgz +  is the same at the surface of the liquid and

at the exit from the hole, or that the pressure is the same

and given by atmospheric pressure P
O
. For simplicity, let

us assume that the diameter of the bottle is much larger

than that of the hole. Thus the speed of the water exiting

the bottle turns out to be

h being the height of the water (having initial value H).

This would be the same speed acquired by an object

falling (with zero initial velocity) from the height h under

the action of gravity.



In practise, this result is only an order of magnitude

estimate since it is based on some assumptions that are

only approximately valid. The pressure at the exit of the

hole is indeed given by P
0
, but this is not the real pressure

inside the jet that is coming out. In fact, at the bottom of

the container, we should add the additional pressure ρgh

to P
0
, this being the weight of the water column. The total

pressure cannot suddenly change to equal P
0
 at the exit

of the jet, instead it will reach this latter value

progressively. Thus at the exit, the speed of the jet is

smaller than V. This can be taken into account by

reducing V by a coefficient C, smaller or equal to 1 and

depending on the geometry of the hole. The value of C is

known to be 0.6 for a perfectly circular hole made at the

bottom of the container. The time required to empty thus

turns out to be

The coefficient C can be modified by adding a kind of

device to the hole such as the tube sketched by the two

black parallel segments in the figure. These devices are

commonly used by plumbers.



Emptying a container filled with liquid up to height h. The Bernoulli theorem

implies that the speed of the flow exiting the container is proportional to h
1/2

,

the square root of the height. Thus the speed decreases as the container

empties.

Viscosity and the Boundary Layer

The problem of emptying a container through a hole had

already been studied, a century before, by an Italian

scientist, Evangelista Torricelli. He figured out that the speed

of emptying was independent of both the type of fluid and

the shape of the container, and was instead proportional to

the square root of the height of the fluid in the container.



This result is only approximate, for several reasons that we

are going to address. We displayed some regret — had

Daniel pulled our legs?

He said: “I have only simplified some aspects, as

physicists should do.” When applying the Bernoulli theorem

to the emptying process, we have assumed that the velocity

of the liquid flowing in the tube is the same regardless of

the distance from the walls of the tube being used. That it is

the same, for instance, in the middle of the flow as it is very

close to the walls. This is not correct, the velocity has to

vary depending on the distance from the wall of the tube,

with additional conditions imposed by thinking about

continuity. In particular, very close to the wall, the velocity

of the liquid must be the same as the wall, namely zero.

Therefore, when the flow occurs in a tube of radius R that is

very small with respect to the length L, the speed of the

flow is weak all along a section of the tube. The rate of flow

Q is given by an equation derived in 1844 by physicist Jean

Léonard Marie Poiseuille:

where ΔP is the pressure difference between the two ends of

the tube and η the coefficient of viscosity of the fluid

(measured in kg m–1 s–1). The rate of flow will be very

different for water and oil since the latter is more viscous.

Furthermore, it is noted that, for a given difference of

pressure, the rate of flow varies very strongly (proportional

to the fourth power) with the radius of the tube.

By taking these effects into account, in the case of flow in

narrow tubes (which are not too short), the emptying speed

turns out to be dependent on the nature of the liquid and is

determined not by the square root of its level height, but by

this value itself. In addition, being inversely proportional to

the viscosity of the liquid, the velocity of the liquid begins to



depend on the nature of the latter. That is the reason why

we originally considered the case of a large tube, in which

we can assume to a good approximation a uniform velocity

of the flow, independent of the distance from the wall. The

region where the velocity changed significantly, decreasing

to zero upon the direct contact with the tube wall, is only a

thin boundary layer.

What is the thickness of this layer, asks one curious

passenger. This depends on the viscosity of the fluid, which

does not allow the velocity of the fluid to change too

dramatically when moving away from the wall. Therefore,

the thickness of the boundary layer is much larger in oil in

comparison to that in water. In general, the quantity that

plays the most significant role in fixing the boundary layer is

the ratio η/ρ. It is of the order of 10–6 m2 s–1 for water and

1.4 × 10–5 m2 s–1 for air at room temperature.

Daniel initiated some calculations. For a tube of length L

in which V is the velocity of emptying, the maximum

thickness of the boundary layer is of the order of 

Therefore, for a length of the tunnel around 250 m and a

velocity of 180 km h–1, the thickness is just a few

centimetres. This value is almost negligible in comparison to

the distance of the train from the wall of the tunnel, and the

Bernoulli theorem can safely be applied. The same holds for

the flow of water in a tube of length less than a metre where

the rate of emptying is 1 m s–1, and thus the thickness of

the boundary layer is of the order of a millimetre.

A Problem in the Water Supply… The Water

Hammer

Paul added, “I want to be able to guess the reason why the

emptying process in a tube could lead to an increase in

pressure, regardless of our previous conversation. I

remember the year I left my house during the winter after



having turned off the water supply. In the spring, when I

returned to my house, I suddenly turned on the supply

without taking the precaution of opening the taps in

advance. Serious damage occurred in the pipes, and I had to

call a plumber. He told me I was the victim of a ‘water

hammer’ (Fig. 6).”

It is remarked that the circuit of pipes distributing water

around the house is at a pressure >1 atm. However, when

the general valve at the entrance to a house is opened, the

water acquires such a high speed that the pressure can

increase significantly over the original value, by

compressing the air inside the pipes.

Daniel again began some calculations in his booklet to

derive the equations controlling the phenomenon: too late,

the train was entering the railway station.

Figure 6. The sudden opening of a tap could lead to extra pressure in the pipes

with related damage: the water hammer. This definition also applies to the

series of characteristic noises when a tap is suddenly turned off and the

circulating water stops.



Chapter 11

The Stradivari Legacy

Musical devices, at least for some aspects, belong to the

realm of typical physics instruments. Even if they have been

improved throughout the centuries through the works of

lute makers or musicians who possibly did not have such a

relevant scientific knowledge, indeed they represent

wonderful applications of the laws of physics. In this

chapter, we shall deal with the king of the string

instruments, the violin.

Following previous musical instruments such as the lute or

the viola, the violin was born in the 16th century in Italy,

precisely in the town of Cremona, where the Stradivari, the

Guarneri and the Amati families heightened the making of

string instruments to an artform. Even nowadays, Cremona

maintains its tradition. Tourists visiting this town can explore

a number of shops displaying violins. (Fig. 1).

There is also a town of violins in France; this is Mirecourt,

in the Vosges. The high school is named after and dedicated

to a great lute maker of the 19th century, Jean Baptiste

Vuillaume, born in Mirecourt, who founded a unique lute-

making shop in France.

How the Bow Excites Vibrations



The violin is an instrument with rubbed strings: it has four of

them, wound tight and strung onto a support (Fig. 2).

This support transfers to the resonance case the

vibrations of the strings which result from the friction of the

bow. When playing, the violinist makes a slow “go and

come” movement with the bow. The direction of this motion

is changed after about 1 s, even less. The string of the violin

vibrates several hundred times per second; in other words,

in terms of the frequency unit, at several hundred hertz.

This frequency fixes the emitted note (do, re, mi…), and it

depends on the tension of the string (tuned by the musician

by means of the pegs) and on the position of the fingers of

the artist.

Figure 1. The cathedral and the baptistery in Cremona, Italy. The renowned lute

maker Antonio Stradivari (1644–1737), known as Stradivarius, was born and

died in Cremona.



Figure 2. The violinist rubs the bow over a string that enters in vibration. This

vibration is transmitted to the harmonic table (the upper part of the resonance

case) through the support. The musician selects the height of the sound by

blocking with the fingers the string against the handle. At the end of the handle,

there are four pegs that allow the musician to adjust the tension of the strings.

Figure 3. Motion of the violin string under the friction of the bow, following the

study by Helmholtz. The angular point c1 propagates from the support to the

finger of the violinist, from the left to the right, designing an arc of parabola and

vice versa from right to left (c2).

The vibration of violin strings has been described by the

German scientist Helmholtz in the year 1862. Thanks to

instruments that he devised and made, he was able to

demonstrate that the vibrating string, to a good



approximation, takes the form of two segments of a straight

line, with an angular point that propagates at constant

velocity from one side to the other of the string and then

back in the opposite direction (Fig. 3).

Leaving aside musical technique, we are going to address

the following question: how does sliding a bow on the string

cause its vibration? If the reader should think that it occurs

spontaneously, we would invite them to fix a thin cord to

two points and to slide a ruler on it (Fig. 4).

The cord is shifted from its equilibrium position, but it will

remain in that new position until the contact with the ruler is

active, and does not vibrate when the contact is interrupted.

Thus a cord would not vibrate after contact, regardless of

the object one uses for that. At variance, why does this

happen if one uses the bow of a violin? We shall see that the

solution to the mystery is just in the pitch, a resin that is

smeared on the vegetable fibres of the bow.

Static Friction and Dynamical Friction

The interaction of the bow and the string is the physical

process known as “friction”. Friction effects are often

disturbing, as is the case when they are the cause of the

loss of mechanical energy, which is being transformed into

heat. For example, a sizeable part of the energy spent to

move our car is lost because of the various frictional effects

involving the different parts. Friction effects are indeed

useful in other cases, for instance, when initiating a

movement: a proof is when we walk on an ice layer onto the

ground.

There are two types of friction: the static friction involves

two objects in contact, where one is immobile with respect

to the other, while the dynamical friction is active when the

two objects have different velocities. The frictions contrast

the relative motions of the surfaces which are in contact

(see Panel on page 158).



Figure 4. Experiment of rubbing a ruler on taut cord. The cord is shifted from its

equilibrium position but does not vibrate unless one keeps the contact with the

rule. On the other hand, one can get a sound “pizzicato” by briefly plucking the

cord.

The laws of dynamical friction

The dynamical friction of solid bodies sliding onto another

solid in general obeys the laws established in the year

1699 by Guillaume Amontons and subsequently (1781)



specified by Charles Coulomb (better known for his works

in the field of electrostatics). These laws state that the

force related to the dynamical friction does not depend on

the velocity. Instead, the dynamical friction depends on

the force applied perpendicularly to the surface, for

example, on the weight of an object resting on the

ground, or in our case on the pressure applied to the

string by the bow. The ratio of the two forces is the

“friction coefficient”, and this is independent of the force

applied by the violinist. In a way somewhat unexpected,

the friction coefficient is independent on the size of the

contact area of the surfaces: it depends only on the

nature of the two materials.

French physicists Amontons and Coulomb were the

first to publish the friction laws. However, it appears that

Leonardo da Vinci (1452–1519) was aware of those laws

about two centuries before, as it is suggested by his

drawings (see figure). The brilliant painter from Tuscany

was also a valuable physicist.

Drawing by Leonardo showing that the friction coefficient does not depend on

the contact surface (Atlanticus codex, f532r). In the case of samples of

different forms but of the same nature when the plane is progressively

inclined, they initiate to slide at the same time. From D. Dowson, History of

Tribology, Longman, New York (1979).



Figure 5. (a) Static friction of the bow against a violin cord. The bow moves up.

The force due to the static friction f equilibrates the resultant F of the forces due

to the tension; the point A of the contact of this with the bow stays immobile

with respect to the bow. (b) When the tension of the cord is too strong, the

friction changes to the dynamical one: the contact point A is in motion with

respect to the bow, but its position x0 with respect to the violin is fixed. The

force related to the dynamical friction equilibrates the tension due to the cord.

The friction force appearing in the process of sliding of

the bow on the string is alternatively static and dynamical!

When the violinist initiates to play, he/she puts the bow,

initially immobile, on the string exerting a pressure that in

the following we shall assume is constant. After a brief time,

the displacement of the bow at velocity v0 pulls the string at

the same velocity: this phase of adherence is due to the

static friction that the bow applies to the string in the same

sense as the bow itself. On the other hand, the tension of

the string exerts a reaction force of opposite sense. The two

forces have to compensate each other so that the string

follows the bow (Fig. 5(a)).

This first phase does not last too long: the force due to

the tension of the string increases rapidly when the string is

moving away from its equilibrium position, and it soon

reaches the maximum extent compatible with the static

friction.1 The static friction can no longer compensate the



force due to the tension; the adherence is lost and the string

begins to slide with respect to the bow. Now the friction is

reduced to the dynamical one, which is much weaker than

the static friction. Then the string begins an oscillatory

motion, as would happen to a spring pulled out from its

equilibrium position: it immediately springs back because of

the tension force until its sense (also known as its direction)

takes the inverse sign; the string contra-sweeps in the

wrong way, and then it moves in the same sense of the bow.

Its velocity increases, and, at the end, it reaches the

velocity of the bow; the “anchorage” again occurs, and a

new phase of adherence starts over. This situation lasts until

once again the tension becomes too strong and the string

strays again. If this cord emits the note la of frequency 435

Hz, this means that it switches between two strays in 1/435

s. During the instant in which the cord and the bow have the

same velocity, the bow could provide to the cord the energy

required to trigger the vibration.



Figure 6. (a) Velocity of the violin cord at the point of contact with the bow, along

the axis of its motion (dotted line: approximation; solid line: real behavior). The

velocity changes very rapidly in between the adherence and the sliding phases.

This sudden variation cannot be understood in the framework of our simplified

description. (b) The alternation of adherence and slipping phases is described by

a saw-edged curve for the transversal force due to the cord onto the support

(that transmits the excitation to the resonance cage, main sound source).

Thus, the contact bow–violin alternates adherence

phases and slipping phases (Fig. 6).

Role of Resin

We have described how the cord begins to follow the bow

and, then abandoning it, how it starts moving in the

opposite sense. Then, again, it moves in the same direction

as the bow, its velocity finally matching the one of the bow.

Is there or is there not the chance that the cord cannot

adhere to the bow, and then the friction remains dynamical?

This would be the condition that we have described above in

dealing with the experiment of the ruler rubbing on a cord.



Thus, on the bow, the string could take a fixed position

instead of initiating the vibration. In this case, due to the

tension of the cord, the resultant force F exactly equilibrates

the force related to the dynamical friction (Fig. 5(b)). The

cord would be immobile with respect to the violin in the

position x0 (and no longer with respect to the bow). Does

there exist a position of the cord obeying this condition? The

sum of the forces acting on the cord would be zero: it is an

equilibrium position.

Figure  7. Behaviour of the dynamical friction force between the bow and the

string of the violin as a function of their relative velocity (this velocity u = v0 − v

is the difference between the velocity v of the cord and the velocity v0 of the

bow with respect to the violin). The horizontal line corresponds to the Amontons-

Coulomb law, which is well verified by most solids. The violation of this law is

what allows the violin to operate.



The existence of a possible equilibrium position is

worrying! If the string should set in such a position, could

the violin stop sounding forever? We are going to see that

there is not that risk, and this is because of the wonderful

property of the resin. When it is rubbed on the bow, again

assuming that the musician exerts constant pressure on the

string, the force of dynamical friction f decreases as a

function of the velocity of the string with respect to the bow

(Fig. 7).

In the framework of a simplified description (in particular,

the torsion of the cord is neglected), we are going to show

how the reduction of the friction does not affect the

vibration of the cord, while, to a certain extent, it could

amplify it. The equilibrium position x0 of the cord then is

unstable, and the violin never breaks down! Let us recall

that an equilibrium can be stable or unstable. Most familiar

is the stable equilibrium: it corresponds to a minimum for

the potential energy (see Chapter 6). For instance, a ball at

the bottom of a well, if slightly displaced from its equilibrium

position, will return to its initial position. This is not what

would happen to an object with a tip placed on a floor in a

way that it remains vertical just resting on its tip. If one

moves it even a bit from its equilibrium position, in contrast

to the ball described above, it will fall down towards another

final position.

The case of the violin during the slipping phase is similar.

Let us suppose that the string from an equilibrium position

x0 (see Fig. 5(b)) makes a little displacement backwards,

possibly because of some irregularity in the bow. The

tension of the cord, proportional to (x – x0), would decrease,

as would the friction force since it experiments an evolution

contrary to the relative velocity (v0 – v). If one has a small

decrease related to the tension, then the little displacement

ahead is amplified.



In conclusion, the friction tends to increase the

displacement from the equilibrium position: thus the

equilibrium is unstable! This amplification effect is not

ordinary. On the other hand, the vibrations are amplified by

the friction only to a certain extent. When the velocity of the

string becomes equal to the one of the bow, the relative

velocity becomes zero, and the regime of dynamic friction is

substituted by the static friction.

Until now, it has been assumed that the forces acting on

a string of the violin are only tension and friction. Obviously,

there are other forces, say air resistance, since the violin

creates sound waves. The related force is rather negligible

in comparison to the ones we have considered. This force

evidently tends to dampen the vibrations of the cord. One

could take that force into consideration with a little more

complication, but things would not change that much.

Other Effects of Friction

Friction can induce other surprising effects, as is shown, for

instance, when a billiard ball comes back after a strike

against another ball (see Panel on page 164). The mastery

in dealing with the friction laws is crucial for several

industrial processes. Thus, when operating with a lathe on a

piece of metal (Fig. 8), the blade that is cutting the piece

could be affected by undesired vibrations. These vibrations

are induced by the friction of the blade on the surface of the

metal. These can be avoided by giving the blade

appropriate forms. In a number of systems, for instance,

combustion engines, it is very desirable to reduce the

friction in order to improve the duration of the pieces. The

direct contact of the pistons and the cylinders is avoided by

means of lubrication, namely by interposing a layer of oil. In

this case, the friction force becomes proportional to the

relative velocity between the fluid and the piece (unless it is

very small, see Chapter 15).



Cords and the Resonance Cage

As addressed above, the length and the tension of the cord

determines the note emitted by the violin. However, by

itself, the cord could not produce a sound of sufficient

intensity: this is the role played by the resonance cage of

the violin. The vibrations of the wood walls are the main

source of the sound.

Figure  8. One of the effects of friction. During the lathing of a metallic piece

(right), the blade vibrations (left) due to the friction against the piece can be

avoided by an appropriate choice of the cutting angle θ through a proper form of

the blade.

Tricks and astuteness of billiard players

If the violinists exploit friction without necessarily fully

knowing their secrets, the billiard players can also make

miracles. By hitting the ball under particular angles of

incidence, they can obtain some effects that are really

surprising for the unlearned. How do they work? Let us

consider a ball hit by the billiard cue along an axis

directed at the backwards of the ball centre and of the

point of contact with the carpet (see figure). The hit

pushes the ball ahead at the same time causing its

rotation. This happens in a counterclockwise sense: if the

ball rotates without sliding, then the rotation is in the

opposite sense. During the motion of the ball, one has a



decrease in the translation velocity and the rotation. If

the cue imparts an initial rotational velocity sufficiently

strong in comparison to the translational velocity, this

latter goes to zero before that rotation stops. Thus, since

the ball continues its rotation, the friction with the carpet

forces it to come backwards!

Another technique consists of hitting the ball in a way

that it comes back after the strike against another ball. It

is enough to hit the ball below its centre (see figure). As

above, the ball rotates in the counterclockwise sense with

a reduced rotational velocity. The strike against another

ball stops the translation, while some rotational energy

still remains, and thus the ball comes backwards. Without

any strike against another ball, then the translational

motion continues without sliding, and the ball does not

come back.

A billiard ball hit in a proper way, according to the direction indicated by the

dash line in (a), starts its longitudinal motion at low speed (b), and, after

some time, it stops, while a marked rotation is still active (c). Thus because



of the rotational motion, the ball can return backwards (d). It is also possible

that the white ball strikes two other balls. 

 A billiard ball hit as shown by the gray arrow slips ahead while rotating, as

shown by the curved arrow on the ball. After the strike against another ball, it

can move backwards. By hitting the ball with a given angle, the billiard player

can obtain a coming-backwards effect, surprising the layperson.

At variance with the cord of the violin and the bow, the

friction of the ball against the carpet obeys the law of

Amontons–Coulomb. According to it, the friction force

(directed horizontally) is given by the product of the

constant friction coefficient times the vertical component

of the reaction force of the table, that, in absolute value,

is equal to the weight of the ball. The reader being

familiar with mechanics can write the equation of motion

and solve it and obtain the conditions controlling the

dynamics we have described.

What does “resonance” mean? In physics, for a given

phenomenon, it means an acute maximum in the intensity

around a particular frequency. A very simple example of

resonance is provided by the electronic circuit with a

resistor, a capacitor and an induction coil, with an alternate

generator (Fig. 9).

Depending on the frequency of the generator, the

intensity of the current can be almost zero or on the

contrary very high. The function of the circuit is just to

select a particular frequency, and one defines the quality

factor of the circuit Q to be the ratio f/(Δf) of the resonance

frequency (the one corresponding to the maximum) over

the width of the resonance peak. For a radio emitter or

receiver, it is important to have a narrow resonance, in

order to emit or receive at a well-defined frequency.



Figure 9. Example of a resonating electric circuit. The inductive coil L stores the

energy when the current is flowing and then returns it when a variation of

current occurs. Also, the capacitor C stores the energy that it could subsequently

provide. The energy can be transferred from the capacitor to the coil and vice

versa, in this way, creating oscillations in the circuit. The current obtained by a

given potential difference V as a function of the frequency f of the alternate

current displays an acute maximum for  (in assumption of smallness of

the resistance R). The maximum is more acute when the resistance R is small.

Figure 10. Vibrational modes of a string at fixed extremities.

The violin string is a resonant system. When the two

extremities are fixed, the resonance is obtained for a

wavelength λ of the vibration two times2 the length L (Fig.

10).

However, there are other resonance modes in

correspondence to λ = L or λ = 2L/3, etc. In fact, the violin

simultaneously emits all these modes in proportion,

characterising the tone of the instrument. These cord



vibrations are called stationary waves. By referring to the

violin resonance cage, the word resonance has a rather

different meaning. One does not wish that the instrument

has an acute resonance to a certain frequency; on the

contrary, for any vibration of the cord transmitted to the

cage by means of the support, the violin must resonate by

creating stationary waves characterised by vibrational

minima, called nodes.



Figure 11. The Chladni patterns corresponding to the vibrational modes of the

bottom of the resonant cage of violin, in correspondence to seven different

frequencies. The black sand gathers in the places of minimum vibration.

Courtesy of Emmanuel Bossy and Renaud Carpentier.

Chladni Patterns

The vibrational nodes of the cage can be evidenced by

turning the violin and covering the cage with sand. If one



excites the instrument at a given frequency, provided for

instance by loudspeaker, the sand will be forced to settle at

positions where the vibration is minimal. One will observe

the so-called Chladni patterns (Fig. 11), named after the

German physicist Ernst Chladni (1756–1827).

At variance with the electronic circuit described above,

one violin has several resonance frequencies, but the

vibrational nodes are clearly noticeable corresponding to

the various resonances. As we mentioned above, this is not

what the lute maker wishes to get. The latter, in fact, is not

dealing with a flat table but rather with a complex

instrument: the resonances are more complex when the

violin is assembled.

1
 The existence of a maximum value of the static friction (for a given value of

the pressure that the violinist is applying to the string by the bow) is a

fundamental law for this type of friction.

2
 For a sinusoidal vibration the displacement u of the cord from the equilibrium

position at the abscissa x at the time t is given by

Since the extremities at x = 0 and at x = L are fixed, one must have sin (2πx/l) =

0 or L/λ = 1 or 1/2 or 3/2, etc. The most general vibration corresponds to a sum

of these sinusoidal vibrations.



Chapter 12

Singing and Silent Glasses

During a dinner, while we are waiting for the courses, we

can create a particular orchestra: the participants could

create special sounds from the glasses. It is easy to obtain

harmonious songs from a glass of wine, while it is more

difficult when the glass is full of champagne. We are going

to reveal the mysteries of singing glasses, and that will

bring us to musical balls…

It is known that glasses of wine can sing. Use a finger

slightly wet with the liquid and let it slide on the edge of the

glass. At the beginning, the sound could be unpleasant, but

as soon as the edge is uniformly wet, the sound will become

harmonious. By changing the pressure of the finger, one can

vary the height of the sound. This latter also depends on the

size of the glass, its shape and thickness. The mechanisms

producing the sound are comparable to the one generating

the sound in vibrating strings: it involves adherence and

slipping sequences that excite the wall of the glass. During

the vibration, the glass periodically compresses the air

around it, creating the sound waves (see Chapter 2). By

filling the glass, you will see some ripples at the surface of

the liquid while the walls are excited.

Not all glasses are singing, and the search for a suitable

glass might be rather time-consuming. The best singers are

the glasses having thin walls and the shape of a paraboloid



of revolution, possibly with long support (Fig. 1). In other

words, the ones that more frequently we break! One of the

authors of this book could hardly find one of those glasses,

since in his home all had been broken and substituted by

very thick glasses that were not suited for making

vibrations.

Singing glasses have been the object of serious studies. It

was found that the vibration of the wall essentially involves

two elliptical configurations of the glass edges (Fig. 2).

Figure  1. Singing shaped as a paraboloid of revolution (namely the shape

obtained by rotating a parabola around its axis). By rubbing one wet finger on

the edge, sound is produced. The water facilitates the sliding.



Figure 2. When sound is generated, the walls of the glass vibrate (the edge of

the glass is shown here, top view): they alternately take an elongated shape in

one direction, then in another, perpendicular to it.

These vibrations occur at a well-defined frequency that

depends on the shape and the properties of the material;

therefore, the sound produced is very pure. The level of the

liquid in the glass is a relevant factor for the sound

production: the higher the level, the lower the sound. By

choosing a suitable type of glasses, selecting different sizes

and different levels of liquid, all the notes can be obtained:

with a little dexterity, it could be possible to produce one

musical piece. A little-known rod instrument, the glass

piano, is entirely based on that principle (see Panel on page

171).

The glasses-based piano of Benjamin Franklin

A great American scientist, as well as a great politician

(qualities that are not commonly found in a single

person), was strongly interested in the phenomenon of

the “singing glasses”. He was Benjamin Franklin (1706–

1790), most known for his experiments on the

atmospheric electricity and as the inventor of the



lightning rod. He exploited the phenomenon in a musical

instrument he had designed: the glasses-based

harmonium. This instrument was based on a series of

glass cups, each with a hole in its middle and placed at a

regular distance along a staff. The engine had a pedal

driving the rotation of the system, similar to the one in

the sewing machine popular in the 20th century. By

letting the wet fingers slide on the edge of the rotating

cups, the musician could achieve crystalline sounds, more

acute in the smallest cups and more grave in the cups

with a large diameter.



Benjamin Franklin plays his glasses-based harmonium.

In the year 1793, Franklin gave the instrument to an

English lady, madam Davies, as a present. She used the

instrument on tours while giving demonstrations in

several countries. Then the instrument apparently

disappeared: one can guess that the same happened to

other glasses-based pianos, possibly broken as a



consequence of clumsiness… Other instruments could

remain in operation somewhat longer. Their musical

qualities have been variously judged, possibly dependent

on the mastery of the operator. Its marvellous sounds

were claimed to have caused premature deliveries of

babies or madness of the musicians! On the other hand,

the instrument has been very well appreciated by some

audiences, in particular by the great violinist Nicolò

Paganini. The popularity decreased year by year: the

instrument was completely removed from musical halls

around the year 1830. After some decades, the

instrument was again built with an electric engine in

charge of the cups’ rotation, while wetting of the fingers

of the musician was performed by a humidifier. Using the

internet, readers can evaluate the quality of sounds: it is

possible to find a performance by the French artist

Thomas Bloch of the K617 Mozart rondo using a glasses-

based piano.

To Your Health!

A less elaborate way to get sound from glasses is just during

a toast. When the glasses are colliding against each other,

part of the wall is displaced from the equilibrium position.

The glasses quickly return to the initial configuration after

some oscillations that are progressively damped. Therefore,

for a short time, sound is emitted. This sound in general is

pleasant, but it is less pleasant when the glass is full of

champagne: in this case, the sound is inexpressive and

rather hard. Why?

The human ear can perceive the sound of frequency

within about 20 Hz and 20,000 Hz. The crystalline character

of sound emitted by a glass is due to the high-frequency

components, say between 10,000 and 20,000 Hz. When the

colliding glasses contain gas-free liquids or are empty, the



oscillations can persist for a rather long time after the wall

excitation. In contrast, the sound is quickly damped out

when the glass is full of champagne. The explication is

related to the carbon dioxide (CO2) bubbles present in the

liquid (see Chapter 14). After knocking the glasses, the

sound waves propagate in the champagne: compression

and depression waves are alternating. The solubility of gas

in liquids depends on the pressure, being high when

pressure is strong. When the pressure is small, degassing of

the champagne occurs: bubbles are created in the glass,

and they can dissipate the energy of the oscillations. Then

the sound is damped much more quickly than in the

absence of the bubbles (Fig. 3).

These observations made during a drink are only

qualitative. Experiments performed at Paris Diderot

University have allowed more precise studies of the sound

propagation in gaseous media. The scientists did not use

champagne for their experiments, nor did they use Vichy

water, but simply water with air bubbles. They have found

that even a small concentration of bubbles (say a bubble of

1 mm diameter for a cubic centimetre of liquid) could

sizeably affect the velocity of propagation, by a factor of

about 10, resulting in inducing a large effect on the sound in

the audible range. The effect on the sound velocity is easy

to understand: it is given by  where χ is the

compressibility (adiabatic) and ρ the specific density of the

medium. This latter is equal to that of the liquid (namely of

the water with alcohol for champagne). The compressibility

is small in the absence of bubbles, while it is considerably

increased in their presence. As regards the damping in the

audible domain, to a major extent, it is due to the single

bubble resonance in the liquid. This is what we are going to

address in the following section.



Figure  3. Bubbles are spontaneously formed in a glass of champagne. Their

average diameter is around 1 mm. Because of their presence the sound

produced at the knocking is rather hard.

Musical Bubbles

If the bubbles can dampen sound in the liquid, they are

equally capable of emitting sounds! The murmur of the

creeks, the large part of the noises during the flows of

liquids and as well the singing of boiling water (see Chapter

15) are indeed due to bubbles. To understand this property,

let us refer to one bubble of 1 cm diameter, in a large

volume of water. When leaving the injection device, the

bubble vibrates till they are entirely damped, generating

sound waves. The fundamental frequency of vibration is

known as Minnaert frequency, after the Belgian scientist

Minnaert (1893–1970) who in the year 1933 pointed out the

musical capability of the bubbles. For bubbles of air having

a radius of some millimetres, in water and at atmospheric

pressure, that frequency is in the range of the order of

several kHz, in the audible range (see Panel on page 174).



Bubble vibration and spring oscillations

At the equilibrium, a small bubble in water is spherical.

The radius is fixed by the condition that the internal

pressure is equal to the pressure created by the water.

Due to some perturbation (for instance, a sound wave),

the bubble can be deformed and then it starts to oscillate

around the equilibrium position.

These oscillations can be decomposed into an infinite

number of deformational modes. Some of them

correspond to relevant displacements of the bubble

surface: then one deals with resonance. One of them, the

Minnaert resonance, is characterised by a particularly low

frequency, corresponding to very large wavelengths (of

the sound in water and in air) with respect to the bubble

size. These oscillations are similar to the ones of a mass

hanging from a spring when displaced from its equilibrium

position (see figure); in the absence of damping, the ball

oscillates at a well-defined frequency f depending on the

mass and the elastic constant k of the spring. In order to

understand the equivalence to the bubble, one should

remark that the mass M in the case of the bubble

corresponds to the mass of the liquid involved in the

motion, while the role of the restoring elastic force of the

spring in this case is played by the excess pressure force

which tends to return the bubble surface to its equilibrium

position. For the spring, this force is proportional to the

lengthening x of the spring: F = –kx, where the restoring

constant k is a characteristic of the spring itself. The

oscillation frequency of the mass is given by

Therefore, this frequency is increased when the rigidity of

the system is increased or when the mass is small.



The oscillations of a mass hung by a spring (a) are analogous to the ones of

the bubble (b) oscillating around its equilibrium position (continuous line)

within two extreme positions (dotted lines).

What is the corresponding equation in the case of the

bubble? We are going to figure out the quantities that

must replace M and k by means of dimensionality

arguments. In this way, we shall avoid a complex

calculation, which on the other hand would be required

for a quantitative derivation. The characteristic quantities

involved in the problem are the density ρ of the liquid, the

equilibrium radius of the bubble, and the pressure P in the

liquid. In fact, the restoring force acting on the surface

mainly results from the pressure inside the bubble which

at equilibrium must be equal to the pressure in the liquid.

The mass M that one should take into account has to be

of the order of (4π/3)R3ρ, namely the volume of the

bubble times the density of the liquid. As regards the

constant k for the restoring force, it must be of the

dimension of a force divided by a length. The only length

in the problem is the radius R while in order to obtain a

force one must take the pressure and multiply it by the

square of a length, namely R2. Thus, in this way, k is of

the order of PR. By using these values in the previous

equation, one obtains a result close to the formula

developed by Marcel Minnaert:



where γ = 7/5 for an air bubble.

The surface tension σ is not involved in this equation:

its role is in fact negligible unless the bubble is very

small.



Chapter 13

Energy: Obedient Maid or Oppressive

Mistress?

The energy consumption by mankind is continuously

increasing, for transportations, thermal heating as well as

industrial requirements. Electrical devices have invaded our

everyday life; the electricity, such a docile maid, is always at

our service, just from one switch or from one plug. However,

will we always have sufficient production capability for a

request that does not give rise to decrease? What will be

the price paid by the environment? The requirement to

provide energy for more and more devices could become an

unbearable tyranny. Let us see some ways to remain safe.

Countries Facing an Energy Challenge?

In the middle of the 20th century, our grandfathers could

learn at school that France had coal mines and hydroelectric

dams. Sixty years later, the mines were closed, and the

dams, which have grown in number, could provide only a

small fraction of the energy required for economic growth. A

similar situation has occurred in other countries. Cars

require an amount of fuel that weighs heavily on a trade

deficit balance. These fuels are generated from fossil

sources that are diminishing, and moreover their

combustion contributes to the increase of the greenhouse

effect (see Chapter 7). In particular, in France, electricity to



a large extent is produced by nuclear power plants. Also,

these use an imported “fuel”: uranium. The worldwide

reserves of uranium are also limited, and they could

possibly be sufficient for a century…

Thus many countries are in a situation of complete

energy dependence and with the progressive decrease of

the sources, this can be somewhat worrying. Where can we

look for other energy sources? The first source to take into

account is solar energy (see Chapter 28). However, it is not

available during the night. Wind energy, which Denmark is

looking toward, is also rather intermittent. A solution that

has been attempted in some countries is to produce

“nuclear fuel” in situ in the so-called breeding reactor plants

(Fig. 1). The interest towards this quasi-miraculous way is

obvious, but it has some difficulties or disadvantages, as we

are going to address.

Figure 1. The breeding reactor nuclear plant Superphenix (1,200 MW) in Creys-

Malville, in between Lyon and Chambery, which was operational for some years

at the end of the 20th century.

How to Exploit Nuclear Energy



Nowadays, the exploitation of nuclear energy in general is

attained in the following way. In the reactor, the uranium is

transformed into two more light elements: more precisely,

each uranium nucleus is divided into two light nuclei, this

process is called fission. This reaction generates a great

deal of heat and that is the point! If one compares the

energy obtained by fission with the one from burning oil,

one uranium gram corresponds to more than a ton of oil.

In the nuclear reactor (Fig. 2), the heat produced by the

fission is transferred to a first fluid, called heat carrier, that

in turn transfers it to water; this latter is vaporised.

This water is pulled into the turbine by pushing on the

shovels: the principle is the same used at the beginning of

the 20th century for the steam engine where the engine

was moved by the vapour pushing on a piston! Finally, the

mechanical energy of the turbine is transformed into

electricity by the alternator. Then this energy is delivered to

the users, who may be hundreds of miles away.

Figure 2. Principle of the procedure in a pressure reactor. On the left, in the heart

of the reactor, nuclear reactions produce heat. This heat is transferred by means

of a fluid which transfers the heat to the water. From its vaporisation, one can

have an operating turbine connected to an alternator that produces electricity.

By means of the condenser, the water can return from the vapour to the liquid

state. The heat that is not converted can be discarded through a proper cooling

system.



Only part of the uranium is suited for fission; that part is

represented by the isotope 235U (see Panel on page 180). In

other words, the natural uranium as it is found in the mines

has only 0.71% of the isotope, the large majority being

instead represented by 238U that is not suited for fission.

Thus, before being set inside the reactor, the natural

uranium must be enriched: this step is obtained in refineries

for the isotopic separation.

Controlling the reaction in a nuclear reactor

We have seen that in a reactor the energy is provided by

fission, i.e., decomposition of uranium 235 nuclei into lighter

nuclei. Fission in general is not spontaneous: it is triggered

by the collision of the nuclei with a neutron (Fig. 3).

The fission is accompanied by the emission of other

neutrons (in general two or three). These neutrons can

cause new fission processes that in turn emit other neutrons

and so on: this is a chain reaction. Each neutron created by

fission gives rise, on average, to a number k of fission

neutrons which can be larger than 1. This occurs in an atom

bomb. The explosion of an atom bomb is obtained by

assembling a sufficient mass of fissile matter (235U, for

example) which must be larger than a certain critical mass

(see Panel). Indeed, if the mass is smaller, most of the

neutrons escape without creating fission. The critical mass

for pure 235U is about 52 kg.

Elements of nuclear physics

The nuclei of the atoms are composed of particles called

nucleons. One has two types of nucleons of almost the

same mass: the protons, having positive electric charge,

and the neutrons, which do not have any charge. The

number Z of protons (called atomic number)



characterises the chemical properties of the element. The

total number of nucleons, usually labelled A, is the mass

number. Two nuclei of the same element that differ in the

A number are called isotopes. Thus, for example, the

carbon atom (Z = 6) has several isotopes, all having the

same number of protons but different numbers of

neutrons. Two of these isotopes are stable. They have

respectively mass numbers 12 and 13. One writes them

as 12C and 13C. Another isotope, carbon-14, i.e. 14C, is

unstable and spontaneously decomposes into nitrogen 14N

(Z = 7) by emitting an electron: it is indicated as

“radioactive”.



There are many types of nuclear disintegration,

depending on the nature of the particles that are emitted

as a consequence of the nuclear transformation. The

emission of an electron or a positron (a particle equal to

the electron but having positive electric charge) is called

beta radioactivity. Another type of radioactivity involves

the nuclei known as “heavy” and corresponds to the



emission of helium nuclei: the α radioactivity. Finally, the

γ radioactivity corresponds to the emission of highenergy

photons.

The particles emitted during the radioactive

transformation are very different in regards to their

penetration power through the matter. Depending on

their nature and intensity, they can be dangerous for

one’s health.

Figure  3. Principle of a chain reaction. By bombarding a fissile nucleus with a

neutron, one causes the splitting into two lighter nuclei. This process is

accompanied by the production of heat and at the same time by the emission of

one or more neutrons. These latter can induce new fission processes.

In a nuclear reactor, on the other hand, the power must

be kept constant, which implies that the number of neutrons

created per unit time must be constant, and the

multiplication factor k must be equal to 1. To maintain this

value, the reactor should be carefully designed. In

particular, control rods made of a material that absorbs the

neutrons (for instance, cadmium) are inserted inside the

reactor at a tuneable depth, thus maintaining k = 1 or, if

necessary, k < 1 if one wishes to stop the reactor.

Besides these absorbing control rods, in the majority of

the reactors presently in use (and in the totality of the

reactors in France), around the fissile material there is a

moderator (in general, water) with the role of slowing down

the neutrons in order to increase the probability of the



fission processes. In fact, this slowing down of the neutrons

increases their capability to produce new fissions so that

one can work with uranium only weakly enriched in the 235U

(by an amount of around 4%). This weakly enriched uranium

cannot be used to make an atomic bomb.

In an atomic bomb, what matters is to get a strong

explosion, as devastating as possible. In case of control loss

in nuclear reactors operating with slow neutrons, the fissile

material is dispersed by the first explosion of moderate

intensity, and the dispersion can cause the end of the chain

reaction. This is exactly what happened at Chernobyl in

1986: after a series of human errors, an uncontrolled

reaction that started in the reactor caused its destruction,

fortunately without releasing all the energy stored in the

fuel. The case of the disaster in Fukushima, related to a

tsunami in 2011, was different (Fig. 4): the chain reaction

was safely stopped by the safety devices, but the lack of

cooling due to the breakdown of extra pumps due to the

tsunami-related water waves could not prevent the

explosion.

Plutonium: Fuel for 1,000 years?

As we have mentioned, before being set in the reactor,

uranium must be enriched in the isotope 235, at the

expense of uranium 238. Is this latter material devoted to

being a useless residue? Not necessarily! In fact, when the

enriched uranium is inside the reactor, the 238 isotope does

not stay inactive. By absorbing neutrons, it partially

transforms to plutonium 239Pu. This plutonium is as effective

for a fission reaction and therefore to provide energy. This

property is used in the so-called breeder reactors where the

fuel can be a mixture of 239Pu (at least 10%) and 238U.

These reactors not only use plutonium as fissile material but

also generate more nuclear fuel than the amount they use



for the chain fission. For instance, if France were to just

count on fissile material obtained in this way to obtain

energy, then it would have the possibility to generate

effective fuel for several thousands of years. In fact, the

amount of uranium 238 presently stocked and potentially

used for the transformation of plutonium would grant that

long-lasting storage.

Figure 4. Fire at a power plant in Fukushima Daiichi, Japan, in March 2011. The

various engine failures due to the tsunami caused the breakdown of the cooling

system of the reactor. The intense heat produced by the fission reaction induces

chemical reactions leading to the decomposition of the cooling water with the

emission of hydrogen. This hydrogen then exploded, and radioactive products

were emitted in the atmosphere.

The birth of the atomic bomb

During the Second World War, physicists were concerned

about the estimate of the critical mass of Uranium-235

required for achieving the chain reaction. It would seem

that the Germans, in particular Werner Heisenberg, had

overevaluated it so that they did not recommend the

making of an atomic bomb since it had to be too heavy to

be carried by aircraft. In the meantime, on the other coast

of the Channel, Rudolf Peierls (of German origin as well



but who settled in Great Britain after Hitler took power in

the year 1933) had pointed out the correct way to get the

estimate. He had published the calculation without being

aware of the military implications! It was Otto Frisch from

Austria, who also immigrated to Great Britain, who

realised the consequences of the calculation. In the year

1940, Frisch and Peierls wrote down a memorandum, this

time strictly confidential, to be sent to the British

authorities: it described the procedure to create the

atomic bomb, emphasising the possible devastating

effects. In the USA, it was taken very seriously, and a

huge scientific program of nuclear researchers was

launched in 1942, the Manhattan project, with the

collaboration of very distinguished scientists such as

Enrico Fermi and Robert Oppenheimer. The project finally

produced two atomic bombs, used on the Japanese cities

Hiroshima and Nagasaki in August of the year 1945, with

wellknown consequences.

A breeder reactor is a reactor comprising fast neutrons:

then the removal of moderating material is required. The

use of fast neutrons implies a rather delicate design of the

reactor. In the majority of the reactors at work in several

countries, and definitely in France, the heat produced by the

nuclear reaction is collected by means of water. Therefore,

in the breeder reactors, one cannot use water: it would slow

down the neutrons. Which heat transfer fluid could be used?

Among the ones considered, the least difficult to handle

seems to be sodium. Unfortunately, this element has an

unpleasant property: it reacts violently with water and it

bursts into flames spontaneously in the air. Even in the

absence of water and air, the chemical reactivity of sodium

limits the choice of the materials, in particular, when

considering that they must be employed at high

temperatures.



A few breeder reactors have been active in France. The

last, the Superphenix (see Fig. 1), was closed in 1997 after a

career that can be considered honourable for a prototype

but otherwise affected by rather serious accidents. The

development of dependable breeder reactors would require

a long-range exploration of novel types of reactors.

The problem of nuclear waste

Other problems, common to all the reactors in use, involve

the managing of the nuclear wastes. After use, the fissile

material is a mixture of radioactive products, in addition to

being very hot at the exit from the reactor. So it is stored in

a “pool” fed by freshwater. Once the activity of the

radioactive isotopes has been sufficiently reduced, two

choices are possible: to treat them once again in order to

obtain, for instance, plutonium, or immediately put them

underground. When the wastes have been treated, the

decrease in radioactivity as a function of time is

considerably enhanced (see Fig. 5). Other elements (such as

neptunium, americium and curium) can also be used as

fissile material. According to this futuristic hypothesis, the

radioactivity can be considerably reduced. Thus the breeder

reactors are a partial response to the problem of handling

the wastes.



Figure  5. Comparison of radioactivity produced by the wastes, by the same

amount of electricity, with or without the treatment by a breeder reactor. The

quantity reported on the y-axis is the thermal release in watt as a function of

terawatt–hours of electricity provided. The methods of treatment considered are

putting underground without any recycling (upper line), the treatment by

recycling to plutonium by a breeder reactor (middle line) and the treatment by

recycling to plutonium and other radioactive elements at long time-life (Am, Np,

Cm) induced by the fission (lower line).

In a more far distant future, the production of energy by

means of nuclear fusion, namely the fusion of two light

elements to obtain a more heavy nucleus, is a road

presently under study (see Chapter 25).

Economic Estimates of Thermal Heating

Electricity produced in a plant is used several hundred

kilometres away, for instance, in refrigerators or by

operating laundry machines or in electric radiators. To

convert again, electricity in heat implies unavoidable

wastage since a large part of the heat initially produced by

the fission is poured into rivers or into the sea (Fig. 2). On

the other hand, electricity can be transferred at a large



distance more easily than heat. How can we use less energy

to avoid that wastage? Buildings consume the greatest

portion of energy in France: three quarters of energy is

spent only on their heating. Some progress can be achieved

through a better insulation, but still some evolutions in the

heating methods are indeed necessary. In the past, the

traditional method to get heat was to burn wood, since, in

this way, the chemical energy contained in wood through

the combustion is extracted in the form of heat. During the

19th and the 20th centuries, wood has been substituted by

combustibles such as coal, natural gas or fuel oil, obtained

from petroleum. Then the electric radiators appeared: here

the heat is obtained because of Joule effect (see Chapter 16)

from electric current circulating in resistors.

Thermal pumps, again based on electricity, are a

completely different heating method. Heat is extracted from

a place where it is not needed and is pushed where it is

useful. In order to obtain such heat transfer according to the

second principle of thermodynamics (see Chapter 7), one

has to spend energy. The surprise of the operation is that

the energy spent is less than in traditional heating! How

much exactly?

Having in mind to keep an apartment at the temperature

T2, while the temperature at the exterior of the house is T1,

it can be proved (see Panel on page 186) that in order to

deliver the heat amount Q2 the heat pump must use an

electric energy W given by

W and Q2 are measured in joules and the temperatures in

kelvin.

Heat transfer from a cool to a warm source



In most favourable cases, what is the minimum energy

required in order to transfer energy from a cool source at

temperature T
1
 to a warm place at temperature T

2
? To

find it, let us refer to an ideal cycle. Let us consider a

cylinder with a piston with a fixed amount of fluid (see

figure). This device will allow us to transfer heat from a

cool room to a warm room. The cylinder is set in the cool

room, and the temperature of its contents becomes T
1
.

