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Preface

Density functional theory (DFT) provides the most widely
used models for simulating molecules and materials based
on the fundamental laws of quantum mechanics. It earned
its main inventor Walter Kohn a Nobel prize, and nowadays
plays a central role in a huge spectrum of applications in
chemistry, physics, and materials science. DFT has become
an interdisciplinary field as testified by the list of authors of
this book, coming from chemistry, physics, materials
science, mathematics, and scientific computing.

Quantum mechanics describes a system of N interacting
particles in the physical three-dimensional space by a
partial differential equation in 3N spatial variables. Hence,
standard numerical methods incur an exponential increase
of computational effort with N, a phenomenon known as
the curse of dimensionality; in practice these methods
already fail beyond N = 2. DFT overcomes this problem by
(1) reformulating the N-body problem involving functions of
3N variables in terms of the electronic density, a function
of 3 variables, (2) approximating it by a pioneering hybrid
approach which keeps important ab initio contributions and
re-models the remainder in a data-driven way.

In fact many different types of data were used by
different researchers to parameterize the remainder,
ranging from numerical results for reference systems over
experimental properties of atoms and small molecules to
exact constraints in asymptotic regimes.

Kohn-Sham DFT models a molecular system with N
electrons as follows. For simplicity we describe the
common case of a spin-unpolarized system. The quantum
state of the electrons is described by a set of N/2 doubly
occupied spatial orbitals {¢;};_1 . n/2, Which are functions



on the physical space R3 that are orthonormal with respect
to the L? inner product. The total electronic energy is
N/2

El{ei}] = Z /ua?» \Vgoi(r)\zdr + /[R3 Une(T)p(r)dr + Epgelp]. (1)

The first term models the kinetic energy of the electrons,
Ve 1S the electrostatic potential generated by the nuclei,
and Ey, is the so-called Hartree-exchange-correlation
functional which models the electron-electron interactions
and interaction-induced corrections to the kinetic energy

by some explicit functional of the density. The density p is
expressed in terms of the orbitals as

pr)=2) o) (2)

1=1
The Kohn-Sham ground state is obtained by minimizing the
energy functional E over {@;} subject to the orthonormality
constraints fRB ©;p; = 0;; . The Euler-Lagrange equations
(stationarity conditions) are the Kohn-Sham equations [1]

(—%VQ + Une(r) + UHXC(I“>> pi(r) = ipi(r), (3)

where the ¢; are Lagrange multipliers and vy, (1) is the

Hartree-exchange-correlation potential defined as the
functional derivative of Ey,.[p] with respect to p(r). The

orbitals satisfying Eq. (3) are called the Kohn-Sham
orbitals. Mathematically, the Kohn-Sham equations are a
system of nonlinear elliptic eigenvalue problems, since the
potential vy, depends on the ¢;’s through the density p.

There are a great many challenges associated with this
system, touching upon different areas of physical and
chemical modeling, mathematical analysis, and scientific
computing, such as:



« Design of accurate yet computationally practical Hartree-
exchange-correlation functionals, going beyond the local
density approximation (LDA) introduced in Kohn and
Sham’s seminal 1965 paper [1] and the—currently widely
used—semilocal and hybrid functionals and remaining
applicable in strongly correlated regimes (stretched
chemical bonds, transition metal oxides, Mott insulators).

« Design of effective numerical methods to solve the Kohn-
Sham equations for large molecular systems, possibly
coupled to an environment (linear scaling methods,
coarse-graining, quantum-mechanics/molecular-
mechanics (QM/MM), and other multilayer approaches).

« Theoretical understanding of the errors incurred both by
the modeling and the numerical treatment (comparison
to exact many-body quantum mechanics in scaling limits,
choice of discretization or background basis, iterative
algorithms with stopping criteria, adaptive floating-point
arithmetic, massive parallelization for hybrid CPU/GPU,
and future exascale architectures).

« Unearthing the intrinsic mathematical properties of
different Kohn-Sham models in important basic situations
such as bond dissociation, dispersion forces, or defects in
crystals.

These challenges give rise to a variety of exciting and
difficult problems for mathematicians and computational
scientists, and bring one immediately to the edge of current
knowledge in variational methods, nonlinear partial
differential equations, large-scale numerical optimization
and linear algebra, or model reduction. This book
introduces and reviews the main models of DFT, covering
their derivation and mathematical properties, numerical
treatment, and selected applications. It intends to be an
accessible yet state-of-art text on DFT for graduate
students and researchers in applied and computational
mathematics, physics, chemistry, and materials science. We



hope that it helps to attract mathematicians and computer
scientists willing to contribute to a very lively research
topic and an essential tool to meet many scientific
challenges of the twenty-first century, such as computer-
aided drug design or computational materials engineering
for green energy production and storage. We also hope that
this volume will be useful to computational chemists and
physicists seeking to better understand the mathematical
foundations of DFT, and the state-of-the-art numerical
methods used to solve the Kohn-Sham equations.

This book is organized as follows. This preface is
followed by a prologue on the early days of DFT by Mel
Levy, one of the pioneers of the field, who—among other
things—introduced the celebrated concept of constrained
search. The 11 chapters of the book can be classified into
two groups:

« DFT models and their derivation, mathematical
justification and analysis: Chaps. 1 (J. Toulouse), 2 (A.
Savin), 3 (M. Lewin, E.H. Lieb, R. Seiringer), 4 (G.
Friesecke, A. Gerolin, P. Gori-Giorgi), 5 (S. Kvaal), 6 (D.
Gontier, J. Lu, C. Ortner);

« Numerical methods and applications: Chaps. 7 (E.
Cances, A. Levitt, Y. Maday, C. Yang), 8 (L. Lin, J. Lu, L.
Ying), 9 (H. Chen, R. Schneider), 10 (X. Dai, A. Zhou), 11
(L. Genovese, T. Deutsch), 12 (K. Bhattacharya, V. Gavini,
M. Ortiz, M. Ponga, P. Suryanarayana).

The chapters are self-contained and can be read
independently, but we advise readers with mathematical or
scientific computing backgrounds unfamiliar with DFT to
get in shape with Sects. 1.1 and 1.3.1 in Chap. 1 (basics of
DFT) and the first three sections of Chap. 7 (mathematical
formulation and discretization methods), and consult the
first three sections of Chap. 3 for a mathematical
justification of the LDA.



Let us finally mention that this book focuses on Kohn-
Sham DFT methods for electronic ground-state calculation
within the Born-Oppenheimer (clamped nuclei)
approximation. It does not cover time-dependent DFT
(computation of excited states, linear response theory...),
orbital-free DFT (simulation of warm dense matter...), nor
classical DFT (classical statistical mechanics of the liquid
state). Likewise, post-DFT methods (e.g., Green’s function
methods such as GW or Bethe-Salpeter), coupling of DFT
with finer but computationally more expensive electronic
structure methods for strongly correlated electrons (e.g.,
DFT+DMEFT), coupling of DFT with molecular dynamics and
implicit solvent models (multilayer models such as
QM/MM), or machine learning methods trained on data
generated by DFT calculations lie beyond the scope of this
book. So are the other two most popular families of
methods to compute ground-state electronic structures of
molecules and materials, namely post-Hartree-Fock wave
function methods (coupled-cluster, multiconfiguration
methods, tensor network methods,...) and Monte Carlo
methods. Each of these topics would be worth a book of
their own in this series.

Reference

" W. Kohn and L.J. Sham. Self-consistent equations

including exchange and correlation. Phys. Rev.140,
A1133 (1965).

Eric Cances

Gero Friesecke
Paris, France
Munich, Germany
December 2021



Prologue: Early Days of Modern DFT
(1964-1979)

It is a pleasure to write about the early days of modern DFT
from a personal perspective.

At that time, the local density approximation dominated
in approximating exchange-correlation for calculations. In
basic theory, there was intense interest in the definition of
F[p], the universal functional of the density for the kinetic
energy plus the electron-electron repulsion energy, where,
of course,

Ey = mgn {/3 p(r) vpe(r) dr + F[p]} :
R

Along these lines, on a chalkboard at a special session of a
theoretical chemistry conference in Boulder, Colorado, in
the summer of 1975, Walter Kohn wrote out the proof, by
contradiction, of the 1964 Hohenberg-Kohn theorem. As I
recall, the audience applauded enthusiastically. Then there
was a lively discussion about the F[p] in this HK paper of
1964, because this functional, born by this proof by
contradiction, was identified specifically for only each trial
density that is a non-degenerate ground state of some
extremal potential (non-degenerate v-representable). There
were questions. What happens when the trial density is not
some ground state? What happens when the trial density is
a ground state, but is a degenerate one? These questions
were in my thoughts when I began the serious study of DFT
in 1978.

Then, in looking through a 1978 issue of IJQC, I noticed
a long paper by Jeremy Percus. In it he derived a number of
interesting Legendre transform-type bounds, but, almost as
an aside, he also happened to identify a noninteracting
kinetic energy functional that was expressed as the



minimum kinetic energy of all ensembles of idempotent
density matrices that yield a noninteracting v-representable
density. Influenced by this paper, it suddenly occurred to
me a couple of weeks later that the original HK functional
could be identified as a constrained search. Moreover, it
could also be generalized by using this constrained search.

Namely,!

Flp| = min (¥ | T + We| @) (1)
U—p
because
Ey = min min (¥ | H| W) (2)
p Y—p

and because the same expectation value, involving v,

must be given by all wave functions that yield p(r).

I remember finding expressions (1) and (2) a bit
frightening as I wrote them down and stared at them,
because they were so simply expressed and because I knew
that they generalized DFT to include densities that are
degenerate and to densities that are not necessarily v-
representable. I also realized that they led to a deeper
understanding of DFT. For instance, I soon realized that
the philosophy behind Eqgs. (1) and (2) could be applied to
generalize Gilbert’s functional of the electron-electron
repulsion energy, as a functional of the one-matrix, to
include a larger class of trial one matrices. All this appears
in my 1979 paper.

Yes, the 15-year period from 1964 to 1979 was
important indeed. Kohn-Sham theory and the thermal DFT
of Mermin were formulated in 1965. Then von Barth and
Hedin and Rajagopal and Calloway formulated spin-density
functional theory in 1972 and 1973. In the mid-1970s, the
adiabatic connection formula was derived by Langreth and
Perdew and Gunnarsson and Lundqvist. This formula is, of
course, important for the development of approximate



exchange-correlation functionals. The concept of
electronegativity was elucidated through DFT by Parr,
Donnelly, Levy, and Palke in the 1978 paper that launched
conceptual DFT. Then the time-independent ensemble
theory for the density functional treatment of excited states
was formulated by Theophilou in 1979.

Forty years ago, those of us immersed in DFT knew that
we were gambling on a new field, especially since there
were influential vocal skeptics. But we felt that there just
might be good times ahead...

Mel Levy



List of Symbols

Parameters of the Electronic Problem
N Number of electrons or electron pairs

N,.. Number of electron occupied one-body electronic
states

M, N,,c - N, Number of nuclei
Z., ,R,, Nuclear charges, positions
B Inverse temperature

Electron Coordinates
r Single-electron position coordinate vector

r, Cartesian components of single-electron position
coordinate vector

ryj = |r;— 15

x;=(r;, S;) Space-spin coordinates of ith electron

Euclidean distance between electrons i and j

Wavefunctions, Density Matrices, Densities,
Orbitals
v, ¥(x;, ..., xy) Many-particle wavefunction

I Many-particle density matrix
Iy, k-particle reduced density matrix

y Single-particle density matrix/1-particle reduced
density matrix

p, p(r) Single-particle density
P> , P2 (r;, ry) Pair density
® Kohn-Sham wavefunction

@; , @, Occupied/unoccupied Kohn-Sham orbitals or spin-
orbitals

i, j, a, b



Summation indices: i, j for occupied orbitals, a, b for
unoccupied orbitals

&; With I=(iy, -, ipn), OT |@i, === @iy) O @iy A=+ A iy -
Slater determinant built from orbitals ®i; -, Piy
Functionals

F, F[p] General functional

E;; Hartree energy functional

Ey,. Hartree-exchange-correlation energy functional
E,. Exchange-correlation energy functional

E, Exchange energy functional

E. Correlation energy functional

T Kinetic energy functional

Ts Non-interacting kinetic energy functional

F;; Levy-Lieb constrained-search functional

Fyx Hohenberg-Kohn functional

Fpy  Constrained-search density matrix functional

Energy Levels, Eigenvalues, Energy Densities,
Fermi-Dirac Function
E, Ground state energy

g; , &, Kohn-Sham eigenvalues

11 Chemical potential, Fermi level
Exchange-correlation energy per unit volume
€, Exchange-correlation energy per particle

fp Fermi-Dirac function

eXC

Potentials and Kernels
v General (single-particle) potential

1% External potential

ext
Kohn-Sham effective potential



Vs » Veff » Vks Hartree potential vy = po|-|~!
Y :

H Exchange, correlation, exchange-
Vx Ve » Vxc + VHxc  correlation, Hxc potentials

fx . fe . fxe » fuxe EXchange, correlation, exchange-
correlation, Hxc kernels

Operators
Aor 5 Generic linear operators

A* or AT Adjoint of A

H Many-body Hamiltonian operators
h General single-particle Hamiltonian
h, or h, Kohn-Sham Hamiltonian

ve Coulomb operator

A =V<2 Laplace operator

y Reducible polarizability operator
xo Irreducible polarizability operator
F Fourier transform

Fkxs Kohn-Sham map

Matrices
AT Transpose of A

A* Conjugate transpose of A

Discretization Parameters, Basis Functions,
Discretized Models
N, Number of basis functions

N, Number of grid points
& . Localized orbital (Gaussian, Slater, numerical,...)
5 Set of localized orbitals

C, X Coefficient matrices (of discretized KS orbitals in
localized basis sets)



P Discretized one-body density matrix
S Overlap matrix

H Hamiltonian matrices

V  Generic matrix

Vy Hartree matrix

V, Exchange matrix

V. Correlation matrix

Vie » Vire XC, Hxc matrices
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Abstract

In this chapter, we provide a review of the ground-state
Kohn-Sham density-functional theory of electronic systems
and some of its extensions, we present exact expressions
and constraints for the exchange and correlation density
functionals, and we discuss the main families of
approximations for the exchange-correlation energy:
semilocal approximations, single-determinant hybrid
approximations, multideterminant hybrid approximations,
dispersion-corrected approximations, as well as orbital-
dependent exchange-correlation density functionals. The
chapter aims at providing both a consistent bird’s-eye view
of the field and a detailed description of some of the most
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used approximations. It is intended to be readable by
chemists/physicists and applied mathematicians.

1.1 Basics of Density-Functional

Theory

1.1.1 The Many-Body Problem

We consider an N-electron system (atom or molecule) in the
Born-Oppenheimer and non-relativistic approximations. The
electronic Hamiltonian in the position representation is, in
atomic units,

N
H = __sz 5 ZZ |r — ;] +Z;Une<ri>7 (1.1)
J=1 =
i#]

where Vfi = A, is the Laplacian with respect to the electron
coordinate r; and v, (r;) = ZNH Zo/|ri — R,| is the nuclei-
electron interaction depending on the positions {R,} and
charges {Z,} of the N, nuclei. The stationary electronic
states are determined by the time-independent Schrodinger
equation,

HV(x1,Xo,...,xy) = BV(xy,X9,...,Xy), (1.2)

where WU (x,, X,, ..., Xp) is a wave function written with
space-spin coordinates x; = (r;,0;) € R* x {1, ]} (with
{1,)} = Z, being the set of spin coordinates) which is
antisymmetric with respect to the exchange of two
coordinates, and E is the associated energy.

Using Dirac notation, the Schrodinger equation (1.2) can
be rewritten in a representation-independent formalism,

H|V) = E|V), (1.3)
where the Hamiltonian is formally written as



ﬁ: T+ch+ ‘71105
with the kinetic-energy operator 7 , the electron-electron
interaction operator ., , and the nuclei-electron interaction
operator V. .

The quantity of primary interest is the ground-state
energy E,. The variational theorem establishes that E can

be expressed as an infimum,

Eo= inf (V|H|V), (1.4)
V= AVRL

where the search is over the set of N-electron
antisymmetric normalized wave functions W having a finite
kinetic energy,

N
WY = {we AR x {1,1},0), ¥ € B (R x {1, 11)";0), (ww) = 1},(1.5)

where /\N is the N-fold antisymmetrized tensor product, L2
and H! are the standard Lebesgue and Sobolev spaces (i.e.,
respectively, the space of functions that are square
integrable and the space of functions that are square
integrable together with their first-order derivatives), and (|
.} designates the L2 inner product. Density-functional theory
(DFT) is based on a reformulation of the variational theorem
in terms of the one-electron density defined as’

pu(r) =N ‘\D(X,Xg,...,XN>‘2dO'dX2...dXN,(]_.6)
{T < (R3x {1}V -1

which is normalized to the electron number, [.; py(r)dr = N

1.1.2 The Universal Density Functional

Building on the work of Hohenberg and Kohn [118], Levy
[153] and Lieb [160] proposed to define the following
universal density functional F[p] using a constrained-search
approach,



Flpl= min (W|T + Wee |W) = (W[p]| T + Wee [W[pl), (1.7
lllel/\/’;}"

where the minimization is done over the set of N-electron
wave functions W yielding the fixed density p [via Eq. (1.6)],

WY = {0 e WY, py = p}.

In Eq. (1.7), for a given density p, W[p] denotes a
minimizing wave function, which is known to exist [160] but
is possibly not unique. This so-called Levy-Lieb functional
F[p] is defined on the set of N-representable densities [160]:

DY = {p| IV e W" st. py = p}

— {pe LR | p >0, /RS o(r)dr = N, /5 € H'(R)}.

(1.8)

We note that an alternative universal density functional
can be defined by a Legendre-Fenchel transformation, or
equivalently by a constrained-search over N-electron
ensemble density matrices [160]. This so-called Lieb
functional has the advantage of being convex but in this
chapter we will simply use the Levy-Lieb functional of Eq.
(1.7).

The exact ground-state energy can then be expressed as

Ey = inf {F[p] + / vne(r)p(r)dr} : (1.9)
peDN R3

and if a minimizer exists then it is a ground-state density

po(r) for the potential v,.(r). Hence, the ground-state

energy can in principle be obtained by minimizing over the
density p, i.e. a simple function of 3 real variables, which is
a tremendous simplification compared to the minimization
over a complicated many-body wave function W. However,
the explicit expression of F[p] in terms of the density is not
known, and the direct approximations for F[p] that have
been tried so far turn out not to be accurate enough.



If there is a unique wave function W[p] (up to a phase
factor) in Eq. (1.7), we can define kinetic and potential
contributions to F[p],

Flp] = Tp] + Weelpl,

where T[p] = (W[p]| T [W[p])) and W [p] = (¥[p]| Wee [¥[p]) )-
The kinetic-energy functional T[p] is the contribution which
is particularly difficult to approximate as an explicit
functional of the density.

1.1.3 The Kohn-Sham Scheme

1.1.3.1 Decomposition of the Universal
Functional

Following the idea of Kohn and Sham (KS) [135], the
difficulty of approximating F[p] directly can be
circumvented by decomposing F[p] as

Flp|] = Tilp] + Euxclol, (1.10)
where T,[p] is the non-interacting kinetic-energy functional
which can be defined with a constrained search,?

Tilp]l = min (®|T |®) = (®[p]| T |P[p]) .
slol c;?‘q“\:< | T |P) = (Plpll T |P[p]) (1.11)

(- ":;
where the minimization is over the set of N-electron single-
determinant wave functions @ yielding the fixed density p:

Sév = {® e 8" ps = p}.

Here, sV is the set of N-electron single-determinant wave
functions built from orthonormal spin orbitals

SV={0=¢1AdsA... Ny | Vig; € H(R x {1,1}:C), Vi, j (¢i|;) = 6},
where ¢ A P, A... A ¢y designates the normalized N-fold

antisymmetrized tensor product of N spin orbitals. The
functional T[p] is defined over the entire set of N-

representable densities DV since any N-representable



density can be obtained from a single-determinant wave
function [80, 105, 160]. In Eq. (1.11), for a given density p,
®[p] denotes a minimizing single-determinant wave function
(again known to exist [160] but possibly not unique), also
referred to as a KS wave function. The remaining functional
Eyxclp] that Eq. (1.10) defines is called the Hartree-

exchange-correlation functional. The idea of the KS scheme
is then to use the exact expression of T¢[p] by reformulating
the minimization over densities in Eq. (1.9) as a
minimization over single-determinant wave functions @,

Eo= inf [(®|T + Ve |P) + Enxelpol] . (1.12)
beSHN

and if a minimum exists then any minimizing single-
determinant wave function in Eq. (1.12) gives a ground-
state density py(r). Thus, the exact ground-state energy can
in principle be obtained by minimizing over single-
determinant wave functions only. Even though a wave
function has been reintroduced compared to Eq. (1.9), it is
only a single-determinant wave function ® and therefore it
still represents a tremendous simplification over the usual
variational theorem involving a correlated
(multideterminant) wave function W. The advantage of Eq.
(1.12) over Eq. (1.9) is that a major part of the kinetic
energy can be treated exactly with the single-determinant
wave function @, and only Ey,.[p] needs to be approximated

as an explicit functional of the density.
In practice, Eyy.[p] is decomposed as

Enxe|pl = Eulp] + Exclp], (1.13)

where Ey[p] is the Hartree energy functional,

EH[,O] = 1/ Mdrldrg, (114)
R

2 3%R3 |I'1 —I'g’



representing the classical electrostatic repulsion energy for
the charge distribution p(r) and which is calculated exactly,
and E,.[p] is the exchange-correlation energy functional

that remains to be approximated. If there is a unique KS
wave function ®[p] (up to a phase factor), we can further
decompose E,.[p] as

Flp] = Ti[p] + Euxlp), (1.15)

where E,[p] is the exchange energy functional,
Ex[p] = (®[pl| Wee |D[p]) — Enlpl. (1.16)

and E_[p] is the correlation energy functional,

Eclp] = (W[pl| T + Wee [W[p]) — (P[pl| T + Wee |®[p]) = Telp] + Uelpl,

which contains a kinetic contribution
T.Ipl = (¥[pl| T |W[p]) — (@[p]| T |@[p]) ) and a potential

contribution . [p] = (¥[p]| Wee |W[p]) — (®[p]| Wee [[p]) )-
Using the fact that ®[p] is a single-determinant wave
function, it can be shown that the exchange functional can

be expressed as

1 |f>/0<r17r2)|2
Eli=-5 > [ drdrs, 1.17)

oeft ) i

where y,, for o €{1, |}, is the spin-dependent one-particle
KS density matrix,

Yo(r, 1)
=N q)[p](r/’ Ty X2y -+ XN>* Cb[p](r, 0,X9,... 7XN)dX2 Ce dXN7 (1 .18)
(BTN
which shows that E,[p] < 0 . Moreover, from the variational

definition of F[p], we see that E.[p] <0 .

1.1.3.2 The Kohn-Sham Equations



The single-determinant wave function ® in Eq. (1.12) is
constructed from a set of N orthonormal occupied spin-
orbitals {¢;};—; .. n- To enforce S, spin symmetry, each spin-
orbital is factorized as ¢i(x) = ¢i(r)xs;(c) , where

¢: € H(R?,C) is a spatial orbital and Xs; is a spin function
from {1, 1} to {0, 1} such that Vo;,0 € {1,1}, X0,(0) = 05, » (T;
is the spin of the spin-orbital i). Alternatively, when this is
convenient, we will sometimes reindex the spatial orbitals,
{p;}—{¥;,}, including explicitly the spin o in the index.
Writing the total electronic energy in Eq. (1.12) in terms of

spin-orbitals and integrating over the spin variables, we
obtain:

Blet =53 [ IVoinlde+ [ ulop(r)ds + Bulpl, (1.19)

where the density is expressed in terms of the orbitals as

N
p(r) = |@ilr)]*. (1.20)
=1

The minimization over ® can then be recast into a
minimization of E[{¢p;}] with respect to the spatial orbitals

{¢;} with the constraint of keeping the orbitals

orthonormalized. The stationary condition with respect to
variations of ¢;(r) leads to the KS equations [135],

(—%Vz + Une(T) + UHXC(I‘)> pi(r) = gipi(r), (1.21)

where ¢; is the Lagrange multiplier associated to the
normalization condition of ¢; and vy, (r) is the Hartree-

exchange-correlation potential defined as the functional
derivative of Ey,.[p] with respect to p(r),

(1.22)



0 Eixe[p)
op(r)
which is itself a functional of the density. The orbitals

satisfying Eq. (1.21) are called the KS orbitals. They are the
eigenfunctions of the KS one-electron Hamiltonian,

hs(r) = —5V? + v4(r), (1.23)

UHXC<r> —

where
Us(T) = Vpe(r) 4 Ve () (1.24)

is the KS potential, and ¢; are then the KS orbital energies.

Note that Eq. (1.21) constitutes a set of coupled self-
consistent equations since the potential depends on all the
occupied orbitals {¢;};—; . through the density [Eq. (1.20)].

The operator hy(r) defines the KS system which is a system
of N non-interacting electrons in an effective external
potential v¢(r) ensuring that the density p(r) in Eq. (1.20) is
the same as the exact ground-state density py(r) of the

physical system of N interacting electrons. The exact
ground-state energy E is then obtained by injecting the KS
orbitals in Eq. (1.19). The other (unoccupied)
eigenfunctions in Eq. (1.21) define virtual KS orbitals

{Spa}aZJ\H—l .
Note that to define the potential vy, (r) in Eq. (1.22) a

form of differentiability of the functional Ey,.[p], also

referred to as v-representability of the density, has been
assumed. Justifying this is in fact subtle and has been
debated [56, 57, 109, 142-144, 164] (see also Chap. 5 by
Kvaal in this volume). Here, we will simply assume that a
form of differentiability of Ey,.[p] holds on at least a

restricted set of densities that allows one to define the
potential vy, .(r) up to an additive constant. For a further

restricted set of densities that should include ground-state



densities of electronic Hamiltonians of molecular systems
[Eq. (1.1)], it is expected that the KS potential v¢(r) tends to

a constant as |[r]—=« and we choose this constant to be zero.
Note also that the assumption of the existence of the KS
potential v¢(r) in Eq. (1.23), which does not depend on spin

coordinates, implies that each spin-orbital must indeed have
a definite S, spin value.

Following the decomposition of Ey,.[p] in Eq. (1.13), the
potential vy, (r) is written as

Vixe (T) = v (T) + ke (1), (1.25)

where vg(r) = 0Eu(p]/dp(r) = [ p(r’)/|r —r'|dr’ is the Hartree
potential and v,.(r) =6E,.[p]/6p(r) is the exchange-
correlation potential. Likewise, following the decomposition
of E..[p] in Eq. (1.15), and assuming that both E,[p] and
E.[p] are differentiable with respect to p, the potential v, (1)
can be further decomposed as

Uxe (1) = (1) 4+ ve (1), (1.26)

where v, (r) = 6E,[p]/6p(r) is the exchange potential and
v.(r) =6E_.[p]/6p(r) is the correlation potential. Thus, the KS
equations are similar to the Hartree-Fock (HF) equations,
with the difference that they involve a local exchange
potential v, (r) instead of the nonlocal HF exchange
potential, and an additional correlation potential. At least
for ground-state densities of finite molecular systems, the
exchange potential has the long-range asymptotic behavior
(see, e.g., Ref. [93]),

u(r) ~ =g (1.27)

Ir|—o0

whereas the correlation potential decays faster [4].



1.1.3.3 Extension to Spin Density-Functional
Theory

To deal with an external magnetic field, DFT has been
extended from the total density to spin-resolved densities
[13, 203]. Without external magnetic fields, this spin
density-functional theory is in principle not necessary, even
for open-shell systems (see, e.g., Ref. [263]). However, the
dependence on the spin densities allows one to construct
approximate exchange-correlation functionals that are more
accurate, and is therefore almost always used in practice for
open-shell systems.

The spin density p, y with 0 €{T, |} associated to a wave

function ¥ is defined as

pow(r) =N W (x, %y, ..., xy)| %Xy . .. dxy,
(R3x{t,4})N-1
and integrates to the number of o-spin electrons N, i.e.
Jgs Pow(r)dr = N, . For p, € DVt and p; € D™t , the universal
density functional is now defined as [200],

Flop.ppl = min (WIT + Wee [W) = (Vlpp, p 11T + Wee [WIpr. 011) 5 (1 28)

\PGVV'J;";'T_/)L

where the search is over the set of normalized
antisymmetric wave functions ¥ with N=N; + N, electrons

and yielding the fixed spin densities p; and p,:

ngm ={V e W", pru=p1, pru=p}

In Eq. (1.28), W[p,, p,] designates a minimizing wave

function.
A spin-dependent KS scheme is obtained by decomposing

Flp:,p,]as

F[pTa pi] - /I;[pTa pi] + EH[ﬂ] + EXC[ﬂT? pi]a (129)
where T,[p,, p,] is defined as



Llpropil = min (@7 |®) = (®lpy. pyIIT [@1pr. py 1), (1-30)
€C '”T ,/‘:L

with a constrained search over the set of single-determinant

wave functions @ yielding the fixed spin densities p; and p;:

S/ﬁ,m ={2 eS8, pro=r1, pro=p}

Here, ®[p;, p,] denotes a minimizing KS single-determinant
wave function, Ey[p] is the Hartree energy which is a
functional of the total density p=p; + p, only [Eq. (1.14)],
and E,.[p;, p,] is the spin-dependent exchange-correlation

energy functional. The ground-state energy is then obtained
as

&r}ﬁ&H®?+ﬁﬂ®HleM+Eﬂmw¢wwk (1.31)
-

Writing the spatial orbitals of the spin-unrestricted
determinant as {@;;};=1 ..y (wWith the index explicitly

including the spin o now for clarity), we arrive at the spin-
dependent KS equations,

(—%VQ + Une<r> + UH<I') + ch,a<r>> @ia(r) - 52’090ia<r>7 (132)

with the spin-dependent exchange-correlation potential,

e (1) = S (1.33)

and the spin density,

po(r) = 3007 |pin(r)| 2. (1.34)

As before, if there is a unique KS wave function ®[p;, p,]
(up to a phase factor), we can decompose E,.[p;, p,] into
exchange and correlation contributions,

Eylpt, pi] = Exlpr, pi] + Eclpr, pyl, (1.35)



with E [p+, py]1 = (®[ps. py 1| Wee | @[04, py1) — Enlp]). It turns
out that the spin-dependent exchange functional E,[p, p,]

can be exactly expressed in terms of the spin-independent
exchange functional E [p] [183],

1
EX[:OTa pi] = 5 (EX[QIOT] + EX[QPJ) 3 (1.36)

which is known as the spin-scaling relation and stems
directly from the fact the 7- and |-spin electrons are
uncoupled in the exchange energy [see Eq. (1.17)].
Therefore, any approximation for E,[p] can be easily

extended to an approximation for E,[p, p,]. Unfortunately,
there is no such relation for the spin-dependent correlation
functional E [p,, p,].

Obviously, in the spin-unpolarized case, i.e. p; =p; =p/2,
this spin-dependent formalism reduces to the spin-
independent one.

1.1.4 The Generalized Kohn-Sham Scheme

An important extension of the KS scheme is the so-called
generalized Kohn-Sham (GKS) scheme [222], which
recognizes that the universal density functional F[p] of Eq.
(1.7) can be decomposed in other ways than the KS
decomposition of Eq. (1.10). In particular, we can
decompose F[p] as

Flpl = mingesy {(@1 T |0) + Enlpol + SI®1} + Slpl,  (1.37)

where S[ @] is any functional of a single-determinant wave
function ¢ ¢ SV leading to a minimum in Eq. (1.37), and S|y
is the corresponding complementary density functional that
makes Eq. (1.37) exact. Defining the S-dependent GKS
exchange-correlation functional as

ES (0] = S[®] + S]pa), (1.38)



we can express the exact ground-state energy as
Eo = infgesy {(®|T + Voe |®) + Enlpol + ES[®1},  (1.39)

and if a minimum exists then any minimizing single-
determinant wave function in Eq. (1.39) gives a ground-
state density py(r). Similarly to the KS equations [Eq.

(1.21)], Eq. (1.39) leads to the one-electron GKS equations,

1 05D
(=57 + tule) + 00 + 05(0) ) ) + o
where vg(r) = §S[p]/dp(r) is a local potential and §5[P] /i (1)
generates a one-electron (possibly nonlocal) operator.

In the special case S[ ®] =0, we recover the KS
exchange-correlation density functional:

E2700] = Ey[pa). (1.41)

Due to the freedom in the choice of S[ @], there is an infinity
of GKS exchange-correlation functionals E? [P] giving the
exact ground-state energy via Eq. (1.39). This freedom and
the fact that @ carries more information than pg gives the
possibility to design more accurate approximations for the
exchange-correlation energy.

Of course, by starting from the density functional F[p;,

p.]in Eq. (1.28), this GKS scheme can be extended to the

spin-dependent case, leading to GKS exchange-correlation
functionals of the form E2 [®] = S[®] + S[pra, 10 -

= EicPio (I’), (1 40)

1.2 Exact Expressions and Constraints
for the Kohn-Sham Exchange and

Correlation Functionals

1.2.1 The Exchange and Correlation Holes
Let us consider the pair density associated with the wave
function W[p] defined in Eq. (1.7),



pa(ry,12) (1.42)
= N(N —1) / [W[p](x1, X2, . . ., Xn)| 2doydogdxs . . . dxy,
(TR {1 hh =2

which is a functional of the density, and normalized to the
number of electron pairs, [w, s p2(r1, r2)dridry = N(N —1) .
The pair density is proportional to the probability density of
finding two electrons at positions (rq, r,) with all the other

electrons being anywhere. The pair density is useful to
express the expectation value of the electron-electron
interaction operator,

~ | (ry, r
(W[p]| Wee |W[p]) = 2/ ‘‘‘‘‘‘ ’”z”?fdrldrz. (1.43)

Mirroring the decomposition of the Hartree-exchange-
correlation energy performed in the KS scheme [Eq. (1.13)],
the pair density can be decomposed as

p2(r1,T2) = p(r1)p(ra) + pP2xc(Tr1, o). (1.44)

The product of the densities p(r;)p(r,) corresponds to the
case of independent electrons [up to a change of
normalization, i.e. [ g3 p(r1)p(r2)dridr, = N* instead of N(N
—1)] and the exchange-correlation pair density p; 4.(ry, 1y)

represents the modification of the pair density due to
exchange and correlation effects between the electrons. It
can be further written as

P2.xc(T1,T2) = p(r1)hye(r1, T2), (1.45)

where h,.(ry, Iy) is the exchange-correlation hole.
Introducing the conditional density

P (11, 19) = po(ry, r9)/p(r1) Of the remaining N — 1 electrons
at r, given that one electron has been found at ry, the
exchange-correlation hole can be interpreted as the
modification of p“"(r;, ry) due to exchange and correlation
effects:



Pcond<1'1, ry) = p(ra) + hye(ri, ra). (1.46)
The positivity of p,(r;, rp) implies that

he(r1,12) > —p(r2).
Moreover, from Eq. (1.46), we have the following sum rule:

Vrl c [Rg, /3 hXC<I‘1,I'2)dI'2 = —1. (147)
R

We can separate the exchange and correlation
contributions in the exchange-correlation hole. For this,
consider the pair density p, xg(ry, ry) associated with the KS

single-determinant wave function ®[p] defined in Eq. (1.11).
It can be decomposed as

p2xs(r1,T2) = p(r1)p(ra) + pax(ry, r2), (1.48)

where p; (11, 1) is the exchange pair density, which is
further written as

)02,X<r17 I'2> — p(r1>hx<r17 r2>7 (]— 49)

where h,(rq, ry) is the exchange hole. Just like the

exchange-correlation hole, the exchange hole satisfies the
conditions

hy(r1,19) > —p(rs),
and

Vrl € RS, /3 hX<I‘1,I‘2>dI'2 = —1. (150)
R

Moreover, since the exchange hole can be written as
[compare with Eq. (1.17)]

|
- > el )P, (1.51)
Y et}

hx(rla r2) - _p(



where 7, (r),15) = 3% ¢k, (r2) i (ry) is the spin-dependent
one-particle KS density matrix, it thus appears that the
exchange hole is always non-positive,

hx(rl,rg) S 0. (152)

From Eqgs. (1.16), (1.43), (1.48), and (1.49), it can be seen
that the exchange energy functional can be written in terms
of the exchange hole,

1 ri)hy(r),T
Ey[p] :_/Rg } pryhs(r, 2)dr1dr2, (1.53)

2 Ir] — 1o

leading to the interpretation of E, as the electrostatic

interaction energy of an electron and its exchange hole. It is
useful to write the exchange energy functional as

Ex[p] = [gs p(ri)ex[p)(r1)dr, (1.54)
where &,[p](ry) is the exchange energy density per particle,
= 3 Jis T, (1.55)

which is itself a functional of the density. It is also
convenient to define the exchange energy density e.[p](r) =

p(Me4[p]l(x). For finite systems, we have the exact
asymptotic behavior [18, 168]
e

SX[[)](I') ~ *zm' (156)

|r|—+o0

The correlation hole is defined as the difference
hc<r17 r2> - hXC<r17 I'Q) - hX<r17 I'Q),
and, from Eqgs. (1.47) and (1.50), satisfies the sum rule

Vr, € R, /3 he(ry,re)dry = 0, (1.57)
R

which implies that the correlation hole has negative and
positive contributions.? In contrast with the exchange hole



which is a smooth function of the interelectronic coordinate
r;, = r, —rq, the correlation hole satisfies the electron-

electron cusp condition (i.e., it has a derivative discontinuity
in r12) [132, 252],

Vr; € R, h.(ry,ry) = he(ry,ry), (1.58)

where 7/ (ry, 1)) = (Ohe(r1, 712)/Or12)y,—0 1S the first-order
derivative of the spherically averaged correlation hole
he(ry,m19) = (1/4771%,) fS(O,m) he(ri,r1 +1r10)dr; and S(0, rq5)
designates the sphere centered at 0 and of radius ry, =|r5|.

