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Preface

Density functional theory (DFT) provides the most widely
used models for simulating molecules and materials based
on the fundamental laws of quantum mechanics. It earned
its main inventor Walter Kohn a Nobel prize, and nowadays
plays a central role in a huge spectrum of applications in
chemistry, physics, and materials science. DFT has become
an interdisciplinary field as testified by the list of authors of
this book, coming from chemistry, physics, materials
science, mathematics, and scientific computing.

Quantum mechanics describes a system of N interacting
particles in the physical three-dimensional space by a
partial differential equation in 3N spatial variables. Hence,
standard numerical methods incur an exponential increase
of computational effort with N, a phenomenon known as
the curse of dimensionality; in practice these methods
already fail beyond N = 2. DFT overcomes this problem by
(1) reformulating the N-body problem involving functions of
3N variables in terms of the electronic density, a function
of 3 variables, (2) approximating it by a pioneering hybrid
approach which keeps important ab initio contributions and
re-models the remainder in a data-driven way.

In fact many different types of data were used by
different researchers to parameterize the remainder,
ranging from numerical results for reference systems over
experimental properties of atoms and small molecules to
exact constraints in asymptotic regimes.

Kohn–Sham DFT models a molecular system with N
electrons as follows. For simplicity we describe the
common case of a spin-unpolarized system. The quantum
state of the electrons is described by a set of N∕2 doubly
occupied spatial orbitals {φi}i=1,…,N∕2, which are functions



on the physical space 
that are orthonormal with respect
to the L2 inner product. The total electronic energy is

(1)

The first term models the kinetic energy of the electrons,
vne is the electrostatic potential generated by the nuclei,
and EHxc is the so-called Hartree-exchange-correlation
functional which models the electron-electron interactions
and interaction-induced corrections to the kinetic energy
by some explicit functional of the density. The density ρ is
expressed in terms of the orbitals as

(2)

The Kohn–Sham ground state is obtained by minimizing the
energy functional E over {φi} subject to the orthonormality
constraints 
. The Euler–Lagrange equations
(stationarity conditions) are the Kohn–Sham equations [1]

(3)

where the εi are Lagrange multipliers and vHxc(r) is the
Hartree-exchange-correlation potential defined as the
functional derivative of EHxc[ρ] with respect to ρ(r). The
orbitals satisfying Eq. (3) are called the Kohn–Sham
orbitals. Mathematically, the Kohn–Sham equations are a
system of nonlinear elliptic eigenvalue problems, since the
potential vHxc depends on the φi’s through the density ρ.

There are a great many challenges associated with this
system, touching upon different areas of physical and
chemical modeling, mathematical analysis, and scientific
computing, such as:



Design of accurate yet computationally practical Hartree-
exchange-correlation functionals, going beyond the local
density approximation (LDA) introduced in Kohn and
Sham’s seminal 1965 paper [1] and the—currently widely
used—semilocal and hybrid functionals and remaining
applicable in strongly correlated regimes (stretched
chemical bonds, transition metal oxides, Mott insulators).
Design of effective numerical methods to solve the Kohn–
Sham equations for large molecular systems, possibly
coupled to an environment (linear scaling methods,
coarse-graining, quantum-mechanics/molecular-
mechanics (QM/MM), and other multilayer approaches).
Theoretical understanding of the errors incurred both by
the modeling and the numerical treatment (comparison
to exact many-body quantum mechanics in scaling limits,
choice of discretization or background basis, iterative
algorithms with stopping criteria, adaptive floating-point
arithmetic, massive parallelization for hybrid CPU/GPU,
and future exascale architectures).
Unearthing the intrinsic mathematical properties of
different Kohn–Sham models in important basic situations
such as bond dissociation, dispersion forces, or defects in
crystals.
These challenges give rise to a variety of exciting and

difficult problems for mathematicians and computational
scientists, and bring one immediately to the edge of current
knowledge in variational methods, nonlinear partial
differential equations, large-scale numerical optimization
and linear algebra, or model reduction. This book
introduces and reviews the main models of DFT, covering
their derivation and mathematical properties, numerical
treatment, and selected applications. It intends to be an
accessible yet state-of-art text on DFT for graduate
students and researchers in applied and computational
mathematics, physics, chemistry, and materials science. We



hope that it helps to attract mathematicians and computer
scientists willing to contribute to a very lively research
topic and an essential tool to meet many scientific
challenges of the twenty-first century, such as computer-
aided drug design or computational materials engineering
for green energy production and storage. We also hope that
this volume will be useful to computational chemists and
physicists seeking to better understand the mathematical
foundations of DFT, and the state-of-the-art numerical
methods used to solve the Kohn–Sham equations.

This book is organized as follows. This preface is
followed by a prologue on the early days of DFT by Mel
Levy, one of the pioneers of the field, who—among other
things—introduced the celebrated concept of constrained
search. The 11 chapters of the book can be classified into
two groups:

DFT models and their derivation, mathematical
justification and analysis: Chaps. 1 (J. Toulouse), 2 (A.
Savin), 3 (M. Lewin, E.H. Lieb, R. Seiringer), 4 (G.
Friesecke, A. Gerolin, P. Gori-Giorgi), 5 (S. Kvaal), 6 (D.
Gontier, J. Lu, C. Ortner);
Numerical methods and applications: Chaps. 7 (E.
Cancès, A. Levitt, Y. Maday, C. Yang), 8 (L. Lin, J. Lu, L.
Ying), 9 (H. Chen, R. Schneider), 10 (X. Dai, A. Zhou), 11
(L. Genovese, T. Deutsch), 12 (K. Bhattacharya, V. Gavini,
M. Ortiz, M. Ponga, P. Suryanarayana).
The chapters are self-contained and can be read

independently, but we advise readers with mathematical or
scientific computing backgrounds unfamiliar with DFT to
get in shape with Sects. 1.​1 and 1.​3.​1 in Chap. 1 (basics of
DFT) and the first three sections of Chap. 7 (mathematical
formulation and discretization methods), and consult the
first three sections of Chap. 3 for a mathematical
justification of the LDA.



Let us finally mention that this book focuses on Kohn–
Sham DFT methods for electronic ground-state calculation
within the Born–Oppenheimer (clamped nuclei)
approximation. It does not cover time-dependent DFT
(computation of excited states, linear response theory…),
orbital-free DFT (simulation of warm dense matter...), nor
classical DFT (classical statistical mechanics of the liquid
state). Likewise, post-DFT methods (e.g., Green’s function
methods such as GW or Bethe–Salpeter), coupling of DFT
with finer but computationally more expensive electronic
structure methods for strongly correlated electrons (e.g.,
DFT+DMFT), coupling of DFT with molecular dynamics and
implicit solvent models (multilayer models such as
QM/MM), or machine learning methods trained on data
generated by DFT calculations lie beyond the scope of this
book. So are the other two most popular families of
methods to compute ground-state electronic structures of
molecules and materials, namely post-Hartree–Fock wave
function methods (coupled-cluster, multiconfiguration
methods, tensor network methods,…) and Monte Carlo
methods. Each of these topics would be worth a book of
their own in this series.

Reference

1.
W. Kohn and L.J. Sham. Self-consistent equations
including exchange and correlation. Phys. Rev.140,
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Prologue: Early Days of Modern DFT

(1964–1979)

It is a pleasure to write about the early days of modern DFT
from a personal perspective.

At that time, the local density approximation dominated
in approximating exchange-correlation for calculations. In
basic theory, there was intense interest in the definition of
F[ρ], the universal functional of the density for the kinetic
energy plus the electron-electron repulsion energy, where,
of course,

Along these lines, on a chalkboard at a special session of a
theoretical chemistry conference in Boulder, Colorado, in
the summer of 1975, Walter Kohn wrote out the proof, by
contradiction, of the 1964 Hohenberg–Kohn theorem. As I
recall, the audience applauded enthusiastically. Then there
was a lively discussion about the F[ρ] in this HK paper of
1964, because this functional, born by this proof by
contradiction, was identified specifically for only each trial
density that is a non-degenerate ground state of some
extremal potential (non-degenerate v-representable). There
were questions. What happens when the trial density is not
some ground state? What happens when the trial density is
a ground state, but is a degenerate one? These questions
were in my thoughts when I began the serious study of DFT
in 1978.

Then, in looking through a 1978 issue of IJQC, I noticed
a long paper by Jeremy Percus. In it he derived a number of
interesting Legendre transform-type bounds, but, almost as
an aside, he also happened to identify a noninteracting
kinetic energy functional that was expressed as the



minimum kinetic energy of all ensembles of idempotent
density matrices that yield a noninteracting v-representable
density. Influenced by this paper, it suddenly occurred to
me a couple of weeks later that the original HK functional
could be identified as a constrained search. Moreover, it
could also be generalized by using this constrained search.
Namely,1

(1)

because

(2)

and because the same expectation value, involving vne,
must be given by all wave functions that yield ρ(r).

I remember finding expressions (1) and (2) a bit
frightening as I wrote them down and stared at them,
because they were so simply expressed and because I knew
that they generalized DFT to include densities that are
degenerate and to densities that are not necessarily v-
representable. I also realized that they led to a deeper
understanding of DFT. For instance, I soon realized that
the philosophy behind Eqs. (1) and (2) could be applied to
generalize Gilbert’s functional of the electron-electron
repulsion energy, as a functional of the one-matrix, to
include a larger class of trial one matrices. All this appears
in my 1979 paper.

Yes, the 15-year period from 1964 to 1979 was
important indeed. Kohn–Sham theory and the thermal DFT
of Mermin were formulated in 1965. Then von Barth and
Hedin and Rajagopal and Calloway formulated spin-density
functional theory in 1972 and 1973. In the mid-1970s, the
adiabatic connection formula was derived by Langreth and
Perdew and Gunnarsson and Lundqvist. This formula is, of
course, important for the development of approximate



exchange-correlation functionals. The concept of
electronegativity was elucidated through DFT by Parr,
Donnelly, Levy, and Palke in the 1978 paper that launched
conceptual DFT. Then the time-independent ensemble
theory for the density functional treatment of excited states
was formulated by Theophilou in 1979.

Forty years ago, those of us immersed in DFT knew that
we were gambling on a new field, especially since there
were influential vocal skeptics. But we felt that there just
might be good times ahead…

Mel Levy
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β
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rij = |ri − rj |
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γ

ρ, ρ(r )
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Φ
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vs  , veff  , vKS 
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H

h
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χ

χ0 

A⊤ 

A∗ 

Nb 

Ng 

ξμ 

Ξ
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Exchange, correlation, exchange-
correlation, Hxc potentials

Exchange, correlation, exchange-
correlation, Hxc kernels

Operators

Generic linear operators
Adjoint of A

Many-body Hamiltonian operators
General single-particle Hamiltonian

Kohn–Sham Hamiltonian
Coulomb operator

Laplace operator
Reducible polarizability operator

Irreducible polarizability operator
Fourier transform

Kohn–Sham map

Matrices

Transpose of A
Conjugate transpose of A

Discretization Parameters, Basis Functions,

Discretized Models

Number of basis functions
Number of grid points

Localized orbital (Gaussian, Slater, numerical,...)
Set of localized orbitals

Coefficient matrices (of discretized KS orbitals in
localized basis sets)
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1
Footnotes

See Sect. 1.​1.​1 for a precise definition of the notation.
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Abstract

In this chapter, we provide a review of the ground-state
Kohn–Sham density-functional theory of electronic systems
and some of its extensions, we present exact expressions
and constraints for the exchange and correlation density
functionals, and we discuss the main families of
approximations for the exchange-correlation energy:
semilocal approximations, single-determinant hybrid
approximations, multideterminant hybrid approximations,
dispersion-corrected approximations, as well as orbital-
dependent exchange-correlation density functionals. The
chapter aims at providing both a consistent bird’s-eye view
of the field and a detailed description of some of the most

https://doi.org/10.1007/978-3-031-22340-2_1
mailto:toulouse@lct.jussieu.fr


used approximations. It is intended to be readable by
chemists/physicists and applied mathematicians.

1.1 Basics of Density-Functional

Theory

1.1.1 The Many-Body Problem

We consider an N-electron system (atom or molecule) in the
Born–Oppenheimer and non-relativistic approximations. The
electronic Hamiltonian in the position representation is, in
atomic units,

(1.1)

where 
is the Laplacian with respect to the electron
coordinate ri and 
is the nuclei-
electron interaction depending on the positions {Rα} and
charges {Zα} of the Nn nuclei. The stationary electronic
states are determined by the time-independent Schrödinger
equation,

(1.2)
where Ψ(x1, x2, …, xN) is a wave function written with
space-spin coordinates 
(with


being the set of spin coordinates) which is
antisymmetric with respect to the exchange of two
coordinates, and E is the associated energy.

Using Dirac notation, the Schrödinger equation (1.2) can
be rewritten in a representation-independent formalism,

(1.3)
where the Hamiltonian is formally written as



with the kinetic-energy operator 
, the electron-electron
interaction operator 
, and the nuclei-electron interaction
operator 
.

The quantity of primary interest is the ground-state
energy E0. The variational theorem establishes that E0 can
be expressed as an infimum,

(1.4)

where the search is over the set of N-electron
antisymmetric normalized wave functions Ψ having a finite
kinetic energy,

(1.5)

where 
is the N-fold antisymmetrized tensor product, L2

and H1 are the standard Lebesgue and Sobolev spaces (i.e.,
respectively, the space of functions that are square
integrable and the space of functions that are square
integrable together with their first-order derivatives), and 〈⋅|
⋅〉 designates the L2 inner product. Density-functional theory
(DFT) is based on a reformulation of the variational theorem
in terms of the one-electron density defined as1

(1.6)

which is normalized to the electron number, 
.

1.1.2 The Universal Density Functional

Building on the work of Hohenberg and Kohn [118], Levy
[153] and Lieb [160] proposed to define the following
universal density functional F[ρ] using a constrained-search

approach,



(1.7)

where the minimization is done over the set of N-electron
wave functions Ψ yielding the fixed density ρ [via Eq. (1.6)],

In Eq. (1.7), for a given density ρ, Ψ[ρ] denotes a
minimizing wave function, which is known to exist [160] but
is possibly not unique. This so-called Levy–Lieb functional
F[ρ] is defined on the set of N-representable densities [160]:

(1.8)

We note that an alternative universal density functional
can be defined by a Legendre–Fenchel transformation, or
equivalently by a constrained-search over N-electron
ensemble density matrices [160]. This so-called Lieb
functional has the advantage of being convex but in this
chapter we will simply use the Levy–Lieb functional of Eq.
(1.7).

The exact ground-state energy can then be expressed as

(1.9)

and if a minimizer exists then it is a ground-state density
ρ0(r) for the potential vne(r). Hence, the ground-state
energy can in principle be obtained by minimizing over the
density ρ, i.e. a simple function of 3 real variables, which is
a tremendous simplification compared to the minimization
over a complicated many-body wave function Ψ. However,
the explicit expression of F[ρ] in terms of the density is not
known, and the direct approximations for F[ρ] that have
been tried so far turn out not to be accurate enough.



If there is a unique wave function Ψ[ρ] (up to a phase
factor) in Eq. (1.7), we can define kinetic and potential
contributions to F[ρ],

where 
) and 
).
The kinetic-energy functional T[ρ] is the contribution which
is particularly difficult to approximate as an explicit
functional of the density.

1.1.3 The Kohn–Sham Scheme

1.1.3.1 Decomposition of the Universal

Functional

Following the idea of Kohn and Sham (KS) [135], the
difficulty of approximating F[ρ] directly can be
circumvented by decomposing F[ρ] as

(1.10)
where Ts[ρ] is the non-interacting kinetic-energy functional
which can be defined with a constrained search,2

(1.11)

where the minimization is over the set of N-electron single-
determinant wave functions Φ yielding the fixed density ρ:

Here, 
is the set of N-electron single-determinant wave
functions built from orthonormal spin orbitals

where ϕ1 ∧ ϕ2 ∧… ∧ ϕN designates the normalized N-fold
antisymmetrized tensor product of N spin orbitals. The
functional Ts[ρ] is defined over the entire set of N-
representable densities 
since any N-representable



density can be obtained from a single-determinant wave
function [80, 105, 160]. In Eq. (1.11), for a given density ρ,
Φ[ρ] denotes a minimizing single-determinant wave function
(again known to exist [160] but possibly not unique), also
referred to as a KS wave function. The remaining functional
EHxc[ρ] that Eq. (1.10) defines is called the Hartree-
exchange-correlation functional. The idea of the KS scheme
is then to use the exact expression of Ts[ρ] by reformulating
the minimization over densities in Eq. (1.9) as a
minimization over single-determinant wave functions Φ,

(1.12)

and if a minimum exists then any minimizing single-
determinant wave function in Eq. (1.12) gives a ground-
state density ρ0(r). Thus, the exact ground-state energy can
in principle be obtained by minimizing over single-
determinant wave functions only. Even though a wave
function has been reintroduced compared to Eq. (1.9), it is
only a single-determinant wave function Φ and therefore it
still represents a tremendous simplification over the usual
variational theorem involving a correlated
(multideterminant) wave function Ψ. The advantage of Eq.
(1.12) over Eq. (1.9) is that a major part of the kinetic
energy can be treated exactly with the single-determinant
wave function Φ, and only EHxc[ρ] needs to be approximated
as an explicit functional of the density.

In practice, EHxc[ρ] is decomposed as

(1.13)
where EH[ρ] is the Hartree energy functional,

(1.14)



representing the classical electrostatic repulsion energy for
the charge distribution ρ(r) and which is calculated exactly,
and Exc[ρ] is the exchange-correlation energy functional
that remains to be approximated. If there is a unique KS
wave function Φ[ρ] (up to a phase factor), we can further
decompose Exc[ρ] as

(1.15)
where Ex[ρ] is the exchange energy functional,

(1.16)

and Ec[ρ] is the correlation energy functional,

which contains a kinetic contribution

) and a potential

contribution 
).
Using the fact that Φ[ρ] is a single-determinant wave
function, it can be shown that the exchange functional can
be expressed as

(1.17)

where γσ, for σ ∈{↑, ↓}, is the spin-dependent one-particle
KS density matrix,

(1.18)

which shows that 
. Moreover, from the variational
definition of F[ρ], we see that 
.

1.1.3.2 The Kohn–Sham Equations



The single-determinant wave function Φ in Eq. (1.12) is
constructed from a set of N orthonormal occupied spin-
orbitals {ϕi}i=1,…,N. To enforce Sz spin symmetry, each spin-
orbital is factorized as 
, where


is a spatial orbital and 
is a spin function
from {↑, ↓} to {0, 1} such that 
(σi

is the spin of the spin-orbital i). Alternatively, when this is
convenient, we will sometimes reindex the spatial orbitals,
{φi}→{φiσ}, including explicitly the spin σ in the index.
Writing the total electronic energy in Eq. (1.12) in terms of
spin-orbitals and integrating over the spin variables, we
obtain:

(1.19)

where the density is expressed in terms of the orbitals as

(1.20)

The minimization over Φ can then be recast into a
minimization of E[{φi}] with respect to the spatial orbitals
{φi} with the constraint of keeping the orbitals
orthonormalized. The stationary condition with respect to
variations of φi(r) leads to the KS equations [135],

(1.21)

where εi is the Lagrange multiplier associated to the
normalization condition of φi and vHxc(r) is the Hartree-
exchange-correlation potential defined as the functional
derivative of EHxc[ρ] with respect to ρ(r),

(1.22)



which is itself a functional of the density. The orbitals
satisfying Eq. (1.21) are called the KS orbitals. They are the
eigenfunctions of the KS one-electron Hamiltonian,

(1.23)
where

(1.24)
is the KS potential, and εi are then the KS orbital energies.
Note that Eq. (1.21) constitutes a set of coupled self-
consistent equations since the potential depends on all the
occupied orbitals {φi}i=1,…,N through the density [Eq. (1.20)].
The operator hs(r) defines the KS system which is a system
of N non-interacting electrons in an effective external
potential vs(r) ensuring that the density ρ(r) in Eq. (1.20) is
the same as the exact ground-state density ρ0(r) of the
physical system of N interacting electrons. The exact
ground-state energy E0 is then obtained by injecting the KS
orbitals in Eq. (1.19). The other (unoccupied)
eigenfunctions in Eq. (1.21) define virtual KS orbitals


.
Note that to define the potential vHxc(r) in Eq. (1.22) a

form of differentiability of the functional EHxc[ρ], also
referred to as v-representability of the density, has been
assumed. Justifying this is in fact subtle and has been
debated [56, 57, 109, 142–144, 164] (see also Chap. 5 by
Kvaal in this volume). Here, we will simply assume that a
form of differentiability of EHxc[ρ] holds on at least a
restricted set of densities that allows one to define the
potential vHxc(r) up to an additive constant. For a further
restricted set of densities that should include ground-state



densities of electronic Hamiltonians of molecular systems
[Eq. (1.1)], it is expected that the KS potential vs(r) tends to
a constant as |r|→∞ and we choose this constant to be zero.
Note also that the assumption of the existence of the KS
potential vs(r) in Eq. (1.23), which does not depend on spin
coordinates, implies that each spin-orbital must indeed have
a definite Sz spin value.

Following the decomposition of EHxc[ρ] in Eq. (1.13), the
potential vHxc(r) is written as

(1.25)
where 
is the Hartree
potential and vxc(r) = δExc[ρ]∕δρ(r) is the exchange-
correlation potential. Likewise, following the decomposition
of Exc[ρ] in Eq. (1.15), and assuming that both Ex[ρ] and
Ec[ρ] are differentiable with respect to ρ, the potential vxc(r)
can be further decomposed as

(1.26)
where vx(r) = δEx[ρ]∕δρ(r) is the exchange potential and
vc(r) = δEc[ρ]∕δρ(r) is the correlation potential. Thus, the KS
equations are similar to the Hartree–Fock (HF) equations,
with the difference that they involve a local exchange
potential vx(r) instead of the nonlocal HF exchange
potential, and an additional correlation potential. At least
for ground-state densities of finite molecular systems, the
exchange potential has the long-range asymptotic behavior
(see, e.g., Ref. [93]),

(1.27)

whereas the correlation potential decays faster [4].



1.1.3.3 Extension to Spin Density-Functional

Theory

To deal with an external magnetic field, DFT has been
extended from the total density to spin-resolved densities
[13, 203]. Without external magnetic fields, this spin
density-functional theory is in principle not necessary, even
for open-shell systems (see, e.g., Ref. [263]). However, the
dependence on the spin densities allows one to construct
approximate exchange-correlation functionals that are more
accurate, and is therefore almost always used in practice for
open-shell systems.

The spin density ρσ,Ψ with σ ∈{↑, ↓} associated to a wave
function Ψ is defined as

and integrates to the number of σ-spin electrons Nσ, i.e.

. For 
and 
, the universal

density functional is now defined as [200],

(1.28)

where the search is over the set of normalized
antisymmetric wave functions Ψ with N = N↑ + N↓ electrons
and yielding the fixed spin densities ρ↑ and ρ↓:

In Eq. (1.28), Ψ[ρ↑, ρ↓] designates a minimizing wave
function.

A spin-dependent KS scheme is obtained by decomposing
F[ρ↑, ρ↓] as

(1.29)
where Ts[ρ↑, ρ↓] is defined as



(1.30)

with a constrained search over the set of single-determinant
wave functions Φ yielding the fixed spin densities ρ↑ and ρ↓:

Here, Φ[ρ↑, ρ↓] denotes a minimizing KS single-determinant
wave function, EH[ρ] is the Hartree energy which is a
functional of the total density ρ = ρ↑ + ρ↓ only [Eq. (1.14)],
and Exc[ρ↑, ρ↓] is the spin-dependent exchange-correlation
energy functional. The ground-state energy is then obtained
as

(1.31)

Writing the spatial orbitals of the spin-unrestricted
determinant as {φiσ}i=1,…,N (with the index explicitly
including the spin σ now for clarity), we arrive at the spin-
dependent KS equations,

(1.32)

with the spin-dependent exchange-correlation potential,

(1.33)

and the spin density,
(1.34)

As before, if there is a unique KS wave function Φ[ρ↑, ρ↓]
(up to a phase factor), we can decompose Exc[ρ↑, ρ↓] into
exchange and correlation contributions,

(1.35)



with 
). It turns
out that the spin-dependent exchange functional Ex[ρ↑, ρ↓]
can be exactly expressed in terms of the spin-independent
exchange functional Ex[ρ] [183],

(1.36)

which is known as the spin-scaling relation and stems
directly from the fact the ↑- and ↓-spin electrons are
uncoupled in the exchange energy [see Eq. (1.17)].
Therefore, any approximation for Ex[ρ] can be easily
extended to an approximation for Ex[ρ↑, ρ↓]. Unfortunately,
there is no such relation for the spin-dependent correlation
functional Ec[ρ↑, ρ↓].

Obviously, in the spin-unpolarized case, i.e. ρ↑ = ρ↓ = ρ∕2,
this spin-dependent formalism reduces to the spin-
independent one.

1.1.4 The Generalized Kohn–Sham Scheme

An important extension of the KS scheme is the so-called
generalized Kohn–Sham (GKS) scheme [222], which
recognizes that the universal density functional F[ρ] of Eq.
(1.7) can be decomposed in other ways than the KS
decomposition of Eq. (1.10). In particular, we can
decompose F[ρ] as

(1.37)

where S[ Φ] is any functional of a single-determinant wave
function 
leading to a minimum in Eq. (1.37), and 
is the corresponding complementary density functional that
makes Eq. (1.37) exact. Defining the S-dependent GKS
exchange-correlation functional as

(1.38)



we can express the exact ground-state energy as
(1.39)

and if a minimum exists then any minimizing single-
determinant wave function in Eq. (1.39) gives a ground-
state density ρ0(r). Similarly to the KS equations [Eq.
(1.21)], Eq. (1.39) leads to the one-electron GKS equations,

(1.40)

where 
is a local potential and 
generates a one-electron (possibly nonlocal) operator.

In the special case S[ Φ] = 0, we recover the KS
exchange-correlation density functional:

(1.41)
Due to the freedom in the choice of S[ Φ], there is an infinity
of GKS exchange-correlation functionals 
giving the
exact ground-state energy via Eq. (1.39). This freedom and
the fact that Φ carries more information than ρΦ gives the
possibility to design more accurate approximations for the
exchange-correlation energy.

Of course, by starting from the density functional F[ρ↑,
ρ↓] in Eq. (1.28), this GKS scheme can be extended to the
spin-dependent case, leading to GKS exchange-correlation
functionals of the form 
.

1.2 Exact Expressions and Constraints

for the Kohn–Sham Exchange and

Correlation Functionals

1.2.1 The Exchange and Correlation Holes

Let us consider the pair density associated with the wave
function Ψ[ρ] defined in Eq. (1.7),



(1.42)

which is a functional of the density, and normalized to the
number of electron pairs, 
.
The pair density is proportional to the probability density of
finding two electrons at positions (r1, r2) with all the other
electrons being anywhere. The pair density is useful to
express the expectation value of the electron-electron
interaction operator,

(1.43)

Mirroring the decomposition of the Hartree-exchange-
correlation energy performed in the KS scheme [Eq. (1.13)],
the pair density can be decomposed as

(1.44)
The product of the densities ρ(r1)ρ(r2) corresponds to the
case of independent electrons [up to a change of
normalization, i.e. 
instead of N(N 
− 1)] and the exchange-correlation pair density ρ2,xc(r1, r2)
represents the modification of the pair density due to
exchange and correlation effects between the electrons. It
can be further written as

(1.45)
where hxc(r1, r2) is the exchange-correlation hole.
Introducing the conditional density


of the remaining N − 1 electrons
at r2 given that one electron has been found at r1, the
exchange-correlation hole can be interpreted as the
modification of 
due to exchange and correlation
effects:



(1.46)

The positivity of ρ2(r1, r2) implies that

Moreover, from Eq. (1.46), we have the following sum rule:

(1.47)

We can separate the exchange and correlation
contributions in the exchange-correlation hole. For this,
consider the pair density ρ2,KS(r1, r2) associated with the KS
single-determinant wave function Φ[ρ] defined in Eq. (1.11).
It can be decomposed as

(1.48)
where ρ2,x(r1, r2) is the exchange pair density, which is
further written as

(1.49)
where hx(r1, r2) is the exchange hole. Just like the
exchange-correlation hole, the exchange hole satisfies the
conditions

and

(1.50)

Moreover, since the exchange hole can be written as
[compare with Eq. (1.17)]

(1.51)



where 
is the spin-dependent
one-particle KS density matrix, it thus appears that the
exchange hole is always non-positive,

(1.52)
From Eqs. (1.16), (1.43), (1.48), and (1.49), it can be seen
that the exchange energy functional can be written in terms
of the exchange hole,

(1.53)

leading to the interpretation of Ex as the electrostatic
interaction energy of an electron and its exchange hole. It is
useful to write the exchange energy functional as

(1.54)

where εx[ρ](r1) is the exchange energy density per particle,

(1.55)

which is itself a functional of the density. It is also
convenient to define the exchange energy density ex[ρ](r) = 
ρ(r)εx[ρ](r). For finite systems, we have the exact
asymptotic behavior [18, 168]

(1.56)

The correlation hole is defined as the difference

and, from Eqs. (1.47) and (1.50), satisfies the sum rule

(1.57)

which implies that the correlation hole has negative and
positive contributions.3 In contrast with the exchange hole



which is a smooth function of the interelectronic coordinate
r12 = r2 −r1, the correlation hole satisfies the electron-
electron cusp condition (i.e., it has a derivative discontinuity
in r12) [132, 252],

(1.58)

where 
is the first-order
derivative of the spherically averaged correlation hole


and S(0, r12)
designates the sphere centered at 0 and of radius r12 = |r12|.
The potential contribution to the correlation energy can be
written in terms of the correlation hole:

(1.59)

In order to express the total correlation energy Ec[ρ] = Tc[ρ] 
+ Uc[ρ] in a form similar to Eq. (1.59), we need to introduce
the adiabatic-connection formalism.

1.2.2 The Adiabatic Connection

The idea of the adiabatic connection [102, 146, 147] (see,
also, Ref. [106]) is to have a continuous path between the
non-interacting KS system and the physical system while
keeping the ground-state density constant. This allows one
to obtain a convenient expression for the correlation
functional Ec[ρ] as an integral over this path. An infinity of
such paths are possible, but the one most often considered
consists in switching on the electron-electron interaction
linearly with a coupling constant λ. The Hamiltonian along
this adiabatic connection is

(1.60)
where 
is the external local potential operator imposing
that the ground-state density is the same as the ground-



state density of the physical system for all 
. Of course,
Eq. (1.60) relies on a v-representability assumption, i.e. the
external potential is assumed to exist for all λ. The
Hamiltonian (1.60) reduces to the KS non-interacting
Hamiltonian for λ = 0 and to the physical Hamiltonian for λ 
= 1.

Just as for the physical system, it is possible to define a
universal functional associated with the system of Eq. (1.60)
for each value of the parameter λ,

(1.61)

where Ψλ[ρ] denotes a minimizing wave function. This
functional can be decomposed as

(1.62)
where 
is the Hartree-exchange-correlation functional
associated with the interaction 
. One can write this
functional as 
, where the
Hartree and exchange contributions are simply linear in λ,

and

The correlation contribution is nonlinear in λ,
(1.63)

We will assume that Fλ[ρ] is of class C1 as a function of λ
for λ ∈ [0, 1] and that Fλ=0[ρ] = Ts[ρ], the latter condition
being guaranteed for nondegenerate KS systems [see
footnote on the definition of Ts[ρ] just before Eq. (1.11)].
Taking the derivative of Eq. (1.63) with respect to λ and



using the Hellmann–Feynman theorem for the wave function
Ψλ[ρ],4 we obtain

(1.64)

Integrating over λ from 0 to 1, and using 
and

, we arrive at the adiabatic-connection formula

for the correlation energy functional of the physical system

(1.65)

By introducing the correlation hole 
associated to
the wave function Ψλ[ρ], the adiabatic-connection formula
for the correlation energy can also be written as

(1.66)

or, noting that 
is the only quantity that depends on
λ in Eq. (1.66), in a more compact way,

(1.67)

where 
is the coupling-constant-
integrated correlation hole. This leads to the interpretation
of Ec as the electrostatic interaction energy of an electron
with its coupling-constant-integrated correlation hole. As for
the exchange energy, the correlation energy functional can
be written as

(1.68)

where εc[ρ](r1) is the correlation energy density per particle

(1.69)



which is a functional of the density. We can also define the
correlation energy density ec[ρ](r) = ρ(r)εc[ρ](r).

Finally, note that the sum-rule and cusp conditions of
Eqs. (1.57) and (1.58) apply to the λ-dependent correlation
hole in the form

(1.70)

and
(1.71)

1.2.3 One-Orbital and One-Electron Spatial

Regions

For systems composed of only one spin-↑ (or,
symmetrically, one spin-↓) electron (e.g., the hydrogen
atom) with ground-state density ρ1e(r) = |φ1↑(r)|2 where
φ1↑(r) is the unique occupied KS orbital, the exchange hole
in Eq. (1.51) simplifies to hx(r1, r2) = −ρ(r2), and
consequently the exchange energy cancels out the Hartree
energy:

(1.72)
Furthermore, the correlation energy vanishes:

(1.73)
This must of course also be true for the spin-dependent
version of the functionals introduced in Sect. 1.1.3.3, i.e.

(1.74)
and

(1.75)
For systems composed of two opposite-spin electrons (e.g.,
the helium atom or the dihydrogen molecule) in a unique



doubly occupied KS orbital φ1(r) = φ1↑(r) = φ1↓(r) with
ground-state density 
, the exchange hole
simplifies to hx(r1, r2) = −ρ(r2)∕2, and consequently the
exchange energy is equal to half the opposite of the Hartree
energy:

(1.76)

These are constraints for the exchange and correlation
density functionals in the special cases N = 1 and N = 2.

These special cases can be extended to more general
systems. For systems with 
electrons containing a
spatial region 
in which, among the occupied KS orbitals,
only one spin-↑ (or, symmetrically, one spin-↓) orbital is not
zero (or, more generally, takes non-negligible values), we
have again in this region

and therefore the contribution to the exchange energy
density per particle coming from this region must locally
cancel out the contribution to the Hartree energy density
per particle coming from the same region,

(1.77)

where

Similarly, for systems with 
electrons containing a
spatial region 
in which, among the occupied KS orbitals,
only one doubly occupied orbital is not zero, we have in this
region



and therefore the contribution to the exchange energy
density per particle coming from this region must locally be
equal to half the opposite of the contribution to the Hartree
energy density per particle coming from the same region,

(1.78)

Thus, we see, particularly clearly for these 
or 
regions, that the Hartree functional introduces a spurious
self-interaction contribution which must be eliminated by
the exchange functional. Even though the concepts of 
and 
regions are formal, in practice they can be
approximately realized in chemical systems. For example,
the unpaired electron in a radical approximately
corresponds to a 
, and an electron pair in a single
covalent bond, in a lone pair, or in a core orbital
approximately corresponds to a 
region.

We can also consider one-electron regions Ω1e that we
define as5

(1.79)
where 
is the pair density associated to the wave
function Ψλ[ρ] along the adiabatic connection. This implies

where 
and, consequently, the
contribution to the exchange-correlation energy density per
particle coming from this region must locally cancel out the
contribution to the Hartree energy density per particle
coming from the same region,

(1.80)

where 
. For regions that
are simultaneously one-electron and one-orbital regions,



this simply implies that the contribution to the correlation
energy must vanish,

(1.81)

where 
, and we say that
the correlation functional must not introduce a self-
interaction error. However, the definition of Ω1e regions
also includes the case of an electron entangled in several
orbitals, such as the region around one hydrogen atom in
the dissociated dihydrogen molecule. In this latter case, the
Hartree functional introduces an additional spurious
contribution (beyond the spurious self-interaction) which
must be compensated by a static correlation (or strong

correlation) contribution in the exchange-correlation
functional.

1.2.4 Coordinate Scaling

1.2.4.1 Uniform Coordinate Scaling

We consider a norm-preserving uniform scaling of the
spatial coordinates in the N-electron wave function along
the adiabatic connection Ψλ[ρ] [introduced in Eq. (1.61)]
while leaving untouched the spin coordinates [154, 155,
157],

where γ ∈ (0, +∞) is a scaling factor. The scaled wave
function 
yields the scaled density

with 
, and minimizes

) since



We thus conclude that the scaled wave function at the
density ρ and coupling constant λ corresponds to the wave
function at the scaled density ργ and coupling constant λγ,

or, equivalently,

and that the universal density functional satisfies the
scaling relation

or, equivalently,
(1.82)

At λ = 0, we find the scaling relation of the KS wave
function Φ[ρ] introduced in Sect. 1.1.3.1:

This directly leads to the scaling relation for the non-
interacting kinetic density functional [see Eq. (1.11)],

for the Hartree density functional [see Eq. (1.14)],

and for the exchange density functional [see Eq. (1.16)],
(1.83)

However, the correlation density functional Ec[ρ] has the
more complicated scaling (as F[ρ]),

and, in particular for λ = 1,
(1.84)



These scaling relations allow one to find the behavior of
the density functionals in the high- and low-density limits. In
the high-density limit (γ →∞), it can be shown from Eq.
(1.84) that, for nondegenerate KS systems, the correlation
functional Ec[ρ] goes to a constant,

(1.85)

where 
is the second-order Görling–Levy (GL2)
correlation energy [90, 91] (see Sect. 1.7.2). This is also
called the weak-correlation limit since in this limit the
correlation energy is negligible with respect to the
exchange energy which is itself negligible with respect to
the non-interacting kinetic energy: |Ec[ργ]| = O(γ0) ≪|Ex[ργ]| 
= O(γ) ≪ Ts[ργ] = O(γ2). Equation (1.85) is an important
constraint since atomic and molecular correlation energies
are often close to the high-density limit. For example, for
the ground-state density of the helium atom, we have Ec[ρ] 
= −0.0421 hartree and limγ→∞Ec[ργ] = −0.0467 hartree
[119].

In the low-density limit (γ → 0), it can be shown from Eq.
(1.82) that the Hartree-exchange-correlation energy EHxc[ρ]
goes to zero linearly in γ,

(1.86)

where 
) is the strictly-correlated-
electron (SCE) functional [86, 220, 221, 223]. This is also
called the strong-interaction limit since in this limit the
Hartree-exchange-correlation energy dominates over the
non-interacting kinetic energy: EHxc[ργ] = O(γ) ≫ Ts[ργ] = 
O(γ2). In this limit, the electrons strictly localize relatively
to each other. In particular, for the uniform-electron gas,
this corresponds to the Wigner crystallization. Thus, in this



limit, each electron is within a one-electron region Ω1e [as
defined in Eq. (1.79)]. For more information on the SCE
functional, see Chap. 4 by Friesecke et al. in this volume.

1.2.4.2 Non-uniform Coordinate Scaling

We can also consider non-uniform one-dimensional or two-
dimensional coordinate scalings of the density [156, 184],

(1.87)

and

(1.88)

which also preserve the number of the electrons. These non-
uniform density scalings provide constraints for the
exchange and correlation functionals. In particular, in the
non-uniform one-dimensional high-density limit, the
exchange functional remains finite and the correlation
functional vanishes [89, 154]:

(1.89)

and

(1.90)

Also, in the non-uniform two-dimensional low-density limit,
we have [89, 154]:

(1.91)

and

(1.92)

The conditions of Eqs. (1.89)–(1.92) are particularly useful
because they also correspond to the limit of rapidly varying
densities [158].



1.2.5 Atoms in the Limit of Large Nuclear

Charge

A practical realization of the uniform high-density limit is
provided by atomic ions in the limit of large nuclear charge,
Z →∞, at fixed electron number N (see Refs. [65, 66, 123,
233]). In this limit, the exact ground-state atomic density
ρN,Z(r) becomes the density of the isoelectronic hydrogenic
(i.e., without electron-electron interaction) atom 
,
which obeys a simple scaling with Z:

One can thus apply Eqs. (1.83) and (1.85) with γ = Z, which
reveals that in an isoelectronic series the exchange
functional scales linearly with Z,

(1.93)

and, for nondegenerate KS systems, the correlation
functional saturates to a constant,

(1.94)

Equations (1.93) and (1.94) are constraints for the
exchange and correlation functionals, particularly relevant
for highly ionized atoms but also for the core-electron
regions of heavy atoms in neutral systems.

Another very interesting limit is the one of large nuclear
charge of neutral atoms, N = Z →∞ (see, e.g., Ref. [129]). In
this semiclassical limit, the exact ground-state atomic
density ρN,Z(r) tends to the Thomas–Fermi (TF) density of a
neutral atom 
which has a known scaling with Z [162,
163]:

(1.95)



In this limit, it was suggested that the exact exchange and
correlation energies have the approximate large-Z
asymptotic expansions [28, 30, 51]

(1.96)

and

(1.97)

with the coefficients Ax = 0.220827, Ac = 0.020727, Bx ≈ 
0.224, Bc ≈ 0.0372. Recently, it was argued that there is in
fact a missing term in 
in the expansion of the
exchange energy in Eq. (1.96) [10, 42].

1.2.6 Lieb–Oxford Lower Bound

Lieb and Oxford derived a lower bound for the indirect
Coulomb energy (i.e., the two-particle Coulomb potential
energy beyond the Hartree energy) [161], which, when
expressed in terms of the exchange or exchange-correlation
functional, takes the form [187]

(1.98)

where the optimal (i.e., smallest) constant CLO (independent
of the electron number N) was originally shown to be in the
range 
[161]. The range was later
successively narrowed to 
[36, 41, 159,
187]. This bound is approached only in the low-density limit
where the correlation energy becomes comparable to the
exchange energy. Numerical results suggest that for
densities of most physical systems the Lieb–Oxford lower
bound on the exchange-correlation energy is far from being
reached [182].

For two-electron densities, there is a specific tighter
bound,

(1.99)



with the best known constant C2 = 1.234 [161]. For one-
electron densities, an even tighter bound is known for the
exchange functional [74, 161],

(1.100)

with the optimal constant C1 = 1.092. For two-electron spin-
unpolarized densities, we have 
with


, and Eq. (1.100) implies [194]

(1.101)

which is a much tighter bound than the bounds of Eqs.
(1.98) and (1.99).

1.3 Semilocal Approximations for the

Exchange-Correlation Energy

We review here the different classes of semilocal

approximations for the exchange-correlation energy.

1.3.1 The Local-Density Approximation

In the local-density approximation (LDA), introduced by
Kohn and Sham [135], the exchange-correlation functional
is approximated as

where 
is the exchange-correlation energy density of
the infinite uniform electron gas (UEG) with the density ρ.
The UEG represents a family of systems of interacting
electrons with an arbitrary spatially constant density ρ ∈ [0,



+∞) that acts as a parameter. Thus, in the LDA, the
exchange-correlation energy density of an inhomogeneous
system at a spatial point of density ρ(r) is approximated as
the exchange-correlation energy density of the UEG of the
same density.

In the spin-dependent version of LDA, sometimes
specifically referred to as the local-spin-density
approximation (LSDA), the exchange-correlation functional
is approximated as [13]

where 
is the exchange-correlation energy density
of the UEG with spin densities ρ↑ and ρ↓. For spin-
unpolarized systems, we recover the spin-independent LDA
as 
.

The function 
is a sum of exchange and correlation
contributions, 
, and it is convenient to
introduce exchange and correlation energies per particle,


and 
, such that 
and 
.
The expression of the exchange energy per particle of the
spin-unpolarized UEG is

(1.102)

where Cx = −(3∕4)(3∕π)1∕3, and the spin-polarized version is
simply obtained from the spin-scaling relation [Eq. (1.36)],
leading to

where ζ = (ρ↑− ρ↓)∕ρ is the spin polarization and ϕ4(ζ) is
defined by the general spin-scaling function

(1.103)



The LDA exchange functional is associated with the names
of Dirac [44] and Slater [228]. For a rigorous mathematical
derivation of Eq. (1.102), see Ref. [64].

The correlation energy per particle 
of the
UEG cannot be calculated analytically. This quantity has
been obtained numerically for a sample of densities and
fitted to a parametrized function satisfying the known high-
and low-density expansions. Expressed in terms of the
Wigner–Seitz radius rs = (3∕(4πρ))1∕3, the first terms of the
high-density expansion (rs → 0) have the form

(1.104)

with spin-unpolarized coefficients 
, B(0) 
= −0.046921, C(0) = 0.009229, and fully spin-polarized
coefficients A(1) = A(0)∕2, B(1) = −0.025738, C(1) = 
0.004792. The first terms of the low-density expansion (rs → 
+∞) have the form

(1.105)

where the coefficients a = −0.895930, b = 1.325, and c = 
−0.365 are assumed to be independent of ζ. The low-density
limit of the UEG corresponds to the Wigner crystallization.
For a recent review of results on the UEG, see Ref. [165].

The two most used parametrizations are the one of
Vosko, Wilk, and Nusair (VWN) [265] and the more recent
one of Perdew and Wang (PW92) [199] which we give here.
In this parametrization, the UEG correlation energy per
particle is estimated using the approximate spin-
interpolation formula

(1.106)

where εc(rs, ζ) is the UEG correlation energy per particle as
a function of rs and ζ, f(ζ) = [(1 + ζ)4∕3 + (1 − ζ)4∕3 − 2]∕(24∕3 



− 2) is a spin-scaling function borrowed from the exchange
energy, and αc(rs) = (∂2εc(rs, ζ)∕∂ζ2)ζ=0 is the spin stiffness.
This spin-interpolation formula was first proposed in the
VWN parametrization based on a study of the ζ dependence
of the UEG correlation energy per particle at the random-
phase approximation (RPA) level. A unique parametrization
function

is then used for approximating εc(rs, 0), εc(rs, 1), and − 
αc(rs), where

The form of G was chosen to reproduce the form of the high-
and low-density expansions. The parameters Ai, β1,i, and β2,i
(with i ∈{0, 1, 2}) are fixed by the first two terms of the
high-density expansion, while the parameters α1,i, β3,i, and
β4,i are fitted to quantum Monte Carlo (QMC) data [32] for
εc(rs, 0) and εc(rs, 1), and to an estimation of − αc(rs)
extrapolated from RPA data. The parameters are given in
Table I of Ref. [199].

We now discuss the merits and deficiencies of the LDA.
By construction, the LDA is of course exact in the limit of
uniform densities. More relevant to atomic and molecular
systems is that the LDA exchange and correlation energies
are asymptotically exact in the limit of large nuclear charge
of neutral atoms N = Z →∞. Indeed, in this semiclassical
Thomas–Fermi limit, the LDA gives the exact coefficients Ax



and Ac of the leading terms in the asymptotic expansions of
Eqs. (1.96) and (1.97) [190]. However, the coefficients of
the next terms are very different: 
instead of Bx ≈ 
0.224 and 
instead of Bc ≈ 0.0372 [28].

Due to the scaling of the UEG exchange energy per
particle,

the LDA exchange functional correctly scales linearly under
uniform coordinate scaling of the density [Eq. (1.83)].
Similarly, due the scaling of the UEG correlation energy per
particle in the low-density limit [Eq. (1.105)],

(1.108)

the LDA correlation functional correctly scales linearly
under uniform coordinate scaling to the low-density limit
[Eq. (1.86)]. However, from the behavior of 
in the high-
density limit [Eq. (1.104)],

(1.109)

we see that the LDA correlation functional diverges
logarithmically under uniform coordinate scaling to the
high-density limit whereas the exact correlation functional
goes to a constant for nondegenerate KS systems [Eq.
(1.85)]. Consequently, in the limit of large nuclear charge,
Z →∞, at fixed electron number N, the LDA exchange energy
correctly scales linearly with Z [Eq. (1.93)], albeit with an
incorrect coefficient, and the LDA correlation energy does
not reproduce the exact saturation behavior [Eq. (1.94)] for
a nondegenerate isoelectronic series but incorrectly
diverges [193]. Also, the LDA exchange and correlation
functionals do not satisfy the non-uniform scaling conditions
of Eqs. (1.89)–(1.92), but instead both diverge in these
limits.



The LDA can also be thought of as approximating the
exchange and the (coupling-constant-integrated) correlation
holes of an inhomogeneous system in Eqs. (1.55) and (1.69)
by the corresponding exchange and correlation holes of the
UEG. Namely, considering the spin-independent version for
simplicity, the LDA exchange hole is

(1.110)
with

(1.111)

where r12 = |r2 −r1| is the interelectronic distance, kF = 
(3π2ρ)1∕3 is the Fermi wave vector, and j1 is the spherical
Bessel function of the first kind. Similarly, the LDA
correlation hole is

Since the UEG is a physical system, the LDA exchange hole
correctly fulfills the negativity and sum-rule condition [Eqs.
(1.50) and (1.52)] and the LDA correlation hole correctly
fulfills the sum-rule and electron-electron cusp condition
[Eqs. (1.70) and (1.71)]. This constitutes a significant merit
of the LDA. However, because the LDA exchange hole


only depends on ρ(r1) and not on ρ(r2), the LDA
exchange functional does not entirely eliminate the self-
interaction contribution of the Hartree functional, in
particular in one and two-electron systems [Eqs. (1.72) or
(1.74), and (1.76)], or in one-orbital spatial regions of many-
electron systems [Eqs. (1.77) and (1.78)]. Similarly, the LDA
correlation functional does not vanish in one-electron
systems [Eqs. (1.73) or (1.75)], or more generally in one-
orbital one-electron regions [Eq. (1.81)]. Thus, the LDA
introduces a self-interaction error. Moreover, the LDA



exchange-correlation functional does not entirely cancel out
the Hartree energy in entangled one-electron spatial
regions [Eq. (1.80], i.e. it introduces a static-correlation
error.

Another deficiency of the LDA is that the (spin-
independent) LDA exchange potential

decays exponentially at infinity for finite molecular systems
(since the density ρ(r) decays exponentially), i.e. much too
fast in comparison to the − 1∕|r| asymptotic behavior of the
exact exchange potential [Eq. (1.27)]. Since asymptotic
spatial regions are dominated by the highest occupied
molecular orbital (HOMO) and are thus one-orbital regions
(assuming the HOMO is not degenerate), this is another
signature of the incorrectness of the LDA exchange
functional in these one-orbital regions.

For a review of mathematical results on the LDA, see
Chap. 3 by Lewin et al. in this volume.

1.3.2 The Gradient-Expansion Approximation

The next logical step beyond the LDA is the gradient-

expansion approximation (GEA) [135], in which the
exchange-correlation functional is systematically expanded
in the gradient and higher-order derivatives of the density.
One way of deriving the GEA is to start from the UEG,
introduce a weak and slowly-varying external potential
δv(r), and expand the exchange-correlation energy in terms
of the gradients of the density (see, e.g., Refs. [55, 134, 166,
246]). Alternatively, one can perform a semiclassical
expansion (i.e., an expansion in powers of the reduced
Planck constant ħ) of the exact Exc[ρ] in terms of the
gradients of the external potential and use the mapping



between the potential and the density to express it in terms
of the gradients of the density (see, e.g., Ref. [49]).

The spin-independent gradient expansion of the
exchange functional is known up to fourth order (GEA4)
[246],

(1.112)

involving the density gradient ∇ρ(r) and Laplacian
∇2ρ(r). Sham [224] obtained the second-order coefficient


. The calculation was
done by starting with the screened Yukawa interaction


and taking the limit κ → 0 at the end of the
calculation. It was later shown that this calculation contains
an order-of-limit problem and that the correct Coulombic
second-order coefficient is


[55, 134]. The fourth-
order coefficients are 
, and


, where the last one has been numerically
estimated [246]. Note that each term in Eq. (1.112)
correctly fulfills the scaling relation of Eq. (1.83). The spin-
dependent gradient exchange expansion is simply obtained
from the spin-scaling relation [Eq. (1.36)].

Similarly, Ma and Brueckner [166] obtained the spin-
independent second-order gradient expansion (GEA2) of the
correlation functional,

(1.113)

with a second-order coefficient in the high-density limit

. It is believed [149] that this

calculation contains a similar order-of-limit problem as in



Sham’s coefficient 
, in such a way that these two
coefficients must be combined to obtain the correct second-
order exchange-correlation coefficient in the high-density
limit 
. The correct second-
order correlation coefficient in the high-density limit is then


. Similarly, the
second-order correlation coefficient as a function of rs can
be obtained by 
, where 
has
been parametrized in Ref. [206]. The spin-dependent
generalization has the form [204, 271]

(1.114)

where the functions 
have been numerically
calculated in the high-density limit [204, 205].

The GEA should improve over the LDA for sufficiently
slowly varying densities. Since the spin-independent GEA2
exchange energy per particle has the form

where x = |∇ρ|∕ρ4∕3 is a dimensionless reduced density
gradient, the precise condition for exchange is x ≪ 1.
Unfortunately, for real systems like atoms and molecules,
the reduced density gradient x can be large in some regions
of space. In particular, in the exponential density tail,


, the reduced density gradient diverges


. But this is not as bad as it seems since

goes to zero anyway in this limit. The situation is

more catastrophic for correlation. Indeed, in the high-
density limit, the spin-independent GEA2 correlation energy
per particle behaves as



where y = |∇ρ|∕ρ7∕6 is another reduced density gradient
adapted to correlation. Therefore, in this limit, the GEA2
correlation correction diverges to + ∞ even faster than the
LDA diverges to −∞.

Another aspect of the deficiency of the GEA is that the
corresponding GEA exchange and correlation holes have
unphysical long-range parts which break the negativity [Eq.
(1.52)] and sum-rule conditions [Eqs. (1.50) and (1.57)].

In practice, the GEA tends to deteriorate the results
obtained at the LDA level. Truncated gradient expansions
should not be directly used but need to be resummed.

1.3.3 Generalized-Gradient Approximations

The failures of the GEA led to the development, which really
started in the 1980s, of generalized-gradient

approximations (GGAs) with the generic form

(1.115)

where 
is some function. The GGAs are often called
semilocal approximations in the sense that 
does not
only use the local value of the spin densities ρ↑(r) and ρ↓(r)
but also “semilocal information” through its gradients6

∇ρ↑(r) and ∇ρ↓(r).
Many GGA functionals have been proposed. They

generally provide a big improvement over LDA for
molecular systems. However, their accuracy is still limited,
in particular by self-interaction and static-correlation errors.
We review here some of the most widely used GGA
functionals.

B88 Exchange Functional



In the Becke 88 (B88 or B) exchange functional [18], the
exchange energy density is written as

(1.116)

where 
. The fact that 
depends linearly on

and nonlinearly only on the dimensionless reduced

density gradient xσ(r) guarantees the scaling relation of Eq.
(1.83). Using the exponential decay of the ground-state spin
densities of Coulombic systems, 
), it can be
verified that the chosen form for 
satisfies the exact
asymptotic behavior of the exchange energy density per
particle [Eq. (1.56)], although the corresponding exchange
potential does not satisfy the exact − 1∕r asymptotic
behavior [Eq. (1.27)] [54]. For small xσ, 
is correctly
quadratic in xσ. The parameter β = 0.0042 was found by
fitting to HF exchange energies of rare-gas atoms. A very
similar value of β can also be found by imposing the
coefficient Bx of the approximate large-Z asymptotic
expansion of the exchange energy of neutral atoms [Eq.
(1.96)] [51]. It turns out that imposing the coefficient of the
second-order gradient expansion [Eq. (1.112)] would lead to
a value of β about two times smaller and would greatly
deteriorate the accuracy of the functional for atoms and
molecules.

LYP Correlation Functional

The Lee–Yang–Parr (LYP) [150] correlation functional is one
of the rare functionals which have not been constructed
starting from LDA. It originates from the Colle–Salvetti [38]
correlation-energy approximation depending on the
curvature of the HF hole. By using a gradient-expansion
approximation of the curvature of the HF hole, LYP turned
the Colle–Salvetti expression into a density functional



depending on the density, the density gradient, and the
Laplacian of the density. The dependence on the Laplacian
of the density can be exactly eliminated by an integration by
parts [174], giving the following correlation energy density

where 
, δ(ρ) = cρ−1∕3 + 
dρ−1∕3∕(1 + dρ−1∕3), and CF = (3∕10)(3π2)2∕3. The parameters
a = 0.04918, b = 0.132, c = 0.2533, and d = 0.349 were
obtained in the original Colle–Salvetti expression by a fit to
Helium data. Note that the LYP correlation energy vanishes
for fully spin-polarized densities (ρ↑ = 0 or ρ↓ = 0) and
therefore correctly vanishes for one-electron systems [Eq.
(1.75)].

PW91 Exchange-Correlation Functional

The Perdew–Wang 91 (PW91) (see Refs. [29, 187, 189])
exchange-correlation functional is based on a model of the
exchange hole hx(r1, r2) in Eq. (1.55) and of the coupling-
constant-integrated correlation hole 
in Eq. (1.69).
The idea is to start from the GEA model of these holes given
as gradient expansions and remove the unrealistic long-
range parts of these holes to restore important constraints



satisfied by the LDA. Specifically, the spurious positive parts
of the GEA exchange hole are removed to enforce the
negativity condition of Eq. (1.52) and a cutoff in |r1 −r2| is
applied to enforce the normalization condition of Eq. (1.50).
Similarly, a cutoff is applied on the GEA correlation hole to
enforce the condition that the hole integrates to zero [Eq.
(1.70)]. The exchange and correlation energies per particle
calculated from these numerical holes are then fitted to
functions of the density and density gradient chosen to
satisfy a number of exact constraints.

The spin-independent PW91 exchange energy density is
written as

(1.117)
where the so-called enhancement factor is

(1.118)

with the reduced density gradient s = |∇ρ|∕(2kFρ) = 
x∕[2(3π2)1∕3] where kF = (3π2ρ)1∕3 is the Fermi wave vector.
The spin-dependent PW91 exchange energy density is
simply obtained from the spin-scaling relation [Eq. (1.36)]:


.
The enhancement factor 
satisfies the second-order
gradient expansion [Eq. (1.112)], 
with 
, the local Lieb–
Oxford bound, 
, which is a
sufficient and necessary condition for a spin-dependent GGA
exchange functional to satisfy the Lieb–Oxford lower bound
[Eq. (1.98)] for all densities [194] (note however that 1.804
is not an optimal bound), and the condition


which guarantees the non-uniform
scaling finiteness conditions of Eqs. (1.89) and (1.91) [158,
194].

The PW91 correlation energy density is written as



(1.119)

where the gradient correction HPW91(ρ↑, ρ↓, t) = H0(ρ↑, ρ↓,
t) + H1(ρ↑, ρ↓, t) depends on another reduced density
gradient (adapted to correlation) t  = |∇ρ|∕(2ϕ2(ζ)ksρ) = 
y∕[4ϕ2(ζ)(3∕π)1∕6] where 
is the Thomas–Fermi
screening wave vector and the spin-scaling function ϕ2(ζ) is
defined by Eq. (1.103), with

and Cxc(rs) is taken from Ref. [206]. The function H0(ρ↑, ρ↓,
t) was chosen so that it fulfills the second-order gradient
expansion [Eq. (1.114)], H0(ρ↑, ρ↓, t) = βϕ2(ζ)3t2 + O(t4),
using an approximate ζ dependence [271] and the Ma–
Brueckner high-density-limit second-order coefficient [166]


, and so that it cancels
the LDA correlation in the large-t limit,


. The only fitted parameter
is α = 0.09. The function H1(ρ↑, ρ↓, t) only serves to restore
the correct second-order gradient expansion, such that
HPW91(ρ↑, ρ↓, t) = 16(3∕π)1∕3Cxc(rs)ϕ2(ζ)3t2 + O(t4), while
keeping the large-t limit unchanged.

PBE Exchange-Correlation Functional

The Perdew–Burke–Ernzerhof (PBE) [188] exchange-
correlation functional is a simplification of the PW91
functional with no fitted parameters which gives almost the



same energies. The spin-independent PBE exchange energy
density is written as

(1.120)
where the enhancement factor is

(1.121)

The function 
has the second-order gradient
expansion 
, and the parameter is
chosen as 
so as to
cancel the correlation second-order gradient expansion. The
second parameter κ is chosen so as to saturate the local
Lieb–Oxford bound, i.e.


, leading to κ = 
0.804. The same exchange functional form was in fact
proposed earlier in the Becke 86 (B86) functional [17] with
empirical parameters (μ = 0.235, κ = 0.967).

A revised version of the PBE exchange functional, called
revPBE, was proposed where the local Lieb–Oxford bound
constraint is relaxed and the parameter κ = 1.245 is found
instead by fitting to exchange-only total atomic energies for
He and Ar, resulting in more accurate atomic total energies
and molecular atomization energies [276]. Another revised
version of the PBE exchange functional, called RPBE, was
also proposed to achieve a similar improvement, while still
enforcing the local Lieb–Oxford bound, by changing the
form of the enhancement factor to


with the same parameters
as in the original PBE [103].

The PBE correlation energy density is written as
(1.122)

with the gradient correction



and

As in the PW91 correlation functional, the function HPBE(ρ↑,
ρ↓, t) has the second-order gradient expansion HPBE(ρ↑, ρ↓,
t) = βϕ2(ζ)3t2 + O(t4) where


, and it cancels the LDA
correlation in the large-t limit,


. In contrast with the
PW91 correlation functional, under uniform coordinate
scaling to the high-density limit, the PBE correlation
functional correctly cancels out the logarithm divergence of
the LDA correlation functional [Eq. (1.109)], i.e.


, where A(0)ϕ2(ζ)3

is a good approximation to the coefficient A(ζ) [271].
A variant of the PBE exchange-correlation functional,

called PBEsol [196], targeted for solid-state systems, was
proposed where the correct second-order exchange
gradient-expansion coefficient is restored, i.e.


, and the second-
order correlation gradient-expansion coefficient βPBEsol = 
0.046 is found by fitting to jellium surface exchange-
correlation energies.

B97-GGA Exchange-Correlation Functional

The Becke 97 GGA (B97-GGA) exchange-correlation
functional is the GGA part of the B97 hybrid functional [22]
(see Sect. 1.4.1). The B97-GGA exchange energy density is

(1.123)

where 
is the spin-σ contribution to the
UEG exchange energy density and the gradient correction
gx(xσ) is a function of 
,



(1.124)

with 
. The B97-GGA correlation
energy density is written as the sum of opposite- and same-
spin contributions

(1.125)

where
(1.126)

and
(1.127)

In these expressions,

and


are estimations of the opposite- and
same-spin contributions to the UEG correlation energy
density [238, 239]. The opposite-spin gradient correction is
taken as a function of 
,

(1.128)

with 
, and the same-spin
gradient correction is

(1.129)

with 
. The parameters γx = 0.004,

, and 
, were roughly optimized on

atomic exchange and correlation energies. The other
parameters cx,i, 
, 
for a polynomial degree m = 2 in
Eqs. (1.124), (1.128), and (1.129) were optimized in the B97



hybrid functional in the presence of a fraction of HF
exchange energy (see Sect. 1.4.1).

The Hamprecht–Cohen–Tozer–Handy (HCTC) [104]
exchange-correlation functional uses the same form as the
B97-GGA exchange-correlation functional but with a
polynomial degree m = 4 and the parameters cx,i, 
, 
were optimized without HF exchange a set of energetic
properties (atomic total energies, ionization energies,
atomization energies), nuclear gradients, and accurate
exchange-correlation potentials.

1.3.4 Meta-Generalized-Gradient

Approximations

The meta-generalized-gradient approximations (meta-GGAs
or mGGAs) are of the generic form, in their spin-
independent version,

(1.130)

i.e., they use more ingredients than the GGAs, namely the
Laplacian of the density ∇2ρ(r) and/or the non-interacting
positive kinetic energy density τ(r) associated with a single-
determinant wave function Φ,

(1.131)

where {φi}i=1,…,N are the orbitals occupied in Φ. The meta-
GGAs are considered as part of the family of semilocal
approximations, in the sense that τ(r) contains semilocal
information with respect to the orbitals.

Meta-GGAs can be viewed as implicit functionals of the
density only, i.e. 
, since τ(r) can be considered
itself as an implicit functional of the density via the KS



single-determinant wave function Φ[ρ]. This view in which

is a proper approximation to the exchange-

correlation density functional Exc[ρ] of the KS scheme is
normally adopted when constructing meta-GGAs
approximations. However, the calculation of the functional
derivative of 
with respect to the density then
requires the use of the complicated optimized-effective-
potential method (see Sect. 1.7). Therefore, in practical
calculations, meta-GGAs are usually reinterpreted as
explicit functionals of a single-determinant wave function Φ,
i.e. 
, [2, 9, 73, 180, 181, 232, 242, 275] or, in
other words, approximations to an exact GKS exchange-
correlation functional (see Sect. 1.1.4).

In the latter approach, which we will here refer to as the
meta-Kohn–Sham (mKS) scheme, we introduce a functional


(to which meta-GGAs are approximations) defined
for ρ and τ simultaneously representable by a single-
determinant wave function 
and which defines the
GKS functional 
[see Eq. (1.38)] giving
the exact ground-state energy via Eq. (1.39),

(1.132)
which, by taking variations with respect to the orbitals,
gives the mKS equations:

(1.133)

Here, 
contains a usual local
potential

and a non-multiplicative operator [2, 9, 73, 242, 275]
(1.134)



evaluated with 
and

. Interestingly, the mKS equations

can be rewritten as a Schrödinger-like equation with a
position-dependent mass m(r) [50],

(1.135)

where 
. As in the KS scheme,
the functional 
is decomposed into exchange and
correlation contributions: 
.
In the spin-dependent version of the mKS scheme, we
consider a similar functional of the spin-resolved densities
and non-interacting positive kinetic energy densities


and the spin-scaling relation of Eq. (1.36) is
generalized to

(1.136)

Correspondingly, the spin-dependent versions of the meta-
GGAs are formulated in terms of the spin-resolved
quantities ρ↑, ρ↓, ∇ρ↑, ∇ρ↓, ∇2ρ↑, ∇2ρ↓, τ↑, and τ↓.

One motivation for the introduction of the variable τ(r) is
that it appears in the expansion of the spherically averaged
exchange hole [entering in Eq. (1.55)] for small
interelectronic distances r12 [16], which for the case of a
closed-shell system is

(1.137)

where S(0, r12) designates the sphere centered at 0 and of
radius r12 = |r12|. Thus τ(r) is needed to describe the



curvature of the exchange hole.
Another important motivation is that τ(r) is useful for

identifying different types of spatial regions of electronic
systems [245]. This is done by comparing τ(r) with the von
Weizsäcker kinetic energy density,

(1.138)

which is the exact non-interacting kinetic energy density for
one-electron systems and two-electron spin-unpolarized
systems, and, more generally, for one-orbital regions as
introduced in Sect. 1.2.3. For example, the indicator

(1.139)

which takes its values in the range [0, 1] [141], identifies
one-orbital regions (z = 1). A better indicator is

(1.140)

where τUEG(r) = (3∕10)(3π2)2∕3ρ(r)5∕3 is the non-interacting
kinetic energy density of the UEG. This indicator α(r)
distinguishes one-orbital regions (α = 0), slowly varying
density regions (α ≈ 1), and regions of density overlap
between closed shells that characterize noncovalent bonds
(α ≫ 1).

Nowadays, ∇2ρ(r) is rarely used to construct meta-GGAs
because it contains similar information to τ(r), which can be
seen by the second-order gradient expansion of τ(r) [27]:

(1.141)

In comparison to GGAs, meta-GGAs are more versatile
and generally constitute an improvement. Significantly,
thanks to the use of τ, self-interaction errors in the



correlation functional can be essentially eliminated with
meta-GGAs. They still suffer however from self-interaction
errors in the exchange functional. We now describe some of
the most used meta-GGA functionals.

TPSS Exchange-Correlation Functional

In the Tao–Perdew–Staroverov–Scuseria (TPSS) [198, 249]
functional, the exchange energy density is written as

(1.142)
where the enhancement factor is a function of s = |∇ρ|
∕(2kFρ) and z = τW∕τ,

(1.143)

with κ = 0.804 so as to saturate the local Lieb–Oxford bound
(just like in the PBE exchange functional) and

(1.144)

and 
(where α = (τ − 
τW)∕τUEG = (5s2∕3)(z−1 − 1)) is a quantity that tends to the
reduced density Laplacian 
in the slowly
varying density limit [using Eq. (1.141)]. The function
xTPSS(s, z) is chosen so as to satisfy the fourth-order
gradient expansion [Eq. (1.112)] which can be written in the
form of the enhancement factor


. The
constant μ = 0.21951 is chosen to retain the same large-s
behavior of the PBE exchange functional, i.e.


. The constants c = 1.59096 and e = 
1.537 are chosen so as to eliminate the divergence of the
potential at the nucleus for a two-electron exponential



density and to yield the correct exchange energy (− 0.3125
hartree) for the exact ground-state density of the hydrogen
atom. Finally, the constant b = 0.40 is chosen, quite
arbitrarily, as the smallest value that makes 
a
monotonically increasing function of s.

The TPSS correlation functional is constructed by making
minor refinements to the previously developed Perdew–
Kurth–Zupan–Blaha (PKZB) [192] meta-GGA correlation
functional,

(1.145)

where the revised PKZB correlation energy per particle is

(1.146)

with

where 
is the PBE correlation energy
per particle. Equation (1.146) constitutes a one-electron
self-interaction correction on the PBE correlation functional.
Indeed, for one-electron densities we have z = 1 and ζ = ±1,
and the TPSS correlation energy correctly vanishes [Eqs.
(1.75)]. The TPSS correlation functional preserves many
properties of the PBE correlation functional: it has correct
uniform coordinate scaling in the high- and low-density
limits, vanishing correlation energy in the large density-
gradient limit, and the same second-order gradient
expansion (since the additional terms beyond PBE are at
least in z2 and thus only change the fourth-order terms of
the gradient expansion). The parameters d = 2.8 hartree−1

and C(0, 0) = 0.53 are chosen so as to recover the PBE
surface correlation energy of jellium [145] over the range of



valence-electron bulk densities. The rest of the function is
taken as

where ξ = |∇ζ|∕(2kF) is a reduced spin-polarization gradient.
The function C(ζ, ξ) is chosen so as to make the exchange-
correlation energy independent of the spin polarization ζ in
the low-density limit [Eq. (1.86)] and to avoid that the self-
interaction correction introduces additional correlation
energy density in the core-valence overlap region of
monovalent atoms such as Li.

M06-L Exchange-Correlation Functional

In the Minnesota 06 local (M06-L) exchange-correlation
functional [278], the exchange energy density is written as

(1.147)

The first term in Eq. (1.147), which has the same form as in
the previously developed M05 exchange functional [277],
contains the spin-σ PBE exchange energy density


and the kinetic-energy
density correction factor

(1.148)

where 
with

is an indicator of the delocalization

of the exchange hole [24]. The second term in Eq. (1.147),
which has the same form as in the VS98 exchange
functional [264], contains the spin-σ UEG exchange energy
density 
and the correction factor

(1.149)



where 
and 
and h is the
parametrized function

with γ(x, Z, α) = 1 + α(x2 + Z).
The M06-L correlation energy is written as the sum of

opposite- and same-spin contributions, similarly to the B97-
GGA correlation functional [Eq. (1.125)],

where

and

where the spin-decomposed UEG correlation energies

and 
were already defined after Eq.

(1.127), and the gradient corrections gc,↑↓(x↑↓) and
gc,σσ(xσ) are given in Eqs. (1.128) and (1.129). The
additional correction factors are

(1.150)

where 
, Z↑↓ = Z↑ + Z↓, and

(1.151)

The factor Dσ(zσ) = 1 − zσ, where 
and

, ensures that the correlation energy

correctly vanishes for one-electron systems [23].



The parameters 
, and 
, were
optimized on the correlation energies of He and Ne. The
parameters αx = 0.001867, 
, and 
were taken from Ref. [264]. The constraints a0 + dx,0 = 1,


, and 
are enforced to obtain the
correct UEG limit. The remaining 34 free parameters ai, 
, 
for a polynomial degree m = 4 in Eqs. (1.148), (1.128),
and (1.129), and dx,i, 
, 
in Eqs. (1.149), (1.150), and
(1.151) were optimized on a large set of diverse
physicochemical properties concerning main-group
thermochemistry, reaction barrier heights, noncovalent
interactions, electronic spectroscopy, and transition metal
bonding.

SCAN Exchange-Correlation Functional

In the SCAN (strongly constrained and appropriately
normed) [244] exchange-correlation functional, the
exchange energy density is written as

(1.152)
where the enhancement factor is a function of s = |∇ρ|
∕(2kFρ) and α  = (τ − τW)∕τUEG,

(1.153)
which interpolates between α = 0 and α ≈ 1, and
extrapolates to α →∞ using the function

where θ is the Heaviside step function. The function

is chosen to make 
vanish

like s−1∕2 as s →∞, which guarantees the non-uniform
scaling finiteness conditions [Eqs. (1.89) and (1.91)] [158,
194], and a1 = 4.9479 is taken to recover the exact exchange
energy of the hydrogen atom. For α ≈ 1 (slowly varying



density regions), 
, where 
is
a PBE-like resummation of the fourth-order gradient
expansion [Eq. (1.112)],

where

with μ = 10∕81, b2 = (5913∕405000)1∕2, b1 = 
(511∕13500)∕(2b2), b3 = 0.5, and 
.
For α = 0 (one-orbital regions), 
where 
is chosen to saturate the local two-electron
tight bound 
, which is a sufficient and
necessary condition for a meta-GGA exchange functional to
satisfy the global tight bound of Eq. (1.101) for all two-
electron spin-unpolarized densities [194].

The SCAN correlation energy density is written as

(1.154)

which is again an interpolation between α = 0 and α = 1, and
an extrapolation to α →∞ using the function

For α = 1, the correlation energy par particle is taken as a
revised version of the PBE correlation energy per particle,

(1.155)
where

(1.156)

with t = |∇ρ|∕(2ϕ2(ζ)ksρ),

, 
,

and 
. The function has a second-order



gradient expansion 
,
where the coefficient β(rs) = 0.066725(1 + 0.1rs)∕(1 + 
0.1778rs) is a rough fit of the density dependence of the
second-order gradient expansion correlation coefficient
beyond the Ma–Brueckner high-density-limit value and
designed so that for rs →∞ the second-order gradient
expansion terms for exchange and correlation cancel each
other [195]. For α = 0, the correlation energy par particle is
constructed to be accurate for one- and two-electron
systems and is written as

(1.157)

The spin function Gc(ζ) = [1 − 2.3631(ϕ4(ζ) − 1)](1 − ζ12) is
designed to make the correlation energy vanish for one-
electron densities (α = 0 and ζ = ±1) and to make the
exchange-correlation energy independent of ζ in the low-
density limit [Eq. (1.86)]. Equation (1.157) includes a LDA-
type term [243]

and a gradient correction

with 
and

. The

parameter b1c = 0.0285764 is determined so that the high-
density limit of 
reproduces the exact correlation
energy of the Helium isoelectronic series in the large-
nuclear charge limit, i.e.


hartree [Eq.
(1.94)]. The parameter b3c = 0.125541 is determined to
saturate the lower bound on the exchange-correlation
energies of two-electron densities [Eq. (1.99)]. The



parameter b2c = 0.0889 is determined to reproduce the
exact exchange-correlation energy of the He atom.

The remaining seven parameters (k1 = 0.065, c1x = 0.667,
c2x = 0.8, dx = 1.24, c1c = 0.64, c2c = 1.5, and dc = 0.7) are
determined by fitting to the approximate asymptotic
expansions of the exchange and correlation energies of
neutral atoms in large nuclear charge limit [Eqs. (1.96) and
(1.97)], the binding energy curve of compressed Ar2, and
jellium surface exchange-correlation energies.

1.4 Single-Determinant Hybrid

Approximations

1.4.1 Hybrid Approximations

Based on arguments relying on the adiabatic-connection
formalism, in 1993 Becke [19] proposed to mix a fraction of
the exact or Hartree–Fock (HF) exchange energy 
with
GGA functionals. In particular, he proposed a three-

parameter hybrid (3H) approximation [20] of the form,
written here in its spin-independent version,

(1.158)

with empirical parameters a, b, and c. The functional 
is thought of as a functional of a single-determinant wave
function 
since 
is itself a functional of Φ,

(1.159)

where 
are the orbitals occupied in Φ. In 1996,
Becke proposed a simpler one-parameter hybrid (1H)

approximation [21],



(1.160)

where the fraction a of HF exchange has to be determined.
For simplicity, we considered GGA functionals 
and


in Eq. (1.160) but we can more generally use meta-
GGA functionals 
and 
.

These hybrid approximations should be considered as
approximations of the GKS exchange-correlation functional


in Eq. (1.38) with 
. The corresponding
GKS equations [Eq. (1.1.4)] then include the term

(1.161)

where 
is the nonlocal HF exchange potential7

The main benefit of adding a fraction of HF exchange is
to decrease the self-interaction error (see Sect. 1.2.3)
introduced by semilocal exchange functionals which tends
to favor too much delocalized electron densities over
localized electron densities. The fraction of HF exchange
should however be small enough to keep the compensation
of errors usually occurring between the approximate
semilocal exchange and correlation functionals. First, Becke
used the value a = 0.5 in the so-called Becke Half-and-Half
functional [19], but then fits to various experimental data
often repeatedly gave an optimal parameter a around 0.20–
0.25. A rationale has been proposed in favor of the value
0.25 [191]. By decreasing self-interaction errors in the
exchange energy, hybrid approximations are often a big
improvement over semilocal approximations for molecular
systems with sufficiently large electronic gaps. However, for
systems with small HOMO-LUMO gaps, such as systems



with stretched chemical bonds or with transition metal
elements, they tend to increase static-correlation errors.

An interesting extension of the hybrid approximations
are the so-called local hybrids, which use a position-
dependent fraction a(r) of a (non-uniquely defined) HF
exchange energy density 
[125] (see, Ref. [167] for a
recent review), and which belong to the wider family of
hyper-GGA functionals in which the correlation energy can
also be expressed as a function of 
[197]. The local-
hybrid approximations are much more flexible than the
global hybrid approach exposed in this section but require
more complicated and computationally expensive
implementations. For this reason, they have not often been
used and we will not consider them any further here.

We now describe some of the most used hybrid
approximations.

B3LYP Exchange-Correlation Functional

The B3LYP exchange-correlation functional [237] is the
most famous and widely used three-parameter hybrid
approximation [Eq. (1.158)]. It uses the B88 exchange
functional and the LYP correlation functional,

(1.162)

and the parameters a = 0.20, b = 0.72, and c = 0.81 were
found by optimizing on a set of atomization energies,
ionization energies, proton affinities of small molecules and
first-row total atomic energies [20]. A caveat is that the
VWN parametrization of the RPA correlation energy
(sometimes referred to as VWN3) of the UEG was actually
used for 
instead of the VWN parametrization of
the accurate correlation energy (sometimes referred to as
VWN5) of the UEG [265].

B97 Exchange-Correlation Functional



The Becke 97 (B97) exchange-correlation functional [22] is
a GGA hybrid of the form

(1.163)

where the form of the B97-GGA exchange and correlation
functionals were given in Eqs. (1.123) and (1.125). The
fraction of HF exchange a = 0.1943 and the remaining
parameters cx,0 = 1.00459, cx,1 = 0.629639, cx,2 = 0.928509,


, 
, 
, 
,

, and 
for a polynomial degree m = 2

in Eqs. (1.124), (1.128), and (1.129) were optimized on a set
of total energies, atomization energies, ionization energies,
and proton affinities. Note that, for xσ = 0, the UEG limit is
not imposed, which would require the parameters cx,0, 
,
and 
to be all strictly equal to 1. With the above
optimized parameters, we see that it is nearly satisfied for
the exchange energy and the opposite-spin correlation
energy, but very far from it for the same-spin correlation
energy, which is drastically reduced compared to the LDA.

PBE0 Exchange-Correlation Functional

The PBE0 exchange-correlation functional [1, 60] is a GGA
hybrid using the PBE exchange and correlation functionals,

(1.164)

and the fraction of the HF exchange is fixed at a = 0.25
according to the rationale of Ref. [191]. This functional is
also known under the name PBE1PBE. The “1” in the latter
name emphasizes that there is one parameter, a, while the
“0” in the more common name PBE0 emphasizes that this
parameter is not found by fitting.



TPSSh Exchange-Correlation Functional

The TPSSh exchange-correlation functional [234] is a meta-
GGA hybrid using the TPSS exchange and correlation
functionals,

(1.165)

and the fraction of the HF exchange a = 0.10 was
determined by optimizing on a large set of atomization
energies.

M06 and M06-2X Exchange-Correlation Functionals

The M06 exchange-correlation functional [279] is a meta-
GGA hybrid using the M06-L exchange and correlation
functionals,

(1.166)

and the parameters in the M06-L exchange and correlation
functionals were reoptimized together with the fraction of
HF exchange a = 0.27 on the same large set of diverse
physicochemical properties used for the M06-L functional.
In the M06-2X exchange-correlation functional the fraction
of HF exchange is doubled, i.e. a = 0.54, and the parameters
were reoptimized with the function hx(xσ, Zσ) in Eq. (1.149)
set to zero and excluding transition metal properties in the
training set. With this large fraction of HF exchange, the
M06-2X functional is designed for systems without
transition metal elements.

1.4.2 Range-Separated Hybrid Approximations

Based on earlier ideas of Savin [216] (exposed in detail in
Sect. 1.5.2), in 2001, Iikura et al. [121] proposed a long-

range correction (LC) scheme in which the exchange-



correlation energy is written as, in its spin-independent
version,

(1.167)
This scheme has also been referred to as the range-
separated hybrid exchange (RSHX) scheme [77]. In Eq.
(1.167), 
is the HF exchange energy for a long-
range electron-electron interaction 
(where 
is the error function and the parameter μ ∈ [0,
+∞) controls the range of the interaction),

(1.168)

and 
is a GGA exchange energy functional for
the complementary short-range interaction


. This latter functional can be
thought of as an approximation to the short-range exchange
functional

(1.169)

where hx(r1, r2) is the KS exchange hole of Sect. 1.2.1. For
μ = 0, the long-range HF exchange energy vanishes, i.e.


, and the short-range exchange functional
reduces to the standard KS exchange functional, i.e.


. Reversely, for μ →∞, the long-range HF
exchange energy reduces to the full-range HF exchange
energy, i.e. 
, and the short-range
exchange functional vanishes, i.e. 
.
Significantly, for large μ, the short-range exchange
functional becomes a local functional of the density [81,
255]:

(1.170)



Like the hybrid approximations of Sect. 1.4.1, Eq. (1.167)
should be considered as an approximation of the GKS
exchange-correlation functional 
in Eq. (1.38) with


, and the corresponding GKS equations [Eq.
(1.1.4)] then includes a long-range nonlocal HF exchange
potential 
.
Similarly to the hybrid approximations, the introduction of a
fraction of long-range HF exchange reduces the self-
interaction error (see, e.g., Ref. [179]). In addition, the
short-range exchange part is easier to approximate with
semilocal density-functional approximations, as Eq. (1.170)
strongly suggests. In particular, the − 1∕r asymptotic
behavior of the exchange potential [Eq. (1.27)], which is
difficult to satisfy with semilocal approximations, does not
apply anymore to the short-range exchange potential.

In 2004, Yanai et al. [273], introduced a more flexible
scheme called the Coulomb-attenuating method (CAM)
[273] in which fractions of HF exchange are added at both
short range and long range,

(1.171)

where 
is the short-range HF
exchange energy and 
is a long-
range GGA exchange energy. The reintroduction of HF
exchange at short range further reduces the self-interaction
error and improves thermodynamic properties such as
atomization energies. Again, Eq. (1.171) should be
considered as an approximation of the GKS exchange-
correlation functional 
in Eq. (1.38) with


. Other forms of modified



electron-electron interactions are also possible (see, e.g.,
Refs. [113, 217, 255]).

The approximations in Eqs. (1.167) and (1.171) are
usually collectively referred to as range-separated hybrid

approximations. Range-separated hybrids in the form of Eq.
(1.171) are more flexible than the hybrid approximations of
Sect. 1.4.1, and consequently are potentially more accurate,
in particular for long-range electronic excitations. However,
like the hybrid approximations, the presence of HF
exchange tends to induce static-correlation errors for
systems with small HOMO-LUMO gaps.

The range-separation parameter μ (also sometimes
denoted as ω) is generally chosen empirically, e.g. by fitting
to experimental data. In practice, a value around μ ≈ 0.3 − 
0.5 bohr−1, fixed for all systems, is often found to be
optimal. It has also been proposed to adjust the value of μ in
each system, e.g. by requiring that the opposite of the
HOMO energy be equal to the ionization energy calculated
by total energy differences [12, 235, 236]. These so-called
optimally tuned range-separated hybrids are well suited for
the calculation of charge-transfer electronic excitations but
have the disadvantage of not being size consistent [130].

A natural idea is to use a position-dependent range-
separation parameter μ(r) which allows the range of the
modified interaction to adapt to the local average electron-
electron distance in the diverse spatial regions of the
system. These locally range-separated hybrids [11, 133,
139] are promising but they induced computational
complications and are still in the early stages of
development. We will thus not consider them any further
here.

We now describe some of the most used approximations
in the context of the range-separated hybrids.

Short-Range LDA Exchange Functional



The short-range LDA exchange functional [81, 216] can be
obtained by using in Eq. (1.169) the LDA exchange hole [Eq.
(1.110)], which leads to

(1.172)

with the short-range UEG exchange energy density

(1.173)

where 
is a dimensionless range-separation
parameter. The spin-dependent version is obtained from the
same spin-scaling relation as in the standard case [Eq.
(1.36)]. The short-range LDA exchange functional becomes
exact for large μ [Eq. (1.170)] and is the first building block
for constructing short-range exchange GGA functionals.

CAM-B3LYP Exchange-Correlation Functional

The CAM-B3LYP exchange-correlation functional [273] uses
Eq. (1.171) with short- and long-range versions of the B88
exchange functional and the same correlation functional
used in B3LYP (i.e., 
),

(1.174)

where the parameters a = 0.19 and b = 0.65 were optimized
on atomization energies and the range-separation
parameter μ = 0.33 bohr−1 was taken from Ref. [250], where
it was optimized on equilibrium distances of diatomic
molecules. In this expression, the short-range B88 exchange
functional 
is defined by using in Eq. (1.169) the
following generic GGA model for the exchange hole [121]
(given here in its spin-independent version)



(1.175)

with 
. The exchange-hole
model of Eq. (1.175) properly yields the GGA exchange
energy density 
for μ = 0 and thus allows one to
extend any standard GGA exchange functional to a short-
range GGA exchange functional. Note however that it does
not fulfill the sum rule [Eq. (1.50)]. The long-range B88
exchange functional is then simply 
.

LC-ωPBE Exchange-Correlation Functional

The LC-ωPBE exchange-correlation functional [266, 267]
uses a short-range version of the PBE exchange functional
as well as the standard PBE correlation functional,

(1.176)

The short-range PBE exchange functional is obtained by
using in Eq. (1.169) the following GGA exchange hole model
constructed to yield the PBE exchange energy [59],

(1.177)
where s = |∇ρ|∕(2kFρ) and

(1.178)

Here, 
, 
, 
, 
, and 
are constants chosen to obtain
an oscillation-averaged UEG exchange hole for s = 0, and


, 
and 
are functions determined so that the
hole yields the PBE exchange density for μ = 0, and satisfies
the sum rule [Eq. (1.50)] and the small-r12 expansion [Eq.
(1.137)] using the gradient expansion of τ of Eq. (1.141).



The range-separation parameter is fixed at μ = ω = 0.4
bohr−1 which has been found to be close to optimal for
atomization energies, reaction barrier heights, and
ionization energies [266].

ωB97X Exchange-Correlation Functional

The ωB97X exchange-correlation functional [34] has the
form of Eq. (1.171) with b = 1:

(1.179)

The short-range B97-GGA exchange density is defined as

where 
is the spin-σ contribution
to the short-range UEG exchange energy density [Eq.
(1.173)] and the gradient correction gx(xσ) where


has the same form as in Eq. (1.124) with
polynomial degree m = 4. In Eq. (1.179), the correlation
functional has the same form as the B97-GGA correlation
functional but again with polynomial degree m = 4 in Eqs.
(1.128) and (1.129). The fraction of short-range HF
exchange a ≈ 0.16, the range-separation parameter μ = ω = 
0.3 bohr−1, and the linear coefficients in Eqs. (1.124),
(1.128), and (1.129) were optimized on sets of atomic
energies, atomization energies, ionization energies, electron
and proton affinities, reaction barrier heights, and
noncovalent interactions, with the constraints a + cx,0 = 1,


, and 
to enforce the correct UEG limit.

HSE Exchange-Correlation Functional

The Heyd–Scuseria–Ernzerhof (HSE) exchange-correlation
functional [117] is of the form of Eq. (1.171) with b = 0 (i.e.,
no long-range HF exchange),

(1.180)



and involves the long-range PBE exchange functional

complementary to the short-range

PBE exchange functional constructed from the PBE
exchange hole model [Eqs. (1.177) and (1.178)]. In order to
reproduce reliable values for the band gap in
semiconducting solids, the range-separation parameter is
fixed at μ = 0.15 bohr−1, which is a very small value
compared to the other range-separated hybrids. It means
that the range of electron-electron distances covered by HF
exchange is large, and the HSE functional could be thought
of as a regular hybrid approximation but with the very long-
range contribution of the HF exchange removed. This is
particularly appropriate for solids since in these systems the
very long-range HF exchange is effectively balanced by the
correlation effects (a phenomenon known as screening). The
fraction of (short-range) HF exchange is fixed at a = 0.25
like in the PBE0 hybrid functional.

1.5 Multideterminant Hybrid

Approximations

1.5.1 Double-Hybrid Approximations

In 2006, Grimme [98] introduced a two-parameter double-

hybrid (2DH) approximation, written here in its spin-
independent version,

(1.181)
mixing a fraction ax of the HF exchange energy with a GGA
exchange functional, and a fraction ac of the second-order
Møller–Plesset (MP2) correlation energy 
with a GGA
correlation functional. In Eq. (1.181), the first three terms
are first calculated in a self-consistent manner, and then the



last term 
is added perturbatively using the orbitals
determined in the first step. The expression of 
is [247]

(1.182)

where i, j and a, b run over occupied and virtual spin
orbitals, respectively, εk are spin orbital energies, and


) are antisymmetrized
two-electron integrals with (in physicists’ notation)

(1.183)

Note that the notation in Eq. (1.182) assumes that the one-
electron wave-function space is spanned by a discrete set of
spin orbitals. In the exact theory, the continuum limit of the
set of virtual spin orbitals is implied.

The rigorous framework underlying these double-hybrid
approximations was established by Sharkas et al. [226]. The
idea is to decompose the universal density functional of Eq.
(1.7) as

(1.184)

where λ ∈ [0, 1] is a coupling constant and 
is a
complementary density functional defined to make Eq.
(1.184) exact. From Eqs. (1.10) and (1.62), we see that


, where EHxc[ρ] is the standard
Hartree-exchange-correlation functional of the KS scheme
and 
is the Hartree-exchange-correlation functional
along the adiabatic connection. The Hartree and exchange
contributions are simply linear in λ,

(1.185)

(1.186)



where EH[ρ] and Ex[ρ] are the standard Hartree and
exchange functionals of the KS scheme. Moreover, from the
uniform coordinate scaling relation of Eq. (1.84), we have

(1.187)

where Ec[ρ] is the standard correlation functional of the KS
scheme and ρ1∕λ(r) = (1∕λ)3ρ(r∕λ) is the scaled density. The
decomposition in Eq. (1.184) leads to the following
expression of the exact ground-state energy

(1.188)
where the infimum is over general multideterminant wave
functions 
. This constitutes a multideterminant

extension of the KS scheme. Note that this
multideterminant KS scheme can trivially be extended to
spin-dependent density functionals and functionals
depending on the kinetic-energy density [232].

The double-hybrid ansatz can be seen as a particular
approximation within this multideterminant KS scheme
[226]. To see this, we define a density-scaled one-parameter
hybrid (DS1H) approximation by restricting the
minimization in Eq. (1.188) to single-determinant wave
functions 
,

(1.189)

obtaining an energy which necessarily depends on λ. A
minimizing single-determinant wave function Φλ must
satisfy the self-consistent eigenvalue equation

(1.190)

where 
is the nonlocal HF potential operator
evaluated with the DS1H wave function Φλ and 
is
the local Hartree-exchange-correlation potential operator



generated by the energy functional 
and evaluated at
the DS1H density 
. If written explicitly in terms of spin
orbitals, Eq. (1.190) would have the form of the GKS
equations [Eq. (1.40)]. The DS1H ground-state energy can
be finally written as

(1.191)

where the full Hartree energy EH[ρ] has been recomposed.
The exchange-correlation energy in Eq. (1.191) is of the
form of a hybrid approximation [Eq. (1.160)].

All that is missing in Eq. (1.191) is the correlation energy
associated with the scaled interaction 
. It can be
calculated by a nonlinear Rayleigh–Schrödinger
perturbation theory [5, 6, 69] starting from the DS1H
reference. Consider the following energy expression with
the perturbation parameter α ∈ [0, 1],

(1.192)

where 
is the scaled Møller–Plesset
perturbation operator. For α = 0, the stationary equation
associated with Eq. (1.192) reduces to the DS1H eigenvalue
equation [Eq. (1.190)]. For α = 1, Eq. (1.192) reduces to Eq.
(1.188), so 
is the exact energy, independently of λ.
The sum of the zeroth-order energy and first-order energy
correction gives simply the DS1H energy,


. Thanks to the existence of a Brillouin
theorem just like in standard Møller–Plesset perturbation
theory (see Refs. [5, 6, 69]), only double excitations
contribute to the first-order wave-function correction Ψλ, (1)

and the second-order energy correction has a standard MP2
form



where 
has the expression in Eq. (1.182) with DS1H
spin orbitals and associated orbital eigenvalues (which
implicitly depend on λ). This second-order perturbation
theory defines a density-scaled one-parameter double-
hybrid (DS1DH) approximation

(1.193)

which contains the exchange-correlation energy
contribution

(1.194)
To make connection with the double-hybrid ansatz of Eq.
(1.181), we can also define a one-parameter double-hybrid
(1DH) approximation, obtained by neglecting the density
scaling in the correlation functional, i.e. Ec[ρ1∕λ] ≈ Ec[ρ] in
Eq. (1.187),

(1.195)
which, after using semilocal approximations for Ex[ρ] and
Ec[ρ], has the form of Eq. (1.181) with parameters ax = λ
and ac = λ2. In this rigorous formulation of the double-hybrid
approximations, the fraction of HF exchange is thus
connected to the fraction of MP2 correlation. Taking into
account approximately the scaling of the density in Ec[ρ1∕λ],
it has also been proposed to use ac = λ3 [260]. Fromager
[67] also proposed an extension of this rigorous formulation
in order to justify the use of double-hybrid approximations
with two parameters such that 
.

An essential advantage of double-hybrid approximations
is that the presence of nonlocal MP2 correlation allows one
to use a larger fraction of nonlocal HF exchange, which
helps decreasing the self-interaction error. This usually
provides an improvement over hybrid approximations for
molecular systems with sufficiently large electronic gaps.



However, a large fraction of HF exchange and a fraction of
MP2 correlation also generally means large static-
correlation errors in systems with small HOMO-LUMO gaps.

The first and still best known double-hybrid
approximation is B2PLYP [98], which is based on the B88
exchange functional and the LYP correlation functional,

and the parameters ax = 0.53 and ac = 0.27 have been
optimized on a set of atomization energies. Interestingly,
even though the two parameters have been optimized
without any constraint, we have 
as predicted
by Eq. (1.195).

It has also been proposed to use the spin-component-
scaled (SCS) version of MP2 [95] to construct spin-
component-scaled double-hybrid approximations of the form
[136, 137]

(1.196)

which contains four empirical parameters ax, ac, cOS, and
cSS. In this expression, 
and 
are the opposite-spin
(OS) and same-spin (SS) contributions to the MP2
correlation energy obtained by restricting the sums over i
and j in Eq. (1.182) to spin orbitals of opposite and same
spins, respectively. Since in MP2 the same-spin component
is usually overestimated relative to the opposite-spin
component, this SCS variant is a simple way to achieve
higher accuracy without increasing computational cost.

For reviews on different flavors of double hybrids and
their assessments, the reader may consult Refs. [82, 171,
212, 241]. It has also been proposed to construct double-
hybrid approximations where the MP2 correlation term is
extended to a higher-order correlation method such as RPA



[3, 100, 172, 173, 211] or coupled-cluster [35, 76]. More
generally, the multideterminant extension of the KS scheme
of Eq. (1.188) allows one to define hybrids combining any
wave-function method with density functionals. For
example, a multiconfiguration hybrid approximation based
on Eq. (1.188) which combines a multiconfiguration self-
consistent-field (MCSCF) wave function with density
functionals has been proposed in the goal of tackling
strongly correlated systems [225]. This approach has also
been used to combine valence-bond (VB) theory [274] or
variational two-electron reduced-density-matrix theory
[176] with DFT.

1.5.2 Range-Separated Double-Hybrid

Approximations

1.5.2.1 Range-Separated One-Parameter

Double-Hybrid Approximations

In 2005, Ángyán et al. [6] introduced what could be called
the first range-separated one-parameter double-hybrid

approximation, i.e. combining HF exchange and MP2
correlation with density functionals using a one-parameter
decomposition of the electron-electron interaction. This is
based on the range-separated multideterminant extension of

the KS scheme introduced earlier by Savin [216] (see, also,
Refs. [215, 217, 255]) and which actually predates and
inspired the multideterminant extension of the KS scheme
of Eq. (1.188).

The idea is to decompose the universal density functional
of Eq. (1.7) as

(1.197)

where 
is the long-range electron-electron interaction
operator (associated with the pair potential


as already used in the range-
separated hybrids of Sect. 1.4.2) and 
is the



complementary short-range density functional defined to
make Eq. (1.197) exact. As before, the parameter μ ∈ [0,
+∞) controls the range of the separation. The
complementary short-range functional can be written as


, where EHxc[ρ] is the standard
Hartree-exchange-correlation functional of the KS scheme
and 
is the Hartree-exchange-correlation functional
associated with the long-range interaction 
. It is
often convenient to decompose the short-range functional as
(see Refs. [240, 254, 258] for an alternative decomposition)

where 
is the short-range Hartree functional,

with the short-range interaction 
,

is the short-range exchange functional [Eq. (1.169)]

which can also be written as

with the KS single-determinant wave function Φ[ρ], and

is the complementary short-range correlation

functional. Just like for Eq. (1.188), the decomposition in
Eq. (1.197) leads to the following expression of the exact
ground-state energy

(1.198)

where the infimum is over general multideterminant wave
functions 
.

To obtain an MP2/DFT hybrid scheme, we proceed
analogously to Sect. 1.5.1. First, we define the following
range-separated hybrid (RSH) approximation by restricting



the minimization in Eq. (1.198) to single-determinant wave
functions 
,

(1.199)

obtaining an energy which necessarily depends on μ. A
minimizing single-determinant wave function Φμ must
satisfy the self-consistent eigenvalue equation

(1.200)

where 
is the nonlocal long-range HF potential
operator evaluated with the RSH wave function Φμ and


is the local short-range Hartree-exchange-
correlation potential operator generated by the energy
functional 
and evaluated at the RSH density 
. The
RSH ground-state energy can be finally written as

(1.201)

where the full Hartree energy EH[ρ] has been recomposed.
The exchange-correlation energy in Eq. (1.201) has a
similar form as in the LC scheme of Eq. (1.167).