Then an expansion is induced by pulling the piston, while

the temperature stays T
1
 by keeping the thermal contact

with the environment. For the fluid to keep this

temperature, a certain amount of heat Q
1
 has to be taken

from the cool room. Outside the cool room, an adiabatic

compression is made (no exchange of heat with the

environment occurs), and the temperature of the fluid

becomes T
2
. Then we place the device in the warm room,

always keeping the temperature T
2
 by compression. In

order to not increase its temperature, the system must

deliver the heat amount Q
2
 to the warm room. Outside

the warm room, a further adiabatic expansion is made

and the temperature of the fluid is brought to T
1
, and the

cycle is completed.



Refrigeration device. The fluid is placed in a cool environment and the

amount of heat Q1 is taken and then brought in the warm environment where

it releases the heat amount Q2. Isotherm means “at constant temperature”

while adiabatic means “without heat exchange with the exterior”. The device

is a refrigerator if it used to cool a cold environment or is a heating pump if

used to heat a warm environment.

The second principle of thermodynamics states that

(Q
2
/T

2
) – (Q

1
/T

1
) is always positive. It would be zero in a

certain theoretical limit. That corresponds to the case in

which the transformations are made with such

precautions to be reversible, namely that one could, in

any situation invert the sense of the arrows in the

scheme. This condition in practise cannot occur.

In order to drive the piston, a certain mechanical

energy W must be spent. The variation of that energy

being zero in a closed cycle, the energetic balance yields

In the ideal case that all the transformations are

reversible, one would have Q
2
/T

2
 = Q

1
/T

1
 and then



The cycle described above is the most effective in

order to transfer heat from a cool source to a warm one

by providing mechanical energy. The inverse cycle

(obtained by changing the sense of the arrows on the

scheme) is called, after the physicist Sadi Carnot, the

Carnot cycle (see Chapter 7).

Let us compare the performance of the heat pump with

the one of a classical electric radiator for which the heat

amount provided is equal to the electric energy W required

for the heat pump. For a heat pump operating at T1 = 0°C =

273 K and T2 = 20°C = 293 K, the electric energy required is

W = 0.07Q2. Thus one has to pay only 7% of the thermal

energy obtained. In practise, due to the losses, the

expenditure is more than 7% but still much less than the

100% corresponding to the thermal energy provided by the

electric heater.

Let us comment on, in a few words, the heat pump and

its analogue refrigerator (Fig. 6). In both cases, the heat

transfer is obtained by means of a fluid that moves along a

pipe sometimes from the room to be kept cold or warm and

sometimes from the other room (this fluid plays the same

role as the one inside the mobile cylinder in the example

addressed in the Panel above). This fluid experiences a

cycle of transformations from the gaseous to the liquid state

and vice versa. This increases the performance of the

process since the transformation liquid–gas involves

sizeable energy.



Figure 6. The operational principle of the refrigerator.

From Thermal to Electric Engines

Instead of wasting mechanical energy in order to get heat

transfer, as in the heat pump, the thermal engine in our cars

requires heat amount Q in order to provide mechanical

energy W. The performance of an engine is estimated by

resorting to a number defined by the ratio of the usable

energy over the energy that one has to spend: this number

is high when the engine has great efficiency. The second

principle of thermodynamics limits the efficiency W/Q of all

thermal engines. When the heat is transferred from the hot

source at temperature T2 (for example, the combustion

room in the cylinder for the fuel-operating engine) to the

cool thermostat at temperature T1 (the exterior), the ideal

efficiency is (1 – T1/T2), namely the one of the Carnot cycle

(see Panel on page 186). Nowadays, the best efficiency is

around 35% for engines burning petrol, since a large part of

the energy associated with the combustion of the fuel is

dissipated in the form of heat. Thus the fuel-operating



engine makes a poor performance in comparison to the

electric engine that has an efficiency of around 95%.

Nowadays, the limited autonomy of electric cars restricts

their diffusion: their future is related to the development of

efficient batteries.

Storage of Electricity in Chemical Form

The storage of electricity is a major aim: the solar or the

wind sources provide energy in an intermittent way.

Therefore, one has to be able to store the electric energy in

case of surplus production and to provide it when required.

Figure  7. (a) The alkaline batteries typically present in electronic toys convert

chemical energy into electrical energy. (b) The batteries of our mobile telephone

are made of several accumulators working according to the same principle. At

variance with batteries, the accumulator is rechargeable: with a proper supply of

energy, the chemical reaction is inverted, and the reacting elements are

regenerated.

Providing electric energy on request? This is what the

batteries do, having stored the energy in chemical form (Fig.

7).

When the battery is delivering current, chemical

reactions of the constituents are occurring. These reactions,

called oxidation–reduction reactions, imply exchanges of

electrons among the chemical entities. Once the elements

producing the reactions are exhausted, the battery is

wasted. A fuel pile is not much different from those batteries

since it is based once again on oxidation–reduction

reactions. In theory, the fuel pile could last indefinitely since



the reagents that feed it are continuously supplied. In

practise, the lifetime, although much longer, still is limited.

The hydrogen pile, for example, has two compartments

and a porous membrane in between (Fig. 8). In one

compartment, the molecule of hydrogen H2 in the gas state

is transformed by a catalyser into two ions H+ thus releasing

two electrons.

These two ions filter through the membrane that must

have the remarkable property to allow the ions to pass while

the electrons are stopped. The electrons are forced to enter

the electronic circuit open for them thus causing a current

that can feed, for example, an engine. On the other side of

the membrane, the electrons find the ions H+ and, in

addition, an air current, namely oxygen, thus being able to

combine and form water.

The equation of the chemical reaction is 2H2 + O2 →

2H2O (two molecules of molecular hydrogen with one

molecule of molecular oxygen provide two molecules of

water). In this fuel pile, the chemical energy is transformed

into electrical energy with good performance; far from being

1, anyway. Part of the energy obtained from the chemical

reaction is indeed lost as thermal energy.



Figure 8. Principle of a fuel pile with Hydrogen and Oxygen as reagents. The only

exhaust of the pile is water.

Figure 9. The electrical engine of this car is fed by combustible pile that uses

hydrogen stored in its reservoir.



The hydrogen pile has the great merit to discharge only

water! Thus, cars equipped with an electric engine using

this pile do not yield any pollution (Fig. 9): it can go around

simply by resorting to its hydrogen reservoir that has to be

fed regularly. On the other hand, from the point of view of

environmental preservation, one should take into account

the global balance of the production of hydrogen. In reality,

hydrogen is combustible and not so easy to obtain and store

(see Panel below on this page). Furthermore, the catalyser

required for the pile functioning, most times platinum, is

expensive. Research is underway aim to overcome these

two difficulties.

Water: The fuel of the future?

Hydrogen is a suitable energy transporter. How to get it at

a reasonable cost and in a “green” way? An idea could be

to take advantage of aeolic sources or solar panels since

they provide energy in an irregular way, and thus

temporary storage is required. During the production

peaks, one could obtain hydrogen by means of

electrolysis processes. It is indeed possible to obtain the

process inverse of the one in the hydrogen pile by

providing electrical energy: water is decomposed into

molecular oxygen and molecular hydrogen and then

stored.

However, hydrogen storage implies some difficulties. In

a pure form it is explosive! Furthermore, a container of

hydrogen in the gaseous state is very big, while it can be

stored in the liquid state only at low temperature and

high pressure. An innovative process has been suggested

by a small French company, McPhy; to store the hydrogen

in metals. Its General Manager claims to have been

inspired by a prophecy of the scientist Cyrus Smith, the

hero of “The Mysterious Island” by Jules Verne: “What will

burn instead of coal?”, he asked. “The water,” answered



Smith, “but the water decomposed by electricity in its

constituents, namely oxygen and hydrogen. Thus, water

will be the coal of the future”, he concluded. Coal that

when burning does not produce gases which contribute to

the greenhouse effect…

To conclude, it should be emphasised that what we

addressed in this chapter only provides a fragment of

information. The reader could conveniently integrate it by

resorting to specialised books.



Chapter 14

Nunc est Bibendum

“Nunc est bibendum”, now is time to drink, wrote the Latin

poet Horace in the first century BCE. He was wiser than his

predecessor Alceo of Metilene who, in his lyric seven

centuries before, claimed that the joy of wine up to

inebriation: nmν χρη μεθμσθην, is time to get drunk. Before

presenting other physical properties of drinks rich in alcohol,

we shall begin with a brief history of the viticulture and the

procedure to make wine.

Chemists without Knowing It

According to a tale, wine was discovered at the court of a

Persian king Jamshid, many centuries before our time.1 Due

to serious depression, a court lady was planning to kill

herself. Following the indication of a priest in the court, she

decided to drink that strange liquid at bottom of the jars

where the grapes were stored, a liquid that was supposed to

be poison. The unexpected result was that the depression

disappeared and the bad mood gave place to joy and

happiness! The positive role of that liquid convinced the

king to promote regular use of it. That fortuitous discovery

had great impact; the cultivation of the vineyard and the

wine consumption gained many adherents around the

world. The Greeks celebrated wine with the addition of a

new god, Dionysus, who the Romans subsequently adopted



with the name Bacchus (Fig. 1). Among wine’s attributes

were its curative properties, as a good antiseptic and for

caring the wounds. Christians have given wine a major role,

being a crucial component during religious celebrations.

Figure 1. Fragment of the mosaic “Icarius and Dionysus” from the atrium of the

house of Dionysus (Paphos, Cyprus). The god of winemaking, Dionysus (left),

and the nymph Acme with a cup of wine.

How did the juice of grapes become wine at the court of

the Persian king? Without knowing it, those amateur

chemists had discovered alcoholic fermentation, namely the

chemical reaction that transforms sugar into alcohol, the

molecule where carbon atom carries OH groups. In the

grape juice, this reaction occurs thanks to micro-organisms:

yeasts called Saccharomyces cerevisiae present in the skin

of grapes that can transform the sugars contained in the

fruits. In the simplest transformation of the juice, the

glucose (and its isomer fructose), produces ethanol

(C2H5OH) and carbon dioxide (CO2):

For the chemists, wine, like all the alcoholic drinks, is

basically a mixture of water and ethanol. In small

proportions, many other compounds (up to 2000 types of

molecules) are also present in wine. The latter are the ones

yielding characteristic fragrances and colours.

The Art of Winemaking



Winemaking is a difficult art. One of the major problems is

that in the presence of oxygen the wine tends to transform

into acetic acid (CH3COOH). In other words, the wine

becomes vinegar! Agronomists and Latin naturalists, like

Columella and Pliny the Elder, provided recipes to avoid

wine turning into vinegar. For instance, they recommended

covering the amphora with pitch, probably in order to stop

air entering the container. Our modern bottles have a

watertight seal and do not need such treatment. However, it

could be useful to avoid the penetration of air through the

cork with a wax layer. On the other hand, if the winegrowers

have given up the pitch, they often add sulphur dioxides

with antioxidant properties to the wine.

Great biologist Louis Pasteur (1822–1895) devoted much

interest to the wine; he had noticed that the oxidation of the

alcohol in vinegar was due to a bacterium. The works by

Pasteur gave scientific basis to the technique of

winemaking, which previous generations of winegrowers

had to learn by trial and error. For example, in order to avoid

the fermentation going on so long that the transformation to

acetic acid occurs, it is appropriate to divide pretty soon the

must (namely the juice obtained from the grapes under

pressure) by the yeasts. This is the main purpose of the

filtration of the must. On the other hand, fermentation is an

exothermal reaction (meaning that it generates heat) so the

temperature of the must can increase up to about 42°C.

Such a temperature could cause the evaporation of volatile

compounds, including the precious fruity or floral aromas

characterising high-quality wines. To preserve those natural

treasures, nowadays, winemakers resort to fermentation in

an ambient atmosphere (at about 18°C), and this means

that the chemical reactions take considerably longer;

typically three weeks instead of 7 or 8 days for the natural

fermentation. It is useful to resort to filtration at low

temperatures, for example, 4°C, in order to get rid of



unwanted products: at this temperature the latter solidify

while the wine filters and one achieves the required

separation. In fact, the temperature of the wine solidification

decreases by about a third of a degree for 1 percent (in

volume) increase of ethanol2 (Fig. 2).

The considerations recalled above explain why the cellars

where wine is produced look like scientific laboratories. We

could write at length on this subject, but we prefer to devote

attention to addressing some physical properties of wine.

Wine Tears

When a glass of wine is slowly rotated, with slight inclination

in order to get the walls wet, one can observe a curious

phenomenon (see Panel on page 197). Inside the glass a

slight layer of wine appears, and, at the top of it, small

viscous rivulets, called tears of wine, can be seen (Fig. 3).

These rivulets gently slide down along the walls of the

glass, while further tears appear. It is the volatility of the

alcohol, greater than that of water, that is responsible for

this phenomenon: a flux of liquid climbs along the layer in

order to replace the alcohol that has quickly evaporated in

that thin and wide area. It is not only related to equilibrating

the concentration, but also in order to decrease the surface

energy, namely the surface tension, as established by

Italian physicist Carlo Marangoni in 1865. The surface

tension of the water is in fact larger than that of alcohol. So

what happens to this upstream? At a certain height, the

force associated with the gradient of the surface tension

coefficient, pulling the film upward, and the gravity force of

the already raised volume of the film, are balanced. The film

stops rising, and the incoming liquid accumulates in the rim

formed along the perimeter of the glass. Just as the flow of

liquid from the tap breaks up into drops, so, due to the

Rayleigh–Plateau instability (see Chapter 6), this rim is also

unstable. Thicker and thinner areas are formed along it,



resulting in an imbalance: the liquid from the former spills

downwards and the wine “tears”, flow down the surface of

the glass. The upward flow of liquid constantly feeds the

whisk, so that the process continues as long as the

concentration of alcohol in the wine remains sufficient.

Figure  2. Temperature at which the solution water–ethanol initiates the

solidification as a function of the mass concentrations of ethanol, given in

percent. It is noted how, for concentration of alcohol smaller than 93%, the

solidification temperature of the solution is considerably below the one for pure

water (0°C) and decreases on increasing the alcohol concentration. Alcohol is a

kind of antigel!



Figure 3. The tears of wine, sometimes known as “legs”.

Condition for the occurrence of wine tears



What are the conditions for the occurrence of wine tears?

We have discussed the relevant role of the film of liquid

on the walls of the glass after rotation. The film has to be

sufficiently stable, and therefore the surface tension has

to be relatively weak. When the glass contains pure

water, its surface tension σ
lg
 is rather strong, so the film

can hardly be formed. For wine, or simply for a mixture of

water and alcohol, the surface tension is smaller, and this

favours the formation of the film.

For a solution with a high concentration of alcohol (say

more than 20%), one does not need to rotate of the glass

in order to have formation of the film: the liquid climbs

the wall of the glass spontaneously (one speaks of total

wetting) before the tears are formed. This has been

pointed out by two French scientists, Jean-Baptiste

Fournier and Anne-Marie Cazabat.

For their experiments, the two researchers took the

precaution of placing an alcoholic solution, rather than in

a glass of wine, inside an expanding cup, so to avoid the

saturation of the atmosphere by alcohol vapour. In

atmosphere too rich in alcohol, the evaporation might

stop since the molecules of alcohol evaporated are

equilibrated by the ones that return to the liquid. The

reader can check: if a coaster is set over the glass of wine

where tears are occurring, then the formation of the tears

will stop within a few minutes. If the coaster is removed,

the air will be renovated, and the process will start over. It

should be remarked that the experiments by Fournier and

Cazabat have been carried out strictly in a solution of

water and ethanol.

If one should repeat the experiments by using real

wine, then other factors might play a significant role and

affect the formation of the tears: say sugars, tannins and

others. On the other hand, at variance with popular belief,



glycerine did not much modify the experimental

observation.

Champagne Bubbles

Champagne is the most northern wine-growing area in

France. Already in the Middle Ages there was wine

production: red wine, not sparkling, and most likely not so

good. Due to the cold climate in the winter, alcoholic

fermentation could stop well before the sugar had entirely

turned to alcohol by the yeast’s action, and the activity

could resume only in the spring. At that time, the wine

might already be inside the bottles. The carbon dioxide

produced by the fermentation increased the pressure and

could cause the explosion of the bottles! With the help of

one Benedictine monk, Dom Pérignon (1639–1715),

winegrowers in Champagne learned to take advantage of

that secondary fermentation in order to create a novel and

now famous sparkling wine: champagne. Nowadays, after a

preliminary fermentation in the cellar, the second

fermentation is artificially induced by the addition in the

wine of the “liqueur de tirage”, namely a mixture of sugar,

yeasts and other wine. The product is enclosed in thick

bottles, strong and well sealed. After some months, one

notes the appearance of the deposit of un-active yeasts

inside the wine. It is the sign that the sugar has been

consumed and that the second fermentation has been

achieved. By keeping the bottles inclined upside down, the

deposits are collected in the neck, and they remain there for

a certain time (Fig. 4).

During an ageing period that can last up to three years,

the rich flavours typical of champagne develop. When the

deposit has to be removed the neck of the bottle is frozen

by plunging it in liquid nitrogen, which opens the bottle: the

pressure from the carbon dioxide drives out the deposit



contained in a piece of ice. To complete the preparation of

the bottle, one adds the “liqueur d’expédition”, namely a

mixture of sugar and champagne. This last process will fix

the type of champagne: brut, demi-sec or sec. At this point,

one has only to fill up, close the bottle with a proper cork

and a “ muzzle” and sell it — at a price that has to take into

account the attention spent and the work done!

Figure  4. Bottles of champagne in the aging process. The bottles are kept

inclined upside down and are frequently moved to make sure that the deposit of

the yeasts properly occurs inside the neck of the bottles.

Once the bottle is sold, it will be opened soon thereafter.

This operation causes the development of a certain amount

of foam.Why? The carbon dioxide produced during the

second alcoholic fermentation accumulated inside the bottle

that was hermetically sealed. The pressure on the cork can

reach up to 6 or 7 atm at the end of that process. This high

pressure explains why some bottles used to explode before

the strength of walls had been adequately increased by the

producers. When we open the bottle to enjoy the

champagne, the pressure inside the liquid suddenly drops to



1 atm. The amount of gas stored inside the liquid is

increasing with pressure. By opening the bottle, the

solubility of carbon dioxide inside the wine strongly drops,

and the gas comes out, forming the bubbles. A bottle of

0.75 l of champagne contains about 9 g of carbon dioxide,

which corresponds to 5 l of gas at room temperature and

pressure. Even if the fraction of the gas taking part in the

effervescence is only about 20%, there is still plenty of gas

to cause a large number of exploding bubbles!

Experimenting with sparkling wine is not recommended

for children, but it offers a good way to let them play. It is

enough to take a piece of chocolate for them to observe a

nice movement inside the glass, from top to bottom and

vice versa. The chocolate initially sinks, but approaching the

bottom of the glass it collects bubbles which then lifted it

up, due to Archimedes’ buoyancy, and then at the surface,

they evaporate so that the chocolate again sinks.

The bubbles not only play with a piece of chocolate as if

it was a ball, but they even play music when they pop: a

characteristic crackling that has been studied by means of

very sensitive microphones. For convenience, it has been

studied by using soap water, where the foam has longer

lifetime. What has been discovered by the recording? When

bubbles explode occurs at random inside the foam, one can

hear a buzz similar to the noise of a radio badly tuned or

near a waterfall: a so-called at random “white noise”, having

the same intensity at all frequencies. This is not what one

really hears. Each explosion, lasting about 0.001 s, usually

triggers a sequence of explosions that our ear experiences

as a single sound signal, even in the case that some bubbles

blow up separately without the capability of the ear to catch

it. If the explosions occur at random independent events,

then they would be produced with probability 1/τ per unit

time; consequently, the distribution of the time intervals t

separating two explosions shall be centred around an

average value τ defined in that way. This is not the situation



occurring for the bubbles in the champagne: since their

explosion is a collective phenomenon, there will be

correlations among successive explosions, and a

characteristic time between two explosions can hardly be

defined. It can be proved that the probability that a time t

separates two explosions is proportional to 1/t. Several

natural phenomena follow analogous laws, for instance, the

avalanches and landslides. These phenomena do not have

characteristic time and characteristic intensity. Thus an

avalanche can involve a few grams of snow or, though less

likely, can be large enough to wipe out a road.

On the Clouding of the Pastis

Pastis is the traditional aperitif in South-East of France, with

strong flavour of anise. Its preparation is very simple, and it

is accompanied by a surprising phenomenon. When the

glass is filled with pastis, you can admire a beautiful, slightly

green transparency. Then the same amount of water is

added, evidently transparent. By mixing two liquids, both

transparent and opaque, almost white mixture appears.

How to explain this surprising phenomenon? The

explanation can be found in the composition of the pastis: it

is a mixture of alcohol (45%) and water, with a little amount

(0.2%) of anethole, an extract from grains of anise, present

also in fragrances and some medicines. The anethole is very

soluble in alcohol. On the contrary, it is only little soluble in

water. In pure pastis, the concentration of alcohol is such

that the molecules of anethole can form a solution. When

water is added, the anethole molecules are no longer

surrounded by a sufficient number of alcohol molecules:

they cannot go into a real solution, and instead they

collapse into little groups that remain as a suspension in the

liquid. Thus the pastis mixed with water forms an

“emulsion” (as is milk, a suspension of fats, or mayonnaise).

The opacity is due to the light scattering by those relatively



large groups of molecules (see Chapter 3): in pastis as well

as in milk, the incident light is strongly scattered for any

wavelength. The size of the little drops is indeed of the

order of a micrometre, namely of the same order of the

wavelength of the light, and therefore the scattered

component is almost white (Fig. 5).

The size of pastis droplets has been studied at the

Institute Laue-Langevin by means of neutron scattering.

Some readers might think that the research on the pastis

was motivated by the desire of drinking the correspondent

glasses. It has to be said that this is not true: the study on

the neutron scattering required the substitution of H2O with

the “heavy water” D2O, where the hydrogen atoms are

replaced by the heavier isotope deuterium. The heavy water

strictly speaking is not toxic, but it still does not have a

good reputation. Thus the pastis used for the experiment

had to be discarded!



Figure 5. The pastis problem. Pure pastis is transparent. After the addition of a

little amount of water, the pastis becomes turbid: the anethole molecules form

small drops of micrometric size that diffuse the light. If some drops of a product

for dishes are added, the pastis attains its transparency: the surface-active

molecules of the product favour the contact among the anethole and water

molecules, and the size of the drops decreases.



Pastis is a relatively stable emulsion. If a glass of pastis is

left at room temperature for about 12 h, the anethole

droplets would progressively melt and lift up at the surface,

creating a floating phase. The pastis would become almost

colourless and transparent.

The Titration of Vodka

Winemaking is not so easy in cold countries. Wine is often

substituted by alcoholic distillates obtained by apples — this

is the case of the Calvados in Normandy — or by starting

from cereals, for instance, barley, maize or rye for whisky,

as it happens in several countries. Vodka, also known as

“wine from bread”, is obtained from cereals: often in Russia,

vodka is drunk with a meal, as it happens in Italy and in

France with wine. The present titration of vodka is around

40% of in alcohol.

This composition has not been so clearly stated in the

past. Sometimes the innkeepers took the liberty of adding

water. To stop such misuse, it seems that the tsar Ivan the

Terrible issued a decree that allowed the unsatisfied clients

to beat the innkeeper to death if the vodka served was not

flammable. One can suppose that the concentration of 40%

was right, the one to cause easy flammability, thus saving

the life of the innkeeper.

Distillation: Technique of the alchemists

Alchemists were the precursors of modern chemists.

Distillation is one of their ingenious inventions: it allows

one to obtain the “aqua vitae” from the wine or, in more

general terms, to separate the components in a liquid

mixture. Let us refer to Fig. 7: at a given temperature, for

example, 85°C, the gas phase in equilibrium with the

liquid one is much more rich in alcohol than the latter. In

order to increase the alcoholic titration of solution (for



instance, wine), it is sufficient to warm it and let the

vapour get out and condense in a cold container. This is

the work of the alembic (see figure). For example, on

warming progressively the mixture of water and ethanol

at a molar fraction of 0.2 in alcohol, the mixture initiates

its evaporation at about 83.5°C. The molar fraction of

alcohol in the vapour is 0.54, and this corresponds to the

one in the first droplets in the distillate. Step by step,

when the evaporation is pursued and the temperature of

the mixture increases, the two phases lose alcohol: the

alcoholic concentration in the liquid decreases. Therefore,

it is convenient to stop the process rather soon while the

vapour is still rich in alcohol.

Distillation principle with the alembic. The mixture to be distilled (for

example, wine) is heated in a vessel. The vapour rich in alcohol is collected in

the upper part of the vessel. This vapour is progressively cooled down in the

serpentine kept inside cold water. The liquid, namely the distillate, is

collected at the end of the serpentine.

After the first distillation of wine, one obtains “aqua

vitae” strongly alcoholised. If the distillation is repeated

over and over, one can collect a solution more and more

concentrated. On the other hand, one cannot go over the

azeotropic concentration of 96°, i.e., 90% in molar

concentration, for which the vapour has the same

composition as the liquid: the distillate has the same



composition as the hot solution. The applications of the

distillation are not limited to making liqueurs: the

distillation of lavender, for instance, is common in

Provence. The fragrant oils present in the plant are

brought by the water vapour in the alembic, and one can

extract them.

A more simple method to test the concentration of

ethanol in water does exist: to evaluate the density, which

decreases when the concentration of ethanol increases. The

measure is performed by means of the densitometer,

essentially a glass tube, ballasted, that is put to float and

sink more or less inside the liquid (Fig. 6).

The principle was probably already known at the time of

Ivan the Terrible, however its real making is rather delicate

and thus was not so diffuse in Russia at that historical

moment. Another tzar, Alexander III, in 1894, decided to

substitute the empirical criterion of Ivan the Terrible with a

method based on the density. What to select? The tzar

asked the advice of one of the most prestigious scientists of

that period, Dimitri Mendeleev, who probably suggested a

concentration of 38% and then rounded up to 40% by the

tzar. At this concentration of alcohol, a glass of vodka can

stand in the open air for many hours, and although the

volume of liquid will decrease due to gradual evaporation,

the concentration of alcohol in the drink will remain

constant. Mendeleev was certainly aware that one has a

concentration, much more high, where the solution

evaporates progressively still preserving its alcoholic

concentration (Fig. 7). At that concentration, the solution is

said azeotropic, and it corresponds to an amount of alcohol

of around 96%. That is why it is hard to buy in a pharmacy

alcohol totally pure and produced with the traditional

method of distillation.



Figure 6. The device is a sealed glass hollow tube with a weighting compound at

the bottom. The flask tapers towards the top where graduations are applied to it.

When the device is lowered into a container of wine, it sinks more or less

depending on the Archimedean force acting on it, and therefore depending on

the density of the liquid. The graded scale allows one to estimate the density by

reading the number at the surface of the liquid.

Vodka has to be enjoyed cool. It is easy to have the

vodka properly cool during the winter in Russia, and

especially in Siberia where the average temperature is

around –10°C: one has to simply leave the bottle outside.

The same treatment applied to water would break the

bottle, as it is well known. The solidification of water implies

an increase of the volume of about 10% (see Panel on page

206). Why does a bottle of vodka not undergo the same

destiny? From one side, we have seen that a solution of

alcohol in water at about 40% keeps its liquid state well

below 0°C. A glass of vodka in the freezer will remain liquid



unless your freezer should be so efficient to cool down at

about –30°C. At that moment, when the vodka initiates to

solidify, the solid phase being formed is almost entirely pure

water. The remaining liquid is rich in alcohol and could stay

liquid down to a lower temperature. On further cooling, the

temperature of the liquid continues to decrease until the

temperature is the same as your freezer: the liquid phase

does not disappear. To have total solidification, one should

reach the temperature of –120°C, which is not reached even

in Siberia! What happens if you put also a glass of wine,

rather rich in ethanol, in the freezer, at the same time that

you are doing the experiment with vodka? This time you

would see something that looks like homogeneous solid.

However, touching it with a finger, you would realise that is

not a unique solid block. In fact, one has a series of grains of

ice hanging around a liquid rich in alcohol. This liquid

adheres to the grains, and it is not easy to separate.

Therefore, solidification is not a handy way in order to

increase the amount of alcohol in a vessel: distillation is

more convenient.



Figure 7. Composition of the phase liquid–gas in mixture of water and ethanol at

the equilibrium at room pressure (about 101 kPa). The composition of each

phase, along the x-axis, is given in molar fraction of alcohol, namely the number

of alcohol molecules divided by the total number of molecules. Pure water boils

at 100°C while ethanol at 78.4°C. In between the two temperatures, two phases

coexist at the equilibrium: for example, at 85°C, a liquid phase has about 14% of

alcohol in molar fraction and a gas phase about 49%.

Water: An extraordinary liquid

The mass density of ice, at room pressure, is 917 kg m–3,

while the one of liquid water is about 1,000 kg m–3. This

property of water, to have a volume larger in a solid state

compared to one in a liquid state, is really exceptional: it

is opposite to what happens with the majority of

materials. Metals, for instance, increase their volume by

about 3–4% when melting. The behaviour of water is



related to the structure of ice at the atomic scale (see

figure): it implies vacancies where it could be possible to

set other water molecules. When the water crosses from

solid to the liquid phase, the chemical bonds become

weaker, and under the effect of pressure (for example,

the atmospheric pressure), the molecules take advantage

of the free space in order to set at smaller distance. It is

necessary to warm water further for the vacancies have

to be occupied by the molecules: in fact, it happens at

about 4°C that the water has the minimum specific

volume. On increasing the temperature, water increases

the volume on heating as it happens for most materials:

but in between 0 and 4°C, water reduces its specific

volume under heating!



At normal pressure, ice takes the hexagonal lattice and is not very compact.

The tops of the hexagons represented in the figure are occupied by oxygen

atoms. On the places nearby, there are hydrogen atoms, as it is shown in the

small figure. Each oxygen atom has four neighbouring hydrogen atoms, two

of them nearest neighbours, thus forming a water molecule, and the other

two more far away (that belong to another water molecule). The size of the

hydrogen atom is very small, and the space is occupied most by the oxygen

atoms. Each oxygen atom has only four nearest neighbours, instead of the 12

occurring in the more compact lattice.

Wine, Alcohol Intake and Health

In this chapter, we have recalled the physical and chemical

properties of wine, as well as the role that wine plays in the

present civilization and the pleasure that it can bring to our

existence. In this last part, we are going to mention the

effects of the wine on our health. It is well known that an

immoderate consumption of alcohol implies serious

diseases, such as liver cirrhosis, cancers and mental

illnesses, besides the risk of car accidents. Things are rather

different for a moderate use of wine, especially red wine, as

we are going to address.

Pasteur, in the year 1866, in a heavy work dealing with

the wine-related diseases, wrote “wine can indeed be

considered the most hygienic and healthy drink”. But his

assertion could not be based on real statistical data: many

of them were obtained only at the end of the 20th century.

Those data belong to a group of studies about the factors

that influence the health and the diseases (not only the

plagues).

In 1991, statistical data collected in a study called

Monica3 was published in the prestigious medical journal

The Lancet. The data caused a great deal of attention from

the press because their conclusions were somewhat

unexpected: the wine had beneficent effects, favouring

good health, at least in regard to cardiovascular diseases.

Figure 8 reports the rate of mortality for these illnesses as a



function of the animal fats intake, in various countries. The

correlation is noticeable: the more animal fat (and therefore

cholesterol) we consume, the more the mortality due to

cardiovascular diseases increases. The correlation is almost

linear, and the data are reasonably well fitted by a straight

line. A point is markedly out from the fitting curve: it is the

one for France! In spite of a rather large intake of cheese

and butter, the death rate for cardiovascular diseases is

relatively low (although still remaining the second source of

mortality after cancer). It is noted from the figure that

French people eat more fat than the English yet still have

around four times fewer heart attacks!

Figure  8. The more animal fat (and therefore cholesterol) we consume, the

mortality due to cardiovascular diseases increases.

The US television station CBS was the first of the media

to call attention to that result. In 1991, it was presented

with the aggressive title “The French paradox”. Could that

be attributed to the daily intake of red wine, particularly in

the Bordeaux area where most of the data had been



collected? Further researches, performed in regions of red

wine, confirmed that a moderate intake was beneficial in

order to decrease the risk of cardiovascular accidents.

In Fig. 9, the result of a study more recently carried out in

France is reported, in the form of a curve reporting the risk

decrease as a function of the alcohol intake. One could

remark that the reduction in that curve is smaller than the

one reported in the Monica project, where for a daily intake,

the reduction in the risk was significantly greater. This

discrepancy could be related to the fact that in the Monica

results the decrease was estimated in correspondence to

the intake of red wine in particular areas, not of simple

alcohol itself. In fact, the characteristics of the wine seem to

play a relevant role. Wine contains more than 2,000

substances, and crucial to health benefits is the

phytoalexins, the polyphenols and particularly the

transresveratrol, cardioprotective due to antioxidants. These

compounds should be present in a significant amount of the

red wine of the Bordeaux region and obviously from other

vineyards of similar characteristics.

Figure  9. Risk of death by cardiovascular diseases as a function of the daily

intake of alcohol (in grams per day), in comparison to the one for a teetotal

person. The curve has been drawn by the authors of the study performed on the

basis of the epidemiological data in France, in the year 2009. (S. Guerin, A.

Laplanche, A. Dunant, C. Hill, Alcohol-attributable mortality in France, Journal of

Public Health, 23(4), March 4, p. 1 (2013). For the data of the Monica project,

see E. B. Rimm et al. Prospective study of alcohol consumption and risk of

coronary disease in men, The Lancet, 338, pp. 464–468 (1991).).



Figure  10. The Chinon castle in Indre-et-Loire where King Charles VII received

Joanne of Arc in 1429 and where nearby Franc Rabelais was born some decades

later in a region of vineyards celebrated in the story Gargantua and Pantagruel.

Obviously, there are other, noncardiovascular, alcohol-

related diseases. Besides liver cirrhosis, also certain cancers

as the one involving the oesophagus could be favoured by

the alcohol assumption. Thus, the advantage of regularly

drinking even moderate amount of wine could be debated if

one has public health in mind. Still, wine deserves credit: it

helps in bearing the small or great troubles of human beings

and yields a special atmosphere, a sensory pleasure, at

social gatherings. With the stipulation: do not overindulge!

Glasses of wine are agreeable provided that the wine is of

good quality (and furthermore if we want to get the benefit

described above, it should be red and coming from certain

vineyards). The quality is guaranteed by clever winemakers,

and we can visit them and their cellars during touristic trips

in beautiful wine-producing areas, which are also often rich

in historical souvenirs (Fig. 10). Finally, Physics, specifically

the Nuclear Magnetic Resonance, offers a nice and

dependable method to determine the place of origin and the

composition of the wine we buy, by analyzing the spectra of

the deuterium (the isotope of hydrogen) in the ethanol

molecule (see Chapter 27).



1
 Another story is the account given in Genesis that Noah was, probably, the first

man to cultivate vineyards for making wine.

2
 When the wine is defined to have alcoholic degree 10%, it means that the

ethanol concentration is 10% in volume. From 1 litre of this wine, one could

extract 1 dl of pure alcohol (at 20°C). The mass density of ethanol being 0.787 g

l
–1

, a fourth of such wine contains a little less than 20 g of alcohol.

3
 Monica (Multinational MONItoring of trends and determinants in CArdiovascular

disease) is an international study planned and coordinated by the International

Organization for Health (OMS) having the aim to measure the tendencies and

the determinants of deaths because of cardiovascular diseases and the

correspondent risk factors for these illnesses.



Part 3

The Sapiens Cooker

Homo erectus appeared about a million years ago and was

probably the first to master fire. His cuisine was nothing

other than roasting meat of elephant or buffalo that had

been killed by means of knives obtained by polishing off

stones or bones. The subsequent 10,000 centuries have

seen dramatic changes in the way of living of the human



being: our knowledge, expertise and creativity have evolved

in parallel to our alimentary practises.

Nowadays, modern humans manipulate the aliments in

sophisticated ways. Cooking has become an art, and dinners

are pleasant, convivial events.

In this part of the book, we will address several subjects

cooking-related; from the use of the microwave oven to the

way to cook spaghetti and the preparation of tea or coffee.

It will be shown that the kitchen is the scene of several

phenomena of physical or chemical interest. It will be

emphasised how mastering the temperature allows one to

obtain special eggs Japanese style or to cook meat at the

best. Furthermore, the so-called “molecular gastronomy”

will be addressed, showing how novel methods can provide

meals with special properties.



Chapter 15

Waiting for a Cup of Tea

In the famous cartoon “Asterix in Britain”, the authors

insinuate that a cup of tea is strictly similar to a cup of hot

water. Without having in mind to continue the joke, this

chapter about tea will be devoted to boiling water: where

are the bubbles generated in the kettle? Why is some noise

produced? What is their speed when the bubbles lift up?

There are several heavy manuscripts and chapters of

specialised books devoted to the best way to serve and

drink the tea. We shall limit this section to its preparation,

that in practise is nothing other than bringing water to the

boil, before adding the leaves to get the infusion.

Never Two Kettles without a Third One

Let us start with a very simple experiment. We take two

kettles exactly the same and with the same amount of

water, at room temperature. One of the kettles is left open,

while the other is covered by the lid (Fig. 1). Which one will

first arrive at boiling? It is not required to be an expert

cooker to answer: the covered kettle will first arrive at

boiling. The question is: why?

While waiting for the two kettles to get hot, let us take a

third kettle and set it onto the heater. Same amount of

water, same power, same temperature. We want this third



kettle to get the water to boil more quickly than the others.

What to do?

Someone could possibly suggest to add a certain amount

of water already hot, thus increasing the temperature. This

would be a poor idea. Boiling will be delayed! In fact, it

would be necessary not only to provide the energy required

to boil the initial amount of water but also the energy to

bring the water added to the boiling point. Evidently, if a

certain amount of cold water is substituted with the same

amount of hot water, then the boiling point will be reached

more quickly.

Figure  1. Traditional kettles are set on a heater. Some have a beak with the

whistle emitting a strident sound when the water reaches boiling temperature,

and thus some vapour is given off. There are also electric kettles that

incorporate their own heater.

Appearance of First Bubbles

Let us leave the third kettle alone and pay attention to the

first, covered with a lid. It makes a vague noise. If one lifts

up the lid, some bubbles being formed at the bottom of the



kettle can be noticed, which then detach and move up

towards the surface.

Why do the bubbles move up? Because of the

Archimedes force, obviously, that acts on any body

immersed in liquid: it is equal to the weight of the water

that has been shifted. From the correspondent force,

directed upwards, one should subtract the force acting on

the bubble in the opposite direction due to the resistance of

the water: resistance force having strength that increases

with the increasing speed of the bubble. At the beginning of

the ascent, the bubble velocity is small, and the water

resistance is insignificant: the bubble rises faster and faster

to the surface. Within a few centimeters, its speed becomes

high enough for the resistance force to compensate for the

force of Archimedes; the steady-state bubble velocity in this

case depends only on its radius (see Panel on page 215).

Bubble motion and turbulence

Let us detail the equations describing the motion of the

bubble during its ascent. We will assume that the bubble

is a rigid sphere; this is far from being correct, however, it

will lead us to a fairly accurate result. The bubble is thus

subjected to the weight force (negligible), to the

Archimedean force, and to a kind of friction force that

resists its motion.

For a sphere of radius R, the Archimedean force

expelled can be written as

where ρ and g are respectively the water density of the

liquid and the gravitational acceleration. The resistance to

the motion, for small velocity v is given by the Stokes

equation



where η is the viscosity coefficient of water and v the

speed of the bubble. At large velocity, the viscosity no

longer plays any role, and an approximate expression of

the resistance reads

The ratio of the two resistance quantities is given by

12 times the inverse of the “Reynolds number” Re, a

dimensionless number very useful in the fluid mechanics

The Stokes equation is correct within error of 10% for

Reynolds number Re < 1. For a sphere of radius about 1

mm in water, the Reynolds number is around 200. Then

we shall refer to the second expression of F
s
, yielding a

satisfactory order of magnitude.

Thus the total force can be written F = F
a
 + F

s
.

According to the general principle of the dynamics (see

Chapter 4), one can obtain the equation of motion of the

object once its mass is known. The vector sum of the

forces is equal to the acceleration times its mass, namely

However, when we refer to the motion of a bubble in

liquid, what is really moving are the water molecules

outside the bubble. Should we apply the fundamental

principle of the dynamics to the water molecules? This

would be very difficult! Fortunately, the fluid dynamics

shows that the principle can be applied directly to the

body in motion in the liquid provided that a proper mass

is attributed to it. In the case we are dealing with, the

mass we have to consider is the real mass of the object

plus an “extra mass” (so called added mass) given by δm



= (2/3)πρR3 namely the half of the mass of the volume of

water being expelled! For a bubble, the total mass is

practically reduced to the extra mass δm only. Just after

detachment, till the speed is small, the resistance of the

water is negligible. Then one has

which, after substituting the expressions for the

Archimedes force and the added mass, leads to a

surprising result: dv/dt = 2g. The motion thus is twice as

fast as the one during the free fall, obviously in the up

direction instead of down.

After some centimetres of ascent, when the forces F
a

and F
s
 become in equilibrium, the bubble continues its

uniform motion with velocity that only depends on the

radius R. The experimental estimate is around 20 cm s–1,

for a bubble of diameter around 1 mm, a value

compatible with the equations given above.

Why is the Stokes equation no longer valid when the

speed of the bubble is rather high? It can be used only for

the so-called “laminar regime” when the current lines

flow as would be attached to the object (see figure). For

sufficiently high speed, the disordered vortices along the

trail of the bubble arise. This is the regime called

turbulent. These vortices absorb energy, thus slowing

down the motion of the bubble.



(a) Laminar flow around an object; (b) turbulent trail behind the obstacle. The

dash lines indicate the current lines.

Evaluation of the bubble implosion time

Let us estimate the duration of bubble implosion. As

above, the fundamental principle of the dynamics can be

applied to the mass m of the water that enters the bubble

during the implosion:

where a
s
 is the acceleration of the border of the bubble

while F
b
 is the force related to the difference of pressure.

One has F
b
 = SΔP, where S = 4πR2 is the surface of the

bubble and ΔP the pressure difference between the

interior and the exterior of the bubble itself. By

substituting the mass by m =(4/3)π R3ρ (namely the



volume of the bubble times the water density of the

water), one has ρR3a/3 = R2 ΔP. We shall assume for ΔP

(that depends only on the difference in temperature

between the upper and the lower layers of water) a

constant value. Let t
2
 be the time required for the

implosion and R
0
 the initial radius of the bubble, the

acceleration can be substituted by  thus obtaining the

order of magnitude

where the square root of 3 has been omitted in view of

the approximate estimate we expected.

At standard pressure, the saturating pressure of the

vapour decreases by about 3 kPa per degree (see Table).

Thus we can assume that ΔP is of the order of 1 kPa. Then

a bubble of radius 1 mm implodes in about 1 ms.

The bubble formation

Why do bubbles form when the water is heated? At first

sight, it has to do with the gas inside the water that gets

free (see Chapter 14), and when the temperature is

sufficiently increased, it is due to bubbles of water vapour.

For a bubble of radius R to be stable, it is required that the

internal pressure is greater than the external pressure by

the amount δP = 2σ/R, where σ is the surface tension of the

water: it is the Laplace pressure (see Chapter 6). In our

case, the external pressure is the one due to the liquid plus

the atmospheric pressure. As regard the pressure inside the

bubble, defined as pressure of saturating vapour, it depends

on the temperature: it is the pressure of the vapour being in

equilibrium with the liquid at a given temperature. It

increases when the temperature grows (see Table 1).

Table 1. Pressure of water-saturated vapour at representative temperatures.



T (°C) 96 98 100 102 105 110 115 120 125

P (kPa) 87.7 94.3 101.3 109 120 143 169 196 232

Figure  2. As soon as the temperature of the water becomes high enough,

bubbles appear on the defects of the bottom of the kettle. Due to the action of

surface tension forces, while their volume is small, the bubbles remain at the

bottom and, being filled with steam, gradually grow.

Therefore, bubbles appear primarily on the bottom of the

kettle, being hotter. But even there, the nucleation of a

bubble is not easy: after all, at first, while the radius of the

bubble is still small, the Laplace pressure which must resist

the air and the vapour is very large! Experiments have



shown that the appearance of bubbles most often occurs at

defects in the bottom of the kettle, where conditions for

nucleation are more favourable: the initial size of the bubble

is determined by the characteristic size of the defect (Fig.

2). It is said that such nucleation is heterogeneous, in

contrast to homogeneous nucleation when bubbles appear

in the volume of the liquid.

The bubbles’ ascent

Bubbles just born do not detach immediately: as they are

small, they remain stuck because of the surface tension

effect. In fact, a bubble of a given volume is more

“comfortable” when stuck onto the bottom of the container.

When the nascent bubbles are resting on the bottom, there

are two forces acting upon them: the Archimedean

buoyancy force, which pushes it upward, and the surface

tension that keeps it attached to the surface. As the bubble

grows, the Archimedean force rises too, and at a certain

moment, it exceeds the retaining force of surface tension.

The bubble takes off, starting on its journey upward. During

this phase, the bubbles have size of the order of a

millimetre (while during the boiling process, they can reach

a size of the order of a centimetre). One can evaluate the

time required for the bubble to detach from the wall: it has

to displace by a distance of the order of its radius R under

acceleration of the order of g. Thus, the time required is of

the order of (2R/g)1/2, namely a time of the order of 0.01 s

for a bubble of millimetre size (Fig. 3).



Figure  3. Bubble of water vapour before the real boiling starts. The water

molecules are moving in a disordered way: a large number of collisions against

the surface of the bubble occur. The resulting pressure has to equilibrate the

surface tension. When the bubble lifts up, colder regions are attained: the water

vapour condenses, and the bubble implodes.

Let us follow the bubble during its ascent. Due to its

lifting up, the bubble reaches a region where the

temperature is decreased; the temperature distribution in

the water being far from homogeneous during the boiling

process. In fact, water is not a good heat conductor, and

desiring to drink the tea, we have forced a strong heating:

while the temperature at the bottom of the kettle is above

100°C, the water in the layers at various levels does not

reach this temperature. During the ascent of the bubble, the

vapour inside it quickly returns to the liquid state: the

bubble collapses and disappears (see Panel on page 215),



or, if it has a small amount of water inside, it strongly

squeezes. It is only when the water boils in the entire

volume that the radius of the bubbles increases with

increasing height.

Song of water in the kettle

The appearance of the bubbles in water is accompanied by

the emission of a regular noise. What is the source of this

phenomenon? It seems possible to rule out the hypothesis

that just the propagation of the bubble in the liquid can

cause sound waves in the audible range. In fact, in the air,

the high speed of a gun bullet can indeed cause audible

sound waves, but this is not the case as, for instance, for a

tennis ball. On the contrary, the two phenomena, namely

the detachment of the bubble from the bottom and the

implosion, could be good candidates. In fact, they induce

oscillatory effects inside the liquid. What is their frequency?

Through simple calculations, one can deduce that a bubble

of radius 1 mm can detach in about 0.01 s, which

corresponds to a frequency range around 100 Hz. The

implosion, in about 1 ms, corresponds to a frequency around

1,000 Hz, a little higher frequency sound. A simple

observation corroborates these estimates: just before the

boiling process fully sets in, when the bubbles stop the

implosions, a careful listener can identify that the sound

becomes lower, being emitted now only due to the

detachment from the bottom. During the real boiling, the

tonality of the sound changes again, the noise being at this

point just the one due to the burst of the bubbles at the

surface.

