

Get Your Hands Dirty on Clean
Architecture

Build ‘clean’ applications with code examples in Java

Tom Hombergs

BIRMINGHAM—MUMBAI

Get Your Hands Dirty on Clean Architecture
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Gebin George
Publishing Product Manager: Kunal Sawant
Senior Editor: Ruvika Rao
Technical Editor: Jubit Pincy
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Joshua Misquitta
Marketing Coordinator: Sonia Chauhan

First published: September 2019
Second edition: July 2023

Production reference: 1300623
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80512-837-3
www.packtpub.com

http://www.packtpub.com

To my wife, Rike, and my kids, Nora and Niklas, for regularly reminding me that there is a life outside
of software development.

– Tom Hombergs

Foreword

It’s a developer’s paradise: it's easy to test the domain logic, it's easy to mock out infrastructure and
technology, there's a crystal-clear separation of domain code and technical code, and even migrating
from one technology to another seems easy. No more endless discussion about in which part of your
code you should implement this tricky new feature in that the business people need by tomorrow. It’s
called Clean Architecture,” and Tom will guide you on your journey toward this.

For a few years, the foundation of clean architecture has been documented under various names
(Hexagonal Architecture, ports and adapters, onion architecture, and clean architecture). The basic idea
looks simple: two concentric circles separating domain stuff and technical stuff within the software.
Dependencies flow inward, from technology to the domain. Domain classes are not allowed any
dependencies upon technical classes.

Too bad that most of the original sources missed out on explaining how packages and code should
be organized. Tom’s book perfectly fills this gap. He uses an illustrative example to guide you toward
a highly maintainable and clear architectural structure.

Do yourself and your development colleagues a favor and give the clean architecture approach a
chance. I promise you won’t regret it!

Gernot Starke

Cologne, June 2023

Pragmatic software architect since the 1990s, founder of arc42, co-founder of iSAQB, and nerd

Contributors

About the author
Tom Hombergs is a software engineer, author, and simplicity nerd. Complexity is his kryptonite, so
he works hard on breaking complex things down into simple pieces that he can understand. If he
can understand it, everyone else can, too. He simplifies code as well as text, creating articles, books,
and developer documentation that are a joy to read. Tom currently works at Atlassian in Sydney,
Australia, where he is responsible for the Developer Experience (DX) of the tech stacks used by
other Atlassian developers.

About the reviewers

Alexandros Trifyllis is a freelance software engineer with 15 years of experience. He has been part
of large enterprise projects for the public, private, and European sectors.

His areas of interest include backend development (Spring Boot), frontend development (Angular),
and various architecture practices (hexagonal/DDD). He also likes to get involved with DevOps tasks
(AWS, Terraform, and Kubernetes). Finally, in the past few years, he has taken an interest in DX and
Developer Productivity Engineering (DPE) and generally in thinking about how to make the job
of developers easier and more pleasant.

Artem Gorbounov is a Java full-stack developer with a passion for clean architecture and 5 years of
industry experience. Currently working at OneUp, he specializes in building robust and scalable web
applications. Artem holds an Amazon certification, demonstrating his expertise in cloud computing
technologies. He believes that a real full stack programmer should have a comprehensive understanding
of the entire technological stack, from the database to the infrastructure, with a clear understanding
of application architecture.

Dr. Gernot Starke is a coach and consultant for software architecture, an INNOQ fellow, the co-founder
of arc42 and iSAQB, the founder of aim42, the former technical director of the Sun Microsystems
Object-Reality-Center, and a nerd who enjoys bulletproof coffee.

Jonas Havers is a freelance full stack software engineer with more than 15 years of professional
experience working for international e-commerce companies. As a solution and application architect,
he helps clients design and build custom large-scale business software systems that help them respond
quickly to change and become more successful in their market. He is adept at using a variety of tools,
methodologies, and programming languages, including Java, Kotlin, and JavaScript. Jonas regularly
explains, discusses, and implements various software designs and software architectures and loves to
share all his knowledge and experience with his project team members as well as with his students as
a sought-after university guest lecturer.

Jörg Gellien helps teams in an innovative company to design and develop modern, highly scalable
applications to achieve the right business needs. He is an expert on software architecture and Java/

Spring development. The ideas of end-to-end responsibility for a product and the use of cloud-based
services are strong drivers for his work.