To calculate the missing long-range correlation energy in
Eq. (1.201), we can define a nonlinear Rayleigh–
Schrödinger perturbation theory [5, 6, 69] starting from the
RSH reference. We start from the following energy
expression with the perturbation parameter α ∈ [0, 1],

(1.202)

where 
is the long-range Møller–
Plesset perturbation operator. For α = 0, the stationary
equation associated with Eq. (1.202) reduces to the RSH
eigenvalue equation [Eq. (1.200)]. For α = 1, Eq. (1.202)



reduces to Eq. (1.198), so 
is the exact energy,
independently of μ. The sum of the zeroth-order energy and
first-order energy correction gives simply the RSH energy,


. As in Sect. 1.5.1, only double
excitations contribute to the first-order wave-function
correction Ψμ, (1) and the second-order energy correction
has a standard MP2 form

where 
has the same expression as in Eq. (1.182)
with RSH spin orbitals and associated orbital eigenvalues
(which implicitly depend on μ) but using the long-range two-
electron integrals

(1.203)

instead of the standard two-electron integrals of Eq.
(1.183). This second-order perturbation theory defines a
RSH+MP2 approximation,

(1.204)

which contains the exchange-correlation energy
contribution

(1.205)
When using semilocal density-functional approximations for
the short-range functionals 
and 
, the
RSH+MP2 exchange-correlation energy expression of Eq.
(1.205) thus constitutes range-separated double-hybrid
approximations similar to the double hybrids of Sect. 1.5.1.
The optimal value for the range-separation parameter is
often around μ ≈ 0.5 bohr−1 [77, 177]. This scheme has the
advantage of dropping the long-range part of both the
exchange and correlation density functionals, which are
usually not well described by semilocal density-functional



approximations. Moreover, using a long-range MP2
correlation energy has the advantage of leading to a correct
qualitative description of London dispersion interaction
energies [6, 78, 79, 251], while displaying a fast
convergence with the one-electron basis size [63]. Similar to
the SCS double hybrids [Eq. (1.196)], a SCS variant of the
RSH+MP2 scheme has also been proposed [213].

The range-separated multideterminant extension of the
KS scheme of Eq. (1.198) allows one to define various
hybrid schemes combining any wave-function method with
density functionals. For example, one can go beyond second
order by using long-range coupled-cluster [75, 83, 84, 262]
or random-phase approximations [124, 185, 257, 261, 262].
To describe strongly correlated systems, one can also use
for the long-range part wave-function methods such as
configuration interaction (CI) [31, 62, 152, 202], MCSCF
[70, 71, 108], density-matrix renormalization group (DMRG)
[107], or multireference perturbation theory [68]. Density-
matrix functional theory (DMFT) [201, 209, 210] and Green-
function methods [128, 207] have also been used for the
long-range part.

We now consider the approximations used for 
and

. In Sect. 1.4.2, we have already described the short-

range exchange LDA [Eq. (1.172)] and some short-range
exchange GGAs for 
. Here, we describe the short-
range LDA correlation functional and another short-range
GGA exchange-correlation functional.

Short-Range LDA Correlation Functional

The complementary short-range LDA (or LSDA) correlation
functional is

(1.206)

where 
is the
complementary short-range UEG correlation energy density.



In this expression, 
is defined by

(1.207)

where 
and 
are the correlation
energies per particle of the UEG with the standard Coulomb
and long-range electron-electron interactions, respectively.
A simple spin-independent parametrization of 
was
given in Ref. [259]. A better spin-dependent parametrization
was constructed in Ref. [186] which uses the PW92
parametrization for 
[Eq. (1.106)] and the
following parametrization for 
in terms of rs = 
(3∕(4πρ))1∕3 and ζ = (ρ↑− ρ↓)∕ρ:

In this expression, ϕ2(ζ) is a spin-scaling function defined
by Eq. (1.103), Q(x) is a function determined from the small-
μ and/or small-rs limit,

with a = 5.84605, c = 3.91744, d = 3.44851,

, α = 4∕(9π)1∕3, and the functions ai(rs,

ζ) are



where 
is the PW92 parametrization of the
UEG correlation energy per particle. The functions Ci(rs, ζ)
are determined from the large-μ limit,

where g(0, rs, ζ) is the on-top pair-distribution function8 of
the Coulombic UEG and g″(0, rs, ζ) is its second-order
derivative with respect to r12 at r12 = 0, and similarly for
their correlation parts gc(0, rs, ζ) = g(0, rs, ζ) − (1 − ζ2)∕2
and 
with ϕ8(ζ) defined
by Eq. (1.103). The ζ-dependence of the latter quantities is
assumed to be exchange-like, i.e. g(0, rs, ζ) ≈ (1 − ζ2)g(0, rs,
ζ = 0) and


where
ζ± = (1 ± ζ)∕2. The on-top pair-distribution function has been
parametrized in Ref. [85] as

with B = 0.7317 − d, C = 0.08193, D = −0.01277, E = 
0.001859, and F = 0.7524. The remaining functions were
determined by fitting to QMC data:



Short-Range PBE(GWS) Exchange-Correlation

Functional

The Goll–Werner–Stoll (GWS) variant of the short-range
PBE exchange-correlation functional [83, 84] is a slight
modification of the short-range PBE functional developed in
Ref. [256]. The exchange energy density is

(1.211)

with an enhancement factor of the same form as in the
standard PBE exchange functional,

(1.212)

with s = |∇ρ|∕(2kFρ) and 
. In this expression, κ = 
0.840, as in the standard PBE exchange functional, to
saturate the local Lieb–Oxford bound (for μ = 0) and


where bPBE = 0.21951 is the
second-order gradient-expansion coefficient of the standard
PBE exchange functional, and 
is a function coming
from the second-order GEA of the short-range exchange
energy [254, 256],

(1.213)

with 
, 
,

, and




. Finally, αx = 
19.0 is a damping parameter optimized for the He atom.

Similarly, the correlation energy density has the same
form as the standard PBE correlation functional,

with t = |∇ρ|∕(2ϕ2(ζ)ksρ) and the gradient correction

where

and

(1.214)

and the value of A(0) is given after Eq. (1.104). In Eq.
(1.214), β = 0.066725 is the second-order gradient
coefficient of the standard PBE correlation functional and
αc = 2.78 is a damping parameter optimized for the He
atom.

For μ = 0, this short-range PBE exchange-correlation
functional reduces to the standard PBE exchange-
correlation functional and for large μ it reduces to the short-
range LDA exchange-correlation functional.

1.5.2.2 Range-Separated Two-Parameter

Double-Hybrid Approximations

In 2018, Kalai and Toulouse [127] introduced what we will
call range-separated two-parameter double-hybrid

approximations, combining HF exchange and MP2
correlation with density functionals using a two-parameter
decomposition of the electron-electron in a way reminiscent
of the CAM decomposition [Eq. (1.171)] (see, also, Refs.



[40, 75]). This is based on a multideterminant extension of
the KS scheme which generalizes the schemes of Sects.
1.5.1 and 1.5.2.1.

We first decompose the universal density functional of
Eq. (1.7) as

(1.215)

where the parameter μ ∈ [0, +∞) controls the range of the
separation as always, the parameter λ ∈ [0, 1] corresponds
to the fraction of the short-range electron-electron
interaction in the wave-function part, and 
is the
complementary short-range density functional defined to
make this decomposition exact. As before, the latter
functional can be decomposed as

The Hartree and exchange contributions are linear in λ,

(1.216)
where 
and 
are the short-range Hartree and
exchange functionals introduced in Sect. 1.5.2.1, and the
correlation contribution can be written as

where Ec[ρ] is the standard KS correlation functional and

is the correlation functional associated with the

interaction 
. The exact ground-state
energy can then be expressed as

(1.217)

which constitutes a generalization of Eqs. (1.188) and
(1.198).



To obtain a MP2/DFT hybrid scheme, we proceed in full
analogy to Sects. 1.5.1 and 1.5.2.1. First, we define the
following single-determinant range-separated two-
parameter hybrid (RS2H) approximation,

(1.218)

and use it as a reference for defining a perturbation theory
similarly to Eqs. (1.192) and (1.202). At second order, we
obtain

(1.219)

where 
is the MP2 correlation energy expression
evaluated with RS2H spin orbitals and orbital eigenvalues,
and the two-electron integrals associated with the
interaction 
. This RS2H+MP2 scheme
thus contains the exchange-correlation energy contribution

(1.220)

where Φμ, λ is a minimizing single-determinant wave
function in Eq. (1.218).

A good approximation for the λ-dependence of the
complementary correlation functional 
is [127]

(1.221)

where 
is the short-range correlation functional
introduced in Sect. 1.5.2.1. In particular, the λ-dependence
in Eq. (1.221) is correct both in the high-density limit, for a
non-degenerate KS system, and in the low-density limit.
Thanks to Eqs. (1.216) and (1.221), the semilocal density-
functional approximations for 
and 
of Sect.
1.5.2.1 can be reused here without developing new ones. In
Ref. [127], the short-range PBE(GWS) exchange and
correlation functionals were used, and the optimal



parameters μ = 0.46 bohr−1 and λ = 0.58 were found on
small sets of atomization energies and reaction barrier
heights, i.e. values similar to the ones usually used
separately in range-separated hybrids and double hybrids.

The RS2H+MP2 scheme improves a bit over the
RSH+MP2 scheme of Sect. 1.5.2.1, particularly for
interaction energies of hydrogen-bonded systems. Even if
the presence of short-range MP2 correlation deteriorates in
principle the convergence rate with the one-electron basis
size, in practice the fraction of pure short-range MP2
correlation (λ2 ≈ 0.34) is small enough to keep a fast basis
convergence. Accuracy can be improved, particularly for
dispersion interactions, by supplanting the MP2 term by
coupled-cluster or random-phase approximations [126]. Like
for the approach of Sect. 1.5.2.1, many wave-function
methods could be used in the general scheme of Eq. (1.217).

1.6 Semiempirical Dispersion

Corrections and Nonlocal van der

Waals Density Functionals

Among the previously considered exchange-correlation
approximations, only the range-separated double hybrids of
Sect. 1.5.2, thanks to their long-range nonlocal correlation
component, are capable of fully describing London
dispersion interactions, crucial for describing weakly
bonded systems. To improve the other approximations
(semilocal functionals, single-determinant hybrids, double
hybrids without range separation) for weakly bonded
systems, it has been proposed to add to them a
semiempirical dispersion correction or a nonlocal van der
Waals density functional. We now describe these
approaches.

1.6.1 Semiempirical Dispersion Corrections



To explicitly account for London dispersion interactions, it
has been proposed in the 2000s to add to the standard
approximate functionals a semiempirical dispersion

correction of the form [52, 96, 97, 272]

(1.222)

where Rαβ is the distance between each pair of atoms and

is the London dispersion coefficient between these

atoms. Here, f(Rαβ) is a damping function which tends to 1
at large Rαβ and tends to zero at small Rαβ, e.g.

(1.223)

with the sum of tabulated atomic van der Waals radii

and a constant d, and s is a scaling

parameter that can be adjusted for each approximate
functional. The dispersion coefficient 
for any pair of
atoms is empirically calculated from tabulated same-atom
dispersion coefficients 
and/or atomic polarizabilities.
This approach was named “DFT-D” by Grimme [96].

The last version of DFT-D (referred to as DFT-D3) also
includes 
two-body terms and 
three-body terms
[99]. There have also been various proposals to make the
determination of dispersion coefficients less empirical, such
as the scheme of Becke and Johnson [25] based on the
exchange-hole dipole moment, the scheme of Tkatchenko
and Scheffler [253] based on a Hirshfeld atomic
partitioning, or the scheme of Sato and Nakai [214] based
on the local-response approximation [45].

The “DFT-D” approach provides a big and inexpensive
improvement for the description of weakly bonded systems.
One limitation is that the semiempirical dispersion
correction, being just a force field in its simplest variant,
affects only the molecular geometry of the system but not



directly its electronic structure. Some of the most used DFT-
D functionals are:

The PBE-D exchange-correlation functional [97], based on
the PBE functional with a scaling parameter s = 0.75;
The B97-D exchange-correlation functional [97], based on
the B97-GGA functional with a scaling parameter s = 1.25
and reoptimized linear coefficients in Eqs. (1.124),
(1.128), and (1.129) in the presence of the semiempirical
dispersion correction;
The B3LYP-D exchange-correlation functional [97], based
on the B3LYP hybrid functional with a scaling parameter
s = 1.05;
The ωB97X-D exchange-correlation functional [33], based
on the ωB97X range-separated hybrid functional with a
scaling parameter s = 1, a modified damping function, and
reoptimized parameters in ωB97X in the presence of the
semiempirical dispersion correction.
The semiempirical dispersion correction can also be

added to double-hybrid approximations. For example,
B2PLYP-D [218] is based on the B2PLYP double hybrid with
a scaling parameter s = 0.55. The scaling parameter is small
since the fraction of MP2 correlation in B2PLYP already
partially takes into account dispersion interactions. It has
also been proposed to add a semiempirical dispersion
correction to the SCS version of the double hybrids [Eq.
(1.196)], resulting in a family of dispersion-corrected spin-
component-scaled double-hybrid (DSD) approximations
[136–138]. An example of double hybrid is this latter family
is DSD-BLYP [136], which uses the B88 exchange functional
and the LYP correlation functional.

1.6.2 Nonlocal van der Waals Density

Functionals

Another approach to describe dispersion interactions is to
add to the standard approximate functionals a so-called



nonlocal van der Waals density functional of the form [43,
151, 268–270]

(1.224)

where ϕ(r1, r2) is a correlation kernel. Two main families of
such nonlocal correlation functionals exist: the “van der
Waals density functionals” (vdW-DF) [43, 151] and the
Vydrov–Van Voorhis (VV) functionals [268–270].

We will only describe the last version of the VV
functionals, i.e. the VV10 nonlocal correlation functional
[270]. In this functional, the correlation kernel is taken as

where r12 = |r2 −r1| is the interelectronic distance, β is a
constant determining the local (delta-distribution) part of
the kernel, and the function g is defined as

(1.225)

In Eq. (1.225), 
involves the square of
the local plasma frequency ωp(r)2 = 4πρ(r) and the square of
the local band gap ωg(r)2 = C|∇ρ(r)|4∕ρ(r)4, where C is an
adjustable parameter controlling the large-r12 asymptotic
dispersion coefficients, and κ(r) = bkF(r)2∕ωp(r), where
kF(r) = (3π2ρ(r))1∕3 is the local Fermi wave vector and b is
an adjustable parameter controlling the short-range
damping of the large-r12 asymptote. As expected for
dispersion interactions, in the large-r12 limit, ϕVV10(r1, r2)
behaves as 
:

The constant β = (3∕b2)3∕4∕16 is chosen to make 
vanish
in the uniform density limit, thus leaving this limit



unchanged when 
is added to another density
functional. The adjustable parameters C ≈ 0.009 and b ≈ 6
are found by optimization of C6 dispersion coefficients and
of weak intermolecular interaction energies, respectively,
the precise values depending on which exchange-correlation
functional the VV10 correction is added to.

Nonlocal van der Waals density functionals are
necessarily more computationally expensive than
semiempirical dispersion corrections. However, they have
the advantage of being less empirical and, since they are
functionals of the density, of impacting directly on the
electronic structure of the system. The VV10 nonlocal
functional has been incorporated in a number of recently
developed exchange-correlation functionals, for example:

The ωB97X-V exchange-correlation functional [169],
based on the ωB97X range-separated hybrid [Eq. (1.179)]
with reoptimized linear coefficients in Eq. (1.124) with
polynomial degree m = 2 and in Eqs. (1.128) and (1.129)
with polynomial degree m = 1, as well as reoptimized
VV10 parameters C = 0.01 and b = 6.0;
The ωB97M-V exchange-correlation functional [170],
based on the ωB97X range-separated hybrid [Eq. (1.179)]
but with more general and combinatorially optimized
meta-GGA exchange and correlation enhancement factors
and the same VV10 parameters C = 0.01 and b = 6.0 as in
ωB97X-V.

1.7 Orbital-Dependent Exchange-

Correlation Density Functionals

We discuss here some exchange-correlation density
functionals explicitly depending on the KS orbitals (for a
review, see Ref. [140]). Since the KS orbitals are themselves
functionals of the density, these exchange-correlation



expressions are thus implicit functionals of the density (for
notational simplicity, this dependence on the density of the
orbitals and other intermediate quantities will not be
explicitly indicated). In fact, the single-determinant and
multideterminant hybrid approximations of Sects. 1.4 and
1.5 already belong to this family, with the caveat that the
orbitals are obtained with a nonlocal potential. In this
section, we are concerned with orbital-dependent exchange-
correlation energy functionals with orbitals obtained with a
local potential, i.e. staying within the KS scheme.9 These
approximations tend to be more computationally involved
than the approximations previously seen and have thus been
much less used so far.

1.7.1 Exact Exchange

The exact exchange (EXX) energy functional [Eq. (1.16)]
can be expressed in terms of the KS orbitals,

(1.226)

and has exactly the same form as the HF exchange [Eq.
(1.159)], but the orbitals used in both expressions are in
general different.

Since the exact exchange energy in Eq. (1.226) is not an
explicit functional of the density, the corresponding
exchange potential vx(r) = δEx[ρ]∕δρ(r) cannot be calculated
directly. We can however find an workable equation for
vx(r) by first considering the functional derivative of Ex[ρ]
with respect to the KS potential vs(r) and then applying the
chain rule:

(1.227)



Introducing the non-interacting KS static linear-response
function χ0(r′, r) = δρ(r′)∕δvs(r), we can rewrite Eq. (1.227)
as

which is known as the optimized-effective-potential (OEP)
equation for the exact-exchange potential [91, 92, 248].

Using first-order perturbation theory on the KS system,
explicit expressions in terms of the orbitals can be derived
for χ0(r′, r) and δEx[ρ]∕δvs(r). The expression of χ0(r′, r) is

where i and a run over occupied and virtual spatial orbitals,
respectively, and c.c. stands for the complex conjugate. The
expression of δEx[ρ]∕δvs(r) is

where 〈φaσφjσ|φjσφiσ〉 are two-electron integrals over KS
spatial orbitals:

(1.228)

Applying this OEP method with the EXX energy (and no
correlation energy functional) is an old idea [227, 248], but
reasonably efficient calculations for molecules have been
possible only relatively recently [87, 122]. The EXX
occupied orbitals turn out to be very similar to the HF
occupied orbitals, and thus the EXX ground-state properties
are also similar to the HF ones. However, the EXX virtual
orbitals (which see a − 1∕r asymptotic potential for a neutral



system) tend to be much less diffuse than the HF virtual
orbitals (which see an exponentially decaying potential for a
neutral system), and may be more adapted for calculating
excited-state properties.

1.7.2 Second-Order Görling–Levy Perturbation

Theory

In 1993, Görling and Levy [90, 91] developed a perturbation
theory in terms of the coupling constant λ of the adiabatic
connection (Sect. 1.2.2) which provides an explicit orbital-
dependent second-order approximation for the correlation
energy functional. The Hamiltonian along the adiabatic
connection [Eq. (1.60)] can be written as

(1.229)

where 
is the KS non-interacting
reference Hamiltonian (which will be assumed to have a
nondegenerate ground state). Equation (1.229) was
obtained by decomposing the potential operator keeping the
density constant as 
, where 
is
the KS potential operator, 
is the Hartree-exchange
potential operator which is linear in λ, and 
is the
correlation potential which starts at second order in λ, i.e.


. Using a complete set of orthonormal
eigenfunctions Φn and eigenvalues 
of the KS
Hamiltonian, 
, the normalized ground-state
wave function of the Hamiltonian 
can be expanded as Ψλ 
=  Φ + λ Ψ(1) + ⋯ where Φ = Φ0 is the ground-state KS
single-determinant wave function and Ψ(1) is its first-order
correction given by



Using the expression in Eq. (1.63), the correlation energy
functional can also be expanded in powers of λ:

(1.230)

Since Ψλ=0 =  Φ, the zeroth-order term vanishes: 
.
Using the expression of the first-order derivative of 
with
respect to λ in Eq. (1.64), i.e.


), we find that the first-
order term vanishes as well: 
. The second-order
term corresponds to the second-order Görling–Levy (GL2)

correlation energy and is given by
(1.231)

where the second equality comes from the fact that

) since it is the derivative with respect to λ

at λ = 0 of 
), which does not
depend on λ by virtue of the fact that the density ρ(r) is
constant along the adiabatic connection. Using the last
expression in Eq. (1.231) allows one to express the GL2
correlation energy as

(1.232)

It is instructive to decompose the GL2 correlation energy as
(1.233)

where 
is a MP2-like correlation energy evaluated with
KS spin orbitals,

(1.234)



and 
is the contribution coming from the single
excitations (which does not vanish here, contrary to HF-
based MP2 perturbation theory),

(1.235)

involving the difference between the integrals over the
nonlocal HF exchange potential


) and over the local KS
exchange potential 
).

Calculations of the GL2 correlation energy using either a
non-self-consistent post-EXX implementation or a more
complicated OEP self-consistent procedure have been tested
(see, e.g., Refs. [53, 94, 175]) but the results are often
disappointing. It is preferable to go beyond second order
with random-phase approximations in the adiabatic-
connection fluctuation-dissipation approach.

1.7.3 Adiabatic-Connection Fluctuation-

Dissipation Approach

1.7.3.1 Exact Adiabatic-Connection Fluctuation-

Dissipation Expression

Using the adiabatic-connection formula of Eq. (1.65), the
correlation energy functional can be written as

(1.236)

where 
is the correlation
part of the pair density along the adiabatic connection. The
pair density 
can be expressed with the pair-density



operator 
where 
is
the density operator,

and the KS pair density ρ2,KS(r1, r2) simply corresponds to
the case λ = 0,

Since the density does not change with λ, i.e.

), the correlation pair

density needed in Eq. (1.236) can thus be expressed as

(1.237)

We would like to calculate 
without having to
calculate the complicated many-body wave function Ψλ. For
this, we consider the retarded dynamic linear-response
function along the adiabatic connection in frequency space
(or the so-called Lehmann representation)

(1.238)

where the sums are over all eigenstates 
of the
Hamiltonian 
, i.e. 
, except the ground
state 
, and 
are the corresponding
excitation energies. By contour integrating χλ(r1, r2, ω)
around the right half ω-complex plane, we arrive at the
(zero-temperature) fluctuation-dissipation theorem,

(1.239)



which relates ground-state correlations in the time-
independent system 
to the linear response of the
system due to a time-dependent external perturbation χλ(r1,
r2, ω).

Combining Eqs. (1.236) and (1.239), we finally obtain the
exact adiabatic-connection fluctuation-dissipation (ACFD)
formula for the correlation energy [146, 147] (see, also, Ref.
[106]):

(1.240)

The usefulness of the ACFD formula is due to the fact that
there are practical ways of directly calculating χλ(r1, r2;ω)
without having to calculate the many-body wave function
Ψλ. In linear-response time-dependent density-functional
theory (TDDFT), one can find a Dyson-like equation for
χλ(r1, r2;ω),

(1.241)

where 
is the Hartree-exchange-correlation

kernel associated to the Hamiltonian Hλ. Here, Eq. (1.241)
will be considered as the definition for 
. In principle,
the exact correlation energy can be obtained with Eqs.
(1.240) and (1.241). In practice, however, we need to use an
approximation for 
.

1.7.3.2 Random-Phase Approximations

In the direct random-phase approximation (dRPA, also just
referred to as RPA, or sometimes as time-dependent
Hartree), only the Hartree part of the kernel, which is linear
in λ and independent from ω, is retained [146, 148],

(1.242)



where wee(r1, r2) = 1∕|r1 −r2| is the Coulomb interaction, and
the corresponding dRPA linear-response function then
satisfies the equation

(1.243)

The physical contents of this approximation can be seen by
iterating Eq. (1.243), which generates an infinite series,

which, after plugging it into Eq. (1.240), leads to the dRPA
correlation energy as the following perturbation
expansion10

(1.244)

Using now the Lehmann representation [Eq. (1.238)] of
the KS dynamic linear-response function in terms of the KS
orbitals and their energies,

(1.245)



one can obtain, after quite some work,

(1.246)

The dRPA correlation energy is the sum of all the direct
terms (i.e., no exchange terms) of the perturbation
expansion up to infinite order. In the language of
diagrammatic perturbation theory, we say that the dRPA
correlation energy is the sum of all direct ring diagrams. Of
course, Eq. (1.246) is not the way to calculate the dRPA
correlation energy in practice. This is done by solving the
Dyson equation [Eq. (1.243)] without explicitly expanding in
powers of λ, e.g. using matrix equations from linear-
response TDDFT [72, 261] or coupled-cluster theory [219,
262].

Most dRPA correlation energy (combined with the EXX
energy) calculations are done in a non-self-consistent way,
but self-consistent OEP dRPA calculations have also been
performed [26, 112]. One of the main advantage of dRPA is
that it accounts for long-range dispersion interactions [46–
48]. However, it shows large self-interaction errors. To
overcome the latter drawback and improve the general
accuracy, one can add exchange and beyond terms in
various ways (see, e.g., Refs. [7, 14, 15, 39, 58, 88, 101,
110, 111, 114–116, 120, 178, 257, 261]). This remains an
active area of research. For reviews on random-phase
approximations, the reader may consult Refs. [37, 61, 208].
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Footnotes
An integration over a spin coordinate σ just means a sum over the two values

σ ∈{↑, ↓}, i.e. ∫{↑,↓}dσ =∑σ ∈{↑,↓} and 
.

 
It is also possible to define the non-interacting kinetic-energy functional

analogously to the Levy–Lieb functional in Eq. (1.7) by minimizing over wave
functions 
, i.e. 
) [160]. In this case, the
corresponding minimizing KS wave function can generally be a linear
combination of Slater determinants. However, we often have Ts,LL[ρ] = Ts[ρ], in
particular for densities ρ that come from a non-interacting ground-state wave
function which is not degenerate. In this chapter, we will usually assume this
nondegeneracy condition.

 
Therefore, the correlation hole is really a “hole” only in some region of space,

and a “bump” in other regions.

 
In this context, the Hellmann–Feynman theorem states that in the derivative

the first and third terms involving the derivative of Ψλ[ρ] vanish. This is due
to the fact that Ψλ[ρ] is obtained via the minimization of Eq. (1.61) and thus any
variation of Ψλ[ρ] which keeps the density constant (which is the case for a
variation with respect to λ) gives a vanishing variation of Fλ[ρ].

 
In the definition of Eq. (1.79) we exclude the point λ = 0 in order to allow for

the possibility of a discontinuity in λ there due to a degeneracy.
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7

8

9

10

For generality and simplicity, we consider here that the GGAs depend on the
spin density gradients ∇ρ↑ and ∇ρ↓, but due to rotational invariance GGAs

actually depend only on the scalar quantities (∇ρ↑)2, (∇ρ↓)2, and ∇ρ↑⋅∇ρ↓.

 
The possibility of combining a nonlocal HF potential with a local correlation

potential was mentioned already in 1965 in the paper by Kohn and Sham [135].

 
For a general system, the pair-distribution function g(r1, r2) is defined from

the pair density ρ2(r1, r2) [Eq. (1.42)] as ρ2(r1, r2) = ρ(r1)ρ(r2)g(r1, r2). The
on-top value is the value at electron coalescence, i.e. for r1 = r2.

 
The boundary between the various single-determinant and multideterminant

hybrids of Sects. 1.4 and 1.5 and the orbital-dependent functionals of the
present section is however thin. For example, it is possible to optimize the
orbitals using a local potential in hybrids or range-separated hybrids [8, 131,
229], and in double hybrids or range-separated double hybrids [230, 231].

 
Using the operator viewpoint, the series in Eq. (1.244) can be formally

summed in the form 
(see,
e.g., Ref. [178]).
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2.1 Introduction

2.1.1 On approximations in DFT

Density functional theory is here. It has changed the way
the computation of electronic systems is seen by the
scientific community. It has a sound theoretical foundation.
However, following exact theory is more complicated than
solving the Schrödinger equation. Furthermore, it does not
tell us how to systematically produce approximations.
Usual approximations are convenient and (to a large
degree) successful, but how to improve them?

2.1.2 Excuses

This is not a review. References are erratic and biased. My
own publications dominate, not because they are more
important, but because they are only given to complement
argumentation.

2.1.3 Summary

After giving the notations, and recalling the Hohenberg–
Kohn theorem, we review some practical solutions, such as
the decomposition of the universal functional, in order to
comply with different physical requirements. It is argued
that this does not necessarily solve the problem.
Refinements, such as using the spin density as a
supplementary variable, are discussed. It is argued that the
need for these refinements may hide a different foundation
for the approximations. In order to introduce a “systematic”
way to get closer to the physical Hamiltonian, model
Hamiltonians are defined that via an adjustable parameter.
It can bring the model Hamiltonian arbitrarily close to the
physical Hamiltonian. Finally, examples show that simple
mathematical recipes provide a quality similar to that of
density functional approximations.



2.2 Schrödinger Equation and

Notations

We start with a Schrödinger equation:
(2.1)

The wave function Ψ depends on the coordinates of the
electrons r1, r2, …, rN and their spins. We will be mainly
concerned with ground state eigenvalues, E = E0. We
consider Hamiltonians of the form

(2.2)
where T is the operator for the kinetic energy,

(2.3)

and V  is a local one-particle potential

(2.4)

The density operator, 
, can be written using Dirac’s δ
function,

(2.5)

Its expectation value is the density
(2.6)

Notice that it integrates to N,
(2.7)



W is a two-particle local potential,

(2.8)

(2.9)

where 
is the pair density operator,

(2.10)

The pair density is
(2.11)

As the interaction depends only on the distance between
particles, often the dependence of P on r is reduced to that
on u = |r −r′|, using instead of 
the spherically averaged
operator

(2.12)

yielding

(2.13)

Going one step further, one can also integrate over r, to
obtain the system-average

(2.14)

For the electronic systems, V = Vne, or v = vne, describes
the Coulomb interaction between the nuclei and the
electrons,

(2.15)



A is an index for the nuclei, ZA their nuclear charge, and RA

their position. Also, W = Vee, or w = vee, describes the
Coulomb interaction between electrons

(2.16)

To characterize a given electronic system, one has only
to specify N and vne.

Model systems are considered below, where v≠vne and
w≠vee. Of course, in this case the energies and wave
functions depend also on the choice of v and w. No change
of the non-local one-particle operator T is considered in this
chapter, but such modifications can be found in the
literature (see, e.g., [10] for a density functional context).
The ground state energy can also be obtained using the
variational principle,

(2.17)

2.3 The Density Functional Viewpoint

2.3.1 The Hohenberg–Kohn Theorem

In order to see how density functional theory can be useful,
one generally argues using the Hohenberg–Kohn theorem
[12] (cf. Chap. 3).

One of its formulations: “ρ yields vne and N, and thus
everything” is useless, as we do not need to know the
density to know the potential of the system under study.
This formulation of the theorem is never used in practice.

However, the variational formulation of the Hohenberg–
Kohn theorem is consequential. It states that



(2.18)

where for F one uses either the Legendre transform form
[18],

(2.19)

or, equivalently, a constrained search for ensembles. For
the sake of simplicity, in this chapter its pure state form
[16, 18, 20]

(2.20)

is used. As F does not depend on v (which specifies the
system) the functional is called universal. The dependence
on N appears through that of ρ (Eq. (2.7)). As above for the
energy functional, the dependence on the operator T is not
included in the notation for F. For the physical system, w = 
vee is implicitly assumed; we write:

(2.21)
The hope raised by Eq. (2.18) is that it can be used with
some simple approximation for F[ρ].

2.3.2 Difficulty of Producing F[ρ]

Obtaining F for a given ρ(r) is possible, but still difficult: a
constrained minimization, as required by Eq. (2.20), is
more demanding than a minimization with the single
constraint of normalizing the wave function, Eq. (2.17). The
Legendre transformed form of F, Eq. (2.19), first requires
us to compute E for all v, but then no F[ρ] is needed.

Up to now, there has been no systematic way to
construct approximations for F[ρ]. In practice, F is replaced
by some model, 
: one speaks about a density functional
approximation (DFA).



Note that when using Eq. (2.19), due to the variational
principle, the errors will be of second order in F for first-
order errors in v. Stated differently: there are many v that
give values of F that are close. For example, adding to the
potential a very rapidly oscillating function yields
essentially the same value F. (For this, and other examples,
see, e.g., [31, 32].) Again, it appears to be of little practical
importance to follow the line ρgivesvand thus everything.
However, obtaining E0 from Eq. (2.18) is not necessarily
affected by this problem once F is known or can be
approximated. One can even wonder if the existence of
many density functional approximations with a similar
quality may be due to the indifference of F to changes in
the approximation of an optimizing v in Eq. (2.19).

2.4 Practical Solutions for Density

Functional Approximations

In order to create models, two main lines have emerged
within density functional theory.
1.

Using a simple ansatz for the density functional.  
2.

Considering DFT as an inspiration to develop other
methods that do not require an explicit construction of
a density functional.

 

The first approach is a cutting the Gordian knot type of
solution. The second approach is in line with methods
developed for wave functions, sometimes nothing but such
a method.

2.4.1 Ansatz

2.4.1.1 Choice of the Ansatz



Most DFAs start with the so-called local density
approximation (LDA). Within this model, a general
functional G[ρ] is replaced by the ansatz

(2.22)

The function g has to be defined in some way. Traditionally,
it is fixed in the uniform electron gas, a system with an
infinite number of particles, and where ρ does not depend
on the position (cf. Chap. 3). Typically g is either obtained
analytically as a function of ρ, or computed for a series of
values of ρ, and fitted to them satisfying asymptotic
conditions.

LDA has the important advantage of being (to a certain
extent) size-consistent, i.e., satisfying

(2.23)
where EA…B is the system composed of two parts, A and B,
at infinite separation, while EA and EB are the energies of
these parts computed independently. For the violations of
size-consistency by LDA, see, e.g., [21, 27]. Another, major,
advantage is its computational simplicity (just a numerical
integration to obtain 
), and its linear scaling with system
size. Both result from the local character of g: if ρ can be
decomposed into contributions from two spatial parts,

(2.24)

then so can g; 
becomes the sum of the two contributions.
LDA can be extended by making g depend on other local

quantities such as derivatives of the density, giving
generalized gradient approximations (GGAs), etc. (cf. Chap.
1).



2.4.1.2 Finding the Right Functional to

Approximate by Partitioning

Applying the LDA, Eq. (2.22), to F[ρ], Eq. (2.21), does not
provide the accuracy needed in most electronic structure
calculations. The strategy chosen is to define some density
functional Fd[ρ], and approximate only the remaining part,


.
In the following, some choices for the partitioning of F

will be presented.

2.4.1.3 Satisfying Electrostatics

In the classical limit, the electrostatic interaction is given
by the nuclear repulsion,

the interaction between the electron cloud and the positive
charges of the nuclei,

and the repulsion inside the electron clouds, the Hartree
energy,

(2.25)

There is a balance between these contributions. For
example, between distant neutral atoms these compensate
(there is no |RA −RB|−1 term in the limit 
).
This balance is destroyed if EH is approximated, for
example, by using LDA, Eq. (2.22). An excess or deficit of
repulsion produces an unphysical repulsion, or attraction of
neutral atoms. Furthermore, even if this balance is
enforced by parametrization for a given system, it is not



kept for another, even closely related system (see, e.g.,
[29]). The solution to this problem was already proposed in
the original Hohenberg–Kohn paper [12]: EH is treated
exactly, and only the remaining part approximated.

Finding good models for F[ρ] − EH[ρ] is still an active
field of research; there are already approximations that
work well for classes of systems, but we do not have yet a
universally applicable model.

2.4.1.4 The Kohn–Sham Method: Imposing the

Pauli Principle

The Pauli principle is hidden in the wave function used to
define F[ρ], Eq. (2.21). A way to impose it is to use a model
system, with F[ρ, w≠vee], where the Pauli principle is
imposed, and use approximations for the remaining part,

(2.26)

where the subscript Ψ indicates that ρ is obtained from this
wave function, and

(2.27)
This expression is derived using Eqs. (2.17), (2.18), and
(2.20). In general, one takes into account the remark made
above about EH[ρ], and defines

(2.28)

The remaining part,
(2.29)

is called the exchange-correlation energy.
With Eq. (2.26) one is back to an unconstrained

variation of a wave function that is chosen to be anti-
symmetric, thus satisfying the Pauli principle.



The problem is made simpler by a proper choice of w.
For the Kohn–Sham model, one chooses the simplest one,
namely w = 0.

The Kohn–Sham model is usually presented as a
modified Schrödinger equation that is obtained by the
variation of Ψ in Eq. (2.26),

(2.30)
where

(2.31)

(2.32)

(2.33)

Observe that this step (with the extra problem of the
existence of the functional derivative) is not needed to
obtain E0. Furthermore, 
, so that

(2.34)

where ρ0 is a minimizing density.1

2.4.1.5 Using the Model Wave Function

One can also use the minimizing model wave function,
Ψ(w), and choose to approximate the correlation density
functional

(2.35)

2.4.1.6 Problems that Remain After Splitting F

Separating F into a defined part, Fd, and a remainder to be
approximated, 
, does not necessarily guarantee that an



approximation, like that given in Eq. (2.22), works better.
Separating the Hartree part, EH, analogously to what

was done in Eq. (2.29), removes a problem, but introduces
a new one. Take the limiting case of one-electron systems.
There is no contribution of the interaction between
electrons: EHxc = 0. Thus, calculating the Hartree part
exactly means that the remaining part has to cancel EH

exactly. But obtaining approximations for − EH is as
difficult as obtaining them for EH, and this was considered
not to be reachable with approximations of LDA-type. This
is known as the self-interaction problem.

Another (not unrelated) problem is due to degeneracy.
For example, this appears when we consider two parts of
the system far apart, and this even in the simplest
molecules like H2, or H
 
when they are stretched (the
internuclear distance goes to infinity). Then, something
related to the Einstein–Podolsky–Rosen effect shows up: an
infinitesimal perturbation can produce a drastic change in
the wave function, the density, etc., but not in the energy.
Unfortunately, this conflicts with the general philosophy of
constructing DFAs that are aimed to produce significant
changes in the energies for small changes in the density.

One could imagine detecting degeneracy. However, the
model systems, in particular the mean-field models (such as
Kohn–Sham), do not necessarily have ground states
presenting the same degeneracy as the physical system:
while one can present some degeneracy, the other may not.
While the physical wave functions have the symmetry of the
Hamiltonian, the model wave function often breaks
symmetry to reduce the energy. (Well-known is the
breaking of spin symmetry which shows up when bonds are
stretched.) The opposite can occur, too: the Kohn–Sham
system can produce degeneracy, but not when Coulomb
interaction is present (see, e.g., Fig. 11 in [32]).



Even more difficult is the case of near-degeneracy, i.e.,
when a small change in the parameters characterizing H
can produce degeneracy. In this case, detecting
degeneracy is not a trivial problem, and it exists in many-
body calculations, too. The standard approach in such
situations is to stop using a single Slater determinant as a
reference.

2.4.1.7 Problems of the Model Systems

By construction, the minimizing model Ψ(w) gives an exact
ground state density. Some other properties can be
reproduced, too. Trivially, all the expectation values of local
one-particle operators can be found, as they need only the
density to compute them. Surprisingly at first, the exact
ionization potential can also be obtained. However, this can
be easily understood, as it can be related to the asymptotic
decay of the density (see, e.g., [6, 17]).

Often, quantities that are not proven to be reproduced
exactly by the model system are nevertheless expected to
be good approximations. However, there is a danger of
over-stretching this analogy. For example, it is fashionable
to judge DFAs by their ability to reproduce fundamental
gaps (differences between the ionization potentials and the
electron affinities) from differences between orbital
energies (of the lowest unoccupied and highest occupied
ones). However, this is wrong [22, 34]. Let us consider, for
example, a system with zero electron affinity. For a neutral
system the Kohn–Sham potential, vne + vHxc, Eq. (2.31),
decays at large distances as − 1∕r (see, e.g.,[17]), and we
know that it supports Rydberg series. Thus, its gap
(ionization potential) is necessarily larger than its first
excitation energy. In fact, accurate Kohn–Sham orbital
energy differences give good approximations to excitation
energies. Let us take the He atom as an example [33]. An
extremely accurate Kohn–Sham potential can be obtained



from an extremely accurate density. The Kohn–Sham one-
particle Hamiltonian lowest eigenvalue corresponds to the
doubly occupied state (1s). However, higher eigenvalues
exist. The next eigenvalue (2s) is ≈ 0.75 hartree above the
lowest one. It can be compared to the excitation energies of
the triplet and singlet (≈ 0.73, and 0.76 hartree,
respectively). However, the fundamental gap of the He
atom is of ≈ 0.90 hartree. (This comparison should not to
be confused with potentials produced by DFAs, as LDA for
Exc that generates a potential that does not support excited
states, and has a ionization potential of ≈ 0.55 hartree.)
Thus, in general, a DFA that produces an orbital energy
difference that reproduces the exact fundamental gap can
be expected not to be a good approximation to the exact
Kohn–Sham system.

The preceding discussion leads to slippery ground.
Could it be that the Kohn–Sham approximations are used
because they produce convenient mean-field models? Could
it be that (for specific purposes) they may be better than
the exact Kohn–Sham system would be?

2.4.2 Refining the Approximations

2.4.2.1 Spin Densities

The quality of approximations improves considerably when
spin densities are introduced, i.e., when the functional 
is
made to depend not only on ρ, but on its components, the
spin-up, ρ↑(r), and the spin-down ρ↓(r) densities,

Equivalently, one may add to the dependence on ρ that on
the spin polarization

(2.36)



A justification is brought by the fact that the exchange
term acts only for electrons of the same spin, and that
correlation is not the same for a pair of electrons of
different spins as for that between two electrons of the
same spin (which are kept apart by the Pauli principle).

An example of the importance of making the functional
depend on ρ↑ and ρ↓ is shown in Fig. 2.1. According to the
Hohenberg–Kohn theorem, neither the energy nor the value
of F for the hydrogen atom should depend on ζ. However,
for LDA where a dependence on ζ is introduced by
adjusting the exchange-correlation of the spin-polarized
uniform electron gas, there is a clear dependence on ζ, the
best value being obtained when ζ = ±1, i.e., for maximal
spin polarization.

Fig. 2.1 
Dependence of the local density approximation of the functional F on
the spin polarization ζ, Eq. (2.36) for the exact density of the hydrogen atom;
the exact value of F is 0.5 hartree (dotted line)

In spite of contributing in a decisive way to the success
of DFAs (most achievements in thermo-chemistry would be
non-existent without using spin-densities), there is a



problem: the theoretical foundation of this approach has
never been established. There are several arguments in
support of this affirmation. Here we give a few. One hears
that the spin-density shows up in a weak magnetic field,
and wrongly assumes that
1.

a weak magnetic field should not affect the result,  
2.

a linear magnetic field should be sufficient, because
the field is weak,

 
3.

it is sufficient to take into account the interaction
between the magnetic field and the spins (i.e., only a
term BzSz),

 

4.
the magnetic fields used for spin-polarized systems are
weak.

 
The first point is wrong, because lifting degeneracy by a
magnetic field can produce a different ground state. For
example, putting a stretched H2 molecule in a weak
uniform magnetic field produces a triplet ground state,
while in the absence of a magnetic field, it is a singlet. The
second point is wrong, because it ignores a general
problem: “a small perturbation parameter does not mean a
small perturbation” [24]. For the specific case we are
considering, we notice that even a weak linear magnetic
field stabilizes states with high angular momentum below
the ground state in the absence of the magnetic field. The
variational principle cannot be applied, and the
Hohenberg–Kohn theorem cannot be proven [28]. The third
point is wrong, as we know from the elementary treatment
of the Zeeman effect: the orbital momentum is as important
as the spin, but if we introduce a dependence on it, we have
a dependence on the external potential, and this is not
allowed for a universal density functional. Finally, the



fourth point is wrong, because in order to produce a spin-
polarized electron gas (for densities of chemical interest, ρ 
≈ 3∕4π, i.e., rs = 1) a strong electronic excitation is needed,
and this can be produced only by a huge magnetic field
(see Fig. 2.2).

Fig. 2.2 
Strength of the magnetic field, B, needed to stabilize the uniform
electron gas with polarization ζ with respect to the unpolarized electron gas
with density ρ = 3∕4π, i.e., rs = 1. The strongest magnetic field ever produced
on earth is indicated by a horizontal dotted line

There is, however, a different viewpoint: the spin-density
is a proxy for another quantity that can be related to the
spin-density. It was noticed long ago, for unrestricted
Hartree–Fock calculations [38], that spin-densities can be
connected to on-top pair density, P(r, r), cf. Eq. (2.11).
Starting from



an alternative interpretation of the spin-density in DFT is
obtained [2, 23]:

(2.37)

Could it be that the theory behind DFAs is not DFT?
Let us mention that a relationship can also be found

between spin-densities and first-order reduced density
matrices ([35, 36]).

2.4.2.2 The Adiabatic Connection

The adiabatic connection was invoked in order to
understand what a density approximation should do [9, 11,
15, 39]. The basic idea is that one constructs a model
Hamiltonian depending continuously on a parameter, H(μ).
The corresponding Schrödinger equation has an eigenvalue
E(μ) and an eigenfunction Ψ(μ). We require that for a
certain value of this parameter the model Hamiltonian
becomes the physical one. Let us now choose μ = ∞ for it.
Furthermore, we assume that the Hellmann–Feynman
theorem (or first-order perturbation theory) can be applied
to this model:

(2.38)

Suppose that the model system, say at μ0, is accessible (for
example, it is a Kohn–Sham calculation). We want to know
how to correct the model energy, E(μ0), to obtain E = E(μ = 
∞). For the missing part, we use the notation, 
:

(2.39)
By integrating Eq. (2.38) we get what is also called the
integrated Hellmann–Feynman formula [4]

(2.40)



If we consider (as above) that the model only changes V 
and W, we also write

(2.41)

In density functional theory, one furthermore assumes that
one can choose V (μ) such that the density does not change
with μ. Using Eqs. (2.4) and (2.6), and the convention used
here that 
when 
, we can write

(2.42)

Using a relationship analogous to Eqs. (2.9), and (2.11),

(2.43)

Notice that as Ψ depends on μ, so does P. A comparison
with Eq. (2.26) (where the dependence on w is replaced by
that on μ) gives the correction to E(μ0):

(2.44)

The integrand e(r1) shows a superficial similarity with the
function g appearing in LDA, Eq. (2.22). However, unlike
LDA, the connection with ρ is not evident.

One can eliminate a known term from 
, and correct
correspondingly the r.h.s. For example, if we would like to
have 
, Eq. (2.29), we eliminate the contribution of 
,
by taking the derivative w.r.t. μ in Eq. (2.28), i.e., by
subtracting ρ(r)ρ(r′) from P on the r.h.s. of Eq. (2.44).

2.4.2.3 Density or Pair-Density Functional

Theory?



Starting from Eq. (2.44), we may ask whether we should
construct functionals of the pair density, P(r, r′), instead of
one that depends on ρ(r). We first notice that the pair
density, P(r, r′), yields, by integration over r′, the density
ρ(r), up to a factor N − 1. The already mentioned
relationship between spin-densities and the on-top pair
density, Eq. (2.37), presents itself as a further argument.
However, the conditions to be imposed on P such that it is
fermionic are difficult, while those to be imposed on ρ are
simple (ρ should be non-negative, and integrate to N).

In fact, LDA can be seen as replacing, in each point of
space r1, P(r1, r2) in Eq. (2.44) by that obtained in the
uniform electron gas with density ρ(r1) (see, e.g., [9]). This
idea can be extended beyond LDA: many successful
functionals have been constructed starting from this
perspective (among them those developed by A.D. Becke,
and by J.P. Perdew and co-workers, see, e.g., [1]).

Some people consider the random phase approximation
(RPA) as a density functional model. It can also be seen as
constructing a simplified form of P to be used in Eq. (2.44)
(see, e.g., [5]).

Recently, new approximations using the pair density
showed up (see, e.g., [37]).

2.4.3 Approaching the Exact Result

2.4.3.1 Limitations of the Mean Field Model

Even if by miracle we had the exact Kohn–Sham
determinant (and potential), we would still miss
information about the exact system (with Coulomb
interaction). For example, we still would not have the exact
energy. Unfortunately, the task of obtaining simple
functionals capable of dealing with cases when a single
Slater determinant is not a good approximation is not
solved.



Sometimes ensembles of Kohn–Sham states are
discussed. A formula expressing the correlation energy in
terms of weighted Kohn–Sham orbital energies exists [25].
However, we do not know a simple expression for obtaining
the weights, and it does not seem that they follow a
Boltzmann distribution [30].

Long experience in quantum chemistry shows that a
single Slater determinant is often a bad starting point for
obtaining many properties such as the energy. There, it
seems natural to consider multi-reference methods, i.e.,
wave functions where more than one determinant deserves
a preferential treatment. The selection of determinants is
an art, unless selective methods are used, such as CIPSI
(configuration interaction by perturbation with
multiconfigurational zeroth-order wave function selected by
iterative process) [13]. In the following, a special way of
generating a multi-determinant wave function will be
discussed, namely using some (ideally) weak interaction
operator W. Degenerate (and near-degenerate) states are
detected by such operators, and this automatically
introduces more than one Slater determinant if needed.
Using more complicated wave functions is a price to pay for
getting forms that make existing DFAs closer to a
theoretically justifiable form.

2.4.3.2 Choosing w

Equation (2.44) suggests that it may be more easy to obtain
approximations for EHxc when w≠0, i.e., μ > 0. Indeed, if
∂μw is short-ranged, we can use some approximation of P(r,
r′) that is valid only when r′ is close to r, and use an
expansion around r. In the limit of zero-range (δ-function)
we obtain the on-top pair density P(r, r) that for a single
Slater determinant produces a connection to the spin-
density (Eq. (2.37)), i.e., a form that resembles LDA with
spin-dependence. Furthermore, expanding P in r′ around r



produces semi-local terms such as density derivatives [7].
Finally, we can expect a better transferability between
systems when electrons are close, justifying the
transferability from other systems like the uniform electron
gas, in other words, expecting “universality”.

Also, it seems advantageous to avoid using w that posses
a singularity (like the Coulomb interaction), because this
induces a strong dependence on the basis set used, and
hence a very slow convergence to the exact results (cf. the
difficulty of converging 
) with a finite basis set
[3]).

A simple and computationally convenient form for w
satisfying the requirements above is given by

(2.45)

Its derivative is short-ranged,

(2.46)

and, when μ is very large

(2.47)

The interaction in Eq. (2.45) also has the properties:

when 
,

w = 0 when μ = 0
i.e., by changing μ it is possible to switch between the
Kohn–Sham and the physical system. This allows us to
consider this method to be systematically improvable, in
the sense that increasing μ brings the model closer to the
physical Hamiltonian.

However, we do not know how far we have to get away
from w = 0 to get reliable approximations. This can be



explored numerically.

2.4.3.3 Errors of DFAs for w > 0

Below are results obtained with w given by Eq. (2.45) and
the dependence on μ is analyzed.

First, to construct a density functional approximations to

, Eq. (2.29), uniform electron gas calculations are used

[19, 26]. Now, the LDA, Eq. (2.22), can be applied to

for any value of μ.

The numerical results given below are for the 2-electron
harmonium, a system with the Hamiltonian

(2.48)

The variables can be separated, and the solutions can be
found for real values of μ and ω by solving numerically a
one-dimensional differential equation (see, e.g., [14]). For
ω = 1∕2, which is chosen below, analytical solutions are
known for the non-interacting (μ = 0) and the fully
interacting (μ = ∞) system.

Figure 2.3 shows the errors made for the harmonium as
a function of the choice of the parameter μ. At μ = 0, the
error is that given by the usual LDA. It decreases steadily,
and around μ = 0.5…1 a change of behavior occurs, quickly
reaching chemical accuracy (1 kcal/mol ≈ 2 mhartree).



Fig. 2.3 
Errors made by the local density approximation for the ground state
energy of harmonium (Eq. (2.48)) as a function of the range separation
parameter of the model, μ (Eq. (2.45))

As having w≠0 requires having more than one Slater
determinant, the time required for computing the wave
function rapidly increases with μ. However, as the
convergence with the basis set is faster if w has no
singularity, less computational effort is needed to obtain
the wave function. Figure 2.4 shows the error that can be
achieved in a given time. Calculations were done first for
spherically symmetric basis functions to saturation (s-
limit). Next a new value was obtained for the p-limit (l = 1),
next for the d-limit, (l = 2), etc. For such a small system,
there is no gain in computing the integrals. However, one
can see that a high accuracy is reached much faster when
μ = 1 than when μ = ∞.



Fig. 2.4 
Harmonium energy errors obtained by saturating the basis set with l 
= 0, 1, 2, 3, in a calculation with μ = 1, blue, and for the Coulomb interaction,
red

For this system, choosing a value of μ between 0.5 and 1
seems to provide a good compromise between the
supplementary effort needed to have w≠0, and having a
good density functional approximation.

2.4.3.4 Approaching the Exact Result

Analytically

Instead of using universal models for P in Eq. (2.44), one
can construct corrections for a given model Hamiltonian
whose energies are determined by some v and w,


, Eq. (2.39). The role of the
approximation is to correct for the difference between the
energy of the exact system and that of the model system.
We explore whether standard techniques from numerical
analysis could compete with density functional
approximations in estimating these corrections.

Notice that as 
and 
, the correction
vanishes: 
. One can also try to improve the result by



using a set of model Hamiltonians for which obtaining the
model energy is simpler than finding E[vne, vee, N].

In a density functional context it is tempting to use v as
given by some density functional approximation, or even to
use the potential that yields the exact density ρ (to show
the principle of the procedure). Below the simplest
expression for the external potential is chosen, v = vne. Of
course, this brings the model system very far from the
physical system when the interaction w is weak: the errors
of the model at w = 0 are a very important part of the total
energy. For example, for the harmonium studied above, at
μ = 0 the error is of 0.5 hartree, as shown in Fig. 2.5.

Fig. 2.5 
Errors of different approximations for the ground state energy of
harmonium: E(μ) (thin, black), and the Taylor series around μ to order 1 (blue),
and to order 2 (red); the dashed curves correspond to a transformation to x(μ) 
= μ−2, the others to x(μ) = μ−2 + κmu

−3. The horizontal dotted lines indicate
chemical accuracy (± 1 kcal/mol). The inset shows a zoom on the same curves

First, we analyze how the energy of the model system,
E(μ), approaches that of the Coulomb system, i.e., how E(μ)
approaches E(μ = ∞). From the large μ behavior of the
interaction w of Eqs. (2.45) and (2.47), we derive

(2.49)



The coefficient a−k in the equation above is proportional to

The coefficient a−k−1 is proportional to a−k, and given by
the cusp condition, as Ψ(μ) has to approach Ψ =  Ψ(μ = ∞)
when μ gets large [8], and k is equal to 2l + 2, 2l being the
power of the expansion of P(r, r + u) in |u| around zero. In
particular, for a pair of singlet coupled electrons (of anti-
parallel spin), we have k = 2 and

(2.50)

yielding

2.4.4 Taylor Series Truncation Error

We consider a Taylor series for large μ. First, we make a
change of variable to x(μ) such that x monotonously
approaches 0 as 
,

(2.51)

Using the chain rule, we go back to the μ variable,

(2.52)

Obtaining the first derivative of E with respect to the
energy is not expensive, because it does not require the



computation of a new wave function. Of course, the cost
increases with higher derivatives.

A choice for a change of variable that makes the
expansion correct at large μ, is x = μ−2, cf. Eq. (2.49). As we
know the next term in this expansion, we can also choose x 
= μ−2 + κμ−3. Not surprisingly, the latter choice is more
reliable than the first (cf. Fig. 2.5). However, it is a surprise
that the approximation works very well up to μ ≈ 1, while
the expansion was derived in the limit 
.

Comparing these results with Fig. 2.3, one notices that
the range of models for which the density functional
approximation works well is comparable to that for which
the Taylor series works well.

2.5 Outlook

Most applications of density functional theory rely on the
simplicity of using a single Slater determinant. This chapter
does not intent to discourage the traditional search of
density functionals. They are successful in practice, and
there still is room for improvement. However, using the
simple mathematical techniques discussed in the preceding
section lead to good quality approximations, and this is
encouraging. There are many paths that could be followed.
One, of course, is to improve the mathematical techniques.
Another is to change the interaction w to a form for which
the extrapolations considered here would work better.
Finally, one can envisage using density functional models in
combination with the extrapolation approach presented
here.
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mixed canonical and grand-canonical states, respectively.
We present some recent works about the local density
approximation, in which the functionals get replaced by
purely local functionals constructed using the uniform
electron gas energy per unit volume. We then review the
known upper and lower bounds on the Levy–Lieb
functionals. We start with the kinetic energy alone, then
turn to the classical interaction alone, before we are able to
put everything together. A later section is devoted to the
Hohenberg–Kohn theorem and the role of many-body
unique continuation in its proof.

3.1 Introduction

Density Functional Theory (DFT) attempts to describe all
the relevant information about a many-body quantum
system at or near its ground state in terms of its one-body
density ρ(r). In its orbital-free variational formulation, due
to Levy [99] and Lieb [116], DFT relies completely on a
universal functional ρ↦FLL[ρ] which gives the lowest
(kinetic plus interaction) energy that can be reached with
all possible quantum states having a given density function
r↦ρ(r). This functional is exact and it is able to describe
interacting quantum Coulomb systems in their ground
states. It is of course not known explicitly and one of the
main purpose of DFT is to find suitable approximations. In
this chapter we review known upper and lower bounds on
this functional and discuss some regimes in which it
simplifies. In particular we focus on the Local Density

Approximation (LDA) which becomes exact in the regime
where the density is very flat on sufficiently large regions
of space, as was recently proved in [106, 108]. A simpler
older approximation is the Thomas–Fermi functional [53,
169], which is surprisingly accurate for heavy atoms [122,
123] and is reviewed in [114].



It turns out that there are several possible Levy–Lieb-
type functionals. Instead of considering N-particle
wavefunctions one can also work with mixed states [116],
or even with grand-canonical states for which only the
average number of particles is fixed. The latter has not
been thoroughly discussed in the literature. We consider
the three possibilities in this chapter. When we discuss
bounds, it is useful to consider the kinetic and interaction
energies separately. This naturally brings in Lieb–Thirring
[125, 126] and Lieb–Oxford [113, 120] inequalities, which
provide lower bounds on these two functionals.

In Sect. 3.7 we recall the Hohenberg–Kohn theorem,
which is another important abstract result in DFT. It turns
out that its proof relies on some unique continuation
problems for N-particle systems, which are not yet
completely understood.

Notation 
Everywhere in this chapter x = (r, σ) denotes
both the space variable 
and the spin variable 
.
Although the physical case corresponds to d = 3 and q = 2,
it is sometimes useful to keep d and q general to better
emphasize the role of the dimension and spin. To simplify
our notation we use the convention that


. For N particles we use
the notation 
with a similar
convention for the integral 
.

We recall that the one-body density ρΨ of an N-particle
fermionic (normalized) wavefunction

is defined by



The interpretation of ρΨ is that it provides the average
number of particles in space, without taking their spin into
account.

3.2 Universal Functionals in Density

Functional Theory

Following [99, 116] we express the ground state energy as
a variational problem involving only the density, and we
discuss some (known and unknown) mathematical
properties of the associated functionals.

3.2.1 The Levy–Lieb Universal Functional

For completeness we consider general interaction
potentials w in any space dimension d. This is useful to
understand the particularities of the physical case at work
in DFT, namely the Coulomb interaction w(r) = |r|−1 in
dimension d = 3.

Let

with w even, with 
, with v := v+ − v− and with

(3.1)

Under the assumption (3.1), the N-body potential



is infinitesimally (− Δ)–form bounded from below, which
means that

for all Ψ and all ε > 0, with CN,ε a constant depending only
on ε and N. From this we can deduce that the quadratic
form associated with the symmetric N-body operator

(3.2)

is closed on the energy space

(3.3)

This allows us to work with the associated Friedrichs self-

adjoint realization of 
, see [149, Sec. VIII.6] and [150,
Sec. X.3]. Everywhere we work with fermions, that is, the
wavefunction Ψ is assumed to be anti-symmetric with
respect to exchanges of its variables. Note that the bosonic
case is obtained when the number of spin states q is equal
to N, see [121, Sec. 3.1.2–3.1.3].

The Hamiltonian (3.2) describes N fermionic particles
evolving in 
, with q spin states, submitted to an external
potential v and interacting via the pair potential w. An
important physical quantity is the ground state energy of
the system, which is obtained by minimizing the
corresponding energy



where 
is understood in the sense of quadratic
forms. By the variational principle, this is just the bottom of
the spectrum of the operator 
:

in the fermionic subspace. We do not emphasize the
interaction w in our notation since it will usually be fixed.
When needed we will instead use the notation 
.

The main idea of [99, 116] is to replace the infimum over
Ψ by a two-step minimization

where we first minimize over the density ρ and then over
all the wavefunctions having this prescribed density. This
procedure requires us to identify the set of N-representable

densities, that is, those arising from a Ψ in the form domain
of 
, a question that we now address.

The Hoffmann-Ostenhof inequality [81] states that

(3.4)

for all (bosonic or fermionic) wavefunctions (see also
Theorem 3.11 below). This inequality implies that we
should restrict ourselves to densities such that

This turns out to be the optimal condition.

Theorem 3.1 (Representability of the One-Particle

Density [116]) 
Let
 
be such that




and
 
. Then there exists one

normalized antisymmetric wavefunction


of finite kinetic energy,


, such that ρ = ρΨ.

The proof of the theorem is much easier for 
, where
the antisymmetry can be put entirely in the spin variables.
One can just take

When q < N the proof in [116], inspired by March and
Young [129] and Harriman [79], consists of taking a Slater
determinant

with the orbitals

(3.5)

where the phases θj are chosen to make the φj orthonormal.
Although we know that there exist such phases (an explicit
example will be given later in (3.44)), we have very bad
control over their behavior in N. This will be discussed
later in Sect. 3.4 when we consider the kinetic energy cost
of introducing such phases.

At this point we have found the set of N-representable
densities

(3.6)

Note that this is a convex set since 
is
convex [118, Thm. 7.8]. With Theorem 3.1 at hand, we can



rewrite the ground state energy as a minimization principle
over ρ in this convex set:

(3.7)

where

(3.8)

is called the Levy–Lieb functional. It is the lowest possible
(kinetic plus interaction) energy of a quantum system
having the prescribed density ρ. This universal functional is
the central object of DFT, since knowing it would allow us
to compute the ground state energy of a system with any
external potential v, by (3.7). In this chapter we will review
what is known about FLL. But first we need to introduce
two other universal functionals, which are obtained after
convexifying FLL in two different ways.

3.2.2 Lieb’s Universal Functional

Note that v↦EN[v] is concave (as seen from the variational
principle, it is a minimization over Ψ of affine functions in
v). More precisely, from (3.7) we see that EN is the
Legendre transform of FLL on the convex set of N-
representable densities. This naturally raises the question
of whether FLL is, conversely, the Legendre transform of
EN. This turns out to be wrong since FLL is not convex



[116]. It is therefore convenient to look at the convex hull
(also called lower convex envelope)

which is the Legendre transform of EN. Here the convex
hull means that it is the largest convex function below FLL.
We always assume that 
. Another kind of convex
hull with respect to N will be considered later. As proved in
[116], the function FL is explicit and given by a similar
definition as in (3.8) but with mixed states instead of pure
states:

(3.9)

We recall that the density ρΓ of a mixed state Γ (a non-
negative self-adjoint operator satisfying Tr ( Γ) = 1),
diagonalized in the form

with αj⩾0 and ∑jαj = 1, is defined by

It is useful to know that the infimum is attained in (3.9),
as well as for the Levy–Lieb functional in (3.8).

Theorem 3.2 (Existence of Optimal (Pure and Mixed)

States [116]) 
Let
 
be such that


and
 
. Then the infima in (3.8)
and (3.9) are attained.



The proof uses the fact that a minimizing sequence Ψj

(resp. Γj) is necessarily compact in 
(resp. in
the trace class), since the density is fixed, hence the
sequence is tight.

Let us consider a density ρ and a corresponding
minimizing N-particle mixed state Γ. Diagonalizing Γ in the
form Γ =∑jαj| Ψj〉〈 Ψj|, we see that

and since the upper bound is obvious, we conclude that
(3.9) can also be written in the form

(3.10)

This is the claimed convex hull of FLL.
Since an affine function always attains its minimum at

an extreme point of a convex set, the ground state energy
EN[v] is given by the same formula

as we had in (3.7) for pure states. From this discussion it
seems more natural to work with the convex Lieb
functional FL, instead of FLL. The following duality principle
holds.

Theorem 3.3 (Duality [116]) 
We have, with p as in

(3.1),
(3.11)



In the second line the constant EN[v] has been included in
v, hence the constraint that 
in the operator sense.

We have seen in Theorem 3.2 that (3.8) and (3.9) are
attained. On the other hand, the supremum in (3.11) will
not be attained for most densities. Indeed, ρ would then be
the density of a mixed ground state for the corresponding
EN[v] but this set is believed to be very small. For instance,
if ρ vanishes on a set of positive measure, the supremum
cannot be attained with a v for which unique continuation
holds on the whole space. This is discussed in Sect. 3.7.

The importance in applications of the convex
formulation of DFT based on the functionals FLL and FL is
reviewed in [80].

3.2.3 The Grand Canonical Universal

Functional

At this step we have defined two universal functionals FLL
and FL of the density ρ, which provide the same ground
state energy EN[v] in the presence of an external potential
v. Since Lieb’s functional FL is convex, it is to be preferred
over FLL. The convexity implies the dual formula stated in
Theorem 3.3.

In spite of its convexity, the functional FL does not
behave well with respect to the weak topology of 
.
This might lead to some difficulties in processes where
some electrons are lost, e.g. for scattering. Indeed, if we



have a sequence ρn such that 
weakly but not
strongly, then we may have 
. The integral
does not even need to be an integer, in which case FL[ρ]
would not make any sense. For this reason it is natural to
introduce a functional allowing for non-integer values of
the particle number. The following grand-canonical version
did not appear in [116], but was mentioned in [141] and
was recently studied in [106, 108].

For us, a grand-canonical state (commuting with the
particle number) will be a collection Γ = ( Γn)n⩾0 of non-
negative self-adjoint operators, each of them acting on the
n-particle space 
, and such that

Here Γ0 is a number in [0, 1] which gives the probability
that there is no particle at all. The corresponding density is
the sum

so that the average number of particles in the system is
given by 
. We define the grand-
canonical universal functional as

(3.12)

In order to guarantee that the problem is well posed, we
need some more assumptions on the interaction potential
w. We assume that the system is stable of the second kind

[152], that is, there exists a constant C such that
(3.13)



Inserting this in (3.12) implies

hence the infimum in (3.12) is finite. A typical example is
that of a non-negative interaction potential w⩾0 such as
Coulomb, or more generally a potential w which is
classically stable of the second-kind [152], that is, which
satisfies the same assumption as (3.13) with the kinetic
energy removed:

(3.14)

For a density with integer particle number

the grand canonical functional is the

lowest of the three universal functionals:

The following can be shown similarly as for Theorem 3.2,
using the stability assumption (3.13).

Theorem 3.4 (Existence of Optimal Grand-Canonical

States) 
Assume that the system is stable of the second

kind as in (3.13). Let
 
be such that


. Then the infimum in (3.12) is attained.

From the existence of a minimizer we deduce as before that



In other words, the grand canonical functional is also a
convex hull of the original Levy–Lieb functional FLL, but
convex combinations ρ =∑jβjρj are considered with the ρj

having an arbitrary number of particles. It is not required
that all the ρj have the fixed number N of particles like for
FL.

An interesting question is to determine whether an
optimal grand canonical state ( Γn)n⩾0 corresponding to a
given ρ always satisfies Γn ≡ 0 for 
. In this case we
say that Γ = ( Γn)n⩾0 has a compact support in n. No result
of this sort seems to have appeared in the literature up to
now.

The following theorem asserts that FGC is the weak-∗
lower semi-continuous envelope of FL, in an appropriate
sense.

Theorem 3.5 (Weak Lower Semi-Continuity) 
We

assume that

with p as in (3.1) and that w tends to 0 at infinity. The

functional FGCis the weak-∗ lower semi-continuous closure

of FL, in the following sense:

(i)
For any sequence
 
converging weakly

in
 
to
 
, we have

(3.15)

 

(ii) For any
 
, there exists a sequence


converging strongly to
 
in

for all 2 < p < p∗, such that

(3.16)

 



Here

is the critical Sobolev exponent. Since we are not aware
that a proof of Theorem 3.5 has been explicitly written
anywhere, we provide the full argument later in Sect. 3.8.
It is inspired by [102].

When the liminf on the right of (3.15) is finite (which we
can always assume, otherwise the statement is void), then
the Hoffmann-Ostenhof inequality (3.4) implies that 
is
bounded in the homogeneous Sobolev space 
.
However 
need not be bounded in general and this is
why only the weak convergence in 
was assumed.
This plays an important role in (ii). Consider a ρ and an
associated optimal grand-canonical state Γ = ( Γn)n⩾0 for
FGC[ρ]. If we have 
for a sequence nk →∞, then this
means that infinitely many particles are needed to properly
represent ρ grand-canonically. Although this is very
unlikely to happen in practical situations, this can probably
not be avoided for a general interaction w and a general ρ.
Then we need a diverging number of particles

in our canonical state associated with ρj, even if it has a
bounded energy. On the other hand, if there exists one
minimizer ( Γn)n⩾0 for FGC[ρ] which has a compact support
in n, then (ii) holds with a sequence converging weakly in


, as will be clear from our proof. This is one reason
why it is important to understand whether optimal states



always have a compact support in n, as we have mentioned
previously.

Next we discuss the dual formulation of FGC. For v = v+ 
− v− with 
and 
, we find
that the Legendre transform of FGC is given by

(3.17)

For 
, we have 
but equality will in
general not hold. If the function n↦En[v] is convex in the
discrete sense, that is,

(3.18)
then it follows that

for all 
and θ ∈ [0, 1) [141]. In particular

. Therefore, if (3.18) holds, then the grand

canonical functional FGC[ρ] provides the same ground state
energy in an external potential v as the canonical ones
FLL[ρ] and FL[ρ]. In physical terms the condition (3.18)
means that the electron ionization energy is greater than or
equal to the electron affinity. It is a famous conjecture that
(3.18) holds for the Coulomb potential in dimension d = 3,
for atomic or molecular external potentials v [5, 141]. A
counterexample is provided in [116] for a different w. Note
that (3.18) always holds for w ≡ 0.

If (3.18) does not hold, then 
is equal to the
convex hull of n↦En[v]. This amounts to considering the set


of the points k such that



One obtains

where n1 < N < n2 are the two closest points in 
on the
left and right of N.

3.2.4 Kohn–Sham Exchange Correlation

In the previous sections we have explained the Levy–Lieb
variational formulation of the ground state energy of the N-
particle problem in terms of the density only, which is
really in the spirit of DFT. Practitioners prefer to use an
auxiliary set of N orthonormal functions Φ = (φ1, …, φN),
which describe N fictitious uncorrelated electrons, to build
the desired density through the formula

with the Slater determinant

(3.19)

This method provides a better representation of the kinetic
energy, but it is much more costly from a computational
point of view. We quickly explain this approach due to
Kohn–Sham [93] here.

For a density ρ with 
, we introduce the
lowest kinetic energy of Slater determinants

(3.20)



(the min is attained for the same reason as in Theorem
3.2). We then add and subtract TS from FLL, which allows
us to rewrite the N-particle ground state using N orbitals
as

(3.21)

where

(3.22)

is called the exchange-correlation energy. From a
mathematical point of view, the Kohn–Sham approach a
priori requires the study of both FLL[ρ] and TS[ρ] as
separated functionals. It is an interesting question to find a
way to study Exc[ρ] directly, without interpreting it as a
difference. In chemistry one often relies on the adiabatic

connection formula (see Remark 3.1 below), which however
involves another kinetic energy functional T[ρ] discussed
later in Sect. 3.4.

Instead of using N uncorrelated electrons as the main
variable, one may also use a one-particle density matrix γ,
which is often called the Kohn–Sham method with

fractional occupations. The method is similar but one has to
subtract the lowest kinetic energy TGC[ρ] of all possible
one-particle density matrices, which is defined later in
Sect. 3.4.

3.3 The Uniform Electron Gas and

the Local Density Approximation



The universal functionals FLL, FL and FGC defined in the
previous section allow us in principle to describe any
fermionic system interacting via the potential w. But these
functionals are of course not known exactly and finding
them is essentially the same as solving the N-particle
problem. One of the main purposes of DFT is to find
reliable and efficient approximations. Here we discuss the
most widely used of these approximations, called the Local

Density Approximation (LDA) [46, 82, 93, 128, 136, 140],
where they are replaced by purely local ones. The LDA is
often considered as “the mother of all approximations”

[142] and it yields surprisingly good results, even in cases
where the density is not at all slowly varying [128, 136]. Its
successors involving gradient corrections are even better
and have become the standard in DFT calculations. In this
section we only consider the Coulomb case in dimension d 
= 3 but we expect similar results for other potentials in all
dimensions.

Of course, the functionals FLL, FL and FGC are not local
at all. Two electrons at different places are always
entangled and, furthermore, the Coulomb potential has a
very long range so that electrons interact even when they
are far apart. In the LDA one makes the assumption that
the only non-local part is the Hartree term (the classical
Coulomb energy of the density ρ) and one approximates the
rest by a local function of ρ, that is, the integral of a
function f depending only on the value ρ(r) at r:

(3.23)

The function f is chosen to be the energy per unit volume of
an infinite gas of constant density ρ, called the Uniform



Electron Gas (UEG), so that the approximation becomes
exact when ρ is constant over a very large domain. Because
the UEG is an infinite system it should not depend on
whether it is defined canonically or grand-canonically.
Hence the function f must be the same for the three
functionals FLL, FL and FGC.

The idea behind the LDA is as depicted in Fig. 3.1. After
subtraction of the Hartree term, one splits the space into
small boxes (of volume dr) and assumes that the remaining
energy is the sum of the local energies. In each little box,
one replaces the density by a constant. One does not use
the energy of the constant function in the small box, but
rather the energy per unit volume of an infinite system
having the corresponding uniform density, multiplied by
the volume dr of the small box.

Fig. 3.1 
Main idea of the Local Density Approximation in DFT. The Levy–Lieb
energy (with the Hartree term subtracted) is replaced by the sum of the
energies per unit volume of an infinite uniform gas with the local density ρ(r0),
times the volume dr

In the LDA the complicated Levy–Lieb functionals
therefore get replaced by a new universal function


, which is much simpler since it only depends on



one real parameter. But the function f is also not known
exactly, and we will see that it displays a very rich
structure.

In this section we report on the results in [108] where
the LDA was rigorously justified for the first time. The
proper regime is that of slowly varying densities, that is,
densities ρ which are very flat on sufficiently large domains
such that f(ρ) becomes a good local approximation. To this
end we start by defining the function f.

3.3.1 The Uniform Electron Gas

The uniform electron gas was rigorously defined in [106,
108] and it is obtained by assuming that the density is
exactly constant over a large domain which grows so as to
cover the whole space. The result is the following.

Theorem 3.6 (Uniform Electron Gas [106, 108]) 
Let

w(r) = |r|−1in dimension d = 3 and q⩾1 be the number of

spin states. Let ρ0 > 0. Let Ω be a fixed open convex set of

unit volume | Ω| = 1. Let
 
be a radial non-negative

function of compact support such that
 
and


. Then the following thermodynamic limit

exists

(3.24)

and does not depend on Ω and χ.

Electrons have q = 2 spin states but we have written the
result with a general q for convenience. It is expected that
the exact same result holds for the other two functionals



FLL and FL, with the same limit f(ρ0). This has not yet been
proved, except in the classical case where the kinetic
energy is dropped (see Sect. 3.5).

The number f(ρ0) is the energy per unit volume (with the
Hartree energy subtracted) of an infinite gas submitted to
the constraint that its density is exactly constant over 
,
ρ(r) ≡ ρ0. In the literature, f(ρ0) is often confused with the
corresponding Jellium energy. In Jellium there is no
constraint on ρ but one adds instead a uniform background
of density ρ0 which compensates the long range of the
Coulomb potential [104, 119]. That the two models coincide
has only been shown in the classical case [36, 107] so far,
as we will mention in Sect. 3.5 below. In the quantum case
the same result should hold, but the proof has not been
written yet.

Here are some rigorously known properties of the
function f.

Theorem 3.7 (Properties of f [72, 106, 108, 119])

The function f is locally Lipschitz: There exists a constant C

such that

(3.25)

for all ρ1, ρ2⩾0. The function f satisfies the uniform

bound

(3.26)

for all ρ⩾0, where cTF(3) = (3∕10)(6π2)2∕3and


are respectively the Thomas–Fermi

and Dirac constants, discussed later in Sects.3.4and3.5. It

behaves at small densities like

(3.27)



where

is the classical UEG energy discussed later in Sect.3.5,

and at large densities like

(3.28)

The statement involves several constants that will be
introduced in the next sections. It is believed that f is
smooth except at finitely many points corresponding to
phase transitions. In the case of spin-1∕2 particles like
electrons (q = 2), numerical simulations in [3, 20, 24, 47,
84, 88, 146, 175] indicate that there might be one or two
such points. For a long time it was believed that the system
can be a ferromagnetic Wigner crystal, a ferromagnetic
fluid and a paramagnetic fluid. Recent results indicate that
the ferromagnetic fluid phase might not exist [3, 84],
however. More transitions could occur in the solid phase
(for instance an anti-ferromagnetic crystal). In spite of the
clear numerical evidence that there are phase transitions,
proving it remains a very challenging open problem [10].
Several approximate formulas for the function f are used in
DFT, including for instance the celebrated Perdew–Wang
(PW92) functional [144].

3.3.2 The Local Density Approximation of FGC

We now state a result from [108], where the LDA was
justified for the first time in the quantum case.



Theorem 3.8 (LDA for FGC [108]) 
Let w(r) = |r|−1in

dimension d = 3 and q⩾1 be the number of spin states.

Then there exists a constant C = C(q) such that

(3.29)

for every ε > 0 and every non-negative density


such that
 
. Here f is

the function defined in Theorem3.6.

It is expected that the exact same result holds for the
canonical functionals FLL and FL, with of course the
additional constraint that 
.

The last gradient term 
was chosen for
simplicity but the same result actually holds with ε1−4p|
∇ρθ|p instead, under the conditions that p > 3, 0 < θ < 1 and


. The constant C then depends on the
chosen p and θ.

In addition to the large power of ε, which is an artifact
of the proof in [108], the form of the error term is probably
not optimal. It is reasonable to expect that the right side of
(3.29) should only involve quantities like ρ5∕3, ρ4∕3, 
and |∇ρ1∕3|2 or perhaps |∇ρ|, which have the same scaling
as the kinetic and Coulomb terms.

The inequality (3.29) holds for every density but it is
useful only when the two gradient terms are much smaller
than the first term,

so that after optimizing over ε one gets a small term on the
right side of (3.29). One interesting case is when the



density is given in terms of a fixed function ρ with 
,
which is rescaled in the manner

After optimizing over ε we obtain the following expansion
of the grand-canonical Levy–Lieb energy:

(3.30)

The first term is the trivial non-local Coulomb term,
whereas the next term in the expansion is the LDA. It is an
interesting open question to determine the next order
correction, which is believed to be also local, of order N1∕3,
and to involve gradients. The exact same result as (3.30) is
expected for FLL and FL.

Remark 3.9 (LDA for the Exchange-Correlation Energy)

Theorem 3.15 below is a result similar to Theorem 3.8 for
the grand-canonical kinetic energy TGC alone, and implies a
corresponding bound for the difference of the two
functionals. These two bounds justify the LDA for the
(grand-canonical) exchange-correlation energy, as was
defined in Sect. 3.2.4.

In the next two sections we study separately the kinetic
energy functional and the classical interaction functional.
We discuss known upper and lower bounds and derive the
LDA for these functionals in a similar (but simpler) manner
as for the full Levy–Lieb functional FGC. Although the
minimum of a sum is in general not the sum of the two
minima, understanding the kinetic and interaction energies
separately will give us useful information on the full
functional, as explained in Sect. 3.6 below.



3.4 Kinetic Energy and Lieb–Thirring

Inequalities

3.4.1 Three Kinetic Energy Functionals

We have introduced in (3.20) the lowest kinetic energy
TS[ρ] that can be reached with Slater determinants, for a
given density ρ with 
. We can define in a
similar manner the lowest kinetic energy that can be
reached with all possible wave functions

(3.31)

This is nothing but 
, the Levy–Lieb functional with
interaction w ≡ 0. Recall that T and TS depend on the
number of spin states q.

Since this is a non-interacting problem, one may think at
first sight that minimizers will always be Slater
determinants, that is, T[ρ] and TS[ρ] should coincide. But
this is not true in general [116] and the best one can say
for a general ρ is that 
.

There are two other natural kinetic functionals
corresponding to 
and 
, respectively. For the
first one the minimization is extended to mixed canonical
states and for the second one to grand-canonical states. It
turns out that these two are equal:

The reason is that the kinetic energy can be expressed in
terms of the one-particle density matrix γ and that the set
of such matrices which are N-representable by a mixed
state coincides with those which are representable by a



grand-canonical state [27, 28]. By duality, this also follows
from the fact that the inequality (3.18) always holds in the
non-interacting case.

In order to explain all this in detail, we first recall that
the one-particle density matrix γΨ of a wavefunction Ψ is
the self-adjoint operator acting on the one-particle space


with integral kernel

This gives

with the trace interpreted in the quadratic form sense.
Every density matrix of an antisymmetric Ψ satisfies


and Tr (γΨ) = N. When we consider mixed
N-particle states we obtain the convex hull of the set of N-
representable density matrices. This convex hull is
definitely contained in the convex set

But the extreme points of this set are the rank-N
orthogonal projections with finite kinetic energy. Those are
exactly the one-particle density matrices of the Slater
determinants. Hence we must have equality of the two
convex sets. By considering grand-canonical states the set
will not increase further. See Theorem 3.26 for a related
result.

This discussion leads us towards introducing the
following kinetic energy functional

(3.32)



We call it “grand-canonical” since 
can now take any
positive value. But for 
, this is just Lieb’s canonical
energy 
. In this case we also have

The functional TGC[ρ] is convex and it is the convex hull and
the weak-∗ semi-continuous closure of both T[ρ] and TS[ρ],
similarly as in Theorem 3.5. Minimizers exist for these
three functionals, as in Theorem 3.2. It suffices to take w ≡ 
0 in all those theorems.

Remark 3.10 (N-Representability of the One-Particle

Density Matrix) 
There are complicated constraints on a
one-particle density matrix γ to ensure that it arises from
an N-particle wavefunction Ψ. For instance, when N = 2
then all the eigenvalues of γ must be of even multiplicity.
Another example is that no γ of rank N + 1 is N-
representable. See [28, 62, 101] for these two examples
and [2, 13, 91, 154] for more advanced results when N⩾3.

Now we mention some known upper and lower bounds on
the kinetic energy functionals. Lower bounds naturally
involve the lowest functional TGC[ρ]. Upper bound should
ideally involve TS[ρ] but we will see that much more is
known on TGC[ρ].

3.4.2 Lower Bounds: Hoffmann-Ostenhof and

Lieb–Thirring Inequalities



The first lower bound is the Hoffmann-Ostenhof inequality
mentioned previously in (3.4) and which holds for the
grand-canonical kinetic energy as well.

Theorem 3.11 (Hoffmann-Ostenhof Inequality [81])

For every ρ⩾0 such that
 
, we have

(3.33)

Using the Gagliardo–Nirenberg inequality [118]

(3.34)

for 
, we obtain

and this is optimal for bosons. But for fermions this is not
optimal at all. The Lieb–Thirring inequality states that one
can replace the N-dependent prefactor by an N-
independent one (or, rather, by a q-dependent constant
where q is the number of spin states).

Theorem 3.12 (Lieb–Thirring [121, 125, 126]) 
There

exists a positive constant cLT(d) > 0 such that

(3.35)

for all ρ⩾0 such that
 
.

Note the spin dependence in q−2∕d, which is compatible
with the fact that the bosonic case is recovered when q = N.
For particles like electrons we have q = 2 and the constant
is N-independent.



For large fermionic systems the Lieb–Thirring inequality
is an advantageous replacement for the Gagliardo–
Nirenberg inequality, to which it reduces in the case N = 1
(in particular we always have 
). Since its
invention, the Lieb–Thirring inequality (3.35) has played a
central role in the mathematical understanding of large
fermionic systems. It was originally used to give a proof of
stability of matter [112, 117, 121, 125] that is much shorter
than the original proof of Dyson and Lenard [48]. Later the
Lieb–Thirring inequality was generalized to systems at
positive density [57, 58] where ρ is a local perturbation of a
constant, and to the dynamic case where it extends
Strichartz’s inequality [59, 60].

The right side of (3.35) is related to the kinetic energy of
the free Fermi gas. Indeed, we recall that the translation-
invariant orthogonal projector

(3.36)

has the constant density 
and the constant kinetic
energy density 
, where

(3.37)

is called the Thomas–Fermi constant.
The best constant cLT(d) in (3.35) is unknown but it is

definitely less than or equal to cTF(d). This is seen by using
the trial state 
and taking the limit R 
→∞. The famous Lieb–Thirring conjecture [159] states that

(3.38)



In other words, the conjecture states that the best constant
is obtained either for the infinite non-interacting uniform
electron gas, or for one isolated electron. This conjecture
was investigated numerically in [98]. The proof of the
conjecture (3.38) in dimension d = 3 would have a great
impact since it would mean that the Thomas–Fermi–Dirac
(TFD) energy is an exact lower bound to the many-particle
problem [114], as we will mention later in Sect. 3.6. The
Thomas–Fermi energy is the simplest functional in Density
Functional Theory and knowing that it is an exact lower
bound would simplify drastically many mathematical
results, in addition to increasing its physical significance.

The best known estimate on cLT(d) was recently proved
in [56] and reads

It improves upon the previously best known result where
1.456 was replaced by 1.814 and which was proved in d = 1
in 1991 by Eden and Foias [49] and in d⩾2 by Dolbeault et
al. [45] in 2008. We refer to [54–56, 159] for a recent
overview of other important results on the Lieb–Thirring
inequality.

By duality, the Lieb–Thirring inequality implies a bound
on the sum of the negative eigenvalues of a one-particle
Schrödinger operator in an external potential v, denoted by
functional calculus as −Tr (− Δ∕2 + v)−. Namely, we have
by (3.7)

(3.39)



where 
indicates that we take w ≡ 0. Since

is the Legendre transform of 
, the

inequality (3.39) is actually equivalent to the Lieb–Thirring
inequality (3.35). The original proof of Lieb and Thirring
[125, 126] actually showed (3.39) and it was only much
later that Rumin [153] found a direct proof of (3.35).

The semi-classical constant (3.37) naturally occurs for
slowly varying densities in the LDA regime, as we will see.
Nam proved in [133] that one can replace the Lieb–Thirring
(unknown) constant cLT(d) by cTF(d) at the expense of a
gradient correction.

Theorem 3.13 (Nam’s Lieb–Thirring Inequality with

Gradient Correction [133]) 
Let q, d⩾1. There exists a

universal constant κ(d) (independent of the number of spin

states q) such that

(3.40)

for all 0 < ε < 1 and all d⩾1.

This was the first step towards a proof of the validity of the
LDA for the kinetic energy, to which we will come back
soon.

Li and Yau proved in [111] a lower bound involving the
optimal Thomas–Fermi constant in a bounded domain




:

(3.41)

(see also [118, Thm. 12.3] and [75, Lem. 9]). The bound is
particularly useful for densities ρ which are (almost)
constant over a domain Ω. For instance for 
with supp(χ) ⊂ B1 we find the exact lower bound

whereas (3.40) yields a worse error term.

3.4.3 Upper Bounds

For upper bounds one should ideally consider the larger
functional TS[ρ]. In dimension d = 1, March and Young
[129, Eq. (9)] gave the proof of an estimate similar to
(3.40) without the parameter ε in front of the gradient
correction

(3.42)

where π2∕6 = cTF(1). In the same paper they also state a
result in 3D (for a constant c > cTF(3)) but the proof has a
mistake [116, Sec. 5.B]. The bound (3.42) is proved by
using as trial state the orbitals

(3.43)

(we take q = 1 for simplicity), where 
and the phases
are seen to make the φn orthonormal. Computing the
kinetic energy of this trial state, one obtains



Taking all the integers n less than or equal to N∕2 in
absolute value and using the precise behavior of the series
gives the result for q = 1.

The method can be generalized to higher dimensions
using a similar method, but the estimate has a bad behavior
in N. The orbitals

(3.44)

were considered in [79, 116] and these are the phases
which we already mentioned in (3.5). Using this trial state
one obtains [116] for q = 1

(3.45)

An upper bound on TS[ρ] involving only 
has to
have a constant diverging at least as fast as N2∕d, due to the
Lieb–Thirring inequality. In [11, 176, 177] the optimal
upper bound of this form was shown:

(3.46)

The idea of the proof is to apply a deformation of the space
in order to map ρ onto the constant density in a box, which
is then represented by a usual Slater determinant made of
plane waves. One would expect an upper bound on TS[ρ]
involving both 
and 
, with coefficients
independent of N as in (3.42), but this seems unknown at
present. The periodic case was studied in [12].

Recently, an upper bound similar to (3.40) was proved in
[108] for the grand-canonical functional TGC[ρ].



Theorem 3.14 (Upper Bound on TGC[ρ] [108]) 
Let d,
q⩾1. There exists a constant κ′(d) such that

(3.47)

for all ε > 0 and all ρ⩾0 with
 
.

The main difficulty in the proof of (3.47) is the constraint
that the one-particle density matrix must have the exact
density ρ. One can provide rather good upper bounds if we
allow the density to vary a bit. For instance, by using
coherent states [114] the density ρ is replaced by ρ ∗|f|2
where f is the profile used to build the coherent states
(typically a Gaussian).

The proof of (3.47) instead relies on the following trial
one-particle density matrix

(3.48)

Here the two functions 
are interpreted as
multiplication operators, whereas the operator in the
middle is the Fourier multiplier Pt introduced before in
(3.36). The non-negative function η is chosen such that

(3.49)

The main idea is to represent the density ρ by using the
smooth “layer cake principle” [118, Thm. 1.13]

where we think of η as very concentrated around 1, and to
then take the free Fermi gas Pt as in (3.36) on the support
of η(t∕ρ), where ρ is very close to t. The measure dt∕t in



(3.48) ensures that ργ = ρ exactly. On the other hand the
condition 
ensures that 
and means
that η must put slightly more weight on the right of 1 than
on the left. Computing the kinetic energy of the trial state
(3.48) and optimizing over η, one obtains (3.47).

We have explained the construction of the trial state
(3.48) to emphasize how much easier it is to work in the
grand-canonical setting. It is an important open problem to
obtain a bound similar to (3.47) on TS[ρ] or T[ρ]. For TS[ρ]
this amounts to understanding how to build N orthogonal
orbitals with the prescribed density, and to obtain the
lowest possible energy. This problem is somewhat related
to the smooth Hobby–Rice problem. There one considers N
arbitrary L2-normalized functions 
and
looks for the minimal kinetic energy cost to orthonormalize
them using only phases: 
. It was proved in [61,
97, 155] that such phases θj always exist, but known
bounds involve 
which are not enough to deduce
anything on the H1 norm of the orbitals 
. In view of
(3.45), one would suspect that

but this seems unknown at present. In (3.43) the reference
orbitals are all equal to 
but this is probably not the
optimal choice for TS[ρ] in dimension d⩾2.

3.4.4 Local Density Approximation for the

Kinetic Energy

From the lower bound (3.40) and the upper bound (3.47)
we obtain the following result, which is similar to Theorem



3.8 but involves only quantities that all scale the same,
namely like inverse-length squared.

Theorem 3.15 (Local Density Approximation of the

Kinetic Energy [108, 133]) 
Let d, q⩾1. There exists a

universal constant C(d) such that

(3.50)

for all ρ⩾0 with
 
and all ε > 0.

In the regime where

the optimization over ε gives a right side which is
negligible compared to the left side. In this regime we can
approximate the kinetic energy functional in the manner

(3.51)

The right side is called the Thomas–Fermi kinetic energy
and it is the simplest approximation to TGC[ρ]. If we fix a
density ρ with 
and take ρN(r) = ρ(rN−1∕d), then we
find from (3.50) that

From semi-classical analysis it is expected that for a
sufficiently regular ρ the next term should be equal to

(3.52)



which is called the von Weizsäcker correction, see [136,
Sec. 6.7] and [128, pp. 89–90]. This is in reference to the
historical work [171] for atoms in dimension d = 3 where
however von Weizsäcker chose the coefficient 1∕2 instead
of 1∕18.1 The value of the prefactor in (3.52) was predicted
in [83, 90, 94, 156, 170]. That the coefficient is negative in
dimension d = 1 is related to the non-optimality of the
Thomas-Fermi constant in the Lieb–Thirring inequality
(3.35) and is well known in one-dimensional semi-classical
analysis [21].

Even without having a clean upper bound like (3.47), it
is reasonable to believe that

but this does not seem to be known at present. If the fixed
density ρ is replaced by a well chosen locally constant
density ρN converging to ρ, then this was proved in [71,
Thm. 4].

3.4.5 Derivation from Levy–Lieb at Large

Densities

In this section we show that our kinetic energy functionals
can be obtained from the corresponding Levy–Lieb
functionals in a proper limit of large densities. For
completeness, we consider a rather arbitrary interaction
potential w in any dimension.

Theorem 3.16 (Convergence at High Density) 
Let


with p as in (3.1) and ρ⩾0 such that


. If
 
we have

(3.53)



If
 
and the additional classical stability

assumption (3.14) holds, we have

(3.54)

One can also prove the convergence of optimal states or
even write the theorem in the form of Gamma convergence.
In a similar manner, TS[ρ] arises from the Hartree–Fock-
type Levy–Lieb functional where one only minimizes over
Slater determinants.

Since we have not found the proof in the literature, we
provide it here for completeness.

Proof 
We start with FLL. By scaling we see that

with the new interaction potential wλ(r) = λ−2w(r∕λ). Our
assumptions on w imply that w is infinitesimally (− Δ)-form
bounded, that is, 
for all ε > 0. After scaling
this implies

For the two-particle operator this gives

and we thus obtain
(3.55)



This yields the bound

The limit (3.53) follows after taking first λ →∞ and then ε → 
0. For an explicit potential such as Coulomb we know how
Cε depends on ε and one can then give a quantitative
bound.

For FL the argument is exactly the same, with the same
bound and T[ρ] replaced by TGC[ρ]. For FGC the above
argument does not work due to the bad behavior in N.
Instead, we rescale the stability assumption (3.14) on w
and obtain

which provides the lower bound

For the upper bound we consider a fixed grand-canonical
state Γ = ( Γn)n⩾0 such that



for some small η > 0. From the proof in Sect. 3.8, we can
assume that Γ has compact support: Γn ≡ 0 for 
.
Using the previous bound (3.55) in the canonical case, we
obtain the bound

The limit now follows after taking λ →∞, ε → 0 and finally η 
→ 0. □

Remark 3.1 (Adiabatic Connection) 
For homogeneous
potentials such as Coulomb, scaling ρ is the same as
changing the strength of the interaction. This is the spirit
of the adiabatic connection formula, which is often used in
quantum chemistry to interpolate between the non-
interacting and interacting problems [80]. Let us for
instance discuss 
and the corresponding kinetic
energy 
. We introduce a coupling constant t in
front of w and look at the function 
. It is concave
on [0, 1] (and increasing if w⩾0). It has left and right
derivatives everywhere, which are given by the minimal
and maximal values of the interaction energy among all the
possible minimizers Γt of 
, by the Feynman-Hellmann
theorem. These two derivatives are equal, except possibly
on a countable subset of [0, 1]. We can express

where Γt is any minimizer for 
. This is a formula for
the direct plus exchange-correlation energy in Kohn-Sham
theory with fractional occupations. It is sometimes useful to
consider a general path t ∈ [0, 1]↦wt in place of the simple
linear switching, see [174] and [80, Sec. 2.4].



3.5 The Classical Interaction Energy

and Lieb–Oxford Inequalities

In this section we study the Levy–Lieb functional with the
kinetic energy dropped, which then becomes a purely
classical problem.

3.5.1 A Multi-Marginal Optimal Transport

Problem

In the classical problem there is no difference between
fermions and bosons. In the canonical setting, the main
variable is a symmetric probability density 
over


, which in the quantum case corresponds to

for pure states and to an average of such quantities for
mixed states. The sum over the spin variables occurs since
the interaction potential has been assumed to be spin-
independent. In general, 
will not be absolutely
continuous with respect to the Lebesgue measure,
however. The problem is therefore better stated in the form

(3.56)

with the density

The acronym SCE means Strictly Correlated Electrons [69,
160–164] since, as we will explain, the minimizing solution


is typically supported on a set of small dimension where
the positions of the particles are highly dependent on each



other. In general ρ can be a singular measure. In the worst
case ρ is the sum of N Dirac deltas, in which case 
has to
be the symmetrized tensor product of these N deltas so
that the locations of the particles are then completely fixed.
For simplicity we will always assume that 
.
Nevertheless, the minimizing 
need not be a function.

There is a grand-canonical version of FSCE which is
stated in the form

(3.57)

This was introduced in [106] and further studied in [42,
107, 108]. For the problem to be well posed for all
densities, w needs to satisfy the stability condition (3.14).

The two classical problems (3.56) and (3.57) belong to
the class of multi-marginal optimal transport problems [33,
35, 41, 137, 162]. We only mention here a few striking
results. The existence of a minimizing 
for (3.56) follows
by compactness arguments similar to Theorem 3.2, for a
large class of interaction potentials including the Coulomb
potential. The argument is the same in the grand-canonical
case (3.57). It was proved in [30] that the infimum can be
restricted to Monge states, which are the most correlated
N-particle probability densities with one-particle density ρ
and take the form

(3.58)

where 
is a transport map such that T#ρ = ρ and
TN = Id and Sym denotes symmetrization. The formula
means that the position y = r1 of the first particle
completely determines the positions r2 = Tr1, …, rN = TN−1r1



of the other N − 1 particles through the transport map T
(and the picture is symmetrized with respect to the indices
of the particles at the end). When moving the first particle
(at the appropriate speed so as to build the desired density
ρ) the other particles follow in a ‘strictly correlated’ way.

Even if the infimum in (3.56) is the same when
restricted to Monge states, there might exist no Monge
minimizer [32, 162]. Only when N = 2, or in one dimension
for all N⩾2 [29] one can be sure that Monge minimizers
exist. In fact, in dimension d = 1 and for a positive
interaction w⩾0, the problem admits a minimizer 
which
does not depend on w at all! It is the Monge state with
increasing transport map 
where r0 
= −∞ < r1 < r2 < ⋯ < rN−1 < rN = +∞ are chosen such that


[29]. The corresponding N-particle
probability can also be expressed in the manner

(3.59)

where rk(s) : [0, 1] → [rk−1, rk] is the inverse of the
increasing function 
. This is
displayed in Fig. 3.2. For instance, for the uniform density


we have simply T(y) = y. The N points
are placed on the lattice 
and their position is
averaged over s ∈ [0, 1]:

(3.60)

This is called a floating Wigner crystal in Physics and
Chemistry [9, 47, 107, 130], since the particles are exactly
located on a lattice, whose position is varied. We will come
back to this special state later in Sect. 3.5.4.



Fig. 3.2 
Form (3.59) of the optimal Monge-type probability 
in one
dimension. The positions of all the particles are fixed by the position of the first
particle and they are moved to the right at a proper speed so as to reproduce
the desired density ρ

In [22] some interesting properties of the exact (Monge
or not Monge) minimizer 
of (3.56) were established. This
includes the fact that the N particles have a positive
distance to each other on the support of 
, for a repulsive
interaction such as Coulomb. The dual formulation is
similar to (3.11) and takes the form

(3.61)

One important feature of the SCE problem is that there
exists an optimal potential vSCE solving the supremum in
(3.61), under rather weak assumptions on the interaction
potential w. The optimal vSCE is called a Kantorovich

potential. This is in stark contrast to the quantum case
(3.11), where unique continuation drastically reduces the
set of densities ρ for which the supremum is attained (see
Sect. 3.7 below). Under the sole assumption that w is radial
decreasing, diverges at the origin and is C1 outside of the



origin (like for the Coulomb potential w(r) = |r|−1 in
dimension d = 3), it was proved in [22] that there exists an
optimal Kantorovich potential vSCE which is bounded and
Lipschitz. An optimal N-particle probability 
must then be
supported on the set

In other words, the N particles should minimize the
associated N-particle classical problem with the external
potential vSCE. All densities 
are v-representable
in the classical case.

3.5.2 Convergence of the Levy–Lieb Functional

at Low Density

We have seen above in Theorem 3.16 that the kinetic
energy functional becomes dominant at large densities.
Similarly, the interaction becomes dominant at low
densities, provided that w has the right scaling at large
distances. To simplify our exposition, from now on we
restrict our discussion to power-law (Riesz) potentials

The main result is the following.