The potential contribution to the correlation energy can be
written in terms of the correlation hole:

1 he(ry,
Uelp] = —/ pryhelr: 1PQ)d]mdrg. (1.59)
2 JR3xR3 |1“1 — Pz\

In order to express the total correlation energy E [p] = T [p]
+ U.[p] in a form similar to Eq. (1.59), we need to introduce
the adiabatic-connection formalism.

1.2.2 The Adiabatic Connection

The idea of the adiabatic connection [102, 146, 147] (see,
also, Ref. [106]) is to have a continuous path between the
non-interacting KS system and the physical system while
keeping the ground-state density constant. This allows one
to obtain a convenient expression for the correlation
functional E_[p] as an integral over this path. An infinity of
such paths are possible, but the one most often considered
consists in switching on the electron-electron interaction
linearly with a coupling constant A. The Hamiltonian along
this adiabatic connection is

ﬁl — ?—I—‘;\‘WCC —I— ‘7.‘}\-5 (1.60)

where /% is the external local potential operator imposing
that the ground-state density is the same as the ground-



state density of the physical system for all A € R . Of course,
Eq. (1.60) relies on a v-representability assumption, i.e. the
external potential is assumed to exist for all A. The
Hamiltonian (1.60) reduces to the KS non-interacting
Hamiltonian for A =0 and to the physical Hamiltonian for A
=1.

Just as for the physical system, it is possible to define a
universal functional associated with the system of Eq. (1.60)
for each value of the parameter A,

Frlpl = min (W|T + aWee [¥) = (W [p]| T + 2 Wee |9 [0]) . (1.61)

veWy '
where W4[p] denotes a minimizing wave function. This
functional can be decomposed as

FAlp] = Tilp] + By [ol, (1.62)

where £} [p] is the Hartree-exchange-correlation functional
associated with the interaction ;ﬁfm . One can write this
functional as £} _[p] = Ejlp] + EX|p] + EX|p] , where the
Hartree and exchange contributions are simply linear in A,

1 A
Ejlp] = =
Mol =5 [, pleolr 0

drler = )\EH [p] s

and
ELp]l = (®[pl| AWee DI p]) — Efilp] = AEx[p].
The correlation contribution is nonlinear in A,
ELpl = (WPl T + AWee [W*[pl) — (Pl T + A Wee |P[p]) . (1.63)

We will assume that F2[p] is of class C! as a function of A
for A €[0, 1] and that FA=0[p] = T,[p], the latter condition

being guaranteed for nondegenerate KS systems [see
footnote on the definition of T[p] just before Eq. (1.11)].

Taking the derivative of Eq. (1.63) with respect to A and



using the Hellmann-Feynman theorem for the wave function
WA[p],* we obtain

IE"[p]
d/

Integrating over A from 0 to 1, and using E2~![p] = E.[p] and
ECA:O[p] — (0 , we arrive at the adiabatic-connection formula
for the correlation energy functional of the physical system

= (W[ p]] Wee 9" [p]) — (D[p]] Wee | PLo]) . (1.64)

1 - -~ - -~
Eelpl = /{) di (W [pll Wee |¥*[p]) — (D[p]| Wee |®[p]) . (1.65)

By introducing the correlation hole h)(r;,r,) associated to

the wave function W4[p], the adiabatic-connection formula
for the correlation energy can also be written as

j/ dAb/q r“I?)drldr% (1.66)
R3x[R3 |1'1 — Ty

or, noting that h}(r{,r,) is the only quantity that depends on
A in Eq. (1.66), in a more compact way,

1 h
AQM:—/‘ M“>““”me% (1.67)
R3xR3

2 |I'1 — I’2|

where /. (r;, ) = fol d\ h)(ry,r2) is the coupling-constant-
integrated correlation hole. This leads to the interpretation
of E as the electrostatic interaction energy of an electron

with its coupling-constant-integrated correlation hole. As for
the exchange energy, the correlation energy functional can
be written as

Eulp] = / plra)eclpl(r)ry (1.68)

where £.[p](r;) is the correlation energy density per particle

&M@gzlffﬂﬂﬁﬁa% (1.69)
R

2 3 |I'1—I‘2’



which is a functional of the density. We can also define the
correlation energy density e [p](r) = p(r)e [p](X).
Finally, note that the sum-rule and cusp conditions of

Egs. (1.57) and (1.58) apply to the A-dependent correlation
hole in the form

Vr, € R, /3 h (11, rs)dry = 0, (1.70)
R

and
Vri € R®, h)/(ry,r1) = A h)(ry,1y). (1.71)

1.2.3 One-Orbital and One-Electron Spatial
Regions

For systems composed of only one spin-T (or,
symmetrically, one spin- | ) electron (e.g., the hydrogen
atom) with ground-state density p;,(r) =|¢@;; (r)|? where
@11 (r) is the unique occupied KS orbital, the exchange hole
in Eq. (1.51) simplifies to hy(r{, ry) = —p(ry), and
consequently the exchange energy cancels out the Hartree
energy:

¢i(x) = 0i(r)Xo;(0) (1.72)
Furthermore, the correlation energy vanishes:
E.|pi] = 0. (1.73)

This must of course also be true for the spin-dependent
version of the functionals introduced in Sect. 1.1.3.3, i.e.

Ey[pie,0] = —Enulpie] (1.74)
and
E[p1e,0] = 0. (1.75)

For systems composed of two opposite-spin electrons (e.g.,
the helium atom or the dihydrogen molecule) in a unique



doubly occupied KS orbital ¢;(r) = ¢, (r) =@, (xr) with
ground-state density p)'(r) = 2|p;(r)|?> , the exchange hole
simplifies to hy(ry, ry) = —p(ry)/2, and consequently the

exchange energy is equal to half the opposite of the Hartree
energy:

1
Blpk) = ~SBulol) 176

These are constraints for the exchange and correlation
density functionals in the special cases N=1 and N = 2.

These special cases can be extended to more general
systems. For systems with NV > 1 electrons containing a
spatial region QIO in which, among the occupied KS orbitals,
only one spin-T (or, symmetrically, one spin- ) orbital is not
zero (or, more generally, takes non-negligible values), we
have again in this region

Vri,ry € QIO, hy(ri,1re) = —p(ra),

and therefore the contribution to the exchange energy
density per particle coming from this region must locally
cancel out the contribution to the Hartree energy density

per particle coming from the same region,
T T
Vr, € Of 821()(1'1) _ _51210@1)? (1.77)

lo»

where

el (r))=(1/2) /Qp(rg)/\rl — 15|dry and e(r;)=(1/2) /Q hy(ry,r9)/|r) — ro|drs.

Similarly, for systems with N > 1 electrons containing a
spatial region /\N in which, among the occupied KS orbitals,

only one doubly occupied orbital is not zero, we have in this
region

1
Vri,ry € Qﬁ, hx<r17 1‘2) = —§p(r2),



and therefore the contribution to the exchange energy
density per particle coming from this region must locally be
equal to half the opposite of the contribution to the Hartree
energy density per particle coming from the same region,

5 1k
e1%(r1) = —jey” (r1). (1.78)

Vry € QN 5

lo»

Thus, we see, particularly clearly for these O or A"
regions, that the Hartree functional introduces a spurious
self-interaction contribution which must be eliminated by
the exchange functional. Even though the concepts of QIO
and /\N regions are formal, in practice they can be
approximately realized in chemical systems. For example,
the unpaired electron in a radical approximately
corresponds to a QTO , and an electron pair in a single
covalent bond, in a lone pair, or in a core orbital
approximately corresponds to a /\N region.

We can also consider one-electron regions Q. that we

define as®
\V/I‘1,I‘2 - Qle; Ve (0, 1], pé\(rl,rg) = O, (179)

where 1) (r, 1) is the pair density associated to the wave
function W4[p] along the adiabatic connection. This implies

Vry, 1o € Qie, hye(ri, r2) = —p(ra),
where hy(ri,ry) = hy(ri,r9) + he(r;,r9) and, consequently, the
contribution to the exchange-correlation energy density per
particle coming from this region must locally cancel out the
contribution to the Hartree energy density per particle
coming from the same region,

VI‘l - Qle, 8916(I'1> = —5%16(1'1), (180)

XC

where £{ (r1) = (1/2) [, hxe(r1,12)/|r1 — ro|drs . For regions that
are simultaneously one-electron and one-orbital regions,



this simply implies that the contribution to the correlation
energy must vanish,

"
VI‘l € Qe N Q Qleleo( ) = 0, (1.81)

where (r;) = (1/2) [, h(r1,12)/|r1 — r2|drs , and we say that
the correlatlon functlonal must not introduce a self-
interaction error. However, the definition of Q,, regions

also includes the case of an electron entangled in several
orbitals, such as the region around one hydrogen atom in
the dissociated dihydrogen molecule. In this latter case, the
Hartree functional introduces an additional spurious
contribution (beyond the spurious self-interaction) which
must be compensated by a static correlation (or strong
correlation) contribution in the exchange-correlation
functional.

lo»

1.2.4 Coordinate Scaling
1.2.4.1 Uniform Coordinate Scaling

We consider a norm-preserving uniform scaling of the
spatial coordinates in the N-electron wave function along

the adiabatic connection W2[p] [introduced in Eq. (1.61)]
while leaving untouched the spin coordinates [154, 155,
157],

\Ijé[p](rla 01y, N, O-N> — 73N/2\I])\[p](/yr17 O1y5---5,7EN, O-N)v

where y € (0, +) is a scaling factor. The scaled wave
function U2[g] yields the scaled density

Jgs pu(r)dr =
with [osp,(r)dr = [;p(r)dr = N, and minimizes
(W |T + Ay W.. | W) ) since

(WEIPNT + Ay Wee [ p1) = v 2 (W | T + A Wee [ W7 [p]) .



We thus conclude that the scaled wave function at the
density p and coupling constant A corresponds to the wave
function at the scaled density p, and coupling constant Ay,

U3p) = UV p,].
or, equivalently,
\ljé/’y[p] - \P)\[IO'YL

and that the universal density functional satisfies the
scaling relation

FYp,] = ~*F g,
or, equivalently,
Fp,) = +*F[p). (1.82)

At A =0, we find the scaling relation of the KS wave
function ®[p] introduced in Sect. 1.1.3.1:

Olp,] = 4]

This directly leads to the scaling relation for the non-
interacting kinetic density functional [see Eq. (1.11)],

Tlp) = v Ty,
for the Hartree density functional [see Eq. (1.14)],
En|p,] = vEulpl,
and for the exchange density functional [see Eq. (1.16)],
Ex[p;] = vExp)- (1.83)

However, the correlation density functional E_[p] has the
more complicated scaling (as F[p]),

EXp] =7 EN ],
and, in particular for A =1,

1.84
Edlpy) = v (). (1.5



These scaling relations allow one to find the behavior of
the density functionals in the high- and low-density limits. In
the high-density limit (y - ), it can be shown from Eq.
(1.84) that, for nondegenerate KS systems, the correlation
functional E_[p] goes to a constant,

lim E.[p,] = ES[p)], (1.85)

Y—00

where ESM2[p] is the second-order Gorling-Levy (GL2)
correlation energy [90, 91] (see Sect. 1.7.2). This is also
called the weak-correlation limit since in this limit the
correlation energy is negligible with respect to the
exchange energy which is itself negligible with respect to
the non-interacting kinetic energy: |Ec[pyll = o y%) <|E[p, ]l
=0() < Tglp,] = O(y?). Equation (1.85) is an important
constraint since atomic and molecular correlation energies
are often close to the high-density limit. For example, for
the ground-state density of the helium atom, we have E_[p]
=—0.0421 hartree and lim,_, .E.[p,] = —0.0467 hartree
[119].

In the low-density limit (y — 0), it can be shown from Eq.
(1.82) that the Hartree-exchange-correlation energy Ey..[0]
goes to zero linearly in y,

Enselpyl ~ v W2CE p], (1.86)

/—)

Y
electron (SCE) functional [86, 220, 221, 223]. This is also
called the strong-interaction limit since in this limit the
Hartree-exchange-correlation energy dominates over the
non-interacting kinetic energy: Enxcloyl = O(y) > Tslpyl =
O(y?). In this limit, the electrons strictly localize relatively
to each other. In particular, for the uniform-electron gas,
this corresponds to the Wigner crystallization. Thus, in this

SCE :
where Wee 121 = lﬁ:-«' (W] Wee |9) ) is the strictly-correlated-



limit, each electron is within a one-electron region Q, [as

defined in Eq. (1.79)]. For more information on the SCE
functional, see Chap. 4 by Friesecke et al. in this volume.

1.2.4.2 Non-uniform Coordinate Scaling
We can also consider non-uniform one-dimensional or two-
dimensional coordinate scalings of the density [156, 184],

A (@, 2) = yplya, y, 2) (1.87)

and

PP (@, y, 2) = v o(yz, vy, 2), (1.88)

which also preserve the number of the electrons. These non-
uniform density scalings provide constraints for the
exchange and correlation functionals. In particular, in the
non-uniform one-dimensional high-density limit, the
exchange functional remains finite and the correlation
functional vanishes [89, 154]:

lim, o0 Ey[p!] > —o00 (1.89)
and
im0 Ec[pgl)] = 0. (1.90)

Also, in the non-uniform two-dimensional low-density limit,
we have [89, 154]:

lim, o LE[p}"] > —oc (1.91)
and
lim, o LE[p{] = 0. (1.92)

The conditions of Egs. (1.89)-(1.92) are particularly useful
because they also correspond to the limit of rapidly varying
densities [158].



1.2.5 Atoms in the Limit of Large Nuclear
Charge

A practical realization of the uniform high-density limit is
provided by atomic ions in the limit of large nuclear charge,
Z —>x, at fixed electron number N (see Refs. [65, 66, 123,
233]). In this limit, the exact ground-state atomic density
PN z(r) becomes the density of the isoelectronic hydrogenic

(i.e., without electron-electron interaction) atom pj ,(r) ,
which obeys a simple scaling with Z:

3
pn.z(X) ~ ph(0)=Z7pN ,_(Zr).
£ — 00

One can thus apply Egs. (1.83) and (1.85) with y=2Z, which
reveals that in an isoelectronic series the exchange
functional scales linearly with Z,

Exlpy.z) [~ Eilpy 72117, (1.93)

and, for nondegenerate KS systems, the correlation
functional saturates to a constant,

Jim Elpy.z] = BE2 (o 7] (1.94)

Equations (1.93) and (1.94) are constraints for the
exchange and correlation functionals, particularly relevant
for highly ionized atoms but also for the core-electron
regions of heavy atoms in neutral systems.

Another very interesting limit is the one of large nuclear
charge of neutral atoms, N=Z7Z - (see, e.g., Ref. [129]). In
this semiclassical limit, the exact ground-state atomic
density py z(r) tends to the Thomas-Fermi (TF) density of a

neutral atom pl'(r) which has a known scaling with Z [162,
163]:

pz.z(X) ~ prr)y=2plt (2. (1.95)

L—00



In this limit, it was suggested that the exact exchange and
correlation energies have the approximate large-Z
asymptotic expansions [28, 30, 51]

Edpzzl ~ —AZP 4B Z+-- (1.96)
L—0C
and
Eclpz.z] S —AcZInZ + B Z + -+, (1.97)

with the coefficients A, =0.220827, A.=0.020727, By =
0.224, B. = 0.0372. Recently, it was argued that there is in

fact a missing term in 71y Z in the expansion of the
exchange energy in Eq. (1.96) [10, 42].

1.2.6 Lieb-Oxford Lower Bound

Lieb and Oxford derived a lower bound for the indirect
Coulomb energy (i.e., the two-particle Coulomb potential
energy beyond the Hartree energy) [161], which, when
expressed in terms of the exchange or exchange-correlation
functional, takes the form [187]

Edpl > Eulol > —Cio / p(r)¥dr, (1.98)
R3

where the optimal (i.e., smallest) constant C; o (independent

of the electron number N) was originally shown to be in the
range 1.23 < C o < 1.68 [161]. The range was later
successively narrowed to 1.4442 < Cro < 1.5765 [36, 41, 159,
187]. This bound is approached only in the low-density limit
where the correlation energy becomes comparable to the
exchange energy. Numerical results suggest that for
densities of most physical systems the Lieb-Oxford lower
bound on the exchange-correlation energy is far from being
reached [182].
For two-electron densities, there is a specific tighter

bound,

(1.99)



Ex[er] > Exc[er] 2 _02/ p2e<r>4/3dr7

with the best known constant C, =1.234 [161]. For one-

electron densities, an even tighter bound is known for the
exchange functional [74, 161],

Epie] > —C, / pre(r)¥3dr, (1.100)
[R3

with the optimal constant C; =1.092. For two-electron spin-
unpolarized densities, we have E,[p)'] = 2F,[p;.] with
Dle = 033/2 , and Eq. (1.100) implies [194]

Vr, € R, / h(ry,15)dry = 0, (1.101)
R3

which is a much tighter bound than the bounds of Eqs.
(1.98) and (1.99).

1.3 Semilocal Approximations for the

Exchange-Correlation Energy

We review here the different classes of semilocal
approximations for the exchange-correlation energy.

1.3.1 The Local-Density Approximation

In the local-density approximation (LDA), introduced by
Kohn and Sham [135], the exchange-correlation functional
is approximated as

B = [ e

where eUF¢(p) is the exchange-correlation energy density of
the infinite uniform electron gas (UEG) with the density p.
The UEG represents a family of systems of interacting
electrons with an arbitrary spatially constant density p € [0,



+ ) that acts as a parameter. Thus, in the LDA, the
exchange-correlation energy density of an inhomogeneous
system at a spatial point of density p(r) is approximated as
the exchange-correlation energy density of the UEG of the
same density.

In the spin-dependent version of LDA, sometimes
specifically referred to as the local-spin-density
approximation (LSDA), the exchange-correlation functional
is approximated as [13]

By i) = [ ey, o))

where ¢UE¢(p,, p|) is the exchange-correlation energy density
of the UEG with spin densities p; and p,. For spin-
unpolarized systems, we recover the spin-independent LDA
as B> o] = P p/2,p/2) -

The function ¢UF¢ is a sum of exchange and correlation
contributions, el "¢ = eUF¢ 4 ¢UEG | and it is convenient to

introduce exchange and correlation energies per particle,
eVECG and ¢UFC | such that eUF¢ = p eUFC and eUP¢ = p UEC |
The expression of the exchange energy per particle of the
spin-unpolarized UEG is

Jys pou(r)dr = N, (1.102)

where C, = —(3/4)(3/m)!/3, and the spin-polarized version is

simply obtained from the spin-scaling relation [Eq. (1.36)],
leading to

EX[p] - f[RZ% P(I'l)gx[P](I'l)dI‘la

where (= (p;—p,)/p is the spin polarization and ¢,(Q) is
defined by the general spin-scaling function

1+ +0=-g"° (1.103)

¢n(C) - 9




The LDA exchange functional is associated with the names
of Dirac [44] and Slater [228]. For a rigorous mathematical
derivation of Eq. (1.102), see Ref. [64].

The correlation energy per particle eUF(p:, p|) of the
UEG cannot be calculated analytically. This quantity has
been obtained numerically for a sample of densities and
fitted to a parametrized function satisfying the known high-
and low-density expansions. Expressed in terms of the
Wigner-Seitz radius rg = (3/(41p))1/3, the first terms of the

high-density expansion (ry — 0) have the form

eSS (o4, py) = A(QO) Inrg 4+ B(C) + C(QOrgInrg + O(rg),  (1.104)

with spin-unpolarized coefficients A(0) = (1 — In2)/7? , B(0)
=—0.046921, C(0) =0.009229, and fully spin-polarized
coefficients A(1) =A(0)/2, B(1) =-0.025738, C(1) =
0.004792. The first terms of the low-density expansion (rg —
+ ) have the form

b 1
UEG(IO%/%) ——l——/+ 2+O( 5/2>, (1.105)
r r
where the coefficients a = -0.895930, b=1.325, and c =
—0.365 are assumed to be independent of . The low-density
limit of the UEG corresponds to the Wigner crystallization.
For a recent review of results on the UEG, see Ref. [165].
The two most used parametrizations are the one of
Vosko, Wilk, and Nusair (VWN) [265] and the more recent
one of Perdew and Wang (PW92) [199] which we give here.
In this parametrization, the UEG correlation energy per
particle is estimated using the approximate spin-
interpolation formula

f©)
f”(O)

where ¢.(r;, () is the UEG correlation energy per particle as
a function of rgand C, f(Q) = [(1 + O*3 + (1 — 0)*/3 -2]/(24/3

PW92(IOT7 pi) (TS’ O) + ac(rs) (1 - C4) + [80(T87 1) - 5c(rs> O)]f(C)C47 (]. Nl 06)



— 2) is a spin-scaling function borrowed from the exchange
energy, and a(rs) = (8%€.(Ts, {)/8(%)¢= is the spin stiffness.
This spin-interpolation formula was first proposed in the
VWN parametrization based on a study of the ¢ dependence
of the UEG correlation energy per particle at the random-
phase approximation (RPA) level. A unique parametrization
function

G<TS7 A? ap, 617 627 637 64)
1

2A (ﬁlri/ 2§ Bor + Bar? + 64713)

is then used for approximating &.(rs, 0), £.(rs, 1), and —
a.(ry), where

ec(rs,0) = G(rs, Ao, 1.0, 5105 B2.05 830, Bao),
Ec(Ts, O) = G(Ts, Ay, 041,0,5170, 52,07 53,0, 54,0%
—Oéc<7“s) = G(Ts, Ay, 041,2,51,2,52,2,53,2,5472)-

The form of G was chosen to reproduce the form of the high-
and low-density expansions. The parameters A;, B; ;, and B, ;

(with i €{0, 1, 2}) are fixed by the first two terms of the
high-density expansion, while the parameters a; ;, B3 ; and
B4 ; are fitted to quantum Monte Carlo (QMC) data [32] for
Ec(rs, 0) and &.(rg, 1), and to an estimation of — a(rg)
extrapolated from RPA data. The parameters are given in
Table I of Ref. [199].

We now discuss the merits and deficiencies of the LDA.
By construction, the LDA is of course exact in the limit of
uniform densities. More relevant to atomic and molecular
systems is that the LDA exchange and correlation energies
are asymptotically exact in the limit of large nuclear charge
of neutral atoms N =Z —». Indeed, in this semiclassical
Thomas-Fermi limit, the LDA gives the exact coefficients A,

= —2(1 4 ayry)Aln |1+

Y



and A, of the leading terms in the asymptotic expansions of

Egs. (1.96) and (1.97) [190]. However, the coefficients of
the next terms are very different: B/P* ~ ( instead of By =

0.224 and B'PA ~ —0.00451 instead of B, =~ 0.0372 [28].

Due to the scaling of the UEG exchange energy per
particle,

UEG( UEG(

Y or,v2py) = vE oty p1)s

the LDA exchange functional correctly scales linearly under
uniform coordinate scaling of the density [Eq. (1.83)].
Similarly, due the scaling of the UEG correlation energy per
particle in the low-density limit [Eq. (1.105)],

a
R I A D B At (1.108)
the LDA correlation functional correctly scales linearly
under uniform coordinate scaling to the low-density limit
[Eq. (1.86)]. However, from the behavior of ¢UF¢ in the high-
density limit [Eq. (1.104)],

LLG(V P V3/OU o~ —A() Iny, (1.109)

we see that the LDA correlation functional diverges
logarithmically under uniform coordinate scaling to the
high-density limit whereas the exact correlation functional
goes to a constant for nondegenerate KS systems [Eq.
(1.85)]. Consequently, in the limit of large nuclear charge,
Z —x, at fixed electron number N, the LDA exchange energy
correctly scales linearly with Z [Eq. (1.93)], albeit with an
incorrect coefficient, and the LDA correlation energy does
not reproduce the exact saturation behavior [Eq. (1.94)] for
a nondegenerate isoelectronic series but incorrectly
diverges [193]. Also, the LDA exchange and correlation
functionals do not satisfy the non-uniform scaling conditions
of Egs. (1.89)-(1.92), but instead both diverge in these
limits.



The LDA can also be thought of as approximating the
exchange and the (coupling-constant-integrated) correlation
holes of an inhomogeneous system in Egs. (1.55) and (1.69)
by the corresponding exchange and correlation holes of the
UEG. Namely, considering the spin-independent version for
simplicity, the LDA exchange hole is

h}EDA<I'1, I‘Q) = hEEG<p(I‘1), 7“12), (].].].O)
with
. ]{ 2
BURC (. 1y) = —p 2 Jilkeria) (1.111)
2 kprio

where r;, =|r, —14| is the interelectronic distance, kg =
(3m%p) /3 is the Fermi wave vector, and j; is the spherical

Bessel function of the first kind. Similarly, the LDA
correlation hole is

1
?l%DA(I'b ry) = BEEG(P(TD, T12) = / dA hé’UEG(P(ﬁ), T12).

0
Since the UEG is a physical system, the LDA exchange hole
correctly fulfills the negativity and sum-rule condition [E(s.
(1.50) and (1.52)] and the LDA correlation hole correctly
fulfills the sum-rule and electron-electron cusp condition
[Egs. (1.70) and (1.71)]. This constitutes a significant merit
of the LDA. However, because the LDA exchange hole
E2=Y[p] = 0 only depends on p(r;) and not on p(r,), the LDA

exchange functional does not entirely eliminate the self-
interaction contribution of the Hartree functional, in
particular in one and two-electron systems [Egs. (1.72) or
(1.74), and (1.76)], or in one-orbital spatial regions of many-
electron systems [Eqgs. (1.77) and (1.78)]. Similarly, the LDA
correlation functional does not vanish in one-electron
systems [Eqgs. (1.73) or (1.75)], or more generally in one-
orbital one-electron regions [Eq. (1.81)]. Thus, the LDA
introduces a self-interaction error. Moreover, the LDA



exchange-correlation functional does not entirely cancel out
the Hartree energy in entangled one-electron spatial
regions [Eq. (1.80], i.e. it introduces a static-correlation
error.

Another deficiency of the LDA is that the (spin-
independent) LDA exchange potential

LDA .\ _ OB p]
0

decays exponentially at infinity for finite molecular systems
(since the density p(r) decays exponentially), i.e. much too
fast in comparison to the — 1/|r| asymptotic behavior of the
exact exchange potential [Eq. (1.27)]. Since asymptotic
spatial regions are dominated by the highest occupied
molecular orbital (HOMO) and are thus one-orbital regions
(assuming the HOMO is not degenerate), this is another
signature of the incorrectness of the LDA exchange
functional in these one-orbital regions.

For a review of mathematical results on the LDA, see
Chap. 3 by Lewin et al. in this volume.

4
- gcx p(r>1/37

1.3.2 The Gradient-Expansion Approximation

The next logical step beyond the LDA is the gradient-
expansion approximation (GEA) [135], in which the
exchange-correlation functional is systematically expanded
in the gradient and higher-order derivatives of the density.
One way of deriving the GEA is to start from the UEG,
introduce a weak and slowly-varying external potential
6v(r), and expand the exchange-correlation energy in terms
of the gradients of the density (see, e.g., Refs. [55, 134, 166,
246]). Alternatively, one can perform a semiclassical
expansion (i.e., an expansion in powers of the reduced
Planck constant h) of the exact E,.[p] in terms of the

gradients of the external potential and use the mapping



between the potential and the density to express it in terms
of the gradients of the density (see, e.g., Ref. [49]).

The spin-independent gradient expansion of the
exchange functional is known up to fourth order (GEA4)
[246],

2
ESEA4[p] _ E}I:DA[p]_f_C)((Q) [Vp(r)| dr

s plr) 3
2 2 2 w2 (1.112)
Lo [ DA L [ I9R0R )
" Jrs p(r) " JR3 p(r)
involving the density gradient Vp(r) and Laplacian
V2p(r). Sham [224] obtained the second-order coefficient

Cffg = —7/(4327(37%)'/?) ~ —0.001667 . The calculation was

done by starting with the screened Yukawa interaction

FE.[p] <0 and taking the limit k — 0 at the end of the
calculation. It was later shown that this calculation contains
an order-of-limit problem and that the correct Coulombic
second-order coefficient is

P = —5/(2167(372)Y/3) ~ —0.002382 [55, 134]. The fourth-
order coefficients are C}(fl) = —73/(648007%) ~ —0.000036 , and

C(g ~ 0.00009 , where the last one has been numerically

X

estimated [246]. Note that each term in Eq. (1.112)
correctly fulfills the scaling relation of Eq. (1.83). The spin-
dependent gradient exchange expansion is simply obtained
from the spin-scaling relation [Eq. (1.36)].

Similarly, Ma and Brueckner [166] obtained the spin-
independent second-order gradient expansion (GEA2) of the
correlation functional,

EA2 LD 2 Vo(r)I
BNl = B+ | OO

with a second-order coefficient in the high-density limit
C§21v)13(7’s — 0) = 0.004235 . It is believed [149] that this
calculation contains a similar order-of-limit problem as in

dr, (1.113)



Sham'’s coefficient C}(fs) , in such a way that these two

coefficients must be combined to obtain the correct second-
order exchange-correlation coefficient in the high-density

limit & (ry — 0) = € + C(E?&B(rs — 0) . The correct second-

X,

order correlation coefficient in the high-density limit is then
CP(ry = 0) = C¥(ry — 0) — €% = 0.004950 - Similarly, the
second-order correlation coefficient as a function of ry can
be obtained by S} = {® € 8", po = p}. , where ¢{?(r,) has
been parametrized in Ref. [206]. The spin-dependent
generalization has the form [204, 271]

ESJL'}A2[ EI‘JSDA[ "

oLl

Vos(r)  Vpi(r) (1.114)
a0, (2)
+ Z{H/ CS (3 (0). §(0) = BT - - (r)md

Py P =

where the functions Cgv, )(Ts, ¢) have been numerically

calculated in the high-density limit [204, 205].

The GEA should improve over the LDA for sufficiently
slowly varying densities. Since the spin-independent GEA?2
exchange energy per particle has the form

edF%(p,Vp) = p'¥(Cy + CPa?),

where x = |Vp|/p*/3 is a dimensionless reduced density
gradient, the precise condition for exchange is x < 1.
Unfortunately, for real systems like atoms and molecules,
the reduced density gradient x can be large in some regions
of space. In particular, in the exponential density tail,

pr) o e @ , the reduced density gradient diverges

Ir|=oc

(r) —>!rH SO But this is not as bad as it seems since

p eCFA2 goes to zero anyway in this limit. The situation is
more catastrophic for correlation. Indeed, in the high-
density limit, the spin-independent GEA2 correlation energy
per particle behaves as



e 0.y V)~ —AO Iy + ¢ PP — 007,
where y=|Vp|/p’/® is another reduced density gradient
adapted to correlation. Therefore, in this limit, the GEA2
correlation correction diverges to + « even faster than the
LDA diverges to —oo.

Another aspect of the deficiency of the GEA is that the
corresponding GEA exchange and correlation holes have
unphysical long-range parts which break the negativity [Eq.
(1.52)] and sum-rule conditions [Eqgs. (1.50) and (1.57)].

In practice, the GEA tends to deteriorate the results
obtained at the LDA level. Truncated gradient expansions
should not be directly used but need to be resummed.

1.3.3 Generalized-Gradient Approximations

The failures of the GEA led to the development, which really
started in the 1980s, of generalized-gradient
approximations (GGAs) with the generic form

ESpr ) = [ €S54 pr{x), i), Vo), Vs, (1115

where €894 is some function. The GGAs are often called
semilocal approximations in the sense that ¢5%* does not
only use the local value of the spin densities p;(r) and p (1)

but also “semilocal information” through its gradients®
Vp;(r) and Vp, (1).

Many GGA functionals have been proposed. They
generally provide a big improvement over LDA for
molecular systems. However, their accuracy is still limited,
in particular by self-interaction and static-correlation errors.
We review here some of the most widely used GGA
functionals.

B88 Exchange Functional



In the Becke 88 (B88 or B) exchange functional [18], the
exchange energy density is written as
2

B
Pty Py VPTv viOi) - 6 pTﬂ Z pi/sl + 6533 sinh_l(az )7(11 16)
oe{t.l} 7 7

B88<

where 5 = |Vp,|/p2? . The fact that ¢2% depends linearly on
pﬁ/ 3 and nonlinearly only on the dimensionless reduced

density gradient x,(r) guarantees the scaling relation of Eq.
(1.83). Using the exponential decay of the ground-state spin
densities of Coulombic systems, £ () o e Iy 4t can he

|P|==aC
verified that the chosen form for 5% satisfies the exact
asymptotic behavior of the exchange energy density per
particle [Eq. (1.56)], although the corresponding exchange
potential does not satisfy the exact — 1/r asymptotic
behavior [Eq. (1.27)] [54]. For small x,, ¢5% is correctly

quadratic in x,. The parameter f = 0.0042 was found by

fitting to HF exchange energies of rare-gas atoms. A very
similar value of B can also be found by imposing the
coefficient B, of the approximate large-Z asymptotic

expansion of the exchange energy of neutral atoms [Eq.
(1.96)] [51]. It turns out that imposing the coefficient of the
second-order gradient expansion [Eq. (1.112)] would lead to
a value of B about two times smaller and would greatly
deteriorate the accuracy of the functional for atoms and
molecules.

LYP Correlation Functional

The Lee-Yang-Parr (LYP) [150] correlation functional is one
of the rare functionals which have not been constructed
starting from LDA. It originates from the Colle-Salvetti [38]
correlation-energy approximation depending on the
curvature of the HF hole. By using a gradient-expansion
approximation of the curvature of the HF hole, LYP turned
the Colle-Salvetti expression into a density functional



depending on the density, the density gradient, and the
Laplacian of the density. The dependence on the Laplacian
of the density can be exactly eliminated by an integration by
parts [174], giving the following correlation energy density

4 O+ P
,LYP _ TP B
e (pr.pL, Vo, Vo) = —a Lt do-15 abw(p){pM%
5 4(p)
oe{t. ]}
o(p) — 11 po

—1\Vp 2
5 p|[n|)

47  T5(p) 5 2, 5
+ (= — —= | IVpl*| = 2p*IV
(18 3 )I Pl 3)OI Pl

2 2
+ (2;02 - ﬁ%) Vo l” + (gpz - ﬁf) Ilez},

where w(p) = p—11/3 eXp(—Cp_1/3)/<1 + dp_l/?’) ,6(0) = Cp—1/3 n
dp~13/(1 +dp~1/3), and Cg = (3/10)(3m%)?/3. The parameters
a=0.04918, b=0.132, c=0.2533, and d = 0.349 were
obtained in the original Colle-Salvetti expression by a fit to
Helium data. Note that the LYP correlation energy vanishes
for fully spin-polarized densities (p; =0 or p, =0) and

therefore correctly vanishes for one-electron systems [Eq.
(1.75)].

PW91 Exchange-Correlation Functional

The Perdew-Wang 91 (PW91) (see Refs. [29, 187, 189])
exchange-correlation functional is based on a model of the
exchange hole h,(r{, ry) in Eq. (1.55) and of the coupling-

constant-integrated correlation hole h.(r(,r;) in Eq. (1.69).
The idea is to start from the GEA model of these holes given
as gradient expansions and remove the unrealistic long-
range parts of these holes to restore important constraints



satisfied by the LDA. Specifically, the spurious positive parts
of the GEA exchange hole are removed to enforce the
negativity condition of Eq. (1.52) and a cutoff in |r; —ry| is
applied to enforce the normalization condition of Eq. (1.50).
Similarly, a cutoff is applied on the GEA correlation hole to
enforce the condition that the hole integrates to zero [Eq.
(1.70)]. The exchange and correlation energies per particle
calculated from these numerical holes are then fitted to
functions of the density and density gradient chosen to
satisfy a number of exact constraints.

The spin-independent PW91 exchange energy density is
written as

eV (p, Vp) = el (p) FFV(s), (1.117)

where the so-called enhancement factor is

1+ 0.19645s sinh ™ (7.7956s) 4 [0.2743 — 0.1508 exp(—100s?)] s
1+ 0.19645s sinh ™ (7.79565) + 0.00454

FPWOL(g) — ,(1.118)

with the reduced density gradient s =|Vpl|/(2kgp) =
x/[2(3m?)1/3] where kg = (3m?p)!/3 is the Fermi wave vector.
The spin-dependent PW91 exchange energy density is
simply obtained from the spin-scaling relation [Eq. (1.36)]:
ex " Hprs o1 Vor Vo) = [V (201, 2V ) + eV (201, 2V p))] /2
The enhancement factor 1)(ry, ;) satisfies the second-order
gradient expansion [Eq. (1.112)], FFW9(s) = 1 + p s> + O(s%)

with ;; = —167(7/3)23C = 10/81 ~ 0.1235 , the local Lieb-
Oxford bound, F"W9(s) < —Cro/(C2"/?) ~ 1.804 , which is a
sufficient and necessary condition for a spin-dependent GGA
exchange functional to satisfy the Lieb-Oxford lower bound
[Eq. (1.98)] for all densities [194] (note however that 1.804
is not an optimal bound), and the condition
lim,_,s0 s/2FPW9(s) < 0o which guarantees the non-uniform
scaling finiteness conditions of Egs. (1.89) and (1.91) [158,
194].