The different frequency components of the sound emitted

are also functions of the water level and the shape of the

container. The song of the water being boiled was studied

during the 18th century by Scottish physicist Joseph Black

(1728–1799): his conclusion was that the sound results from



a kind of duet between the bubbles going up to the surface

and the vibrations of the walls of the container.

Kettle with a whistle

The whistle is a remarkable device. It can emit a sizeable

noise in spite of its small volume. How does it work in the

kettle? It is a rather difficult problem of fluid mechanics,

as it is proved by the interest that arose in a group of

researchers in Cambridge, UK. Here are their conclusions.

The whistle fitting the beak of the kettle is formed by two

metallic plates with a hole in their centres (see figure).

The vapour comes from the cavity of the beak, of size of

order of a centimetre, that fixes the wavelength of the

sound that is going to be emitted. The longer the beak is,

the lower the tonality of the sound. Then the steam jet

exits the cavity through a narrow opening and enters the

whistle. In this case, the steam jet turns out to be

unstable: it behaves like a trickle of water at the outlet

from the tap. After walking a short distance, it breaks up

into separate drops. Leaving the whistle at a sufficiently

high speed, the jet forms numerous vortices, which are

the sources of the sound waves we hear.



Operating principle of the whistle. The vapour crosses two cavities A and B

turning into the two holes. Coming out from the whistle, the jet forms

vortices that are responsible for the sound. From R. H. Henrywood and A.

Agarwal, The aeroacoustics of a steam kettle, Physics of Fluids 25, p. 107101

(2013).

Water is boiling

Now in one of the kettles, the temperature is so that the

vapour bubbles reach the surface and there they break out

(Fig. 4). As expected, it was in the covered kettle that the

boiling point was first reached. The process is indicated by a

jet of vapour exiting from its beak. By itself, the water

vapour would not be visible, but at the exit from the bill, it

condenses in small droplets of liquid water. These little

droplets accompanying the jet get visible as a white cloud,

thanks to the same diffusion process when the light makes

the clouds white (see Chapter 3).

The vapour jet is sufficiently strong to cause harsh sound

through a whistle (see Panel above on this page).

Sufficiently strong as well to cause some burns if our hand

intercepts the trajectory of the jet. Within half a second, we

should receive a mass of vapour of around 0.3 g. This

consideration leads us to pose another question.



Figure 4. Once the boiling process is stationary, the vapour bubbles grow during

their ascent. Above a certain size, they lose the spherical shape. They arrive at

the surface where they break out, and the surface appears rich of water-whirls.

Are burns from boiling water or water vapour

more painful?

What burns the most: the boiling water or the water vapour?

It is a question similar to the one: what is more heavy, the

lead or the feathers, or the variant, 1 kg of lead or 1 kg of

feathers? Thus one has to be more precise “what burns the

most, a gram of boiling water or a gram of water vapour at

100°C?”. We immediately state the water vapour! On a

surface that is colder, such as our skin, the vapour starts to

condense and after that cool down. Now the condensation

downloads a lot of heat. A mass m of 1 g of vapour that

condenses at 100°C downloads an energy given by mr,

where r the latent heat of condensation that for water is

2,257 kJ kg–1 (see Chapter 18). This energy is much more

than the one downloaded when the same amount of water

is cooled down. In fact, this latter is given by mCΔT, where C

= 4,190 J kg–1 (°C)–1 is the specific heat for water and ΔT is

the difference with the final temperature (about 40°C, when

the temperature becomes acceptable) and the initial one,

100°C. For ΔT = 60°C, the ratio of the two energies being



respectively received is around 10. Thus it is concluded that

a mass of water vapour is 10 times more painful than the

same mass of boiling water.

The Kettle without a Cover

While we were doing our calculations, the water in the kettle

without any cover reached the boiling temperature. Why is

it late? That is because part of the energy provided by the

heater has been used to produce the evaporation of part of

the water, which is released into the atmosphere. Even in

the covered kettle, there was such evaporation, but, in this

case, the vapour was trapped. Some condensation occurred

onto the cover, thus returning the energy to the system. In

fact, once the vapour concentration has reached in the

covered kettle a certain value (dependent on the

temperature), then the number of molecules that evaporate

is exactly the same as the number of molecules that return

to the liquid.

Some more explanation. It is not necessary to wait for the

boiling temperature (100°C at the ordinary atmospheric

pressure (see Panel on page 224)) for some water pass from

liquid to gaseous state: in salt marshes or even for the

water of the sea, one has slight evaporation. Water

evaporation, at 100°C or even at lower temperatures, does

require energy; the same energy is gained in the inverse

transformation, namely during the condensation crossover

to the liquid state of the vapour.

There is a small advantage of an uncovered kettle: when

the water evaporates there is a certain reduction of the

amount of water that must be warmed up to 100°C!

Meanwhile, as we have addressed above, the energy

required to heat a certain amount of water of some tens of

degrees is much less than the energy required to bring the

same amount to the vapour state. The saving obtained in

bringing only part of the water to boiling temperature is



therefore small in comparison to the cost of the

vaporisation. If we have, on average, heated the water in

the uncovered kettle to a given temperature 100°C − ΔT,

the cost therefore is (r − CΔT)Δm, where Δm is the mass of

the water evaporated and ΔT is of the order of 20–30°C: the

latent heat r and the capacity C have been given above. As

regards the amount of water evaporated Δm, it is

proportional to the area of the water surface and how much

the heater has been on, and therefore inversely proportional

to the power of the heater; in practise, it involves some

percent of the total amount of water. The reader can verify

that the waste in energy having forgotten to set the cover is

around 30 percent of the total energy provided.

Water Is Hot!

Physicists like to experiment using cages where the

temperature is uniform, such as the calorimeter, in order to

be able to control the various conditions. Cooks know that

this state rarely occurs in their pans or their ovens. The

water at the bottom of the container, in direct contact with

the heat source, is evidently hotter than the one at the

surface. This is particularly true before boiling but also

remains this way during the boiling process (Fig. 5).

The pressure cooker and cooking at high

height



A pressure cooker. When some water is heated, the vapour is kept inside up

to a given value of the pressure, controlled by the valve. As a consequence,

one gets a temperature around 120°C, evidently much higher than in a usual

pan.

The boiling temperature of a liquid is a function of

pressure: it increases with increasing pressure. This

property has been used in a kitchen device: the pressure

cooker. This instrument elsewhere is known as an auto-

cooker. Its cover is firmly closed so that the water vapour

which results from evaporation cannot get out. As much

as it accumulates onto the cover, the pressure inside the

cooker increases above the atmospheric pressure, and

thus the temperature of the water boiling inside increases

as well. To avoid an explosion, the device is equipped with

a valve that opens up when the pressure reaches a value

of about 2 × 105 pascal (Pa). The temperature inside the

pressure cooker is typically around 120°C, and this allows

a rapid cooking, much faster than in the usual pan. The

device requires some precaution: after having completed

the cooking, never open the cover without having first



cooled the cooker with cold water and removing the cover

with some care to avoid a jet of high-temperature vapour.

In fact, the water at 120°C, suddenly brought at the

atmospheric pressure. would start again to boil

tumultuously! Furthermore, it is necessary to avoid

cooking food that could clog up the valve.

Historical experiment for the measurement of the atmospheric pressure at

the Puy de Dôme, from a carving of the 19th century. On September 19,

1648, the son-in-law of Pascal observed the height of the mercury column in

the barometer and compared it with the one detected at low height, in

Clermont-Ferrand.

The pressure cooker minimises the energy in all

circumstances, but it is particularly useful at altitudes

where it would be hard to cook the food in ordinary pans.

For instance, at the top of Mt. Everest where the pressure

is reduced to 3.5 × 104 Pa, the water would boil at about

70°C!

It is appropriate to mention that the pressure unit is

called pascal in honour of Blaise Pascal (1623–1662). This

French philosopher and scientist was the first to prove

that the atmospheric pressure is reduced when climbing



in mountains: he also demonstrated that the atmospheric

pressure is related to the weight of the air column above

the ground. The related experiment was not so easy to

carry out: he had to carry to about 1,500 m of height a

rather bulky instrument, the mercury-based barometer

that the Italian scientist Torricelli had just invented (see

figure).

Figure 5. Temperature of the water as a function of the distance from the bottom

of the container, during the boiling process, at the pressure of 1 atm. The

temperature of the vapour is 100°C, namely the equilibrium value. That of the

water is close to 100.4°C in the boiler, while towards its bottom reaches about

110°C. The temperature at the bottom of the boiler depends on the intensity of

the heat source.

It should be remarked that all the water at this point has

a temperature above 100°C, in a state defined as

“metastable”. Thus the water bubbles up at the surface

increase their size, growing because of the water that is

vaporised at the contact. After turning off the heater, the



water continues to evaporate. Then let us pour water into

the teapot through a strainer filled with tea and let the tea

brew.

How to serve the tea

While the tea infusion is being formed in the kettle, let us

choose a proper container to pour it. In the East, instead of

the traditional china cups, small special containers are

preferred. Possibly as the heritage of the Asiatic nomad

tribes, these containers are easy to put away and less

fragile. Their flared shape also implies the cooling down of

the liquid at the surface (since the zone in contact with the

air is greater), thus avoiding some burns on the lips. In

Azerbaijan, the glasses armudi (pear) are as well

characterised by a flared swan neck. Towards the bottom,

the liquid stays warm, and the spherical form minimises the

ratio of surface/volume and the cooling that occurs close to

the surface of the liquid.

Nowadays, the use of cylindrical mugs is more popular; it

may be because they are more easy to manufacture and to

be personalised by various colour motifs.



Chapter 16

When Physics Invades the Kitchen

The chefs of the old days prepared dishes with very simple

equipment. Today, culinary experts have at their disposal a

whole arsenal of electrical appliances with multi-page

manuals and the principles of their operation which, most

likely, seem hazy to most users! Let’s describe the physics

that has invaded modern kitchens.

Traditional Methods for Heating

When the prehistoric human being learned how to handle

fire, that day marked the beginning of a new era. Fire

offered the possibility to work with metals and as a

consequence… to create cars or to travel to the Moon. Some

people think is that fire was significant because it allowed

human being to no longer eat raw vegetables and meat. The

development of civilization went on together with the

evolution of cooking techniques. For good food critics, a

steak properly cooked could be considered one of the

symbols of civilization. Over the centuries, the connection

between fire and food has changed, more precisely, it has

been enriched with new methods; however, the

fundamental process behind cooking has always remained

the same. The fire on which the mammoth meat was fried

changed at first to a family hearth in the fireplace and then

a wood-burning stove (Fig. 1) or a coal stove, later being



replaced by a gas stove, and finally, with the advent of

electricity in the kitchens of the 20th century, electric

stoves appeared, and in the 21st century, they are

increasingly being replaced by induction.



Figure 1. Food preparation in a saucepan on a wood stove. Traditional culinary

methods are usually based on heat in contact with hot metal (here — a plate),

hot air (in the oven) or boiling water. Temperature throughout a pan is almost

constant due to convection, which makes liquid or vapour circulate.



The Electric Plates in Cast Iron

The first electric devices for cooking have been the plates in

cast iron including inside an electric circuit transporting

electrons. In this way, the plates became hot due to the

Joule effect. When an electric current circulates in a

conductor, this gets hot! The electric radiators and the

toasters function according to that principle. When the

conductor is a thin wire, the heating is so strong that it

emits light. This is what happens in incandescent bulbs,

where the tungsten wire is heated above 2,000°C (see

Chapter 7).

What is the power dissipated in the Joule effect? It

depends on a characteristic of the conductor, the electrical

resistance, and on a characteristic of the electric source,

called electromotive force, approximately given by the

tension (or potential difference) at the terminals of the

conductor (Fig. 2).



Figure  2. Sketch of continuous current generator at potential difference V

(implying tension V between the two terminal + and –) connected to the

resistance R. The electric current of intensity I that can be measured by the

ammeter is flowing through the circuit.

The electrical plugs at home deliver a tension of 220 V in

Europe and 120 V in the USA. If the conductor resistance is

R (measured in SI units in ohms) and the intensity of the

current is I (measured in SI units in amperes), then the

electric power dissipated (measured in SI units in watts)

because of the Joule effect is W = IR2 or W = V2/R. For a

given electric tension V, the power dissipated is increasing

when the electric resistance is decreased. The pan in

contact with the plates gets hot by thermal conduction. The

air in the room is also warmed to a moderate extent, but

much less than in cooking devices with a gas fire. After

having turned off the power, the plate remains warm for a

relatively long time, implying the risk of being burned



ourselves by touching it. Let us turn to another subject of

this chapter: modern methods of cooking.

Induction Plates

When a conductive circuit is subjected to a variable

magnetic field, an electric current is generated. This is the

phenomenon called electromagnetic induction, and it was

discovered by English physicist Michael Faraday (1791–

1867). Electromagnetic induction finds countless

applications in modern technology, including in induction

stoves in modern kitchens. How do they work?

In such a stove, located under the plate (the so-called

hob), is a device (Fig. 3) which generates an alternating

electromagnetic field. Until nothing is set over the plate, the

energy consumption is small: practically no heating occurs,

and one can even touch it without injury. When a metallic

pan is set over the plate, then the magnetic field generates

an electric current inside the base of the pan itself. A small

clarification is now appropriate since, at the beginning of

this section, an electric circuit was mentioned. Where is it in

our case? Simply, the pan itself is the circuit, and this

explains why it has to be metallic. The electrons of the

metal are being moved under the influence of an induced

electromagnetic field, forming the contour which passes

through the bottom of the pan. The currents circulating in a

compact block of metal are called Foucault currents in

honour of Léon Foucault, who used a pendulum to

demonstrate the rotation of the Earth (see Chapter 4). Thus,

the bottom of the pan heats up, thanks to the Joule effect.

The heat generated is transferred to the food being cooked

in the pan, such as soup, and as a result the contents boil

quickly.



Figure 3. Principle of heating by induction. The pan is on the plate made in glass-

ceramic material (that can resist high temperature variations) which is over the

inductive coil. The coil is made of many turns of thin wires, and a variable

electric current is circulating. It induces a variable magnetic field, the strength

and the direction of the field oscillate at high frequency. Foucault currents are

produced in the bottom of the pan, heating it through the Joule effect.

The induction electromotive force is proportional to the

strength of the magnetic field and the rapidity of its

variation, namely to the frequency if the field is due to the

alternate current. The frequency of the power supply in

homes is 60 Hz (50 Hz in Europe), and this value is not

sufficient to cause an electromotive force sufficient to cook

the food in the pan. Thus, inside the device, there is a

frequency multiplier, often by a value by a factor of 500 or

1,000.

Using an electric current to produce another current,

what for? Because, in this way, the current is generated

exactly where it is required with no electric contact and no

wires that might be dangerous, unlike other methods of

cooking, such as the gas cooker or the metallic plate directly

heated by the Joule effect. The air of the room does not

increase its temperature. The glass–ceramic plate is indeed

heated by the contact with the bottom of the pan but to an

extent much less than for the plate in cast iron. Also, the

energy consumption is decreased by the induction plate,

furthermore it carries no risk of burning. The cooking is fast,



the only negative remark being that not all the kitchen

items can be used in that way of cooking. In fact, the pans

not only must be metallic but ferromagnetic, for example,

steel or cast iron. For various reasons, the bottom of the pan

has to be thick, in particular so that it is not damaged by the

high temperatures.

It turns out that while only metal cookware is suitable for

an induction hob, another device popular in our kitchens

does not accept it. Let’s move on to discussing it.

The electromagnetic induction

Around the year 1830, physicist Michael Faraday carried

out a series of experiments demonstrating the

phenomenon of electromagnetic induction. A simple

experiment can evidence it.

Let us consider a coil made by a conducting wire (for

instance, of copper) forming a series of n loops each

having area S (see figure). When a magnetic bar is

introduced inside the coil, causing a flux of a time-

dependent magnetic field H, then an electric current

arises in the circuit. The intensity of the current, indicated

by the ammeter, depends on the circuit (and particularly

on its resistance), but the electromotive force V occurring

at the extremities of it is given by a simple equation, V =

−ndΦ/dt, where Φ is the induction flux through each loop,

which in turn is proportional to the area and the intensity

of magnetic field H. Thus the electromotive force

increases by increasing the number of the loops in the

solenoid.

Nowadays, the majority of our electric devices work by

exploiting the phenomenon of electromagnetic induction.

One can mention the alternators at work in the nuclear,

thermal or hydraulic plants providing the electricity we

use in our houses (see Chapter 13), or the chargers of our

mobile telephones. These devices include a transformer



(see figure) that, starting from a source of alternate

current of a given voltage, can provide current of another

voltage. Furthermore, the device includes a coil that

provides a magnetic field in a metallic cage. Due to this

field, the iron acquires a certain magnetisation

contributing to the induction flux, this flux being

multiplied by a considerable factor, of the order of 5,000!

A variation of the magnetic field though the winding coil (for instance, due to

the introduction or the removal of a magnetised bar, generating a (non-

homogeneous) magnetic field causes a current that can be detected by the

ammeter.



Principle of the transformer. Basically, there are two coil windings of

conducting wire around an iron cage. The primary winding, for instance, is

connected to a source of tension V and generates a magnetic field of

strength proportional to the number of turns N1. The iron cage leads the

magnetic field and drives it to go through the secondary winding having N2

turns; it produces a potential difference V2 = V1N2/N1 that, for example, is

driving a mobile phone.

Thus, in practise, a cage of ferromagnetic metal is

required. For a similar reason, the pans used on the

induction plates have to be of steel or cast iron or

ferromagnetic alloys of iron and carbon.

The Microwave Oven

Another device for cooking that has been popular in the

kitchens since the 1980s is the microwave oven. How does

it work?

As implied by its name, this oven contains

electromagnetic waves at frequency ν = 2.45 GHz (2.45

billions of hertz). Since the speed of electromagnetic waves

in vacuum is c = 300,000 km s–1, the wavelength resulting

from c/ν turns out about 12.2 cm. It is noted that they are

centimetres and not microns as could be deduced from the

word microwaves! Compare that length with the wavelength

of the visible light (from 0.4 to 0.7 μm) or with the length of

the FM radio waves reaching our houses, in general, of

frequency around 100 MHz (and then at wavelength of the

order of 3 m, see Chapter 3).

The structural element that generates microwave

radiation in the oven is called a magnetron (Fig. 4). It is a

magnet and a hollow metal cylinder with a heated wire

inside. Under the influence of the strong potential difference

(several kilovolts) created by the transformer, the hot wire

emits electrons, which, under the influence of a magnetic

field, rotate around the wire and emit microwave waves. The

structure is designed in such a way that standing



electromagnetic waves of a given frequency are set up in it

when the value of this frequency is maintained with an

accuracy of 1%. The generated radiation is then directed to

the inside of the microwave oven through a waveguide,

which is similar to the devices discussed in Chapter 2.

Figure  4. A microwave oven. Due to the effect of a high electric potential

provided by a transformer, the magnetron emits an electromagnetic radiation

that through a waveguide is sent inside the oven through a waveguide. A

shaking device distributes the radiation in several directions in order to cook the

foods in the most homogeneous way.

How do the microwaves generated by the magnetron

heat the food? To a large extent, this happens due to their

interaction with the water molecules present in the food. To

understand this, let us consider the structure of the water

molecule, made of two atoms of hydrogen and one of

oxygen, with covalent bonds sharing two electrons. The

oxygen atom tends to attract the electron (one says that

oxygen is more electronegative than hydrogen), and thus an



excess of negative charge is set around the oxygen, while at

the hydrogen site, there is an excess of positive charge. The

molecule is not linear, the two O–H bonds forming an angle

between them of about 100° (Fig. 5).

From an electrostatic point of view, things work as though

the molecule were made by two electric charges of opposite

signs, placed nearby: in other words, what is known as an

electric dipole. If an electric field is applied to this dipole, it

tends to align along the field, with its positive pole (+)

towards the highest electric potential and its negative pole

(–) towards the weaker potential.

In an electromagnetic wave, the electric field constantly

oscillates, and this means that water molecules begin a

vibrational motion in the microwave oven. Then this

movement is transmitted to all the other atoms of the

prepared food. An increase in the intensity of movement of

atoms is nothing more than an increase in temperature!

However, in reality, everything is a little more complicated:

water molecules are quantum objects and may not vibrate

at any frequency. Therefore, in the microwave oven, the

frequency of 2.45 GHz is selected, which corresponds to the

resonant frequency of water molecules. The energy

absorbed from electromagnetic wave in these resonant

transitions then is redistributed by multiple relaxation

processes, thereby heating the foodstuff.



Figure 5. Schematic representation of the water molecule H2O. The oxygen atom

has a negative charge, while the two hydrogen atoms have positive charges (a).

Due to the nonlinear geometry, the molecule corresponds to an electric dipole

that is oriented in an electric field (b).

The Microwave Oven, a Resonant Cavity

Better than the induction plate that heats only the bottom of

the pan, the microwave oven radiates heat only where we

intend it, since the heating process directly involves the

foodstuff. So that the consumer does not share the fate of

the chicken, the electromagnetic radiation in this case is

limited to the working volume of the oven. The metallic

walls of the oven (in general, metallic grids) are indeed very

reflective and confine the microwaves that are present in

the oven, even for a little while after the device is turned

off.

For certain wavelengths, the microwave oven behaves as

a resonant cavity, similar to the vibrating cord fixed at two

extremities (see Chapter 11). For an appropriate wavelength

of the excitation, the resonance occurs, and the cord takes

the property of a stationary wave: in some points, called

loops, the displacement of the cord is maximum, while, in

other points called nodes (or antiloops), the cord does not

move. The phenomenon of the stationary wave occurs when

the length of the cord is equal to an integer number of half

wavelengths: the distance between two successive loops or

between two nodes is equal to half a wavelength.

This type of phenomenon occurs in a microwave oven.

The radiation distribution is not homogeneous due to



interferences (see Chapter 3) between incident

electromagnetic waves and the same waves after reflections

on the walls (see Panel on page 236). The constructors paid

attention to this problem and found the solution: when the

oven is operating, the plate where the food is set is put in

rotation. We have experimentally verified that the radiation

is strongly inhomogeneous when the plate is not rotating

(Fig. 6). Even though the plate is rotating, some precautions

are still necessary. For instance, it could be possible that

part of the food to be cooked is at the centre of the rotating

plate, and therefore it would receive the same radiation all

the time. When the baby food is just taken out of the oven,

it is better to gently mix.

A Big Haunch and the Skin Effect

The microwave oven can be used for other simple and

peculiar experiments. Let us take from the refrigerator a

rather big haunch of meat and put it on an appropriate plate

and then inside the microwave oven. Turn on and, after

some time of irradiation, the meat starts to get brown, and

after about 12 min, it appears to be perfectly cooked. When

taken out from the oven and cut, we would find out that

some part of the inner meat not only is not cooked but,

even more, is also still frozen. What is happening? Only the

zones near the surface have been irradiated! In fact, an

electromagnetic field can penetrate a conducting medium

only near the surface. The depth of penetration, also called

the skin-depth, depends on the resistivity of the material

and of the frequency of the wave incident on the conductor.

The resistivity value indicates the ability of the material to

conduct electrical current well (low resistivity) or poorly

(high resistivity). This inability of the electromagnetic field

to penetrate to a depth larger than δ is called skin effect.

The effect increases by increasing the frequency since δ is

inversely proportional to the square root of the frequency.



Figure 6. The experiment shows the marked heterogeneity in a microwave oven

during the heating. (a) A plate with bread chips is put on the oven plate which is

prevented from rotating. (b) After turning on the radiation (for about a minute,

at average power), some bread chips are carbonised, while others continue to

be white, and others only slightly burned.

Stationary waves in a microwave oven

Lock the turntable in the microwave and scatter pieces of

bread on it. After a short heating, they will be heated

unevenly, which proves the presence of nodes and

antinodes of the electromagnetic field in the furnace (Fig.

6). The reader may be tempted to draw an analogy with a

one-dimensional vibrating string and come to the

following conclusions: (a) One of the dimensions of the

working chamber of the furnace is a multiple of half the

wavelength λ/2 radiation; (b) The distance between two

successive antinodes or nodes (for example, two burnt

areas) is equal to half the wavelength. Be careful with

analogies! None of these conclusions about a microwave

oven is true! In fact, the electromagnetic waves that

cause resonance do not propagate perpendicularly to the

walls of the oven. Let us denote the axes of the selected

rectangular coordinate system O
x
, O

y
 and O

z
. When a

propagating sinusoidal wave of maximum amplitude E
0
 is

travelling along the x-direction, the electric field is

described by the formula E(x, t) = E
0
 cos(kx −ωt), where



ω is 2πc/λ and k = 2π/λ. If the wave is propagating in an

arbitrary direction, the electric field at the point r of

coordinates x, y and z has to be written as E(r, t) = E
0

cos(k ⋅r − ωt), where k is a vector directed along the

propagation direction of the wave having norm 

.

In order that stationary waves can occur in a

parallelepiped box having parallel sides a
x
, a

y
 and a

z
, the

components of the k vector must satisfy the conditions

where n
x,y,z

 are integer numbers. The side lengths and the

wavelength satisfy the condition

For an oven having sides a
x
 = a

y
 = 29 cm and a

z
 = 19

cm, this equation is satisfied for (n
x
, n

y
, n

z
) = (1, 1, 3), (0,

1, 3), (3, 2, 2) and (4, 2, 1). These different sets of values

correspond to different types of standing waves or so-

called modes. Many of these modes occur simultaneously

in the oven (depending on the type of device) and,

therefore, between the frequency and which pieces of

bread burn, there is no simple connection.

For the copper wires that are involved in most of our

electric appliances and while the correspondent frequency is

50 Hz, the skin depth is about 1 cm. Therefore, the electric

current is circulating all along the wire, and the skin effect

can be disregarded. But at the microwave frequency,

namely 2.45 GHz, the skin depth for copper is no more than

a few micrometres.



Let us return to our badly cooked haunch: the skin depth

is larger since the resistivity ( ρ ) of the meat is great, and

the skin depth increases with the square root of that

quantity . The meat is not a good conductor, but, to

a certain extent, it is a conductor; it contains water and

inside it, there are ions that can carry charges. The

resistivity of a muscle is of the order of ohm-metre, hundred

million more than the one of copper, which is equal to 1.6

×10−8Ω ⋅ m . The skin depth for the meat inside the

microwave oven is thus of the order of centimetre. Since the

haunch is thicker, the inside can be heated only by

conduction (see Chapter 18), as happens in a classical oven.

In order to cook the haunch well inside, one must be

patient! In a classical oven, the time required to cook a

haunch is at least 1 h. By resorting to a microwave oven, it

will not imply a faster time. Furthermore, the result could

also be disappointing: certain chemical reactions that are

produced with a grill and that provide a delicious aroma

cannot be obtained with a microwave oven. They require

high temperatures, certainly above 100°C, the temperature

at which water boils (see Chapter 21). Thus in the

microwave oven, you would not see in the haunch the

appealing brown colour in the crust… If the microwave oven

is not appropriate to cook the meat, at variance it could

stimulate the search for novel attempts in the cooking field,

along unexpected paths: for instance, the preparation of ice

cream inside a warm beignet. Only the exterior paste will

get hot, while the ice cream inside will be protected by the

skin effect: furthermore, the chemical bonds are much

stronger in the ice rather than in the liquid, and thus the

microwaves will little affect the ice cream.

The reader being at this point familiar with the skin

effect, we can return to the choice of 2.45 GHz for the

frequency. This value is within the range of electromagnetic

waves easily absorbed by the water molecules. In reality,



the strongest absorption would occur around 20 GHz, and

thus 2.45 GHz represents a compromise: at higher

frequencies, the absorption would increase, but, in the

meantime, the skin effect would increase as well, thus

possibly making difficult an homogeneous cooking of the

food.

Caprices of a Microwave Oven

It is known that metallic surfaces cannot be put inside the

microwave oven. What happens if this prescription is

violated? The authors of this book made the following

experiment (the readers are strongly recommended to not

repeat by themselves). The same amount of water was put

in a metallic container and in a ceramic cup, and the

microwave oven was turned on, under strict surveillance

and for only 30 s. While at the end of the operation the

water inside the ceramic cup was found pretty warm, the

one inside the metallic container remained cold. The metal,

where the penetration depth of the microwaves is very

small, did not allow the penetration of the radiation.

Although the water does not get hot, the metal can still

absorb heat, for instance, through Foucault currents at the

surface. Since the container had thick walls and the thermal

conductivity of the metal is very high, the heat produced by

the microwaves could be distributed over a rather large

volume, and no serious damage occurred. On the contrary,

in the case of very thin walls, as, for instance, gold-like

covered plates, explosion or fire could occur.

During the experiment described above, a certain

precaution was taken: the oven yields a certain power, and

all the energy emitted in a given time must be dissipated.

When one has water or foods on the plate, the energy is

absorbed and they get hot. However, if the metallic

container does not allow the penetration of the microwave

inside where the foods are, then there is the risk that the



energy finishes to damage other parts of the oven, for

instance, the magnetron. For the same reason, an empty

microwave oven should not be turned on. It should be

remembered that metallic containers do disturb the

propagation of the microwaves, and let us avoid placing

them inside the oven.

It should be noted that not all earthenware or glassware

is suitable for use in a microwave oven. The risk is that the

plate gets as hot as the food it contains. A simple test to

check if a given plate or any container can indeed be used is

to place it in the oven together with a glass of water. If at

the end of the irradiation the container is cold while the

water is hot, that means that the container, or the plate, is

appropriate.

Figure 7. Result of the attempt to cook an egg inside a microwave oven.

Let us proceed in listing the things for which a microwave

oven cannot be used. It is not possible to cook an egg.

During the irradiation, the material inside the egg rapidly

gets hot and vaporises. The gas already inside the egg

increases the pressure until the egg explodes (Fig. 7)! As



with the badly cooked haunch, the explosion of the egg

emphasises the risks of improper use of the microwave

oven.

To conclude this chapter, let us address the last

experiment. Is it really impossible to use the microwave

oven to heat foods that do not contain water? We have

attempted a suitable comparison by placing in the oven two

cups: one containing water and the other peanut oil. After

some minutes of irradiation, we found that the water was

hot while the oil was still cold. This result could not be

predicted a priori. In fact, materials that do not contain

water but are formed by molecules implying an electric

dipole (Fig. 5) can still be heated by means of microwave

irradiation.



Chapter 17

Ab ovo

Is it possible to cook an egg on the top of Mount Everest?

Knowing that a chicken egg boils in 3 min, how long would it

take to cook an ostrich egg? How do you identify a raw egg

from a hard-boiled egg? What is the secret to the tastiness

of Japanese “onsen tamago”? The answers are all found in

this chapter.

The Latin expression Ab ovo is taken from the Ars Poetica of

the Latin poet Horace and means “from the egg”. Namely

from the beginning. This is an allusion to the egg laid by

Leda, from which Helen would have emerged. Much later,

Helen was seduced and kidnapped by Paris, and thus the

Trojan War was initiated, which was narrated by Homer in

the Iliad. As Horace observed, Homer, a skilled poet, did not

begin his story ab ovo, but in medias res, in the heart of the

matter. In this chapter, this expression simply means that,

starting from the egg, we will offer to the reader some

thoughts about the Physics involved in it.

The Egg Fight

A starting point for this chapter is suggested by another

reminiscence in one of our famous stories, that of “Gulliver’s

Travels” by Jonathan Swift. This book tells the story of the

war between the empires of Blefuscu and Lilliput following



an edict from the Emperor of Lilliput who ordered his

citizens to break their eggs by the small end. Gulliver

believed this to be a private matter, and the authors of this

book share that opinion. However, just for curiosity, the

reader is invited to consider which end of the egg is easiest

to break. Perhaps he has already taken part in a fight

(appropriate for Easter Day) in which two players, each with

a hard-boiled egg, try to break the opponent’s egg (Fig. 1).

What is the right tactic? Hitting on the small side or the big

one? But also, should you choose a small egg or a large

one? Attack the opponent or wait for his assault? Some

experienced practitioners claim that the attacker has an

advantage. However, if the two eggs move at a uniform

speed, this advantage does not occur under the Galilean

principle of relativity.

Figure 1. Battles of decorated eggs are an Easter tradition. Each player strikes

the opponent’s egg: the winner is the one who manages to keep his egg intact.

On the other hand, attacking by the small end or by the

big one does make a difference. Let us suppose that the two

eggs are of equal size and that the axes are the same. Upon



impact, the shells flatten out a bit at their ends because

they have a certain elasticity. They then have a small

common flat surface S, around which the shells form with

the axis of the two eggs at two different angles α1/2 and

α2/2. According to the principle of action and reaction, also

called Newton’s third law, the force F1 exerted on the small

end is opposite, therefore equal in absolute value, to the

force F2 exerted on the large end. To assess the effect of

these forces on the shells, we must consider them as sums

of forces distributed along the surface S and tangent to the

respective surface of the eggs. For two-dimensional eggs,

which do not exist but facilitate reasoning, there would be

(Fig. 2) two forces on each side, f1 and  on the left, f2 and 

 on the right, with F1 = f1 + , F2 = f2 + ,

and



Figure  2. Egg fight; big end against small end. Who has the best chance of

winning?

Since the angle α1 of the small end is smaller than the

angle α2 of the large end, the force acting on the large end

is greater, and it is the large end that breaks. For real three-

dimensional eggs, the two forces f and f′ are replaced by a

continuous distribution of forces, and the reasoning is

analogous: the forces acting on the large end and the small

end are in the ratio  therefore, higher on the big

end. So, the big end breaks.

In the above reasoning, we have overlooked the role of

the inside of the egg, which strengthens the resistance of

the shell, especially for the small end, because there is an

air pocket on the large side. This is a second reason for

attacking from the short end. If you are having an egg fight,

then you will attack from the small end. But what if your

opponent also attacks from the small end? You can improve

your chances by hitting the opponent’s egg on the side,

where the curvature is weakest.



The Spinning Egg

After the egg fight, another possible entertainment consists

of spinning an egg around like a top. As is well known, this is

a way of distinguishing a hard-boiled egg from a raw egg.

The hard-boiled egg swirls for a long time, while the raw egg

stops after a few turns due to the viscous friction of the

material it contains.

The spinning top and the angular momentum

A top rotating rapidly around the axis does not fall if this

axis is close to the vertical. How do we explain this

phenomenon? For simplicity, let us study the motion of a

top, which has the shape of a surface of revolution, and

also assume that the contact point C between the top and

the support is fixed (this is not the case for a Thomson’s

top or an egg). The nature of the motion of the top can be

determined by the conservation law of its angular

momentum also called the moment of rotation. This law

for rotational motion plays the same role as the law of

conservation of momentum for translational motion. The

moment of rotation L is a vector quantity. This vector is

determined by the distribution of mass in the volume of

the object, its angular velocity of rotation, as well as the

axis about which it rotates. For example, the moment of

rotation of a spinning bicycle wheel is a vector

perpendicular to the plane of the wheel, the modulus of

which is proportional to the angular speed of rotation. In

particular, if the top is a set of material points with

masses m
i
, the position of which is determined relative to

the point of contact by vectors R
i
, and their linear

velocities are v
i
, then its angular momentum L is the sum

of vector products m
i
R

i
 × v

i
 (see Chapter 4).



It can be shown that if the sum of the moments of

external forces acting on the system is equal to zero, then

its moment of rotation remains constant. In the case of a

rotating top, and in the absence of friction, two vector

components remain constant: the vertical one and the

one directed along the axis of its rotation. If we launch

the top in such a way that its axis of rotation coincides

with the vertical, then the vector of its angular

momentum L will also be directed vertically. If the axis of

rotation deviates from the vertical, then the projections of

the vector L on these two directions remain constant,

which implies an increase in the modulus of L, and hence

an increase in the rotation speed. Consequently, this

causes an increase in kinetic energy. If the top rotates

slowly, then this increase is small enough and can be

compensated for by a decrease in potential energy

resulting from a decrease in the vertical coordinate of the

centre of gravity. In this case, the top falls. But if the top

rotates fast enough, then such compensation cannot

occur, and, since the total energy cannot increase, the

top simply remains in the upright position.

While the top is spinning fast enough, its axis of rotation remains vertical.

The moment of momentum of the top relative to point C is marked with a

black arrow. In contrast to the case of rotation of an ideal top without friction,

in the case of rotation of an ideal top without friction, in the case under

consideration, it is not completely preserved, but two of its projections still

remain unchanged: the vertical component and the projection of the angular



momentum directed along the axis of symmetry of the top. The right top (b),

flattened, is more stable than the left, elongated (a).

What is the minimum rotation speed below which the

rotating top becomes unstable and falls? It turns out that

it is equal to ω
c
 = , where g is the acceleration of

gravity and l is the distance from point C to the centre of

gravity of the top. The coefficient α depends on its shape:

it is less for a flattened top and more for an elongated

top. Thus, the rotation of the flattened top is more stable.

If, on the other hand, we give a hard-boiled egg a very

rapid rotary movement on a very flat and not too smooth

surface, we can witness an astonishing phenomenon: after a

few turns, the egg rises and begins to turn on its tip, until it

loses speed and then returns to the position where its

centre of gravity is lowest. This is one of the entertaining

wonders of mechanics, akin to spinning tops. Spinning tops

are not only a fun spectacle for young and old alike, but also

a classic problem topic for students (see Panel on page

244). One of the most spectacular spinning tops, which

could be found in some stores before the era of video

games, was shaped like a truncated sphere from which a

cylindrical rod emerged. You can bring the top into a rapid

rotation by twisting it with the rod with the thumb and

forefinger, and after a few turns, the top, initially placed on

its spherical part, overturns and sits on the rod. This strange

behaviour was explained by W. Thomson (later Lord Kelvin),

so this toy is sometimes called Thomson’s top (see Figs. 3

and 4).



Figure  3. Wolfgang Pauli (Physics Nobel Prize winner 1945, left), Niels Bohr

(Physics Nobel Prize winner 1922, right) and Thomson’s top (bottom) in 1955.

Figure 4. The amazing behaviour of Thomson’s spinning top. If initially rotated in

position (a), the top tilts after a few turns, then starts to rotate in position (b).



The Chemistry of Egg Cooking

Of course, eggs are primarily used as food, not as toys.

There are many ways to prepare them: hard-boiled eggs,

omelettes, soft-boiled eggs, fried eggs, poached eggs, etc.

This raises practical questions: for how many minutes

should an egg be boiled to make it soft-boiled and not hard-

boiled? Why are eggs boiled in saltwater? Why are eggs

immediately immersed in cold water after boiling? Before

answering these questions, let us get some idea of the

physical–chemical processes that take place during the

preparation of an egg.

Proteins: Amino acid assemblages

Proteins are the result of the combination of large

numbers of amino acids that form long chains. All

proteins known in nature are combinations of 22 different

amino acids. Their molecules are characterised by the

presence of an NH
2
 group (called amines) and a COOH

group (carboxyl, with acidic properties), both of which are

bonded to the same carbon atom. In addition, the latter is

also associated with a group of atoms specific to each of

the amino acids.

The reaction between two amino acids results in a

water molecule and another molecule that is not yet a

protein. But after at least 50 such reactions (usually there

are much more of them), the resulting long molecule can

finally be called a protein.

Under certain conditions and in the presence of water,

the protein undergoes a reverse reaction — hydrolysis.

This reaction takes place in the stomach, where the food

is immersed in a very acidic environment: it provides the

amino acids required to synthesise the proteins we need.



Two amino acids can be combined by a synthesis reaction: the amino group

of one reacts with the acidic group of the other in order to release a water

molecule to form a peptide bond. The reverse reaction is called hydrolysis.

The groups of atoms R and R′ can be more or less complex (for example, a

simple hydrogen atom for glycine or a CH3 group for alanine).

The inside of an egg contains mostly water and proteins

(see Panel above on this page). In the body, these long

molecules provide many important functions, such as

muscle work, catalysis of chemical reactions, or the

transport of other molecules. To perform these tasks, they,

being properly positioned in space, take one form or

another. This configuration changes as a result of an

increase in temperature or a change in the acidity of the

environment: proteins fold and take on a shape that no

longer allows them to perform their biological functions. This

process is called denaturation.

From a gastronomic point of view, denatured proteins are

often tastier and more acceptable for the digestive process

than before they were prepared. Thanks to their ability to

adhere, proteins can form networks, which, for example, can

make soup thicker or make jelly. In boiled egg white, such a

network connects water molecules. It is thanks to this that

the protein is able to solidify: after all, almost 90% of egg

white consists of water. In addition to hydrogen, oxygen and

nitrogen, proteins often contain sulphur. These are the

proteins contained in the egg, the decomposition of which

produces a gas known for its unpleasant odour: hydrogen

sulphide (H2S). It gives the smell of rotten eggs to some

thermal springs!



The Japanese thermal egg…

The yolk and white of the egg contain different proteins,

which denature at different temperatures. Denaturation of

white occurs between 58° and 80°C and that of yellow

occurs in a narrower range, between 63° and 70°C. By

letting an egg cook for half an hour in water at around 70°C,

we obtain a food which Japanese gourmets are fond of and

which they call Onsen Tamago: the yolk is then firmer than

the white, which has a very pleasant creamy consistency

under the tongue. We invite the reader to prepare an Onsen

Tamago themselves. One will have to find a way to keep the

water temperature roughly constant and at 70°C. It’s not

very convenient, except for the lucky guys who have a

thermostatic bath. In Japan, Onsen Tamago is now sold

already prepared. Traditionally, they were obtained by

immersion in hot spring water: Tamago means “egg” and

Onsen “thermal spring” (Fig. 5).

Figure 5. Cooking eggs in the traditional Japanese Onsen Tamago way by dipping

them in a hot spring.



… and the Western boiled egg

The boiled egg prepared in the European way respects the

opposite condition: the white must be denatured and the

yolk must remain fluid. To this aim, the egg is immersed in

boiling water for a few minutes. Getting a soft-boiled egg is

not as easy as it seems. Moreover, if this is possible, it is

mainly because the heat gradually penetrates the egg, and

the temperature of the white increases before that of the

yolk. If we want a soft-boiled egg, we should stop cooking

when the final temperature of the yolk is Tf = 63°C. The

time t it takes for this depends on the size of the egg, more

precisely its small diameter d which can be determined with

a calliper (Fig. 6). It also depends on the initial temperature

T0 of the egg and on the boiling point of water Tb (which

varies, remember, with altitude).

English physicist Peter Barham has written a book called

The Science of Cooking in which he proposes, for the

cooking time t of a soft-boiled egg, the formula obtained by

the professor of University of Exeter Charles D. H. Williams

(Fig. 7)

where t is in minutes, d is in centimetres, and



Figure 6. Determining the small diameter of an egg allows the preparation of an

ideally cooked soft-boiled egg.



Figure 7. Time needed (in minutes) to cook a hard-boiled egg, depending on its

small diameter (in centimetres).

where ln denotes the natural logarithm. For Tb = 100°C, Tf =

63°C and T0 = 20°C, K = 1.46. But if your egg comes out

from the fridge and is only at 5°C, then K = 1.64.

Note that the cooking time (Formula (1)) increases very

quickly with the diameter d of the egg. Under the standard

conditions (usually that means at normal atmospheric

pressure at sea level), the boiling point of water is Tb =

100°C (212°F). Therefore, according to the Williams formula,

the time required to boil soft (Tf = 63°C) a typical egg with d

= 4 cm, just from the fridge (T0 = 5°C), must be t = 3.50

min. For a jumbo egg with d = 6 cm, the time is almost

twice longer: t = 7.88 min.

Note that the formula also indicates a necessity to

enhance cooking times at higher altitudes. We have already



mentioned that the boiling point of water notably drops with

altitude. Therefore, the times recommended in books

written at the sea level should be appropriately extended for

Alpine cooking. For instance, at the altitude of 5,000 m (16.5

thousand feet), water boils at 88°C (190°F). Thus making a

soft-boiled egg will take 5.8 min instead of 4 min that would

suffice at sea level.

Formula (1) is quite general. If an object of a given shape,

at an initial temperature T0, is put into water at temperature

Tb, the time necessary to reach a temperature close to Tb in

the whole object is proportional to the square of the

smallest diameter, with a coefficient which depends on T0,

Tb and the material which constitutes the object.

The search for the unbreakable egg

Now let us discuss the value of salting the water in which we

boil eggs. Hull fracture is a common occurrence. The white

can then escape through the breach and forms flakes in the

water (Fig. 8). Fracture may have two causes: it can result

from the turbulent movement of boiling water, which throws

the egg upwards, and the egg breaks when it falls back; or it

can be due to the expansion of the material inside the egg,

including the air. It is often said that fracture can be avoided

by salting the water. Indeed, this is a way to increase

Archimedes’ force so that the falling egg hits the bottom of

the pan at a lower velocity. A salt concentration of about

15% is necessary to compensate for the egg’s weight, but

much lower concentrations also seem to be effective.

Another advantage of salting the water is that if the egg

breaks and if the egg white flows outside, the flow is

stopped early because salt stimulates the denaturation of

the protein in the egg white. Concerning the second cause

of shell breaking, namely the expansion of the material

inside the egg, it is recommended to pierce both ends of the



egg with a pin before immersing it in water. This allows hot

air to escape without breaking the shell.

Figure  8. When immersed in boiling water without precaution, the eggs may

crack. A thread of coagulated white announces the disaster.

Trial by fire

Whether broken or unharmed, our eggs are finally cooked!

You can pull one out of the water with a spoon and, to wow

people, drop it in your hand. It’s hot, but you can take it. You

then invite your friend (not your best friend, preferably) to

grab that egg in turn. He will not stand the test. Why? The

still wet egg was cooled a bit on the surface by the spray of

water, but once it is dry, it is much hotter. Jules Verne may

have had the same experience; he who tells in Michael

Strogoff the adventure of his hero, prisoner of a wicked emir

who condemns him to be blinded by the blade of a red-hot

saber. But when the burning blade is placed in front of his

eyes, Michael Strogoff’s eyes fill with tears at the thought of

his mother being mistreated by the emir, and these tears



save the sight of the hero, who miraculously finds her at the

last chapter after pretending to be actually blind.

We now come back to our egg, assuming it is a hard-

boiled egg. You let it cool slowly, and, a few hours later, you

try to peel it. You can only do it with some difficulty, losing

many shreds of white that stick to the shell. It is because

you made the mistake of not throwing the egg, immediately

after taking it out of hot water, into a pot of cold water. The

sudden cooling would have loosened the egg white from the

shell, which has a different coefficient of thermal expansion.

Last recommendation for inexperienced egg lovers: they

now know how to distinguish between a hard-boiled egg and

a raw egg. But how do you distinguish a fresh egg from an

egg that has passed the expiration date? All you need is a

glass of water in which you just drop your egg. The fresh

egg sinks and sets; the cooler egg, carrying a larger air

pocket, stands up; and the non-edible egg floats (Fig. 9).