Theorem 3.17 (Convergence at Low Density) 
Let

w(r) = |r|−swith
 
. Let ρ⩾0 such that


. If
 
we have

(3.62)

If
 
we have



(3.63)

Note that the stability condition (3.13) is always satisfied
for the positive potential w(r) = |r|−s, hence the grand-
canonical energies are well defined.

The proof is much more complicated than Theorem 3.16,
since an optimizer 
for FSCE[ρ] or FGSCE[ρ] will never have
a finite kinetic energy, even under the assumption that


. The limit for FLL was shown for 
with
spin first by Cotar et al. in [33] and later extended to


by Bindini and de Pascale in [8]. The limit for FL[ρ]
and all 
was solved in [103] whereas the case of
FLL was finally treated in [34]. The proof for FGC follows
along the lines of [103]. The next order in λ was predicted
in [70] and proved in some cases in [31].

To summarize, at large densities the Levy–Lieb
functional behaves like the kinetic energy of non-
interacting quantum particles, whereas at low density the
particles tend to be very correlated and solve the
corresponding classical problem.

3.5.3 Lieb–Oxford Inequality

We discuss here upper and lower bounds on the interaction
energy, with an emphasis on lower bounds (Lieb–Oxford
inequality).

The easiest upper bound is obtained by taking the
decorrelated trial state 
, that is, independent
particles distributed according to the density ρ. This gives
the bound

(3.64)



The right side is, up to the constant 1 − 1∕N, the classical
energy of the density distribution ρ and it is a non-local
term. The factor 1∕N can be dropped for repulsive
potentials.

It is relatively easy to prove a similar lower bound,
under the additional assumption that w is continuous and
has a non-negative Fourier transform, 
). In this case
we have

for every signed measure η. Taking 
and
expanding we find the pointwise inequality on 

This is valid for all f and the last error term comes from the
case j = k. Integrating against any state 
with density ρ
and taking f = ρ, we obtain the following lower bound:

(3.65)

For a long-range potential the first term grows faster than
N for most densities, hence the last error term is often
much lower than the classical energy.

For Coulomb or other power-law potentials, the previous
argument does not work since w(0) = +∞. One solution is to
regularize the potential at the origin but this also modifies
the classical interaction energy. One can estimate the error
under appropriate regularity assumptions on ρ. But Lieb
[113] and then Lieb–Oxford [120] have proved a universal
bound which has the right scaling behavior and does not
require the potential to be smeared out. We state it for
power-law potentials but the inequality is slightly more
general.



Theorem 3.18 (Lieb–Oxford Inequality [4, 72, 113,

120, 121, 124, 127]) 
Assume that w(r) = |r|−swith 0 < s 

< d in dimension d⩾1. Then there exists a universal

constant cLO(s, d) > 0 such that

(3.66)

for every
 
.

From now on we always call cLO(s, d) the smallest constant
for which the inequality (3.66) is valid for all ρ. Note that
cLO(s, d) works for every particle number 
. If one adds
the constraint that 
then the optimal constant
depends on λ but it is non-decreasing and has the limit
cLO(s, d) when λ →∞.

Although only the case s = 1 and d = 3 was considered in
the original papers [113, 120], the proof for s = 1 and d = 2
given in [4, 72, 124] extends to any 0 < s < d in any
dimension, see [127, Lemma 16]. This proof involves the
Hardy–Littlewood estimate for the maximal function Mρ

[73],

and, consequently, the best known estimate on cLO(s, d)
involves the unknown constant cHL(s, d). A Lieb-Oxford
bound was shown for 
in two dimensions in
[110, Prop. 3.8]. In dimension d = 1, optimal Lieb-Oxford
bounds are studied in [40].

In the 3D Coulomb case, d = 3 and s = 1, the best
estimate known so far on the optimal Lieb-Oxford constant
is

(3.67)



The upper constant was equal to 8.52 in [113], to 1.68 in
[120] and later improved to 1.64 in [89]. The better value
1.58 was obtained very recently in [109]. The lower bound
has been claimed in [100, 138] and only shown recently in
[36, 108]. It will be discussed in the next section. It was
conjectured in [100, 135, 148] that the best Lieb-Oxford
constant is indeed about 1.44. It remains an important
challenge to find the optimal constant in (3.66). Several of
the most prominent functionals used in Density Functional
Theory make use of the value of the Lieb-Oxford constant
for calibration [100, 138, 139, 143, 166–168].

A different Lieb-Oxford inequality was recently proved in
the 3D Coulomb case in [109]. It reads

(3.68)

under the additional assumption that 
has negative

correlations, which means

(3.69)

This condition is satisfied when 
is the square of a Slater
determinant (3.19), in which case the left side of (3.68) is
called the exchange energy and the best constant is
believed to be 1.09 [143]. But many other states satisfy the
condition (3.69). In statistical mechanics, this is typical of
gas phases [152] at high temperature. Since 1.25 < 1.44 < 
cLO(1, 3), this means that such states cannot provide the
optimal Lieb-Oxford constant. In fact, we explain below
how to obtain the lower bound 1.44 from a solid (periodic)
phase.

The indirect energy is the equivalent of the exchange-
correlation energy defined in the quantum case in Sect.



3.2.4:

For power-law interactions it is always negative and
bounded from below by a constant times 
.

3.5.4 Constant Densities and the Classical

Uniform Electron Gas

We discuss here the special case of densities which are
constant over a finite set and the limit when this set fills
the whole space. This is the classical equivalent of the
Uniform Electron Gas discussed in the quantum case in
Sect. 3.3.1 above. This special case will give us some lower
bounds on the Lieb–Oxford constant cLO(s, d), including the
bound 1.44 in dimension d = 3 stated in (3.67).

The classical equivalent of Theorem 3.6 was proved in
[106].

Theorem 3.19 (The Classical Uniform Electron Gas

Energy [106]) 
Assume that w(r) = |r|−swith 0 < s < d in

dimension d⩾1. Let ρ0 > 0. Let Ω be a fixed open convex set

of unit volume | Ω| = 1. Then there exists a universal

constant cUEG(s, d) > 0 such that

(3.70)

In particular we obtain
 
.



The constant cUEG(1, 3) is the one which has appeared
before in Theorem 3.7. At low density, the quantum UEG
behaves like a classical gas by an equivalent of Theorem
3.17 for infinite systems [106].

Note that the classical canonical and grand-canonical
functionals are known to give the same thermodynamic
limit. In the quantum case this is not yet known. We have
stated the theorem for a fixed domain Ω which is scaled but
the same result holds for a general sequence ΩL that has a
regular boundary in the sense of Fisher [106].

Except in dimensions d ∈{1, 8, 24} and

, some special cases to which we will

come back, the constant cUEG(s, d) is unknown. In order to
get upper bounds on cUEG(s, d), we need to construct trial
states. The idea is to use a floating crystal similar to (3.60),
that is, to place the particles on a lattice and then average
over translations to obtain a constant density.

Let 
be a lattice of normalized unit cell Q. We
then only retain the points of the lattice intersecting the
large cube CL = (−L∕2, L∕2)d and average over the
translations of this finite lattice over Q. This way we obtain
a trial state which is constant over the union of the
corresponding translates of Q. In general this is only an
approximation of CL but since the limit (3.70) is insensitive
to the type of domains, this will not create any difficulty.
The trial state is, therefore, given by

(3.71)

Then 
has the constant density

(3.72)



The state is as displayed in Fig. 3.3. Note that the energy of
the probability measure 
is simply the interaction of
the lattice points, since the interaction potential is
translation-invariant:

Fig. 3.3 
A two-dimensional picture of the Jellium model. The dots represent
the point particles, which are placed on a finite subset of a lattice 
. The
colored set is the union of the corresponding unit cells and it represents a



uniform background charge distribution of opposite charge. The indirect
energy of the floating crystal is obtained after integrating the position of the
lattice over the unit cell Q as in (3.79). When the lattice is not centered, this
results in an excess of point charges on one side and an excess of background
charge on the other side, indicated by the two rectangles. These large
boundary charge fluctuations are responsible for the shift in Theorem 3.20 at s 
= d − 2

It is instructive to see first what happens in the short
range case s > d. Then the energy per unit volume
converges to

(3.73)

The function on the right side is called the Epstein Zeta

function [10, 17, 51] and it is the natural generalization to

of the usual Riemann Zeta function, which it coincides

with when d = 1 (hence 
). It turns out that the limit
in the long range case can be expressed with the (analytic
extension) of 
, for potentials decaying to zero at infinity
faster than Coulomb. Something special is happening at s = 
d − 2.

Theorem 3.20 (Indirect Energy of the Floating Wigner

Crystal [14–16, 96, 104, 105]) 
Let
 
in
dimension d⩾3 and 0 < s < d in dimensions d = 1, 2. Let


be a lattice with a normalized unit cell Q having no

dipole and no quadrupole moment:

Then the indirect energy per unit volume of the floating

Wigner crystal (3.71) converges to

(3.74)



where
 
is the analytic continuation to
 
of the

Epstein Zeta function on the right of (3.73), initially defined

for
 
.

A similar result holds for 
in d = 1 and s = 0 in d 
= 2 [96, 104].

The first divergent term in the lattice sum is the
classical energy, which behaves like N2−s∕d and depends on
the shape of the chosen large domain CL:

(3.75)

This is because the lattice sum is a Riemann sum for the
corresponding integral at that scale. Replacing CL by
another set changes this macroscopic term. Note that the
analytic extension of (3.75) is a o(Ld) for s > d. This term
probably exists in the short range case too, but it is lower
order and it was not seen in the limit (3.73).

The theorem provides the next order term in the long
range case d − 2 < s < d. This is an extensive quantity (of
the order of the volume) which has a limit independent of
the shape CL. This limit is simply the analytic extension of
the short range energy. This is compatible with our picture
that the classical energy (3.75) is the leading term for s < d
but once it is removed, we are essentially back to (3.73).



At s = d − 2 the picture changes. Another term of the
order L2(d−1)−s, which was lower order for all s > d − 2,
becomes relevant for the energy per unit volume at s = d − 
2 and dominates for s < d − 2. As we will explain later, this
is a kind of surface term.

In dimension d = 1 we know from [29] that the floating
crystal is optimal and provides the minimal classical energy
at constant density. Therefore we deduce from Theorem
3.20 that

(3.76)
In particular, 
.

In higher dimensions, the floating crystal is not known
to be an exact minimum, and furthermore there are several
possible crystals. Therefore we only obtain the upper bound

(3.77)

The minimum is over all lattices of normalized unit cell. It
is expected that the last inequality should be an equality for
some values of the dimension d including d = 1, 2, 3. So far
this is only known in dimensions d = 8 and d = 24 [25, 145].
In dimension d = 2 the minimum on the right of (3.77) is
known to be achieved by the triangular lattice [23, 43, 50,
131, 147] whereas in dimension d = 3, numerics indicates
that it is achieved by the Body-Centered Cubic lattice
(BCC) for 0 < s⩽3∕2 and the Face-Centered Cubic lattice
(FCC) for 
[10, 17, 68, 157].

The surprising jump of the energy per unit volume
(3.74) in the Coulomb case s = d − 2 was first discovered in
1979 by Hall [76] based on an unpublished remark by
Plaskett in 1959. The conendrum raised by Hall was
discussed in several papers in the 80s, see for instance [1,
39, 77, 78, 86, 134]. It was rediscovered in 1988 by
Borwein et al. [15] and was recently revived and
reformulated in [105, App. B]. It has indeed always been



assumed in the Physics and Chemistry literature that the
floating crystal is a good trial state for the UEG, and that
cUEG(1, 3) should even be equal to the BCC lattice energy,
whose value is ζBCC(1) ≃−1.4442 (see [26] and [68, p. 43]).
This value is used in most DFT functionals based on the
Uniform Electron Gas. But the Coulomb potential is exactly
the one for which the floating crystal behaves badly, by
Theorem 3.20.

Note that the jump exists and is unavoidable in 1D,
where the floating crystal is known to be optimal, but it
happens at the negative value s = −1. Indeed, for w(r) = −|r|
we have the expansion similar to Theorem 3.20

(3.78)

with 1∕6 > −ζ(−1) = 1∕12.
In order to better understand what is going on, it is

useful to reinterpret the result in terms of the Jellium

model [104, 119]. In this model there is no constraint on
the electronic density but the particles interact with a
compensating uniform background of opposite charge. At
density one, the corresponding energy is defined by

where Ω is any measurable set of volume | Ω| = N,
representing the uniform background. A short calculation
shows that the indirect energy of the floating crystal can be
written in the form

(3.79)



In other words, it is the average of Jellium energies where
the lattice points are moved over the fixed background ΩL.
In this interpretation it becomes clear why the averaging
over y induces the shift in (3.74): moving the particles away
from the center of the unit cells is not at all energetically
favorable. When the particles are moved in one direction
this creates a large excess of negative charges on one side
and a corresponding excess of background charge on the
opposite side (Fig. 3.3). These two opposite boundary
charges have an interaction energy proportional to
(Ld−1)2∕Ls = L2(d−1)−s which is exactly of the order of the
volume in the Coulomb case s = d − 2 and grows faster for s 
< d − 2. On the other hand, when the particles are placed
exactly at the center of the unit cells, one recovers the
analytic extension of the short range energy for all s > d − 
4.

Theorem 3.21 (Jellium Energy of the Clamped Wigner

Crystal [10, 14–16, 96, 104, 105, 119]) 
Assume that

d⩾1. Let
 
be a lattice satisfying the same

assumptions as in Theorem3.20. Then the Jellium energy

per unit volume of the Wigner crystal clamped at the center

of the unit cells converges to

(3.80)

for all
 
.

The floating crystal is really not a good trial state for the
UEG. The conundrum raised in Theorem 3.20 was recently
resolved in [36, 107]. Cotar and Petrache managed to
prove in [36] that the (unknown) UEG energy cUEG(s, d) is
always continuous for 0 < s < d and that it is equal to the
(also unknown) Jellium energy for 
. The proof
of continuity in s is very delicate and requires the use of



advanced analytical techniques due to Fefferman and
collaborators [52, 74, 85]. A short time later, the same
result was obtained in [107] with a different and much
simpler argument. Here we only explain this argument for
the special case of the floating crystal, that is, we show how
to modify the trial state (3.71) in order to cancel the shift
appearing in (3.74).

The main idea of [107] is to immerse the crystal in a thin
layer of fluid. In other words, the floating crystal is melted
close to the boundary in order to reduce the large charge
fluctuations. The fluid gets displaced with the crystal when
the latter is averaged over translations. Think of a block of
ice completely filling a container. In order to move the ice it
is necessary to melt it close to the container walls.

To describe this procedure, let us denote by 
a
slightly larger cubic container such that 
,
where we recall that ΩL is the union of the unit cells Q + ℓ
with 
. We can take 
, where λ is any
fixed distance larger than the diameter of Q. We assume
that the volume of the fluid 
is an integer. It
satisfies 
. The new trial state has the N = |
ΩL| particles on the floating crystal, translated by y ∈ Q as
before in (3.71), together with M other particles forming an
uncorrelated fluid in 
, the set remaining after
we have subtracted the union of all the cells centered at
the particle positions (Fig. 3.4):

(3.81)

Note that the state of the fluid is correlated with the
position y of the crystal.



Fig. 3.4 
A two-dimensional picture of the modified floating crystal (3.81) from
[107]. The dots represent the point particles which are at the centers of
hexagons of volume one. As the whole crystal block is translated by y, the
incompressible fluid gets displaced to fill the remaining space 
.
The resulting density is only constant well inside the container

Theorem 3.22 (Indirect Energy of the Modified

Floating Crystal [107]) 
Let
 
in
dimension d⩾1 and
 
a lattice satisfying the same

assumptions as in Theorem3.20. Then the indirect energy

per unit volume of the modified floating Wigner crystal

(3.81) converges to



(3.82)

In particular, we obtain

For the BCC lattice in dimension d = 3, one finds the
claimed lower bound

It is reasonable to conjecture that

for d = 1, 2, 3 and all 0 < s < d, which amounts to saying
that the uniform electron gas is always crystallized at zero
temperature [10, 104]. The modified trial state (3.81)
suggests that the system can only be a solid in the bulk. In
a neighborhood of the boundary, it is probably a fluid
because the particles have to be able to move sufficiently
far away around the crystal to compensate the large charge
fluctuations.

In this section we have explained some major difficulties
encountered when trying to construct good trial states for
the Uniform Electron Gas. Those are entirely due to the
boundary, namely to the fact that we work with a finite
piece of material in the physical space 
. If we set up the
model on the torus, as is often done in practical
calculations, these difficulties disappear [104, Sec. IV.C].

It is worth mentioning an estimate due to Lieb and
Narnhofer [119] in the Coulomb case s = 1 in dimension d 
= 3 which states that

(3.83)



for any open set Ω of integer volume. The constant (3∕5)
(9π∕2)1∕3 ≃ 1.4508 is surprisingly close to the expected
optimal value − ζBCC(1) and it implies in any case that

This is the bound that appeared in Theorem 3.7. For
negatively-correlated states as in (3.69), the constant can
be replaced by (3∕2)(π∕6)1∕3 ≃ 1.2090 [109].

In dimension d = 3 for s = 1 it was conjectured in [135,
148] that the classical Uniform Electron Gas gives the
optimal Lieb–Oxford constant, i.e., cLO(1, 3) = −cUEG(1, 3).

Remark 3.23 (Determinantal Processes and the Dirac

Constant) 
Let 
with 
. Instead of the
floating crystal (3.71) and its modified version (3.81), one
can consider the square of a Slater determinant as a trial
state:

where k1, …, kN are N distinct points in 
(our trial state
contains no spin). We find

As for the free Fermi gas we choose all the points ki in a
given ball centered at the origin. For w(r) = |r|−s the second



term behaves like 
where the Dirac constant

[44]

is the exchange energy per unit volume of a free Fermi gas.
Here the Fermi radius is 
. This
proves that

but this bound is worse than the floating crystal. The
particles are not correlated enough. In dimension d = 3
with s = 1 one finds 
. Recall
that for an arbitrary determinantal point process, we have
the better Lieb-Oxford inequality (3.68) from [109].

3.5.5 Local Density Approximation for the

Classical Interaction Energy

We have discussed in the previous section the case of
exactly constant densities and their limit of infinite volume.
We now consider the case of slowly varying densities,
which are assumed to be essentially constant over large
sets.

First, we mention that the Lieb–Narnhofer bound (3.83)
from [119] was generalized to arbitrary densities, in the
form of lower bounds involving gradient-type corrections
[7, 105]. For instance, the bound

(3.84)

was shown to hold in [105] for any ε > 0.



The following result gives a quantitative estimate on the
grand-canonical classical energy for slowly varying
densities.

Theorem 3.24 (Local Density Approximation of the

Classical Coulomb Energy [108]) 
Consider the case

w(r) = |r|−1in dimension d = 3. There exists a constant C

such that

(3.85)

for every ε > 0 and every non-negative density


such that
 
.

The gradient term can be replaced by 
for
any p > 3 and 0 < θ < 1 such that θp⩾4∕3, with


.
If we fix a density ρ with 
and take ρN(r) = 

ρ(rN−1∕3), then we find that

(3.86)

Compare this expansion with the quantum case (3.30).
It is an open problem to prove an estimate similar to

(3.85) for the canonical SCE functional FSCE. However, a
non-quantitative convergence similar to (3.86) is known
even for w(r) = |r|−s in all dimensions d > s > 0:

(3.87)



In the Coulomb case for d = 3, (3.87) was proved in [106]
whereas general power-law potentials were covered in
[37].

3.6 Upper and Lower Bounds on the

Levy–Lieb Functionals

In the previous sections we have studied the kinetic and
interaction energies separately and reviewed several
known upper and lower bounds. Since the minimum of a
sum is always greater than or equal to the sum of the
minima, we easily obtain lower bounds on the full Levy–
Lieb functional. For instance, putting together the Lieb–
Thirring and Lieb–Oxford inequalities, we find

for the interaction w(r) = |r|−s in dimension d > s > 0. The
right side takes the same form as the Thomas–Fermi–Dirac

functional, except for the values of the two constants in
front of the terms ρ1+2∕d and ρ1+s∕d. One would obtain the
right constant in front of the term ρ1+2∕d in dimension d⩾3
if the Lieb–Thirring conjecture mentioned in Sect. 3.4.2 had
been proved. We refer to [114] for a review of results on
Thomas–Fermi-type functionals. From Nam’s bound (3.40)
one can replace the Lieb–Thirring constant by (1 − ε)cTF(d)
at the expense of a (negative) gradient correction.



Upper bounds are more complicated because a trial
state that works for T[ρ] could be very bad for the classical
energy and conversely. We have seen in Sect. 3.4 that the
set of one-particle density matrices that are N-
representable by a mixed states is exactly given by the
operators γ = γ∗ such that 
and Tr (γ) = N. This is
because any such operator is the convex combination of
rank-N projections which correspond to Slater
determinants. But for estimating the interaction energy we
need some more information on the two-particle density.

An explicit convex combination which provided a bound
on the two-particle density matrix was derived in [115]. The
idea is the following. Assume for simplicity that


has finite rank K. By Horn’s lemma [115]
there exists a set of N orthonormal vectors V1, …, VN in 
such that 
for all i. Define then the new
orbitals 
where θ = (θ1, …, θK) ∈ (0, 2π)K

and the associated trial mixed state

A computation shows that its one-particle density matrix is
exactly γ, whereas its two-particle density matrix is

(3.88)

where 
is the orthogonal projection onto the anti-
symmetric two-particle subspace


. The first operator has the
integral kernel

(3.89)
The operator 
is exactly the two-particle density
matrix of the unique quasi-free state over the Fock space



that has the one-particle density γ [6]. Integrating against
the potential w, the first term in (3.89) gives the classical
energy (Hartree term) whereas the second gives the
exchange term, which is non-positive for w⩾0.

Since the last term in (3.88) is a non-positive operator,
the following was obtained in [115] after using the density
of finite rank operators.

Lemma 3.25 (Mixed Canonical States and Quasi-Free

States [115]) 
Let
 
be a one-particle density

matrix such that
 
. Then there exists a mixed

state Γ over the fermionic N-particle space

such that its one-particle density matrix is γ and its two-

particle density matrix Γ(2)satisfies

(3.90)

in the operator sense.

Using the lemma for the trial state (3.48) employed in the
proof of Theorem 3.14 and neglecting the exchange term,
the following was derived in [108].

Theorem 3.26 (Upper Bound on FL[ρ] [108]) 
For

w(r) = |r|−sin dimension d > s > 0, we have

(3.91)

for any ε > 0.

This time, the right side of (3.91) involves an energy
functional that looks like the Thomas–Fermi–von Weizäcker



energy [114]. It is an open problem to derive a similar
upper bound for FLL.

3.7 The Hohenberg–Kohn Theorem

In this chapter we have mainly discussed the convex
formulation of Density Functional Theory [80, 116] based
on the universal functionals of Levy and Lieb. Another
important result is the Hohenberg-Kohn theorem [82]
which, in spite of its rather abstract character, is often
cited as the main justification for the use of the density to
replace the N-particle wavefunction. As we will explain, the
necessary assumptions for the validity of this theorem are
not yet fully understood mathematically. In fact, this result
relies on the unique continuation principle which is not
completely settled for N-particle Hamiltonians. Before
stating the Hohenberg-Kohn theorem, we therefore start by
discussing unique continuation in detail.

For simplicity we assume throughout the whole section
that there is no spin:

Adding q does not change anything in the following results
but it makes the notation a bit heavier.

3.7.1 Many-Body Unique Continuation

We refer for instance to [95] for a discussion on the
importance of the unique continuation for the Hohenberg–
Kohn theorem. Because unique continuation is a purely
local property we allow here external potentials v whose
positive part 
is only locally integrable. For
simplicity, we assume that its negative part 
and the interaction potential w are infinitesimally (− Δ)-
form-bounded, as was done in the body of the chapter.



Definition 3.27 (Many-Body Unique Continuation)

Let

with v±⩾0 and p satisfying (3.1). We say that the potentials
v = v+ − v− and w satisfy the many-body unique continuation

principle if, for every integer N⩾1, (the Friedrichs
realization of) 
satisfies the unique continuation
principle in its form domain: if we have 
for
some 
and 
with |{ Ψ = 0}| > 0, then Ψ ≡ 0.

The equation 
is understood in 
, that is,

for every 
or, equivalently, in the sense of
distributions. Recall that the full N-body potential is
defined by

Our formulation of unique continuation is one of the
strongest possible, in that it only requires Ψ to vanish on a
set of positive measure in order to deduce that Ψ ≡ 0. This
is the property which is needed in the proof of the
Hohenberg–Kohn theorem, as we will see. This is
sometimes called “unique continuation on sets of positive
measures”. For 
with p as in (3.1) it is
shown in [38] that any 
vanishing on a set of
positive measure and solving 
must have a point


where it vanishes to infinite order, that is, such
that



Unique continuation for functions vanishing to infinite
order at one point is usually called “strong unique
continuation”. Many authors consider instead the “weak
unique continuation” problem where Ψ is instead assumed
to vanish on an open set, but this is not sufficient for the
Hohenberg–Kohn theorem.

Unique continuation is a very well studied question.
Note first that if we restrict our attention to the potentials
for N electrons in a molecule, where

then any eigenfunction of 
is analytic outside of the
singularities of the potential [132], which form a set of zero
measure. Therefore it satisfies the unique continuation
principle. However, restricting the theory to this very
special, though physically relevant, class of potentials is not
appropriate in density functional theory. In order to fully
understand the density, it is necessary to allow the largest
possible class of potentials.

In a famous work [87], Jerison and Kenig have proved
that the (strong) unique continuation principle holds for − 
Δ + W in 
under the sole assumption that 
with p satisfying (3.1) and d replaced by D. This was then
generalized by Koch and Tataru in [92] and many other
authors. These results apply to the N-particle setting under
the condition that

and this is valid for all N⩾2 when



This is not far from asking that the potentials are locally
bounded (in which case the result would follow for instance
from the singular Carleman-type estimate proved in [151]).
We see that Lp conditions are not well adapted to the N-
particle problem, since they yield N-dependent constraints
on v and w. More natural assumptions on v and w involve
relative bounds with respect to the Laplacian, since such
properties are easily propagated to all N. For instance if v
and w are infinitesimally (− Δ)-form bounded in 
,

(3.92)
then so is the N-particle potential 
in 
for every N.
It seems reasonable to conjecture that the many-body
unique continuation principle holds under the sole
assumption (3.92), but this is not known, even for N = 1.
See [165] for a similar conjecture in the Kato class, which
involves L1 norms instead of L2 norms.

Georgescu [67] and Schechter–Simon [158] have
provided one of the first results for N-body systems with N-
independent assumptions on v and w, but they required the
wavefunction to vanish on an open set (weak unique
continuation). Recently [63, 64], Garrigue has extended
their result to cover the case of functions vanishing on a set
of positive measure. His main assumption is that

for some δ > 0 and all ε, R > 0. This condition in the one-
body space 
is inherited by 
in 
for every N⩾1.
After using the Sobolev inequality, the following result was
shown in [64].

Theorem 3.28 (Unique Continuation for Lp Potentials

[64]) 
Any potentials v, w with
 
and




with
 
satisfy the

many-body unique continuation property of Definition3.27.

Theorem 3.28 now covers Coulomb-type potentials. This is
the best result known at the moment for many-body unique
continuation. It is an important problem to generalize it to
more singular potentials v.

3.7.2 Main Theorem and Some Open Problems

Let us now state the Hohenberg–Kohn theorem, which says
that the density uniquely determines the potential, under
the condition that unique continuation holds.

Theorem 3.29 (Hohenberg–Kohn) 
Let


and
 
with

p as in (3.1) and assume that (v1, w) or (v2, w) satisfies the

many-body unique continuation property of Definition3.27.

If there are two ground states Ψ1and Ψ2of, respectively,


and
 
so that
 
, then we have v1 = v2 + C

for some constant C.

The following proof is essentially the one given in [63, 116].

Proof 
Changing v2 into v2 − (EN[v2] − EN[v1])∕N we can
assume that the two ground state energies are equal. Note
that the assumption 
implies that 
and


, the form domains of the two operators
defined in (3.3). We can write

Exchanging the two indices and using that the two
densities are equal, we obtain that there is equality



everywhere. In particular, Ψ1 is a ground state for 
,
hence belongs to its operator domain and solves the
equation

in the sense of distributions hence also almost everywhere.
Due to the unique continuation principle (for either v1 or
v2), we know that |{ Ψ1 = 0}| = 0 hence this implies that

for almost every 
. Integrating against f⊗N

with 
, we deduce that

We obtain v1 = v2 a.e., as we wanted. □

Remark 3.30 (Mixed States) 
There is a similar
Hohenberg–Kohn theorem for mixed states. That is, if we
have two N-particle mixed states Γ1 and Γ2 supported on
the ground state eigenspaces of 
and 
respectively, such that 
, then v1 = v2 + C. The proof
is similar.

From Theorem 3.28, we know that the Hohenberg–Kohn
theorem holds when 
. We now discuss some
consequences of this result.

Let us consider a fixed interaction 
(in DFT w is usually the Coulomb potential in dimension d 
= 3). We introduce the set of v-representable densities



The Hohenberg–Kohn theorem states that any 
arises from a unique potential v, up to a constant. We
remark that the set 
might be quite small. In fact, all the
densities 
are positive in the following sense. If we
had |{ρ = 0}| > 0 then the associated Ψ would vanish on a set
of infinite measure, which contradicts the unique
continuation principle.2 It is an interesting question [65,
66] to determine how small 
is.

That the set 
might be quite small is not really a
problem in density functional theory, since the sought-after
ground state density of course always belongs to 
.
However, the smallness of 
creates some technical
difficulties. For instance if we have 
with associated
potential v then one cannot use the implicit function
theorem to determine a potential for other densities in the
neighborhood of ρ.

In DFT, one important question is to understand the
dependence of 
on the interaction potential w. In fact, in
Kohn–Sham theory the goal is to replace the many-body
problem with interaction w by a non-interacting eigenvalue
problem. If we have 
with ρ = ρΨ and 
,
then we conclude that there exists a unique potential vKS,
called the Kohn–Sham potential, and a normalized ground
state Ψ′ such that 
and

The spectrum of 
is determined in terms of the one-
particle Kohn–Sham operator hKS = − Δ∕2 + v + vKS. When
its eigenvalues satisfy



then Ψ′ is unique up to a phase and equal to the Slater
determinant

where the orbitals φ1, …, φN are the N first eigenfunctions
of hKS. Hence the interacting problem has been mapped
onto a non-interacting problem. For this reason, it is
desirable that 
is as large as possible, perhaps even
equal to the whole set 
. This question does not seem to
have been studied in detail. Understanding the Coulomb
case is the main goal of the Kohn–Sham formulation of
DFT. See [66] for numerical results in this direction.

In the original approach of [82, 93], the Hohenberg–
Kohn theorem is used to define universal functionals.
Namely, for every 
, we know that there exists a
unique potential v (up to constants) and an N-particle
wavefunction Ψ such that ρ = ρΨ and Ψ is a ground state
for EN[v]. Should Ψ be non-degenerate, this defines a map
ρ↦ Ψ[ρ] and therefore one can define the universal energy
functional by 
, and similarly for the
kinetic and interaction energies. This approach is not
satisfactory from a mathematical point of view, however,
since the set 
is essentially unknown.

3.8 Proof of Theorem 3.5

Note that since w⩾0, we always have FGC[ρ]⩾0. In
particular, there is nothing to prove when ρ = 0. In addition,
the Lieb–Thirring inequality (3.35) or the Hoffmann-
Ostenhof inequality (3.4) imply that FGC[ρ] > 0 for ρ ≠ 0.

For the proof we need to introduce the k-particle density
matrices [102]



of a grand-canonical state Γ = ( Γn)n⩾0, where Trk+1→n

means the partial trace in the n − k + 1 last variables. The
energy can be expressed in terms of Γ(1) and Γ(2) only, as
follows

Here w12⩾0 denotes the multiplication operator by w(r1 
−r2) on the two-particle space 
.

We will also use the concept of localized states [102].
For a function 
on 
, the localized state Γ|χ of a
grand-canonical state Γ is characterized by the property
that its density matrices are equal to 
for
all k.

Proof of (i) 
Let Γj = ( Γj,n)n⩾0 be a grand-canonical
minimizer for FGC[ρj], whose existence is guaranteed by
Theorem 3.4. After extraction of a subsequence we may
assume that FGC[ρj] converges to a finite limit (if the limit is
+ ∞ there is nothing to show).

Since the second term is non-negative, the kinetic
energy 
must be uniformly bounded, hence


is bounded in the trace-class. For fermions,

is in addition bounded in operator norm by 1. Note

however that we have no a priori bound on the number of
particles 
, which could diverge. The idea is
to use the local trace class topology instead.

By the Hoffmann-Ostenhof and Lieb–Thirring
inequalities (3.4) and (3.35), 
is bounded in




. In particular ρj is bounded in L1 on any
finite ball, uniformly with respect to the center of the ball.
This means that 
is locally uniformly bounded in the
trace-class. Due to the kinetic energy bound, we can
therefore assume, after extraction of a subsequence, that


converges strongly locally in the trace class to some
operator Γ(1) which is such that 
, the weak limit of
the sequence ρj. Since ρ is integrable by assumption, Γ(1) is
indeed trace-class.

The argument is somewhat more complicated for 
.
Let 
be a function of compact support. Denoting
the localized state by Γj|χ, we know that 
is
bounded in the trace class. By Yang’s inequality [172, 173],
we have 
for any n-particle operator


and a universal constant C. This implies that

Hence 
is a locally bounded sequence of operators. No
local bound on the trace is known, but this does not create
any difficulty. Up to extraction of a subsequence, we can
therefore assume that 
weakly locally as
operators. Since w12⩾0 by assumption, Fatou’s lemma for
operators now implies that

(3.93)

We have thus shown that the energy is weakly lower semi-
continuous when expressed in terms of the one and two-
particle density matrices. Our next task is to go back to
states in Fock space.



Following [102, Lemma 3], we know that there exists a
state Γ = ( Γn)n⩾0 on the Fock space which has the density
matrices Γ(1) and Γ(2). The argument uses a different notion
of weak convergence and goes as follows. First we extract a
subsequence in the sense of weak-∗ convergence over the
local algebra of anti-commutation relations. The weak limit
is in principle an abstract state over the local CAR but
since its density is ρ, which is integrable over 
, the state
is actually normal and arises from a grand-canonical state
Γ = ( Γn)n⩾0 [18, 19], which has the above density matrices,
as we claimed. In particular, the right side of (3.93) is by
definition 
, which concludes the proof of (3.15). □

Proof of (ii) 
Let ρ⩾0 be such that 
and let Γ 
= ( Γn)n⩾0 be a grand-canonical state such that ρΓ = ρ and

By optimality, we must have

(3.94)

for all n⩾1 such that Γn ≠ 0 (otherwise we could decrease
the energy by choosing another state, without changing the
density). We split the rest of the argument into several
steps. □

Step 1. Approximation by a State with 
 In this
first step we slightly modify Γ in order to guarantee that


for some α > 0 and some n0, a property which will
play a role in the next step. To this end we remark that
there exists a state 
with density 
and which only
lives over the N and (N + 1)–particle subspaces, where N is
the integer part of 
. If 
we just take 
to



minimize FLL[ρ]. Otherwise, we can write 
with
κ ∈ (0, 1) and we consider the state

where ΓN optimizes FLL[Nρ∕(N + κ)] and ΓN+1 optimizes
FLL[(N + 1)ρ∕(N + κ)]. The total density is then

as desired. With the trial state 
at hand, we consider the
new state 
. This state has the exact
density ρ and its energy converges to that of Γ when ε → 0.
This new state has the desired property that

and an energy very close to that of Γ.
Without loss of generality, we can thus assume for the

rest of the proof that we have a state Γ with the exact
density ρΓ = ρ and such that 
for some n0 and α > 
0.

Step 2. Approximation by a State with Compact Support in

n

In case that Γn does not vanish for large n, we replace the
state Γ = ( Γn)n⩾0 by a new state 
so that 
for
n large enough, at the expense of a small error in the
energy. Although it is possible to keep the exact density, we
will here allow the density to vary a little.

First note that since ρ ≠ 0, we have FGC[ρ] > 0 and
therefore Γ0 < 1 (otherwise the energy would vanish). This
allows us to define Γ′ by



In other words, we truncate the state and compensate the
missing mass in the vacuum. The energy of Γ′ is equal to


and it converges to FGC[ρ] as K →∞.
Similarly, its density is equal to 
and it converges
to ρ in 
. In addition, we have for the one-particle
density matrix 
which proves that

(3.95)

by the Hoffmann-Ostenhof inequality (3.33). This gives
the strong convergence of 
to ρ in 
when K →∞ for


where p∗ is the critical Sobolev exponent.
Finally, we would like to prove the convergence

(3.96)

strongly in 
, and this is where the first step helps.
Indeed, we have the following lemma.

Lemma 3.31 
Let (ρj) be a sequence such that

for some α > 0 and ρj(x) → ρ(x) a.e., where
 
. If


strongly in
 
, then

strongly in
 
.

Proof of of Lemma3.31 
We write 
, which
satisfies 
by assumption and which converges
almost everywhere to 1. Then the assumption means that



strongly in 
. The first term goes to 0 by dominated
convergence, hence we conclude that the second term
tends to 0 in 
. Then we have

The first term converges again to 0, whereas the second
can be estimated by

and the lemma follows. □

In our case, the inequality (3.95) implies that

is a convergent series. In addition, by the

Cauchy–Schwarz inequality for series,

Since we have for 

for some α > 0, the lemma implies the convergence (3.96).
At this step we have replaced Γ = ( Γn)n⩾0 by a new state


with compact support in n, and a close energy. In
addition, 
and 
are



small. To simplify our exposition we assume henceforth
that Γ itself satisfies Γn ≡ 0 for 
.

Step 3. Approximation by a State with Compact Support in

Space 
Next we localize the state Γ in order to make it
have a compact support in space. Let χR := χ(⋅∕R) for some


satisfying χ(0) = 1 and 
. We consider
the localized state 
which has the density 
and the
energy

Note that the space localization does not modify the
support in n [102]. That is, the state 
satisfies


for 
(the same value as for Γ). The
energy and the density converge strongly as R →∞ to that
of Γ. Hence we can assume in the following that Γ = (
Γn)n⩾0 has both a compact support in n and in space.

Step 4. Construction of the Canonical Sequence 
In the
previous approximations we have replaced the initial
grand-canonical state by a new state Γ which has an energy
close to the minimal energy FGC[ρ] and a density close to
the initial density, in all the appropriate function spaces. In
this step we finally construct the sequence ρj but it will only
be close to ρΓ in the spaces mentioned in the statement of
the theorem. We recall that Γn ≡ 0 for 
.

Let 
be K orthonormal functions in the unit
ball 
and define φj,ℓ(r) = j−d∕2φℓ(r∕j −v) where v ≠ 0 is
any fixed vector in 
. These are K orthonormal functions
in the translated and dilated ball jv + jB1. We then
introduce the following K-particle mixed state



where

is an (K − n)-particle Slater determinant. For j large
enough the Γn’s and φj,ℓ have disjoint support, hence

as required. After a lengthy but straightforward
calculation, one finds that Υj has the energy

Under our assumptions on w the last two terms converge to
0 in the limit j →∞, hence the energy of Υj converges to that
of Γ. In particular,

In addition, the density is

and its square root converges strongly to 
in

for all 2 < p < p∗, but not for p = 2.



Step 5. Conclusion 
Using an ε∕2 argument to justify the
approximations made in Steps 1–3, we have managed to
construct the sequence ρj mentioned in the statement and
proved that it satisfies

(3.97)

Next we notice that the lower bound

follows from (i). Therefore we obtain the stated limit

and this completes the proof of the theorem. 
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In order to recover Scott’s correction in atoms, the coefficient must actually

be taken equal to 0.083 [114].

 
To include densities vanishing on a set of positive measure we have to allow

v+ to be infinite on such sets and rephrase the unique continuation principle
accordingly.
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Abstract

This is a comprehensive review of the strong-interaction limit of
density functional theory. It covers the derivation of the limiting
strictly correlated electrons (SCE) functional from exact
Hohenberg–Kohn DFT, basic aspects of SCE physics such as the
nonlocal dependence of the SCE potential on the density,
equivalent formulations and the mathematical interpretation as
optimal transport with Coulomb cost, rigorous results (including
exactly soluble cases), approximations, numerical methods,
integration into Kohn–Sham DFT (KS SCE), and applications to
molecular systems, an example being that KS SCE, unlike the
local density approximation or generalized gradient
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approximations, dissociates H2 correctly. We have made an effort
to make this review accessible to a broad audience of physicists,
chemists, and mathematicians.

4.1 Introduction

The strong-interaction limit of DFT is the inhomogeneous low-
density limit associated with the uniform coordinate scaling

of the single-particle density at fixed particle number, with γ → 0.
In this limit, the Levy–Lieb functional, which gives the minimum
kinetic and interaction energy subject to the given density, has
the leading order asymptotics

and the corresponding optimal wavefunction Ψγ has the
asymptotics

where ρN solves the variational principle of having minimal
Coulomb energy subject to the given density ρ and 
denotes the resulting minimal energy.

This appears to be the only case in which one can obtain
insight into how to extract information about the interaction
energy directly from the density. As it turns out, in this limit none
of the ingredients from the traditional “Jacob’s ladder” of DFT
approximations (local density, local density gradients, Kohn–
Sham kinetic energy density, Hartree–Fock exchange, virtual
orbitals) play any role. Instead, maps based on integrals not
derivatives of the density appear. These maps are mathematically
related to the field of optimal transport, and physically describe
strictly correlated electrons (SCE). The SCE functional 
appearing above is the limiting Hartree-exchange-correlation
functional.

While the strong-interaction limit is, of course, not reached in
nature, it points the way towards the real physics happening in



molecular systems containing strong correlations, without having
to leave the realm of Kohn–Sham DFT. Two important examples
whose physics is missed by Kohn–Sham DFT with semilocal or
hybrid exchange-correlation functionals but captured correctly
by integrating the SCE functional into Kohn–Sham DFT (KS SCE)
are weakly charged nanosystems, see Fig. 4.11, and H2 near the
dissociation limit, see Fig. 4.14.

This chapter provides a self-contained introduction to this
limit and its fascinating physics and mathematics which has been
unearthed in the past two decades, and reviews the current state
of the art.

4.2 The Many-Electron Schrödinger

Equation and Universal Density

Functional

In this section we quickly introduce the time-independent
electronic Schrödinger equation and the exact reformulation of
the ground state problem via a universal density functional.

4.2.1 The Many-Electron Schrödinger Equation

We consider a quantum mechanical system of N non-relativistic
electrons (of mass me and charge − e), moving around classical
nuclei with positions 
and charges Z1e, …, ZMe

(Born–Oppenheimer approximation). Our main interest is in the
physical space 
, but we consider the general space dimension
d ≥ 1 since it will be instructive to illustrate key properties of the
strong interaction limit with lower dimensional examples. The
electrons are described by a wave function 
of
N positions 
and spin coordinates 
.

The Pauli exclusion principle states that the electronic wave
function must be antisymmetric with respect to permutations of
the electron coordinates,

(4.1)
where 
denotes the group of permutations of the indices 1, …,
N. The set of square-integrable N-electron wave functions,




, will be denoted 
. The one-body density of an electronic wave function


is defined by

The energy E[ Ψ, v] of a fermionic state Ψ with external
potential 
is given, in atomic units ħ = me = e = 1, by

(4.2)
where T[ Ψ] is the kinetic energy,

Vee[ Ψ] is the electron-electron interaction energy

and Vne[ Ψ, v] is the electron-nuclei interaction energy,

where 
is an interaction potential satisfying w(r) = 
w(−r), so that the total interaction potential

(4.3)

is symmetric.1 Typically,
(4.4)

is the Coulomb electron repulsion and v is the Coulomb potential
generated by M nuclei which are at positions Rν with charges Zν,



(4.5)

If additional fields are present, the external potential v contains
extra terms.

The central quantity of interest is the ground state energy of
the system. By the Rayleigh–Ritz variational principle, it is given
by

(4.6)
where the infimum is taken over the class 
of wavefunctions
which are antisymmetric and have finite kinetic energy,

(4.7)

Here H1 is the usual Sobolev space of square-integrable functions
with square-integrable gradient, and || Ψ|| denotes the L2 norm of
Ψ. The ground state energy (4.6) is well defined whenever the
potentials v and w are sufficiently regular so that the functional E
is well defined on 
. A simple sufficient condition in
dimension d = 3 which encompasses (4.5), (4.4) is v,


.
Whether or not the infimum in (4.6) is actually a minimum,

that is, a minimizing Ψ exists, is much more subtle. For neutral
or positively charged molecules in dimension d = 3 ((4.4), (4.5)
with 
) the answer is yes, as was proved by
Zhislin [145] via a careful spectral analysis of the underlying
Hamiltonian operator. For an alternative proof based on
variational methods see Friesecke [48].

4.2.2 Universal Density Functional

In quantum mechanics, the absolute value squared | Ψ(r1, s1, …,
rN, sN)|2 of a wave function 
corresponds to an N-point
probability distribution: it gives the probability density of finding
the electrons at positions 
with spins


.



By integrating the N-point probability distribution over the
spins, we obtain the N-point position density,

(4.8)

The single particle density ρΨ(rj) is then obtained by
integrating out all but one electron position 
,

(4.9)

We denote by Ψ↦ρ the relation between Ψ and ρ given by Eqs.
(4.8) and (4.9). This means that the wave function Ψ has single-
electron density ρ.

Following the work of Hohenberg and Kohn [78], Levy [91]
and Lieb [97] showed that the electronic ground state problem
(4.6) can be recast as a minimization over single-electron
densities ρ instead of many-electron wavefunctions Ψ:

(4.10)

with

(4.11)

where FLL is the Levy–Lieb functional. The above direct definition
of FLL by a constrained search replaced an earlier, indirect
existence proof of a universal functional satisfying (4.10) [78].
The space 
is defined as the set of densities ρ coming from a
wave function 
(i.e, Ψ↦ρ), i.e., the N-representable one-
particle densities. It can be fully characterized [97] and is given
by

(4.12)

Also, it is known that the minimum in (4.11) is attained. For more
details about these matters see Chap. 3 by Lewin et al.



4.3 The Strictly Correlated Electrons

(SCE) Functional

4.3.1 Constrained-Search Definition

From the early days of DFT it has been clear that a useful
approximation to the kinetic energy contribution in (4.11) is
given by the functional

(4.13)

and by its further approximation TS[ρ] obtained by Kohn and
Sham [85] via restricting the above search to Slater determinants
built from orthonormal spin orbitals,

(4.14)

The natural analogue of Ts,LL for the interaction energy
contribution in (4.11) is the SCE functional

(4.15)

which was introduced by Seidl [122]. The acronym SCE stands
for strictly correlated electrons, and will be explained shortly. As
detailed in the next section, the functional (4.15) is a rigorous
leading-order asymptotic limit of FLL[ρ] in the low-density
regime, where interaction dominates, just as the kinetic
functional (4.13) is a leading-order asymptotic limit at high
density, where the kinetic energy dominates.

What is more, there also exists a natural analogue to TS for
interaction, which approximates, in the case of N electrons in the
physical space 
, the high-dimensional minimization over
wavefunctions on 3N dimensional space in (4.15) by a
minimization over just N maps on 
; see Sect. 4.3.4.



4.3.2 Derivation as a Low-Density or Strong-

Interaction Limit of the Levy–Lieb Functional

For any given N-particle density ρ on 
, consider its dilation
obtained by uniform coordinate scaling

where γ > 0 is a scaling factor. Note that this scaling preserves
the total particle number,

We are interested in the small-γ regime, which corresponds to a
low-density limit.

If Ψ is a wavefunction with density ρ, then the scaled
wavefunction

has density ργ. But as first noticed by Levy and Perdew [92],
scaling does not commute with constrained search. Instead, by
an elementary change of variables,

and therefore

(4.16)

where

(4.17)

is a Levy–Lieb functional with coupling constant λ. This suggests,
assuming that the minimization in the second line of (4.16)
commutes with taking the limit γ → 0,

(4.18)



or equivalently, by starting from the Levy–Lieb functional with
coupling constant, Eq. (4.17), as done in [122, 127]

(4.19)

Mathematically, as pointed out in [127] it is not obvious whether
the minimization in the second line of (4.16) commutes with
passing to the limit γ → 0 since the optimal wavefunction depends
on γ. Nevertheless the above leading-order asymptotics can be
rigorously justified; see Theorem 4.3 in the next section.

Repeating the calculation in (4.16) without the kinetic energy
and replacing “min” by “inf” shows that

(4.20)
whence the asymptotic result (4.18) can also be re-written as

(4.21)

Off the low-density limit, we remark that 
still provides a
rigorous lower bound for the Levy–Lieb functional,

(4.22)
This is a trivial consequence of the constrained-search Definitions
(4.11) and (4.15) and the nonnegativity of the kinetic energy
functional T. For typical atomic densities on 
, this lower bound
is a significant improvement over the Lieb–Oxford bound with
best known constant.

4.3.3 Enlarging the Constrained Search to

Probability Measures

The variational principle underlying the definition of 
in
(4.15),

(4.23)

with N-point density 
as in (4.8), typically has no minimizer.
That is, no minimizing wavefunction 
exists and the
infimum in (4.15) is not attained.2 Physically, this reflects the



phenomenon that if Ψλ[ρ] is a sequence of square-integrable
functions depending on a parameter λ > 0 such that 〈 Ψλ|Vee| Ψλ〉
approaches the infimum in (4.15) as λ tends to infinity—
prototypical is the Ψλ that minimizes 〈 Ψ|T + λVee| Ψ〉 subject to
Ψ↦ρ—then | Ψλ|2 integrates to 1 but is typically concentrating on
a lower dimensional subset, as depicted in Fig. 4.1.

Fig. 4.1 
Numerically computed ground state wave functions for Fλ[ρ] in (4.17) for N 
= 4 and one-body density 
(L = 5) for different values of
λ: λ = 0.1, 1, 10, ∞. Shown: pair density 
.
Picture from [21], see also [109] for a numerical approximation of (4.17) with N = 2.
The pair density on the left is governed by exchange effects, whereas the one on the
right is governed purely by Coulombic correlations

Fig. 4.2 
SCE state of a two-electron system with homogeneous density in a one-
dimensional domain. By Theorems 4.3 and 4.4, this state is an asymptotically exact
approximation to the true quantum ground state at low density. Left: optimal co-motion
function or transport map f. Right: position of the two electrons in the one-dimensional
domain. The position of the second electron, r2, is determined by that of the first
electron, r1, through the equation r2 = f(r1), with the optimal f keeping the electrons at
a constant distance, of half the domain size. The position of the first electron varies
over the whole domain according to the density ρ (see Eq. (4.38)). As the first electron



(depicted in blue) passes through the mid-point, the position of the second electron
(depicted in red) jumps from the right end to the left end, causing a discontinuity of f

Fig. 4.3 
SCE potentials vSCE(r) corresponding to the (radially symmetric) densities
of Neon (N = 10), Carbon (N = 6) and Boron (N = 5), Fig. 9 in [127]. Data obtained by
the following steps: (i) compute the density ρ(r) by an accurate full CI or quantum
Monte Carlo computation; (ii) compute the SGS maps corresponding to ρ as described
in Section 4.3.12 below; (iii) obtain the corresponding SCE potentials vSCE via Eqs.
(4.59) and (4.64)

This basic shortcoming of (4.23)—that wavefunctions which
are closer and closer to being optimal in the constrained search
(4.15) do not converge to any proper wavefunction—can be
overcome as follows [14, 32]. First, interpret the variational
principle (4.23) as a variational principle for the N-point density
as suggested by the second expression in (4.23); second, enlarge
the space of admissible N-point densities to the space 
of
probability measures on 
with density ρ. Then the constrained
search becomes well-posed, that is, optimizers exist. See
Theorem 4.1 below. This enlargement allows N-point densities to
concentrate on lower dimensional subsets as in Fig. 4.1. The
condition that a probability measure 
has density ρ
now means that Π has marginals equal to the density divided by
the particle number, 
:

(4.24)



We denote the relation given by Eq. (4.24) by Π↦ρ. This yields
the variational principle

(4.25)

and the following enlarged-constrained-search definition of the
SCE functional

(4.26)

This alternative definition of 
and the underlying enlarged
variational problem (4.25) were introduced by Buttazzo et al.
[14] and Cotar et al. [32], along with the insight that minimizers
now exist (see Theorem 4.1 (1) below) and (4.26) is
mathematically an optimal transport problem and can be usefully
analyzed with methods from optimal transport theory (see Sect.
4.3.6). We call (4.25) the SIL variational principle, the acronym
SIL standing for strong-interaction limit.

The notation in (4.26) (“min” instead of “inf”; using the same
notation for the ensuing density functional even though a priori
the right-hand side of (4.26) could be lower than that in (4.15)
since the minimization is over a larger set) is justified because of:

Theorem 4.1 
Let ρ be any N-particle density in the class

(see (4.12)), and let w(r) = |r|−1be the Coulomb interaction.

(1)
The minimum in (4.26) is attained; that is, there exists a

minimizing probability measure Π.

 
(2)

[10, 32, 33] The minimum value in (4.26) is equal to the

infimum in (4.15).
 

Statement (1) is a special case of general existence theorems in
optimal transport theory. For a textbook account see [50]. Proofs
of such results rely on Prokhorov’s theorem from probability
theory as well as on approximation and lower semi-continuity
results for functionals of the form 
.

Statement (2), although plausible, is mathematically much
more subtle. It rests on the nontrivial result that arbitrary



symmetric probability measures 
with marginal ρ can
be approximated by N-point densities of quantum wavefunctions


with the same marginal. Note that such wavefunctions
must be antisymmetric and must have a square-integrable
gradient; but applying standard smoothing techniques from
mathematics—such as mollification—to a given probability
measure with marginal ρ does not preserve the marginal, nor
does it yield the N-point density of an antisymmetric function.
This result, and the ensuing statement (2), was first proved for N 
= 2 [32], and later extended to N = 3 [10] and general N [33] (see
also [95] for a similar extension to general N allowing mixed
states).

Remark 4.2 (Symmetrization) 
The minimum value in (4.26) is
unchanged, and still attained, when the minimization over
arbitrary probability measures with marginal ρ∕N,


, is restricted to symmetric probability
measures with marginal ρ∕N, where a probability measure


is said to be symmetric if

This is because whenever Π is a probability measure in 
with marginals ρ, Eq. (4.24), then so is its symmetrization SN Π
defined by

(4.27)

the sum being over all permutations of {1, …, N}; and the integral
on the r.h.s. of (4.26) for Π agrees with that for SN Π, thanks to
the permutation symmetry of Vee.

Next we rigorously justify the asymptotic relations (4.18), (4.19),
(4.21) and complement them with an asymptotic result on the
associated constrained-search wavefunctions.



Theorem 4.3 ([33])) 
For any N-electron density ρ in the class


(see (4.12)), and with w(r) = |r|−1being the Coulomb

interaction, the asymptotic results (4.18), (4.19), (4.21) hold.

Moreover if Ψλ[ρ] is any minimizer in the constrained-search

definition of Fλ[ρ] (see (4.17)), then every limit point3Π of the

sequence of N-point densities
 
is a minimizer in the

enlarged-search Definition (4.26) of
 
.

Proof of (4.18), (4.19), and (4.21) 
The proof, taken from
[33], is easy, so we include it. We show (4.19), the other
statements being equivalent. Fix ρ. First, pick any minimizer
Ψλ[ρ] in the constrained-search definition of Fλ[ρ], then

(4.28)

that is, the SCE functional is a lower bound of the left-hand side.
To show that it is also an asymptotic upper bound for large λ, we
fix any positive number 𝜖 and pick a wavefunction 
in 
such that 
. It follows that

Since 
belongs to 
, its kinetic energy 
is finite, and so

Since 𝜖 > 0 was arbitrary,

(4.29)

Combining (4.28) and (4.29) yields (4.19). □

The above simple argument only shows that the asymptotic error
in (4.19) is o(1∕λ), but does not give its order, which turns out to
be O(1∕λ1∕2), see Sect. 4.3.5.

4.3.4 The SCE Ansatz



The SIL variational principle (4.25) still requires minimization
over a high-dimensional space of N-point probability measures.

Seidl [122] (see also [127]) proposed the following low-
dimensional ansatz: we restrict minimization over N-point
probability measures to minimization over singular probability
measures of the special form

(4.30)

where, for any 
, δ(rn − fn−1(r1)) denotes the delta
function of rn (alias Dirac measure) centered at fn−1(r1), and f1,
…, fN−1 are maps from 
to 
. The singular densities (4.30) are
concentrated on the d-dimensional set

(4.31)
From a physical point of view, such a density describes a state in
which the position of one of the electrons, say r1, can be freely
chosen according to the density ρ, but this then uniquely fixes the
position of all the other electrons through the functions f2, …, fN,
that is, r2 = f1(r1) etc. Thus states of form (4.30) are called
strictly correlated states, or SCE states for short. The fi are called
co-motion functions or transport maps.

The marginal constraint that Π must have marginals ρ, Eq.
(4.24), turns into the following constraint on the maps fn: the fn
must transport the density ρ to itself,

(4.32)
where, for any measurable map 
and any measure μ
on 
, the push-forward f♯μ is the measure on 
defined by

(4.33)

More explicitly, if p = q, μ is absolutely continuous with density ρ,
f is a diffeomorphism, and the density of the push-forward f♯μ is
denoted by f♯ρ, we have



By substituting this formula for the push-forward into (4.32)
and changing variables f−1(r′) = r, the constraint (4.32) turns—
provided the fn are diffeomorphisms—into the following nonlinear
first-order partial differential equation:

Plugging the ansatz (4.30) into the SIL variational principle
(4.25) and integrating out the variables r2, …, rN yields the SCE
variational principle

(4.34)

with the minimization being over maps in the admissible class
(4.35)

Thanks to Theorem 4.4 (1) below, this yields a third construction
of the SCE functional,

(4.36)

In the Coulomb case, (4.4), and denoting f0(r) = r, we thus
have

(4.37)

Physically, this means that one needs to minimize the mutual
Coulomb repulsion of the co-motion functions. This construction
of the SCE functional was introduced by Seidl [122]. A priori it is
not clear, but was conjectured by Seidl, that it is equivalent to
the original construction (4.15). This is now rigorously known
(see Corollary 4.6 below).

The construction (4.36) should be considered the analogue for
interaction of the classical Kohn–Sham kinetic energy functional
TS. Just as TS is determined by N low-dimensional functions (the
Kohn–Sham spin orbitals 
), 
is



determined by N − 1 low-dimensional maps (the co-motion
functions or transport maps 
), which can be
easily stored on a computer. Moreover—like the Kohn–Sham
orbitals—the co-motion functions are obtained by just minimizing
a 3-dimensional integral.

The reader is warned, however, that the behavior of the SCE
variational principle and its relationship to the SIL variational
principle is subtle, and open questions remain. In particular, it is
not known—except in special cases—whether minimizers in
(4.37) exist. The following results have been rigorously proved.

Theorem 4.4 
Let
 
be any N-particle density in the

class
 
(see (4.12)), and let w(r) = |r|−1be the Coulomb

interaction.

(1)
The infimum in (4.36) is equal to the minimum in (4.26).  

(2)
For two electrons (N = 2), and in arbitrary space dimension

d, the infimum in (4.36) is attained; that is, there exists a

minimizing map f1. Moreover f1is unique, and the induced

probability measure (4.30) is the unique minimizer of the

SIL variational principle (4.25).

 

(3)
In one space dimension (d = 1), and for arbitrary N, the

infimum in (4.36) is attained; that is, there exist minimizing

maps f1, …, fN−1. Moreover the symmetrization (see

Remark4.2) of the associated probability measure (4.30) is
the unique symmetric minimizer of the SIL variational

principle (4.25).

 

Statement (1) is a consequence, pointed out in [28], of a general
theorem of Ambrosio [5] and Pratelli [116] in optimal transport
theory. For N = 2 or d = 1, use of the Ambrosio–Pratelli theorem
can be avoided since the assertion follows from (2) respectively
(3).

The existence of optimal maps in (2) and (3) is subtle and
depends on special Coulombic features. For non-Coulombic
counterexamples see Remark 4.7 below. In the Coulomb case, it



is an open question whether the infimum in (4.36) is attained for
general (physically reasonable) densities ρ when d > 1 and N ≥ 3.

Statement (2) completely justifies Seidl’s SCE ansatz for N = 
2: the SCE problem

has a unique minimizer and the associated SCE state

(4.38)

is the unique minimizer of the SIL problem

This was proved in [32], by modifying the analysis by Gangbo and
McCann [55] of optimal transport with costs w(r, r′) which are
convex or concave in the displacement z = r −r′. Note that the
Coulomb cost is neither: near any displacement z0 ≠ 0, it is
convex in radial direction and concave in all perpendicular
directions. A simpler proof using Kantorovich duality (see Sect.
4.3.7) was suggested in [14], and made rigorous in [42]. The SCE
map is given by

(4.39)

for some function 
(Kantorovich potential). The notion
of Kantorovich potential will be explained in Sect. 4.3.7. Equation
(4.39) follows by solving Eq. (4.59) for f1.

Statement (3), together with an explicit construction of the
optimal maps given in Sect. 4.3.11, was suggested in the original
paper by Seidl [122] on grounds of physical arguments, and was
rigorously proved in [27] with the help of cyclical monotonicity
methods from optimal transport theory. See Sect. 4.3.11 for more
information.

The uniqueness statements in (2) and (3) are somewhat
surprising: the optimal N-point densities arising from Levy–Lieb
constrained search in the strongly interacting limit are always



unique when either N = 2 or d = 1! No analogue holds off the
strongly interacting limit.

Example 4.5 
Consider a two-electron system with uniform
density in a one-dimensional interval [0, L]. The unique
minimizer f1 = f of the SCE variational principle (4.34) can be
shown (see Sect. 4.3.11) to be

(4.40)

See Fig. 4.2.

Fig. 4.4 
SCE state of N electrons in one dimension. Right: Electron positions. Given
that the first electron (depicted in blue) is at r, the positions of the other electrons are
completely determined by the requirement that neighboring electrons are separated by
an amount of density of 1 (blue area). The co-motion functions or transport maps fi (i = 
1, …, N − 1) of SCE theory are defined as the positions of the other electrons as a
function of the first position r. The latter is distributed according to the given single-
particle density ρ. Left: Graphs of the maps fi, with f0(r) = r also shown. The figure
corresponds to the Lorenzian density (Example 4.18) and N = 5

By combining Theorems 4.4 and 4.1 we obtain:

Corollary 4.6 
Let
 
be any N-particle density in the

class
 
(see (4.12)), and let w(r) = |r|−1be the Coulomb

interaction. Then the infimum in (4.36) is equal to that in (4.15).



Proof 
This follows from the fact that both quantities are equal
to the minimum value of the SIL variational principle (4.25), by
Theorem 4.1 (2) respectively Theorem 4.4 (1). □

We remark that no proof is known which bypasses the SIL
variational principle, even though the corollary was conjectured
before the latter was introduced.

We close this introductory section on the SCE ansatz with
some remarks.

Remark 4.7 (Nonattainment) 
For simple non-Coulombic
counterexamples to attainment of the infimum in (4.36) for N = 3
even in one space dimension, see [49, 59]. For instance, one can
take the uniform density in the interval [0, 3] and the interaction
potential w(r) = r4∕4 − r3∕3 [49]. Earlier more intricate
counterexamples can be found in [107]. Such a nonattainment
has the undesirable consequence that numerically computed
optimal maps will necessarily exhibit wilder and wilder
oscillations as the mesh is refined or the basis set approaches
completeness, and fail to converge in any pointwise sense to
actual optimal maps.

Remark 4.8 (Existence of Non-SCE Minimizers) 
For a
Coulombic example for N = 3 in three space dimensions showing
that the SIL variational principle can possess minimizers which
are not of SCE form, see [113]. This example exhibits
nonuniqueness and it is not known whether it also admits
minimizers which are of SCE form.

Remark 4.9 (Alternative Formulations of the SCE Ansatz)

Denoting f0(r) = r, one can write the SCE ansatz (4.30) in the
following form in which all coordinates r1, …, rN appear on an
equal footing:

(4.41)

Also, one can work with the symmetrized form of this ansatz,
(4.42)



(where σ runs over the permutations of the SCE map indices 0,
…, N − 1); the symmetrization doesn’t change the energy 
, and the symmetrized form (4.42) minimizes the SIL problem
(4.26) if and only if the unsymmetrized form (4.41) does, as was
explained in Remark 4.2.

Remark 4.10 (Nonsmoothness of Optimal Maps) 
The reader
might wonder why, in SCE theory, no differentiability and not
even continuity is imposed on the competing maps (the maps in
the admissible class (4.35) are merely required to be
measurable). This is because optimal maps, when they exist, are
typically discontinuous. This important effect can be understood
intuitively from simple examples as in Fig. 4.2. As the first
electron passes through the midpoint of the domain, the position
of the second electron jumps from the right end of the domain to
the left end, yielding the discontinuous map depicted in the
Figure. For a radial density in three dimensions (d = 3), an
analogous discontinuity occurs in that spheres near zero are
mapped to spheres near infinity [32]. For general densities and
general N, the presence of discontinuities across unknown
surfaces makes Eq. (4.36) very challenging for numerical
computations.

4.3.5 The Next Leading Term

So far we have treated the limit of the Levy–Lieb functional at
infinite coupling strength λ (or, equivalently, at extreme low
density). One could ask how this limit is approached, or, in other
words, what is the next leading term in Eqs. (4.18)–(4.19).

The strategy employed in [68] to compute this next leading
term relies on the assumption that the minimizer in (4.25) is of
the SCE or Monge type, see the detailed discussion in the
previous Sect. 4.3.4. Under this assumption, as shown in Sect.
4.3.8, the classical potential energy

(4.43)



with vSCE(r) defined by Eqs. (4.59) and (4.64), attains its
minimum on the manifold Ω0 parametrized by the co-motion
functions,

(4.44)

When λ in Eq. (4.17) is very large but finite, we can expect that
the support of the minimizer in Eq. (4.17) be strongly localized
around Ω0, as illustrated by Fig. 4.1 in Sect. 4.3.3. We can then
expand Epot around its minimum through second order. The
corresponding Hessian matrix 
evaluated on Ω0, for any fixed
r, will have d zero eigenvalues (along the manifold Ω0) and dN − 
d positive eigenvalues. By using curvilinear coordinates along the
manifold Ω0 and orthogonal to it, the sought next leading term is
determined by adding the kinetic energy to the second-order
expansion of Epot, which corresponds to the Hamiltonian of zero-
point oscillations in the space orthogonal to Ω0 [68]. The final
result is that Eqs. (4.18)–(4.19) are extended to [66, 68]

(4.45)

(4.46)

where

(4.47)

In [71] this term has been computed explicitly for N = 2 electrons
in 1d and it has been compared with accurate numerical
calculations for the Levy-Lieb functional at very large λ, finding
excellent agreement.

The intuition that the next term of the Levy–Lieb functional at
infinite coupling strength λ should be given by zero-point
oscillations around the manifold parametrized by the co-motion
functions appeared for the first time in Seidl’s seminal work
[122]. He also carried out explicit calculations in 3D for the
spherically-symmetric case with N = 2 electrons, using the co-
motion function introduced in Sect. 4.3.12. This idea was



extended to the general many-electron case in [68], where it was
also found that Seidl’s original calculation had a wrong factor 2.
Very recently, a rigorous proof of Eqs. (4.45)–(4.47) for the
many-electron 1d case has been provided by Colombo et al. [29].

4.3.5.1 The Fermionic Statistics

Equations (4.45)–(4.47) are the first-order correction due to
kinetic energy in the large-λ (or ħ → 0) limit of the Levy–Lieb
functional. This correction is still independent of the particle
statistics. A natural question to ask is then at which order will the
fermionic antisymmetry enter.

In Refs. [67, 68] it has been conjectured that the particle
statistics enters in the λ →∞ limit at orders 
. The physical
intuition behind this idea is simply that the effect on the energy
of antisymmetrization vanishes as the overlap between gaussians
centered at each set of strictly-correlated positions (each r value
in Ω0). The scaling 
of such gaussians comes from the zero-
point hamiltonian. This conjecture has been confirmed
numerically [71] for the case of N = 2 electrons in 1D, again by
comparison with accurate numerical calculations of the exact
Levy-Lieb functional at large λ.

4.3.6 The Strongly Interacting Limit of DFT from

the Point of View of Optimal Transport

We now introduce a fruitful interpretation of the strongly
interacting limit of DFT as “optimal transport with Coulomb
cost”.

Optimal transport theory (see [50, 117, 119, 136] for textbook
accounts) is concerned with the following two problems,
introduced in special cases in fundamental work by Kantorovich
[80] respectively Monge [108]:
(a) Kantorovich optimal transport problem: For given

probability measures μ1, …, μN defined on closed subsets X1,
…, XN of 
, find a joint probability measure Π on the
product space 
which minimizes a
cost functional

 



subject to the marginal constraints

Here 
is some given cost
function, and the validity of the above constraint is denoted
Π↦μ1, …, μN.

(b)
Monge optimal transport problem: For given probability
measures μ1, …, μN defined on measurable subsets X1, …,
XN of 
of positive volume which possess integrable
densities p1, …, pN (i.e. pi ∈ L1(Xi)), and a cost function c as
above, find measurable maps f1, …, fN−1 with fi  :  X1 → Xi+1
which minimize

subject to the marginal constraints

This corresponds to making the ansatz
(4.48)

or equivalently—using the notion of push-forward
introduced in (4.33)—

(4.49)
in the Kantorovich problem, where id denotes the

identity map id(r1) = r1.

 

Example 4.11 (N Equal Marginals, Coulomb Cost) 
If we take



the Kantorovich optimal transport problem is precisely the SIL
variational problem, (4.25), and the Monge optimal transport
problem is precisely the SCE variational problem, (4.34).

Thus the strongly interacting limit of DFT can be viewed as
optimal transport with Coulomb cost. This viewpoint, introduced
by Buttazzo et al. [14] and Cotar et al. [32], opened the door to
much of the current understanding of the strong-interaction limit
of DFT.

Example 4.12 (Two Unequal Marginals, Positive Power Cost)

The prototype problem of classical optimal transport theory
going back to [80, 108] is to instead take

That is, one considers:
– only two marginals;
– unequal instead of equal marginals;
– a positive instead of a negative power of the Euclidean distance

as cost.
Denoting μ1 = μ, μ2 = ν, f1 = T, r1 = x, r2 = y, the Kantorovich
problem then becomes

(4.50)

and the Monge problem becomes

(4.51)

The analogue of the SCE functional is the optimal cost as a
functional of the two prescribed marginals,

Its p-th root, Wp(μ, ν) = (Copt[μ, ν])1∕p, is the celebrated p-
Wasserstein distance, which is a metric on the space of
probability measures.



Thus the SCE functional can be thought of as the Coulomb

analogue of the Wasserstein distance.
We remark that the motivation of Monge and Kantorovich for

considering Example 4.12 came from civil engineering,
respectively economics, and explains the name optimal transport:
Monge thought of moving a given pile of sand on a construction
site into a given hole in a way that minimizes the overall distance
of transport, with T(x) describing the target position of sand
originally located at x and with pile and hole modelled,
respectively, by μ and ν. Kantorovich thought of transporting
some economic good, say steel, from producers (steel mines) to
consumers (factories), at minimal transportation cost; Π(x, y)
then describes the density of goods transported from location x
to location y, and is called a transport plan. In the latter context
it is natural not to make the Monge ansatz

but instead allow one producer located at x to supply several
consumers located at different positions y, i.e. consider the
general problem (4.50).

The general question for which costs and marginals the
Monge and Kantorovich problems are equivalent, i.e. the
Kantorovich problem admits minimizers of Monge form, is not
well understood. A sufficient condition [119] for N = 2 (and, say,
compact convex sets X1 and X2 and continuously differentiable
costs c) is that the marginal measure μ1 is absolutely continuous
and c satisfies the so-called twist condition that the map


be injective for every r1. For N > 2, generalized
twist conditions have been studied by Pass [111, 114, 115];
unfortunately these are not satisfied for the Coulomb cost.

4.3.7 Dual Construction of the SCE Functional

We now introduce a fourth—dual—construction of the SCE
functional.

A cornerstone principle of optimal transport theory,
Kantorovich duality, says that the minimum of a given
Kantorovich optimal transport problem (see Sect. 4.3.6) equals
the supremum of an associated explicit dual problem. The



general form of the dual is recalled in Appendix 4.6. For the SIL
problem (4.25), the dual problem is the following (see Appendix
4.6 for a quick derivation from general OT theory): maximize the
functional

(4.52)

over potentials 
which must satisfy the pointwise
constraint

(4.53)

Maximization is over the admissible class
(4.54)

This yields the following alternative definition of the SCE
functional:

(4.55)

This construction is due to Buttazzo, DePascale, and Gori-Giorgi
[14]. Note that the optimization here is not over N-point
densities, but over (suitable) external potentials u. Optimizers
are called Kantorovich potentials. Heuristically, they can be
thought of as Lagrange multipliers associated with the marginal
constraints in the original problem (4.25). This is explained in our
discussion of optimality conditions in Sect. 4.3.8.

It can be rigorously shown that the new construction yields,
again, the SCE functional, and that optimal potentials exist:

Theorem 4.13 
Let
 
be any N-particle density in the

class
 
(see (4.12)), and let w(r) = |r|−1be the Coulomb

interaction. Then:

(1)
[14] The supremum in (4.55) is equal to the minimum in

(4.26).
 

(2) [14,38] The supremum in (4.55) is attained; that is, there

exists a maximizing potential u in the class (4.54).  



(3) [13,42] If, in addition, ρ > 0 everywhere, there exists a

maximizing potential which is in addition Lipschitz

continuous.

 

Statement (1) follows directly from the general Kantorovich
duality theorem of OT theory; see Appendix 4.6. The question of
existence and regularity of optimal potentials is more delicate.
Note that the Coulomb potential Vee which upper-bounds u(r1) 
+ ⋯ + u(rN) tends to plus infinity as the distance ri −rj between
any two position coordinates goes to zero; so one might a priori
think that u’s are favourable which also tend to plus infinity at
certain places. But statement (2) in the above theorem says that
this does not happen; the existence proof of bounded optimal
potentials is due to [14] for N = 2 and to [38] for general N.

Quantum Analogue 
We remark that the dual construction of
the SCE functional in Eq. (4.55) admits a quantum analogue. In
[97], Lieb proposed an extension of the Levy–Lieb functional
(4.11) to mixed states, i.e. 
,

(4.56)

where Γ is an operator acting on the fermionic Hilbert space and,
similarly to (4.9), Γ↦ρ denotes the relation


. In [91], M. Levy
introduced a similar functional requiring in addition that Γ = |ψ〉
〈ψ| be a rank-one operator. An advantage of the Lieb functional
FL is that it is convex. Ignoring issues of rigor, (4.56) admits a
dual formulation

(4.57)



with the above inequality understood in the sense of self-adjoint
operators. For a rigorous discussion of Eq. (4.57) see Chap. 3 by
Lewin et al. This equation is the quantum analogue (for mixed
states) of the dual construction of the SCE functional. Note that
because the right-hand side of the constraint on u now contains
an additional positive term, the value of the supremum will be
higher than in (4.55), as it should be.

4.3.8 Optimality Conditions

With the help of Kantorovich duality one obtains very interesting
necessary conditions for solutions to the SIL variational principle
(4.25). In particular, for optimizers of SCE (alias Monge) form
one can express the gradient of the Kantorovich potential u in
terms of the co-motion functions (alias transport maps).

We follow the rigorous presentation for general OT problems
in [50], but specialize throughout to the SIL problem. For the
benefit of less mathematically minded readers, we also include a
heuristic derivation at the end of this section.

Theorem 4.14 (Optimality Conditions [50]) 
Let

be any N-particle density in the class
 
(see (4.12)). Let


be any interaction potential which is

symmetric, bounded from below, lower semi-continuous, and has

the property that the minimum in (4.26) is finite. Suppose Π is a

solution to the SIL problem (4.26), and u is a solution to the dual

problem, i.e. a maximizer of J in the class
 
.
(1)

Π is zero outside the set  

(2)
Π is an unconstrained minimizer (i.e., a minimizer on

) of the modified functional

 

(3) At any point (r1, …, rN) in
 
where the function in (1) is



N

differentiable with respect tor1,
(4.58)

In particular, if Π is of SCE form, (4.30), and Vee(r1, …,
rN) is the Coulomb interaction
 
,

(4.59)

 

The physical and mathematical meaning of these results is as
follows.

(1) says that the classical potential energy

is minimal on the manifold of configurations which occur with
nonzero probability under the optimal plan Π. In particular, when
Π is of the SCE or Monge type, the classical potential energy is
minimal on the manifold (4.31) parametrized by the co-motion
functions. Besides being interesting in its own right, this
underlies the derivation of the next leading term of the Levy–Lieb
functional outlined in Sect. 4.3.5.

(3) says that the Kantorovich potential u is an effective one-

body potential emulating the many-body system, in the following
sense: its gradient at the point r is precisely the classical
repulsive force exerted on an electron at r by the other electrons
at positions fi(r). Equation (4.59) is called the force equation.

(2) can be viewed as an infinite-dimensional Lagrange
multiplier rule, with any Kantorovich potential (i.e. any optimizer
of the dual variational principle (4.55)) playing the role of a
Lagrange multiplier associated with the constraint Π↦ρ.

We remark that results of the above form have a long history
in OT theory; for the two-marginal problem with interaction
potential |r1 −r2| respectively |r1 −r2|2, (1) goes back to
Kantorovich himself [80], while the differential version (3) and its
usefulness were first realized by Knott and Smith [83].



Proof 
The following proof, taken from [50], is simple and
illuminating, so we include it. By Kantorovich duality (in the form
of Theorem 4.13 (1)),

Since Π has equal marginals 
,

, and so

But since u satisfies the constraint (4.149) at every point in 
,
the integrand is nonnegative. So the minimum value of the
integrand must be zero and attained, and Π must vanish
wherever the integrand is positive. This establishes (1) and (2).
The elementary calculus fact that the gradient of a differentiable
function vanishes at minimum points now yields (4.58). Finally,
(4.59) follows since the point 
belongs to


whenever the density ρ is positive at r1. □

We complete this section with a more heuristic derivation of the
optimality conditions.

Heuristic derivation of Theorem 4.14 
Let us re-write the
SIL variational principle (4.25) in the form

(4.60)

where 
is the functional which assigns to an N-point
probability measure Π the value of its single-particle density at
the point r1, and where the minimization is over symmetric
probability measures (see Remark 4.2). Let us now postulate the
existence of a family of Lagrange multipliers 
, one for
each 
, such that minimizers of 
subject to the constraints


are unconstrained minimizers of the Lagrangian



But since 
is the one-body density of Π, and Π is
symmetric,

(4.61)

so the Lagrangian coincides with the functional in (2) with λ = u.
It is clear that minimizers of the Lagrangian must be
concentrated on the set of pointwise minimizers of the integrand,
yielding (1). Statement (3) now follows as in the rigorous proof.

The above argumentation obtains the Kantorovich potential u
quickly but non-rigorously as a Lagrange multiplier. In fact, with
such a heuristic construction of u, statements (1) and (3) were
already derived in [127] before the discovery of the SCE

theory/optimal transport connection.
But readers are put on notice that there is no such thing as a

general and rigorous Lagrange multiplier rule which would
guarantee the existence of Lagrange multipliers for infinite-
dimensional non-smooth problems like Levy–Lieb constrained
search or its strongly interacting limit (4.25). In DFT (in its
original form with both kinetic energy and electron repulsion
present), the existence problem for Lagrange multipliers—i.e.,
the existence of one-body potentials which, when added to the
Hamiltonian T + Vee, reduce a constrained search to an
unconstrained search—is known as the v-representability

problem. This is a longstanding open problem, see e.g. [76, 84,
90, 97, 133]. For variants of the problem at positive temperature
respectively quantum lattices see [19, 20]; v-representability for
a regularization of the exact Levy–Lieb functional is discussed in
Chap. 5 by Kvaal.

4.3.9 Solution of the Purely-Interacting v-

Representability Problem



We now show that in the strongly interacting limit the v-
representability problem, alias the problem of existence of
Lagrange multipliers for density functionals defined by
constrained search, can be completely solved. As we will see, this
fact follows by combining known results. We assume in this
section that w(r) = |r|−1 is the Coulomb interaction.

Recall that a density 
is called
N-representable if it comes from a wave function 
(i.e.
Ψ↦ρ)
v-representable if it comes from a minimizer of 〈 Ψ|T + Vee 
+∑iv(ri)| Ψ〉 on 
for some potential 
non-interactingv-representable if it comes from a minimizer of
〈 Ψ|T +∑iv(ri)| Ψ〉 on 
for some potential 
purely-interactingv-representable if it comes from a minimizer
of 
on 
for some potential 
.

Theorem 4.15 (N-Representability Implies Purely-

Interacting v-Represent -ability) 
Any N-representable ρ, i.e.

any ρ belonging to the class
 
(see (4.12)), is purely-interacting

v-representable by some bounded measurable potential


. Explicitly, the following choice will do:

(4.62)
where u is any bounded Kantorovich potential for ρ (see

Theorem4.13for existence of the latter).

This result is quite remarkable, given that—to our knowledge—
not much is known on the rigorous level off the strongly
interacting limit.

Proof of Theorem4.15 
By Theorem 4.13 (2), there exists a
bounded maximizer u of the dual functional, i.e. an associated
Kantorovich potential. Let v = −u. By Theorem 4.1 (1), there
exists a minimizer Π[ρ] of the SIL variational problem (4.25). By
Theorem 4.14 (2), this Π[ρ] is a minimizer of




on 
. Since by construction Π has
density ρ, it follows that v represents ρ. □

If in addition ρ > 0 everywhere, the above proof together with
Theorem 4.13 (3) shows that ρ is even purely-interacting v-
representable by some Lipschitz continuous potential.

4.3.10 Functional Derivative and SCE Potential

It is not difficult to deduce from Theorem 4.15 that when the
density ρ is sufficiently nice (say, continuous and everywhere
positive) and the Kantorovich potential u[ρ] (i.e. the maximizer of
the dual problem (4.55)) is unique, the SCE functional is
functionally differentiable at ρ with functional derivative

(4.63)

where const is an arbitrary additive constant. Here for any
functional F on 
the functional derivative 
at some density
ρ (if it exists) is defined by the requirement

for all smooth mass-preserving localized perturbations 
(mathematically: 
, 
), and is unique up to an
additive constant. For an informal derivation of Eq. (4.63) see
e.g. [22], and for a rigorous proof under suitable assumptions see
[41].

As for any Hartree-exchange-correlation functional, the
Hartree-exchange-correlation potential associated to the SCE
functional is the functional derivative with additive constant
chosen so that the potential vanishes at infinity, in our case

(4.64)

This functional derivative is called the SCE potential.
To summarize: the SCE potential for the strongly correlated

limit of DFT agrees up to a shift with the Kantorovich potential



from optimal transport theory.
Assume now that the density is everywhere positive, that the

ground state of (4.25) is an SCE state, and that
(4.65)

It then follows from (4.59) that the SCE potential has the correct
asymptotic behavior

(4.66)

By contrast, Hartree-exchange-correlation potentials for all
semilocal functionals (LDA, GGAs) are well known to have the
wrong asymptotics on physical (i.e. exponentially decaying)
densities,

(4.67)

Open Problem 
Rigorously justify (4.65), and hence (4.66), for
general densities ρ. Note that for N  =  2 and radial densities, or
any N and arbitrary densities in one dimension, assumption
(4.65) follows from the explicit formulae for the fi in [32]
respectively [27] (Fig. 4.3).4

Fig. 4.5 
SGS state (left panel) for the Lithium atom density (right panel). The extreme
angular and radial correlation exhibited by this state is illustrated here while sending
one of the electrons (the leftmost) to infinity



Example 4.16 
Let N = 2, and let ρ(r) = 2∕π(1 + r2) be the one-
dimensional Lorenzian density, normalized so that 
The
co-motion function f1 = f can be computed explicitly and is given
by f(r) = −1∕r, see Example 4.18 in Sect. 4.3.11. The SCE
potential must satisfy the differential equation (4.59) which in
our case reads

The boundary condition vSCE(r) → 0 for r →∞ (Eq. (4.64))
yields the solution

4.3.11 Strictly Correlated Electrons in One

Dimension

In one dimension the strong interaction limit (Eq. (4.25)) can be
solved exactly. The minimizing probability measure is given by an
SCE state (4.30) with explicit co-motion functions alias transport
maps. The minimizer was found by Seidl himself in the original
paper [122], on grounds of physical intuition. A proof of its
optimality was found much later by Colombo, De Pascale and Di
Marino [27].

Seidl’s Construction 
For a given integrable density 
with ρ ≥ 0 and 
, begin by choosing 
so that the
amount of density between r and f1(r) is 1. Now choose f2 so that
the amount of density between f1(r) and f2(r) is again 1, and so
on, i.e., denoting f0(r) = r,

(4.68)

for all i = 0, …, N − 1. For Eq. (4.68) to possess a solution fi+1(r)
in 
we must have 
; otherwise one needs to
integrate first up to + ∞ and then onwards from −∞ so as to
obtain a total value of 1,



(4.69)

Physically this means that, given that the first electron is at some
position x1 = r, all the other electrons at x2 = f1(r), …, xN = fN−1(r)
are separated by an equal amount of density between nearest
neighbors. See Fig. 4.4, right panel. As always for SCE states, the
first electron position is distributed according to the given
density ρ.

Fig. 4.6 
SGS state when N = 7. Top: a radial measure ρrad(r). Bottom left: the maps

S, S(2), …, S(6) : [0, ∞) → [0, ∞), plotted with colors green, blue, red, violet, yellow, and
brown. Bottom right: the same graphs under a change of variables 
which
transports ρrad to the uniform density on the interval [0, 1]. Picture from [124]

The above construction can be expressed concisely in terms of
the cumulative distribution function

(4.70)

and its generalized inverse



(4.71)

(When ρ is continuous and everywhere positive, 
is just the
usual inverse function; the above definition has the virtue that it
works for any nonnegative integrable ρ with integral N.)
Equations (4.68) and (4.69) now take the form Gρ(fi+1(r)) − 
Gρ(fi(r)) = 1∕N respectively 1 − Gρ(fi(r)) + Gρ(fi+1(r)) = 1∕N, so by
solving for fi+1 in terms of fi and using f0(r) = r

(4.72)

for i ∈{1, …, N − 1}.

Optimality 
This construction is indeed optimal:
Theorem 4.17
Let w(r) = |r|−1. For any nonnegative integrable density


with
 
, the SCE state (4.30) with f1, …,
fN−1given by the Seidl construction (4.72) is a minimizer of the

SIL problem

Moreover when ρ is everywhere positive, this minimizer is

unique for N = 2, and its symmetrization (see Remark4.2) is the

unique symmetric minimizer for arbitrary N.

This theorem is due to [32] for N = 2 and to [27] for arbitrary
N. Despite the intuitive nature of the optimizer, the proof is not
elementary. It is based on a careful analysis of the structure of
Vee-cyclically monotone sets in 
, and strongly relies on both
optimal transport theory and the ordering properties of the real
line. Note that uniqueness cannot hold for N ≥ 3 unless symmetry
is required, as re-labelling the fi then yields another solution. This
is purely a mathematical, not a physical effect since solutions to
the SIL problem arising as low-density limits of N-point densities
of quantum wavefunctions (as described by Theorem 4.3) are
always symmetric, corresponding to the symmetrization of the
state (4.30) and (4.72).



Group Law 
Formula (4.72) implies an interesting group law
for the co-motion functions, already noticed in [122]: the ith
function is the i-fold composition of the first function with itself,

and the N-fold composition of the first function gives the identity
f0(r) = r.

Explicit Examples 
The following examples further illustrate
the nonlinear governing Eqs. (4.68)–(4.69), and may serve as
useful benchmarks for numerical simulations in the strongly
interacting limit (or close to it).

Example 4.5, ctd 
Consider a two-electron system with ρ being
the uniform density in a one-dimensional interval [0, L]. In this
case we have Gρ(r) = r∕L, and formula (4.72) readily yields the co-
motion function (4.40). For its graph, see Fig. 4.2.
Mathematically this map switches the right and left half of the
interval; note that its composition with itself indeed gives the
identity, as it must by the group law.

Example 4.18 ([68, 71])
Let ρ(r) = N∕π(1 + r2) be the Lorenzian density, normalized so

that 
. In this case 
and so Eq. (4.68)
for f1 in the region 
is, recalling the notation f0(r) = r,

(4.73)
When N = 2 it follows that

(4.74)

(note that then the derivatives of both sides of (4.73) agree, as do
their values at r = 0). From now on let us assume N ≥ 3. In this
case we can use the addition formula for the tangent,


for 
,
and obtain

(4.75)



In the region 
, or equivalently 
, or
equivalently (because 
) r > 1∕t1, Eq. (4.69) for
f1 is

that is to say 
. Using the addition
formula for the tangent and 
we again find that
f1 is given by (4.75), so this formula describes f1 on the whole
real line. It remains to compute its i-fold composition fi. Here we
give a different derivation as compared to [68, 71]. Note that
mathematically f1 is a Moebius map, i.e. a map of the form Ma(r) 
= (r + a)∕(1 − ar). Using the (elementary to check) composition
formula 
and the addition formula for the tangent
we find

(4.76)

Moreover, setting i = N in the above formula we recover the
abstract fact that the N-fold composition of f1 must be the
identity. Hence the co-motion functions for the Lorenzian density
form a discrete subgroup of the Moebius group. For the graph of
these functions when N = 5 see Fig. 4.4.

4.3.12 Radially Symmetric Densities

When the one-body density ρ is radially symmetric, Seidl, Gori-
Giorgi and Savin [127] conjectured an explicit minimizing
probability measure in (4.25) of a radial-symmetry-preserving
SCE form which is related to the explicit SCE state of one-
dimensional systems.5 Let us describe their conjecture in detail.

The starting point is the following reduction to a 1d problem
with effective interaction.

Lemma 4.19 (Reduction to a 1d Problem, [9, 113]) 
Let


be an integrable density with ρ ≥ 0 and
 
which

is radially symmetric, that is, ρ(r) = ρ0(|r|) for some function ρ0,

and let



where ωdis the area of the unit sphere in
 
(for d = 3, ωd = 
4π). Then the SCE functional defined by (4.26) reduces to

(4.77)

where
 
is the reduced Coulomb cost

(4.78)

Moreover,
 
is a minimizer for the full SIL variational

principle (4.25) in d dimensions if and only if its radial projection

Πrad, defined by

for all intervals A1, …, AN, is a minimizer for the right-hand

side of (4.77) and
 
Π-a.e.

In [122, 127], the following interesting explicit state was
conjectured to be optimal for the reduced problem in (4.77):

(4.79)

where S(n) denotes the n-fold composition S ∘⋯ ∘ S and S  :  [0, ∞) 
→ [0, ∞) is defined as follows. Let 0 = a0 < a1 < ⋯ < aN−1 < aN = ∞
be such that the intervals An = [an−1, an) between successive an’s
carry equal mass, that is, 
for all n, and let 
be the
unique function such that

(4.80)

(with the convention AN+1 = A1). In terms of the original SIL
problem (4.25), this ansatz corresponds to the SCE ansatz (4.30)
with maps satisfying the additional property



for the above explicit S and with suitably chosen angles so that
Π↦ρ and 
Π-a.e. We call S the
SGS map, and the probability measure η given by (4.79), (4.80)
the SGS state. See Figs. 4.5 and 4.6.

Fig. 4.7 
Construction of the optimal map T in Example 4.22. The picture shows the
graph (in blue) of the first few iterations of Eq. (4.83); each graph consists of three
scaled copies of the previous one. The exact map is reached in the limit of infinitely
many iterations

Fig. 4.8 
Numerically computed optimal density πτ(r1, r2) in (4.89) for two electrons
in one dimension and the density 
, r ∈ [−10, 10], for different values of
the regularization parameter τ. Here c0 is a normalization constant, and we have used
the effective Coulomb interaction [7] 

The SGS state has been rigorously proved to be optimal in
some specific cases.

Example 4.20 (SCE for Radially Symmetric Densities, [32,

Theorem 4.10]) 
Let N = 2, and let ρ be a radially symmetric
density on 
such that ρ(r) > 0 for all r. Then the optimal co-
motion function f is given by



for some function 
such that 
, s is increasing,
limr→+∞s(z) = 0, and limr→0+s(r) = −∞.

The function s in the above example corresponds to minus the
SGS map, i.e. s = −S in the N = 2 case.

Optimality of the SGS state has also been proved for some
special class of densities ρ when N = d = 3 [30, 57, 125] and N = 3
and d = 2 [11].

Recently, counterexamples of radially symmetric probability
densities were found for which the SGS state is not optimal. The
simplest one is a uniform density on a thin annulus:

Example 4.21 ([30], see also [11, 57, 124, 125] for related

examples) 
Let N = 3. For sufficiently small ε > 0, and the
density

(4.81)

(with the constant cε chosen such that 
), the SGS state
ηε defined by (4.79)–(4.80) is not optimal for the variational
problem (4.77).

This example illustrates that guessing the optimal SCE states can
be a tricky business even for 1d problems, and makes it all the
more remarkable that optimality of Seidl’s guess for the 1d
Coulomb problem is a rigorous theorem (Theorem 4.17). The
proof of nonoptimality relies on a Taylor expansion of the
reduced interaction 
(defined in Eq. (4.78)) at the point (1, 1,
1) and on cyclical monotonicity methods from optimal transport
theory.

While this counterexample disproves optimality of the SGS
state in general, the density (4.81) is quite different from typical
atomic densities and the following remains an interesting
mathematical problem.

Open Problem 
Find sufficient conditions on radial densities ρ
such that the SGS state is optimal for (4.77).



4.3.13 An Example with Irregular Co-motion

Functions for Repulsive Harmonic Interactions

One of the more challenging properties of co-motion functions is
that they are typically discontinuous. Here we give an extreme
example with modified electron-electron interaction which is
discontinuous everywhere, due to Di Marino et al. [42].

Example 4.22 
Let d be arbitrary, Vee(r1, …, rN) = −∑1≤i<j≤N|ri 
−rj|2 (repulsive harmonic interaction), and N = 3. Let 
(uniform density on a cube in 
). Then there exists a nowhere
continuous map T  :  [0, 1]d → [0, 1]d which transports ρ to itself
such that

(4.82)

is an optimal probability measure for the SIL problem (4.25).

The map T is an explicit fractal map. For d = 1 it is depicted in
Fig. 4.7 and constructed as the unique fixed point of the iteration

(4.83)

starting with f(x) = x. To see what the iteration is doing, divide [0,
1]2 into a 3 × 3 grid of squares and put scaled copies of the graph
of the original function into the two squares directly above the
diagonal and the bottom right square. Optimality of the resulting
fractal SCE state (4.82) is easy to see from the following special
property of the repulsive harmonic cost which was first observed
by Pass [112]: thanks to the identity


and the fact that the integral of
the second term against a probability measure Π only depends on
its marginal, the minimizers of the SIL problem are precisely the
probability measures supported on the surface r1 + ⋯ + rN = 0.



Fig. 4.9 
Co-motion function for the H2 molecule [22]. The blue region—
corresponding to the points in a half plane adjacent to the molecular axis with density
between 0.04 and 0.08—is mapped to the green region in the opposite half plane. The
black dots indicate the positions of the nuclei

The above example and construction works for arbitrary N,
see [42].

Open Problem 
Do such extreme examples also occur for the
Coulomb interaction? Note that the repulsive harmonic
interaction arises by locally Taylor-expanding the Coulomb
interaction in angular direction.

4.3.14 Minimizers of the Discretized SIL Variational

Principle Are Quasi-Monge States

We now come back to the important issue that the SIL variational
principle (4.25) still requires minimization over a high-
dimensional space of N-point probability measures, whereas the
low-dimensional SCE ansatz (4.30) can fail to yield an optimizer
of (4.25). One can ask whether some modified low-dimensional



ansatz is enough to solve (4.25) exactly. In other words, can one
achieve Seidl’s original goal of solving the strongly interacting
limit of DFT with a low-dimensional ansatz that can be easily
stored on a computer?

For the discretization of (4.25) on a grid, Friesecke and Vögler
[53] found a modified ansatz which achieves this, for arbitrary
space dimensions, densities and interaction potentials:

(4.84)

where σ runs over all permutations of the indices 0, …, n − 1, α is
some (free to choose) probability density on the single-particle
space 
, and the fn are maps from 
to 
. States of this form
are called quasi-Monge states or quasi-SCE states. With the
specific choice 
, the quasi-Monge ansatz (4.84) reduces
precisely to the SCE (alias Monge) ansatz in its symmetric form
(4.42). The novelty is the additional freedom of choosing the
auxiliary density α. For the quasi-Monge ansatz, the marginal
constraint Π↦ρ takes, instead of the conditions fn♯ρ = ρ (n = 0, …,
N − 1) (Eq. (4.32)), the form of a single condition,

(4.85)

That is, the average push-forward of the auxiliary density α under
the quasi-SCE maps must be the (suitably normalized) physical
density.

Plugging the ansatz (4.84) into the SIL variational principle
(4.25) and integrating out the variables r2, …, rN yields the quasi-

Monge or quasi-SCE variational principle

(4.86)

with the minimization being subject to the constraint (4.85).



Theorem 4.23 (Justification of the Quasi-Monge Ansatz,

[53]) 
Let ρ be any discrete N-particle density on
 
, that is to

say
 
for some distinct discretization points


and some ρi ≥ 0 with ∑iρi = N, and let


be any interaction potential which is

symmetric in the electron coordinates (e.g., the Coulomb

interaction Vee(r1, …, rN) =∑i<j1∕|ri −rj|). Then the SIL problem

(4.25) possesses a minimizer which is a quasi-Monge state (4.84).
Equivalently, it possesses a minimizer of the form (4.88), i.e., a

superposition of at most ℓ symmetrized Dirac measures.

This result rigorously reduces the number of unknowns from
exponential to linear with respect to the number of electrons;
more precisely, from ℓN (the dimension of the space of N-point
probability measures supported on {a1, …, aℓ}N) to ℓ ⋅ (N + 1) (ℓ
unknowns for each of the N quasi-Monge maps, and another ℓ
unknowns for the auxiliary density α).

The above result fails if the class of quasi-Monge states is
narrowed to Monge (alias SCE) states, see [49]. For continuous
ρ’s, it is an open question whether the SIL problem always (or at
least in the Coulomb case) admits minimizers of quasi-Monge
form.

Proof of Theorem4.23 
(Following [53].) Let us explain the
intuition and reasoning behind the quasi-Monge ansatz and
Theorem 4.23, which comes from convex geometry. Before
passing to a geometric viewpoint, we note that by the symmetry
of Vee the minimization in (4.25) can be restricted to symmetric
probability measures (see Remark 4.2); moreover any symmetric
probability measure 
with Π↦ρ must be of the form

for some symmetric tensor 
with nonnegative
entries which sum to 1. Now geometrically, for fixed
discretization points a1, …, aℓ the set of these probability



measures is a finite-dimensional convex polytope; let us denote it
by 
. The subset satisfying the marginal
constraint Π↦ρ, i.e.

(4.87)

is also a convex polytope called the Kantorovich polytope; let us
denote it by 
. While general probability measures
in these sets possess a huge number of coefficients which
increases combinatorially with the number N of particles, the key
point is that the extreme points6 of these sets are very sparse,
with only a small number of nonzero coefficients. The extreme
points of 
are easily seen to be symmetrized
products of delta functions, 
, where SN

is the symmetrization operator. Now consider a subset of a
convex polytope satisfying one linear constraint, geometrically:
the intersection of the polytope with a hyperplane. It is
geometrically expected (and not difficult to prove) that all
extreme points of this new set are convex combinations of just
two extreme points of the original polytope. Analogously, by a
well-known result in convex geometry the intersection of a
convex polytope with k hyperplanes has extreme points given by
convex combinations of just k + 1 of the original extreme points.
Since the marginal condition (4.87) imposes ℓ − 1 constraints
(note that one of the ℓ constraints is redundant due to the sum of
the 
being 1), the extreme points of the Kantorovich
polytope are convex combinations of just ℓ symmetrized delta
functions, i.e., probability measures of the form

(4.88)

for some nonnegative coefficients αν. Defining the maps fn by

yields that all extreme points are quasi-Monge

states (4.84). Theorem 4.23 now follows from the general
principle that the minimum of a linear functional (such as 



) over a convex polytope is always attained at some extreme
point. □

The quasi-Monge (or quasi-SCE) ansatz and Theorem 4.23
underlie the numerical method described in Sect. 4.4.5.3.