The PW91 correlation energy density is written as



PV (pr, 01, Vpr, Vpy) = p [eV5C (pr, p)) + HPW oy, py, )] ,(1.119)

where the gradient correction H*W9 (o, p,, t) =Hy(p1, o},
t)+H,(p, p,, t) depends on another reduced density
gradient (adapted to correlation) t = [Vpl/(2¢,(Dkp) =
V/[4¢,(0)(3/m)'/®] where k, = /4kp /7 is the Thomas-Fermi
screening wave vector and the spin-scaling function ¢,(Q) is
defined by Eq. (1.103), with

2 o 2
Hy(pr, py,t) = ¢2(¢)*55 In [1 + %tzﬁ} !

A =2 [exp(—20e7" (py, p)) /(62(C)°B%) — 1]

Hi(pr, py:t)

1 3\ (2) (2) 342 —10002(C) k212 k2
=16(2) " [Cualr) = Cllp(r = 0) = CRJoal¢ e M 1,
and C,.(ry) is taken from Ref. [206]. The function Hy(p+, P,
t) was chosen so that it fulfills the second-order gradient
expansion [Eq. (1.114)], Ho(p1, py, t) = B2 (D32 + O(tY),
using an approximate ¢ dependence [271] and the Ma-
Brueckner high-density-limit second-order coefficient [166]
B =16(3/m)/3C%) 4 (ry — 0) ~ 0.06673 , and so that it cancels
the LDA correlation in the large-t limit,
limy o0 Hol(pr, pp,t) = —P%%(pr, py) - The only fitted parameter
is a =0.09. The function H{(p;, p,, t) only serves to restore
the correct second-order gradient expansion, such that
H"WOl(p,, p,, ) =163/m)Y3C(rs) ¢, (0)3t? + O(t*), while
keeping the large-t limit unchanged.

PBE Exchange-Correlation Functional

The Perdew-Burke-Ernzerhof (PBE) [188] exchange-
correlation functional is a simplification of the PW91
functional with no fitted parameters which gives almost the



same energies. The spin-independent PBE exchange energy
density is written as

elP(p, Vp) = elFC (p) FFPE(s), (1.120)
where the enhancement factor is
FfBE(s):ler—m. (1.121)

The function F'BE(s) has the second-order gradient
expansion FBE(s) =14 u 2+ O(s?) , and the parameter is
chosen as 4 = 167r(7r/3)2/30§?§m(rs — 0) ~ 0.21951 so as to
cancel the correlation second-order gradient expansion. The
second parameter kK is chosen so as to saturate the local
Lieb-Oxford bound, i.e.

limy oo FPPE(s) = 14+ K = —CLo/(C2"/?) ~ 1.804 , leading to x =
0.804. The same exchange functional form was in fact
proposed earlier in the Becke 86 (B86) functional [17] with
empirical parameters (u=0.235, Kk =0.967).

A revised version of the PBE exchange functional, called
revPBE, was proposed where the local Lieb-Oxford bound
constraint is relaxed and the parameter k = 1.245 is found
instead by fitting to exchange-only total atomic energies for
He and Ar, resulting in more accurate atomic total energies
and molecular atomization energies [276]. Another revised
version of the PBE exchange functional, called RPBE, was
also proposed to achieve a similar improvement, while still
enforcing the local Lieb-Oxford bound, by changing the
form of the enhancement factor to
FRPBE(g) =1 + k(1 — exp(—ps®/r)) with the same parameters
as in the original PBE [103].

The PBE correlation energy density is written as

et (pr, py, Vpr, Vpy) = p [eV%(pr, py) + HYPE(py, py 1)), (1.122)
with the gradient correction

2
HPPE(py, py, ) = A(0)65(C) In [1+ ot i




and
—1

A = 45 [exp(=eT (1, py)/(A0)(¢)%) — 1]

As in the PW91 correlation functional, the function HBE(p,,
P, t) has the second-order gradient expansion H*BE(p,, p,
t) = Bp,(0)3t? + O(t*) where

B = 16(3/m)*CA 5 (ry — 0) & 0.06673 , and it cancels the LDA

correlation in the large-t limit,

limy oo HYBE (pr, py, t) = —eV%%(p1, py) . In contrast with the

PW91 correlation functional, under uniform coordinate
scaling to the high-density limit, the PBE correlation
functional correctly cancels out the logarithm divergence of
the LDA correlation functional [Eq. (1.109)], i.e.

HPBE(y3p. 33p, . y1/2t) o A0 ()’ Iny  where A(0),(D)3

is a good approximation to the coefficient A(Q) [271].

A variant of the PBE exchange-correlation functional,
called PBEsol [196], targeted for solid-state systems, was
proposed where the correct second-order exchange
gradient-expansion coefficient is restored, i.e.

PBEsol = 167r(7r/3)2/ 30}((2) =10/81 ~ 0.1235 » and the second-
order correlation gradient-expansion coefficient Bpgpgso =

0.046 is found by fitting to jellium surface exchange-
correlation energies.

B97-GGA Exchange-Correlation Functional

The Becke 97 GGA (B97-GGA) exchange-correlation
functional is the GGA part of the B97 hybrid functional [22]
(see Sect. 1.4.1). The B97-GGA exchange energy density is

B97 GGA(pT; 01, va’ Vpi) ZJE{T 0y QEEG(pU) gX<(]ja>, (]_ i 23)

where ¢ %(p,) = /"% (p,,0) is the spin-o contribution to the

UEG exchange energy density and the gradient correction

gx(xp) is a function of z, = [Vp,|/pe”



lim, . sY2FPWOL(6) < oo (1.124)

with u,(z,) = v /(1 + vc22) . The B97-GGA correlation
energy density is written as the sum of opposite- and same-
spin contributions

BY7-GG BY7-GGA
()'C

Mpropy Ve Vo) =egy (9t 0y Yoy, V)

97-GG 1.125
+ Z ?377UGCA(pasvpa)e ( )
oe{t.l}

where

ecB,%_GGA(p% L Vpr, VPO - egTEf (pT7 pi) e N(xTO (1.126)

and
eBITCCA (p,, Vo) = €5 (o) Geoo (o). (1.127)

In these expressions,
B97 GGA<pT7 Py Vpr,Vpy) = ZUG{T 4} GSEG (po) 9x(x5), and
UEG(pU) — eUPG(p,,0) are estimations of the opposite- and
same-spin contributions to the UEG correlation energy
density [238, 239]. The opposite-spin gradient correction is

taken as a function of 4| = \/ (3 +27)/2,

() = S0l ult(zy, ), (1.128)

with ul*(zy)) = 71*23 /(1 +~1*23)) , and the same-spin
gradient correction is

Je, aa(xa) = ZZO Cg‘{ ug”(xg)i, (1.129)
with v (x,) = 77722 /(1 +~?°22) . The parameters y, = 0.004,

v+ =0.006 , and 777 = 0.2 , were roughly optimized on
atomic exchange and correlation energies. The other
parameters ¢, ;, ¢* , ¢/7 for a polynomial degree m=2 in

Egs. (1.124), (1.128), and (1.129) were optimized in the B97




hybrid functional in the presence of a fraction of HF
exchange energy (see Sect. 1.4.1).

The Hamprecht-Cohen-Tozer-Handy (HCTC) [104]
exchange-correlation functional uses the same form as the
B97-GGA exchange-correlation functional but with a

polynomial degree m =4 and the parameters cy ;, cit , Cei
were optimized without HF exchange a set of energetic
properties (atomic total energies, ionization energies,

atomization energies), nuclear gradients, and accurate

exchange-correlation potentials.

1.3.4 Meta-Generalized-Gradient
Approximations

The meta-generalized-gradient approximations (meta-GGAs
or mGGAs) are of the generic form, in their spin-
independent version,

EMCCA[p 1] = / OO (1), Vp(r), V2p(r), 7(r))dr,  (1.130)
[R3

i.e., they use more ingredients than the GGAs, namely the
Laplacian of the density V2p(r) and/or the non-interacting
positive kinetic energy density 7(r) associated with a single-
determinant wave function @,

N

T(I‘) = T@(I‘) = 5 |Vr®(x, X2, ... ,XN)| 2dO’ng e dXN
w(R3x {1+ [\ N-1
1 AU R (1.131)
= 52 [Vei(r)|?,
1=1
where {¢;};—; _n are the orbitals occupied in ®. The meta-

.....

GGAs are considered as part of the family of semilocal
approximations, in the sense that 7(r) contains semilocal
information with respect to the orbitals.

Meta-GGAs can be viewed as implicit functionals of the
density only, i.e. E2¢“4p, 4,] , since T(r) can be considered
itself as an implicit functional of the density via the KS



single-determinant wave function ®[p]. This view in which
EmGGA[p) is a proper approximation to the exchange-
correlation density functional E,[p] of the KS scheme is
normally adopted when constructing meta-GGAs
approximations. However, the calculation of the functional
derivative of Fu¢%A[p] with respect to the density then
requires the use of the complicated optimized-effective-
potential method (see Sect. 1.7). Therefore, in practical
calculations, meta-GGAs are usually reinterpreted as
explicit functionals of a single-determinant wave function @,
i.e. EmCGGA 15] , [2, 9, 73, 180, 181, 232, 242, 275] or, in
other words, approximations to an exact GKS exchange-
correlation functional (see Sect. 1.1.4).

In the latter approach, which we will here refer to as the
meta-Kohn-Sham (mKS) scheme, we introduce a functional
E™ES[p 7] (to which meta-GGAs are approximations) defined
for p and T simultaneously representable by a single-
determinant wave function ¢ ¢ SV and which defines the
GKS functional EZ [®] = EX*°[ps, 7o) [see Eq. (1.38)] giving
the exact ground-state energy via Eq. (1.39),

Eo = infgegy {(® T 4 Vie |®) + Enulpao] + EXS[ps, to]}, (1.132)

which, by taking variations with respect to the orbitals,
gives the mKS equations:

(—%VZ + Upe(r) + vp(r) + UEEKS(I“)> pi(r) = eipi(r).  (1.133)

Here, [, g p(r1)p(rs)dridry = N? contains a usual local
potential
0E"[p, 7]

op(r)

and a non-multiplicative operator [2, 9, 73, 242, 275]
(1.134)

05 (r) =

xc,1



I [SEmSS[p 7]
mKS _ = . XC )
vxc,Q (I‘) - QV ( (57‘(1’) v) )

evaluated with p(r) = 3"V |p;(r)|? and

7(r) = (1/2) Zi]i L |[Vpi(r)]* . Interestingly, the mKS equations
can be rewritten as a Schrodinger-like equation with a
position-dependent mass m(r) [50],

(—lv ! V + Upe(r) + vg(r) + vﬁ%%r)) @i(r) = €;i(r), (1.135)
2 m(r) ’

where m(r) = (1 + 6E255(p, 7‘]/57‘(I‘>>_1 . As in the KS scheme,
the functional F2K5[p, 7] is decomposed into exchange and
correlation contributions: FuK5(p 7] = EBRS[p 7] + EBES[p 7] .
In the spin-dependent version of the mKS scheme, we
consider a similar functional of the spin-resolved densities
and non-interacting positive kinetic energy densities
E™KS[p o1, 7, 7] and the spin-scaling relation of Eq. (1.36) is
generalized to

By oy, py 7y, m] = % (B8 (20, 2m) + EY™(2py, 271]) . (1.136)
Correspondingly, the spin-dependent versions of the meta-
GGAs are formulated in terms of the spin-resolved
quantities p;, p,, Vo1, Vo, V?p;, V?p,, 71, and T,.

One motivation for the introduction of the variable 7(r) is
that it appears in the expansion of the spherically averaged
exchange hole [entering in Eq. (1.55)] for small
interelectronic distances ry, [16], which for the case of a
closed-shell system is

| - _ L _pr)
4.:“[."133 IS(OJ‘D) h)\(_rls r + rl2)drl2 - 2

Vp(r))|? :
~L (59200 = T + SEEEY 12, 4 00y,

(1.137)

where §$(0, r|,) designates the sphere centered at 0 and of
radius rj, =|ry;|. Thus T(r) is needed to describe the



curvature of the exchange hole.

Another important motivation is that 7(r) is useful for
identifying different types of spatial regions of electronic
systems [245]. This is done by comparing t(r) with the von
Weizsacker kinetic energy density,

2
() = YO (1.138)
8p(r)
which is the exact non-interacting kinetic energy density for
one-electron systems and two-electron spin-unpolarized
systems, and, more generally, for one-orbital regions as
introduced in Sect. 1.2.3. For example, the indicator
™ (r)

z(r) = W,

(1.139)

which takes its values in the range [0, 1] [141], identifies
one-orbital regions (z=1). A better indicator is

7(r) — 7" (r)
TUEG(p)

where TVEC(r) = (3/10)(32)2/3p(r)°/3 is the non-interacting
kinetic energy density of the UEG. This indicator a(r)
distinguishes one-orbital regions (a = 0), slowly varying
density regions (a = 1), and regions of density overlap
between closed shells that characterize noncovalent bonds
(a>1).

Nowadays, V2p(r) is rarely used to construct meta-GGAs
because it contains similar information to t(r), which can be
seen by the second-order gradient expansion of t(r) [27]:

(1.140)

a(r) =

L [Vp(r)]? 1
GEA2 UEG 2
= — -V : 1.141
T (r)=7""(r)+ o) + 7 p(r) ( )
In comparison to GGAs, meta-GGAs are more versatile
and generally constitute an improvement. Significantly,
thanks to the use of 7, self-interaction errors in the




correlation functional can be essentially eliminated with
meta-GGAs. They still suffer however from self-interaction
errors in the exchange functional. We now describe some of
the most used meta-GGA functionals.

TPSS Exchange-Correlation Functional
In the Tao-Perdew-Staroverov-Scuseria (TPSS) [198, 249]
functional, the exchange energy density is written as

ex P (p, Vp,7) = "0 (p) FIP5 (s, 2), (1.142)

where the enhancement factor is a function of s =|Vp|
|(2kgp) and z = TV/T,

FEPSS<57Z> =1+Kr— 1+xTPSI{S(S’Z)/H7 (1143)

with k = 0.804 so as to saturate the local Lieb-Oxford bound
(just like in the PBE exchange functional) and

10, 22 o 146, T J1(3 2+14
—+c 55+ —— — (== =5
;U 2) Y T T s\ 2 \5 >
+l 0 254+2\/E— -2 2+eu56 /(1+\/552)2

r \ 81 81\ 5 ’

and g, = (9/20)(a — 1)/[1 4 ba(a — 1)]/? 4 25?/3 (Where a = (T —
™) /TUEG = (552/3) (2~1 — 1)) is a quantity that tends to the
reduced density Laplacian ¢ = V?p/(4kzp) in the slowly
varying density limit [using Eq. (1.141)]. The function
x™PSS(s, 2) is chosen so as to satisfy the fourth-order
gradient expansion [Eq. (1.112)] which can be written in the
form of the enhancement factor

FSEM(s 2) =1+ (10/81)s? + (146/2025)q* — (73/405)s%q . The
constant 1 =0.21951 is chosen to retain the same large-s
behavior of the PBE exchange functional, i.e.

FIP8(s,2) ~ F(s) . The constants c = 1.59096 and e =

P

1.537 are chosen so as to eliminate the divergence of the
potential at the nucleus for a two-electron exponential

2TPSS (5, 2) =

(1.144)




density and to yield the correct exchange energy (— 0.3125
hartree) for the exact ground-state density of the hydrogen
atom. Finally, the constant b = 0.40 is chosen, quite
arbitrarily, as the smallest value that makes FI"55(s 2) a
monotonically increasing function of s.

The TPSS correlation functional is constructed by making
minor refinements to the previously developed Perdew-
Kurth-Zupan-Blaha (PKZB) [192] meta-GGA correlation
functional,

TPSS( 1exPKZB<

p1: 01, Vpr,Vp,,m,7) =pe Pt P, V1, Vpy, 70, 7))
% [L+ d ™KL (1.145)
(pT7 Pl va? vpia T, ,71)/2,3] )

where the revised PKZB correlation energy per particle is

reVPKZB<pT’ oL, va? Vpiv Tt 71) = 5 (pT7 Pl va, Vpi) |:1 + C(Ca 5)22}

140G S BB g b Yy, Vi), (1.146)
oe{t.d}

€

with

"PBE( PBE( ) PBE(

prs Py, Vpr, Vpy) = maxle. " (pg, 0, Vpo, P1s Py, Vo1, V)]
where /85 (py, p1, Vi, Vp,) is the PBE correlation energy
per particle. Equation (1.146) constitutes a one-electron
self-interaction correction on the PBE correlation functional.
Indeed, for one-electron densities we have z=1 and { = *1,
and the TPSS correlation energy correctly vanishes [Eqs.
(1.75)]. The TPSS correlation functional preserves many
properties of the PBE correlation functional: it has correct
uniform coordinate scaling in the high- and low-density
limits, vanishing correlation energy in the large density-
gradient limit, and the same second-order gradient
expansion (since the additional terms beyond PBE are at
least in 22 and thus only change the fourth-order terms of
the gradient expansion). The parameters d = 2.8 hartree~1
and C(0, 0) =0.53 are chosen so as to recover the PBE
surface correlation energy of jellium [145] over the range of



valence-electron bulk densities. The rest of the function is
taken as

(C f) 0.5340.87¢2+0.50¢*+2.26¢6
(1+E2[(14¢) ~4/3+(1—¢)~4/3] /24"

where & =|V{|/(2kg) is a reduced spin-polarization gradient.

The function C(C, &) is chosen so as to make the exchange-
correlation energy independent of the spin polarization C in
the low-density limit [Eq. (1.86)] and to avoid that the self-
interaction correction introduces additional correlation
energy density in the core-valence overlap region of
monovalent atoms such as Li.

MO06-L Exchange-Correlation Functional
In the Minnesota 06 local (M06-L) exchange-correlation
functional [278], the exchange energy density is written as

ex"(pr, p1, Vo1, Vpy, 74, 7))

Z 6PBE (P Vo) f(we) + eggg(pa>h><(xav Zg ). (1.147)
oe{t.l}
The first term in Eq. (1.147), which has the same form as in
the previously developed M05 exchange functional [277],
contains the spin-o PBE exchange energy density
ex o (po, Vo) = €5 (ps, 0, Vps, 0) and the kinetic-energy
density correction factor

N

p(r) =1 [wi(r)]? (1.148)
where w, = (1.5¢ /7, — 1)/(77*¢ /7, + 1) with
pf(yl)(a;, y,2) =ypyz,y, 2) is an indicator of the delocalization

of the exchange hole [24]. The second term in Eq. (1.147),
which has the same form as in the VS98 exchange
functional [264], contains the spin-oc UEG exchange energy
density 7% (p,) = e/"“(p,,0) and the correction factor

hx<x07 Za) = h<$07 Zaa dX,O) dX,l) dx,27 dx,?n dx,47 OéX)? (]- . 149)



where », = |Vp,|/ps? and 7z, = 2(7, — rVECG)/,Y? and h is the
parametrized function
do dlxz + doZ d3$4 + d4332Z
+ +
7(1.72705) 7(%2704)2 ’Y(l’,Z,OZ)S
with p(x, Z, @) =1 + a(x? + Z).
The MOG6-L correlation energy is written as the sum of

opposite- and same-spin contributions, similarly to the B97-
GGA correlation functional [Eq. (1.125)],

]’L(fl?, Z, dO; d17 d27 d?n d47 Oé) =

e " (pr, py, V1, Vi, 71, 7))
- engOf L(IOT’ pLs V1 VL, TTaTi + Z 63{92 L(poa Vo, 7_0)7
oe{t,{}
where

X (01, 01, V oy, Vpu, 7, 1) = egty (o1 p1) [9eqs(@y) + heay (g, Z4)),

and

lglgg L(Paa Vps) = 63??(@7) [9(:,00(330) + hc,aa(xaa ZG)] DU(ZU>7

where the spin-decomposed UEG correlation energies

et (pr,py) and el (ps) were already defined after Eq.

(1.127), and the gradient corrections g ; , (x; ;) and
Jdc.oo(Xs) are given in Eqgs. (1.128) and (1.129). The
additional correction factors are

hit (e, Z1) = Bwy, Zoy, dig, iy, dis, dls, diy, olY), (1.150)

where x4, = \/(cc%+:cf)/2 ,Zy,=Z1+Z,, and

he(To, Zo) = Mg, Zs, AT, A2, d25, d25, A7, 7). (1.151)

The factor D,(z,) =1 — z,, where E)=[p] = 0 and
¥ = |Vp,|?/(8p,) , ensures that the correlation energy
correctly vanishes for one-electron systems [23].



The parameters /¥ =0.0031 , and 7J? = 0.06 , were
optimized on the correlation energies of He and Ne. The
parameters a, =0.001867, o+ = 0.003050 , and «f” = 0.005151

were taken from Ref. [264]. The constraints ag+dy =1,

+ d“o =1, and ) +dj =1 are enforced to obtain the
correct UEG limit. The remaining 34 free parameters q;, c“
, Coy for a polynomial degree m =4 in Egs. (1.148), (1. 128)
and (1.129), and dy;, d% , d7 in Egs. (1.149), (1.150), and
(1.151) were optimized on a large set of diverse
physicochemical properties concerning main-group
thermochemistry, reaction barrier heights, noncovalent
interactions, electronic spectroscopy, and transition metal
bonding.

SCAN Exchange-Correlation Functional

In the SCAN (strongly constrained and appropriately
normed) [244] exchange-correlation functional, the
exchange energy density is written as

SN0, V) = eV ) FEON 5, ), (1.152)

where the enhancement factor is a function of s =|Vp|
/(2kgp) and a = (T — ™) /TUEG,

FE (s, @) = [hy(s, @) + fela) (hg — hy(s, @))]gx(s),  (1.153)

which interpolates between a =0 and a= 1, and
extrapolates to a —»«» using the function

fx(a) = exp[—cixa/(1 — a)]0(1 — a) — dy explea /(1 — @)]0(ar — 1),
where 0 is the Heaviside step function. The function

g«<(s) =1 — exp(—a;s~1/?) is chosen to make eUF%(py, p,) vanish

like s~1/2 as s -, which guarantees the non-uniform
scaling finiteness conditions [Eqgs. (1.89) and (1.91)] [158,
194], and a; =4.9479 is taken to recover the exact exchange

energy of the hydrogen atom. For a =1 (slowly varying



density regions), FI'P5(s) =1+ pu s + O(s?) , where hl(s, ) is
a PBE-like resummation of the fourth-order gradient
expansion [Eq. (1.112)],

hi(s,a) =1+ k; — |

1+:USCAN(s,oz)/k‘1 ?

where
5N (s, o) = ps?[1 + (b432/,u)e_|b4|52/”] + [b1s* + ba(1 — oz)e_b3(1_0‘>2]2,

with 1=10/81, b, = (5913/405000)1/2, b; =
(511/13500)/(2b5), b3 =0.5, and Vo;,0 € {1, 1}, X0,(0) = 05, 5
For a =0 (one-orbital regions), lim,_,., s"/?FF"V9(s) < 0o
where 1! = 1.174 is chosen to saturate the local two-electron
tight bound F“N(s o = 0) < 1.174 , which is a sufficient and
necessary condition for a meta-GGA exchange functional to
satisfy the global tight bound of Eq. (1.101) for all two-

electron spin-unpolarized densities [194].
The SCAN correlation energy density is written as

SCAN (pTa Pl VPT, Vpia Ty Ti)

=p[€i(m,m, t) + fel@)(ed(prs p1s 8) = eclprs 1o )],

which is again an interpolation between a =0 and a =1, and
an extrapolation to a -»» using the function

fela) = exp[—crca/(1 — a)]0(1 — a) — dcexpleae /(1 — )]0 — 1).

For a =1, the correlation energy par particle is taken as a
revised version of the PBE correlation energy per particle,

5%(:0% Pl t) = 5UEG(pT7 pi) + HlsCAN(:OTa Pl t), (1.155)

(1.154)

where
HYN (py, py, t) = A(0)po(C)* In [1 + wi(1 — g(AL?)],  (1.156)

with £ =V pl/ 2, (Dksp),

wy = exp[—e™ (pr, p))/(A(0)(C)*)] = 1, A = B(re)/(A(0)w1) ,
and g(At?) = 1/(1 + 4At*)"/* . The function has a second-order



gradient expansion lim, .o, H*%5(py, p), 1) = =751, p)) &
where the coefficient B(ry) =0.066725(1 + 0.1ry) /(1 +
0.1778r,) is a rough fit of the density dependence of the
second-order gradient expansion correlation coefficient
beyond the Ma-Brueckner high-density-limit value and
designed so that for ry -« the second-order gradient
expansion terms for exchange and correlation cancel each
other [195]. For a =0, the correlation energy par particle is

constructed to be accurate for one- and two-electron
systems and is written as

pr pyr ) = [EEPN(p) + HEON(p, 9)|Gel(). (1.157)

The spin function G,(0) = [1 — 2.3631(¢4(0) — 1)]1(1 —'?) is
designed to make the correlation energy vanish for one-
electron densities (a =0 and { = +£1) and to make the
exchange-correlation energy independent of C in the low-
density limit [Eq. (1.86)]. Equation (1.157) includes a LDA-
type term [243]

LDAO b1
€e (10> o /C
1"’52(:7’5 +b3ch

and a gradient correction
H5*(p, s) = bieIn[1 + wo(l — gso(¢ = 0,5))],

with wy = exp( LDAO( )/blc> — 1 and

9oo(C =0, 5) = lim¢ g lim,, o0 g(At) = 1/(1 + 0.5121045%)Y/4 . The
parameter b;.=0.0285764 is determined so that the high-
density limit of 2(p+, p;, s) reproduces the exact correlation

energy of the Helium isoelectronic series in the large-
nuclear charge limit, i.e.

limz o0 Eclpn—2z] = ESV[pN_y ;1] = —0.0467 hartree [Eq.
(1.94)]. The parameter b3, =0.125541 is determined to

saturate the lower bound on the exchange-correlation
energies of two-electron densities [Eq. (1.99)]. The



parameter b,. = 0.0889 is determined to reproduce the
exact exchange-correlation energy of the He atom.

The remaining seven parameters (k; =0.065, ¢, =0.667,
Ccyx=0.8,d,=1.24, ¢1.=0.64, ¢c,.=1.5, and d,=0.7) are
determined by fitting to the approximate asymptotic
expansions of the exchange and correlation energies of
neutral atoms in large nuclear charge limit [Egs. (1.96) and
(1.97)], the binding energy curve of compressed Ar,, and

jellium surface exchange-correlation energies.

1.4 Single-Determinant Hybrid

Approximations

1.4.1 Hybrid Approximations

Based on arguments relying on the adiabatic-connection
formalism, in 1993 Becke [19] proposed to mix a fraction of
the exact or Hartree-Fock (HF) exchange energy E! with
GGA functionals. In particular, he proposed a three-
parameter hybrid (3H) approximation [20] of the form,
written here in its spin-independent version,

By (@] = a B0 +b B pa] + (1 — a — b) B [po]
+ ¢ B pa] + (1 — ) B2 [po),
with empirical parameters q, b, and c. The functional E3![]]

is thought of as a functional of a single-determinant wave
function ¢ ¢ SV since E}_[p] is itself a functional of @,

(1.158)

Ef®] = (‘PI Wee |®) — Enlpo]
Ny Ny

( (r( ! ( l'(r(
_ 2 Z sz ()Dl(f I'l)(p/ ryg ‘/(r r) rZ)drldr2!(1'159)

ry —r
(TGT\Llljl 2|

where {¢;,}i—1...n, are the orbitals occupied in ®. In 1996,
Becke proposed a simpler one-parameter hybrid (1H)
approximation [21],



EQ®] = a EJF[®] + (1 — a) EJ9Ype] + Egps],  (1.160)

where the fraction a of HF exchange has to be determined.
For simplicity, we considered GGA functionals E%%4[ps] and
ESGApg] in Eq. (1.160) but we can more generally use meta-
GGA functionals EuCC4[pg, 75] and ERCCApg, 75)]

These hybrid approximations should be considered as
approximations of the GKS exchange-correlation functional
E2[®] in Eq. (1.38) with S[®] = a EI¥[®] . The corresponding
GKS equations [Eq. (1.1.4)] then include the term

(55[@] / HF / / /
* = a Uy o\, I ) Qg (T dI', (1161)
0p;,(r) R3 (£, 7)eis ()
where v}l (r,1’) is the nonlocal HF exchange potential’
No -
.O_ I‘ 'O-
Ugg(nr/) _ Z Pjo(T)¢] (r)

— Ir —1/|
7=1
The main benefit of adding a fraction of HF exchange is
to decrease the self-interaction error (see Sect. 1.2.3)
introduced by semilocal exchange functionals which tends
to favor too much delocalized electron densities over
localized electron densities. The fraction of HF exchange
should however be small enough to keep the compensation
of errors usually occurring between the approximate
semilocal exchange and correlation functionals. First, Becke
used the value a = 0.5 in the so-called Becke Half-and-Half
functional [19], but then fits to various experimental data
often repeatedly gave an optimal parameter a around 0.20-
0.25. A rationale has been proposed in favor of the value
0.25 [191]. By decreasing self-interaction errors in the
exchange energy, hybrid approximations are often a big
improvement over semilocal approximations for molecular
systems with sufficiently large electronic gaps. However, for
systems with small HOMO-LUMO gaps, such as systems



with stretched chemical bonds or with transition metal
elements, they tend to increase static-correlation errors.

An interesting extension of the hybrid approximations
are the so-called local hybrids, which use a position-
dependent fraction a(r) of a (non-uniquely defined) HF
exchange energy density ¢!f(r) [125] (see, Ref. [167] for a
recent review), and which belong to the wider family of
hyper-GGA functionals in which the correlation energy can
also be expressed as a function of e!'(r) [197]. The local-
hybrid approximations are much more flexible than the
global hybrid approach exposed in this section but require
more complicated and computationally expensive
implementations. For this reason, they have not often been
used and we will not consider them any further here.

We now describe some of the most used hybrid
approximations.

B3LYP Exchange-Correlation Functional

The B3LYP exchange-correlation functional [237] is the
most famous and widely used three-parameter hybrid
approximation [Eq. (1.158)]. It uses the B88 exchange
functional and the LYP correlation functional,

EBWYPo] = o EM[D] + b EP®¥[pi 4, p1.0] + (1 —a — b) EXPp1 0, p1.0]

e EXPpro, pro] + (1 —¢) EX¥P2p 4, p1 o), (1.162)

and the parameters a=0.20, b=0.72, and ¢=0.81 were
found by optimizing on a set of atomization energies,
ionization energies, proton affinities of small molecules and
first-row total atomic energies [20]. A caveat is that the
VWN parametrization of the RPA correlation energy
(sometimes referred to as VWN3) of the UEG was actually
used for E5PA[p, p|] instead of the VWN parametrization of
the accurate correlation energy (sometimes referred to as
VWNS5) of the UEG [265].

B97 Exchange-Correlation Functional



The Becke 97 (B97) exchange-correlation functional [22] is
a GGA hybrid of the form

EZ (0] = a B (@] + (1 - a) EFXTpra, py0]

+ poron (1.163)

P1,0, pi,@]a

where the form of the B97-GGA exchange and correlation
functionals were given in Egs. (1.123) and (1.125). The
fraction of HF exchange a =0.1943 and the remaining
parameters ¢y o= 1.00459, ¢, 1 =0.629639, ¢, , =0.928509,

clp=0.9454 , ¢l =0.9454 , ¢l = —4.5061 , ¢ = 0.1737,
7§ = 0.1737 , and % = —2.4868 for a polynomial degree m = 2
in Egs. (1.124), (1.128), and (1.129) were optimized on a set

of total energies, atomization energies, ionization energies,
and proton affinities. Note that, for x, =0, the UEG limit is

not imposed, which would require the parameters ¢, o, ¢! ,

Cy
and ¢; to be all strictly equal to 1. With the above
optimized parameters, we see that it is nearly satisfied for
the exchange energy and the opposite-spin correlation
energy, but very far from it for the same-spin correlation
energy, which is drastically reduced compared to the LDA.

PBEO Exchange-Correlation Functional
The PBEO exchange-correlation functional [1, 60] is a GGA
hybrid using the PBE exchange and correlation functionals,

EM[0] = a EXF 0] + (1 —a) B [pro, .ol
+ ECPBE [P1.05 P1.3),

and the fraction of the HF exchange is fixed at a =0.25
according to the rationale of Ref. [191]. This functional is
also known under the name PBE1PBE. The “1” in the latter
name emphasizes that there is one parameter, a, while the
“0” in the more common name PBEO emphasizes that this
parameter is not found by fitting.

(1.164)



TPSSh Exchange-Correlation Functional

The TPSSh exchange-correlation functional [234] is a meta-
GGA hybrid using the TPSS exchange and correlation
functionals,

EZ7PMD) = a EFF 0] + (1 — a) B{™ o0, pr0, Tro, TL0)
+ EXpr 6,010, Tro, TL0)s

and the fraction of the HF exchange a =0.10 was
determined by optimizing on a large set of atomization
energies.

(1.165)

MO06 and M06-2X Exchange-Correlation Functionals
The M06 exchange-correlation functional [279] is a meta-
GGA hybrid using the M06-L exchange and correlation
functionals,

ER"[®] = a B [@] + (1 —a) EY"V[ore, pre, 7.0, T1.a)
+ EX%V i 0,010, T, Tya),

and the parameters in the M06-L exchange and correlation
functionals were reoptimized together with the fraction of
HF exchange a =0.27 on the same large set of diverse
physicochemical properties used for the M06-L functional.
In the M06-2X exchange-correlation functional the fraction
of HF exchange is doubled, i.e. a = 0.54, and the parameters
were reoptimized with the function h.(x,, Z,) in Eq. (1.149)

set to zero and excluding transition metal properties in the
training set. With this large fraction of HF exchange, the
MO06-2X functional is designed for systems without
transition metal elements.

(1.166)

1.4.2 Range-Separated Hybrid Approximations
Based on earlier ideas of Savin [216] (exposed in detail in
Sect. 1.5.2), in 2001, Iikura et al. [121] proposed a long-
range correction (LC) scheme in which the exchange-



correlation energy is written as, in its spin-independent
version,

EXC[®] = EX#HE (D] 4 EEmGGApg ) 4+ BEECA p). (1.167)

This scheme has also been referred to as the range-
separated hybrid exchange (RSHX) scheme [77]. In Eq.
(1.167), Ex+HF @] is the HF exchange energy for a long-
range electron-electron interaction F>CAN(s o = 0) < 1.174
(where ¢rf is the error function and the parameter u € [0,
+ ) controls the range of the interaction),

Eh‘.u.HF [CD}

=73 Z 22/3 1o (T1) @0 (1) (12) P10 (12, “(7“12)d1'1dr2a(1'168)

JE{TQ =1 j=1

and ~/* = 0.006 is a GGA exchange energy functional for
the complementary short-range interaction
Wi (ryy) = 1/r13 — wk(ryy) . This latter functional can be

thought of as an approximation to the short-range exchange
functional

1

_ /3 ) p<r1>h (I‘l, rg)w (r12)dr1dr2, (1169)
RoxR

) = 5

where h.(rq, ry) is the KS exchange hole of Sect. 1.2.1. For

1 =0, the long-range HF exchange energy vanishes, i.e.
Err=0HF[p) — 0, and the short-range exchange functional
reduces to the standard KS exchange functional, i.e.
Es=0p] = E[p] . Reversely, for 1 —«, the long-range HF
exchange energy reduces to the full-range HF exchange
energy, i.e. Fr#lt ) = FHF@] , and the short-range
exchange functional vanishes, i.e. ES""7>®[p] =0 .
Significantly, for large p, the short-range exchange
functional becomes a local functional of the density [81,
255]:

(1.170)



EX M pl ~ _ o(r)dr.
. p—oo  4p? fploo
Like the hybrid approximations of Sect. 1.4.1, Eq. (1.167)
should be considered as an approximation of the GKS
exchange-correlation functional £° [®] in Eq. (1.38) with
S[®] = E+H¥[P] , and the corresponding GKS equations [Eq.

(1.1.4)] then includes a long-range nonlocal HF exchange

potential vg#’HF(rl, ry) = — Zjvzgl gojg(rl)so;'fa(rz)wé%“(m) .

Similarly to the hybrid approximations, the introduction of a
fraction of long-range HF exchange reduces the self-
interaction error (see, e.g., Ref. [179]). In addition, the
short-range exchange part is easier to approximate with
semilocal density-functional approximations, as Eq. (1.170)
strongly suggests. In particular, the — 1/r asymptotic
behavior of the exchange potential [Eq. (1.27)], which is
difficult to satisfy with semilocal approximations, does not
apply anymore to the short-range exchange potential.

In 2004, Yanai et al. [273], introduced a more flexible
scheme called the Coulomb-attenuating method (CAM)
[273] in which fractions of HF exchange are added at both
short range and long range,

ESM[G] = a BEFHIT(0] + b BT[] + (1 — o) BTS04 )
+ (1= b) BEXS4 pg] + B pg),

where pr+1F (9] = pHF[@] — p#1F[@] is the short-range HF
exchange energy and EI#GGA — pGGA _ psrpnGGA g g long-
range GGA exchange energy. The reintroduction of HF
exchange at short range further reduces the self-interaction
error and improves thermodynamic properties such as
atomization energies. Again, Eq. (1.171) should be
considered as an approximation of the GKS exchange-
correlation functional £? [®] in Eq. (1.38) with

S[®] = a EF#1[D] 4 b EX#HE @] . Other forms of modified

(1.171)



electron-electron interactions are also possible (see, e.g.,
Refs. [113, 217, 255]).