Jo Vanthournout has been a Java developer and architect for nearly 20 years. He was fortunate to start
his career as a developer on one of the first extreme programming projects in Belgium. Ever since, he
had tried to live and breathe the values of agile development. Jo has an avid interest in DDD and uses
its principles and techniques on a daily basis. He will never be the best developer on the team, but
having a pragmatic helicopter view of the problem domain at hand, asking nasty questions, and holding
members accountable to the team values are tasks you can entrust him with. He has a wonderful wife
and two daughters. When not coding, he is out in the woods running, visiting a battleground from
the Second World War, or playing Minecraft with his kids.

K. Siva Prasad Reddy is a software architect with more than 18 years of experience in building scalable
software systems, primarily using the Java platform.

He is an avid follower of agile practices and takes a pragmatic approach to software design and
architecture. He shares his learning and thoughts at https://sivalabs.in.

Lorenzo Bettini (https://www.lorenzobettini.it) is an associate professor in computer
science at DISIA, Università di Firenze, Italy. His research covers the design, theory, and implementation
of programming languages, with IDE support.

He is the author of more than 90 research papers, published in international conferences and international
journals, of two editions of the book Implementing Domain-Specific Languages with Xtext and Xtend
(Packt Publishing), and the book Test-Driven Development, Build Automation, Continuous Integration
(with Java, Eclipse and friends) (Leanpub).

Maria Luisa Della Vedova is a passionate software developer dedicated to creating meaningful and
user-centric solutions, continuously learning and collaborating to have a positive impact on people’s lives.

Matt Penning has provided companies with technical direction and software development for over
three decades. He has a proven track record of creating well-defined and innovative architectures that
solve real-world problems and is currently working as a senior technical leader at Cisco Systems, Inc.,
where he is immersed in Java microservice development, software quality, and developer productivity.

https://sivalabs.in
https://www.lorenzobettini.it

Mike Davidson is a lead developer and application architect. He works with New Zealand-based,
Canadian, and US start-ups and financial institutions to help them build maintainable, cleanly
structured software.

Octavian Nita has dabbled professionally and for fun in Java for over 18 years, moving from
language implementation and software automation to desktop and web-based applications. He still
enjoys doing that very much.

Brussels-based, these days, he helps European public administration bodies implement so-called
“enterprise applications” using domain-centric architecture styles.

Sven Woltmann has been a Java developer since the early days. He works as an independent developer,
coach, and course instructor, specializing in highly scalable Java enterprise applications, algorithm
optimization, clean code, and clean architecture. He also shares his knowledge through videos, a
newsletter, and his blog, HappyCoders.eu.

Thomas Buss is an IT consultant at codecentric in Germany. He helps teams reduce the complexity
of software products and thus speed up the development process. Coming from a Java background,
he enjoys looking into other paradigms and languages as well. He’s also interested in domain-driven
modeling, serverless technologies, and ways to reduce the carbon footprint of systems. Also, he likes
TV shows that start with “Star.”

Vivek Ravikumar currently works as a member of the technical staff at PayPal India and has almost
a decade of experience in developing enterprise web applications. He has held multiple seminars
and lectures across educational institutions and universities in India advocating the importance and
best practices involved in the software development life cycle, mentoring students, and fostering
industrial knowledge.

Recently, he has been recognized as a legend of Jakarta EE, MicroProfile, and the Payara platform for
securing the top spot in the first-ever Payara global hackathon in building an enterprise web application.

Wim Deblauwe is a freelance Java developer with over 20 years of Java experience. He is the author
of Taming Thymeleaf and Practical Guide to Building an API Back End with Spring Boot. He also
started and contributed to various open source projects such as error-handling-spring-boot-starter
and testcontainers-cypress.

https://HappyCoders.eu

Preface xv

1
Maintainability 1

What does maintainability even
mean? 1
Maintainability enables
functionality 2
Maintainability generates developer
joy 4

Maintainability supports decision-
making 6
Maintaining maintainability 7

2
What’s Wrong with Layers? 9

They promote database-driven
design 10
They’re prone to shortcuts 12
They grow hard to test 12

They hide the use cases 13
They make parallel work difficult 14
How does this help me build
maintainable software? 15

3
Inverting Dependencies 17

The Single Responsibility Principle 17
A tale about side effects 18
The Dependency Inversion
Principle 19

Clean Architecture 20
Hexagonal Architecture 22
How does this help me build
maintainable software? 24

Table of Contents

Table of Contentsx

4
Organizing Code 25

Organizing by Layer 25
Organizing by feature 26
An architecturally expressive
package structure 27

The role of dependency injection 30
How does this help me build
maintainable software? 32