4.3.15 Entropic Regularization of the SCE

Functional

We have seen in Fig. 4.1 and Sect. 4.3.8 that in the strongly
interacting limit, the N-body density concentrates on the lower-
dimensional manifold on which the classical effective potential
energy Vee(r1, …, rN) −∑ivSCE(ri) is minimal. A regularization of
the SCE functional which has nice mathematical properties and
smears out the N-body density is the following:

(4.89)

Here τ > 0 is a small parameter, 
is the usual electron
interaction energy, and S is (minus) the Shannon–Von Neumann
entropy,

(4.90)

As shown in Lemma 4.27 below, the negative part of the
entropy density has finite integral under very mild conditions on
ρ (e.g., finite first moment suffices), and so definitions (4.89)–
(4.90) make rigorous sense. The existence of a minimizer in
(4.89) can be obtained assuming that 
[60].
Physically, the right-hand side in (4.89) can be viewed as the free
energy of N classical particles with interaction potential Vee and
density ρ at inverse temperature τ. But our goal here is not to
model a physical system at finite temperature, but instead to
approximate the SCE functional.

Figure 4.8 illustrates the effect of the entropy term in a two-
electron example: the larger the regularization parameter τ, the
more the minimizers π are spread out around the support of the
SCE state. (Recall that by Theorem 4.4, when N = 2 the SIL
variational principle is uniquely minimized by an SCE state.)



Fig. 4.10 
Solution to the SIL problem (4.25) for 10 electrons in 1D with the GenCol
algorithm [52]. Top: prescribed density. Left: Evolution under GenCol of the N-electron
density from a random initial state, visualized via its two-point marginal (pair density).



Gridpoints with nonzero values (i.e., “successful” configurations) are shown in blue,
with larger markers indicating higher values. Right: Evolution of the Kantorovich
potential. The final N-point density recovers Seidl’s SCE state for the discretized
problem with machine precision

The corresponding regularization for the Wasserstein distance
squared instead of the SCE functional (Example 4.12 instead of
Example 4.11) in fact goes back to Erwin Schrödinger in 1931
[121], and had a completely different motivation: Schrödinger
was looking for models for the “most likely” evolution law
between two probability distributions of particle positions which
have been empirically observed at different times, perhaps
hoping to re-discover his—then still controversial—quantum
mechanics in a novel way.

An equivalent entropic problem has been considered by
Chayes et al. in [19, 20]. In their setting, the integration in the
entropy functional S is not against the Lebesgue measure but
against the product measure 
, which constitutes a
natural model in classical statistical mechanics. The role of the
reference measure will be explained below and can be
understood via Eq. (4.93).

In optimal transport, entropic regularization became a popular
basis for computational methods following an influential paper by
Cuturi [34] in machine learning and Galichon and Salanié in
economics [54]; see Sect. 4.4 for a computational algorithm.
Regularization by entropies other than the Shannon–Von
Neumann one is considered in [41, 99].

4.3.15.1 Basic Properties

Let us now informally discuss the basic properties of (4.89).

Unique Minimizer 
Assuming that 
, a minimizer
πτ in (4.89) exists [60]. This is expected from the convexity of the
functional 
. Since the functional is strictly convex on the
domain where it is finite, minimizers must be unique.

Euler–Lagrange Equation; Form of Minimizer 
Assume a
Lagrange multiplier rule as in (4.61). That is, assume the
existence of Lagrange multipliers 
such that πτ is the
unconstrained minimizer of the Lagrangian



Thus the function λ(r) has the usual physical interpretation of
DFT as minus the potential that enforces the density constraint,
and will in the following be denoted uτ(r). It follows that

for all variations η with 
and π ± η ≥ 0. That is to say,

and therefore

By solving for π and adjusting uτ by an additive constant, it
follows that

(4.91)

The function aτ can—independently of its construction above with
the help of Lagrange multipliers—be interpreted as an entropic
weight function which makes the probability density πτ satisfy
the constraint πτ↦ρ. Note that by this constraint and Eq. (4.91),
aτ must satisfy the following governing equation in which
Lagrange multipliers no longer appear:

(4.92)

The above equations constitute the so-called (multi-marginal)
Schrödinger system. When the density ρ is Gaussian and the
interaction potential w is taken to be the repulsive or attractive
harmonic interaction, the entropically regularized problem can
be solved exactly, see [58], for the one-dimensional case, and [39,
79, 103] for the general case. In [17], Carlier and Laborde
showed the existence of a solution of the system (4.92) via an
inverse function theorem argument by assuming that the one-
body density ρ belongs to 
.



Relative Entropy Formulation 
The functional 
agrees up
to an additive constant with the Kullback–Leibler divergence (or
minus the relative entropy)7 between π and a kernel function 
of the electronic interaction Vee [89]:

Thus the optimizer πτ is the density with marginal ρ which has
minimal relative entropy with respect to the kernel 
.

The Role of the Reference Measure 
In the literature, the
entropy functionals which are typically studied replace
integration against the Lebesgue measure in (4.90) by
integration against the product of the marginals 
(or
any other finite reference measure), where ρ∕N = μ. As shown in
Lemma 1.5 in [40] (see also [60] for the Coulomb case), both
problems are equivalent since the following identity holds

(4.93)

Therefore, whenever at least one side of the equality above is
finite, the original variational problem from the definition of 
(Eq. (4.89)) and the variational problem defined on the right-
hand side of (4.93) have the same minimizers.

Dual Formulation 
As for the exact (unregularized) strong-
interaction limit of DFT, there is a dual variational principle for
the Lagrange multiplier and an associated dual construction of


. We have

(4.94)

where

(4.95)

and the supremum in (4.94) is over a suitable class of potentials.
The second term in (4.95) can be viewed as a soft version of the
inequality constraint Epot(r1, …, rN) = Vee(r1, …, rN) − u(r1) + … + 
u(rN) ≥ 0 in the unregularized theory (see (4.149)), as it penalizes



deviations from this inequality. Indeed, via the Laplace principle
we have that, whenever the second term in (4.94) is finite,

In the discrete setting, this is precisely the LogSumExp formula.
The existence of an optimizer uτ for the dual problem and the
representation formulae (4.91), (4.96) with this uτ were proved in
[40, 41] under the assumption that 
and Vee is
measurable and bounded.

Functional Derivative 
As in exact SCE theory, the functional
derivative of the energy functional is formally given by the
optimal potential in the dual problem, that is to say

(4.96)

where uτ is the maximizer of (4.95) (assuming such a maximizer
exists and is unique). As in SCE theory, a natural choice of the
additive constant is to require 
. The
ensuing potential vτ = uτ + const is then an approximation to the
SCE potential.

4.3.15.2 Relation with the Levy–Lieb Functional

Just like the SCE functional itself, its entropic regularization is a
rigorous lower bound of the exact functional, provided the
regularization parameter τ is chosen suitably. More precisely:

Theorem 4.24 ([125]) 
Let Ψ be any N-electron wavefunction

in the space
 
(see (4.7)), or alternatively any bosonic

wavefunction in
 
, and suppose Ψ↦ρ. Let Veebe the

Coulomb interaction. Then the scaled Levy–Lieb functional

defined in Eq.(4.17) satisfies

(4.97)



In particular, the original Levy–Lieb functional (4.11) satisfies

(4.98)

This result is a consequence of the logarithmic Sobolev inequality
(LSI). We include a proof, following Seidl et al. [125]. We begin
by recalling a standard version of the LSI.

Theorem 4.25 (LSI, Corollary 7.3 in [70]) 
Let

such that ν(r) = e−V (r)with
 
. Then, for every locally

integrable function
 
on
 
such that
 
we have

that
 
.

This implies the following LSI for the Lebesgue measure:

Corollary 4.26 (LSI for the Lebesgue Measure, [125]) 
Let


be a function such that
 
and
 
. Then


.

Proof of Corollary4.26

1.
In the LSI in Theorem 4.25, the requirement on f that


can be relaxed to 
. This follows by
applying the LSI to f∕α, 
, and noting that the extra
term 
on the left-hand side is ≥ 0.

 

2.
Take 
, then ν satisfies the assumption of the
LSI with κ = 2π, and moreover 
. Hence by the LSI,

 

3.
Integrate over r2 and use that 
. This yields
the assertion.

 
□

Proof of Theorem4.24 
Let 
, Ψ↦ρ, and let Π be its N-
point position density (4.8). By a version of the Hoffmann-
Ostenhof inequality [77],8
 
and



This together with the LSI for the Lebesgue measure (Corollary
4.26) applied to π gives

Taking the infimum over 
yields 
, with
τ as in the theorem. □

Although Theorem 4.24 provides a lower bound for the Levy–Lieb
functional (4.11), in practice this bound can be rather loose [58].

4.3.15.3 Well Definedness of Entropy and

Convergence to the SCE Functional

We now show that the entropy is well defined under very mild
conditions on ρ (e.g., finite first moment suffices), and that the
entropically regularized functional 
converges to the SCE
functional when the regularization parameter tends to zero.

Note that a priori both the positive and the negative part of
the integral (4.90) could be divergent; Lemma 4.27 excludes this
for the negative part, and so the integral always has a well
defined value in 
.

Lemma 4.27 (Well-Definedness of Entropy and of the

Regularized SCE Functional) 
Let
 
, ρ ≥ 0, 
,
and assume ρ has finite first moment, that is to say


. Let
 
with π↦ρ. Then the

negative part
 
has finite integral; more precisely, for

some constant Aρ > 0 which depends only on ρ but not on π

where
 
denotes the negative part of a

function f. Hence S as defined by (4.90) is well defined as a

functional



and
 
as defined by (4.89) is well defined as an element of


.

The assumption that ρ has finite first moment cannot be omitted.
For instance, for N = 2 and d = 1 the N-body density

continued by zero to 
and with c0 chosen such that 
,
belongs to 
but satisfies 
, as the interested
reader can check using that 
for α = 1 but < ∞ for
α > 1. In particular, in such a case the equivalence described in
(4.93) does not necessarily hold.

The lemma implies that for any interaction potential Vee on

which is symmetric and bounded from below, such as the

Coulomb interaction, 
is well defined as an element of

.

Proof of Lemma4.27 
 
is ≤ 0 precisely in the region

. Split Ω into


and

. Since 
satisfies


in [0, 1] for some constant C,

(4.99)

By the assumption that ρ has finite first moment, the right-hand
side is finite, completing the proof of the lemma. □



Finally, we prove that—as intuitively expected—the entropically
regularized functional 
converges to the exact SCE functional
when the regularization parameter tends to zero. The
corresponding Γ-convergence result was obtained in [60].

Theorem 4.28 
Let ρ be any N-electron density which belongs

to the class
 
(see (4.12)) and has finite first moment, and let

Veebe the Coulomb interaction. Then

(4.100)

Proof 
We combine the upper bound on 
from Theorem
4.24, the asymptotic result on Fλ[ρ]∕λ in Eq. (4.19) (see Theorem
4.3), and the lower bound from Lemma 4.27. By inequality (4.99)
we have for any π↦ρ

and hence, by adding 
to both sides and taking the infimum
over π

Obviously this lower bound converges to 
as τ → 0. On the
other hand, by Theorem 4.24 we have 
and by
Theorem 4.3 this upper bound also converges to 
; hence
so must 
. □

4.4 Numerical Methods and

Approximations

The SCE functional cannot at the moment be accurately and
efficiently computed for general three-dimensional densities and
large N. But accurate numerical methods are available for small
N or special situations, novel methods aimed at large N are
under development, and less accurate approximations can
already be computed for large N. We review these methods and



approximations in this section, and their use within Kohn–Sham
DFT in Sect. 4.5.

4.4.1 Numerical Methods Based on Co-motion

Functions

Numerical implementations using co-motion functions were
confined to the following cases:

the exact maps are known: general N in one dimension (see
Sect. 4.3.11);
an explicit ansatz, able to get very close to the true minimum,
exists: spherically symmetric (radial) case (see Sect. 4.3.12).

In addition, co-motion functions can be extracted from optimal
plans in the case

N = 2, for which the existence of the map is proven and there
are 1-1 correspondences between map, optimal plan, and
Kantorovich potential (see Eqs. (4.38) and (4.39)).

We review here and in the following section the implementation
for these three classes of problems. Their use in combination
with Kohn–Sham DFT is then discussed in Sect. 4.5.

4.4.1.1 One-Dimensional N-Electron Systems

The SCE functional has been implemented for one-dimensional
(1D) many-electron systems using the exact co-motion functions
(maps) of Seidl [122], which we reported and illustrated in Sect.
4.3.11. These applications typically aim at modeling physical
systems in which electrons are confined in elongated traps
(quantum wires): the interaction used is thus 3D Coulomb
renormalized for small interparticle distances. The idea is that at
long range the electrons feel the 1∕|x| interaction, but at short
range they can avoid each other due to the finite thickness of the
wire, which is mimicked by removing the divergence at x = 0. For
example, a widely used effective quasi-1D interaction is obtained
by integrating the 3D Coulomb interaction over normalized
gaussians in two of the three spatial directions [64], modeling
harmonic confinement within a wire of thickness b,

(4.101)



This interaction is finite at x = 0, where it has a cusp, behaves as
1∕|x| for large x and it is convex for x ≥ 0. Other popular quasi-1D
interactions are the soft Coulomb and the regularized Coulomb,

(4.102)

(4.103)

Notice, however, that the 1D maps of Seidl [123] are exact only
for interactions (costs) that are convex for x ≥ 0 [27]. This means
that when using 
, which is concave for 
, the
Seidl maps are not guaranteed to yield the true minimizer, as
illustrated, for example, in Fig. 2 of Ref. [71].

Numerical realizations of the 1D Seidl maps are reported in
Refs. [71, 72, 100–102, 104]. The implementation of the maps
directly follows from Sect. 4.3.11: given a density ρ(x) on a grid,
the cumulant function Fρ(x) is evaluated on the same grid, and its
inverse 
is simply obtained by swapping the columns. The
grid can be restored by using a spline interpolation for 
,
and the maps are readily obtained. Numerical issues can appear
in regions where the density is close to zero, with 
raising
extremely steeply. An alternative method to obtain the 1D maps
without the need to construct 
is discussed in Ref. [72].

4.4.1.2 Spherically Symmetric Densities

For spherically symmetric densities the radial SGS maps (4.79)–
(4.80) conjectured in [122, 127] have been implemented in Refs.
[63, 127] for the 3D case using numerical densities for atoms
from He to Ne, and in Ref. [105] for the 2D case, where the SCE
functional has been combined self-consistently with Kohn–Sham
DFT to describe electrons confined in a parabolic potential at low
density.

The construction of the radial maps is implemented as in the
1D case. However, the computational complexity is now higher



due to the evaluation of the reduced radial cost of Eq. (4.77),
which requires an angular minimization for given radial
distances. For the two-dimensional case treated in Ref. [105],
where the number of relative angles to minimize was equal to N 
− 1, the procedure has been the following. For an initial non-
degenerate radial configuration and given initial starting angles,
the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm was used to find the closest local minimum. Then the
radial position of the “first” electron was changed in small
discrete steps, the radial positions of the remaining electrons
were computed using the SGS maps, and the angles were
optimized using the BFGS algorithm, with starting angles taken
from the previous step. This procedure rests on the assumption
that the optimal angles change continuously with the radial
configuration. The starting angles for the initial radial
configuration can be chosen by using simulated annealing as a
global optimization strategy. It should be stressed that the
angular minimization does not need to be performed for the
whole set Ngrid of radial grid points. In fact, the N radial
distances are periodic, as each circular shell r ∈ [ai, ai+1] (with


, 
), corresponds to the same physical situation,
[127] simply describing a permutation of the set of distances
occurring in the first shell r ∈ [0, a1]. Thus, by keeping track of
the minimizing angles, and by readapting the grid in every
circular shell, it is possible to do the angular minimization only
Ngrid∕N times rather than Ngrid times.

4.4.2 Methods Based on Linear Programming

Direct discretization of the SIL variational principle (4.25) yields
a linear program, which is numerically tractable when N = 2.

4.4.2.1 The N = 2 Case

For two-electron systems in 3D with general density, Chen et al.
[22] have implemented a method to directly solve the SIL
variational principle via linear programming and extract the co-
motion function and the SCE potential from the SIL solution.
They used this approach to compute the co-motion function and



the KS-SCE binding curve of the H2 molecule (see Figs. 4.9 and
4.14).

Fig. 4.11 
Left: self-consistent KS SCE densities for N = 4 electrons interacting with

of Eq. (4.101) when the external potential is harmonic, 
,

compared with very accurate configuration interaction results (CI) and with KS LDA.
Right: the total KS potential at self consistency, vKS = vne + vSCE, for the most
correlated case. The horizontal lines are the two eigenvalues of the occupied KS SCE
orbitals. Results are in scaled units, where L = 2 ω−1∕2, and are taken from Ref. [101]

One truncates 
to a bounded domain, discretizes it into ℓ
finite regions e1, …, eℓ, and represents each element by a point aℓ

located at its barycenter. The single-particle density becomes a
vector in 
with components 
. The two-particle
density π is represented by a matrix 
with


, and the interaction Vee(r1, r2) becomes a
matrix 
with 
. The SIL problem (4.25) then
becomes

(4.104)



This is a standard linear programming problem of the form
minxf

Tx subject to Ax = b, xk ≥ 0, where x is the vector containing
the entries of γ. The solution can be obtained with a standard
linear programming software (in [22], the authors used MOSEK).
For a uniform discretization of the density, the number of
degrees of freedom in the linear program would still be huge;
instead an adaptive mesh was used in which all elements contain
roughly the same amount of density, that is to say the mesh is
much finer in the high-density region near the nuclei. (For
automated generation of such a mesh, the finite element package
PHK was used. See Chap. 10 by Dai and Zhou for more
information about this package.) The solution to (4.104) entails
an approximation to the co-motion function f at the barycenters


, namely the barycenter of the image of ai under the
transport plan γ:

(4.105)

where γij can be regarded as the mass transported from ai to aj

and the normalization factor ρi∕2 guarantees that the barycentric
weights sum to 1. Since, for N = 2, the optimal N-point density π
for the continuum problem is unique and of SCE form (see (4.41)
and Theorem 4.4), it follows that if the discretization is
sufficiently fine, i.e. ℓ is large enough, f(ℓ) is a good approximation
to f. The resulting co-motion function for the H2 molecule is
depicted in Fig. 4.9.

4.4.2.2 The N > 2 Case and the Curse of Dimension

Since the above method uses a real-space discretization of the
SIL variational principle whose unknown is the N-particle density
on 
, it is limited in practice to N = 2, to keep the number of
computational degrees of freedom manageable. Indeed, for
general N the N-particle density π must be represented by an
order-N tensor 
with entries


. Since π can be assumed to be



symmetric (see Remark 4.2), γ can be assumed to be symmetric
under permutation of indices and Eq. (4.104) becomes

(4.106)

This is still a linear program, but in ℓN (or, using symmetry,

) variables. For rigorous hardness results on problems of

the form (4.106) with pairwise interaction see [4, 52].

4.4.3 Methods Based on the Dual Formulation

Mendl and Lin [104] have implemented a method for solving the
dual formulation of the SCE functional, Eqs. (4.55) and (4.53),
and applied it to the Beryllium atom, a four-electron quantum
wire in 1D, and a model trimer in 3D. In the 3D case, they
parametrized the (unknown) Kantorovich potential by a
pseudocharge,

with m given by a small number of Gaussians and satisfying

to account for the asymptotic behavior v(r) ∼ (N − 

1)∕|r| for large |r| (see (4.66)). They showed that the constrained
maximization in (4.55), (4.53) is equivalent to a nested pair of
unconstrained optimizations,

(4.107)

(4.108)

The inner optimization for given v was implemented by a quasi-
Newton method and the outer optimization via a gradient-free
simplex algorithm. For the Beryllium atom, using just two
Gaussians for m resulted in a relative error of the SCE energy of



only 1.6% compared to the SCE energy obtained via the SGS co-
motion functions for radially symmetric densities [127] as
described in Sect. 4.4.1.2. Also, the obtained SCE potential was
in good agreement with the one based on the radial co-motion
functions.

As the authors point out, this approach is in practice limited to
small systems, because the inner optimization is high-
dimensional, nonlinear, and highly degenerate for the optimal v
(recall that the set of minimizers is typically d-dimensional), and
the outer optimization (4.107) is nonlinear and nonsmooth, and
hence unsuitable for numerical optimization over a large number
of degrees of freedom.

4.4.4 Multi-Marginal Sinkhorn Algorithm

In optimal transport, a standard computational method [35] is to
pass to the entropic regularization (in our case, problem (4.89))
and solve the latter via the Sinkhorn algorithm. This is a simple
and robust algorithm which goes back to Sinkhorn in the context
of estimating Markov transition matrices [131]; it was introduced
into two-marginal optimal transport in [34] and generalized to
several marginals in [8]. The multi-marginal Sinkhorn algorithm
with Coulomb cost was implemented by Benamou et al. [9] (see
also [110]) to compute the SCE energy and potential for the He
and Li atoms.

The multi-marginal Sinkhorn algorithm goes as follows; we
state it here in the continuous setting. One starts from the exact
form (4.91) of the optimizer. One now allows the N entropic
weight functions aj(rj) = aτ(rj) in this form to be different (so as to
be able to update them one by one). One updates them iteratively
so as to enforce the j-th marginal constraint, (4.92) for j:

(4.109)

Solving for aj yields an explicit formula for aj in terms of the
other ai. Thus a single updating cycle consists of the N steps

(4.110)



One then repeats the cycle until convergence.
Convergence of the Sinkhorn algorithm is rigorously

guaranteed under mild conditions on the interaction potential
and the density (e.g., bounded potentials and 
are
sufficient); see [131] for the discretized N = 2 case, [118] for the
general N = 2 case, and [40] for N ≥ 2. The (linear) rate of
convergence for the Sinkhorn algorithm was obtained in [23, 46]
in the N = 2 case, and in [15] for the multi-marginal Sinkhorn
algorithm. For a two-electron example in dimension one
computed with the Sinkhorn algorithm see Fig. 4.8.

In [9], Benamou et al. demonstrated that for the He atom (and
the choice τ = 0.02) the algorithm yields an accurate
approximation to the SCE energy and the SCE potential
compared to the (in this case rigorously justified) SGS map-based
solution; the relative error of the potential in the L∞ norm was
only 0.4%. Moreover, for the Li atom the numerical Sinkhorn
solution exhibited very good qualitative agreement with the SGS
solution.

Some regularization is essential for the Sinkhorn approach. As
τ approaches zero—so that the entropic regularization 
from
(4.89) approaches the exact SCE functional (4.26)—the
convergence speed of the algorithm also goes to zero (see e.g.
[35, 50]), and numerical instabilities can appear associated with
the extremely small order e−1∕τ of the integrand (see e.g. [8]).

The idea of regularization underlying the algorithm fits well
into our DFT context as the optimal N-point density is smeared
out anyway off the strongly interacting limit. However, a
significant limitation from the point of view of DFT is the high-
dimensionality of the integral in (4.109), (4.110). For a
discretization of the one-body density by ℓ gridpoint values, the
cost of a single integral evaluation for fixed rj is O(ℓN−1), limiting
the method to small N.

4.4.5 Towards Large N



Very recently, some promising methods have been proposed
which should, at least in principle, be suitable for tackling the
case of large N. These have been demonstrated to show good
performance on one-dimensional test examples where the Seidl
solution from Sect. 4.3.11 is available for comparison. At the time
of writing, it has yet to be demonstrated that any of these
methods is capable of accurately computing the SCE energy for
large N in three dimensions.

4.4.5.1 Semidefinite Convex Relaxation

The starting point of this method, introduced by Khoo and Ying
[82], is the fact that the SIL problem 4.25 can, due to the fact
that Vee is a two-body potential (4.3), be reformulated as a
minimization over N-representable 2-point probability measures:

(4.111)

Here a two-point probability measure on 
is called N-

representable if it is the 2-marginal of a symmetric N-point
probability measure on 
. This two-body formulation of the
SCE functional was introduced in [51], and is a direct adaptation
of the well-known two-body reduced density matrix formulation
[26] of the Rayleigh–Ritz variational principle (4.6) to the
strongly correlated limit of DFT.

After discretization as described in Sect. 4.4.2.1, the two-point
marginal becomes a matrix 
, and N-
representability means that Γ is obtained from some symmetric
tensor 
with nonnegative entries which sum to one
by 
.

The extreme points of the set of discrete N-representable 2-
marginals have been determined explicitly [53] (see [16, 82] for
generalizations to 3-marginals respectively general k-marginals).

Theorem 4.29 ([53]) 
The set of extreme points of the set

of discrete N-representable 2-marginals is



In particular,
 
is the convex hull of
 
.

Here 1 denotes the vector in 
with all components equal to 1.
The discretized problem is then

(4.112)

Khoo and Ying [82] introduced the following convex relaxation
of this problem in which 
is replaced by a slightly larger but
simpler set:

(4.113)

Here Λ ≥ 0 means matrix positivity of Λ.
It is clear that 
, since 
is convex and—by inspection

—contains the set of extreme points of 
given in Theorem 4.29.
A theoretical argument in support of the approximation (4.113)
is:

Theorem 4.30 ([82]) 
The extreme points of the true set
 
of

discrete N-representable 2-marginals are still extreme points of


.

Intuitively this means that, at least near the extreme points of the
exact set 
of N-representable 2-marginals, the relaxation is
very tight.

Viewed as a minimization over Λ, (4.112) is a semidefinite
program (SDP), i.e. a problem of minimizing a linear cost subject
to finitely many linear equalities or inequalities and a matrix
positivity constraint. It has been implemented in [82] using a



uniform grid and the large-scale SDP solver SDPNAL+. For 1D
problems with N = 8, up to ℓ = 1600 gridpoints, and different one-
body densities, the solutions reported in [82] are in excellent
qualitative agreement with the pair density of the exact Seidl
solution. The relative energy error compared to the
unapproximated discrete problem (4.111) is estimated to be of
the order of 10−2 to 10−4, depending on the choice of one-body
density. Also, (4.113) is solved for 6 electrons in 2D with a
Gaussian density on a 10 × 10 grid.

Khoo and Ying [82] also give a dual formulation of the SDP
(4.113) which yields an approximation to the Kantorovich
potential. For 1D test problems with 8 electrons and 200
gridpoints, a relative accuracy of 10−2 to 10−3 in the L2 norm is
reported compared to the exact potential obtained from the Seidl
solution and Eq. (4.59).

4.4.5.2 Langevin Dynamics with Moment

Constraints

This approach was proposed by Alfonsi et al. [1, 2]. The idea is to
only discretize the density constraint, but not the N-point density,
and then use a stochastic particle method to simulate the many-
electron density. One performs a Galerkin (or “moment”)
discretization of the marginal constraint (4.24) by requiring only
a fixed number M of integral constraints, of the form

(4.114)

where μ = ρ∕N is the prescribed single-particle density and φ1, …,
φM are suitable single-particle basis functions on 
. Moreover
since the marginal constraint has been relaxed, one introduces a
mild additional constraint on the class of admissible N-electron
densities γ to prevent mass from escaping to infinity,

(4.115)

for some nonnegative increasing function θ  :  [0, ∞) → [0, ∞) with
θ(r) →∞ (r →∞) and some constant A > 0. The SIL problem (4.25)
is now approximated by:



(4.116)

Under suitable assumptions on the basis functions, and for A
chosen sufficiently large, the minimum value of (4.116) can be
shown to converge to the SCE energy 
as the number M of
basis functions tends to infinity [2]. The key property of (4.116)
opening the door to numerical methods is the following.

Theorem 4.31 ([2]) 
Assume
 
, and suppose that the

basis functions
 
are continuous, belong to

L1(dμ), and satisfy the growth bound |φm(r)|≤ const(1 + θ(|r|))sfor

some s ∈ (0, 1). Assume that
 
is nonnegative

and
 
is finite for some γ satisfying (4.114), and that A is

sufficiently large. Then there exists a minimizer of (4.116) of the

form
 
for some

K ≤ M + 2, some coefficients αν ≥ 0, and some
 
.

Thus a sparse ansatz for the many-electron density consisting of
K ≤ M + 2 symmetrized Dirac measures (where M is the number
of constraints discretizing the marginal condition) is sufficient.
This result generalizes Theorem 4.23 from discrete problems to
semi-discrete problems with continuous state space and
discretized marginal constraint.

In order to numerically solve (4.116), in [1] a stochastic
particle method in continuous state space has been implemented.
More precisely, the authors use constrained overdamped
Langevin dynamics in the potential Vee, which is a natural
stochastic evolution equation for minimizing Vee, applied to
weighted sums of K symmetrized Dirac measures moving on the
constraint manifold (4.114). For 5 electrons in a one-dimensional
interval and the regularized Coulomb interaction (4.103) with a 
= 0.1, up to M = 40 basis functions taken to be Legendre
polynomials, and superpositions of up to K = 10, 000 symmetrized
Dirac measures, the method achieves good agreement with the
Seidl solution described in Sect. 4.3.11. The implementation uses
an iterative method to maintain the constraints (which are
nonlinear in the particle positions), as well as judicious choices of



the time steps, temperature profile, and numbers of symmetrized
Diracs to balance accuracy and computational efficiency.

An attractive feature of this method besides its feasibility for
large numbers of electrons is the fact that space is not
discretized. In [1] simulations are reported for 100 electrons in
three dimensions subject to 52 marginal constraints, again using
superpositions of 10,000 symmetrized Dirac measures. At the
time of writing, it remains an interesting open question to assess,
in such situations, the accuracy of the model (4.116) and its
numerical solutions.

4.4.5.3 Genetic Column Generation

This method was proposed recently by Friesecke et al. [52]. It
directly solves the discretized SIL problem (4.106), by combining
the sparse but exact quasi-SCE or quasi-Monge ansatz (see
Theorem 4.23), the method of column generation from discrete
optimization, and basic ideas from machine learning.

The idea is to alternate between solving the SIL problem on a
small but otherwise unconstrained subset of the many-electron
configuration space, and updating the subset based on the
(primal and dual) SIL solution. Recall that after discretization,
the many-electron density becomes a density γ on XN, where X = 
{a1, …, aℓ} is a set of discretization points (e.g., a grid) for the
single-electron configuration space 
. One now starts from the
quasi-SCE or quasi-Monge ansatz in the form (4.88), which
suffices to solve the discrete SIL problem (4.106) exactly (see
Theorem 4.23), but—for computational reasons—allows a slightly
larger number of delta functions:

(4.117)

Here the 
are arbitrary N-point configurations
in XN and β > 1 is a hyperparameter (taken to be 5 in [52]) which
limits the number of N-point configurations to O(ℓ) instead of the
naively required O(ℓN). To achieve a unique correspondence
between symmetrized Diracs and N-point configurations one
restricts the r(ν) to the sector




, making the expansion
coefficients αν in (4.117) unique.

The ansatz (4.117) involves two sets of degrees of freedom,
the subset 
of the many-electron configuration
space and the coefficient vector 
, which are updated
alternatingly. For fixed Ω, the coefficient vector is governed by
the SIL problem (4.106) restricted to the ansatz (4.117), which
reads, using that 
has single-particle
density 
,

(4.118)

This is just a small linear program with an ℓ × O(ℓ) constraint
matrix. Updating the set Ω is done in a simple but subtle manner,
as standard methods would incur the curse of dimension (see
below). One also uses the dual problem

(4.119)

whose solution u is an approximation to the Kantorovich
potential.

An updating cycle in the genetic column generation (GenCol)
method goes as follows:
1.

Given a set 
of N-particle configurations, update the
primal solution α and the dual solution u by solving (4.118)
and (4.119).

 

2.
Given the updates αnew and unew, update Ω by the following
genetic learning method:

(4.120)

 



Steps 1. and 2. are iterated until convergence, with the oldest
configurations which do not contribute to the current optimal
plan (i.e. satisfy 
) being deleted from Ω whenever its size
ℓ′ exceeds the maximum allowed size βℓ.

The simple but powerful genetic learning aspect of the search
rule in (4.120) is that only “successful” N-electron configurations
in Ω (i.e. ones that contribute to the current optimal plan (4.117)
with a nonzero coefficient αν) are allowed to bear offspring.
Numerical observations and theoretical considerations show that
this is essential for overcoming the curse of dimension. An
unbiased random search of new configurations, or the updating
step in the classical column generation method of solving the so-
called pricing problem,9 would merely turn the curse of
dimension with respect to the size of the state space into a curse
of dimension with respect to the number of search steps.

The rationale behind the acceptance criterion in (4.120) is
that any new configuration r∗ satisfying it represents a constraint
of the full dual problem (Eq. (4.119) with the r(ν) being replaced
by all configurations in 
) which the current dual solution
unew violates. Adding this configuration to the set Ω “cuts off”
unew from the optimization domain of the dual problem, yielding a
new dual solution and an energy decrease. For a rigorous
justification see [52].

Figure 4.10, taken from [52], shows the solution of the SIL
problem (4.25) computed by the GenCol algorithm for 10
electrons in a 1D interval discretized by 100 gridpoints. In this
example, the grid spacing is normalized to 1, the density is taken
to be 
, and the interaction is the soft
Coulomb potential (4.102) with a = 0.1. With the initial set of
many-electron configurations chosen randomly, the algorithm
always found the exact Seidl solution (see Sect. 4.3.11) of the
discretized problem to machine precision using less than 7000
iterations and less than 5 samples per iteration. This means that
only a tiny fraction of the configuration space was accessed. The
energy decreased steadily at an exponential rate.



Fig. 4.12 
Self-consistent radial KS SCE densities ρ(r) for N = 3 electrons in 2D, with
external potential 
[105], compared with accurate Quantum Monte Carlo
(QMC) results [61, 73]. The KS SCE densities are shown for both the unpolarized (2
orbitals, of which only the lowest is doubly occupied) and spin polarized (3 different
singly occupied KS orbitals) case

Tests reported in [52] on larger 1D systems with up to N = 30
electrons on 120 grid points (corresponding to a space of N-point
densities of dimension ℓN ≈ 2.4 × 1062) show only a slow
polynomial growth in N of the number of iterations required to
find the exact solution to machine precision, with the average
number of samples needed per iteration to satisfy the acceptance
criterion remaining approximately constant.

Apart from its simplicity and efficiency in high dimensions,
attractive features of the genetic column generation method are
that after discretization no further approximations are made (and
the discrete SIL problem is solved accurately), and that the
method also provides the Kantorovich potential for use within
Kohn–Sham DFT.

Tests for accurately discretized three-dimensional densities
are not yet available at the time of writing.

4.4.6 Approximations

As explained, there are presently no efficient algorithms to solve
the SCE problem in an exact or very accurate way for the general
three-dimensional case. In the usual spirit of DFT, several
approximations for the functional 
have been proposed and
used in combination with Kohn–Sham DFT. We review the
approximations in this section, and their use within Kohn–Sham
DFT in Sect. 4.5.



4.4.6.1 Gradient Expansion: Point-Charge-Plus-

Continuum Model (PC)

The first gradient expansion approximation (GEA) for the indirect
energy functional 
has been proposed by
Seidl et al. [128], and it is called the point-charge-plus continuum
(PC) model,

(4.121)

where 
and 
. The model is built from
the physical interpretation of W∞[ρ] as the electrostatic energy of
a system of perfectly correlated electrons with density ρ inside a
classical background with the same charge density ρ of opposite
sign [128]. Notice that the electrons are not allowed to relax in
this fictitious external potential, as they are kept in the SCE state
with the prescribed density. Only when the density is uniform is
the energy of the SCE state the same as the one we would obtain
by letting the electrons relax in the positive background external
potential [96]. The idea of the PC model is that when the density
is slowly varying the energy should be well approximated by
surrounding each electron by a PC cell (given by the combined
effect of the background and the remaining electrons) that
neutralizes its charge and it is such that the electron plus its cell
have zero dipole moment [128].

The PC approximation works rather well: for example, for the
atomic densities from He to Ne, the values 
agree within
1% with the values obtained by using the radial co-motion
functions (maps) described in Sect. 4.3.12, as shown in Table I of
Ref. [127]. This is quite remarkable as, usually, gradient
expansions for the exchange-correlation functionals fail in
providing accurate quantitative results.

4.4.6.2 Generalized Gradient Approximations: The

Modified PC Model

Although quantitatively accurate for the SIL energy, the main
drawback of the PC model is that its functional derivative,

(4.122)



diverges to −∞ in the tail of atomic and molecular densities [45],
making a self-consistent Kohn–Sham calculation impossible.
Moreover, the PC model fails for quasi-2D and quasi-1D systems
[31] .

To overcome these problems, Constantin [31] has proposed a
generalized gradient approximation (GGA) for W∞[ρ], called the
modified PC model (mPC), which reads

(4.123)

where A has the same value as in the original PC model, and a = 
2. This approximation is less accurate for the SIL of atomic
densities with respect to the original PC model (with errors
around 9–10%), but has the advantage of a well-behaved
functional derivative, and of achieving a physical description of
the crossover from three to two dimensions.

4.4.6.3 Approximations with Some Non-Locality:

The Non-local Radius (NLR) and the Shell Model

The PC and mPC are semilocal approximations, while, as we have
seen, the exact SIL physics has an extreme non-local dependence
on the density. Approximations that retain some (albeit limited)
non-locality are the non-local radius (NLR) [140] and the shell
models [6]. Both approximations use as key ingredient the
spherically averaged density 
around a given position r,
obtained by integrating out the angular dependence of u,

(4.124)

and, in analogy with the SCE structure for spherical densities
conjectured in Ref. [127] and illustrated in Sect. 4.3.12, its
cumulant

(4.125)



In the NLR model [140] the functional W∞[ρ] is approximated as

(4.126)

where the radius R(r) is defined by the condition that the
underlying exchange-correlation hole be normalized:

(4.127)
This simple approximation is less accurate than the PC and mPC
models for the case of the uniform electron gas, giving a too high
energy. For non-uniform densities, the NLR has the advantage,
with respect to the PC and mPC models, of being exact for one-
electron systems. For atomic densities, NLR makes errors, with
respect to the SCE results of Ref. [127], of the order of 8–9%
[140].

The shell model [6] substantially improves the NLR
approximation, by making it exact for a uniform density, and
reducing its error with respect to the SCE results for atomic
densities by almost a factor of 10. While the NLR model
approximates the exchange-correlation hole with a sphere
depleting one electron from the spherically averaged density, the
shell model adds a single positive oscillation, and reads

(4.128)

where for all r we have us = 0.849488 uc, which is the condition
needed to make the model exact for a uniform density. The value
of uc(r) is then obtained again by the normalization condition,

(4.129)

4.5 Kohn–Sham Combined with the

Strong-Interaction Limit

4.5.1 Kohn–Sham with the SCE Functional (KS SCE)



The Kohn–Sham scheme with the SCE functional (KS SCE) was
first proposed and implemented in [100], and corresponds to a
crude, but well-defined approximation for the HK functional,

(4.130)
in which we replace the minimum of the sum of kinetic energy
and electron-electron repulsion at fixed density, with the sum of
the two minima. As such, the KS SCE will always provide a lower
bound for the HK functional. When implemented self-
consistently, the KS SCE scheme yields the usual KS equations
with the Hartree-exchange-correlation potential given by the SCE
or Kantorovich potential (written below for simplicity for a
closed-shell system),

(4.131)

where the SCE potential is equal to
(4.132)

with u(r, [ρ]) the maximizer in Eq. (4.55), and the constant C[ρ] a
shift that ensures limr→∞vSCE(r) = 0, see Eq. (4.64). This shift is
the same, in the λ →∞ limit of the density-fixed adiabatic
connection, as the one introduced by Levy and Zahariev [94,
139]. If we want to compute the ground-state density and the
ground state energy only, one could better work with u instead of
vSCE, as with the former the energy becomes simply [22, 94, 139]
the sum of the occupied orbital energies, 
. The shift
is needed if we want to estimate the ionisation potential


from the highest occupied molecular orbital
energy (HOMO), as I = −𝜖N∕2 holds only when the exchange-
correlation potential goes to zero far from the barycentre of
nuclear charge [3, 93]. For further discussion of this point see
Chap. 1 by Toulouse in this volume.

4.5.1.1 1D Case



The self-consistent KS SCE equations have been solved for 1D
systems with the interaction 
of Eq. (4.101) when the
external potential is harmonic, 
, [72, 100, 101], and
with the soft Coulomb interaction 
of Eq. (4.102) for model
1D atoms and molecules with ‘nuclei’ that attract the electrons
with the same soft Coulomb potential [102]. At each KS iteration,
the 1D co-motion functions [123] were computed numerically as
explained in Sect. 4.4.1.1, and the potential vSCE(x, [ρ]) was
obtained by simply integrating the force equation

(4.133)

with boundary condition vSCE(x →±∞, [ρ]) = 0, and where w(x) is
the chosen 1D interaction (wire or soft Coulomb, see Sect.
4.4.1.1). In addition, at low density the highest occupied KS SCE
eigenvalue gives a very accurate ionization energy of the system
[101].

Harmonic External Potential

In Fig. 4.11 we show the self-consistent KS SCE densities for N = 
4 electrons interacting with 
of Eq. (4.101) when the
external potential is harmonic, using scaled units in terms of L = 
2 ω−1∕2, compared with accurate many-body results from
configuration interaction (CI) and with KS within the local
density approximation (LDA), provided for this interaction in Ref.
[18]. We see that, as the system is driven to low density by
reducing the strength of the harmonic confinement (large L), the
exact many-body solution undergoes a so-called “2kF → 4kF”
transition, in which the number of peaks in the density is
doubled. At high density, in fact, the number of peaks is dictated
by the number of occupied orbitals, N∕2 for a closed shell system.
At low density, we have an incipient Wigner molecular structure,
in which the electrons are well separated. Notice that with the
Coulomb interaction this Wigner molecular phase exhibits
different properties than the simpler case of very short-range
interactions, in which the physics can be captured by making the



system spin-polarized (i.e. by occupying N orbitals instead of
N∕2). This is clearly illustrated in Ref. [142].

It is well-known that the local and semilocal approximations to
the XC functional, as well as exact exchange, are not able to
capture this “2kF → 4kF” transition [134, 135] without
introducing artificial symmetry breaking. This is also clearly
shown by the KS LDA results of Fig. 4.11, which become very
close in this limit to the Thomas–Fermi result (minus the external
potential in the classically allowed region) predicting a too
delocalized density. The KS SCE self-consistent density, although
not quantitatively very accurate, has the correct qualitative
behavior, with two peaks at high density and four at low density,
and with the correct extension. The KS SCE HOMO energy is also
very close to the exact many-body ionisation potential [100, 101].
In the right panel of Fig. 4.11 we show the total KS potential at
self consistency, vKS = vne + vSCE, for the most correlated case.
The horizontal lines are the two occupied KS SCE eigenvalues.
We see that the SCE functional is able to self-consistently build
barriers that create classically forbidden regions inside the
harmonic trap. Classically forbidden regions for the KS orbitals
created by the Hartree-exchange-correlation potential seem to
play a crucial role in describing strong correlation within KS DFT
[12, 75, 144].

Model 1D Chemistry with Soft Coulomb Potential

In Ref. [102] the KS SCE method has been tested for model
chemical systems in 1D, consisting of “nuclei” and electrons
attracting each other with the soft-Coulomb potential (for the use
of these 1D models to test DFT approximations, see also Refs.
[74, 141]). While in the harmonic external potential we can drive
the system to low density where the SCE becomes a very good
approximation to the exact KS exchange-correlation functional,
chemical systems (bound by the Coulomb external potential) are
never in this regime. For this reason, KS SCE does not in general
yield accurate results, with total energies that are way too low.
An exception seems to be the good agreement between the
eigenvalue of the highest occupied KS SCE orbital and the many-
body chemical potential, as shown in Table 2 of Ref. [102].



4.5.1.2 2D Case

The circularly-symmetric 2D case of electrons interacting with
the 1∕r repulsion in the harmonic external potential has been
studied with KS SCE in Ref. [105], using the SGS radial co-
motion functions and the reduced radial cost of Eq. (4.78)
implemented as described in Sect. 4.4.1.2. As in 1D, the aim is to
model electrons strongly confined in one direction, found, for
example, at the interface of semiconductor etherostructures. For
this reason, the interaction remains the same as the 3D Coulomb
one.

As discussed in Sect. 4.3.12, the SGS state defined by (4.79)–
(4.80) is not guaranteed to yield the absolute minimum for the
electron-electron interaction in a given radial density ρ(r).
Nonetheless, it can be proven [125] that, for a spherically-
symmetric density, if we reduce the admissible class of maps 
in the SCE functional (4.37) to a class 
of maps given by
the SGS ansatz defined in Eqs. (4.79)–(4.80) as an approximation
for 
, even when the SGS maps are not optimal the
functional derivative of this approximate 
with respect to
ρ(r) still satisfies the force equation (written using the notation of
Eq. (4.59)),

(4.134)

which we can integrate to obtain a potential vSGS(r). In other
words, the SGS maps provide a well-defined approximation to the
exact SCE functional, with an easy to evaluate functional
derivative, which, in turn, can be used in the KS equations.

In Fig. 4.12 we show the resulting KS SCE self-consistent
radial density for N = 3 electrons for two low-density cases,
compared with accurate Quantum Monte Carlo (QMC) results
from Refs. [61, 73]. The KS SCE calculations have been done for
both the unpolarized case (2 KS orbitals, of which only the lowest
is doubly occupied) and the spin-polarized case (3 different singly
occupied KS orbitals). We see that the KS SCE densities are very
close to the QMC ones, predicting the right shell structure with
one peak. Total energies are in agreement with QMC within ∼ 4 



− 6% [105]. Notice that at such low densities it is very hard to
even obtain converged results using KS with the local-spin
density (LSD) approximation. We thus see that even if the SGS
maps are not optimal for these densities (see [125]), they yield
very good results when used in the self-consistent KS equations
at low density. However, we have to mention that QMC predicts
that at such small ω’s the ground state is spin-polarized, while in
KS SCE the unpolarized case always yields the lowest energy,
due to the lack of any spin dependence in the SCE functional.

Fig. 4.13 
Self-consistent KS SCE radial potential 
(blue solid
line) and radial densities (red dashed line) for a strongly and weakly correlated case
(top and bottom, respectively) of a 2D system composed of N = 10 electrons inside a
circularly symmetric harmonic trap. The green dashed horizontal lines correspond to



the energies of the highest occupied KS orbital. Notice the presence of classically
forbidden regions inside the trap in the strongly correlated case (ω = 0.001)

Figure 4.13 shows the self-consistent KS SCE total potential
and density for N = 10 electrons (spin unpolarized) [105]. The
green dashed curve is the energy of the highest occupied KS
orbital. We clearly see, as in the 1D case of Fig. 4.11, that when
the system is driven to low-density (small ω case), KS SCE is able
to self-consistently create classically forbidden regions inside the
trap.

Fig. 4.14 
Right: Dissociation curve of H2 in KS SCE [22], that is, energy of H2 minus
twice the energy of the isolated H atom. For comparison, the KS LDA curve computed
on the same mesh and the exact curve from Ref. [86] are also shown. Note that KS
SCE, unlike the local density approximation, dissociates H2 correctly. Left:

Corresponding self-consistent KS SCE density and KS LDA density near dissociation

4.5.1.3 3D Case

KS SCE has been tested on the anions of the He isoelectronic
series [106] and on the dissociation curve of the H2 molecule
[22].

Anions of the He Isoelectronic Series

In this case, i.e., N = 2 electrons with 
, where Z is
lowered until the system can no longer bind two particles, the co-
motion function and the SCE potential are simply built following
the original work of Seidl [123] (see Example 4.20), which is a
special case of the SGS maps. While very accurate wavefunction
results predict [47] that one electron is lost by the system at a



critical nuclear charge 
, KS SCE binds two electrons
down to 
[106]. This is because in the KS SCE case
the two electrons can get much closer to the nucleus by perfectly
avoiding each other, without raising the kinetic energy too much,
which is only treated within KS.

The H2 Molecule

The dissociation curve of the H2 molecule has been computed
within KS SCE in Ref. [22]. The result is shown in Fig. 4.14. To
compute the self-consistent density and energy, an accurate
adaptive three-dimensional finite element discretization was used
and the SIL problem was solved using linear programming, as
described in Sect. 4.4.2.1. The co-motion function for H2 was
then obtained from the SIL density via Eq. (4.105), and the SCE
potential via the force Eqs. (4.59) and (4.64).

Not surprisingly, KS SCE predicts a binding energy that is way
too low. A remarkable feature, though, is the ability of KS SCE to
correctly dissociate the H2 molecule, i.e., the molecular energy
tends to twice the energy of the isolated H atom as the
internuclear distance R becomes very large (see [22] for a
rigorous proof). Local and semilocal approximations to the XC
functionals are unable to do that, and exact exchange (or
Hartree–Fock) perform even worse, unless we allow spin-
symmetry breaking. Indeed, the extremely stretched H2 molecule
is often regarded as a severe test for XC functionals to check
whether they are able to describe strong (or “static”) correlation
[24].

Although the SCE functional yields the exact energy when R 
→∞, we see that at large but finite R the KS SCE curve
immediately start to deviate from the exact one. We can
understand this error by making the following simple analysis.
With the internuclear vector R directed along the x-axis, we can
expand the electron-electron interaction at large R, which,
without considering one-body terms and neglecting higher orders
in R−1 yields

(4.135)



where the origins of r1 and r2 are placed on their respective
nuclei. The SCE functional for large R then corresponds to the
minimization of this interaction at fixed one-body density (hence,
the neglect of one-body terms that will not affect the minimizer).
The SCE problem in this limit reduces then to the attractive
harmonic cost [56] in the bond (x) direction and to the repulsive
harmonic cost [42] in the two directions perpendicular to the
bond axis. For large R, the optimal map will then approach the
solution

(4.136)
which corresponds to perfectly coupled dipoles (see Fig. 4.15).
Such maps will give a finite (negative) expectation value for the
r.h.s. of Eq. (4.135) even when the total density of the molecule is
given by the sum of two spherical atomic densities, yielding an
interaction energy that is too attractive, decaying as ∼ R−3

instead of the exact ∼ R−6. What is missing in the KS SCE
approach is the raising in kinetic energy associated with the
perfectly correlated dipoles of Fig. 4.15. A strategy to include the
raise in kinetic energy in this asymptotic large-R regime is
described in Ref. [88].

Fig. 4.15 
When the distance R between the two atoms of the H2 molecule gets very
large, the optimal map describes the physics of perfectly coupled dipoles. The figure
shows four pairs of electronic positions {r, f(r)}, labeled with the same letter A,B,C,D,
with respect to the two positive nuclei



4.5.2 Interaction Strength Interpolation (ISI)

Functionals

Another way to use the SIL in KS DFT is the interaction strength
interpolation (ISI) construction, originally proposed by Seidl,
Perdew and Levy (SPL) [130]. ISI is essentially the extension to
non-uniform densities of Wigner’s original idea [143] of
approximating the energy of the uniform electron gas by
interpolating between its high- and low-density asymptotics,
which, by scaling, correspond to the weak- and strong-interaction
limits, respectively.

The starting point is to use the Hellmann–Feynman theorem to
write the exchange-correlation energy as an integral over the
coupling-strength parameter λ of (4.17)10

(4.137)

where
(4.138)

with ψλ[ρ] the minimizer in (4.17). The idea is then to construct
approximations for the adiabatic connection integrand Wλ[ρ] by
interpolating between the λ → 0 asymptotic expansion,

(4.139)

with Ex the exchange energy and 
the second-order Görling-
Levy perturbation theory correlation energy [69], and the large-λ
limit provided by the SIL, and possibly by the conjectured next
leading term of Eq. (4.47),

(4.140)

For example, SPL [130] proposed the following simple form to
interpolate between the two limits, without using the term with
FZPE[ρ]:

(4.141)

with



(4.142)

The SPL XC functional then reads

(4.143)

Several other interpolating functions that may or may not include
FZPE[ρ] have been proposed in the literature, [43, 68, 98, 128,
129] and are reported, for example, in the appendix of Ref. [87].

4.5.2.1 Global Interpolations

Interpolations such as the one of Eq. (4.141) have been
implemented and tested on several chemical systems by using for
the λ →∞ limit the PC model of Sect. 4.4.6.1 (and its extension
[128] to FZPE[ρ] when needed). In a practical calculation, KS
orbitals with a given approximate semilocal or hybrid functional
are used to compute the density ρ, the exchange energy Ex, and
the second-order energy 
, which are then fed into formulas
such as (4.143) to obtain improved energies. The result is thus
dependent on the chosen starting approximate functional used to
generate the KS orbitals.

A basic problem of these global (in the sense that they are
done on quantities that have been already integrated over all
space) interpolations is the violation of size-consistency, i.e., if
we take two different systems A and B that do not interact with
each other, it is easy to verify from (4.143) that, in general,

(4.144)
an issue shared by all the other interpolation formulas proposed
in the literature [25]. Notice that size-consistency of approximate
electronic-structure methods is a very delicate issue when A
and/or B have a degenerate ground state [65, 120]. Here we
stress that even when degeneracy is not present, the fact that the
input ingredients (Ex, 
and W∞) enter in a non-linear way in
the ISI formulas introduces anyway a size-consistency error.
However, this error can be easily corrected [137]. In fact, the
reason why size-consistency is crucial in chemistry is that we are



interested in interaction energies rather than total energies. All
we need to do is to set the limit of a molecular dissociation curve
(when A and B are infinitely far apart) at the value given by the
left-hand side of Eq. (4.144) rather than the one given by the
right-hand side. Notice that both sides of this equation can be
evaluated at exactly the same computational cost, as all that is
needed is the input ingredients of the fragments A and B [137].
With this size-consistency correction it is possible to extract
meaningful interaction energies from the ISI functionals [137].

The ISI functionals have been tested on several chemical data
sets and systems [44, 62, 137]. They have been found to work
reasonably well for interaction energies (especially of non-
covalent systems) when Hartree–Fock orbitals (rather than KS
ones) are used as input. This observation has triggered the study
of the strong-interaction limit in Hartree–Fock theory [37, 126],
which, in turn, has led to new interpolation schemes in this
framework which are able to give very accurate results for a
large variety of non-covalent interaction energies, ranging from
small to medium-large systems [36].

If one wants to overcome the dependence on the input
orbitals, one should evaluate the energy using the ISI functionals
within a fully self-consistent KS scheme. For this, their functional
derivative with respect to the density is needed, which is
challenging due to the presence of second-order perturbation
theory. Nonetheless, first attempts in the computation of the ISI
functional derivatives have been reported in Refs. [45, 132], and
self-consistent calculations are likely to appear soon.

4.5.2.2 Local Interpolations

Another possibility is to build the interpolations locally, in each
point of space, by defining an energy density wλ(r;[ρ]) for the
coupling-constant integrand Wλ[ρ] of Eq. (4.138), writing Exc[ρ]
as

(4.145)

Energy densities are obviously not uniquely defined, and the only
important requirement here is to use local quantities defined in



the same way at weak and strong coupling. Some different
choices for energy densities in the λ-interpolation context have
been analyzed in [139], where it has been found that the
electrostatic potential of the exchange-correlation hole11


seems to be the most suitable ,

(4.146)

where 
is defined in terms of the pair-density 
and the density ρ,

(4.147)

with 
obtained from Ψλ[ρ],

(4.148)

Local interpolations within this definition have been analysed and
tested in Refs. [87, 138] on small systems, with mixed results.

4.6 Appendix: Kantorovich Duality

The dual construction of the SCE functional and potential (see
Theorem 4.13) relies on Kantorovich duality. In this Appendix we
give a precise mathematical statement of Kantorovich duality for
multi-marginal optimal transport, and show how it implies
Theorem 4.13 (1).

Recall the general Kantorovich optimal transport problem
introduced in Sect. 4.3.6: for given marginal measures μ1, …, .μN

defined on closed subsets X1, …, XN of 
, minimize a cost
functional

over probability measures Π on the product space X1 ×… × XN

subject to the marginal constraints



Here 
is a given measurable cost
function.

This problem is related to a certain dual variational problem:
maximize the functional

over potentials 
(i = 1, …, N) which must satisfy the
pointwise constraint

(4.149)

The following nontrivial statement, taken from the recent
textbook [50], summarizes what is known in 
, and is general
enough to cover the Coulomb cost.

Theorem 4.32 (Kantorovich Duality) 
For given probability

measures μ1, …, μNdefined on closed subsets X1, …, XNof
 
,
provided the cost function
 
is
bounded from below and lower semi-continuous and the optimal

cost is finite,

(4.150)

where
 
is any of the following increasingly general sets of

admissible potentials:

(1)  
(2)


as in (1) , with Cb(Xi) in place of C0(Xi)  
(3) 
as in (1) , with


in place of C0(Xi)  



(4)

.
 

Here we have used the standard notation Cb(Xi) for the space of
bounded continuous functions on Xi, and C0(Xi) for the space of
decaying continuous functions on Xi (i.e. those u which in
addition satisfy u(ri) → 0 if |ri|→∞).

In the special case of two marginals defined on compact sets,
cost functions c which are metrics (such as |r1 −r2|), and the
choice (2) for the potentials, this fundamental result was
discovered by Kantorovich [80]. A great many variants and
modifications have subsequently appeared in the mathematics
literature. Some of them replace the Xi by abstract spaces; many
are worked out only for two marginals; almost all of them differ
in the precise assumptions on the cost function and the class of
admissible potentials. For instance, [117] (Theorems 2.1.4(b) and
2.1.1) and [81] cover bounded continuous cost functions and the
class (3) for N marginals; [136] (Theorem 1.3) covers bounded-
below lower semi-continuous cost functions and the class (4) for
two marginals. Strictly speaking, none of the versions published
prior to the discovery of the optimal transport/SCE theory

connection applied directly to the multi-marginal Coulomb case,
even though the underlying ideas essentially did. For the proof of
Theorem 4.32 we refer the reader to [50].

Technical Remark 
From a functional analysis point of view,
the natural class of admissible potentials in (4.150) is the
smallest one, (1). This choice reflects the duality between
potentials ui and measures μi in the integral 
; note that the
linear hull of the space 
of probability measures, that is, the
space 
of signed measures, is the dual of 
. Enlarging
this class from (1) to (2)–(4) has the virtue that the supremum of
the dual problem is attained for increasingly general cost
functions c.

Proof of Theorem 4.13 (1) using Theorem 4.32



Applying the Kantorovich duality theorem with Xi, μi, and c as in
Example 4.11, and making the choice (3) for the class of
admissible potentials, one obtains

The left-hand side is the enlarged-search definition (4.26) of the
SCE functional 
(which, by Theorem 4.1, is equivalent to
the original definition (4.15)). The right-hand side can be
simplified. For any collection of potentials (u1, …, uN), the sum of
the integrals on the right-hand side is preserved under the
replacement 
, where 
denotes the
average (u1 + ⋯ + uN)∕N; moreover the constraint in (4.6) is also
preserved, thanks to the symmetry of Vee. Thus the right-hand
side of (4.6) stays unaltered if the supremization is restricted to
N equal potentials, u1 = ⋯ = uN = u. But in this case the right-
hand side reduces to that of (4.55), establishing Theorem 4.13
(1). □
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Footnotes
We follow the usual convention to use the same letter Vee both for the total

interaction potential, a function on 
, and the associated quadratic form, a
functional on the wavefunction space 
.

 
This is not cured by dropping the requirement in (4.7) that Ψ must have square-

integrable gradient and requiring mere square-integrability, i.e. replacing

by 
.

 
By a limit point Π of a sequence Πλ of probability measures we mean a limit point in

the sense of narrow convergence, that is, convergence of the integrals 
to 
for any bounded continuous function f.

 
Note added in proof: this problem has recently been solved in https://​arxiv.​org/​abs/​

2210.​07830.

 
The original conjecture concerned the physical case d = 3. Subsequently, two-

dimensional models have also been considered in the literature [125, 127].

 
These are the points that cannot be written as convex combinations of any other

points in the set.

 
The KL divergence between two nonnegative densities with possibly unequal mass is

formally defined as 
.

 
Strictly speaking, this inequality and related ones are proved in [77] under the tacit

assumption that 
(or related reduced quantities) belong to H1 and can be

http://www.ams.org/mathscinet-getitem?mr=126729
https://arxiv.org/abs/2210.07830


9

10

11

differentiated by the chain rule. For further discussion of this point see Chap. 5 by
Kvaal in this volume.

 
which consists in our case in finding a configuration r∗ which maximizes the

difference 
.

 
For further discussion see also Chap. 1 by Toulouse in this volume.

 
For further discussion of this point, see Chap. 1 by Toulouse in this volume.
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Abstract

Moreau–Yosida regularization is introduced into the
framework of exact DFT. Moreau–Yosida regularization is a
lossless operation on lower semicontinuous proper convex
functions over separable Hilbert spaces, and when applied
to the universal functional of exact DFT (appropriately
restricted to a bounded domain), gives a reformulation of
the ubiquitous v-representability problem and a rigorous
and illuminating derivation of Kohn–Sham theory.

The chapter comprises a self-contained introduction to
exact DFT, basic tools from convex analysis such as sub-
and superdifferentiability and convex conjugation, as well as
basic results on the Moreau–Yosida regularization. The
regularization is then applied to exact DFT and Kohn–Sham
theory, and a basic iteration scheme based in the Optimal
Damping Algorithm is analyzed. In particular, its global
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convergence established. Some perspectives are offered
near the end of the chapter.

5.1 Introduction

In this chapter, we introduce Moreau–Yosida regularization
into the exact DFT framework. Such regularization of
convex optimization problems is lossless: Given a small 𝜖 > 
0, a non-smooth convex functional F[ρ] is regularized into a
differentiable convex functional 𝜖F[ρ]. However, this
smoothing is invertible, so that the information encoded is
not lost. Thus, the regularization gives a reformulation of
the convex optimization problem as a differentiable convex
optimization problem. When applied to exact DFT, we gain
insight into the ubiquitous v-representability problem and
also a rigorous formulation of Kohn–Sham theory. This
comes at a small price, as we need to describe densities and
potentials using Banach spaces that are reflexive, which
excludes, say, exact Coulomb potentials on infinite domains.
This trade-off is acceptable, as no physical system is truly
infinite in extent. Indeed, placing the system in a finite but
large box is the only approximation being made in this
chapter.

The motivation for introducing Moreau–Yosida
regularization comes from two directions: First, DFT is
committed to treating “all possible” potentials at once. For
the exact interacting problem, this is surely overkill: After
all we are mostly interested in the atomic Coulomb
potentials, or at most well-behaved potentials modeling, say,
harmonic traps. On the other hand, passage to the non-
interacting Kohn–Sham system turns the problem upside
down: The density is the known quantity, while the effective
potential is the unknown function of the density. The
standard approach is to differentiate the universal
functional to obtain the exchange-correlation potential, but
this is not permitted in exact DFT. Indeed, the large class of



potentials implies that the universal functional will be highly
non-smooth. We note in passing that in the strongly
correlated limit of DFT, where one obtains the purely-
interacting universal functional, the exchange-correlation
potential can in fact be obtained rigorously by
differentiation, as shown in Chap. 4 by Friesecke, Gerolin
and Gori-Giorgi. The second motivation for Moreau–Yosida
regularization is that formal Kohn–Sham theory relies on
densities to be both interacting and non-interacting v-
representable. This problem vanishes into thin air in the
regularized Kohn–Sham formulation.

While Moreau–Yosida regularization resolves some
problems, it still leaves open the question of how to
approximate the regularized universal functional 𝜖F[ρ] in a
systematic manner. On the other hand, the method of
Moreau–Yosida regularization may also be used to model
density functional approximations that are already convex.

This chapter has the following structure. In Sect. 5.2 we
give a brief introduction to the convex formulation of exact
DFT as given by Lieb [16]. Some results from the theory of
quadratic forms over Hilbert spaces are needed, and we will
refer the reader to the excellent literature that exists. The
article [27] by Simon lays out the formulation of quantum
mechanics using quadratic forms, and the monograph [25]
by Schmüdgen gives further details, including the
representation theorem of bounded-below closed quadratic
forms. We include some definitions and theorems from the
analysis of convex functions over Banach spaces, and also
give proofs whenever deemed instructive. For an excellent
and accessible introduction to convex analysis, see the short
monograph [29] by van Tiel. After introducing exact DFT,
we proceed to introduce the only approximation we need,
that is, truncation of infinite space 
to a bounded domain


. This allows the formulation of exact DFT in a
Hilbert space setting, or more generally in a reflexive
Banach space setting.



In Sect. 5.3 we introduce the Moreau–Yosida
regularization of convex problems over Hilbert spaces. For a
more detailed exposition in the Hilbert space setting, see
the monograph [1] by Bauschke and Combettes. Most
results can be wholly or partially generalized to convex
functions over reflexive Banach spaces, see the monograph
[2] by Barbu and Precupanu. In our exposition, we include
some important definitions and results, with complete
proofs in many cases due to the central nature of the
material. In the following Sect. 5.4, we apply Moreau–Yosida
regularization to box truncated exact DFT. In particular, we
detail the rigorous derivation of Kohn–Sham theory in the
regularized setting, including a basic analysis of the
Moreau–Yosida Kohn–Sham optimal damping algorithm
(MYKSODA). Our treatment is adapted from Refs. [9, 10,
17, 20, 21].

Finally, in Sect. 5.5 we provide a conclusion and discuss
opportunities for future research.

The author gratefully acknowledges helpful feedback
from Andre Laestadius and Markus Penz, and also Gero
Friesecke who additionally provided the complete proof of
the fact that finite-kinetic energy N-electron wavefunctions
have densities with square roots in the Sobolev space 
, see Theorem 5.2.

5.2 Exact DFT

In this section, we give a brief outline of elements of exact
DFT, paying special attention to the regularity, or lack
thereof, of the universal functional and ground-state energy.
We then regularize exact DFT to a finite but large
subdomain 
. Our focus is on molecular electronic
systems.

5.2.1 The Variational Ground-State Problem

In this section, we use the definitions



Here, Hk(SN) denotes the set of elements of L2(SN) whose
2N spatial components are elements of the standard k’th
order Sobolev space 
, i.e., each spatial component
has square-integrable weak partial derivatives up to order k
[25]. The starting point for DFT is the ground-state problem
of N interacting electrons in an external potential v on
variational form, i.e.,

(5.1)
with 
consisting of the

normalized finite kinetic-energy wavefunctions, and with

Here, V  is the many-electron operator corresponding to the
potential v, and ρψ is the one-electron density of ψ. In order
to make connection with more standard formulations of
quantum mechanics, the variational minimization in terms
of quadratic forms in Eq. (5.1) needs to be connected with
the spectral theory of self-adjoint operators. Intuitively, the
kinetic energy part of the variational formulation is obtained
by integration by parts, enlarging the domain of the kinetic
energy operator term 
in the full Hamiltonian.
However, the transition back and forth between a self-
adjoint operator and a quadratic form is subtle, and for
some potentials the domain of the Hamiltonian operator is
not 
due to singular behavior of v. For this exposition, we
let the following be sufficient: Whenever




, 
will be relatively bounded with
respect to 
, which means that as a perturbation it is
sufficiently gentle to allow the sum of the forms to be well-
defined with domain 
by the KLMN theorem [25, 27].
The fundamental representation theorem of closed
semibounded quadratic forms [25] guarantees the existence
of a unique self-adjoint operator 
such that
for every ψ in the operator domain D[v], we have


. We point out that 
is
dense in 
, and that 
is sufficient to
guarantee 
, a fundamental result of Kato [8].
However, for the stronger singularities present in


it may happen that D[v] becomes a proper
subset of 
. On the other hand, the form domain is always


for every 
. In any case, the infimum
in Eq. (5.1) will be the bottom, i.e., infimum, of the
spectrum of 
, and hence the connection is complete.

5.2.2 Densities

Central to DFT is the density 
associated with a
(normalized) 
.

Definition 5.1 
For any 
, we define the density

almost everywhere (a.e.) by the formula

For a given 
, we write ψ↦ρ if ρψ = ρ.

It is immediate that 
a.e., and that ∥ρψ∥1 = N∥ψ∥2. In
fact, we have a complete characterization of densities that
come from elements 
. In the proof of the following



theorem, the proof that the density of 
satisfies

is due to G. Friesecke.

Theorem 5.2 (N-Representable Densities) 
Let
 
be

the set of measurable functions
 
that satisfy

a.e.,
 
with ∥ρ∥1 = N. Then for every
 
there

is a
 
such that ψ↦ρ. Conversely, for every
 
,

. Moreover,
 
is convex.

Proof 
For the construction of a 
with ρψ = ρ for a
given 
, see [16, Theorem 1.2]. For the converse, we
must prove that 
.

Let 
, and let ρ = ρψ. Differentiating, we obtain

Application of Cauchy–Schwarz gives
(5.2)

where

is the kinetic-energy density. Consequently, 
,
the standard Sobolev space of 
functions with first-
order weak derivatives in 
.

Let 
, and consider ρ𝜖(r) = ρ(r) + 𝜖G(r),
with 𝜖 > 0 a small parameter. We first prove that 
in 
as 𝜖 → 0. It is clear that 
pointwise.
By the elementary inequality 
we have, for
all 
,



By the dominated convergence theorem, the integral of the
left-hand side converges to zero, and hence 
in


as claimed.
We next prove that 
is bounded in 
for 
.

Let h(z)                                                                                        = (z + 𝜖G(r))1∕2,
where z ∈ [0, +∞) and r is in some compact subset of 
.
The function h is continuously differentiable with bounded
derivative. By the chain rule for Sobolev functions, which
says that (1) the composition of a C1 function with bounded
derivative and a function in 
is again in 
,
and (2) that its partial derivatives can be computed with the
usual chain rule [6, Ch. 5, Exercise 17], we obtain


with

. Key now, is that this

expression is uniformly bounded in 
. Indeed,

(5.3)

Thus, 
is bounded in 
, as claimed. By weak
sequential compactness of bounded sets in the Hilbert space


there exists a sequence {𝜖k}⊂ [0, 1] such that

weakly in 
. Since 
strongly in


, u = ρ1∕2, and thus 
.
For convexity of 
, we first note that 
,

since 
implies that ρ = φ2 for a unique φ ∈ H1, 
almost everywhere, and thus


. Let λ ∈ [0, 1],

, and set ρ = λρ1 + (1 − λ)ρ2. We need to check

that 
, which is obtained by repeating the
regularization argument carried out for 
.
For that, we need a bound on |∇ρ(r)|2 in lieu of Eq. (5.2). We
begin with the inequality



and apply Young’s inequality, i.e.,

, and then rearrange to

get

which is precisely what is needed. □

Remark 5.3 
The need for some regularization to an
everywhere positive density comes from the fact that the
commonly used formula 
only makes sense
if 
has zero measure. When this can be
verified, such as for ρ = ρψ everywhere strictly positive, the
proof of the above result is somewhat simpler [16, Theorem
1.1].

Throughout this section, we let 
, a
Banach space with norm 
. We note
that the dual is 
with norm


, also a Banach space
[18].

Proposition 5.1 
 
.

Proof 
We need only show that 
. But

by the Sobolev embedding theorem, i.e.


implies 
. □

5.2.3 Constrained Search and Skew Conjugate

Pairs

Having a well-defined space of densities, we now introduce
constrained search into Eq. (5.1), i.e.,

(5.4)



where the Levy–Lieb functional is defined for any
measurable ρ by the expression

We use the convention that FLL[ρ] = +∞ whenever 
.
We now have that 
is given as a pointwise

infimum over a nonempty family of continuous affine
functions. Such functions are automatically concave and
upper semicontinuous.

For any pair (v, ρ) ∈ X∗× X we have the inequality

. Rearranging, we can define a new

function 
by the expression

(5.5a)

which is then automatically convex and lower

semicontinuous, satisfying 
. As we will show,
one also has

(5.5b)

For an extended-valued map such as F, we define the
effective domain
 
to be the points where F is real-
valued.

Definition 5.4 (Skew Conjugation) 
Let B be a Banach
space with dual B∗, consisting of the continuous linear
functionals on B. Denote by 〈⋅, ⋅〉 the dual pairing. For any


not identically + ∞ (f is then called
proper) we define the (skew) concave conjugate functional


by



For any 
, we define the (skew) convex
conjugate functional 
by

A pair of functionals (f, g) satisfying f = g∨ and g = f∧ are
said to be a skew-conjugate pair of functionals.

The above introduced concept of (skew) convex/concave
conjugate functionals and its notation is slightly
unconventional [23], but useful in DFT. The conventional

convex conjugate (Legendre–Fenchel transform) of

is the function 
given

by

(5.6)

We introduce the class Γ0(B) of proper convex lower
semicontinuous functions 
, meaningful
for the Banach space B but also for general topological
vector spaces such as 
, the dual space B∗ equipped with
the weak-∗ topology. A central fact is that the Legendre–
Fenchel transformation is a bijection between these two
classes of functions. This result gives insight into the role of
convex conjugation in DFT.

Theorem 5.5 
The Legendre–Fenchel transform f↦f∗is a

bijection between Γ0(B) and
 
, and (f∗)∗ = f, as well as

(g∗)∗ = g for any
 
.

Proof 
We mention two facts. First, f ∈ Γ0(B) if and only if f 
∈ Γ0(Bw), where Bw is B equipped with the weak topology.
This follows from f being lower semicontinuous if and only if
f has closed convex sublevel sets. By Barbu and Precupanu
[2, Proposition 1.73], norm-closed convex sets are weakly
closed and vice versa. Second, a fact from functional



analysis [24, Theorem IV.20] is that the dual of Bw is 
,
and that 
.

From [2, Corrolary 2.21], if V  is a locally convex
topological vector space, 
is proper if and
only if 
is proper. Since f∗ is the
supremum of a family of lower semicontinuous functions, f ∈
Γ0(Bw) implies 
. By reflexivity the same
argument gives that 
implies g∗∈ Γ0(Bw). The
biconjugation theorem (Fenchel–Moreau) for locally convex
spaces [2, Theorem 2.22] can for reflexive locally convex
topological spaces be phrased as f ∈ Γ0(V ) implies (f∗)∗ = f.
Hence, the conjugation is a bijection between Γ0(Bw) and


and vice versa. Together with Γ0(B) = Γ0(Bw), the
bijection of Γ0(B) and 
has been established. □

Theorem 5.5 can be reformulated in terms of skew
conjugation. In the following, we write f ∈ − Γ0(B) if − f ∈
Γ0(B), and so on.

Proposition 5.2 
Let B be a Banach space.

1.
Let f ∈ Γ0(B). Then
 
, and f∧[y] = −f∗[−y].  

2.
Let
 
. Then g∨∈ Γ0(B) and g∨[x] = (−g)∗[−x]. 

3.
The map f↦f∧is a bijection between Γ0(B) and
 
,
and the map g↦g∨is a bijection between
 
and

Γ0(B).

 

Proof 
Proof of 1:



Proof of 2:

Proof of 3: Follows from 1, 2, and Theorem 5.5. □

It is readily seen that 
, and thus that

. F is distinct from FLL, as the latter function is

not convex. We have the following characterization:

Theorem 5.6 
For any
 
, f∗∗ = (f∧)∨∈
Γ0(B) is the largest convex lower semicontinuous minorant

of f, often called the convex envelope or closed convex hull

of f.

Proof 
See Theorem 6.15 in Ref. [29]. □

A central result in Lieb’s analysis (with a proof attributed to
Simon), is the following:

Theorem 5.7 
F = FDM, the density-matrix constrained-

search functional defined by

where the infimum extends over all trace-class operators


on the form 
), with
 
, ∑kλk = 
1, and
 
an L2-orthonormal sequence. The notation

γ↦ρ means that
 
almost everywhere. The

effective domain of FDMis
 
.

Proof 
See Theorem 4.4 in Ref. [16], in which it is proven
that FDM is lower semicontinuous. Since it is also convex, we
must have F = FDM by Theorem 5.6. □



The ground-state problem can be written as a minimization
over the set 
of density operators as

(5.7)

Proposition 5.3 
Equations (5.7) and (5.1) define the

same function, E[v] = EDM[v] for all v ∈ X∗.

Proof 
Clearly, 
, since

), i.e., the search domain is

larger in Eq. (5.7). On the other hand, 
, since
for any 
),


. □

Both FLL and FDM have the important property that they are
expectation-valued, i.e., that the infimums in their definition
are attained [10] as expectation values of unique states:

Theorem 5.8 
For every
 
, there exists a unique


such that
 
, and a unique


) such that


, with
 
.

Proof 
Theorem 3.3 and Corollary 4.5(ii) in Ref. [16]. □

5.2.4 Sub- and Superdifferentiability

Equations (5.5a) and (5.5b) cannot in general be
differentiated to find a critical point condition, even if this is
routinely done in the physics literature, see for example the
classic monograph [22] by Parr and Yang. Indeed, neither F
nor E are differentiable in general. However, for convex
optimization problems, the weakest useful notion of
differentiability is not the usual Gâteaux or Fréchet
differentiability, but that of subdifferentiability.



Definition 5.9 
Let B and C be topological vector spaces.
Let 
, and let x ∈ B. The subdifferential of f
at x is the set

The elements are called subgradients. Similarly, the
superdifferential of 
at x is the set

The elements are called supergradients.

In other words, the subdifferential is the set of slopes of
tangent functionals of f at x that are nowhere above the
graph of f, i.e., below-supporting tangent functionals.
Similarly, the superdifferential consists of the set of slopes
of above-supporting tangent functionals. Note, that for


, C = B∗ with the weak-∗ topology, and thus

.

Important properties of the subdifferential are
summarized in the following proposition, whose proof is so
easy we skip it:

Proposition 5.4 
Suppose f ∈ Γ0(B), 
(such that f = g∨) form a skew-conjugate pair of functionals.

Then the following hold:

1. The subdifferential
 
is a monotone operator,

i.e., for all x1, x2 ∈ B, and for all
 
,

(5.8)
The superdifferential
 
is similarly

monotone, i.e., for all x1, x2 ∈ C, and for all


,
(5.9)

 



If f (g) is additionally strictly convex (concave), then

Eq.(5.8) [(5.9)] holds strictly if x1 ≠ x2.
2.

Let x ∈ B and y ∈ B∗be given. Then Fenchel’s inequality

holds,

 

3.
The following are equivalent:

a.
g[y] − f[x] = 〈y, x〉.  

b.

.  

c.

.  

d.

for all x′∈ B.  

e.

for all y′∈ B∗. 

 

Proof 
Easy exercise. □

The equivalence of 3b and 3c is particularly important,
showing that two optimization problems are equivalent.
Applied to exact DFT, we obtain the equivalence

giving the critical point conditions of Eqs. (5.5a) and (5.5b).
We also have the following result, which relates the
optimality condition to ground states of density operator
form [10]:

Proposition 5.5 
Let
 
and v ∈ X∗be given. Define


as the set of minimizers for Eq.(5.7).



1. 
), the

convex hull of pure-state ground-state density

operators.

 
2.


if and only if there is a γ ∈ G[v], with

γ↦ρ.

 
Proof 
Proof of 1: Clearly the stated convex hull is a subset
of G[v], since for 
) with all the ψk ground-
states, 
. On the other hand, assume that γ is
not in this convex hull. Then for at least one ψk in its
decomposition, 
, and 
.
Proof of 2: If: If G[v] is empty, then 
for
any γ. Let γ ∈ G[v], γ↦ρ. Then


. Now, by definition

, but clearly equality must hold, otherwise

we obtain a contradiction. Thus 
. Only if:
Since F is expectation-valued (Theorem 5.8), there is a γ↦ρ

such that 
, and hence

. Thus, γ ∈ G[v]. □

5.2.5 Regularity of E and F

We next state some regularity results for convex functions
in Γ0(B), with B being a Banach space throughout this
section.

Definition 5.10 (Gâteaux and Fréchet

Differentiability) 
A proper functional 
is called Gâteaux differentiable at a point 
if, for
all h in B, the directional derivative


exists, such that f′(x;h) = 
〈∇f(x), h〉 for some ∇f(x) ∈ B∗ called the Gâteaux derivative.
If additionally



as ∥h∥→ 0, then f is said to be Fréchet differentiable at x.

Note that we require the directional derivative to be a
continuous linear functional. Some authors do not require
the directional derivative to be continuous or even not
linear in the definition of Gâteaux differentiability.

Theorem 5.11 
Let f ∈ Γ0(B), and x ∈ B. If f is Gâteaux

differentiable at x then
 
, a singleton, where g = 
∇f(x0), the Gâteaux derivative. Conversely, if f is continuous

at x0and
 
is a singleton, then f is Gâteaux

differentiable at x0, and
 
.

Proof 
See Proposition 2.40 in Ref. [2]. □

Remark 5.12 
Note the continuity requirement in the
converse statement. The condition that the subgradient
must be a singleton is not sufficient to guarantee Gâteaux
differentiability.

The following theorem demonstrates that convexity together
with local boundedness above is quite a strong assumption
on an f ∈ Γ0(B).

Theorem 5.13 
Suppose f ∈ Γ0(B), with B a Banach space.

1.
If f is locally bounded above near x ∈ B, then f is locally

Lipschitz continuous near x, and
 
is nonempty.

 
2.

If f is defined on a convex open set C ⊂ B, and is locally

bounded above near some x ∈ C, then f is locally

Lipschitz near all of x ∈ C.

 



Proof 
Proof of 1: Let x ∈ B be given, and let B be the
closed ball of radius δ > 0 around x. Suppose 
in B.
Let x + h ∈ B be arbitrary. Since x = (x + h)∕2 + (x − h)∕2,
convexity of f gives 
. Thus

which implies

Let B′⊂ B be a slightly smaller concentric ball of radius δ − 
𝜖. Let y1, y2 ∈ B′. Consider the point

Now 
so that x ∈ B, and y2 lies in the open
interval (y1, z). Explicitly, y2 is given by the convex
combination

Convexity of f now gives

which after rearrangement gives

Repeating the argument with y1 and y2 interchanged gives
the desired Lipschitz continuity.

The existence of subgradients near x is a consequence of
the geometric form of the Hahn–Banach theorem, see, e.g.,
Theorem 1.36 in Ref. [2]. For the complete proof, see
Proposition 2.36 in Ref [2].



Proof of 2: Let B be a ball of radius δ around x ∈ C on
which f is locally bounded above by a constant M. Let y ∈ C.
There exists a z ∈ C such that y = λz + (1 − λ)x for some λ ∈ 
[0, 1]. Now, it is straightforward to see, that for all x′∈ C
such that 
, 
. Thus, f
is locally bounded above near y, and by (1), locally Lipschitz
near y. Since y was arbitrary, we are done. □

We now discuss the behavior of the functionals 
and F ∈ Γ0(X) in terms of classical differentiability and
subdifferentials. Note that E is upper semicontinuous in the
weak-∗ topology on X∗, and indeed by Barbu and Precupanu
[2, Theorem 2.16] it is continuous in the stronger norm
topology on X∗ since E is everywhere defined and clearly
upper semicontinuous as the infimum of a nonempty family
of affine functions. However, we can say even more:

Theorem 5.14

1.
The map
 
is locally Lipschitz continuous.  

2.
Suppose v ∈ X∗. Then E is Gâteaux differentiable at v if

and only if
 
has a smallest eigenvalue, and all

normalized eigenvectors belonging to this eigenvalue

share the same density.

 

Proof 
Proof of 1: E is everywhere finite. In order to apply
Theorem 5.13, we need to show that E is locally bounded
above at some point in X∗, and we choose v = 0. The proof is
adapted from Ref. [16].

Let 
, where L is the constant in the Sobolev
embedding of 
in 
(
 
). Write v = u 
+ w with u ∈ L3∕2 and w ∈ L∞, and note that ∥u∥3∕2 + ∥w∥∞ < 
L∕6. Using the fact that the two-electron repulsion operator
is positive, we get



Using Eq. (5.3), we get

where 
, 
. Hence, E
is locally bounded above at 0 ∈ X∗.

Proof of 2: Since E is continuous, Theorem 5.11 tells us
that E is Gâteaux differentiable at v ∈ X∗ if and only if the
superdifferential is a singleton. It follows from Proposition
5.5 that 
is the convex hull of all densities ρψ of all
ground-state wavefunctions of 
. Thus, the
superdifferential is a singleton if and only if all ground-state
densities are the same. □

The universal functional F is quite badly behaved. Our
discussion is mostly based on Ref. [13], in which many more
details can be found. Since F is only defined on elements ρ 
∈ X for which 
, it is clear that F cannot be Gâteaux
differentiable, since any change in the particle number 
would give infinities. On the other hand, it could be
differentiable in a more restricted sense, e.g., we could
consider F as a function on the mentioned affine space and
study directional derivatives, or even on the smaller space


(the affine hull of the effective domain). The
following discussion shows that F is singular in these cases,
too.



Theorem 5.15 
Let
 
, an affine

closed space of codimension 1. Let
 
be the subset

of those elements that satisfy
 
a.e.

1.
The map
 
has effective domain
 
,
i.e., F[ρ] < +∞ if and only if
 
.

 
2.


is dense in
 
.  
3.


has empty algebraic interior in
 
. The

algebraic interior of a subset A ⊂ X+consists of the

points ρ ∈ A such that, for every line ℓ ⊂ XNthrough ρ, ℓ 

∩ A contains a line segment with ρ in its interior.

 

Proof 
Proof of 1: The domain of FDM is the convex hull of
the domain of FLL, which is 
, a convex set.

Proof of 2: For any 
, we must find 
such
that ∥ρ𝜖 − σ∥→ 0 as 𝜖 → 0. This can be done using standard
mollification arguments: Let 
be a mollifier, and
define φ = ρ1∕2∕N1∕2, ψ𝜖 = g𝜖 ∗ φ, φ𝜖 = ψ𝜖∕∥ψ𝜖∥, 
.
Now, φ𝜖 ∈ H1, 
, and moreover 
a.e., so 
a.e., and hence 
. Furthermore, φ𝜖 → φ in H1, and


by the same Sobolev embedding
used in Theorem 5.2. Similarly, ∥ρ𝜖 − ρ∥1 → 0.

Proof of 3, adapted from Ref. [13]: Let 
be given.
We need to find a line segment 
such that 
for any s > 0.

Let 
be such that σ(r) ∈ [0, 1], σ(r) = 0 outside
the ball around the origin with unit volume, 
inside
the ball around the origin with volume 1∕2 (implying that


). Furthermore, we require that σ1∕2 ∈ H1. Find a
sequence Bn of balls of volume μ(Bn) = 2−n with centers rn



satisfying 
for all n, m. Additionally we require
that the measure of 
(by
taking a subsequence if necessary). Such a sequence exists,
since otherwise ρ0 cannot have a finite integral.

We now define

where τ is smooth, nonnegative and with support that does
not intersect any of the Bn, such that 
. Moreover,
we require that τ1∕2 ∈ H1. Now, 
.

On any given Bn, there is a region (in the inner part) of
positive measure where

Clearly, for any given s > 0 we can take n sufficiently large
so that these values are negative. Thus, 
for any s > 
0. □

Remark 5.16 
The construction of the direction δρ that
immediately exits 
exploits the requirement that 
almost everywhere, and thus a pathology of the domain as
opposed to the behavior of Fon the domain. It is a fact that
the restriction of F to 
(with the X-topology) is
everywhere discontinuous in the sense that we can
construct a sequence ρn in 
which is X-convergent to
some 
, but for which F[ρn] → +∞. Such a
construction is outlined in Ref. [13]. This also indicates that
the topology of X is not really that well suited for DFT, since
unlike F, the chosen topology on X is insensitive to density
gradients.

5.2.6 The Conjecture of Hohenberg and Kohn



The last discussion in this section pertains to the structure
of 
, and this is the domain of the Hohenberg–Kohn
theorem [7, 16, Theorem 3.2]: That the external potential v
is a unique function of the density ρ, up to a constant shift.
This is a very appealing notion, because if ρ determines v,
then it determines also 
and hence the ground-state
wavefunction ψ, and hence all physical observables as
functions Ω[ρ]. The system density is elevated to a basic
variable, replacing the wavefunction as the state parameter
of the quantum mechanics of N-electron systems.
Unfortunately, the Hohenberg–Kohn theorem as originally
stated is a conjecture, since its proof has one step which is
not rigorous: One divides the Schrödinger equation by ψ
pointwise, but this requires the unique continuation
property, see [16, Theorem 3.2]. At the time of writing it is
still a partially open question if the Hohenberg–Kohn
conjecture is true for potentials v ∈ X∗, although Garrigue
has established the unique continuation property for
potentials 
with p > 2, which include the Coulomb
potentials. See also the discussion by Lammert [15].

Conjecture 5.17 (Hohenberg–Kohn) 
The density


determines the potential v ∈ X∗up to an additive

constant, i.e., we have either

or

whenever there are no potentials for which
 
is a

ground-state density.

The concept of v-representability has received a lot of
attention in the DFT literature.



Definition 5.18 (Ensemble v-Representability) 
We say
that ρ ∈ X is (ensemble)v-representable if there is a v ∈ X∗

such that ρ = ργ for some γ ∈ G[v], i.e., that γ is a ground-
state density operator of v. Equivalently,

or, 
, or 
. The set of (ensemble) v-
representable densities is thus 
(defined as
those ρ ∈ X for which 
).

Remark 5.19 
The concept of (ensemble) v-representability
introduced here is slightly less general than the one used in
the classical DFT literature. Here, ρ ∈ L1 is (ensemble) v-
representable if it is the ground-state density of “some
potential” 
, with the function space otherwise
unspecified. For example, a gaussian density is the ground-
state density of a harmonic potential (for N = 1), but this
potential is not in X∗. Lammert [14] distinguishes between
(ensemble) v-representability and (ensemble) X∗-
representability, which is identical to our concept.

One of the classical problems of DFT is to characterize the
set 
, as this is the effective domain of the classical
Hohenberg–Kohn functional FHK, defined by restricting the
effective domain of F to 
. The motivation for this study
has been that since one wishes to differentiate FHK, the set


needs to be sufficiently well-behaved. In particular, it
needs to have an algebraic interior for directional
derivatives to make sense. Since we have 
and in
particular 
, the algebraic interior of 
must be empty. However, we can say the following based on
the Brøndsted–Rockafellar theorem [1, Theorem 16.45],
which implies that for f ∈ Γ0(B) (with B a Banach space),


is dense in 
.



Proposition 5.6 
 
is dense in
 
.

Proof 
Simply note that 
and 
. □

The Hohenberg–Kohn conjecture is often taken to be the
foundation of DFT in the sense that it implies the existence
of a universal Hohenberg–Kohn functional FHK, but the
present author considers this a red herring: Our
developments so far have not relied on it, and there is
actually not much extra to gain from elevating the
conjecture to a theorem, since the mapping ρ↦v would be
very ill-behaved, see the discussion by Lammert in Ref. [13].
First, not all v ∈ X∗ have ground states. Second, not all


can be ground-state densities (“v-representable”),
and we have little knowledge of how the one-dimensional
affine space 
changes with ρ.

5.2.7 Some Remarks on Exact DFT

The previous section sets up exact DFT as a convex
optimization problem, demonstrating a symmetry between
the ground-state energy map E[v] and the “universal”
functional F[ρ]. The framework differs significantly from the
“traditional” treatment that was initiated by the publications
of Hohenberg, Kohn, and Sham [7, 11].

The framework has both strengths and weaknesses from
the point of view of formulating the quantum physics of N-
electron systems in external fields. First, it is a
mathematically rigorous formulation of exact DFT that
pinpoints some of the deficiencies of the “traditional”
formulation of DFT, in terms of a well-established body of
results.

Second, the potential space X∗ feels both unnecessarily
large and too small at the same time, containing not only
the physical Coulomb potentials, but also a host of “wild”
potentials that would never appear in actual physical



problems, while lacking some obvious interesting potentials,
like the harmonic oscillator. At the same time, the
constrained-search formula (5.4) is valid for the latter,
which pose no particular difficulties for quantum theory.
Actually, Eq. (5.4) is valid for much more general potentials.
For example, for v = v+ − v−∈ X∗ with v±∈ X∗ almost
everywhere positive, one may modify v+ or v0 (but not both)
to arbitrary elements of 
(even if we may not have a
link to a self-adjoint 
in such cases). It seems fortuitous
that X∗ happens to contain the most interesting potentials,
namely the Coulomb potentials, as X is chosen for its
capacity to hold 
.

Third, the usual norm topology on X is not so suitable for
DFT. It seems difficult to introduce a “well-behaved” Banach
space of densities with a dual that contains correspondingly
“mostly” interesting potentials. Thus, the standard convex
analytic setting could be refined to allow for a better
description of exact DFT.

Finally, it seems hard to connect the above treatment of
exact DFT with the development of density-functional
approximations. Indeed, it is not clear that the existing
functional approximations are approximations to FDM (and
one may suspect that they are not).

At this point, it is worthwhile to mention alternative
formulations of DFT, in particular the coarse-grained
formulation of Lammert [12, 14]. Coarse-graining can be
motivated by the fact that (a) experimental resolution is not
infinite, and (b) the nucleus is not a point particle, so that
the singular Coulomb potential is not even exact. The space


is covered by a disjoint set of cells of uniformly bounded
volume, such as a rectangular grid of uniform cells, and one
considers equivalence classes ρ of those 
that have
the same average in each cell. The potentials are taken to
be constant over each cell. In this setting, every strictly
positive ρ is shown to be ensemble v-representable.



Moreover, the universal functional becomes much more
well-behaved, in particular it is Gâteaux differentiable.
Furthermore, Lammert demonstrates that certain limits
conforming with Lieb’s theory are obtained as the resolution
is increased. In summary, Lammert’s coarse-grained DFT
represents a regularization alternative to Moreau–Yosida
regularization which we study in Sect. 5.4

5.2.8 Box Truncated Exact DFT

One basic problem with the spaces X and X∗ is that they are
nonreflexive, and Moreau–Yosida regularization has the
most powerful effect in a Hilbert space setting. We
therefore consider the N-electron problem in a open,
connected and bounded domain 
, assuming Dirichlet
boundary conditions on the Schrödinger equation. All the
results from exact DFT carry over to this situation. On the
other hand, the finite domain allows some simplifications
and stronger statements. In particular, the long-range part
of Coulomb potentials, being the source of the
nonreflexiveness, disappear. In fact, we may now include
harmonic potentials and other unbounded potentials in the
class of external potentials. Moreover, every Hamiltonian


will have a ground state.
We begin with a simple lemma.

Lemma 5.20 
Let X( Ω) := L1( Ω) ∩ L3( Ω). Then X( Ω) ⊂ L2( 
Ω), for Ω bounded or unbounded, and also L2( Ω) ⊂ X( Ω)′.
For Ω bounded, we have L2( Ω) ⊂ L1( Ω), with continuous

embedding. Furthermore, L2( Ω) ⊂ X( Ω)∗with continuous

embedding.

Proof 
Let u ∈ X( Ω), i.e., ∥u∥1 and ∥u∥3 are both finite.



Thus u ∈ L2( Ω). It is a standard fact that Lq( Ω) ⊂ Lp( Ω) for

with continuous embedding for bounded Ω,

proven by a simple application of Hölder’s inequality. In
particular, L2( Ω) ⊂ L1( Ω). Moreover, L2( Ω) ⊂ L3∕2( Ω) ⊂ X(
Ω)∗, and since 
, the embedding is
continuous. □

The significance of Lemma 5.20 is that it makes sense to
consider FDM as a function of ρ ∈ L2( Ω), since 
(with an obvious definition of 
):

Proposition 5.7 
The functional
 
is
lower semicontinuous.

Proof 
Suppose ρn → ρ in L2( Ω). Then ρn → ρ in L1( Ω) by
Lemma 5.20, and 
by lower
semicontinuity of 
. □

The second consequence of Lemma 5.20 is that it makes
sense to consider the ground-state energy of the operator


for v ∈ L2( Ω), i.e., the map 
is meaningful.
It is also readily seen that Coulomb potentials are in L2( Ω).
We summarize this as a theorem:

Theorem 5.21 
For
 
bounded,
 
and


form a skew-conjugate pair of

functionals. Moreover, for any v ∈ L2( Ω) there exists a ρ ∈ 

L2( Ω) such that E[v] = FDM[ρ] + 〈v, ρ〉2(i.e.,
 
).

Proof 
We only need to prove the existence of a ground-
state density for any v ∈ L2( Ω). For v ∈ L2( Ω), the self-
adjoint N-electron Hamiltonian associated with the
Hamiltonian quadratic form has domain 
[8, Theorem
1]. The Rellich–Kondrachov theorem implies that this



Hamiltonian has a compact resolvent, and thus a purely
discrete spectrum. In particular, the ground-state energy
along with a ground-state eigenvector 
exists for
any external potential v ∈ L2( Ω), and thus ρψ is a minimizer
for E[v] =infρFDM[ρ] + 〈v, ρ〉2. □

One may ask, why not use the unbounded domain 
when considering L2( Ω) as the density and potential space?
In this case convergence in L2 does not imply L1

convergence, and one opens up the possibility that FDM is
not lower semicontinuous, so that the Lieb functional F is
strictly different from FDM. This is, at the very least, a
conceptual problem. Indeed, from Ref [10] we have the
following:

Theorem 5.22 
Let
 
be defined by

and let F = E∨.
1.


. If
 
almost everywhere, then E[v] = 0.  
2.

F[0] = 0, and hence FDMis not lower semicontinuous.  
3.


and
 
, but there are no ground-state

wavefunctions for the Hamiltonian
 
.
 

Proof 
Proof of 1: Writing v = v+ − v−, with 
almost everywhere positive, we obtain

It is therefore sufficient to show that 
.



Let 
almost everywhere. Let λ > 0 be arbitrary and
let Ωk,λ with 
be disjoint cubes of side length λ such
that 
. Each Ωk,λ can be obtained by translation of
Ω1,λ. Since 
,

implying that 
as k →∞. Let 
have
smooth components with support in 
so that 
has support contained in Ω1,1. By translating ψ (denoting
the result by ψk), we can ensure that the support of ψk is
inside 
and

independently of k. We obtain

where we have used the fact that

as k →∞. We now increase the size of the boxes Ωk,λ by
varying λ > 1. By dilating ψ in the manner

the support is still inside 
and the density is scaled as
ρψ(r) → λ−3ρψ(λ−1r). We obtain the scaling

By repeating the above argument for λ = 1 and letting λ →∞,
we obtain 
. On the other hand, 
since the



Hamiltonian 
is positive, yielding E[v] = 0. Proof of 2:
FDM[0] = +∞, but F[0] =supvE[v] = 0. Thus


, and 
. Proof of 3:
Easy. □

5.3 Moreau–Yosida Regularization

In this section we introduce Moreau–Yosida regularization
of convex lower-semicontinuous functions over separable
Hilbert spaces. The Moreau–Yosida regularization of a
convex optimization problem is invertible. Hence, we trade
a possibly non-smooth optimization problem for a smooth
and indeed quite well-behaved one. The invertibility implies
that the solution of the exact problem is connected to the
solution of the regularized problem. In this exposition, we
present elementary proofs of most statements due to their
central nature in this chapter. Most proofs are adapted from
the excellent monograph [1] by Bauschke and Combettes, to
which the reader is pointed for further details.

5.3.1 The Moreau Envelope

In this section, 
is a generic separable real Hilbert
space. By the usual identification of 
and 
and the
identification of weak and weak-∗ topologies, we have


. Our central objects of study is the Moreau
envelope 
of a convex lower semicontinuous
function 
and the associated proximal mapping


, introduced by Moreau in Ref [19]. The
name Yosida is also attached to the formalism: In his proof
of the Hille–Yosida theorem in Ref. [30] characterizing the
generators of strongly continuous one-parameter
semigroups, Yosida introduced a certain approximation of
the resolvent of maximal monotone operators 
.
Moreau’s Theorem [19, 26] connects the two concepts in
the case where 
, see Remark 5.26.