Some of the protein has broken down, giving rise to

hydrogen sulphide which escapes through the pores of the

shell. This causes the egg to lose weight, and that weight

eventually becomes less than Archimedes’ force so that the

egg floats. Since you don’t always have a glass of water

with you when shopping, there is another way to recognise

fresh eggs. A trained observer only needs to look through

the brightly lit egg. The fresh egg is translucent to some

extent, allowing a trained eye to distinguish it from a rotting

egg, which hydrogen sulphide makes opaque. This was the

principle of an instrument called ovoscope that

conscientious grocers once used.



Figure  9. The left egg can be eaten soft-boiled, the middle one can be eaten

hard-boiled, and the right one should be discarded.

The Empty Eggshell

While the raw egg, hard-boiled or soft-boiled is fertile in

teaching and entertainment, the empty eggshell is not

without its attractions. To empty an egg, you obviously need

to pierce two holes at both ends with a pin: one large

enough to extract the white and the yolk, and one to let air

in. A hole of 1 mm2 is sufficient to suck up the not

denatured protein (which is excellent), but you may need to

poke the yolk with the pin. Since the hull is empty, it should

be washed and allowed to dry.

What to do with this shell? A first possible experiment is

the observation of its electrostatic properties, already noted

by Michael Faraday in the 19th century. Let us bring a

plastic object, previously rubbed against a woollen fabric

and therefore electrically charged, to the side of our

eggshell. This one is attracted and follows the comb, as a

dog follows its master.



Figure 10. Jet egg.

How to explain this behaviour? By rubbing the comb

against the woollen material, electrons are torn from the

wool and transferred to the comb, which charges negatively.

The comb then attracts light objects like pieces of paper…

or an eggshell. This method of electrifying by friction was

already known to the ancient Greeks in the 6th century BC.

Of course, they had not observed it for plastics but for

amber; fossilised coniferous resin. The word electricity

comes from the Greek ελεχτρον (electron), which means

amber.



The last experience we offer is for jet propulsion and may

delight your children or your grandchildren, but also perhaps

the child that you yourself have secretly remained. Fill the

shell halfway with water using a syringe, seal one of the

holes (e.g., using chewing gum), and find a cart like the one

in Fig. 10. Install the shell there, put a candle underneath,

and light it. After a few moments, the expelled water vapour

will ensure the propulsion of the machine, by virtue of the

conservation of the Newtonian momentum or amount of

movement, like a jet plane.



Chapter 18

The Secrets of Baking Pizza

Authentic Neapolitan pizza has few ingredients but requires

a very hot wood-fired oven to prepare. Therefore, real

pizzerias proudly display their ovens and bake pizza right in

front of the guests. In just one and a half minutes, the pizza

swells, inviting the gourmet spectator to taste it

immediately… Let us tell you more about the heat exchange

that occurs when baking in a wood-fired oven.

A Brief History of Pizza

Pizza in its usual form — a filling baked on yeast dough —

appeared in the alleys of Naples in the first half of the 18th

century. The first, very simple fillings included only

tomatoes and mozzarella. Tomatoes were brought to Europe

by conquistador caravels at the beginning of the 16th

century from Peru. As for mozzarella, a cheese traditionally

made from buffalo milk, it is the legacy of the Lombards,

who imported their buffaloes to Campania after the fall of

the Roman Empire. Important: mozzarella does not need to

be stored in the fridge, it cannot withstand the cold! Note

that by adding basil leaves to the recipe (Fig. 1), we

reproduce the three colours of the Italian flag which became

the symbol of the country after unification in 1861. This is

the traditional Margherita pizza, named after Queen



Margherita, wife of the second king of Italy, Umberto I —

however, this is sometimes disputed.

At the beginning of the 20th century, many Italians

emigrated, and with their resettlement around the world,

pizza became known everywhere. Today, it is no longer just

an Italian national dish — many Americans even believe

that pizza was invented in their country! Outside of Naples,

pizza began to take on a wide variety of forms: for example,

the dry and thin Roman pizza is distinguished from the fluffy

Neapolitan pizza with a thick crust. We got acquainted with

the process of its preparation thanks to Antonio — a

pizzaiolo or pizza maker.

Figure  1. Pizza Margherita, stuffed with basil, mozzarella and tomatoes,

reproduces the three colours of the Italian flag.

Making Pizza Dough

Antonio starts preparing the pizza dough one day in

advance. The pizza dough is similar to that one for bread: it

is also made from wheat flour, water and yeast (if you wish,

you can add a pinch of salt and a little olive oil). The amount



of water should be slightly more than half the amount of

flour, and about 20 g of yeast should be added per kilogram

of flour.

After the dough is well kneaded, the pizzaiolo leaves it to

mature, during which time the dough increases in volume.

What is happening? Under the influence of yeast,

fermentation occurs, similar to alcoholic fermentation (see

Chapter 14). When fermented, various complex processes

take place during the test: microbiological, physical and

biochemical. Wheat flour is 70% starch (see Panel on page

257), which the yeast breaks down. In this case, the

fermentation product of interest to us is not alcohol, but

gaseous carbon dioxide. It forms tiny bubbles that remain in

the dough and thus cause it to “rise”.

Now that the dough can be baked, let us look at how heat

spreads in the pizza oven and in the pizza itself. Recall that

there are three heat transfer mechanisms (Fig. 2):



Figure 2. Three types of heat transfer using the example of a double-glazed wall.

An air gap between the two panes prevents heat exchange between the outside

and inside air.

• Thermal radiation: Heat transfer is carried out by

absorption or emission of electromagnetic radiation (for

example, the sun heats the earth through radiation, see

Chapter 7);

• Convection: In liquids and gases, it represents the general

movement of matter (for example, heat emitted by the

Earth’s crust spreads in the atmosphere by air currents,

see Chapter 7);

• Heat conduction: Atoms and electrons from hot regions

sequentially transfer kinetic energy to cold regions (for



example, the yolk of an egg immersed in boiling water is

cooked due to thermal conductivity, see previous

chapter).

What is the distribution of roles between heat conduction,

radiation and convection in the process of pizza

preparation? Using simple calculations, let us try to find

answers to these questions, employing approximate data

instead of unknown values.

Sugars, starch and carbohydrates

Our great-grandfathers were familiar with white starch

powder. By adding water to it, a special paste was

obtained with which collars were impregnated. When dry,

starched collars held their shape and gave those who

wore them an elegant and prim look. Remember this

when you eat noodles or rice, which become sticky if

cooked for too long: this is also the effect of starch!



Irish chemist Thomas Andrews (1813–1885), who studied liquid and gaseous

states of matter, like his contemporaries, wore a stiff starched collar.



The molecules that makeup starch (polysaccharides)

can be thought of as a combination of a large number of

glucose molecules (monosaccharides). Starch, like other

sugars, is composed exclusively of carbon, oxygen and

hydrogen. So, the formula of sugar that we add to coffee

is C
12

H
22

O
11

, and glucose in honey consists of C
6
H

12
O

6

molecules. Fruits contain fructose, which is an isomer of

glucose (and therefore has the same formula C
6
H

12
O

6
).

Formulas for sugars and starch can be written as

C
n
(H

2
O)

p
, where n and p are integers. This is why these

substances are called “carbon hydrates”. However, today

this expression is no longer used by chemists: they prefer

the term “carbohydrates”. The carbohydrates that plants

produce for us are the main source of energy for the

body. This energy allows us not only to control the

muscles, especially the heart, but also to fuel all the

chemical processes that support life. Simple sugars such

as sucrose and glucose, which are directly absorbed by

the body, are quickly absorbed, while starch slowly

releases energy, being converted into glucose by

enzymes found in saliva and in the stomach.

How Much Energy Does It Take to Make a Pizza?

In Antonio’s pizzeria, the oven, the base of which is lined

with refractory bricks, is fired with wood. The temperature in

it, according to Antonio, reaches 325–330°C.

What does the supplied heat do in a pizza? On the one

hand, it heats up, and on the other, it induces physical

transformations and chemical reactions that will give it

texture, taste and smell. The temperature of the dough T0 at

the outlet of the refrigerator is about 5°C. The pizzaiolo

gives it a disc shape and adds the topping. The pizza, when

baked, reaches an average temperature of T1 and then it is

removed from the oven. It seems reasonable to estimate T1



at 100°C: the oven is hot enough to quickly bring the dough

to this temperature, and the water in the dough evaporates

and keeps the temperature at this value. Indeed, at normal

pressure, water is known to be in equilibrium with vapour at

a fixed temperature of 100°C. Of course, the water

contained in pizza is not pure (in particular, it contains salt),

but the temperature will not deviate significantly from

100°C.

The amount of heat required to heat the pizza from T0 to

T1 is

where S is the area of the pizza, ℓ is its thickness, ρd is the

density, and Cd is the specific heat capacity of the dough.

Let us assume that the latter is equal to the heat capacity of

the yeast dough, that is, Cd = 2,800 J kg ⋅ K–1. The dough

left for one day fermentation is full of bubbles and has a low

density ρd = 800 kg m–3. Regarding its thickness, the official

manuals of Roman pizza makers recommend a thickness of

4 mm after baking, with a tolerance of 20%. Taking into

account the loss of volume during cooking and a deviation

of 20%, let us accept ℓ  = 5 mm. Thus, from the above

formula, we obtain Q1/S = 1,000,000 J m–2, or 100 J cm–2. In

the calculations, we neglected the filling (cheese,

vegetables), the thickness of which is not uniform.

Now let us estimate the energy spent on physicochemical

reactions that occur during baking. Some chemical

reactions, called exothermic, release energy; others,

endothermic, absorb it, but this amount of energy is

insignificant in comparison with the energy Q2 required for

the evaporation of water. Without a wood-fired pizza oven,

we baked bread in an electric one and found that the

evaporated water was about α = 10% of the original weight.

Suppose that for pizza the percentage is the same —



therefore, during baking, it loses the mass αρd ℓ S.

Evaporation of pure water at normal pressure consumes

energy W = 2,257 J g–1, or 2,257 kJ kg–1. Assuming that the

evaporation of liquid from the pizza consumes the same

energy, we get

Ultimately, the total heat Q0 transferred to the pizza is Q0

= Q1 + Q2, that is, per unit area Q0/S = 190 J cm−2. About

half of this heat is used to evaporate the water, and the

other half is used to heat the pizza from the fridge

temperature to the water boiling point.

Where Does the Heat Come from?

The heat Q0 is supplied by the oven in a short time τ, just 2

min, explains Antonio. Remember: it takes twice as long to

boil a soft-boiled egg (see Chapter 17). This short time is

due to the thinness of the pizza and the high oven

temperature. And also due to the fact that the pizza heats

up both from the bottom and from the top! The brick bottom

heats pizza up using thermal conduction, and in addition,

the pizza is exposed to infrared radiation from the cupola of

the oven and in general from all sides.

First, consider the heat flow entering the pizza from

below through the working surface of the oven by means of

a heat conduction mechanism. Suppose that its inner

surface heated by a flame (Fig. 3) has a temperature T2 =

330°C. In the place where it fits pizza, the top of the brick is

constantly chilled by cold dough having a temperature T0 =

5°C, and, therefore, its temperature T3 must be lower than

T2. The amount of heat transferred by thermal conductivity

in time t through the pizza’s surface S, is proportional to the



temperature difference (T2 – T3) between its lower and

upper boundaries: t(T2 – T3)/d, where Λ is the thermal

conductivity of the refractory brick and d is the thickness

(see Panel on page 261). Let us assume that this heat is

only used to heat the pizza. Then the amount of heat

received per unit area of pizza is

Figure 3. Temperature distribution in the brick bottom of a traditional wood-oven

depending on the height z. The temperature in the pizza and on the part of the

bricks adjacent to the surface (dashed line) depends on time. Conversely, the

temperature in the brick remains relatively stable while placing the pizza in the

oven, baking it, and loading the next pizza.

where t′ is the pizza’s baking time. According to Antonio, it

is about 120 s. Now we must admit that we do not know

exactly what temperature T3 is equal to. Let us trust Antonio

again: in his opinion, it is about 200°C. Knowing that the

thickness of the working surface is d = 2 cm, and the

thermal conductivity of the brick is Λ = 0.86 W m–1 K–1, we

get:

Thermal conductivity of materials

Thermal conductivity is a relatively slow process,

especially in solids. The mechanism of this phenomenon



was analysed at the beginning of the 19th century by

Joseph Fourier, whom we mentioned in Chapter 7.

If there is a temperature difference ΔT between two

regions of space separated by a material of thickness Δx,

the heat flux ϕ that flows between these two regions

through the surface of area S is:

Here the heat flow is measured in W, area S in m2, ΔT

in K, and Δx in m, and where Λ is the thermal conductivity

of the material, measured in W m–1 K–1. This heat flux is

the amount of heat which is transferred between two

surfaces per unit of time. The higher the thermal

conductivity, the greater the heat flux, and the more

efficiently the material transfers heat.

Thermal conductivity through a wall of width Δx between two domains with

temperatures T + ΔT and T. The amount of heat transferred during the time

Δt is equal to



This amount of heat obtained due to thermal conductivity

is much less than the total heat Q0/S = 190 J cm–2,

evaluated above. Thus, the role of radiation in the process

of pizza baking cannot be disregarded.

Role of Radiation

Above we addressed the transfer of heat by means of the

thermal conduction. However, when the chicken is skewered

in an electric oven, the meat does not touch hot walls at all.

And yet it is baked! In this case, the heat is transferred to

the chicken partly by the radiation that is emitted by

heating element and walls, and partly by means of

convection of heated air. Returning to our object of interest

— pizza, we turn to the discussion of the role of radiation.

Antonio’s brick oven (Fig. 4) has a double heat-insulated

cupola: its temperature is slightly higher than that of the

working surface of the oven, but for the assessment, we will

also take it equal to 330°C (that is, 603 K). Being heated to

this temperature, the cupola, like the side walls and working

surface, emits electromagnetic, mainly infrared, radiation.

Assuming that the radiated power per unit area is

determined by the Stefan–Boltzmann law, and that the pizza

has two surfaces of area S, we get



Figure 4. The pizzas are baked in a wood-fired oven. The pizzaiolo masterfully

kneads the dough, puts the filling on it, and places the pizza in the oven.

Thus, within 120 s until the pizza is in the oven, it gets to

unit surface the heat  = 7,500 · 120 = 900 kJ m−2, or 90 J

cm−2.

Here, one should notice that, in its turn, the pizza also

irradiates out a “flow” of the intensity Ipizza =σ (Tpizza).4

Since a major part of the baking time is required for the

evaporation of water contained in the dough and toppings,

we can assume Tpizza = 100°C = 373 K: the toppings will

boil at this temperature until they (and the whole pizza) are

well cooked. This results in a pizza’s radiation intensity

i.e., 15% of the obtained radiation, the pizza returns back to

the oven.

To summarise briefly: total heat Q0 supplied to the pizza,

from one side is provided by thermal conductivity, and from

the other — by radiation, that is, Q0 =Q +Q′ −Q′′ (Fig. 5).

Adding 70 J cm−2 supplied by the heat conduction from



below and 0.85⋅ 90 J cm2 ≈ 75J cm2 received by radiation,

we actually get 145 J cm−2, that is, somewhat less than the

value Q0/S = 190 J cm−2. Recall that our calculations are

approximate, for example, we neglected the heating due to

convection, as well as the role of pizza toppings, and,

probably, by the radiation arriving from the overheating with

respect to the pizza’s body working surface.

So, almost 70% of the heat received by a pizza comes

from radiation. The important role of radiation is also

evidenced by the presence of burning spots on the edges of

the pizza and on the top of the filling (Fig. 6). If it baked only

due to the heat coming from the working surface of the

oven, the top of the pizza would be the least hot, and

therefore it would not have burned.

Figure 5. Processes of heat transfer during the cooking of a pizza.



Figure 6. The pizza is ready, as evidenced by the presence of slightly burnt parts

on the crust and filling. This charring is probably due to the fact that the

evaporation of water from the surface was not compensated by the inflow of

water from the inside.

Infrared radiation provides approximately equal heating

of the pizza both from the top and the bottom. In addition,

the homogeneity of the temperature distribution is partly

ensured by heat transfer due to the convection of water,

which evaporates in the volume of the pizza. This steam

quickly escapes through the top surface of the pizza,

partially condensing it and thus warming it up. The rest of

the steam goes into the oven.

Stefan–Boltzmann law

The power of thermal radiation per unit area at the same

temperature for different sources is different, but it is

always less than or equal to the power emitted by an

absolutely black body (see Chapter 7). Recall that this is

the name for a body that absorbs all the radiation it

receives.

The power that such a body emits from the unit

surface at a temperature T, according to the law, derived

by physicist Joseph Stefan (1835–1893), is equal to σT4,

where the constant σ is equal to 5.67 10−8 Wm−2 K−4.

When Stefan presented this law to his colleagues in 1879,

its justification was based on the analysis of experiments.



Only in 1884, Austrian physicist Ludwig Boltzmann

mathematically proved that the power emitted by a black

body should be proportional to T4. His demonstration,

based on thermodynamics, was brilliantly elegant. Yet, it

is of little interest today. Indeed, the formula determined

by Planck in 1900 (see Chapter 7) contains much more

information than the Stefan–Boltzmann law, since it

details the power emitted by the black body for each

value of the frequency, instead of just providing overall

power. By integration over the frequency, the Stefan–

Boltzmann law can be deduced together with the

expression for the constant σ, that is

where c is the speed of light in vacuum, k
B
 is the

Boltzmann constant, and h the Planck constant. We have

already introduced these fundamental constants in

Chapter 7 and will come back to them in Chapter 22.

While the numerical value of the constant of

proportionality σ had been experimentally determined by

Stefan, it is clear that Boltzmann could not determine it

theoretically. After all, the expression for σ contains

Planck’s constant, which, in 1884, 16 years before

Planck’s work, had not yet been derived!

Which Oven Is Preferable: Electric or Wood-

Burning?

Today some pizzerias are moving away from the traditional

wood brick oven in favour of an electric one, which is

usually equipped with a steel working surface. Steel has a

high thermal conductivity; as a result, cold dough, which is

placed on steel, barely cools the working surface, since the

heat coming from it is almost instantly absorbed by pizza.

Therefore, if we want the pizza’s lower surface to be at



temperature T3 = 200°C, as recommended by Antonio, the

temperature at the base of the steel plate should not be

much higher; a reasonable estimate is 230°C, or 500 K,

instead of 600 K in a wood-burning stove.

It follows from this observation that the walls and cupola

of the steel oven also have a much lower temperature than

in the case of a brick oven. As a result, the power of

irradiated heat, according to the Stefan–Boltzmann law (see

Panel on page 264), is about two times  less than in

the case of the wood oven. Thus baking in an electric stove

will require more time and will be less uniform than in a

wood oven. In addition, the traditional brick oven provides a

very strong flow of heat during the first seconds of baking,

but as the top side of the brick surface cools down, this flow

decreases, which avoids excessive heating of the pizza

base. The steel surface does not have this property. If you

add the delicious smell of wood, you understand why we

prefer Antonio’s pizza made in the wooden oven rather than

one made in a modern, even luxurious pizzeria that uses a

nonwooden oven.

In this chapter, we have asked more questions than the

ones we have answered to. Our goal was not to teach the

reader how to bake pizza correctly, but to undertake a

quantitative analysis of a fairly mundane action. We will

leave the reader with the opportunity to experiment, to

measure those values that we have estimated

approximately. For example, the weight loss of a pizza

during baking is easily measurable, and the role of radiation

can be determined by hanging in the oven an object to be

heated (not necessarily edible), not in contact with a

working surface.



Chapter 19

Noodles, Spaghetti and Physics

Many of our readers presumably are spaghetti lovers, and a

few of them will sometimes cook this dish. The latter are

aware of the importance of the correct cooking time.

Perhaps, however, they are not familiar with the

physicochemical processes that correspond to cooking and

wonder why the cooking time is different for different types

of spaghetti. Moreover, the cooking time for the pasta of the

same type must be increased if one is at high altitudes. In

the extreme case of cooking at the top of Mount Everest, as

we will see, the noodles will be too “al dente”.

In this chapter we hope to satisfy the curiosity of our

gourmet readers. But we will also see that the study of

spaghetti can lead us to unexpected apertures in various

fields of physics. After noting that cooking of the hollow

types of pasta such as bucatini meets with the capillary

phenomena, we will open a window to the science of

polymers and the strength of materials. So searching for the

answers to seemingly trivial questions about the common

pasta leads us to much more serious problems in modern

science.

An Overview of the History of Pasta

Contrary to some claims, it does not seem correct that pasta

was imported by Marco Polo in 1295 upon his return from



China. Its story actually begins much earlier on the

Mediterranean coast, when prehistoric man gave up

nomadic life and began to sow seeds for his food. In the first

millennium BC, the Greeks were already making pasta in the

form of thin pancakes they called λαγανον. The Romans

used the same term (laganum) which may well be the origin

of the current word lasagna. The poet Horace was delighted

(Satires, I, VI, 115) to find when he returns home a dish of

leeks, chickpeas and pancakes:

Inde domum me ad porri et ciceris refero laganique

catinum.

The growth of the Roman Empire brought the expansion

of pasta to Western Europe. Pasta was a means of

preserving grain, and was particularly suitable for tribal

migrations. When the Arabs conquered Sicily in the 10th

century, they introduced a kind of pasta that can be

considered the ancestor of spaghetti. It was named itryah,

which for Sicilians became trie and which can be considered

the ancestor of spaghetti. In Sicily, pasta began to be made

at the start of the second millennium. Based on a will

written by a notary named Ugolino Scarpa in Genova, we

know that macaroni were already consumed in Liguria as

early as 1,280. And in Boccaccio’s Decameron, macaroni

became a symbol of gastronomy.

The first corporations of pasta makers (“Pastai”)

appeared in the 16th century in Italy, becoming part of the

political landscape. At that time, macaroni was considered

aristocratic food. We can indeed imagine that making tubes

from flour is not easy without the appropriate tools. The

invention of the mechanical press brought down production

costs so that in the 17th century pasta was consumed by all

social classes. Naples became a centre of production and

export. In northern Italy, pasta became popular at the end

of the 18th century, mainly thanks to Pietro Barilla who,



after founding a small factory in Parma, became one of the

main producers of the Italian food industry.

Pasta Making

When you buy a package of pasta, it is usually made from

durum wheat semolina (Fig. 1). The seed of this cereal is

yellow and hard, whereas the soft wheat, used to make

bread, has a white, crumbly seed. Durum wheat is ground in

the form of semolina, which is mixed with water and

kneaded, so as to obtain a malleable dough. This gives a

dough similar to bread dough or pizza dough (see Chapter

18), except that it does not contain yeast.

Modern pasta production processes are based primarily

on extrusion (which involves pressure, forcing fresh dough

through a hole or die) and stretching. Extrusion was

invented by metallurgists and used for the first time to

make long metal rods with particular profiles (Fig. 2). It can

be performed hot or cold. Stretching is analogous to

extrusion, but the die is located at the exit of a duct. In

metallurgy, drawing produces wires up to 0.025 mm in

diameter. Extrusion can also be applied to polymers,

ceramics and food. Figure 2 shows some examples of

spaghetti dies.



Figure 1. Ears of durum wheat which are used in particular for making pasta.



Figure  2. The principle of extrusion. By compression, a material having some

fluidity is forced to pass through a rigid die, which gives it the desired shape.

Extrusion can be compared to stretching, a process used in metallurgy, in which

the material also passes through a die, but is pulled from the front instead of

being compressed from the rear.

In addition to pressing, there is another moulding

method: it is rolling of dough. During the rolling process, the

dough passes between two cylinders which compress it.

More or less thick plates are formed, which will then be cut

off — for example, to obtain lasagna sheets (Fig. 3).

These production steps play an important role in the

preparation of the product. In wheat groats, starch

molecules form granules with a diameter of 10–30 microns,

which are surrounded by various proteins. Due to the

addition of water and mechanical stress arising when

kneading dough and shaping, two of them, gliadin and

glutenin, combine with water and create a continuous

network, which is a substance called gluten. This net

envelops the starch granules. The quality of such a network

is of paramount importance for ensuring the integrity of the

pasta during the cooking process, during which these

granules gradually swell.



Figure 3. The spaghetti (a) and vermicelli (b) are obtained by extrusion; blade

just cuts off the length wanted at the output of the press. By varying the speed

flow of the dough in various parts of the press, one obtains the curved shapes,

such as shells (c) or spiral pasta, e.g., fusilli (d). The tagliatelle (e) are obtained

by rolling, just like the farfalle (f) which are then die cuts.

After shaping the pasta, the excess water added while

kneading the dough should be removed. The point is that

water may cause unwanted reactions between starch and

gluten. To prevent this, drying is needed, which also allows

the products to be stored for a long time. A long time ago,

the pasta was dried in the sun, but as technology

developed, the drying temperature gradually increased:

from 50–55°C in the 1970s to over 100°C nowadays.

The Science of Cooking Noodles

Cooking time is directly related to the ability of starch

molecules to absorb water. Indeed, a cooked noodle is twice

as heavy as a dry noodle. Water enters the gluten network

and diffuses towards the centre of the pasta which is thrown

into a pot of boiling water. When the temperature reaches

around 70°C, the starch molecules form a kind of gel.

Noodles are considered to be cooked “al dente” when the

starch gel absorbs the quantity of water just sufficient to



make it soft enough to eat. Cooking pasta therefore involves

penetrating hot water into the initially dry noodles.

Overcooked pasta is the shame of unlucky cooks. When

gluten cannot hold starch and part of it comes to the

surface, pasta becomes sticky. The degree of “stickiness”

depends not only on the time of cooking but also on the

method of making pasta: if dried with a hot method, then

the gel mesh turns out to be resistant, its cells are smaller,

so such pasta usually does not stick.

In practise, the cooking time depends on the diameter of

the pasta, but also somewhat on atmospheric pressure,

therefore on the altitude and the weather. To take an

extreme case, anyone with the crazy idea of going to cook

noodles on top of Mount Everest would be sorely

disappointed. At this height of 8848 m, the atmospheric

pressure is in fact 3.5 · 104 Pa, which corresponds to a

boiling point of water of 73°C, a temperature at which the

starch gelation is very slow. It is therefore very hard to cook

noodles there, except with a pressure cooker.

Cooking Time

Let us return to a moderate altitude and ask ourselves why

the cooking time of pasta depends on the diameter of the

spaghetti. The material will be, for simplicity, assumed to be

cylindrical (spaghetti, vermicelli) and of diameter d. What is

the time it takes for the water to penetrate to the centre of

the cylinder? The penetration of water is a phenomenon of

diffusion analogous to the diffusion of heat in an egg

immersed in boiling water, and we can therefore think that

the time necessary for the penetration of water to the

centre of the cylinder is proportional to d2, as seen in

Chapter 17. However, the cooking time τ also includes a

subjective term, which depends on the consumer’s taste. So

we will write the cooking time of the spaghetti in the form



Constant b for Germans, who like well-cooked pasta, turns

out to be larger than for Italians, who prefer undercooked

pasta (sometimes the coefficient b, as will be shown below,

may even become negative). The first term in Eq. (1) is the

time it takes for the water to penetrate to the centre of the

spaghetti. It is independent of the nationality of the

consumer, but depends on the physical properties of the

dough, including the ease with which boiling water diffuses.

It also depends, as we have said, on the temperature of the

boiling water and, therefore, on the atmospheric pressure.

We went to a supermarket and got a variety of cylindrical

pasta of different diameters but hopefully of the same

composition. We note in Table 1 for each type of subject the

recommended cooking time, as well as the diameter d (in

millimetres) measured with a precise calliper. We also

calculated the square of the diameter. Then we have in a

diagram (Fig. 4) plotted for each type of pasta a point whose

abscissa is the square of the diameter and the ordinate is

the recommended cooking time. We see that the points are

on a straight line according to Eq. (1).

Table 1. Diameters and cooking times for different types of the cylindrical pasta.

Type of

pasta

Diameter

d (mm)

Recommended

cooking time

(min)

d
2

(mm
2
)

Cooking time

calculated according

to Eq. (1) (min)

Capellini no. 1 1.15   3 1.32     2.2

Spaghettini

no. 3

1.45   5 2.10  5

Spaghetti no.

5

1.75   8 3.06     8.1

Vermicelli no.

7

1.90 11 3.61 10

Vermicelli no.

8

2.10 13 4.41 13

Bucatini 2.70   8 7.29    22.5



Figure 4. The cooking time of cylindrical pasta is a linear function of the square

of the diameter.

Figure 4 makes it possible to determine the parameters a

and b. We have chosen to adjust them so that Eq. (1) gives

the recommended cooking time for spaghetti no. 3 and

vermicelli no. 8. We find a = 3.4 min/mm2, while b = –2.3

min. This negative value is characteristic of the Italian

culinary culture, which is fond of pasta “al dente”. However,

it does pose a problem: it seems that pasta below a certain

diameter would not even need to be cooked! This diameter

is 0.82 mm, and the capellini in Table 1 is not far from this

value, as the reader can easily verify. This result is

manifestly absurd which demonstrates that Eq. (1) is an

approximation which would not be acceptable for very thin

noodles.

The Case of Hollow Pasta

How to estimate the cooking time of bucatini, a type of

cylindrical pasta with a hole in the centre? Their diameter is



about 2.7 mm, and the estimated cooking time according to

Eq. (1) is about 23 min, which is very different from the

recommended one, namely 8 min. Obviously, the above

formula turns out to be inapplicable for hollow products.

Indeed, the water in this case does not cover the distance

d/2 (where d is the outer diameter) to reach the core of the

bucatini but only the distance (d − di)/2, where di is the

diameter of the hole, is equal to about 1 mm. Thus, in the

formula, the diameter d should be replaced by the

difference between the outer and inner diameters, which is

d − di = 1.7 mm. The formula now gives a cooking time

close to the recommended one. However, to generalise this

reasoning to all tubular pasta products, such as bucatini or

penne, should be followed with care: if the “tube” is too

narrow, water may not penetrate inside, and if it is too wide,

then heat will enter into the pasta both from the inside and

the outside!

Do Spaghetti Form Knots?

When you cook spaghetti, they tend to get tangled with

each other. Yet the authors of this book have never

observed that one single spaghetto tangles with itself and

forms a knot. The reason is simple: the length of a

spaghetto is too short. For any long and flexible object

(spaghetto, string, rope, cable, et alia), the critical length Lc

exists, beyond which the formation of a knot is almost

inevitable, whereas below this length the probability to tie is

weak.

The probability to find unknotted polymer chain

exponentially decreases with the growth of its length L



where ξ is the characteristic length at which the polymer

can change its direction at a right angle, and γ ≈ 300 is a

large factor, obtained as a result of numerical and

theoretical modelling. Applying this formula to spaghetti,

where ξ ≈ 3 cm, and assuming that the probability of self-

knotting becomes noticeable at w ~ 0.9 (10% of spaghetti

becomes knotted), one can estimate the value of critical

length as Lc ≈ −γξ ln(0.9) ≈ 0.9 m. The length of a standard

spaghetto is 23 cm, and this is not long enough to form

knots.

Polymers

Carbon, together with hydrogen, easily forms long-chain

molecules called polymers.

There are many biological polymers, such as starch.

And above all, the plastics that have invaded our daily



lives are made of polymers to which are added various

additives. Expanded polystyrene is widely used as impact

protection. Polyethylene makes up plastic packaging.

Polymers are soluble in some solvents. They can take

many forms there, possibly forming knots. The study of

these forms has been the subject of numerous works

which won the 1974 Nobel Prize in Chemistry for the

American Paul-John Flory (1910–1985), then the Nobel

Prize in Physics 1991 for the French Pierre-Gilles de

Gennes (1932–2007). Flory had to be content with

imagining these molecules unfolding in their solvent.

Nowadays, thanks to the atomic force microscope, which

in a way “feels” the atoms with a point of nanometric

size, we can see such molecules deployed on a flat

support.



DNA molecules on a nickel surface, observed by atomic force microscopy.

Courtesy of A. D. Chepelianski.



Figure 5. Since the rope is long and flexible, it most likely gets entangled.

The reason why physicists are interested in that question

is not because they are particularly fond of pasta, and if

they are, then they do not care if it is knotted, but among

the long and flexible objects, there are polymers, objects of

interest to physicists as well as to biologists and chemists

(see Panel on page 274).

We all know that strings, wires, etc., tend to get tangled.

Jerome K. Jerome, in Three Men in a Boat, deplored this

peculiarity of towropes.

The model studied is not necessarily applicable to a rope

that is wound in such a way that it occupies a minimum

volume (see Fig. 5), i.e., by forming loops which tend to

become entangled as soon as they are handled (and not, of

course, spontaneously as the author of Three Men in a Boat

pretends to believe, see Panel below on this page).

The Breaking of Spaghetti Strands: Material

Resistance and Flexure Waves



The breaking of the spaghetti is easy to observe, but the

result of the observation is unexpected. Take a dry

spaghetto by its two ends (one for each hand) and bend it,

causing it to bend more and more. It will obviously break

pretty quickly, and you would expect it to shatter into two

pieces. However, the break often produces three or more

pieces. This unexpected behaviour caught the attention of

several physicists, among whom one was Richard Feynman.

Indeed, if the breakage of a spaghetto is not of the slightest

practical interest, it gives an easily achievable image of a

break similar to that of a beam, for example.

Naughty ropes

There is something very strange and unaccountable

about a tow-line. You roll it up with as much patience and

care as you would take to fold up a new pair of trousers,

and five minutes afterwards, when you pick it up, it is one

ghastly, soul-revolting tangle.

I do not wish to be insulting, but I firmly believe that if

you took an average tow-line, and stretched it out

straight across the middle of a field, and then turned your

back on it for thirty seconds, that, when you looked

around again, you would find that it had got itself

altogether in a heap in the middle of the field, and had

twisted itself up, and tied itself into knots, and lost its two

ends, and become all loops; and it would take you a good

half-hour, sitting down there on the grass and swearing all

the while, to disentangle it again.

Jerome K. Jerome, Three Men in a Boat

It was not until 2005 that the research of two French

physicists, Audoly and Neukirch, made it possible to

understand the rupture of spaghetti. They studied the

behaviour of a thin elastic rod under the effect of bending



deformation. Their study was purely numerical but gave a

good understanding of the process of rupture. When

applying mechanical stress, the first fracture occurs at the

weakest point of the rod. We can think that the two pieces

return to their form of equilibrium (the straight one). In fact,

they do it in a complicated way. Initial fracture produces

flexure waves in the two fragments of the rod. These waves

obviously end up decaying, but if the elastic constants and

the length of the rod meet certain conditions, the

propagation of the waves can lead to a new fracture. It

should be noted that these waves are superimposed on the

initial deformation which existed before the rupture, and

which relaxes slowly, in a time much longer than the period

of the flexure oscillations. If we add the two deformations,

the one that oscillates quickly and the one that relaxes

slowly, we find that their sum can be large enough at

certain points, to cause new fractures. Audoly and Neukirch

verified their theoretical calculations by recording the

rupture of a spaghetto with a high-speed camera (Fig. 6).

It should be noted that these authors are specialists in

applied physics and that the study of spaghetti is not only

for them an entertainment or a means of attracting the

attention of the general public, but above all a test, on

inexpensive equipment of the experimental and theoretical

concepts and techniques whose applications are quite

practical.



Figure 6. Breaking a dry spaghetto into several pieces. From B. Audoly and S.

Neukirch, Fragmentation of rods by cascading cracks: Why spaghetti does not

break in half, Physical Review Letters 95, p. 095505 (2005).

We invite the reader to keep some spaghetti dry, break

them up while the others cook, and count the number of

pieces. Be careful, the spaghetti must be very dry!



Chapter 20

The Physics of Good (and Bad) Coffee

Why is one coffee delicious and another not? And more

generally, why do coffees made in different ways have

different tastes? There are good and bad manufacturers,

good and bad roasters, and most importantly, different ways

to make coffee! But even when making coffee alone and in

the same way, say espresso, using one and the same

apparatus, the same temperature and filtration pressure,

the resulting drink can differ significantly depending on the

skill of the barista: the degree of grinding of coffee beans,

other tricks that are only known to him. And how to

compare drinks obtained by different methods — Turkish

coffee with Scandinavian? Thus, coffee of different tastes is

obtained more or less successful depending on the skill of

the user.

In our globalised world, the 21st century traveller will find

the same drinks in every corner of the globe, be it Paris,

New York or Kathmandu. But there is one exception —

coffee. If you order coffee at a bar in Naples, you will be

offered a cup slightly larger than a thimble, which contains a

viscous black liquid under an appetising foam. Ask for a

coffee in Chicago and you get a huge glass containing half a

pint of hot brown water. In this chapter, we will not discuss

the merits and demerits of different ways of brewing coffee;



instead, we will address the various processes and physical

phenomena that take place during its preparation.

Coffee in Brief

Coffee drink is made from the beans of the coffee tree (Fig.

1), which grows in tropical and equatorial regions (Arabian

Peninsula, Latin America, Africa…). Coffee beans contain

sugars, fats, proteins, flavours and the alkaloid caffeine,

which appears to affect the particular areas of the brain

responsible for memory and concentration, providing a

boost to short-term memory. After harvesting and drying,

the coffee beans are roasted at a high temperature of about

240°C. At the same time, as a result of chemical reactions

between proteins and sugars (Maillard reactions, see

Chapter 21), the grains acquire a beautiful brown colour. In

addition, roasting releases many volatile aroma molecules:

over 800 different compounds! The beans are then ground,

and the coffee powder thus obtained is brought into contact

with hot water to extract valuable aromas. As we will see in

the following, various preparation methods differ, the

temperature of the water, the pressure at which the process

takes place, and the duration of contact between the coffee

powder and the water (Fig. 1).

Boiled Coffee

The “boiled coffee” method is very old and is still used in

Finland and northern Scandinavia. The roasted coffee is

coarsely ground and then poured into the water (10 g of

coffee in 150 to 190 ml of water). The whole is then brought

to a boil for 10 min. Pour the coffee into the cups without

filtering, and let stand for a few minutes, while the

suspended ground particles sink to the bottom under the

effect of gravity. We will not recommend this process

because the aromas of coffee, embodied in fairly volatile



molecules, are carried away by the water vapour that

escapes during boiling. These aromas are therefore lost for

the taster.

Figure  1. A branch of a coffee tree. Each berry contains two coffee beans.

Sorting ripe (red) berries which must be separated from rotten (black) or not yet

ripe (green or yellow) berries is one of the difficulties of harvesting.

Drip Coffee Maker

Drip coffee makers are common in America, Northern

Europe and France. The conical paper filter filled with

coarsely ground coffee is placed in a sort of funnel above

the coffee maker, usually made of glass, and very hot water

is slowly furnished into it. The water bathes the coffee by

dissolving the soluble substances present in it, then passes

through the filter, and falls into the coffee maker. This



method has the advantage of requiring little handling, as

the hot water is usually poured continuously from an electric

device, and the cleaning of the coffee maker is reduced

since the coffee is confined in the disposable filter. The

process gives, in 5 or 6 min, a coffee that is relatively poor

in aromas: indeed only a few essences are able to pass

through the paper filter in the absence of pressure. The

typical dose is around 6 g of coffee per 140 ml cup of water.

Turkish Coffee

When making Turkish coffee (the method which is used, for

example, in Greece and Serbia), very fine ground coffee is

mixed with sugar and then filled into a metal conical

container, usually made of copper or brass, called ibrik (Fig.

2). Cold water is then added, and the ibrik is heated,

traditionally by placing it in hot sand or, more modernly, on

a gas or electric stove. You can also throw coffee powder

directly into the ibrik filled with boiling water. Heating the

container creates convective currents (see Chapter 7) that

carry some of the coffee powder to the surface, where it

forms a kind of crust. When water is approaching its boiling

temperature, the bubbles begin to turn the crust into foam.

At this point, the ibrik must then be removed from the heat

or sand. The process is repeated twice to form a thick foam

layer. The coffee is then poured into small cups. Before

drinking it, wait a few seconds for the coffee to cool and

most of the coffee sediment falls to the bottom of the cup.

Turkish coffee has a very distinctive flavour and is very

popular with those who like to eat a little of the coffee

residuals.



Figure 2. The ibrik, a suitable utensil for brewing Turkish coffee.

The Moka (Geyser) Coffee Maker

The coffee maker that we are going to describe can be

found in almost all Italian kitchens! It is made of three parts:

a lower container where water is poured, a metal funnel

equipped with a filter constituted by a perforated metal

plate between which the ground coffee is placed, and an

upper part which collects the beverage (Fig. 3). A coffee

lover will hardly be able to be creative in its preparation in

such a coffee maker: unlike other methods, it is imperative

to strictly follow the rules dictated by the design of the

device.

This is a rather complex invention. The filter is obviously

located in the very centre of the apparatus. Cold water is

poured into the lower compartment up to the safety valve,

leaving a small volume filled with air. Ground coffee is filled

into the filter, practically without tamping. The coffee maker

is then closed by screwing the top onto the base, and the

filter is located in the middle. Now the lower part of the

funnel, made in the form of a tube, is submerged in the



water, and almost touches the bottom of the container. The

coffee maker equipped in this way begins to heat up over

low heat. After a few minutes, the water that has reached

the boiling point enters the filter through the funnel. It

should be noted that in this design, the funnel operates in

the opposite mode to the usual one used for overflowing

liquids: water enters it through a narrow part and exits

through a wide one. Passing through a filter filled with

ground coffee, the water is saturated with its aromas and

transforms into coffee beverage. The resulting drink, which

rises under pressure from the bottom, passes through

another narrow tube and finally ends up at the top — you

just have to pour it into a cup!

What happens in a moka from a physics point of view?

The lower part of the device is tightly connected to the

upper and sealed with a rubber gasket (Fig. 4). When water

is heated, the pressure of saturated water vapour increases

(see Chapter 15), and the liquid evaporates into the space

not filled with water. The water temperature quickly reaches

100°C: the pressure of saturated water vapour becomes

equal to atmospheric pressure. Thus, the steam, like a

spring, begins to push the water through the funnel, forcing

it to pass through the ground coffee in the filter. As the

heating continues, the temperature and pressure continue

to increase. The water displaced by the steam and already

converted into coffee ends up at the top of the appliance. To

prevent the filtration time from being too short, you can

intervene in the process when the noise indicates that the

finished drink begins to pass through the top: the heating

should be stopped, and this will slow down the passage of

water through the coffee.



Figure  3. The Italian coffee maker, traditionally called moka. This model was

patented by Alfonso Bialetti in the 1930s. The coffee maker is fitted with a

safety valve which prevents an explosion in the event of excessive overpressure

(due, for example, to a too fine and too compacted grind).



Figure  4. Principle of the Italian coffee maker. The saturated vapour pressure

increases with temperature. When it exceeds atmospheric pressure, water is

pushed into the funnel and through the coffee grounds, then spurts out into the

upper compartment.

Temperatures of about 100°C and pressures slightly

higher than 1 atm ensure that the coffee is saturated with

all the aromas, but high temperatures, alas, can lead to the

disappearance of some of them. Thus, the geyser coffee

maker produces strong, aromatic coffee, which, however,

does not achieve the quality of a good espresso. To avoid

overheating the water, you can go and brew coffee high in

the mountains, in an alpine refuge, where the atmospheric

pressure is lower. It may not be possible to cook pasta at the

top of Everest (see Chapter 19), but the coffee there is

probably better than at its foot!

The Physics of Filtration

It is obvious that the taste of the coffee produced by any

coffee maker depends on the quality of the powder and the

temperature of the water. Furthermore, it depends on how

long this water remains in contact with the coffee, which is



also the time it takes for the water to pass through that

coffee. The coffee particles form a veritable labyrinth of

conduits through which water will make its way: the

extraction time will be shorter the larger these conduits are

and the greater the pressure in the lower compartment. The

overall water flow follows a physical law: Darcy’s law (see

Panel on page 285) in which the permeability κ of ground

coffee occurs. What is the latter worth? An estimate was

made by Italian physicist Concetto Gianino (2007) who

carried out the experiment in an Italian coffee maker. The

quantities involved in the problem are as follows:

• the height of ground coffee, equal to L = 0.014 m in the

coffee maker used;

• the filtering area, equal to S = 14 cm2;

• the viscosity of water which, at 100°C, is of the order of η

= 0.3 ⋅ 10–3 Pa⋅s;

• the density of the water, ρ = 1,000 kg m–3.

In the experiment, the mass of prepared coffee was

about 0.07 kg, for an extraction time a little less than 1 min.

According to Darcy’s law, the permeability is then: κ = 3.5 ×

10–9/ΔP, where ΔP is the pressure difference between the

two sides of the filter. It is therefore sufficient to know ΔP to

deduce κ. The measurement is not easy, since you must

have access to the lower compartment of the coffee maker.

Ingeniously, Gianino took advantage of the presence of the

safety valve to introduce a temperature probe. Knowing the

temperature of liquid water in equilibrium with the vapour,

he deduced the pressure (see Chapter 15). The result of the

measurement is that ΔP is of the order of 3 kPa. With this

data, it turns out that the permeability of ground coffee is κ

≈ 10–12 m2. This is not very fine grinding, yet the found

value is remarkably high, close to that of clean, highly-

permeable sand. Obviously, the permeability depends on



how the coffee has been ground and how tightly it is

tamped into the filter. Experts recommend not to tamp it at

all, so as not to drag out the filtration time and to carry it

out at a relatively low temperature.

Darcy’s law

In the mid-19th century, two French engineers, Henry

Darcy and Jules Dupuit, made the first experiments on the

movement of water in tubes filled with sand. This was the

starting point of the science of filtration, currently applied

to the movement of liquids through solids with

interconnected pores or cracks. Darcy enunciated the so-

called linear filtration law, which bears his name. This law

determines the volume Q of a fluid which flows per

second through a porous material of section S and

thickness L, hereafter called filter under the effect of the

pressure difference between the ends of the filter ΔP

Here, η is the viscosity of the fluid and the permeability

κ is a characteristic coefficient of the porous material. It

has the dimensionality of the area and therefore is

measured in m2 in the international units system. In fact,

the permeability of common materials, such as sand, is

on the order of 1μm2, i.e., 10–12 m2, a unit which is

sometimes called darcy when it measures permeability. In

the case of the “conventional” coffee maker (Figs. 5 and

6), ΔP is related to the weight of the water above the

coffee.



Device for measuring the permeability of a filtering material such as sand. A

flow of water with flow rate Q passes through in a cylinder of section S and

length L filled with sand. The pressure difference ΔP =ρgΔh, measured by two

tubes (see Chapter 10) positioned at the top and bottom of the cylinder, is

linked to the flow by Darcy’s law.



Old-Fashioned Coffee Makers: “Napoletana”,

French “Filter Coffee”, et alia

The ancestor of the Italian coffee maker moka is the

Neapolitan one (“Napolitana”, see Fig. 5) somewhat

reminiscent of the latter, since it has two separable

compartments and, between the two, the metal filter where

the coffee is filled. The essential difference is in the “motor”

which pushes the water through the filter: in a Napolitana it

is simply gravity. As soon as the water begins to boil, the

heat is turned off and the appliance turned over. The

overpressure ΔP, defined as above (pressure difference

between the two sides of the filter), is due to the weight of a

water column of a few centimetres. It is therefore of the

order of kPa.



Figure  5. Neapolitan coffee maker. When the water in the bottom boils, the

coffee maker is turned over, and the coffee passes through the filter by gravity.