5
Implementing a Use Case 33

Implementing the domain
model 33
A use case in a nutshell 35
Validating input 37
The power of constructors 40
Different input models for
different use cases 41
Validating business rules 42

Rich versus anemic domain
model 44
Different output models for
different use cases 45
What about read-only use
cases? 45
How does this help me build
maintainable software? 46

6
Implementing a Web Adapter 47

Dependency inversion 47
Responsibilities of a web adapter 49
Slicing controllers 50

How does this help me build
maintainable software? 53

7
Implementing a Persistence Adapter 55

Dependency inversion 55
Responsibilities of a persistence
adapter 56
Slicing port interfaces 57

Slicing persistence adapters 58
An example with Spring Data
JPA 60

Table of Contents xi

What about database
transactions? 65

How does this help me build
maintainable software? 66

8
Testing Architecture Elements 67

The test pyramid 67
Testing a domain entity with unit
tests 69
Testing a use case with unit tests 70
Testing a web adapter with
integration tests 71

Testing a persistence adapter
with integration tests 73
Testing main paths with system
tests 75
How much testing is enough? 79
How does this help me build
maintainable software? 80

9
Mapping between Boundaries 81

The “No Mapping” strategy 82
The “Two-Way” mapping strategy 83
The “Full” mapping strategy 84
The “One-Way” mapping strategy 85

When to use which mapping
strategy? 86
How does this help me build
maintainable software? 87

10
Assembling the Application 89

Why even care about assembly? 89
Assembling via plain code 91
Assembling via Spring’s classpath
scanning 92

Assembling via Spring’s Java
Config 94
How does this help me build
maintainable software? 96

11
Taking Shortcuts Consciously 97

Why shortcuts are like broken
windows 97

The responsibility of starting
clean 98

Table of Contentsxii

Sharing models between use cases 99
Using domain entities as the input
or output model 100
Skipping incoming ports 101

Skipping services 102
How does this help me build
maintainable software? 103

12
Enforcing Architecture Boundaries 105

Boundaries and dependencies 105
Visibility modifiers 107
Post-compile fitness function 109

Build artifacts 112
How does this help me build
maintainable software? 114

13
Managing Multiple Bounded Contexts 117

One hexagon per bounded
context? 118
Decoupled bounded contexts 120

Appropriately coupled bounded
contexts 121
How does this help me build
maintainable software? 123

14
A Component-Based Approach to Software Architecture 125

Modularity through components 126
Case study – building a “Check
Engine” component 128

Enforcing component
boundaries 130
How does this help me build
maintainable software? 132

15
Deciding on an Architecture Style 133

Start simple 133
Evolve the domain 134

Trust your experience 134
It depends 135

Table of Contents xiii

Index 137

Other Books You May Enjoy 142

Preface

If you have picked up this book, you care about the architecture of the software you’re building. You want
your software to not only fulfill the customer’s explicit requirements but also the hidden requirement
of maintainability, and your own requirements concerning structure and aesthetics.

It’s hard to fulfill these requirements because software projects (or projects in general, for that matter)
usually don’t go as planned. Managers draw deadlines all around the project team1, external partners
build their APIs differently from what they had promised, and the software products we depend on
don’t work as expected.

And then there is our own software architecture. It was so nice in the beginning. Everything was clear
and beautiful. Then the deadlines pressed us into taking shortcuts. Now, the shortcuts are all that’s
left of the architecture, and it takes longer and longer to deliver new features.

Our shortcut-driven architecture makes it hard to react to an API that had to be changed because
an external partner screwed up. It seems easier to just send our project manager into battle with that
partner to tell them to deliver the API we had agreed upon.

Now, we have given up all control over the situation. In all likelihood, one of the following things
will happen:

• The project manager is not strong enough to win the battle against the external partner

• The external partner finds a loophole in the API specs, proving them right

• The external partner needs another <enter number here> months to fix the API

All of this leads to the same result – we have to change our code quickly because the deadline is looming.

We add another shortcut.

Instead of letting external factors govern the state of our software architecture, this book takes the
stance of taking control ourselves. We gain this control by creating an architecture that makes the
software soft, as in “flexible,” “extensible,” and “adaptable.” Such an architecture will make it easy to
react to external factors and take a lot of pressure off our backs.