The approximations in Egs. (1.167) and (1.171) are
usually collectively referred to as range-separated hybrid
approximations. Range-separated hybrids in the form of Eq.
(1.171) are more flexible than the hybrid approximations of
Sect. 1.4.1, and consequently are potentially more accurate,
in particular for long-range electronic excitations. However,
like the hybrid approximations, the presence of HF
exchange tends to induce static-correlation errors for
systems with small HOMO-LUMO gaps.

The range-separation parameter u (also sometimes
denoted as w) is generally chosen empirically, e.g. by fitting
to experimental data. In practice, a value around = 0.3 —
0.5 bohr—1, fixed for all systems, is often found to be
optimal. It has also been proposed to adjust the value of u in
each system, e.g. by requiring that the opposite of the
HOMUO energy be equal to the ionization energy calculated
by total energy differences [12, 235, 236]. These so-called
optimally tuned range-separated hybrids are well suited for
the calculation of charge-transfer electronic excitations but
have the disadvantage of not being size consistent [130].

A natural idea is to use a position-dependent range-
separation parameter u(r) which allows the range of the
modified interaction to adapt to the local average electron-
electron distance in the diverse spatial regions of the
system. These locally range-separated hybrids [11, 133,
139] are promising but they induced computational
complications and are still in the early stages of
development. We will thus not consider them any further
here.

We now describe some of the most used approximations
in the context of the range-separated hybrids.

Short-Range LDA Exchange Functional



The short-range LDA exchange functional [81, 216] can be
obtained by using in Eq. (1.169) the LDA exchange hole [Eq.
(1.110)], which leads to

BN = [ U g, 1.172)
R3
with the short-range UEG exchange energy density

sr,/LUEG(
X

e p)

81t 1 ~ - ~ o~
— eVEG(p) [1 - ?’u (ﬁ erf (ﬁ) + (2 — 4,u3)e_1/(4“2) — 30+ 4M3)]

where 1 = 11/(2kp) is a dimensionless range-separation
parameter. The spin-dependent version is obtained from the
same spin-scaling relation as in the standard case [Eq.
(1.36)]. The short-range LDA exchange functional becomes
exact for large pu [Eq. (1.170)] and is the first building block
for constructing short-range exchange GGA functionals.

(1.173)

CAM-B3LYP Exchange-Correlation Functional

The CAM-B3LYP exchange-correlation functional [273] uses
Eq. (1.171) with short- and long-range versions of the B88
exchange functional and the same correlation functional
used in B3LYP (i.e., E#—=olF (9] = FHF[@] ),

EgLANl-BgLYP[CD] —a E;l"./J.HI:[(DI +b ELI"./I.HI:[CI)I + (l _ Cl) EI:I"./J.BSS[I)T.(D! [{L_(DI
+ (1 —b) EX B0, 4,010l +F081ES o 0, p) 0] (1.174)

+0.19E5PA o4 o, 0 0],

where the parameters a =0.19 and b = 0.65 were optimized
on atomization energies and the range-separation
parameter 11 = 0.33 bohr—! was taken from Ref. [250], where
it was optimized on equilibrium distances of diatomic
molecules. In this expression, the short-range B88 exchange
functional F#B% is defined by using in Eq. (1.169) the
following generic GGA model for the exchange hole [121]
(given here in its spin-independent version)



hSCA () V) = —p 9 (]1<kGGAT1z)>2, (1.175)
2 kaaar
with koo = kp/+/eS64(p, Vp)/eVEG(p) . The exchange-hole
model of Eq. (1.175) properly yields the GGA exchange
energy density ¢G4 (p, Vp) for p =0 and thus allows one to
extend any standard GGA exchange functional to a short-
range GGA exchange functional. Note however that it does
not fulfill the sum rule [Eq. (1.50)]. The long-range B388
exchange functional is then simply lim,_,.. s'"/2FFWV9(s) < oo .

LC-wPBE Exchange-Correlation Functional

The LC-wPBE exchange-correlation functional [266, 267]
uses a short-range version of the PBE exchange functional
as well as the standard PBE correlation functional,

ELSCPPE @] = EYIT@] 4+ ESPPE gy 4 p) o
+ By pra, pro)-

The short-range PBE exchange functional is obtained by
using in Eq. (1.169) the following GGA exchange hole model
constructed to yield the PBE exchange energy [59],

wy = (V% /1, — 1) /(798¢ /7, + 1) (1.177)
where s =|Vp|/(2kgp) and

(1.176)

A 1

JPBE<$,U) = [— @W+

(1.178)

2| —s¥H(s)u

(% + B+ C[1+ s*F(s)ju* + E[1 + SQQ(S)]U4> e Pu

Here, A , B ,C , A , and ¢ are constants chosen to obtain
an oscillation-averaged UEG exchange hole for s =0, and
F(s), G(s) and H(s) are functions determined so that the
hole yields the PBE exchange density for u =0, and satisfies
the sum rule [Eq. (1.50)] and the small-r;, expansion [Eq.

(1.137)] using the gradient expansion of T of Eq. (1.141).



The range-separation parameteris fixed at y=w=0.4
bohr—! which has been found to be close to optimal for
atomization energies, reaction barrier heights, and
ionization energies [266].

wB97X Exchange-Correlation Functional
The wB97X exchange-correlation functional [34] has the
form of Eq. (1.171) with b=1:

EP@] = a BEPHITR] 4+ BEFRT[R] + (1 a) BRI oy, pya

+EEQ7_GGA[PT7<I>, pLa)- (1.179)

The short-range B97-GGA exchange density is defined as

estnBITGCA (. T Vp,) = ZUG{N} ef;f#’UEG(po—) 9x(xs),

where "¢ (p,) = e+ UEC(p, 0) is the spin-o contribution

to the short-range UEG exchange energy density [Eq.
(1.173)] and the gradient correction g,(x,) where

v, = |Vp,|/pd? has the same form as in Eq. (1.124) with

polynomial degree m=4. In Eq. (1.179), the correlation
functional has the same form as the B97-GGA correlation
functional but again with polynomial degree m =4 in Eqs.
(1.128) and (1.129). The fraction of short-range HF
exchange a = 0.16, the range-separation parameter y=w =
0.3 bohr—1, and the linear coefficients in Eqgs. (1.124),
(1.128), and (1.129) were optimized on sets of atomic
energies, atomization energies, ionization energies, electron
and proton affinities, reaction barrier heights, and
noncovalent interactions, with the constraints a + ¢, o =1,

ciy =1, and ¢l =1 to enforce the correct UEG limit.

HSE Exchange-Correlation Functional
The Heyd-Scuseria-Ernzerhof (HSE) exchange-correlation
functional [117] is of the form of Eq. (1.171) with b=0 (i.e.,
no long-range HF exchange),

(1.180)



EXSE[Q] = aBS ™[0 + (1 — a) X" [pro, pro) + By pre, pro]
+E§BE (1.3, P1.0);

and involves the long-range PBE exchange functional
ElrwPBE — pPBE - pstuPBE complementary to the short-range
PBE exchange functional constructed from the PBE
exchange hole model [Egs. (1.177) and (1.178)]. In order to
reproduce reliable values for the band gap in
semiconducting solids, the range-separation parameter is
fixed at u=0.15 bohr~!, which is a very small value
compared to the other range-separated hybrids. It means
that the range of electron-electron distances covered by HF
exchange is large, and the HSE functional could be thought
of as a regular hybrid approximation but with the very long-
range contribution of the HF exchange removed. This is
particularly appropriate for solids since in these systems the
very long-range HF exchange is effectively balanced by the
correlation effects (a phenomenon known as screening). The
fraction of (short-range) HF exchange is fixed at a =0.25
like in the PBEO hybrid functional.

1.5 Multideterminant Hybrid

Approximations

1.5.1 Double-Hybrid Approximations

In 2006, Grimme [98] introduced a two-parameter double-
hybrid (2DH) approximation, written here in its spin-
independent version,

B = ax B[] + (1= ax) E{®pa] + (1 — ac) E¢[po] + acE™,(1.181)

mixing a fraction a, of the HF exchange energy with a GGA
exchange functional, and a fraction a. of the second-order

Mgller-Plesset (MP2) correlation energy E P2 with a GGA

correlation functional. In Eq. (1.181), the first three terms
are first calculated in a self-consistent manner, and then the



last term EM? is added perturbatively using the orbitals
determined in the first step. The expression of £ is [247]

N N

ELMP2 _ _% Z Z Z Z | <¢l¢,’| |¢(r¢b> | - (1182)

f:l },:1 “2[\1_’_1 [)2[\;_'_1 l b i },

where i, j and a, b run over occupied and virtual spin
orbitals, respectively, ¢, are spin orbital energies, and

(D ;| [Pathp) = (@i i|PaPp) — (@i |Pps) ) are antisymmetrized

two-electron integrals with (in physicists’ notation)

(Ppdy|Pros) = f([R3><{T7¢})2 %(Xl)%(XQ)@'(X”%(XQ)dxldXQ. (1.183)

lr1—ro

Note that the notation in Eq. (1.182) assumes that the one-
electron wave-function space is spanned by a discrete set of
spin orbitals. In the exact theory, the continuum limit of the
set of virtual spin orbitals is implied.

The rigorous framework underlying these double-hybrid
approximations was established by Sharkas et al. [226]. The
idea is to decompose the universal density functional of Eq.
(1.7) as

Flp] = ming gy (W] T+ aWee W) + Ef o], (1.184)

where A € [0, 1] is a coupling constant and Eﬁxc [p] is a
complementary density functional defined to make Eq.
(1.184) exact. From Eqgs. (1.10) and (1.62), we see that
B} lpl = Buxlp] — Ej.|p] , where Eyy[p] is the standard
Hartree-exchange-correlation functional of the KS scheme
and Fj_[p] is the Hartree-exchange-correlation functional
along the adiabatic connection. The Hartree and exchange
contributions are simply linear in A,

E2 [] = B2 pg, 7o) (1.185)

EXp) = (1 - NE], (1.186)



where Ey[p] and E[p] are the standard Hartree and

exchange functionals of the KS scheme. Moreover, from the
uniform coordinate scaling relation of Eq. (1.84), we have

EXpl = Eclp] = NEclpial, (1.187)

where E[p] is the standard correlation functional of the KS
scheme and pq (1) = (1/A)3p(x/A) is the scaled density. The

decomposition in Eq. (1.184) leads to the following
expression of the exact ground-state energy

Eg = infy v [(U] T + Voe + AWee W) + EL_[pw]},  (1.188)

where the infimum is over general multideterminant wave
functions | ¢ W/ . This constitutes a multideterminant
extension of the KS scheme. Note that this
multideterminant KS scheme can trivially be extended to
spin-dependent density functionals and functionals
depending on the kinetic-energy density [232].

The double-hybrid ansatz can be seen as a particular
approximation within this multideterminant KS scheme
[226]. To see this, we define a density-scaled one-parameter
hybrid (DS1H) approximation by restricting the
minimization in Eq. (1.188) to single-determinant wave

functions ¢ € SV,
E(L))SIH'}“ — inf: ((I)|T‘|— ‘//\nc‘l‘kwccm))—"é[ﬁxc[pcbl ’ (1189)
PeSN

obtaining an energy which necessarily depends on A. A

minimizing single-determinant wave function ®2 must
satisfy the self-consistent eigenvalue equation

~ ~ o~ - — \ ; ,
(T + Vie + AV [©*] + VHXC[[)(D;,l) |D*) =& |D*),  (1.190)

where ﬁ:{mﬁ*] is the nonlocal HF potential operator
evaluated with the DS1H wave function ®* and fx‘:m“} E
the local Hartree-exchange-correlation potential operator



generated by the energy functional £} [o] and evaluated at
the DS1H density pgr . If written explicitly in terms of spin
orbitals, Eq. (1.190) would have the form of the GKS
equations [Eq. (1.40)]. The DS1H ground-state energy can
be finally written as

DSIH,A

E, = (O* T + Vie |9) + Enlpgr | + L EF 07

- (1.191)
+ (I = A)Ex[pgpr] + Eék[ﬁcpils

where the full Hartree energy Ey[p] has been recomposed.
The exchange-correlation energy in Eq. (1.191) is of the
form of a hybrid approximation [Eq. (1.160)].

All that is missing in Eq. (1.191) is the correlation energy
associated with the scaled interaction ,:Lﬁfe . - It can be
calculated by a nonlinear Rayleigh-Schrodinger
perturbation theory [5, 6, 69] starting from the DS1H
reference. Consider the following energy expression with
the perturbation parameter a € [0, 1],

EM = wi%\__{(\lf| T+ Voe + AV 0] + aa W W) + EL [pw}.(1.192)
vl

where AW = i (W, — V}F[@*]) is the scaled Mgller-Plesset
perturbation operator. For a = 0, the stationary equation
associated with Eq. (1.192) reduces to the DS1H eigenvalue
equation [Eq. (1.190)]. Fora=1, Eq. (1.192) reduces to Eq.
(1.188), so Eg’azl is the exact energy, independently of A.
The sum of the zeroth-order energy and first-order energy
correction gives simply the DS1H energy,

EPSHA — g0 g Thanks to the existence of a Brillouin

theorem just like in standard Mgller-Plesset perturbation
theory (see Refs. [5, 6, 69]), only double excitations
contribute to the first-order wave-function correction ¥4 (1)
and the second-order energy correction has a standard MP2
form

E6 (2) 2 ((D)L| W |\IJ}“(1)) _ )L2El\/lp2
C )



where EM? has the expression in Eq. (1.182) with DS1H
spin orbitals and associated orbital eigenvalues (which
implicitly depend on A). This second-order perturbation
theory defines a density-scaled one-parameter double-
hybrid (DS1DH) approximation

E(];)SIDH,/\ _ E(];)SIH,/\ + E37(2), (1193)

which contains the exchange-correlation energy
contribution

EDSIPHA — AEI [N + (1 — ) Exlpor] + E[pgn] + A2 ELT2.(1.194)

To make connection with the double-hybrid ansatz of Eq.
(1.181), we can also define a one-parameter double-hybrid
(1DH) approximation, obtained by neglecting the density
scaling in the correlation functional, i.e. E.[p;,3] = E.[p] in

Eq. (1.187),
B = AE Y + (1= N Exlpga] + (1 = M) Eclpg] + A E, (1.195)

which, after using semilocal approximations for E,[p] and
E.[p], has the form of Eq. (1.181) with parameters a, = A

and a, = A?. In this rigorous formulation of the double-hybrid

approximations, the fraction of HF exchange is thus
connected to the fraction of MP2 correlation. Taking into
account approximately the scaling of the density in E [p,],

it has also been proposed to use a, =23 [260]. Fromager

[67] also proposed an extension of this rigorous formulation
in order to justify the use of double-hybrid approximations
with two parameters such that g, < a? = \? .

An essential advantage of double-hybrid approximations
is that the presence of nonlocal MP2 correlation allows one
to use a larger fraction of nonlocal HF exchange, which
helps decreasing the self-interaction error. This usually
provides an improvement over hybrid approximations for
molecular systems with sufficiently large electronic gaps.



However, a large fraction of HF exchange and a fraction of
MP?2 correlation also generally means large static-
correlation errors in systems with small HOMO-LUMO gaps.
The first and still best known double-hybrid
approximation is B2PLYP [98], which is based on the B88
exchange functional and the LYP correlation functional,

BT = ay BV (O] + (1= ay) EX[pra, py0)
+ <1 - a’C>E(I:JYP[pT./<I>7 pi@] + acE(I:\H)Q?

and the parameters a, =0.53 and a, = 0.27 have been

optimized on a set of atomization energies. Interestingly,
even though the two parameters have been optimized
without any constraint, we have a. ~ > = (.28 as predicted
by Eq. (1.195).

It has also been proposed to use the spin-component-
scaled (SCS) version of MP2 [95] to construct spin-
component-scaled double-hybrid approximations of the form
[136, 137]

ESOSPH — o EYY[D] + (1 — ay) ES“Ypg] + (1 — a) ESSY[pg)]

/ / (1.196)
—f-CosEa[Cl)DSQ + CssE&ISPSQ,

which contains four empirical parameters ay, a., cog, and
Css. In this expression, £} and E)(¢ are the opposite-spin
(OS) and same-spin (SS) contributions to the MP2
correlation energy obtained by restricting the sums over i
and j in Eq. (1.182) to spin orbitals of opposite and same
spins, respectively. Since in MP2 the same-spin component
is usually overestimated relative to the opposite-spin
component, this SCS variant is a simple way to achieve
higher accuracy without increasing computational cost.
For reviews on different flavors of double hybrids and
their assessments, the reader may consult Refs. [82, 171,
212, 241]. It has also been proposed to construct double-
hybrid approximations where the MP2 correlation term is
extended to a higher-order correlation method such as RPA



[3, 100, 172, 173, 211] or coupled-cluster [35, 76]. More
generally, the multideterminant extension of the KS scheme
of Eq. (1.188) allows one to define hybrids combining any
wave-function method with density functionals. For
example, a multiconfiguration hybrid approximation based
on Eq. (1.188) which combines a multiconfiguration self-
consistent-field (MCSCF) wave function with density
functionals has been proposed in the goal of tackling
strongly correlated systems [225]. This approach has also
been used to combine valence-bond (VB) theory [274] or
variational two-electron reduced-density-matrix theory
[176] with DFT.

1.5.2 Range-Separated Double-Hybrid
Approximations

1.5.2.1 Range-Separated One-Parameter
Double-Hybrid Approximations
In 2005, Angyan et al. [6] introduced what could be called
the first range-separated one-parameter double-hybrid
approximation, i.e. combining HF exchange and MP2
correlation with density functionals using a one-parameter
decomposition of the electron-electron interaction. This is
based on the range-separated multideterminant extension of
the KS scheme introduced earlier by Savin [216] (see, also,
Refs. [215, 217, 255]) and which actually predates and
inspired the multideterminant extension of the KS scheme
of Eq. (1.188).

The idea is to decompose the universal density functional
of Eq. (1.7) as

Flpl = mingeyyy (W] T + Wee" |W) + E21p], (1.197)

where jy " is the long-range electron-electron interaction
operator (associated with the pair potential

FSCAN(s oy = 0) < 1.174 as already used in the range-
separated hybrids of Sect. 1.4.2) and E}_|[p] is the



complementary short-range density functional defined to
make Eq. (1.197) exact. As before, the parameter u € [0,
+x) controls the range of the separation. The
complementary short-range functional can be written as
EXM[p] = Fugelp) — Ep[p) » where Eyy[p] is the standard
Hartree-exchange-correlation functional of the KS scheme
and FE}"[p] is the Hartree-exchange-correlation functional

associated with the long-range interaction w/(ry,) . It is
often convenient to decompose the short-range functional as
(see Refs. [240, 254, 258] for an alternative decomposition)

Efielp] = Byl + EZ"[p] + £ [p],
where E};""[p] is the short-range Hartree functional,

- 1 N
Eylp] = 5/['?3 y p(r1)p(ro)wi (r12)drdrs,

with the short-range interaction wy = exp(—"PA%(p) /by.) — 1,
EF[p] is the short-range exchange functional [Eq. (1.169)]
which can also be written as

E¥[p] = (®[p]l W D pl) — Eyp o],

with the KS single-determinant wave function ®[p], and
Ey"[p] is the complementary short-range correlation
functional. Just like for Eq. (1.188), the decomposition in
Eq. (1.197) leads to the following expression of the exact
ground-state energy

Eg = infycppw {(WIT + Do + W 19) + Bl o0l (1.198)

where the infimum is over general multideterminant wave
functions | ¢ W~ .

To obtain an MP2/DFT hybrid scheme, we proceed
analogously to Sect. 1.5.1. First, we define the following
range-separated hybrid (RSH) approximation by restricting



the minimization in Eq. (1.198) to single-determinant wave
functions ¢ ¢ SV,

RSH, i . i
ERSH CDlenSif’V (@ T + Voe + W @) + Exllpall,  (1.199)

obtaining an energy which necessarily depends on u. A

minimizing single-determinant wave function ®* must
satisfy the self-consistent eigenvalue equation

lr, ,u HF

(7 + Ve Vg 1001+ Viggelpon 1) 100) = €5 10%), (1.200)

where v“ Mg is the nonlocal long-range HF potential

operator evaluated with the RSH wave function ®# and
ST,

Ve [pon 18 the local short-range Hartree-exchange-

correlation potential operator generated by the energy
functional F} _[o] and evaluated at the RSH density por . The

RSH ground-state energy can be finally written as

ESSM — (011 T + Ve |9) + Entlpon] + EXo1 [0

’ N (1.201)
+ E;" M [pou]l + EX [pon ],

where the full Hartree energy Ey[p] has been recomposed.

The exchange-correlation energy in Eq. (1.201) has a
similar form as in the LC scheme of Eq. (1.167).

To calculate the missing long-range correlation energy in
Eq. (1.201), we can define a nonlinear Rayleigh-
Schrodinger perturbation theory [5, 6, 69] starting from the
RSH reference. We start from the following energy
expression with the perturbation parameter a € [0, 1],

By = inf HWIT 4 Voo T 10 a0 + BTl (1.202)
where W/ = (WL —
Plesset perturbation operator. For a =0, the stationary

equation associated with Eq. (1.202) reduces to the RSH
eigenvalue equation [Eq. (1.200)]. Fora=1, Eq. (1.202)

[+ ]) is the long-range Mgller-



reduces to Eq. (1.198), so Eg’o‘zl is the exact energy,
independently of 1. The sum of the zeroth-order energy and
first-order energy correction gives simply the RSH energy,
ERSH E“( ) 4 Egv(l) . As in Sect. 1.5.1, only double
exmtatlons contribute to the first-order wave-function

correction W# (1) and the second-order energy correction
has a standard MP2 form
Ir, 0, MP2

Ez'i (2) ((I)“| Wll I |l11“ (l)) Ec

where E"#MP2 has the same expression as in Eq. (1.182)
with RSH spin orbitals and associated orbital eigenvalues
(which implicitly depend on ) but using the long-range two-
electron integrals

do d133'2 + do d3£134 + d4$22

h(LL',Z, do,dl,dg,dg,d4,a> = ,(1203)
instead of the standard two-electron integrals of Eq.

(1.183). This second-order perturbation theory defines a
RSH+MP?2 approximation,

ERSH+MP2 B ERSH " Elr wMP2 (1.204)

which contains the exchange-correlation energy
contribution

EISH NP2 = B (] 4 B0 (g, 4 B pgs] + N2 (1.205)

When using semilocal density-functional approximations for
the short-range functionals F¥#[p] and E};"[p] , the
RSH+MP2 exchange-correlation energy expression of Eq.
(1.205) thus constitutes range-separated double-hybrid
approximations similar to the double hybrids of Sect. 1.5.1.
The optimal value for the range-separation parameter is
often around u = 0.5 bohr~1 [77, 177]. This scheme has the
advantage of dropping the long-range part of both the
exchange and correlation density functionals, which are
usually not well described by semilocal density-functional



approximations. Moreover, using a long-range MP2
correlation energy has the advantage of leading to a correct
qualitative description of London dispersion interaction
energies [6, 78, 79, 251], while displaying a fast
convergence with the one-electron basis size [63]. Similar to
the SCS double hybrids [Eq. (1.196)], a SCS variant of the
RSH+MP2 scheme has also been proposed [213].

The range-separated multideterminant extension of the
KS scheme of Eq. (1.198) allows one to define various
hybrid schemes combining any wave-function method with
density functionals. For example, one can go beyond second
order by using long-range coupled-cluster [75, 83, 84, 262]
or random-phase approximations [124, 185, 257, 261, 262].
To describe strongly correlated systems, one can also use
for the long-range part wave-function methods such as
configuration interaction (CI) [31, 62, 152, 202], MCSCF
[70, 71, 108], density-matrix renormalization group (DMRG)
[107], or multireference perturbation theory [68]. Density-
matrix functional theory (DMFT) [201, 209, 210] and Green-
function methods [128, 207] have also been used for the
long-range part.

We now consider the approximations used for E¥#[p] and
Ey"p] . In Sect. 1.4.2, we have already described the short-
range exchange LDA [Eq. (1.172)] and some short-range
exchange GGAs for E*[p| . Here, we describe the short-
range LDA correlation functional and another short-range
GGA exchange-correlation functional.

Short-Range LDA Correlation Functional
The complementary short-range LDA (or LSDA) correlation
functional is

EZSP8py o) = [ e (py(r), py (), (1.206)
R3

where w, = (V¢ /7, — 1)/(7V¥6 /7, 4+- 1) is the
complementary short-range UEG correlation energy density.



In this expression, &5#VES(p, p)) is defined by
—sr,u, UEG Ir,u, UEG

& (o1, p1) =% (py, py) — et (o1, p1)5 (1.207)

where eUEC(ps p)) and ot = 0.003050 are the correlation
energies per particle of the UEG with the standard Coulomb
and long-range electron-electron interactions, respectively.
A simple spin-independent parametrization of £5+B% was

given in Ref. [259]. A better spin-dependent parametrization
was constructed in Ref. [186] which uses the PW92
parametrization for eV*“(p., p;) [Eq. (1.106)] and the

following parametrization for o+ = 0.003050 in terms of rg =
(3/(4mp))/3 and = (py—p)/p:
811".;A.UEG(}OT’ PL) —

/TS
P2(8)

[¢z(€)3Q (555) +ar e 1 + axtrs, O + as(r, 42 + s, wf’]
+as(rs, O
(1 + bo(rs)?p?)*
In this expression, ¢,(0) is a spin-scaling function defined

by Eq. (1.103), Q(x) is a function determined from the small-
i and/or small-rg limit,
2In(2) =2 [(1+ax + ba? + cx?
= ]
Q) n( 1+ azx + da? ’
with a =5.84605, c=3.91744, d =3.44851,
b=d—3ra/[4In(2) — 4] , a=4/(9m)1/3, and the functions q;(rs,
() are

T2

ay (1, ¢) = 4bo(rs)°Cs(rs, ¢) + bo(rs)*C5 (1, €),
as(rs, C) = 4by(rs)°Ca(r, €) + bo (1) Cu(rs, €) + 6bo(re) eV (1, €),
as(rs, ) = bo(rs)°Cs(rs, €),
ay(rs, ) = bo(rs)*Ca(re, €) + 4bo () e VP (1, €),



where vV = 0.006 is the PW92 parametrization of the
UEG correlation energy per particle. The functions C;(rs, Q)
are determined from the large-u limit,
39¢(0, 75, C)
O S9 - - )
9(0, 75, ¢)
V23
9092 (0,75, §) + (1 = %) Dary)]
6473 ’
9g"(0, 75, ¢) + (1 = ¢)D3(r)]
40+/2773 ’

where g(0, ry, ) is the on-top pair-distribution function® of
the Coulombic UEG and g“ (0, rg, {) is its second-order
derivative with respect to ry, at r;; =0, and similarly for
their correlation parts g.(0, ry, ) =g (0, r5, ) — (1 = T?)/2
and ¢”(0,75,¢) = ¢"(0,7s,¢) — ¢s(C)/(5a’r?) with ¢g(0) defined
by Eq. (1.103). The (-dependence of the latter quantities is
assumed to be exchange-like, i.e. g(0, rg, 0) = (1 — %) g(O0, rs,
(=0) and

g"(0,7,¢) = g (0,74/¢ ¢ = 1) + 2 g"(0,r,/¢1, ¢ = 1) where
(.=01=x20/ 2 The on-top pair-distribution function has been
parametrized in Ref. [85] as

9(0,75,( = 0) = (1 = Bry+ Cr{+ Dri+ Erde "™,

with B=0.7317 —-d, C=0.08193, D=-0.01277, E =
0.001859, and F=0.7524. The remaining functions were
determined by fitting to QMC data:

bo(rs) = 0.784949r,

C3<T87 C) -

C4<TS7 C) =

C5<TS7 C) - =



25/3 1 — 0.02267r,

" O? S — 1 — M
90 6= ) = S T 043197, 1 00472
0547 )
Dy(ry) = > (—0.388r3 4+ 0.676r7),
e—O.SlTS
Ds(ry) = (—4.95r +72).

3
Ts

Short-Range PBE(GWS) Exchange-Correlation
Functional

The Goll-Werner-Stoll (GWS) variant of the short-range
PBE exchange-correlation functional [83, 84] is a slight
modification of the short-range PBE functional developed in
Ref. [256]. The exchange energy density is

ST, 4, GWS Sr, e
€X/1,PBE( W)(p,Vp) = ¢ MUEG(p)FX(S“u)) (1.211)

with an enhancement factor of the same form as in the
standard PBE exchange functional,

Ex(s, i) =1+ K = s (1.212)

with s =|Vpl/(2kgp) and 1z = u/(2ky) . In this expression, x =
0.840, as in the standard PBE exchange functional, to
saturate the local Lieb- OXford bound (for u=0) and

b(71) = bPBET (11) /bT(0)]e <" where bPPE =0.21951 is the
second-order gradient-expansion coefficient of the standard
PBE exchange functional, and £ is a function coming

from the second-order GEA of the short-range exchange
energy [254, 256],

T/~ Cl(:u) + CQ(#) 1.213
T S 5464(u)61/ W) G

with Eux[p] = Eulp] + Exclpl, , ca(ft) = 20% (=7 +721%) ,
c3() = —864p*(—1 + 2p°) , and




cy(ft) = =3 — 24p* + 320" + 8py/merf(1/(21))] - Finally, oy =
19.0 is a damping parameter optimized for the He atom.

Similarly, the correlation energy density has the same
form as the standard PBE correlation functional,

g PBEGWS) () o T o Tp)) = p [E5UEG (50 51) o+ HA (pr, 1, 1)]

with t =|Vpl|/(2¢,(0)k,p) and the gradient correction

A 2
H"(pt, py,t) = A(0)¢2(¢)* In [1 + ﬁ((légt2l+¢4(1;)t2(+ﬂ¢)i(u)2t4] )

where

Alp) = 5 [exp(—&2UES (pr, p,) /(A(0)$a(C)?) — 1]
and
_st, 1, UEG Qe
ﬁ<u>=6PBE<;f,,,O,UEéW“)) , (1.214)
Ec (Prop1)

and the value of A(0) is given after Eq. (1.104). In Eq.
(1.214), B=0.066725 is the second-order gradient
coefficient of the standard PBE correlation functional and
a.=2.78 is a damping parameter optimized for the He

atom.

For u =0, this short-range PBE exchange-correlation
functional reduces to the standard PBE exchange-
correlation functional and for large p it reduces to the short-
range LDA exchange-correlation functional.

1.5.2.2 Range-Separated Two-Parameter
Double-Hybrid Approximations

In 2018, Kalai and Toulouse [127] introduced what we will
call range-separated two-parameter double-hybrid
approximations, combining HF exchange and MP2
correlation with density functionals using a two-parameter

decomposition of the electron-electron in a way reminiscent
of the CAM decomposition [Eq. (1.171)] (see, also, Refs.



[40, 75]). This is based on a multideterminant extension of
the KS scheme which generalizes the schemes of Sects.
1.5.1 and 1.5.2.1.

We first decompose the universal density functional of
Eq. (1.7) as

Flp] = ming gy (W] T + Wee! + AW W) + Ex*p], (1.215)

where the parameter u € [0, +«) controls the range of the
separation as always, the parameter A € [0, 1] corresponds
to the fraction of the short-range electron-electron
interaction in the wave-function part, and Eﬁf};‘é’A[p] is the
complementary short-range density functional defined to
make this decomposition exact. As before, the latter
functional can be decomposed as

B o) = B o] + B[] + 24 o).
The Hartree and exchange contributions are linear in A,

Ex "] = (1= N ER"[ol,

EXPAMp] = EZPMp/2, p/2] (1.216)

where E;;"[p] and E¥"[p| are the short-range Hartree and

exchange functionals introduced in Sect. 1.5.2.1, and the
correlation contribution can be written as

ErAp] = Eelp] — EFp),

where E_[p] is the standard KS correlation functional and

E31[d] is the correlation functional associated with the
interaction £®5(py, p;, Vpr, Vp,) . The exact ground-state
energy can then be expressed as

Eg = infycpyn {(‘I’I T+ Vie + Wed " + 2 Wat W) + Eppl* py 1} (1.217)

Hxc

which constitutes a generalization of Egs. (1.188) and
(1.198).



To obtain a MP2/DFT hybrid scheme, we proceed in full
analogy to Sects. 1.5.1 and 1.5.2.1. First, we define the
following single-determinant range-separated two-
parameter hybrid (RS2H) approximation,

£GP = inf H@IT + Ve + WS+ AW 19) + £ Toal].(1.218)
Seh

and use it as a reference for defining a perturbation theory

similarly to Eqgs. (1.192) and (1.202). At second order, we

obtain

E(E{SQH+1\/1P2,,M,)\ _ E(E{SQH,M,/\ 4 Eéé’)\’l\/lpz, (1219)

where FBE(s) is the MP2 correlation energy expression
evaluated with RS2H spin orbitals and orbital eigenvalues,
and the two-electron integrals associated with the
interaction %" (ps, p;, Vps, Vp;) . This RS2H+MP2 scheme
thus contains the exchange-correlation energy contribution

E)E{C,SQHH\IPQ,y.,A _ E}l{r,u,HF [®u7/\] + )\E}s(r,u,HF [®M7A] + (1 . )\)E)s(r,u[pq)%/\}

+ B pgua] + BN (229

where ®* 4 is a minimizing single-determinant wave
function in Eq. (1.218).

A good approximation for the A-dependence of the
complementary correlation functional E¥#*[p] is [127]

Bt Ap) 2 Brtlp] = N (1.221)

where E};"[p] is the short-range correlation functional

introduced in Sect. 1.5.2.1. In particular, the A-dependence
in Eq. (1.221) is correct both in the high-density limit, for a
non-degenerate KS system, and in the low-density limit.
Thanks to Eqgs. (1.216) and (1.221), the semilocal density-
functional approximations for E{"*[p| and E};"[p] of Sect.
1.5.2.1 can be reused here without developing new ones. In
Ref. [127], the short-range PBE(GWS) exchange and
correlation functionals were used, and the optimal



parameters 11 = 0.46 bohr~! and A = 0.58 were found on
small sets of atomization energies and reaction barrier
heights, i.e. values similar to the ones usually used
separately in range-separated hybrids and double hybrids.
The RS2H+MP2 scheme improves a bit over the
RSH+MP2 scheme of Sect. 1.5.2.1, particularly for
interaction energies of hydrogen-bonded systems. Even if
the presence of short-range MP2 correlation deteriorates in
principle the convergence rate with the one-electron basis
size, in practice the fraction of pure short-range MP2
correlation (A% = 0.34) is small enough to keep a fast basis
convergence. Accuracy can be improved, particularly for
dispersion interactions, by supplanting the MP2 term by
coupled-cluster or random-phase approximations [126]. Like
for the approach of Sect. 1.5.2.1, many wave-function
methods could be used in the general scheme of Eq. (1.217).

1.6 Semiempirical Dispersion
Corrections and Nonlocal van der

Waals Density Functionals

Among the previously considered exchange-correlation
approximations, only the range-separated double hybrids of
Sect. 1.5.2, thanks to their long-range nonlocal correlation
component, are capable of fully describing London
dispersion interactions, crucial for describing weakly
bonded systems. To improve the other approximations
(semilocal functionals, single-determinant hybrids, double
hybrids without range separation) for weakly bonded
systems, it has been proposed to add to them a
semiempirical dispersion correction or a nonlocal van der
Waals density functional. We now describe these
approaches.

1.6.1 Semiempirical Dispersion Corrections



To explicitly account for London dispersion interactions, it
has been proposed in the 2000s to add to the standard
approximate functionals a semiempirical dispersion
correction of the form [52, 96, 97, 272]

55[(1)] - HF / /
5ot (1) = aAg vxg(r )i (r")dr’, (1.222)

where Rz is the distance between each pair of atoms and
Cg‘ﬁ is the London dispersion coefficient between these
atoms. Here, f(R,p) is a damping function which tends to 1
at large R,z and tends to zero at small R, €.g.

o 1
f(Rap) = i (1.223)
with the sum of tabulated atomic van der Waals radii

RV = Ry™W + Ry™ and a constant d, and s is a scaling

parameter that can be adjusted for each approximate
functional. The dispersion coefficient Cgﬁ for any pair of

atoms is empirically calculated from tabulated same-atom
dispersion coefficients C¢“ and/or atomic polarizabilities.
This approach was named “DFT-D” by Grimme [96].

The last version of DFT-D (referred to as DFT-D3) also
includes ¢’ two-body terms and ()" three-body terms

[99]. There have also been various proposals to make the
determination of dispersion coefficients less empirical, such
as the scheme of Becke and Johnson [25] based on the
exchange-hole dipole moment, the scheme of Tkatchenko
and Scheffler [253] based on a Hirshfeld atomic
partitioning, or the scheme of Sato and Nakai [214] based
on the local-response approximation [45].

The “DFT-D” approach provides a big and inexpensive
improvement for the description of weakly bonded systems.
One limitation is that the semiempirical dispersion
correction, being just a force field in its simplest variant,
affects only the molecular geometry of the system but not



directly its electronic structure. Some of the most used DFT-
D functionals are:

« The PBE-D exchange-correlation functional [97], based on
the PBE functional with a scaling parameter s =0.75;

« The B97-D exchange-correlation functional [97], based on
the B97-GGA functional with a scaling parameter s =1.25
and reoptimized linear coefficients in Eqgs. (1.124),
(1.128), and (1.129) in the presence of the semiempirical
dispersion correction;

« The B3LYP-D exchange-correlation functional [97], based
on the B3LYP hybrid functional with a scaling parameter
s=1.05;

« The wB97X-D exchange-correlation functional [33], based
on the wB97X range-separated hybrid functional with a
scaling parameter s = 1, a modified damping function, and
reoptimized parameters in wB97X in the presence of the
semiempirical dispersion correction.