Other coffee makers used in the first half of the 20th

century (Fig. 6) also took advantage of the overpressure

produced by the weight of the water column. However, they



were not turned: hot water was poured directly over the

coffee powder. An advantage of this device is that it allows

one to achieve easy determination of the permeability κ, all

other quantities in Darcy’s formula (1) being known (see

Panel on page 285).

In short, the principle of these coffee makers (which we

will call conventional) is the same as that of the paper filter

coffee maker. Only the material that constitutes the filter

changes! However, the same grind cannot be used with

both types of coffee makers: an earthenware or metal filter

is perforated with holes much larger than the pores of the

paper filter, which prohibits the use of too fine coffee

powder. On the other hand, filtering through a paper filter is

faster, because some of the hot water passes through the

paper above the coffee or only passes through a small

thickness of the coffee powder. Some aficionados claim that

old-fashioned coffee tastes better than the one from an

Italian coffee maker, because the slower filtering helps the

aromas to recover, and the lower temperature prevents

them from evaporating.



Figure 6. Principle of the “conventional” coffee maker. These coffee makers were

often made of earthenware. The boiling water is poured into the upper part and

passes through the coffee powder contained between the two perforated plates.

The resulting coffee flows into the lower part.

In the mid-20th century, the best coffee served in French

bars was indeed a “filter coffee”. The device was individual

and included a cup surmounted by a receptacle comprising

at its base a metal filter in two parts, which could be

brought closer or removed from one another using a central

screw by compressing thus more or less the coffee (Fig. 7).

Insufficient squeezing produced tasteless juice.

Overtightening produced nothing at all and was a fatal error.



In fact, the pressure due to the weight of the water column

in the container is relatively low: around 500 Pa, which

quickly turns out to be insufficient for the water to overcome

the surface tension forces and pass through the grind when

the latter is too compact.

Finally, let us mention the “French press”, which is a

popular coffee brewing device consisting of a cylindrical

glass with a lid and a piston with a fine wire mesh filter. The

coffee powder is deposited into the glass which is then filled

with water. Applying force to the piston in the French press,

one pushes a growing, permeable layer of ground coffee

through the hot water (Wadsworth, 2021).

Figure 7. The French press is a popular device for brewing coffee, comprising a

cylindrical beaker fitted with a lid and plunger with a fine wire mesh filter. The

plunger is used to drive the solid coffee particles to the bottom of the beaker,

separating the hot liquid above.

Nowadays, being the busy people we are, we no longer

use old fashioned coffee makers.



Experimental measurement of the

permeability of ground coffee

It is known that the permeability of ground coffee for a

geyser (nondrip) coffee maker is about 10–12 m2. How to

measure it yourself for a general case?

The most convenient way to experiment is with a

“conventional” coffee maker (Fig. 6). The excess pressure

ΔP in this case directly depends on the height of the

water level h: ΔP = ρgh, where g is the acceleration of

gravity. To apply Darcy’s law, all you need to do is

measure the surface area of the filter, weigh the amount

of water that will be poured into the coffee maker, and

note the filtration time. A difficulty arises from the fact

that h depends on time. The reader is invited to find a

solution to this problem.

You can even test the effect of viscosity η on filtration

time using water of different temperatures. At 100°C, the

viscosity is 0.0003 Pa·s; at 30°C – 0.001 Pa·s. This is due

to the fact that the viscosity of liquid decreases with

increasing temperature since it determines the degree of

rigidity of intermolecular bonds. On the contrary, in gases,

the interaction of molecules is very small, and the

viscosity at a given pressure increases with increasing

temperature.

Espresso

The impatience which is characteristic of the modern human

was already common in the 19th century. Legend says that

at this time, a subject of the Kingdom of the Two Sicilies,

refusing to wait for his coffee alla Napoletana to be ready,

succeeded in convincing one of his friends, an engineer in

Milan, to invent a machine to make a good, aromatic coffee

in less than a minute. The engineer accepted the



challenge… and created the espresso machine. Several

inventors have contributed to its improvement. One of the

first espresso machines was presented at the Universal

Exhibition in Paris in 1855 by Edouard Loysel de Santais; the

result was a bit unstable. Around 1900, the Milan engineer

Luigi Bezzera developed a commercial version, initially

reserved for bars and restaurants; it then spread to

individuals.

What is the principle of espresso? The passage of water

through the ground coffee is done under high pressure (up

to about 15 atm or even a little more) and at moderate

temperature (88–92°C) so that certain aromas, unstable at

high temperature, are not broken down here. The cup of

coffee is obtained in about 30 s so that espresso is less rich

in caffeine than conventional coffee. Also, an important

distinguishing feature of espresso is the delicate brown

foam. It consists of tiny gas bubbles trapped in a liquid film.

In this way, the aromas that shape the coffee taste are

bound and do not evaporate. In addition, the foam limits

heat exchange with the surrounding air, and the drink cools

more slowly.

In modern machines, water is brought to the necessary

pressure by means of an electric pump (see Fig. 8).

Previously, it was produced by a lever: in the raised position,

the necessary amount of water was introduced and then the

lever was lowered to let the water penetrate the powder.

The pressure was therefore exerted by the action of the

arm, multiplied by the effect of the lever. The reader will

easily verify that it is not necessary to be Goliath to gain the

required pressure.



Figure 8. A family-use espresso machine. In modern models, the lever has been

replaced by an electric compressor.

Variations on the Espresso Theme

With an espresso maker and a good coffee mix, it is possible

to be inventive. For example, in Italian bars, you can drink: a

concentrated “caffè ristretto” (“restricted” coffee) which is

prepared with a standard quantity of coffee but with less

water; a “caffè lungo” (“long” coffee) prepared with a

normal quantity of coffee but with more water; a “caffè

macchiato” (“dappled” coffee) which is espresso with a dash

of milk; a “caffè corretto” (“corrected” coffee) which is

espresso with a liquor, and 50–60 other variations on the

espresso theme.

Special discussion requires the “cappuccino” which is

espresso in a medium-sized cup to which is added milk

“beaten” with the vapour in order to obtain a light, frothy

foam. A good barista can pour the milk on the coffee so as

to write the first letter of your name on the surface, while

the Barista Championship winner can paint the scene from



“Swan Lake” (see Fig. 9). Finally, one can simply add a bit of

cacao to the foam.

Figure 9. The scene from “Swan Lake” painted at the surface of cappuccino by

the winner of the World Barista Championship Pietro Vanelli.

They say that nowadays in Naples, a few bars still serve

the “caffè prepagato” (“prepaid coffee”). A well-dressed

gentleman accompanied by a lady enters a bar and orders

three coffees, two for themselves, and one “prepaid”. After

a short time, a poor man enters the same bar and asks, “Is

there a caffè prepagato?” And then the barista pours him a

cup of free coffee.

Naples always remains Naples… and not only in the Toto

movies.

Air humidity and degree of coffee beans

grinding for espresso

Let us now address the matter of the “espresso” brewing

not from a technological point of view but as an art,

ultimately based on the laws of Physics. The final



intermediary between the coffee machine and the

consumer is the “barista”. A lot depends on a barista’s art

and devotion to the profession. And it is not just because

they regularly cleans the coffee machine of sediment,

warms it up early in the morning and pours out the top 10

cups without offering them to the first customers. It is

also necessary (but not enough) to take care of the

cleanliness of the grinder, grind 7–9 g of a good mixture

of coffee beans per serving immediately before brewing,

and much more. Among the secrets of the mastery, the

important element is the attentive observation of changes

in the air temperature and humidity, with the related

appropriate adjustment of the grinding degree of the

grains. At first glance, their recipe for quality coffee

making seems paradoxical: with increasing humidity or

air temperature, coffee beans should be grounded more

roughly. Let us try to understand the physical reasons for

this advice. To do this, we rewrite Darcy’s law (1) in

explicit form for the filtration time (τ =V /Q)

i.e., relating the time of preparation of a cup of coffee τ to

the volume of the obtained beverage (V), the viscosity of

water η, the sizes of the filter (S, L), and the difference of

pressure on it (ΔP). The optimum pressure and

temperature for the espresso brewing are set in the

coffee machine in advance, and the barista does not

change them in the process of work. The viscosity of

water also remains unchanged in Eq. (2): it depends only

on the temperature, which we assume to be constant.

The mass of the drink in the cup can vary depending on

the customer’s request — from 25 ml for the ristretto, up

to twice as much.



Namely by the filtration time, the barista judges the

quality of the drink: for the espresso, this time should be

18–25 s, while it may be twice as much. If coffee “falls”

into the cup in a shorter time, then such an underexposed

drink turns sour, with a light loose “foam”. Overexposed

coffee, on the contrary, has a dark-coloured cream and

turns bitter.

As one can see from Eq. (2), the only parameter by

which the barista can affect the brewing time τ is the

porosity coefficient κ of the coffee powder in the filter.

Varying it, the proper filtration time is achieved, despite

the change in temperature and humidity of the ambient

air.

Let us imagine that the coffee shop is located in the

open air at the “South Pole Scientific Station” in

Antarctica.1 At a temperature of –40°C to –50°C and in

polar conditions, the vapour density in the ambient air

(namely the absolute humidity) is negligible. The smallest

particles of coffee (of the size r
1
 ) formed during the

grinding process in the coffee grinder are electrified (free

electrons from the grinder’s knives transfer to them).2

The fact that the ground coffee is electrified is evident

since this powder sticks, say, to a coffee grinder.

The electrostatic forces that arise between them have

the character of attraction and lead to the formation of

effective agglomerates of these particles, whose sizes are

noticeably larger R
a
 ≫ r

1
. In the subsequent filtration, it is

these composite agglomerates that represent obstacles

to water leaking through the filter: water becomes a

coffee drink when washing them. Thus it is the size of the

agglomerate particle R
a
 that determines the value of the

porosity coefficient κ, and hence the brewing time of the

coffee portion.3 Thus this selects the size of the grind so

that the time τ would belong in the range of 18–25 s.



We will now transfer our coffee shop to the equator, for

example, to Singapore. Here, the air is saturated with

water vapour, the relative humidity reaches 90%, the

temperature is the same 40°C but here with the sign “+”.

As a result, absolute humidity increases hundreds of

times in comparison with the icy desert of Antarctica.

Therefore, if we choose the characteristic grinding size r
1

also here, the agglomerates that make up the coffee

powder in the filter will turn out to be smaller than R
a
.

Indeed, the tropical air is saturated with moisture, and

the electrostatic forces are substantially weakened.4

Therefore, the coefficient of porosity of the coffee powder

ground in a warm and humid environment will be

substantially less than that in cold and dry air. The

filtration time [Eq. (2)] will increase, and the coffee will be

overexposed. To avoid this, a good barista changes the

grind size of coffee beans almost every half hour,

depending on changes in humidity and air temperature.

Another important factor is that water is not a bad

electrical conductor, and so the charges are redistributed

much faster in slightly damp coffee than in the dry one.

Hence in humid air, the coffee beans should be grounded

more roughly than in dry air.
1
 The Southernmost habitation on Earth.

2
 The reason for this process is simple, it is exactly the same as the

electrification of hair when combing a plastic comb or synthetic clothing

when it is worn. This is friction, in which a certain amount of charge is

transferred from one body to another. As early as 1733, the French scientist

Charles François de Cisternay du Fay (14 September 1698–16 July 1739),

after carrying out numerous experiments, proved that all the types of

electricity known at that time, that is, of electricity of different origins — the

celestial (lightning), the animal (obtained from creatures, for example, from

electric acne), are reduced to two types. These are “the glass one”, obtained

by rubbing glass on silk and “the resin one”, formed when rubbing the resin

on the wool. After the experiments of Benjamin Franklin, 15 years later, it

became clear that this division corresponds to our today’s positive (“glass”)

and negative (“resin”) electric charges.

3
 Provided that the barista compacts the powder in the filter always with the

same mechanical force.



4
 Recall the dielectric permittivity ε of the medium in the denominator of the

Coulomb law. For water, ε = 81.

Table 1. Various methods of preparing coffee.

Method Pressure Temperature Time

Classical method A little more than 1

atm

A little less than

100°C

5–15

min

Turkish method 1 atm 100°C 5 min

Italian coffee maker More than 1 atm A little more than

100°C

1 min

Old Neapolitan coffee

maker

A little more than 1

atm

100°C 5–15

min

Paper filter A little more than 1

atm

Less than 100°C 3 min

Espresso 10 to 18 atm 88–92°C 15–25 s

Instant Coffee… and a Closing Word

Let us finish our review of preparation methods with instant

coffee, a soluble powder that is simply poured into hot

water. It is obtained by evaporating, at high temperature

and low pressure, a coffee prepared with finely ground

beans. The powder obtained is stored under vacuum, which

prevents oxidation of the aromas and allows it to be kept for

a long time. The drink is prepared by simply throwing the

powder into hot water. The characteristics of the main

methods of brewing coffee are summarised in Table 1.

Everyone will choose their preferred method!

Let us leave the last word to a character born under the

pen of Eduardo De Filippo, an Italian playwright of the 20th

century: Io, per esempio, a tutto rinuncierei tranne a questa

tazzina di caffè, presa tranquillamente qua. In English: I, for

example, would give up everything except this little cup of

coffee that I take here quietly.



Chapter 21

Science, Cooking and Liquid Nitrogen

Ice Cream

Phenomena belonging to the realm of Physics are very

frequently involved in cooking activities. But, do not forget

the role of chemical transformations! The preparation of

good dishes implies a variety of physical and chemical

mechanisms, and their study can open a new perspective

for the art of cooking. It can also help in understanding the

empirical recipes that are transmitted generation by

generation. Furthermore, it stimulates the elaboration of

quite novel and original cooking dishes.

Cooking: Physical Modifications…

Culinary techniques consist in the combination of some

ingredients and their transformation in order to obtain the

food we like. What does transformation mean? Let us refer,

for instance, to a sauce called mayonnaise, made of egg

yolk, vinegar, salt, pepper and oil. From the point of view of

physics, it consists of an emulsion of oil in water, stabilised

by some compounds from the egg yolk. An emulsion is

nothing other than a dispersion of small droplets (here, the

droplets of oil) within another liquid (here, the water) which

is not miscible with the former (Fig. 1).

In recipes for the mayonnaise, water never appears in the

list of the ingredients: it is already present in the vinegar



and the egg, possibly in other ingredients that the cooker

adds in order to improve the taste according to his personal

feeling.

The mechanism that makes the oil droplets stable (more

precisely, thermodynamically metastable) is based on the

presence of molecules (supplied by the egg) in the

mayonnaise, which have hydrophilic and hydrophobic parts.

The first forms hydrogen bonds with water molecules and is

thus attracted to the water, and the second is repelled by

the water molecules. Such molecules envelop the oil

droplets, directing their hydrophobic part to it, and prevent

them from mixing with water due to their hydrophilic part

(Fig. 2).

Figure  1. Micrometric view of the structure of a mayonnaise sauce at the

beginning of its production when there is enough water (from the yolk and the

vinegar) to accommodate oil droplets. The size of the oil droplets depends on

the particular process and the oil quantity used: from 0.1 μm up to 0.1 mm.



Figure  2. The mayonnaise is formed by oil droplets dispersed in water and

stabilised by proteins and small surfactant molecules, the phospholipids.

In a well-made mayonnaise, the size of the oil droplets is

rather small (in the range 0.1–100 μm). To obtain them, one

has gently to beat, for a rather long time, the egg, while

adding the oil drop by drop to allow an easy fractionation.

By following this advice, it should not be difficult to achieve

the success of a good mayonnaise. That procedure is

basically physics; having promised to the reader the

chemistry as well, now we move to it!

… and Chemical Reactions

What could possibly be the cuisine if food could not be

cooked (see Chapter 16)? For our pleasure, the cooking

processes change their consistency, colour, texture, odours

and taste as well. It essentially involves a sequence of

chemical reactions that change the ingredients of the recipe

at the molecular level.

Let us describe what happens during the cooking of

meat, already performed by the prehistoric man after the

discovery of fire. The muscles of the meat are mainly

formed by water and long organic molecules: the proteins

(see Panel on page 247).



In raw meat, proteins form twisted chains. When cooked,

these chains are denatured: they unfold and then join

together, forming a gel. Above, we discussed the

coagulation of egg white proteins during cooking (see

Chapter 17). The denaturation of meat proteins begins at

relatively low temperatures — from 55 to 80°C. However,

cooking meat dishes takes time because the heat

penetrates in meat, which is largely water based, slowly. In

fact, every pot-au-feu lover knows that until cooked, the

meat should boil in broth for several hours over very low

heat; this time is required to separate the proteins into parts

with the release of amino acids that give the dish flavour.

This process tenderises the meat, disrupting the collagenic

tissue and dissolving the proteins.

If the matter is to prepare a roast in the oven, then things

are different. A good roast is pink on the inside while the

external surface must take a brown crust. To obtain such a

result, the cooking temperature must be above 100°C. In

this case, chemical reactions occur, namely thermal

decomposition of organic and inorganic compounds

(pyrolysis), as well as reactions between proteins and

carbohydrates, so-called the Maillard reactions (glycation

reactions) (see Panel on page 300). These reactions occur at

any temperature (for example, they are responsible for the

opacification of the crystalline lens in people affected by

diabetes), however they occur more quickly when the

temperature is around 140°C, this implying that the surface

of the roast is dry; in fact, the water, though not pure, can

hardly go over 100°C. In order to grill the exterior of a roast

without it drying out, the thermostat of the oven is set in the

range 160–170°C (see Fig. 3).

A Novel Discipline Is Emerging

Following Antoine Lavoisier, Étienne François Geoffroy, Henri

Braconnot, Michel Eugène Chevreul, Louis-Camille Maillard



and others, step by step, researchers have revealed the

mysteries of recipes that culinary experts have passed down

for about 3,000 years without really asking themselves what

physical–chemical mechanisms were driving their art. Why

not follow the inverse way, trying to find novel recipes by

starting from our knowledge of physics and chemistry? In

this way, you can revolutionise the foundations of culinary

art by creating innovative dishes with new organoleptic

properties. This approach has been taken by the so-called

molecular cuisine. Its leaders are eminent scientists, in

France, physical chemist Hervé This. He is the co-inventor of

molecular and physical gastronomy (molecular gastronomy

for short) alongside names such as the British physicists

Nicholas Kurti and Peter Barham, the French physicist Jean

Matricon, and Italian physicists Ugo and Beatrice Palma, and

Davide Cassi. Molecular gastronomy is a scientific activity,

but it is natural that science has found applications and

inspired some distinguished cookers.



Figure 3. When cooking the meat, one causes the progressive denaturisation of

the proteins with modifications in the colour and in the tissue. The exterior part

of the roast acquires a temperature well above 100°C producing the pyrolysis

reaction (decomposition of the molecules due to heat), as well as the Maillard

reaction which is responsible for the development of the brown colour in the

crust and also many other processes such as hexose dehydration, oxidations.

Depending on the temperature reached inside the roast, the cooked meat is

called “saignante (with blood)” — for red meat (the temperature inside is below

60°C), or “à point (medium rare)” — for pale pink meat (internal temperature

about 70°C). At temperatures above 80°C, the cell walls of the muscles break,

and the meat turns grey. (From H. This, “Elementary Treat of Cooking”, 2002.)

Maillard’s reactions

Maillard reactions are chemical reactions that provide

colours, tastes and aroma to foods when they are cooked

at high temperatures. They were discovered in the year

1912 by chemist Louis-Camille Maillard (1878–1936).

These reactions involve one protein and one sugar (see

figure) that form a bond, yielding a novel compound. This

compound immediately reacts with other compounds

present in the foods in a complex way. Finally, through

three different compounds, one obtains molecules with a

pleasant aroma, very good taste and brown colour. In our



roast, the proteins simply react with the glucose already

present in the muscle tissue, which provides the energy

required for its functioning.

The Maillard reaction plays a relevant role not only for

the roast meat but also in the roasting process of the

coffee grains (see Chapter 20), in fried cooking, for the

crust formation on the bread, and for the occurrence of

various colours in beer!

First step of the Maillard reaction involving one protein and one sugar

molecule as the glucose. Only the atoms really involved in the reaction have

been explicitly reported. The remaining part of the protein has been

represented as a dark circle, while the light circle represents the remaining

part of the sugar.

Among other innovations promoted by molecular

gastronomy, we shall suggest how to prepare a “soft” egg

by cooking it in alcohol: alcohol coagulates the egg proteins

without altering the taste (while the taste of the ethanol is

evidently added). One can also fry a fish in a mixture of

molten sugars rather than in the oil (to avoid the taste of

sugar, one can simply envelop the fish with a leaf of leek).

The readers will find other amazing recipes in books dealing

with molecular gastronomy or molecular cooking style, the

art of cooking is now resorting to new techniques

transferred from laboratories.

Besides the potentialities opened by the discoveries of

new associations of tastes, molecular gastronomy yields

some hope for people suffering from allergies or diabetes or

alimentary intolerances. The ingredients that the doctors

indicate as forbidden can simply be substituted by others,



and still preserve the flavor! For example, the yolk of the

egg is currently used to bind sauces since it contains

proteins having emulsion properties. Unfortunately, it is also

high in cholesterol. Why not replace it with soy lecithin,

which has similar properties? And make chocolate mousse

or mayonnaise without eggs in the same way! In addition, in

case of gluten intolerance (see Chapter 19), wheat flour can

be replaced with potato flour, which contains starch.

Ice Cream by Using Liquid Nitrogen

Finally, we address the way to produce ice cream in a

particular way, as inspired by molecular gastronomy.

First, let us recall what an ice cream is. The cream is

based on milk, sugar and various flavourings; sorbets are

prepared starting from fruits, sugar and water. The soft

structure is related to the presence of microcrystals of ice

mixed with air bubbles in a supersaturated sucrose solution.

Usually, the preparation of the ice cream requires the

appropriate machine: the mixture is progressively cooled

down, while the rotation of a proper device keeps it in

motion. In this way, one avoids the growth of large ice

crystals and as well of too compact a mixture. The

preparation takes about 1 h and resorting to the usual

machines does not always provide satisfactory results.



Figure 4. The production of ice cream by means of liquid nitrogen is made on

demand. When in contact with the cold vapors of nitrogen, the water vapour is

condensed thus causing the formation of white clouds, an appealing effect!

Recipe of the ice cream by liquid nitrogen

To get liquid nitrogen, one can simply ask one of the

companies furnishing it in containers of 10 or 15 l, and it

can last several days.

Warning: Handling liquid nitrogen implies some risks

analogous to the ones when dealing with boiling water:

you will need gloves and protective goggles.

Prepare the cream in a metallic container (one that can

resist strong temperature differences). For instance, mix

100 g of sugar, 25 cl of milk, 25 cl of sour cream and add

a flavouring, and possibly salt according to your personal

taste.

With the eyes protected by the goggles, pour the liquid

nitrogen on the cream, about a volume for two volumes

of cream, and mix with a wooden spoon; then repeat the

operation.

Serve and taste!



Let us leave the ice cream machine and return to the

scientific approach. We can easily obtain an excellent ice

cream in some tens of seconds by resorting to liquid

nitrogen. The transition of the nitrogen from the liquid to the

gas state occurs at about –196°C at ordinary pressure.

When pouring liquid nitrogen into a workpiece (see Panel

above on this page), the very rapid evaporation of nitrogen

(which can be compared with the behaviour of water poured

into smoking oil) simultaneously provokes both instant

freezing of cream into microcrystals and the formation of

nitrogen bubbles (Fig. 4). The bubbles inside ice cream does

not cause any danger: in fact, this gas is present in 78

percent of the air we breathe.



Part 4

The Strange Quantum World

In the final part, dear reader, we will have a journey into an

amazing world inaccessible to the uninitiated: a world

usually open only to those who are not afraid of the most

complex equations and the most unusual mathematical

methods.



We ask you to be patient and trust us, as Dante did

during the journey through Hell. Do not try to understand

everything at once, because the secrets of the quantum

world, like the nooks and crannies of Dante’s Inferno, are

countless and still await their researchers. Most likely, some

of them are not fully understood by your guides either…



Chapter 22

Uncertainty, the Real Base of

Quantum Physics

It is not possible to locate a particle and measure its velocity

at the same time. This “uncertainty principle” is contrary to

our intuition. It is the real basis of quantum physics that

controls the behaviour of the world at the nanometric scale.

The year 1900, which marked the beginning of the 20th

century, is also the date of the emergence of quantum

mechanics. It was then that Max Planck found a solution to

the problem posed by Gustav Kirchhoff four decades earlier

(see Chapter 7). Planck’s solution was based on the

assumption that the energy of the physical system is

quantised — that is, for example, if monochromatic light of

frequency ν is confined in a mirror chamber, then its energy

will necessarily be a multiple of one “quantum” of energy

equal to hν, where h is Planck’s constant. At first, this

hypothesis seemed relatively innocent. However, 30 years

later, it turned out that it challenges the deterministic

understanding of physics.

The Uncertainty Principle

In the year 1927, German physicist Werner Heisenberg

formulated the following principle, known as the uncertainty

principle. Let us refer to a particle of mass m moving along



the 0x axis at velocity v. If one can arrive to estimate its

velocity with the precision Δv, then it is impossible to

evaluate its position x with a precision Δx better than

ℏ/mΔv, where ℏ = h/(2π) = 1.054 × 10−34 J × s (joules times

seconds). In other words, mΔxΔv ≥ℏ. This property can be

extended to a particle, defined by the three coordinates x, y

and z, moving along the three spatial directions. Instead of

dealing with the velocity v, the particle momentum p = mv

is more frequently used. The Heisenberg relation is then

referred as

and the analogous relations for the other two components.

This inequality is indeed surprising. The Newton laws (see

Chapter 4) in principle let one obtain the position and the

velocity of a particle, for all the future time once the initial

conditions are known. In Newtonian physics, known as

classical mechanics, there is no room for uncertainty.

However, this determinism, valid in the macroscopic world,

no longer applies at the atomic scale. This inconsistency is

what we are going to explain, by addressing an illustration

of the Heisenberg principle.

Let us imagine sending some particles (say electrons or

neutrons) towards a wall having a hole of diameter Δx (see

Fig. 1).

Some particles can pass through the hole, and, when that

occurs, their position in the plane of the wall is known with a

precision Δx. Then the components of their velocity parallel

to that plane have to be known with an uncertainty

inversely proportional to Δx. Even in the case that the

velocity of the particles before their arrival at the wall was

strictly perpendicular to it, after the exit from the hole, the

beam of particles is distributed within a cone. In other

words, the particles are experiencing the same diffraction



phenomenon that affects the light rays when passing

through one hole (see Chapter 3).

Figure 1. If a particle is passing through a hole or a window having size Δx, its

position along the x direction is evidently known with the precision Δx. In light of

the Heisenberg inequality, the momentum along this direction cannot be

estimated with a precision better than Δpx. If the particle belongs to a beam

parallel to the direction z of the momentum pz, the passage through the window

causes a spread of the beam by an angle Δpx /pz.

Uncertainty and Measurement

According to Heisenberg (Fig. 2(a)), the quantum

uncertainty is related to the interference of the particles

being detected and the experimental apparatus used to

measure them. Let us address this issue.

Let us assume that we wish to study the motion of one

electron. How to do it? Our eye is evidently inappropriate,

having too poor a resolution. What happens if we use a

microscope? The resolution of the microscope is related to

the wavelength of the radiation used in the observation. For

the visible light, it is of the order of 100 nm, and the

particles having a size less than that value are not

observable. Thus the atoms are not observable since their

size is of the order of 0.1 nm; the electrons are also not

observable.



We can imagine using a microscope that uses a radiation

of very short wavelength, as, for instance, the X-rays or the

γ rays, having a wavelength of the order of 0.01 nm. Do we

have a device that can measure the position and the

velocity of the electron with the desired precision?

We shall analyse more closely our imaginary experiment.

To detect the position of the particle, we have to use at least

one quantum of the electromagnetic radiation. The energy E

of this quantum is hc/λ (c being the light speed in the

vacuum). The energy transported by the quantum is

considerable when the wavelength λ is small. The

momentum of the quantum is proportional to this energy,

and, when colliding with the electron part of this

momentum, is evidently transferred to the particle.

Therefore, using our estimate of the position of the electron

by means of X-rays or γ rays, it turns out that the

momentum of the electron a fortiori is uncertain. An exact

analysis of the collision process points out that the product

of the two uncertainties cannot be smaller than the Planck

constant, thus again returning to the Heisenberg uncertainty

principle.



Figure  2. Werner Heisenberg (1901–1976) (left) and Niels Bohr (1885–1962)

(right). These two theorists of quantum indeterminism were good friends until

the Second World War. In 1941, Heisenberg visited Bohr, who escaped to the

United States shortly soon after. British writer Michael Frayn imagined the

interview in his famous play “Copenhagen”, performed in London in 1998.

One could think that our description is valid only in that

particular case, or that the method devised for the

measurement is not suitable. It is not so. The most

distinguished scientists (in particular Albert Einstein, as we

shall address) have tried to imagine some experiment that

in principle could measure the position and the momentum

of the electron with a precision better than the one

expected according to the Heisenberg principle. All the

attempts failed. The uncertainty principle is a deep law of

the nature of the microscopic world. So deep a law that one

cannot think that the uncertainty is anyway related to the

perturbation of the measurement: several experiments

prove that the law is intrinsic and that the Heisenberg

relation is valid also in the absence of any perturbation that

the measurement could possibly imply.

Deterministic World and Quantum World



The uncertainty principle is evidently in contrast with our

intuition. Does the Heisenberg relation contradict the basic

aspects of determinism? For one object of mass m, one

would have ΔxΔv ≥ ℏ/m. If we apply this condition to a ball

of typical mass of around 1 kg, the limit of that product is

about 10−34 m2 s−1, namely practically zero. In the case

that the position of the ball is known with the precision Δx

around 10−10 m (namely about the size of an atom!), then

the uncertainty in the velocity turns out to be extremely

small, say around 0.03 nm h–1. Therefore, we can conclude

that in practice the macroscopic world is deterministic, in

agreement with our intuition.

For what sizes do quantum effects have to be taken into

account? Let us refer to the motion of very small material

particles in a liquid: Brownian motion (see Panel on page

311).

Let us consider a particle of Brownian character with a

mass of the order of 10–13 kg and a diameter of around 1

micron. The uncertainty relation implies that ΔxΔvx has to

be larger than ℏ/m, namely about 10–21 m2 s–1. If we wish to

evaluate the position by an accuracy of 1% of the size, then

the uncertainty Δvx cannot be less than 10–13 m s–1 which is

still very small. In fact, the speed of a Brownian particle is

more than a million times larger, say of the order of 10–6 m

s–1. Therefore, one can conclude that also particles as small

as Brownian ones are correctly described by classical

mechanics. Thus the uncertainty relation becomes essential

only for particles significantly smaller than a Brownian

particle. So, it becomes extremely important for the

electron. It is so important that, as will be shown below, it

makes it possible to estimate the size of an atom.

Brownian motion



A particle immersed in a liquid experiences a chaotic motion.

When small particles are in suspension in a liquid, they

are experiencing an irregular motion: Brownian motion.

This is a phenomenon observed in the year 1827 by

Scottish botanist Robert Brown. When watching pollen

grains by means of a microscope, he noticed that for the

smallest particles (diameter about 1 or 2 microns), a

random motion was occurring (see figure). This motion is

due to collisions of the particles and the molecules of the

liquid. Thus Brownian motion is a kind of message sent

from molecules to human beings in the 19th century:

“you cannot see us but we are there!”. The message was

decoded in the 19th century by French physicists and in

particular by Louis Georges Gouy (1854–1926). From him,

nowadays, one knows that the motion of the molecules is

strictly related to the temperature: the greater the

motion, the higher the temperature. In fact, temperature

is a measure of the kinetic energy of the molecules. In

Brownian motion, a part of that energy is transferred to

the small particles.



From the Uncertainty Principle to the Atomic

Radius

Let us refer to the simplest atom, hydrogen, namely just one

proton and one electron. The first essentially correct

description of this atom was given by New Zeland physicist

Ernest Rutherford (1871–1937). In that description, the

electron of charge –e and the proton of opposite charge1 are

kept bonded by the electrostatic interaction: the electron

rotates around the proton similar to the rotation of the Earth

around the Sun. Note that such a description implies a

problem: according to classical electromagnetism addressed

by Maxwell in the 19th century, an electric charge in circular

motion emits electromagnetic radiation. Consequently, the

energy of the electron must decrease, and thus it must fall

into the nucleus (Fig. 3). Instead, it does not fall! To explain

this fact, it was necessary to introduce a new physical

principle that would go beyond the framework of Newtonian

physics. It was Heisenberg’s uncertainty principle.



Figure 3. According to classical mechanics, the Rutherford atom is unstable: the

electron should fall into the nucleus.

According to that principle, the poor electron must be

affected by a kind of continuous oscillation within a certain

room, with a speed badly determined, but certainly non-

zero. From this consideration, we are going to derive an

order of magnitude of the atomic size! Let v and 2R be the

order of magnitudes of the velocity and of the diameter of

the sphere within which the electron has to “oscillate”. The

uncertainty equation implies an order of magnitude 2mRv >

ℏ. Therefore, the kinetic energy of the electron, given by

mv2/2 must be greater than ℏ2/(8mR2). By adding the

electrostatic energy due to the electron–proton interaction,

one finds that the total energy W of the electron is given by



ε0 being the vacuum permittivity, a constant equal to 8.85

× 10–12 F m–1. The energy of the atom cannot be smaller

than the minimum of Eq. (2) which occurs for the value R =

R0 where

The equilibrium state of a mechanical system

corresponds to the minimum of the potential energy (see

Chapter 11). In the fundamental state, having the smallest

energy, the radius of the atom cannot be much greater than

R0, otherwise the potential energy of the electron would be

too great. On the other hand, it cannot be smaller than R0,

otherwise the kinetic energy would be too great. This is why

the electron cannot fall into the nucleus! Equation (3) gives

an idea of the size of the hydrogen atom, which is of the

order of the angstrom (namely a factor of 10 smaller than 1

nanometre).

The Emission Spectra of Atoms: The Key to

Atomic Structure

Being in its ground state (minimum of total energy), an

atom cannot lose energy. However, an atom can receive

energy, passing at the same time into one or another

“excited” state. Yet, it does not remain excited for an

infinitely long time — after a while, emitting light, an atom

returns to its ground state. This light corresponds to the

emission of precisely defined frequencies, that is, the

emission spectrum of the atom presents itself the “spectral

line series” (see Chapter 7).

These frequencies form a so-called discrete set, that is,

they can be numbered. To explain the origin of such a line

spectrum, it is reasonable to assume that the values that



the energy of a given atom can take also constitute a

discrete set. Since light can be emitted only in the form of

photons (see Chapter 7), the energy conservation law

requires that the energy hν of each photon be equal to the

difference between two allowed values of the energy of the

atom (Fig. 4).

Thus, the discrete form of the radiation spectrum is

explained, at least qualitatively. It remains to find out why

the values of the energy of the atom constitute a discrete

set.

At the beginning of the 20th century, the question of the

nature of the atom — the smallest particle of a substance

that is the carrier of its properties — was one of the central

issues in physics. The proposed models, being internally

contradictory or inconsistent with the experiment, were

refuted one after another. And so, in 1913, Danish physicist

Niels Bohr (Fig. 2, right) proposed a mathematically simple

theory of the atom, explaining the existing experimental

data, but based on such unusual assumptions, which he

himself called postulates.



Figure  4. Energy diagram for the hydrogen atom. The atom transits from the

ground to an excited state by absorbing the photon of energy ΔE = hν

corresponding to the energy difference between two levels of an atomic state.

The energy here is expressed in electron-volt (1 eV = 1.6 × 10
–19

 J).

Figure  5. The hydrogen atom as imagined by Rutherford and Bohr at the

beginning of the 20th century.

The Atom According to Niels Bohr

The atom imagined by Niels Bohr did not take into account

the uncertainty principle. As in the Rutherford model, the

electron rotates around the nucleus, as the Earth rotates

around the Sun: however, it can rotate only around

particular orbits (Fig. 5). For example, the circular orbits are

allowed only when the product of the momentum mv times

the radius R of the orbit is an integer multiple of the Planck

constant



The momentum and the radius of the orbits are related

since the centrifugal force (see Chapter 4) mv2/R must

compensate for the electrostatic attraction. In the case of

the hydrogen atom, where the nucleus is just a proton, the

attraction force is given by e2 /(4πε0 R2). Thus one can

obtain the values of the radius Rn−1 of the orbits that are

allowed as a function of the number n. For n = 1, the

corresponding value exceeds that one calculated by formula

(3) by four times, and it corresponds to the ground state.

The reader can easily derive by themselves the general

formula corresponding to excited states.

Figure 6. The Bohr model provides an explanation of the emission spectrum of

the hydrogen atom in the range of visible light. The spectral lines at 410, 434,

486 and 656 nm correspond to transitions from the excited states n = 6, 5, 4

and 3 towards the state n = 2 (see Figure 4).

The Bohr model, which goes back to the year 1913,

explains rather well the main characteristics of the emission

spectra of atoms (Fig. 6); however, its limits were soon

realised. It did not allow any explanation of phenomena that

later on were discovered, for instance, the experiment

performed by Davisson and Germer (1927) that pointed out

that electrons are experiencing the same diffraction and

interference phenomena of light (Chapter 3). Those

experiments are totally incompatible with a deterministic

physics. The value R0 for the distance of the electron from

the nucleus has to be an average value: the uncertainty

principle does not allow a precise value for the distance

nucleus–electron. The Bohr theory was completed about 10



years later by the introduction of a revolutionary concept:

the probability of the presence of an electron.

The Probability of Presence

Let us imagine that we have been able to locate the position

of the electron at a given time. Could the position a second

later be predicted? No, since the measurement of the

position of the electron necessarily induced an uncertainty

in the velocity. No theory and no experiment can predict

what is going to happen to the electron. So, what to do?

Let us change the strategy and put a mark on the place

where the electron has been found; then another mark in

correspondence to a second measurement of the position;

then let us repeat many times the same operation. Although

it is not possible to predict where the electron will be after a

given measurement, still we will discover that the

distribution of the marks indicating the various positions

does follow a precise rule. The local density of the marking

points, which is a function of the position in the space,

indicates the probability to find the electron in

correspondence to a given measurement. We have to give

up the idea to describe the motion of the electron, but still

we can provide the probability to find it in any given

position. In the nano-world, the behaviour of the electron is

characterised by a probability!

A reader not familiar with this concept cannot appreciate

the role of chance in the laws of nature. Einstein, despite

the fact that he was at the origins of quantum mechanics

(Fig. 7), was shocked by the proposed concept of quantum

indeterminism. A convinced determinist, he once told Niels

Bohr: “God does not play dice.”2 Nevertheless, as you will

see, this probabilistic theory is supported by strong

experimental evidence.

Therefore, in the nano-world, the state of an electron is

defined by a probabilistic laws. The marks we have placed in



correspondence to the various positions form a kind of

cloud, as the water droplets in the sky form clouds of

variable density. This “electronic cloud” represents a

description of the electron better than the small planets in

orbits around the nucleus as was previously described by

Rutherford.

Figure  7. The famous Solway meeting in 1927 that gathered nearly all of the

builders of the quantum mechanics. Seventeen of the attendants would win

Nobel prize! From left to right in the first line: I. Langmuir, M. Planck, M. Curie, H.

A. Lorentz, A. Einstein, P. Langevin, E. Guye, C. T. R. Wilson and O. W. Richardson.

In the second line: P. Debye, M. Knudsen, W. I. Bragg, H. A. Kramers, P. Dirac, H.

Compton, I. De Broglie, M. Born and N. Bohr. In the third line: A. Piccard, E.

Henriot, P. Ehrenfest, E. Herzen T. de Donder, E. Schrödinger, E. Verschaffelt, W.

Pauli, W. Heisenberg, R. H. Fowler and L. Brillouin.

De Broglie Wave and the Schrödinger Equation

What is controlling the structure of the probability clouds?

Does there exist an equation that similar to the Newton

equations in classical mechanics (see Chapter 4) describes

quantum mechanics? Yes, this equation does exist! It was

devised by Austrian physicist Erwin Schrödinger (1887–

1961) in the year 1925, and it represents the basis for

atomic physics and theoretical chemistry.

Schrödinger’s theory generalised the revolutionary idea

proposed a year earlier by French physicist Louis de Broglie



(1892–1987), which was that a wave of length λ =h/p can

be associated with any particle with momentum p.

Thus, any particle can exhibit a wave-like or a

corpuscular-like behaviour, depending on the particular

situation, just as well as light (see Chapter 7). As for the

electromagnetic wave theory developed by James C.

Maxwell (1831–1879) where an electric field E(x, y, z, t)

(which is a function of the three spatial coordinates and of

the time) is introduced, the Schrödinger equation describes

the state of a particle by means of a “wave function” ψ(x, y,

z, t): its modulus square gives the probability of the

presence of the particle in a given point at the time t. This

rule is inspired by an analogy with optics, where the

modulus squared of the electric field yields the probability

to find the photon at a given point. The difference is that the

electric field is revealed by other effects, as, for instance,

the force on a charged object, while the wave function

devised by de Broglie does not have a clear physical

meaning.

Using the Schrödinger equation, it turned out to be

possible to find the spatial distribution of the probability

density of the electron for its possible states in the

hydrogen atom. By plotting these probability density

distributions on a plane in different colours, one gets an

image of various atomic orbitals (regions in which the

probability of finding an electron is highest). Such images

replace the electron orbits of Bohr’s model of the atom (Fig.

5) and graphically represent the behaviour of electrons in an

atom. Calculations based on the Schrödinger equation

explain the existence of discrete energy levels, which are

the reason for the line spectra observed during the emission

and absorption of light. Similar but more complex

calculations allow us to understand how chemical bonds are

formed between atoms. Note that the works of de Broglie

and Schrödinger preceded Heisenberg’s discovery of the

uncertainty principle. The latter is simple, concise and



elegant but contains less information than the Schrödinger

equation.

The experiment by Davisson and Germer

The concept of the relationship between waves and

particles, the so-called wave–particle dualism, proposed by

de Broglie, led to the idea of using optical research methods

with particle streams replacing light. So, in 1927, American

physicists Clinton Davisson and Lester Germer bombarded a

nickel crystal with electrons. As a result, they obtained

diffractograms similar to those arising when crystals are

irradiated with X-rays (see Panel below on this page). To

interpret the obtained diffraction patterns, electrons had to

be assigned a certain wavelength, and it coincided with the

value predicted by de Broglie. Thus, the experiment

brilliantly confirmed his hypothesis.

Studying matter by means of diffraction

experiments

The reactor at the Laue–Langevin Institute in Grenoble. The neutrons are

produced by nuclear reactions and are used for spectrometric studies of



condensed matter. The container of heavy water is immersed in a pool that

can absorb the radiation. The blue light is related to the Cerenkov effect. The

reactor is controlled by means of special bars absorbing the neutrons, and

that can be extracted in relation to the amount of uranium still present.

Electron diffraction is rarely used to study crystals

because electrons are absorbed by matter much more

strongly than X-rays (see Chapter 9). Of much greater

interest is another, more elementary particle — the

neutron! When it comes to observing light atoms or

studying atomic magnetic properties, neutron diffraction

is preferable to X-rays. The latter makes it possible to

draw up maps of electron density, while polarised

neutrons make it possible to investigate not all, but only

electrons located on the outer shells of an atom —

precisely those that determine its chemical and magnetic

properties. The disadvantage of this method is that

expensive and bulky nuclear reactors are required to

produce neutrons (see figure), while an X-ray facility is

easy to equip even a modest laboratory.

Zero-Point Motion of Atoms

The uncertainty principle yields interesting information on

the motions of atoms in solids. By the word “solids”, we

mean crystals (see Chapter 9) since the crystalline form is

the one stable for most bodies at low temperatures. The

atoms are not fixed in the crystal: they oscillate around their

equilibrium positions. The motions have small amplitude,

and the distance between two neighbouring atoms remains

the same as the one corresponding to their average

positions, namely of the order of a few angstrom. In general,

these oscillations are due to temperature. An increase in

temperature implies an increase in the oscillation

amplitudes. What happens when the temperature

approaches 0 K, namely minus 273.15°C? One could think

that the oscillations stop and the atoms become fixed. Then



their positions would be known, and their velocity would be

zero which would violate the Heisenberg uncertainty

principle (Eq. (1)). Therefore, the atomic motions cannot

stop even at zero temperature, and a zero-point motion

remains.

Let us refer to the case of a simple monoatomic system,

for instance, to the crystal of equivalent hydrogen atoms or

oxygen or iron. We will achieve a simplified estimate, still

qualitatively suited, for the motion of one atom with respect

to its neighbours by assuming that this reference atom is

attracted towards the equilibrium position by a force

proportional to the distance as if it was held in place by an

elastic force. The motion of the atom from its equilibrium

position along the Ox axis is described by the equation

where x0 indicates the amplitude of the oscillation

(analogous equation holds for the other coordinates). Along

this axis, the velocity of the atom is

The Heisenberg relation implies ΔxΔvx ≳ ℏ/m and

therefore  must be at least of the order of ℏ/m, m being

the mass of the atom in consideration. On the other hand, ω

is of the same order of magnitude for most elements, say

around 1013–1014 Hz (this typical value for the vibrational

frequency in solids is known as the Debye frequency). By

substituting the mass of the atom with Amn, A being the

atomic number and mn the average mass of the nuclei

(about 1.67 × 10–27 kg), one deduces that x0 should be of

the order of . This condition implies an upper limit on

the amplitude of the zero-point motion, which, in general, is

rather small in comparison to the average distance between



atoms, which is around 0.1 nm or more. Therefore, one

should not think that the zero-point motion can affect the

stability of the crystal. A doubt can occur for a small atom

such as hydrogen or helium (A = 1 and A = 4). In reality, the

helium atom represents an exception: the zero-point motion

makes the solid unstable at all temperatures, provided the

pressure is <2.5 MPa. All other solids, including hydrogen

(H2), can indeed become solids when the temperature goes

towards zero, regardless of pressure.

Quantisation of the magnetic moment

We have already seen that, according to quantum

mechanics, at no time is it possible to establish the exact

values of the position r and velocity v of an electron rotating

around a nucleus. The properties of its magnetic moment

are even more unusual.

The magnetic moment is a vector quantity that

characterises the property of an object to orient in a

magnetic field. For instance, the needle of a compass is

reorienting in the terrestrial magnetic field and indicates the

Northern direction. In the group of elementary particles and

the objects belonging to the atomic scale, a large number of

them possess a magnetic moment: the electron, the proton,

the neutron and many nuclei of atoms or molecules.



Figure  8. Principle of the experiment performed by Stern and Gerlach. Silver

atoms go through an inhomogeneous magnetic field, vertically oriented.

Classical physics would predict that the beam is simply homogeneously spread.

Instead, it is observed that the beam splits up into only two components.

The components of magnetic moments in space are

usually indicated by μx, μy and μz. When the compass

needle is oriented in a certain direction, then all three

components of its magnetic moment are clearly defined.