1 The word “deadline” presumably originates from the 19th century and described a line drawn
around a prison or a camp of prisoners. A prisoner that crossed that line was shot. Think about
this definition the next time someone “draws a deadline” around you... it will certainly open up
new perspectives. See https://www.merriam-webster.com/words-at-play/your-
deadline-wont-kill-you.

https://www.merriam-webster.com/words-at-play/your-deadline-wont-kill-you
https://www.merriam-webster.com/words-at-play/your-deadline-wont-kill-you

Prefacexvi

The goal of this book
I wrote this book because I was disappointed with the practicality of the resources available on domain-
centric architecture styles, such as Robert C. Martin’s Clean Architecture and Alistair Cockburn’s
Hexagonal Architecture.

Many books and online resources explain valuable concepts but not how we can actually implement them.

That’s probably because there is more than one way to implement any architecture style.

With this book, I am trying to fill this void by providing a hands-on-code discussion about creating
a web application in the Hexagonal Architecture or “Ports and Adapters” style. In order to live up to
that goal, the code examples and concepts discussed in this book provide my interpretation of how
to implement a Hexagonal Architecture. There are certainly other interpretations out there, and I do
not claim that mine is authoritative.

I certainly hope, however, that you will get some inspiration from the concepts in this book so that
you can create your own interpretation of Hexagonal/Clean Architecture.

Who this book is for
This book is aimed at software developers of all experience levels involved in creating web applications.

As a junior developer, you’ll learn about how to design software components and complete applications in a
clean and maintainable manner. You will also learn some arguments for when to apply a certain technique. You
should, however, have participated in building a web application in the past to get the most out of this book.

If you’re an experienced developer, you’ll enjoy comparing the concepts from the book with your own way
of doing things and, hopefully, incorporating bits and pieces into your own software development style.

The code examples in this book are in Java and Kotlin, but all discussions are equally applicable
to other object-oriented programming languages. If you’re not a Java programmer but can read
object-oriented code in other languages, you’ll be fine. In the few places where we need some Java or
framework specifics, I will explain them.

The example application
To have a recurrent theme throughout the book, most of the code examples show code from an example
web application for transferring money online. We’ll call it “BuckPal.”2

2 BuckPal: a quick online search has revealed that a company named PayPal has stolen my idea and
even copied part of the name. Joking aside: try to find a name similar to “PayPal” that is not the
name of an existing company. It’s hilarious!

Preface xvii

The BuckPal application allows a user to register an account, transfer money between accounts, and
view the activities (deposits and withdrawals) on the account.

I’m not a finance specialist by any means, so please don’t judge the example code based on legal or
functional correctness. Rather, judge it on structure and maintainability.

The curse of example applications for software engineering books and online resources is that they’re
too simple to highlight the real-world problems we struggle with every day. On the other hand, an
example application must stay simple enough to effectively convey the discussed concepts.

I hope to have found a balance between “too simple” and “too complex” as we discuss the use cases
of the BuckPal application throughout this book.

The code of the example application can be found on GitHub.3

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
Check the notes at the end of the book.4

Get in touch
If you have anything to say about this book, I’d love to hear it! Get in touch with me directly via email
to tom@reflectoring.io or on Twitter via @TomHombergs.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit authors.packtpub.com.

3 The BuckPal GitHub repository: https://github.com/thombergs/buckpal.
4 PDF with color images used in this book: https://packt.link/eBKMn.

mailto:tom@reflectoring.io
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
mailto:copyright@packt.com
https://github.com/thombergs/buckpal
https://packt.link/eBKMn

Prefacexviii

Share your thoughts
Once you’ve read Get Your Hands Dirty on Clean Architecture–Second Edition, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://www.packtpub.com/

Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805128373

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805128373

1
Maintainability

This book is about software architecture. One of the definitions of architecture is the structure of a
system or process. In our case, it’s the structure of a software system.

Architecture is designing this structure with a purpose. We’re consciously designing our software
system to fulfill certain requirements. There are functional requirements that the software has to fulfill
to create value for its users. Without functionality, software is worthless, because it produces no value.

There are also quality requirements (also called non-functional requirements) that the software
should fulfill to be considered high quality by its users, developers, and stakeholders. One such quality
requirement is maintainability.

What would you say if I told you that maintainability as a quality attribute, in a way, is more important
than functionality and that we should design our software for maintainability over everything else?
Once we have established maintainability as an important quality, we will use the rest of this book to
explore how we can improve the maintainability of our software by applying the concepts of Clean
and Hexagonal Architecture.

What does maintainability even mean?
Before you write me off as a lunatic and start looking for options to return this book, let me explain
what I mean by maintainability.