The semiempirical dispersion correction can also be
added to double-hybrid approximations. For example,
B2PLYP-D [218] is based on the B2PLYP double hybrid with
a scaling parameter s = 0.55. The scaling parameter is small
since the fraction of MP2 correlation in B2PLYP already
partially takes into account dispersion interactions. It has
also been proposed to add a semiempirical dispersion
correction to the SCS version of the double hybrids [Eq.
(1.196)], resulting in a family of dispersion-corrected spin-
component-scaled double-hybrid (DSD) approximations
[136-138]. An example of double hybrid is this latter family
is DSD-BLYP [136], which uses the B88 exchange functional
and the LYP correlation functional.

1.6.2 Nonlocal van der Waals Density
Functionals

Another approach to describe dispersion interactions is to
add to the standard approximate functionals a so-called



nonlocal van der Waals density functional of the form [43,
151, 268-270]

EMp] = 5 [rs.ps p(r1)p(r2)o(r1, ro)dr drs, (1.224)

where ¢(rq, r,) is a correlation kernel. Two main families of

such nonlocal correlation functionals exist: the “van der
Waals density functionals” (vdW-DF) [43, 151] and the
Vydrov-Van Voorhis (VV) functionals [268-270].

We will only describe the last version of the VV
functionals, i.e. the VV10 nonlocal correlation functional
[270]. In this functional, the correlation kernel is taken as

VV10 _ 3 _
¢ <r1’r2) — 2g(ry,r12)9(ra,r12)(9(r1,m12)+9(r2,712)) +55(r1 r2>’

where ry, =|r, —ry| is the interelectronic distance, 8 is a

constant determining the local (delta-distribution) part of
the kernel, and the function g is defined as

g(r,r19) = wo(r)riy + /4;( ). (1.225)

In Eq. (1.225), w(r \/ wy(T () involves the square of

the local plasma frequency wp(r)2 41p(r) and the square of
the local band gap wy(r)% = C|Vp()|*/p(r)*, where C is an
adjustable parameter controlling the large-ry, asymptotic
dispersion coefficients, and k(r) = bkg(r)?/w,(r), where

kp(r) = (3m%p(r))1/3 is the local Fermi wave vector and b is

an adjustable parameter controlling the short-range
damping of the large-ry, asymptote. As expected for

dispersion interactions, in the large-ry, limit, $VV10(ry, ry)
behaves as 1/r9, :

VV10 3
r{,r ~ — .
¢ (r1, r2) ri2—00 2wn(r1)w(n(rz)(wn(m)+wn(r3))f‘?3

The constant B = (3/b?%)3/4/16 is chosen to make E"[p] vanish
in the uniform density limit, thus leaving this limit




unchanged when E£"![p] is added to another density
functional. The adjustable parameters C = 0.009 and b =6
are found by optimization of Cg dispersion coefficients and

of weak intermolecular interaction energies, respectively,
the precise values depending on which exchange-correlation
functional the VV10 correction is added to.

Nonlocal van der Waals density functionals are
necessarily more computationally expensive than
semiempirical dispersion corrections. However, they have
the advantage of being less empirical and, since they are
functionals of the density, of impacting directly on the
electronic structure of the system. The VV10 nonlocal
functional has been incorporated in a number of recently
developed exchange-correlation functionals, for example:

« The wB97X-V exchange-correlation functional [169],
based on the wB97X range-separated hybrid [Eq. (1.179)]
with reoptimized linear coefficients in Eq. (1.124) with
polynomial degree m =2 and in Eqgs. (1.128) and (1.129)
with polynomial degree m =1, as well as reoptimized
VV10 parameters C=0.01 and b =6.0;

« The wB97M-V exchange-correlation functional [170],
based on the wB97X range-separated hybrid [Eq. (1.179)]
but with more general and combinatorially optimized
meta-GGA exchange and correlation enhancement factors
and the same VV10 parameters C=0.01 and b=6.0 as in
wB97X-V.

1.7 Orbital-Dependent Exchange-

Correlation Density Functionals

We discuss here some exchange-correlation density
functionals explicitly depending on the KS orbitals (for a
review, see Ref. [140]). Since the KS orbitals are themselves
functionals of the density, these exchange-correlation



expressions are thus implicit functionals of the density (for
notational simplicity, this dependence on the density of the
orbitals and other intermediate quantities will not be
explicitly indicated). In fact, the single-determinant and
multideterminant hybrid approximations of Sects. 1.4 and
1.5 already belong to this family, with the caveat that the
orbitals are obtained with a nonlocal potential. In this
section, we are concerned with orbital-dependent exchange-
correlation energy functionals with orbitals obtained with a
local potential, i.e. staying within the KS scheme.” These
approximations tend to be more computationally involved
than the approximations previously seen and have thus been
much less used so far.

1.7.1 Exact Exchange
The exact exchange (EXX) energy functional [Eq. (1.16)]
can be expressed in terms of the KS orbitals,

Ng Ny

r O'r O'r 10
L Z ZZ/ Pir(r1)9jo (1), (r2)Pio (T2 >dr1dr2,(1,226)
T — 13

2 ity =1 = R

and has exactly the same form as the HF exchange [Eq.
(1.159)], but the orbitals used in both expressions are in
general different.

Since the exact exchange energy in Eq. (1.226) is not an
explicit functional of the density, the corresponding
exchange potential v (r) = 6E,[p]/6p(r) cannot be calculated

directly. We can however find an workable equation for
v.(r) by first considering the functional derivative of E,[p]

with respect to the KS potential v,(r) and then applying the
chain rule:

S Ey[p] / OEp]op(r') (1.227)
R

dvs(r) 5 0p(r') duy(r)



Introducing the non-interacting KS static linear-response
function y,(r’, r) = 6p(r)/6v,(r), we can rewrite Eq. (1.227)
as

/ / I 5EX[p}
[ e mar = 5=

which is known as the optimized-effective-potential (OEP)
equation for the exact-exchange potential [91, 92, 248].
Using first-order perturbation theory on the KS system,
explicit expressions in terms of the orbitals can be derived
for yo(@’, r) and O’Ex[p]/b'v (r). The expression of y,(r’, r) is

Y y\ y\ Oy ()07 ( >90w.<r)gpag(r/)—|— c.c. ,

— &
se{t4} i=1 a=Ny+1 fas — Eio

where i and a run over occupied and virtual spatial orbitals,
respectively, and c.c. stands for the complex conjugate. The
expression of 6E [p]/5vs(r) is

Z ZZ Z @ao@]a‘¢30¢zo>¢za< >_SO;UZ£ ) c.c. ,

) ce{rd} =1 j=1 a=Ns+1

where (@q.9419js9Pis) are two-electron integrals over KS
spatial orbitals:

Pro (1) 075 (T2) @0 (T1)in (T2)
1 — 1o

drler. (1228)

<90aa(pja‘(pj0(pia> = /
R3xR3

Applying this OEP method with the EXX energy (and no
correlation energy functional) is an old idea [227, 248], but
reasonably efficient calculations for molecules have been
possible only relatively recently [87, 122]. The EXX
occupied orbitals turn out to be very similar to the HF
occupied orbitals, and thus the EXX ground-state properties
are also similar to the HF ones. However, the EXX virtual
orbitals (which see a — 1/r asymptotic potential for a neutral



system) tend to be much less diffuse than the HF virtual
orbitals (which see an exponentially decaying potential for a
neutral system), and may be more adapted for calculating
excited-state properties.

1.7.2 Second-Order Gorling-Levy Perturbation
Theory

In 1993, Gorling and Levy [90, 91] developed a perturbation
theory in terms of the coupling constant A of the adiabatic
connection (Sect. 1.2.2) which provides an explicit orbital-
dependent second-order approximation for the correlation
energy functional. The Hamiltonian along the adiabatic
connection [Eq. (1.60)] can be written as

H" = T+AWLL+V}
. 1.229
— Ho+ AM(Wee — Viry) — V2 ( )

where fj, = §*=" = T 4 V, is the KS non-interacting
reference Hamiltonian (which will be assumed to have a
nondegenerate ground state). Equation (1.229) was
obtained by decomposmg the potentlal operator keeping the
density constant as V* = V, — iV, — V*, where ¥, = V»=01is
the KS potential operator, l'v”m is the Hartree -exchange
potential operator which is linear in A, and Fj is the
correlation potential which starts at second order in A, i.e.
VA =32VY + ... . Using a complete set of orthonormal
eigenfunctions ®, and eigenvalues ¢, of the KS
Hamiltonian, ﬁﬁ |®,) = &, |P,), the normalized ground-state
wave function of the Hamiltonian jfj* can be expanded as ¥4
= ®+A VYWD +... where ® = @ is the ground-state KS

single-determinant wave function and ¥ is its first-order
correction given by

1 (@] Wee— Vg | @)
|\p( N — _Zn;é() il Hx | |<D”).

f—n ‘-(




Using the expression in Eq. (1.63), the correlation energy
functional can also be expanded in powers of A:

EMpl = (WH T 4+ AWee |W*) — (O T + AWee | D) .

_ 1.230
=EQ +LEL +PEP + - ( )

Since W2=0 = @, the zeroth-order term vanishes: g _ .
Using the expression of the first-order derivative of £} with
respect to A in Eq. (1.64), i.e.

JE (32 = (W | W | W) — (®| W, | @) ), We find that the first-
order term vanishes as well: g(© _ () . The second-order
term corresponds to the second-order Gorling-Levy (GLZ2)
correlation energy and is given by

EFR(p]l = EQ = (@ Wee [W D) = (D] Wee — Virg W), (1.231)

where the second equality comes from the fact that

(®| i}m @y = () since it is the derivative with respect to A
at A =0 of (W?| Vi, |P?*) = g3 vhx(r)p(r)dr ), which does not
depend on A by virtue of the fact that the density p(r) is
constant along the adiabatic connection. Using the last
expression in Eq. (1.231) allows one to express the GL2
correlation energy as

(D] Wee — Vi [ @) |
ESY(p) = — : .
Mlpl=-) - (1.232)
n=-0
It is instructive to decompose the GL2 correlation energy as
ES2[p) = EMP? 4 B (1.233)

where EM'™ is a MP2-like correlation energy evaluated with
KS spin orbitals,

N N

. 2
Ei\qu__j_lzz Z Z |<€br¢’j||¢u¢b)| 5 (1.234)

E, +&p — & — &
i=1 j=la>N+1b=Nyl @ T b7 8T8




and E? is the contribution coming from the single
excitations (which does not vanish here, contrary to HF-
based MP2 perturbation theory),

17 HF v 2
Z Z | (@il V Vx|¢u>|s (1.235)

i=l a=N+1 fa :

involving the difference between the integrals over the
nonlocal HF exchange potential

(@ | VI |ga) = — 3", (didj|d;¢a) ) and over the local KS
exchange potential (¢ | Vi ldy) = Je (+.1) P (X v (r)gh, (x)dx ).

Calculations of the GL2 correlation energy using either a
non-self-consistent post-EXX implementation or a more
complicated OEP self-consistent procedure have been tested
(see, e.g., Refs. [53, 94, 175]) but the results are often
disappointing. It is preferable to go beyond second order
with random-phase approximations in the adiabatic-
connection fluctuation-dissipation approach.

1.7.3 Adiabatic-Connection Fluctuation-
Dissipation Approach

1.7.3.1 Exact Adiabatic-Connection Fluctuation-
Dissipation Expression

Using the adiabatic-connection formula of Eq. (1.65), the
correlation energy functional can be written as

|
Ec[pl—/ (W Wee [W7") — (D] Wee | @)

pl (ry, )
/ / 2,C —————dridr,
23 |rp — 13|

where pj . (r1,r2) = p3(r1,12) — pos(r1,r2) is the correlation
part of the pair density along the adiabatic connection. The
pair density h)(r;,r;) can be expressed with the pair-density

(1.236)



operator p(r;.r:) = p(r)p(ra) — 8(r; — r»)p(r;) where p(r) is
the density operator,

Py (11, 12) = (W*| pa(ry, 12) | W)
= (UM p(r)p(r) (W) — 8(rp — 1) (W4 p(ry) W),

and the KS pair density p, xs(r;, ry) simply corresponds to
the case A =0,

p2.xs(r,12) = p5=V(r), 12)
= (P p(r)p(r2) |[P) — 8(r; — 1r2) (P p(ry) | D).
Since the density does not change with 4, i.e.

(W*| pir) |¥*) = (@] pir)|P) = p(r) ), the correlation pair
density needed in Eq. (1.236) can thus be expressed as

P} (1, 12) = (W] p(r)p(ry) W) — (@] p(r)p(ry) |P) . (1.237)

We would like to calculate p3 (r;,r;) without having to

calculate the complicated many-body wave function W4. For
this, we consider the retarded dynamic linear-response
function along the adiabatic connection in frequency space
(or the so-called Lehmann representation)

X.(ry, ) w)

-y (WA e [W)) (W1 p(r) [Wh) (W4 plro) [W) (Wil At [W7) (1.238)
N w— wh+i0F w+ wh +i0F ’

n=£0

where the sums are over all eigenstates V" of the
Hamiltonian fF* , i.e. A* |¥*) = E* |W*), except the ground
state w!/(ry5) , and w) = B — E are the corresponding
excitation energies. By contour integrating y;,(r;, 1y, w)
around the right half w-complex plane, we arrive at the
(zero-temperature) fluctuation-dissipation theorem,

. f-l-oo dw

nj (r1, 1) = [xa(r1, T, iw) — xo(ry, ro,iw)],  (1.239)



which relates ground-state correlations in the time-
independent system p; . (ry,r2) to the linear response of the
system due to a time-dependent external perturbation y; (rq,
ry, W).

Combining Eqgs. (1.236) and (1.239), we finally obtain the
exact adiabatic-connection fluctuation-dissipation (ACFD)

formula for the correlation energy [146, 147] (see, also, Ref.
[106]):

1 +00 i - .
Ec[p] _ _%/ d)\/ dw /3 3XA(I'1>I'27M) Xo(rl’rQ’M)drler.(1.240)
0 RoxR

% |1“1 - r2|
The usefulness of the ACEFD formula is due to the fact that
there are practical ways of directly calculating y; (r;, ry;w)

without having to calculate the many-body wave function

W4, In linear-response time-dependent density-functional
theory (TDDFT), one can find a Dyson-like equation for

X (X, s w) = xo(ry. ra; o)

—00

) (1.241)
+ f X0(T1, T3 ) [y (3, T4 0) X5 (rg, T2; w)drydry,
ROxR?

where fj (r3,r4;w) is the Hartree-exchange-correlation

kernel associated to the Hamiltonian HA. Here, Eq. (1.241)
will be considered as the definition for f;} . In principle,
the exact correlation energy can be obtained with Egs.
(1.240) and (1.241). In practice, however, we need to use an
approximation for f}} .

1.7.3.2 Random-Phase Approximations

In the direct random-phase approximation (dRPA, also just
referred to as RPA, or sometimes as time-dependent
Hartree), only the Hartree part of the kernel, which is linear
in A and independent from w, is retained [146, 148],

dRPA\

1.242
e (1, row) = fR(r1,T2) = Mbee(r1, 1), ( )



where w,,(r{, ry) = 1/|r; —1,| is the Coulomb interaction, and
the corresponding dRPA linear-response function then
satisfies the equation

dRPA . .
X (rp i) = xo(r), r2; w)

(1.243)

“{PA(m r); w)drydry.

+?xf” X0(T1, T35 @) Wee(r3, Ta) 3y
R xR3

The physical contents of this approximation can be seen by

iterating Eq. (1.243), which generates an infinite series,
X&lRPAO‘b rs; W) = Xo(rl, ra, W)

+ >\/ X0(T1, T's; W) Wee (T3, T4) X0(Ty, oy w)drsdry
R3 xR3

+ 22 / X0(T1, T35 W) Wee (T3, T4) X0(T 4, Ts; W) Wee (L5, T'6)
R3xR3 xR3 xR3

Xo(rg, ro; w)drsdrdrsdrg
_l_ S
which, after plugging it into Eq. (1.240), leads to the dRPA
correlation energy as the following perturbation

expansion!?

fdA/““ dw[ / XO(rl,rs;iw)x<>(r4,rz;iw)dr desdrdr
=—= 1dradrsdry
R3 xR3xR3 x k3 lr1 — 12| [r3 — 14

+x2/ X0(r1. T35 1) xo(rs, Ts; iw) xo(re, 12 iw) (1.244)

Ir; — 12| [r3 — 14| [rs — 16|
drdrodridrsgdrsdrg + - - - ]

Using now the Lehmann representation [Eq. (1.238)] of
the KS dynamic linear-response function in terms of the KS
orbitals and their energies,

(1.245)
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Xo(ri. r2; w) = Z Z V{U ' )¢aa (F1)@a0 (12)Pio (12)

w = (Eao — & 0+
oe{t. )} i=l az=N,+1 (Eao io) +

0 (1) Qe (1)@, (T gio (T1)
w+ (g45 — €ig) + 10T

one can obtain, after quite some work,

N

¢¢ ¢U¢) 2
EIRPAL ZZ Sy | +€b,!_gzzzlgj

i=1 j=1 a>N+1b>N+1 (1 246)
: (6:0510u0n) 0100l $10) (Dril ) '
+
;;;a;ﬂb;szN:H (€atep—&i —€j)(€atec— & _6">

The dRPA correlation energy is the sum of all the direct
terms (i.e., no exchange terms) of the perturbation
expansion up to infinite order. In the language of
diagrammatic perturbation theory, we say that the dRPA
correlation energy is the sum of all direct ring diagrams. Of
course, Eq. (1.246) is not the way to calculate the dRPA
correlation energy in practice. This is done by solving the
Dyson equation [Eq. (1.243)] without explicitly expanding in
powers of A, e.g. using matrix equations from linear-
response TDDFT [72, 261] or coupled-cluster theory [219,
262].

Most dRPA correlation energy (combined with the EXX
energy) calculations are done in a non-self-consistent way,
but self-consistent OEP dRPA calculations have also been
performed [26, 112]. One of the main advantage of dRPA is
that it accounts for long-range dispersion interactions [46-
48]. However, it shows large self-interaction errors. To
overcome the latter drawback and improve the general
accuracy, one can add exchange and beyond terms in
various ways (see, e.g., Refs. [7, 14, 15, 39, 58, 88, 101,
110,111, 114-116, 120, 178, 257, 261]). This remains an
active area of research. For reviews on random-phase
approximations, the reader may consult Refs. [37, 61, 208].
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Footnotes

1 An integration over a spin coordinate o just means a sum over the two values
O'E{ T, 1 }, i.e. f{ 1,1 }dU =20- e{ T, l} and f[R3><{T,¢} dx = ZUE{T,H f[R3 dr

2 It is also possible to define the non-interacting kinetic-energy functional
analogously to the Levy-Lieb functional in Eq. (1.7) by minimizing over wave
functions ¥ € WY, i.e. T 1L[p] = ming ey (¥ T |¥)) [160]. In this case, the
corresponding minimizing KS wave function can generally be a linear
combination of Slater determinants. However, we often have Tg 11 [p] = Tgs[p], in
particular for densities p that come from a non-interacting ground-state wave
function which is not degenerate. In this chapter, we will usually assume this
nondegeneracy condition.

3 Therefore, the correlation hole is really a “hole” only in some region of space,
and a “bump” in other regions.

4 In this context, the Hellmann-Feynman theorem states that in the derivative

WL VUL 5 W WD) + (]| Wee |92 p]) + (WP L] T+ 2o | o),

aA ar dA

the first and third terms involving the derivative of 1112‘ [p] vanish. This is due
to the fact that W [p] is obtained via the minimization of Eq. (1.61) and thus any
variation of W4 [p] which keeps the density constant (which is the case for a

variation with respect to A) gives a vanishing variation of FA [p].

5 In the definition of Eq. (1.79) we exclude the point A =0 in order to allow for
the possibility of a discontinuity in A there due to a degeneracy.



6 For generality and simplicity, we consider here that the GGAs depend on the
spin density gradients Vpt and Vp |, but due to rotational invariance GGAs

actually depend only on the scalar quantities (Vpq )2, (Vpy )2, and Vp1-Vp .

7 The possibility of combining a nonlocal HF potential with a local correlation
potential was mentioned already in 1965 in the paper by Kohn and Sham [135].

8 For a general system, the pair-distribution function g(r1, rp) is defined from

the pair density pp(r1, rp) [Eq. (1.42)] as pp(r1, rp) =p(r1)p(™2)g(ry, rp). The
on-top value is the value at electron coalescence, i.e. for r| = ry.

9 The boundary between the various single-determinant and multideterminant
hybrids of Sects. 1.4 and 1.5 and the orbital-dependent functionals of the
present section is however thin. For example, it is possible to optimize the
orbitals using a local potential in hybrids or range-separated hybrids [8, 131,
229], and in double hybrids or range-separated double hybrids [230, 231].

10 Using the operator viewpoint, the series in Eq. (1.244) can be formally
summed in the form EXRP (] = 1/(47) [ dw Trlin(1 — xo(iw)wee) + Yo(iw)we] (see,
e.g., Ref. [178]).
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Abstract
Usually, density functional models are considered

approximations to density functional theory, However,
there is no systematic connection between the two, and this
can make us doubt about a linkage. This attitude can be
further enforced by the vagueness of the argumentation for
using spin densities. Questioning the foundations of density
functional models leads to a search for alternative
explanations. Seeing them as using models for pair
densities is one of them. Another is considering density
functional approximations as a way to extrapolate results
obtained in a model system to those of a corresponding
physical one.
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2.1 Introduction

2.1.1 On approximations in DFT

Density functional theory is here. It has changed the way
the computation of electronic systems is seen by the
scientific community. It has a sound theoretical foundation.
However, following exact theory is more complicated than
solving the Schrodinger equation. Furthermore, it does not
tell us how to systematically produce approximations.
Usual approximations are convenient and (to a large
degree) successful, but how to improve them?

2.1.2 Excuses

This is not a review. References are erratic and biased. My
own publications dominate, not because they are more
important, but because they are only given to complement
argumentation.

2.1.3 Summary

After giving the notations, and recalling the Hohenberg-
Kohn theorem, we review some practical solutions, such as
the decomposition of the universal functional, in order to
comply with different physical requirements. It is argued
that this does not necessarily solve the problem.
Refinements, such as using the spin density as a
supplementary variable, are discussed. It is argued that the
need for these refinements may hide a different foundation
for the approximations. In order to introduce a “systematic’
way to get closer to the physical Hamiltonian, model
Hamiltonians are defined that via an adjustable parameter.
It can bring the model Hamiltonian arbitrarily close to the
physical Hamiltonian. Finally, examples show that simple
mathematical recipes provide a quality similar to that of
density functional approximations.

)



2.2 Schrodinger Equation and
Notations
We start with a Schrodinger equation:

HV = EV. (2.1)

The wave function W depends on the coordinates of the
electrons rq, r,, ..., ry and their spins. We will be mainly
concerned with ground state eigenvalues, E =E,. We
consider Hamiltonians of the form

H=T+V+W (2.2)
where T is the operator for the kinetic energy,
|
T =_"Z \V&: 2.3

and V is a local one-particle potential

vV = Zv(ri)
_ 4 o{r)p(r)dr.

The density operator, p(r) , can be written using Dirac’s 6
function,

(2.4)

N

plr) = Z 3(r —ry). (2.5)

Its expectation value is the density
p(r) = (V]| p(r)|V¥). (2.6)
Notice that it integrates to N,

(2.7)
N = /p(r) dr.
R



W is a two-particle local potential,

N
W= w(r; —r)) (2.8)

1<J

// (|r; —rj]) ( r')dr dr’, (2.9)
R3 JR3

where p is the pair density operator,

N
— Z 5(r —1;)0(r" —1j). (2.10)
i#j
The pair density is

P(r,v) = (W|P(r,1) |V) . (2.11)

As the interaction depends only on the distance between
particles, often the dependence of P on r is reduced to that
on u = r —r’|, using instead of p the spherically averaged
operator

Sphr u) 251'—1% (Jr —rj| —u), (2.12)
i#]
yielding
Pgph(r, u) = <kp|ﬁ;ph(_rs u) |\W). (2.13)

Going one step further, one can also integrate overr, to
obtain the system-average

Psys(”) = / (W] ﬁsph(rs u) W) dr. (2.14)

K-

For the electronic systems, V=V, or v=v,,, describes

the Coulomb interaction between the nuclei and the
electrons,
(2.15)



vne Z ‘RA —I'|

A is an index for the nuclel, Z, their nuclear charge, and R,
their position. Also, W=V, or w =v,,, describes the
Coulomb interaction between electrons

B 1
r; — ;|

Vee(|Ti — 1) (2.16)
To characterize a given electronic system, one has only
to specify N and v,,.

Model systems are considered below, where v+v,, and
W#V... Of course, in this case the energies and wave

functions depend also on the choice of v and w. No change
of the non-local one-particle operator T is considered in this
chapter, but such modifications can be found in the
literature (see, e.g., [10] for a density functional context).
The ground state energy can also be obtained using the
variational principle,

E[v.w.N] = mqgnm H V) = mq}n(\l’l r+v+wiv). 017

2.3 The Density Functional Viewpoint

2.3.1 The Hohenberg-Kohn Theorem

In order to see how density functional theory can be useful,
one generally argues using the Hohenberg-Kohn theorem
[12] (cf. Chap. 3).

One of its formulations: “p yields v, and N, and thus

everything” is useless, as we do not need to know the
density to know the potential of the system under study.
This formulation of the theorem is never used in practice.

However, the variational formulation of the Hohenberg-
Kohn theorem is consequential. It states that



P

Elv,w, N| = min (F[p, w] + /R:z p(r)o(r) dr> | (2.18)

where for F one uses either the Legendre transform form
[18],

Flp,w] = sup (E[v,w, N] — / v(r) p(r) dr) (2.19)

v R3
or, equivalently, a constrained search for ensembles. For
the sake of simplicity, in this chapter its pure state form
[16, 18, 20]

F[p,u;lzl{}nin (V| T+ W &) (2.20)
—p

is used. As F does not depend on v (which specifies the
system) the functional is called universal. The dependence
on N appears through that of p (Eq. (2.7)). As above for the
energy functional, the dependence on the operator T is not
included in the notation for F. For the physical system, w =
Vee 1S implicitly assumed; we write:

Ex[pie, 0] = —Exlpie] (2.21)

The hope raised by Eq. (2.18) is that it can be used with
some simple approximation for F[p].

2.3.2 Difficulty of Producing F|p]

Obtaining F for a given p(r) is possible, but still difficult: a
constrained minimization, as required by Eq. (2.20), is
more demanding than a minimization with the single
constraint of normalizing the wave function, Eq. (2.17). The
Legendre transformed form of F, Eq. (2.19), first requires
us to compute E for all v, but then no F[p] is needed.

Up to now, there has been no systematic way to
construct approximations for F[p]. In practice, F is replaced
by some model, p : one speaks about a density functional
approximation (DFA).



Note that when using Eq. (2.19), due to the variational
principle, the errors will be of second order in F for first-
order errors in v. Stated differently: there are many v that
give values of F that are close. For example, adding to the
potential a very rapidly oscillating function yields
essentially the same value F. (For this, and other examples,
see, e.g., [31, 32].) Again, it appears to be of little practical
importance to follow the line pgivesvand thus everything.
However, obtaining E, from Eq. (2.18) is not necessarily

affected by this problem once F is known or can be
approximated. One can even wonder if the existence of
many density functional approximations with a similar
quality may be due to the indifference of F to changes in
the approximation of an optimizing v in Eq. (2.19).

2.4 Practical Solutions for Density

Functional Approximations

In order to create models, two main lines have emerged
within density functional theory.
1.
Using a simple ansatz for the density functional.
2.
Considering DFT as an inspiration to develop other
methods that do not require an explicit construction of
a density functional.

The first approach is a cutting the Gordian knot type of
solution. The second approach is in line with methods
developed for wave functions, sometimes nothing but such
a method.

2.4.1 Ansatz
2.4.1.1 Choice of the Ansatz



Most DFAs start with the so-called local density
approximation (LDA). Within this model, a general
functional G[p] is replaced by the ansatz

Glol = / glp(r))dr. (2.22)

The function g has to be defined in some way. Traditionally,
it is fixed in the uniform electron gas, a system with an
infinite number of particles, and where p does not depend
on the position (cf. Chap. 3). Typically g is either obtained
analytically as a function of p, or computed for a series of
values of p, and fitted to them satisfying asymptotic
conditions.

LDA has the important advantage of being (to a certain
extent) size-consistent, i.e., satisfying

Ea p=FEs+LEp (2.23)

where E, g is the system composed of two parts, A and B,
at infinite separation, while E, and Eg are the energies of

these parts computed independently. For the violations of
size-consistency by LDA, see, e.g., [21, 27]. Another, major,
advantage is its computational simplicity (just a numerical
integration to obtain (7 ), and its linear scaling with system
size. Both result from the local character of g: if p can be
decomposed into contributions from two spatial parts,

pa(r) for r € Qa(r)
plr) = {pB(r) for r € Qp(r) (2.24)

then so can g; (; becomes the sum of the two contributions.

LDA can be extended by making g depend on other local
quantities such as derivatives of the density, giving
generalized gradient approximations (GGAs), etc. (cf. Chap.
1).



2.4.1.2 Finding the Right Functional to
Approximate by Partitioning
Applying the LDA, Eq. (2.22), to F[p], Eq. (2.21), does not
provide the accuracy needed in most electronic structure
calculations. The strategy chosen is to define some density
functional F4[p], and approximate only the remaining part,
Falp] = Flp] — Falp] -

In the following, some choices for the partitioning of F
will be presented.

2.4.1.3 Satisfying Electrostatics

In the classical limit, the electrostatic interaction is given
by the nuclear repulsion,

VA
V;m = Z )
AB(>A) [Ra— Ryl

the interaction between the electron cloud and the positive
charges of the nuclei,

[ ol e
and the repulsion inside the electron clouds, the Hartree
energy,
1 /
Eylp] = —/ / Mdrdr'. (2.25)
2 Jrs Jps |r— 1|

There is a balance between these contributions. For
example, between distant neutral atoms these compensate
(there is no |IR, —Rp|~! term in the limit hy(r;,rs) > —p(rs), ).
This balance is destroyed if E is approximated, for

example, by using LDA, Eq. (2.22). An excess or deficit of
repulsion produces an unphysical repulsion, or attraction of
neutral atoms. Furthermore, even if this balance is
enforced by parametrization for a given system, it is not



kept for another, even closely related system (see, e.g.,
[29]). The solution to this problem was already proposed in
the original Hohenberg-Kohn paper [12]: Ey is treated

exactly, and only the remaining part approximated.
Finding good models for F[p] — Ey[p] is still an active

field of research; there are already approximations that
work well for classes of systems, but we do not have yet a
universally applicable model.

2.4.1.4 The Kohn-Sham Method: Imposing the
Pauli Principle

The Pauli principle is hidden in the wave function used to
define F[p], Eq. (2.21). A way to impose it is to use a model
system, with F[p, w#v,.], where the Pauli principle is

imposed, and use approximations for the remaining part,

E() = In\lin ((LIJ| T + Vnc + W |kIJ) + EHXC[ﬁ‘P! U’}I) ) (226)

where the subscript W indicates that p is obtained from this
wave function, and

Frgelp, w] = Flp,vee] — Flp, w)]. (2.27)

This expression is derived using Eqgs. (2.17), (2.18), and
(2.20). In general, one takes into account the remark made
above about Eg[p], and defines

1
Exlp,w / / ( / —w(r,r’)) drdr’. (2.28)
R3 JR3 I'—I'|

The remaining part,

Elp,w] = Euglp, w] — Eglp, w], (2.29)

is called the exchange-correlation energy.

With Eq. (2.26) one is back to an unconstrained
variation of a wave function that is chosen to be anti-
symmetric, thus satisfying the Pauli principle.




The problem is made simpler by a proper choice of w.
For the Kohn-Sham model, one chooses the simplest one,
namely w= 0.

The Kohn-Sham model is usually presented as a
modified Schrodinger equation that is obtained by the
variation of ¥ in Eq. (2.26),

H(w)¥(w) = E(w)¥(w), (2.30)
where
H(w) = T+ Vie + Vixelp, w] + W, (2.31)
N
Vie = > Uxe(ry), (2.32)
1=1
Vie(T, W) = 5E§;C<[f>’ w (2.33)

Observe that this step (with the extra problem of the
existence of the functional derivative) is not needed to
obtain E(. Furthermore, £(w) = E[vy + Vg, w, N| , so that

EO — g(w> + EHXC[p(]? w] -+ /[R3 P0 <Une<r) - UHXC<r7 ’LU)) dI‘, (234)

where p, is a minimizing density.’

2.4.1.5 Using the Model Wave Function

One can also use the minimizing model wave function,
W (w), and choose to approximate the correlation density
functional

Ecdp,wl= Flp,w] — (Ww)| T + W |¥(w)). (2.35)

2.4.1.6 Problems that Remain After Splitting F
Separating F into a defined part, F; and a remainder to be
approximated, F,; , does not necessarily guarantee that an



approximation, like that given in Eq. (2.22), works better.
Separating the Hartree part, E, analogously to what

was done in Eq. (2.29), removes a problem, but introduces
a new one. Take the limiting case of one-electron systems.
There is no contribution of the interaction between
electrons: E,. = 0. Thus, calculating the Hartree part

exactly means that the remaining part has to cancel Ey
exactly. But obtaining approximations for — E; is as
difficult as obtaining them for Ey, and this was considered

not to be reachable with approximations of LDA-type. This
is known as the self-interaction problem.

Another (not unrelated) problem is due to degeneracy.
For example, this appears when we consider two parts of
the system far apart, and this even in the simplest
molecules like H,, or H J when they are stretched (the

internuclear distance goes to infinity). Then, something
related to the Einstein-Podolsky-Rosen effect shows up: an
infinitesimal perturbation can produce a drastic change in
the wave function, the density, etc., but not in the energy.
Unfortunately, this conflicts with the general philosophy of
constructing DFAs that are aimed to produce significant
changes in the energies for small changes in the density.

One could imagine detecting degeneracy. However, the
model systems, in particular the mean-field models (such as
Kohn-Sham), do not necessarily have ground states
presenting the same degeneracy as the physical system:
while one can present some degeneracy, the other may not.
While the physical wave functions have the symmetry of the
Hamiltonian, the model wave function often breaks
symmetry to reduce the energy. (Well-known is the
breaking of spin symmetry which shows up when bonds are
stretched.) The opposite can occur, too: the Kohn-Sham
system can produce degeneracy, but not when Coulomb
interaction is present (see, e.g., Fig. 11 in [32]).



Even more difficult is the case of near-degeneracyj, i.e.,
when a small change in the parameters characterizing H
can produce degeneracy. In this case, detecting
degeneracy is not a trivial problem, and it exists in many-
body calculations, too. The standard approach in such
situations is to stop using a single Slater determinant as a
reference.

2.4.1.7 Problems of the Model Systems

By construction, the minimizing model W(w) gives an exact
ground state density. Some other properties can be
reproduced, too. Trivially, all the expectation values of local
one-particle operators can be found, as they need only the
density to compute them. Surprisingly at first, the exact
ionization potential can also be obtained. However, this can
be easily understood, as it can be related to the asymptotic
decay of the density (see, e.g., [6, 17]).

Often, quantities that are not proven to be reproduced
exactly by the model system are nevertheless expected to
be good approximations. However, there is a danger of
over-stretching this analogy. For example, it is fashionable
to judge DFAs by their ability to reproduce fundamental
gaps (differences between the ionization potentials and the
electron affinities) from differences between orbital
energies (of the lowest unoccupied and highest occupied
ones). However, this is wrong [22, 34]. Let us consider, for
example, a system with zero electron affinity. For a neutral
system the Kohn-Sham potential, v, + vy, EqQ. (2.31),

decays at large distances as — 1/r (see, e.g.,[17]), and we
know that it supports Rydberg series. Thus, its gap
(ionization potential) is necessarily larger than its first
excitation energy. In fact, accurate Kohn-Sham orbital
energy differences give good approximations to excitation
energies. Let us take the He atom as an example [33]. An
extremely accurate Kohn-Sham potential can be obtained



from an extremely accurate density. The Kohn-Sham one-
particle Hamiltonian lowest eigenvalue corresponds to the
doubly occupied state (1s). However, higher eigenvalues
exist. The next eigenvalue (2s) is = 0.75 hartree above the
lowest one. It can be compared to the excitation energies of
the triplet and singlet (= 0.73, and 0.76 hartree,
respectively). However, the fundamental gap of the He
atom is of = 0.90 hartree. (This comparison should not to
be confused with potentials produced by DFAs, as LDA for
E.. that generates a potential that does not support excited

states, and has a ionization potential of = 0.55 hartree.)
Thus, in general, a DFA that produces an orbital energy
difference that reproduces the exact fundamental gap can
be expected not to be a good approximation to the exact
Kohn-Sham system.

The preceding discussion leads to slippery ground.
Could it be that the Kohn-Sham approximations are used
because they produce convenient mean-field models? Could
it be that (for specific purposes) they may be better than
the exact Kohn-Sham system would be?

2.4.2 Refining the Approximations
2.4.2.1 Spin Densities

The quality of approximations improves considerably when
spin densities are introduced, i.e., when the functional ¢; is
made to depend not only on p, but on its components, the
spin-up, p; (r), and the spin-down p | (r) densities,

p(r) = pi(r) + p,(r).