Definition 5.23 (Moreau Envelope) 
Let 𝜖 > 0 be given,
and let 
with nonempty 
. The
Moreau envelope
 
is defined by infimal
convolution with the function x↦(1∕2𝜖)∥x∥2,

(5.10)

The unique minimizer Eq. (5.10) for 𝜖 = 1 is defined as

, i.e.,

(5.11)

The map 
is called the proximal mapping, and for
general 𝜖 > 0 we have

(5.12)

that is, the unique minimizer is in general 
.

Proposition 5.8 
Definition5.23makes sense, i.e., a

minimizer of Eq.(5.10) exists and is unique.

Proof 
The case 𝜖 = 1 defines 
, and we leave it to
the reader to show that the minimizer is 
in general.
Let 
be given, and let hx[z] := f[x] + (1∕2𝜖)∥z − x∥2. Let


be a minimizing sequence for the infimal
convolution at x, i.e., hx[zn] →𝜖f[x]. Such a sequence exists
since 
. The sequence must be bounded, since
hx[zn] → +∞ whenever ∥zn∥→ +∞. By taking a subsequence if
necessary, we can assume that zn converges weakly to some


. We note that hx is sequentially weakly lower
semicontinuous (any lower semicontinuous convex function
is sequentially weakly lower semicontinuous by [1, Theorem
9.1], and thus



Thus, the infimum in the infimal convolution is attained at
z∗. To show uniqueness, we use that strictly convex
functions have unique minima: Suppose 
is a different
minimizer. Since hx is strictly convex,


for λ ∈ (0, 1). But
then 
, a contradiction. □

Remark 5.24 
In the proof of Proposition 5.8, we used that

is a Hilbert space (more precisely, reflexivity is used)

when picking a weakly convergent subsequence. Thus, in
the general nonreflexive setting, the proximal mapping may
not be well-defined.

5.3.2 The Proximal Mapping

Some important properties of the proximal mapping are the
following:

Proposition 5.9 
Let
 
and let 𝜖 > 0 be given. The

following holds:

1.

for all
 
we have

(5.13)

 

2.

.  

3.

is firmly nonexpansive [1, Section 4],

i.e., for all
 
,

In particular
 
and
 
are both Lipschitz

continuous with constant 1.

 

4. If
 
and 𝜖 → 0+, then  



Proof 
Proof of 1: Suppose 
, and let x′ be
arbitrary. Set z = λx′ + (1 − λ)p. We have

so that

Hence, for λ > 0,

Since this holds for all λ ∈ (0, 1), we obtain Eq. (5.13) as λ 
→ 0, and substituting 𝜖f for f. The converse statement is
easy: We rearrange Eq. (5.13), to get

Since x′ was arbitrary, we conclude that 
.
Proof of 2: Follows directly from 1 and the definition of

the subgradient.
Proof of 3: Assume 
and 
. From 1

we get



and

Adding these inequalities and rearranging, we get
(5.14)

Subtracting ∥x − x′∥2∕2𝜖 from each side and rearranging
yields the equivalent condition of firm nonexpansiveness,

(5.15)
which also shows that 
and 
are both
Lipschitz with constant 1.

Proof of 4: It is clear from the definition of the Moreau
envelope that 
. Let 
,
and thus,

Consider the map hx[z] := f[z] + ∥x − z∥2∕2. Then for all 𝜖 ∈ (0,
1), 
is in the sublevel set 
. This
set is bounded. Hence 
. We
next use the fact that any 
possesses a continuous
affine minorant [1, Theorem 9.19], i.e., there exist 
and 
such that 
. Therefore,

Rearranging gives 
as
𝜖 → 0+. □

The Moreau envelope of a function in 
has several nice
properties, summarized in the following proposition.

Proposition 5.10 
Let
 
and let 𝜖 > 0 be given.

The following holds:



1.

, and
 
.  

2.
For every δ > 𝜖, and for all
 
,  

3.
For every
 
, 𝜖f[x] → f[x] from below as 𝜖 → 0+(even

if
 
).
 

4.
𝜖f is Fréchet differentiable, with derivative

The derivative is Lipschitz continuous with constant

𝜖−1.

 

Proof 
Proof of 1: The domain is already established. We
show convexity. With differentiability shown in 3, it follows
that 
. Let 
, which is
convex. Thus, 
.
Taking the infimum with respect to x′ on both sides yields
that 𝜖f is convex.

Proof of 2: Easy.
Proof of 3: As in the proof of Proposition 5.9(4), set μ 

=sup𝜖>0
𝜖f[x]. From 2, 
from below as 𝜖 → 0+.

Therefore, we can assume that μ < +∞ and demonstrate that

. From Proposition 5.9(4) we get

where we used that f is lower semicontinuous and that

.

Proof of 4: Let 
, 
, 
.
Using the definition of 
and Eq. (5.13), we derive two



inequalities:

A similar calculation gives the second bound

. Combining these two

inequalities gives

Using Cauchy–Schwarz and the firm nonexpansiveness
condition (Proposition 5.9(3)), we obtain

It follows that

which proves that 𝜖f is Fréchet differentiable, with

Since 
has Lipschitz constant 1, ∇𝜖f has Lipschitz
constant 𝜖−1. □

We obtain a simple, but interesting fact from the Fréchet
derivative from Proposition 5.10(4) and the variational



characterization of the proximal mapping in Proposition
5.9(2): While 
may not be differentiable, the
gradient of 𝜖f is always a subgradient at 
.

Corollary 5.25 
Let
 
, and 𝜖 > 0. Then


.

Remark 5.26 
Moreau’s Theorem [19, 26] states that, for

,

is convex and Fréchet differentiable with ∇𝜖f[x] =𝜖A. Here,

is the Yosida approximation to the resolvent

of the maximal monotone operator 
.

Thus, 
(which is the only statement in Moreau’s
Theorem we have not proved), and we also have the
compelling identity 
.

5.3.3 Conjugate of the Moreau Envelope

We next discuss the skew concave conjugate of the Moreau
envelope and its properties.

Proposition 5.11 
Let
 
, and let 𝜖 > 0. Then

which is strictly (indeed strongly) concave, and

(5.16)

Proof 
Let g = (𝜖f)∧, and let 
. We first note that

By the definition of the conjugate,



where we have used that if φ[x] = ∥x∥2∕2𝜖, then φ∧[y] = 
−𝜖∥y∥2∕2, which is left as an exercise.

To establish Eq. (5.16), we appeal to [29, Theorem 5.38],
which, in the Hilbert space setting, states that if


and there is a point in 
where
f1 is continuous, then 
for every


. (The inclusion 
is easy to
prove, but the converse inclusion does not hold in general.)
Our result is established by noting that 
,
and that φ is everywhere continuous. □

Remark 5.27 
Proposition 5.11 implies that the Moreau–
Yosida regularization is lossless, i.e., for any 𝜖 > 0

an explicit formula for the inverse of the regularization.

5.4 Moreau–Yosida Regularized Exact

DFT

We apply Moreau–Yosida regularization to exact DFT in a
box domain, as outlined in Sect. 5.2. The treatment in this
section closely follows that of Ref. [9]. We describe Moreau–
Yosida Kohn–Sham (MYKS) theory, and set up a basic self-
consistent field (SCF) iteration, an abstract algorithm for



the solution of the Kohn–Sham problem. We describe the
Moreau–Yosida Kohn–Sham Optimal Damping Algorithm
(MYKSODA), and prove a weak convergence result from
Ref. [17].

In this section, we assume 
is a finite box,
and we let 
throughout. We omit all specifications
of Ω in symbols like 
for brevity. We let the Moreau–
Yosida parameter 𝜖 > 0 be fixed unless otherwise stated.

5.4.1 Regularized Universal and Ground-State

Energy Functionals

We consider the Moreau envelope 
and its
concave skew conjugate. Thus, the central functionals of
this section are

These are related via skew conjugation,

The original infimum and supremum are a minimum and a
maximum, since any 
has a ground state by Theorem
5.21, and since 𝜖E is strongly concave. The map 𝜖E is
defined not as the Moreau envelope of E, but is instead
related to the unregularized energy E by an explicit and
easy-to-evaluate function of 
. By Proposition 5.10, 𝜖F
is everywhere Fréchet differentiable with


. Thus 
.
The converse is also true, which gives the remarkable fact
that 
is the range of the proximal mapping, so that the v-
representability problem, i.e., the problem of characterizing



those 
that are ground-state densities of a given

, is traded for the problem of evaluating 𝜖F, since

differentiating this function is not an issue.

Proposition 5.12 
The proximal mapping

is onto.

Proof 
That 
comes directly from
Proposition 5.9(2). By definition of range and domain,


for any set-valued operator 
[1,
Definition 12.23], it follows immediately that


. □

Having established that 
, we ask what is the
preimage of some 
? The Hohenberg–Kohn
Conjecture states that 
is unique up to an additive
constant. Assuming the conjecture to hold, we obtain an
interesting property of the proximal mapping for a fixed 𝜖 > 
0.

Proposition 5.13 
Let
 
be the ground-state density

of
 
(which exists since any v has a ground-state in the

box-truncated setting). Assume Conjecture5.17, i.e.,

Then,
 
is unique up to a constant shift, i.e.,

Proof 
Any potential for which 
is a ground
state is of the form v = −𝜖−1(ρ − ρ0) + μ, with 
, and


. Rearranging, ρ = −𝜖v + ρ0 − 𝜖μ, from which
the result follows. □

We can view 
as a kind of nonlinear “projection” that
takes a 
and maps it to an (ensemble) v-representable



density 
. Moreover, any (ensemble) v-
representable density can be reached from some 
.
However, it is not true in general that 
, so it
is not a true projection.

The fact that 
may seem like a severe
shortcoming of the formalism, as 
contains mostly
“unphysical densities”. On the other hand, for a given 
, it is 
which is the physical density. We therefore
call general elements of 
“quasidensities”.

Definition 5.28 
Let 
be given. We define the
proximal density
 
, the resolvent of 
, and
the proximal potential
 
,
with the Yosida approximation 
to the resolvent of


, cf. Remark 5.26.

Remark 5.29 
The proximal density and potential satisfies

demonstrating how the proximal mapping generates a v-
representable density and a corresponding potential via the
Yosida approximation.

The regularized functionals are approximations to the exact
functionals in the sense of Proposition 5.10. For example,
for every quasidensity 
, 𝜖F[ρ] → F[ρ] from below as 𝜖 
→ 0+. Moreover, from Proposition 5.9(4), we get ρ𝜖 → ρ. On
the other hand, if 
, then 𝜖F[ρ] → +∞.

5.4.2 Regularized Kohn–Sham Theory

Like in traditional Kohn–Sham theory, we set up a fictitious
non-interacting system with an effective potential 
to
be determined in a self-consistent manner. However,
whereas in traditional Kohn–Sham the interacting and non-
interacting systems are required to have the same physical



densities, regularized Kohn–Sham theory requires the
systems to have the same quasidensities. The Moreau–
Yosida regularization resolves the two major issues with
traditional Kohn–Sham theory: First, that ρ needs to be both
interacting and non-interacting v-representable, resolved by


being v-representable for any interaction strength in
the Moreau–Yosida regularized formulation. Second, that F
is not at all differentiable, which makes the set-up of the
self-consistent field equations non-rigorous, resolved by 𝜖F
being continuously Fréchet differentiable by Proposition
5.10(4).

5.4.2.1 Adiabatic Connection

To prepare for Kohn–Sham theory, we briefly discuss the
adiabatic connection, which relates the interacting N-
electron problem to a non-interacting one. We introduce a
connection parameter λ ∈ [0, 1], and consider the modified
energy functional on 
given by

implying that the ground-state energy is a function of λ as
well as the potential,

At λ = 0, the problem is “solvable” in the sense that the N-
electron Schdrödinger equation becomes separable, a key
motivation behind Kohn–Sham theory. Similarly, we obtain a
λ-dependent universal functional,

The connection to spectral theory of self-adjoint operators in
Sect. 5.2.1 does not depend on choosing λ = 1. Indeed, any


is acceptable. Moreover, the present discussion is
valid for both the case 
and Ω a finite box.



Proposition 5.14 
Fix v ∈ X∗and
 
. The maps from


to
 
defined by λ↦Eλ[v] and λ↦Fλ[ρ] are everywhere

finite, concave, left and right differentiable, and almost

everywhere differentiable.

Proof 
We need to show concavity of λ↦Eλ[v]. This follows
from 
with Aγ = Tr((T + V )γ) and
Bγ = Tr(Wγ), i.e., a pointwise infimum of a family of affine
functions 
. Concavity of λ↦Fλ[ρ]
follows immediately. It is clear that the both the maps are
finite for all 
. By [29, Theorem 1.6], concave functions
are everywhere left and right differentiable on the interior
of their domains, and by Theorem 1.8 in the same reference,
almost everywhere differentiable. □

One immediate complication that arises in the adiabatic
connection is that the set of ensemble v-representable
densities may change with λ, i.e., the set-valued map


is non-trivial. There are no known results that
relate the different 
.

Turning to the Moreau–Yosida regularization in the
domain Ω = [−ℓ, ℓ]3, we obtain λ-dependent functionals


and 
. Fix 
, a target density.
For any 
, there exists a unique proximal potential,

The regularized ground-state energy of that potential is

related to the unregularized energy as

Associated with 
is also the proximal density

, being the true ground-state density of the



proximal potential,

This is the adiabatic connection in the Moreau–Yosida
formulation of DFT. However, we leave open the perhaps
important question of the regularity properties of the maps


and 
.

5.4.2.2 Kohn–Sham Decomposition

Let 
be the external potential for which we wish to
determine E1[vext] and its corresponding ground-state
density, known to exist by Theorem 5.21. (If the ground
state of 
is degenerate, there will be a convex set of
solutions.) By Proposition 5.11, this problem is in a simple
manner connected to the Moreau–Yosida regularized
problem by Proposition 5.11,

and hence,

We connect this problem at λ = 1 to the non-interacting
problem at λ = 0, where now the quasidensity is known,
whereas the corresponding potential 
is unknown,

We know that the potential 
exists, since 𝜖F0 is
differentiable at ρ. By Proposition 5.10, we have the
stationary conditions

(5.17)

(5.18)

We introduce the Hartree-exchange correlation

energy𝜖EHxc[ρ] :=𝜖F1[ρ] −𝜖F0[ρ], which is continuously



differentiable with Lipschitz continuous gradient 𝜖vHxc[ρ] := 
∇𝜖EHxc[ρ], called the Hartree-exchange correlation
potential. The condition (5.17) becomes

(5.17’)

The idea now is that it is EHxc, and not 𝜖F1, which is
available, at least as some kind of approximation. Equations
(5.18) and (5.17’) form a self-consistent field problem where
the density ρ and potential veff are the unknowns.

This motivates the following abstract algorithm:

Algorithm 1: Basic MYKS-SCF iteration scheme

Remark 5.30 
In Step 2.1 of Algorithm 1, the problem

is equivalent to solving the eigenvalue

equation of a one-electron operator 
. By
the Rellich–Kondrachov theorem, this operator has domain


, a compact resolvent and hence a purely discrete
spectrum. The first N eigenfunctions 
define a
solution 
. Any degeneracies in the spectrum
lead to a finite number of solutions, the convex hull of which
is 
. In particular, the superdifferential is always
nonempty, so that the noninteracting problem can always be
solved.

Remark 5.31 
The formal limit 𝜖 → 0+ in Algorithm 1 gives
the traditional Kohn–Sham self-consistent field iterations for



exact DFT. Of course, the Hartree-exchange correlation
potential is not rigorously defined in this case.

5.4.3 Optimal-Damping Algorithm

Simple SCF iterations often suffer from bad convergence
properties, with phenomena like asymptotic oscillations.
This particular behavior can be traced to the fact that each
SCF iteration takes too large a step, so that one “jumps
over” a minimum. The optimal-damping algorithm (ODA) for
the Hartree–Fock SCF iterations were introduced by Cancès
and Le Bris in Refs. [3, 5], in which the “bare” SCF density
update is damped by a factor in (0, 1]. In this section, we
apply the idea of optimal damping for extended Kohn–Sham
iterations from Ref. [4] to modify Algorithm 1, leading to the
Moreau–Yosida regularized Kohn–Sham optimal-damping
algorithm (MYKSODA). This algorithm was introduced in
Ref. [17], where the convergence of the energy to an upper
bound, Theorem 5.32, was proven. A stronger convergence
proof for a finite-dimensional setting, Theorem 5.33, was
introduced in Refs. [20, 21]. We here present the full proof
here with some additional details and corrections.

The ODA modification of Algorithm 1 consists of a
relaxation of the density step, i.e., not setting 
,
but instead 
for some ti ∈ (0, 1]. In Theorem
5.33, the step lengths ti are actually not constrained, but
convergence is still guaranteed.

Algorithm 2: MYKSODA



The MYKSODA algorithm is weakly convergent in the sense
that the energy converges to an upper bound:

Theorem 5.32 
In Algorithm 2, the sequence of energy

estimates

is strictly descending and hence convergent. Denoting

the limit by e[vext], we have

that is, an upper bound property of the computed energy

limit.

Proof 
It is clear that step 2.2 produces 
.
We need to check that step 2.3 is well-defined. To that end,
consider the function G[ρ] :=𝜖F1[ρ] + 〈vext, ρ〉, which is to be
minimized by the iterations. We note that step 2.1 can be
rewritten as veff,i+1 + ∇𝜖F0[ρi] = vext + ∇𝜖F1[ρi]. The
directional derivative of G at ρ in the direction


is 
, which
gives



If the termination criterion was met at the previous
iteration, 
, and step 2.3 will not take place.
Otherwise, since 
(see Remark 5.29),
write

This allows us to rewrite the directional derivative as

By monotonicity of the superdifferential (Propositions 5.4
and 1), the bracket is always nonpositive, which by step 2.1
in Algorithm 2 gives

(5.20)

Since now G[ρi] is strictly decreasing and convex in the
direction Δρi (t↦G[ρi + t Δρi] is strongly convex at t = 0), it
follows that there is a maximum step length ti > 0 such that
ei+1 = G[ρi+1] < G[ρi] = ei, and such that Eq. (5.19) holds, i.e.,


. Since 
for all i, it
follows that the monotonically decreasing sequence ei

converges to an upper bound of 𝜖E1[vext] = E1[vext] − 
𝜖∥vext∥2∕2. □

In the above, the step lengths ti ∈ (0, 1] were not specified.
It is clear that any stronger convergence properties of the
algorithm depend crucially on these. The final result of this
section, paraphrased from Refs. [20, 21], exploits the
definition of the Moreau–Yosida regularization at every step.
The key idea is the following interpretation of Proposition
5.10(4): At every 
, 𝜖f is tangent to the regularization
parabola 
, i.e.,
evaluated at x, both have gradient 
and their



graphs are touching at x. Moreover, by definition 
.
The step sizes ti are now chosen such that ρi+1 minimizes
the regularization parabola associated with G[ρi] along the
search direction Δρi. However, one must assume that 
is
finite-dimensional for this to guarantee convergence. A
finite-dimensional 
arises, for example, when the N-
electron Hilbert space is discretized by a finite-dimensional
basis generated by a finite set of single-particle functions,
and does not change the properties of E or F in any way
relevant for the current discussion.

Theorem 5.33 
Assume that
 
is finite-dimensional. Then

there exists a sequence of step lengths {ti}ifor Algorithm 2
such that {ρi} has energies ei =𝜖F[ρi] + 〈vext, ρi〉 converging

to the exact result𝜖E[vext]. Moreover, {ρi} is the union of

convergent subsequences
 
, such that


is an exact ground-state quasidensity, and veff,i 
→ vext +𝜖vHxc[σ].

Proof 
Let 
. Rewritten in terms of this
proximal point, we have

(5.21)

The regularization parabola associated with G[ρ] is similarly
obtained, noting that the linear term 〈vext, ρ〉 of G is easily
absorbed,

(5.22)

We note that the global minimum of 
is at p∗ := pi − 𝜖vext,
and that 
, by the remarks preceding the



theorem. Let f(t) = G[ρi + t Δρi], which by Eq. (5.20) satisfies
f′(0) < 0. At all t, 
. Its derivative is

Define ti > 0 uniquely (and hence ρi+1 = ρi + ti Δρi) by the
condition g′(t0) = 0, which gives

and the equivalent orthogonality condition 〈ρi+1 − p∗,
ρi+1 − ρi〉 = 0. Geometrically, ρi+1 − ρi is the orthogonal
projection of ρ∗− ρi onto the search line. A brief calculation
gives

(5.23)

Let 
be the minimum of the parabola section.
We have 
. Subtracting Eq. (5.22) with σ = ρi+1
from Eq. (5.21) and using orthogonality, we obtain

We now show that ρi converges. By assumption, 
is
bounded in 
. It is easy to see that 𝜖F[ρ] = O(∥ρ∥2) as ∥ρ∥→ 
+∞. Since 
for all i, {ρi} (which is not
a subset of 
!) is bounded in 
. This again implies,
by Proposition 5.104, that ∥∇𝜖Fλ(ρi)∥ is bounded, hence
{veff,i} is bounded. Equation (5.20) combined with Eq. (5.23)
gives



Since ∥ Δρi∥ti → 0, we now have ∥∇𝜖F0[ρi] + veff,i∥→ 0 and
∥∇𝜖F[ρi] + vext∥→ 0. The latter implies that vext = 
−limi→+∞∇𝜖F[ρi]. Let 
be an accumulation point of {ρi},
which is guaranteed to exist by the Bolzano–Weierstrass
theorem. There is a convergent subsequence 
for
which we have 
. But then


is a ground-state quasidensity of the exact
regularized problem. We next obtain

. Since the accumulation point was arbitrary, the sequence
{ρi} splits into subsequences converging to different ground-
state densities σ, as claimed. □

Remark 5.34 
The step length choices in the proof of
Theorem 5.33 are not practical (if one can consider the
MYKS scheme practical at all), since they require the
whereabouts of the proximal point 
. But knowledge
of that would make the Moreau–Yosida regularization
approach redundant.

5.4.4 Density-Functional Approximations

So far our discussion has pertained to the exact ground-
state energy functional 
, which is an abstract
setting far from actual numerical calculations. We now
make some simple observations that open up the possibility
of a rigorous treatment of Kohn–Sham theory for model
density functionals [22], including the application and
further analysis of the MYKSODA iteration scheme.

The Kohn–Sham decomposition relied on a family

. This family was such that


for any 
, and generates the family

and the corresponding Moreau

envelopes 
. Moreover, the idea was
present that solving for 
for arbitrary 
, i.e.,



the noninteracting problem, was in some sense easy
compared to solving for 
. A property of the
family 
that was not used in the Kohn–Sham
decomposition was the concavity in the parameter λ ∈ [0, 1].

In Algorithm 1, the basic MYKS-SCF iteration scheme,
the existence of solutions 
for arbitrary 
was
essential, but otherwise no additional properties of 
were
used. In Algorithm 2, MYKSODA, and Theorem 5.32, the
same is true.

This motivates the introduction of an approximation, or
model, 
such that 
is
continuously differentiable, replacing the exact Moreau–
Yosida regularization in Algorithms 1 and 2. Of course, how

to obtain such models is a different matter.
A second approach is to consider the exactλ-dependent

Hartree-exchange correlation functional 
, a
functional with domain 
but of otherwise unknown
composition, and introduce a model functional 
and corresponding model universal functionals, viz.,

This family may or may not be convex, but suppose for
simplicity that it is, and that 
is in some sense “cheap”
but also sufficiently regular as to keep 
. The
family induces a model energy 
such that


, retaining the ease of solution in the non-
interacting limit.

The next step is to consider the Moreau–Yosida
regularized model Hartree-exchange correlation energy,

The main problem is now to identify how and when 
can
be easily calculated given that it involves a non-trivial



convolution, which may negate the ease of evaluation of

.

5.5 Conclusion

In this chapter, we have reformulated exact DFT as
introduced by Lieb in terms of the Moreau–Yosida
regularization. Our starting point was the N-electron
problem. Not considered were grand-canonical ensembles
at finite or zero temperature, which adds some interesting
aspects to the formalism [22]. Resulting in a compelling
reformulation of DFT, including a rigorous formulation of
Kohn–Sham theory, Moreau–Yosida regularization still
leaves open the question of how to find functional
approximations to the Hartree-exchange correlation energy.

The mathematical understanding of Moreau–Yosida
regularized Kohn–Sham theory is in its early stages. For
example, Theorem 5.33 requires a finite-dimensional density
space. Stronger and more general results are of course
highly desired, and could turn Moreau–Yosida Kohn–Sham
theory into a practical tool when combined with
approximate Hartree-exchange correlation functionals.

In current-density functional theory (CDFT), the ground-
state energy E[v, A] of an N-electron system in the external
potential v and magnetic potential A is considered, leading
to both the density ρ and the current density 
being variables in the constrained-search functional [28].
This requires a more general setting than that of a Hilbert
space of densities. In Ref. [17], Moreau–Yosida regularized
DFT was introduced in the abstract setting of a reflexive
Banach space of densities, thereby accommodating CDFT
and demonstrating that the regularization approach may
also be important in other density-functional settings than
the standard one considered in this chapter.
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6.1 Introduction

The goal of thermodynamic limits, as introduced in the
1960’s [23, 39], is to obtain mathematical models for
infinite systems of particles. The overarching strategy is to
study systems with a finite number of particles (which can
be described efficiently by well-posed mathematical
models), to let the number of particles go to infinity while
filling the space, and to pass to the limit in the governing
equations in order to obtain a limit model. The purpose of
the present chapter is to review results of this kind in the
context of electronic structure models in condensed matter.

Two prototypical applications of thermodynamic limits
are (1) to justify models of the energy per unit cell of a
homogeneous crystal (infinite periodic system); (2) to
obtain models for the formation energy of a crystalline
defects without artefacts due to the boundary conditions. In
this chapter, we review different models and mathematical
methods to treat both of these scenarios. Extensive
references will be provided throughout the chapter.

In both cases, one would like to describe an infinite
system of electrons in a potential generated by an infinite
collection of nuclei at positions 
. In most studies,


is a periodic lattice (we write 
in this case), or a
perturbation of it, describing for instance a crystal with a
defect, or a deformed crystal (there are some studies for
amorphous solids, in which case 
is a random set [12]).
In order to highlight the main ideas of the thermodynamic
limit, we restrict ourselves to the simple case of a periodic
crystal with one nucleus of charge 1 per unit cell. We



denote by ma the charge density of a single nucleus, which
we take to be smooth to avoid some technical details:


with compact support and 
. The total
nuclear density of the crystal is then given by

(6.1)

In order to approximate this infinite distribution of charges,
we consider a sequence of finite systems that converges to
the infinite one: we choose 
a finite subset of size


, and study the finite electronic problem with N
electrons, in the external potential generated by N nuclei
arranged along 
. The total nuclear density is

(6.2)

Given this finite distribution of charges, 
, one
formulates a variational problem to equilibrate the
electrons,

where the infimum is taken over all admissible states γN

representing a system of N electrons, and E describes the
energy of finite electronic systems. Usually, γN represents
the electron density or density matrix. One then aims to
make various statements about the limits of the energy,


and the optimal electron variable 
. Examples of
important questions in this context include:

Does the sequence
 
converge to some limit


asN →∞and
 
? In this case, 
would
correspond to an average energy per electron or energy
per unit volume.



Does the sequence of minimisers
 
have a limitγ0asN 
→∞? The limiting object would describe an infinite sea of
electrons in a crystal. Which equations are satisfied by
the limiting object γ0?
If 
, then does the energy difference


have a limitδI? If 
describes a
crystal and 
the same crystal with a local defect, then
δI is the defect formation energy.
In the following sections, we focus on the case where

the energy E is given by one of the following three models:
the Thomas–Fermi–von Weizsäcker model in Sect. 6.2, the
(reduced) Hartree–Fock model in Sect. 6.3, as well as
Kohn–Sham density functional theory models, in Sect. 6.4.

In what follows, the energy of an N-electron state γN is
denoted by E(γN). The infimum of this energy is


, and represents the ground state energy of
an N-electron system. The energy per unit electron is WN = 
N−1IN. For the orbital-free TFW model the N-electron state
is given by the electron density ρN.

Remark 6.1 
Throughout this review we are technically
misapplying the term “thermodynamic limit”, but we do so
in a way that is consistent with its usage in the analysis
literature. In a strict sense, the thermodynamic limit was
introduced to describe many-particle systems in a limit
where boundary effects can be neglected, and to employ
the law of large numbers, large deviation theory and
ergodic theory as a transition from microscopic states to
macroscopic states (variational principles, PDEs etc). A key
goal of this framework was to model the situation when the
corresponding thermodynamic functions (pressure, free
energy, susceptibility, magnetisation, etc) can have
singularities which appear at the critical value of the
intensive parameter (temperature, chemical potential, etc).



We refer to [23, 39] for detailed treatments of the subject.
The connection between the present review and the
classical usage of the term “thermodynamic limit” is the
study of the many-particle limit in which boundary and
domain size effects can be ignored, however there is no
(genuine) statistical mechanics aspect.

6.2 The Thomas–Fermi–von

Weizsäcker Model

Thomas–Fermi models describe electronic structure purely
in terms of the electron density and electrostatic potential,
and can therefore be interpreted as a system of two
nonlinear PDEs. In this setting there is a mature theory and
general results on the structure of the model and in
particular the thermodynamic limit. The original Thomas–
Fermi model, while attractive due to its simplicity, does not
allow for the existence of molecules [31]. We will therefore
focus on the Thomas–Fermi–von Weizsäcker (TFW) model
[42]. Our presentation is primarily based on the monograph
[14], but also incorporates more recent results [3, 35].

6.2.1 TFW Model for a Cluster

We consider N nuclei at locations 
and with total charge

, see Eq. (6.2). The non-dimensionalised TFW energy,

parametrised by 
as a functional of the electron density
ρ, is given by

(6.3)

where the Coulomb quadratic form is defined by

(6.4)



The first two terms of (6.3) represent the kinetic energy,
and the third term is the Coulomb energy. This term can
further be split into

The first term is the direct term, or Hartree term, and
describes the mean-field self-interaction of the electrons.
The second is the electron-nuclei Coulomb interaction and
the last term is the nuclei-nuclei one. Since we fixed the
lattice 
beforehand, the last term is constant, and does
not play role in the minimisation problem. In addition, cW
and cTF are positive physical constants that are irrelevant
from a mathematical perspective; hence, for the sake of
notational convenience, we set them to cW = cTF = 1.

The charge-neutral electronic ground state is obtained
by solving

(6.5)
A direct computation shows that 
is

convex, which is a key ingredient to obtain the following
result (see [2] for the proof).

Proposition 6.1 
There exists a unique minimiser ρNof(6.​
5). In addition, ρN > 0.

It can then be readily checked, at least formally, that the
minimiser satisfies the Euler–Lagrange equation

for some Lagrange multiplier 
associated with the
charge neutrality constraint 
. It now becomes
convenient to make the transformation 
, where we



may again assume that uN > 0, and to introduce the total
electrostatic potential

to obtain the Euler–Lagrange system

(6.6a)

(6.6b)

We have absorbed the Lagrange multiplier θN into the
electrostatic potential 
, shifting it by a constant, which
in particular implies that we need not have 
as |r|
→∞. See [2, 14, 30] for the details of this argument.

In the remainder of our treatment of the TFW model we
review results establishing the convergence of the electron
ground state 
as N →∞, as the nuclei configuration


grows. To establish this limit, a convenient function
space setting is provided by the spaces (we denote by


)

6.2.2 Thermodynamic Limit Model

To pass to the thermodynamic limit N →∞ we begin with an
infinite collection of (smeared) nuclei at positions 
.
Here, 
need not be a periodic lattice. Since the energy of
an infinite system is not well-defined, the associated
electronic ground state cannot be immediately
characterised by an analogue of the variational problem
(6.5). However, the nonlinear PDE representation (6.6) has
a straightforward generalisation. Indeed, let


, then it is natural to suppose
that the electronic ground state for the nuclei arrangement


is given by ρ = u2, where (u, Vtot) solves



(6.7a)

(6.7b)

To justify this model we will establish its well-posedness
and show that it indeed arises as the thermodynamic limit
of (6.5) (or, equivalently, (6.6)).

To that end, we need to impose restrictions on the
configuration 
. We assume that 
describes roughly
uniformly distributed matter, and in particular contains no
clusters with arbitrary high densities, and no holes of
arbitrary large volume. More precisely, we require that
there exist constants c1,2, C1,2 > 0 such that

(6.8)
This condition is equivalent to (H1) and (H2) in [14]. One of
the main results of [14] is the well-posedness of (6.7).

Theorem 6.2 (Well-Posedness [14, Thm 6.10]) 
Under

the condition (6.8), there exists a unique pair


, with
 
, solving (6.7). Moreover,


.

The majority of the monograph [14] is devoted to the proof
of Theorem 6.2. Let us recall some key ideas: A crucial
observation is that the linear operator

which is a kind of linearisation of (6.6a), is non-negative.
This already hints at the existence of a strong stability
property. Indeed, adapting this observation (see, for
example, the proof of [14, Lemma 5.3]), the following result
is shown in [35, Thm. 3.1], closely following variants of the
same result in [14, Sec. 5.3] and [3].



Lemma 6.3 (Stability and Uniqueness [35, Thm.

3.1]) 
Let
 
satisfy (6.8), let
 
be

associated nuclear charge densities, and suppose that


are corresponding solutions

to (6.7) with
 
. Then, there exist constants C ≥ 0
and α > 0, depending only on maand on the constants in

(6.8), such that

(6.9)

Lemma 6.3 immediately implies uniqueness of solutions to
(6.7), but it is much stronger in that it also provides a
pointwise stability that quantifies the dependence of the
local electronic structure on the far-field. We will return to
this result in Sect. 6.2.3.

To establish the existence of solutions, we use a
thermodynamic limit argument. At the same time, this also
justifies the model (6.7). To that end, we specify a sequence
of clusters approximating 
: let 
and rN ↑∞, c > 
0 such that

(6.10)
For each N, Proposition 6.1 yields the existence and
uniqueness of an electronic ground state 
solving
(6.6).

The stability result stated in Lemma 6.3 already hints at
the possibility of uniform a priori estimates on the solutions
(uN, φN), and indeed one can prove that

(6.11)

where C depends only on ma and on the constants in (6.8),
see [14, Prop. 3.5] for the (involved and technical) details.
A key technical step estimating the Lagrange multiplier,



(1) Convergence rates:

which we have hidden, is due to [40]. A summary of the
proof, providing also quantitative estimates, can be found
in [35, Prop. 6.1].

With the a priori estimate (6.11) in hand, we may extract
a subsequence 
weakly in 
(we say


weakly in 
if 
weakly in Hk(D) for all
bounded domains D) and it is straightforward to deduce
that the limit satisfies the PDE (6.7). Since the limit is
unique, it follows that the entire sequence converges. We
obtain the following result.

Theorem 6.4 (Convergence) 
Let
 
satisfy (6.10)
and (6.8), and let
 
and


be the corresponding solutions of (6.6)
and (6.7) respectively. Then

In particular, the convergence is locally uniform.

6.2.3 Discussion

We conclude this section with a series of further remarks
about possible extensions and consequences of the results.

In Lemma 6.3 the conditions on
the second solution u∗ can be weakened. This allows us to
prove that “well inside” the approximate domain 
, the
solutions 
and (u, Vtot) are exponentially close.
Specifically, in [35, Proposition 4.1] it is shown that there
are constants C > 0 and α > 0 independent of 
and


such that

Choosing 
this readily translates into the
convergence rate



(2) Surfaces and sheets:

(3) The Dirac correction:

(5) Further orbital-free DFT models:

The same argument also shows that boundary effects
decay exponentially into the bulk of the cluster and
justifies the common usage of buffer regions in electronic
structure calculations.

Our assumption (6.8) expressly
disallows configurations with large sections of vacuum, in
particular surfaces and 2D materials. Indeed, not only the
mathematics but also the underlying physics changes in
such situations. We refer to [3, 6, 32] for related results
that go beyond this limitation.

The Thomas–Fermi–Dirac–von
Weizsäcker model adds an additional correction term to
the energy functional,

where the additional term can be interpreted as a model
for the exchange of energy of the electrons. The additional
challenge is that ETFDW is no longer convex. We are
unaware of an in-depth treatment of this model, but refer
to [14, Sec 3.6.3] for a discussion of possible avenues and
[20] for results on the related Cauchy–Born scaling limit
for this model.

Most orbital-free
DFT models used in computations for practical materials
have a more complicated functional form for kinetic energy
and exchange-correlation energy, see e.g., [43, 44]. It is
shown in [4] that the Wang–Teter kinetic energy [43] is not
bounded from below, and thus the thermodynamic limit is
ill-posed. The more complicated density-dependent orbital
free kinetic-energy functionals, such as the Wang–Govind–



(6) Charge screening:

Carter functional [44], are yet to be mathematically
understood.

The stability result Lemma 6.3
clearly shows that interaction in the TFW model is
exponentially localised, despite the presence of the long-
range Coulomb interaction. This can be interpreted as a
very general screening result. Consider two configurations


satisfying (6.8), and which coincide outside a large
ball of radius r > 0: 
. Let 
be the corresponding solutions. Then Lemma 6.3 implies

(6.12)
For instance, if 
contains more atoms than 
, one
might expect the potentials to satisfy


as r →∞, where Q would be the
extra effective charge. However, according to (6.12), this
is not the case: the extra charge is completely screened.
This is a very general fact in TFW theory, see [9, 35] for
details.

One can also take into account the relaxation of the
configuration 
due to the presence of the defect. In this
case, instead of an exponential decay, we obtain (see [17])

and, since |r|−2 = o(|r|−1), we deduce that charges are
screened, see [9] and [35, Thm. 4.1] for the details.

6.2.4 Scaling Limit

A question related to but distinct from the thermodynamic
limit arises when considering the derivation of a continuum
model for elastic material response from an underlying
electronic structure model. Such scaling limits for the TFW
model were first studied in [5], but the following discussion
builds on the results of [35]. Specifically, the stability and
locality estimate (6.3) yields stronger and quantitative



results. In addition, for the sake of consistency with the KS-
DFT case in Sect. 6.4, we consider a periodic instead of an
infinite-domain setting.

6.2.4.1 Spatial Decomposition of Energy

In preparation we first mention another useful
consequence of the stability and locality estimate found in
Lemma 6.3, which is also of independent interest: Let


be a finite configuration of nuclei or an infinite
configuration satisfying (6.8) and let (u, Vtot) be the
associated solutions to (6.6), then we define the energy
density

If 
is finite then one may readily check [35, Eq. 4.18]
that 
We may therefore think of

as the energy stored in a compact sub-domain 
. This
intuition is further supported by the following result,
proven in [35, Proof of Thm. 4.2], which is closely related to
(6.3): there exist constants C, γ such that

(6.13)

In [35, Sec. 4.4] this observation is used to demonstrate
exponential locality of interatomic forces in the TFW model.
In the following section we use it for an easy derivation of
the Cauchy–Born scaling limit.

6.2.4.2 The Cauchy–Born Scaling Limit

Consider a periodic arrangement 
of nuclei, where

is a non-singular matrix, and let (u, Vtot) describe



the corresponding TFW ground-state. Then, uniqueness of
solutions to (6.6) implies that they must observe the same
periodicity. In particular, we can define the Cauchy–Born
energy function, which represents the energy stored in
ΩB := B[0, 1)3, that is

A deformed configuration of the crystal is described by a
continuum deformation field Y (x) = x + U(x) where U is
smooth and 
-periodic. We assume that U is chosen such
that Y  is bijective, i.e. a proper deformation.

Given a parameter 𝜖 > 0 describing the inverse length-
scale over which the deformation varies we define a
deformed crystalline configuration by

This definition encodes the Cauchy–Born hypothesis that
nuclei in a crystal follow the continuum deformation field.
An example of such an atomistic configuration shadowing a
continuum field is given in Fig. 6.1(left). It must be
emphasised that this is a simplifying assumption that is
only approximately valid in specific deformation regimes
and for simple crystals; see [22, 36] for in-depth
discussions.



Fig. 6.1 
Illustration of the scaling limit. Left: a deformation of a homogeneous
crystal varying slowly relative to the scale of atoms; Center: the blow-up of a
small section is nearly homogeneous; Right: The near-homogeneous section can
be approximately represented by a single unit cell

In the following we concern ourselves with the scaling

limit𝜖 → 0 of the stored elastic energy per unit undeformed
volume. To that end, let Ω𝜖 := 𝜖−1 Ω then 
has periodic
cells Ω𝜖 or alternatively also Y𝜖( Ω𝜖). That is, we may write
the elastic energy per unit volume as

We remark that the electronic coordinates r belong to the
deformed space, i.e. it is natural to write r = Y𝜖(x).

The key observation now is that the locality estimate
(6.9) on the electronic structure and its extension to the
energy density (6.13) suggest that to predict the value of


for a non-uniform deformation varying at the
macroscopic scale, it is not required to be aware of the
global configuration 
but it is sufficient to know the local

deformation near r. This is illustrated by Fig. 6.1.
To make this precise, let 
, tn = Y𝜖(n) and Fn = 

∇Y𝜖(n), then

for x in any bounded neighbourhood of n. A Taylor
expansion of 
with respect to 
, employing (6.13),
implies that for r ∈ Y𝜖(n +  Ω) we have

After integrating over one cell in the undeformed crystal,
which in deformed coordinates becomes Y𝜖(n +  Ω), and
making a further elementary approximation, we obtain



Finally, after summing over all such unit cells, using the
scale-invariance of the deformation gradient one obtains
the following convergence result. The second order error
O(𝜖2) is obtained by a more careful exploitation of the point
symmetry in simple crystal lattices.

Theorem 6.5 
Let
 
, then

The presentation of this section follows unpublished notes.
Related results using different techniques were first
presented in [5, Theorem 5, case (i)]. The paper [5] also
considers several generalisations, including domains with
boundaries and alternative scaling regimes.

6.3 The Reduced Hartree–Fock Model

We now focus on the reduced Hartree–Fock (rHF) model.
In this model, a fermionic system with N electrons is
described by a one-body density matrix γ, which is a self-
adjoint operator on 
satisfying the Pauli principle 0 ≤ 
γ ≤ 1, and with trace N.

Together with the spectral theorem, this implies that γ is
of the form

Here, the functions (φi)i form an orthonormal basis of
eigenfunctions in 
, and are called the orbitals, and
the numbers 0 ≤ ni ≤ 1 are the occupation numbers. To such



a one-body density matrix, we can associate its density
ργ(r) := γ(r, r) =∑ini|φi|2(r).

In the potential generated by the nuclei at 
, the
rHF energy of a state γ is

(6.14)

where 
is the total nuclear density defined in (6.1).
Compared with (6.3), we see that the kinetic energy part


has been replaced by

In particular, this model is no longer a function of the
density ρ, but of the one-body density matrix γ. The energy
of the configuration 
is given by the minimisation
problem

(6.15)
Closely related to the rHF model is the Hartree–Fock

(HF) model, where the exchange term is considered. This
term is a correction to the direct Hartree energy, and is
due to the fermionic nature of the particles. The HF model
reads

(6.16)

Since the HF model is not convex in γ, we only have partial
results for it, and most of the following facts only hold for
the rHF model.

In the thermodynamic limit, we consider a regular
periodic lattice 
, and a sequence of arrangements


with 
, and satisfying (6.10). We want to



study the energy per unit cell 
as N goes to
infinity.

The finite electron model (6.15) was introduced and
studied by Solovej [41]. The existence of an optimiser 
is
provided here. The thermodynamic limit was latter studied
by Catto, Le Bris and Lions in a series of papers. In [13],
the authors announced their results, later proved in [15]
(for the models presented here) and [16] (for the pure-state
version of these problems, i.e. when γ is further
constrained to be a rank-N projector). They prove the
thermodynamic limit for the rHF model:

(6.17)

where 
can be characterised by a minimisation periodic
problem, that we describe in the next section, and 
is the
Madelung constant, see (6.18) below. They conjectured
that a similar result should hold for the HF model. Finally,
they proved that the limiting problem 
(and its HF
counterpart 
) is indeed well-posed. We discuss this
point in the next section.

6.3.1 The Periodic Model

In order to write the limiting periodic model, as introduced
by Catto, Le Bris and Lions, we define the set of periodic
one-body density matrices (recall that in our simple setting,
we expect one electron per unit cell)

where τℓ is the translation operator τℓf(x) := f(x − ℓ). Such a
periodic density matrix has an 
-periodic density ργ(r) := 
γ(r, r). Its trace per unit cell 
is defined by



where Ω is a unit cell associated to the lattice 
. A
periodic density matrix 
has an 
-periodic density


. We let G be the 
-periodic
Coulomb kernel, solution to

and we introduce the periodic Coulomb quadratic form
Dper(⋅, ⋅) defined for periodic functions by (compare with
(6.4))

The Madelung constant appearing in (6.17) is defined to
be

(6.18)

Note that since F(r) := G(r) −|r|−1 satisfies ΔF = 0 on Ω, the
function F is indeed smooth on Ω, hence has a well-defined
value at r = 0. The Madelung constant somehow describes
the mismatch between the full space Coulomb kernel |r|−1

and the periodic kernel G(r) (which can a priori be defined
up to a constant).

With these notations, the limit 
for the perfect
crystal is defined as the minimisation problem [15]

(6.19)

where the energy per unit cell 
is

(6.20)

and where 
is the periodic nuclear
density. Comparing this expression with (6.14), we see that



all terms have been “normalised” to take into account the
periodicity of the infinite system.

The fact that 
is a well-posed problem was proved by
Catto et al. in [15]. Later in [7], Cancès, Deleurence and
Lewin proved that the minimiser γ satisfies the Euler–
Lagrange equations

Here, 
is the Fermi level. The operator Hγ is the
mean-field one-body Hamiltonian of the crystal, which is a
self-adjoint operator that commutes with 
-translations. Its
spectral properties are well understood thanks to the Bloch
transform [37, Chapter XIII], and its spectrum is composed
of bands and gaps. When εF is in a gap, the crystal is an
insulator, while when εF is in a band, it is a metal.

6.3.2 Supercell Methods, and Periodic

Thermodynamic Limits

Once the periodic problem (6.19) has been written and
justified, it is possible to understand its properties from
other approaches. In [7] (see also [18]), Cancès,
Deleurence and Lewin proved that this problem was also
the limit of another thermodynamic limit. Their idea was to
start directly with a periodic problem on the large supercell
ΩL := L Ω with N = L3 electrons, and take the limit L →∞. In
other words, instead of working with one-body density
matrices γ acting on the whole space 
, they looked at
one-body density matrices acting on the supercell
 
.
We therefore define

where we set for simplicity 
. A one-body
operator 
has an 
-periodic density 
. We



also define the 
-periodic Coulomb kernel as GL(x) := 
L−1G(L−1x), and the L-periodic Coulomb quadratic form
defined for 
-periodic functions by

The supercell model is given by a periodic minimisation
problem of the form

(6.21)

with the supercell energy

(6.22)

Here, 
is an 
-periodic lattice (for instance 
, or
a deformation of it, see below), and 
is the nuclear
density 
. In the case 
, there
are L3 nuclei and electrons per supercell.

Even in the perfect crystal case, that is when 
,
the problems (6.19)–(6.20) and (6.21)–(6.22) differ. In
(6.19), the minimisation is performed for γ acting on the
whole space 
, while in (6.21), it is performed for γ
acting on the supercell L2( ΩL). These two types of
operators cannot be compared, and it is not obvious a priori
that there is a link between the two problems. Still, both
operators give 
-periodic densities, which can be
compared. This important fact allows us to prove the
convergence [7]

(6.23)

The result was later refined in [25], where the authors
proved that, in the insulating case (see [10] for the metallic
case), the convergence is exponential, in the sense that
there exist constants 
and α > 0 such that



(6.24)

where 
and 
are the electronic densities of the
periodic and supercell minimisers respectively, seen here
as 
-periodic functions. This exponential convergence
comes from the analyticity of the Bloch representation.

This means that the full space problem 
can be
well-approximated by the supercell model 
. This latter
problem can be studied efficiently from a numerical point
of view, thanks to the Bloch transform. As noticed in [25],
the supercell model corresponds exactly to a uniform
discretisation of the Brillouin zone, as described in a
famous paper by Monkhorst [34]. For metallic systems, the
exact rate of convergence is unknown in the general case
(see [10] for details).

Remark 6.6 
When studying supercell methods for non-
convex problems, symmetry breaking may happen (see e.g.
[27, 38]). In this case, the density of the 
-periodic
problem may not be 
-periodic, and the periodic problem
may not be the limit of supercell models.

To sum up, the energy per unit cell 
is the limit of two
different sequences, namely

In the first limit, the crystal is seen as the limit of finite
systems. This is the correct physical limit, as a real crystal
is indeed always finite. However, we expect the
convergence to be slow, due to boundary effects. On the
other hand, the second limit has no real physical meaning,
but gives an exponential rate of convergence in the
insulating case.



6.3.3 Local Defects in Crystals, in the Reduced

Hartree–Fock Model

We now discuss how to define the energy of a defect inside
a crystal. We would like to define this energy as the
difference between the energy of a crystal with a defect,
and the energy of the crystal without the defect.
Unfortunately, these two quantities are infinite. Also, the
model with defect does not have an underlying periodicity,
hence there is no notion of energy per unit cell in this case.
One way to define the energy of a defect is through a
thermodynamic limit procedure.

Let 
be the arrangement of nuclei for the perfect
crystal, and let 
be the one for the crystal with (local)
defect, that is such that 
and 
coincide outside a ball
of radius r > 0. The nuclear charge of the defect is
therefore

For 
, we can consider 
, the 
-periodic
arrangement which is equal to 
on ΩL (note that


). In [7], the authors consider the supercell
energy of the defect ν, defined by

Here there is a slight complication: since we do not know a
priori how many electrons should be in the system, we
should not fix the number of electrons, but rather the
Fermi level (grand canonical ensemble). To keep this
presentation simple, we do not comment on this point, but
refer to [7] for details.

Although the two quantities 
and 
diverge to infinity with rate O(L3), the difference of the two



quantities stays finite in the limit, and we can define the
energy of the defect as

In [26], the authors prove that the corresponding rate of
convergence is O(L−1). This slow rate of convergence is due
to the spurious interaction between the defect and its
periodic images, a fact predicted in [29, 33]. This makes
the supercell method quite a poor numerical method in this
case.

It turns out that the limit 
can be characterised as
a minimisation problem on a set of “defect” operators. It is
unclear whether this last problem can be tackled directly
with efficient numerical methods (see also [8]).

6.4 Scaling Limit for Kohn–Sham DFT

In this section, we discuss Kohn–Sham models. For a finite
system with N electrons described by a one-body density
matrix γ, the Kohn–Sham density functional takes the form

(6.25)

where 
is the total nuclear density defined in (6.1).
Compared with the reduced Hartree–Fock model (6.14),
the Kohn–Sham model includes the exchange-correlation
energy Exc[ργ], where we have adopted the notation for an
LDA or GGA type functional, and thus it can be explicitly
written in terms of ργ as



Even the simplest exchange-correlation functionals used in
practice have complicated expressions, and hence will not
be given explicitly here. Most of them are non-convex in ρ,
such as, for instance the Dirac exchange term


. Thus, even the existence of a
minimiser to the Kohn–Sham DFT problem becomes a
difficult question. The existence of minimisers for LDA
functionals has been proved in [1, 24, 28], while for GGA-
type functionals, it remains open with only preliminary
results available (see the case of N = 1 in [1]).

We will henceforth assume LDA-type exchange-
correlation functionals. The variation of the functional
(6.25) gives rise to the Kohn–Sham equations for


, where ψi are the Kohn–Sham orbitals,
solutions to

(6.26)

with ργ the density associated with γ and the Hartree and
exchange-correlation potentials respectively given by

The Kohn–Sham equations (6.26) form a set of nonlinear
eigenvalue problems, as the effective Hamiltonian operator
HKS[ργ] depends on the solution γ. We remark that in
general there is no guarantee that the Kohn–Sham orbitals
of the minimisers of (6.25) correspond to the lowest N
eigenvalues of the self-consistent Hamiltonian, though in
practice this is often assumed and known as the Aufbau

principle.
Due to the non-convexity and hence possible symmetry

breaking, see Remark 6.6, the thermodynamic limit of
Kohn–Sham DFT with exchange-correlation functionals is
very challenging and not much progress has been made.



To understand the behaviour of electronic structure in
materials, we take a typical starting point of modelling in
materials science—the periodic Kohn–Sham model with
supercell Ω. This can be formulated using the density
matrix similar to the periodic Hartree–Fock model
discussed in Sect. 6.3.1. A periodic Kohn–Sham energy is of
the form

where the rHF energy 
was defined in (6.20). This is
the rHF model with the addition of a periodic exchange-
correlation energy. One could follow the lines of Sect. 6.3.1
to study the thermodynamic limit. We can also consider the
following alternative formulation, presented in [21], and
that we present now.

The self-consistent Kohn–Sham eigenvalue problem
(6.26) can be reformulated as a fixed point equation for the
density

(6.27)

where 
is a contour in the resolvent set separating the
first N eigenvalues of HKS from the rest of the spectrum
(assuming a spectral gap). The right-hand side of (6.27)
denotes the diagonal of the kernel of the density matrix
viewed as an integral operator.

6.4.1 The Periodic Kohn–Sham DFT Model

For a periodic system with Bravais lattice 
, we can write
a similar equation. We introduce the periodic Kohn–Sham
Hamiltonian associated with some 
-periodic density ρ,
given by



where the periodic Hartree potential solves

with periodic boundary condition, where mnuc is understood
as a background charge density given by the nuclei (to be
specified below). As the potential is periodic, the Bloch–
Floquet theory applies to the Hamiltonian. In particular,
the spectrum of 
has a band structure. For each k ∈
Ω∗, the first Brillouin zone, the Bloch waves solve the
eigenvalue problem

with periodic boundary condition on Ω. The spectrum is
given by

This is known as the band structure, see Fig. 6.2 for an
illustration.



Fig. 6.2 
Schematic band structure of crystalline silicon, along various lines
connecting high-symmetry points in the first Brillouin zone Ω∗. The first 4
bands are occupied and separated by a band gap from the higher bands

If the first N bands are occupied and there exists a gap
between the occupied and unoccupied spectrum (in
physical terms, the system is an insulator), the Kohn–Sham
map can be generalised to the periodic setting as

(6.28)

where the contour 
lies in the resolvent set and
separates the occupied and unoccupied spectra. For the
periodic Kohn–Sham model, we thus recast the problem as
a fixed point equation

(6.29)

Using the electron density ρ as the basic variable is more
convenient in studying the scaling limit than the Kohn–
Sham orbitals (Bloch waves), which will be discussed next.

6.4.2 Scaling Limit for the Periodic Model

Starting from the fixed point equation (6.29), valid for
instance for a periodic configuration 
, we would like to
find other solutions when the crystal is deformed.

We consider the electronic structure of an elastically
deformed system in the scaling limit where the lattice
parameter goes to 0. To set up the atomic configuration, we
assume a lattice structure for the undeformed system. The
atoms are located at 
, where 
is a Bravais lattice, and
the lattice parameter ε will serve as the scaling parameter
in the limit, which can be understood as the ratio of the
lattice parameter and the characteristic length scale of the
system.



For simplicity, we assume that Ω coincides with the unit
cell of 
. Thus, in Ω, atoms are located at 
. The
system consists of ε−3 atoms and correspondingly Nε−3

electrons, where N is the number of valence electrons per
atom.

Fix a smooth function 
of the form u(x) = Bx + 
uper(x), where B is a 3 × 3 matrix and uper is periodic with
respect to Ω. The deformed atom locations are

Correspondingly the background charge distribution is
given by

where 
is the rescaled version of the charge contribution
from each individual atom (recall that the lattice parameter
is scaled to ε):

As the lattice parameter is scaled to be ε, the Kohn–
Sham Hamiltonian needs to be rescaled correspondingly as

where the Hartree potential 
solves

Thus the electron density of the deformed system is
determined by the fixed point of the Kohn–Sham map

(6.30)

In order to make sense of the Kohn–Sham map defined
in (6.27) and (6.30), we require a gap between the



occupied and unoccupied spectrum, and thus we make the
following assumption for the undeformed system. The gap
of the effective Hamiltonian of the perturbed system
follows from a perturbation argument.

Assumption 6.7 (Insulating Undeformed System)

There exists a Ω-periodic 
, that is positive and
uniformly bounded away from zero, such that

The spectrum of the Hamiltonian 
has a positive
gap between the occupied and unoccupied spectra.
ρ0 is a fixed point of the Kohn–Sham map:

where 
is a contour in the resolvent set enclosing the
occupied spectrum.

6.4.3 Cauchy–Born Rule for Electronic

Structure

The question of the scaling limit is to characterise the
electron density, as a solution to the Kohn–Sham equation
(6.30), when the deformation is elastic in the sense that the
deformation gradient is not too large. This is motivated by
the Cauchy–Born rule for passing from atomistic models to
elastic models, where the analogous question for DFT is to
pass from electronic structure models to continuum elastic
models. The scaling limit for Thomas–Fermi–von
Weizsäcker model was studied by Blanc, Le Bris and Lions
in [5], see Sect. 6.2.4.

For the Kohn–Sham type models, the scaling limit was
proved by E and Lu in [19, 21] under the stability
conditions on the level of linear response of the
undeformed system. In order to state the stability



assumptions, let us introduce the linearised Kohn–Sham
map for the undeformed system

It has been established [21] that 
is a bounded linear
operator on the space 
for every


, where 
stands for the periodic Sobolev
space with square integrable second derivatives and


is the homogeneous Sobolev space with index − 1
on the domain n Ω.

Assumption 6.8 (Stability of Charge Density Wave

Response) 
For every 
, the operator 
is
uniformly invertible as an operator on 
.

Physically the stability assumption states that the
undeformed crystal is stable with respect to spontaneous
charge density wave perturbation at every scale. In
particular, this prevents the possibility of symmetry
breaking as ε → 0.

We also define the macroscopic permittivity tensor for
the undeformed crystal as

where the 3 × 3 matrix A0 is given by

where



and δρVeff is the linearisation of the effective potential
operator: Veff[ρ] = VH[ρ] + Vxc[ρ] at ρ0 for the undeformed
crystal. The dielectric permittivity for the reduced Hartree–
Fock theory has been studied in [11].

Assumption 6.9 (Stability of Dielectric Response)

The macroscopic permittivity tensor for the undeformed
crystal E0 is positive definite.

The main result of [21] establishes the Cauchy–Born rule
for the electronic structure.

Theorem 6.10 ([21, Thm. 5.1]) 
Under Assumptions6.7,
6.8and6.9, if the deformation gradient is sufficiently small,

then there exists a
 
satisfying the Kohn–Sham fixed point

equation (6.30), and furthermore,
 
can be locally

approximated by the Cauchy–Born rule:

where ρCB(⋅;A) is the electron density of a homogeneous

deformed system with u(x) = Ax(which is well-defined

provided
 
is not too large).

The main technical ingredients of the proof of the theorem
is a two-scale analysis of the linearised Kohn–Sham map. As
a part of the analysis, the effective potential and the
macroscopic dielectric response of the deformed crystal
can also be characterised, we refer the readers to [21] for
details.
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This chapter aims at presenting the main algorithms used
to solve the Kohn–Sham models, as well as the current
state-of-the-art of the numerical analysis of these models
and algorithms.

7.1 Introduction

There are several avatars of the Kohn–Sham model, each
characterized by

the type of systems it describes: molecules or clusters,
perfect crystals, disordered materials,
the choice of the exchange-correlation functional: local,
semilocal, nonlocal, orbital-dependent (see Chap. 1 by
Toulouse in this volume),
the electrons explicitly taken into account: all electrons
vs pseudo-electron models (see Sect. 7.4),
the underlying variational model: the standard Kohn–
Sham models derived from the Levy-Lieb formulation of
DFT, the extended Kohn–Sham models derived from the
Valone–Lieb construction of DFT, the positive-
temperature Kohn–Sham models [50].
The most appropriate discretization method and the

algorithm best suited to solve the resulting discretized
problem depend on these four criteria.

The molecular orbital formulation of the standard Kohn–
Sham model for finite systems, and the most common types
of exchange-correlation functionals are presented in Sect.
7.2.1. The standard Kohn–Sham model can be reformulated
in terms of the (one-body) density matrix. The density
matrix formalism is also the right one to set the extended
and finite-temperature Kohn–Sham models, introduced in
Sect. 7.2.2. All Kohn–Sham type models are variational
models: some energy (or free energy) functional is
minimized over some “nice” set, which can be a manifold of
N-tuples of orthonormal vectors (molecular orbital



formulation of the standard Kohn–Sham model), a manifold
of orthogonal projectors (density matrix formulation of the
standard Kohn–Sham model), or the convex hull of a
manifold of orthogonal projectors (extended and finite-
temperature Kohn–Sham models). The geometries of these
objects are discussed in Sect. 7.2.3.

Kohn–Sham models are used in both quantum chemistry
and condensed matter physics (we will use this terminology
here to refer to solid-state physics, the physics of liquids,
and materials science all together). The models and
numerical techniques used in these two fields are closely
related, but however significantly different.

Quantum chemistry aims at modeling molecules, and
understanding their properties and reactions. Most
chemical reactions of practical interest take place in the
liquid phase, and involve solvated molecules. For some
systems, ignoring the solvent effects and considering the
molecule of interest in vacuum is a sufficient
approximation. For others, the solvent has to be taken into
account. Explicit solvent models, in which each and every
solvent molecule in a large simulation box are dealt with at
the same level of theory as the solute molecule of interest,
are commonly used in classical molecular dynamics, but
are much too computationally expensive for DFT. A much
cheaper alternative is to use implicit solvent models, in
which the solute molecule is placed in a molecular-shape
cavity and the solvent is modeled by a continuous dielectric
medium of permittivity equal to the zero-frequency
dielectric permittivity of the solvent. We refer to [138] for
reviews of implicit solvent models. The rate-limiting
computation is then the electronic state of a molecule in
the environment of the solvent, which is mathematically
and computationally similar to isolated molecules in
vacuum. We therefore limit ourselves to this case in this
chapter. The resulting equations are most often discretized



in atomic basis sets; this approach is presented in Sect.
7.3.1.

In contrast, models used in condensed matter physics
deal with extended systems containing virtually an infinite
number of nuclei and electrons. The latter models can be
seen as thermodynamic limits of the former models when
the number of particles tends to infinity. Of course, it is not
possible to simulate an infinite number of individual
particles on a computer. There are two usual ways to
circumvent this difficulty:
1.

if the system is periodic (perfect crystals), a Bloch–
Floquet transform can be used to reduce the problem
with infinitely many particles set on the whole space to
a family of problems with finitely many particles set on
the periodic cell with periodic boundary conditions (see
e.g. [121]);

 

2.
infinite aperiodic systems (“real” crystals, involving
defects, amorphous solids, liquids) are usually dealt
with using the supercell method: a chunk of the system
is placed in a large rectangular box and appropriate
boundary conditions are imposed on the Kohn–Sham
orbitals to get rid of surface effects. This approach is
also used in the field of homogenization, where the
supercell is called a representative volume element
(RVE).

 

It follows that in practice Kohn–Sham problems
encountered in condensed matter physics are set on
periodic cells, which either have a physical meaning (as for
perfect crystals) or are chosen for numerical convenience
(as in the supercell method). For this reason, it is natural to
discretize them in plane-wave basis sets, in which Kohn–
Sham orbitals and electronic densities are approximated by
a finite linear combination of Fourier modes. This



discretization method is presented in Sect. 7.3.2. Notably,
plane-wave discretization methods perform extremely
poorly on genuine all-electron Kohn–Sham models because
of the singularities of the Coulomb potential generated by
the nuclei. Most Kohn–Sham simulations in the condensed
phase make use of pseudopotentials: only valence electrons
are explicitly dealt with, valence Kohn–Sham orbitals
(which have cusps at nuclear positions) are replaced by
smoother valence pseudo-orbitals, and the local singular
Kohn–Sham potential, by a smoother but nonlocal
pseudopotential. This approximation is discussed in Sect.
7.4.

Whatever the system, the exchange-correlation
functional and the discretization method that is used, the
resulting discretized Kohn–Sham models can be formulated
as constrained optimization problems. The generic
methodology of constrained optimization proves too
general, and the specific simple form of the constraints
(which form Riemannian manifolds) allow for efficient
custom algorithms, termed direct minimization algorithms.
The Euler–Lagrange equations of the minimization problem
can be recast as a nonlinear eigenvector problem, which
has an appealing physical interpretation as a mean-field
equation. Algorithms based on a fixed-point solution of
these equations are known as self-consistent field (SCF)
algorithms. In both cases, two challenges of different
natures have to be faced: (i) ensure convergence toward a
(hopefully) global minimum, and (ii) accelerate local
convergence, which can be very slow due to ill-
conditioning.

Algorithms to solve Kohn–Sham problems in atomic
basis sets on the one hand, and in plane-wave basis sets on
the other hand, have been developed almost independently
by chemists and physicists respectively. This can be
explained by the fact that the corresponding problems are
quite different from a numerical point of view. Indeed, the



performance of a given algorithm heavily depends on the
physical properties of the system as well as on the
discretization methods. Problems of global convergence are
usually more severe in quantum chemistry, where bond
breaking, open shells and limited basis sets contribute to
the existence of local minima. These problems are
relatively less common in the more rigid solid-state context.
Similarly, ill-conditioning comes from different sources:
overcompleteness of the basis set and degeneracies in
quantum chemistry, low and high-frequency modes in
condensed-matter. Finally, the problems caused by large
systems are also different, and treated using specific
methodologies. We will present the quantum chemistry
perspective (atomic basis sets) in Sect. 7.5.3, and the
materials science perspective (planewave basis sets) in
Sect. 7.5.4.

Let us emphasize that very few algorithms for solving
the Kohn–Sham model are well understood mathematically.
Sometimes, convergence results have only been proved for
the special cases of Hartree and Hartree–Fock models, for
which the energy functional is quadratic in the density
matrix. The mathematical understanding of most Kohn–
Sham models and algorithms is only partial.

Likewise, error analysis for Kohn–Sham models still is in
its infancy. The a priori error analysis of the Kohn–Sham
LDA model was carried out in [24] for the plane-wave
discretization of the supercell model. The proof was
adapted in [41] to cover the cases of any variational
discretization of the Kohn–Sham LDA model in a bounded
domain with Dirichlet boundary conditions. The
construction of a posteriori error estimators for Kohn–
Sham, and more generally for electronic structure models,
is a major challenge in molecular simulation. The a priori
error analysis and the few results available to date on a
posteriori error analysis are discussed in Sect. 7.6.



7.2 Mathematical Structures of

Discretized Kohn–Sham Problems

For simplicity, we limit ourselves to non-magnetic spin-
unpolarized systems, in which Kohn–Sham orbitals can be
chosen real-valued and are occupied by two electrons (one
with spin-up and one with spin-down).

7.2.1 Molecular Orbital Formulation of the

Standard Kohn–Sham Model

The standard Kohn–Sham model for a molecule or a cluster
(finite number of electrons and nuclei) is

(7.1)

where N is the total number of electron pairs, and EKS

the Kohn–Sham energy functional given by

(7.2)

In the above expression, Vext is the external potential
generated by the M nuclei of atomic charges 
and
positions 
, ρΦ the electronic density associated with
the orbitals Φ, and Exc the exchange-correlation energy
functional:

(7.3)

The factor 2 in (7.3) is due to the fact that each φi hosts
two electrons. The expression of Exc depends on the chosen
approximate exchange-correlation functional. We will limit
ourselves here to some simple examples: the Hartree (also



called reduced Hartree–Fock, rHF) model for which

, the local density approximation (LDA), and the

Xα model. We refer to the contributions of Lewin, Lieb, and
Seiringer (Chap. 3) for a mathematical analysis of the LDA,
and to the contribution by Toulouse (Chap. 1) for a detailed
description of the many approximate exchange-correlation
functionals that have been proposed by physicists and
chemists. The LDA exchange-correlation functional is given
by

(7.4)

where 
is the exchange-correlation energy
density of the homogeneous electron gas. The function 
is not known explicitly. Several approximations of this
function have been proposed, based on theoretically
obtained asymptotic expansions in the high-density regime,
and quantum Monte Carlo (QMC) simulations at lower
densities [38]. The current reference approximation
(PW92) has been proposed by Perdew and Wang [111]. In
mathematical and numerical studies, it is convenient to
replace the LDA functional by the Xα functional, which is
explicit and shares the most important features of the LDA
exchange-correlation functional:

where CD is the Dirac constant.
In GGA (generalized gradient approximations), the

exchange-correlation functional is of the form

(7.5)

where 
is a function such that

and whose dependence in |∇ρ(r)| is



constructed by picking up a suitable functional form
depending on a few parameters, and fitting these
parameters using exact conditions and/or empirical data.
The most popular GGA functionals are the PBE [110] and
PBE0 [2] functionals.

Meta-GGA and hybrid functionals involve respectively
the kinetic energy density

and the one-body density matrix

and are therefore not explicit in the density ρΦ. In order to
include all the above exchange-correlation functionals in a
simple unified framework, we redefine the Kohn–Sham
energy functional as

(7.6)

where we allow 
to depend explicitly on the density
matrix (note that τΦ(r) can be easily obtained from γΦ).
Another advantage of this framework is that it contains
Hartree–Fock as a special case:

(7.7)

where 
is the exact-exchange functional defined as



Once the model is set, variational discretization methods
consist in choosing a set of Nb linearly-independent
functions 
and solving the finite-
dimensional minimization problem

(7.8)

where 
. Denoting by

the matrix collecting the coefficients of the

orbitals φi in the basis ξμ i.e.

problem (7.8) can be rewritten as
(7.9)

where
(7.10)

and
(7.11)

where IN is the rank-N identity matrix. The matrices

and 
(here and in the sequel, 

stands for the vector space of n × n real symmetric
matrices) are the overlap and one-electron Hamiltonian
matrix

(7.12)



The functions 
and 
are
defined by

where AΞ is the 4th-order tensor of two-electron integrals:

(7.13)

Recall that the notation AΞ : P stands for the double
contraction

Let us finally make a few remarks on the mathematical
properties of the minimization problem (7.9). First, the
function 
is continuous and the minimization
set 
is a non-empty compact set of 
, which
guarantees the existence of a minimizer to (7.9). Second,
problem (7.9) is gauge invariant: denoting by O(N) the
group of N × N real orthogonal matrices, we have

(7.14)
In particular, if X0 is a minimizer of (7.10), then X0U also is
a minimizer of (7.10). Uniqueness of the minimizer up this
gauge invariance is an open problem.

7.2.2 Density Matrix Formulations of the

Various Kohn–Sham Models

We see from (7.10) that the discrete Kohn–Sham energy
functional is in fact a function of the symmetric matrix P = 
XXT:



where 
is defined by

(7.15)

This is not surprising since the matrix P = XXT is in fact the
matrix in the tensor basis ξμ ⊗ ξν of the one-body reduced
density matrix γΦ:

The gauge invariance (7.14) simply originates from the fact
that X and XU for U ∈ O(N) generate the same density
matrix. Note that in the Hartree–Fock setting, the energy
functional can be written as

(7.16)

with

(7.17)

It is also easy to check that when X spans the
minimization set 
arising in (7.9) (and defined in
(7.11)), the matrix P = XXT spans the set

This set 
is the set of rank-NS-orthogonal projectors in
the Nb-dimensional real space.

We therefore have
(7.18)



which corresponds to the variational approximation in the
basis Ξ of the density matrix formulation of the continuous
standard Kohn–Sham model:

(7.19)
where 
is the vector space of bounded self-adjoint
operators on 
and

ργ denoting twice the density of the trace-class operator γ,
i.e. ργ(r) = 2γ(r, r), where γ(r, r′) is the kernel of the
operator γ. We refer to [122] for an introduction to the
theory of trace-class operators.

Let us now turn to the discretized extended and finite-
temperature Kohn–Sham models. These models are more
conveniently formulated in the density matrix formalism.
For both of them the minimization set is the convex hull of


, that is

The inequality PSΞP ≤ P is to be understood in the sense
of square symmetric matrices:

Note that any matrix 
can be decomposed as

where ni is called the occupation number of the orbital Φi.
The orbital Φi is called fully occupied if ni = 1, partially
occupied if 0 < ni < 1 and unoccupied, or virtual if ni = 0.
The discretized extended Kohn–Sham model is defined as



(7.20)

and corresponds to the discretization in the basis set Ξ of
the continuous problem

(7.21)
obtained from Valone–Lieb formulation of DFT [94, 141].
The minima E0 in (7.19) and (7.21) are equal for the exact
Levy-Lieb and Valone–Lieb DFT functionals, but differ in
general if approximate exchange-correlation functionals
and finite basis sets are used.

A discretized finite-temperature Kohn–Sham model can
be defined as

(7.22)
where T is the temperature and kB the Boltzmann constant.
The functional

is the fermionic entropy for spin 1∕2-unpolarized systems,
favoring configurations with fractional occupation
numbers. The functional 
can therefore be
interpreted as a free energy. It should be mentioned that
while the above problem always has a minimizer, its
continuous counterpart diverges: the infimum of the free
energy 
over the set of
admissible density matrices is equal to −∞, due to the
presence of a continuous spectrum in the underlying Kohn–
Sham Hamiltonian. On the other hand, the continuous
finite-temperature Kohn–Sham model is well-defined for
confined systems as well as, more interestingly, for periodic
crystals, in the sense that the free-energy per unit volume
has a minimizer. In both settings, the extended Kohn–Sham
model is the limit of the finite-temperature Kohn–Sham
model when the temperature goes to zero.



7.2.3 Geometrical Structure of the Kohn–Sham

Problems

The minimization sets 
and 
in (7.9) and (7.18)
have simple geometrical structures. They are respectively
diffeomorphic to the smooth manifolds

through the linear transforms
(7.23)

Note that 
and 
are themselves representations in

and 
respectively of the Stiefel and Grassmann

manifolds 
and G(N, Nb) of orthogonal bases and
subspaces widely studied in differential geometry (see e.g.
[54] and references therein).

In order to simplify the presentation, we will assume in
the rest of the chapter that the basis set Ξ is orthonormal.
The general case of a non-orthonormal basis can be
recovered by using the change of variable (7.23) (we will
however make some comments on the additional difficulties
arising when the overlap matrix SΞ is ill-conditioned). The
minimization sets then are the manifold 
(orbital
formulation) or 
(density matrix formulation). Still in
order to simplify the notation, we will set

the functions 
and 
being related
by the equality

Let us recall some of the basic properties of the sets

and 
that will be useful in our analysis. Let


be the polynomial map defined by g(X) = 



XTX − IN, so that 
. It is easily checked that
for each 
,

(7.24)

is surjective. This proves that g is a submersion [88], and
therefore that 
is a smooth submanifold of 
of
dimension NbN − N(N + 1)∕2. The tangent space to 
at
some 
is

(7.25)
Similar computations show that 
is a smooth

submanifold of 
of dimension N(Nb − N), and that its
tangent space at 
is the vector space of matrices

If 
, the range and kernel of P are respectively of
dimension N and Nb − N, and are orthogonal. They are
respectively called the occupied and virtual subspaces.
Introducing an orthogonal matrix 
whose first N
columns form an orthonormal basis of Ran(P) and the last
Nb − N an orthonormal basis of Ker(P), we have

(7.26)

and—dropping the subscripts indicating the sizes of the
null matrices to simplify the notation—

(7.27)

where the subscript ov stands for occupied-virtual. The
map 
defined by

(7.28)



(7.29)

is surjective and its restriction to a neighborhood of 0
defines a local map of 
in the neighborhood of P.

7.2.4 First-Order Optimality Conditions

As we have seen in the previous sections, the standard
Kohn–Sham model boils down after discretization to an
equality constrained optimization problem, which admits
two equivalent natural formulations

the orbital formulation (7.9) (i.e. an optimization problem
on a Stiefel manifold);
the density matrix formulation (7.18) (i.e. an optimization
problem on a Grassmann manifold).
The orbital formulation (7.9) of the standard Kohn–Sham

model is an equality constrained optimization problem of
the form

(7.30)

where 
is defined in (7.24) (recall that we
assume an orthonormal basis and have set E(X) := EΞ(X)).
As seen in the previous section, 
is a smooth
submanifold of 
and 
is defined in (7.25).
Assuming that the function 
is differentiable at
each point of 
, the energy functional E is
differentiable at each point of 
. Endowing 
with
the Frobenius inner product defined by


, its gradient is given by

(7.31)
where



is the Kohn–Sham matrix (also called mean-field
Hamiltonian) associated with the density matrix P = XXT.
The first-order optimality condition associated with (7.30)
is then

(7.32)

where 
is the adjoint of g′(X). A simple
calculation shows that

(7.33)

Putting together (7.31)–(7.33) we finally obtain the
Euler–Lagrange equations associated with (7.9):

(7.34)

Interestingly, the gauge invariance (7.14) can be used to
simplify the search for critical points of (7.9). Consider a
solution (X,  Λ) to the Euler–Lagrange equations (7.34).
Since the Lagrange multiplier Λ of the constraint g(X) = 0
is a symmetric matrix, it can be diagonalized in an
orthonormal basis:

where U ∈ O(N) is an orthogonal matrix and ε1 ≤⋯ ≤ εN are
the N eigenvalues of Λ, counted with their multiplicities.
Observing that (XU)T(XU) = IN, (XU)(XU)T = XXT = P, and


, we obtain that, up to
replacing X by XU, all the solutions to the Euler–Lagrange
equations (7.34) can be obtained by orthogonal transforms
from the solutions to the so-called Kohn–Sham equations

(7.35)



where 
are the N columns of the matrix XU. In
the following, we drop the tildes for simplicity of notation.

Remark 
In the general case of a possibly non-orthonormal
basis, the Kohn–Sham equations read

(7.36)

The Kohn–Sham equations therefore have the structure of a
nonlinear generalized eigenvalue (or rather eigenvector)
problem since the Kohn–Sham matrix H(P) depends on the
vector space spanned by its low-energy generalized
eigenvectors Xi’s, 1 ≤ i ≤ N, through the density matrix P.

Remark 
The equations above are the discrete versions of
the continuous Kohn–Sham equations, which are derived
from the Euler–Lagrange equations of the variational
problem (7.1) in the same way as above, and which read, in
the LDA case, as

(7.37)

where 
.

It can be checked that any critical point P of the density
matrix formulation of the standard Kohn–Sham model



(7.18) is such that

In addition, the above conditions are equivalent to
(7.38)

Conditions (7.38) also read
(7.39)

or equivalently
(7.40)

Indeed, considering a generic element P in 
, and
using the representation (7.26) of P, we have

The matrix 
can be identified with the
gradient at Aov = 0 of the function 
, that is,
of the discretized Kohn–Sham functional in the local map
ΦP defined by (7.28)–(7.29). Likewise, the matrix 2[[H(P),
P], P] is the orthogonal projection of the gradient


on 
, the tangent space to the
manifold 
at P, for the Frobenius inner product. The
geometrical interpretation of the equivalent conditions
(7.39) and (7.40) is that the gradient at Aov = 0 of the Kohn–
Sham energy functional in the local map ΦP vanishes, and



that the gradient of 
at P is orthogonal to the manifold

at this point.

The reader familiar with the Hartree–Fock model may
have noticed that the discretized Kohn–Sham equations
(7.35) have a similar structure as the discretized Hartree–
Fock equations, which is not surprising since the
minimizing sets and the gauge invariance properties are
the same for the two models. There is however an
important difference between the two models. For the
(spin-unrestricted) Hartree–Fock model, it can be proved
that if Φ = (φ1, …, φN) is a minimizer of the Hartree–Fock
model, then ε1 ≤⋯ ≤ εN are the lowest N eigenvalues of the
Hartree–Fock Hamiltonian (Aufbau principle), and that
there is a positive gap between εN and εN+1 (no unfilled-
shell property [9]). In addition, any minimizer of the
Hartree–Fock energy functional on the convex hull


is on 
. For Kohn–Sham models, these
properties do not hold true for all molecular systems.

Let us now turn to the extended and finite-temperature
Kohn–Sham models. We assume here that the functional


is differentiable at each point of 
.
Since 
is a non-empty closed convex subset of


, the first-order optimality conditions for (7.20) are
given by the Euler inequality

which also reads
(7.41)

It is well-known (see e.g. [25]) that any 
for
which (7.41) holds is of the form

(7.42)
Otherwise stated, any critical point P of (7.20) is of the
form



(7.43)

where the occupation numbers of the Kohn–Sham
orbitals Xi satisfy

(7.44)

where μ is the Lagrange multiplier of the constraint Tr(P) 
= N, called the Fermi level. In words, the Kohn–Sham
energy levels below the Fermi level μ are fully occupied,
the ones above the Fermi level are unoccupied, while the
ones just at the Fermi level can be partially occupied. Two
cases can be encountered:
1.

either there is a gap between the Nth and (N + 1)st
energy levels (i.e. if εN < εN+1), in which case 
is a critical point of the standard Kohn–Sham problem
(7.18) satisfying the Aufbau principle, and μ can be any
number in the range (εN, εN+1);

 

2.
or μ is a degenerate energy level of H(P), in which case
the occupation numbers of the Kohn–Sham orbitals at
the Fermi level are not determined by the first-order
optimality condition and are not known a priori; if P is
a minimizer of (7.41), they can be obtained numerically
by considering the second-order optimality condition
(or higher-order conditions in case of degeneracies).

 

Lastly, the first-order optimality conditions associated
with the finite-temperature Kohn–Sham model (7.22)
inferred from Euler’s inequality are

(7.45)



where 
is the inverse temperature, fβ the Fermi-
Dirac function (fβ(ε) = (1 + eβε)−1) and μ the Lagrange
multiplier of the constraint Tr(P) = N. In terms of Kohn–
Sham orbitals, (7.45) can be reformulated as (7.43),
together with

(7.46)

Formally, the condition (7.44) on the occupation numbers
for the extended Kohn–Sham model is the limit when T
goes to zero of the condition (7.46) on the occupation
numbers for the finite-temperature Kohn–Sham model.

7.2.5 Quantities of Interest

We have above explained how to define the ground-state
energy of a molecular system in the standard Kohn–Sham
approximation in a given atomic configuration


and for a given basis set Ξ as a
problem of the form

(7.47)
where 
are the atomic positions, and dropping the
explicit dependence on Ξ for simplicity.

That computation is by itself of limited interest. It
however opens the door to a variety of useful analyses,
grouped under the umbrella term of “properties”. For
instance, the force exerted on nucleus k by the electrons is
given by

Computing forces allows for the efficient optimization of
geometries, and for molecular dynamics (integrating the
classical equations of motion for the nuclei).



We now detail how to compute these forces. For
simplicity, we will assume that the overlap matrix SΞ is set
to the identity for all R. When this is not the case (as for
instance with atom-centered basis functions), then
additional terms, called Pulay forces, appear, which can
easily be computed through Lagrange multipliers [25].

Assume that the variational problem (7.47) has a unique
global minimizer P(R) that depends smoothly on R. Then
we can compute

This formula can be greatly simplified by noticing that,
since P(R) minimizes 
, by the first-order optimality
conditions, the linear functional 
vanishes on the tangent space to 
at P(R), to which


belongs. It follows then that

(7.48)

which can be computed easily (it is simply the discrete
version of the classical electrostatic force exerted on
nucleus k by the electron cloud). The above statement, that
the derivatives of the energy with respect to external
parameters do not involve the derivatives of variational
quantities, is known as the (generalized) Hellmann–
Feynman theorem.

In this fashion, one can compute first derivatives of the
energy with respect to other external parameters, such as
an external field, or cell parameters in the case of solids
(giving access to stresses). Other properties of interest,
such as force constants (the second derivatives of the



energy with respect to atomic positions at equilibrium
geometry), polarizabilities (the derivatives of the
polarization with respect to an external electric field) and
even more complex quantities (piezoelectric properties,
anharmonic effects …) can be accessed through
perturbation theory, as we outline now. Consider the
problem of computing 
, the variation δP in
the density matrix caused by a displacement δRk of nucleus
k. Starting from the equation

we get

(7.49)

We now decompose this equation in an orthonormal basis

of eigenvectors of H: HXn = εnXn with


. We assume a gap εN < εN+1. In this basis,

Differentiating the equation P2 = P, we obtain that δPmn = 0
whenever 1 ≤ m ≤ N < n or 1 ≤ n ≤ N < m, and using (7.49),
we obtain

(7.50)

Since the right-hand side depends on δP, this is a self-
consistent linear equation, called the Dyson equation. It is
the linearized version of the nonlinear self-consistent
equation 
, and can be solved using the
same tools.

This methodology can be extended in several directions:



other types of perturbations (such as the derivative of the
density with respect to an external field, or second
derivatives of the energy) can be computed in the same
way;
equation (7.50) can be written in terms of orbitals (the
resulting equation sometimes being called the
Sternheimer equation [136]), avoiding a full
diagonalization of the Hamiltonian;
higher-order properties can be computed. A notable
guiding principle is Wigner’s 2n + 1 rule, which
generalizes the Hellmann–Feynman theorem: to compute
the (2n)th and (2n + 1)st derivatives of the energy, one
only needs to compute the first nth derivatives of the
density matrix;
the methodology can be applied to time-dependent
models, resulting in frequency-dependent response
properties.

We refer to [13] for the condensed-matter perspective, and
to [109] for the quantum chemistry one.

7.3 Discretization Methods

The current most popular software is based on one of the
following two discretization methods: Gaussian-type
orbitals (GTOs), and planewaves (PW). The former is the
method of choice in quantum chemistry for molecules and
clusters. The latter is widely used in solid-state and
condensed-matter physics.

GTOs were first introduced by Boys [19] in 1950 to
discretize the Hartree–Fock model and have been at the
origin of the rapid development of quantum chemistry in
the second half of the 20th century. PW basis sets are
natural discretization methods for solving Kohn–Sham-type
equations on rectangular boxes with periodic boundary
conditions [44, 56, 71, 86], as is the case for periodic solids



(perfect crystals), and for supercell methods used to
simulate disordered crystals, amorphous solids, and liquids.

Other approaches include general-purpose methods for
discretizing partial differential equations such as
(extended) finite element [80, 147], finite difference [40,
58, 64], spline [105], and wavelet methods [8, 63], as well
as specific methods: other kinds of atomic orbitals (Slater-
type orbitals [133], numerical atomic orbitals [134]),
Augmented plane waves (APW)-type orbitals [4, 42, 129,
132], periodic sinc function basis [131], adaptive local-
basis sets [95, 148]. For the sake of brevity, we focus in
this chapter on GTO and PW methods. Other types of
discretization methods are dealt with in subsequent
chapters.

7.3.1 Atomic Basis Sets for Molecules

In atomic basis sets methods, each chemical element A is
equipped with a finite number of rapidly decaying L2-
normalized basis functions 
centered at
the origin such that 
is rotationally
invariant. An atomic orbital basis set is a collection


, where z spans the periodic table of the
elements, or usually only a part of it (e.g. the first four
rows, from hydrogen to xenon). Consider now a molecular
system consisting of M nuclei of atomic numbers z1, …zM in
a configuration 
. The basis set used to
carry out a Kohn–Sham calculation in the atomic basis set


is then

Note that in atomic basis sets, the basis functions are
attached to the nuclei and therefore move with them: for a
given molecular system and a given atomic orbital basis set


, the discretization basis depends on the



configuration (i.e. of the positions of the nuclei). As already
mentioned in Sect. 7.2.5, this gives rise to the so-called
Pulay forces [118] in molecular dynamics.

For consistency with atomic symmetries, the functions

usually are of the form

(7.51)

where 
are the real spherical harmonics
(which forms an orthonormal basis of 
), and


a smooth, fast decaying function. Note that if

contains a function of the form (7.51),

then 
for all − l ≤ m′≤ l in

order to fulfill rotation invariance. Recall that 
is
a homogenous harmonic polynomial of total degree l.

In most quantum chemistry codes, the functions 
are
Gaussian-type orbitals (GTOs), namely finite linear
combinations of polynomials times Gaussian functions, that
is

with αn > 0 and 
. A few quantum chemistry codes use
Slater-types orbitals (STOs) for which

Compared to GTOs, STOs better account for the cusps of
the Kohn–Sham orbitals at the nuclear positions as well as
their decay rates at infinity. On the other hand, GTOs have
a tremendous advantage over STOs: as pointed out by Boys
[19], all the integrals in (7.12)–(7.13) can be computed



explicitly for GTOs using three key properties of Gaussian
functions:
1.

the product of two Gaussian functions is a Gaussian
function;

 
2.

the Fourier transform of a Gaussian function is a
Gaussian function;

 
3.

the product of a Gaussian function by a homogeneous
polynomial of order l is a linear combination of partial
derivatives of order l of this Gaussian function, and
vice-versa.

 

As a consequence, the kinetic, nuclei-electrons interaction,
and Coulomb terms can be computed explicitly for GTOs.
Only the exchange-correlation term must be computed on a
grid. In most quantum chemistry packages, the quadrature
points are obtained by unions of atomic quadrature grids.
More precisely,

each chemical element A is associated with a spherical
quadrature grid 
which is itself the tensor
product of a radial grid by a set of Lebedev points on the
unit sphere 
, and associated weights 
;
the quadrature grid for a molecular system with M nuclei
of type Ak located at Rk, 1 ≤ k ≤ M, is the union of all the
points 
for 1 ≤ k ≤ M and 
. The
weight of the quadrature point rk,g is given by the
formula



where

and 
is a smooth function satisfying f(−1) = 
0, f(0) = 1∕2 and f(1) = 0. Usual choices include Becke and
Stratmann–Scuseria–Frisch (SSF) partitioning functions.
As a matter of example, the former is defined as

For very large molecular systems, Hamiltonian and
overlap matrices are sparse due to the extremely fast decay
of Gaussian atomic orbitals. In addition, so are density
matrices, at least for insulators, and metals at finite
temperature. This phenomenon, sometimes called the
nearsightedness principle in the physics and chemistry
literature [115], originates from the decay properties of the
Green kernel of the resolvent of Schrödinger operators.
This allows the use of sparse linear algebra methods (see
[16] and references therein). The main bottleneck is then
the building of the Kohn–Sham matrix

for the current density matrix P. The first term hΞ is simple
to deal with since its O(Nb) non-zero entries (at numerical
precision) are explicit and easy to compute for Gaussian
orbitals. The third term is local and can be computed in
O(Nb) operations also. The truly nonlocal second term
involves the Coulomb integrals

The evaluation of the Coulomb term AΞ : P can be
accelerated using Fast Multipole Methods (FMMs). The



original FMM for point charge distributions, due to
Greengard and Rokhlin [72, 73], must be adapted to handle
Gaussian-polynomial charge distributions. This has been
done by several authors from the 90s on. We will not detail
these technicalities here for the sake of brevity and refer
the interested reader to [39] and references therein.

7.3.2 Plane-Wave Discretization

We examine now the plane-wave method. Although it was
originally formulated for computing properties of crystals
and is still mostly used for that purpose, for pedagogical
purposes we introduce it here in the case of an isolated
neutral molecule.

Note that the solutions φi of the self-consistent Eq.
(7.37) for negative εi are exponentially localized (with
characteristic length 
). It is therefore justified, with
exponentially small error, to limit ourselves to a large box,
which we will take for simplicity to be 
. We will
replace the space 
by Ω equipped with the topology of a
torus (therefore imposing periodic boundary conditions).
We can then expand orbitals φi in the orthonormal Fourier
basis 
, with

and 
. We then have the expansion

The kinetic, potential and exchange-correlation terms in
(7.2) and (7.4)–(7.5) adapt easily by simply truncating the
integrals to Γ. To approximate the Hartree term in a way
that leads to simple computations, we replace the Coulomb
kernel 
by the periodic Coulomb kernel



(7.52)

Then, we seek to minimize the total energy

variationally by limiting the discretization space 
to the subspace

where Ecut > 0 is a truncation parameter that controls the
maximum kinetic energy allowed in the system.

The resulting energy as a function of the coefficients ciK

is

where



are the Fourier coefficients of the periodic extension of V .
Naively evaluated, these terms scale quadratically with

both N and the number of plane waves 
. However,
many of these computations are convolutions, arising from
pointwise multiplication in real space. These convolutions
can be evaluated efficiently in real space, using the discrete
convolution theorem: the cyclic convolution of two arrays
can be computed by a discrete Fourier transform,
evaluated efficiently using fast Fourier transforms (FFTs).
To avoid aliasing effects arising from the cyclic convolution,
zero-padding is used: the discrete Fourier transforms are
performed on a Cartesian grid that contains all the K + K′,
for 
.

It is important to note that this procedure allows us to
treat the kinetic, potential and Hartree terms exactly: for
any given set of coefficients ciK, the energy terms
computed in this way are the exact energy terms of the
orbitals 
. Therefore, for the rHF
model, the plane-wave method (for a given L) is variational:
the ground state energy decreases with Ecut. However, the
exchange-correlation term is a non-polynomial function of
the density, and cannot be evaluated exactly in this fashion.
In practice, this term is approximated by an integration on
the same real-space grid as for the other terms.

The numerical analysis of this method and of the related
Gross–Pitaevskii equation is discussed in Sect. 7.6. Note
that this method is based on an expansion of the orbitals φi

in a Fourier basis. In order for this to be effective, the
orbitals need to be smooth, because of the equivalence
between smoothness in real space and decay in reciprocal
space. However, the singularity of the Coulomb potential



imposes cusps on the φi: for instance, the first
eigenfunction of the Hydrogen atom is proportional to e−|r|.
Further, even if we remove these cusps (for instance, by
mollifying the Coulomb potential), the φi still need to
oscillate to satisfy the orthogonality conditions φi ⊥ φj, and
these oscillations need a large number of plane waves to
represent properly. The plane-wave discretization is
therefore not applicable directly to atomic systems; in
practice, these problems are remedied through the use of
the pseudopotential approximation.

7.4 Pseudopotentials

The pseudopotential method is a technique developed in
solid-state physics to modify Vext so that electrons close to a
nucleus are treated as part of an ionic core. Only
wavefunctions associated with valence electrons are to be
computed. We refer to [65] and references therein for an
overview of the pseudopotential method in practice. A very
similar method is used in quantum chemistry, where it goes
by the name of “effective core potential”; we refer to [49]
for details. To simplify the discussion, we assume an
isolated system of non-interacting electrons (we ignore the
Hartree and exchange-correlation terms). With appropriate
modifications, pseudopotentials can be extended to treat
the Kohn–Sham equations.

Reintroducing spin temporarily, recall that the states of
an atomic radial Hamiltonian 
can be
labelled as φnℓmσ:



where n ≥ 1, 
, m = −ℓ, …, ℓ and σ ∈{α, β} are the
principal, azimuthal, magnetic and spin quantum numbers.
The functions Yℓm are the real spherical harmonics. The
functions Rnℓ are solutions of the radial Schrödinger
equation

for r > 0, with Rnℓ(0) = 0 and 
.
There are 2(2ℓ + 1) available states (φnℓmσ)m=−ℓ,…,ℓ,σ={α,β}

for a given energy level εnℓ. The electronic state of an atom
is conventionally given as a sequence of terms of the form
(n + ℓ)ℓk, meaning that k of the 4ℓ + 2 available states with a
given (n, ℓ) are occupied. The angular momentum quantum
number ℓ is labelled using letters: s, p, d, f, etc. For
instance, silicon has 14 electrons, and its electronic
structure is 1s2 2s22p6 3s23p2. This means: two electrons in
the φn=1,ℓ=0,m=0,σ={α,β} orbitals, two electrons in the
φn=2,ℓ=0,m=0,σ={α,β} orbitals, six electrons in the φn=1,ℓ=1,m=

{−1,0,1},σ={α,β} orbitals, etc. The spatial extension

and energies ε of these states,

computed using the PBE density functional [110], are given
Table 7.1, and the orbitals are plotted Fig. 7.1 (left panel).



Fig. 7.1 
Orbitals of the Si atom at the PBE level (left), and pseudized 3s and
3p orbitals (obtained with use of the pseudo-potential) (right). The pseudized
orbitals are nodeless, and free of cusps

Table 7.1 
Energy ε and spatial extension 〈r〉 for the orbitals of the silicon
atom at the PBE level. Data from the atomic code included in the Quantum
Espresso distribution. For comparison, the energy of a typical covalent bond is
about 0.1 Ha, and the interatomic distance in bulk silicon at ambient conditions
is about 4.5 Bohr

State (n, ℓ) εnℓ (Ha) 〈r〉 (Bohr)

1s
2 (1, 0) −64.4 0.11

2s
2 (2, 0) −5.10 0.57

2p
6 (1, 1) −3.51 0.54

3s
2 (3, 0) −0.40 2.17

3p
2 (2, 1) −0.15 2.79

From the data in Table 7.1, it can be seen that electrons
can be clearly separated into two classes. The 10 electrons
in the 1s, 2s and 2p configurations are core electrons. They
are mainly localized close to the nucleus, with a low
energy. This means that they react very little to their
environment, as can be shown using the following heuristic
argument. Assume that atom A has only one orbital φA, with
energy EA, and that atom B has only one orbital φB, with
energy EB > EA. When in the diatomic configuration, the
total Hamiltonian, expanded in the basis of the φA and φB,
has the approximate form

where the coupling term α is due to the overlap between φA

and φB. The eigenvalues of this matrix are



In order to have E± significantly different from the isolated
energies EA and EB (which leads to chemical bonding), we
need α to be at least of comparable magnitude to EB − EA.
In other words, to get a bond between two atoms, there
needs to be orbitals with a significant overlap which are
close in energy.

To a very good approximation, we can therefore
consider the 1s, 2s and 2p orbitals of silicon as core

orbitals, that are frozen: they are the same in any chemical
environment. By contrast, the 3s and 3p orbitals are
valence orbitals, and bind to the orbitals of other atoms.

It follows from this splitting that representing all the φi

is wasteful, since the core electrons do not contribute
significantly to chemical bonding. On the other hand, the
valence electrons still feel the influence of the core
electrons, and have strong oscillations near the nuclei.
Combined with the cusp at the nucleus, this makes them
very hard to represent in a plane wave basis. A further
complication is that the core electrons of heavy atoms,
having a high velocity, are subject to non-negligible
relativistic effects. These impact the valence orbitals
indirectly through the orthogonalization requirements and
the mean-field potential. All these difficulties are remedied
through pseudopotentials, at the cost of an approximation.

To introduce pseudopotentials, we first split the energy
states εnℓ of the atom into core and valence orbitals. We
ignore spin in the following discussion, and label the
orbitals only by φnℓm. We take ℓ = 0, …, ℓmax to be set the of
angular momenta for which there is a valence orbital,


and 
the
number of core orbitals with angular momentum ℓ. For



instance, for the Silicon atom a natural choice is to set the
1s, 2s and 2p orbitals as core, and the 3s and 3p orbitals as
valence: 
, ncore,0 = 2, ncore,1 = 1.

The pseudopotential method then replaces the atomic
potential Vat by a pseudo-potential 
(usually a nonlocal
operator) such that the lowest energy eigenfunctions of the
pseudo-Hamiltonian 
, the pseudo-orbitals


for 
, are smooth and match
the valence orbitals 
of the real Hamiltonian


outside the core of the atom. In silicon, this
means for instance that the new 1s state of 
matches the
3s state of H outside a chosen cutoff radius rc (see Fig. 7.1
(right panel)). Since the decay rate of an eigenstate with a
negative eigenvalue ε is 
, it follows that the
eigenvalues of 
should match those of Hat:

for 
.
Once this procedure is established for an atom, all the

individual potentials of the atoms in a molecule can be
replaced (“pseudized”) in this fashion, and the pseudo-
Hamiltonian of the molecule is then solved.

Setting aside the construction of these pseudopotentials
for a moment, two main issues have to be considered. First,
transferability: to what extent do the results of a
pseudopotential computation on a molecule match the
results of the corresponding reference (all-electron)
computation? Second, softness: how many Fourier modes
are needed to represent the pseudo-orbitals accurately?
Pseudopotentials seek an optimal compromise between
these two competing objectives. Transferability is usually
assessed empirically, by comparing the properties of a
molecular system to those obtained using an all-electron
computation. It is improved by choosing a small cutoff



radius rc and ensuring that all relevant electrons are
included as valence. Softness is ensured by choosing a
smooth pseudopotential 
and by the fact that the lowest
energy eigenfunction of a radial local Hamiltonian is
nodeless, which reduces oscillations (see Fig. 7.1).