Maintainability is only one of the many quality requirements that potentially make up a software
architecture. I asked ChatGPT for a list of quality requirements, and this is the result:

• Scalability

• Flexibility

• Maintainability

• Security

• Reliability

Maintainability2

• Modularity

• Performance

• Interoperability

• Testability

• Cost-effectiveness

The list doesn’t end here.1

As software architects, we design our software to fulfill the quality requirements that are most
important for the software. For a high-throughput trading application, we might focus on scalability
and reliability. For an application dealing with personally identifiable information in Germany, we
might want to focus on security.

I think it’s wrong to lump maintainability in with the rest of the quality requirements because
maintainability is special. If software is maintainable, that means it’s easy to change. If it’s easy to change,
it’s flexible and probably modular. It’s probably cost-effective, too, because easy changes mean cheap
changes. If it’s maintainable, we can probably evolve it to be scalable, secure, reliable, and performant,
should the need arise. We can change the software to be interoperable with other systems because it’s
easy to change. Last but not least, maintainability implies testability because maintainable software is
most likely designed from smaller and simpler components that make testing easy.

You can see what I did here. I asked AI for a list of quality requirements and then tied them all back
to maintainability. I could probably tie many more quality requirements back to maintainability with
similarly plausible arguments. It’s a bit simplistic, of course, but the core of it is true: if software is
maintainable, it’s easier to evolve in any direction, functionally and non-functionally. And we all know
that change is common during the life of a software system.

Maintainability enables functionality
Now back to my claim that maintainability is more important than functionality from the beginning
of this chapter.

If you ask a product person what’s most important in a software project, they’ll tell you that the value
the software provides to its users is the most important thing. Software that doesn’t provide value to
its users means that users don’t pay for it. And without paying users, we don’t have a working business
model, which is the main measure of success in the business world.

1 For some inspiration about software quality (which has been created by humans, and not a language
model), have a look at https://quality.arc42.org/.

https://quality.arc42.org/

Maintainability enables functionality 3

So, our software needs to provide value. But it shouldn’t provide value at the cost of maintainability.2
Think about how much more efficient and joyful it is to add functionality to a software system that is
easily changeable as compared to a software system where you have to fight your way through one line
of code at a time! I’m pretty sure that you’ve worked on one of those software projects where there’s
so much cruft and ritual that it takes days or weeks to build a feature that you think should take no
more than a couple of hours to complete.

In this way, maintainability is a key supporter of functionality. Bad maintainability means that changes
in functionality become more and more expensive over time, as shown in Figure 1.1:

Figure 1.1 – A maintainable software system has a smaller lifetime

cost than a not-so-maintainable software system

In a not-so-maintainable software system, changes in functionality will soon become so expensive
that change is a pain. Product people will complain to the engineers about the cost of changes. The
engineers will defend themselves by saying that shipping new features has always had a higher priority
than increasing maintainability. The probability of conflict increases with the cost of change.

Maintainability is a pacifier. It’s inversely proportional to the cost of change and thus to the probability
of conflict. Did you ever think about adding maintainability to a software system to avoid conflict? I
think that’s a good investment in itself.

2 In the context of this book, I use the term "maintainability" synonymously with "changeability of a
code base". Also see https://quality.arc42.org/qualities/maintainability
for some definitions of maintainability (all of which have to do with changing the software).

https://quality.arc42.org/qualities/maintainability

Maintainability4

But what about those big software systems that are successful in spite of bad maintainability? It’s true
that there are commercially successful software systems out there that are barely maintainable. I’ve
worked on systems where adding a single field to a form is a project that takes weeks of developer
time, and the client happily paid a premium for my time.

Those systems usually fall into one (or both) of two categories:

• They are at the end of their life where changes to the system are few and far between

• They are backed by a financially well-off company that is willing to throw money at the problem

Even in the case where a company has a lot of money to spend, the company realizes that they can
reduce the maintenance tax by investing in maintainability. So, usually, there are already initiatives
underway to make the software more maintainable.

We should always care about the maintainability of the software we’re creating so it doesn’t degrade into
the dreaded big ball of mud, but if our software doesn’t fall into one of the two categories mentioned
previously, we should care even more.

Does this mean that we have to spend a lot of time planning out a maintainable architecture before we
even start programming? Do we have to do a big design up front (BDUF), which is often considered
synonymous with the waterfall methodology? No, we don’t. But we need to do some design up-front
(should we call it SDUF?) to bake a seed of maintainability into the software, which can make it easier
to evolve the architecture to where it needs to be over time.