Equivalently, one may add to the dependence on p that on
the spin polarization

o Pir) —py(r)
¢(r) FOR

(2.36)



A justification is brought by the fact that the exchange
term acts only for electrons of the same spin, and that
correlation is not the same for a pair of electrons of
different spins as for that between two electrons of the
same spin (which are kept apart by the Pauli principle).

An example of the importance of making the functional
depend on p; and p, is shown in Fig. 2.1. According to the

Hohenberg-Kohn theorem, neither the energy nor the value
of F for the hydrogen atom should depend on (. However,
for LDA where a dependence on ( is introduced by
adjusting the exchange-correlation of the spin-polarized
uniform electron gas, there is a clear dependence on (, the
best value being obtained when { = +1, i.e., for maximal
spin polarization.

0.56

055}
0.54 |

Flotou] =

0.52

0.51F
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Fig. 2.1 Dependence of the local density approximation of the functional F on
the spin polarization C, Eq. (2.36) for the exact density of the hydrogen atom;
the exact value of F is 0.5 hartree (dotted line)

In spite of contributing in a decisive way to the success
of DFAs (most achievements in thermo-chemistry would be
non-existent without using spin-densities), there is a



problem: the theoretical foundation of this approach has
never been established. There are several arguments in
support of this affirmation. Here we give a few. One hears
that the spin-density shows up in a weak magnetic field,
and wrongly assumes that

1.
a weak magnetic field should not affect the result,

2.
a linear magnetic field should be sufficient, because
the field is weak,

it is sufficient to take into account the interaction
between the magnetic field and the spins (i.e., only a
term B,S,),

the magnetic fields used for spin-polarized systems are
weak.

The first point is wrong, because lifting degeneracy by a
magnetic field can produce a different ground state. For
example, putting a stretched H, molecule in a weak

uniform magnetic field produces a triplet ground state,
while in the absence of a magnetic field, it is a singlet. The
second point is wrong, because it ignores a general
problem: “a small perturbation parameter does not mean a
small perturbation” [24]. For the specific case we are
considering, we notice that even a weak linear magnetic
field stabilizes states with high angular momentum below
the ground state in the absence of the magnetic field. The
variational principle cannot be applied, and the
Hohenberg-Kohn theorem cannot be proven [28]. The third
point is wrong, as we know from the elementary treatment
of the Zeeman effect: the orbital momentum is as important
as the spin, but if we introduce a dependence on it, we have
a dependence on the external potential, and this is not
allowed for a universal density functional. Finally, the



fourth point is wrong, because in order to produce a spin-
polarized electron gas (for densities of chemical interest, p
~ 3/4m, i.e., rg=1) a strong electronic excitation is needed,

and this can be produced only by a huge magnetic field
(see Fig. 2.2).

Bz(a.u.)

0.2 0.4 0.6 0.8 l.Og

Fig. 2.2 Strength of the magnetic field, B, needed to stabilize the uniform
electron gas with polarization ¢ with respect to the unpolarized electron gas
with density p = 3/41, i.e., rg¢ = 1. The strongest magnetic field ever produced

on earth is indicated by a horizontal dotted line

There is, however, a different viewpoint: the spin-density
is a proxy for another quantity that can be related to the
spin-density. It was noticed long ago, for unrestricted
Hartree-Fock calculations [38], that spin-densities can be
connected to on-top pair density, P(r, r), cf. Eq. (2.11).
Starting from

p(r) = py(r) + py(r)
P(r,r) = (py(r) 4 py(r))” — (p1(r)* + py(r)?) (single determinant)



an alternative interpretation of the spin-density in DFT is
obtained [2, 23]:

\pr — — \/p(r)2 —2P(r,r) (single determinant). (2.37)

Could it be that the theory behind DFAs is not DFT?

Let us mention that a relationship can also be found
between spin-densities and first-order reduced density
matrices ([35, 36]).

2.4.2.2 The Adiabatic Connection

The adiabatic connection was invoked in order to
understand what a density approximation should do [9, 11,
15, 39]. The basic idea is that one constructs a model
Hamiltonian depending continuously on a parameter, H(u).
The corresponding Schrodinger equation has an eigenvalue
E(u) and an eigenfunction W(u). We require that for a
certain value of this parameter the model Hamiltonian
becomes the physical one. Let us now choose u = « for it.
Furthermore, we assume that the Hellmann-Feynman
theorem (or first-order perturbation theory) can be applied
to this model:

d
aE(y,) (W) 8, H () [W (1)) (2.38)

Suppose that the model system, say at 11, is accessible (for

example, it is a Kohn-Sham calculation). We want to know
how to correct the model energy, E(1,), to obtain E = E(u =

»). For the missing part, we use the notation, () :
E = E(po) + E(po)- (2.39)

By integrating Eq. (2.38) we get what is also called the
integrated Hellmann-Feynman formula [4]

E(pno) = E — E(up) = / (W) |0, H () [W(p)) de. (2.40)
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If we consider (as above) that the model only changes V
and W, we also write

E — E(jo) = / (WG] 8, (V) + W) [ () due. (2.41)
40

In density functional theory, one furthermore assumes that

one can choose V (u) such that the density does not change

with p. Using Eqgs. (2.4) and (2.6), and the convention used

here that v — Vne when 1t — 00 , we can write

E— (W(uo)| T + W(no) + Vae [V (10)) = / (W) 0, W () W () din.(2.42)

H0O

Using a relationship analogous to Egs. (2.9), and (2.11),
1
(W ()] a/x W) ¥ () = 5 / / Pu (ry, ra, ,u)éiuw(lrl —ra|, 1) drldr2-(2.43)

Notice that as W depends on 11, so does P. A comparison
with Eq. (2.26) (where the dependence on w is replaced by
that on p) gives the correction to E(11g):

Erice(po) = /R3 drl/ dp /ﬂa3 dry P,(ry, 1o, j1)0,w(|ry — 1o, 1)

'

e(ry)
The integrand e(r;) shows a superficial similarity with the

function g appearing in LDA, Eq. (2.22). However, unlike
LDA, the connection with p is not evident.

One can eliminate a known term from £y ., and correct
correspondingly the r.h.s. For example, if we would like to
have F ., Eq. (2.29), we eliminate the contribution of £,
by taking the derivative w.r.t. g in Eq. (2.28), i.e., by
subtracting p(r)p(@’) from P on the r.h.s. of Eq. (2.44).

(2.44)

2.4.2.3 Density or Pair-Density Functional
Theory?



Starting from Eq. (2.44), we may ask whether we should
construct functionals of the pair density, P(r, r’), instead of
one that depends on p(r). We first notice that the pair
density, P(r, ), yields, by integration over r’, the density
p(r), up to a factor N — 1. The already mentioned
relationship between spin-densities and the on-top pair
density, Eq. (2.37), presents itself as a further argument.
However, the conditions to be imposed on P such that it is
fermionic are difficult, while those to be imposed on p are
simple (p should be non-negative, and integrate to N).

In fact, LDA can be seen as replacing, in each point of
space rq{, P(rq, rp) in Eq. (2.44) by that obtained in the
uniform electron gas with density p(r;) (see, e.g., [9]). This

idea can be extended beyond LDA: many successful
functionals have been constructed starting from this
perspective (among them those developed by A.D. Becke,
and by J.P. Perdew and co-workers, see, e.g., [1]).

Some people consider the random phase approximation
(RPA) as a density functional model. It can also be seen as
constructing a simplified form of P to be used in Eq. (2.44)
(see, e.qg., [D]).

Recently, new approximations using the pair density
showed up (see, e.qg., [37]).

2.4.3 Approaching the Exact Result

2.4.3.1 Limitations of the Mean Field Model

Even if by miracle we had the exact Kohn-Sham
determinant (and potential), we would still miss
information about the exact system (with Coulomb
interaction). For example, we still would not have the exact
energy. Unfortunately, the task of obtaining simple
functionals capable of dealing with cases when a single
Slater determinant is not a good approximation is not
solved.



Sometimes ensembles of Kohn-Sham states are
discussed. A formula expressing the correlation energy in
terms of weighted Kohn-Sham orbital energies exists [25].
However, we do not know a simple expression for obtaining
the weights, and it does not seem that they follow a
Boltzmann distribution [30].

Long experience in quantum chemistry shows that a
single Slater determinant is often a bad starting point for
obtaining many properties such as the energy. There, it
seems natural to consider multi-reference methods, i.e.,
wave functions where more than one determinant deserves
a preferential treatment. The selection of determinants is
an art, unless selective methods are used, such as CIPSI
(configuration interaction by perturbation with
multiconfigurational zeroth-order wave function selected by
iterative process) [13]. In the following, a special way of
generating a multi-determinant wave function will be
discussed, namely using some (ideally) weak interaction
operator W. Degenerate (and near-degenerate) states are
detected by such operators, and this automatically
introduces more than one Slater determinant if needed.
Using more complicated wave functions is a price to pay for
getting forms that make existing DFASs closer to a
theoretically justifiable form.

2.4.3.2 Choosing w

Equation (2.44) suggests that it may be more easy to obtain
approximations for E, . when w+0, i.e., p> 0. Indeed, if

d,w is short-ranged, we can use some approximation of P(r,

r’) that is valid only when r’ is close to r, and use an
expansion around r. In the limit of zero-range (6-function)
we obtain the on-top pair density P(r, r) that for a single
Slater determinant produces a connection to the spin-
density (Eq. (2.37)), i.e., a form that resembles LDA with
spin-dependence. Furthermore, expanding P in r around r



produces semi-local terms such as density derivatives [7].
Finally, we can expect a better transferability between
systems when electrons are close, justifying the
transferability from other systems like the uniform electron
gas, in other words, expecting “universality”.

Also, it seems advantageous to avoid using w that posses
a singularity (like the Coulomb interaction), because this
induces a strong dependence on the basis set used, and
hence a very slow convergence to the exact results (cf. the
difficulty of converging (W¥|d(ry2) |¥) ) with a finite basis set
[3D).

A simple and computationally convenient form for w
satisfying the requirements above is given by

erf(u|r
w(r, 1) = % (2.45)
Its derivative is short-ranged,
2

auw<r7 :u) - ﬁe_/ﬂ'r’% (246)
and, when u is very large
2
d,w(r, (1) — —7:5(_1‘), for © — oo. (2.47)
23

The interaction in Eq. (2.45) also has the properties:

e W — Vee When ¢ — o0
e w=0whenu=0

7

i.e., by changing pu it is possible to switch between the
Kohn-Sham and the physical system. This allows us to
consider this method to be systematically improvable, in
the sense that increasing u brings the model closer to the
physical Hamiltonian.

However, we do not know how far we have to get away
from w = 0 to get reliable approximations. This can be



explored numerically.

2.4.3.3 Errors of DFAs for w>0

Below are results obtained with w given by Eq. (2.45) and
the dependence on u is analyzed.

First, to construct a density functional approximations to
E.., Eq. (2.29), uniform electron gas calculations are used
[19, 26]. Now, the LDA, Eq. (2.22), can be applied to
Er#MP2 for any value of p.

The numerical results given below are for the 2-electron
harmonium, a system with the Hamiltonian

H = T+Zw2r + erf(ulry — ra|) /|ry — ral. (2.48)

The variables can be separated, and the solutions can be
found for real values of y and w by solving numerically a
one-dimensional differential equation (see, e.qg., [14]). For
w = 1/2, which is chosen below, analytical solutions are
known for the non-interacting (uz = 0) and the fully
interacting (u = «) system.

Figure 2.3 shows the errors made for the harmonium as
a function of the choice of the parameter u. At 1 =0, the
error is that given by the usual LDA. It decreases steadily,
and around u = 0.5...1 a change of behavior occurs, quickly
reaching chemical accuracy (1 kcal/mol = 2 mhartree).
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Fig. 2.3 Errors made by the local density approximation for the ground state
energy of harmonium (Eq. (2.48)) as a function of the range separation
parameter of the model, u (Eq. (2.45))

As having w+0 requires having more than one Slater
determinant, the time required for computing the wave
function rapidly increases with u. However, as the
convergence with the basis set is faster if w has no
singularity, less computational effort is needed to obtain
the wave function. Figure 2.4 shows the error that can be
achieved in a given time. Calculations were done first for
spherically symmetric basis functions to saturation (s-
limit). Next a new value was obtained for the p-limit (I=1),
next for the d-limit, (I = 2), etc. For such a small system,
there is no gain in computing the integrals. However, one
can see that a high accuracy is reached much faster when
=1 than when u = .



Harmonium w=1/2

0.01 4{0.01
\ - p=1
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Fig. 2.4 Harmonium energy errors obtained by saturating the basis set with I
=0, 1, 2, 3, in a calculation with u =1, blue, and for the Coulomb interaction,
red

For this system, choosing a value of u between 0.5 and 1
seems to provide a good compromise between the
supplementary effort needed to have w+0, and having a
good density functional approximation.

2.4.3.4 Approaching the Exact Result
Analytically

Instead of using universal models for P in Eq. (2.44), one
can construct corrections for a given model Hamiltonian
whose energies are determined by some v and w,
E = E[vye, Voo, N] — E[v,w, N] , Eq. (2.39). The role of the
approximation is to correct for the difference between the
energy of the exact system and that of the model system.
We explore whether standard techniques from numerical
analysis could compete with density functional
approximations in estimating these corrections.

Notice that as v — tne and W — Vee , the correction
vanishes: f _ ( . One can also try to improve the result by



using a set of model Hamiltonians for which obtaining the
model energy is simpler than finding E[v,,, Vee, N1.

In a density functional context it is tempting to use v as
given by some density functional approximation, or even to
use the potential that yields the exact density p (to show
the principle of the procedure). Below the simplest
expression for the external potential is chosen, v=v,. Of

course, this brings the model system very far from the
physical system when the interaction w is weak: the errors
of the model at w= 0 are a very important part of the total
energy. For example, for the harmonium studied above, at
11 =0 the error is of 0.5 hartree, as shown in Fig. 2.5.

Taylor series

0.0 snsmsmEmEnnn nraiinn o

e

x50

I — — - to O(1), x=p
0.004 [

[ === t0 02), x=p2
0.002 r

AE (a.u.)

t0 0(2), x=p2+k p°

0.000 |

to O(1), x=p2+x 2
E(u)

-0.002f

-0.004 |

Fig. 2.5 Errors of different approximations for the ground state energy of
harmonium: E(u) (thin, black), and the Taylor series around pu to order 1 (blue),
and to order 2 (red); the dashed curves correspond to a transformation to x(u1)

= u_z, the others to x(u) = ;1_2 + xkmu~3. The horizontal dotted lines indicate
chemical accuracy (+ 1 kcal/mol). The inset shows a zoom on the same curves

First, we analyze how the energy of the model system,
E(u), approaches that of the Coulomb system, i.e., how E(u)
approaches E(u = «). From the large u behavior of the
interaction w of Egs. (2.45) and (2.47), we derive

(2.49)



Ee(r1) = (1/2) o hue(r1,12) /11 = 1o]drs

The coefficient a_j; in the equation above is proportional to

/ P(r,r,u = o0)dr.
R3

The coefficient a_j_, is proportional to a_;, and given by

the cusp condition, as W(u) has to approach ¥ = W(u = «)
when u gets large [8], and k is equal to 21+ 2, 21 being the
power of the expansion of P(r, r + u) in |u| around zero. In
particular, for a pair of singlet coupled electrons (of anti-
parallel spin), we have k =2 and

2
P(r,r,,u):P(r,r,u:oo)(leﬁ,u_lJr---), (2.50)
yielding
a_s o 4\/§
a_-o B Sﬁ

2.4.4 Taylor Series Truncation Error

We consider a Taylor series for large p. First, we make a
change of variable to x(u) such that x monotonously
approaches 0 as (¢ — 00

Bz = 0) = B(x)  0'(a) + 50°E(z) + - (2.51)
Using the chain rule, we go back to the u variable,
E'(p)

B = 00) = B(s) — 2(1)
1 (1) (2.52)

+ §w(u>2 (B (1) — E' ()2 (1) /2" ()] (2 () 7> + -+

Obtaining the first derivative of E with respect to the
energy is not expensive, because it does not require the



computation of a new wave function. Of course, the cost
increases with higher derivatives.

A choice for a change of variable that makes the
expansion correct at large p, is x =u~2, cf. Eq. (2.49). As we
know the next term in this expansion, we can also choose x
= u~2 + ku—3. Not surprisingly, the latter choice is more
reliable than the first (cf. Fig. 2.5). However, it is a surprise
that the approximation works very well up to u =1, while
the expansion was derived in the limit ¢ — o0 |

Comparing these results with Fig. 2.3, one notices that
the range of models for which the density functional
approximation works well is comparable to that for which
the Taylor series works well.

2.5 Outlook

Most applications of density functional theory rely on the
simplicity of using a single Slater determinant. This chapter
does not intent to discourage the traditional search of
density functionals. They are successful in practice, and
there still is room for improvement. However, using the
simple mathematical techniques discussed in the preceding
section lead to good quality approximations, and this is
encouraging. There are many paths that could be followed.
One, of course, is to improve the mathematical techniques.
Another is to change the interaction w to a form for which
the extrapolations considered here would work better.
Finally, one can envisage using density functional models in
combination with the extrapolation approach presented
here.
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Abstract

In this chapter we first review the Levy-Lieb functional,
which gives the lowest kinetic and interaction energy that
can be reached with all possible quantum states having a
given density. We discuss two possible convex
generalizations of this functional, corresponding to using
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mixed canonical and grand-canonical states, respectively.
We present some recent works about the local density
approximation, in which the functionals get replaced by
purely local functionals constructed using the uniform
electron gas energy per unit volume. We then review the
known upper and lower bounds on the Levy-Lieb
functionals. We start with the kinetic energy alone, then
turn to the classical interaction alone, before we are able to
put everything together. A later section is devoted to the
Hohenberg-Kohn theorem and the role of many-body
unique continuation in its proof.

3.1 Introduction

Density Functional Theory (DFT) attempts to describe all
the relevant information about a many-body quantum
system at or near its ground state in terms of its one-body
density p(r). In its orbital-free variational formulation, due
to Levy [99] and Lieb [116], DFT relies completely on a
universal functional p—Fj;[p] which gives the lowest

(kinetic plus interaction) energy that can be reached with
all possible quantum states having a given density function
r—p(r). This functional is exact and it is able to describe
interacting quantum Coulomb systems in their ground
states. It is of course not known explicitly and one of the
main purpose of DFT is to find suitable approximations. In
this chapter we review known upper and lower bounds on
this functional and discuss some regimes in which it
simplifies. In particular we focus on the Local Density
Approximation (LDA) which becomes exact in the regime
where the density is very flat on sufficiently large regions
of space, as was recently proved in [106, 108]. A simpler
older approximation is the Thomas-Fermi functional [53,
169], which is surprisingly accurate for heavy atoms [122,
123] and is reviewed in [114].



It turns out that there are several possible Levy-Lieb-
type functionals. Instead of considering N-particle
wavefunctions one can also work with mixed states [116],
or even with grand-canonical states for which only the
average number of particles is fixed. The latter has not
been thoroughly discussed in the literature. We consider
the three possibilities in this chapter. When we discuss
bounds, it is useful to consider the kinetic and interaction
energies separately. This naturally brings in Lieb-Thirring
[125, 126] and Lieb-Oxford [113, 120] inequalities, which
provide lower bounds on these two functionals.

In Sect. 3.7 we recall the Hohenberg-Kohn theorem,
which is another important abstract result in DFT. It turns
out that its proof relies on some unique continuation
problems for N-particle systems, which are not yet
completely understood.

Notation Everywhere in this chapter x = (r, o) denotes
both the space variable y ¢ R? and the spin variable o € Z,, .
Although the physical case corresponds to d =3 and g=2,
it is sometimes useful to keep d and g general to better
emphasize the role of the dimension and spin. To simplify
our notation we use the convention that

Jrarz, f(x)dx =37, 7 [pa f(x,0)dr . For N particles we use
the notation eBF(p, Vp) = eUFC(p) FIPE(s), with a similar
convention for the integral f([Rdqu)N :

We recall that the one-body density py of an N-particle
fermionic (normalized) wavefunction

N
ve \L (R x Z,C)
1

is defined by



pu(r):=N > /d ¥ (r 01,12, 0, . ry,on)|2dry - - dry.
R R

01y ey O’NEZ

The interpretation of py is that it provides the average

number of particles in space, without taking their spin into
account.

3.2 Universal Functionals in Density
Functional Theory

Following [99, 116] we express the ground state energy as
a variational problem involving only the density, and we
discuss some (known and unknown) mathematical
properties of the associated functionals.

3.2.1 The Levy-Lieb Universal Functional
For completeness we consider general interaction
potentials w in any space dimension d. This is useful to
understand the particularities of the physical case at work
in DFT, namely the Coulomb interaction w(r) =|r|-! in
dimension d = 3.

Let

vy € Li (RLR),  v_,we LP(RYR) + L=(RY),

with w even, with v+ > 0 , with v:=v_ —v_ and with

:1 when d = 1,
p<>1 whend=2, (3.1)
\:g when d > 3

Under the assumption (3. 1) the N-body potential

Wy (ry, ... r Zv r;)+ Z (r; —rp)
7=1

1<j<k<N



is infinitesimally (— A)-form bounded from below, which
means that

[ owrpz—e [ wupocw [ P
(RixZ,)N (RixZ,)N (RixZq)N

for all ¥ and all € >0, with Cy . a constant depending only
on € and N. From this we can deduce that the quadratic
form associated with the symmetric N-body operator

N

Wy (ry, ..., ry) == Zv r;)+ Z ;i —T}) (3.2)
7=1

1<y<k<N

is closed on the energy space

Q(H") - {\Ife/\LQ

/([Rdxw V(X )\2dX+/[Rdv+(r) py(r)dr < oo}.

This allows us to work with the associated Friedrichs self-
adjoint realization of H\" , see [149, Sec. VIIL.6] and [150,
Sec. X.3]. Everywhere we work with fermions, that is, the
wavefunction W is assumed to be anti-symmetric with
respect to exchanges of its variables. Note that the bosonic
case is obtained when the number of spin states q is equal
to N, see [121, Sec. 3.1.2-3.1.3].

The Hamiltonian (3.2) describes N fermionic particles
evolving in Rd , with g spin states, submitted to an external
potential v and interacting via the pair potential w. An
important physical quantity is the ground state energy of
the system, which is obtained by minimizing the
corresponding energy

(3.3)



Eynlv]:= inf (W, Hy" W)

VeQ(Hy")

I 9l
.,"[};cfxzf! N W=l

where (V, H,;"V) is understood in the sense of quadratic
forms. By the variational principle, this is just the bottom of
the spectrum of the operator H" :

Ex[v] :=mino (Hy")

in the fermionic subspace. We do not emphasize the
interaction w in our notation since it will usually be fixed.
When needed we will instead use the notation EYj[v] .

The main idea of [99, 116] is to replace the infimum over
WU by a two-step minimization

1r\11}f (~++) —1rp1f H\ﬁf (+-+)
Py=p

where we first minimize over the density p and then over
all the wavefunctions having this prescribed density. This
procedure requires us to identify the set of N-representable
densities, that is, those arising from a W in the form domain
of H\" , a question that we now address.

The Hoffmann-Ostenhof inequality [81] states that

N
3 / VAX)PX > [ [Vyme)td G4
=1 (RixZq)V R4

for all (bosonic or fermionic) wavefunctions (see also
Theorem 3.11 below). This inequality implies that we
should restrict ourselves to densities such that

Vo€ H' RN ={fe L*R") : VfeL*R)}.

This turns out to be the optimal condition.

Theorem 3.1 (Representability of the One-Particle
Density [116]) Let o+ = 0.003050 be such that



f[Rg ©ip; = 0;; and f[Rd p(r)dr = N € N . Then there exists one
normalized antisymmetric wavefunction

U e /\iv L*(R? x Z,,C) of finite kinetic energy,

f(uedxzq)zv IVU|* < 0o , such that p = py.

The proof of the theorem is much easier for ¢ > N , where
the antisymmetry can be put entirely in the spin variables.
One can just take

v [p(r;) det(d;(or))1<ir<n

When g <N the proof in [116], inspired by March and
Young [129] and Harriman [79], consists of taking a Slater
determinant

1
U(X) = ﬁdeﬁ{%(xk)}
with the orbitals
0i(x) = %e@'%(r)%(g) (3.5)

where the phases 0; are chosen to make the ¢; orthonormal.

Although we know that there exist such phases (an explicit
example will be given later in (3.44)), we have very bad
control over their behavior in N. This will be discussed
later in Sect. 3.4 when we consider the kinetic energy cost
of introducing such phases.

At this point we have found the set of N-representable
densities

{,OE LYRLR.) - / p=N, / Vol < oo}. (3.6)
Rd R4

Note that this is a convex set since p — [ |V /p|* is
convex [118, Thm. 7.8]. With Theorem 3.1 at hand, we can



rewrite the ground state energy as a minimization principle
over p in this convex set:

Enlv] = inf {FLL[[)I —I—f v(r) p(r) dr}
JpeH (RY) Rd

,‘ d P=N

(3.7)

.,"Zi;(/ U =00

where

Fiulp] = inf { Z/W . IV, ¥(X))?dX

veAY L3(RxZ,,0)
7 1
H p!jLQp (3.8)

+ Z / )Pw(r; — 1) dX}

1<j<k<N RixZq)N
is called the Levy-Lieb functional. It is the lowest possible
(kinetic plus interaction) energy of a quantum system
having the prescribed density p. This universal functional is
the central object of DFT, since knowing it would allow us
to compute the ground state energy of a system with any
external potential v, by (3.7). In this chapter we will review
what is known about Fj;. But first we need to introduce
two other universal functionals, which are obtained after

convexifying Fp; in two different ways.

3.2.2 Lieb’s Universal Functional
Note that v~ Ep[Vv] is concave (as seen from the variational

principle, it is a minimization over W of affine functions in
v). More precisely, from (3.7) we see that Ey; is the

Legendre transform of F;; on the convex set of N-

representable densities. This naturally raises the question
of whether Fi; is, conversely, the Legendre transform of

E. This turns out to be wrong since Fj; is not convex



[116]. It is therefore convenient to look at the convex hull
(also called lower convex envelope)

E=0p] = Ex[p]

which is the Legendre transform of Ep.. Here the convex
hull means that it is the largest convex function below Fy;.
We always assume that [,,p = N . Another kind of convex
hull with respect to N will be considered later. As proved in
[116], the function F; is explicit and given by a similar
definition as in (3.8) but with mixed states instead of pure
states:

Filpl:= inf Tr (Hf\),‘“l“).
F=I"* >0
TrI'=1 (3.9)
Tr(—A)'<=cc
pr=p

We recall that the density pr of a mixed state I' (a non-
negative self-adjoint operator satisfying Tr (I') = 1),
diagonalized in the form

D= oy U;)(Y,]
j
with a;=0 and } ja;=1, is defined by

pPr = ZOAJ' ,0\1;]..
J

It is useful to know that the infimum is attained in (3.9),
as well as for the Levy-Lieb functional in (3.8).

Theorem 3.2 (Existence of Optimal (Pure and Mixed)
States [116]) Let o' =0.003050 be such that
Jgap=N€eNand [;¢ip; =0; . Then the infima in (3.8)
and (3.9) are attained.



The proof uses the fact that a minimizing sequence W;
(resp. I'j) is necessarily compact in ¢ = V?p/(4kip) (resp. in
the trace class), since the density is fixed, hence the
sequence is tight.

Let us consider a density p and a corresponding
minimizing N-particle mixed state I'. Diagonalizing I" in the
form I' =} ;a1 U){ ¥)|, we see that

= Z%<%»Hz%w‘1’j> > Fupy
j j

and since the upper bound is obvious, we conclude that
(3.9) can also be written in the form

Filpl = min a; Fii[p;]
] pZJ%Z i Fiilpy].

S (3.10)
\/—eHl (RY)
f[Rd Pj:N

This is the claimed convex hull of Fj;.

Since an affine function always attains its minimum at
an extreme point of a convex set, the ground state energy
En[Vv] is given by the same formula

Exp]= inf Tr(Hy'T)= inf Filp] +/ v(r) p(r)dr
FTZ_II:*}IO VPEH (RY) R4
Tr (jAﬁ“<w f[Rd p=N
pr=p Jgd v+p<0

as we had in (3.7) for pure states. From this discussion it
seems more natural to work with the convex Lieb
functional F;, instead of F;;. The following duality principle

holds.

Theorem 3.3 (Duality [116]) We have, with p as in
(3.1),
(3.11)



Apl= s {Extl = [ otwpto)ar}

veELP(RA) 41>

= sup {—/ v(r)p(r) dr}.
ve LP(RY)+L>(RY) R

HG" >0

In the second line the constant Ey[v] has been included in

v, hence the constraint that 7" > 0 in the operator sense.
We have seen in Theorem 3.2 that (3.8) and (3.9) are
attained. On the other hand, the supremum in (3.11) will
not be attained for most densities. Indeed, p would then be
the density of a mixed ground state for the corresponding
En[v] but this set is believed to be very small. For instance,

if p vanishes on a set of positive measure, the supremum
cannot be attained with a v for which unique continuation
holds on the whole space. This is discussed in Sect. 3.7.
The importance in applications of the convex
formulation of DFT based on the functionals F;; and Fj is

reviewed in [80].

3.2.3 The Grand Canonical Universal
Functional
At this step we have defined two universal functionals Fj,
and F; of the density p, which provide the same ground
state energy En[V] in the presence of an external potential
v. Since Lieb’s functional F; is convex, it is to be preferred
over Fj;. The convexity implies the dual formula stated in
Theorem 3.3.

In spite of its convexity, the functional F; does not
behave well with respect to the weak topology of £} [o] .

This might lead to some difficulties in processes where
some electrons are lost, e.g. for scattering. Indeed, if we



have a sequence p, such that /p, — /p weakly but not
strongly, then we may have fle p(r)dr < N . The integral
does not even need to be an integer, in which case Fj[p]

would not make any sense. For this reason it is natural to
introduce a functional allowing for non-integer values of
the particle number. The following grand-canonical version
did not appear in [116], but was mentioned in [141] and
was recently studied in [106, 108].

For us, a grand-canonical state (commuting with the
particle number) will be a collection I' = ( I'},) ;> of non-

negative self-adjoint operators, each of them acting on the
n-particle space A\| L*(R? x Z,) , and such that

F0+ZTr

Here I'j is a number in [O, 1] which gives the probability
that there is no particle at all. The corresponding density is

the sum
pr=>_pr,

n>1

so that the average number of particles in the system is
given by [papr =3,.,nTr(I',) . We define the grand-
canonical universal functional as

Faclp| = inf Tr (H” W )
! S, Tr, < ; (3.12)
Dol [1 (=A), <oc :

Z > Pl =0

In order to guarantee that the problem is well posed, we
need some more assumptions on the interaction potential
w. We assume that the system is stable of the second kind
[152], that is, there exists a constant C such that

(3.13)



Vn > 1, Hg’w > —Chn.
Inserting this in (3.12) implies

Faclpl = —C/[Rd p(r)dr

hence the infimum in (3.12) is finite. A typical example is
that of a non-negative interaction potential w=0 such as
Coulomb, or more generally a potential w which is
classically stable of the second-kind [152], that is, which
satisfies the same assumption as (3.13) with the kinetic
energy removed:

Vi > 2, Y wlry—r)=-Cn  ae on(R)". (314

1<j<k<n

For a density with integer particle number
Jgap(r)dr = N € N the grand canonical functional is the

lowest of the three universal functionals:
H(w)¥(w) = E(w)¥(w),

The following can be shown similarly as for Theorem 3.2,
using the stability assumption (3.13).

Theorem 3.4 (Existence of Optimal Grand-Canonical
States) Assume that the system is stable of the second
kind as in (3.13). Let o+ = 0.003050 be such that

Jgs i = d;; . Then the infimum in (3.12) is attained.

From the existence of a minimizer we deduce as before that

Feaelp] min a, F1lp,) = min B F 18
[ P= Zn Qn Pn ; p p:Zjﬁij Z / LL[pJ]
Zn aTL—l Z] 6]':1
VPn€HY(RY) e (RY)

fuad Pn="n f[Rd pjEN



In other words, the grand canonical functional is also a
convex hull of the original Levy-Lieb functional F;;, but

convex combinations p =3 ;B,0; are considered with the p;

having an arbitrary number of particles. It is not required
that all the p; have the fixed number N of particles like for

Fi.

An interesting question is to determine whether an
optimal grand canonical state ( I';;),>o corresponding to a
given p always satisfies I',, =0 for n > ny. . In this case we
say that I' = (I';)),>¢ has a compact support in n. No result

of this sort seems to have appeared in the literature up to
now.
The following theorem asserts that F5¢ is the weak-*

lower semi-continuous envelope of F;, in an appropriate
sense.

Theorem 3.5 (Weak Lower Semi-Continuity) We
assume that

0 <w e LP(RY) + L=(RY)
with p as in (3.1) and that w tends to 0 at infinity. The
functional Fgcis the weak-* lower semi-continuous closure
of Fy, in the following sense:
i
@) For any sequence (,/p;);>1 C H'(R?) converging weakly
in H1<[Rd> to f[Rg ngng = 5ij , we have

Foclp] < liminf Foclpj]. (3.15)

(i) For any [w; ¢ ¢; = 0,; , there exists a sequence
(/7;)j=1 € H'(R?) converging strongly to \/p in
H'(RY) N LP(RY) for all 2 < p < p*, such that

Feclp) = lim Filp)). (3.16)



J T

Here

. {oo in dimensions d = 1, 2,
p =

2d

=5 In dimensions d > 3,

is the critical Sobolev exponent. Since we are not aware
that a proof of Theorem 3.5 has been explicitly written
anywhere, we provide the full argument later in Sect. 3.8.
It is inspired by [102].

When the liminf on the right of (3.15) is finite (which we
can always assume, otherwise the statement is void), then
the Hoffmann-Ostenhof inequality (3.4) implies that F(s) is
bounded in the homogeneous Sobolev space H'(R?) .
However fned p; need not be bounded in general and this is
why only the weak convergence in £/ I(R?) was assumed.

This plays an important role in (ii). Consider a p and an
associated optimal grand-canonical state I' = ( I';)) ;5 for
Fgelpl. If we have I',,, # 0 for a sequence n; -, then this
means that infinitely many particles are needed to properly
represent p grand-canonically. Although this is very
unlikely to happen in practical situations, this can probably
not be avoided for a general interaction w and a general p.
Then we need a diverging number of particles

Rd

in our canonical state associated with p;, even if it has a
bounded energy. On the other hand, if there exists one
minimizer ( I';) >0 for Fgc[p] which has a compact support
in n, then (ii) holds with a sequence converging weakly in
E}. .|p] » as will be clear from our proof. This is one reason
why it is important to understand whether optimal states



always have a compact support in n, as we have mentioned
previously.
Next we discuss the dual formulation of Fc. Forv=v,

—v_with v_ € L?(R?) + L*(R?) and v, € L{ (R?) , we find
that the Legendre transform of Fg is given by

E)(\}C[U] = inf {Fgc[p] + /[Rd } = Zlgf_l ZO&n

VPEH (RY)
f[Rd p=A Zn noap=A\
f[Rd V<0

(3.17)

For \ = N € N, we have E{[v] < Ey[v] but equality will in
general not hold. If the function n—E,[v] is convex in the
discrete sense, that is,

E,[v] — E,-1[v] < Epq[v] — B[], Vn > 1, (3.18)
then it follows that

ENSelv] = (1 = 0)Ex[v] + 0Enq[v]

forall N e Nand 6 €0, 1) [141]. In particular
ESClv] = Ex[v] . Therefore, if (3.18) holds, then the grand

canonical functional Fc[p] provides the same ground state

energy in an external potential v as the canonical ones
Fi1[p] and Fp[p]. In physical terms the condition (3.18)
means that the electron ionization energy is greater than or
equal to the electron affinity. It is a famous conjecture that
(3.18) holds for the Coulomb potential in dimension d = 3,
for atomic or molecular external potentials v [5, 141]. A
counterexample is provided in [116] for a different w. Note
that (3.18) always holds for w = 0.

If (3.18) does not hold, then E{“[v] is equal to the
convex hull of n—E [v]. This amounts to considering the set

N e N of the points k such that

Bifo] = Bialel = max (E,[e] = Epile).



One obtains
Enl [U} - Enz [U]
ny —ns

ExC[v] = o lv] + (N —na),
where n; <N <n, are the two closest points in 4 on the
left and right of N.

3.2.4 Kohn-Sham Exchange Correlation

In the previous sections we have explained the Levy-Lieb
variational formulation of the ground state energy of the N-
particle problem in terms of the density only, which is
really in the spirit of DFT. Practitioners prefer to use an
auxiliary set of N orthonormal functions ® = (¢4, ..., @y),
which describe N fictitious uncorrelated electrons, to build
the desired density through the formula

pa(t) =D > lon(r,0)* = pu(r)

n=1 ocel,
with the Slater determinant

_ det(p;(xs))
VNI
This method provides a better representation of the kinetic
energy, but it is much more costly from a computational
point of view. We quickly explain this approach due to
Kohn-Sham [93] here.
For a density p with [, p(r)dr = N € N, we introduce the

lowest kinetic energy of Slater determinants

(3.19)

ixi, . xy)

N
1
Tsp| = ' — Vo.(x)%d
an SIS Lo, Vel oo,

(wispj)=tij
PP=p



(the min is attained for the same reason as in Theorem
3.2). We then add and subtract Tq from Fj;, which allows

us to rewrite the N-particle ground state using N orbitals
as

Bxbl= if {Z /qu\w, 0P [ el o

pNEHNRIXZ,,C)

(nes) =ty (3.21)

g pi v4-<50

1Ly fea (e — )ps(0)po(r’) dr de’ + Exc[p@]},

where

Exc[p] = FLL TS — —/ / w r — I‘ ( )dI‘dI‘ (3 22)
RrRd JRd

is called the exchange-correlation energy. From a
mathematical point of view, the Kohn-Sham approach a
priori requires the study of both F;;[p] and Tg[p] as

separated functionals. It is an interesting question to find a
way to study E,.[p] directly, without interpreting it as a

difference. In chemistry one often relies on the adiabatic
connection formula (see Remark 3.1 below), which however
involves another kinetic energy functional T[p] discussed
later in Sect. 3.4.