Unlike a compass, an electron or a neutron are objects

belonging to the quantum world. For them, only one of the

three components of the magnetic moment can be

measured, and it can only take on two opposite values: –μ

or +μ. This seemingly paradoxical statement was confirmed

experimentally: as early as 1922, Otto Stern and Walter

Gerlach were the first to obtain experimental data in favour

of quantising the magnetic moment of representatives of

the quantum world. In their experiments, they directed a

beam of silver atoms (which, thanks to the electrons of the

outer shell, have a magnetic moment) through an

inhomogeneous magnetic field. As a result, it was found that

this beam is split strictly in half, which proves the

quantisation of the magnetic moment into only two discrete



values (Fig. 8). Indeed, if the magnetic moment could take

at least three values, then the beam would be divided by

three, and if the magnetic moment of silver atoms could

change continuously, then the beam would simply disperse

into a cone.

A few more comments about the silver beam. By labelling

the direction of the magnetic field as x, then one concludes

that there is a state of the magnetic moment having μx =−μ

and a second one with μx =+μ. If the particle is in the state

with μy =μ, the magnetic moment in the x-direction will turn

out ±μ with the same probability, and thus the average

value of a large number of measurements will be zero. This

is the same as the average measurements that one could

perform with the magnetic moment in the state μy =−μ. To

realise the meaning of this property in the quantum

mechanical framework, it is stated that the state μy =μ in

reality is a mixture of the state having μx = +μ and μx = −μ.

Schrödinger’s Cat

The “mixture of states” concept properly describes the

situation occurring at the atomic scale. It is amusing to

imagine its extension to the macroscopic world. Similar to

the magnetic moment that can take two states, Schrödinger

pointed out that in the framework of quantum mechanics

one cat could simultaneously take two states: alive and

dead (Fig. 9). The extension of quantum mechanics to this

macroscopic scale implies that a state can exist which is a

sort of mixture of an alive cat and a dead cat. When we

open the box, there is the same probability (namely 50/50)

to find the cat dead or alive, but before the box is opened,

the cat is in a superposition of state dead and state alive

(see Panel on page 322).

“This is absurd!”, the reader may decide. In fact, the cat

is either alive or dead, and before the door is opened, it



does not matter if we know its condition. This understanding

of the situation under consideration is based on a different,

once existing, interpretation of quantum mechanics, based

on the concept of a hidden parameter. According to this

concept, the description of the world is deterministic, but

some parameters required for its implementation are not

available to us. Modern science refutes this concept. Yet, the

indeterminism of quantum physics gives rise to paradoxes

that are intuitively difficult to accept. Let us describe one of

them.

Figure  9. In the framework of the hypothetical experiment, Schrödinger

imagined that a cat was kept inside a hermetic box. A device based on random

disintegration of one radioactive atom could open a bottle containing a poison

gas. After a certain time, the probability that the atom is disintegrated and then

the bottle is releasing the poison is ½. Until the experimenter opens the box,

quantum mechanics states that the atom is simultaneously disintegrated and

undecayed, and therefore that the cat is simultaneously alive and dead.

Schrödinger’s cats of today

Doubts about the determinism of physics of the

microworld began to appear since 1924 when Louis de



Broglie proposed the idea of wave–particle dualism, and,

three years later, Clinton Davisson and Lester Germer

proved it empirically. As a result of these discoveries,

Niels Bohr and Werner Heisenberg came to conclusions

that subvert the classical concepts of determinism when

applied to the quantum world, and Erwin Schrödinger

came up with a joke about a cat alive and dead at the

same time. Schrödinger’s cat turned 80 in 2020!

However, as he grows old, he becomes more and more

alive. More recently, thanks to the efforts of scientists, it

materialised from the field of abstract reasoning and

became a reality. Of course, this is not a real cat, but a

tiny object, which is only jokingly called “Schrödinger’s

cat”. This name today means any relatively macroscopic

object brought into a state of quantum superposition. This

kitten (which is just a few atoms) indirectly became one

of the 2012 Nobel Prize winners in physics awarded to

Serge Arosh and David Wineland.

Einstein, Podolski and Rosen (EPR) Paradox

In the year 1935, Einstein and his collaborators Boris

Podolski and Nathan Rosen addressed one paradox that

gave origin to several scientific studies, some of them even

rather recently. The EPR paradox involved a situation that

presently we indicate as “entanglement”. This approach no

longer involves a single object, the Schrödinger cat, but two

objects. Let us imagine taking a cat and a dog, even though

this was not the case considered by Einstein. We assume

that one of the two is dead, without knowing which. The

state where the cat is alive and the dog is dead will be

indicated as |+ −>, while the state with the cat dead and

the dog alive will be |− +>. When the two states are mixed,

one says that “entanglement” occurs. The entangled state

will be represented by the symbol



Until the cat and the dog are kept in two well-separated

boxes, one does not know if the cat is alive or if the dog is

alive, the other being dead. But if by opening the box of the

cat we find it dead, we know that in the other box the dog is

alive and vice versa, if the cat is found alive, we know that

the dog is dead. The two observations are correlated. If this

correlation is preserved even when the two boxes are

brought 1,000 mi apart, in order to know what is happening

to the dog, it is necessary to open the box of the cat. Thus

one gets instantaneous information while we know that no

signal can be transmitted faster than light! We could also

say that by opening the box where we find the cat alive,

instantaneously the death of the dog a long distance away

is caused, while before it was just semi dead. Certainly,

there is no way to predict the result of the box opening

since we could find with the same probability, ½, the cat is

alive or dead and the same for the dog. Thus, we can

understand while Einstein, Podolski and Rosen were

perplexed. At the end of the article, they suggested efforts

for the formulation of a novel quantum mechanics that

could overcome the problems they had addressed. That

novel theory could be based on the presence of hidden

parameters, non-accessible to the measurements and not

yet included in the theory by Schrödinger and Heisenberg.

Bell Inequalities and the Experiments by Aspect

The EPR paradox was disputed by many distinguished

researchers, including Bohr. Other eminent scientists,

including Louis de Broglie and David Bohm, like Einstein,

would have preferred to restore determinism. The discussion

lasted a long time and bore a philosophical connotation. In

1964, John Bell was able to make it more concrete and

showed that deterministic physics, even with latent



variables, must include some measurable inequalities that

contradict the usual form of quantum mechanics.

The Bell inequalities have been tested by Alan Aspect

and his collaborators in Paris in 1982. A situation analogous

to the one addressed in the previous section was explored.

The objects they used were not dogs or cats since quantum

mechanics does not imply the application to macroscopic

objects. The objects they used were photons. Their

polarisation (namely the plane of vibration of the electric

field) can take two perpendicular directions, similar to the

two states for the cat and the dog (dead and alive). The

study involved the correlation among the polarisation of the

photons. This is just one of the several difficulties of the

experiment, another relevant one being that the photons

propagate very fast, and therefore there are many things to

do before they lose their correlation. Summarising the

experiments by Aspect proved that the Bell inequalities

were not satisfied. Thus the quantum mechanics as it is

presented in a variety of books is basically correct and

cannot be implemented by any theory including hidden

variables. The experiment by Aspect transformed the

Gedankenexperiment of Einstein, Podolski and Rosen into a

real experiment, including the possibility of quantitative

evaluation.

Thus, the EPR paradox is real: quantum physics is

paradoxical. The microscopic world is paradoxical.

1
 The elementary charge is 1.6 ⋅ 10

–19
 C (coulombs).

2
 Bohr answered: “Einstein, stop telling God what to do”.



Chapter 23

Physics, Geometry and Beauty

In the previous chapter, we paid attention to the absence of

deterministic laws implied by quantum mechanics, and we

emphasised how our vision of the world is affected by that.

Let us now disregard any philosophical trouble and simply

observe Nature as it is. How does one not wonder when

seeing these special consequences? Our emotional feeling

was already triggered by the beautiful symmetries of the

crystals (Chapter 9) or by the variety of the Chladni patterns

(Chapter 11).

Scientists are not insensible to the beauty of Nature. Louis

de Broglie spoke of “the mysterious beauty that the electric

flash displays” (in a speech in honour of Jean Perrin, 1962).

Heisenberg wrote a paper about “The relevancy of the

beauty in the exact sciences” (Die Bedentung des Schonen

in der exakten Naturwissenscaft) by reporting the following:

“The internal relationships [of the atomic quantum theory]

in their mathematical abstraction display an incredible

degree of simplicity and beauty, that we can only accept

with humility. Not even Plato could imagine such beauty. It

cannot be invented, it existed after the creation of the

world.” Einstein pointed out the following: “the simplicity

and the beauty [of Nature] for me is a real aesthetic

question… I greatly admire the mathematical models that

are offered by Nature”.



By following those words of these great physicists, let us

admire some artistic realisations that Nature provides at the

microscopic scale. A major role in this area is played by a

particularly abundant element: carbon (Fig. 1).

Figure 1. The double screw of the DNA molecule that codes genetic information

has been derived thanks to X-ray diffraction (Chapter 9). The molecule is formed

by four types of nucleotides assembled in a complementary way on each wire

that gives it possibility of duplication.

Metamorphoses of Carbon

The Italian chemist and writer Primo Levi (1915–1987)

(particularly known for his imprisonment in Auschwitz and

his related book If This Is a Man) wrote about carbon:

“Carbon is a peculiar element: it is the only one capable to

form bonds with itself along long and stable chains without

requiring high energy; for life on Earth (the only one known

to us until now), these chains are indeed required. That is

the reason for assigning carbon the name “element of the

living world”. These long chains of carbon atoms can fix

hydrogen or oxygen atoms or nitrogen or phosphorus and

are the basis for the molecules granting life on Earth.” Let



us recall, for example, the proteins and the sugars

(Chapters 17 and 18) or the very perfect molecular structure

of DNA (Fig. 1).

Furthermore, carbon has other astonishing properties

that Primo Levi could not be aware of in 1970. Until rather

recently (around 1990), institutional books reported only

two crystalline variants of carbon: graphite and diamond.

Diamond is a rare crystal, and Nature can provide big

samples only under extreme conditions of temperature and

pressure. On the other hand, diamond is the simplest form

of carbon (Fig. 2) where each atom has four nearest

neighbours with strong chemical bonds, called covalent

bonds (see Chapter 16). The fact that the carbon atom

wants to have four nearest neigbours is the consequence of

simple laws of chemistry. In fact, the carbon atom, the sixth

atom in the periodic table of the elements, has six electrons.

In a simplified model, the electrons are placed in shells

around the nucleus. Two of those six electrons are close to

the nucleus and do not have any role in chemical processes,

and they form what is called a closed shell. The other four

electrons are placed more apart from the nucleus. This

second shell has the possibility to host eight electrons, and

the atoms tend to acquire an electronic structure where the

external shell hosts the maximum allowed number so that it

becomes complete. This is the so-called rule of the octet for

the early chemists, somewhat equivalent to the rule of the

duet for the light elements. This rule has been satisfactorily

explained by modern chemists by resorting to the rules of

quantum mechanics. To comply with this rule, the atoms can

gain or lose electrons in order to form ions or to put in

common the electrons with other atoms to obtain covalent

bonds.

In diamond, each of the four electrons of this second shell

of a given atom is coupled to another electron of the second

shell belonging to another atom so forming four C–C bonds,

thus satisfying the octet rule. Therefore, each atom has four



nearest neighbours (Fig. 2). The structure derived in this

way is very stable, and hence diamond is very hard.

As was already mentioned, the diamond form of carbon is

very rare. Due to a kind of caprice of chemistry, the carbon

atoms have the tendency to form a two-dimensional

structure in which each atom is bounded to only three other

atoms. This is a two-dimensional crystal: graphene (Fig. 3).

The remaining unused fourth electron of the outer shell (one

per atom) is ready to participate in the formation of a weak

bond, which connects one graphene layer to another,

another to the third, etc. As a result of this packing, graphite

is formed: the most common form of crystalline carbon (Fig.

4). This solid dark substance can serve, for example, as a

lead in a regular pencil.

Figure 2. The crystalline structure of diamond. The crystal lattice is face-centred

cubic (Chapter 9) where four further carbon atoms are set. Each atom has four

nearest neighbours yielding a regular tetrahedron disposition.



Figure  3. Graphene is composed of carbon atoms forming a two-dimensional

honeycomb lattice.

Figure  4. Crystal structure of graphite. Graphite is a sequence of layers of

graphene with weak bonds between two of them. The weak bonds are

represented by the dotted lines.

The weak bonds connecting the graphite layers turn out

to be fragile, and it is quite easy to break them. For

example, by sticking adhesive tape on graphite and tearing



it off, it is easy to separate several layers; repeating this

procedure several times, in the end, it is possible to obtain a

single graphene layer. This simple and successful method,

which has found widespread application, won the Nobel

Prize in Physics for André Geim and Konstantin Novoselov in

2004.

Often the electron of the outer shell, which does not find

a covalent bond, slightly strengthens the three bonds of its

fellows with the electrons of neighbouring atoms. Instead of

being packed with other layers into three-dimensional

graphite, the graphene layer deforms and becomes flat and

spontaneously forms unusual structures. Let us describe

some of them.

When Carbon Plays Soccer

As a result of observations and speculative analysis,

researchers in different parts of the world have come to the

conclusion that a small amount of a specific substance

appears in the soot and candle flame, the molecules of

which consist of 60 carbon atoms (C60).

The carbon atoms and their mutual bonds form 20

hexagons and 12 pentagons, thus reproducing the shape of

a soccer ball (Fig. 5(a)).

Following the discovery of the C60 molecule, other bigger

molecules, still made by hexagons and pentagons, have

been discovered and created. Such is the molecule C70

which rather resembles the ball for playing rugby with 25

hexagons and 12 pentagons (Fig. 5(b)). Another one worth

mentioning is the C540 molecule (Fig. 6) which has been

obtained by graphite vaporisation under irradiation by laser

light or by resorting to the electric arc. These molecules

have also been found in stardust.

Family history



At the end of the 19th century, the Russian chemist

Dmitri Mendeleev came up with a system for the

classification of chemical elements. He compiled a table

in which he arranged them according to the degree of

increase in atomic mass so that the elements in each

column have similar chemical properties. So, in the

column corresponding to carbon, below it, there are

silicon (Si) and germanium (Ge). Like the carbon atom,

the atoms of these elements have four electrons on the

outer shell, which are ready to participate in chemical

bonds. Thus, silicon and germanium also form crystals

with a diamond structure (Fig. 2). These crystals are

widely used in electronics: when certain impurities are

added, they become semiconductors (see Chapter 28).

Figure 5. (a) The C60 molecule reproduces the shape of a soccer ball, which is

obtained by assembling pieces of leather with pentagons and hexagons. (b) The

C70 molecule resembles a rugby ball.



Figure 6. C540 molecule.

All these molecules take the form of a convex polyhedron

and have the formula C2n, with n being the integer and a

variable number of hexagons, but always 12 pentagons.

How do we explain that? We are going to prove that the

faces are hexagons or pentagons, and then the number of

pentagons is necessarily 12. Let h be the number of

hexagons and p the number of pentagons. According to a

geometry theorem by Euler, if a convex polyhedron has f

faces, s vertices and a corners, then these three numbers

must obey the equation



Now f, s and a can easily be written as functions of the

number h of hexagons and the number p of pentagons,

under the condition that f = h + p. Since each hexagon has

six sides while each pentagon has five of them and each

side is common to two faces, then

For the s vertices, one can observe that each vertex is

common to three faces, since there is no way to get a larger

number of faces while two would be absurd. Since each

hexagon has six vertices while each pentagon has five of

them, each vertex being shared by three faces, one must

have

By returning to the Euler equation and by taking into

account the numbers we have found, one derives that p

must be 12. One should remark that a polyhedron with p =

12 and h = 0 does exist, it is the regular dodecahedron

corresponding to the molecule C20, the smallest one in the

family of the molecules we are addressing. As regards the

fact that all the faces are either pentagons or hexagons, this

is not so astonishing: a square face, for instance, would

imply that two C–C bonds define an angle of 90°, while, on

the contrary, the outer electrons tend to distribute

themselves in the space in a way to equilibrate the group of

atoms around them.

The molecules we have described are called fullerenes

from the name of an American architect, Buckminster Fuller,

who designed geodesic structures resembling the C60

molecule (the first one discovered, sometimes also known

as fullerene).

Physicists have discovered and described hidden

beauties of structures created by Nature, that, in reality,



some artists had already displayed. The great Italian Piero

della Francesca (from Tuscany, who died at almost 80 years

of age in 1492) was probably the first to describe the

geometric structure corresponding to a soccer ball, resulting

from the truncation of regular icosahedron by five planes.

Piero della Francesca was most interested in mathematics.

One does not find that geometric structure in the “Libellus

de quinque corporibus regolaribus” but in the book

published in the year 1510 by one of his pupils, Luca Pacioli.

The illustration of the book by the title De Divina

Proportione was by Leonardo da Vinci (Fig. 7)!

Carbon Nanotubes

Carbon is also capable of forming particular tubes. One can

find a variety of forms and sizes, with the diameter from one

to several tens of nanometres (Fig. 8). Carbon nanotubes

are obtained in laboratories in different ways: by tearing

them off from a block of carbon by means of laser light, by

electric arc as well as by depositing appropriate carbon

vapours. In fact, we, without knowing it, have been

producing them for centuries, but only with the advent of

improved tools are we able to detect these nano-objects

(see Chapter 28).



Figure  7. The structure figured out by Piero della Francesca and drawn by

Leonardo da Vinci for the book published by Luca Pacioli.



Figure 8. Two forms of carbon nanotubes. (a) The armchair structure has bonds

perpendicular to the axis of the tube. (b) The zigzag structure has bonds parallel

to the axis of the tube.

What can be done with these objects? The nanotubes,

the fullerene and other graphene derivates have electric

and optical properties that have excited the curiosity of

physicists and that promise an appealing future, for

instance, as photovoltaic cell elements (see Chapter 28).

Graphene-based electronics could possibly let the Moore law

increase its life expectancy, allowing one to create

transistors even smaller than the ones based on silicon (see

Chapter 28).

Nanotubes also have remarkable mechanical properties:

they are extremely resistant to stretching. Therefore, we will

soon be able to see light and durable bicycles and tennis

rackets made of composite materials reinforced with carbon

nanotubes with a diameter of several microns. Another



metamorphosis of this “special element” celebrated by

Primo Levi!



Chapter 24

Perpetual Motion in Superconductors

In some materials, below a certain characteristic

temperature, an amazing phenomenon occurs: their

electrical resistance completely disappears. This

phenomenon was first discovered in 1911 in samples made

of mercury, the critical temperature of which is only Tc =

4.15 K. In the next few years, superconductivity was found

in other materials, but always at very low temperatures. The

phenomenon seemed inexplicable. Several decades passed

before the first theory was developed to explain it

satisfactorily. As we will see, even today, over a century

later, more and more superconductors are throwing up

amazing mysteries for researchers.

The Discovery of Superconductivity

In 1908, Dutch physicist Kamerlingh Onnes (1853–1926)

succeeded in liquefying helium, which at ordinary pressure

has a boiling point at a temperature of 4.2 K. This

remarkable technical achievement opened up the

opportunity for scientists to study the resistance of metals

at very low temperatures (see Panel on page 337). The

result was not long in coming: on April 28, 1911, at a

meeting of the Royal Netherlands Academy of Arts and

Sciences in Amsterdam, a fundamental discovery was



announced: at temperatures below 4.15 K, the electrical

resistance of mercury completely disappears (Fig. 1).

The absence of electrical resistance means that, once set

in motion, the charges in a closed circuit will move forever

(Fig. 2). Indeed, researchers in England were able to make

the current circulate in the superconductor for several years

without any slightest damping; the experiment was

interrupted only when the cooling of the device was

disrupted due to a strike at the power plant.



Figure  1. Electrical resistance R (in ohms) of a mercury sample versus

temperature T (in kelvin). Below the critical temperature Tc = 4.15 K, the

resistance disappears. This phenomenon — called superconductivity — was

discovered on April 8, 1911. Note that not all metals, even at the lowest

temperatures, transit into a superconducting state. For example, gold, which is

an excellent conductor, does not have this property.



Figure  2. Experiment of Kamerlingh Onnes, proving the absence of current

damping in a superconductor. The electric battery creates a current (constant) in

the circuit, while the upper key remains closed. Then it is opened, thereby

disconnecting the battery, and at the same time, the lower key is closed. The

presence of current in the superconducting coil is manifested by its effect on the

magnetic needle, which is oriented along the lines of the magnetic field.

While the theoretical explanation of superconductivity

took a long time to come, experimental research went

ahead. Besides mercury, superconductivity has also been

found in other metals such as lead and tin.

Superconductivity occurs in them also at very low

temperatures: the highest critical temperature among pure

metals, as it turned out, belongs to niobium (Tc = 9.2 K, that

is, –263.95°C!). Scientists understood the tempting

prospects for practical applications of this phenomenon,

such as the transfer of energy without losses or the creation



of superpowerful electromagnets (see Chapter 25).

However, two major obstacles arose along the way. First, the

need for extremely low temperatures required constant

cooling of the device. The second hurdle Kamerlingh Onnes

soon faced was the sudden disappearance of the

superconducting state when the current flowing through the

sample became too strong. The same destructive effect was

produced by a magnetic field exceeding a certain threshold.

The experimentally observed magnitude of this destructive

field, called critical, was small. So, for mercury, the critical

magnetic field is 0.03 T (compare this value with the field

created by conventional bar magnets: from 0.1 to 1 T).

The nature of electrical resistance

What are the microscopic reasons for the existence of

resistance to the flow of electric current in normal

metals?

Recall that the electric current is due to the movement

of free electrons under the action of a potential difference

applied to the ends of the conductor: an electric field

arises in the conductor, and electrons rush into the region

with the highest potential. At an arbitrary point of the

electrical circuit, the electrons on average have a velocity

parallel to the axis of the conductor and equal in

magnitude to v; if the cross-section of the conductor is S,

then the intensity of the electric current is I = nevS,

where e is the electron charge and n is the number of

electrons per unit volume.

If the metal were an ideal crystal, then at zero

potential difference, the electron would propagate at a

constant speed, as in a vacuum. This follows from a

theorem proved by the French mathematician Gaston

Floquet (1847–1920), and applied to electrons by Felix

Bloch (1905–1983). However, real metals almost always

contain various defects (for example, impurity atoms



embedded in the crystal lattice), which break the lattice

symmetry and scatter electrons. After a series of such

scattering, the electron deviates from its original

direction, and its velocity, averaged over all particles,

becomes equal to zero. This is a semiclassical picture of

the origin of electrical resistance of metals at low

temperatures. When the temperature rises, another

mechanism is added to the scattering of electrons by

impurities and other lattice defects: this is the scattering

of electrons by thermal vibrations of the lattice ions. In

short, the electrical resistance R consists of two parts:

one does not depend on temperature but does depend on

the concentration of impurities and the degree with which

they scatter electrons; the other depends on the

temperature.

Thus the cause of the electrical resistance R in metals

is the interaction of electrons with the crystal lattice

vibrations and lattice defects. To create and maintain an

electric current I in a circuit, it is necessary to maintain a

potential difference V in it, that is, to spend energy. The

corresponding power is released in the conductor in the

form of heat and, according to the Joule law (see Chapter

16), is equal in magnitude to RI2.

Meissner–Ochsenfeld Effect

In 1933, German physicists Walter Meissner and Robert

Ochsenfeld, studying the effect of an external magnetic field

on a superconductor, found that it did not penetrate into a

superconductor placed in a magnetic field. This

phenomenon, called the Meissner–Ochsenfeld effect, is

associated with the appearance of non-dissipative currents

on the surface of the superconductor, which, creating their

own magnetic field in the bulk of the superconductor,

compensate for the external field (Fig. 3). Everything



happens as though the superconductor “expels” the

magnetic field out of its volume.

A reader familiar with the phenomenon of

electromagnetic induction (see Chapter 16) might assume

that a similar effect occurs only when a superconductor is

placed between the poles of a magnet. In this case, the

magnetic flux penetrating the cross-section of the

superconductor would change, and then it would generate

an electromotive force. As a result, an infinitely large

current would have to appear in the superconductor, which

would destroy superconductivity.

Recall that in Physics there is a general Le Chatelier’s

principle, which states that if a system in stable equilibrium

is influenced from the outside, changing any of the

equilibrium conditions (in our case, an external magnetic

field), then processes occur in the system directed towards

resisting change.

Therefore, it is easier for a superconductor to generate

the finite non-dissipative current over its surface, which

simply eliminates the effect of the external field, reducing to

zero changes in the magnetic flux. Of course, this current

should not exceed the critical value that kills

superconductivity. Therefore, the Meissner–Ochsenfeld

effect takes place for fields that are not too strong.



Figure 3. The Meissner–Ochsenfeld effect. An electric current is generated at the

surface of a superconductor placed in an external field. This current creates a

magnetic field inside the sample, which precisely compensates for the external

field.

Well, what if a bulk superconductor is placed in a

magnetic field in its normal state at a temperature above

the critical one, and only then cooled into a superconducting

state? It would seem that in this case the non-zero magnetic

flux that permeated the superconductor at a high

temperature should remain in it. Therefore, with such an

experiment, surface currents should not appear — this is

exactly what Meissner expected. He set up a corresponding

experiment, and, to his surprise, found that the magnetic

field inside the superconductor became zero, which

indicated the appearance of surface currents in it, and in the

setting of the experiment.

What is the matter here? Why is the magnetic flux not

frozen in the bulk of the superconductor? The reason for this

behaviour is fluctuations — deviations of the system from

equilibrium. Imagine that, in some small region of the



superconductor, the existing magnetic field changes slightly.

Then the magnetic flux will change slightly, and as a

consequence, a small electromotive force will appear. But

after all, the resistance is equal to zero: therefore, such a

fluctuation would generate an infinite current that would kill

superconductivity. To maintain its state, it is easier for a

superconductor to generate a current of finite density over

its surface, expelling all the magnetic flux from its volume.

The emerging surface currents have another impressive

manifestation: the magnetic field generated by them

outside the superconductor is capable of repelling a magnet

in such a way that the latter levitates over it (i.e., hovers)

(Figs. 4 and 5).

Figure 4. Permanent magnet levitates over a superconductor.



Figure  5. Explanation of the phenomenon of magnet levitation over a

superconductor. In the presence of a field B1 generated by a magnet, a

superconducting current appears on the upper surface of the superconductor,

generating a magnetic field B2. This field is obviously opposite in direction to B1.

The interaction of the magnet with the field creates forces acting on the magnet,

which balances its weight. As a result, the magnet hovers over the

superconductor.

Vortices of Abrikosov



The Meissner–Ochsenfeld effect usually occurs only if the

external field is relatively weak. If the field is too strong,

then the superconductor is not able to expel it and, as

already mentioned above, it transits to its normal state.

Thus, it seems that when placing a superconductor in a

magnetic field, there are only two options: either the

superconductor will go into its normal state by letting in the

magnetic field, or the field in the superconductor will

become zero.

Half a century after the discovery of the phenomenon of

superconductivity, it was predicted that another scenario for

the behaviour of a superconductor in a magnetic field can

also occur. The above observation is valid only for the so-

called type I superconductors, such as mercury, lead and

aluminium. Soviet theoretical physicist Alexei Abrikosov, in

his later famous 1957 work, showed that for some

superconductors, which he called superconductors of the

second kind (today, they are often called type II

superconductors), there is a third possibility. Namely, if the

external magnetic field is strong enough, then it can

penetrate into such superconductors in the form of very thin

tubes parallel to the field repetition of penetrate into the

superconductor. Superconducting non-dissipative currents

flow around these tubes, which form a kind of vortices. At a

certain distance from the tubes, the magnetic field is equal

to zero — superconducting currents screen it with their own

field. In this case, the property of superconductivity does

not disappear, although the tubes themselves are not

superconducting: as a result, part of the sample volume

remains superconducting, and a magnetic field penetrates

into the other.

Experimental observation of Abrikosov’s vortices turned

out to be quite easy, although it was carried out 10 years

after the publication of his theoretical work. The easiest way

is to sprinkle the surface of the superconductor with iron

filings or particles of another ferromagnetic material. Then



these particles will begin to accumulate at the head of the

tubes (Fig. 6(a)). One could use the neutron diffraction

method: the vortex lattice is actually similar to the crystal

lattice (see Chapter 9). In this way, one can confirm that the

tubes penetrate inside the volume of the superconductor.

The behaviour of a type II superconductor in a magnetic

field depends on the field intensity. When applying the

magnetic field acting on the superconductor from zero,

vortices are not initially observed. The magnetic field, due

to the emerging surface currents, is completely expelled out

of the sample, just as in the case of a type I superconductor.

Thus, in sufficiently weak fields, the full Meissner effect

takes place. At a certain critical field Bc1, the first vortices

appear in the bulk of the superconductor, first in a small

amount. By means of these vortices, a magnetic field begins

to penetrate into the superconductor. With increasing field

intensity, the number of vortices also increases. Ultimately,

at a field Bc2 (Fig. 6(b)), the vortices fill almost the entire

volume of the sample, and superconductivity disappears.

Note that most type I superconductors (which do not

have a mixed vortex phase) can be converted into type II

superconductors by adding impurities. For example, pure

indium, a silvery metal, is a type I superconductor, but when

4% bismuth is added to it, it becomes a type II

superconductor.



Figure 6. (a) The Abrikosov vortex lattice in a type II superconductor visualised

by decorating its surface with cobalt particles, 1967. The particles are collected

at the inputs of the magnetic field lines into the superconductor, i.e., at the

outlets of vortices at the surface. The vortices repel each other and form a more

or less regular lattice predicted by Abrikosov. (b) The phase diagram of the

indium–bismuth alloy InBi (with 4% Bi) in the coordinates of temperature T and

magnetic field B. The dotted curve defines the temperature dependence of the

critical field of pure indium, which is a type I superconductor.

For his outstanding discovery, Alexei Abrikosov was

awarded the 2003 Nobel Prize in Physics (he shared it with

Vitaly Ginzburg and Anthony Leggett). As mentioned above,

his theoretical prediction was 10 years ahead of the

experimental confirmation of the existence of type II

superconductors. But today, they are mainly used in

medicine, transport, transmission of energy over distances,

and the creation of super-powerful magnetic fields. For the

first time in the history of superconductivity, theory

outstripped experiment. Nevertheless, until 1957, the origin

of this mysterious phenomenon could still not be explained.

Superfluidity: New Hopes

In 1938, Soviet physicist Pyotr Kapitsa (1894–1984)

discovered that at temperatures below 2.18 K, the flow of

liquid helium experiences no friction when passing through

very narrow capillary tubes. This phenomenon, called

“superfluidity”, gave scientists hope for understanding the



nature of superconductivity: after all, the similarity between

an electric current flowing without resistance and a

nonviscous hydrodynamic flow is obvious. Let us take a

closer look at the latter.

As we have seen, helium at atmospheric pressure does

not solidify even at the lowest temperatures (see Chapter

22): we explained this by the zero-point oscillations of its

atoms having small mass, and the interaction between them

is weak. Simply put, a superfluid state can be viewed as

some kind of compromise between the “desire” of atoms to

condense into a crystal and their quantum “neccessity” to

move. As a result of the action of the forces of attraction

between helium atoms, at low temperatures, the latter pass

into a certain condensed state, however, unlike atoms of

other elements, they do not form a crystal.

What characterises this condensed phase? The state of

particles in it is of quantum nature, so they should be

characterised according to the laws of the quantum world,

namely by the wavefunction Ψ(x,y,z,t) (see Chapter 22). It

turns out that, at temperatures below 2.18 K, the

macroscopic number of helium atoms accumulates in the

same quantum state, and is described by the same

wavefunction. These atoms form the so-called “superfluid

condensate”. When it flows with velocity v, then its

wavefunction corresponds to the wavefunction of some

quantum particle moving with the same velocity v. In a

normal liquid, the particle slows down due to viscosity, i.e.,

interactions with the environment; in superfluid helium, on

the contrary, all the atoms of the condensate are

interconnected into a single whole and at not too high

speeds do not interact with the environment and therefore

cannot slow down! The flow of superfluid helium is a

collective phenomenon: atoms move in it all together, like

sheep in a herd. Even if a sheep wants to go back, it cannot

do it!



The wavefunction Ψ(x,y,z,t), which describes the

superfluid condensate, is approximately determined by the

solution of the Gross–Pitaevskii equation, which is similar to

the already familiar Schrödinger equation that determines

the motion of quantum particles in the microworld.

From Superfluidity to Superconductivity

A theory describing the properties of superconductors

similar to condensation in superfluid helium was proposed

by Soviet physicists Vitaly Ginzburg (1916–2009) and Lev

Landau (1908–1968) in 1950. In contrast to the Gross–

Pitaevskii equation, Ginzburg–Landau theory proposes two

equations: one for the wavefunction of a superconducting

condensate and the second one for a magnetic field. The

latter, as we know, plays an extremely important role in the

life of a superconductor but does not affect helium atoms in

any way (since they have neither an electric charge nor a

magnetic moment). The Ginzburg–Landau equations have

proven to be an extremely effective tool for studying

superconductivity. For example, Alexei Abrikosov predicted

the existence of type II superconductivity, the existence of

quantum vortices, etc. on the basis of the Ginzburg–Landau

equations.

Despite the more powerful microscopic methods for

describing superconductivity that appeared later, the

Ginzburg–Landau equations remain very useful for

researchers today, over 70 years after they were written. It

was proved that near the transition from the normal to the

superconducting state (precisely in the temperature range

for which the equations were derived by Ginzburg and

Landau), they exactly coincide with the results of the

microscopic theory. Nevertheless, at the time of their

discovery, the Ginzburg–Landau equations were exclusively

“phenomenological” in nature, that is, they predicted and



explained the available experimental facts without going

into their microscopic nature.

Isotope Effect and the Role of the Crystal

Lattice

It should be noted that the drawing of the analogy between

the phenomena of superfluidity and superconductivity

carries some difficulties. We have already said that all

superfluid helium atoms in a condensate are in the same

quantum state. However, this is only possible for certain

types of particles called bosons. For example, photons are

bosons, so the number of photons with a given energy and

propagating in a certain direction is not limited. Helium

atoms are also bosons, and they are electroneutral.

Superconductivity, however, is obviously somehow related

to the charge-carrying electrons, which are fermions. Unlike

helium atoms, they obey the exclusion principle (Pauli’s

principle), according to which two electrons cannot be in the

same quantum state. Therefore, it was not possible to

simply rewrite the theory of superfluidity for an electron

liquid in a metal.

However, it turned out that, under certain conditions, two

fermions can be combined into a single “particle” which will

no longer follow the Pauli principle. To do this, it is necessary

to have some kind of attraction between them — “glue”,

that will connect them into a composite boson. It is due to

this pairing of electrons in a metal that the phenomenon of

superconductivity arises.

What kind of attraction is causing such a pooling of

electrons? Its existence is not at all obvious: in fact, as you

know, two particles of the same charge must repel each

other! However, as German-English physicist Herbert

Fröhlich discovered in 1950, if these electrons are not in a

vacuum, but in a crystal, then such an attraction can take

place. Indeed, in a crystal, ions are ordered into a crystal



lattice, which can be deformed. The force of attraction

between two electrons in the presence of this lattice is

related to its elasticity. The presence of an electron in it

causes local deformation, which contributes to the

attraction of the second electron.

As a loose analogy, we can give the example of two balls

lying on a rubber mat. If these balls are far from each other,

then each of them deforms the rug, forming a hole around

itself. If you put one ball first, and then another not too far

from it, then their holes will merge into one, and the balls

will roll together to the bottom of the common hole.

In metals, this attraction occurs due to the deformation of

the crystal lattice. The discovery of the isotope effect in

1950 (Fig. 7) greatly influenced the identification of the role

of elastic lattice vibrations (or phonons) which is so

important for explaining the phenomenon of

superconductivity. It turned out that two isotopes of the

same metal have different critical temperatures, values that

are inversely proportional to the square root of the isotope

mass! This property is reminiscent of the fact that the

vibration frequency of a ball fixed at the end of a spring

depends on its mass (see Chapter 12).

The discovery of the influence of the properties of the

crystal lattice of a substance on its superconducting

properties played a decisive role in understanding the origin

of this phenomenon and creating its microscopic theory.

Fröhlich was already on the right track, but the electron–

phonon attraction he found turned out to be rather weak

compared to the electrostatic repulsion between electrons

and he could not explain how it could provide the formation

of composite bosons.



Figure 7. Critical temperature of various isotopes of mercury. The mass number

A corresponds to the total number of nucleons (protons and neutrons). Recall

that two isotopes have the same number of protons (mercury has 80) but a

different number of neutrons and, therefore, have different masses. The molar

mass of each isotope is indicated next to the designation, in g mol
–1

. From C. A.

Reynolds et al., Superconductivity of isotopes of Mercury, Physical Review 78, p.

487 (1950).

Density of electronic states in a metal…

which becomes a superconductor

In order to understand the meaning of the gap, it is

necessary to introduce the concept of the density of

electronic states. In an isolated atom, electrons can

occupy only discrete energy levels (see Chapter 22). In a

solid consisting of many atoms, these quantum states

form a dense staircase that occupies an entire band on

the energy scale. There can be several such bands, the



last of them is called the conduction band. The number of

electronic states corresponding to the energy interval

between ε and ε +δε, for small δε, turns out to be

proportional to the width of this interval δε. Thus it can be

denoted as ρ(ε)δε, where ρ(ε) is some function of energy,

called the density of states.

In a normal metal, the density of states in such a band

changes continuously. Each of these states can be

occupied by an electron or remain free. At a temperature

T = 0 K, all low-energy states with energies ε less than a

certain value ε
F
 (Fermi energy) are occupied by electrons,

while states with energies ε >ε
F
 are empty (Fig.  a). In a

superconductor at low temperatures, an energy gap

appears in the dependence of the density of states near

the Fermi energy (Fig.  b). Such an occurrence is very

unusual! Indeed, in solid-state physics, it is well known

that if the Fermi energy of a system corresponds to the

gap in the energy spectrum, and not to the conduction

band, then this substance is a dielectric (see Chapter 28).

In the case of a superconductor, the opposite is true:

when a gap opens near the Fermi level, its resistance

disappears!

(a) Density of electronic states of a normal metal in the region close to the

Fermi energy. The states of the shaded area are occupied at absolute zero. 

(b) Density of states of a superconductor at absolute zero. 

(c) The density of states of one and the same superconductor at a non-zero

temperature below the critical one; gap is narrowed, and electrons appear in

the conduction band. (The proportions are not respected; Δ is usually much

less than the Fermi energy εF.)



BCS Theory

Seven years after the publication of the Ginzburg–Landau

theory, American physicists John Bardeen, Leon Cooper and

Robert Schrieffer constructed the theory of

superconductivity (the so-called BCS theory), which gave a

consistent microscopic explanation of this mysterious

phenomenon and removed all contradictions existing at that

time.

In a “normal” metal (that is, not a superconductor), at

absolute zero, as already mentioned, the electrons occupy

all energy states up to a certain value εF, called the Fermi

energy (the latter depends on the concentration of electrons

in the metal and the symmetry of its lattice). Each state is

occupied by only one electron, in accordance with the Pauli

exclusion principle. The Fermi energy in metals is usually on

the order of several electronvolts.

As for the energy of the electron–phonon interaction, the

corresponding energies are related by the so-called Debye

frequency WD and do not exceed 0.1 eV. For the Coulomb

repulsion of electrons, one could assume that its

characteristic value is ~e2 /(4πε0a), where a is of the order

of the interatomic distance. It is easy to estimate that this

quantity also turns out to be of the order of an electronvolt.

What happens in a superconductor? How, then, to arrange

the attraction between electrons?

Bardeen, Cooper and Schrieffer noticed that the electrons

in a metal are surrounded by lattice ions and other

electrons, so the repulsion between them is greatly

weakened and turns out to be of the same order as the

attraction arising from the electron–phonon interaction.

Therefore, the total electron–electron interaction for some

metals turns out to be positive, while for others it is

negative. The former (for example, gold and platinum) do

not go into a superconducting state at any temperature



since their electrons cannot form composite bosons. The

latter, where the electron–phonon interaction wins in the

competition of interactions, become superconductors at a

certain temperature.

To calculate it, as well as to describe other properties of a

superconductor, one can imagine electronic energy states in

a metal filling an imaginary orange with a size

corresponding to εF. The thickness of its skin corresponds to

the energy associated with the Debye frequency, namely

ℏWD. It is clear that electrons that occupy the energy levels

deep in the orange, with energies much lower than εF, will

remain at the same quantum states in spite of any electron–

phonon interactions. But the electrons in the “orange peel”,

thanks to the Fröhlich interaction, can form composite

bosons. In this case, it turns out that it is more

advantageous for them to unite in pairs with opposite spins

so that the total spin of such a pair, called the “Cooper

pair”, is equal to zero. The electron velocity vectors must

also be opposite, otherwise the weak electron–phonon

interaction will not hold them together.

What is the “size” (or a kind of average distance) of such

a pair? Let’s estimate it. The speeds of electrons in the

“orange peel” are determined by the value of εF and turn

out to be very large: vF ≈ 106 m s−1. The characteristic of

superconductivity energy scale is determined by the critical

temperature: kBTc ~ 10−22 J. Using dimensional analysis one

can construct, from these values and Planck’s constant

(characteristic of the quantum world, as we have seen), the

characteristic for superconductivity length ξ ~ ℏvF /kBTc ~

10−6 m. That is, the Fröhlich interaction has a wide range; it

acts in the micrometre “size”. Thus two electrons moving

with the opposite velocities of the order vF in magnitude

form a pair of about a micrometre in size. The latter is called

a “Cooper pair”, by the name of its discoverer. Since this



distance is large in comparison with the interatomic

distances, then, as we suggested above, the Coulomb

repulsion between two electrons is strongly reduced due to

the screening effect of other electrons and lattice ions. As a

consequence, Cooper pairing turns out to be energetically

favourable for some metals at low temperatures.

According to the metaphor proposed by Schrieffer, the

Cooper pair should not be imagined as a double star formed

from electrons, but rather as a pair of dancers who came

together to the disco, who sometimes come closer,

sometimes move away from each other, but still dance

together, regardless of whether they are separated for a

moment by other dancers.

To “break” a Cooper pair into two electrons that make it

up, it is necessary to expend some energy Δ, called the

superconducting gap. As the superconductor heats up, the

gap narrows, and more and more pairs break apart. The gap

ultimately vanishes when the critical temperature is

reached: for electrons, it is no longer energetically

convenient to form pairs, and the superconducting state

disappears.

Thus, the Bardeen–Cooper–Schrieffer (BCS) theory

provided the longawaited explanation of the microscopic

mechanism of the phenomenon of superconductivity. In

addition, it substantiated and allowed to calculate the

values of the coefficients in the phenomenological

Ginzburg–Landau equations, which to this day remain a very

convenient and universal apparatus for describing the

phenomenon of superconductivity.

Long Way to High Critical Fields…

After the theory of superconductivity was finally created by

the middle of the 20th century, physicists armed with it

began to search for new superconducting systems with high

values of critical parameters (Bc2 and Tc). Even at the dawn



of research, having tested the elements of the periodic

table, they expanded the search for new superconductors,

moving on to the study of metal alloys (this is the name of

macroscopically homogeneous metallic materials consisting

of a mixture of two or more chemical elements with a

predominance of metallic components). To produce high-

quality alloys, researchers have developed an arsenal of

methods, from rapid quench arc welding to spraying films

onto a hot substrate. It should be noted that the first

superconducting alloy was discovered long before the

creation of any theories of superconductivity, in 1931. The

most important impetus in the search for compounds with

high critical fields was given by the work of Alexei Abrikosov

already mentioned above. The idea expressed in it about

the possibility of increasing the critical field Bc2 by

introducing impurities scattering electrons into the crystal

lattice indicated the direction of the search for new

superconducting systems suitable for creating super-

powerful magnets. As a result of these searches, already in

the 1960s and 70s, alloys Nb3Se and Nb3Al were created,

the critical temperature of which is about 18 K, and the

critical fields are higher than 20 T. With the creation of the

PbMo6S8 alloy, the critical field reached a record 60 T at a

critical temperature of 15 K. Among the discovered type II

superconductors, some are able to withstand enormous

electric current densities and remain superconducting in

giant magnetic fields. The creation and practical use of

superconducting cables based on them was a very difficult

technological problem due to the fact that these materials

are rather fragile, and their current-carrying properties are

unstable. And yet, one of the obstacles to the widespread

industrial use of superconductivity has been overcome:

today, the critical fields of new superconductors reach

values thousands of times higher than the first ones

discovered during the Kamerlingh Onnes era.



… and High Critical Temperatures

In contrast to advances in the creation of superconducting

systems with high critical fields, the problem of a noticeable

increase in the critical temperature of superconductors

remained unsolved even in the early 1980s. Since 1973, the

record holder has been the Nb3Ge alloy, in which the

superconducting transition temperature reached 23.2 K.

Unfortunately, it remained much lower than the boiling point

of a cheap and widely used cryoagent — liquid nitrogen,

which reaches 77 K at atmospheric pressure. In addition, Tc

only slightly exceeded the boiling point of liquid hydrogen

(20 K), which made it hard to use this inexpensive gas for

cooling superconducting devices based on Nb3Ge

significantly below Tc. Thus, liquid helium remained

necessary for the functioning of all superconducting devices

existing at that time, even though it was very expensive to

produce! The theoretical estimate of the maximum possible

critical temperature offered by the BCS theory did not

inspire optimism. Namely, the possibilities of the electron–

phonon attraction mechanism were limited by the

conditions of stability of the crystal lattice, and it turned out

that the critical temperature cannot exceed 40–50 K. In

search of alternatives, back in 1964, Vitaly Ginzburg and,

independently of him, the American William Little,

suggested that superconductivity can occur not only due to

the electron–phonon interaction but also through some

other mechanisms.

Thus Little suggested looking for high-temperature

superconductivity in quasi-one-dimensional compounds,

that is, in long polymer chains with easily polarizable side

branches. However, researchers failed to succeed in

synthesising such materials. In the decade between the 70s

and 80s, superconducting materials other than metals or

their alloys were discovered. These were the so-called



oxides, which became superconductors at fairly low

temperatures (about 10 K). However, no one expected this

from them either: at ordinary temperatures, these

compounds are poor conductors, with a low concentration of

free electrons. The discovery of superconductivity in these

new materials put two researchers from Zurich on the trail

of a great future discovery.

Long-awaited discovery

The discovery by Müller and Bednorz of high-temperature

superconductivity was completely uncharacteristic for

modern physics. First, it was carried out by two

researchers who worked alone and did not have much

funding. The materials they used contained only readily

available elements (not rare isotopes). Knowing what to

do, these superconductors could be created in a day’s

work in any university laboratory. What a contrast, for

example, to high-energy physics, in which discoveries

require equipment worth billions of euros, and the list of

authors of the article takes a whole page! Müller and

Bednorz reminded us how important talent and personal

initiative are, even if their discovery was largely due to

their awareness of the available advances in the science

of superconducting materials. Subsequently, it turned out

that some high-temperature superconductors had already

been synthesised before, but their creators did not

choose (or did not have the opportunity) to measure the

electrical resistance of the materials obtained at

sufficiently low temperatures.

Müller and Bednorz chose the German Zeitschrift für

Physik to publicise their discovery. A European discovery

published in a European scientific journal, what is so

special? But no: this event was unique in recent decades.