Part of that up-front design is choosing an architecture style that defines the guardrails of the software
we’re building. This book will help you decide whether a Clean – or Ports and Adapters/Hexagonal –
architecture is a good fit for your context.

Maintainability generates developer joy
As a developer, would you rather work on software where changes are easy or on software where
changes are hard? Don’t answer; it’s a rhetorical question.

Aside from the direct influence on the cost of change, maintainability has another benefit: it makes
developers happy (or, depending on the current project they’re working on, it at least makes them
less sad).

The term I want to use to describe this happiness is developer joy. It’s also known as developer
experience or developer enablement. Whatever we call it, it means that we provide the context
developers need to do their work well.

Developer joy is directly related to developer productivity. In general, if developers are happy, they
do better work. And if they do good work, they are happier. There’s a two-way correlation between
developer joy and developer productivity:

Maintainability generates developer joy 5

Figure 1.2 – Developer joy influences developer productivity and vice versa

This correlation has been recognized in the SPACE framework for developer productivity.3 While SPACE
doesn’t provide an easy answer on how to measure developer productivity, it provides five categories
for such metrics so that we can consciously pick a set of metrics covering all those categories to best
measure developer productivity in the context of our company and projects. One of these categories
(the S in SPACE) is satisfaction and well-being, which I’ve translated to developer joy for this chapter.

Developer joy not only leads to better productivity but it naturally also leads to better retention. A
developer who enjoys their work will stay with the company. Or rather, a developer who does not
enjoy their work is more likely to leave for greener pastures.

So, where does maintainability come into the picture? Well, if our software system is maintainable,
we need less time to implement a change, so we are more productive. Also, if our software system is
maintainable, we find more joy in making changes because it’s more efficient and we can take more
pride in it. Even if our software is not as maintainable as we would like it to be (which is a tautology,
to be honest), but we get the opportunity to improve maintainability over time, we are happier and
more productive. If we are happy, we’re more likely to stay.

Expressed in a diagram, it looks like this:

Figure 1.3 – Maintainability directly influences developer joy and

productivity while developer joy influences retention

3 The SPACE of Developer Productivity by Nicole Forsgren et al., March 6, 2021. “SPACE” stands for
satisfaction and well-being, performance, activity, communication and collaboration, and efficiency
and flow. See https://queue.acm.org/detail.cfm?id=3454124.

https://queue.acm.org/detail.cfm?id=3454124

Maintainability6

Maintainability supports decision-making
When building a software system, we solve problems every day. For most problems we face, there is
more than one solution. We have to make decisions to choose between those solutions.

Do we copy this bit of code for the new feature we’re building? Do we create our objects ourselves or
do we use a dependency injection framework? Do we use an overloaded constructor to create this
object, or do we create a builder?

Many of these decisions we don’t even make consciously. We just apply a pattern or principle we’ve
used before that our intuition says will work in the current situation, as follows:

• We apply don’t repeat yourself (DRY) when we find code duplication

• We use dependency injection to make the code more testable

• We introduce a builder to make it simpler to create an object

If we take a look at these and many other well-known patterns, then what is their effect? In many
cases, the main effect is that they make the code easier to change in the future (i.e., they make it more
maintainable). Maintainability is built into many of the decisions we’re making automatically every day!

We can take advantage of that even when facing tougher decisions that require more than just applying
a pre-canned pattern. Whenever we have to decide between multiple options, we can choose the one
that makes the code easier to change in the future.4 No more agonizing between different options. We
just take the one that increases maintainability the most. Expressed as a diagram, it’s pretty simple:

Figure 1.4 – Maintainability influences decision-making

4 In a talk from 2022 with the same name, (Pragmatic) Dave Thomas called the principle of
making decisions based on changeability "One Rule to Rule Them All". I didn't find the talk
online, but I hope he will add it to his website at some point. See
https://pragdave.me/talks-and-interviews.html.

https://pragdave.me/talks-and-interviews.html

Maintaining maintainability 7

Like most principles, this is a generalization, of course. In a given context, the right decision might
be to take the option that does not improve maintainability or even reduces maintainability. But as a
default rule to fall back on, choosing maintainability is a guide that simplifies daily decision-making.

Maintaining maintainability
Alright, I assume that you believe me that maintainability positively influences developer joy, productivity,
and decision-making. How do we know that the changes we make to our code base increase (or at
least don’t decrease) maintainability? How do we manage maintainability over time?