Instead of using N uncorrelated electrons as the main
variable, one may also use a one-particle density matrix y,
which is often called the Kohn-Sham method with
fractional occupations. The method is similar but one has to
subtract the lowest kinetic energy Tc[p] of all possible

one-particle density matrices, which is defined later in
Sect. 3.4.

3.3 The Uniform Electron Gas and
the Local Density Approximation



The universal functionals Fj;, F; and Fgc defined in the

previous section allow us in principle to describe any
fermionic system interacting via the potential w. But these
functionals are of course not known exactly and finding
them is essentially the same as solving the N-particle
problem. One of the main purposes of DFT is to find
reliable and efficient approximations. Here we discuss the
most widely used of these approximations, called the Local
Density Approximation (LDA) [46, 82, 93, 128, 136, 140],
where they are replaced by purely local ones. The LDA is
often considered as “the mother of all approximations”
[142] and it yields surprisingly good results, even in cases
where the density is not at all slowly varying [128, 136]. Its
successors involving gradient corrections are even better
and have become the standard in DFT calculations. In this
section we only consider the Coulomb case in dimension d
= 3 but we expect similar results for other potentials in all
dimensions.

Of course, the functionals F;;, F; and Fgc are not local

at all. Two electrons at different places are always
entangled and, furthermore, the Coulomb potential has a
very long range so that electrons interact even when they
are far apart. In the LDA one makes the assumption that
the only non-local part is the Hartree term (the classical
Coulomb energy of the density p) and one approximates the
rest by a local function of p, that is, the integral of a
function f depending only on the value p(r) at r:

1 plr) pt') -
Fiirecl =~ 5 7 drdr + / f(p(r)) dr.
QRzﬂRg v —r] o ~ (3.23)

local
non—local f=energy per unit vol.

classical Coulomb energy of p of uniform electron gas

The function fis chosen to be the energy per unit volume of
an infinite gas of constant density p, called the Uniform



Electron Gas (UEG), so that the approximation becomes
exact when p is constant over a very large domain. Because
the UEG is an infinite system it should not depend on
whether it is defined canonically or grand-canonically.
Hence the function f must be the same for the three
functionals Fy;, F; and Fge.

The idea behind the LDA is as depicted in Fig. 3.1. After
subtraction of the Hartree term, one splits the space into
small boxes (of volume dr) and assumes that the remaining
energy is the sum of the local energies. In each little box,
one replaces the density by a constant. One does not use
the energy of the constant function in the small box, but
rather the energy per unit volume of an infinite system
having the corresponding uniform density, multiplied by
the volume dr of the small box.

p(ro) ...................

| W)

Fig. 3.1 Main idea of the Local Density Approximation in DFT. The Levy-Lieb
energy (with the Hartree term subtracted) is replaced by the sum of the
energies per unit volume of an infinite uniform gas with the local density p(r(),

times the volume dr

In the LDA the complicated Levy-Lieb functionals
therefore get replaced by a new universal function
f :R. — R, which is much simpler since it only depends on



one real parameter. But the function fis also not known
exactly, and we will see that it displays a very rich
structure.

In this section we report on the results in [108] where
the LDA was rigorously justified for the first time. The
proper regime is that of slowly varying densities, that is,
densities p which are very flat on sufficiently large domains
such that f(p) becomes a good local approximation. To this
end we start by defining the function f.

3.3.1 The Uniform Electron Gas

The uniform electron gas was rigorously defined in [106,
108] and it is obtained by assuming that the density is
exactly constant over a large domain which grows so as to
cover the whole space. The result is the following.

Theorem 3.6 (Uniform Electron Gas [106, 108]) Let
w(r) = |r|~lin dimension d = 3 and q=1 be the number of
spin states. Let py> 0. Let Q2 be a fixed open convex set of
unit volume |Q|=1. Let y € L'(R®) be a radial non-negative
function of compact support such that [.;x =1 and

Jz3 IV\/X|? < 0o . Then the following thermodynamic limit
exists

f(ﬂo) = lim L~ (FGC [polra * X]

jf ﬂLQ * X)) (Lo * X)) | dr’)

|r —

(3.24)

[R3><{R3

and does not depend on Q and y.

Electrons have q = 2 spin states but we have written the
result with a general g for convenience. It is expected that
the exact same result holds for the other two functionals



F;; and F, with the same limit f(py). This has not yet been
proved, except in the classical case where the kinetic
energy is dropped (see Sect. 3.5).

The number f(pg) is the energy per unit volume (with the
Hartree energy subtracted) of an infinite gas submitted to
the constraint that its density is exactly constant over 3 ,
p(r) = pg. In the literature, f(py) is often confused with the

corresponding Jellium energy. In Jellium there is no
constraint on p but one adds instead a uniform background
of density py which compensates the long range of the
Coulomb potential [104, 119]. That the two models coincide
has only been shown in the classical case [36, 107] so far,
as we will mention in Sect. 3.5 below. In the quantum case
the same result should hold, but the proof has not been
written yet.

Here are some rigorously known properties of the
function f.

Theorem 3.7 (Properties of f[72, 106, 108, 119])
The function fis locally Lipschitz: There exists a constant C
such that

F(p1) = F(po)| < C (max(pr, po) +max(py, p2)F) o1 = pal. (3.25)

for all p,, po=0. The function f satisfies the uniform
bound

1
25 3/9m\3 4 2 5 14
crr(3)g 3 p3 5 <7> p? < flp) < err(3)g 3p? — ep(1,3)q 3p3(3.26)

for all p=0, where cp(3) = (3/10)(6m%)%/3and
cn(1,3) = (3/4) (6/x)"/? are respectively the Thomas-Fermi
and Dirac constants, discussed later in Sects.3.4and3.5. It

behaves at small densities like
(3.27)



F(p) = curc(1,3)p3 + 0 (p?)

p—07F

where

1
3 (9m\3
14508 = (;) < cupa(l,3) < —1.4442

is the classical UEG energy discussed later in Sect.3.5,
and at large densities like

flp) = err(3)g 3p% — ep(1,3)g 3p3 + o (p%) . (3.28)

p—00

The statement involves several constants that will be
introduced in the next sections. It is believed that fis
smooth except at finitely many points corresponding to
phase transitions. In the case of spin-1/2 particles like
electrons (g = 2), numerical simulations in [3, 20, 24, 47,
84, 88, 146, 175] indicate that there might be one or two
such points. For a long time it was believed that the system
can be a ferromagnetic Wigner crystal, a ferromagnetic
fluid and a paramagnetic fluid. Recent results indicate that
the ferromagnetic fluid phase might not exist [3, 84],
however. More transitions could occur in the solid phase
(for instance an anti-ferromagnetic crystal). In spite of the
clear numerical evidence that there are phase transitions,
proving it remains a very challenging open problem [10].
Several approximate formulas for the function f are used in
DFT, including for instance the celebrated Perdew-Wang
(PW92) functional [144].

3.3.2 The Local Density Approximation of FGC

We now state a result from [108], where the LDA was
justified for the first time in the quantum case.



Theorem 3.8 (LDA for Fgc [108]) Let w(r) =|r|"lin

dimension d = 3 and q=1 be the number of spin states.
Then there exists a constant C = C(q) such that

Foclol 5 [ p“)p(ff v = [ f(otw)
R3xR3

r —r

(3.29)
C(l+¢)

3

[ wvampar+ 5 [ v ypmitar

~ forevery € >0 and every non-negative density
Fylp] = Flp] — Fylp] such that V,/p € L* N L*(R’) . Here fis
the function defined in Theorem3.6.

<< [ (ol plo)) ar +

It is expected that the exact same result holds for the
canonical functionals F;; and F;, with of course the

additional constraint that [;p € N .
The last gradient term ¢ |V, /p|* was chosen for

simplicity but the same result actually holds with gl 4P|
VPP instead, under the conditions that p>3, 0 <8 <1 and
2 < pl <1+ p/2.The constant C then depends on the
chosen p and 6.

In addition to the large power of ¢, which is an artifact
of the proof in [108], the form of the error term is probably
not optimal. It is reasonable to expect that the right side of
(3.29) should only involve quantities like p>/3, p%/3, |V, /p|?

and |Vpl/3|%2 or perhaps |Vp|, which have the same scaling
as the kinetic and Coulomb terms.

The inequality (3.29) holds for every density but it is
useful only when the two gradient terms are much smaller
than the first term,

[ 9B+ [93A01) e < [ (ote) ) .

R3

so that after optimizing over € one gets a small term on the
right side of (3.29). One interesting case is when the



density is given in terms of a fixed function p with f[Rg, p=1,
which is rescaled in the manner

pn(r) = p(N~r).

After optimizing over £ we obtain the following expansion
of the grand-canonical Levy-Lieb energy:

11

Foclpx] = % ﬂ p(r>_'0(r,) drdr’ + N ; f(p(r)) dr+ 0 (er) (3.30)
R3xR3

r—r/

The first term is the trivial non-local Coulomb term,
whereas the next term in the expansion is the LDA. It is an
interesting open question to determine the next order
correction, which is believed to be also local, of order N1/3,
and to involve gradients. The exact same result as (3.30) is
expected for F;; and Fi.

Remark 3.9 (LDA for the Exchange-Correlation Energy)
Theorem 3.15 below is a result similar to Theorem 3.8 for
the grand-canonical kinetic energy T alone, and implies a

corresponding bound for the difference of the two
functionals. These two bounds justify the LDA for the
(grand-canonical) exchange-correlation energy, as was
defined in Sect. 3.2.4.

In the next two sections we study separately the kinetic
energy functional and the classical interaction functional.
We discuss known upper and lower bounds and derive the
LDA for these functionals in a similar (but simpler) manner
as for the full Levy-Lieb functional Fgc. Although the

minimum of a sum is in general not the sum of the two
minima, understanding the kinetic and interaction energies
separately will give us useful information on the full
functional, as explained in Sect. 3.6 below.



3.4 Kinetic Energy and Lieb-Thirring

Inequalities

3.4.1 Three Kinetic Energy Functionals

We have introduced in (3.20) the lowest kinetic energy
Ts[p] that can be reached with Slater determinants, for a
given density p with [.; p(r)dr = N . We can define in a

similar manner the lowest kinetic energy that can be
reached with all possible wave functions

N
|

T(p] = ~ min — / VW (X)) dX.
we ) 111(3:;’&(,.3:)2]-2_:1 (R % Zy)N ! (3.31)

W), =1 ‘
pU=p

This is nothing but F}, [o] , the Levy-Lieb functional with
interaction w = 0. Recall that T and T depend on the

number of spin states q.

Since this is a non-interacting problem, one may think at
first sight that minimizers will always be Slater
determinants, that is, T[p] and Tg[p] should coincide. But

this is not true in general [116] and the best one can say
for a general p is that /p, — /P .

There are two other natural kinetic functionals
corresponding to F{[p] and p."(r) , respectively. For the
first one the minimization is extended to mixed canonical
states and for the second one to grand-canonical states. It
turns out that these two are equal:

Fi[p] = Foclp).
The reason is that the kinetic energy can be expressed in
terms of the one-particle density matrix y and that the set

of such matrices which are N-representable by a mixed
state coincides with those which are representable by a



grand-canonical state [27, 28]. By duality, this also follows
from the fact that the inequality (3.18) always holds in the
non-interacting case.

In order to explain all this in detail, we first recall that
the one-particle density matrix yy of a wavefunction W is

the self-adjoint operator acting on the one-particle space
L*(R? x 7,) with integral kernel

Yo(x,y) =N U(x, X)¥(y, X) dX.
(RixZq)N-1

This gives

Z/ IV U(X) X = Tr( A)w
(RAxZy)N 2

with the trace interpreted in the quadratic form sense.
Every density matrix of an antisymmetric W satisfies
0 < vy =(yp)" <1 and Tr (yy) = N. When we consider mixed

N-particle states we obtain the convex hull of the set of N-
representable density matrices. This convex hull is
definitely contained in the convex set

{y=9": 0<y <1, Tr(=A)y < oo, Tr(y) = N}.

But the extreme points of this set are the rank-N
orthogonal projections with finite kinetic energy. Those are
exactly the one-particle density matrices of the Slater
determinants. Hence we must have equality of the two
convex sets. By considering grand-canonical states the set
will not increase further. See Theorem 3.26 for a related
result.
This discussion leads us towards introducing the

following kinetic energy functional

(3.32)



—A
Tgelpl :i= min Tr | — | y.
0<y=y"<I 2
Tr(—A)y <
,(.)]/:,O

We call it “grand-canonical” since f[Rd p can now take any
positive value. But for [.; p € N, this is just Lieb’s canonical
energy w) = E} — E} . In this case we also have

Taclp) < Tlpl < Tslp],  when /dpeN
R

The functional T5c[p] is convex and it is the convex hull and
the weak-* semi-continuous closure of both T[p] and Tg[p],

similarly as in Theorem 3.5. Minimizers exist for these
three functionals, as in Theorem 3.2. It suffices to take w =
O in all those theorems.

Remark 3.10 (N-Representability of the One-Particle
Density Matrix) There are complicated constraints on a
one-particle density matrix y to ensure that it arises from
an N-particle wavefunction W. For instance, when N = 2
then all the eigenvalues of y must be of even multiplicity.
Another example is that no y of rank N + 1 is N-
representable. See [28, 62, 101] for these two examples
and [2, 13, 91, 154] for more advanced results when N=3.

Now we mention some known upper and lower bounds on
the kinetic energy functionals. Lower bounds naturally
involve the lowest functional Tgc[p]. Upper bound should

ideally involve Tg[p] but we will see that much more is
known on Tgc[p].

3.4.2 Lower Bounds: Hoffmann-Ostenhof and
Lieb-Thirring Inequalities



The first lower bound is the Hoffmann-Ostenhof inequality
mentioned previously in (3.4) and which holds for the
grand-canonical kinetic energy as well.

Theorem 3.11 (Hoffmann-Ostenhof Inequality [81])
For every p=0 such that f[Rg pip; = 0;; , we have

1
Taclp] > 5 /[Rd |V./p(r)] *dr. (3.33)

Using the Gagliardo-Nirenberg inequality [118]

4 4
il o [ IV > conta) [ Juwdar, 3,30

for u = ,/p , we obtain

can(d) 1+3
Taclp) > “X [ pir) i
and this is optimal for bosons. But for fermions this is not
optimal at all. The Lieb-Thirring inequality states that one
can replace the N-dependent prefactor by an N-
independent one (or, rather, by a g-dependent constant
where g is the number of spin states).

Theorem 3.12 (Lieb-Thirring [121, 125, 126]) There
exists a positive constant c;(d) > 0 such that

Teclp] = ¢ dcrr(d) /[R d p(r) i dr (3.35)

for all p=0 such that [ ¢;; = 6ij .

Note the spin dependence in g—2/9, which is compatible
with the fact that the bosonic case is recovered when g = N.
For particles like electrons we have g =2 and the constant
is N-independent.



For large fermionic systems the Lieb-Thirring inequality
is an advantageous replacement for the Gagliardo-
Nirenberg inequality, to which it reduces in the case N=1
(in particular we always have cyr(d) < cgn(d)/2 ). Since its
invention, the Lieb-Thirring inequality (3.35) has played a
central role in the mathematical understanding of large
fermionic systems. It was originally used to give a proof of
stability of matter [112, 117, 121, 125] that is much shorter
than the original proof of Dyson and Lenard [48]. Later the
Lieb-Thirring inequality was generalized to systems at
positive density [57, 58] where p is a local perturbation of a
constant, and to the dynamic case where it extends
Strichartz’s inequality [59, 60].

The right side of (3.35) is related to the kinetic energy of
the free Fermi gas. Indeed, we recall that the translation-
invariant orthogonal projector

d—+ 2 2
Py =1 (-5 <2 e iof (3.36)

has the constant density n > n,.x and the constant kinetic
energy density ¢,y (d) ¢~/ p(l)”/ ¢  where

on2d [ d \1
“F“>:<d+2>(mdw> (537

is called the Thomas-Fermi constant.
The best constant c;(d) in (3.35) is unknown but it is
definitely less than or equal to ctr(d). This is seen by using

the trial state vz = x(-/R)P,,x(-/R) and taking the limit R
— o, The famous Lieb-Thirring conjecture [159] states that

CGN(d>
d for d =1, 2,
qﬂ@zmm{%quﬂ@}: 2 (3.38)
CTF(d> for d = 3.




In other words, the conjecture states that the best constant
is obtained either for the infinite non-interacting uniform
electron gas, or for one isolated electron. This conjecture
was investigated numerically in [98]. The proof of the
conjecture (3.38) in dimension d = 3 would have a great
impact since it would mean that the Thomas-Fermi-Dirac
(TFD) energy is an exact lower bound to the many-particle
problem [114], as we will mention later in Sect. 3.6. The
Thomas-Fermi energy is the simplest functional in Density
Functional Theory and knowing that it is an exact lower
bound would simplify drastically many mathematical
results, in addition to increasing its physical significance.
The best known estimate on c¢;t(d) was recently proved

in [56] and reads

CIT <d>
CTF (d)

It improves upon the previously best known result where
1.456 was replaced by 1.814 and which was proved ind =1
in 1991 by Eden and Foias [49] and in d=2 by Dolbeault et
al. [45] in 2008. We refer to [54-56, 159] for a recent
overview of other important results on the Lieb-Thirring
inequality.

By duality, the Lieb-Thirring inequality implies a bound
on the sum of the negative eigenvalues of a one-particle
Schrodinger operator in an external potential v, denoted by
functional calculus as —Tr (— A/2 + v)_. Namely, we have

by (3.7)

ISULW)

Vd > 1, > (1.456) 1.

(3.39)



Ty (— — inf EO
Tr(—=A/2+v)- 11Vn>f0 Ey[v]

= it Azl [ o) oty

f[Rd V4 p<OO

> inf g de(d) [ p)Fidr+ [ o(r)p(r)dr
VPEH(RY) Rd Re
f[Rd V4 p<O0

d

2 d

=~ d?dq d/ v*(r>1+% dr,
(d + 2)1+?CLT(d)’Z R4

where d7 indicates that we take w= 0. Since

ESClv] < Eylv] is the Legendre transform of E"[y] , the
inequality (3.39) is actually equivalent to the Lieb-Thirring
inequality (3.35). The original proof of Lieb and Thirring
[125, 126] actually showed (3.39) and it was only much
later that Rumin [153] found a direct proof of (3.35).

The semi-classical constant (3.37) naturally occurs for
slowly varying densities in the LDA regime, as we will see.
Nam proved in [133] that one can replace the Lieb-Thirring
(unknown) constant c;t(d) by crr(d) at the expense of a

gradient correction.

Theorem 3.13 (Nam’s Lieb-Thirring Inequality with
Gradient Correction [133]) Let q, d=1. There exists a
universal constant k(d) (independent of the number of spin
states q) such that

Taclp] > q_%CTF(d)(l — 5)/ p(r)H% dr — /{?)(f; /[Rd IV/p(r)|? dr (3.40)

Rd €

forall 0<e<1 and all d=1.

This was the first step towards a proof of the validity of the
LDA for the kinetic energy, to which we will come back
soon.

Li and Yau proved in [111] a lower bound involving the
optimal Thomas-Fermi constant in a bounded domain



QcCR:

Taclpl = CTF(d>|Q’_% (/ p(r) dr)g for all \/p € Hy(Q2) (3.41)
Q

(see also [118, Thm. 12.3] and [75, Lem. 9]). The bound is
particularly useful for densities p which are (almost)
constant over a domain Q. For instance for p(r) = pylq * x(r)
with supp(y) € B; we find the exact lower bound

s Q3

Taclpola * x(r)] = err(d)(po)? = coe(d)(po)? (191 = CI08F)

Q+ B3

whereas (3.40) yields a worse error term.

3.4.3 Upper Bounds

For upper bounds one should ideally consider the larger
functional Tg[p]. In dimension d =1, March and Young

[129, Eq. (9)] gave the proof of an estimate similar to
(3.40) without the parameter ¢ in front of the gradient
correction

T 1
Tl < ¢ % [ ple)’de+ 5 / ((ﬁ)’(@\ *da (3.42)
R R
where 112/6 = cyp(1). In the same paper they also state a

result in 3D (for a constant ¢ > ctp(3)) but the proof has a

mistake [116, Sec. 5.B]. The bound (3.42) is proved by
using as trial state the orbitals

on(T) = %@exp (22;;\27% /T p(t) dt) (3.43)

—0o0

(we take g =1 for simplicity), where n € Z and the phases
are seen to make the ¢, orthonormal. Computing the

kinetic energy of this trial state, one obtains



1 <o [ papae 3 [ |(v) @)

Taking all the integers n less than or equal to N/2 in
absolute value and using the precise behavior of the series
gives the result for g=1.

The method can be generalized to higher dimensions
using a similar method, but the estimate has a bad behavior
in N. The orbitals

on(x) = @eie”(r)&)(a), = 2n7r/ / p(t, ') dt dr' (3.44)
N RA— 1

were considered in [79, 116] and these are the phases
which we already mentioned in (3.5). Using this trial state
one obtains [116] for g=1

2
Ts[p] < (Q%NQJrCN) /R dyv\fp(r)\er. (3.45)

An upper bound on Tg[p] involving only [..|V./p|* has to

have a constant diverging at least as fast as N2/9, due to the
Lieb-Thirring inequality. In [11, 176, 177] the optimal
upper bound of this form was shown:

Vry € |R3, /3 hC<I‘1,I’2>dI'2 =0, (3.46)
R

The idea of the proof is to apply a deformation of the space
in order to map p onto the constant density in a box, which
is then represented by a usual Slater determinant made of
plane waves. One would expect an upper bound on Tg[p]

involving both [, p!+2/ 2, with coefficients

independent of N as in (3.42), but this seems unknown at
present. The periodic case was studied in [12].

Recently, an upper bound similar to (3.40) was proved in
[108] for the grand-canonical functional Tc[p].




Theorem 3.14 (Upper Bound on Tgclpl [108]) Letd,
q=1. There exists a constant k'(d) such that

Tuclp] < - bere(@) (1+2) [ o) e 4 10725 [ V5P dr(3.47)

Rd €
for all € >0 and all p=0 with [.;¢ip; = 0;; .

The main difficulty in the proof of (3.47) is the constraint
that the one-particle density matrix must have the exact
density p. One can provide rather good upper bounds if we
allow the density to vary a bit. For instance, by using
coherent states [114] the density p is replaced by p *|f|2
where fis the profile used to build the coherent states
(typically a Gaussian).

The proof of (3.47) instead relies on the following trial

one-particle density matrix
> t d+2 t o\ dt
= — ) 1| -A<2——crr(d) ¢ — ) —.(3.48
= [ G) e Fen@rti) [ (555) 7649

Here the two functions /7 (t/p(r)) are interpreted as
multiplication operators, whereas the operator in the
middle is the Fourier multiplier P; introduced before in

(3.36). The non-negative function n is chosen such that

/Oon(w dt =1, /oo n(t)g < 1. (3.49)
0 0

ISUIN)
ISUIN)

t

t

The main idea is to represent the density p by using the
smooth “layer cake principle” [118, Thm. 1.13]

p(r) = /O 0077 (ﬁ) dt,

where we think of n as very concentrated around 1, and to
then take the free Fermi gas P; as in (3.36) on the support

of n(t/p), where p is very close to t. The measure dt/t in



(3.48) ensures that p, = p exactly. On the other hand the
condition H'(R?) N L’(R?) ensures that 0 < v <1 and means
that n must put slightly more weight on the right of 1 than
on the left. Computing the kinetic energy of the trial state
(3.48) and optimizing over 7, one obtains (3.47).

We have explained the construction of the trial state
(3.48) to emphasize how much easier it is to work in the
grand-canonical setting. It is an important open problem to
obtain a bound similar to (3.47) on Tg[p] or T[p]. For Tg[p]
this amounts to understanding how to build N orthogonal
orbitals with the prescribed density, and to obtain the
lowest possible energy. This problem is somewhat related
to the smooth Hobby-Rice problem. There one considers N
arbitrary L?-normalized functions E"#~>H @] = FHF[®] and
looks for the minimal kinetic energy cost to orthonormalize
them using only phases: ¢ = @’ . It was proved in [61,
97, 155] that such phases Gj always exist, but known
bounds involve ||V6,|| ;: which are not enough to deduce
anything on the H! norm of the orbitals 90} . In view of
(3.45), one would suspect that

N

min Z/[Rd ] V! (x)]?dx < C(N, d) Z/ IV |;|(%)]? dx
XLq

lejl=lesl 5 RIxZ,
() %) =01
but this seems unknown at present. In (3.43) the reference
orbitals are all equal to f!(R?) but this is probably not the
optimal choice for Tg[p] in dimension d=2.

3.4.4 Local Density Approximation for the
Kinetic Energy

From the lower bound (3.40) and the upper bound (3.47)
we obtain the following result, which is similar to Theorem



3.8 but involves only quantities that all scale the same,
namely like inverse-length squared.

Theorem 3.15 (Local Density Approximation of the
Kinetic Energy [108, 133]) Letd, gq=1. There exists a
universal constant C(d) such that

) ) \ (3.50)
<eq @ / p(r)tadr + O(d) (1 + 5_3_3) / IV./p(r)]? dr
Rd Rd

for all p=0 with [ ¢;p; = d;; and all €>0.

In the regime where

[ vval e < [ e

the optimization over ¢ gives a right side which is
negligible compared to the left side. In this regime we can
approximate the kinetic energy functional in the manner

\V/I'l c ”_\)3, /3 hXC(I’l,I'Q)dI‘Q = —1. (351)
R

The right side is called the Thomas-Fermi kinetic energy
and it is the simplest approximation to Tsc[p]. If we fix a

density p with [.; p =1 and take py(r) = p(rN~1/9), then we
find from (3.50) that
~1/d 2 142 2d:+1
Tgc[p(-N ﬂ = Ngq dCTF(d> p(I‘) ddr + O <N2d+2> .
Rd
From semi-classical analysis it is expected that for a
sufficiently regular p the next term should be equal to

ﬁwzﬂﬁMMM@Mm (3.52)



which is called the von Weizsdcker correction, see [136,
Sec. 6.7] and [128, pp. 89-90]. This is in reference to the
historical work [171] for atoms in dimension d = 3 where
however von Weizsacker chose the coefficient 1/2 instead
of 1/18.1 The value of the prefactor in (3.52) was predicted
in [83, 90, 94, 156, 170]. That the coefficient is negative in
dimension d =1 is related to the non-optimality of the
Thomas-Fermi constant in the Lieb-Thirring inequality
(3.35) and is well known in one-dimensional semi-classical
analysis [21].

Even without having a clean upper bound like (3.47), it
is reasonable to believe that

1/d 1/d
Rd

N—oo N N—o0

but this does not seem to be known at present. If the fixed
density p is replaced by a well chosen locally constant
density py converging to p, then this was proved in [71,

Thm. 4].

3.4.5 Derivation from Levy-Lieb at Large
Densities

In this section we show that our kinetic energy functionals
can be obtained from the corresponding Levy-Lieb
functionals in a proper limit of large densities. For
completeness, we consider a rather arbitrary interaction
potential w in any dimension.

Theorem 3.16 (Convergence at High Density) Let
w € LP(RY) + L>*°(RY) with p as in (3.1) and p=0 such that
Jes pio; =06 . If [es p € N we have

Fin [Ap(A-)] B _ FL[Xp(A)]
jm = =Tl im =5

= Teclp]. (3-53)



If f[de € R, and the additional classical stability
assumption (3.14) holds, we have

d .
)\h—g—o o [)\)\2[)()\ ) = Taclp). (3.54)

One can also prove the convergence of optimal states or
even write the theorem in the form of Gamma convergence.
In a similar manner, Tg[p] arises from the Hartree-Fock-
type Levy-Lieb functional where one only minimizes over
Slater determinants.

Since we have not found the proof in the literature, we
provide it here for completeness.

Proof We start with F;;. By scaling we see that

(e, 1) = —

ot
with the new interaction potential w,(r) = A72w(r/A). Our

assumptions on w imply that w is infinitesimally (— A)-form
(—A) + C. for all £ > 0. After scaling

this implies
C:
lwy| < e(—A) + =

For the two-particle operator this gives

N
DITTRMIEES 3 MICENEREL of SSNEE<)

1<j<k<N J=1 k#j J=1

and we thus obtain



/N

J
N

This yields the bound

(1 - (v -y - TR D
w d . _
< [AAf ) < (IT+e(N—1D)T[p] + N(NQAQUQ-

The limit (3.53) follows after taking first A -« and then € —
0. For an explicit potential such as Coulomb we know how
C. depends on € and one can then give a quantitative

bound.
For F; the argument is exactly the same, with the same

bound and T[p] replaced by Tgc[p]. For Fgc the above

argument does not work due to the bad behavior in N.
Instead, we rescale the stability assumption (3.14) on w
and obtain
w - C
HY' 2y (=0 — 2

j=1
which provides the lower bound
FE X p(\- C
SO > Tuclp) G [ oteyae
)\ )\ Rd

For the upper bound we consider a fixed grand-canonical
state I' = ( ['}) ;50 such that

> Tr(H)'T) < Toclp] + 1

n>=1




for some small n> 0. From the proof in Sect. 3.8, we can
assume that I has compact support: I',,=0 forn > K .

Using the previous bound (3.55) in the canonical case, we
obtain the bound

BRI < (14 et = 1) (Tuclg) +m) + EE D

The limit now follows after taking A -, £ - 0 and finally n
— 0. [

Remark 3.1 (Adiabatic Connection) For homogeneous
potentials such as Coulomb, scaling p is the same as
changing the strength of the interaction. This is the spirit
of the adiabatic connection formula, which is often used in
quantum chemistry to interpolate between the non-
interacting and interacting problems [80]. Let us for
instance discuss F}’[p] and the corresponding kinetic
energy w) = E) — E; . We introduce a coupling constant t in
front of w and look at the function ¢ — F/*[p] . It is concave
on [0, 1] (and increasing if w=0). It has left and right
derivatives everywhere, which are given by the minimal
and maximal values of the interaction energy among all the
possible minimizers I', of F{“[p] , by the Feynman-Hellmann
theorem. These two derivatives are equal, except possibly
on a countable subset of [0, 1]. We can express

Flp] — Taclpl /atFtw | dt = / < Z w(rj—rk)>Ftdt

1<j<k<N
where I'; is any minimizer for F}/"[p] . This is a formula for

the direct plus exchange-correlation energy in Kohn-Sham
theory with fractional occupations. It is sometimes useful to
consider a general path t € [0, 1]>w; in place of the simple

linear switching, see [174] and [80, Sec. 2.4].



3.5 The Classical Interaction Energy

and Lieb-Oxford Inequalities

In this section we study the Levy-Lieb functional with the
kinetic energy dropped, which then becomes a purely
classical problem.

3.5.1 A Multi-Marginal Optimal Transport
Problem

In the classical problem there is no difference between
fermions and bosons. In the canonical setting, the main
variable is a symmetric probability density P(ry,...,ry) over
(RY)™ , which in the quantum case corresponds to

[P(I’l,...,I'N)Z Z ‘W(I‘l,gl,..-,I’N,O—N)P

for pure states and to an average of such quantities for
mixed states. The sum over the spin variables occurs since
the interaction potential has been assumed to be spin-
independent. In general, p will not be absolutely
continuous with respect to the Lebesgue measure,
however. The problem is therefore better stated in the form

Fscelp] = 11’11 / Z U,‘(I'j' — 1) dP(ry, ..., TN) (3.56)

I wd N
;_)':‘ :f’) (—‘\A ) l g}' ‘-f,/\'\<_‘[\;

with the density

1 (SERKS[p 7]
mKS _ = . XC )
UXC,Q (I’) _ QV ( (57‘(1‘) v) )

The acronym SCE means Strictly Correlated Electrons [69,
160-164] since, as we will explain, the minimizing solution
P is typically supported on a set of small dimension where
the positions of the particles are highly dependent on each



other. In general p can be a singular measure. In the worst
case p is the sum of N Dirac deltas, in which case P has to
be the symmetrized tensor product of these N deltas so
that the locations of the particles are then completely fixed.
For simplicity we will always assume that p € L!(R?) .
Nevertheless, the minimizing P need not be a function.
There is a grand-canonical version of Fg-p which is

stated in the form

Fescelpl = inf > f > wlry =) dB (...,
P=(En)n>0 >2 (Rd)ﬂlg‘j(\‘.f(gﬂ (3.57)

. I
Yas0 Ba(RM=1
Zué 1 PBy =P

This was introduced in [106] and further studied in [42,
107, 108]. For the problem to be well posed for all
densities, w needs to satisfy the stability condition (3.14).

The two classical problems (3.56) and (3.57) belong to
the class of multi-marginal optimal transport problems [33,
35,41, 137, 162]. We only mention here a few striking
results. The existence of a minimizing p for (3.56) follows
by compactness arguments similar to Theorem 3.2, for a
large class of interaction potentials including the Coulomb
potential. The argument is the same in the grand-canonical
case (3.57). It was proved in [30] that the infimum can be
restricted to Monge states, which are the most correlated
N-particle probability densities with one-particle density p
and take the form

P(ry,...,ry) = Sym /d Oy(r1)07y(T2) -+ Opn-1y(TN) % dy, (3.58)
R

where 7. Rpd _y Rd is a transport map such that T#p =p and

TN =1d and Sym denotes symmetrization. The formula
means that the position y = r; of the first particle

completely determines the positions ry = Try, ..., ry=TV"1r,



of the other N — 1 particles through the transport map T
(and the picture is symmetrized with respect to the indices
of the particles at the end). When moving the first particle
(at the appropriate speed so as to build the desired density
p) the other particles follow in a ‘strictly correlated’ way.
Even if the infimum in (3.56) is the same when
restricted to Monge states, there might exist no Monge
minimizer [32, 162]. Only when N =2, or in one dimension
for all N=2 [29] one can be sure that Monge minimizers
exist. In fact, in dimension d =1 and for a positive
interaction w=0, the problem admits a minimizer p which
does not depend on w at all! It is the Monge state with
increasing transport map g(r, ry2) = wo(r)r}, + x(r). where ry
=—0<TI <I'y<-<Ty_; <TI'y=+» are chosen such that
J.7" p(r)dr =1 [29]. The corresponding N-particle
probability can also be expressed in the manner

1
IP<T17 o 7TN) = Sym/ 5r1(5) SURIRNY 57"N(5) ds, (3.59)
0

where r;(s) : [0, 1] - [rx_q, 1] is the inverse of the
increasing function 7+ s(r) = [ p(t)dt . This is
displayed in Fig. 3.2. For instance, for the uniform density
p(r)=1(0 <r < N) we have simply T(y) =y. The N points
are placed on the lattice (y + Z) N[0, N) and their position is
averaged over s € [0, 11]:

1
|P<7“1, ceey ?”N) = Sym/ (53<7‘1)51+5<T2> s 5N—1+S(TN) ds. (360)
0

This is called a floating Wigner crystal in Physics and
Chemistry [9, 47, 107, 130], since the particles are exactly
located on a lattice, whose position is varied. We will come
back to this special state later in Sect. 3.5.4.



p(r) \

ro(s) ry(s)

Fig. 3.2 Form (3.59) of the optimal Monge-type probability P in one
dimension. The positions of all the particles are fixed by the position of the first
particle and they are moved to the right at a proper speed so as to reproduce
the desired density p

A 4

In [22] some interesting properties of the exact (Monge
or not Monge) minimizer P of (3.56) were established. This
includes the fact that the N particles have a positive
distance to each other on the support of P, for a repulsive
interaction such as Coulomb. The dual formulation is
similar to (3.11) and takes the form

Fcnle] = . {= [ owpmarf. o
veCY(R d :

N
21k N W(rj—Tg)+> 55 v(r;) =0

One important feature of the SCE problem is that there
exists an optimal potential vgcg solving the supremum in
(3.61), under rather weak assumptions on the interaction
potential w. The optimal vgcg is called a Kantorovich
potential. This is in stark contrast to the quantum case
(3.11), where unique continuation drastically reduces the
set of densities p for which the supremum is attained (see
Sect. 3.7 below). Under the sole assumption that w is radial
decreasing, diverges at the origin and is C! outside of the



origin (like for the Coulomb potential w(r) =|r|-! in
dimension d = 3), it was proved in [22] that there exists an
optimal Kantorovich potential vgcg which is bounded and

Lipschitz. An optimal N-particle probability p must then be
supported on the set

N
argmin Z w(r; —ry) + Z UscE(T;)
=1

1<j<k<N

In other words, the N particles should minimize the
associated N-particle classical problem with the external
potential vgcg. All densities ¢ — F{*[p] are v-representable

in the classical case.

3.5.2 Convergence of the Levy-Lieb Functional
at Low Density

We have seen above in Theorem 3.16 that the kinetic
energy functional becomes dominant at large densities.
Similarly, the interaction becomes dominant at low
densities, provided that w has the right scaling at large
distances. To simplify our exposition, from now on we
restrict our discussion to power-law (Riesz) potentials

1
e

w(r) 0 < s <min(2,d).