Building pseudopotentials is often done in two parts:
given a local potential 
, first construct smooth
pseudo-orbitals 
, and second construct a
pseudopotential 
such that the eigenstates of 
are the


.
The radial part 
of the pseudo-orbitals 
should

match the original orbitals outside of a cutoff radius:

As eigenstates of 
, they should also be orthonormal.
Orbitals with different angular momenta are automatically
orthogonal; the orbitals with the same angular momenta
must satisfy

which implies the “generalized norm-conservation
condition”

(7.53)

for all 
. Finally, they should be smooth, and, as
low-energy eigenfunctions, have the correct amount of
nodes.

Historically, most pseudopotentials have been
constructed assuming the pseudization of only one orbital
per angular momentum: 
for ℓ = 0, …, ℓmax. This is for
instance reasonable in the silicon example above. For
simplicity, we denote these orbitals and pseudo-orbitals by
φℓm and φℓm, with energies εℓ. The Troullier–Martins



procedure [139] then postulates a simple functional form
for 
, and adjusts its parameters to match the values and
the derivatives up to fourth order of 
and Rℓ at rc. The
RRKJ procedure expands 
in a basis of Bessel functions,
and minimizes their kinetic energy above a certain cutoff
energy to ensure smoothness [120].

Once the 
are constructed, a potential 
is
constructed. A solution is to first choose the local radial
potential 
so that 
is a solution of

This can be done by simply solving the equation above for

. Then, we can choose the semilocal form

(7.54)

where Pℓ =∑m=−ℓ,…,ℓ|Yℓm〉〈Yℓm| is the projector on angular
momentum ℓ. This operator automatically has the 
as
eigenstates with correct eigenvalues, completing the
pseudo-potential.

This procedure however has a major defect: the operator

is a nonlocal operator whose evaluation in plane-wave

codes requires the computation of a dense matrix. This
problem was solved by Kleinmann and Bylander [82], who
realized that the above procedure was wasteful; the most
economical operator that will produce the 
as
eigenstates is the low-rank form

(7.55)

where 
is an arbitrary radial local potential and



By construction, 
, as desired. The
potential 
is usually chosen to remove one of the ℓ
components from the sum.

Note that we have only insisted on the fact that the 
are eigenfunctions of 
at energies εℓ, but have said
nothing of the other states; it may very well happen that


has states with lower energies (“ghosts”), invalidating
the pseudopotential. This is usually treated heuristically, by
varying parameters in the pseudopotential construction to
avoid the appearance of ghosts.

The procedure outlined above is the basis for the
construction of the historically successful Troullier–Martins
and RRKJ pseudopotentials. More modern pseudopotentials
try to reproduce more than one state per angular
momentum. This is especially useful for highly-localized
valence orbitals (like the 2p orbitals of oxygen), or
semicore orbitals, which are not well isolated from the
valence orbitals. In this case, one cannot use the semilocal
form (7.54), because no single potential Vℓ can reproduce
all the pseudo-orbitals at the required energies. However,
the form (7.55) naturally generalizes to this case: we seek a
low-rank potential such that 
for i = 1, …,
nℓ, and obtain

(7.56)

where the βnℓm are defined as above, and

From the generalized norm-conservation property (7.53),

, and it follows that B is Hermitian.



The scheme above was used by Hamann [74], who
constructed pseudo-orbitals satisfying the generalized
norm-conservation property (7.53). That work built on an
earlier method of Vanderbilt, the “ultra-soft
pseudopotentials”, which relaxed the constraint (7.53) by
introducing a modified inner product in which (7.53) holds,
resulting in a generalized eigenvalue problem.

An alternative to norm-conserving or ultra-soft
pseudopotentials is the projector-augmented wave (PAW)
method of Blöchl [18], which uses a transformation that
allows the recovery of the original all-electron orbitals. This
is especially useful for probing properties that depend on
fine details of the electrons close to the nuclei, such as
nuclear magnetic resonance effects [112], but comes at the
price of a more complex formalism, the response
computations in particular being much more cumbersome.

Also notable is the “black-box” approach used in [70,
76], where a very simple functional form for the local and
nonlocal part of the pseudopotential is postulated, and its
parameters adjusted by least-squares fitting to a number of
desirable properties, such as the eigenvalues εi and norm
conservation.

Despite being extremely successful in practice, the
various pseudopotential methods remain uncontrolled
approximations which are not systematically improvable.
For a given density functional, they are often the major
source of variation between computational codes [89].
Their error analysis is still underdeveloped; see [30] for the
existence of norm-conserving pseudopotentials which
optimally reproduce the first-order Stark effect, and [51]
for an analysis of the PAW method for a particular one-
dimensional system.

7.5 Algorithms



The development of algorithms for solving Kohn–Sham
problems in quantum chemistry, on the one hand, and
condensed matter physics, on the other hand, has followed
two different paths. Until the mid 90s and the introduction
of hybrid functionals, DFT was barely used in quantum
chemistry, while the Hartree–Fock model was very popular,
on its own—in the early days—or as a first step toward
correlated methods (Møller–Plesset perturbation theory,
coupled cluster, quantum Monte Carlo…). From a
mathematical viewpoint, the Hartree–Fock and zero-
temperature standard Kohn–Sham model are very similar:
they are minimization problems on the same sets (orbitals
or density matrix formulations), and the energy functionals
only differ by the exchange-correlation term, which is in
some sense a “small” perturbation of the other three terms
(kinetic energy, electrons-nuclei interaction, and Hartree
term). It was therefore natural for quantum chemists to try
and adapt to the Kohn–Sham setting the many algorithms
for Hartree–Fock problems discretized in Gaussian basis
sets developed since the 50s.

In parallel, in the mid 60s physicists started to develop
algorithms for solving Kohn–Sham LDA and GGA models for
solids discretized in plane-wave basis sets, and came up
with specific techniques such as Anderson’s density mixing
[5], Thomas–Fermi charge mixing [119], Kerker’s
preconditioning in Fourier [81] or real [130] spaces, etc.

From a numerical point of view, solving the Kohn–Sham
problem for molecules in a Gaussian basis set or for solids
in a plane-wave basis set are quite different games. In
particular,

the self-consistent Hamiltonians in quantum chemistry
tend to have a gap between occupied and virtual states,
whereas that is not the case for metallic solids and
numerical devices such as an artificial finite temperature
are needed;



the Kohn–Sham Hamiltonian of a large molecule is sparse
and can be stored in memory for a Gaussian basis set,
while it is dense and too large to be stored in memory for
a plane-wave basis set (only matrix-vector products can
be computed in practice);
the number of discretization functions per electron pair is
of the order of 2 to 10 for Gaussian basis sets, and
typically 100 or more for plane-wave basis sets;
Gaussian basis sets tend to become overcomplete when
the size of the basis set increases (i.e. the overlap matrix
becomes ill-conditioned), while plane-wave bases remain
orthonormal when the energy cut-off increases.

This can explain why the two communities barely
interacted until the beginning of the 21st century. The
situation is rapidly changing since quantum chemists and
materials scientists now share many common interests:
hybrid functionals originally developed in quantum
chemistry are now used in materials science, quantum
chemists simulate extended systems to study, for example,
heterogeneous catalysis…

In the following, we will consider the zero-temperature
standard Kohn–Sham problem, which can be formulated
either as

(7.57)

or

(7.58)

where we recall that 
. Both formulations
are useful in different contexts. The first stores N orbitals
of size Nb, and is therefore more economical. However, it
breaks a natural symmetry of the problem. Indeed, the



energy does not depend on the orbitals themselves, but
rather on the subspace they span:

Density matrices quotient this gauge invariance
automatically, and are therefore more convenient to work
with theoretically. They are also useful in formulating
linear scaling methods. However, they require storing and
operating with an Nb × Nb matrix, which is prohibitively
expensive when large basis sets are used. It is often most
convenient to formulate and analyze the algorithms using
density matrices, but implement them using orbitals and
related quantities (such as the density ρ and self-consistent
potential V ). We follow this viewpoint in this presentation.

We will first describe in Sects. 7.5.1 and 7.5.2 the
different algorithms used to solve the above problem in its
density matrix formulation, without consideration of their
community of origin, implementation or computational cost.
Then, in Sects. 7.5.3 and 7.5.4, we will consider their
implementation in the quantum chemistry and solid-state
contexts respectively.

In order to lighten the notation, we assume throughout
this section that the discretization basis Ξ is orthonormal,
and we will omit the superscript Ξ in the expressions of the
core Hamiltonian hΞ, the linear map GΞ defined in (7.17),
the discretized Hartree–Fock energy functional 
, etc.

7.5.1 Self-Consistent Field Algorithms

7.5.1.1 Simple SCF and Damping

As mentioned above, the main algorithms for solving the
Kohn–Sham problem in quantum chemistry were originally
developed for the Hartree–Fock (HF) model. In the HF
setting, the energy functional 
is given by (7.16). When
the no-unfilled shell property holds true (which is always



the case for spin-unrestricted models, see Sect. 7.2.4), the
ground state density matrix satisfies

(7.59)
where

where 
is the Fock matrix
(the HF Hamiltonian matrix) and μ a Fermi level, which
depends on P and is chosen so that 
.
One way to compute 
for a given 
, is to
assemble the matrix HHF(P), diagonalize it, and compute
the orthogonal projector on the space spanned by N
orthonormal eigenvectors associated with the lowest N
eigenvalues (counting multiplicities). It is efficient for small
or moderate size basis sets, but other methods must be
used for large systems and basis sets. The function


is not uniquely defined if the Nth and (N + 1)st
eigenvalues of HHF(P) are equal, but it is in the
neighborhood of any ground state density matrix by virtue
of the no-unfilled shell property.

Self-consistent field algorithms for HF are iterative
algorithms aiming at solving (7.59). The simplest of them is
the Roothaan algorithm [125] defined by

(7.60)
This algorithm, as well as the level-shifting algorithm [127],
has been analyzed in [28] from a mathematical point of
view. Introducing the symmetric functional


defined by

it can be easily checked, using the symmetry property

, that, in the case when the



sequence of density matrices generated by the Roothaan
algorithm is well defined, it satisfies for all 
,

In other words, the simple SCF scheme amounts to an
alternate minimization of the functional EHF on


. It behaves as follows:
either the whole sequence 
converges to the global
minimizer of the Hartree–Fock model;
or the sequences of even and odd iterates 
and


both converge, but to different values Peven and
Podd, none of them being a minimizer of the Hartree–Fock
energy functional.

The latter behavior is called charge sloshing in the physics
and chemistry literature: when k is large (close to
convergence), the electronic density 
moves from one
part of the molecule for k even to another one for k odd
(e.g. from a functional group to another one) and back at
the next iteration. This phenomenon is also encountered for
isolated atoms where charge sloshing between e.g. 3d and
4s shells can be observed.

Let us now turn to the adaptation of this algorithm to
the Kohn–Sham model. We assume that at each step of the
algorithm under consideration there is a gap between the
Nth and (N + 1)st eigenvalues of the Kohn–Sham
Hamiltonian 
, uniformly bounded from
below by a positive constant independent of k (uniform
well-posedness—UWP—assumption). The Roothaan
algorithm for Kohn–Sham, also called the simple SCF
algorithm in the physics literature, reads

(7.61)
where, under the UWP assumption,



where μ is chosen as above. In the special case of the
Hartree model, for which the exchange-correlation energy
functional is set to zero, the energy is quadratic in the
density matrix and this algorithm behaves as in the HF
setting (convergence or oscillation between two states
which are not solutions to the problem). For a non-
quadratic exchange-correlation functional, the iterates can
oscillate between more than two states, or even display
chaotic behavior for some systems [37].

A way to prevent charge sloshing is to use simple
mixing, for which the iterates are defined as

(7.62)

where 
and 0 < α < 1 is a fixed mixing parameter (α 
= 1 corresponds to the simple SCF scheme, in which case


for each k). Note that unlike the Pk’s, the iterates

in (7.62) do not live on 
but in its convex hull


. From a geometrical viewpoint, 
is the
point P on 
, and also actually in 
, for
which the slope at t = 0 of the function

is minimal, linking the mixing scheme with the Frank–Wolfe
algorithm popular in convex optimization [108]. In
particular, this implies that the energy 
decreases
along the iterations, for 0 < α small enough. Under the
UWP assumption that there is a uniform positive gap
between the Nth and (N + 1)st eigenvalues of the Kohn–
Sham Hamiltonians 
and regularity
assumptions on 
, it can be shown that this algorithm
“numerically converges” (in the sense that Pk+1 − Pk → 0
and 
) and that the limit (if the iteration actually



converges) is a critical point—a local minimizer in practice
—of 
on 
as well as a critical point—a local minimizer
in practice—of 
in 
[25].

Remark 7.1 
For a majority of chemical systems, it is
observed that the UWP assumption is satisfied for k large
enough, and that the iterates 
numerically converge
toward a local, hopefully global, minimizer of 
on 
.
However, for some systems, the iterates 
numerically
converge toward a local minimizer of 
which
does not belong to 
, in other words to a local
minimizer of the extended Kohn–Sham model with
fractional occupation numbers at the Fermi level, while the
iterates Pk do not converge in general. It can be argued
that for such systems, the standard Kohn–Sham problem is
not appropriate since the Kohn–Sham energy can be
lowered by allowing fractional occupancies.

The optimal damping algorithm [22] (ODA), also originally
introduced in the HF setting [27] based on ideas in [93], is
a variant of the simple mixing algorithm using an optimal
step αk:

(7.63)

with

(7.64)

A proof of numerical convergence of the ODA—still under a
UWP assumption—can be read in [25]. Stronger
convergence results require more information, such as
second-order conditions [37] or analyticity [90]. Note that
Remark 7.1 is also valid for ODA.

Remark 7.2 
Implementing the ODA algorithm for LDA or
GGA functionals does not require density matrices to be



stored: it suffices to store in memory electronic densities
and Kohn–Sham orbitals. This is of course very important in
practice since, for example, density matrices cannot be
stored for plane-wave calculations on large systems.

Even when it converges, the solutions to the self-consistent
Kohn–Sham equations obtained by the simple SCF scheme
sometimes correspond to critical points which are local,
non-global, minima, or to critical points which do not
satisfy the Aufbau principle. This situation is sometimes
encountered with GTO basis sets. Minimization based
methods such as the ODA seem to be free from such
problems. The main limitation of the ODA is that it may
converge very slowly in the vicinity of the solution.
Acceleration methods are then needed.

7.5.1.2 Anderson–Pulay Acceleration Schemes

Consider a function 
where 
is a Euclidean (or
Hermitian) space and the fixed-point problem: find x∗ in 
such that

(7.65)
Even when the convergence of the Picard iterations xk+1 = 
g(xk) locally converge, convergence may be very slow. The
original formulation of the Anderson acceleration scheme
[5], introduced in 1965, is:

(7.66)

where the coefficients θk,i,∗ satisfy 
and are
obtained by solving

(7.67)



which has the structure of a linear least-square problem.
When mk = k for all k, the scheme is called Anderson
acceleration without truncation. An additional mixing step
can be added, in which case the iterates are defined as

(7.68)

where βk > 0 is allowed to vary with k (the original
Anderson acceleration scheme corresponds to βk = 1 for all
k).

When applied to the affine function g(x) : (A + I)x − b
where 
and 
, the Anderson method is
equivalent to the GMRES algorithm [126] for solving the
linear system Ax = b, provided Anderson’s iterates do not
stagnate [124, 142]. It can thus be interpreted as a
nonlinear version of GMRES (although less robust than
GMRES in the linear case). It can also be interpreted as an
extrapolation method [20].

Anderson acceleration has been rediscovered a number
of times under various names, corresponding to different
interpretations: “multisecant Broyden” and “inversion in
the subspace”. Indeed, it has recently been understood that
the Anderson acceleration scheme can be seen as a special
instance of a family of algorithms called Anderson–Pulay
schemes [43]. This family also includes Pulay’s Direct
Inversion in the Iterative Space (DIIS) schemes [116, 117]
originally introduced to solve the Hartree–Fock equations
(7.59), and widely used as well to solve the Kohn–Sham
equations. This approach is often referred to as the Pulay

mixing in the condensed matter physics literature. Note
that Pulay’s first DIIS scheme [116] is in fact identical to
Anderson acceleration scheme, while Pulay’s second DIIS
[117] (also called C-DIIS, for commutator-DIIS) does not fit
into Anderson’s framework. In their most general



formulation, Anderson–Pulay schemes are designed to
accelerate local convergence toward a point x∗ of a
function g, which may, as for Hartree–Fock and Kohn–
Sham models, take its values in a differentiable
submanifold 
of the Euclidean space 
. We therefore
assume, following [43], that
A1.


is a Euclidean space, 
is a differentiable
submanifold of 
, 
, U is an open
neighborhood of x∗ in 
, and 
is a
function of class C2 satisfying g(x∗) = x∗;

 

A2.
There exist a Euclidean space 
, and a C2 function


satisfying the following properties: f(x∗) = 0
and there exists a constant σ > 0 such that

(7.69)

 

From Assumption A2, we have that for all 
, f(x) 
= 0 if and only if x = x∗. The function f can in fact be
interpreted as a residual function: 
provides an
upper bound of the distance from x to the solution x∗.

In Pulay’s schemes, 
, 
, g is the
Hartree–Fock or Kohn–Sham map 
or 
,
and the residual function f is defined as

the natural residual map f(P) = g(P) − P in the first
scheme [116];
the commutator f(P) = [H(P), P] in the (more efficient)
second scheme [117]. This is indeed a legitimate residual
map in view of (7.39).

There exist several formulations of the Anderson–Pulay
scheme differing by the way the previous iterates are taken
into account. In the fixed-depth Anderson–Pulay scheme
implemented in most electronic structure codes, the depth



mk is chosen equal to 
, where mmax a fixed
number, typically mmax = 20, chosen empirically to optimize
the performance of the algorithm in both computational
time and memory requirement. Restarted versions [12,
114] have also been proposed. We detail here the recently
introduced adaptive-depth formulation of the Anderson–
Pulay scheme [43], which seems to outperform the previous
versions:
1.

Initialization and first iteration:x0, 
, δ ≥ 0
and η > 0 being given, set

 

2.
Subsequent iterations: while ∥rk∥2 > η do

a.
solve

(7.70)

and set

 

b.
set  

c.
set mk+1 the largest integer 
such that for k + 1 − m ≤ i ≤ k, δ∥ri∥2 < ∥rk+1∥2

 
d.

set k = k + 1.  

 



Taking δ = 0 gives back the usual fixed-depth scheme. For
δ > 0, the depth mk+1 is adjusted so that the residuals at the
previous mk+1 residuals are not too large compared to the
current residual rk+1. In view of (7.69), this ensures that
the previous mk+1 iterates are not too far away from the
current iterate xk+1. This scheme can be proved to
converge superlinearly under some assumptions on f and g
[43].

Numerically, this procedure is often very efficient, and
can converge quickly even if the underlying fixed-point
iteration 
is divergent. It however lacks in
robustness when started far away from a solution.

7.5.1.3 Newton and Quasi-Newton Methods for

the SCF Equations

Problem (7.59) can also be seen as a nonlinear equation

to which the standard Newton method can be applied:

where Dk solves the correction equation

(7.71)
and Jk is the Jacobian of 
at Pk.

However, a practical limitation of Newton’s method is
the high cost of evaluating the Jacobian and solving the
Newton correction equation (7.71). One workaround is to
use a Jacobian-free Krylov–Newton technique [83] and
solve (7.71) iteratively using, for example, the GMRES
algorithm [126]. The matrix vector multiplication of the
form JkD, which is required in each GMRES iteration, can
be computed using methods similar to those used to



compute response properties (see Sect. 7.2.5), or simply
approximated by the finite difference formula

for an appropriately chosen small scalar t. The finite
difference calculation requires one additional function
evaluation of 
per GMRES step. Therefore, even though
Newton’s method may exhibit quadratic convergence, each
Newton step may be expensive if the number of GMRES
steps required to solve the correction equation is large.
Numerical experiments presented in [62] show that without
a good preconditioner, too many GMRES iterations are
needed to ensure convergence.

Quasi-Newton methods can also be used, where the
inverse Jacobian (1 − Jk)−1 is approximated by a simpler
matrix Bk. For instance, the simple mixing scheme above
corresponds to Bk = αI. More sophisticated schemes can be
obtained by using variants of Broyden’s method [21, 79,
135], which builds the Bk from previous iterates. In such an
approach, Bk is obtained by performing a sequence of low-
rank modifications to some initial approximation B0 of the
Jacobian inverse using a recursive formula. One particular
choice among several is [57, 103]

(7.72)

where Bk−1 is the approximation to the Jacobian inverse
constructed in the (k − 1)st Broyden step. The matrices Υk

and Yk above are defined as

(7.73)
where sj and yj are defined by



respectively. Here the residual matrices are given by

and the 
notation is used to turn a

matrix into a vector by stacking its columns on top of each
other. The equation Υk = BYk is the multisecant condition
and imposes the consistency of the inverse Jacobian with
the observed relationships between the Pj and R(Pj).

It is easy to show that the solution to (7.72) is

(7.74)

where 
denotes the pseudo-inverse of Yk. If Bk−1 is reset
to αI, we obtain Anderson’s method

(7.75)
commonly used in KSDFT solvers [5].

7.5.2 Direct Minimization

Instead of solving the HF equation (7.59) by an SCF
algorithm, the HF ground state can be obtained by direct
minimization of the HF energy functional. A quadratically-
convergent algorithm, consisting in obtaining Pk+1 by
performing one Newton step in the local map 
defined
by (7.28)–(7.29), was proposed by Bacskay in [10]. Trust
region methods were introduced to the Hartree–Fock
setting in [60, 137].

Because the Kohn–Sham problem is a constrained
minimization problem as indicated in Sect. 7.2.3, we can
try to solve the optimization problem directly. The simplest
type of optimization procedure is the projected gradient
algorithm

(7.76)

where 
and where [[H(Pk), Pk], Pk] is the
projected gradient on the tangent space to 
at Pk, and



α is a line search parameter chosen to reduce 
along
the projected gradient. A simple and often effective linear
search strategy is the Barzilai–Borwein (BB) strategy [15].
As soon as P moves away from Pk along the projected
gradient, it violates the idempotency constraint. To bring


back to the manifold 
and obtain Pk+1, a
retraction (also called purification) step is performed. The
algorithms proposed in [31, 128, 149] are examples of this
approach.

As usual in optimization methods, several strategies can
be employed to enhance convergence. First, the quality of
the search step can be improved using a preconditioner [3,
107], although the design of good preconditioners is less
explored than for SCF algorithms [7]. Second, information
from past iterations can be used to obtain curvature
information, using for instance the conjugate gradient or
the L-BFGS algorithm [1]. Finally, Newton’s method can be
used, yielding the QC-SCF algorithm [10].

Lastly, minimization algorithms can be combined with
the SCF idea. The basic representative of this class is the
ODA algorithm described above, where the SCF iteration is
used to generate a search direction in which an energy
minimization is performed. An extension of that idea is the
EDIIS algorithm, in which the minimization is performed on
a subspace using all past iterates rather than just a
segment [87].

7.5.3 Implementation for Molecular Systems

The Gaussian basis sets used in most quantum chemistry
packages are in some sense reduced bases: a very small
number of basis functions per atom are optimized on a few
reference simple systems (mostly isolated atoms) and are
then used to simulate a whole variety of molecular systems.
As a consequence, it is possible to simulate systems
containing a few hundred electrons in basis sets with a few



thousand elements. Density matrices can then be stored in
memory and optimized dense linear algebra packages can
be used to efficiently solve a generalized eigenvalue
problem at each iteration of the SCF cycle.

For most molecular systems and small to medium size
basis sets, an efficient iterative strategy to solve the Kohn–
Sham equations is [87]:

to make a few iterations of the EDIIS algorithm to ensure
a decrease of the energy;
to switch to DIIS to obtain fast convergence when some
coarse convergence threshold is reached.

On the other hand, existing algorithms usually perform
poorly for very large basis sets, giving rise to ill-conditioned
overlap matrices (“overcomplete” Gaussian basis sets).
This observation deserves a detailed mathematical analysis
that has not yet been made to our knowledge.

When the Fermi level is a degenerate eigenvalue of the
Kohn–Sham Hamiltonian, all the above described
algorithms break down. An extension of Bacskay’s
quadratically convergent algorithm [10] was introduced in
[26]. It works well for small and medium size-systems but,
as for all Newton-type algorithms, cannot be applied to
large systems.

7.5.4 Application to Condensed Matter

We first note that condensed-matter models are often
formulated using a finite temperature T = 1∕β (setting to 1
the value of the Boltzmann constant kB). This is usually not
to capture physical effects due to the influence of the
temperature on electronic properties (usually negligible at
room temperature since the energy scale of the electrons is
much larger than that of thermal fluctuations), but a
numerical device to accelerate the convergence of
properties of metallic infinite systems with respect to the



supercell size. Indeed, metals present strong long-range
correlations, and the convergence of properties with
respect to the supercell size L is slow (1∕L for naive
methods). Adding an artificial temperature introduces an
exponential locality, and improves this to exponential
convergence [36], at the price of slightly distorted
properties.

As mentioned in Sects. 7.2.2 and 7.2.4, the fixed-point
equation at finite temperature takes the form

where the Fermi level μ is chosen such that 
.
The fixed-point mapping 
is well-defined even in the
absence of a gap, as there is no notion of “occupied” or
“virtual” states (but only partially occupied states).

Planewave expansion, finite difference and finite
element methods are often used to discretize the Kohn–
Sham problem for condensed matter systems. In these
approaches, the number of degrees of freedom per electron
pair is often over 100. The dimension of the Hamiltonian Nb

is therefore much larger than the number of occupied
states N. For large systems that contain many atoms (in a
unit cell), it is generally not practical to form and work with
the density matrix P directly, and only orbitals, densities,
and potentials are manipulated directly. This feature makes
the implementation of SCF and minimization algorithms
somewhat different from those discussed in the previous
section. We will highlight some of these differences in this
section.

7.5.4.1 Charge Density Mixing and

Preconditioning

When the exchange-correlation functional is an explicit
function of the charge density ρ (i.e. for LDA or GGA), the



ground state density ρGS satisfies a Kohn–Sham equation of
the form

(7.77)
Consequently, SCF iteration and acceleration techniques
can be designed to find the fixed point of 
.

At a finite temperature T = 1∕β, and in a real-space grid
representation, 
has the form

(7.78)

Here diag(⋅) denotes the diagonal elements of a matrix, and
I is the identity matrix. The map 
is well defined even if
H[ρ] has degenerate eigenvalues near the Fermi level μ,
which is chosen to ensure that

(7.79)

The Hamiltonian H[ρ] is the discrete counterpart of the
continuous Kohn–Sham Hamiltonian

where the Kohn–Sham potential vKS[ρ] is the sum of the
fixed nuclear (pseudo-) potential and the density-dependent
Hartree and exchange-correlation potentials:

GL being the periodic Couloumb kernel defined in (7.52).
In practice, the solution (ρ, μ) to the coupled Eqs. (7.78)

and (7.79) is obtained in an alternating fashion. For a fixed
μ, we may update ρ by a simple SCF iteration



(7.80)
starting from an initial guess ρ0. For each fixed ρk, a
bisection method can be used to find the solution to (7.79)
since the right-hand side of (7.79) is monotonic with
respect to μ.

The SCF iteration can be viewed as a fixed point
iteration applied to the Kohn–Sham map. To analyze the
convergence of the SCF iteration and develop acceleration
strategies, it is useful to examine the Jacobian associated
with 
, which we denote by 
.

Introducing the potential-to-density map

where T is the kinetic-energy matrix, we have

and it therefore follows from the

chain rule that

(7.81)

where the first term on the right-hand side of (7.81) is the
functional derivative of 
. Its value at the ground-state
Kohn–Sham potential is the irreducible (or independent-
particle) polarizability

of the system. At the continuous level, its kernel is given
by

(7.82)

where the εm are the eigenvalues of the Kohn–Sham
Hamiltonian 
, φm an orthonormal basis of



associated real-valued eigenfunctions, and
(7.83)

is the occupation number associated with εm (by
convention, (fm − fn)∕(εm − εn) = f′(εm) if εm = εn).

The second term in (7.81) is the functional derivative of
vKS[ρ], and its kernel is given by

(7.84)

where GL is again the periodic Coulomb kernel defined in
(7.52). The second term on the right-hand side, which is
called the exchange-correlation kernel, is the functional
derivative of the exchange-correction potential with respect
to ρ, which (at least formally) defines a self-adjoint
operator. We denote it by Kxc(r, r′).

Subtracting the exact solution ρ to (7.77) from both
sides of (7.80), and performing a Taylor expansion of 
at
ρk up to the first order yields

(7.85)
where 
is the Jacobian of 
evaluated at ρk.
Therefore, when ρk is sufficiently close to the exact
solution, the fixed point iteration (7.80) converges if the
spectral radius of 
, denoted by 
, is less
than 1 for all k’s. However, this condition does not usually
hold. In this case, the simple mixing scheme introduced in
(7.62) can be used to update ρ by

(7.86)
where 0 < α < 1 is a mixing parameter. From linear stability
analysis, when ρk is sufficiently close to the exact solution
ρGS, simple mixing will lead to convergence if



(7.87)
where 
is known as the dielectric operator
(function) in the physics literature. It can be shown that,
when ρGS is an energy minimum, the eigenvalues of


are positive, and therefore it is always possible to
choose an α so that (7.87) holds [37]. However, such a
choice may lead to slow convergence, depending on the
conditioning of 𝜖.

To analyze this it is convenient to neglect the Kxc term,
an often reasonable assumption known as the random

phase approximation, 𝜖 ≃ 𝜖RPA := 1 − χ0vH. The eigenvalues
of this operator are easily seen to be greater than one, so
that ill-conditioning can only appear through large
eigenvalues (for more complicated situations where the
random phase approximation is too crude, such as systems
close to magnetic phase transitions, small eigenvalues of 𝜖
can also be problematic). These large eigenvalues can be
caused either by large eigenvalues of χ0, which are by
(7.82) related to small gaps, or by large eigenvalues of vH.
From the expression (7.52) of GL in Fourier space, it can
easily be seen that the divergences of vH are related to
long-wavelength modes. Both these types of divergences
can lead to the phenomenon of charge sloshing, wherein
the density undergoes large oscillations during the
iterations.

The behavior of 𝜖 for large systems in the random phase
approximation is markedly different depending on its
physical nature. In insulators, the long-wavelength
divergence of the Coulomb potential is compensated by χ0,
so that 𝜖RPA is bounded independently of the system size
[29]. It follows that charge sloshing is absent, and such
systems are usually found to converge quickly. On the other
hand, for metals, χ0 does not compensate for the



divergence of vH, and charge sloshing hampers
convergence. A simple model for this divergence is the case
of the homogeneous electron gas, where vKS is constant. In
this case, χ0 is a multiplication operator in Fourier space,
characterized by its multiplier 
, which can be
computed explicitly [66]. It can in particular be seen that


approaches a negative constant − ζ as q → 0, where
ζ is proportional to the inverse square of the Thomas–Fermi
screening length. 𝜖HEG is therefore a multiplication
operator in Fourier space, such that 
for low
q.

In the case of the homogeneous electron gas, the
appropriate iteration scheme is then the preconditioned
iteration

(7.88)
with K a fixed preconditioner, given as a multiplication in
Fourier space by

a choice known as Kerker preconditioning [81]. When
combined with Anderson–Pulay acceleration, this has been
found to be very efficient in practice for a wide range of
metals, and is the default iteration scheme in most plane-
wave codes. A mathematical proof of the independence of
the convergence rate of (7.88) on the system size in the
reduced Hartree–Fock model can be found in [91]. For
general systems, and in particular those containing hybrid
insulating/conducting character, finding an efficient
preconditioner is still a challenge; see [96, 151] and [144]
for a review. Very recently, an inexpensive and parameter-
free preconditioner based on the local density of states has
been introduced [77]. It is based on a physically motivated



approximation to the independent-particle susceptibility
operator, and its efficiency has been demonstrated on
several heterogeneous systems such as clusters and
surfaces.

7.5.4.2 Iterative Diagonalization

An accelerated fixed point iteration for seeking the solution
of (7.77) requires evaluating the Kohn–Sham map 
at
each ρk. This evaluation is often performed by making use
of spectral decomposition H(ρk) = U ΛU∗, where U contains
the eigenvectors of H(ρk) and 
contains the corresponding eigenvalues. Using such a
decomposition, we can write 
as

(7.89)

where fm is the occupation number defined in (7.83), and
φm is the mth column of U.

Because the dimension of H (Nb) can be extremely large,
using full diagonalization algorithms for dense matrices
implemented in LAPACK [6], ScaLAPACK [17] or ELPA
[102] can be prohibitively expensive. For large basis sets
such as planewaves and discretization methods based on
finite elements and finite differences, Nb is typically much
larger than the number of required eigenpairs, which is N
(at zero temperature), or slightly larger (in the usual range
of positive temperatures). Iterative eigensolvers such as
the Davidson–Liu algorithm [46, 99] or the locally optimal
block preconditioned conjugate gradient (LOBPCG)
algorithm [84] are then preferred. These iterative
eigensolvers can take advantage of an efficient
representation of H that allows the multiplication of H by
one or multiple vectors to be performed efficiently, through



fast Fourier transforms (plane waves) or sparse matrix
techniques (finite elements, finite differences).

One additional advantage of using iterative
diagonalization methods is that approximate eigenvectors
from the kth SCF iteration can be used as the starting
guess of eigenvectors for the (k + 1)st SCF iteration so that
only a few iterative diagonalization steps may be needed
per SCF iteration. This is certainly true when ρn has nearly
converged. But even when ρn is far from the solution at the
beginning of the SCF procedure, only a few iterative
diagonalization steps are needed to yield approximate
eigenpairs. This is due to the fact that in the first few SCF
iterations, the error in nonlinear Eq. (7.77) is still relatively
large. Hence, as long as the error in 
evaluation is less
than the difference between ρ and 
even when the
latter is evaluated exactly, the convergence of the SCF
procedure can still be achieved in subsequent iterations.

Another way to evaluate 
is to apply a subspace
iteration to Td(H[ρ]) where Td(t) is a d-th degree scaled and
shifted Chebyshev polynomial of the second kind that
satisfies the property

This technique was pioneered in [152, 153], and is now
widely used in a number of software tools. At zero
temperature, the subspace iteration converges to an
approximate invariant subspace spanned by eigenvectors
associated with the lowest N eigenvalues. The vectors ui, i 
= 1, 2…, N, used in (7.89) do not need to be eigenvectors.
Any basis of the invariant subspace suffices. At finite
temperature, only a small fraction of the eigenpairs of H
corresponding to eigenvalues slightly below and above μ
are computed using the method presented in [11, 106].



For large problems consisting of many atoms, the cost of
an iterative diagonalization procedure is dominated by the
computation required to obtain orthonormalized basis
vectors of the desired subspace and extract eigenvalue and
eigenvector approximations from such a subspace. The
complexity of this computation is typically 
.
Furthermore, some of these computations do not scale to a
large number of processors on a massively parallel
computer. The recent effort in developing spectrum slicing
algorithms has the potential to address this issue, but
requires solving difficult interior eigenvalue problems.

Methods for reducing the 
have also developed
since the 90s. These methods often try to approximate the
matrix function 
directly through either
polynomial or rational expansions [14, 67–69, 85, 92, 98].
Some of these methods can scale linearly with respect to N,
although with a large prefactor. Details of these methods
can be found in the contribution by Lin et al. (Chap. 8).

7.5.4.3 Computing the Hartree and Fock

(Exact) Exchange Potential

When the Kohn–Sham equations are discretized by GTOs
for molecular systems, both the Hartree and the Fock
(exact) exchange potentials are computed by using the two-
electron integrals (7.13) evaluated in advance or on the fly.

When the problem is discretized by a large basis set
such as planewaves, the Hartree potential vH[ρ] is obtained
by solving the periodic Poisson problem − ΔvH[ρ] = 4πρ in a
unit cell by using FFT. In a continuous formulation, the
non-local Fock exchange potential is defined (at zero
temperature for simplicity) as

(7.90)



where φi(r), i = 1, 2, …, N are the occupied Kohn–Sham
orbitals, and GL(r, r′) is the periodic Coulomb kernel
defined in (7.52). When an iterative diagonalization method
is used to compute the desired eigenpairs, we need to find
a vX which can be efficiently applied to a set of N
wavefunctions, i.e.,

(7.91)

For each j, N integrals on the right-hand side of the above
equation can be evaluated by performing N cyclic
convolutions via FFTs. Since j = 1, 2, …, N, the total number
of FFTs that need to be performed is 
. An efficient
low rank approximation technique called interpolative
separable density fitting (ISDF) [78] has recently been
developed to reduce the number of FFTs to a small multiple
of N by constructing a set of numerical auxiliary basis
functions that nearly span the same subspace as φi(r)φj(r),
for i, j = 1, 2, …, N. Furthermore, by recognizing that the
application of vX to {ψj}, j = 1, 2, …, N, only needs to be
correct in the space spanned by {ψj}, further reduction in
complexity can be achieved in the ISDF construction of the
vX operator through a technique called the adaptively
compressed exchange operator [97]. The technique of
using a small set of auxiliary basis functions to compactly
represent pair product basis functions (to reduce the cost
of the Fock exact exchange calculation) is also known as
resolution of identity or density fitting in general. (See the
review article [123] and the references therein.)

7.5.4.4 Direct Minimization

The algorithms in Sect. 7.5.2 can be adapted to the
condensed matter setting by using orbitals. The basic



gradient algorithm then takes the form

where R(Xk) is the residual that takes the form of
(7.92)

followed by an orthogonalization step; choices include
standard orthogonalization methods (based on the Gram–
Schmidt, Cholesky or singular value decomposition
algorithms), as well as the so-called WY update [143].

However, the separation of line search and the
orthonormalization procedure used to keep X feasible is
suboptimal. A better strategy is to carry out these two tasks
simultaneously in a constrained optimization framework.

In order to do that, we express Xk+1 as
(7.93)

where G1, G2 and G3 are N × N real matrices to be
determined, and where 
is a preconditioner. We
choose these matrices by solving the following constrained
minimization problem

(7.94)

where Y = (X(k), K−1R(X(k)), X(k) − X(k−1)) and

. This approach is referred to as a direct

constrained minimization (DCM) method in [146]. It is a
nonlinear extension of the locally optimal block
preconditioned conjugate gradient (LOBPCG) method [84].
When Pk−1 term is not included in (7.93), the DCM
algorithm can be viewed as a nonlinear extension of the
Davidson–Liu algorithm [99] for solving a linear eigenvalue
problem. The problem (7.94) is of reduced size, that can be



solved using stabilized SCF algorithms for instance; we
refer to [146] for details.

Faster convergence can be achieved by a Riemannian
Newton’s method [1, 150] that preserves the
orthonormality constraint while minimizing the total energy
objective function. The key step in the Newton method is to
compute the Newton search direction by solving the
following equation

(7.95)

where D2E(X(k)) is the Hessian of E at X(k) restricted to the
manifold 
associated with the orthonormality
constraint in (7.57), and ∇E(X(k)) is the projected gradient
along the tangent of this constraint. Although it is not
practical to write down the Hessian and solve the Newton
equation to high accuracy, the Hessian does have a special
structure that allows one to multiply it by a vector
efficiently. This structure is described in [62, 100]. An
iterative method can be used to solve the Newton equation
to obtain a search direction ΔX(k) that satisfies

(7.96)

where σ is a dynamically chosen parameter. Even though
Newton’s method can yield quadratic convergence, each
step of the method requires a large linear system of
equations to be solved. Without a good preconditioner, the
cost for obtaining a good solution can be high. Constructing
a good preconditioner is not trivial.

The approach discussed above is applicable to Kohn–
Sham models at zero temperature. At finite temperature,
we minimize an objective function similar to the one given
in (7.22). In addition to optimizing with respect to the
wavefunction X, we also need to optimize the occupation
numbers. An efficient algorithm for solving this



optimization problem is given in [140]. Similar algorithms
which optimize (7.22) with respect X and the occupation
numbers simultaneously can be found in [61, 104].

7.5.4.5 Stopping Criteria

When an iterative algorithm is designed to solve (7.77), a
natural stopping criterion at step k is

(7.97)

where τ is some user specified error tolerance. A similar
criterion can be used to check the convergence of the
potential that depends on ρ. Although such a criterion does
not guarantee the convergence of ρ to the ground state
density, it does allow us to check the self-consistency of the
approximate solution.

In a direct minimization approach, we can terminate an
iterative procedure if the Frobenius norm of the residual
R(X) defined in (7.92) is sufficiently small. Again, such a
stopping criterion does not guarantee X to be a global
minimizer. But it ensures that X is a self-consistent
approximation.

In the physics community, the difference between the
Kohn–Sham total energy evaluated at an approximate X and
an estimation known as the Harris–Foulke energy
functional [59, 75] defined in the real space as

where ρin is the input density, and ρout and Pout are the
output density and density matrix, is often used in a
termination criterion. When 
is the solution to



(7.77), EHarris–Foulke(ρ) is identical to the Kohn–Sham total
energy. However, in general, these two energy functions
are different. When ρin converges to the ground state
density, the difference between the two becomes smaller.

7.6 Error Analysis

The mathematical analysis of the error between the exact
solution to the Kohn–Sham model under consideration and
the numerical result obtained by discretization and an
approximately converged iterative algorithm encompasses
two frameworks: the a priori analysis, and the a posteriori
analysis.

The a priori analysis aims at answering two questions:
1. algorithmic error: does the solution algorithm

converge and how fast does it converge? The problems
we are interested in this chapter are indeed highly
nonlinear and thus iterative methods are needed; the
question is then to understand if the solution algorithm
converges when the number of iterations tends to
infinity and—if so—to estimate the number of iterations
necessary to reach a given accuracy. A related side
question is to understand the fundamental reasons why
different algorithms converge, and to identify key
quantities such as the condition number of a specific
matrix or the Lipschitz constant of some contraction
map which control the convergence rates of these
algorithms. Such an analysis then allows us to improve
the existing algorithms by modifying them by acting on
these key quantities, for example through the design of
preconditioners or accelerated algorithms. The
knowledge accumulated during the a priori analysis
may also lead to reformulations of the problem which
make it fall into a class of problems for which efficient

 



and robust algorithms already exist (e.g. write it as a
smooth convex minimization problem);

2.
discretization error: the goal is to prove that,
eventually, when the number of degrees of freedom
uniformly1 increases to infinity, then the discrete
solution converges to the exact solution in some sense.
In this case, the discretization method is called
systematically improvable. Such an analysis generally
provides a theoretical convergence rate, that is, a
lower bound of the asymptotic speed of convergence of
the error when the number of degrees of freedom
uniformly increases to infinity. The a priori analysis
helps us to choose the more appropriate numerical
discretization schemes for a given problem by
highlighting the link between the convergence rate of a
given discretization scheme and properties of the exact
solution such as its regularity. For instance, fixed (low)
order discretization methods (e.g. finite elements) are
generally indicated if the exact solution is globally not
very regular, whereas high (or infinite) order methods
(e.g. spectral or planewave methods) are generally
preferred when the exact solution and its derivatives
are uniformly bounded by well-controlled constants.

 

The a priori analysis allows us to build a first,
mathematically consistent, numerical strategy
(discretization and iterative algorithm) for solving the
problem under consideration, based on some qualitative
analysis: characterization of the class of problems this
specific problem belongs to, regularity of the exact
solution…

Let us mention the existence of other contributions (not
analyzed here) to the error between the exact solution and
the result of the numerical simulation, in particular (i)
finite arithmetics errors, which can become significant if



part of the calculation is done in single precision (which is
of upmost importance for hybrid architectures involving
GPUs), and (ii) implementation errors (bugs, which are
almost inevitable in software consisting of hundreds of
thousands lines of code). The model error, due to the fact
that the exchange-correlation functional used in the
calculation is an approximation of the true one, is of course
important as well, but is currently out of reach of the
mathematical and numerical analysis. The situation is
different for wavefunction methods (e.g. configuration
interaction or coupled cluster) for which estimating the
model error should be possible since the approximate
ground state wavefunction generated by these methods can
be used to define a residual for the exact N-body
Schrödinger equation. Some preliminary works in this
direction are in progress.

In contrast with the a priori analysis, the a posteriori
analysis aims at answering more practical questions: what
is the size of the error between the exact (unknown)
solution and the discrete solution that comes out of the
numerical simulation and what can be done to improve the
accuracy of the numerical result? By “size” we mean here
an upper (ε+) bound and a lower (ε−) bound of some
appropriate and relevant norm of the error such that ε+ − 
ε− is much smaller than ε+. Improved versions of this
analysis further provide “indicators” that help us to decide
what to do if these upper and lower bounds reveal that the
accuracy is not sufficient to answer the question motivating
the simulation. Examples are local a posteriori error
indicators pointing out where to refine the mesh in finite
element methods. This leads to adaptive schemes and to
non-uniform solution-dependent quasi-optimal meshes.
Other examples are iterative procedures in which the
discretization and algorithmic components of the error are
separately estimated at each iteration. This allows one to



adaptively refine the discretization when the SCF or
minimization algorithm gets closer to convergence, thus
avoiding costly calculations in large discretization basis
when the iterates are far from convergence. More
generally, error balancing consists in designing numerical
schemes which minimize the computational cost necessary
to reach a given accuracy, or, conversely, minimize the
error reachable at a given computational cost. A posteriori
error estimators of the various components of the error are
a key tool for the design of black-box error balancing
strategies.

Note that most of the time, what we are looking for is
not the knowledge of the global state (e.g. the Kohn–Sham
ground state density matrix) but the computation of some
properties or quantities of interest (e.g. the forces acting
on the nuclei) that are evaluated from the numerical
approximation of the global state. These quantities of
interest are generally expressed as functionals that are
continuous with respect to some norms. These are the
norms for which the a posteriori error analysis has to be
performed. Thus, estimates of the error on the global state
for these norms automatically give rise to estimates of the
error on the quantities of interest. Note that obtaining such
bounds on these quantities of interest generally requires
the introduction of auxiliary dual problems to obtain
convergence rates consistent with the ones observed in
numerical simulations, similar to the classical Aubin–
Nitsche methodology in finite element methods [55].

7.6.1 A Priori Error Analysis of a Simple Model

For the sake of pedagogy, let us explain the strategy on the
simple example of a one-dimensional periodic Gross–
Pitaevskii model. The equations have the same form as
those arising in Kohn–Sham DFT, with several important
simplifications: the state of the system is described by a



single orbital, the model is strictly convex in the density,
and the Aufbau principle always holds.

Let 
be the unit cell of the periodic lattice

of 
. The Sobolev spaces of 1-periodic functions (or

distributions) are defined for all 
by

For each 
, 
is a Hilbert space, whose norm

can be easily expressed in terms of Fourier

coefficients. Denoting by eK(x) = eiKx, 
, the 1-
periodic Fourier modes, any 
can be expanded as

and we can choose the following equivalent norm for

:

(7.98)

We also have

The one-dimensional periodic Gross–Pitaevskii problem
reads

(7.99)

where the energy functional 
is given by

(7.100)



where 
is a 1-periodic bounded function. Problem
(7.99) can be reformulated as

(7.101)

where we have introduced the function 
.
The energy 
is strictly convex and smooth, and it is

easy to prove that problem (7.101) has a unique solution
ρ0, which is continuous and positive on 
—hence bounded
away from zero since it is 1-periodic–, so that problem
(7.99) has exactly two solutions: 
and − u0; we
refer e.g. to [23] for a detailed proof of these results. The
Euler–Lagrange equation associated to this problem
involves an eigenvalue λ0 (the Lagrange multiplier of the
normalization constraint) and reads:

(7.102)

The variational formulation of the above problem is

(7.103)

Note that a solution u0 to the nonlinear eigenvalue problem
(7.102) may not be a minimizer of (7.99), but, as in the
linear case, it will be if one of the following conditions is
fulfilled:

(u0, λ0) is a solution to (7.102) and λ0 is the smallest
eigenvalue of the nonlinear problem

(u0, λ0) is a solution to (7.102) and λ0 is the smallest
eigenvalue to the bounded-below self-adjoint operator
with compact resolvent 
.



The planewave approximation of this problem in the
discretization space

(see Sect. 7.3.2 for the 3D setting) is given by

(7.104)

which, obviously, has—at least—one solution. This states
the existence of a solution u0,N satisfying the constraint


, ∫Ωu0u0,N ≥ 0 (up to replacing u0,N by − u0,N),
and the variational equation

(7.105)

From convexity arguments, there exists a positive
constant α such that

(7.106)

Then let Π0,N be the orthogonal projector from 
to its
finite-dimensional subspace 
:

We deduce from the smoothness of the functional EGP that

for some constant 
independent of N. Together with
(7.106), this implies that 
converges to 0 as N
tends to infinity. This also implies that, in any small enough
neighborhood of u0, there exists a unique solution u0,N to
(7.104), provided N is large enough.



Our goal is now to compare the error between u0 and
u0,N (measured in the 
-norm) on the one hand, and
the error between λ0 and λ0,N on the other hand, with the
best fit error in 
realized by Π0,Nu0. To do this, we
reformulate the problem (7.105) solved by (u0,N, λ0,N) as a
nonlinear equation FN(u0,N, λ0,N) = 0, with


defined by

(7.107)

This has the property that FN(u0,N, λ0,N) = 0, and
furthermore

which is small. Now we can link the residual FN(u0, λ0) to
the error (u0, λ0) − (u0,N, λ0,N) by the expansion

(7.108)
By showing that [DFN(u0,N, λ0,N)]−1 is uniformly bounded
with respect to N (which follows from quite tedious
arguments, see [52] for details), and controlling higher
order terms, one obtains that there exists a constant


such that for N large enough

(7.109)

In the end, the convergence rate is thus only related to the
Sobolev regularity of the eigenfunction u0, which itself
depends of the regularity of the external potential V : if


for some σ ≥ 0, then 
by elliptic
regularity arguments. Since for all s > 1, we have



we obtain that if 
for some σ ≥ 0, then

(7.110)

for some constant 
independent of N. The above
estimate derived from (7.109) is optimal.

In contrast, the estimate on the eigenvalue error
obtained from (7.109) does not scale optimally. Indeed, in
the linear case

(7.111)
a quadratic convergence rate of the eigenvalue can be
established following the Hellmann–Feynman type
arguments in Sect. 7.2.5.

Using estimates à la Aubin–Nitsche in negative Sobolev
norms, this approach can be extended to the nonlinear case
of the Gross–Pitaevskii equation, yielding error estimates of
the form

(7.112)

It can also be established that
(7.113)

Similarly, other quantities of interest computed from
u0,N and λ0,N are at hand and (7.110) and (7.112) allow us
to derive a priori error estimates for these outputs.

Note that it is impossible to get accurate values of the
errors from the above estimates since the constants C, C′

and C″ in (7.110), (7.112) and (7.113) are not explicit,
depending on quantities such as the gap that are not known
a priori. This motivates the next section.



7.6.2 A Posteriori Error Analysis of a Simple

Model

We follow up with the same problem (7.102), but now, as
explained at the beginning of this section, we aim at an
accurate numerical value for the size of the error between
the exact solution (or quantity of interest) and the
computed approximate solution (or computed QOI), and not
a rate of convergence as the number of degrees of freedom
of the discrete problem and the number of iterations of the
SCF or minimization algorithm increase.

The general strategy to derive a posteriori error bounds
is somewhat similar to the one for a priori error bounds
described in the previous section. The difference is that it
involves a nonlinear function F whose root is the exact
solution: F(u0, λ0) = 0. Now the distance between some
approximate solution (u, λ) and the exact solution (u0, λ0) is
related to the size of F(u, λ). Indeed, similarly as in (7.108),
we have

(7.114)

and (u − u0, λ − λ0) behaves as DF(u0, λ0)−1F(u, λ), using
this time the fact that F(u0, λ0) = 0.

The definition of 
is

(7.115)

and we have, assuming that (u, λ) is close enough to (u0,
λ0) and neglecting higher-order terms,



Here, the approximate solution (u, λ) can be (u0,N, λ0,N)
(converged numerical solution in the discretization space


) for N large enough, but the argument also holds for
the kth iterate of a SCF or minimization algorithm in some
(possibly adaptively refined) discretization space.

Note that 
can be easily evaluated
in the Fourier representation using (7.98). To turn the
above inequalities into a practical tool to evaluate


, we need an accurate bound for the operator
norm of DF(u0, λ0)−1 or an estimate for


. For the sake of brevity, we will
not detail this quite technical point here and refer the
interested reader to [52]. The conclusion is that

with a constant 
which can be accurately estimated;
this is a fundamental difference between a priori and a
posteriori error bounds. As previously mentioned, the
evaluation of this H−1-norm of the residual λu +  Δu − V u − 
u3 is rather simple in the Fourier representation. Actually,
the analysis can be improved to decompose the error into
two terms: a discretization error due to the fact that u lives
in a finite-dimensional discretization space 
; an
algorithmic error corresponding to the fact that the SCF or
minimization algorithm has not yet converged to (u0,N,
λ0,N). The former component of the error vanishes in the
limit N →∞, the latter when the iterative algorithm has
converged in the current discretization space. This
decomposition leads to adaptive algorithms in which the
discretization space is increased as the SCF iterations
proceed. We refer to [52] for more details.

7.6.3 Extensions to the Kohn–Sham Problem



Let us continue now to the a posteriori analysis of the
Hartree–Fock and Kohn–Sham problems. The point is to
write these problems again under the formal form F = 0,
and an approximation like Fcut = 0 on the manifold

(7.116)

Due to the gauge invariance (7.14) of the Hartree–Fock or
Kohn–Sham energy, the ground state problems do not have
a unique solution and thus DF, at the ground state, is not
invertible: it has a Kernel within the tangent space to 
.
More precisely, for any 
we denote by


the tangent space at Φ to 
. It reads

Then, if we denote by

the set of all orbitals that are strongly orthogonal to Φ, we
have (see e.g. Lemma 4 in [101] and [53]) that

where 
is the space of the N × N
antisymmetric real matrices. The gauge invariance implies
that 
is a subset of the Kernel to DF. It is reasonable to
assume that this Kernel is restricted to 
. Now, if this is
indeed the case, due to the fact that the problem we are
considering is a minimization problem, the second order
condition further states

where for all Ψ = (ψ1, …, ψN)T and Υ = (υ1, …, υN)T in

,



Under the previous assumption that the Kernel to DF is
restricted to 
, this implies that 
is positive definite
on Φ0, ⊥ ⊥ , so that, using compactness arguments (see e.g.
Proposition 1 in [101]), one can deduce a stronger
statement: 
is coercive on Φ0, ⊥ ⊥ (for the 
norm), i.e.
the previous assumption is equivalent to assuming that
there exists a positive constant 
such that2

(7.117)

This coercivity constant appears in the upper bound of [DF(
Φ0, 𝜖0)]−1 so that, similarly as above, there exists an
orthogonal matrix U in O(N) such that

This orthogonal matrix U can be identified: let us denote by

the N × N matrix with entries

If 
is invertible, then 
.
Pushing the analysis further, it is proven in [101] that,

by using the coercivity property (7.117) we can actually
solve a simple linear problem, the solution of which is
named the reconstructed error, that can be used to



improve the accuracy of the initial solution 
. This
approach is of a similar nature as the two grids method in
[32] or [145] or the perturbative methodology in [33].

A last remark stands on the relative simplicity of the
periodic framework since the use of a Fourier basis allows
us to refer to the Fourier coefficients definition of the
norms that makes the H−1-norm above rather easily to
evaluate. In the non-periodic case, where such an easy
evaluation of the dual norm of the residual is not feasible,
for instance with a local basis of finite element
approximations, people classically refer to local
reconstruction of the residual by solving local problems
over patches of mesh elements that allows bounds to be
provided on the dual norm of the residual in a computable
way. We refer to [113] and [47, 48] for an original
approach to this theory of equilibrated fluxes, and to [34,
35] and [45] for applications to eigenvalue problems.

After these elements on “a posteriori analysis”, we can
proceed to “a priori analysis”.

We follow here the same lines as in the first subsection
above; we start by showing the existence of a discrete
solution in a neighborhood of a solution Φ0.

The analysis needs to be slightly more subtle since Φ0 is
not unique due to the already mentioned gauge invariance.
We have thus to work in the quotient space with respect to
this gauge condition.

First, we remark that any element 
can
be written as

(7.118)
where 
satisfies 
and
where, for any W, 
is a N × N
symmetric matrix. This provides an interesting
parametrization 
which allows us to translate the
original discrete minimization Kohn–Sham problem into a



minimization problem set over 
, which is
easier to work with, and show that there exists a unique
solution close to ΠN( Φ0) thanks to the coercivity of 
.
We refer to [24] for the details on this property.

This allows even more because, following the same
arguments involving the ground state energy as in the first
subsection above, an estimate that states

(7.119)

already shows some convergence that can further be used
in the next step.

Once a solution to the discrete problem is set, one can
actually perform the a priori analysis, i.e. the analysis of
the error between Φ0 and 
.

The basic tool is again related to the precise estimate of
the norm of 
which is derived from the
above estimate (7.117) on the norm of [DF( Φ0, 𝜖0)]−1 and
subtle inequalities to evaluate the non linear terms thanks
to (7.119).

We thus obtain
(7.120)

for some constant 
independent of N and σ related to
the regularity of Φ0 (see [24] for more results in this
situation).
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Footnotes
In this context, uniformly means that the discretization scheme is such that

there exists a non-increasing function 
going to zero at infinity such
that for any function v in the natural function space 
on which the problem is
set, for instance the space 
for the simple model considered in Sect.
7.6.1, the distance from v to its best approximation in a discretization space
with Ndof degrees of freedom is bounded by 
.

 
Note that, as is proven in [CCM], in the simplified linear framework:


, the coercivity condition (7.117) is satisfied if and only if
there is a gap 
between the lowest Nth and (N + 1)st eigenvalues of h.
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8.1 Introduction

The evaluation of the Kohn–Sham map is typically the
computational bottleneck when solving Kohn–Sham equations
for large and complex quantum systems (i.e. systems with
thousands to tens of thousands of atoms). The first two rungs
on the ladder of exchange-correlation functionals [47] comprise
the local and semi-local exchange-correlation functionals.
These functionals include local density approximation (LDA)
and generalized gradient approximation (GGA) functionals. The
effective Kohn–Sham potential Veff(ρ) and hence the
Hamiltonian depends only on the electron density ρ. Formally,
the density-to-density Kohn–Sham map can be written as

(8.1)

Here fβ(ε) = (1 + eβε)−1 is the Fermi–Dirac function, β is the
inverse temperature, and the chemical potential μ should be
chosen to satisfy the normalization condition (N is the number
of electrons)

(8.2)

The potential to density mapping is defined accordingly as

satisfying the constraint (8.2).


maps the effective potential (external potential due to
the nuclei, and the Hartree-exchange-correlation potential) to
the electron density. The third rung on the ladder of exchange-
correlation functionals are the meta-GGA functionals, of which
the treatment is similar to that of the GGA functionals.
However, meta-GGA functionals require some modification to
the Laplacian operator and will not be discussed here.

The main challenge is the cost of orthogonalizing the Kohn–
Sham orbitals. While such cost is often insignificant for small
systems, it scales cubically with respect to the system size, and
can quickly dominate the computational cost for large systems.
The orthogonalization procedure is essential in all
diagonalization-based methods, and leads to the “cubic scaling



wall”. As a result, any algorithm with improved computational
complexity must not perform an eigen-decomposition of the
Kohn–Sham Hamiltonian.

Kohn–Sham DFT calculations with nonlocal functionals, such
as rung-4 functionals (hybrid functionals) and rung-5
functionals, can be considerably more costly than calculations
with exchange-correlation functionals from the first three
rungs of the ladder. More specifically, Kohn–Sham equations
with local and semi-local functionals can be viewed as
eigenvalue problems corresponding to differential operators.
When a rung-4 functional is used, the Kohn–Sham Hamiltonian
operator becomes an integro-differential operator due to the
Fock exchange term. For rung-5 functionals, the self-
consistency is computationally rather challenging, and most
calculations are done as a post-processing step to obtain the
correlation energy as a perturbation to the self-consistent
solution for a semi-local functional. For rung-4 nonlocal
exchange-correlation functionals, since the effective potential
depends on the density matrix P, one needs to evaluate the
density matrix-to-density matrix (generalized) Kohn–Sham map

(8.3)

where Veff might be a non-local effective potential, and 
maps the effective potential to the density matrix P. Hence the
additional computational challenge of large scale Kohn–Sham
DFT calculations with nonlocal functionals is the efficient
evaluation of nonlocal exchange-correlation functionals.

There has been much progress in the past two decades
towards addressing the challenges of evaluating the Kohn–
Sham maps [2–4, 10, 16, 17, 21, 23, 29, 30, 32, 38, 39, 45, 48,
49, 55, 56]. The most works involve “linear scaling” methods.
The linear scaling property relies on the near-sightedness of
the electron matter, as formulated by Kohn [27]: Vaguely
speaking, the dependence of electron density at r on the
effective potential at r′ is negligible when 
is large. More
precisely, the Jacobian matrix of the Kohn–Sham map (also



called the irreducible polarizability operator in the physics
literature) can be well-approximated by a sparse matrix.
Therefore one may evaluate the Kohn–Sham map using divide-
and-conquer and/or sparse matrix techniques. We refer the
readers to [6, 16] for extensive reviews of linear scaling
methods. In order to apply linear scaling methods, a necessary
condition is that the system should be insulating, i.e. have a
positive energy gap. On the other hand, there have been much
fewer options for reducing the computational complexity of
evaluating the Kohn–Sham map for both insulating and metallic
systems, which is the focus of this chapter. Our discussion is
heavily biased towards our own work in the past few years, and
some omissions are inevitable. We also refer readers to [36] for
a more detailed review of numerical methods for solving Kohn–
Sham equations.

The rest of the chapter is organized as follows. Section 8.2
first introduces the filtering methods, which aim at
“postponing” the cubic scaling barrier for large systems. In
particular, we introduce Chebyshev filtering type techniques to
reduce the preconstant of the cubic scaling component. Then
Sect. 8.3 introduces the pole expansion and selected inversion
(PEXSI) method, of which the cost for evaluating the Kohn–
Sham map with semi-local functionals is at most quadratic with
respect to the system size. In Section 8.4 we introduce a
method called the interpolative separable density fitting
(ISDF), which provides a compact representation of the pair
product of Kohn–Sham orbitals, and is a useful tool for
reducing the cost of calculations with nonlocal functionals.
Section 8.5 discusses techniques for reducing the cost of hybrid
functional calculations, where we also illustrate how to use
ISDF to reduce the cost of evaluating hybrid functionals and a
technique called the adaptive compression to mitigate the
impact due to the cost of the hybrid functional in the context of
self-consistent field iterations. For simplicity and without loss
of generality, we consider isolated, charge neutral, spinless
systems throughout this chapter.



8.2 Filtering Methods

When the matrix-vector multiplication Hψ can be performed
efficiently, it is common to apply iterative methods, such as
conjugate gradient type methods [26, 46], to obtain low-energy
eigenvectors of H. In each iteration, these methods apply H to
the occupied orbitals once, followed by a Rayleigh–Ritz
procedure to update the occupied orbitals. The cost of the
latter step scales cubically with respect to the system size,
which can dominate the computational cost for large systems.

The main idea of filtering methods is to apply H to the
occupied orbitals multiple times to obtain a better
approximation to the subspace spanned by the desired low-
energy eigenvectors. Once such a subspace is identified, we
still need to perform a Rayleigh–Ritz operation to diagonalize
the projected Hamiltonian (i.e. the Hamiltonian operator
restricted to the subspace). However, the frequency of applying
cubic scaling steps is much reduced, which leads to improved
algorithmic efficiency for large systems.

In order to filter out the unwanted information, we may
choose a polynomial p(z) which maximizes the magnitudes at
the eigenvalues ε1, …, εN and at the same time minimizes at the
eigenvalues 
. This can be optimally done by using a
properly shifted and scaled Chebyshev polynomial Pk(z), where
the subscript k denotes the degree of the polynomial [56]. The
Chebyshev polynomials are bounded by 1 within the interval
[−1, 1] and grow rapidly outside this interval. Hence we can
map the standard interval [−1, 1] to 
, and the shifted-
and-scaled Chebyshev polynomial Pk(z) only amplifies the
occupied states of the H. At the beginning of the SCF iteration,
one does not know a priori the values of εN+1, 
, or the order
of the Chebyshev polynomial. One way to estimate these values
is to perform a few steps of the Lanczos iteration [55], which
also allows us to update these parameters on the fly. When
applying the Chebyshev filtering algorithm, we often choose
the number of states Ns to be slightly larger than N to



accelerate the convergence, and the convergence is monitored
with respect to the orbitals corresponding to the lowest N
eigenvalues (see Algorithm 1 for a pseudo-code of the
Chebyshev filtering algorithm) .

Algorithm 1: Chebyshev filtering algorithm.

We remark that although the Chebyshev filtering algorithm can
be used to accurately obtain the lowest N orbitals by
repeatedly applying the Chebyshev polynomials, in many
implementations, we often perform a small number of
iterations and do not evaluate the Kohn–Sham map accurately.
In other words, we may combine the outer SCF loop with the
inner diagonalization loop, and sometimes even a single inner
iteration per SCF step can be sufficient. For many problems,
such a combination does not increase the number of outer SCF
iterations and hence may significantly reduce the overall
running time.

The idea of filtering the Hamiltonian matrix also appears in
the spectral slicing approach [1, 48, 49, 52, 54], where a
number of matrix functions fi(H) are applied to the occupied
orbitals. Here the scalar functions fi(⋅) can be polynomials or
rational functions approximately supported only on a small
energy interval. One can then perform the Rayleigh–Ritz step
to compute the eigenvalues restricted to each interval. At the
end, the eigenvalues obtained from different intervals are
merged together. The spectral splicing approach is naturally
suited for massive parallelization to reduce the wall clock time.

The preconstants of the cubic scaling steps (more
specifically, the Rayleigh–Ritz step in step 5 of Algorithm 1) can



also be significantly reduced using the complementary
subspace strategy with two levels of Chebyshev filtering
(CS2CF) [3]. In the Chebyshev filtering approach, the density
matrix is computed as

where 
is the projected density matrix of size Ns, with its
eigenvalues given by the occupation numbers 
. Here we
have used the finite temperature formulation of Kohn–Sham
DFT. Since Ns is only slightly larger than N, most of the
occupation numbers are equal to 1. States 1 through N1 are as
those with occupation numbers equal to 1. The remaining
states, from N1 + 1 through Ns, have occupations numbers less
than 1. Let Nt be the number of these fractionally occupied
states, i.e. Nt = Ns − N1. The eigenvectors of the projected
density matrix are 
. Denoting the identity matrix of size
Ns by 
, from the resolution of the identity we may rewrite
the expression for the projected density matrix as

(8.4)

Hence if the Nt top eigenvectors 
and corresponding
occupation numbers fi are known, the projected density matrix


may be computed. Thus, instead of determining the full Ns × 
Ns set of vectors, we need to determine only an extremal block
of vectors (of dimension Ns × Nt), corresponding to the states i 
= N1 + 1 to Ns.



Moreover, physical quantities such as the electron density,
energy, entropy and atomic force can all be computed by
knowing only the top eigenstates. These eigenstates can be
efficiently evaluated via another Chebyshev polynomial filtering
steps applied to the projected Hamiltonian matrix 
. Using
this technique, the Rayleigh–Ritz step may be avoided
altogether for insulating systems. For metallic systems, the
cost for the Rayleigh–Ritz step can also be significantly
reduced. Table 8.1 shows that the CS2CF strategy can be
applied to insulating and metallic systems with 
atoms
and efficiently parallelized over 
computational cores.
The wall clock time to solution can be of an order of magnitude
faster than parallel dense diagonalization methods such as
ScaLAPACK or ELPA [43] for large systems.

Table 8.1 
Wall clock times for one SCF iteration large systems using the CS2CF
strategy in DGDFT (Credit: [3])

System # atoms Computational CS2CF Diagonalization

  (#

electrons)

cores (subspace

time) [s]

via ELPA [s]

Electrolyte3D3×3×3 8586 (29,
808)

3456 
34) (19) 
647)

SiDiamond3D10×10×10 8000 (32,
000)

3456 
40) (24) 
648)

Graphene2D8×8 11, 520
(23, 040)

4608 
35) (27) 
262)

CuFCC3D10×10×10 4000 (44,
000)

3000 
75) (46) 
199)

LiBCC3D12×12×12 27, 648
(82, 944)

12, 960 180 (165) 5844

8.3 Pole Expansion and Selected

Inversion Method

To reduce the computational cost of Kohn–Sham DFT
calculations with semi-local exchange-correlation functionals, it
is important to realize that we require only the electron density
in the Kohn–Sham map, but not the eigenfunctions or



eigenvalues. This offers the opportunity to develop more
efficient algorithms for the Kohn–Sham map. Since one does
not need each individual eigenvector, it is perfectly fine to use
an alternative representation for the occupied subspace, such
as a density matrix or localized orbitals.

One such example is the Fermi operator expansion (FOE)
method, which was originally designed to be used as a linear
scaling method. Consider the density matrix at the finite
temperature

The right-hand side is a matrix function with respect to the
Hamiltonian matrix H. Instead of diagonalizing H and
evaluating the matrix function using the eigen-decomposition,
the basic idea of FOE is to expand the Fermi–Dirac function
fβ(⋅) into an m-term expansion as

(8.5)

The corresponding matrix function approximation is

(8.6)

The above formulation is quite general: we only require each
term gn(H − μ) to be a simple function so that the
corresponding matrix function can be evaluated directly
without diagonalizing the matrix.

One example of FOE is to expand the Fermi–Dirac function
into polynomials [17]

The corresponding matrix function version is

(8.7)



Note that each term of (8.7) is simply a matrix power (H −
μ)n, which can be evaluated using only matrix-matrix
multiplication recursively, without diagonalizing H. When H is
a sparse matrix, this means that the polynomial approximation
to fβ(H − μ) can be a sparse matrix as well.

Besides the polynomial expansion, another possibility is to
approximate the Fermi–Dirac function using rational functions.
A rational function can be decomposed into a linear
combination of terms of the form (ε − z)−p, where 
and p 
≥ 1. In particular, if all terms use p = 1 the resulting expansion
is called a simple pole expansion, or just a pole expansion.
Compared to the polynomial expansion, there are two main
advantages of using the rational expansion: First, the number
of terms needed for the rational expansion can be much smaller
than that required for the polynomial expansion to achieve the
same accuracy. This is particularly the case for small gapped
systems. Second, the use of the pole expansion can yield fast
algorithms with reduced complexity even for metallic systems.
This is called the pole expansion and selected inversion
algorithm (PEXSI). To our knowledge, PEXSI is so far the only

algorithm allowing such reduction of complexity.
While linear scaling algorithms in principle yield fast

algorithms for the evaluation of the Kohn–Sham map, their
accuracy often crucially depends on the decay of orbitals or
density matrices, making them usually only suitable for
insulating systems with a large gap. Another drawback from
the point of view of practical use is that they often require user
input on the support of truncation and other tuning parameters
to achieve a balance between efficiency and accuracy. The pole
expansion and selected inversion method (PEXSI) [30, 32] is a
reduced scaling algorithm with computational scaling at most


and smaller for lower dimensional systems. While it has
a worse computational scaling than linear, the PEXSI algorithm
can be applied to general systems and gives accurate results.

As an example of the FOE method, the PEXSI algorithm uses
the following pole expansion to approximate the Fermi–Dirac
distribution



(8.8)

Here we focus on the scaling with respect to the
dimensionless quantity β ΔE, where ΔE is the spectral radius of
the shifted operator H − μ. To reach a fixed target accuracy,
although the number of terms of a straightforward construction
of the pole expansion also scales as 
[4], it has
subsequently been improved to 
[45], 
[8], and finally to 
[33]. The work [44] introduces a
near-optimal min-max approximation to the Fermi–Dirac
function, which further reduces the number of poles needed in
practice.

In order to obtain such a pole expansion, one possibility is to
use the Cauchy contour integral formulation. Note that the
Fermi–Dirac function fβ(ε) is a meromorphic function in 
, and
the only poles are at 
. Furthermore, fβ(ε)
can be expanded using the following Matsubara expansion [42]

(8.9)

Note that (8.9) only converges conditionally, and the infinite
summation must be performed symmetrically with respect to
the position and negative choice of n. The number of terms
needed in the direct truncation of the Matsubara series
naturally scales as 
.

The efficiency of the pole expansion can be improved by
using a contour integral formulation:

(8.10)

Here the contour 
should be chosen so that it encloses all
the (real) eigenvalues of H − μ, but without any poles of fβ(z),
i.e., 
. This leads to the “dumbbell shaped”
contour used in [33] (see Fig. 8.1 for an illustration). The
contour is symmetric with respect to the chemical potential μ.



The discretization points are chosen to be denser around μ in
order to resolve the sharp transition of the Fermi–Dirac
function at μ. At finite temperature, the contour integral
formulation remains well defined for gapless systems, i.e. εN = 
εN+1.

Fig. 8.1 
Illustration of the contour integral representation and pole expansion for
the density matrix at finite temperature β−1

Each term in the pole expansion corresponds to a matrix
inverse, or Green’s function (zl − H)−1, which can be evaluated
directly without diagonalizing the matrix H. Equation (8.8)
converts the problem of computing P to the problem of
computing m Green’s functions. In order to find the Kohn–
Sham map, instead of the entire density matrix P we only need
the electron density, which corresponds to the diagonal matrix
of P (again for simplicity we assume that a real space
representation is used, e.g. the Kohn–Sham model is
discretized on a grid). This amounts to the question of finding
the diagonal of a Green’s function. Note that even if H is a
sparse matrix, the matrix inverse (zl − H)−1 can be a fully
dense matrix. One direct method is to first evaluate each



Green’s function and extracts its diagonal elements. However,
when H is a sparse matrix, the computation of diagonal entries,
and more generally the entries of Gl corresponding to the
sparsity pattern of H, can be evaluated much more efficiently
by means of the selected inversion method [11, 22, 32, 35].

Although H has been a general Hermitian matrix throughout
this chapter, for simplicity we assume H to be a real symmetric
matrix. This makes 
a complex symmetric,
non-singular matrix. For such a matrix, the standard approach
for computing A−1 is to first decompose A as

(8.11)
where L is a unit lower triangular matrix and D is a diagonal

or a block-diagonal matrix. Equation (8.11) is often known as
the LDL⊤ factorization of A. Given such a factorization, we can
obtain 
by solving a number of triangular
systems

(8.12)

for j = 1, 2, …, Nb, where ej is the j-th column of the identity
matrix I. The computational cost of such algorithm is generally


. However, when A is sparse, we can exploit the sparsity
structure of L and ej to reduce the complexity of computing
selected components of A−1.

The selected inversion algorithm can be heuristically
understood as follows [35]. Let A be partitioned into a 2 × 2
matrix block form as

(8.13)

The first step of an LDL⊤ factorization produces a
decomposition of A that can be expressed by

(8.14)



where α is often referred to as a pivot, ℓ = bα−1 and

is known as the Schur complement. The same

type of decomposition can be applied recursively to the Schur
complement S until its dimension becomes 1. The product of
lower triangular matrices produced from the recursive
procedure, which all have the form

where ℓ(1) = ℓ = bα−1, yields the final L factor. At this last
step the matrix in the middle becomes diagonal, which is the D
matrix.

From (8.14), A−1 can be expressed by

(8.15)

This expression suggests that, once α and ℓ are known, the
task of computing A−1 can be reduced to that of computing S−1.
Because a sequence of Schur complements is produced
recursively in the LDL⊤ factorization of A, the computation of
A−1 can be organized in a recursive fashion too. Clearly, the
reciprocal of the last entry of D is the (Nb, Nb)-th entry of A−1.
Starting from this entry, which is also the 1 × 1 Schur
complement produced in the (Nb − 1)-th step of the LDL⊤

factorization procedure, we can construct the inverse of the 2 × 
2 Schur complement produced at the (Nb − 2)-th step of the
factorization procedure, using the recipe given by (8.15). This
2 × 2 matrix is the trailing 2 × 2 block of A−1. As we proceed
from the lower right corner of L and D towards their upper left
corner, more and more elements of A−1 are recovered. At the
end, we recover all the diagonal entries of A−1exactly. In fact,
given the factorization A = LDL⊤, the selected inversion
algorithm can be used to efficiently compute all entries


.



In order to understand the asymptotic complexity of the
selected inversion algorithm, we assume without loss of
generality that the sparsity pattern of H is similar to that
obtained by the second-order central difference discretization
of a Laplacian operator. The computational cost associated
with the LDL⊤ factorization, as well as the selected inversion
algorithm, scales as 
, 
and 
for one, two and
three-dimensional systems, respectively [33]. We remark that
this complexity count is robust under changes of the
discretization scheme as long as local basis sets are used.
Hence for quasi-1D systems (such as nanotubes) and quasi-2D
systems (such as monolayer systems and surfaces), the
computational cost also scales as 
and 
,
respectively. A pseudo-code for the selected inversion
algorithm is given in Algorithm 2.

Algorithm 2: Selected inversion algorithm based on LDL⊤

factorization.

The pole expansion and selected inversion (PEXSI) method [22,
33, 35] therefore combines the pole expansion and the selected
inversion, and evaluates the Kohn–Sham map without solving
any eigenvalues or eigenfunctions. The selected inversion
method is an exact method if exact arithmetic is used, i.e. the
only error in the selected inversion method is due to round off
errors. Hence the accuracy of the PEXSI method is determined
by the pole expansion, which can be systematically improved by
increasing the number of poles. The PEXSI method is ideally
suited for massively parallel computers. The treatment of the
poles can be parallelized in a straightforward fashion with
communication needed only at the end to construct the density



matrix. The selected inversion method itself can also be
massively parallelizable to thousands of processors [22], and
the total number of processors that can be efficiently used by
PEXSI can be over 100, 000. The PEXSI software package
(available at http://​www.​pexsi.​org, distributed under the BSD
license) has now been integrated into electronic structure
software packages such as BigDFT, CP2K, DFTB+, DGDFT,
FHI-aims, QuantumWise ATK, SIESTA, and is part of the
“Electronic Structure Infrastructure” (ELSI) package [53].

In addition to computing the charge density at a reduced
computational complexity in each SCF iteration, PEXSI can be
leveraged to compute energy, free energy and the atomic
forces efficiently without diagonalizing the Kohn–Sham
Hamiltonian, using the same set of poles as those used for
computing the charge density [30]. Another numerical issue
associated with the PEXSI technique, as well as the Fermi
operator expansion techniques in general, is to determine the
chemical potential, so that the condition

(8.16)
is satisfied. Note that Nβ(⋅) is a non-decreasing function of μ.

Hence the chemical potential can be determined via a bisection
strategy, or Newton’s method. When Newton’s method is used,
the chemical potential converges rapidly near its correct value.
However, the standard Newton’s method may not be robust
enough when the initial guess is far away from the correct
chemical potential. It may give, for example, too large a
correction when 
is close to zero, as when μ is near the
edge or in the middle of a band gap.

One way to overcome the above difficulty is to use an
approximation to the function Nβ(ε) to narrow down the region
in which the correct μ must lie. This function can be seen
effectively as a (temperature smeared) cumulative density of
states, counting the number of eigenvalues in the interval (−∞,
ε). We can evaluate such zero temperature limit, denoted by
N∞(ε), again without computing any eigenvalues of H, by using
Sylvester’s law of inertia [50]. It requires fewer floating point

http://www.pexsi.org/


operations than the complex arithmetic direct sparse
factorization used in PEXSI. During the self-consistency field
iteration, the zero temperature limit N∞(ε) evaluated from the
inertia counting procedure may be used to construct upper and
lower bounds of the chemical potential. This makes it possible
to perform PEXSI calculations over multiple energy points only

once per SCF iteration, without sacrificing the accuracy at
convergence [24].

As an example, we apply the parallel PEXSI method to two
systems DG_Graphene_2048 and DG_Graphene_8192, which
are disordered graphene systems with 2048 and 8192 atoms,
respectively, and compare its performance with a standard
approach that requires a partial diagonalization of (H, S). The
ScaLAPACK subroutine pdsyevr [51] based on the multiple
relatively robust representations (MRRR) algorithm is used to
perform such diagonalization. Though both H and S are sparse
matrices, the MRRR algorithm treats them as dense matrices.
For 
, the MRRR algorithm first performs a
tridiagonalization procedure with 
cost, then solves the
eigenvalues and eigenvectors of the tridiagonal system with


cost, and finally constructs the eigenvectors with 
cost. Figure 8.2 shows that for graphene problem with 2048
and 8192 processors, the PEXSI technique is nearly two orders
of magnitude faster than the ScaLAPACK routine pdsyevr, and
can be scalable to a much larger number of processors. The
advantage of PEXSI becomes even clearer for a disordered
graphene system with 32, 768 atoms. For this case, the
diagonalization routine is no longer feasible, while the time to
solution for the PEXSI technique can be as small as 241 s (Fig.
8.3).



Fig. 8.2 
The wall clock time versus the number of cores for a graphene system
(Credit: [22])

Fig. 8.3 
The wall clock time versus the number of cores for a graphene system with
32, 768 atoms (Credit: [22])

8.4 Interpolative Separable Density

Fitting Method

Kohn–Sham DFT calculations with rung-4 functionals require
the evaluation of the generalized Kohn–Sham map. They often



involve the pair product of orbitals, in the form 
,
and the number of the pair products is 
. However, since
these pair products are not independent from each other, it is
possible to approximate pair products using only 
functions, by a technique called interpolative separable density
fitting (ISDF) [39, 40]. This can be used to reduce the cost of
rung-4 functional calculations with a large basis set [9, 21],
large scale phonon calculations [34], and post-Hartree–Fock
calculations such as RPA correlation energy [38] and
second/third order Møller–Plesset perturbation theory
calculations [28].

As an intuitive explanation that a compressed representation
of the pair products is possible, let us take a real space
representation and note that the number of grid points Ng to
represent the orbital pairs scales linearly with respect to N, but
not quadratically as the number of orbital pairs. This suggests
that the numerical rank of 
, viewed as a matrix of size
Ng × N2, must scale asymptotically as 
. It has been proved
in [37] that for any 𝜖 and N, there exists a subspace BN of
dimension on the order of 𝜖−δN1+δ such that

where {ψi}, i = 1, …, N are the first N eigenfunctions of an
effective Hamiltonian on a compact domain or closed manifold,
and δ is an arbitrary positive constant. This shows that the N2

pair products of eigenfunctions can be approximated with
nearly 
auxiliary basis functions, regardless of the
discretization level.

The ISDF method uses the following compression format

(8.17)

Here 
is a subset of real space grid points 
on
which the orbitals are evaluated. We will refer to 
as the



interpolation points, and 
sampled on 
the
interpolation vectors. These terms come from the
understanding of ISDF from the perspective of interpolation.
Let 
denote a set of grid points in the real space, and let
ζμ(r) be the Lagrange interpolation function on these grid
points satisfying

The ISDF decomposition becomes sufficiently accurate as
one systematically refines the set 
. In the extreme case,
all grid points need to be selected and Nμ = Ng. In practice, the
interpolation often becomes sufficiently accurate when N < Nμ 
≪ Ng, especially when both {φi(r)} and {ψi(r)} consist of
functions that are sufficiently smooth. In general we may set
Nμ = cN where c is a relatively small constant (4 ∼ 10).

Let us first discuss how to find the interpolation vectors,
assuming that the interpolation points 
are given. Define

(8.18)
Equation (8.17) can be written as

(8.19)
where each column of Z is defined by Eq. (8.18) sampled on

real space grids 
. 
contains the
interpolating vectors, and each column of C with a multi-index
(i, j) is given by

Equation (8.19) is an over-determined linear system with
respect to the interpolation vectors Θ. One possible way to
solve the over-determined system is to impose the Galerkin
condition

(8.20)
The solution to the above is given by

(8.21)



which can also be understood as a least squares
approximation to the solution of Eq. (8.17).

It may appear that the cost for matrix-matrix multiplications
ZC∗ and CC∗ scales as 
and 
, respectively,
because the size of Z is Ng × N2 and the size of C is Nμ × N2

(here for simplicity we use that Nμ ∼ N). However, both
multiplications can be carried out with fewer operations due to
the separable structure of Z and C, and the computational
complexity for computing the interpolation vectors can be
reduced to 
[39].

In order to optimize the set of interpolation points, a general
strategy is to use the QR factorization with column pivoting
(QRCP). The pseudocode of the ISDF algorithm is given in
Algorithm 3.

Algorithm 3: Interpolative separable density fitting

(ISDF) method

The above procedure can be further accelerated. Using Eq.
(8.19) directly is sub-optimal as the storage requirement for
the matrix Z is 
and the computational cost associated
with a standard QRCP procedure is 
. One possibility is
to lower the cost of QRCP by using a random matrix to
subsample columns of the matrix Z to form a smaller matrix 
of size 
, where 
is only slightly larger than Nμ [39,
40]. The reduced matrix size allows the computational cost of
the QRCP procedure to be reduced to 
. The
implementation and parallelization of ISDF is then relatively



straightforward, as QRCP algorithms are available in standard
linear algebra software packages such as LAPACK and
ScaLAPACK,

Another possibility for choosing interpolation points is to use
a heuristic strategy. Note that an effective choice of the set of
interpolation points should satisfy the following two conditions.
(1) The distribution of the interpolation points should roughly
follow the electron density. In particular, there should be more
points in regions with higher electron density. (2) The
interpolation points should be separated from each other, as
otherwise the matrix formed by the interpolation vectors will
be highly ill-conditioned. The QRCP procedure satisfies both (1)
and (2) simultaneously. On the other hand, the conditions
above can also be satisfied through a much simpler centroidal
Voronoi tessellation (CVT) procedure applied to a weight
vector, such as the electron density [9]. More specifically, in
the centroidal Voronoi tessellation (CVT) approach, we may
partition the grid points in the global domain into Nμ Voronoi
cells. The interpolation points can then be simply chosen to be
the centroids corresponding to each cell. The CVT procedure
can be effectively implemented through a k-Means algorithm
[41]. Besides reduction of the computational cost, the use of a
k-Means algorithm also produces a smoother potential energy
surface particularly in the context of ab initio molecular
dynamics. We refer to [9] for more details of this approach.

8.5 Hybrid Functionals

For rung-4 exchange-correlation functionals, the Kohn–Sham
equations take the form

(8.22)



Here VHxc is the Hartree and exchange-correlation
contribution from the electron density ρ only, and 
is
derived from the exact exchange functional 
, with kernel

(8.23)

Here K(r, r′) is the kernel for the electron-electron
interaction. When the (bare) Hartree–Fock exchange is used,


is the Coulomb kernel. When screened Fock
exchange interactions [19] are used, K takes the form of a
screened Coulomb kernel: 
,
where αs is called the inverse screening length parameter.
Hence the Kohn–Sham Hamiltonian is a nonlocal operator.


is also called the Fock exchange operator.
The kernel of 
is a low rank operator, due to the

Hadamard product (i.e., element-wise product) between the
kernels of P and K. 
is also negative semi-definite. In
quantum chemistry calculations with a small basis set, denoted
by 
, the matrix elements of the Fock exchange
operator projected to the span of the basis set is often
computed:

(8.24)

Here we have expanded the occupied orbital as

The computation of the last term in Eq. (8.24) involves the
so-called two-electron integrals, and the computational cost for
constructing the Fock exchange matrix 
scales as


.
The formation of the Fock exchange matrix allows us to

solve the Kohn–Sham equations by directly diagonalizing the
Kohn–Sham Hamiltonian. When iterative methods (conjugate



gradient, Chebyshev filtering etc) are used, the associated
asymptotic complexity can in fact be reduced to 
without

any approximation. We only have access to the Fock exchange
operator via its application to an occupied orbital φj as

(8.25)

for 
. Here we deliberately distinguish the
orbitals in the density matrix ({φi}) and the orbitals 
acts on
({φj}) to emphasize that they may correspond to different
density matrices before self-consistency is achieved. The
integral in Eq. (8.25) can be implemented by solving N Poisson-
like equations, with the effective charge given by the pair
product 
. Let Ng denote the grid size, and the
computational cost of solving each Poisson-like equation using
FFT scales as 
. Therefore the cost for applying the
Fock exchange operator to all occupied orbitals scales as


. However, the preconstant of this cubic
scaling component can be very large. In practical Hartree–Fock
calculations, the application of the Fock exchange operator can
often take more than 95% of the overall computational time.

8.5.1 Adaptive Compression Method

The adaptively compressed exchange operator (ACE) method
[29] accelerates hybrid functional calculations by reducing the
frequency of applying the Fock exchange operator, without
compromising the accuracy of the self-consistent solution. This
is similar in spirit to the filtering method introduced in Sect.
8.2, which improves the efficiency by reducing the frequency of
performing the expensive Rayleigh–Ritz procedure. There is a
related approach called the projector based compression of the
exchange operator [5, 10], which can also reduce the frequency
of applying the Fock exchange operator.

Although the Fock exchange operator 
is a full rank
operator, ACE constructs a low rank surrogate operator,
denoted by 
, to approximate 
. Note that 
is



generally a dense, full rank operator. Hence the low rank
surrogate cannot be expected to be accurate when applied to
an arbitrary vector. Instead we only require 
to be accurate
when applied to all occupied orbitals.

Consider a set of orbitals 
which defines implicitly the
density matrix P, which further gives 
. We first apply


to 
as

(8.26)
The adaptively compressed exchange operator should satisfy

the conditions

(8.27)

The choice of this surrogate operator is not unique. One
possible choice satisfying the conditions (8.27) is given by

(8.28)

where B = M−1 is a negative definite matrix, and

(8.29)

Let us perform Cholesky factorization for − M, i.e., M = 
−LL∗, where L is a lower triangular matrix. Then we get B = 
−L−∗L−1. Define the projection vector in the ACE formulation
as

(8.30)

The adaptively compressed exchange operator is then given
by

(8.31)



Once ACE is constructed, the cost of applying 
to any
orbital φ is similar to the application of a nonlocal
pseudopotential operator, thanks to its low-rank structure. ACE
only needs to be constructed once per outer iteration, and we
can repeatedly use the operator for all the subsequent SCF
iterations, until the exchange operator is updated. The ACE
formulation has been integrated in electronic structure
software packages such as Quantum ESPRESSO [7, 13] and
ABINIT [18].

Table 8.2 demonstrates the accuracy of the ACE formulation
for Kohn–Sham DFT calculations with the HSE06 [19] hybrid
functional, for silicon systems ranging from 64 to 1000 atoms.
The ACE formulation can evaluate the HF energy and energy
gap accurately (total energy difference is under 10−4 Hartree)
even for large systems. Furthermore, ACE can perform hybrid
functional calculations at a fraction of the cost of conventional
methods [20].

Table 8.2 
Comparison between the conventional hybrid DFT calculations and ACE
enabled hybrid DFT calculations in terms of the HF energy 
(Hartree) and the
energy gap Egap (Hartree) for the Si64, Si216, Si512 and Si1000 systems. The
corresponding relative errors of the HF energy are shown in parentheses (Credit:
[20])

Methods ACE HSE06 Conventional HSE06

systems Egap Egap

Si64 − 13.541616 (10−6) 1.488335 −13.541629 1.488352

Si216 − 45.471192 (10−7) 1.449790 −45.471190 1.449790

Si512 − 107.698011 (10−7) 1.324901 −107.698016 1.324902

Si1000 − 210.300628 (10−6) 1.289162 −210.300524 1.289128

The efficiency of the ACE formulation also rests on the
assumption that the magnitude of the Fock exchange operator
is relatively small compared to other components of the
Hamiltonian. In particular, in linearized Hartree–Fock-like
equations, the convergence properties of the adaptive
compression formulation can be rigorously analyzed for



Hamiltonians of the form H = A + B, where the operator norm

is much larger than that of 
. We refer readers to

[31] for details.

8.5.2 Interpolative Separable Density Fitting

Method

Since Eq. (8.25) involves solving Poisson-like equations for all
pair products of occupied orbitals, we may reduce the cost by
using the interpolative separable density fitting (ISDF)
technique in Sect. 8.4. Using the decomposition (8.17), we can
rewrite (8.25) as

(8.32)

Here 
is the Coulomb-like potential
with the interpolation vector ζμ being the charge-like quantity.

One may also combine ISDF and ACE together to further
improve the accuracy. Note that the matrix M in Eq. (8.29) is
negative semidefinite. Since the ISDF compression introduces
numerical error, if we directly use Eq. (8.29) to evaluate M, the
resulting matrix may be neither Hermitian nor negative
semidefinite, which leads to numerical instability. One way to
overcome this problem is to apply the ISDF decomposition to
both sides of the kernel K as

(8.33)



Then M is Hermitian negative semidefinite, which directly
follows from the fact that 
is constructed to be Hermitian
negative semidefinite. We remark that although the number of
Poisson-like equations is reduced from 
to 
, the cost
of ISDF-based hybrid functional calculation still scales cubically
due to the other matrix-matrix multiplication and inversion
operations. However, the preconstant associated with such
operations can be smaller than that associated with solving
Poisson-like equations. Hence ISDF is effective when it is
relatively costly to solve Poisson-like equations, such as in the
context of planewave methods, but even more so for finite
difference and finite element methods.

As an example, the accuracy of ACE-ISDF in hybrid
functional calculation for the semiconducting Si216 system
(with 216 atoms) and metallic Al176Si24 system (with 200
atoms) respectively are shown in Fig. 8.4. The accuracy is
controlled by a single rank parameter c, which sets the number
of interpolation points to be Nμ = cNe. The accuracy of ACE-
ISDF improves systematically as the rank parameter c
increases. When the rank parameter is large enough (≥ 20.0),
the results are fully comparable to those obtained from the
benchmark calculations. Furthermore, for a moderate choice of
the rank parameter c = 6.0, the error of the energy per atom
reaches below the chemical accuracy of 1 kcal/mol. This
demonstrates that ACE-ISDF is applicable to both insulating
and metallic systems.



Fig. 8.4 
The accuracy of ACE-ISDF-based hybrid functional calculations (HSE06)
obtained by using the centroidal Voronoi tessellation (CVT) and QR decomposition
with column pivoting (QRCP) procedures to select the interpolation points, with
varying rank parameter c from 4 to 20 for Si216 and Al176Si24, including the error
of (a) Hartree–Fock exchange energy ΔEHF (Ha/atom) and (b) total energy ΔE

(Ha/atom) (Credit: [9])

8.6 Conclusion and Future Directions

The past decade has witnessed significant progress in
accelerating the evaluation of the Kohn–Sham map and the
generalized Kohn–Sham map in large scale electronic structure
calculations. The methods reviewed in this paper are heavily
biased towards our own work in this direction. The accuracy
and the applicability range of Kohn–Sham DFT are ultimately
determined by the choice of exchange-correlation functionals.
In recent years, an increasing number of numerical calculations
are now performed using the more accurate rung-4 and rung-5
functionals. In particular, the family of rung-5 functionals is
still under development and the formulation and numerical
treatment of self-consistency for such functionals is much more
complicated, since these functionals involve virtual orbitals and
orbital energies. Most current strategies for rung-5 functional
treat them as post-DFT methods: First obtain the effective
Hamiltonian and corresponding Kohn–Sham orbitals based on a
semi-local or hybrid functional, and then calculate the energy
of the rung-5 functional as a post-processing step (using
perturbation theory). Self-consistency calculations have been
performed using the optimized effective potential (OEP)
framework [12, 14, 15] or more recently the generalized
optimized effective potential approach [25], but they require
considerable numerical effort. An active research direction is to
find an efficient approach for a self-consistent treatment of
rung-5 functionals for large scale systems.
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Abstract

In this chapter, we review the family of augmented plane
wave methods, which is among the most accurate methods
for full-potential/all-electron DFT calculations. Further, we
view this type of approach as a nonconforming mortar
method and provide some rigorous numerical analysis
results. This provides an understanding of the efficiency of
the methods from a mathematical point of view.
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First principles simulations using density functional theory
(DFT) [33, 35] have become one of the most frequently
used and computationally tractable tools in condensed
matter physics. Along with the advances in computing
technology that have occurred during the last decade,
there have been important algorithmic improvements,
particularly for plane wave-based methods. For certain
classes of materials it is now feasible to simulate systems
containing thousands of atoms in a unit cell. This opens the
door for the direct application of these techniques in
studying a substantial set of “real materials” problems.
Further, it is possible to use first principles calculations to
create sophisticated data sets that can parameterize model
Hamiltonians, which then can be used to model even more
complex materials problems. At this time, DFT practitioners
are divided into two nearly disjoint communities: one
employing pseudopotentials [44] and relatively simple basis
sets, particularly plane waves; and the other using methods
with complex but efficient basis sets, such as the
augmented plane wave, the muffin-tin orbital and related
methods [44]. The latter community has traditionally
dominated research on transition metals and their
compounds.

Plane waves with pseudopotentials are natural methods
for periodic systems, which are simple to implement and
give relatively accurate simulations. The pseudopotential
approximations replace singular nuclear attraction
potentials and complicated effects of the motion of core
electrons by smooth potentials. They give satisfactory
results in many cases, but sometimes fail, especially for
transition metals. The mathematical analysis of the
pseudopotential approximations is very rare, and we refer
to [12, 13, 16, 21] for some recent works. Moreover, the
core states are fixed in an atomic reference configuration.
The frozen core approximation is generally reliable, but
breaks down for some elements with extended core states.



The core electrons also have to be considered sometimes
and are responsible for some properties. Therefore, the
full-potential/all-electron calculations are necessary.

For eigenvalue problems with singular potentials in full-
potential calculations, plane waves are inefficient basis
functions for describing the cusps and rapidly varying
wavefunctions near the nuclei [28, 29, 32]. In contrast, it is
observed that a significant part of the rapid oscillations can
be captured by atomic orbitals such as Gaussians and
Slater-type orbitals [44], which have been widely used in
quantum chemistry and studied through rigorous
mathematical analysis [8, 17, 38, 39]. Therefore, it would
be practically efficient to approximate the wavefunction in
a crystal by using combinations of plane waves and
appropriate atomic orbitals, which comes to the idea of
augmented plane waves (APW) [53], linearized augmented
plane waves (LAPW) [51], and their extensions by including
local atomic orbitals (APW+lo) [43, 49, 52]. In this chapter,
we will mainly discuss this type of augmented plane wave-
based approach.

A more realistic scenario is that these traditionally
distinct approaches will eventually converge, and there are
strong relationships between plane wave pseudopotential
methods and the APW-based methods [51]. Both
approaches have a common starting point, i.e. a plane wave
basis set. Further, both approaches are motivated by the
observation that plane waves themselves are inefficient for
direct simulations of the wavefunctions in a crystal. In both
cases, the basis functions are labeled as plane waves, by
wave vector G, and the Hamiltonian matrix elements are
modified in such a way that rapid convergence with the
maximum |G| (energy cutoff) can be obtained. In the plane
wave pseudopotential approach, this problem is avoided by
replacing the Hamiltonian near the nuclei with a smoother
pseudo-Hamiltonian in such a way that the valence energy



spectrum is reproduced, but the core states are removed.
Although this approach may have offered significant
computational advantages, much of the complexity of the
method is transferred from the calculation itself to the
generation of the pseudopotentials. In the APW-based
methods, the plane waves are modified near the atoms
rather than the Hamiltonian. This
modification/augmentation is such that augmented plane
waves with small |G| can reproduce the rapid variations in
the wavefunctions. Thus, as in the pseudopotential method,
the valence energy spectrum can be reproduced with a low
energy cutoff for plane waves. The appearance and success
of APW-based methods have already triggered the
development of improved pseudopotentials, the so-called
projector augmented wave (PAW) method [14, 37], which
has been used, for example, in the VASP code [55], see also
the discussions in [12, 13, 21].

The goal of this chapter is twofold. First, it provides a
detailed and self-contained exposition of the APW-based
methods. Secondly, it gives an understanding of this
approach from a mathematical point of view. The
organization of this chapter is as follows. In Sect. 9.2, we
give a self-contained exposition of the APW-based methods.
In Sect. 9.3, we discuss the numerical discretizations based
on domain decomposition techniques, which are based on a
similar idea as the APW-based methods. In Sect. 9.4, we
provide some numerical analysis of the APW-based
methods. In Sect. 9.5, we give some conclusions and future
perspectives.