The answer to that question is to create and maintain an architecture that makes it easy to create
maintainable code. A good architecture makes it easy to navigate the code base. In an easily navigable
code base, it’s a breeze to modify existing features or add new features. The dependencies between
the components of our application are clear and not tangled. In summary, good architecture
increases maintainability:

Figure 1.5 – Software architecture influences maintainability

By extension, a good architecture increases developer joy, developer productivity, developer retention,
and decision-making. We could go on and find even more things influenced directly or indirectly by
software architecture.

Maintainability8

This correlation means that we should invest a bit of thought into how we structure our code. How
do we group our code files into components? How do we manage the dependencies between those
components? Which dependencies are necessary, and which should be discouraged to keep the
code base supple to change? This brings us to the purpose of this book. This book shows one way of
structuring a code base to make it maintainable. The architecture style described in this book is one
way of implementing a Clean/Hexagonal Architecture. This architecture style is not a silver bullet to
solve all problems with building software, however. As we will learn in Chapter 15, Deciding on an
Architecture Style, it’s not suitable for all kinds of software applications.

I encourage you to take what you learn in this book, play around with the ideas, modify them to make
them yours, and then add them to your toolbox to apply when they feel right in a given context. Each
of the following chapters ends with a section titled How does this help me build maintainable software?
This section will summarize the main ideas of each chapter and hopefully help you to make decisions
regarding the architecture of your current or future software projects.

2
What’s Wrong with Layers?

Chances are that you have developed a layered (web) application in the past. You might even be doing
it in your current project right now.

Thinking in layers has been drilled into us in computer science classes, tutorials, and best practices.
It has even been taught in books.1

Figure 2.1 – A conventional web application architecture consists of

a web layer, a domain layer, and a persistence layer

Figure 2.1 shows a high-level view of the very common three-layer architecture. We have a web layer
that receives requests and routes them to a service in the domain layer.2 The service does some
business logic and calls components from the persistence layer to query for or modify the current
state of our domain entities in the database.

1 Layers as a pattern are, for example, taught in Software Architecture Patterns by Mark Richards,
O'Reilly, 2015.

2 Domain versus business: in this book, I use the terms “domain” and “business” synonymously.
The domain layer or business layer is the place in the code that solves the business problems, as
opposed to code that solves technical problems, like persisting things in a database or processing
web requests.

What’s Wrong with Layers?10

You know what? Layers are a solid architecture pattern! If we get them right, we’re able to build domain
logic that is independent of the web and persistence layers. We can switch out the web or persistence
technologies without affecting our domain logic, if the need arises. We can also add new features
without affecting existing features.

With a good layered architecture, we’re keeping our options open and are able to quickly adapt to
changing requirements and external factors (such as our database vendor doubling their prices
overnight). A good layered architecture is maintainable.

So, what’s wrong with layers?

In my experience, a layered architecture is very vulnerable to changes, which makes it hard to maintain.
It allows bad dependencies to creep in and make the software increasingly harder to change over time.
Layers don’t provide enough guardrails to keep the architecture on track. We need to rely too much
on human discipline and diligence to keep it maintainable.

In the following sections, I’ll tell you why.

They promote database-driven design
By its very definition, the foundation of a conventional layered architecture is the database. The web
layer depends on the domain layer, which in turn depends on the persistence layer and thus the
database. Everything builds on top of the persistence layer. This is problematic for several reasons.

Let’s take a step back and think about what we’re trying to achieve with almost any application we’re
building. We’re typically trying to create a model of the rules or “policies” that govern the business in
order to make it easier for the users to interact with them.

We’re primarily trying to model behavior, not the state. Yes, the state is an important part of any
application, but the behavior is what changes the state and thus drives the business!

So, why are we making the database the foundation of our architecture and not the domain logic?

Think back to the last use cases you implemented in any application. Did you start by implementing
the domain logic or the persistence layer? Most likely, you thought about what the database structure
would look like and only then moved on to implementing the domain logic on top of it.

This makes sense in a conventional layered architecture since we’re going with the natural flow of
dependencies. But it makes absolutely no sense from a business point of view! We should build the
domain logic before building anything else! We want to find out whether we have understood the
business rules correctly. And only once we know we’re building the right domain logic should we
move on to build a persistence and web layer around it.

They promote database-driven design 11

A driving force in such a database-centric architecture is the use of object-relational mapping (ORM)
frameworks. Don’t get me wrong, I love those frameworks and work with them regularly. But if we
combine an ORM framework with a layered architecture, we’re easily tempted to mix business rules
with persistence aspects.