The main result is the following.

Theorem 3.17 (Convergence at Low Density) Let
w(r) = |r|~Swith 0 < s < min(2,d) . Let p=0 such that
f[Rg gO;kgO] = 52']' . If f[R?’p € N we have
Fin[ Mo\ Fi, [Mp(\-
m b X0 )] = lim LA = Fscelp)- (3.62)

A—0 Ata A0 \TtE

If [.ap € R. we have




Foo[Mp(\)] _ Fasenldl (3.63)

lim

A—0 ALta

Note that the stability condition (3.13) is always satisfied
for the positive potential w(r) = |r|~%, hence the grand-
canonical energies are well defined.

The proof is much more complicated than Theorem 3.16,
since an optimizer P for Fgcglp] or Fgscelp] will never have

a finite kinetic energy, even under the assumption that
Jes @i = 6;; . The limit for Fy; was shown for [; p =1 with

spin first by Cotar et al. in [33] and later extended to
f[Rg p = 1 by Bindini and de Pascale in [8]. The limit for Fi[p]

and all f[Rg p € N was solved in [103] whereas the case of
F;; was finally treated in [34]. The proof for Fgc follows

along the lines of [103]. The next order in A was predicted
in [70] and proved in some cases in [31].

To summarize, at large densities the Levy-Lieb
functional behaves like the kinetic energy of non-
interacting quantum particles, whereas at low density the
particles tend to be very correlated and solve the
corresponding classical problem.

3.5.3 Lieb-Oxford Inequality

We discuss here upper and lower bounds on the interaction
energy, with an emphasis on lower bounds (Lieb-Oxford
inequality).

The easiest upper bound is obtained by taking the
decorrelated trial state fj (rs,ry;w), thatis, independent
particles distributed according to the density p. This gives
the bound

! _2 v jj w(r —r’)p(r)p(r’) dr dr'. (3.64)

R2d

Fscglp] <



The right side is, up to the constant 1 — 1/N, the classical
energy of the density distribution p and it is a non-local
term. The factor 1/N can be dropped for repulsive
potentials.

It is relatively easy to prove a similar lower bound,
under the additional assumption that w is continuous and
has a non-negative Fourier transform, & = 0 ). In this case
we have

f[ w(r — ') dn(r)dn(r') = (2n)f’/2/ D) |Tk)|> dk =0
R2d Bd

for every signed measure n. Taking n = Z;V: o, — f and
expanding we find the pointwise inequality on (RY)"

, w(0)N
Z ;—Ty) Zw*frj jfwr—r (r')drdr -

1<j<k<N |R2d

This is valid for all f and the last error term comes from the
case j = k. Integrating against any state P with density p
and taking f= p, we obtain the following lower bound:

Fscelp] = %f[ wr—r)pr)p@)drdr — % » p(rydr. whenw >0.(3.65)
For a long-range potential the first term grows faster than
N for most densities, hence the last error term is often
much lower than the classical energy.

For Coulomb or other power-law potentials, the previous
argument does not work since w(0) = +«. One solution is to
regularize the potential at the origin but this also modifies
the classical interaction energy. One can estimate the error
under appropriate regularity assumptions on p. But Lieb
[113] and then Lieb-Oxford [120] have proved a universal
bound which has the right scaling behavior and does not
require the potential to be smeared out. We state it for
power-law potentials but the inequality is slightly more
general.



Theorem 3.18 (Lieb-Oxford Inequality [4, 72, 113,

120, 121, 124, 127]) Assume that w(r) =|r|~°with O<s
<d in dimension d=1. Then there exists a universal
constant ¢y (s, d) > 0 such that

Fascelp] 2 ff dl“ dr’ — cro(s,d) /d p(r)tadr, (3.66)
R

[R2d

forevery p e (L' N L' a)(RYR,) .

From now on we always call ¢; (s, d) the smallest constant

for which the inequality (3.66) is valid for all p. Note that
c10(s, d) works for every particle number f[Rd p . If one adds
the constraint that [..p = A then the optimal constant
depends on A but it is non-decreasing and has the limit
C1o(s, d) when A —oo.

Although only the case s=1 and d = 3 was considered in
the original papers [113, 120], the proof fors=1 and d =2
given in [4, 72, 124] extends to any 0 <s <d in any
dimension, see [127, Lemma 16]. This proof involves the
Hardy-Littlewood estimate for the maximal function M,

[73],
HMPH L1+S/d([Rd) < CHL<87 d) ||pH L1+s/d([Rd)

and, consequently, the best known estimate on c; (s, d)
involves the unknown constant cyy (s, d). A Lieb-Oxford

bound was shown for w(r) = — in two dimensions in
[110, Prop. 3.8]. In dimension d = 1, optimal Lieb-Oxford
bounds are studied in [40].

In the 3D Coulomb case, d =3 and s=1, the best
estimate known so far on the optimal Lieb-Oxford constant
is

1.4442 < 1 po(1, 3) < 1.5765. (3.67)




The upper constant was equal to 8.52in [113], to 1.68 in
[120] and later improved to 1.64 in [89]. The better value
1.58 was obtained very recently in [109]. The lower bound
has been claimed in [100, 138] and only shown recently in
[36, 108]. It will be discussed in the next section. It was
conjectured in [100, 135, 148] that the best Lieb-Oxford
constant is indeed about 1.44. It remains an important
challenge to find the optimal constant in (3.66). Several of
the most prominent functionals used in Density Functional
Theory make use of the value of the Lieb-Oxford constant
for calibration [100, 138, 139, 143, 166-168].

A different Lieb-Oxford inequality was recently proved in
the 3D Coulomb case in [109]. It reads

! L ¢ pe(r)pp(r’) ,
ff ( Z r; — I'k) dP(ry,...,ry) — 5 ). wdrdr

RN \ 1<j<k<N (3.68)
> —1.2490/ pp(r)3 dr,

R3
under the additional assumption that p has negative
correlations, which means
N(N —1) fj dP(r,r’ r3,...,ry) < pp(r) pp(r’), for a.e. r,r’ € R’. (3.69)

R3N—6

This condition is satisfied when P is the square of a Slater
determinant (3.19), in which case the left side of (3.68) is
called the exchange energy and the best constant is
believed to be 1.09 [143]. But many other states satisfy the
condition (3.69). In statistical mechanics, this is typical of
gas phases [152] at high temperature. Since 1.25<1.44 <
c1o(1, 3), this means that such states cannot provide the

optimal Lieb-Oxford constant. In fact, we explain below
how to obtain the lower bound 1.44 from a solid (periodic)
phase.

The indirect energy is the equivalent of the exchange-
correlation energy defined in the quantum case in Sect.



3.2.4:

FEwalp] = Fscelp] f w(r —1r)p(r)p(r’) dr dr'.

[R2d

For power-law interactions it is always negative and
bounded from below by a constant times [, p'*?/¢ .

3.5.4 Constant Densities and the Classical
Uniform Electron Gas
We discuss here the special case of densities which are
constant over a finite set and the limit when this set fills
the whole space. This is the classical equivalent of the
Uniform Electron Gas discussed in the quantum case in
Sect. 3.3.1 above. This special case will give us some lower
bounds on the Lieb-Oxford constant c; (s, d), including the
bound 1.44 in dimension d = 3 stated in (3.67).

The classical equivalent of Theorem 3.6 was proved in
[106].

Theorem 3.19 (The Classical Uniform Electron Gas
Energy [106]) Assume that w(r) =|r|~Swith 0 <s<d in
dimension d=1. Let py> 0. Let Q) be a fixed open convex set
of unit volume |Q|= 1. Then there exists a universal
constant cygpg(s, d) > 0 such that

dr dr’
. _d _Fo
dim L7 | Fascslpol ol ff T
dI‘ dr/ (3.70)
L —d _ o
= Lh_glo L Fscrlpol o] fI r— [
LeN/pg

= CUE(;(S d) 1+d-

In particular we obtain cio(s,d) > —cyga(s,d) .



The constant cygg(1, 3) is the one which has appeared

before in Theorem 3.7. At low density, the quantum UEG
behaves like a classical gas by an equivalent of Theorem
3.17 for infinite systems [106].

Note that the classical canonical and grand-canonical
functionals are known to give the same thermodynamic
limit. In the quantum case this is not yet known. We have
stated the theorem for a fixed domain Q which is scaled but
the same result holds for a general sequence Q; that has a
regular boundary in the sense of Fisher [106].

Except in dimensions d €{1, 8, 24} and
max(0,d — 2) < s < d , some special cases to which we will
come back, the constant cygg(s, d) is unknown. In order to
get upper bounds on cygg(s, d), we need to construct trial
states. The idea is to use a floating crystal similar to (3.60),
that is, to place the particles on a lattice and then average
over translations to obtain a constant density.

Let ¢ - R? be a lattice of normalized unit cell Q. We
then only retain the points of the lattice intersecting the

large cube C; = (—-L/2, L/ 2)? and average over the

translations of this finite lattice over Q. This way we obtain
a trial state which is constant over the union of the
corresponding translates of Q. In general this is only an
approximation of C; but since the limit (3.70) is insensitive

to the type of domains, this will not create any difficulty.
The trial state is, therefore, given by

Py = Sym/ Q) ey dy. (3.71)
Qrenoy

Then P« 1 has the constant density

ppy, = lo; over the set Q= U Q+ L. (3.72)
e N0y,



The state is as displayed in Fig. 3.3. Note that the energy of
the probability measure P« ; is simply the interaction of
the lattice points, since the interaction potential is
translation-invariant:

1 1
/ Z —I‘k|3d[|:>$’L:§ Z m

1<]<k:<N

---------------------------------------

Fig. 3.3 A two-dimensional picture of the Jellium model. The dots represent
the point particles, which are placed on a finite subset of a lattice Xo; . The
colored set is the union of the corresponding unit cells and it represents a



uniform background charge distribution of opposite charge. The indirect
energy of the floating crystal is obtained after integrating the position of the
lattice over the unit cell Q as in (3.79). When the lattice is not centered, this
results in an excess of point charges on one side and an excess of background
charge on the other side, indicated by the two rectangles. These large
boundary charge fluctuations are responsible for the shift in Theorem 3.20 at s
=d-2

It is instructive to see first what happens in the short
range case s >d. Then the energy per unit volume
converges to

1 1 1 1
li = — =: d.
155 2] 2 C— 0] 2 2 o2 s> d g ga
(A0 re. 2\ 0}
eZLNCy,

The function on the right side is called the Epstein Zeta
function [10, 17, 51] and it is the natural generalization to
R? of the usual Riemann Zeta function, which it coincides
with when d =1 (hence & — 7). It turns out that the limit
in the long range case can be expressed with the (analytic
extension) of (¢ , for potentials decaying to zero at infinity
faster than Coulomb. Something special is happening at s =
d-2.

Theorem 3.20 (Indirect Energy of the Floating Wigner
Crystal [14-16, 96, 104, 105]) Letd—-2<s<d in
dimension d=3 and 0 <s<d in dimensionsd =1, 2. Let

¥ c RY be a lattice with a normalized unit cell Q having no
dipole and no quadrupole moment:

Ny
/rdr:O, /rirjdr:—j/ r|?dr.
Q Q d Jo

Then the indirect energy per unit volume of the floating
Wigner crystal (3.71) converges to
(3.74)



. e dr dr’
LILHQOIQL‘l 2 Z 0 — f'|3 ff r —1/|*

EgﬂCL
Co(s) for s > d — 2,

- N i
Co(d — |r[ dr for s =d—2,

where E}j[v] is the analytzc continuation to v = \/p of the
Epstein Zeta function on the right of (3.73), initially defined
for Ep] <0 .

A similar result holds for -1 <s<0ind=1ands=0ind
=2 [96, 104].

The first divergent term in the lattice sum is the
classical energy, which behaves like N2-5/4 and depends on
the shape of the chosen large domain C;:

dr dr’ L?d S ee dredr
2 ﬂ |ri: ﬂ |r1;: (3.75)

This is because the lattice sum is a Riemann sum for the
corresponding integral at that scale. Replacing C; by
another set changes this macroscopic term. Note that the
analytic extension of (3.75) is a o(L9) for s > d. This term
probably exists in the short range case too, but it is lower
order and it was not seen in the limit (3.73).

The theorem provides the next order term in the long
range case d —2 <s <d. This is an extensive quantity (of
the order of the volume) which has a limit independent of
the shape C;. This limit is simply the analytic extension of
the short range energy. This is compatible with our picture

that the classical energy (3.75) is the leading term for s <d
but once it is removed, we are essentially back to (3.73).




At s =d — 2 the picture changes. Another term of the

order L2W@-1)-s which was lower order for all s >d — 2,
becomes relevant for the energy per unit volume at s=d —
2 and dominates for s <d — 2. As we will explain later, this
is a kind of surface term.

In dimension d =1 we know from [29] that the floating
crystal is optimal and provides the minimal classical energy
at constant density. Therefore we deduce from Theorem
3.20 that

cuec(s, 1) = ((s), for all 0 < s < 1. (3.76)

In particular, —cio(s,1) < ((s) .

In higher dimensions, the floating crystal is not known
to be an exact minimum, and furthermore there are several
possible crystals. Therefore we only obtain the upper bound

—cLo(s,d) < cupa(s, d) < miiﬂﬂ Cz(s), for max(0,d —2) < s <d.(3.77)

The minimum is over all lattices of normalized unit cell. It
is expected that the last inequality should be an equality for
some values of the dimension d including d =1, 2, 3. So far
this is only known in dimensions d =8 and d =24 [25, 145].
In dimension d = 2 the minimum on the right of (3.77) is
known to be achieved by the triangular lattice [23, 43, 50,
131, 147] whereas in dimension d = 3, numerics indicates
that it is achieved by the Body-Centered Cubic lattice
(BCC) for 0 <s<3/2 and the Face-Centered Cubic lattice
(FCC) for 3/2 < s < 3[10,17, 68, 157].

The surprising jump of the energy per unit volume
(3.74) in the Coulomb case s =d — 2 was first discovered in
1979 by Hall [76] based on an unpublished remark by
Plaskett in 1959. The conendrum raised by Hall was
discussed in several papers in the 80s, see for instance [1,
39, 77, 78, 86, 134]. It was rediscovered in 1988 by
Borwein et al. [15] and was recently revived and
reformulated in [105, App. B]. It has indeed always been



assumed in the Physics and Chemistry literature that the
floating crystal is a good trial state for the UEG, and that
cygg(l, 3) should even be equal to the BCC lattice energy,
whose value is (gcc(1) =—1.4442 (see [26] and [68, p. 43]).
This value is used in most DFT functionals based on the
Uniform Electron Gas. But the Coulomb potential is exactly
the one for which the floating crystal behaves badly, by
Theorem 3.20.

Note that the jump exists and is unavoidable in 1D,
where the floating crystal is known to be optimal, but it
happens at the negative value s = —1. Indeed, for w(r) = —|r
we have the expansion similar to Theorem 3.20

L3(p L
Fsce |polpr] = — // |z — y|dedy + (go) + 0O(1)(3.78)

with 1/6 > —E(—l) =1/12.

In order to better understand what is going on, it is
useful to reinterpret the result in terms of the Jellium
model [104, 119]. In this model there is no constraint on
the electronic density but the particles interact with a
compensating uniform background of opposite charge. At
density one, the corresponding energy is defined by

drd
gJel(Q,I‘l,...,I‘N>: Z —I'k| Z/|I‘ —I"| QIJ |rI;II"’|

1<j<k<N

where Q is any measurable set of volume | Q| =N
representing the uniform background. A short calculation
shows that the indirect energy of the floating crystal can be
written in the form

dr dr’
2 Z T - ) H e, (O£ +9) .

E,,%FWCL



In other words, it is the average of Jellium energies where
the lattice points are moved over the fixed background Q;.

In this interpretation it becomes clear why the averaging
over y induces the shift in (3.74): moving the particles away
from the center of the unit cells is not at all energetically
favorable. When the particles are moved in one direction
this creates a large excess of negative charges on one side
and a corresponding excess of background charge on the
opposite side (Fig. 3.3). These two opposite boundary
charges have an interaction energy proportional to
(L9-12/15 = 2(d-1)=s which is exactly of the order of the
volume in the Coulomb case s =d — 2 and grows faster for s
<d — 2. On the other hand, when the particles are placed
exactly at the center of the unit cells, one recovers the

analytic extension of the short range energy for all s >d —
4.

Theorem 3.21 (Jellium Energy of the Clamped Wigner
Crystal [10, 14-16, 96, 104, 105, 119]) Assume that
d=1. Let ¥ - R? be a lattice satisfying the same
assumptions as in Theorem3.20. Then the Jellium energy
per unit volume of the Wigner crystal clamped at the center
of the unit cells converges to

Jim ] = Co(s) (3.80)

for all max(0,d —2) < s<d .

The floating crystal is really not a good trial state for the
UEG. The conundrum raised in Theorem 3.20 was recently
resolved in [36, 107]. Cotar and Petrache managed to
prove in [36] that the (unknown) UEG energy cygg(s, d) is

always continuous for 0 < s <d and that it is equal to the
(also unknown) Jellium energy for d — 2 < s < d . The proof
of continuity in s is very delicate and requires the use of



advanced analytical techniques due to Fefferman and
collaborators [52, 74, 85]. A short time later, the same
result was obtained in [107] with a different and much
simpler argument. Here we only explain this argument for
the special case of the floating crystal, that is, we show how
to modify the trial state (3.71) in order to cancel the shift
appearing in (3.74).

The main idea of [107] is to immerse the crystal in a thin
layer of fluid. In other words, the floating crystal is melted
close to the boundary in order to reduce the large charge
fluctuations. The fluid gets displaced with the crystal when
the latter is averaged over translations. Think of a block of
ice completely filling a container. In order to move the ice it
is necessary to melt it close to the container walls.

To describe this procedure, let us denote by (', a
slightly larger cubic container such that Q;, +Q c C7 ,
where we recall that Q; is the union of the unit cells Q + /

with / € N C; . We can take C) = C}., , where A is any

fixed distance larger than the diameter of Q. We assume
that the volume of the fluid |C] \ €2z| = M is an integer. It
satisfies M/ < CL% ! « L% . The new trial state has the N =|
Q); | particles on the floating crystal, translated by y € Q as
before in (3.71), together with M other particles forming an
uncorrelated fluid in ®[p,| = @,[p|. , the set remaining after
we have subtracted the union of all the cells centered at
the particle positions (Fig. 3.4):

B ﬂC” Q QM
Per=sm [ @ duyo (<) av @ey
Q

Note that the state of the fluid is correlated with the
position y of the crystal.



Fig. 3.4 A two-dimensional picture of the modified floating crystal (3.81) from
[107]. The dots represent the point particles which are at the centers of
hexagons of volume one. As the whole crystal block is translated by y, the
incompressible fluid gets displaced to fill the remaining space ®[p,| = ®,[p]. .
The resulting density is only constant well inside the container

Theorem 3.22 (Indirect Energy of the Modified
Floating Crystal [107]) Let max(0,d —2) < s <d in
dimension d=1 and & — R? a lattice satisfying the same
assumptions as in Theorem3.20. Then the indirect energy
per unit volume of the modified floating Wigner crystal
(3.81) converges to



3.82
lim |C’L\1</ Z d[P.ff,L ( :
1<3<k<N Ti— rk'
'O[P.,z L p[P.,z L<r> /
2fj PR drdr’ | = (#(s).
R2d
In particular, we obtain

—cro(s,d) < cuea(s,d) < Co(s), for all max(0,d —4) < s < d.

For the BCC lattice in dimension d = 3, one finds the
claimed lower bound

cLo(1,3) 2 —(poc(l) ~ 1.4442.
It is reasonable to conjecture that

evpa(s,d) = moiiﬂn Co(s)

ford=1, 2, 3 and all 0 <s <d, which amounts to saying
that the uniform electron gas is always crystallized at zero
temperature [10, 104]. The modified trial state (3.81)
suggests that the system can only be a solid in the bulk. In
a neighborhood of the boundary, it is probably a fluid
because the particles have to be able to move sufficiently
far away around the crystal to compensate the large charge
fluctuations.

In this section we have explained some major difficulties
encountered when trying to construct good trial states for
the Uniform Electron Gas. Those are entirely due to the
boundary, namely to the fact that we work with a finite
piece of material in the physical space R? . If we set up the
model on the torus, as is often done in practical
calculations, these difficulties disappear [104, Sec. IV.C].

It is worth mentioning an estimate due to Lieb and
Narnhofer [119] in the Coulomb case s=1 in dimension d
= 3 which states that

(3.83)



1
dedr’ 3 (97?3
Fycg[lo] > 7 ff r—r| 5 (7) 2]

for any open set Q of integer volume. The constant (3/5)
(91/2)1/3 = 1.4508 is surprisingly close to the expected
optimal value — (gcc(1) and it implies in any case that

—1.4508 < cypa(l, 3) < —1.4442.

This is the bound that appeared in Theorem 3.7. For
negatively-correlated states as in (3.69), the constant can
be replaced by (3/2)(/6)1/3=1.2090 [109].

In dimension d = 3 for s =1 it was conjectured in [135,
148] that the classical Uniform Electron Gas gives the
optimal Lieb-Oxford constant, i.e., ¢c;o(1, 3) = —cygg(l, 3).

Remark 3.23 (Determinantal Processes and the Dirac
Constant) Let p= polc, with a. ~ a? = 0.28 . Instead of the
floating crystal (3.71) and its modified version (3.81), one
can consider the square of a Slater determinant as a trial
state:

1 2Ty
|P<I‘1, c. ,I‘N> = WL_Nﬂdet <eZTkZ j]lCL(rj)> ’27

where kg, ..., Ky are N distinct points in 7¢ (our trial state
contains no spin). We find

Fscrlpole,| < 2 jwr—r ) dr dr’

5 —r')|L™ Z TR 2 ey
> jf w(r — 1)
(Cr)? J=1

As for the free Fermi gas we choose all the points k; in a
given ball centered at the origin. For w(r) = |r|~° the second



term behaves like Ldp(1)+5/ ch( s,d) where the Dirac constant
[44]

D B R PR
cp(s,d) = 202m) Tdr

is the exchange energy per unit volume of a free Fermi gas.
Here the Fermi radius is &y = /2(d + 2)crp(d)/d . This
proves that

—cLo(s,d) < cura(s,d) < —cp(s,d)

but this bound is worse than the floating crystal. The
particles are not correlated enough. In dimension d = 3
with s =1 one finds EESHWIPQ’“ _ E§SH’N + EreMP2 - Recall

that for an arbitrary determinantal point process, we have
the better Lieb-Oxford inequality (3.68) from [109].

3.5.5 Local Density Approximation for the
Classical Interaction Energy

We have discussed in the previous section the case of
exactly constant densities and their limit of infinite volume.
We now consider the case of slowly varying densities,
which are assumed to be essentially constant over large
sets.

First, we mention that the Lieb-Narnhofer bound (3.83)
from [119] was generalized to arbitrary densities, in the
form of lower bounds involving gradient-type corrections
[7, 105]. For instance, the bound

Lpepopl) (3 <9w>% ) / s
Fose [p] > — - dr dr’ — -\ = +¢€ p(I‘>3 dr

0.001206
-

[Vp(r)| dr
R3

was shown to hold in [105] for any € > 0.



The following result gives a quantitative estimate on the
grand-canonical classical energy for slowly varying
densities.

Theorem 3.24 (Local Density Approximation of the

Classical Coulomb Energy [108]) Consider the case
w(r) = |r|~1lin dimension d = 3. There exists a constant C

such that

1 ! 4
Fesce(p) — 5 fj Mdr dr’ — CUEG<173>/ p(r)? dr
2gips 1T RS (3.85)

<< [ (o) + o) ar 5 [ (958w ar

for every € > 0 and every non-negative density
p € L'(R?*) N L*3(R3) such that \] L*(R? x Z,) .

The gradient term can be replaced by ¢ [ ; |[V/(r)|? dr for
any p> 3 and 0 <60 <1 such that 6p=4/3, with
b=max{2p—1,(1+30)p—4} .

If we fix a density p with [; p = 1 and take pp(r) =
p(rN-1/3), then we find that

N3 r)p(r’
Fascu[p(-N71%)] = > ff —p|(r )_p(r/‘) dr dr’
R3xR3 (3.86)
tevpa(1,3)N [ pr)idr+0O (Na) .
R3
Compare this expansion with the quantum case (3.30).
It is an open problem to prove an estimate similar to
(3.85) for the canonical SCE functional Fgcg. However, a
non-quantitative convergence similar to (3.86) is known

even for w(r) =|r|~° in all dimensions d >s > 0:
(3.87)



. _l/d =
Fscp|p(-N ff |r /’ dr dr’
RdxRd
+epea(s,d)N [ p(r)*adr + o(N).
R3
In the Coulomb case ford =3, (3.87) was proved in [106]

whereas general power-law potentials were covered in
[37].

3.6 Upper and Lower Bounds on the
Levy-Lieb Functionals

In the previous sections we have studied the kinetic and
interaction energies separately and reviewed several
known upper and lower bounds. Since the minimum of a
sum is always greater than or equal to the sum of the
minima, we easily obtain lower bounds on the full Levy-
Lieb functional. For instance, putting together the Lieb-
Thirring and Lieb-Oxford inequalities we find

-2 1+
Faclp] = curld)g d/[Rd adr + 2 ff drdr
_CLO<37d>/ p(r) '+ dr,
R3

for the interaction w(r) = |r|~% in dimension d >s > 0. The
right side takes the same form as the Thomas-Fermi-Dirac
functional, except for the values of the two constants in
front of the terms p!*2/9 and p!*s/9. One would obtain the
right constant in front of the term p!+2/d in dimension d=3
if the Lieb-Thirring conjecture mentioned in Sect. 3.4.2 had
been proved. We refer to [114] for a review of results on
Thomas-Fermi-type functionals. From Nam’s bound (3.40)
one can replace the Lieb-Thirring constant by (1 — €)crr(d)

at the expense of a (negative) gradient correction.



Upper bounds are more complicated because a trial
state that works for T[p] could be very bad for the classical
energy and conversely. We have seen in Sect. 3.4 that the
set of one-particle density matrices that are N-
representable by a mixed states is exactly given by the
operators y = p* such that 0 <~ < 1 and Tr (y) =N. This is
because any such operator is the convex combination of
rank-N projections which correspond to Slater
determinants. But for estimating the interaction energy we
need some more information on the two-particle density.

An explicit convex combination which provided a bound
on the two-particle density matrix was derived in [115]. The
idea is the following. Assume for simplicity that
v = Zfil n;|u;)(u;] has finite rank K. By Horn’s lemma [115]

there exists a set of N orthonormal vectors V1, ..., VN in gV
such that Zé\le [VF|2 = n, for all i. Define then the new

orbitals f} = Z;il e“’ﬂ/j"”’uj where 0 = (04, ..., Oy) € (0, 2m)K
and the associated trial mixed state

1 2 2T
F:(27r)K/0 del---/o A [fy Ao NSO fa Ao A

A computation shows that its one-particle density matrix is
exactly y, whereas its two-particle density matrix is

N —
> ViV

1=1

' = o (y® 7)ol — Z 2luj A ug){u; Augl, (3.88)

1<y<k<K

where o7 is the orthogonal projection onto the anti-
symmetric two-particle subspace

[*(R"x 7,,C) A L*(R? x Z,,C) . The first operator has the
integral kernel

A (v ® ) (X1, X2;¥1,¥2) = V(X1, ¥1)7(X2, ¥2) — V(X1, X2)V(¥1,¥2)- (3.89)

The operator /(v ® 7)</ is exactly the two-particle density
matrix of the unique quasi-free state over the Fock space



that has the one-particle density y [6]. Integrating against
the potential w, the first term in (3.89) gives the classical
energy (Hartree term) whereas the second gives the
exchange term, which is non-positive for w=0.

Since the last term in (3.88) is a non-positive operator,
the following was obtained in [115] after using the density
of finite rank operators.

Lemma 3.25 (Mixed Canonical States and Quasi-Free
States [115]) Let 0 <~y =~* <1 be aone-particle density
matrix such that Tr (y) = N € N . Then there exists a mixed
state I" over the fermionic N-particle space /\iV LA (R x Z,,C)
such that its one-particle density matrix is y and its two-
particle density matrix I'®satisfies

Mo <o (yey)o (3.90)

in the operator sense.

Using the lemma for the trial state (3.48) employed in the
proof of Theorem 3.14 and neglecting the exchange term,
the following was derived in [108].

Theorem 3.26 (Upper Bound on F;[p] [108]) For
w(r) = |r|~%in dimension d > s > 0, we have
oLt
Rl <erd1+) 8 [ pyiar s k@ [ 9 R dr
R R
1 p(r)p(r’) , (3.91)
+2 ff =] dr dr

R4 x R4

ISYIN]

for any € > 0.

This time, the right side of (3.91) involves an energy
functional that looks like the Thomas-Fermi-von Weizacker



energy [114]. It is an open problem to derive a similar
upper bound for Fj;.

3.7 The Hohenberg-Kohn Theorem

In this chapter we have mainly discussed the convex
formulation of Density Functional Theory [80, 116] based
on the universal functionals of Levy and Lieb. Another
important result is the Hohenberg-Kohn theorem [82]
which, in spite of its rather abstract character, is often
cited as the main justification for the use of the density to
replace the N-particle wavefunction. As we will explain, the
necessary assumptions for the validity of this theorem are
not yet fully understood mathematically. In fact, this result
relies on the unique continuation principle which is not
completely settled for N-particle Hamiltonians. Before
stating the Hohenberg-Kohn theorem, we therefore start by
discussing unique continuation in detail.

For simplicity we assume throughout the whole section
that there is no spin:

q=1.

Adding q does not change anything in the following results
but it makes the notation a bit heavier.

3.7.1 Many-Body Unique Continuation

We refer for instance to [95] for a discussion on the
importance of the unique continuation for the Hohenberg-
Kohn theorem. Because unique continuation is a purely
local property we allow here external potentials v whose
positive part v, = max(v,0) is only locally integrable. For
simplicity, we assume that its negative part v_ = max(—v,0)
and the interaction potential w are infinitesimally (— A)-
form-bounded, as was done in the body of the chapter.



Definition 3.27 (Many-Body Unique Continuation)
Let

vy € Li(RLR),  vo,we LP(RY,R) + L¥(RY)

with v, >0 and p satisfying (3.1). We say that the potentials
v=v, —Vv_ and w satisfy the many-body unique continuation

principle if, for every integer N>1, (the Friedrichs
realization of) H," satisfies the unique continuation
principle in its form domain: if we have a. < a> = \? for
some \ € Rand V € Q(Hy") with { W =0}/> 0, then ¥ =0.

The equation H,"¥ = 0 is understood in Q(H")" , that is,

1
— Vo(X)* - VI (X)dX + / Wy (X)P(X) U (X)dX =0
2 JRdN RAN

for every {vi, }i—1...n, or, equivalently, in the sense of
distributions. Recall that the full N-body potential is
defined by

N

Wy (ry, ... ,ry) = Zv r;)+ Z i —Tp).
7=1

1<j<k<N

Our formulation of unique continuation is one of the
strongest possible, in that it only requires ¥ to vanish on a
set of positive measure in order to deduce that W = 0. This
is the property which is needed in the proof of the
Hohenberg-Kohn theorem, as we will see. This is
sometimes called “unique continuation on sets of positive
measures”. For v, € LV (R, R") with p asin (3.1) it is
shown in [38] that any U € H] (R?") vanishing on a set of
positive measure and solving a. < a?> = A\ must have a point
X, € R¥ where it vanishes to infinite order, that is, such

that



~919¢ (0,75, §) + (1 — ¢%) D [r))
6473 ’

Unique continuation for functions vanishing to infinite
order at one point is usually called “strong unique
continuation”. Many authors consider instead the “weak
unique continuation” problem where W is instead assumed
to vanish on an open set, but this is not sufficient for the
Hohenberg-Kohn theorem.

Unique continuation is a very well studied question.
Note first that if we restrict our attention to the potentials
for N electrons in a molecule, where

v(r):—z#, wr—1') =

m‘

04(Ts> C) -

1
v —r'|’

then any eigenfunction of H," is analytic outside of the
singularities of the potential [132], which form a set of zero
measure. Therefore it satisfies the unique continuation
principle. However, restricting the theory to this very
special, though physically relevant, class of potentials is not
appropriate in density functional theory. In order to fully
understand the density, it is necessary to allow the largest
possible class of potentials.

In a famous work [87], Jerison and Kenig have proved
that the (strong) unique continuation principle holds for —
A + W in RP under the sole assumption that W € LY (RP)

with p satisfying (3.1) and d replaced by D. This was then
generalized by Koch and Tataru in [92] and many other
authors. These results apply to the N-particle setting under
the condition that

Wy € LT([RdN)

loc

and this is valid for all N>2 when

v,we L (R forall 1 < p < oo.



This is not far from asking that the potentials are locally
bounded (in which case the result would follow for instance
from the singular Carleman-type estimate proved in [151]).
We see that LP conditions are not well adapted to the N-
particle problem, since they yield N-dependent constraints
on v and w. More natural assumptions on v and w involve
relative bounds with respect to the Laplacian, since such
properties are easily propagated to all N. For instance if v
and w are infinitesimally (— A)-form bounded in ¢ ,

Ve >0, lv| + Jw| < e(—=A) + C., (3.92)

then so is the N-particle potential W ;" in RiVN for every N.
It seems reasonable to conjecture that the many-body
unique continuation principle holds under the sole
assumption (3.92), but this is not known, even for N =1.
See [165] for a similar conjecture in the Kato class, which
involves L1 norms instead of L2 norms.

Georgescu [67] and Schechter-Simon [158] have
provided one of the first results for N-body systems with N-
independent assumptions on v and w, but they required the
wavefunction to vanish on an open set (weak unique
continuation). Recently [63, 64], Garrigue has extended
their result to cover the case of functions vanishing on a set
of positive measure. His main assumption is that

3
s P, + |- + [w]® < e(=A)F° + Cs. r

for some 6 >0 and all €, R > 0. This condition in the one-
body space R is inherited by W ;" in gV for every N=1.
After using the Sobolev inequality, the following result was
shown in [64].

Theorem 3.28 (Unique Continuation for LP Potentials
[64]) Any potentials v, w with v, € L! (R?) and

loc



v_,w € LP(RY) + L>(R?) with p > max(2,2d/3) satisfy the
many-body unique continuation property of Definition3.27.

Theorem 3.28 now covers Coulomb-type potentials. This is
the best result known at the moment for many-body unique
continuation. It is an important problem to generalize it to
more singular potentials v.

3.7.2 Main Theorem and Some Open Problems

Let us now state the Hohenberg-Kohn theorem, which says
that the density uniquely determines the potential, under
the condition that unique continuation holds.

Theorem 3.29 (Hohqnberg—Kohn) Let
Exlp,w] = Enelp, w] — Exlp,w], and " (py, py, Vpy, V) with
p as in (3.1) and assume that (v, w) or (v,, w) satisfies the

many-body unique continuation property of Definition3.27.
If there are two ground states Wiand W,of, respectively,

H\'" and H\'" so that pv, = Pv, , then we have vi =v, +C
for some constant C.

The following proof is essentially the one given in [63, 116].

Proof Changing v, into v, — (En[V,] — En[Vi]) /N we can
assume that the two ground state energies are equal. Note
that the assumption Pv, = pv, implies that ¥, € Q(H,*") and
U, € Q(H ") , the form domains of the two operators
defined in (3.3). We can write

<\I/1, H}G’wqfﬁ = <\Ifl, HX?’U)\IJﬁ + /d pq;1<1‘) (U1<I'> — UQ(I‘)) dr
R

> (g, HP" W) + /le pu, (r) (vl(r) — vg(r)) dr.

Exchanging the two indices and using that the two
densities are equal, we obtain that there is equality



everywhere. In particular, ¥, is a ground state for H,/" ,

hence belongs to its operator domain and solves the
equation

N
(H}G’w — H}?’U/) \IJl = Z <U1<I'j) — U2<I'j))\111 =0
j=1
in the sense of distributions hence also almost everywhere.
Due to the unique continuation principle (for either v, or

V,), we know that [{ 1P1 = 0}/ = 0 hence this implies that

Z U1 I'j — V9 I'J>> =(
j=1

for almost every ry,...,ry € R’ . Integrating against f®N
with %94 (p, Vp) , we deduce that

N [ (vi(r) = vo(r)) f(r) dr = 0.

Rd

We obtain v; = v, a.e., as we wanted. ]

Remark 3.30 (Mixed States) There is a similar
Hohenberg-Kohn theorem for mixed states. That is, if we
have two N-particle mixed states I'y and I', supported on
the ground state eigenspaces of H,/"" and H, "
respectively, such that pr, = pr, , then vy =v, + C. The proof
is similar.

From Theorem 3.28, we know that the Hohenberg-Kohn
theorem holds when p > max(2,2d/3) . We now discuss some
consequences of this result.

Let us consider a fixed interaction w € L?(R?) 4 L*>°(R?)
(in DFT w is usually the Coulomb potential in dimension d
= 3). We introduce the set of v-representable densities



Ry = {p\p . W ground state of Hy" for some (v, w)
satisfying the many-body unique continuation in Definition 3.27}.

The Hohenberg-Kohn theorem states that any ¢ ¢ SV
arises from a unique potential v, up to a constant. We
remark that the set R, might be quite small. In fact, all the
densities ¢ ¢ SV are positive in the following sense. If we
had |{o = 0} > O then the