9.2 The Augmented Plane Wave

Methods

The augmented plane wave (APW) method was originally
proposed by Slater [53] in 1937. In spite of its demanding



computational cost due to the energy dependency, it has
been successfully used (see e.g., [23]). Several
improvements of the basis set were tried to get rid of the
energy dependency, the first really successful one was the
linearization scheme introduced by Andersen [1, 2], leading
to the linearized augmented plane wave (LAPW) method
[34]. It was further developed by including local atomic
orbitals (APW+lo) to have enough variational flexibility in
the radial basis functions [43, 49, 52]. Several widely used
quantum chemistry and solid-state physics software
programs are based on these methods, such as Exciting

[25], FLEUR [27], and WIEN2k [58].
The philosophy behind the family of APW methods is to

simulate many-electron systems by introducing a basis set
that is in some ways the “best of both worlds”. The
smoothly varying parts of the wave functions between the
atoms are represented by plane waves, and the rapidly
varying parts near the nuclei are represented by radial
atomic functions time spherical harmonics. We will review
relevant aspects of these methods in the following.

For simplicity, we will consider a linear Schrödinger
type equation on 
. Let 
be a non-singular matrix
and 
be the Bravais lattice. Let 
be the
dual/reciprocal lattice of 
and Ω the unit cell of 
. Then
we consider the eigenvalue problem: Find


such that

(9.1)

where Vper(r) is a periodic potential with respect to 
and
has singularities at nuclear positions. This linear
eigenvalue problem can be viewed as a linearization of the
Kohn–Sham equations in DFT [44], and has to be solved to
obtain the low-lying eigenvalues in each step of the self-
consistent field (SCF) iterations. We mention that the



algorithms and analysis discussed in this chapter can be
extended to nonlinear Kohn–Sham DFT problems [18, 51].

Throughout this chapter, we shall denote by r = |r| and

for a vector 
. Moreover, we shall denote


by ∑lm, and 
by 
for simplicity.
We will denote by (⋅, ⋅) the inner-product


:

Since we only consider 
-periodic functions in this
chapter, the subscript 
of the inner-product will be
suppressed for simplicity.

9.2.1 The APW Method

In the APW method, the unit cell Ω is partitioned into two
types of regions (the so-called “muffin-tin” division [44, 51],
see Fig. 9.1): (1) spheres 
centered at atomic sites Ri

with radius Ri, in which the effective potential is assumed
to be spherically symmetric, i.e.

(2) the remaining interstitial region 
. In fact, the muffin-
tin approximation is widely used and very good for close
packed (fcc and ideal hcp) materials. It is not as good but
still reasonable for bcc and related materials [24], and
becomes increasingly less reliable as the site symmetry and
coordination decrease.



Fig. 9.1 
The “muffin-tin” division of the unit cell Ω into spheres 
centered
at atoms and an interstitial region 

The APW method constructs a set of basis functions that
are “augmented” from plane waves. Each individual APW
basis function, also labeled by the wave vector G, consists
of a single plane wave (with the same wave vector G) in the
interstitial region matched to radial functions in the atomic
spheres. More precisely, the augmentation from plane
waves to APW basis functions 
can be written as
follows

(9.2)

where L is the truncation of the angular momentum (i.e.

), ri = r −Ri, ri = |ri|, 
, 
denotes the

spherical harmonic functions on S2, χl is the solution of the
radial Schrödinger equation at energy parameter ε

(9.3)



and the coefficients 
are determined such that each
angular component of the basis function is matched
through the spherical surface. There are two remaining
issues to implement the APW method: (a) how to determine
the coefficients 
, and (b) the choice of energy
parameter ε for the basis functions. For simplicity of
presentation, we will assume in the following that there is
only one atom located at the origin and denoted 
by 
.
All results can be generalized to many-atom systems
without any difficulty.

In the APW method, the continuity of the basis functions
through the spherical surface 
is guaranteed by
imposing the constraint

(9.4)

and v± are the traces of v taken from outside and inside the
sphere, respectively. This is essentially a “weak” continuity
that guarantees each 
component is matched at
the spherical surface, but the basis functions cannot be
exactly continuous due to the truncation 
. Then by
using the scattering expansion [45]

(9.5)

one can derive the formula for the coefficients so that the
constraint in (9.4) can be satisfied

(9.6)

For the choice of energy parameter ε, if it was taken as
a fixed parameter, then the APW method would result in a
standard linear eigenvalue problem. The
solution/eigenpairs would then yield the band energies and
wavefunctions, which is unfortunately not a workable
scheme. The APW basis functions are solutions of the
Schrödinger equation inside the spheres, but only at the
energy parameter ε. They lack variational freedom to allow



for changes in the wavefunction as the band energy
deviates from this reference. Therefore, ε must be set equal
to the band energy εi (eigenvalues of (9.1)) to be computed.
This means that the energy bands cannot be obtained from
a single diagonalization. Rather, it is necessary to solve the
determinant as a function of energy parameter ε and
determine its roots (or equivalent nonlinear problems [18]),
which is a much more computationally demanding
procedure.

Another, less serious, difficulty of the APW method is the
so-called asymptote problem [51]. The eigenvalue
dependent APW basis functions must be evaluated for a
large number of parameters, and sometimes one might hit
a parameter ε for which χl(R, ε) equals zero at the spherical
surface. Inserting this into (9.6) will yield infinite
coefficients 
and cannot match the basis functions at the
spherical surface. Therefore, we shall always assume that


with some constant 𝜖 > 0 for any 
, which
can be achieved by varying the radii of the atomic spheres.

9.2.2 The LAPW Method

Several modifications of the APW method were proposed
with the aim of circumventing the difficulties mentioned
above, in particular, to get rid of the energy dependency.
The first really successful one was the linearization scheme
introduced by Andersen [2]. The LAPW method uses the
combination of χl(r, ε) and its energy derivative at fixed
parameter ε as the radial basis function. The energy
derivative is defined by

where χl is kept normalized to the same value in the atomic
sphere. The properties of 
can be read in [2, 44, 51]);
this function satisfies the following equation



Then the LAPW basis functions 
can be written as

(9.7)

The coefficients 
and 
are determined by requiring
that the basis functions match both the value and slope, in
the weak sense of (9.4).

The LAPW method provides flexible basis functions with
fixed parameter ε to properly describe eigenfunctions that
correspond to eigenvalues near ε. In contrast to the APW
method, this scheme allows us to obtain eigenvalues of
(9.1) by solving a linear eigenvalue problem. The LAPW
method introduces errors of order |ε − εi|2 for the
eigenfunction in the atomic sphere (which can be easily
observed by a Taylor expansion with respect to the energy
parameter [44, 51]), and it yields errors of order |ε − εi|4 for
the eigenvalues. Although the LAPW method cannot
achieve a systematically convergence due to this error, the
LAPW basis functions form a good basis set over a
relatively large energy region. In the few instances for
which this is not possible, the energy region of interest may
be divided into a few (very rarely more than 2) windows
and separate calculations need to be carried out for each.
This is an enormous simplification over the standard APW
method, since the energy independent LAPW basis
functions result in a linear eigenvalue problem and the
accurate energy bands can be obtained with a single
diagonalization.

9.2.3 The APW+lo Method



Singh [50] modified the LAPW approach by adding
specially constructed local orbitals 
, with energy
parameters ε′, to the basis set

(9.8)

where the coefficients 
and 
do not depend on the
plane wave vector G, but are determined by the
requirement that 
is zero at the sphere boundary and
normalized. Note that different parameters ε′ can be
chosen so that different states can be described
simultaneously.

This method, known as APW+lo [51, 52], was shown to
be highly effective in simulations of many systems,
especially for materials with large interstitial spaces or
mixtures of atoms that require high plane wave cutoffs with
those requiring lower cutoffs. The added local atomic
orbitals not only permit relaxation of the original basis set
without an increase in the plane wave cutoff, but also
suggest the possibility of avoiding the non-vanishing error
of the LAPW method. Therefore by using a similar
construction, the APW+lo method can enhance the
accuracy with nearly no extra cost. Moreover, the APW+lo
method can be used for general full-potentials, and is not
restricted to muffin-tin potentials or other symmetric
approximations of the charge density and potential.

9.3 Discretizations Based on Domain

Decompositions

The essence and motivation of the APW-based methods
have been clearly and concisely stated before: near nuclear
positions, the potential and wavefunctions are strongly



varying; while in the interstitial space between the nuclei,
both the potential and wavefunctions are smoother;
accordingly, space is divided into regions and different
basis expansions are used in different regions. Similar
ideas have long been explored in the community of
numerical mathematics: the discretizations based on
domain decompositions, which have been widely used to
design efficient and parallel algorithms for solving partial
differential equations. They use separate finite-dimensional
discretization on non-overlapping subdomains, the basis
functions on different subdomains do not match on the
interface, and the “continuity” of the solution is enforced by
additional techniques, for example, Lagrange multipliers,
penalties and so on. The domain decomposition technique
allows us to benefit from the presence of the subdomains in
order to choose the discretization method best adapted to
the local behavior of the solution. A further advantage is
that more flexible and economical adaptive procedures
such as refinements can be made on the subdomains,
where needed.

In this section, we will review several widely used
discretization methods based on domain decomposition
techniques. Since only the mortar method is closely related
to the family of APW-based methods (which essentially
belong to the mortar method), we will discuss the other two
techniques, discontinuous Galerkin (DG) and weak Galerkin
(WG) methods, only very briefly.

9.3.1 The Mortar Method

The idea of the mortar method is to use different basis
functions to approximate the solutions on different
subdomains, and then match incompatible discretizations
with a suitable variational operator, which ensure an
optimal transmission of information between adjacent
subdomains (see, e.g., [9–11]).



The discrete problem is constructed via the Galerkin
process applied to the variational formulation of the partial
differential equations. Even if the local discrete spaces, i.e.,
the discrete spaces on each subdomain, are included in the
local variational spaces, this is usually no longer the case
for the global space, since the matching conditions that are
enforced on the interfaces between the subdomains are too
weak to ensure the conformity. The mortar approximations
involve constraints on the space, which is the so-called
“weak continuity”. The continuity of the solution across the
subdomain interfaces is imposed in a weak sense by using
the multiplier space. These constraints could be treated as
Lagrange multipliers leading to a saddle point problem.

Let 
be the finite-dimensional space spanned by the
basis functions on all subdomains, and 
be the
multiplier space on the interface. The discretization of (9.1)
by mortar method reads: Find 
and 
, such
that 
and

(9.9)

where the bilinear forms a and b are defined by

:

and 
:

A key argument is that the choice of integral type
matching conditions on the interfaces leads to an optimal
evaluation of the consistency error issued from the
nonconformity of the discretization [10]. The mortar
method has been successfully applied to quantum
eigenvalue problems (see, e.g. [20, 31]).



We mention that the family of APW approaches actually
belongs to the category of mortar methods. The
convergence of APW-based methods will be derived in the
framework of the mortar nonconforming methods, see Sect.
9.4.

9.3.2 The Discontinuous Galerkin Method

The DG framework has been widely used in numerical
solutions of partial differential equations and investigated
theoretically in a lot of works (see, e.g., [6, 7, 15, 54] and
references cited therein). For second-order elliptic
problems, the development of DG methods is based on the
idea of introducing an interior penalty [5, 47, 57]. DG
discretization methods have also recently been developed
for DFT calculations [40–42, 60].

We shall briefly discuss the DG discretization for (9.1),
which is related to the framework in [4]. For respectively
vector-valued and scalar-valued functions w and u which
are not continuous on the spherical surface Γ, we define
the jumps by

and the averages by

where w± and u± are traces of w and u on Γ taken from
inside and outside the sphere, and n± are the normal unit
vectors. Let 
be the finite-dimensional space spanned
by the basis functions on all subdomains. We then construct
the DG methods for eigenvalue problem (9.1): Find 
and 
, such that 
and

(9.10)
where the bilinear form 
is defined
by



with 
the discontinuity-penalization parameter. Note
that there are many other types of DG formulations, and
(9.10) is the classical symmetric interior penalty method [4,
5, 41]. We refer to [48] for an overview of DG methods.

9.3.3 The Weak Galerkin Method

The WG method was first proposed in [56], and further
developed in [46, 59, 61]. In the WG method, differential
operators are approximated by weak forms as distributions
over a set of generalized functions. It has been
demonstrated that the WG method is highly flexible and
robust as a numerical technique employing discontinuous
piecewise polynomials on polygonal or polyhedral finite
element partitions. For simplicity of presentations, we will
skip the WG formulations of the eigenvalue problems (9.1)
but refer to [59] for details.

9.4 Convergence Analysis of the

APW-Based Methods

In this chapter, we will provide a mathematical
understanding of the APW-based methods. The theory
relies on two aspects: (a) the asymptotic regularity of the
wavefunctions, and (b) viewing the APW family as mortar
methods. Our analysis shows that, in principle, the APW
and APW+lo approaches can provide super algebraic and
nearly exponential convergence for full-potential
calculations. This explains why the APW-based codes are
frequently used for sufficiently accurate electronic
structure calculations from a numerical point of view.



We shall first review the regularity of the eigenvalue
problems (9.1), then construct a non-conforming mortar
method based on polynomial radial basis functions and a
similar construction of the APW methods, and finally
discuss the convergence and error estimates of the APW
methods in the framework of mortar methods.

9.4.1 Regularity

In full potential calculations, the potential Vper has
singularities at nuclear positions, which gives rise to cusps
at the singular points of the eigenfunctions. Then a first
and natural question to ask is: What is the regularity of the
solution of the eigenvalue problem (9.1)? By a careful
analysis [28, 29, 32, 52] it has been shown that the solution
to such systems is analytic away from the nuclei but
satisfies some cusp condition at the nuclear positions, if the
exact singular Coulomb potential is used. Due to the cusps
at the nuclear positions, the plane wave approximations of
(9.1) with singular Coulomb potential cannot achieve a
good spectral convergence rate.

In our analysis of APW-based methods, we rely heavily
on the regularity result in weighted Sobolev space for
Schrödinger type eigenvalue problems developed in [26]
(see also [42]). This type of analysis was introduced to
investigate singularities of boundary value problems in
conical domains with corners and edges (we refer to [19,
22, 30, 36] for more details). In our case the geometry is
fairly simple, while the singular electrostatic potential
generated by the nuclei fits this treatment perfectly. We
will skip the definitions of weighted Sobolev spaces but
refer to the above references for details. Instead, we state
the following corollary, which can be used directly in the
analysis.



Proposition 9.1 
Let φ be an eigenfunction of (9.1). If

is equal to
 
in the neighborhood

of a nuclear position and is sufficiently smooth away from

it, then φ(r) ∈ Hs([0, R] × S2) in
 
and
 
for any


.

This regularity result indicates that locally, when expressed
in spherical coordinates around the nuclei, the solution is
infinitely differentiable. Therefore it is actually possible to
propose combined approximations which have exponential
convergence with respect to the number of degrees of
freedom.

9.4.2 A Nonconforming Method

We construct a nonconforming mortar method analogous to
the APW methods, but using polynomials as the radial basis
functions in the atomic spheres. This method has the same
philosophy as the APW methods. Meanwhile, it is easier to
see that it has a systematic spectral convergence rate.

We first give the basis functions on the subdomains.
Define the space of functions on 
expanded by plane
waves

and the space of functions on 
expanded by polynomial
times spherical harmonics

where 
forms a basis set of the space of polynomials
on [0, R] with degree no more than N. Let

(9.11)



and 
. We may assume in the sequel that

with some constant C > 0. With the

approximation space 
, we can follow (9.9) to write
down the nonconforming mortar approximation of (9.1):
Find 
and 
such that


and

(9.12)

We then design an equivalent discretization form that
uses the same construction as the APW methods. Let


be a basis set that spans the space of polynomials
on [0, R] with degree at most N and satisfies (see, Fig. 9.2)

(9.13)
Note that the subspace 
defined by

is a finite-dimensional subspace of 
.

Fig. 9.2 
Schematic plots of radial basis functions χn(r) n = 0, …, N satisfying
(9.13)

We further augment the plane waves with the above
radial basis functions as follows

(9.14)



where the coefficients

are determined by the continuity constraint (9.4) and the
scattering expansion (9.5).

Set 
and define a
direct Galerkin approximation of (9.1): Find 
and


such that 
and

(9.15)

It is obvious from the definition of ωG and comparison of
the dimensions (see [18]) that the discretizations (9.12)
and (9.15) are equivalent.

With the above constructions, we can then derive the
following convergence and a priori error estimate of the
approximations, by using a careful numerical analysis and
the regularity of the eigenfunctions. We refer to [18] for
the proof of this theorem. We mention that the result is not
restricted to muffin-tin potentials but is valid for general
potentials.

Theorem 9.1 
Let εibe an eigenvalue of (9.1) with


, where
 
denotes the eigenspace of εi.

If the assumption of Proposition9.1for Vperis satisfied and ϱ

is sufficiently large, then there exist m eigenvalues εi1,ϱ, …,
εim,ϱof (9.12), or (9.15), such that

(9.16)

where Csis a constant depending only on s, Ω and Vper.



9.4.3 Error Estimates of the APW Method

The APW method can be viewed as a modified scheme of
the nonconforming method introduced in Sect. 9.4.2, under
the assumption that the potential is spherically symmetric
inside the atomic sphere 
, say Vper(r) = V (r) for 
.

Compared with the discretization introduced in Sect.
9.4.2, the APW method ignores the subspace 
and
replaces the basis function ωG in (9.14) by 
in (9.2),
where ε is the eigenvalue to be computed. This leads to a
discrete nonlinear eigenvalue problem: Find 
and


, such that

(9.17)
This is a nonlinear eigenvalue problem since the basis
functions and the variational subspace depend on the
eigenvalue to be computed. We have discussed its
disadvantages in Sect. 9.2.

We can show that the solutions of (9.17) have limiting
points as K and L go to infinity (see [18]). Let ε∞ be any
accumulation point, i.e., there exists a subsequence of
eigenpairs, which we still denote by 
, such
that

We show in the following result that the limiting point is an
eigenpair of (9.1) and the convergence rate for the APW
approximations is optimal. We refer to [18] for the proof of
this theorem.

Theorem 9.2 
If Vperis a spherically symmetric potential

in
 
and the assumption of Vperin Proposition9.1is

satisfied, then the limiting pair (ε∞, φ∞) is an eigenpair of

(9.1), that is



Moreover, for the sequence of eigenpairs


that converges to (ε∞, φ∞), there exists a

constant Csdepending only on s, Ω and Vper, such that

When the radius R is well chosen, the assumption of a
spherically symmetric potential is reasonable for many
systems, as discussed in Sect. 9.2, so this result explains
why the APW method has been successfully used in many
computations.

9.4.4 Error Estimates of the LAPW Method

Since the accuracy of the LAPW method depends heavily on
the choices of parameters, we cannot provide a systematic
convergence analysis but only some error estimates.

Compared with the mortar nonconforming method
introduced in Sect. 9.4.2, the LAPW method ignores the
subspace 
and replaces the basis function ωG in (9.14)
by 
in (9.7), where ε is a fixed parameter. Combined
with the error estimate in Theorem 9.2, we can derive for
the LAPW approximations that

where 
is the eigenvalue to be computed.
Although the errors of the eigenvalue approximations

cannot systematically converge to zero and rely on the
choice of the parameter ε, the high order of 
means
that the LAPW method forms a good basis set over a
relatively large eigenvalue region. In most materials, it is
quite adequate to choose ε near the center of the region of
eigenvalues to be computed. However, in a few instances,
there is no single choice of ε that is adequate for all the



eigenvalues that must be considered. Then the eigenvalue
region may be divided into a few windows and separate
computations with different parameters should be carried
out for each.

9.4.5 Error Estimates of the APW+lo Method

We shall finally discuss the convergence of APW+lo
method. This method adds local basis functions to the
LAPW method in order to have enough variational flexibility
for the radial basis functions in the atomic spheres.

Compared with the mortar nonconforming method
introduced in Sect. 9.4.2, the APW+lo method replaces the
basis function ωG in (9.14) by 
in (9.7) with ε a fixed
parameter, and uses the local atomic orbitals 
in (9.8) to
span the subspace 
. We observe that the APW+lo
method is very similar to the method in Sect. 9.4.2, the only
difference being that the polynomial radial basis functions
are replaced by atomic orbitals with compact support. This
method not only gets rid of the nonlinearity from energy
dependence of the APW basis functions, but also
systematically achieves convergence as long as the local
atomic orbital sets are well chosen. By using the same
arguments as for Theorem 9.1, we can easily justify the
similar convergence and error estimate.

As shown by the numerical experiments in [43], the
APW+lo method converges practically to the same result as
the LAPW method, but allows a significantly smaller basis
set (up to 50%) and thus reduces the computational cost
drastically.

We finally use the package Exciting to perform some
full-potential computations for aluminum (Al) and lithium-
fluorine (LiF) crystals. Exciting is a full-potential DFT
package based on the APW+lo method which uses an SCF
iteration to solve the nonlinear Kohn–Sham equations. The
numerical errors of the ground state energy



approximations with respect to the plane wave and angular
momentum cutoffs are presented in Fig. 9.3, from which we
clearly observe exponential convergence rates with respect
to both discretization parameters K and L.

Fig. 9.3 
Errors of the ground state energy approximations for Al and LiF, by
using the package Exciting. Left: decay with respect to the wave vector cutoff.
Right: decay with respect to the angular momentum cutoff

9.5 Conclusions and Perspectives

In this chapter, we have reviewed the family of APW
methods that are widely used in full-potential electronic
structure calculations. These methods enable highly
accurate and reliable simulations for crystals, since they
avoid the use of pseudopotentials that might be a source of
modeling errors, and which are difficult to control.

We further introduce a nonconforming method based on
the idea of the APW methods, which uses polynomial radial
basis functions inside the atomic spheres. We obtain an a
priori error estimate of the nonconforming approximations
and generalize the results to APW-based methods. Due to
the fast spectral convergence rate, the APW methods
provide high precision using only approximately the same
number of degrees of freedom as the plane wave methods.

As an extension, we mention at the end the muffin-tin
orbital (MTO) approach [2, 3, 44], which is another type of



atomic sphere method similar to the APW methods. It
exploits the same idea of dividing the simulation domain
and provides efficient representations for atomic-like
features that are rapidly varying near each nucleus and
smoothly varying between the atoms. The MTO method
reformulates the multiple-scattering (MST, also called KKR
since it was invented independently by Korringa, Kohn and
Rostoker [44]) method, and leads to physically meaningful
descriptions of the electronic states in terms of a small
basis set of localized, augmented functions. Since the
solutions obtained by the MTO method satisfy the equation
both inside and outside the spheres, the convergence of the
MTO approximations can be proven using similar
arguments as those in this chapter.
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10.1 Introduction

The physical properties of a system of M nuclei and N
interacting electrons can, in principle, be obtained by
solving the time-independent Schrödinger equation if the
relativistic effect is not taken into account:

(10.1)

with the external potential being the Coulomb potential

due to the M nuclei. Here, the spin state has been fixed, Zm

and Rm are the charges and the positions of the nuclei (m = 
1, 2, …, M), ri are the coordinates of the electrons (i = 1, 2,
…, N), Eel is the total electronic energy of the ground state
and Ψ is the associated electronic wave function. Atomic
units are used throughout this chapter 
.

The Schrödinger equation (10.1) is a linear eigenvalue
problem defined in 
, which is of high dimension. In
principle, it is an intractable model. Therefore, people have
to resort to equivalent or reduced models that are
computable. Among them, the density functional theory
(DFT) Kohn–Sham model is the most successful one.

Instead of using the many-body wave function as the
basic quantity as in the Schrödinger equation, DFT employs
the electron density

as the basic physical variable, and any physical quantities
can be obtained from the electron density ρ [51, 60, 64].



We may date DFT back to the early works of Thomas [84]
and Fermi [42] in 1927, where the kinetic energy of the
system is approximated as an explicit functional of density
ρ, which is originally from free electron (or homogeneous
non-interacting electron) gas systems. Although their
approximations are too rough for modern electronic
structure calculations, the approach of using the electron
density ρ as the basic physical variable inspired later
researchers. In 1964, Hohenberg and Kohn [51] presented
their famous work, mainly consisting of the two Hohenberg–
Kohn theorems: the Hohenberg–Kohn theorem and the
Hohenberg–Kohn variational theorem. The two theorems
formulate DFT as an exact theory of many-body systems
[60]. We mention that by using the Fundamental Theorem
of Algebra, Zhou [102] gave a simple, self-contained and
mathematically rigorous proof of the Hohenberg–Kohn
theorem in the case of the Coulomb type potential. We refer
to [57, 59, 103] and references cited therein, and Chap. 3 by
Lewin, Lieb and Seiringer in this volume for more
discussions on Hohenberg–Kohn theorems.

The Kohn–Sham models are basic models of DFT and
were introduced in [55]. Although the Kohn–Sham equation
is much easier to deal with than the original Schrödinger
equation, the solution of the Kohn–Sham equation is still full
of difficulties and challenges. For instance, the Kohn–Sham
equation is a nonlinear eigenvalue problem, the Coulomb
potential vext is singular, the number of eigenpairs required
is large, many eigenvalues are degenerate, and the gaps
between two eigenvalues are usually of multiscale. We see
that its solution requires the design of highly accurate and
efficient algorithms for simulating large scale systems [32,
73]. In addition, it is important to provide a mathematical
theory for the reliability and efficiency of the numerical
approximations in electronic structure calculations. We also
note that the error control of the computations is very much



a concern of chemists, physicists, materials scientists as
well as biologists.

Based on the choice of the basis functions, we may divide
the existing discretization methods for solving the Kohn–
Sham models into three classes: the plane wave method, the
atomic orbital basis function method (local basis set
method), and the real space method. Each method has its
own advantages and disadvantages. Currently, most of the
mature software for first principles electronic structure
calculations are based on the plane wave discretization
and/or the atomic orbital basis function discretization. The
real space methods include the finite difference method, the
wavelet method, the finite element method, and the finite
volume method. Because of the locality of the real space
method, the resulting matrix is sparse, which may make it
more competitive than the other discretizations in parallel
computing. Indeed, the real space method becomes more
and more attractive to DFT calculations. Among these real
space methods, due to its simple construction and
completeness of the basis functions, and the easy
implementation of adaptive computation, the finite element
method should have more potential than the others. In
addition, the ability of adaptive computation of the finite
element discretization makes it convenient to deal with both
the full potential calculation and the pseudopotential
calculation.

The finite element method [9, 23] is widely used in the
solution of partial differential and integral equations and
has achieved great success. It has been used in electronic
structure calculations since the 1980s. In 1985, Levin and
Shertzer [58] used the finite element method on non-
uniform meshes to solve the Schrödinger equation of the He
atom. In 1993, Hackel et al. [48] applied higher order finite
elements to calculate the total energy of the H, 
and 
molecules based on non-uniform meshes. Ackermann and
Roitzsch [1, 2] utilized an adaptive finite element method



together with higher order elements to compute the
electronic structure of the 
molecule to obtain highly
accurate approximations. In 1995, Tsuchida and Tsukada et
al. [87] calculated the H2 molecule and Si atom by using
non-uniform meshes. In 1999, Pask et al. [65] used the finite
element method to compute the energy band of some solids
together with a numerical analysis. Sterne [80] applied a
finite element method to compute positron systems with
hundreds of atoms. In 2004, Zheng et al. [100, 101] used
the polar coordinate-based finite element approach to
compute the Schrödinger equation of the H and Li atoms.
Tsuchida [86] carried out the ab initio molecular-dynamics
simulation for systems with hundreds of atoms based on the
finite element discretization. Shen [75] and Zhang [95]
introduced an adaptive finite element method together with
a two-grid approach to solve systems with tens of atoms.
Fang [36] used a hexahedral mesh-based finite element
scheme to compute the electronic structure of systems with
thousands of atoms using the symmetry of the systems, and
has also carried out a relaxation simulation for systems with
tens of atoms. In 2011, Pask et al. [67] introduced the
PUFEM (Partition-of-unity finite-element method) to the
solution of the Kohn–Sham equation. We refer to [14, 16,
17, 25, 37–40, 43, 66, 75, 83, 92, 95] and references therein
for more applications of the finite element method in
electronic structure calculations.

The numerical analysis of the Kohn–Sham models plays a
central role in our understanding of the reliability and
efficiency of the numerical methods of electronic structure
calculations. Due to the difficulties and challenges, there is
very little work on these topics and only in recent decades
has some progress been made. The main difficulties
involved in the numerical analysis of Kohn–Sham models is
that we have to either handle global and nonconvex
minimization problems with orthogonality constraints or
deal with nonlinear eigenvalue problems with a large



number of (possibly degenerate) eigenvalues. Under a
coercivity assumption of the so-called second-order
optimality condition, Cancès et al. [12] provided a numerical
analysis of plane wave approximations and showed that
some ground state solutions can be approximated by plane
wave solutions with a certain convergence rate.
Suryanarayana et al. [83] showed the convergence of
ground state energy approximations based on finite element
discretizations. In [18], Chen et al. presented a systematic
analysis for a general finite-dimensional discretization and
proved that all the limit points of finite-dimensional
approximations are ground state solutions of the system and
some ground state solutions can be well approximated by
finite-dimensional solutions if the associated local
isomorphism condition is satisfied. They provided not only
convergence of the ground state energy approximations but
also convergence rates of both eigenvalue and
eigenfunction approximations in [18]. It should be pointed
out that the local isomorphism condition used in [18] should
be very mild and is indeed satisfied if the second-order
optimality condition is provided. In further work, Chen et al.
[15] carried out an a posteriori analysis for the finite
element approximations of the Kohn–Sham equation. For
instance, they proposed the residual type a posteriori error
estimators and showed that the a posteriori error estimators
can be used as the upper and lower bounds of the
approximate errors.

We see that the eigenfunctions of (10.8) still vary rapidly
around nuclei or chemical bonds even in the
pseudopotential setting [7, 26, 47, 99]. It is natural and
reasonable to apply adaptive computational approaches to
improve the accuracy of the finite element approximations
and reduce the computational cost. Indeed, Tsuchida and
Tsukada combined the finite element method with the
adaptive curvilinear coordinate approach for electronic
structure calculations of some molecules [88, 89]. Shen and



Zhang introduced some adaptive tetrahedral finite element
discretizations in their theses [75, 95] and calculated
several typical molecular systems efficiently [47, 76, 96,
97]. Bylaska et al. used an adaptive piecewise linear finite
element method on completely unstructured simplex
meshes to resolve the rapid variation electronic wave
functions around atomic nuclei [10]. Dai et al. designed
some parallel adaptive and localization based finite element
algorithms for typical quantum chemistry and nanomaterials
computations containing more than one thousand atoms
using tens of hundreds of processors on computer cluster
[25, 26, 29, 31]. Gavini et al. constructed a finite element
mesh using an unstructured coarse-graining technique and
computed materials systems [62, 83]. Yang successfully
scaled their adaptive finite element simulations to over 6000
CPU cores on the Tianhe-1A supercomputer, see his thesis
[92]. Bao et al. [6] proposed an adaptive method to solve
the Kohn–Sham equation by optimizing the distribution of
mesh points without increasing their number. Chen et al.
[15] proved not only by numerical experiments but also by
theory the robustness and efficiency of the adaptive finite
element computations in electronic structure calculations.
We refer to [15, 19, 32, 41, 43, 52, 61, 85] and references
cited therein for other interesting discussions and
investigations on the adaptive finite element method
(AFEM).

Although there are many works on applying adaptive
finite element approaches to electronic structure
calculations, there was no work on carrying out the
numerical analysis for adaptive finite element
approximations to the Kohn–Sham models until [15]. Under
some reasonable assumptions, Chen et al. [15] and Yang
and Zhou [91] proved that all limit points of the adaptive
finite element approximations are Kohn–Sham ground state
solutions. In addition, they also proved that the Kohn–Sham
ground state solutions can be well approximated by



adaptive finite element approximations with a certain
convergence rate, and the computational complexity is
quasi-optimal. We refer to [19, 20] for more analyses of
AFEM for DFT models.

Due to the needs of science and engineering and the
availability of high performance computers, there is a great
demand for highly efficient and scalable algorithms for
electronic structure calculations. There have been many
contributions toward this effort to design high performance
algorithms (see, e.g., [27, 28, 36, 49, 61, 63] and references
cited therein). We mention here, for instance, the symmetry-
based decomposition approach [36, 40], the parallel orbital-
updating approach [27, 28, 63], the local and high order
finite element discretizations [25, 29], the three-scale
schemes [31, 43, 44], and the hexahedron-grid-based two-
scale higher order finite element scheme [21]. The first two
approaches can be carried out in the two-level
parallelization setting.

In this chapter, we expose some existing mathematical
theory for the finite element method in DFT calculations,
mainly focusing on its numerical analysis, including the a
priori error estimate and the a posteriori error estimate for
the finite element approximations, the convergence rate and
complexity for adaptive finite element approximations. In
addition, we also address the symmetry-based
decomposition approach and the parallel orbital-updating
approaches for high performance computing for large scale
electronic structure calculations in modern supercomputers.

The rest of this chapter is organized as follows. In Sect.
10.2, we give a brief introduction to the Kohn–Sham DFT
models as well as some necessary preliminaries. In Sect.
10.3, we introduce the standard finite element discretization
of the Kohn–Sham equation. Then, we present the existing
analysis for the a priori error estimate and the a posteriori
error estimate for finite element discretizations of the Kohn–
Sham equation in Sect. 10.4. In Sect. 10.5, we provide a



mathematical theory of the adaptive finite element
approximations for solving the Kohn–Sham equation. We
also address the high performance issues for the electronic
structure calculations in Sect. 10.6. Finally, we conclude
with some remarks.

10.2 Preliminaries

Let 
or 
be a polyhedral domain. We shall use
the standard notation for Sobolev spaces Ws, p( Ω) and their
associated norms and seminorms (s = 1, 2, ⋯ , 1 ≤ p ≤∞),
see, e.g., [3]. For p = 2, we denote by Hs( Ω) = Ws, 2( Ω) with
the norm ∥⋅∥s,Ω = ∥⋅∥s,2,Ω. For s = 1,


and


, where v∣∂ Ω = 0 is understood
in the sense of trace. The space H−1( Ω), the dual of 
,
will also be used. We consider real-valued functions
throughout.

For convenience, the symbol 
will be used throughout
this paper, and 
means that 
for some
constant C that is independent of mesh parameters. To
address the mathematical theory of the finite element
method, we need to introduce several function spaces. Let


be a class of functions satisfying some growth
conditions:

with 
and c2, p ∈ [0, ∞). Let 
be the
Hilbert space with H1 inner product



Let 
be a subspace with orthonormality constraints:

where 
. For 
and a

subdomain ω ⊂ Ω, we define

where 
||φi||s,ω = ||φi||s,2,ω and


. In our discussions, we
will use the following sets:

For any 
, we may decompose 
into a direct sum of
three subspaces (see, e.g., [12, 35]):

where 
, 
, and

10.2.1 Kohn–Sham Models

Based on the Kohn–Sham DFT, the total energy of the
system is defined by the following Kohn–Sham energy



functional

where Φ = (φ1, φ2, ⋯ , φN), 
is the electron

density (sometimes it is convenient to abuse the notation
Φ), exc(ρΦ) is the exchange-correlation energy, and vext is
the external potential. For simplicity, we use the assumption
that each Kohn–Sham orbital is occupied by one electron,
and therefore the number of occupied Kohn–Sham orbitals
is also N. Again for simplicity, we will not introduce a new
notation but still use N to denote the number of occupied
Kohn–Sham orbitals. In most cases, we consider vext to be
the Coulomb potential vne, which is defined by

The ground state charge density of the system is achieved
by solving the minimization problem

(10.2)
We refer to [5, 18, 83] for a discussion on the existence of a
minimizer of problem (10.2). If the energy functional is
differentiable, then a minimizer Φ = (φ1, φ2, ⋯ , φN) of (10.2)
should satisfy the following equation (i.e. the Euler–
Lagrange equation associated with the minimization
problem): Find 
such that

(10.3)



where

is the Lagrange multiplier, and 
is the
Kohn–Sham Hamiltonian operator defined by

for all 
. Here,

(10.4)

is the Hartree potential, which is the electrostatic potential
generated by the electronic density ρ(r), and 
is the exchange-correlation potential.

Note that

(10.5)

where 
is the set of orthogonal matrices. We see from
(10.5) that if Φ is a minimizer of (10.2), then ΦU is also a
minimizer for any orthogonal matrix U.

For any 
, we define

and the set of ground state solutions

Since the electron density ρΦ and operator veff(ρΦ) are
also invariant under any unitary transform of Φ, we may
diagonalize the Lagrange multiplier Λ. More precisely,
there exists a unitary matrix U such that the Lagrange
multiplier is diagonal for 
:



Consequently, instead of (10.3), we obtain

which is the well-known Kohn–Sham equation. It is a
nonlinear eigenvalue problem defined in 
.

The exact exchange-correlation energy density exc(ρ) and
exchange-correlation potential vxc(ρ) are unknown and must
be approximated in computations. The commonly used
approximations include local density approximation (LDA),
local spin density approximation (LSDA), and generalized
gradient approximation (GGA) and so on (see, e.g., [60] or
Chap. 1 by Toulouse in this volume for more details). We
refer to [50] for a comparison of different approximations.
Since 
does not have an analytical expression,
we need to consider some approximations and may
mathematically assume throughout this chapter that

(10.6)
which is satisfied by many LDAs used in computation.

For convenience, we focus on the finite systems in our
following discussion. We mention that similar conclusions
may be applied to periodic systems.

Physically, the Kohn–Sham model is set in 
. However,
due to the exponential decay of the ground state
wavefunction of the Schrödinger equation for finite systems
(cf., e.g., [4, 93]), the solutions of the Kohn–Sham models
for finite systems exhibit exponential decay [98, 99], too.
Therefore, 
is usually replaced by some polyhedral domain


in practical computations. Consequently, we shall
focus on the following Kohn–Sham equation



(10.7)

or

(10.8)

As usual, the ground state charge density can be obtained
by solving the lowest N eigenpairs of (10.8) in practice [60].

Although the Kohn–Sham equation is tractable, the
solution of the Kohn–Sham equation is still full of difficulties
and challenges. For instance, the Kohn–Sham equation is a
nonlinear eigenvalue problem, the Coulomb potential vext(r)
is singular, the number of eigenpairs required is large, some
of the eigenvalues are degenerate, and the gaps between
two eigenvalues are of multiscale.

10.2.1.1 Hartree Potential

The Hartree potential (10.4) represents the Coulomb
interaction between electrons. Instead of using (10.4), we
usually prefer to solve the following Poisson equation

(10.9)
To get a highly accurate approximation, an appropriate
boundary value condition is required. Since the Hartree
potential vH(ρ)(r) decays to 0 with speed of 
only, it is
not a good choice to simply take 0 as the boundary value. To
avoid the long range effect, we introduce a neutralizing
charge ρc(r) which cancels out ρ(r) in the computational
domain so that



(10.10)

Denote vc the potential generated by ρc(r), the solution of
(10.9) is then replaced by solving the following equivalent
equation

and 
. We refer to [25, 92] for some other choices
of the boundary value conditions.

10.2.1.2 Pseudopotential

The Coulomb potential vne is singular, which makes the
eigenfunctions oscillate rapidly near the core regions. Since
the states in the core region in many cases have a negligible
contribution to the electronic properties of matter, in
computations, we replace the Coulomb potential in the core
regions by a pseudopotential which is constructed to
reproduce the atomic scattering properties: it has a
Coulombic form outside the core region but is smoother
inside. The remaining states, called valence states, are
described by pseudo-wavefunctions which are significantly
smoother without loss of accuracy [24, 68].

The pseudopotential consists of two parts: one local part
vloc and one nonlocal part vnl. In the pseudopotential
setting, the Kohn–Sham equation is still formulated as
(10.8), but vext now becomes vloc + vnl, N is the number of
valence electrons, and 
is the set of the pseudo-
wavefunctions of the valence electrons.

10.2.1.3 Self-consistent Field Iteration

The Kohn–Sham equation is a nonlinear eigenvalue problem.
It is usually solved by using a self-consistent field (SCF)
iteration approach [56, 60]. Typically one starts with an
initial guess for ρ, then calculates the corresponding veff(ρ)



and solves the Kohn–Sham equation for ψi(i = 1, 2, ⋯ , N),
with which one updates the density and repeats the
calculations. This procedure is then repeated until
convergence is reached. The following is the general
procedure for SCF iteration.
1.

Give an initial input charge density ρin.  
2.

Compute the effective potential veff(ρin).  
3.

Solve the following linear eigenvalue problem  

4.
Compute the new output charge density ρout.  

5.
Convergence check: if not converged, use some density
mixing method to get a new input charge density ρin, go
to step 2; else, stop.

 

The variation of the charge density is often used as the
criterion for the convergence of the SCF iteration in a
quantum chemistry calculation. For the density mixing
method in step 5, if we simply use Picard iteration: take ρout
as the initial density of the next iteration, the iteration
sequence converges too slowly or even does not converge.
Therefore, it is very important to choose a proper density
mixing method. Many such density mixing methods have
been proposed so far. The most widely used ones include
simple mixing [53], Pulay mixing [69, 70], Broyden’s mixing
method [77, 79], and a modified Broyden mixing method



[53, 56]. We refer to [90] for the most recent progress on
designing SCF iteration schemes.

10.2.2 Weak Form and Functional Assumption

To state the numerical theory of finite element
approximations to the Kohn–Sham equation, we need some
notation and assumptions.

Define the trilinear form a(⋅;⋅, ⋅) by:

We then have the weak form of (10.7) as follows

(10.11)

We call ( Λ,  Φ) with Λ = (λij) and Φ = (φ1, ⋯ , φN)
satisfying (10.11) a Kohn–Sham ground state. Since the
Kohn–Sham energy functional is nonconvex and invariant
with respect to any unitary transform, we define the set of
Kohn–Sham ground states by

We also define the set of states that satisfy (10.11) as:

Note that 
. Sometimes we assume that there is a gap
between the energies of corresponding to states in Θ and
other states in 
:

(10.12)

which is reasonable [15].
We see that (10.8) can be transferred to the following

weak formulation: Find 
such



that

(10.13)

where 
.
Note that any solution of (10.11) can be obtained from a

unitary transform of some solution of (10.13). That is, once
we get all solutions of (10.13), we then obtain all solutions
of (10.11).

We define the operator 
as

The Fréchet derivative of 
with respect to Φ at ( Λ,  Φ),
denoted by 
, is as follows

To study the convergence and complexity, we use the
following assumptions [18].

Assumptions 10.1

(A1)

for some p1 ∈ [0, 2].  

(A2)
There exists a constant α ∈ (0, 1] such that  

(A3) ( Λ,  Φ) is a solution of (10.3) and there exists a
constant β > 0 depending on ( Λ,  Φ) such that  



(10.14)

We remark here that Assumption (A2) implies Assumption
(A1) and the commonly used Xα and LDA exchange-
correlation energy functionals satisfy Assumption (A2).
Assumption (A3) is equivalent to 
being an
isomorphism from 
to 
. We observe that if Assumption
(A3) is satisfied for 
, then Assumption (A3) is
satisfied for any 
with the same constant β, too. A
stronger condition than (10.14), namely that

is used in [12, 74], which is satisfied for a linear self-adjoint
operator when there is a gap between the Nth lowest
eigenvalue and (N + 1)th eigenvalue [74].

10.3 Finite Element Discretization

Let 
be the diameter of Ω and 
be a shape regular
family of nested conforming meshes over Ω with size


: there exists a constant γ∗ such that

(10.15)

where hτ is the diameter of τ for each 
, ρτ is the
diameter of the biggest ball contained in τ, and


. Let 
denote the set of interior faces
of 
.

Let Sh, k( Ω) be a subspace of continuous functions on Ω
such that



where 
is the space of polynomials of degrees no greater
than k over τ. Let 
. To simplify the
notation we shall denote 
by 
and let


.
Then the finite element approximation of (10.2) is stated

as:
(10.16)

We see from [5, 18, 83] that the minimizer of (10.16) exists
under condition (10.6). Similarly, the finite element
approximation of (10.11) reads

(10.17)

with the Lagrange multiplier

Define the set of finite element approximations for Kohn–
Sham ground states:

and the set of ground state finite element solutions:

We have from [18] that the finite element approximations
are uniformly bounded, i.e., there exists a constant C such
that



To carry out the numerical analysis, we consider the
model (10.17). To get the numerical solution of the Kohn–
Sham model, we use the following discretized Kohn–Sham
equation

(10.18)

where 
.
Similarly, any solution of (10.17) can be obtained from a

unitary transform of a solution of (10.18). That is, once we
get solutions of (10.18), we then obtain solutions of (10.17).

By using the SCF iteration addressed in Sect. 10.2.1.3,
the solution of (10.18) may be obtained by the repeated
solution of the following linear eigenvalue problem

(10.19)

where ρin,h is an input charge density approximation.
Assume 
is a basis of Sh, k( 

Ω), namely,

where Nb is the dimension of space Sh, k( Ω). We then see
that each ψ ∈ Sh, k( Ω) can be expressed as

(10.20)

where 
.
Inserting (10.20) into (10.19) and choosing φh to be φl,h(l 

= 1, ⋯ , Nb), respectively, we obtain the following algebraic
eigenvalue problem

(10.21)



with H and B being the stiffness and mass matrices in the
finite element bases, respectively. That is,

with Hkl = a(ρin,h;φl,h, φk,h) and Bkl = (φl,h, φk,h).
We then call an existing eigensolver, e.g., the Lanczos

method [11], the LOBPCG method [54], the Jacobi–Davidson
method [78], to solve the algebraic eigenvalue problem
(10.21). We refer to [71] for various eigensolvers. Note that
the algebraic version of (10.9) under the finite element
discretization becomes

(10.22)
where A is symmetric and positive definite. We may apply a
preconditioned conjugate gradient method (PCG) [94] or an
algebraic multigrid method [8, 82] to solve (10.22) (cf., e.g.,
[72] for more details).

10.4 The A Priori and A Posteriori

Analysis

The numerical analysis of Kohn–Sham models plays an
important part in our understanding of the efficiency of the
numerical methods used in electronic structure calculations.
However, significant results in this area have only been
obtained very recently. The main difficulties involved in the
numerical analysis of Kohn–Sham models are that we have
to either handle nonconvex minimization problems with
orthogonality constraints or deal with nonlinear eigenvalue
problems with a large number of (possibly degenerate)
eigenvalues.

We point out that a systematic a priori analysis for a
general finite-dimensional discretization is presented in
[18], where the following results are obtained: all the limit
points of finite-dimensional approximations are ground state



solutions of the system, and some ground state solution can
be well approximated by finite-dimensional solutions if the
associated local isomorphism condition is satisfied. Note
that not only convergence of ground state energy
approximations but also convergence rates of both
eigenvalue and eigenfunction approximations are provided
in [18].

The a posteriori analysis for finite element discretizations
of the Kohn–Sham equation was later provided in [15]. It is
proved in [15] that the error of the finite element
approximations for the Kohn–Sham equation is bounded
from below and above by the residual type a posteriori error
estimators which are also proposed in [15]. This is the first
result on the a posteriori error estimate for numerical
discretizations of the Kohn–Sham equation.

10.4.1 The a priori Analysis

In this subsection, we show the a priori error estimates for
the finite element approximations, whose proofs can be
found in [18]. Indeed, all the analyses in [18] are focused on
finite-dimensional approximations in a class of finite-
dimensional subspaces 
satisfying the following
assumption (see also (3.1) of [18])

(10.23)
Assumption (10.23) is a very mild assumption satisfied by
many typical finite-dimensional spaces used in practice,
including the piecewise polynomial finite element spaces
[22].

The following convergence conclusions are proved in
[18].

Theorem 10.2 
The following convergences hold:



where Eh = E( Φh) for any
 
, and the distance

between sets
 
is defined by

Theorem 10.2 says that all the finite element
approximations for eigenvalues and eigenfunctions together
with the total energy converge and the limit points are
ground state solutions of the system.

It is also shown in [18] that the quadratic convergence
rate of ground state energy approximations can be further
achieved.

Theorem 10.3 
Let E0be the ground state energy of (10.2)
and Ehbe the ground state energy of (10.16), namely, E0 = 

E( Φ) for all
 
, and Eh = E( Φh) for all
 
. If
Assumption(A1)holds, then

where the distance between sets
 
is defined by

We observe that Theorem 10.3 is a generalization and
improvement of results in [12, 83]. Furthermore, we see
that under certain assumptions every ground state solution
can be approximated with some approximation rate by
finite-dimensional solutions.

For any 
, we define Bδ( Λ,  Φ) as

Let

we then have the following conclusion (see [18] for the
proof.)



Theorem 10.4 
Let ( Λ,  Φ) ∈ Θ. If Assumption(A2)is true

and ( Λ,  Φ) satisfies Assumption(A3), then there exists a δ 

> 0 such that for sufficiently small h, (10.17) has a unique

local solution ( Λh, Φh) ∈ XΦ,h ∩ Bδ(( Λ,  Φ)). Moreover,

(10.24)

(10.25)

(10.26)
with r(h) → 0 as
 
.

10.4.2 The a posteriori Analysis

In this subsection, we turn to the residual type-based a
posteriori analysis.

The residual type a posteriori error estimators for the
finite element approximation of the Kohn–Sham equation
consist of two parts: the residuals and the jumps [15]. We
define the element residual 
and the jump Je( Φh) by

where e is the common face of elements τ1 and τ2 with unit
outward normals 
and 
, respectively.

Let ωh(e) be the union of elements that share the face e.
For 
, define the local error indicator ηh( Φh, τ) and
oscillation osch( Φh, τ) by

(10.27)

(10.28)



where 
is the L2-projection of w ∈ L2( Ω) to polynomials of
some fixed degree k on τ or e. Given a subset ω ⊂ Ω, define
the error estimator ηh( Φh, ω) and oscillation osch( Φh, ω) by

It is proved in [15] that the errors of the finite element
approximations for the Kohn–Sham equation are bounded
from below and above by the residual type a posteriori error
estimators designed above. Indeed, we have (see [15] for
details)

Theorem 10.5 
Suppose h0 ≪ 1 and h ∈ (0, h0]. Let ( Λ,  Φ) 
∈ Θ. If Assumptions(A2)and(A3)are satisfied, then there

exist positive constants C1, C2and C3depending on the

shape regularity constant γ∗(in (10.15)), such that

where ( Λh, Φh) ∈ XΦ,his the finite element approximation

satisfying (10.24)–(10.26).

Further, we obtain (see, also, [15])

Theorem 10.6 
Suppose h0 ≪ 1 and h ∈ (0, h0]. Let

be a solution of (10.18). If Assumptions(A2)and(A3)are

satisfied, then

here

and
 
.



10.5 Adaptive Finite Element

Approximation

Even in the pseudopotential setting, the eigenfunctions of
(10.8) still vary rapidly around nuclei and chemical bonds
[7, 26, 47, 99]. Hence it is quite natural and reasonable to
apply adaptive finite element approaches to improve the
approximation accuracy and reduce the computational cost.
Although there are many works on implementing adaptive
finite element methods for electronic structure calculations,
as we have seen in Sect. 10.1, there was no work on
numerical analysis for an adaptive finite element
discretization of the Kohn–Sham models until [15] appeared.
We refer to [19, 20] for the adaptive finite element analysis
of orbital-free models.

We note that an adaptive mesh-refining algorithm usually
consists of the following loop [13, 30]:

Let us address each step of the loop in more detail.

Solve 
This step computes the piecewise polynomial finite
element approximation with respect to a given mesh.

Estimate 
Given a partition 
and the corresponding
output ( Λh, Φh) from the “Solve” step, “Estimate” computes
the a posteriori error estimators 
, e.g., the
ones defined in (10.27).

Mark 
Based on the a posteriori error indicators

, “Mark” gives a strategy to choose a subset

of elements 
of 
for refinement. Here and hereafter,
we replace the subscript h (or hk) by an iteration counter k
whenever convenient.



One of the most widely used marking strategies to
enforce error reduction is the so-called Dörfler strategy
[33], which is stated as follows:

Dörfler Strategy: Given a marking parameter 0 < θ < 1:
1.

Construct a subset 
such that

(10.29)

 

2.
Mark all the elements in 
.  
Another commonly used marking strategy, which is

called the “Maximum strategy”, only requires that the set of
marked elements 
contains at least one element of 
holding the largest value estimator [45, 46]. Namely, there
exists at least one element 
such that

(10.30)
The Maximum strategy is weaker than the Dörfler strategy.
We observe that the most commonly used marking
strategies, e.g., the Dörfler strategy and the equidistribution
strategy, satisfy (10.30).

Refine 
Given the partition 
and the set of marked
elements 
, “Refine” produces a new partition 
by
refining all elements in 
at least once. Define

as the set of refined elements, we have 
. Note
that usually more than just the marked elements in 
are
refined in order to keep the mesh conforming.

Combining the basic loop of an adaptive element algorithm
and the residual type a posteriori error estimators (10.27),
two adaptive finite element algorithms for the Kohn–Sham
equation, the adaptive finite element algorithm with the
Maximum strategy and the adaptive finite element



algorithm with the Dörfler strategy, are designed in [15],
which are stated as follows.

Algorithm 1

Algorithm 2

10.5.1 Convergence and Convergence Rate

The numerical analysis for Algorithm 1 has been carried out
in [15], for instance, the following theorem has been proved
there.

Theorem 10.7 
Let
 
be the sequence generated by

Algorithm 1 with a sufficiently fine initial mesh
 
. If
(10.12) and Assumption(A1)are satisfied, then

It is shown by Theorem 10.7 that all limits of the adaptive
finite element approximations for the Kohn–Sham equation
are Kohn–Sham ground state solutions when the initial
mesh is sufficiently fine. Indeed, the initial mesh is not



necessary fine enough for the convergence, we refer to [91]
for more details.

Thanks to the use of a stronger Dörfler marking strategy,
not only the convergence but also the convergence rate can
be obtained for Algorithm 2 [15]. Let us first do some
preparation for addressing the results.

For ( Λ,  Φ) ∈ Θ and Φh ∈ Vh, we say the equivalence class
[ Φh] approximates the equivalence class [ Φ] if

A sequence 
is said to converge to an equivalence
class [ Φ] if there exists a sequence of unitary matrices


, such that

It is proved in [15] that the error of the adaptive finite
element approximations produced by Algorithm 2 is
reduced. Indeed, we have (see [15] for the proof)

Theorem 10.8 
Let θ ∈ (0, 1) and h0 ≪ 1. Let
 
be a

sequence of finite element approximations obtained by

Algorithm 2 and
 
be the subsequence that

converges to some [ Φ] with ( Λ,  Φ) ∈ Θ. If Assumption(A2)is

true and ( Λ,  Φ) satisfies Assumptions(A3), then

where
 
and
 
satisfy (10.24)–
(10.26) with h being replaced by
 
and
 
, respectively,

γ > 0 and ξ ∈ (0, 1) are constants depending only on the

coercivity constant ca, the shape regularity constant γ∗, and

the marking parameter θ. Therefore, the km-th iteration

solution of Algorithm 2 satisfies



and

Furthermore, there holds

It is shown by Theorem 10.8 that the Kohn–Sham ground
state solutions can be well approximated by the adaptive
finite element approximations with a certain convergence
rate when the initial mesh is fine enough.

10.5.2 Complexity

The quasi-optimal complexity of adaptive finite element
approximations may be derived, for which we define [15].

where γ > 0 is some constant and

and 
means 
is a refinement of 
. We see that, for
all γ > 0, 
. So we may use 
to stand for 
and
use | Φ|s to denote | Φ|s,γ. We note that 
is the class of
functions that can be approximated within a given tolerance
ε by continuous piecewise polynomial functions over a
partition 
with the number of degrees of freedom
satisfying 
, where 
denotes the
number of elements in a mesh 
.

To investigate the computational complexity of Algorithm
2, we need some assumptions as follows: Let

where C∗ is a positive constant depending on the shape
regularity constant γ∗ (see [15] for details).



Assumptions 10.9

1.
The marking parameter θ satisfies θ ∈ (0, θ∗).  

2.
The marked 
satisfies (10.29) with minimal
cardinality.

 
3.

The distribution of refinement edges on 
satisfies
condition (b) of Section 4 in [81].

 
With Assumptions 10.9, we then have the optimal
complexity [15].

Theorem 10.10 
Suppose θ ∈ (0, 1) and h0 ≪ 1. Assume

that Assumption(A2)is satisfied and (10.11) has m solutions

in Θ (up to invariance under unitary transforms), which are

denoted as [ Φ(l)](l = 1, 2, …, m) where
 
or can be

chosen to be ∞. Let
 
be a sequence of finite element

solutions produced by Algorithm 2 with

Assumptions10.9being satisfied. Then the following quasi-

optimal bound is valid

(10.31)

where
 
satisfies (10.14), 
satisfy

(10.24) and (10.26) with h being replaced by
 
, and the

hidden constant depends on the exact solution Φland the

discrepancy between θ and θ∗(l = 1, 2, …, m). Here, nland


are the total number and the maximal index of iterations

which approximate [ Φ(l)](l = 1, 2, …, m) among the n

iterations, respectively.

It is shown by Theorem 10.10 that under some mild and
reasonable assumptions, the computational complexity of
the adaptive finite element algorithm with the Dörfler



strategy is quasi-optimal when the initial mesh is fine
enough.

Applying the non-polynomial behavior of the
eigenfunctions, we see from [91] that the adaptive finite
element method has an asymptotic linear convergence rate
and an asymptotic optimal complexity from any initial mesh.
More precisely, the adaptive finite element method has a
linear convergence rate and an optimal complexity after
finite iteration steps.

10.6 High Performance Computing

Due to the needs of science and engineering and the
availability of high performance computers, there is a great
demand for highly efficient and scalable algorithms for
electronic structure calculations. There have been many
contributions toward this effort to design high performance
algorithms. We mention here, for instance, the symmetry-
based decomposition approach [36, 40], the parallel orbital-
updating approach [27, 28, 63], the local and high order
finite element discretization [29], the three-scale schemes
[31, 44], and the hexahedron-grid-based two-scale higher
order finite element scheme [21]. In the following, we focus
on a brief introduction to the first two approaches that
involve a two-level parallelization.

10.6.1 Symmetry-Based Decomposition

Approach

A symmetry-based decomposition approach is proposed to
deal with linear differential eigenvalue problems as well as
the Kohn–Sham equation in [40] by making use of the
Abelian or non-Abelian symmetries of the systems. By this
approach, for instance, the solution of the associated
algebraic eigenvalue problem is then replaced by the
solutions of some independent eigenvalue subproblems that



are of small scale. Due to the independence, as we see, the
computation can be carried out in parallel.

The group theory-based decomposition approach can be
seamlessly incorporated with grid-based discretizations
such as finite difference, finite element, or finite volume
methods. We may place the approach into a two-level
parallelization setting, which consequently reduces the CPU
time notably.

To show the main idea of the group theory-based
decomposition approach, we consider a model problem

(10.32)

where L is a Hermitian operator on a Hilbert space V ⊂ L2( 
Ω).

A group G is said to be a symmetry group associated with
eigenvalue problem (10.32) if

and the imposed boundary condition is also invariant under
{PR : R ∈ G}, which is defined as follows: for each R ∈ G and f 
∈ V , there holds

We see that {PR : R ∈ G} forms a group isomorphic to G[34].
Associated with the model (10.32), we have [40]

Theorem 10.11 
Suppose a finite group G = {R} is a

symmetry group associated with eigenvalue problem

(10.32). Denote all the inequivalent, irreducible, unitary

representations of G as { Γ(ν) : ν = 1, 2, …, nc}. Then the

eigenvalue problem can be decomposed into




subproblems. For each ν ∈{1, 2, …, nc}, the corresponding

dνsubproblems are

where k is any chosen number in {1, 2, …, dν}.

Suppose the finite group G = {R} of order n is the symmetric
group associated with the problem (10.32). Denote all the
inequivalent, irreducible, unitary representations of group G
by { Γ(ν), ν = 1, 2, …, nc}, with dν being the dimension of Γν.
Then the original eigenvalue problem (10.32) can be

decomposed into 
subproblems. Define 
.

For any ν, the corresponding dν subproblems can be
expressed as

(10.33)

For illustration, we provide an analysis of this approach
for electronic structure calculations of symmetric cluster
systems based on the finite element discretizations. Assume
the number of degrees of freedom for discretizing (10.32) is
Ng and the number of eigenpairs required is N. By the
traditional approaches, the computational cost scales as
N2Ng. By applying the above symmetric-based
decomposition approach, the solution of (10.32) is
transferred to the solutions of nsub subproblems (10.33),
with each subproblem being discretized by Ng∕n degrees of



freedom and only requiring the smallest N∕nsub eigenvalues
and their corresponding eigenfunctions to be computed.
Therefore, the total computational cost is significantly
reduced. More importantly, since the subproblems (10.33)
are independent of each other, they can be solved in parallel
intrinsically. Thus the algorithm allows two level
parallelization: one level is the solution of these N
independent subproblems in parallel intrinsically, the other
level is to solve each boundary problem in parallel by
traditional algebraic parallel strategies or domain
decomposition approaches. We refer to [36, 40] for the
detailed implementation issues.

10.6.2 Parallel Orbital-Updating Approach

Now we turn to introduce the parallel orbital-updating
approach, which is first proposed in [27]. The basic version
is stated as follows [27].

Algorithm 3

Here, 
.
With the parallel orbital-updating approach, the solution

of the eigenvalue problem is replaced by solutions of a
series of independent source problems and some small scale
eigenvalue problems. Because of the independence of the
source problems, these source problems can be solved in
parallel essentially. For each source problem, traditional
parallel strategies (for example, domain decomposition or



parallelization in matrix-vector multiplication) can be used.
Therefore, it allows for a two-level parallelization: one level
of parallelization is obtained by partitioning these source
problems into different groups of processors, another level
of parallelization is obtained by assigning each source
problem to several processors contained in each group. This
two-level parallelization makes the parallel orbital-updating
approach more competitive for large scale calculations.

The approach is then extended to solutions of the
constrained minimization problem for the Kohn–Sham
energy functional [28]. Some extensions to plane wave
discretizations for the Kohn–Sham equation as well as
modified versions are investigated in [63].

10.7 Concluding Remarks

In this chapter, we have introduced the finite element
method to DFT calculations, together with its mathematical
theory. We have presented the a priori and a posteriori
error estimations of the finite element approximations to the
Kohn–Sham equation. We have also provided the
convergence rate for adaptive finite element approximations
and described its complexity theory. Consequently, we have
shown the efficiency and reliability of finite element
approximations of the Kohn–Sham DFT models, together
with a mathematical theory of the error control during the
calculations. In addition, we have presented two high
performance algorithms, the symmetry-based decomposition
approach and the parallel orbital-updating approach, which
allow for the two-level parallelization and may have the
potential for exascale computing. Finally, we mention that
the emphasis of this chapter has been on the work of our
group, and related research.
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Abstract

The BigDFT project started in 2005 with the aim of testing
the advantages of using a Daubechies wavelet basis set for
Kohn–Sham density functional theory with
pseudopotentials. This project led to the creation of the
BigDFT code, which employs a computational approach
with optimal features for flexibility, performance and
precision of the results. In particular, the employed
formalism has enabled the implementation of an algorithm
able to tackle DFT calculations of large systems, up to
many thousands of atoms, with a computational effort
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which scales linearly with the number of atoms. In this
work we show how the localised description of the Kohn–
Sham problem, emerging from the features of the basis set,
are helpful in providing a simplified description of large-
scale electronic structure calculations. We recall some of
the features that have been made possible by the peculiar
mathematical properties of Daubechies wavelets and also
interpolating scaling functions.

11.1 Introduction

Since their foundation, disciplines like computational
physics and quantum chemistry have had to deal with the
question of the computational reliability of results. The
reliability of a given approach can be defined in terms of
two key concepts, namely “accuracy”, i.e. the ability of the
model to predict quantities which can be externally
verified, e.g. through experiment, and “precision”, i.e. the
ability of the employed numerical approach to find the
solution to a given physical model. A precise approach
should therefore reduce the computational uncertainties of
quantities extracted from a well-defined model, and provide
reference results which can be compared to other
computer codes employing the same model. For theoretical
approaches wherein no analytic solution exists, reducing
the computational uncertainty is the only way to shed light
on the predictive power of the model. The accuracy of a
result with respect to experimental data may therefore only
be reliably quantified if the computational uncertainty is
significantly lower than the observed discrepancy.

Density functional theory (DFT) [38, 43] has had
widespread success in simulating a range of materials,
from molecules to solids, and has therefore become the
most popular approach to electronic structure simulations.
While the accuracy of DFT is dominated by the
approximations made to the exchange-correlation (XC)



functional, the precision of a given simulation depends on a
number of factors, in particular the choice of the basis set.
Thus two different DFT codes might use the same physical
formalism (including the same XC functional), but differ in
results due to the use of different numerical approaches. In
order to compare results across DFT codes, careful
attention must therefore be paid to the precision of the
results, as seen for example in the DeltaCode project, in
which a systematic comparison of a number of periodic
DFT codes was undertaken [45].

In this context, an important distinction should be made
between codes which use systematic and non-systematic
basis sets. A systematic basis set allows one to calculate
the exact solution of the Kohn–Sham (KS) equations with
arbitrarily high precision by increasing the number of basis
functions. In other terms, the numerical precision of the
results is related to the number of basis functions used to
expand the KS orbitals. With such a basis set it is thus
possible to obtain results which are free of errors related to
the choice of the basis, eliminating a source of uncertainty.
As such, it is highly desirable to have at hand a
computational formalism which is able to provide, at the
same time:

a set of reliable results, which can be systematically
improved by the end-user, in view of increasing—when
needed—the precision of the calculations;
a flexible approach, in which the desired models can be
explicitly implemented without having to deal with
correction terms and intrinsic approximations;
an efficient computer program, which enables the
optimal use of computational resources, especially in the
context of high performance computing;
the ability to connect together different levels of theory,
where various approaches might be linked within a given
computational setup.



In 2005, the EU FP6-STREP-NEST BigDFT project
funded a consortium of four European laboratories (L_Sim,
CEA-Grenoble, France; Basel University, Switzerland;
Louvain-la-Neuve University, Belgium; and Kiel University,
Germany), with the aim of developing a novel approach for
DFT calculations based on Daubechies wavelets [16].
Beyond building a DFT code from scratch, the objective of
this 3-year project was to test the potential benefit of a new
formalism in the context of electronic structure
calculations.

This project was motivated by the fact that Daubechies
wavelets exhibit a set of properties which make them ideal
for a precise and optimized DFT approach. In particular,
their systematicity provides a reliable basis set for high-
precision results, whereas their locality (both in real and
reciprocal space) is highly desirable to improve the
efficiency and the flexibility of the treatment. Indeed, a
localized basis set allows the optimization of the number of
degrees of freedom for a required accuracy, which is highly
desirable given the complexity and inhomogeneity of
systems under investigation nowadays. Moreover, an
approach based on localized functions makes it possible to
explicitly control the nature of the boundaries of the
simulation domain, allowing complex environments like
mixed boundary conditions and/or systems with a net
charge.

We organize this chapter as follows. We first develop
shortly the KS formalism and the concepts of operators for
any basis set. We then present some basic illustrations of
the properties of Daubechies wavelets associated to the
multi-resolution analysis, and their peculiarities in the
context of computational structure electronic calculations.
We briefly outline, based on the interpolating scaling
functions, the main features of the Poisson Solver
implemented in the code. Finally, we will then explain in



more detail how the solution of the KS problem is
implemented in the code and how the properties of
wavelets enable the realization of a computational
algorithm whose time-to-solution is linearly scaling with the
number of atoms in the system.

11.1.1 Basis Set of Coordinate Representation

We start the chapter by illustrating the notation employed
in the following. We represent the state associated to a
particle coordinate by a label 
with r labelling a
point in real space and the value of α = 1, 2 corresponding
to the spinorial state up or down, respectively. The
coordinate representation might be used to express orbitals
and operators according to the conventions

The completeness relation in the coordinate representation
might be written as follows

We may also express 
as a shorthand.
The electronic charge density ρ(r) might be defined from

the above equations as follows:

where the spinorial degrees of freedom have been traced
out. The Electronic Density Matrix 
is an operator that can
be implicitly defined via its kernel



With the above notation we imply that the kernel F(x, x′) is
expressed in the basis of the position representation. Let us
point out the notable relations:

which would hold for any one-body operator 
.

11.1.2 Definition of the KS Hamiltonian from

the Total Energy

In the constrained search formulation we minimize the
Hohenberg–Kohn functional E[ρ] with respect to the
internal degrees of freedom of the density operator 
, by
imposing the constraint 
. In this way, we can
generalize the dependency of the functional to the density
matrix, and the terms which explicitly depend on non-
diagonal terms of 
can be included in this way. We might
therefore consider, with more generality, that the Kohn–
Sham energy functional is defined in terms of the density
matrix, namely 
.

It is interesting to consider the linearization of the
energy functional with respect to the density operator. We
define the one-body operator



which is self-adjoint (as 
)). We may
split the total energy into a band structure and a double

counting term. The band structure term is defined as

and it is therefore thought of as a functional of the sole

density matrix 
.
The double counting term would then express the

difference between the band structure term and the total
energy, this time interpreted as a function of the charge
density of the system:

(11.1)
The above definitions are valid for functionals which are a
linear combination of each other, namely if L[ρ] = E[ρ] + 
F[ρ], then LBS,DC = EBS,DC + FBS,DC, and the same is valid for
the respective KS Hamiltonians. Yet, obviously the ground-
state (GS) density of the functional L will not be in relation
with the GS densities of E and F.

Therefore we might formally write

where with the above notation we indicate the minimum of
the functional over all the density matrices that have ρ as a
charge density.

The GS energy of the system is found by minimizing the
functional E[ρ] over all N-representable densities, with N
the number of electrons. Practically, such N-
representability is achieved by representing the density in
terms of the Fermi (super-) operator, defined by



applied onto the KS Hamiltonian operator. The chemical
potential μ is fixed by imposing that the total number of
electrons corresponds to N, namely by


. The constrained search
minimization can therefore be expressed in the following
way:

where the GS energy functional is, as pointed out by
Hohenberg and Kohn in their seminal work, written in
terms of the total number of electron N and of the external
potential Vext.

11.2 Operators of Generalized Kohn–

Sham Formalism

As we discussed before, each of the terms contributing to
the total energy creates a contribution to the KS
Hamiltonian, to the double counting term and their
respective derivatives. We list here such contributions:

Kinetic Term

The single particle term for the kinetic energy depends only
on the density matrix:

This term gives rise to the kinetic operator of 
:



and as, for this term EBS = Ts, we have EDC = 0. Once again,
we have employed this notation to highlight that the
Laplacian operator is associated to the kinetic operator in
the position representation.

External Potential

Another important term for the energy comes from the
external potential. Let us assume a generic non-local form
for a one-body potential:

where the external potential term is

The double-counting term is also zero in this case.

Exchange and Correlation Energy

In the traditional semi-local approximations to the XC
terms, the functional Exc[ρ] is considered as a function of
the spin density 
). The one-body
exchange and correlation potential is the functional
derivative

evaluated for the density ρ. This potential will appear in the

operator, and the corresponding band structure energy

will be 
, which will be expressed as a
function of ραβ(r). The double counting term will thus be a
functional of the spin density alone:



Hartree Potential from the Electrostatic Energy

Another important term is related to the electrostatic
energy. To generalize the treatment let us suppose that
such term is provided by

where 
denotes the Green’s function of the Poisson
operator 
with a generic dielectric function 𝜖. We
assume that this function can also be dependent on the
charge density ρ. Such operators are implicitly defined by
the following relations:

(11.2)

The Hartree term that has to be included in the KS
Hamiltonian is therefore

with the Hartree potential being

The band structure term in this case is EBS = 2EH and the
double counting term is thus EDC = −EH.

11.2.1 KS-DFT Formalism: Nearsightedness

and Support Functions

An equivalent expression of this functional can be provided
by giving the expression of the electronic density in term of



the Kohn–Sham (KS) orbitals 
. In our approach the KS
orbitals are expressed as a linear combination of
intermediate, possibly minimal, basis functions 
, also
referred to as support functions (SFs):

(11.3)
In other terms, we assume that the density matrix of the
system 
can be defined from a set of localized SFs as
follows:

(11.4)

with an SF overlap matrix 
), which can be
chosen to have a unit diagonal and where Kαβ is the so-
called density kernel. Here the fi denote the occupation
numbers associated with the KS orbitals 
, which
determine the density ρ(x) = F(x, x). Such occupation
numbers are dependent on the KS eigenvalues 𝜖i, fi = f(𝜖i),
as by definition the KS orbitals satisfy the eigenvalue
problem of HKS.

This kernel is related to the density matrix formulation
of Hernández and Gillan [37], and has to be thought of as
functionally dependent on the KS Hamiltonian, namely K = 
K[HKS]. The density matrix F(r, r′) decays exponentially
with respect to the distance |r −r′| for systems with a finite
gap or for metals at finite temperature [3, 11, 12, 26, 36,
39, 42]; for metals at zero temperature it decays
algebraically [47]. Therefore in these cases it can be
represented by strictly localized basis functions. A natural
and exact choice for these would be the maximally localized
Wannier functions (MLWFs) which have the same
exponential decay [48]. In our case, the localized functions
are constructed in situ during the self-consistency cycle in
terms of a underlying wavelet basis set.



The energy of the system in the KS formalism can then
be defined by employing the external potential Vext, which
contains local and non-local pseudopotential (PSP) terms,
and depends on a set of electron-independent parameters λ
which label the system, for instance by indicating the
positions of atoms. We also consider the core charge
density ρc[λ], which depends on such a label, but it is
assumed to be independent of the KS orbitals. We also
include the exact exchange term EX[F] and the associated
Fock operator 
already defined above, multiplied by a
parameter αX which quantifies the fraction of exact
exchange introduced in the formalism. We then obtain:

(11.5)

The KS Hamiltonian is defined as

(11.6)

BigDFT efficiently treats Gaussian pseudopotentials of
the Goedecker–Teter–Hutter (GTH) [29] and Hartwigsen–
Goedecker–Hutter (HGH) [35] types (see also [44, 64]),
since the intrinsic separability of both the basis set and
Gaussian pseudopotentials allows for the simplification of
several 3D operations into a sum of 1D products. The
approximation of the all-electron KS quantities induced by
the PSP terms has been shown to be much less severe than
the exchange and correlation terms. Such PSP terms have
proven to yield all-electron precision for most of the
quantities of interest in ground-state DFT calculations, as



can be seen in the DeltaTest initiative [45], where an
accuracy of 0.1 meV/atom—the best among the PSP
calculations—can be obtained for the set of atoms
belonging to the first three rows of the periodic table, or in
Willand et al. [64], where we show that the accuracy of the
G2-1 and S22 test sets is comparable with all-electron
calculations made by highly precise Gaussian basis sets.

11.2.2 Atomic Forces

The atomic forces are, by definition, the opposite of the
derivative of the total energy with respect to the atom
position. In this notation we should thus calculate

(11.7)

Clearly, numerically, the set of 
is expressed in a finite
basis set. This means that the action of 
can in principle
lie outside the span of the 
. We can define therefore a
residual function

(11.8)

which represents the deviation of the numerical KS orbital
from being the exact KS orbital. By definition


. The norm of this vector, once projected

onto the basis set used to express 
, is often used as a
convergence criterion for the ground state energy.
However, even though the basis set is finite, the
orthogonality of KS orbitals holds exactly. It is thus easy to
show that the numerical atomic forces are defined as
follows:

(11.9)



where the first term of the right-hand side of the above
equation is the Hellman–Feynman contribution to the
forces. The second term should not exist in a exact
representation and only originates from the fact that the
residual vector is non-zero.

Let us now suppose that the KS Hamiltonian and orbitals
are expressed in a basis set which is complete enough to
describing the orbitals and their derivatives within a
targeted error. In this case the norm of 
can be reduced
within the same basis set so as to meet this targeted
precision. Therefore the projection of 
onto the basis
set used for the calculation can be safely neglected as it is
associated to the same numerical precision. When the basis
set is complete enough to express also 
, then the
atomic forces can be evaluated by the Hellmann–Feynman
term only, as the remaining part is proportional to the
desired precision. We can then neglect the second term of
Eq. (11.9); this is an example of how having a systematic
basis set, where we have estimators of the error for generic

quantities, may help to drastically simplify the calculation
of GS-derived quantities.

11.3 Wavelets as a Computational

Basis Set

In the first two decades of the development of density
functional theory, wavelet basis sets have rarely been used
for electronic structure calculations, with most efforts



having been devoted to their use in all-electron
calculations, e.g. in MRChem (see [40, 53]) and most
applications of MADNESS [32]. Since such a basis is
therefore rather uncommon, we explain its use in the
context of KS-DFT calculations. While referring the reader
to Goedecker [30] for an exhaustive presentation of how
wavelet basis sets can be used for numerical simulations,
here we summarize the main properties of Daubechies
wavelets, with a special focus on the representation of the
objects (wavefunctions and operators) involved in the KS-
DFT formalism. We will start by illustrating the principles
of one-dimensional Daubechies wavelets basis.

Wavelet theory [15, 17] comes from multi-resolution
analysis (MRA), which has the goal of properly defining
how we can enlarge a given basis set for a given accuracy.
MRA defines nested sets and their complements with the
idea to have, for a given function, a suite of different
approximated functions in order to control the accuracy.
Before formally defining MRA, we prefer to first define the
scaling function.

11.3.1 Introduction to Wavelet Theory

The key concept of wavelet theory is the scaling relation
which links two levels of resolution. A mother scaling
function Φ(x) is defined by the scaling relation

(11.10)

where the Φ(x − j) functions are centred on an equidistant
grid. The integer m gives the length 2m + 1 of the compact
support where the coefficients are non-zero. This scaling
relation with the filter 
fully defines the mother
scaling function as a sum of the same function but at a
twice finer resolution. To apply any operation, we need to
manipulate this filter 
by means of convolutions.



The simplest scaling function, called the Haar function,
is a simple rectangle function which is a sum of two smaller
rectangle functions. Graphically we can express the scaling
relation for the Haar functions as

For the inverse operation, which consists in going from
a fine resolution to a coarse one, we need to introduce a
new function, called the wavelet function Ψ(x), which gives
the details allowing us to avoid a loss of information. For
the Haar scaling function, we have

In this figure, we point out that a fine resolution (the
grid with black and grey points) can be expressed using a
coarse resolution (the grid with only black points) with a
double grid step and two functions per node, the
scaling function and the wavelet function. In the case of the
BigDFT code, the mesh is uniform on the simulation domain
but the number of basis functions is different per node
depending on the resolution we want.

Like the scaling relation (11.10) for the mother scaling
function, the wavelet function Ψ(x) can also be expressed
as a sum of scaling functions at a finer resolution

(11.11)

which we sketch for the Haar wavelet function as



The scaling functions Φ(2x − j) come from the mother
scaling function Φ(2x) centred on the points of abscissa j∕2
which are on a finer mesh. The wavelet families that we use
have a compact support, they have non-zero values only in
a given interval [−m, m], but non-compact wavelet families
also exist [46]. This is particularly interesting because all
the operations can be applied only in this interval. This is
the reason why we call this basis set a localized basis set in
real space.

Using orthogonal wavelets, as we did, means that we
only manipulate the two filters {hj}, {gj} which are linked by
the scaling relations. These filters can decompose any
function into scaling and wavelet functions at different
levels of resolution.

The Daubechies wavelets [15, 17] are an important
family of orthogonal wavelets. To develop any function f(x)
into Daubechies scaling functions, we apply the scalar
product

(11.12)

to obtain an approximation f0(x) of the given function.
This property of orthogonality is especially interesting

when expressing the electronic orbitals for each electron
state avoiding the use of an overlap matrix. In this case we
don’t have to solve a generalized eigenvalue problem HX = 
ESX to find the Kohn–Sham orbitals.

The number of continuous derivatives of the Daubechies
functions, i.e. their smoothness, which is well described by
the Sobolev spaces, depends strongly on the wavelet order.



The Haar function is a Daubechies function of order 1
which is piecewise continuous.

BigDFT uses the least asymmetric Daubechies wavelet
family of order m = 8 (see Fig. 11.1) for the electronic
orbitals with two levels of resolution.

A homogeneous grid is created with a constant step grid
h. For each atom type, two radii are defined: one, rc, gives
the extension of the mesh around each atom of the same
nature, the second one, rf, gives the extension where the
electronic orbitals have one coefficient for the scaling
function per point but also other ones for the
corresponding wavelet functions.

To express the electronic density and the potentials, we
prefer to use biorthogonal scaling functions (see Sect.
11.4.1). After some clues about wavelets, we come back to
a formal definition of multi-resolution analysis following the
notation from the book of S. Goedecker [31].

11.3.2 Definition of Multi-Resolution Analysis

We can introduce many levels of resolution using the full
possibility of multi-resolution analysis (MRA). We here
sketch some notions of MRA. A k (
 
) factor is used to
specify the resolution level and i (
 
) corresponds to
the centre of the Daubechies basis function. We define

(11.13)

Using the bra and ket notation, we can write the
orthogonality conditions as

(11.14)

We then introduce the vector spaces spanned by Φ(k) and
Ψ(k), respectively:

(11.15)



with 
, from the orthogonality conditions. The
scaling relations are valid for any level k

(11.16)

which means that 
, or stated otherwise,
that the wavelet spaces 
are the orthogonal complement
of 
in the space 
. Thus we define a sequence of
nested sets

(11.17)
For all 
, the space of square integrable functions


can be decomposed into an infinite sum of spaces:

(11.18)

This can be generalized into biorthogonal wavelet
families with two nested sets, one for the direct space and
another one for the dual space.

The relation (11.18) shows that any square integrable
function can be uniquely decomposed as

(11.19)

In contrast to BigDFT which uses only two levels of
resolutions, two groups have developed multi-resolution
basis sets based on multiwavelets [33, 34, 40]. They can
achieve very accurate results which are very useful for
reference calculations to decouple the different
approximations coming from the basis sets, the choice of
algorithms, or which are inherited from the used methods
such as the DFT functional. The high level of resolution is
only used near the nuclei to describe the oscillations and
the nuclei cusp of each electronic orbital.



11.3.3 Daubechies Wavelets

In the BigDFT code, the least asymmetric Daubechies
wavelet family of order m = 8 is the basis set used to
describe the KS orbitals as shown in Fig. 11.1. These
functions feature a compact support [−m + 1, m] and are
also localized in Fourier space. The use of Daubechies
wavelets families is guided by different criteria. Daubechies
wavelets represent the best compromise between compact
support, continuity and orthogonality for a wavelet family.
We chose the family of order 16 as it is the most compact
one which has a degree of continuity of at least two,
thereby enabling a unbiased evaluation of the kinetic
operator. Nonetheless, such a family exhibits polynomial
exactness of degree 8, which means that it is able to
represent exactly the Taylor expansion of a Kohn Sham
orbital up to the eighth order. This observation, combined
with the Magic Filter method (see [23]), enables an
accurate and efficient approach for the evaluation of the
potential energy in KS-DFT calculations.

The coefficients of the filters hj and gj = (−1)jh−j of the
scaling relation (or “refinement relations”) for the
Daubechies families are called low- and high-pass filters,
respectively. A wavelet family is therefore completely
defined by its low-pass filter. In the case of Daubechies-2m

wavelets, j ∈ [1 − m, m].



Least asymmetric Daubechies wavelet family of order m = 8. Note that both the
scaling function Φ(x) and the wavelet Ψ(x) are different from zero only within
the interval [1 − m, m]

11.3.4 One-Dimensional Operators with

Daubechies Wavelets

The multiresolution property also plays a fundamental role
in the wavelet representation of differential operators. For
example, it can be shown that the exact matrix elements of
the kinetic operator can be written in the form of a
circulant matrix, namely:

(11.20)

and are equal to the entries of an eigenvector of a matrix
which solely depends on the low-pass filter (see e.g. [30]).



Daubechies-2m wavelets exhibit m vanishing moments,
thus any polynomial of degree less than m can be
represented exactly by an expansion over the sole scaling
functions of order m. For higher order polynomials the
error is 
, i.e. vanishingly small as soon as the grid is
sufficiently fine. Hence, the difference between the
discretized representation and the exact function f
decreases as hm. The discretization error due to
Daubechies-2m wavelets is therefore controlled by the grid
spacing. Among all the orthogonal wavelet families,
Daubechies wavelets feature the minimum support length
for a given number of vanishing moments.

Given a potential V  known numerically on the points {xk}
of a uniform grid, it is possible to identify an effective
approximation for the potential matrix elements


). It has been shown [23, 55] that a
quadrature filter {ωk} can be defined such that the matrix
elements given by

(11.21)

yield excellent accuracy with the optimal convergence rate

for the potential energy. The same quadrature filter

can be used to express the grid point values of a
(wave)function given its expansion coefficients in terms of
scaling functions:

As a result, the potential energy can equivalently be
computed either in real space or in the wavelet space, i.e.


). The quadrature



filter elements can therefore be considered as the most
reliable transformation between grid point values f(xk) and
scaling function coefficients ci, as they provide exact
results for polynomials of order up to m − 1 and do not alter
the convergence properties of the basis set discretization.
The filter {ωk} is of length 2m and is defined unambiguously
by the moments of the scaling functions (which in turn
depend only on the low-pass filter) [30].

Using the above formulae, the (so far one-dimensional)
Hamiltonian matrix Hij = Tij + Vij can be constructed. Note
that, in contrast to other discretization schemes (finite
differences, plane waves etc.), in the wavelet basis set
neither the potential nor the kinetic terms have diagonal
representations. Instead, 
is represented by a band matrix

of width 2m. We will discuss the mathematical
considerations beyond these arguments in the forthcoming
section. First, we will introduce the discretization we will
employ for the three-dimensional domain.

11.3.5 Three-Dimensional Wavelet Basis

A support function φα(r) can thus be expanded in the
wavelet basis as follows:

(11.22)

Here 
denotes the
tensor product of three one-dimensional scaling functions,
whereas 
are the seven tensor products containing
at least one one-dimensional wavelet. The sums over i1, i2,



i3 (j1, j2, j3) run over all grid points where the scaling
functions (wavelets) are centered.

In other words, the three-dimensional basis functions
are a tensor product of one-dimensional basis functions, a
mixed basis set of scaling functions augmented by a set of 7
wavelets. These points are associated with regions of low
and high resolution levels, respectively. Note that we are
using a cubic grid, where the grid spacing is the same in all
directions, but the following description can be
straightforwardly applied to general orthorhombic and non-
orthorhombic grids.

In a simulation domain, there are therefore three
regions: those which are closest to the atoms (“fine
region”) carry one (three-dimensional) scaling function and
seven (three-dimensional) wavelets; those which are
further from the atoms (“coarse region”) carry only one
scaling function, corresponding to a resolution which is half
that of the fine region; and those which are even further
away (“empty region”) carry neither scaling functions nor
wavelets. To determine these regions of different
resolution, we construct two spheres around each atom a; a
small one with radius 
and a large one with
radius 
(
 
). The values of 
and 
are
fixed for each atom type, whereas λf and λc can be
specified by the user in order to control the accuracy of the
calculation. The fine (coarse) region is then given by the
union of all the small (large) spheres, as shown in Fig. 11.2.
Hence in BigDFT the basis set is controlled by three user
specified parameters; systematic convergence of the total
energy is achieved by increasing the values of λc and λf

while reducing the value of h.



Fig. 11.2 
Example simulation grid for a molecule with coarse (fine) grid
points depicted in (gold) blue

We have all the tools to express any 3D functions as
Kohn–Sham orbitals in a 3D wavelet basis set. Our goal is
to use the properties of the compactness of the wavelets to
build a linear-scaling structure electronic code. To do this,
we need to introduce the concept of localization regions.

11.3.6 Localization Regions

Thanks to the nearsightedness principle, it is possible to
define an approach in which the computational cost is
linear scaling (LS) with respect to the number of atoms, N,
rather than the cubic scaling (CS) which arises when
extended KS orbitals are used. Such approaches allow one
to go beyond the treatment of a few hundred atoms as is
typically seen with 
DFT approaches and instead
treat systems containing several thousands of atoms. This
has the benefit of also opening up the treatment of new



types of materials and simulations using a pure quantum
mechanical approach, as discussed, for example, in Ratcliff
et al. [60] and Zaccaria et al. [65]. The 
formalism
implemented in the BigDFT code exploits the possibility
that, for systems with suitable electronic structure, the
support functions φ can be optimized while preserving their
strict locality, namely so that their support is within a pre-
defined localization region. A similar approach is for
example used in the ONETEP [61] and Conquest [9] codes.

For large systems where the nearsightedness principle
guarantees that a local description of the orbitals is
possible, the large number of degrees of freedom offered
by the wavelet basis is a waste. It is therefore
advantageous to build a minimal basis formed of localized
(e.g. atom centered) functions. Of course, these functions
will also be expanded in terms of the underlying wavelet
basis, but to strictly impose locality, they will be expressed
only in a subset of this global basis set. To do so we set to
zero all scaling function and wavelet coefficients if they lie
outside of a sphere with radius Rloc around the point Rα on
which the function is centered:

(11.23)

Here 
is the position of the grid point (i1, i2, i3) and
Rα that of the atom on which the minimal basis function
φα(r) is centered. These localization regions can still
contain various resolution levels, as they are constructed
on top of the global simulation domain. The index α is
instead used in the following formulae to label kets that are
associated to SFs.

In other terms, instead of working directly with the
function |φα〉, we work with the localized function 
,



where the definition of the localization projector operator
in the Daubechies basis space is, as described:

(11.24)

from which it becomes apparent that such a projection
operator 
explicitly depends on the localization radius
Rloc and the localization region center Rα. Clearly, if |φα〉 is
localized around Rα and Rloc is large enough, 
leaves |
φα〉 unchanged and no approximation is introduced to the
KS equations.

It is important to emphasize that, since the Daubechies
basis set is independent of Rα, |φα〉 depends on the center
of the localization region by the introduction of the
projector 
:

(11.25)

By taking the derivative of this equation with respect to Rβ

it is easy to find

(11.26)

Let us now employ this result in the calculation of the
atomic forces. When the KS orbitals are expressed in terms
of the SFs, the non-Hellmann–Feynman term can be written
as follows:

(11.27)

where the SF residue is

(11.28)

This result would be completely identical to Eq. (11.9)
when no localization projectors are applied on the SF.



Therefore the only term of the forces which cannot be
captured by the localization regions is the part which is
projected outside the localization regions (but still inside
the computational domain of the CS approach). The extra
Pulay term due to the localization constraint is therefore

(11.29)

From Eq. (11.26) we obtain

(11.30)

and from Eq. (11.24) we derive:

(11.31)

Therefore if the support functions are zero at the border of
the localization region, there is no Pulay term in the atomic
forces.

The Hellman-Feynman force, given by the expression

(11.32)

involves only the functional derivative of the Hamiltonian
operator, which is independent of the localization regions.
The CS and the LS implementations of the atomic forces
are therefore identical.

Daubechies wavelets are used to describe all terms
related to KS orbitals. For the electronic density and
potential, the orthogonality property is not the key



parameter, but efficiently discretizing a function in a
uniform real-space mesh is very important. The next
section is devoted to this problem and develops tools
related to the interpolating scaling function used in BigDFT.

11.4 Collocation Problems for

Discretized Functions

Discretizing an analytic function on a uniform real-space
grid is often done via a straightforward collocation method.
This is ubiquitous in all areas of computational physics and
quantum chemistry. An example in DFT is given by the
external potential describing the interaction between ions
and electrons. Notable examples are also given by the
analytic functions defining compensation charges for
range-separated electrostatic treatments.

A real space approach is mandatory in the solution of
complex partial differential equation problems, as well as
for the treatment of complex environments and non-trivial
boundary conditions. The solution of the Poisson equation
in vacuum and in the presence of continuum solvents is a
notable example. In this framework, the collocation method
is a straightforward procedure that is used to discretize a
known function, to express its values in the real-space
domain.

The accuracy of the collocation method used is therefore
very important for the reliability of subsequent treatments
like self-consistent field solutions of electronic structure
problems. When the real-space grid is too coarse, the
collocation method introduces numerical artifacts, spoiling
the numerical stability of the description.

We present in this section a new quadrature scheme
that is able to exactly preserve the multipoles of the
original function for a wide range of grid spacings, in the
spirit of the so-called “Magic-Filter” method, which has



been used to identify a passage matrix between Daubechies
wavelets and real-space grid meshes used to express the
electronic density and potential.

For discretization on uniform grid spacings, the
collocation method is well-justified when the original
function can be reasonably approximated by an
interpolation of its values on the grid mesh points. Let us
consider a one-dimensional function f. Suppose we want to
discretize this function on a uniform grid of spacing h and
coordinates xk = hk. Given a family of interpolating
functions {Lk(t)}, if the approximation

(11.33)

is reasonably accurate, the collocation method can be
applied. This fact stems from the interpolating property of
the family {Lk(t)}. Indeed, an interpolating family comprises
a set of functions Lk, each one associated to a point k of the
grid, such that Lk(j) = δkj. Given Eq. (11.33), then fL(xk) = 
f(xk) and the continuous representation of f(x) may be given
by fL(x).

Given the interpolating property, it is also said that an
interpolating function family is dual to the Dirac deltas. In
other terms, denoting the above function by the bra-ket
notations, we have

where |δk〉 represents the Dirac distribution centered at
point xk, i.e. 〈δk|f〉 = f(xk). The above defined interpolating
property implies that the duality relation δkℓ = 〈δℓ|Lk〉 holds.

11.4.1 Bi-orthogonal Wavelets



Examples of interpolating functions are the interpolating
scaling functions used in BigDFT to represent the electronic
density and potential and solve the Poisson equation in
order to calculate the Hartree potential.

The interpolating scaling functions, which are an
important biorthogonal wavelet family, have the delta
function as dual functions, which considerably simplifies
the expansion of a given function f(x):

(11.34)

There are different families of interpolating wavelets. In
BigDFT, we use the Deslauriers–Dubuc scaling functions,
which are the auto-correlation scaling functions of the
Daubechies wavelet [4]:

(11.35)

In Fig. 11.3 we show the interpolating scaling Deslauriers–
Dubuc function and its associated wavelet. Unlike the
Daubechies wavelets, these functions are symmetric.



Fig. 11.3 
Eighth order scaling and wavelet interpolating functions

We use these interpolating scaling functions in order to
express the electronic density, the different potentials and
to solve the Poisson equation. Because BigDFT uses the
pseudopotential approximation, two levels of resolution are
enough and BigDFT uses only interpolating scaling
functions expressed in the same mesh as the one for the
electronic orbitals but with the fine resolution in the whole
simulation domain.

11.4.2 Polynomial Exactness and Discrete

Multipoles

The collocation method is therefore meaningful for the
functions for which the action of the projector operator
∑k|Lk〉〈δk| approaches the action of the identity operator. It
is easy to understand that this condition is valid only when



the grid spacing size h is considerably smaller than the
typical oscillations of the function |f〉 we want to represent.
As soon as this is not the case, the function |fL〉 becomes so
different from |f〉 that the numerical accuracy of the
approximation is severely affected. To have an idea of how
rapidly the accuracy of this approximation is spoiled, in Fig.
11.4 we consider the collocation of a Gaussian function
centered in x0 and with standard deviation σ. When the
ratio h∕σ becomes bigger than one, the interpolated
function fL given by Eq. (11.33) becomes too crude an
approximation. This is particularly visible for a localized
function centered between two grid points. As the function
becomes too sharp, the collocated values are nearly zero
and the function fL is not representative of the original f.
This loosening of the accuracy can be easily quantified by
having a look at the multipoles of the discretized functions.

Fig. 11.4 
Collocation of Gaussians of different standard deviation σ on a grid
of spacing h = 1. All Gaussians are centered in points which lie between two
grid spacings. In the left panel, it is easy to see that the collocated values are
no longer reliable when the ratio h∕σ grows above 1. This fact can also be
confirmed by the discrete multipoles of the collocated function, whose error is
presented in the right panel

This situation seems unavoidable: as the expansion
coefficients of the function |fL〉 are given in terms of the



scalar products 〈δj|f〉, the grid has to provide a reasonable
sampling of the function f.

11.4.3 Polynomial Exactness

The accuracy of the approximation (11.33) is of great
importance for a reliable computational treatment. Clearly,
such accuracy is intimately related to the family of
interpolating functions chosen.

Interpolating function families are normally constructed
using families of polynomial functions. An interpolating
family {Lk(x)} is said to be of order m if any monomial
function xp, with 0 < p < m, is exactly expressed by the
interpolated function fL of Eq. (11.33). This is the concept
of polynomial exactness. This concept is important in
determining the accuracy of the interpolation: a smooth
function can reasonably be approximated by its Taylor
polynomial around a given point. The higher the order of
the polynomial exactness of the functions Lk, the better the
Taylor expansion of the original function would be
approximated by the function fL(x), therefore the difference

will be reduced. Let us now demonstrate that polynomial
exactness of order m implies the moment preserving
property. Polynomial exactness implies that, for a monomial
function xp, indicated by |p〉,

Therefore for all positive integers p, q such that p + q < m
we have



and this is valid only if
(11.36)

The above quantity is the q-moment (or multipole) of the
interpolating function Lj(x). Polynomial exactness therefore
implies that the first m multipoles of the interpolated
function |fL〉 can actually be calculated exactly with their
discrete multipoles: Indeed, by Eq. (11.36), we can express
the moments of the function fL in terms of discrete
moments of the collocated function:

As |f〉 is an analytic function, the accuracy of the multipoles
Mp[fL] provides a quantitative evaluation of the accuracy of
fL. In Fig. 11.4 we see that the collocation method becomes
unstable as soon as the grid spacing is bigger than the
typical oscillations of the original function.

Let us now see if it is possible to define an alternative
set of dual functions, such that the multipoles of the
original functions are preserved. In other terms, we search
for a family of dual functions such that

It is easy to see that this condition can be obtained by
imposing the polynomial exactness of the dual set 
. In
other terms, if the set of 
is such that

then the multipole preserving property is guaranteed.
A particular family of interpolating functions is given by

the Interpolating Scaling Function (ISF):



Indeed the ISF basis 
contains precisely the
polynomials up to order m − 1. This means that this basis is,
in principle, able to express the Taylor expansion of the
original function f. However, this does not happen when
extracting the coefficients with the collocation method, as
can be seen from Fig. 11.4. Therefore, there should exists a
set of coefficients fj such that

In the above discussion we have proceeded as if we have
defined the basis of |φj〉 as a self-dual basis, modulo an
error of 
. This is indeed a general property of all
interpolating functions. In the following we will
demonstrate that any interpolating function L(t) which has
a Taylor expansion is orthogonal to the ISF family up to


. To demonstrate this point, let us define the Taylor
expansion of L(t) =∑kαkt

k. We have

This results stems from three factors: the interpolating
property of L(t), the fact that L can be defined (at least up
to 
) by its Taylor expansion on its support χ(φ) and
the vanishing moment property of φ. Therefore, if L can be
exactly defined in terms of polynomials of order less than
m, the duality relation is preserved exactly. Under these
hypotheses, let us now consider what would happen to the
evaluation of the discrete moments Mp[f] when using such
basis 
as a dual basis. In order to do that, let us



redefine the polynomial expansion of the function as

on its support. This can easily be done by

considering

In this way we obtain

where we have split the integral over the support of Lj in
chunks of size of one grid spacing. With this relation we
have

If the condition

(11.37)

held for all i, then we would have



and the discrete and the continuous moments would
coincide.

11.5 Multipole-Preserving

Collocations for Daubechies Wavelets:

The Magic Filter

Let us now apply the concepts of the above section to
functions which are discretized in this basis set. Given a set
of 2m-family Daubechies scaling functions Φ centered in a
uniform mesh of spacing h, the expansion coefficients of a
given function f(x) in this set are defined as

(11.38)

Here we have defined the normalisation factor of the basis
set in order to preserve the equivalence 
, if the
function f is exactly represented. Given the momentum-
preserving property of Daubechies scaling functions, the
discretization of the function f in this basis set has an
algebraic hm convergence rate. In other terms

A wavelet quadrature in this context is based on the idea
of approximating the expression above by a collocation
formula. In other terms, we should define some coefficients
wi, where i = 1 − m, …, m such that

(11.39)

This will be possible only if the above formula gives the
exact result when f(x) = xp, p = 0, …, 2m − 1. By comparing



(11.38) and (11.39) in the case of polynomials we thus find
the equation defining the Magic Filter:

which is solved for all i if and only if

(11.40)

which can be written in matricial form A ⋅w = M, where the
matrix Ak,j = jk is the Vandermonde matrix, which has an
inverse written in terms of Lagrange polynomial
coefficients in the basis of monomials:

therefore, given 
, the Magic Filters are
given by Neelov and Goedecker [55, Eq. (10)]:

(11.41)

This equation shows that the Magic Filter can be viewed as
the expansion coefficients of Daubechies scaling functions

in the basis of Lagrange polynomials. Johnson et al. [41]
can be used as a reference in this regard.