European physicists are already accustomed to publishing

their most important discoveries in the American press. In



2005, an American researcher proposed identifying the

most cited papers in physics. The article describing the

discovery of Müller and Bednorz, which had been waiting

for three-quarters of a century, did not appear on his list.

Amazing! In fact, he limited himself to articles published

only by the American Physical Society and cited only in

American journals. But if the article by Müller and

Bednorz were on his list, it would take the second place in

citations. This curiosity indicates that almost all modern

physicists tend, and prefer, to publish articles in the USA

— to such an extent that one can afford to do a statistical

analysis ignoring the European scientific press. Moreover,

this story shows that articles published in Europe, if they

are very good, are read and cited no less than those that

appear in the American press.

On the Shores of Lake Zurich

The long-awaited breakthrough was made by Karl Alexander

Müller and Johannes Georg Bednorz when they worked at

the IBM laboratory in Switzerland (where the first tunnel

microscope was created, see Chapter 28). In the winter of

1985–86, scientists synthesised a compound that became a

superconductor at 35 K! Its chemical formula can be written

as La2–xBaxCuO4–δ, where x and δ are specific non-integers.

The article, published in 1986, was titled very carefully: “On

the possibility of high-temperature superconductivity in the

La–Ba–Cu–O system”. The possibility soon became a reality,

and for the discovery of superconductivity in this oxide,

Müller and Bednorz were awarded the Nobel Prize in Physics

already in 1988. They (see Panel on page 350) paved the

way for mankind to reach superconductivity “at high

temperatures” (it is called that, although these

temperatures are well below 0°C). This baton was taken up

by other researchers. So, literally a few months later,



replacing barium with strontium, raised the critical

temperature record to 45 K. The latter did not last long: a

month later, it was found that at high pressure, the critical

temperature of the compound found by Müller and Bednorz

rises to 52 K. In 1987, the American Paul Chu realised that

the effect of high pressure could be achieved by replacing

lanthanum atoms with smaller atoms of its neighbour in the

column in the periodic table — yttrium. Having synthesised

the compound YBa2Cu3O7–δ, he reached a critical

temperature of 92 K — and this has already exceeded the

nitrogen threshold (the boiling point of liquid nitrogen)!

Subsequently synthesised new superconductors reached

critical temperatures of 125 K and even (at very high

pressures) of 165 K (–108°C).

High-Temperature Superconductivity: A New

Mystery

Over the past third of a century, physicists have found a

huge number of new superconducting substances, the

critical temperature of which exceeds the record 23 K for

1973 (Fig. 8). They are divided into several groups:

perovskites, pnictides, MgB2, organic superconductors and

hydrides. Copper oxides with yttrium and barium impurities,

for example, YBa2Cu3O7–δ (Fig. 9), were the first discovered

and remain the most studied to date. All of them have a

layered structure: copper atoms (Cu) and oxygen (O) form

planes separated by other atoms, in this case, atoms Ba and

Y. The movement of charge carriers is almost two-

dimensional: they easily move in CuO2 layers, but they

rarely jump from one layer to another. The formed Cooper

pairs are also mainly localised in planes. The mechanism of

high-temperature superconductivity has not yet been fully

understood. The key to understanding the phenomenon is

probably the two-dimensional nature of the motion of



electrons. All agree that here, as in the case of classical

superconductivity described by the BCS theory, the

phenomenon is due to the appearance of Cooper pairs.

However, there is no consensus among scientists about the

mechanism of interaction between charges leading to their

Cooper pairing at such high temperatures. Currently, there

are about 20 more or less conflicting theories. They are

basically far from the BCS theory, which is based on the

interaction between electrons through the electron–phonon

interaction. Yet, Müller and Bednorz began to look for

superconductivity in the La2–xBaxCuO4–δ compound precisely

because, thanks to their intuition and some vague

considerations, they expected the critical temperature to be

especially high here! Many believe that Müller and Bednorz

were just lucky: they discovered superconductivity exactly

where they were looking for it, but mistaken motivation led

them to this remarkable discovery. However, some recent

experiments show that they may not have been wrong. For

theoretical physics, the discovery of high-temperature

superconductors is a mystery comparable to what the

discovery of superconductivity in mercury was.



Figure 8. Superconducting transition temperature growth along time (courtesy of

M. Eremets).



Figure 9. Crystal lattice of the superconductor YBa2Cu3O7.

Dream of Perpetual Motion

In conclusion, let us return to the remarkable consequence

of superconductivity. As we have already seen, the current

established in a superconductor does not decay. This fact



brings us back to the concept of “perpetuum mobile” —

perpetual motion, a kind of holy grail, which alchemists,

inventors and scientists have been seeking for many

centuries, and which, nevertheless, is impossible according

to the laws of classical physics! Without energy from the

outside, the slightest friction will eventually stop any

movement. Is superconductivity a manifestation of the

perpetual motion of electrons? To answer this question,

consider two different cases. The state of a superconductor

through which a direct current flows in the absence of an

external magnetic field, even under the most favourable

conditions, at the lowest temperatures, is formally

metastable — after all, its energy is higher than in a state

without current. This means that such a current should

eventually decay, just as a diamond crystal should

eventually turn into graphite (see Chapter 23). How can this

happen? Such a giant as Bohr took part in the discussion of

this problem. The problem turned out to be that, due to the

quantum nature of superconductivity, such damping cannot

occur little by little; the superconducting current must

decrease by macroscopic jumps, and it will take a long time

to wait for such an event, perhaps even a time exceeding

the lifetime of our Universe. In another example, consider a

superconductor in the Meissner state, i.e., placed in a

magnetic field below the first critical. Here, the direct

current excited in a superconductor is indeed eternal. Is this

really the perpetual motion that scientists of past centuries

dreamed of? In a sense, yes, because the movement of

charged particles is associated with current in classical

physics. However, in quantum mechanics, this phenomenon

has a significantly different meaning from its classical

interpretation. In classical mechanics, observables are well

defined, such as the position of particles, which depends on

time. Therefore, in the presence of current, here, we can

confidently talk about the movement of charges in space.

The superconducting current under the conditions of an



applied magnetic field is the reaction of the entire

condensate to an external influence, which saves the

superconducting state from destruction. A superconductor in

such a current state is in thermodynamic equilibrium and

can remain in it for an infinitely long time. Thus,

superconductivity is a rare case of the manifestation of the

laws of quantum mechanics in the macroscopic world

around us.



Chapter 25

Applications of Superconductors

In the previous chapter, we outlined the phenomenon of

superconductivity and narrated the long journey of

scientists towards understanding its quantum nature. In this

chapter, we will continue our story about the unusual

properties of superconductors and focus on their

applications that are little known to the general public.

Magnetic Flux Quantization in a

Superconducting Ring

As we have seen, Niels Bohr was able to explain many of the

properties of the atom by assuming that the velocity v of

the electron in a circular orbit of radius R satisfies the

relation mνR = nℏ, where n is an integer, m is the electron

mass, and ℏ is Planck’s constant (see Chapter 22).

Remarkably, this rule can be generalised to describe the

motion of any particle that makes a circular motion in a

certain quantum state. Note that Bohr’s postulate is not

easily applied to the motion of an electron in an atom since

the latter cannot be described by a well-defined orbit

(otherwise, the uncertainty relations would be violated (see

Chapter 22)). On the other hand, as Fritz London (1900–

1954) showed in 1948, it can be successfully used for the

superconducting current flowing in a circular ring of radius R

(Fig. 1).



Bohr’s quantization rule, applied to the motion of Cooper

pairs in a superconducting ring (see Chapter 24), has an

unexpected consequence: the magnetic flux crossing the

superconducting ring is quantized — just like the radius of

the orbit in an atom! More precisely, the magnetic flux Φ

turns out to be an integer multiple of the “magnetic flux

quantum”

where –e is the electron charge (see Panel on page 357).

Figure 1. Current in a ring of radius R. The flux of magnetic induction through the

ring Φ = BS, where S is the area covered by the ring, and B is the magnetic field.

Applying Bohr’s quantization rule to a moving charge reveals that this flux is

quantized.

The flux quantum Φ0 is an extremely small quantity, so

small that the first experimental test of the London

hypothesis was carried out by American physicists Bascom

Deaver and William Fairbank only 13 years later, in 1961.

It is noteworthy that while the quantized physical

quantities that we have mentioned so far belong to the

microscopic world, scientists can measure the magnetic flux

quantum in relatively large, almost macroscopic samples

(that is, visible to the naked eye). An example of such

“mesoscopic”, i.e., intermediate between the micro- and



macroworlds of objects, is the vortices of Abrikosov, which

can be located from each other at distances of micrometres.

We recall that these vortices arise in a type II

superconductor placed in an external magnetic field (see

Chapter 24). Each Abrikosov vortex is a carrier of a

magnetic flux quantum Φ0. Another similar example is a

superconducting ring, which makes it possible to observe

discrete changes in the magnetic flux penetrating it literally

in one quantum Φ0. (see the following). Such observations

are analogous to the experiment of Deaver and Fairbank in

1961. Instead of a ring, they used a superconducting

cylinder.

What happens if one places the ring in a alternating

magnetic field B? For a “normal” conductor, the magnetic

flux Φ penetrating the ring changes with the field. As a

result, an electromotive force of induction dΦ/dt arises,

which generates a current IN in the ring, such that RIN =

dΦ/dt, where R is the resistance of the ring. For a

superconductor, as we already know, the flow must remain

unchanged, otherwise its change would cause an infinite

current that destroys the superconducting state. Therefore,

a current IS will also flow along the superconducting ring

with a change in the magnetic field, such that the total flux

Φ crossing the ring (which is the sum of the external flux

Φext = BS and the intrinsic induction flux ΦI = LIS, where L is

the inductance of the ring) does not change.

Flux quantization in a superconducting loop

By resorting to a simplified approach, let us find the

formula describing flux quantization in a superconductor.

Let us refer to the case of a circular ring with zero

resistance and containing free charged particles. By

increasing the magnetic field, the magnetic flux Φ also



increases, which leads to the rise of an electromotive

force of induction (see Chapter 16):

where ΔΦ is the flux change that occurs during the time

interval Δt. In this case, the electric field induced in the

ring is given by

Now let us consider a charge q of mass m moving

along a ring with a speed v (Fig. 1). The force acting on it

is equal to qE, and, according to the basic principle of

dynamics, the acceleration experienced by the charge is

equal to qE/m. This acceleration should be equal to the

ratio of the increase in speed Δv to time Δt, therefore

Thus, one finds . Under the assumption that

Bohr’s quantization rule mRv = nℏ, mentioned at the

beginning of this chapter, is applicable to the motion of

the charge under consideration in a superconducting ring,

we find that the smallest non-zero value of mRΔv is equal

to ℏ. Hence it follows that the smallest non-zero value of

ΔΦ is equal to 2πℏ/q. The charge of the Cooper pair is 2e;

thus we arrive at the formula for flux quantization in a

superconducting ring given in the text.

Tunnel and Josephson Effects

The situation becomes even more interesting if the

superconducting ring is interrupted by a thin layer of

dielectric material. Let us assume that we managed to



create such a thin layer in a ring made of normal metal (Fig.

2). Intuitively, it seems that the current will not be able to

flow in it. Nevertheless, if the thickness of the dielectric

layer is not too large (for example, about a micrometre), the

current in such a structure can flow! Some electrons

“magically” manage to pass through the dielectric. This

purely quantum phenomenon is called tunnel effect. For

example, when studying objects with a tunnelling

microscope, the current passes between the tip of the

device and the surface of the sample through a vacuum gap

of about a nanometre in size (see Chapter 28). Not only

electrons but also other more massive particles, even such

as atomic nuclei, can tunnel with some probability through

“walls”, in the quantum world. True, with an increasing

mass, the more difficult it becomes for them to perform

these miracles.

Figure 2. Tunnel effect in a conducting ring containing a dielectric barrier. If the

dielectric layer is not too thick, then the electrons, due to the tunnel effect, pass

through it with some probability. The current flowing in the ring is measured with

an ammeter.

What happens in the case of a superconducting ring? It

turns out that a peculiar tunnelling effect takes place here

too. Cooper pairs manage to overcome a dielectric layer

several nanometres thick or a normal metal layer a dozen

nanometres thick. It would seem that for such composite

bosons, the tunnelling mechanism should consist of

sequential tunnelling through the wall first of one and then

for the second electron. The superconducting current

correspondingly must be proportional to the square of the



one-electron tunnelling probability through the barrier,

hence it should be small. However, another curiosity about

superconductivity is the fact that, as we already know, the

pairs are rather smeared objects in space. Thus one Cooper

pair tunnels through the barrier with approximately the

same probability as that one for the single electron that

belongs to it. We can say that both electrons somehow

tunnel coherently, simultaneously. This phenomenon was

predicted in 1962 by the Englishman Brian Josephson (then

only a 22-year-old graduate student at Cambridge

University), and the “sandwich” he invented — a dielectric

layer between two superconductors — is called the

Josephson junction.

For this discovery, in 1973, Brian Josephson was awarded

the Nobel Prize in Physics. Why was such a prestigious

award given for the “simple” demonstration that a

superconducting current has the same property as a

conventional one? First, it was completely unexpected that

Cooper pairs could tunnel through the barrier without

breaking. Second, Josephson was able to predict the

remarkable properties of the device he invented. Their

description is beyond the scope of this book, but we will

simply address one of its applications.

The Josephson junction is a quantum magnetometer

capable of measuring ultraweak magnetic fields, for

example, the one associated with the blood flowing through

the heart. This allows early diagnosis of cardiovascular

diseases.

Measurement of Very Weak Magnetic Fields

The simplest quantum magnetometer consists of a

superconducting ring with the thinnest dielectric bridge (Fig.

3(a)). Let us imagine that this ring is placed in an external

magnetic field, which, at first, like the current in the circuit,

is equal to zero. Then the flow inside the ring is also zero.



Let us start by increasing the external field. As long as the

field is not too strong, the total magnetic flux Φ passing

through the ring should remain unchanged and equal to

zero. For this, it is necessary that the magnetic flux ΦI

generated by the current I flowing through the ring at any

given moment compensates for the change in the external

flux Φext. As the magnetic field grows, this current also

increases until the critical value of Ic is reached (due to the

choice of the resistance of the dielectric layer, it is possible

to reach this at Φext =Φ0/2).

As soon as the current becomes equal to Ic,

superconductivity in the vicinity of dielectric layer is

destroyed, and the flux quantum Φ0 enters into the circuit.

The total magnetic flux will increase by one quantum. Such

a change is possible only due to the destruction of

superconductivity in the region of the bridge, which is what

makes the device so extraordinary! What will happen to the

current? Its magnitude will remain the same, but the

direction will change in the opposite sense. If before the

entry of the flux quantum Φ0, the current Ic completely

screened the external flux, and then after its entry, it should

amplify the external flux Φ0/2 to the value Φ0. Therefore, at

the moment of entering the flux quantum, the direction of

the current abruptly changes to the opposite sense again.

With a further increase in the external field, the current in

the ring will begin to decrease, superconductivity in the ring

will be restored, and the flux inside the ring will remain

equal to Φ0. The current in the loop will turn to zero when

the external flow also becomes equal to Φ0Φ0, and then it

begins to flow in the opposite direction. Finally, when the

value of the external flux is 3Φ0/2, the current will again

become equal to Ic, superconductivity will collapse, the next

flux quantum will enter, and so on (Fig. 3(c)).



Figure 3. (a) Superconducting ring including a Josephson junction is placed in an

external magnetic field. (b) With a monotonic increase of the external flux Φext =

BS, the total magnetic flux Φ changes by jumps. (c) The magnitude I of the

superconducting current cannot exceed the critical value Ic, determined by the

properties of the contact, and therefore the changes occur in a sawtooth

manner. The current changes sign when the superconductivity in the contact is

destroyed (here, we consider the case when the critical value of the current Ic is

reached with an increase in the external flux by Φ0/2).

The stepwise character of the current as a function of the

flux makes it possible to measure the value of the external

field with extraordinary accuracy. However, the problem of

measuring the current in a ring with a tunnel contact

remains.

SQUID Magnetometer

Often in a superconducting ring, instead of one, two

Josephson junctions are created at once. Thus a

“superconducting quantum interferometer” or SQUID (from

the Superconducting Quantum Interference Device) is

obtained (Fig. 4). Its principle of operation is based on the

interference of the wavefunctions of two superconducting

condensates separated by Josephson junctions, which can

be compared with the interference occurring in two adjacent

Young slits in optics (see Chapter 3). With the help of

sophisticated devices (generators and amplifiers), the

SQUID can measure flux fluctuations much smaller than the

quantum Φ0. It is so sensitive that it detects magnetic fields

from the heart or brain activity! These fields are 100,000



times weaker than the Earth’s magnetic field (which is about

5 ⋅ 10−5 T on its surface). The first attempts to use SQUID in

medicine, such as magnetocardiography and

magnetoencephalography (Fig. 5), date back to the 1970s.

To minimise the influence of the Earth’s magnetic field on

the measurements, they were performed in a special room:

the walls consisted of three layers of metal with high

magnetic permeability, forming powerful magnetic shields,

separated by two layers of aluminium, preventing the

penetration of the electric field. Thus the Earth’s magnetic

field, inside the volume, decreased by 10,000 times.

However, the creation of such premises was very expensive.

Today, thanks to the current advances in technology in the

field of superconductors, magnetometers no longer require

a magnetic shield and are capable of measuring magnetic

fields with an accuracy of 10−15 T! The only thing the

patient has to do is remove all metal objects such as keys

from their pocket.

Figure  4. Principle of SQUID operation. The magnetometer consists of a

superconducting ring with two Josephson junctions. The current I flowing in the

SQUID is split into two branches. If the device is placed in an external magnetic

field B, then these two currents interfere, resulting in a potential difference

between the tunnel contacts, the measurement of which allows you to estimate

the value of the field.



Figure  5. Magnetoencephalographic scanner, consisting of 306 SQUIDs that

register even extremely weak magnetic fields generated by neural activity. The

top of the scanner contains the liquid helium needed to cool the device. The

child’s neural activity is detected through visual and auditory stimulation (a

black oculometer complements the apparatus).

Thorny Path to Records

As Kamerlingh Onnes assumed from the very beginning, the

creation of strong magnetic fields is an obvious application

of the remarkable properties of superconductors. Magnetic

fields for industrial use are usually produced using

electromagnets, that is, coils through which an electric

current flows. The field strength depends on the current

flowing in the coil and on the number of turns of the wire in

it (see Chapter 16). However, a coil of ordinary conductive

material has a resistance, and heat is generated in it when

current flows, due to the Joule-Lenz effect. This dissipates a

lot of energy, and to prevent the wires from melting, they

must be cooled intensively! For example, in 1937, a field of

10 T was produced for the first time. The power required

was so high that it was possible to carry on experiments

only during the night when the need by other users was



quite low: the coil’s cooling system required a water flow of

5 l s–1.

For a superconductor, these restrictions do not exist! At

first glance, it is enough to make a coil from a

superconducting wire and create a sufficiently strong

current in it: since the superconductor’s resistance is zero, it

will not generate heat. And when the current is established,

it will not be necessary to supply power to the circuit! It

would seem that the game is worth the candle, despite the

fact that the coil must be kept at the temperature of liquid

helium. But, unfortunately, generally type I superconductors

do not withstand magnetic fields to an extent for practical

applications (see Chapter 24). The solution to the problem

was the discovery of type II superconductors, which, as we

already mentioned, can remain in a superconducting state

up to very high magnetic fields. The magnetic field

penetrates into their volume in the form of vortices with a

normal core. However, a superconducting phase remains

between the vortices, through which the superconducting

current can flow without resistance.

Unfortunately, not everything turned out to be so simple.

The fact is that when current flows Ampère’s force acts on

vortices (through which a magnetic field penetrates into the

superconductor) in the direction perpendicular to both the

magnetic field and the current. As a result, the entire lattice

of Abrikosov vortices begins to move. The product of the

Ampère’s force vector with the vortex displacement vector

implies work. Thus, the motion of the vortex lattice occurs

with energy dissipation, and again the electrical resistance

of the superconducting coil becomes non-zero!

Fortunately, vortex movement can be prevented. For this,

it is sufficient that the superconductor contains microscopic

defects. As a rule, they arise spontaneously as a result of

heat treatment during the manufacture of superconducting

alloys (Fig. 6). Single vortices “catch” on these defects, and



then the entire lattice of Abrikosov vortices no longer

moves. It is clear that such a mechanism cannot withstand

arbitrary an Ampère’s force of any magnitude. However, as

long as the current does not exceed a certain critical value,

the electrical resistance of the superconducting wire

remains zero. This phenomenon is called pinning: the

vortices seem to be “pinned” on the defects. Usually,

defects are harmful, but in this case they help!

Nevertheless, the presence of defects, as will be shown

below, plays also a negative role.

Figure  6. Electron microscopic image of a superconducting film of niobium

nitride (NbN), obtained by sputtering a metal onto a glass plate. The columnar

structure of the material is clearly visible. It is rather difficult for Abrikosov

vortices to jump over the border of such grains.

Due to the pinning phenomenon, many type II

superconductors are used to generate strong magnetic



fields. This, for example, is a tin–niobium alloy, in which

current densities up to 105 A cm−2 can be achieved

(compare this value with several hundred amperes per

square centimetre for copper). In this case, the upper

critical field Bc2 for this alloy at low temperatures is 25 T.

Superconducting Cable Technology

To obtain strong magnetic fields, the creation of an alloy

with suitable critical parameters is necessary, but not

sufficient. You still need to make a cable from it! Tin–

niobium alloy is fragile, and a cable made from it breaks at

the slightest twisting. This problem was solved by filling the

copper tube with a powdered mixture of niobium and tin.

Then this tube is stretched (drawn) in such a way as to

obtain a wire, which is then heated. The powder melts to

give the desired alloy of tin and niobium. The described

process underlies the creation of the so-called composite

superconductors. They are obtained by drilling parallel

channels in a copper matrix and inserting superconducting

fibres into them. The die is subjected to a drawing

procedure, and the resulting wire, in turn, is reinserted into

the holes of the next die, etc. By repeating this procedure

several times, a cable containing millions of

superconducting fibres is obtained (Fig. 7). For example, in

the coil used for the international thermonuclear

experimental reactor (ITER) (which will be discussed

below), each cable consists of 900 superconducting fibres

made of tin–niobium alloy Nb3Sn and 522 copper strands

with a diameter of 0.8 mm, which are divided into six

“petals”. Each of the superconducting fibres consists of

approximately 9,000 Nb3Sn strands a few micrometres in

diameter embedded in the copper matrix. The total number

of strands in the cable exceeds 8 million. Of course, the

same can be done with any other alloy, for example, the



niobium–titanium alloy NbTi, which is more common and

less expensive than the Nb3Sn alloy.

Figure 7. Tin–niobium cable (Nb3Sn), composed of a plurality of superconducting

filaments embedded in a copper matrix. Its diameter is about 4 cm. Cooling

liquid helium passes through the hollow space in the centre of the cable. The

cable carries a current of 68 kA.

Why are copper and superconducting threads combined?

The point is that using a pure superconductor cable is risky.

Superconductivity can suddenly disappear in some place,

for example, due to defects added for vortex pinning. In this

case, the corresponding section of the cable, under the

influence of the strongest current flowing through it, heats

up quickly, and if the released heat is not discharged in

time, then the entire cable can completely transit into a

normal state. This will lead to catastrophic consequences,

from severe damage to the cable to the destruction of

nearby objects. The presence of copper, a good conductor

of heat, prevents such a disaster.

What About High-Temperature

Superconductors?

After the discovery of superconductors with high critical

temperature by Müller and Bednorz, scientists continuing

the research in this new field hoped soon to work out

miracles, because cheap liquid nitrogen could be used for

cooling, and the critical fields promised to exceed 100 T.



But, in practise, the implementation of their plans was far

from easy. The difficulties in creating superconducting

cables based on new materials turned out to be similar in

many respects to those that arose when using traditional

superconductors, for example, the Nb3Sn alloy, such as the

high fragility of materials, and problems associated with the

pinning of the Abrikosov vortex lattice. The problem was

further complicated by the looseness of the vortices along

their axis, due to the weak coupling between the layers in

the quasi-two-dimensional high-temperature

superconductors. Nevertheless, good results have been

achieved by creating composite materials based on

superconducting oxides and silver, and some

superconducting cables based on YBaCuO are already

reaching the preindustrial stage.

Where Do Superconductors Work?

Today, the magnetic fields generated by superconducting

magnets reach values of several tens of tesla. Often these

magnets have hybrid structure: the outer superconducting

coil creates its own magnetic field, and the inner one, with a

copper winding, further enhances it in its volume. Such coils

are used, for example, at the French National Laboratory for

High Magnetic Fields in Grenoble, where they create

continuous magnetic fields reaching almost 40 T (this is

where the quantum Hall effect was discovered, see Chapter

28). More recently, researchers at the USA National High

Magnetic Fields Laboratory have developed the world’s most

powerful superconducting magnet, capable of creating a

magnetic field with a record of 45.5 T. In another branch of

the French National Laboratory in Toulouse, even higher-

pulsed magnetic fields, reaching 100 T, are produced.

However, this is obtained by other methods, without

resorting to superconductivity.



The use of superconducting coils is not limited to Physics

laboratories. They are used daily in hospitals for MRI

examinations (see Chapter 27), which require intense and

uniform fields. Let us mention two more important directions

of using superconducting magnets: in the particle

accelerators in the study of elementary particle physics and

as an important element of prototypes of thermonuclear

reactors.

LHC at CERN

In the spring of 2012, a new elementary particle was

discovered — the Higgs boson — or rather, according to

CERN researchers, “a particle compatible with the Higgs

boson” (physicists are careful people!). The existence of this

particle was predicted theoretically a long time ago, and

also it fully agreed with existing experimental observations.

Proof of the existence of this mysterious boson would

explain why elementary particles have mass. To verify the

existence of the Higgs boson and to be able to carry on

other basic research, an underground ring 26.66 km long

was built near Geneva — the Large Hadron Collider (LHC).

Protons in it are accelerated to speeds very close to the

speed of light, using the strongest magnetic fields, directing

them along a circular path. This field is generated by several

thousand superconducting magnets installed along the ring.

The use of conventional magnets would require expensive

cooling devices, which, due to their bulkiness, would be

impossible to place in the tunnel. The niobium–titanium

superconducting wires from which the magnet coils are

made are capable of carrying currents of up to 12,000 A. It

takes weeks for this entire cyclopean device to cool down to

temperatures below 2 K.

ITER: Energy of the 22nd Century?



Another machine that uses superconductors is the

International Thermonuclear Experimental Reactor (ITER),

which is currently under construction in Cadarache, near the

gorge of Verdon in France. ITER is designed to generate

energy by nuclear fusion. Recall that the nuclear fusion

reaction consists of the fusion of two light nuclei (for

example, deuterium (2H) and tritium (3H)), a heavier

nucleus is formed. In the process of this reaction, as in the

fission of heavy nuclei (see Chapter 13), energy is released.

Nuclear fusion requires a very high temperature (100 million

degrees!). It is through the fusion of nuclei that the energy

of the Sun is generated. Ionised particles form “plasma”, a

hot gas that must be kept in the chamber without allowing it

to touch the walls. In the case of ITER, such confinement is

provided by a magnetic field acting on charged particles

moving in the toroidal chamber (Fig. 8). In short, the

mechanism is the same as in particle accelerators such as

the LHC. However, in the latter, the proton beam is very

narrow, and the radius of their trajectories is gigantic (about

10 km). The radius of the fusion reactor is much smaller,

and yet the volume in which it is necessary to keep the

plasma at several hundred million degrees is still 840 m3.

The ITER design is a “tokamak” (toroidal chamber with

magnetic coils), a type of device invented in the 1950s by

two Russian physicists: Andrei Sakharov (1921–1989) and

Igor Tamm (1895–1971). The first tokamaks used

conventional electromagnets, which consumed enormous

amounts of energy. The magnetic fields required to confine

the plasma are of the order of 10 T, i.e., they are quite

moderate and allow one to use superconducting magnets to

create them, thus providing significant energy savings. The

purpose of the creation and commissioning of the ITER is “to

demonstrate the possibility of using thermonuclear fusion as

a potential source of energy”. Specific results, that is, cost-

effective and safe production of electricity by nuclear fusion,



are expected, according to the most optimistic forecasts, by

2040.

Figure 8. Model of the ITER reactor, sectional view. It has a height of a five-storey

building, with a diameter of about 30 m. In the centre, there is a solenoid that

accelerates charged particles. There are 18 coils of the toroidal field, which hold

the plasma in the chamber. Six additional coils of the poloidal field (that is,

directed along the lines passing through the poles of the spherical coordinate

system) prevent the incandescent plasma from touching the walls and ensure its

stability. For the manufacture of various coils in such an installation, more than

500 t of superconducting alloy Nb3Sn were spent.

And Future Applications…

Let us talk about some interesting ideas for using

superconductors in addition to creating high magnetic fields.

For example, the levitation effect arising from the Meissner–

Ochsenfeld effect (see the previous chapter) is used to

create high-speed MAGLEV trains moving due to magnetic

levitation. Such trains float above the rails, thanks to



superconducting magnets installed in the cars, interacting

with magnets placed along the rails on the ground. The

speed record belongs to a Japanese MAGLEV, tested in 2015

on an experimental section of the route between Tokyo and

Nagoya. During the tests, the train accelerated to 603 km h–

1.

Another application of superconductors is energy storage,

which is an important task for the use of solar, wind and

other power plants that generate energy at a variable rate

(Chapter 13). Indeed, the excess energy accumulated

during production peaks should be stored in some way and

then released as needed. One solution is to generate

current in a superconducting coil. The accumulated

electromagnetic energy in this case is LI2/2, where I is the

strength of the current flowing in the coil and L is its

inductance. At the moment, practical applications of this

energy storage method are restricted due to the energy

costs required for cooling. Experimental lossless power

transmission is already being practised, for example, on

Long Island in the United States and Essen in Germany:

superconducting cables several hundred metres long are

replacing high-voltage power cables for entire

neighbourhoods.

Scientists are working on creating an element base for

quantum computers (see Chapter 28), based on quantum

superconducting processors resorting to Josephson

junctions. So, this area of science is in the active phase of

its development. Undoubtedly, in the decades to come, we

could expect the emergence of many new areas of

application of superconductivity.



Chapter 26

Snowballs and Bubbles in Liquid

Helium

Helium is the second element in the Mendeleev periodic

table, and because of its eccentric properties, possibly it is

the element that troubles scientists most. It has cause many

headaches and sleepless nights, but the beautiful

mechanisms of its particular properties has provided many

satisfying and pleasant moments.

The Achievement of Liquefying Helium

From previous pages, the reader already knows that helium

can transition to the liquid state only at very low

temperatures, and furthermore it cannot become solid at

any temperature under standard atmospheric pressure. At

variance, helium can become superfluid, namely completely

losing its viscosity, under particular conditions. No other

element has these properties.

Helium was first liquefied in the year 1908 by Heike

Kamerlingh Onnes in a laboratory at the University of

Leyden, more precisely in July (Fig. 1). For a rather long

time, Kamerlingh Onnes was competing with several other

researchers who were trying to liquefy the gas. Helium was

the only element refusing to become liquid! In March of

1907, Kamerlingh Onnes thought that he was able, not only

to liquefy helium, but also to make it solid. In fact, after a



sudden variation of the pressure, he had observed the

formation of a white cloud inside the gaseous state,

erroneously thinking that it was solid helium. Full of

enthusiasm he sent a telegraphic message to his English

colleague Sir James Dewar (the first scientist to succeed in

liquefying hydrogen) declaring “converted helium into

solid”.

The international press celebrated the event.

Unfortunately, the believed solid helium, that white cloud,

turned out to be droplets of solid hydrogen that had entered

the complex system of cans and capillaries of the

apparatus! Deeply frustrated Kamerling Onnes was derided

by most people, claiming that instead of solid helium, he

had discovered the halfium (“half” in Dutch means “one

half”, while the meaning of “heel” — a play on “hel” in

“helium” — is the “whole”). Moral comments to take away

from this event: (1) major honours can fall down; (2) it is

better not to imitate even the greatest scientists in

announcing some discovery too early! Anyway, on 10th July,

helium was indeed liquefied.

Figure 1. Kamerlingh Onnes (sitting on the right side of the picture) and his co-

workers in the laboratory in Leyden where helium was liquefied for the first time.

Onnes was rewarded with the Nobel Prize in Physics in the year 1913 for his

studies on the properties of matter at low temperature.



Thanks to this major technological success a quite novel

field of studies was opened to researchers. Resorting to

liquid helium, it became possible to carry on a variety of

experiments in the temperature range close to absolute

zero. In particular, by using liquid helium, Kamerlingh Onnes

could discover the phenomenon of superconductivity in

mercury at a temperature of around 4 K (see Chapter 24).

At this point, we shall describe a less well-known history:

the transport of electrical charges in liquid helium.

Electric Charges in Liquid Helium

In general, in common liquids, some number of electrically

charged particles are always present. For instance, in water,

at ordinary temperature, a non-negligible fraction of the

molecules H2O dissociate into H+ and OH– ions. In practise,

the positive ion is bonded to a water molecule to form H3O+.

In liquid helium, this type of dissociation is completely

absent, and no “free” electric charges are present. To a very

large extent, most helium atoms are in their lowest energy

quantum state. In order to promote one atom to an excited

energy state, one has to provide an energy amount of

around 20 eV (1 eV = 1.6 × 10–19 J). According to the Gibbs–

Boltzmann equation, the probability that, at temperature T,

one atom can acquire an energy E is given by exp[−E/(kBT)],

where kB is the Boltzmann constant (see Chapter 7). At

standard atmospheric pressure, helium can be found in the

liquid state only below 4 K. At this temperature,  =

58.000, and therefore the probability exp(−58.000) is so

small that it can be safely considered zero. Even at room

temperature, the probability of finding a helium atom in an

excited state is negligible. A fortiori, the probability to find

the latter in the ionic state He+ is insignificant. However,

some kinds of charged particles can artificially be

introduced into liquid helium, and consequently weak



currents can be detected in it when an electric field is

applied.

For instance, one can introduce nuclei of He+ by

irradiating the liquid helium with α particles. By resorting to

β radiation, one can also introduce electrons.

Why would one wish to violate the neutrality of the poor

helium? This is because this violation implies the occurrence

of unexpected phenomena that required serious efforts by

physicists to be explained.

We will first address the case in which the charge carriers

are positive ions. This was the first case where the

mysterious events were registered. Later, in helium, even

more miraculous behaviour of the negative charge carriers

was discovered.

Structure and Transport of Positive Ions

Slightly before the 1960s, physicists got involved in this

subject and asked themselves some questions. They were

studying the mass of the charge carriers in liquid helium by

detecting their trajectories in uniform magnetic fields. A

charged particle having a given initial velocity must move

along a helical trajectory, and, from the radius of the latter,

the particle mass can be derived. The results were found to

be totally unexpected. The mass of the charge carriers, both

positive and negative, turned out to be 10,000 times greater

than the mass of a free electron!

Another surprising property directly involves the mobility

of the He+ ions in the liquid, namely the relationship

between their velocity and the force causing the motion.

The mobility of the isotope 3He in the more abundant 4He

was already known. The mobility of the ion He+ was

expected to be of the same order of magnitude. However, it

was found that, for He+ ions, this value is about 100 times

less. How do you explain this new helium quirk?



The solution was found by U.S. physicist Kenneth Robert

Atkins and described in his article in 1959. According to his

theory, the presence of the He+ ion creates a perturbation

in the surrounding helium atoms. This positive ion attracts

its electrons to itself and at the same time repels its nuclei

(this phenomenon is called the polarisation of atoms). Due

to the small difference in distances, attraction prevails over

repulsion, so atoms approach the He+ ion: their

concentration increases as they approach the He+ ion, and

the pressure around it increases. As already mentioned, at

low temperatures and pressures of 25 atm,1 helium

solidifies. The calculation shows that this pressure is

reached at a distance r0 = 0.7 nm from the He+ ion (Fig. 2)

(to have an idea of the scale: the radius of the helium atom

is 0.13 nm). Thus a kind of snowball grows around the ion: a

ball of solid helium with an ion in the centre! When a

potential difference is created in the liquid, this snowball,

having a charge in the centre, begins to move in the

direction of the electric field. In its movement, the snowball

is not alone: it carries along a kind of “retinue” of polarized

atoms of liquid helium.

This model allowed physicists to explain the available

experimental results, including why the mass of the carrier

of a positive charge exceeded the mass of an He+ ion by

more than 10 times. According to Atkins, this mass, in

addition to the mass of the solid helium snowball itself,

includes two additional terms. First, to the mass of the

snowball, one should also add the mass of the “retinue”, the

mass of the polarised atoms involved in the motion.

Calculation shows that the latter is 28m0, where m0 = 6.7 ⋅

10−27 kg is the mass of the helium atom 4He. Secondly,

when a body moves in a liquid, it pushes the layers of liquid

around itself, which requires energy. Therefore, to

accelerate a body when it moves in a liquid, some additional

force is required in comparison with the one which would be



necessary when it is accelerated in a vacuum. Thus an

object in a liquid behaves as if it had a mass m + δm

greater than its actual mass m. The excess δm is the

“added mass” we talked about back in Chapter 15 when

discussing the motion of bubbles in water. For our snowball

moving in helium, the corresponding correction turns out to

be 15m0. Finally, the mass of the snowball itself is the

product of its volume and the density of solid helium,2 which

gives 32m0.

Figure  2. Local pressure as a function of the distance r to the He
+

 ion at

standard atmospheric pressure (solid curve) and at an external pressure P0

equal to 20 atm (dashed line). The dotted curve is obtained by vertically

displacing the solid curve.

Thus, summing up all three terms, we find that the mass

of a positive ion moving in liquid helium is 75m0 — a value



approximately equal to the value found from the analysis of

experiments. In the above discussion, we used the concepts

of classical physics, which easily describe the motion of

positive charges. However, for negative charges, everything

turns out to be much more complicated.

And How Is the Carrier of a Negative Charge

Arranged?

We have already pointed out that liquid helium in the

equilibrium state does not contain free charges. If an

electron is forced into it, then the latter will cause local

shocks. To talk about this, let us digress and discuss the

electronic structure of atoms. There is an important law in

the quantum world: this is the Pauli exclusion principle,

which does not allow two electrons to be in the same

quantum state at once (see Chapter 22). For example, the

helium atom has two different states with the same

minimum energy, which are occupied by two electrons.

There are other energy states for electrons, but they

correspond to much higher energies (minimum 20 eV), and

they remain unfilled. Thus it is impossible to create a He– ion

by adding a third electron to the neutral helium atom. And

yet, being accelerated to relatively modest energies of 0.5

eV, electrons penetrate through the surface into the bulk of

liquid helium!

Three Italian physicists, G. Careri, U. Fasoli and F. S.

Gaeta, suggested that when an electron penetrates into the

volume of liquid helium, the latter does not at all try to

“adjust” to a free energy level in one of the atoms, “paying”

20 eV for this. No, it simply remains itself, and pushes the

surrounding helium atoms apart, creating a cavity for itself

and spending only 0.5 eV for this (Fig. 3). The resulting

“bubble” is the carrier of the negative charge.



Figure 3. Due to the laws of the quantum world, an electron cannot get too close

to helium atoms. It pushes away the atoms and generates a kind of cavity

around itself.

What is the radius R of this bubble? Its size is due to the

balance between the forces of surface tension and the

pressure of an electron on the surface. On the one hand, the

formation of a bubble requires the expenditure of energy E1,

which is greater the larger the bubble volume (surface

energy, see Chapter 6). On the other hand, an electron in a

bubble is continuously moving and has a kinetic energy E2,

which, due to the uncertainty principle, is greater the

smaller the bubble is. The bubble radius R will be such that



it minimises the total energy E1 + E2. It is easy to estimate

energies E1 and E2. The first value is E1 =4πσ R2, where σ is

the surface tension of liquid helium. The energy E2 can be

found from the uncertainty principle (see Chapter 22):

according to it, the electron momentum p = meν is

approximately ℏ/R, so the kinetic energy E2 = meν2/2 turns

out to be of the order of ℏ2/(2meR2), where ℏ is Planck’s

constant, me is the mass of an electron and ν is its speed.

By minimising the total energy E1 + E2, one can find that in

a state of equilibrium R4 ≈ ℏ2/(meσ). An accurate calculation

gives the value of R ≈ 2 nm for the bubble radius. It

practically does not have its own mass, because the

electron mass is negligible compared to the added mass δm

=2πρR3/3 (see Chapter 15), where ρ is the density of liquid

helium at ordinary pressure. Here, it should be noted that

the electron, like the He+ ion, also polarises the helium

atoms around the bubble, so the mass of the “retinue”

accompanying the bubble when it moves in an electric field

should be added to δm. However, due to its large radius

compared to the snowball, the effect of polarisation of the

surrounding helium is weak, and the corresponding mass

turns out to be negligible compared to the added one, δm =

245m0, which determines the effective mass of the negative

charge carrier in liquid helium.

The Effect of Pressure

What happens if liquid helium is subjected to external

pressure? First of all, we are interested in carriers of positive

charges, our famous “snowballs”. The higher the external

pressure P0, the faster the pressure of 25 atm is reached

near the He+ ion (Fig. 2). As a result, the size of the



“snowball” becomes larger and larger with increasing

external pressure (curve r(P0) in Fig. 4).

What happens this time, with an increase in external

pressure, for a bubble that is a carrier of a negative charge?

Like any other bubble, it contracts with increasing external

pressure (Fig. 4, upper curve). When P0 reaches about 20

atm, the bubble radius R(P0 = 20 atm) becomes equal to

the radius of the snowball r(P0 = 20 atm) = 1.2 nm. One

might think that with a further increase in pressure, the

bubble will continue to shrink, and R will decrease. But not

at all! The point is that the total pressure on the bubble

surface actually turns out to be greater than the external P0

since it is necessary to add the induced pressure to it due to

the attraction by the electron of the liquid helium atoms

polarised by it from its “retinue”. It turns out that at an

external pressure of 20 atm, the pressure on the bubble

surface reaches those 25 atm that are necessary for the

solidification of helium. Thus, the bubble surrounds itself

with a shell of solid helium and becomes a kind of ice “nut”,

inside which an electron moves randomly! A further

increase in external pressure leads to a thickening of the

“shell” outside, up to the complete solidification of liquid

helium. The inner radius of the “nut” practically does not

change when the pressure rises above 20 atm. Thus,

charged bubbles in liquid helium are the centres of its

freezing as the external pressure approaches the critical 25

atm. Remember how the steam bubbles in the kettle serve

as the nucleus for boiling.



Figure 4. Evolution of the radius r of the positively charged “snowball” and of the

radius R of the negative bubble in liquid helium as a function of the external

pressure P0.

Let us address a few more words to what happens at

pressures above 25 atm with charge carriers in solid helium.

They remain the same: bubbles with a negative charge,

inside which an electron moves, and He+ ions, whose

“snowballs” are now infinitely large. It is clear that the

mobility of charge carriers in solid helium is much lower

than in its liquid phase. Could you imagine that helium had

such amazing properties? As Lev Landau noted, the quirks

of helium open a window to the quantum world for us.

1
 It is reminded that 1 atm, a unit of pressure, corresponds to 100 kPa.



2
 This helium density is about 1,800 kg m

–3
, under a pressure of 7 million

pascals (70 atm). This value is about 14 times more than at the standard

atmospheric pressure (1 atm) when the helium density is 125 kg m
–3

.



Chapter 27

MRI Looks Inside Us

“I hold a mirror up to you, where you will see what’s deep

inside you…” speaks Shakespeare through the lips of

Hamlet. Modern medicine has numerous resources to

monitor what is happening inside the human body. For

example, for more than a century, X-rays have been used to

scan it, and organs and tissues are currently examined

using ultrasonic waves. More recently, another discovery

has revolutionised medical diagnostics — magnetic

resonance imaging (MRI).

The Invention of MRI

MRI is based on the phenomenon of nuclear magnetic

resonance (NMR), that is, the ability of some nuclei, when

placed in a magnetic field, to absorb radiation of a certain

frequency.

The first signals of NMR were recorded in 1946

independently by two groups of American physicists led by

Felix Bloch (1905–1983) and Edward Purcell (1916–1997).

At that time, researchers faced enormous technical

difficulties, and they had to create on their own all the

necessary equipment for their laboratory experiments. For

example, the magnet used in Purcell’s experiments was

taken from a recycled appliance at the Boston tram

company! In addition, it was incorrectly calibrated so that



the actual magnetic field was stronger than the one

required to resonate at 30 MHz generated by the RF

transmitter. Therefore, Purcell and his young collaborators

failed to get the desired signal. After several days of

unsuccessful experiments, an extremely disappointed

Purcell resigned himself to defeat and turned off the current

supplying the electromagnet. While the magnetic field was

decreasing, the researchers looked sadly at the oscilloscope

screen, on which they had hoped to see the signal for days.

Since they did not turn off the radio frequency generator,

when the value of the decreasing magnetic field

nevertheless reached a value corresponding to the

resonance, the expected signal was briefly displayed on the

screen. For the discovery of the phenomenon of NMR,

Purcell and Bloch in 1952 shared the Nobel Prize in Physics.

Magnetic Moment and NMR

Not all nuclei are suitable to realise the occurrence of NMR.

In this chapter, special attention will be paid to hydrogen

nuclei (protons), which yield a significant part of the mass of

the human body. For us, it will be important that these

nuclei have a magnetic moment (see Chapter 22).

What is the mechanism underlying atomic magnetism?

The clearest example is an electron orbiting around a

nucleus (Fig. 1). It is equivalent to an electric current in a

metallic loop, and therefore it generates a magnetic field. In

addition, when exposed to an external magnetic field, it will

react in a certain way — how? We will see later.

The magnetic moment of a particle is not necessarily

related to its rotation around an external point. The electron,

proton and neutron all have their own magnetic moments,

called spin. The word “spin” is synonymous with the verb

“to rotate”. This is because Louis de Broglie once believed

that the spin of particles is associated with “a kind of

internal rotation”. However, such “internal rotation” has not



been found in nature. Today physicists believe that an

electron, despite having a spin, is point-like and has no

internal structure. Therefore, the spin of an elementary

particle should be better perceived as its innate property,

such as mass or charge.

The vector of the magnetic moment in the microworld

obeys the rules of quantum mechanics. According to them,

when a particle is placed in an external magnetic field, the

component of the magnetic moment parallel to the field can

take on only a finite number of values. In particular, for the

spin of the proton (as well as for the electron and neutron),

only two of its projections are possible (see Chapter 22): the

magnetic moment μ can be oriented relative to B only

parallel to the field, which is energetically more favourable

or antiparallel (Fig. 2). The difference in energies

corresponding to these two directions is

Figure  1. An electron rotating around the point O with speed v creates a

magnetic moment parallel to the axis of rotation.



Figure 2. Possible states of the magnetic moment of a proton in a magnetic field.

In the state of equilibrium, it is either parallel (with a certain probability) or

opposite (with a lower, temperature-dependent probability).

It is this value of ΔE that is measured by irradiating the

sample with an electromagnetic field of the appropriate

frequency.