11.5.1 From Magic Filters to a Passage Matrix

We proceed as if we had found a recipe to interpolate the
values of the scaling function 
such that the
collocation formula



would apply exactly for functions f which can be expressed
by polynomials of order less than 2m. This is a very
interesting feature to exploit when it is desirable to
calculate the collocation values of a functional of f, for
instance the charge density, or the exchange and
correlation potential.

Let us explore this concept in more detail and start with
the following definition of equivalence class. Two functions
f and g are considered as equivalent (denoted f ⇔ g) if they
have the same expansion coefficients in the given
Daubechies scaling function basis:

It follows from the above properties that 
.
These functions therefore have the same representation in
the scaling function basis set, provided by the coefficients
{ci} defined in (11.38). The function

is by definition equivalent to f. Let us now consider the
moments of the function Cup to order 2m − 1, and suppose
we would like to find a set of quadrature coefficients Cj so
that the following holds:

The values of the coefficients Cj can be easily related to the
Magic Filters. Indeed

and by using Eq. (11.40) we have



Therefore we have found 
. The same
reasoning could have been applied if the moment had been
centered at another grid point.

Let us now consider the polynomial function which has
Cj coefficient as collocation values. This function is (locally)
expressed as a linear combination of Lagrange polynomials,
which have the well-known interpolating property.

By definition, the moments of this function written in
collocation coincide with 
. Let us now consider the
expansion coefficients of D(x) in the scaling function basis
set. For simplicity we omit the grid spacing, i.e.

Moreover, by using the result of Eq. (11.40), together with
the orthogonality of Lagrange polynomials, the coefficients
di can be calculated from Ci by applying the following
convolution:

It can be shown, see Johnson et al. [41] and Neelov and
Goedecker [55, Appendix A], that for Daubechies scaling
functions, 
. Therefore in this case we
have proved that dj = cj.

This not only means that D(x) :⇔ C(x), but also that we
have defined a prescription that is more precise than the
collocation of C, as the difference between D and C is of



order h2m. It is as if the Magic Filter prescription chooses
among the functions belonging to the same equivalency

class as C(x), the collocation values of D(x), which is the
smoothest possible function preserving the moments of C.

The convolution with the Magic Filters, direct or
transposed, acts therefore as a Passage Matrix between the
Daubechies scaling function basis and the “collocation
basis” provided by the Lagrange interpolating polynomials.
The interpolating property of the Deslauriers–Dubuc
interpolating scaling function (which is the autocorrelation
of two Daubechies scaling functions) plays a key role in this
property.

11.6 Representing the Charge

Density on Real Space: An ISF

Poisson Solver

The Magic Filter method makes it possible to deal with
real-space quantities with a very high precision and without
the need to calculate complicated numerical quantities. The
multipole-preserving property of this method makes it ideal
for the treatment of electrostatic problems where the
preservation of moments (e.g. multipoles) are important.

We illustrate the basis of our approach for the
calculation of terms related to the Poisson equation. In Eq.
(11.6), the Hartree potential VH[ρ] depends on the charge
density from the Poisson equation, which in atomic units, in
vacuum, reads ∇2V = −4πρ. Having efficient algorithms to
solve the Poisson equation is therefore essential. The large
variety of situations in which this equation can be found
requires us to face this problem with different choices of
boundary conditions (BCs) in mind. The long-range
behaviour of the inverse Laplacian operator makes this
problem strongly dependent on the BCs of the system.



In Genovese et al. [24, 25] and Cerioni et al. [10], a
novel method for solving the screened and unscreened
Poisson equation in vacuum with free, fully periodic,
surface-like and wire-like BCs was presented, including
non-orthorhombic cells. Such a method is direct (rather
than iterative) in that the solution along the isolated
directions is found in its integral form using the Green’s
function method. For instance, in the case of a fully isolated
(or “cluster-like”) system,

(11.42)

with the Green’s function being 
.
Homogeneous Dirichlet BCs (V = 0 at 
) along the
isolated directions are explicitly enforced by the selection
of the Green’s function.

The method has been in use for a few years in a number
of ab initio codes (see the references cited in Cerioni et al.
[10]) and has proven to be highly efficient and accurate in
every application attempted to date. It is based on a
representation of ρ and V  in terms of interpolating scaling
functions (ISFs), which allows any sort of periodicity to be
modelled in the most natural, clean and mathematically
rigorous way. ISFs—arising in wavelet theory [30]—enjoy
several properties which make them superior to other basis
sets. For instance, the representation in terms of m-th
order ISFs make the first m moments of the continuous and
discrete charge distributions coincide [23]. As a
consequence the representation is definitely faithful (more
than just convenient), since the different moments of the
charge distribution capture the major features of the
potential. Moreover, ISFs are genuinely localized due to
their compact support (the length of which is equal to 2m)
and endowed with the refinement relations which easily



allow for switching from a representation on a grid with
spacing h to a doubly refined grid with spacing h∕2.

The inclusion of such functionalities is motivated by the
strong theoretical, experimental and technological interest
in the characterization of nanostructured materials, since
solving the Poisson equation is only one of the many steps
involved in state-of-the-art computer simulations and is
repeated several times. Moreover, in the context of KS-DFT
and extensions thereof, there are quantities which are
computed via convolution integrals very similar to that in
Eq. (11.42): for instance, the exact exchange term arising
within those generalizations of KS-DFT employing orbital-
dependent or hybrid functionals (see Ratcliff et al. [58] and
references therein), or the coupling-matrix in time-
dependent DFT (TDDFT) [54]. In this respect, the
electrostatic problem of concern here provides the
paradigm for many other computations, even well beyond
the scope of electrostatics.

11.6.1 The Soft-Sphere Implicit Solvation

Model

This high-degree of flexibility makes the BigDFT Poisson
solver library optimal for calculations of polarized systems
or systems with non-Born–von Karman boundary
conditions, such as material surfaces and isolated
molecules. The computational study of matter in various
environments is a continuously growing field in solid state
physics and chemistry. Systems of interest are, for
instance, molecules, clusters or surfaces in contact with
solvents [13]. An alternative to the explicit inclusion of a
wet environment is to give an implicit description, while
still treating the other parts of the system explicitly on an
atomic quantum level [2]. Such an explicit/implicit
treatment requires three main ingredients:
1. a dielectric cavity represented by a proper function



𝜖(r) mimicking the surrounding solvent of a solute as a
continuum dielectric;  

2.
a solver for the generalized Poisson equation [21]

(11.43)
where φ(r) is the potential generated by a given

charge density ρ(r);

 

3.
a model for the non-electrostatic terms to the total free
energy of solvation.

 
The dielectric function 𝜖(r) has to take the value of 𝜖0 = 

1 where the solute is placed to solve a vacuum-like
quantum problem, and the bulk dielectric constant 𝜖
outside.

The “soft-sphere” model developed by Fisicaro et al.
[20] and implemented in BigDFT improves upon previous
solvation approaches (see e.g. Tomasi’s method [63]).
Model features are: accurate forces and a numerical cost
comparable to standard vacuum calculations; feasible
extensive potential energy surface (PES) explorations; a
small number of model parameters; exact treatment of
molecular or slab-like geometries; and the ability to treat
neutral and charged molecules simultaneously in order to
tackle complex interfaces (e.g. a double layer).

The interface between the quantum-mechanical solute
and the surrounding environment is described by a fully
continuous permittivity built up with atomic-centered “soft”
spheres. This approach combines many of the advantages
of the self-consistent continuum solvation model [1] in
handling solutes and surfaces in contact with complex
dielectric environments or electrolytes in electronic-
structure calculations. In addition, it is able to describe
accurately both neutral and charged systems.



We developed, tested and implemented within the
BigDFT suite a solver for the generalized Poisson (Eq.
11.43) and the Poisson–Boltzmann equations to treat
neutral and ionic solutions, respectively [21]. The solver for
the solution of the generalized Poisson equation and the
linear regime of the Poisson–Boltzmann is based on a
preconditioned conjugate gradient scheme. It allows for the
iterative solution of the minimization problem with some
ten iterations of the ordinary Poisson equation solver. In
addition, a self-consistent procedure solves the non-linear
Poisson–Boltzmann problem. Both solvers exhibit very high
accuracy and parallel efficiency and allow for the treatment
of free, slab and wire-like boundary conditions.

The continuous function, describing the variation of the
permittivity, allows for the analytic computation of the non-
electrostatic contributions to the solvation free energy that
are described in terms of the quantum surface. The
capability of treating arbitrary molecular or slab-like
geometries as well as charged molecules is key to tackling
electrolytes within mixed explicit/implicit frameworks.
Within the soft-sphere model two parameters are sufficient
to give a mean absolute error of only 1.12 kcal/mol with
respect to the experimental aqueous solvation energies for
a set of 274 neutral solutes. For charged systems, the same
set of parameters provides solvation energies for a set of
60 anions and 52 cations with an error of 2.96 and 2.13
kcal/mol, respectively, improving upon previous values in
the literature.

The soft-sphere model has already been applied to the
study of molecular doping of silicon [57], the interface of
fluorite terminations with water [22] and the investigation
of wet environment effects for ethanol and water
adsorption on anatase TiO2 (101) surfaces [19].

11.6.2 (Exact) Exchange and Correlation Terms



For a collinear-spin formalism, the calculation of the exact
exchange energy EX requires a double summation over all
the N occupied orbitals

(11.44)

where we have defined 
. The diagonal
(i = j) contribution to EX exactly cancels out the Hartree
electrostatic energy EH[ρ]. The action of the Fock operator


to be added to the KS Hamiltonian directly stems from
the EX definition:

(11.45)

where we have defined

(11.46)

which is the solution of the Poisson equation 
. In a KS-DFT code which searches for the ground state
orbitals, during the SCF procedure, for a given set of
ψi,σ(r), one has to repeatedly evaluate the value of EX as
well as the action of the corresponding Fock operator 
on the entire set of occupied orbitals.

11.7 The BigDFT Code Approach for

Ground-State

The BigDFT code may therefore express the solution of the
KS problem in two ways. The traditional approach, which



has a computational overhead that scales cubically with the
number of atoms in the system and therefore called the
cubic scaling algorithm, expresses the KS orbitals Ψi

directly in a wavelet basis. In this case only the KS
optimization loop is needed, and no localization projection
operator 
is considered. The orbitals are directly labelled
by their index i.

The linear scaling (LS) approach in BigDFT instead
consists of two optimization loops, as depicted by the
flowchart in Fig. 11.5. The SF and kernel optimization loops
are independent of each other, with the number of
iterations, convergence criteria etc. specified
independently.

Fig. 11.5 
Flowchart summarizing the high-level algorithm used in LS-BigDFT



Although additional approximations are introduced in
the LS approach compared to the extended KS orbitals
used in the CS approach, excellent agreement between
total energies and forces calculated with the LS and CS
approaches has been demonstrated for a range of materials
and system sizes [51, 52].

Furthermore, systematic convergence remains possible
—as the value of Rloc is increased, both the total energy and
forces converge towards the CS result. For example for a
fullerene molecule it was shown that for SF radii of 7.4 Å
the total energies agree to within 0.1 meV, while the forces
show better than 1 meV/Å agreement [51]. Thus, in
addition to the wavelet basis parameters, the user should
take care to ensure the localization radii (which may be
varied independently for different atomic species) are large
enough for the required accuracy. In some cases it may
also be desirable to increase the number of SFs per atom,
although in the majority of cases a minimal basis is
sufficient, e.g. 4 SFs per C/N/O atom, 1 SF per H atom.

Aside from the basic SF parameters, a number of
additional options are available in LS-BigDFT to allow for
additional flexibility, such as whether or not to impose
orthogonality on the SFs. Given the number of additional
parameter choices compared to the CS approach, it is
worth asking to what extent the choice of computational
parameters depends on the system in question. Where a
very high accuracy or optimal parallel performance are
required it is important to carefully converge with respect
to parameters such as the SF radii. Nonetheless we have
demonstrated that a common set of parameters may be
used to achieve consistent accuracy and robust
performance across a wide range of systems [52]. Such
parameters might easily be accessed by using the
appropriate input profile. These profiles have been defined



to give a suitable set of parameters for a number of
common use cases.

11.7.1 The Direct Minimization Approach

We have seen that the support functions or the KS orbitals
are represented in a Daubechies wavelet basis and are
therefore susceptible to be optimized in the LS and CS
algorithm respectively. We present in the following the
main algorithm which is employed for their optimization.

Let us now impose that the wavefunctions have to be
orthonormal with respect to a certain Hermitian metric
operator 
(not to be confused with the SF overlap
matrix), that is 
. For norm-conserving PSPs,
frozen core and/or all-electron calculations 
is the
identity operator, whereas it is a non-trivial quantity for
projector augmented wave (PAW) [8] and ultrasoft PSPs.
As in the previous sections, we denote by λ a multi-index
labelling the system (indicating for instance the
coordinates of the atomic positions).

Orthogonality is imposed via the following Lagrangian

As always for Lagrange multiplier techniques, criticality
with respect to Λ leads to the orthogonality constraint. The
coefficients Λij form a Hermitian matrix, due to the
Hermiticity of 
. Criticality of this Lagrangian under
variation of the KS orbitals 〈ψi| leads to the equation:

(11.47)

Multiplying Eq. (11.47) by 〈ψk| leads to the condition on the
Hermitian part of 
). Convergence is achieved when the mean of the norms of



the Lagrangian derivatives is below a user-defined
numerical tolerance.

11.7.2 Support Function Optimization

We illustrate the main guidelines for the optimization of the
support functions. In principle, the optimization of KS
orbitals in the basis of the support functions should
minimize the total energy. This is in fact equivalent to
minimizing the band structure energy, assuming a fixed
density matrix and Hamiltonian, i.e. the following
functional

(11.48)

As discussed, the SFs used in LS-BigDFT are strictly
localized (numerical) functions which are expressed in a
Daubechies wavelet basis. Starting from an atomic orbital
(AO) input guess, they are optimized by minimizing the
target function 
, subject to the orthonormality
condition of the KS orbitals. The operator 
is the sum of the density-dependent KS Hamiltonian plus a
confining operator 
such that

(11.49)

(11.50)
We therefore have to minimize the following functional:

(11.51)

where the coefficients Λij are determined by the relation:

(11.52)

The KS Hamiltonian 
does not commute with the 
operators. Therefore when calculating 
the



localization constraint has to be relaxed before applying the
Hamiltonian operator. Practically, this is done as follows.
When applying the Hamiltonian, the value of the cutoff
radius Rloc must be increased by half of the convolution
filter length times the grid spacing, corresponding to a
buffer region of eight grid points around the localization
region. These buffers are initialized to zero, but the
convolution will result in non-zero values in those regions.
When the scalar product with another basis function is
evaluated, it is therefore important to keep this buffer zone.
Therefore, given a set of truncation radii Rloc, the KS
Hamiltonian can be explicitly evaluated within the applied
truncation scheme, preserving the variationality of the
result.

We impose therefore the localization condition

on the SFs. The functional to be minimized

then becomes

(11.53)

where the components of the vector 
are
the Lagrange multipliers of the constraints. The stationary
condition on the functional 
provides the following
gradient:

(11.54)

which is explicitly localized (
 
). Here the
gradient is expressed in terms of the orthogonalized

support functions 
. The localization
condition can therefore be imposed more easily by applying



the constraint on (quasi-) orthogonal support functions, i.e.
Sαβ = δαβ. This further simplifies the evaluation of the
gradient. To ensure a good compromise between locality
and flexibility, in general the orthogonality is not ensured
strictly for the support functions, but it is inserted into the
gradient to provide a search direction which optimizes the
diagonality of the overlap matrix.

Such a minimization proceeds by applying the same
guidelines as the direct minimization approach of Sect.
11.7.1, assuming unit values for the occupation numbers.
The coefficient cα is dynamically adjusted during the basis
set optimization procedure. This approach has the effect of
keeping the SFs confined in their localization regions,
centered on the position Rα, while reducing the KS band
structure energy. Usually the position Rα of the support
function α coincides with the position Ra of the atom a
where φα is initially centered at the beginning of the SCF
optimization procedure. To some extent this enables one to
associate φα to a particular atom a.

As illustrated in Fig. 11.6, this procedure results in a set
of SFs which have adapted to their local chemical
environments. For a molecular calculation, we therefore
obtain a minimal set of molecular orbitals that, by
construction, exactly represent the occupied KS orbitals.
The SF basis also has a non-zero projection into the
unoccupied orbitals subspace, although in general the
unoccupied KS orbitals are not expected to be well
represented. Although the SFs resulting from LS-BigDFT
are entirely numerical and are therefore not constrained to
any particular form, even in extended systems they
generally retain some resemblance to AOs, particularly by
preserving the orbital quantum number, and are thus
referred to as s, or p-like SFs.



Fig. 11.6 
Illustration of the different approaches in BigDFT for the example of
anthracene. Shown are an extended KS orbital from the CS approach (left),
selected unoptimized AOs used as a starting guess in the LS approach (centre)
and selected resulting optimized SFs which constitute an accurate minimal
basis in the LS approach. Note that the colours are used only to highlight
different SFs, while the localization regions are spherical

11.7.3 Density Kernel Optimization

Given a recipe for optimizing the SFs, the question remains
of how to find the density kernel for a given set of SFs.
Three options are available in BigDFT: diagonalization,
direct minimization and the Fermi Operator Expansion
(FOE). The first two approaches retain explicit reference to
the KS wavefunctions, while FOE works directly with the
density kernel. As such, FOE is the preferred approach
when strict linear scaling behaviour is required.

The first approach is straightforward and uses standard
linear algebra routines in LAPACK, or optionally
SCALAPACK, to solve the generalized eigenproblem
defined by the SF Hamiltonian and overlap matrices.
Although such an approach is of course not linear scaling,
it can be useful as a benchmark approach, while the
minimal size of the SF basis means that the computational
cost is low compared to diagonalizing in the full wavelet
basis.

The direct minimization approach works directly with
the KS wavefunctions, but avoids explicit diagonalization by
instead minimizing the band structure energy, subject to
appropriate orthogonality constraints, as described in Mohr



et al. [51]. The direct minimization approach does not scale
as well with respect to the system size (see [51]), however
it may nonetheless be preferred to FOE in certain cases.
Notably, a few unoccupied states may be straightforwardly
included in both the SF and kernel optimization steps, and
so direct minimization is typically used for cases where it is
important to have an SF basis which is capable of
accurately representing the lowest unoccupied molecular
orbital (LUMO).

Finally, in the FOE approach [27, 28] the density kernel
is expressed as a function of the SF Hamiltonian matrix, i.e.
K = f(H), where f is the Fermi function. The Fermi function
is written as an expansion of Chebyshev polynomials, in
such a way as to allow the K to be constructed using only
matrix vector multiplications. This is combined with sparse
matrix algebra, as implemented in the CheSS library [50],
resulting in LS behaviour, while it can also be used to treat
metallic systems at a (small) finite temperature [49]. The
use of a finite temperature can also be used to ensure
robust convergence even when the gap of a system closes
due to a poor initial guess, bond breaking, or when
computing charged systems.

The LS behaviour of BigDFT when using the FOE
approach has been demonstrated for a number of
materials, for systems containing up to tens of thousands of
atoms [49, 51, 52, 59].

11.7.4 Suitability of the Linear Scaling

Approach

The SF basis of BigDFT offers numerous benefits for linear
algebra-based code bottlenecks. The in situ optimized
approach allows for the accuracy of a large basis, while
keeping the number of basis functions similar to the size of
a minimal basis, leading to small matrices even for large
systems. The use of strictly localized, quasi-orthogonal



basis functions further ensures that the matrices used are
sparse and well conditioned. In Table 11.1, we report the
matrix dimensions and sparsities for four different systems:
a 1CRN protein [62] in gas phase, a pentacene cluster, a
1L2Y protein [56] in solution, and a cluster of water
molecules.

Table 11.1 
Matrix properties of four example systems. NNZ refers to the
percentage of non-zero elements in the Hamiltonian (H), overlap (S), and
density kernel (K)

System Natoms NSFs H NNZ S NNZ K NNZ

1CRN 642 1623 22.09 9.40 37.20
Pentacene 6876 19,482 2.89 1.04 5.70
1L2Y 1942 4045 5.90 2.13 11.57
Water 1719 3438 9.43 3.43 18.30

The benefits of this basis set are further reflected in the
spectral quantities of these matrices, as shown in Table
11.2. We see that the spectral width of the overlap matrix is
quite low, reflecting how well conditioned the basis is. The
ratio of the band gap to the spectral width of the
Hamiltonian is also relatively high, which leads to huge
efficiency gains for diagonalization-free methods. The lower
this ratio, the more polynomials that are required in order
to approximate the Fermi function of the Hamiltonian.
BigDFT’s matrices require few polynomials, similar to what
would be needed for minimal basis calculations with
Gaussians or tight binding calculations, as was shown in a
head-to-head comparison when using density matrix
purification techniques [18].

Table 11.2 
Spectral properties of four example systems. The “Gap To Width”
is the ratio of the band gap to the spectral width of the Hamiltonian

System S width H width (eV) Gap (eV) Gap to width

1CRN 0.9557 47.0783 1.9977 0.0424



System S width H width (eV) Gap (eV) Gap to width

Pentacene 0.9852 42.2971 1.0323 0.0244
1L2Y 0.8936 47.9860 1.3682 0.0285
Water 0.4496 40.8961 7.7297 0.1890

Sparse matrices are stored in a custom Segment
Storage Format, which groups together consecutive non-
zero values in a matrix row. This format not only reduces
the storage overhead of a matrix, but also can improve the
performance of matrix-vector multiplication by using calls
to dense operations. The Hamiltonian matrix is replicated
across processes and columns of the density matrix are
distributed. This data distribution allows each column to be
computed independently to improve parallel performance.

As mentioned in Sect. 11.7.3, the diagonalization free
method of choice in BigDFT is the Fermi operator expansion
based on matrix vector multiplication. This approach is
usually far more expensive than those based on recursive
polynomial expansions such as density matrix purification
[14]. However, the high sparsity, relatively low dimension,
and good conditioning of BigDFT’s matrices enables a more
tailored choice of algorithm and parallelization scheme.
This novel approach is made possible by the unique
properties of the Daubechies wavelet basis set employed in
BigDFT.

11.8 Perspective

Daubechies wavelets have a number of favourable
properties which make them an ideal basis set for
electronic structure calculations. In this work we have
outlined the use of such a basis set for density functional
theory calculations, as implemented in the open source
BigDFT code. Through examples presented here and
referenced within the text, we have shown how the



combination of a wavelet basis set with an implementation
designed for massively parallel machines allows for
efficient and accurate calculations of hundreds of atoms,
even within a traditional cubic scaling approach. Such a
treatment also allows for the simulation of relatively large
systems using hybrid functionals, particularly where GPUs
are available, while the availability of different boundary
conditions allows for the straightforward treatment of
molecules, surfaces and solids. A number of functionalities
are available in BigDFT, including dynamics, explicit
charges and electric fields and implicit environments,
while, for example, there are ongoing developments in the
treatment of excited states.

Going beyond the cubic scaling approach, the localized
nature of wavelets is also highly suitable for a linear scaling
approach, wherein the nearsightedness of matter is
exploited by imposing localization on the system via the use
of a minimal set of localized support functions. Such an
approach further expands the applicability of BigDFT to
systems containing several thousand atoms, and has been
shown to converge reliably for a range of materials. The
localized support function-based approach may also be
further exploited to define a fragment approach, in which
the computational cost may be significantly reduced by
exploiting repetition in molecular or periodic systems.

The treatment of such large systems brings new types of
problems within the reach of first principles simulations.
However, such simulations also bring new challenges, for
example the increased size of the configuration space
associated with complex materials containing large
numbers of atoms. Furthermore, as well as treating large
lengthscales it is desirable to treat also long timescales,
which remains unfeasible within a purely quantum
mechanical approach, so that QM/MM approaches are
required. To this end, the support function approach allows



not only the treatment of large enough systems to test and
validate QM/MM approaches, but can also be used to
analyze and fragment a system without requiring any a
priori knowledge of the system. This offers a route to
reduce the complexity of QM calculations of large systems
and thereby inform the setup of multiscale simulations.

In the context of large scale electronic structure
simulations, a wavelet-based approach therefore offers
another significant advantage in that it facilitates the
implementation of a range of approaches designed to treat
different system sizes, as illustrated in Fig. 11.7. The
existence of such a comprehensive framework with a single
underlying formalism means that each successive
approximation is applied in a systematic and controlled
manner. Therefore, one can easily test and validate the
approximations between different levels of theory. For
example, QM/MM simulations may be benchmarked with
respect to fragment calculations, which may be compared
with full linear scaling calculations and so on. Furthermore,
we have also introduced a number of indicators which can
be used to predict whether or not a particular
approximation is appropriate for a given system.



Fig. 11.7 
Illustration of the different approaches available in BigDFT, the
approximations introduced and approximate applicable lengthscales

The development and improvement of a comprehensive
multi-scale framework is an ongoing priority for BigDFT. As
with other developments in BigDFT, a key aspect of this is a
module-based approach which aims towards sustainable
software development. In tandem with the implementation
of new approaches, we also aim to prioritize both
accessibility and reproducibility of new functionalities, by
providing Jupyter-notebooks demonstrating how such
functionalities may be used via the PyBigDFT interface.
Further information on BigDFT may be found on the
website [6] and in the documentation [5], while the code
may be downloaded from GitLab [7].
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Abstract

This chapter presents controlled approximations of Kohn–
Sham density functional theory (DFT) that enable very large
scale simulations. The work is motivated by the study of
defects in crystalline solids, though the ideas can be used in
other applications. The key idea is to formulate DFT as a
minimization problem over the density operator, and to cast
spatial and spectral discretization as systematically
convergent approximations. This enables efficient and
adaptive algorithms that solve the equations of DFT with no
additional modeling, and up to desired accuracy, for very
large systems, with linear and sublinear scaling. Various
approaches based on such approximations are presented,
and their numerical performance is demonstrated through
selected examples. These examples also provide important
insights into the mechanics and physics of defects in
crystalline solids.

12.1 Introduction

Defects are common in crystalline solids [33, 65]. These
include point defects (vacancies with missing atoms,
substitutional elements where an atom of an impurity
(solute) replaces an atom of the actual material, or
interstitial atoms where an extra atom is inserted into the
solid), cluster defects (vacancy cluster or prismatic
dislocation loop with a missing disc of atoms), line defects
(dislocations where an extra plane of atoms terminates
along a line) or planar defects (twin or grain boundaries
across which the crystal orientation changes or phase
boundaries across which the crystal structure changes).

Defects play a critical role in determining important
properties of materials. Vacancies mediate creep, solutes
strengthen solids, vacancy clusters lead to void nucleation
and dislocations mediate plasticity. Remarkably, they do so
at extremely dilute concentrations. Vacancies affect creep



at parts per million, and dislocations densities are of the
order of one in a million amongst atomic columns during
plastic deformation.

The reason why defects can have such a profound effect
on properties at dilute concentrations is because they
trigger physics at multiple length and time scales [65, 80].
In this review, we are interested in the equilibrium
structure, and therefore focus only on the length scales. The
defects cause an imbalance of forces on the neighboring
atoms which in turn lead to deformations. Even though
electronic interactions decay quickly, displacement of the
atoms from their periodic equilibrium positions lead to
imbalanced forces on their neighbors, and so on, leading to
extremely slow decay of the displacement field. The complex
quantum mechanical or chemical interactions at the defect
core lead to a complex atomistic and electronic structure
that need an electronic structure theory for its description.
As we move away, the displacements from the periodic
structure are less complex and may be understood through
atomistic interactions. Even farther away, the displacements
are smaller and may be described by continuum elasticity
theory.

Crucially, these scales interact intimately and one scale
does not dominate over others. We consider two examples.
The first example is a vacancy, where a single atom is
missing from an otherwise perfect lattice. In the far field,
elasticity theory tells us that the displacement decays as r−2

so that the stress and the strain decay as r−3 [58]. This is a
relatively fast decay and the energy is summable in the far
field. The divergence at the origin is regularized by
atomistic and electronic interactions. One can estimate the
energy due to the chemistry of the core by the cohesive
energy of a solid (the energy difference between an isolated
atom and an atom in the crystal), and this is typically a few
electron volts in metals. One can also estimate the energy
due to the elastic field far away, and this is of the order of a



few tenths of electron volts for a typical metal. While one is
smaller than the other, it is not negligibly so; therefore
these fields do interact with each other even in this simple
defect. Further, the elastic fields generated by the vacancy
are large enough to interact with macroscopic stress due to
boundary conditions resulting in a stress-induced driving
force on the vacancy. The second example is that of a
dislocation. The stress and strain decay as r−1 away from
the line, which means that the elastic energy density is
logarithmic, and thus divergent at both the origin and the
far field [33, 58]. In other words, dislocations provide a
direct link between continuum scale boundary conditions
and electronic scale interactions at the core. In short,
defects connect the far field to the electronic scale and it is
this ability to bridge scales that result in defects having a
profound effect on macroscopic properties. This also makes
defects extremely difficult to study.

Kohn–Sham DFT [34, 43] has emerged as the method of
choice for the study of electronic structure in condensed
matter [11]. It converts the many particle Schrödinger
equation to a single particle problem with an effective
single-electron potential. While one can show the existence
of such a theory, the functional that gives rise to the
potential (or even the locality or lack thereof) remains
unknown, and is modeled. Thus, while DFT is nominally ab
initio in that it is agnostic about the material (other than the
atomic number), it does require a constitutive model of the
universal exchange-correlation functional. It has proved to
be an extremely useful compromise between practical
application of quantum mechanics and fidelity.

Given the importance of electronic structure in
determining the structure and energetics of defects, it is
desirable to study defects using DFT. Such studies require
large domains including large numbers of electrons due to
the slow decay and low concentrations that are typical in
materials; unfortunately such large domains are beyond the



capability of brute force (full-resolution) DFT calculations
using existing widely-used methods with reasonable
computational resources. However, the complexity and
details of the electronic structure are important near the
core, and less so in the large regions of slow decay. This has
motivated multiscale modeling of materials, where one
builds a cascade of models (DFT, atomistic, continuum) to
study the phenomena at different scales [1, 6, 91, 97].
However, the interaction between the scales means that one
has to link them, which requires further modeling. Much of
this modeling is empirical, taking us away from the ab initio
point of view. Moreover, such a cascade of models linked
empirically do not have an inherent or quantifiable notion of
error. A notion of error is important since the study of
defects requires comparing the energies of different
configurations, and therefore evaluating a small difference
between two large numbers. Therefore an estimate of the
accuracy and an ability to control the accuracy is important.

This chapter presents a line of work that seeks to solve

the equations of DFT, and only the equations of DFT, with no

further modeling on large domains relevant to defects by
introducing approximations where the error can be
controlled. The idea is to formulate DFT as a well-defined
minimum problem over spaces of operators, and then
introduce systematically convergent approximations.
Specifically, there are two approximations: (1) Spatial
discretization, resulting in finite-dimensional approximate
problems obtained by constrained minimization of the DFT
energy functional; and (2) Spectral discretization, based on
approximations of the DFT energy functional itself, or
variational crimes in the parlance of approximation theory.

A related issue is the fact that widely used DFT methods
for condensed matter are limited to periodic systems. This is
motivated by crystals that involve a periodic arrangement of
atoms. The periodicity enables one to work in Fourier space
using a plane wave basis, and this has proven to be



extremely efficient on moderate computational resources.
One can extend this approach to defects using “super-cells”,
i.e., studying a periodic arrangement of defects and the
resulting unit cell. However, since defects interact over long
distances, these can lead to artifacts. Further, dislocations
are topological defects and therefore not amenable to
periodic arrangement unless one studies defect complexes
(dislocation dipoles or quadrapoles) with zero topological
content, further leading to potential artifacts. Therefore, it
is desirable to move away from periodic arrangements.
Finally, defects are interesting because they interact with
far-field stimuli. Therefore, it is desirable to study defects
under arbitrary boundary conditions. These motivate the
need to solve DFT in real space.

The systematically convergent approximations lead to
various algorithms that enable the solution of DFT with
controlled error on large systems in real space. This chapter
describes three in some detail. The first involves variable
spatial discretization by exploiting adaptive higher finite
elements. The second involves spectral discretization using
quadratures. The final method combines spectral and
spatial discretization.

The chapter is organized as follows. Section 12.2
provides a variational formulation of DFT. An important
result is the reformulation (12.4) which presents DFT as a
nested variational problem. We then use spectral theory to
rewrite the inner variational problem. This reformulation
enables us to introduce spatial discretization and spectral
quadratures as convergent (Rayleigh–Ritz) approximations.
Section 12.3 introduces three ideas that are useful for the
efficient practical implementation of the methods. Section
12.4 introduces spatial discretization using (higher order)
finite-elements, and describes how this can be used for
spatial adaptivity. This section also presents a series of
examples that describe the efficacy of such an approach in
studying defects, and the overall performance of the



method. We turn to spectral quadratures in Sect. 12.5. We
discuss the relation of this method to other approaches,
including the recursion method (widely used in tight
binding), Padé approximations and Fermi-operator
expansion. We discuss convergence and demonstrate the
performance of the method using various examples. We turn
to combined spatial and spectral coarse-graining in Sect.
12.6. We describe a sub-linear scaling method for the study
of defects, and its application to study vacancy clusters and
dislocation cores in magnesium.

12.2 Variational Formulation of

Density Functional Theory

In this section, we proceed formally following the notation
and presentation of Refs. [3, 90] to formulate Kohn–Sham
DFT as a well-defined minimum problem over spaces of
operators, and the approximation schemes—spatial and
spectral—that it suggests.

12.2.1 Kohn–Sham Density Functional Theory

as a Minimum Problem

We consider a closed shell spin-unpolarized system in an
insulated, bounded, open and Lipschitz domain 
for
simplicity. The presentation may be extended to spin-
polarized systems and unbounded domains [3]. Let


, 
, 
, and

, where h denotes the single-

particle Hamiltonian, γ represents the single-particle
density matrix, and 
denotes the vector space of
bounded self-adjoint operators on 
. Let

be a constraint set defining the admissible density
operators. Define the Kohn–Sham energy functional




as

which can be written as

where

is the electron density. In addition,

where v is an external potential, and

(12.1)

is the classical electrostatic energy [37]. A formal
connection between (12.1) and the oft-used equivalent
expression (up to an inessential constant) based on the
Coulombic interaction formula 
can be
established simply by writing out the Euler–Lagrange
equation of (12.1) and solving for ϕ using the Green’s
function for the Laplacian. The expression (12.1) simply
recognizes the fact that J(ρ) is the dual of the Dirichlet
functional. Representation (12.1) is advantageous over the
Coulombic representation from the standpoint of
approximation, which only requires local conforming
interpolation of the electrostatic field ϕ. Finally, Exc(ρ) is the
exchange-correlation energy functional. It must necessarily
be modeled. Here, for simplicity, we choose the local
density approximation (LDA) [60]. The Kohn–Sham DFT

problem is to find the ground state energy



(12.2)

and attendant energy-minimizing states. For subsequent
purposes, we use duality to reformulate the energy in trace
form. To this end, assume for definiteness that the exchange
correlation 
is convex with dual 
, so
that [90]

Now, define the Hamiltonian

where the electrostatic potential operator Φ, the exchange-
correlation potential operator Vxc, and the external potential
operator V  are bounded self-adjoint operators over 
defined by the properties

Then,

and the Kohn–Sham DFT problem (12.2) becomes

(12.3)

It is possible to exchange the order of the 
and 
operations in the above equation [90] to arrive at the
reformulated Kohn–Sham DFT problem,

(12.4)

This reformulation offers various advantages and serves
as the basis for the approximations to follow. First, in the



same spirit as in (12.1), the representation (12.4) only
involves local operators and requires local or conforming
interpolation of ϕ and vxc. Second, the functional is
expressed in terms of linear operators acting on γ only, thus
paving the way for a spectral treatment of the problem, as
we do presently.

We now focus on the inner 
operation that yields the
energy-minimizing density matrix for fixed (ϕ, u):

(12.5)

where, here and subsequently, we omit the dependence of h
on the fixed fields (ϕ, vxc) for simplicity of notation. Note
that the quantity U is commonly referred to as the band

structure energy in the physics literature.
It follows from spectral theory (cf., e.g., [70]) that the

minimizing density matrix operator γ of (12.5) shares the
same spectral measure as the Hamiltonian h, i.e., we may
write

(12.6)

for 0 ≤ f ≤ 1, where 
is a resolution of the identity over the
Borel sets of the real line. In addition, γ and h have the
same spectral measure if and only if they commute, i.e.,

Finally, we can show that there is a minimizer f ∈{0, 1} so
that γ2 = γ. Therefore, the minimum problem is

(12.7a)

(12.7b)
The variational problem (12.4) is often solved by a fixed

point iteration of self-consistent field (SCF) iteration where



(12.7) is solved for γ with a fixed ϕ, vxc and the outer sup
problem in (12.4) is used to update ϕ and vxc for fixed γ.

12.2.2 Approximations Resulting from Spatial

Discretization

We proceed to discretize problem (12.4) à la Rayleigh–Ritz,
i.e., by restriction to finite-dimensional spaces. To this end,
let 
be a nested sequence of finite-dimensional subspaces
of 
spanned by orthonormal bases 
, e.g.,
corresponding to a finite element discretization.1 Let


be the corresponding sequence of subspaces of 
.
Then, the discrete wave function, electrostatic field and
exchange-correlation potential field are of the form

Likewise, the discrete Hamiltonian is

with

and



We note the additional linear structure

where

Finally, the discrete density matrix is of the form

and the discrete electron density follows as

This sequence 
of finite-dimensional subspaces of 
defines a nested sequence of subspaces of 
of density

matrices
 
, where 
denotes the
vector space of symmetric linear operators on 
. This in
turn defines a sequence of discrete constraint sets


, where 
expresses the requirement that 
for all


. We note that, if the spaces 
are nested, then 
defines a decreasing sequence of sets in 
and that 
. Then, the corresponding sequence of discrete energies


follows as

(12.8)

where 
is the indicator function of 
, and 
with Dh the discrete gradient operator. The discrete Kohn–
Sham DFT problem becomes

(12.9)



where we have again exchanged the order of the inf and sup
operations [90].

As before, we may rewrite the inner inf problem as
(12.10a)

(12.10b)

12.2.3 Spectral Reformulation of the Discrete

Kohn–Sham Problem

By the spectral decomposition theorem (cf., e.g., [70]), we
can write

where 
is an operator-valued measure. In this
representation, we have

and

where

is a spectral measure with:



where δ is the Dirac delta function. Given the spectral
measure 
, the calculation of the energy-minimizing
discrete density matrix γh at fixed (ϕh, uh) reduces to the
scalar problem

(12.11)

where Xh denotes the space of bounded real-valued Borel
functions over the real line.

12.2.4 Approximation by Numerical Quadrature

We proceed to reduce problem (12.11) by recourse to
numerical quadrature. Let

be a sequence of quadrature rules, parameterized by 
,
with weights Aj and nodes εj. Here,

(12.12)

where

for j = 0, …, k are the Lagrange polynomials.
Define the sequence of approximate energies

and the sequence of approximate masses



Then, we have a corresponding sequence of discretized

problems

(12.13)

The solution of these approximate problems then follows
from the algorithm:
(i)

Set f0(ε) = 0, i = 0, …, k, I0 = {0, …, k}, N0 = 0, n = 1.  
(ii)

Let in ∈argmin{ε, i ∈ In−1}, 
.  
(iii)

If Nn < N, set 
, In = In−1∖{in}, n ← n + 1, go to
(ii).

 
(iv)

Otherwise, set 
, fh = fn, exit.  
12.2.5 Rayleigh–Ritz Interpretation

The numerical-quadrature reduction can again be given an
appealing Rayleigh–Ritz interpretation. Begin by noting the
identity

From this identity and (12.12) we have

where



Likewise,

Define now the sequence of spaces

where {li, i = 0, …, k} are the Lagrange polynomials defined
by the roots of the orthogonal polynomial pk+1 generated by
H. Define, in addition, the sequence of relaxed constraint
sets

Then, the reduced problem (12.13) is equivalent to solving

which corresponds to a Rayleigh–Ritz reduction of problem
(12.5) to the subspaces of density matrices 
generated by
numerical quadrature, and to the corresponding relaxed
constraint sets 
.

12.2.6 Convexification and Thermalization

The DFT problem (12.4) and the inner minimization problem
(12.7) are not convex due to the constraint that f(ε) takes
values in {0, 1}. We convexify the problems by allowing the



function to take values in the entire interval [0, 1], the
resulting function henceforth referred to as fβ(ε). We expect
the minimizers to take extreme values only and thus the
convexified and original problems to yield the same
minimizers and the same minimum energy. We can now
enforce the constraint 
by entropic penalization.
We present it for the infinite-dimensional version (12.4),
though it can readily be extended to the versions with
spatial and spectral discretization. Introduce the entropy

and the thermalized problem

(12.14a)

(12.14b)

where β is an inverse temperature. The minimizer of Uβ(γ) is

(12.15)

where μ is a chemical potential introduced to enforce the
number constraint. μ and fβ are commonly referred to as the
Fermi level and Fermi–Dirac distribution, respectively, with


representing the zero-temperature limit.
The thermalized total energy

Finally, we may estimate the zero temperature ground
state energy as

(12.16)



12.2.7 Spatial Densities

For later use, we note that the quantities in (12.4) and
(12.16) have associated spatial densities and can be
rewritten in terms of volume integrals. Following (12.6),
and explicitly introducing the spatial variables

(12.17)

Therefore, the number of electrons, the band structure
energy and the entropy may be written as

in terms of the charge or number densityρ, band structure

energy densityu and entropic densitys. Indeed, recall that
ρ(r) = 2γβ(r, r). These densities play a key role in later
sections.

12.2.8 Eigenvalue Problem

We close our formulation by connecting it to the way DFT is
usually presented as an eigenvalue problem. The direct
solution of problem (12.9) entails the computation of N∕2
eigenvalues and eigenvectors. To see this, consider the
inner 
operation in (12.9). Write


, with



where IN∕2 denotes the identity in 
. Here and
subsequently, 
denotes the space of linear
transformations between two linear spaces 
and 
, and


the space of linear transformations from a linear space

to itself. Then, PT = P, 
and tr(P) = N∕2, hence


. The problem under consideration thus becomes

The Euler–Lagrange equations of this problem are

where 
, 
, is a Lagrange multiplier.
Clearly, these Euler–Lagrange equations are solved if the
columns of Qh consist of eigenvectors of H and Λh stores the
corresponding eigenvalues in its diagonal. In addition, if


are the ordered eigenvalues of H is ascending
order and 
are the corresponding eigenvectors,
then the minimum problem is solved by Qh = {φ1, …, φN∕2}
and Λh = diag{ε1, …, εN∕2}. Finally, the energy follows as

Clearly, this computation becomes intractable for large
material samples containing a large number electrons N.
Therefore, computational tractability of large samples
requires an additional reduction (beyond spatial
discretization) that we refer to as spectral reduction above.

12.3 Filtering, Spectrum Splitting and

Pseudopotentials

This section introduces three ideas that enable faster
calculations. The first two, filtering and spectrum splitting,
are convergent approaches and take advantage of the



spectral formulation. The third, pseudopotentials, involves
modeling.

12.3.1 Filtering

The discrete DFT problem (12.9) is posed as a problem in an
Ng-dimensional subspace 
of 
. In practice, the
accurate solution of the equations requires that Ng ≫ N.
However, the solution to our problem, the density matrix γh,
has rank N (in the thermalized problem, the thermalized
density matrix γβ,h has rank larger than but close to N).
Therefore, one can obtain significant savings in
computational effort by identifying a priori a sub-space 
such that 
, and restricting the problem
(12.10) and specifically the Hamiltonian hh to the sub-
subspace 
. This can be achieved using filtering. While
many approaches have been proposed based on filtering
such as purification (cf. e.g. [31, 48, 59, 76]) and
approximations to the Fermi–Dirac functions (cf. e.g. [4, 24,
49]), the Chebyshev filtering technique [98, 99] is adopted
in many recent DFT codes [21, 22, 51, 53]. The main idea in
Chebyshev filtering is to approximate the subspace 
as

where 
with 
, Tm is a Chebyshev
polynomial of order m, and

with 
(σ denoting the spectrum) and

. In particular, 
is a

reasonable choice. We note that g transforms the spectrum
of hh such that σ(g(hh)) < 1 and σ(g(γhhh))) ∈ (−∞, −1).
Thus, as Tm(x) > 1 for x ∈ (−∞, −1), Tm(g(hh))Xh provides a



good approximation to 
. We note that a suitable choice of
m depends on the value (b − a), a larger m being needed for
larger values of (b − a). For instance, based on numerical
studies, if 
, values of m ∼ 10 − 30 are
sufficient to construct a good approximation to 
[53, 99].
However, if 
, values of m ∼ 1000 are needed
[71].

If 
denotes the projection operator onto the
filtered subspace, then the solution to the DFT problem can
be obtained by replacing hh in (12.10) with 
. As the
spectral width 
, it enables faster
numerical solution of the DFT problem, and has been the
basis for subspace projection methods (cf. e.g. [16, 54]).

12.3.2 Spectrum Splitting

The next idea combines filtering with a feature of the
solution of a typical problem. Here, we assume that the DFT
problem has already been projected onto 
, and denote


by hf. We denote by σh = σ(hf) the spectrum of hf,
and assume in the following that 
(i.e., hf is
appropriately shifted such that this condition is satisfied). It
has long been recognized that the spectrum of hf has a gap
that separates the so-called core, or deeply bound states at
the lower end, from the rest. In other words, the spectrum


with 
for a gap Eg > 
0. We can therefore split the Hamiltonian hf and the density
operator γh (corresponding to hf) into

(12.18)
where the spectrum of 
is 
. It follows that we can
divide 
into two orthogonal subspaces,



where 
is the range of 
. Further, since 
is the lower
end of the spectrum, it follows that

(12.19)

is the projection operator from 
to 
.
Now, in light of the spectral gap, we can again use

filtering on hf, and then readily identify 
as the range of

. Therefore, we can use (12.19) to easily compute 
.

Further, using the orthogonality of the subspaces,

Since the spectra 
and 
are disjoint, it follows that
(12.20)

We may now reduce (12.10) as
(12.21a)

(12.21b)
where Nc denotes the number of core electrons. This
approach of spectrum splitting provides a number of
advantages. First, the computation of 
, the core part of
the density matrix, is relatively simple as described above.
Second, in practice, the width of the spectrum of 
(
 
)
is significantly smaller than that of hf (Σ(hf)), and this allows
for a more efficient numerical solution. Finally, the core
subspace 
consists of functions which have a compact
support close to the nuclei. In other words, this is the
subspace spanned by the orbitals of the core electrons. This
can be further exploited to gain numerical efficiency.
Further, its complement, 
, which contains so-called
valance and conduction electrons, consists of functions that
vary smoothly outside a core region around the nucleus.
Therefore, we can use a spatially adaptive resolution to
discretize it.



We may proceed similarly in the thermalized problem to
find that (12.19) and (12.20) still hold, and

(12.22)
It is common to compute this by expanding it in a
polynomial basis (Fermi operator expansion [24, 25]), which
we shall show later in Sect. 12.5 is related to the spectral
quadratures. Therefore, the advantages of spectrum
splitting carry over to the thermalized setting.

The accuracy and efficacy of this approach for large-
scale all-electron DFT calculations has been demonstrated
in [56]. Here, we present some representative results on Si
and Au nanoclusters. Figure 12.1 shows the results from
ground-state energies computed using two approaches: (1)
SubPJ-FE: A subspace projection approach via filtering
(Sect. 12.3.1) implemented in a finite-element basis, where
γh,β = fβ(hf) is computed via Fermi-operator expansion using
Chebyshev polynomials for various orders; (2) Spectrum-
splitting method: In addition to the subspace projection via
filtering, spectrum splitting is used, where 
and 
is evaluated via Fermi-operator expansion using
Chebyshev polynomials for various orders. The results for
Si95 are provided for two values of β corresponding to T = 
500 and 1000 K, and results for the Au6 cluster are shown
for T = 500 K. As is evident, spectrum splitting not only
provides computationally efficiency—due to a substantial
reduction in the polynomial order required in Fermi
operator expansion—it is indispensable to obtain the desired
accuracy for systems with large atomic numbers, like Au.



Fig. 12.1 
Accuracy and computational efficiency afforded by spectrum
splitting in all-electron calculations via Fermi operator expansion. (Left) Si95
nanocluster; (Right) Au6 nanocluster. Adapted from [56]

We conclude this subsection by noting that spectrum
splitting is also closely related to the so-called enrichment

methods. Note that the identity (12.19) means that we can
use any basis set to represent 
. Therefore, picking ∼ Nc∕2
functions that are computationally convenient and
approximate the span of 
provides a good starting point.
Subsequently, choosing a spatial discretization sufficient to
span 
provides the desired accuracy. This is
computationally effective since the spatial discretization
does not have to be so fine as to represent the core
electrons. The basis set approximately spanning 
can be
iteratively updated as the calculation proceeds. These ideas
lead to augmented plane wave (APW), linearized augmented
plane wave (LAPW) [73], and enriched finite basis [40, 71,
95]. We refer the reader to Chap. 9 by Chen and Schneider
in this volume for a detailed discussion of these methods.

12.3.3 Frozen Core Approximation and

Pseudopotentials

The formulations discussed till now have considered all
electrons in the system. However, it is a long-held



observation in the field that core electrons play a minimal
role in the bonding between atoms. Specifically, it is
observed that the 
is relatively independent of the
external potentials v that arise in molecules and crystals.
This motivates the desire to exclude these electrons from
the calculations, and to focus on the valance and conduction
electrons.

One approach to doing so is the so-called frozen core

approximation. Here, a high resolution all-electron
calculation for a single atom is conducted to obtain the core
density matrix, 
for a single atom (the subscript Z here
refers to the single atom of atomic number Z with the
nucleus located at the origin). Subsequently, this is used as
an ansatz for the core electrons for any given problem.
Specifically, for a problem with Na atoms with atomic
numbers {Zi} located at {ri},

is used as an ansatz for
(12.23)

in (12.10) to solve for 
. Note that the computational
complexity of the problem is now reduced from N electrons
to N − Nc electrons. Further, as noted above, the range of


is spanned by relatively smooth functions outside the
core, and therefore one can use a spatially adaptive
discretization to represent this problem.

Note that this is an uncontrolled approximation since it is
based on an ansatz. Table 12.1 from Ref. [52] shows the
errors from the frozen core approximation for a range of
systems. In particular, the two metrics used to measure the
approximation are: (1) the relative error in the core electron
density at the ground-state 
, where 
is
the core electron density at the ground-state from the all-



electron calculation and 
; (2) the relative error
in the total electron density at the ground-state


, where ρ0 is the total electron density at
the ground-state from the all-electron calculation, and 
is
the total electron density at the ground-state from the
frozen core approximation. As evident, while the
approximation is good for some systems, it can incur larger
errors for others (such as Si nanoclusters).

Table 12.1 
Error incurred from the frozen core approximation for various
systems [52]

System

Li2 0.00703 0.00787

O2 0.00102 0.00128

CO 0.00181 0.00129
Si18 0.01272 0.0130

Si31 0.01273 0.0134

A closely related idea is that of a pseudopotential. Here,
the objective is to fully exclude the core states by using a
fictitious potentials, namely pseudopotentials, thus
replacing hh with hPS. The pseudopotentials are generated
such that 
closely approximates 
outside a
core radius around each atom, but the range of 
is
smooth all through the simulation domain. Thus, this
alleviates the need for a spatially refined basis to resolve
the core states. Various pseudopotentials have been
proposed and are widely used (cf. e.g. [8, 29, 88]). Despite
the errors and the uncontrolled nature of these
approximations, it is often the only practical route to
proceed in large systems of interest.



12.4 Spatial Coarse-Graining: Finite-

Element Discretization

Spatial discretization (cf. Sect. 12.2.2) plays a central role
in the practical aspects of computing the solution to the
Kohn–Sham DFT problem in an efficient manner. Many
discretization schemes have been adopted by the scientific
community in solving the Kohn–Sham problem, and besides
the algorithms employed, the discretization schemes have
been the main differentiator for the various DFT codes and
their performance based on computational efficiency and
scalability. The widely used discretization methods include
the plane-wave basis (cf. e.g. [23, 27, 44]) and atomic
orbital type basis functions (cf. e.g. [9, 32, 36, 86]). While
the plane-wave basis offers spectral convergence, it is
primarily efficient for periodic problems owing to the lack of
spatial adaptivity, and is constrained by limited parallel
scalability of numerical implementations. The atomic orbital
type basis functions present a reduced order basis, but in
practice may not guarantee a robust and systematically
convergent solution, especially for metallic systems. Also,
they suffer from limited parallel scalability owing to the
global nature of the basis functions. Although the finite-
element and finite difference discretization schemes were
explored over two decades ago [45, 62, 63, 83, 84], they
have only recently started to gain traction as efficient and
scalable approaches for solving the Kohn–Sham problem
[21, 22, 53, 57].

The finite-element discretization in particular offers
many attractive features, including the following: (1)
Systematic convergence. Piecewise polynomials of a fixed
degree p are dense in H1( Ω) as the finite-element mesh-size
h becomes small. Further, polynomials of increasing p are
dense for a fixed h. (2) Flexibility. It has the ability to easily
handle complex geometries and mixed boundary conditions,



which is especially important when treating defects where
periodicity may not be appropriate. (3) Spatial adaptivity.
The discretization can be exploited to provide desired basis
resolution in regions of interest and coarse-graining
elsewhere. (4) Parallel scalability. The locality of the FE
basis provides for efficient parallel scalability of numerical
implementation. We also refer the reader to Chap. 10 by Dai
and Zhou in the present volume for a broad discussion of
the application of finite element discretization to DFT.

12.4.1 Higher-Order Spectral Finite-Elements

Despite the aforementioned advantages of the finite-element
basis, and many prior efforts that explored the use of a
finite-element basis for electronic structure calculations,
they have not been competitive with widely used plane-wave
and atomic orbital basis sets until recently. The two main
issues limiting the performance of a finite-element basis in
Kohn–Sham DFT had been: (1) the significant degree of
freedom disadvantage of commonly used linear finite-
elements in comparison to a plane-wave basis that affects
the computational efficiency in practical DFT calculations;
(2) the non-orthogonality of the finite-element basis that
either limits the available solution schemes or requires an
additional evaluation of the inverse of the overlap matrix.

Figure 12.2 provides insights into the lack of
computational efficiency of linear finite-elements observed
in prior studies. The figure shows the error in the ground-
state energy for various finite element discretizations of
different finite-element orders for two materials systems
The higher order finite-elements employed in the study are
hexahedral finite-elements, where the finite-element basis
functions are constructed as a tensor product of basis
functions in each dimension. The hexahedral finite-element
basis functions in the isoparametric formulation are
constructed from polynomial basis functions in the
reference domain [−1, 1]3 as



(12.24)

Fig. 12.2 
Convergence of finite-element discretization for various finite-
element orders. Ne denotes the number of elements with 
providing a
measure of the finite-element mesh size h; TET4 denotes a linear tetrahedral
element; HEX27 denotes a quadratic hexahedral element (p = 2);
HEX125SPECT denotes a quartic spectral hexahedral element (p = 4);
HEX343SPECT denotes a sixth order spectral hexahedral element (p = 6);
HEX729SPECT denotes an eighth order spectral hexahedral element (p = 8).
The benchmark systems comprise of (Left) Barium cluster, non-periodic system;
(Right) Face-centered cubic Calcium unit cell, periodic system. Adapted from
[57]

where li(ξ) is a Lagrange polynomial of degree p
constructed based on the p + 1 nodes of the finite-element.
Conventionally, the finite-element nodes are chosen to be
equidistant, however the conditioning of basis functions is
known to deteriorate with increasing order [10]. Instead,
spectral finite-elements, where the finite-element nodes are
chosen to be the roots of the Chebyshev polynomial, or the
roots of the derivative of the Legendre polynomial, are
known to provide a better conditioned basis for higher-order
discretizations. From the results in Fig. 12.2, we note that
for all orders of finite-element discretizations, the relative
error in ground-state energy 
, where EKS,h



is the discrete ground-state energy, EKS is the converged
ground-state energy, and h is a measure of the finite-
element mesh size, chosen to be 
where Ne is the
number of elements. The results show that q is close to 2p

with p denoting the finite-element order (degree of the
Lagrange polynomial li). These results also show that the
faster convergence of higher-order finite element
approximations also provide a substantial reduction in the
number of finite-elements required to achieve chemical
accuracy (∼10−5 relative errors in energy). This suggests
the use of higher-order finite-element discretization as a
potential path to bridging the significant degree of freedom
disadvantage with a plane-wave basis.

Figure 12.3 (left) shows the degrees of freedom needed
to solve two benchmark systems—a copper nanocluster with
55 atoms (non-periodic systems) and Mo supercell with a
monovacancy containing 53 atoms—to chemical accuracy
(0.1 mHa/atom in energy and 0.1 mHa/Bohr in force) with
various orders of hexahedral spectral finite elements. It is
evident that by using a fourth order finite element in
comparison to a linear finite element, the basis function
requirement can be reduced by ∼1000 ×. This subsequently
translates into a ∼1000 × improvement in computational
efficiency, as shown in Fig. 12.3 (right), which provides the
corresponding computational times in CPU-Hrs. While the
gap between the number of basis functions required to
achieve chemical accuracy is substantially reduced between
plane-wave and higher-order finite-element discretization,
the number of basis functions using finite-element
discretization is still ∼5-fold larger than plane-waves.
However, computational cost per basis function is typically
lower compared to plane-waves, and, given the better
parallel scalability, finite-element discretization is emerging
as an alternative to plane-waves for systematically
convergent, fast and scalable DFT calculations.



Fig. 12.3 
(Left) The number of finite element degrees of freedom required to
achieve chemical accuracy for the various orders of finite elements for two
benchmark systems involving a Cu nanoparticle (non-periodic system) and a Mo
supercell with a mono-vacancy (periodic system). (Right) The corresponding
computational efficiency afforded by the various orders of finite elements.
Results obtained using DFT-FE code [53]

The use of spectral higher-order finite-elements, while
improving the conditioning of the basis, provides a path to
addressing the non-orthogonality of the finite element basis.
In particular, the Löwdin orthonormalized finite element
basis (
 
) can be constructed from the Lagrange
finite element basis (
 
) as

However, such a transformation requires the
computation of M−1∕2, which can be prohibitively expensive
for large Nb. We note that by using spectral finite elements
with the nodes located at the derivative of the Legendre
polynomial (in addition to nodes at the end points) in
conjunction with Gauss–Lobatto–Legendre (GLL)
quadrature rules, M is rendered diagonal and the
transformation is trivial. In particular,



where Ωel, el = 1, 2, …, Ne denote the domains
corresponding to each finite-element, and 
is the
Jacobian of the transformation from Ωel to [−1, 1]3. Pα(ξ, η,
κ) is the Lagrange polynomial defined on [−1, 1]3 (Eq.
12.24) with α = (i, j, k) denoting a composite index
corresponding to a node in the element. The integral in the
above expression for Mαβ is evaluated using quadrature
rules as

where Nq denotes the number of quadrature points and
wq are the weights associated with the quadrature points


for q = 1, 2, …, Nq. In particular, while using
spectral finite elements (Legendre) in conjunction with the
GLL quadrature rule, the quadrature points are coincident
with the nodes, i.e., 
with q = (i, j, k)
denoting a composite index, i, j, k = 0, 1, …, p. Further,
noting the Kronecker delta property of Lagrange
polynomials, 
, it is easy to infer
PαPβ = δαβ. Thus, for spectral finite elements (Legendre)
with the GLL quadrature rule,



Thus, the evaluation of M−1∕2, and subsequently the
construction of Löwdin orthonormalized finite element
basis, is rendered trivial. We note that numerical results
show that the use of a reduced order quadrature rule for the
evaluation of M−1∕2 does not affect the convergence rates or
limit the accuracy of the calculation [57]. This can be
rationalized by noting that the quadrature error for the GLL
quadrature rule is 
, which is also the order of
discretization error. Further, the GLL quadrature is needed
for the aforementioned simplification only in the evaluation
of M, whereas all other integrals are evaluated using Gauss
quadrature.

Thus, by addressing the two main limitations of the finite
element discretization—the degree of freedom disadvantage
when using higher-order spectral finite element
discretizations and the nonorthogonality of the basis when
using spectral finite elements in conjunction with GLL
quadrature—the finite-element discretization has emerged
as a competing basis to plane-waves in practical DFT
calculations (cf. Sect. 12.4.3), especially owing to the
benefits derived from it being a real-space basis, the locality
of the basis functions, and its potential for excellent parallel
scalability.

12.4.2 Spatial Adaptivity

Spatial adaptivity can naturally be realized in finite-element
discretization by using a spatially refined mesh in regions of
interest and coarsening elsewhere. Figure 12.4 shows a
spatially adaptive mesh for a Cu nanoparticle with spatial
refinement around the Cu atoms and coarse-graining away
from the atoms. In addition to higher-order finite-elements,
spatial adaptivity can be leveraged to further reduce the
dimensionality of the finite-element subspace to achieve the
desired accuracy. In particular, spatial adaptivity can
significantly aid computational efficiency of all-electron DFT
calculations where the solution to the Kohn–Sham problem



can be sharply varying. Pseudopotential calculations
involving transition metals, where electrons in the
penultimate shell are also treated as valence electrons, can
also benefit from spatial adaptivity of finite-element
discretization. Further, spatial adaptivity can provide a
substantial benefit in reducing the number of basis
functions for non-periodic problems such as clusters of
atoms as evidenced by the results in Table 12.2—8 ×
reduction in the basis functions, in comparison to a uniform
mesh—which, in turn, translates to improved computational
efficiency. The spatial adaptivity is realized via a priori and
a posteriori mesh adaption strategies based on error
estimates obtained from numerical analysis of the finite-
element discretization of the Kohn–Sham problem. We refer
to Chap. 10 by Dai and Zhou in this volume for a detailed
discussion on the finite-element error estimates for the
Kohn–Sham DFT problem, and refer to [12, 14, 53, 57] for
the mesh adaption strategies proposed in the context of the
Kohn–Sham problem.

Fig. 12.4 
(Left) Spatially adaptive mesh on the mid-plane of a Cu icosahedral
nanoparticle (309 atoms, 5871 e-); (Right) Electron-density contours for the
nanoparticle. Results obtained using DFT-FE code [53]



Table 12.2 
Comparison of uniform and spatially adaptive finite-element
discretizations for Cu icosahedral nanoparticle (309 atoms, 5871 e-). The
discretizations are chosen such that basis discretization errors in ground-state
energy and forces are under 0.1 mHa/atom and 0.1 mHa/Bohr, respectively. The
simulations are performed on NERSC-Cori. Results obtained using DFT-FE code
[53]

FE mesh # Basis

functions

Energy

(Ha/atom)

CPU-time

Uniform (FE order =
6)

81,182,737 −1.82590939e+02 16.33 node-
hrs

Adaptive (FE order =
6)

9,804,717 −1.82590932e+02 1.94 node-hrs

12.4.3 DFT-FE: A Massively Parallel Code for

Real-Space Finite-Element DFT Calculations

In addition to systematic convergence and being amenable
to spatial adaptivity, the finite-element basis also has
potential for excellent parallel scalability owing to the
locality of the basis. Further, the data structures inherent to
the finite-element basis make it amenable to GPU
acceleration to take advantage of the hybrid CPU-GPU
computing architectures. The recent development of DFT-
FE [53], a massively parallel open-source code for Kohn–
Sham DFT calculations using adaptive higher order finite-
element discretization, is an effort in the direction of
enabling fast and accurate large-scale DFT calculations. The
ionic forces and stresses in DFT-FE are computed via
configurational forces corresponding to inner variations of
the Kohn–Sham variational problem [55]. Recent benchmark
studies [53] have shown that DFT-FE outperforms state-of-
the-art plane-wave codes in computational efficiency for
systems containing a few thousand electrons, and beyond.
Further, the parallel scalability of DFT-FE and the GPU
acceleration [13] have enabled fast DFT calculations with
wall-times of a few seconds per self-consistent field (SCF)
iteration—the eigenvalue problem corresponding to the
inner minimization problem in Eq. (12.9) (cf. Sect. 12.2.8)—



on systems containing ∼30, 000 electrons. Figure 12.5a
shows the comparison of minimum wall-times for an SCF
iteration achieved2 using DFT-FE and Quantum Espresso
(QE)—a widely used state-of-the-art plane-wave DFT code—
on the NERSC Cori supercomputer, for a benchmark system
containing Mo supercells with a monovacancy (periodic
calculation). In addition, the minimum wall-times for DFT-
FE on the Summit supercomputer using GPUs are also
provided. These benchmark results suggest that, by
exploiting the parallel scalability and the GPU acceleration,
DFT-FE can provide a ∼100 × boost over QE. Figure 12.5b
shows the electron density contours of the pyramidal II
dislocation in Mg computed using DFT-FE, with the
calculation representing a fully resolved defect core
containing ∼6000 atoms (∼60, 000 electrons). These recent
developments have provided the capability to conduct fast
and accurate fully resolved DFT calculations containing
10,000s of electrons that enables an efficient and accurate
treatment of the defect core.

Fig. 12.5 
(Left) Wall-time comparison of DFT-FE and Quantum Espresso on
NERSC-Cori and Summit supercomputers for benchmark systems comprising of
a mono-vacancy in Molybdenum supercells with varying system sizes. The wall-
time for DFT-FE on Summit is using GPUs. All benchmark calculations have
been conducted using ONCV pseudopotentials with discretization errors
commensurate with chemical accuracy, 0.1 mHa/atom in ground-state energy
and 0.1 mHa/Bohr in forces. (Right) Electron density contour of pyramidal II



screw dislocation system in Mg, with the fully resolved defect core containing
6164 Mg atoms (61,640 electrons) [13]

The spatial adaptivity of the finite-element basis in DFT-
FE has enabled systematically convergent pseudopotential
and all-electron calculations in the same framework. While
pseudopotential calculations have been the workhorse of
DFT calculations owing to their computational efficiency,
there are many scenarios where all-electron calculations are
indispensable—such as material properties under extreme
environments, prediction of ionization potentials,
magnetizability and spectroscopic properties. In particular,
a systematically convergent approach for computing the
spin Hamiltonian parameters that are crucial to
understanding the properties of spin defects in
semiconductors—promising quantum bits for quantum
computing—was lacking, until recently. The systematic
convergence of the finite-element basis for all-electron
calculations in DFT-FE has filled this gap [18]. Further, as
pseudopotential and all-electron calculations are treated
using the same framework, this has opened the possibility of
mixed all-electron and pseudopotential calculations, where
only a subset of atoms are treated using all-electron
accuracy, while other atoms are treated using a
pseudopotential approximation. These mixed calculations
have enabled the calculation of spin Hamiltonian
parameters of spin defects with all-electron accuracy using
simulation domains that provide cell-size converged
properties [19].

12.4.4 Enriched Finite-Element Bases

The finite-element basis with spatial adaptivity provides a
systematically convergent approach for conducting all-
electron calculations. However, numerical studies have
shown that, despite using higher order adaptive finite-
elements, they require a substantially larger number of
basis functions than atomic orbital type basis functions or



approaches such as APW, LAPW and LAPW+lo (see Chap. 9
of this volume, by Chen and Schneider). This limitation of
the finite-element basis can be mitigated by using
augmentation techniques in the finite element basis (similar
to augmentation in the plane-wave basis), where the finite
element basis is enriched with compactly supported atomic
orbitals [40, 71], or via the partition of unity finite element
method [2, 61]. We note that these augmentation
techniques are in the spirit of coarse-graining presented in
this chapter, where enrichment functions capturing the
known oscillatory behavior of wavefunctions near the atom
are used to numerically coarsegrain the higher-order
adaptive finite element basis. Table 12.3 shows the
comparison of the (classical) finite-element basis with an
enriched finite-element basis in terms of basis functions
required to achieve chemical accuracy, and the respective
computational times, for all-electron calculations of Si
nanoclusters. As is evident, there is ∼30 × reduction in the
finite-element basis functions using enrichments, and this
translates to a staggering ∼100 × improvement in
computational efficiency. Table 12.4 shows the comparison
with Elk code—a state-of-the-art LAPW code—on the
accuracy and computational efficiency afforded by an
enriched finite-element basis for all-electron periodic
calculations on supercells of NV Diamond. For a more
comprehensive discussion on the convergence properties of
enriched finite-element bases, accuracy, computational
efficiency and scalability of parallel implementation, we
refer to recent works [40, 71] where benchmark all-electron
calculations on systems containing up to ∼10, 000 electrons
are reported.

Table 12.3 
Comparison of classical and enriched finite element (FE) bases:
Energy per atom (E in Ha), degrees of freedom per atom (DoF), and the
computational CPU time (in node-hours) for various silicon nanoclusters [40]

  Classical FE Enriched FE



  Classical FE Enriched FE

Si 1 × 1 × 1 (252 e-)

E − 288.320035 − 288.319450

DoF 402, 112 14, 728
CPU Hrs 66.63 1.03

Si 2 × 2 × 2 (1, 330 e-)

E − 288.359459 − 288.359266

DoF 360, 467 10, 642
CPU Hrs 3164 23.1

Table 12.4 
Comparison of the ground-state energy per atom (E) in Ha and
computational CPU time (C) in node-hours of various NV-diamond supercells,
using enriched FE (EFE) and LAPW+lo bases. All reported energies are
evaluated at Γ-point [71]

Supercell Atoms

(Electrons)

EFE (E) LAPW+lo

(E)

EFE

(C)

LAPW+lo

(C)

2 × 2 × 2 63 (379) − 
38.0520

− 38.0522 0.19 0.32

3 × 3 × 3 215 (1291) − 
37.8716

− 37.8720 1.6 15.1

4 × 4 × 4 511 (3067) − 
37.8276

– 16.1 –

12.5 Spectral Coarse-Graining: The

Spectral Quadrature Method

In the previous section, we exploited spatial coarse-graining
for numerical efficiency and consideration of large-scale
materials systems. In this section, we discuss another
aspect of coarse-graining that concerns the eigenspectrum
to enable even larger systems. In particular, the quantities
of interest in the Kohn–Sham problem can be directly
evaluated without having to calculate all the occupied
eigenvalues and corresponding orbitals of the Hamiltonian,
a strategy that we refer to as spectral coarse-graining. One



such technique is the recently proposed Spectral
Quadrature (SQ) method [68, 75, 78, 79], which is the focus
here. Notably, the SQ method allows the development of the
infinite-cell approach [75, 78], which enables non-traditional
boundary conditions [20], an important aspect for the study
of crystal defects.

For simplicity, let us suppose that the Hamiltonian
operator is discretized using an orthogonal basis that
satisfies the Kronecker-delta property. Though we make this
assumption, the discussion that follows can be easily
generalized. In particular, we describe the calculation of the
diagonal components of the density matrix, band structure
energy, and electronic entropy—quantities that need to be
determined from the inner variational problem (12.14) or
linear eigenvalue problem arising in each SCF iteration—
using the Gauss and Clenshaw–Curtis variants of the SQ
method. Indeed, the electronic ground state energy can be
determined using the knowledge of these quantities. The
off-diagonal components of the density matrix are also
available, and these are needed to calculate the Hellmann–
Feynman atomic forces [68, 79] and stress tensor [72].

12.5.1 Spectral Integrals and Quadrature

We start by rewriting the expression for the density matrix:

where the shifted and scaled quantities are as follows:

Above, I denotes the identity matrix of size indicated by the
subscript, and the shift and scale factors are:

Next, analogous to their continuous versions in Sect. 12.2.7,
the constraint on the number of electrons, electron density,



band structure energy, and electronic entropy can be
written in the discrete setting as [26, 75, 78]:

(12.25)

(12.26)

(12.27)

(12.28)

where ρn denotes the nth component of ρ and en denotes the
standard basis vector. Note that it is from (12.25) that the
scaled chemical potential 
is determined, which can then
be used for the calculation of the electron density (12.26),
band structure energy (12.27), and electronic entropy
energy (12.28). Also, note that we have dropped the
subscript β in the band structure energy U, for simplicity of
notation.

The key idea underlying the SQ method is the
approximation of the integrals arising in the definition of the
above quantities using a quadrature rule:

(12.29)

where g is any one of the functions arising in the integrals
presented in (12.25–12.28), and 
and 
are the
nodes and weights of the quadrature rule, respectively.



Among the various quadrature schemes possible, Gauss and
Clenshaw–Curtis quadrature present themselves as
attractive choices [81, 82], whose evaluation in the current
spectral setting is described in Sects. 12.5.3 and 12.5.4,
respectively. In order to evaluate these quadrature rules
efficiently and make them more amenable to spatial coarse
graining, it is common to employ spatial localization, as
described in Sect. 12.5.2.

Remark 
The SQ method does not require computation of
the eigenvalues and eigenvectors of the Hamiltonian 
and
uses (12.29) instead, for which we note the connection. The
measure 
may be written as:

(12.30)

where φi,n denotes the nth component of φi. In using
(12.29), the SQ method avoids the calculation of the
eigenvalues and eigenvectors of the Hamiltonian, thereby
circumventing the bottleneck encountered in traditional
diagonalization-based Kohn–Sham DFT calculations.

12.5.2 Spectral Integrals and Quadrature with

Spatial Localization

To significantly reduce the computational cost as well as
make the quantities amenable to coarse-graining, we now
introduce spatial localization by taking advantage of the
nearsightedness of electronic correlations, i.e., exponential
decay of the density matrix for metals at nonzero smearing
values as well as insulators [5, 69, 77]. To do so, we
introduce the ‘nodal’ density matrices [68, 79]



where

with

Above, Hn is the submatrix of the Hamiltonian H formed by
spatially localizing it around the point of interest, i.e., a
matrix formed by the 
rows and columns of H that are
‘near’ the nth row and column. In addition,


are the eigenvalues of Hn. Thereafter, we
approximate the constraint on the number of electrons,
electron density, band structure energy, and electronic
entropy given in Eqs. 12.25–12.28 as:

(12.31)

(12.32)

(12.33)

(12.34)

where es denotes the standard basis vector corresponding
to the node of interest in the truncated Hamiltonian, i.e., the
row and column corresponding to the node around which
spatial truncation has been performed.



We now proceed to approximate the integrals arising in
the definition of the above quantities using a quadrature
rule:

(12.35)

where g is any one of the functions arising in the integrals
presented in (12.32–12.34), and 
and 
are the
nodes and weights of the quadrature rule (dropped index s,
for simplicity of notation). Specifically, we describe the
evaluation of the Gauss and Clenshaw–Curtis spectral
quadrature rules in Sects. 12.5.3 and 12.5.4, respectively.

Remark 
The measure 
can be written as:

where 
denote the eigenvectors of the truncated
Hamiltonian Hn. As stated previously, the SQ method does
not require the calculation of the measure 
explicitly,
thereby avoiding the need to calculate the eigenvalues and
eigenvectors of the truncated Hamiltonians Hn, n = 1, …, Ng,
resulting in significant computational savings.

12.5.3 Gauss Spectral Quadrature

To generate the Gauss SQ rule for the integral in (12.35),
we use the Lanczos type iteration [26, 75, 78]

(12.36)

where



and 
is computed such that 
.
Subsequently, we form the symmetric tridiagonal Jacobi
matrix:

(12.37)

whose eigenvalues and squares of the first elements of the
normalized eigenvectors are the nodes 
and weights


of the quadrature rule, respectively. To show this
result, the above procedure can be viewed as first
performing the following decomposition of the nodal
Hamiltonian:

where 
is a matrix with the j + 1 column being the
vector 
generated during the Lanczos iteration in (12.36).
Thereafter,

where 
and 
are the eigenvalues and squares
of the first elements of the normalized eigenvectors of 
,
respectively. Note that the nodes and weights are
independent of the function being integrated within the
above scheme.



In Gauss SQ, the constraint on the number of electrons,
electron density, band structure energy, and electronic
entropy can then be written as:

Since the nodes and weights are independent of the Fermi
level, they do not need to be recomputed for the different
quantities above, nor do they need to be recomputed for the
different guesses for the Fermi level in solving for the
constraint on the number of electrons.

In cases where the off-diagonal components of the
density matrix are required, e.g., the computation of
Hellmann–Feynman atomic forces and stress tensor, the nth
column of the density matrix can be obtained using the
relation:

Indeed, all these quantities are already computed as part of
the above procedure, and so do not introduce any additional
cost.

Relation to the Recursion Method and Padé

Approximation 
The spectral Gauss SQ method bears a



resemblance to the recursion method [30] that had been
developed in the context of the tight binding method. To see
this, we note the relation [28]:

where 
, and ∮C represents a contour that
encloses the spectrum of 
in the complex plane, from
which it follows:

(12.38)

In the current framework, the recursion method involves
using the following approximation:

In particular, the continued fraction above is used within
the integral of (12.38) to evaluate the quantity of interest.
Since the rational function has zeros of 
, a number of
techniques to smoothen it have been developed [30]. It can
however be shown that [78]:

which when substituted into (12.38) along with the spectral
theorem recovers the Gauss SQ quadrature rule:



Note that the rational functions satisfy the following best
approximation property [74]:

which make them the Padé approximants. Indeed, it can be
shown from the above equation—multiplying both sides by a
polynomial of degree 2k − 1 and integrating along a contour
encircling the real line [87]—that polynomials of degree 2k 
− 1 are integrated exactly using the above quadrature rule,
as is the property of Gauss quadrature.

12.5.4 Clenshaw–Curtis Spectral Quadrature

In Clenshaw–Curtis SQ [68, 75, 79], rather than
determining quadrature weights corresponding to the
quadrature nodes (zeros of the Chebyshev polynomials), it is
advantageous to perform the following expansion in terms
of Chebyshev polynomials:

where the summation with a prime indicates that the first
term is halved, and the Chebyshev coefficients are given by

(12.39)

We can then write



where 
are evaluated from the three-term recurrence
relation:

(12.40)

In Clenshaw–Curtis SQ, the constraints on the number of
electrons, electron density, band structure energy, and
electronic entropy take the form:

Note that in cases where the off-diagonal components of
the density matrix are required, the nth column of the
density matrix can be obtained using the relation:

Indeed, all these quantities are already computed as part of
the above procedure, and so do not incur any additional
cost.



Relation to Fermi Operator Expansion (FOE) 
The
Clenshaw–Curtis quadrature bears a resemblance to the
classical Fermi Operator Expansion (FOE) [24, 25]. In
particular, the FOE method employs the following expansion
of the density matrix in terms of Chebyshev polynomials:

where the matrices 
are evaluated using the three-
term recurrence relation:

In order to achieve linear scaling with system size,
truncation is introduced into the matrix-matrix
multiplication routines. In spite of the similarity of this
approach with Clenshaw–Curtis SQ, there are a number of
key differences. First, compared to the sparse matrix-vector
routines in Clenshaw–Curtis SQ, the operations involved in
FOE are sparse matrix-matrix routines, which are
challenging to write, particularly for efficient scaling to a
large number of processors. Second, the effect of truncation
is not automatically incorporated into FOE, as it is done in
Clenshaw–Curtis SQ. Third and finally, since the Chebshev
matrices cannot be generally stored, an outer loop on the
Fermi level is required, which makes the FOE significantly
more costly as well.

12.5.5 Convergence Rates

In the SQ method, the error with respect to the quadrature
order decays as [75]:

where



(12.41)
is the rate of convergence. Here, nq = 1 and nq = 2 for the
Clenshaw–Curtis and Gauss SQ methods, respectively. In
addition, r is the sum of the semi-major and semi-minor axes
for the largest ellipse in the complex plane where the
function g is analytic. In the current context, the closest
singularity of the Fermi–Dirac function 
to the interval
[−1, 1] is at

The corresponding ellipse is as shown in Fig. 12.6, for which
we have:

(12.42)



Fig. 12.6 
Largest ellipse in the complex plane where the Fermi–Dirac function

is analytic

Performing a first-order Taylor series expansion for the
convergence rate α about 
, we obtain

(12.43)

This expression represents a very good approximation for
practical DFT calculations, since the spectral width of the
Hamiltonian (2ξ) is generally large and the smearing (

) used for ambient conditions is typically small.

Although the above error estimates are also valid for
insulating systems, the bounds are not expected to be tight,
especially as the smearing becomes smaller. In fact, it is
common to not use any smearing for insulators, i.e.,


. It has been predicted that for an insulating
system with band-gap Eg and smearing 
[75]:

(12.44)

Above, the Fermi level has been assumed to be in the
middle of the band-gap and 
.

We now compare the predicted convergence rate with
that obtained numerically within a DFT calculation.
Specifically, we consider a 107-atom system consisting of a
vacancy in face-centered cubic (FCC) aluminum. We choose
a smearing of 1 eV, commensurate with that adopted for
metallic systems in practical Kohn–Sham calculations. In
Fig. 12.7, we plot the convergence in electron density with
quadrature order for a specific point in space, while
choosing a large enough truncation radius, so as to put
associated errors well below the quadrature errors of
interest. All simulations are performed using the real-space



Kohn–Sham DFT code SPARC [21, 22, 94], in which the SQ
method has been recently implemented.

Fig. 12.7 
Convergence in electron density with Gauss SQ order at a spatial
point. The thick red line represents the theoretically predicted convergence
rate. The system under consideration is a 107-atom system consisting of a
vacancy in FCC aluminum, with smearing of 1 eV

12.5.6 Scaling Estimates

The computational cost of the Gauss and Clenshaw–Curtis
SQ methods is dictated by the cost of the matrix-vector
products appearing in the iteration described by Eqs. 12.36
and 12.40, respectively. Given the sparse nature of 
, the
cost of each matrix-vector product scales as 
. Since
there are k such matrix-vector products in the iteration and
n ranges from 1 to Ng, the total computational cost scales as


. As can be seen from the theoretical results
presented above, the quadrature order k required for a
certain accuracy is independent of the number of grid
points Ng. Moreover, for large enough system sizes, 
is
also independent of Ng. Therefore, the scaling of the SQ



method is 
, which makes it 
with the number of
electrons in the system, i.e., linear scaling with system size.
Therefore, the cubic scaling bottleneck inherent to
traditional diagonalization approaches can be overcome
using the SQ method, enabling the study of large system
sizes that were previously intractable. Note that the unlike
orbital-based diagonalization and linear scaling approaches,
the cost of the SQ method decreases with increasing
temperature [68, 77], making it ideal for the study of
materials under extreme conditions [7, 92, 96].

12.5.7 Numerical Results

We now study the accuracy and efficiency of the
aforedescribed Gauss and Clenshaw–Curtis SQ methods. As
a representative example, we choose an unrelaxed vacancy
in FCC aluminum, which is modeled by removing a single
atom within a supercell of FCC aluminum.

In Fig. 12.8, considering a 107-atom system, we plot the
convergence of the ground state energy, Hellmann–
Feynman atomic forces, and Hellman–Feynman stress
tensor with quadrature order and truncation radius, which
are the two new parameters introduced within the SQ
method. Note that we employ Gauss SQ for the calculation
of the electron density and energy in each SCF iteration,
and Clenshaw–Curtis SQ for the atomic forces and stress
tensor. It is clear that there is systematic geometric
convergence in all quantities, demonstrating the accuracy of
the SQ method.



Fig. 12.8 
Convergence of the energy, atomic forces, and stress tensor with
quadrature order and truncation radius for the SQ method as implemented in
the SPARC code. The system under consideration is a 107-atom system
containing a vacancy with smearing of 1 eV. Gauss SQ has been used for the
energy, and Clenshaw–Curtis SQ is used for the force and stress. The error in
force and stress correspond to the maximum difference in any component. (a)
Convergence with quadrature order. (b) Convergence with truncation radius

In Fig. 12.9, we plot the strong and weak parallel scaling
of the SQ method, as implemented in the SPARC code [21,
22, 94]. All parameters, including mesh-size, quadrature
order and truncation radius have been chosen so that the
error in energy and force are within 0.001 Ha/atom and
0.001 Ha/Bohr, numbers that are representative of the
accuracy targeted in typical DFT simulations. For the strong
scaling, we use a 107-atom system, while increasing the
number of processors from 24 to 960. For the weak scaling,
we increase the system size from 107 to 10,975, while
proportionally increasing the processors from 27 to 2744. It
is clear that the SQ method demonstrates excellent strong
and weak scaling, enabling the study of large systems
needed in the study of crystal defects.



Fig. 12.9 
Strong and weak scaling of the SQ method, with timings reported for
a single SCF iteration. The system under consideration for strong scaling is a
107-atom system representing a vacancy in aluminum. The systems for weak
scaling are larger and larger supercells, each with a vacancy. (a) Strong scaling.
(b) Weak scaling

12.6 Spatial and Spectral Coarse-

Graining

In this section, we combine spatial and spectral coarse-
graining to enable very large scale studies of defects in
crystalline materials. It exploits the nature of defects where
the electronic and atomistic fields decay away from the
defect to those associated with a periodic crystal to
construct a controlled approximation to DFT.

12.6.1 Periodic Systems

The presentation in Sect. 12.2 can be adapted to the
periodic setting. The complete basis consists not only of
periodic functions but Bloch–Floquet waves. Consequently
the orbitals, the operator γ and the partition of unity 
are
not periodic (i.e., (r, r′)↦γ(r, r′) is not periodic). This leads
to plane waves and k-point sampling. However, the measure


is periodic.



However, and this is the key observation, the densities ρ,
u, s are in fact periodic since they depend on the trace of 
.
It also follows that the dual variables, the electrostatic
potential ϕ and exchange correlation potential Vxc are also
periodic.

12.6.2 Coarse-Grained Representation

We consider a Bravais lattice first, and then describe the
extension to other lattices.

12.6.2.1 Atoms

Consider a crystalline solid whose crystal structure is given
by a Bravais lattice. Introduce a defect at the origin (e.g., a
vacancy cluster by removing a cluster of atoms at the
origin) and consider the restriction of the lattice (with a
defect) to a simply connected domain 
. Let 
denote the positions of the atoms and pick these to be the
reference configuration. There are unbalanced forces on the
atoms near the core and they deform. We are interested in
finding the deformed positions 
of these atoms. We
can find a smooth deformation 
such that rm = 
y(xm), m = 1, …, M. We expect the displacements y(x) − x to
be large and oscillate on a fine scale (that of the lattice)
near the core (origin), but vary smoothly on the scale of the
lattice and decay as we go away from the defect. Thus, we
need a fine discretization near the defect core, but can
coarsen as we move away.

Therefore, we use a quasi-continuum approximation [17,
41, 66, 67, 78, 80] to represent the positions of the atoms.
We consider a subset of atoms 
we call the representative

atoms, and introduce a Lagrangian triangulation 
with the
representative atoms as nodes. We track the position of the
representative atoms 
and represent the positions of
the remaining atoms using the interpolation 
induced by
the triangulation 
:



(12.45)

We pick 
to be dense near the core and gradually coarsen
away from it.

12.6.2.2 Electronic Fields

We now turn to the electronic fields—electron density,
electrostatic potential—for the specimen of a crystalline
solid with a defect at its center. Consider a region distant
from the defect where the deformation is smooth and the
deformation gradient F is uniform on a scale large
compared to the lattice: i.e., F = O(1) and ∇F = O(a∕L)
where a is a typical lattice spacing and L is the radius of the
computational domain. The atomic positions are periodic to
a good approximation, and we expect the electronic fields to
be periodic to a good approximation in that region due to
the short-sightedness of electronic matter [42]. In other
words, for an electronic field 
of interest, we expect

where 
is periodic with the periodicity of the
reference unit cell. In other words, we expect

where 
and 
decays smoothly for
large r. The idea then is to represent 
(the projection
onto continuous functions of piecewise periodic functions)
and 
on a grid that is fine near the defect core and
coarsens away from it. We call 
the predictor and 
the
corrector.

We achieve this representation using two spatial meshes.
The first is the fine electronic mesh
 
, which is a uniform
finite difference mesh. We use this to represent the
Hamiltonian and in our Lanczos algorithm. The second is



the coarse electronic mesh
 
, which is a subset of the fine
electronic mesh 
. We compute the electronic quantities
on this mesh and therefore call the elements of 
the
electronic sampling points (ESPs). As with the atomistic
grid, the coarse grid 
is fine (includes all points in 
)
close to the defect but gradually coarsens away.

We represent an electronic field 
as follows. First, we
define the predictor. Recall that the deformation (12.45) is
affine in each element of the Lagrangian atomistic
triangulation 
, and that it convects the reference lattice
to a deformed periodic lattice. We perform a unit cell
calculation based on this deformed periodic lattice in each
element Ωe of the 
to obtain the electron density 
on
the image 
of the element, and define the predictor as
the L2 → H1 projection of this piecewise periodic function

where yf is the position of the fth node of 
and 
is the
characteristic function of a set 
.

We now turn our attention to the corrector. Let 
the
quantity of interest at an ESP labelled c. We define the
corrector at the ESP as the difference between the
computed electron density and predictor:

We then extend the definition of the corrector to the fine
grid 
through interpolation:

where Γc is the interpolation associated with the
triangulation induced by 
. In summary, we represent the
electron density as

(12.46)



While we have the representation on the fine grid, we do
not need to evaluate the quantities on the fine grid. Since
we seek to perform the Lanczos procedure only at the ESPs,
we need the Hamiltonian in a sufficiently large
neighborhood of each ESP. Therefore, we create clusters of
fine grid points around each ESP, and collect these points
into the set 
. We evaluate the electronic quantities only
on 
. Note that 
is fully dense near the core, but
becomes sparse as we go away.

Finally, to compute global quantities like energy, we have
to compute sums like

We do so following the cluster summation approach of Knap
and Ortiz [41] using 
and 
(see [66] for details).

The overall approach is summarized in Algorithm 1.

Algorithm 1: Spatial and spectral coarse-grained

approach



12.6.2.3 Crystals

In the case of a crystal where one has more than one atom
per unit cell, we limit the representative atoms to belong to
the skeletal lattice as we coarsen, and use the periodic
calculation within each element of 
to determine the
positions of the other atoms in the unit cell.

12.6.3 Selected Results

We now demonstrate the approach using a few selected
examples from magnesium, which forms a hexagonal close-
packed (HCP) crystal structure. Magnesium and its alloys
have received recent interest due to their high strength to
weight ratio (with a density of 1.8 g/cm3 and yield strength
exceeding 100 MPa), and have been explored for
automotive, biomedical and other engineering applications.
However, these alloys often have limited ductility and suffer
sudden, almost brittle, failure. We refer the reader to recent
reviews [39, 46, 47, 93]. Therefore the study of defects in
magnesium and its alloys have been a topic of much recent
interest.



These examples are drawn from [66, 67]. We take the
exchange-correlation function to be the parametrized form
of Perdew and Wang [64], and a local pseudopotential
proposed by Huang and Carter [35]. We take σ = 0.8 eV
corresponding to a temperature of 10, 000 K. We use a
sixth-order finite difference stencil adopted to hexagonal
symmetry that combines a triangular stencil on the basal
plane with a normal stencil normal to it [15]. The energy
and force convergence thresholds are 10−5 and 10−3 eV Å−1

respectively.
Figure 12.10, adapted from [66], shows the capabilities

of the proposed approach using a vacancy. Figure 12.10a
shows the computed total energy of a series of calculations
with various amounts of coarse-graining. The computational
domain in each of these calculations consists of 93,312
atoms discretized with 8.1 × 107 nodes. The six calculations
have a progressively larger number of electronic sampling
points: we see that the total energy converges at about 1.8 
× 105 electronic sampling points. In other words, a
calculations with 1.8 × 105 degrees of freedom is able to
correctly reproduce the energy of a calculation with 8.1 × 
107 degrees of freedom, a saving factor of 440. Remarkably,
this factor increases as the size of the computational domain
increases since larger domains have larger regions of
coarser discretization.



Fig. 12.10 
Computational results from the study of a vacancy in HCP
magnesium. (a) The computed total energy of a specimen with 93, 312 atoms
discretized with 8.1 × 107 nodes computed with various levels of coarse-
graining. (b) Computational time vs domain size shows dramatic sublinear
scaling. (c) Relative error between the electron density computed with and
without coarse-graining at 1600 grid points. (d) The corrector electron density
on the basal plane shows fine oscillations close to the vacancy. Reprinted from
[66] with permission from Elsevier

Consequently one obtains dramatic sub-linear

performance as shown in Fig. 12.10b. In this example, also
with a vacancy, we see that the computational time t scales
as a power law of the number of atoms M with an exponent
0.05 (t = bMa, a = 0.05) up to a billion atoms. Of course
simplicity of the example where the defect is confined to a
small area contributes to the remarkable sublinearity, but



we expect at least square-root scaling in all examples of
defects.

Importantly, this saving in computational cost does not
come at the cost of accuracy. This is demonstrated in Fig.
12.10c. This shows the relative error 
at the
nth grid point where 
is the electron density computed
by the coarse-grained approximation (by recourse or
(12.46)) and 
is the electron density computed without
any coarse-graining over about 1600 grid points. We
observe that the relative error is less than 0.8% in any of
these grid points. In fact the average and root-mean-square
errors are 10−5 times the mean density.

This efficacy of the coarse-graining method shows that
subgrid sampling can be effective away from the defects.
However, the details are complex and important near the
core and require full resolution. Figure 12.10d shows the
corrector electron density on the basal plane in the vicinity
of the vacancy. We see oscillations on a scale finer than the
atomic spacing—these are the analogs of the Friedel
oscillations on interfaces and contribute to the electronic
character of the defects. Therefore, it is important to
resolve these carefully. Further, they interact with the far
field stresses, and one reason why the decay length of
defects tend to be high and why defects require large
computational cells.

We now turn to the importance of sufficiently large
computational unit cells in accurately calculating the
binding energy of a divacancy. The binding energy is the
energy difference between two isolated vacancies and a
divacancy complex. This is illustrated in Fig. 12.11, adapted
from [66]: it shows the divacancy binding energy of various
divacancy complexes computed with computational domains
of varying sizes. We see that we need a sufficiently large
computational domain with >103 atoms to accurately
predict the divacancy binding energy. Importantly, the



result leads to qualitative differences: calculations with
small computational domains incorrectly predict that some
vacancies barely bind, while the large computational
domains predict strong binding consistent with
experimental observations [38, 50, 85, 89].

Fig. 12.11 
Computational results from the study of divacancies in HCP
magnesium. (a) Various divacancy complexes: one vacancy is located at the site
labeled V while the others are at sites labeled with numbers. (b) Computed
divacancy binding energy of various divacancy complexes for computational
domains of varying sizes. Reprinted from [66] with permission from Elsevier

The final example is adapted from Ref. [67] and concerns
the study of dislocations. Recall that the elastic energy of a
dislocation scales logarithmically with the size of the
domain. Figure 12.12 shows the computed excess energy—
the difference in total energy between a domain with a
dislocation and a domain without for two types of screw
dislocations for domains of various sizes. It shows that our
coarse-grained DFT approach correctly predicts this elastic
scaling. The details (see [67]) describe the core structure,
and the intercept at r = r0 provides the “core energy”.



Fig. 12.12 
Computational results from the study of screw dislocations in HCP
magnesium. Scaling of the excess energy computed with various domain sizes
for (a) basal 
screw and (b) 
prismatic dislocations.
Reprinted from [67] with permission from Elsevier

We end by noting the excellent numerical performance
with respect to parallelization in Fig. 12.13 in a benchmark
problem of a seven vacancy cluster obtained on MIRA, an
IBM BG/Q 1.6 GHz PowerPC A2 supercomputer at Argonne
National Laboratory.



Fig. 12.13 
Parallel performance in a benchmark problem of a seven vacancy
cluster. Reprinted from [67] with permission from Elsevier
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Appendix: Crystalline solids and the

Cauchy–Born Rule

A Bravais lattice is a lattice with a single atom in its unit
cell:

where a set of linearly independent vectors or lattice

vectors
 
describes the unit cell, or translational
symmetry, and o signifies the presence of an atom at the
origin. A crystal (also called lattice with a basis) is a
periodic arrangement of atoms (points) in 
with a finite
number M of atoms in the unit cell. It may be regarded as a
union of P congruent Bravais lattices which are displaced
from each other:



where 
are the lattice vectors and the shift vectors pα,
α = 1, …, M describe the relative positions of the atoms
within the unit cell. It is conventional to take p1 = o, but this
is not necessary. The underlying Bravais lattice is often
referred to as the skeletal lattice.

A crystalline solid is a restriction of a lattice to a domain

. Let 
denote the positions of the atoms in a

crystalline solid 
in the reference domain 
. As the solid deforms, the current position of the atoms are
given by 
. Let 
denote a smooth
deformation that maps the positions of the underlying
skeletal lattice, i.e., 
. We call y the
macroscopic deformation. Now, if the scale of the lattice is
small compared to the size of the domain, and if the
deformation y varies slowly on the scale of the lattice, i.e., it
may be approximated by an affine map of a scale large
compared to that of ai, then at any r0 ∈ Ω, the current
positions of the atoms in the neighborhood of y(r0) are
arranged in a lattice 
where

In other words, for moderate macroscopic deformations, the
deformation gradient convects the lattice vectors. This is
known as the Cauchy–Born rule. Note that the macroscopic
deformation only constrains the skeletal Bravais lattice and
the atoms are free to “shuffle” within the unit cell.
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Footnotes
Note that we use the subscript h to index the nested spaces following the

typical notation in computational science, and not to signify a relationship with
the Hamiltonian.

 
Minimum wall-times computed using a metric of 40% parallel efficiency.
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DFT

Exchange-correlation functional

Exchange energy functional

Correlation functional

Exchange-correlation potential

Exchange potential

Correlation potential

Hartree functional

Hartree potential

Glossary

Density functional theory. Has its origin in the work of
Thomas, Fermi, and Dirac in the 1920s. In its modern form,
it was introduced by Hohenberg, Kohn and Sham in
1964/1965. Encompasses both exact DFT, which re-
formulates the quantum mechanical ground state problem
for many-electron systems in terms of the electron density,
and Kohn–Sham DFT, which is concerned with
computationally tractable approximations of the ground
state problem in terms of the electron density.

Functional giving the
exchange-correlation energy or an approximation thereof in
terms of the single-particle density. Often denoted Exc.

Exchange contribution to
the exchange-correlation functional. Often denoted Ex.

Correlation contribution to the
exchange-correlation functional. Often denoted Ec.

Functional derivative of
the exchange-correlation functional with respect to the
density. Often denoted vxc[ρ]. Together with the Hartree
potential and the external potential, constitutes the
effective one-body potential in the Kohn–Sham equations.

Exchange contribution to the
exchange-correlation potential. Often denoted vx.

Correlation contribution to the
exchange-correlation potential. Often denoted vc.

Classical Coulomb self-repulsion
energy of the electron density as a functional of the latter.
Important ingredient in most Kohn–Sham DFT models.
Often denoted EH.



Hartree-exchange-correlation functional

Hartree-exchange-correlation potential

LDA

SCE functional

Electrostatic potential of the electron density. Also arises
as the functional derivative of the Hartree functional with
respect to the density. Often denoted vH.

Sum of the
Hartree and exchange-correlation functional. Often
denoted EHxc.

Sum of the
Hartree and exchange-correlation potential. Together with
the external potential, constitutes the effective one-body
potential in the Kohn–Sham equations. Often denoted vHxc.

Local density approximation to the exchange-
correlation functional and potential, obtained by
approximating the exchange-correlation energy density of
an inhomogeneous system at a point by the exchange-
correlation energy density of the uniform electron gas of
the same density. Often denoted, respectively, 
and


.
Strictly correlated electrons functional.

Minimum Coulomb interaction energy of a many-electron
system as a functional of its density. Corresponds to the
exact Hartree-exchange-correlation functional in the
strong-interaction limit.
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