The Principle of Proton NMR Spectroscopy

Let us consider a proton initially in the state with its

magnetic moment projected along an applied constant

magnetic field. When irradiated with an electromagnetic

wave of the corresponding frequency, it can absorb a

quantum of energy equal to ΔE, while passing into the state

with the opposite projection of the moment.

Thus, the condition for the absorption of such a quantum

of radiofrequency implies



where ν is the correspondent frequency and h = 6.63 ·

10−34 J · s is Planck’s constant. The requirement of that

frequency is not strict: absorption remains noticeable even

if the values of the right and left sides of the equation differ

slightly. But in a precise magnetic field B, when the radiation

frequency ν is swept, there is a sharp absorption maximum

(“peak”, usually called signal) around a certain frequency:

the resonance frequency in the physical sense (see

Chapter 11) (Fig. 3).

Figure 3. Energy absorbed by the magnetic moment of the nucleus, depending

on the frequency of the radiation incident on it.

This is the principle of operation of NMR spectrometry,

which basically studies the absorption spectrum of a

sample. Instead of changing the frequency, the field B can

be swept while the frequency is kept constant at a given

value. At the resonance condition, sharp maxima are

observed. For a real sample where many protons are

present, a slight distribution of the local magnetic fields is

related to the interactions of the protons between

themselves. This explains why the signal is not infinitely

sharp (see figure) but is rather a distribution of many “rays”

very close to each other. Other possible sources of the

broadening of the resonance line or a given “structure” of

the signal are the non-homogeneity of the magnetic field

over the whole sample or the diamagnetic effects related to



the electronic currents. These aspects will be better clarified

in the subsequent sections.

The magnetic moment of the proton is μ = 1.41 · 10−26 J

T−1. Thus, with an external magnetic field of 1 T, absorption

will occur at a frequency close to 42 MHz. The corresponding

wavelength λ =c/ν is 7 m, which is about 50 times the

radiation length in a microwave oven (see Chapter 16) and

belongs to the radiofrequency range.

The early NMR spectrometers, say in the 1960s, used

relatively weak magnetic fields. Today, many spectrometers

operate with fields so high that proton magnetic resonance

occurs at frequencies up to 900 MHz. Among other things,

strong magnetic fields have greatly improved the resolution

of the related spectra. Obviously, the first electronic devices

used by Bloch and Purcell to detect NMR were significantly

different from the modern ones, which operate by resorting

to powerful superconducting magnets (Fig. 4). However, the

measurement protocol remains basically similar: the coil

driven by a powerful generator creates a radiofrequency

electromagnetic field of the order of one-thousandth of a

tesla. The sample to be studied is positioned on the axis of

the coil perpendicular to the static magnetic field. As

already mentioned, the latter is generated by a “classical”

or superconducting electromagnet and is in the range of 1

to 23 T (see Chapter 24).



Figure  4. Medium-size NMR spectrometer for laboratory measurements. The

sample is placed in a tube that is often settled from the top of the device. The

liquid nitrogen reservoir on the right cools the superconducting magnet.

How NMR Spectroscopy Works

How to interpret a real NMR spectrum? In Eq. (1), the

nuclear magnetic moment μ and the applied magnetic field

B are present. Having found the resonant frequency, it is

possible to calculate ΔE… which, it would seem, is of little

interest! However, the magnetic field in the substance

acting on a given hydrogen nucleus is not exactly the

magnetic field that is applied to the sample. It is necessary

to take into account the corrections due to the presence of

other nuclei and electrons in the substance: depending on

the circumstances, they can represent a kind of “screen” for

the external field or, on the contrary, amplify it. Depending

on the motion of electrons in the immediate vicinity of the

nucleus under consideration, the resonance can shift in

frequency. Usually, to get rid of the magnetic field value, the

positions of the different resonance lines are given by a

dimensionless number: the chemical shift. Thus, chemical



shift becomes a characteristic of the environment around

the core.

For example, the NMR spectrum of ethanol CH3–CH2–OH

(Fig. 5) has three groups of signals. These groups

correspond to the hydrogen nuclei of the molecular groups

CH3, CH2 and OH, respectively. The complex structure of the

signals corresponding to the CH3 and CH2 groups is due to

the interaction between the magnetic moments of hydrogen

atoms belonging to the same group of a given carbon atom.

And that is not all! The relative intensity of the resonant

signals also provides information about how many nuclei are

involved in resonance. In addition, in a given molecule, the

hydrogen nucleus can be replaced by one of its isotopes,

which has a different magnetic moment, and thus

information about each nucleus of the molecule can be

obtained. This information involves the temperature: a

study of the spectra obtained at different temperatures

shows how the environment surrounding the core changes.

Thus, proton NMR spectrometry provides valuable

information about the local environment around hydrogen

nuclei, that is, it can serve as a method for elucidating the

structure of molecules and their identification (see Panel

above on this page). Recall that many other nuclei also have

a magnetic moment and are studied in laboratories: this is

the NMR spectrometry of carbon-13, phosphorus-31, etc.



Figure 5. NMR spectrum of protons in ethanol (CH3CH2OH). The three groups of

lines correspond to different protons, and therefore they have different chemical

shifts. The integration curve (upper curve) reports the relative intensities of each

group of lines. The zero origin for the chemical shifts corresponds to the

resonance of the protons in tetramethylsilane Si(CH3)4, or TMS, that is frequently

used as reference. The chemical shift of 3 ppm means that the distance in hertz

of the signal from the reference (that of TMS) falls at 3 · 10
−6

 from that

reference line.

NMR at work in oenology: SNIF technology

NMR serves not only chemists but also connoisseurs of

good wine! It can be used to determine the origin of the

wine — this method is called SNIF. It was assumed that

this abbreviation stands for Specific Natural Isotope

Fraction (a specific fraction of natural isotopes), but it

sounds close to the English word “sniff”. NMR allows you

to “smell” the wine in some way.

The SNIF method was invented by chemists Gérard and

Maryvonne Martin in Nantes in the 1980s, initially to

determine whether sugar was added to wine (see Chapter

14). In addition, this method provides information on the

geographical origin of ethanol! Indeed, in different

regions, the processes of photosynthesis and metabolism



for hydrogen (1H) and its isotope deuterium (2H) proceed

differently, which is how the specific NMR spectrum allows

one to judge the origin of grapes. The magnetic moment

of deuterium is less than that of hydrogen, thus the

chemical shifts of their NMR signals are different. By

measuring the intensity of the signals, the amount of

deuterium is calculated, compared with the available map

of the distribution of deuterium in wine-growing regions,

and thus an idea of the origin of the wine is obtained. In

nature, the proportion of deuterium is very small and is

measured in parts per million (ppm). It is 90 ppm at the

South Pole and an average of 160 ppm at the equator.

Note that on Venus it is 16,000 ppm, that is, hydrogen

there contains 1.6% of deuterium.

The origin of wine is indicated by another factor — the

localisation of deuterium in various groups. Ethanol

molecule CH
3
–CH

2
–OH can turn into CH

2
D–CH

2
– OH or

CH
3
–CHD–OH or CH

3
–CH

2
–OD (here D stands for

deuterium).

By revealing the composition and origin of wines, the

SNIF method makes life difficult for fraudsters: it becomes

hard to add sugar, dilute wine or change the label!

Finally, it should be noted that NMR experiments can also

be carried out with a substance being in a solid state. For

example, valuable information can be obtained about

microscopic magnetic and electrical interactions in crystals.

However, these aspects are beyond the scope of this book.

Special Nuclear Resonance Method: The FID

Modern methods of NMR have become more effective: now

there is no need to change the radiation frequency or the

value of the external magnetic field. The action of the RF

field on the sample (leading to a resonant transition of the



nucleus between the two states) is limited to a finite period

of time: this is called an RF pulse. After the action of the

pulse, the field remains constant and equal to B. Nuclear

magnetic moments, which, before the impulse, were either

parallel to the field or directed oppositely, are unbalanced

by the impulse, and begin to rotate around with a uniform

speed (Fig. 6). This rotation around the direction of the field,

called “Larmor precession” (see Panel on page 387),

generates an electrical signal that can be detected.

Typically, the RF generator using the coil to excite the

magnetic moments is abruptly turned off to stop the pulse.

Then the radiofrequency receiver is instantly activated,

which uses the same coil, but this time in order to record

the signal associated with the precession of the nuclei. This

signal, due to the electromotive force induced by the “free”

precession of nuclei, is called Free Induction Decay (FID)

(Fig. 7). Then the signal is processed by a computer, and the

NMR spectrum is reconstructed on its basis. Thus, the same

information as when analysing the absorption of radiation as

a function of the frequency or intensity of the magnetic field

can be obtained much more quickly.



Figure  6. Precession of the magnetic moment. In the presence of the strong

magnetic field B and at sufficiently low temperature, a nuclear magnetic

moment can stay parallel to B. After the application of the radiofrequency pulse

perpendicular to B and having frequency equal to the resonance frequency, the

magnetic moment rotates around B with an angular speed which depends on B,

and it can take any angle dependent on the pulse duration. In the figure, two

possible angles of the magnetic moment with respect to B are shown.

Figure 7. Precession signal of nuclei as a function of time. The μy component of

the nuclear magnetic moment rotates at frequency ν0 (given by the formula hν0

= 2Bμ): its value is gradually damped due to relaxation phenomenon. The FID

technique measures generally the envelope of this signal (in dashes).



From NMR to MRI

After the discovery of Bloch and Purcell, NMR spectrometry

began to develop rapidly. Large NMR research groups have

emerged in France and Italy. French physicists Anatol

Abraham (1914–2011) and Ionel Solomon (1929–2015) and

Italian physicist Luigi Giulotto (1911–1986) founded world-

famous scientific schools in Paris and Pavia. Groups like

these were the driving force behind the launch of the

Ampère group, which contributed to scientific progress in

this field. NMR is widely used in solid-state physics,

chemistry, biology and metrology. And, of course, physicists

did not delay to begin the use of NMR in medicine. The first

two-dimensional image of two samples of water was

obtained in 1973 by the American chemist Paul Lauterbur

(1929–2007). In 1976, American scientist Raymond

Damadian (1936–) presented the first NMR image of an

animal tumour. Today, many hospitals are equipped with

MRI machines for medical diagnostics (Fig. 8).

Principle of NMR Imaging

Let us describe the principle of image formation using MRI.

This method, using a magnetic field inhomogeneous in

space, was proposed by Paul Lauterbur (Fig. 9) in 1973. As a

result, the resonance frequency of the nucleus, which

depends on the value of the field B, turns out to be

dependent on the position of the nucleus in space.



Figure  8. Commercial MRI machine. The patient is placed inside the working

cylinder.



Figure 9. Paul Lauterbur (1927–2007). In 2003, he was awarded the Nobel Prize

in Medicine for his contribution to the development of MRI.

Precession at the heart of NMR

The term “precession” in mechanics means a change in

the direction of the angular momentum vector or, more

simply, the direction of the axis of rotation of a rotating

object. For example, the Earth rotates on an axis that

shifts over time, resulting in a shift in the equinox dates.

The top, shortly before falling, also demonstrates the

phenomenon of precession: its axis of rotation deviates

from the vertical (see Chapter 17).

Let us return to the subject of this chapter, the nuclear

magnetic moment. A suitable representation of a certain

atom is given by a punctual electric charge rotating



around a fixed charge of opposite sign because of the

effect of the electrostatic attraction (Fig. a)).

Let this charge also be affected by a magnetic field B

(Fig.  b)). Now, in addition to the electrostatic force of

attraction to the stationary centre, the moving charge is

also affected by the Lorentz force, directed perpendicular

to the field and the velocity vector and equal in

magnitude to B · v · sinα, where α is the angle between B

and v. In terms of the vector product (see Chapter 4), the

Lorentz force can be written as F = qv × B. This

expression is reminiscent of the Coriolis force that

appears when writing the equations of motion for a body

in a reference frame that itself rotates around an axis

with an angular velocity Ω. As we already know, in this

case, it is necessary to add a fictitious force to the

balance of forces acting on the body, equal to mv × Ω,

where Ω is the angular velocity vector parallel to the

rotation axis (see Chapter 4). The expressions for the two

forces, Coriolis and Lorentz, are very similar, specially if

the vectors are parallel. In this case, you can even do a

trick so that both forces compensate for each other! For

this, it is enough to choose Ω = −qB/m. In other words, it

is necessary to switch to a coordinate system that rotates

around a vector with an angular velocity of −qB/m. In this

frame of reference, the magnetic field and the Lorentz

force cancel out, and everything happens as if the charge

A experiences only an electrostatic attraction. That is, its

orbit in a rotating frame of reference turns out to be

stationary, while in a fixed coordinate system it rotates

with an angular velocity qB/m. And the magnetic moment

rotates with it. So much for the precession! This result

remains unchanged in quantum mechanics: the magnetic

moment of a spin in a magnetic field is also subject to

precession.



Larmor precession. (a) The charge q rotating around the fixed point induces a

magnetic moment. (b) If an external magnetic field B is applied, the Lorentz

force can be compensated by the Coriolis force if one refers to a rotating

frame of reference. In this frame, the magnetic moment is fixed. At variance,

it rotates for a motionless observer.

Although there is precession in the system we just

studied, it does not affect a magnetised rod (like a

compass needle)! While in a magnetic field, being

deflected from its equilibrium position and released

without any initial velocity, the magnetic rod will oscillate

without rotating around the field. In the end, its vibrations

will damp out due to friction, and the rod takes the South–

North direction.

To deal with the new problem statement, consider a

simple one-dimensional case with groups of small spheres

filled with water, located along the x-axis (Fig. 10). With a

uniform magnetic field, they all give a signal at the same

frequency. Now suppose that the additional coils create an

x-dependent magnetic field, that is, the magnetic field has a

gradient. Then the NMR signal for different groups will

appear at different frequencies. For example, for five groups

of spheres, a set of five absorption maxima is obtained. It is

important that the intensity of each of them is proportional

to the number of spheres participating in the resonance,

that is, to the corresponding amount of water. Since the field



gradient (i.e., the derivative dB/dx) is known, it is possible to

establish an accurate correlation between the resonant

frequencies and the position of the corresponding spheres in

space. Thus, various signals can already be tied to the

location of their sources in space and to judge the relative

content of hydrogen along the x-axis. By creating field

gradients along different axes, more complex distributions

of hydrogen atoms can be analysed.

MRI applies the same principle, only in three dimensions!

However, in space, everything turns out to be much more

complicated than our one-dimensional model. To visualise

the density distribution of hydrogen requires powerful

computers to manipulate radiofrequency fields. It took years

of research to improve the design of the magnetic field

profile and develop methods for processing the received

NMR signals. In a very simplified way, we can say that

computer processing makes it possible to display the

distribution of hydrogen in space: the intensity of the signal

emitted by a certain area of space is proportional to the

number of hydrogen atoms in this area, which makes it

possible to obtain information about the local density of

tissue. Through the use of tomography methods, the

patient’s body is “sliced” along “sections” in such a way as

to obtain a three-dimensional picture of one or another

internal organ (Fig. 11).



Figure  10. An example of NMR in one-dimensional space. Spheres filled with

water in different quantities are located at different points in space. (a) By

applying a uniform magnetic field, we obtain a single resonant NMR signal at the

frequency determined by formula (2), that is, ℏw0 = μB0. (b) In the presence of a

field gradient, resonance signals from different points of the sample occur at

different frequencies, and their intensity depends on the number of excited

protons. Due to this, the NMR spectrum (that is, the collection of absorption

signals) reproduces the location of the spheres filled with water in space.

Spin Echo

The materials under study usually contain inhomogeneities.

It follows from this that the precession frequency for

different nuclei is different, therefore, the FID signal, after

the pulse is applied, becomes more and more distorted over

time. This distortion can be corrected using a special

technique called “spin echo”. Its essence is as follows. The

radio frequency pulse of duration t1 created at the initial

moment of time forces the magnetic moments of the spin to

line up perpendicular to the external magnetic field. After

the time tD has elapsed (during which a certain change in

FID has occurred), a second RF pulse is applied, twice the

duration, namely 2t1. This pulse reverses the magnetic



moments in the opposite direction (since two 90° turns are

equivalent to inverting the direction). Magnetic moments,

which rotated more rapidly during the time interval tD and

therefore were “ahead”, now lag behind. However, as they

continue to spin more quickly, they soon catch up.

Therefore, during the next time interval tD, all magnetic

moments are aligned. Thus, a signal that has been altered,

like an echo, is restored to its original form.

Figure  11. Tomography of the brain. Tomography is a three-dimensional

generalisation of the example shown in Fig. 10. It allows you to get the same

result as if the object (here, the brain) were dissected in layers, but bloodless,

painless and without tissue damage!

Striking Pictures

To appreciate MRI, it should be understood that it allows you

to get real images of human organs, and not their

“shadows”, as in images obtained using X-rays (indeed, the

receiver collects X-rays after passing through the body,

where they are more or less absorbed by bones and

tissues).



The human eye is sensitive to electromagnetic waves in

the visible region (see Chapter 3). Unfortunately (or

fortunately), the eyes are not able to perceive the radiation

of the internal organs of our bodies: we see only the outer

shell. Under NMR conditions, nuclei emit electromagnetic

waves in the radiofrequency range (at frequencies much

lower than visible light). Therefore, such waves, passing

through the body, reach the measuring device, which, in

combination with a high-performance computer, converts

the received signals into a visible image already available to

our eyes.

Physicists and mathematicians have largely contributed

to this amazing achievement in medicine by understanding

the quantum mechanical properties of nuclear magnetic

moments, the theory of the interaction of matter and

radiation, as well as the creation of digital electronics and

the principles of mathematical signal processing.

The advantages of MRI over other diagnostic methods are

numerous and significant. The operator easily visualises the

section of the patient’s body required for analysis; it can

also register signals from several cross-sections

simultaneously. In particular, with the necessary adjustment

of the magnetic field gradients, the image can be obtained

at the desired angle, which is difficult for fluoroscopy. In

addition, the researcher has the ability to limit the field of

observation, thereby visualising a specific organ (or part of

it) with high resolution.

An additional advantage of MRI is the ability to measure

the viscosity of a liquid directly at the research site. For this,

a spin echo is used — a signal that is influenced by the

speed with which the nuclei move in the field gradient. As a

result, it becomes possible to measure the flow rate of blood

or other body fluids.

By varying various parameters, for example, the length

and frequency of pulses or the time during which the

nuclear response accumulates, the operator can change the



nature of the deviations of the nuclear magnetic moments

and, thus, increase the image contrast in search of

anomalies. By choosing appropriate RF coils, image

resolution can be detailed down to dimensions as small as 2

μm in width and 200 μm in depth. With a suitable resolution,

information on the concentration of various chemicals in the

body can also be obtained.

See the Heartbeat… and Read Minds

To obtain a usable image, you must successfully overcome

the most difficult problems associated with the sensitivity of

the device, that is, the signal-to-noise ratio. To do this, a

plurality of FID or spin echo signals are collected together.

This requires a fairly long time: usually tens of minutes.

In 1977, the English physicist Peter Mansfield (in 2003, he

shared the Nobel Prize with Paul Lauterbur) developed a

special combination of field gradients. It does not provide

particularly good images, its main quality rather being its

extraordinary speed. Starting with one FID signal, it provides

an image in about 590 ms! Today, even a heartbeat can be

visualised with this technique (the so-called planar echo).

Finally, we will mention functional MRI techniques, which

open the way to a deeper understanding of our cognitive

processes. They can be used to detect active areas of the

brain (activity associated with changes in blood flow).

Could the doctors of antiquity suppose that someday it

would be possible to penetrate into the innermost depths of

the human body and consciousness?



Chapter 28

Semiconductors and Nanophysics

Nowadays, touchscreen tablets, digital players, mobile

phones and laptops are becoming more powerful, functional

and miniaturised. The underlying technology is based on the

use of semiconductor materials that make electrons obey

the movements of our fingers.

Let us address the laws governing the nanoworld.

Miniaturisation of Technology

Over the past several decades, we have been dealing with

devices that accumulate more and more functions in a tight

space. First, let us recall what the technologies of our

ancestors were…

Our journey begins in the 17th century — the great era of

nascent technology when Christian Huygens improved the

clockwork mechanism and Blaise Pascal invented the

calculating machine. This mechanical device laid the

foundation for the creation of more and more advanced

computers. The desktop apparatus that the authors of this

book encountered around 1960 was already electric; it was

no less bulky than Pascal’s machine (Fig. 1). More

sophisticated instruments at that time already knew how to

extract the square root.

The first step towards the electronic era was taken with

the development of vacuum tubes. The first giant



computers such as the Colossus in England and ENIAC in the

USA were equipped with these devices, which strongly

heated and had a short life. Built in the 1940s, these

computers had thousands of vacuum tubes that needed to

be replaced regularly! The most typical example is a triode,

an electronic tube, developed in 1906 by the American

inventor Lee de Forest (1873–1961).

Figure 1. Electromechanical calculator Olivetti “Divisumma 24”, made in Italy in

the 1960s (case removed to show the mechanism and the electric motor at the

back of the unit). The machine performed addition, subtraction, division and

multiplication, and printed the result. It weighed almost 15 kg.



Figure  2. Until 1947, the triode was several centimetres high and had a short

service life. The filament cathode emits electrons that are attracted by the

anode.

The glass vacuum cylinder contains the cathode, which

emits electrons when heated, and the anode, which traps

these electrons insofar as an interposed grid allows them to

pass (Fig. 2). The grid facilitates or prevents the passage of

electrons, depending on the electric potential applied to it:

in this way, it is possible to regulate, including to amplify,

the potential difference between the cathode and the

anode.

The triode takes advantage of the ability of electrons to

travel in vacuum (and thus create an electric current in it),

provided that they are emitted from a very hot cathode. It is

impossible to establish a unidirectional electric current in a

metal: if it can flow in one direction, then, when the sign of

the potential difference is reversed, it can always flow in the

other (see Panel on page 399). In a triode, on the contrary,

the movement of electrons can be controlled. To prohibit

them from coming back and to impose one-way traffic, it is



enough to remove the grid: electrons will rush from the

cathode to the anode, but not in the opposite direction.

Transistors and Moore’s law

In 1965, American engineer Gordon Moore, one of the

founders of Intel, formulated a law that later became

famous. According to him, the number of transistors

placed on a microprocessor (components that perform

arithmetic and logical operations) doubles every two

years.

Moore’s law was later confirmed with surprising

accuracy (see figure), largely because manufacturers

took it as a guide in the development of their products.

Obviously, this exponential growth cannot last

indefinitely: the minimum size of a transistor is limited, at

least by the distance between atoms, which is a fraction

of a nanometre. In 2004, 100 million transistors fit into 1

cm2, that is, one transistor occupied an area of 106 nm2.

According to Moore’s law, atomic dimensions will be

reached in the year 2004 + 2x, where x is the root of the

equation 2x = 106. From this, we find x = 6/log2 ≃ 20

years. Thus, Moore’s law could formally operate until

2044. In fact, it is likely that it will only be implemented

until 2030.



The number of transistors per 1 cm
2
 of the microprocessor, depending on the

year of its release. The dots correspond to the processors actually marketed,

the line — Moore’s law.

From Triode to Transistor

The development of miniaturisation began in 1947 with the

invention of the transistor by American physicists Walter

Brattain (1902–1987), William Shockley (1910–1989), and

John Bardeen (1908–1991) (whom we already met in

Chapter 24). For this discovery, in 1956 they were awarded

the Nobel Prize in Physics. The term “transistor” is an

abbreviation of the expression “transfer resistor”.

Similar to the triode, a transistor is a three-terminal

device (Fig. 3). Here, the electrons, instead of flowing in the

vacuum are moving in a semiconductor, namely an insulator

where impurities have been added so that it can transport

electric current. A terminal (called an emitter or source)

emits electrons, another one accepts them (the collector or

drain) and an intermediate element (the base or grid)



modulates the flow of the current. The transistor, in a similar

way to the triode of past times, can be used as an amplifier

(for instance, in the radio receivers), or it can modulate a

signal, as it does in the radio transmitter. It can also serve

as a switch in a logic circuit (in fact, computers manipulate

binary digits, the bits, that are encoded by the states up (1)

or down (0) of the electric voltage).

Figure 3. Transistor with individual inputs (most often, they are combined into

integrated circuits). Unlike the triode, their progenitor, heating is not required for

a transistor. It is also much cheaper and smaller in size.



Figure  4. Integrated circuits on a silicon plate. Hundreds of thousands of

transistors form complex circuits on a crystalline substrate. The intricate design

of transistors and their connections is obtained through a technological process

called lithography.

During the middle of the 20th century, the most used

semiconductor was germanium, while nowadays for the

electronic applications it is silicon. The impurities added to

the semiconductors are of various types, and they can be

classified in different ways. For this reason, different types

of transistors are known. The original transistor, the one of

1947, had a size of some millimetres. The size of transistors

has constantly decreased (see Panel on page 395), and

nowadays transistors are collected in a huge number in so-

called integrated circuits (Fig. 4). The familiar 5 cm long USB

drive, with which we work quite often, can contain 4 billion

transistors and stores up to 1 GB of data (8 ∙ 109 bits).1



Controlled Electrons in Semiconductors

Let us briefly explain how semiconductors make electrons

docile. In a solid consisting of a large number of atoms, the

energy levels allowed for electrons are broad bands (zones)

(see Panel on page 399). Electrons occupy these bands,

starting with the lowest energies. The last fully filled band

(called the valence band) and the next, at least partially,

empty band (called the conduction band) are separated by a

more or less wide band gap, which is called the gap.

For industrial use, silicon is doped with impurities, that is,

atoms of other elements are introduced into its crystal

lattice. These impurities are of two types. Impurities of the

first type (for example, phosphorus atoms) willingly get rid

of their valence electrons. These electrons fill the

conduction band, and the semiconductor becomes a

conductor — much like a metal if doped enough (see Panel

on page 399). A semiconductor doped in this way is called

n-type (from the word “negative”, since the charge of

electrons is negative). Impurities of the second type (for

example, boron atoms), on the contrary, willingly accept

free electrons in the crystal to their outer energy shells.

These electrons are taken from the valence band, leaving

unfilled states in it, the so-called holes. Under the influence

of an electric field, an electron in the valence band can

“jump” from its state to the vacant unfilled one, the next

electron will jump in its place, and this leapfrog will continue

further. What is happening can be imagined as if the hole

itself carried a positive charge and moved in the direction of

the electric field. As a result, in this case, the semiconductor

becomes a conductor! A semiconductor doped in this way is

called a p-type semiconductor (from the word “positive”). In

both cases, the semiconductor at any point remains neutral:

mobile charges are compensated by the charges of the ions.

It is convenient to represent the state of a semiconductor

on a two-dimensional diagram (Fig. 5), where the y-axis is



energy, and the x-axis defines the direction inside the

crystal. This simplified interpretation allows to give an idea

of the main processes taking place in it. The impurity levels

correspond to the states inside the forbidden band,

otherwise the electrons or holes introduced by them could

move. The Fermi energy εF (also called, the Fermi level) is

the border between occupied states and states at higher

energy, which are empty at absolute zero. At finite, not too

high temperature, some of the electrons move into the

conduction band, and some of the holes move into the

valence band. Their amounts are usually small without

doping. With the introduction of n-type impurities (n-

doping), additional electrons appear in the conduction band,

so the Fermi energy, which increases with their

concentration, approaches the conduction band (Fig. 5(b)).

Conversely, p-doping shifts the Fermi energy down, closer to

the valence band (Fig. 5(a)).

Figure  5. The bands of a p-type (a) and n-type (b) doped semiconductor. The

introduced impurities (represented by squares) capture electrons that were

previously in the valence band in the case of p-type doping (a). In the case of n-

doping the impurity atoms donate electrons to the conduction band (b), creating

additional charge carriers and thereby considerably increasing the

semiconductor conductivity.

Conductor, insulator and semiconductor



Some materials, such as metals, are conducting, while

others are insulators (dielectrics), do not conduct electric

current (or do so very poorly). Let us consider how they

differ in terms of their band structure.

In a metal, the conduction band is partially filled. If we

apply a potential difference ΔU to the ends of the metal

wire, the situation becomes non-equilibrium: the energy

levels shift by the value eΔU, and the electrons rush to

where the energy is lower… just like children slide down

an ice slide! Thus, a current arises that flows against the

direction of the field (the electron charge −e is negative).

The fact that only electrons in the conduction band

contribute to the electric current seems somewhat

unexpected. Let us try to understand why this is so. For

the current to flow, there must be more electrons moving

in one direction than those moving in the opposite

direction. However, symmetry requires that, in the

absence of an applied field, the number of states with a

positive velocity be the same as those with a negative

one. Therefore, for the emergence of a current, it is

necessary that the imposition of an electric field breaks

this symmetry and the states occupied by electrons

corresponding to a positive velocity are greater than the

occupied states with a negative velocity. In the valence

band, all the states are already occupied, with one

electron in each (in accordance with the Pauli exclusion

principle (see Chapter 22)). Therefore, here, even by

applying an electric field, the symmetry cannot be

broken, and the average velocity of the electrons is

necessarily zero. Thus, the electrons belonging to the

valence band do not participate in charge transfer and do

not contribute to the current.

In dielectrics, the gap between the valence band and

the conduction band is large. As a result, the latter

remains practically empty, and the sample does not

conduct an electric current, at least at low temperatures.



There is also an intermediate category of substances

located between the dielectric and the conductor. These

are semiconductors, the ones that radically changed our

daily life in the middle of the last century. A

semiconductor is a dielectric in which the valence and

conduction bands are separated by a gap narrow enough

to allow the electrons to transit under the influence of

temperature. At a normal temperature of about 300 K,

electrons pass from the valence band to the conduction

band, which, therefore, is no longer empty. Thus, the

conductivity, which is absent in such substances at

absolute absolute zero, becomes noticeable when the

temperature rises to room temperature.

p–n Junction

The simplest semiconductor electronic device is a p–n

junction, which consists of two connected semiconductors

with different types of conductivity: electron and hole. In the

contact area, such a connection becomes a place of charge

accumulation (Fig. 6). Indeed, the concentration of electrons

and holes in space cannot change in a discontinuous

manner. Even in the case of such discontinuity, the diffusion

of electrons and holes will restore continuity (similar to how

thermal conductivity between two different temperature

zones leads to a continuous temperature distribution, see

Chapter 18). Thus, due to the separation of charges in the

contact area, a strong electric field arises.

The p–n junction has a remarkable property: it only

passes current in one direction. Suppose we need current to

flow from an n-type semiconductor to the p-region (Fig. 6).

In the p-type region, the current is carried by holes, which

must move away from the contact. In the n-type region, the

current is carried by electrons, which must also move away

from the contact. If a stationary current was established in



such a circuit, then there would soon be no free charges

near the contact, and the current in the circuit would soon

disappear. Thus electric current cannot flow from the n-type

region to the p-type region2. On the other hand, under the

influence of the potential difference applied by the battery,

the current can flow from the p-type region to the n-type

region: holes in this case move to the n-type region, while

electrons move to the p-type region, at the boundary of

which they annihilate (recombine). They will be replaced by

other electrons and other holes that appear in the circuit

under the influence of the battery separating the charges.

Figure 6. (a) Variation of the positive and negative mobile charge density as a

function of the distance from the p–n junction. The requirement of a continuous

variation of the density implies the formation around the junction (b) of an

electrically charged region where the mobile charges do not compensate the

fixed ones. As a consequence, a potential difference between the two sides of

the junction arises.

Thus a p–n junction only passes current in one direction,

such as a tube diode (a triode without a grid, which we

already talked about). In order not to invent a new name,

such a semiconductor device was simply called diode!

By choosing suitable semiconductors (e.g., gallium

arsenide, (GaAs)) and doping elements, it is possible to

make the recombination between holes and electrons be

accompanied by strong light emission. Such light emitting

diodes (LEDs) were recently used as indicators of device

operation (Fig. 7), and today you see them everywhere in

garlands, car headlights and other low-power lighting

fixtures (Fig. 8). For this breakthrough in artificial light



technology, the 2014 Nobel Prize in Physics was awarded to

Japanese scientists Isamu Akasaki, Hiroshi Amano and Shuji

Nakamura.

Photovoltaic Effect and Solar Panels

Other types of p–n junctions, on the contrary, instead of

emitting light, are able to convert the light falling on them

into an electric current — this phenomenon is called the

photovoltaic effect.

This property is applied in photovoltaic cells involved, for

example, in solar panels. Suppose that one photon of

sufficient energy emitted by the Sun hits an n-type

semiconductor. Its absorption leads to the formation of an

“electron–hole” pair. There is the possibility that the hole,

before recombining with the electron, is carried away by the

electric field (E = −dV/dx, in the immediate vicinity of the

transition in Fig. 6) to the p-region, while the electron

remains in the n-region. Similarly, if a photon creates an

electron–hole pair in the p-region, then the electron has a

good chance of going to the n-region, while the hole

remains in the p-region. Thus the absorption of photons

leads to charge separation: the accumulation of holes in the

p-region, and electrons in the n-region. These charge

carriers are just waiting for the opportunity to escape from

the p–n junction: electrons will go in one direction, holes in

the opposite direction.



Figure 7. p–n junction in a state of equilibrium. Stationary charges (impurity ions

that donated or received an electron) are represented by squares. The

conduction band is empty, except for a few moving electrons, indicated by

circles with a (–) sign. The valence band is full, except for a few moving holes,

indicated by circles with a (+) sign. In the area of contact between p- and n-type

semiconductors, electric charges accumulate (see Fig. 6). Thanks to these

charges, the Fermi energies on both sides of the transition are equalised.

Figure  8. LEDs operating on a p–n junction. Diodes used for lighting, unlike

incandescent lamps, emit only visible light.



Figure  9. Principle of photocell operation. The absorbed photons lead to the

formation of “electron–hole” pairs in the semiconductor. When an external

electrical circuit is connected (on the left), electrons are set in motion: an

electric current arises, which, for example, powers a light bulb.

The electromotive force generated by the solar cell (Fig.

9) is approximately 1V, and the current is approximately

1mA cm–2 of contact. Therefore, it is necessary to connect

many of these elements in series in order to obtain an

acceptable electromotive force, and also to connect many of

these contacts in parallel in order to obtain sufficient

amperage. Thus, the production of energy using solar

panels uses a large surface area, and the output energy is

relatively small — about 15% of the energy of the incident

light. Despite these disadvantages, solar energy is an

excellent alternative to fossil resources and is an

inexhaustible source (see Chapter 13). Researchers

estimate that 5,000 km2 of solar panels will be sufficient to

provide the current electricity needs of a large country, e.g.,

France (once the problem of storing the produced energy is

solved, of course). That value corresponds to the area of a



disc 80 km in diameter or to the roof area of 200,000

houses, 25 m2 each.

Electrons for All Occasions

The examples above show how semiconductors are

wonderful materials. They emit light, convert light into

electricity, amplify signals, and respect one-way traffic. The

use of semiconductors is not limited to electronics alone.

They are also used in optoelectronics, which is at the

interface of optics and electronics, an example of which is

LEDs, and which is becoming increasingly important as

fibre-optic communication develops (see Chapter 2).

Semiconductors are also used in combinations of mechanics

and electronics, such as Micro and Nano Electro-Mechanical

systems (MEMs and NEMs), for example, accelerometers

less than 1 mm in size, which are equipped with modern

smartphones.

From the Computer to the Quantum Computer

The modern computer is a descendant of Pascal’s computer.

Its two most important, complementary properties are

gigantic memory and the ability to execute programs,

namely to implement complex tasks defined by a sequence

of instructions. Various methods are used to store data,

using semiconductors (for USB sticks), magnetism (for hard

drives), or mechanical modelling (for compact discs), or a

combination of all of these technologies.

Programming is a science that basically was born in the

year 1936 when the English scientist Alan Turing (1912–

1954) published a 16 page paper in the journal Proceedings

of the London Mathematical Society. The article was strictly

theoretical and set the main lines for the structure of a

computer. Later on the theory was strongly improved by the

great Hungarian-American mathematician John von



Neumann (1903–1957). The main architecture of the

computer involves four major elements (Fig. 10).

First, the arithmetic logic unit, or data processing unit,

which performs basic operations; further, a control device

responsible for the sequence of operations; then a memory

containing both data and programs dictating to the control

unit calculations to be performed based on these data.

Finally, input and output devices enable the computer to

communicate with the outside world. The memory is divided

into operative (programs and data necessary during

operation) and permanent (programs and data that form the

basis of the device).

Figure 10. The von Neumann architecture.

Quantum Computer

The disadvantage of the von Neumann computer is its

“sequential” nature: various stages of calculations follow

one after another, and the next step is started only after the

completion of the previous one. One way to save time is by

introducing “parallelism”. Parallel computing is already

common in modern processors, but special hopes for their

widespread use are associated with the development of

“quantum” computers.

A quantum computer uses (or “will use”, or “could use”

— we are not yet sure which of these formulations to

choose!) the phenomenon of mixing quantum states.

Schrödinger’s cat in his cell provides an example of such a



mixture of states: the cat is both alive and dead at the same

time (see Chapter 22). By the end of the 20th century,

physicists realised that this phenomenon could become a

valuable resource for calculations in computers of

fundamentally new type. Instead of processing well-defined

bits of a state, a quantum computer processes “quantum

bits” (or qubits), the two states of which are somehow

mixed up. Quantum computing performed by such a

computer is a sequence of operations with quantum bits,

the state of which is recorded (measured) only when

required by the algorithm. Thus a quantum computer uses

parallelism not by dividing computations into pieces and

carrying them out by different processor cores but uses the

true parallelism inherent in quantum mechanics. In a way,

quantum computing allows you to consider both a dead and

a living cat at the same time! By working well with quantum

algorithms, a quantum computer can solve problems that

are too complex for conventional sequential computers.

A typical illustrative problem is searching in the phone

book for the name of a subscriber whose number is known.

Since the list of subscribers is given in alphabetical order,

searching without a computer takes, on average, time

proportional to their number N. A sequential computer we

are familiar with would also need time proportional to N,

albeit with a much lower proportionality coefficient. A

quantum computer, thanks to the way of operating

(scientists say “algorithm”) of the Indo-American computer

scientist Grover, would spend time proportional to the

square root of N. For large N, the time savings are

significant! Another wellknown quantum algorithm (Shor’s

algorithm) allows you to decompose numbers into prime

factors. This problem is very difficult for an ordinary

computer in the case of large numbers, so it underlies the

RSA encryption system, which is commonly used for

communication security.



Will a quantum computer work miracles anytime soon?

Unfortunately, today there are only the simplest versions of

quantum processors, which so far can only demonstrate the

possibility of implementing the above operations, for

example, identify one element out of four using Grover’s

algorithm (Fig. 11) or factorise integers but only two-digit

ones. So far, this can be done much better and more

cheaply without a quantum computer.

Figure  11. An example of a quantum processor with two qubits. This

superconducting circuit enables Grover’s algorithm to identify one item in a set

of four (like a telephone book reduced to four subscribers). Courtesy of Andreas

Dewes.

A Look into the Nanoworld

Designing a quantum computer requires the highest level of

technology. Practical creation of the nanostructures required

for this implies that we know not only how to make them

but also how to see them! Let us address four different

devices used for this:

• Scanning electron microscope, or SEM (Fig. 12). This

provides three-dimensional images of nano-objects with a

perspective effect, such as in photography. When

scanning, a beam of electrons passes over the surface of

the sample, which in response reflects electrons and emits

other electrons, X-rays, and light. All these particles and

waves, which are carriers of information about the

material and properties of the sample surface, are

analysed by a microscope. SEM does not achieve atomic

resolution.



• Transmission electron microscope, or TEM (Fig. 13). It is

much bulkier than the SEM, but it is capable of achieving

atomic resolution. In this case, an electron beam that has

passed through the sample is analysed to obtain an

image. Therefore, only thin objects can be studied with a

transmission microscope. If the object is not thin enough,

it would have to be cut into plates! For nanoobjects, this

delicate operation is not required.

• Scanning tunnelling microscope, or STM. This invention

by German physicist Gerd Binnig and Swiss physicist

Heinrich Rohrer, created in the IBM laboratory in Zurich,

earned them the Nobel Prize in 1986, 5 years after its

discovery. This is truly an amazing invention, as the

device is capable of “feeling” atoms with a needle (Fig.

14). In reality, the tip does not touch the atoms: it

approaches them at a distance of about 1 nm; in this

case, a tunnelling current begins to flow through the gap

(see Chapter 25). The distance from the tip to the atom

must be kept accurate to 0.1 nm, which means, among

other things, that the latter must be reliably protected

from the slightest vibrations. The STM device can reach

atomic resolution. On the other hand, it can provide only

the image of the surface of a solid sample: the second

atomic layer is not detected (Fig. 14). Finally, the material

to be examined must be a conductor.

• Scanning atomic force microscope, or AFM. Like a

tunnelling microscope, it “probes” the surfaces of solids

with a needle. The distance from the tip of the needle to

the surface is measured not by the magnitude of the

tunneling current, but by the force with which the surface

acts on the needle. The latter is determined using the

deflection of the cantilever, which is recorded by a laser

beam. Therefore, the substance does not have to be

conductive (see the example of the resulting image for

DNA molecules in Chapter 19).



Figure  12. Scanning electron microscope. You can see a sample image on the

screen.

Fantasy of Electrons in the Nanoworld

The nanoworld is the kingdom of strange physical laws.

These laws are strictly related to quantum mechanics,

particularly at low temperatures. We know that the atomic

energies are quantized, namely they can take only specific

values belonging to a discrete ensemble. The electric

resistance R of a small circuit as well is quantized at low

temperatures! It is reminded that in our world, being

macroscopic and relatively hot, electrical resistance is to a

great extent due to the interactions of the electrons with the

thermal vibrations of the crystal lattice and with the

impurities (see Chapter 24).



Figure 13. Transmission electron microscope.

The quantisation rule is particularly simple when one

refers to the conductance 1/R: this is increasing by steps, its

value being always an entire number of the quantity 2e2/h,

where h is the Planck’s constant. Let us clarify how the

conductance can be varied: one uses one electrode called

grid (by analogy with the one of the transistor) placed near

an object. Which object? We will just mention two types: the

quantum wires and the point contacts in semiconductors. A

quantum wire is a very narrow channel of very pure

conductor, with no impurities, and having a section of

diameter comparable to the de Broglie wavelength of the

electrons (see Chapter 22).

The tightness of the channel reveals the wave character

of the electron, which implies the quantization of the motion



of the electron along the transverse directions of the wire. In

ordinary conductors, due to the effect of the potential

difference, the electron moves by a sequence of steps from

one impurity to the other (see Fig.15(a)). The motion is said

to be “diffusive”. In a quantum wire, the electron

propagation is said to be “ballistic” (Fig. 15(b)): it is

somewhat similar to the propagation of an electromagnetic

wave in a waveguide (see Chapter 2). It displays the

occurrence of transverse motion schematised by a

trajectory with successive reflections. In reality, the motion

is quantized. Since the system is out of equilibrium, one

does not speak of quantum states but rather of modes, as

an analogy with the modes of the waveguides (see Chapter

2). By varying the electric potential of the gate (not reported

in Fig. 15), it is possible to let one or two or three or more of

the modes go across. Each mode contributes to the total

conduction, given by the contributions of the different

modes.



Figure 14. Scheme of operation of a tunnelling microscope. The needle is held by

a piezoelectric tube at a distance of approximately 1 nm from the test sample.

Tunneling current is amplified and then analysed.

The point contacts between semiconductors are

characterised by properties similar to quantum wires. The

electrical resistance of the system is controlled by means of

a “gate”, and, at low temperature, one detects steps in

conductance in correspondence to integer multiples of

2e2/h.



Figure 15. Motion of the electron due to the electric potential along the wire, as

dependent on its width l. (a) Ordinary conductor. The trajectory of the electron

can be schematised as a succession of steps from an impurity to another nearby.

The motion of the electron is said to be diffusive. (b) Quantum wire. The

trajectory of the electron is represented as a series of reflections against the

walls. (c) Quantum point contact.

Quantum Hall Effect

The main phenomenon displaying quantized electrical

resistance is the quantum Hall effect. In 1879, the young

American scientist Edwin Hall (1855–1938) discovered a

novel phenomenon. When an electric current is flowing in a

conductor in the presence of a magnetic field B

perpendicular to the electric field, the magnetic field

deflects the electrons. As a consequence, besides the

ordinary current along the x direction of the electric field, a

further current along the y direction arises perpendicular to

both the electric and the magnetic field (Fig. 16(a)). Thus

along the y direction the potential difference Vy arises, the

Hall voltage, which is related to the current Ix along the x

direction by the relation Vy = RxyIx, where Rxy is the Hall



resistance. This latter is proportional to the magnetic field B

and to the inverse of the number of carriers per unit

volume. Thus the Hall effect measures the concentration of

charge carriers, which is a relevant characteristic of

semiconductors.

Figure 16. (a) Block scheme of the experiment for the quantum Hall effect. (b)

Results of the experiment. The black curve showing the steps is the Hall

resistance Rxy. The other curve shows the ordinary resistance, which is almost

null.

The Hall effect does not display any quantum property

unless three conditions are verified: low temperature (a few

kelvin), strong magnetic field (about 20 T); finally the

electrons must form a two-dimensional gas. On increasing

the magnetic field acting on the device, then one observes

that the Hall resistance, instead of varying linearly,

increases by steps (Fig. 16(b)). The inverse of the data,

namely the value of the conductance, is integer3 multiples

of the quantity e2/h.

How does one create such an unusual object as a two-

dimensional electron gas? The method used in the early

experiments for the quantum Hall effect was to apply a

strong positive electric potential (by means of grid, an

object always present in nanophysics) onto the surface of

silicon.



The quantum Hall effect was discovered in the year 1980

by German physicist Klaus von Klitzing, thanks to the strong

magnetic field provided by a magnet from Grenoble,

represented a significant success of European scientific

research. In 1985, von Klitzing was awarded the Nobel Prize

in Physics.

An astonishing property of the quantum Hall effect is the

precision in yielding the value of the ratio e2/h = 25,812.807

Ω. The separation in between the steps, for instance, does

not depend on the purity of the sample. After 1990, the

quantum Hall effect has been used as a way to calibrate the

measurements of the electrical resistance.

Conclusion

In this chapter, we have recalled some technological and

scientific applications of nanostructures. We have also

mentioned very remarkable fundamental properties that

probably will drive relevant applications in the future, but

are also often studied in laboratories for their intrinsic

interest. For example, flux quantization in superconductors

allows one to measure extremely weak magnetic fields;

quantization of the resistance in the quantum Hall effect

leads to an extraordinarily precise measurement of the

quantity (e2/h).

It should be emphasized that, while making these

discoveries, researchers did not even think about their

possible future applications in practice. Scientists, when

talking about the importance of funding fundamental

science, often remind politicians of these truths. And

politicians, in turn, make claims to scientists that they

satisfy their curiosity without thinking in advance how future

results will affect scientific and technological progress.



1
 The data given refers to 2014 the year an earlier version of this book, Le

Kaleidoscope de la Physique, was first published; today, the volume of USB

drives can be terabits.

2
 Generally speaking, a very weak current can still flow from the n-region to the

p-region because in the former, there is a small concentration of holes, and in

the latter, electrons.

3
 In very strong fields, one can also detect steps of the conductance

corresponding to fractional multiples of e
2
/h.
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