Figure 2.2 – Using the database entities in the domain layer leads

to strong coupling with the persistence layer

Usually, we have ORM-managed entities as part of the persistence layer, as shown in Figure 2.2. Since
a layer may access the layers below it, the domain layer is allowed to access those entities. And if it’s
allowed to use them, it will use them at some point.

This creates a strong coupling between the domain layer and the persistence layer. Our business
services use the persistence model as their business model and have to deal not only with the domain
logic but also with eager versus lazy loading, database transactions, flushing caches, and similar
housekeeping tasks.3

The persistence code is virtually fused into the domain code and thus it’s hard to change one without
the other. That’s the opposite of being flexible and keeping options open, which should be the goal
of our architecture.

3 In his seminal book Refactoring (Pearson, 2018), Martin Fowler calls this symptom “divergent
change”: having to change seemingly unrelated parts of the code to implement a single feature. This
is a code smell that should trigger a refactoring.

What’s Wrong with Layers?12

They’re prone to shortcuts
In a conventional layered architecture, the only global rule is that from a certain layer, we can only
access components in the same layer or a layer below. There may be other rules that a development
team has agreed upon and some of them might even be enforced by tooling, but the layered architecture
style itself does not impose those rules on us.

So, if we need access to a certain component in a layer above ours, we can just push the component
down a layer and we’re allowed to access it. Problem solved. Doing this once may be OK. But doing it
once opens the door for doing it a second time. And if someone else was allowed to do it, so am I, right?

I’m not saying that as developers, we take such shortcuts lightly. But if there is an option to do something,
someone will do it, especially in combination with a looming deadline. And if something has been
done before, the likelihood of someone doing it again will increase drastically. This is a psychological
effect called the Broken Windows Theory – more on this in Chapter 11, Taking Shortcuts Consciously.

Figure 2.3 – Since any layer may access everything in the persistence layer, it tends to grow fat over time

Over years of development and maintenance of a software project, the persistence layer may very well
end up like in Figure 2.3.

The persistence layer (or, in more generic terms, the bottom-most layer) will grow fat as we push
components down through the layers. Perfect candidates for this are helper or utility components
since they don’t seem to belong to any specific layer.

So, if we want to disable shortcut mode for our architecture, layers are not the best option, at least
not without enforcing some kind of additional architecture rules. And by enforcing, I don’t mean a
senior developer doing code reviews, but automatically enforced rules that make the build fail when
they’re broken.

They grow hard to test
A common evolution within a layered architecture is that layers are skipped. We access the persistence
layer directly from the web layer since we’re only manipulating a single field of an entity, and for that,
we need not bother the domain layer, right?

They hide the use cases 13

Figure 2.4 – Skipping the domain layer tends to scatter domain logic across the code base

Figure 2.4 shows how we’re skipping the domain layer and accessing the persistence layer right from
the web layer.

Again, this feels OK the first couple of times, but it has two drawbacks if it happens often (and it will,
once someone has made the first step).

First, we’re implementing domain logic in the web layer, even if it’s only manipulating a single field.
What if the use case expands in the future? We’re most likely going to add more domain logic to the
web layer, mixing responsibilities and spreading essential domain logic across all layers.

Second, in the unit tests of our web layer, we not only have to manage the dependencies on the domain
layer but also the dependencies on the persistence layer. If we’re using mocks in our tests, that means
we have to create mocks for both layers. This adds complexity to the tests. And a complex test setup is
the first step toward no tests at all because we don’t have time for them. As the web component grows
over time, it may accumulate a lot of dependencies on different persistence components, adding to
the test’s complexity. At some point, it takes more time for us to understand the dependencies and
create mocks for them than to actually write test code.

They hide the use cases
As developers, we like to create new code that implements shiny new use cases. But we usually spend
much more time changing existing code than we do creating new code. This is not only true for those
dreaded legacy projects in which we’re working on a decades-old code base but also for a hot new
greenfield project after the initial use cases have been implemented.

Since we’re so often searching for the right place to add or change functionality, our architecture should
help us to quickly navigate the code base. How does a layered architecture hold up in this regard?

As already discussed previously, in a layered architecture, it easily happens that domain logic is scattered
throughout the layers. It may exist in the web layer if we’re skipping the domain logic for an “easy”
use case. And it may exist in the persistence layer if we have pushed a certain component down so it

What’s Wrong with Layers?14

can be accessed from both the domain and persistence layers. This already makes finding the right
spot to add new functionality hard.

But there’s more. A layered architecture does not impose rules on the “width” of domain services. Over
time, this often leads to very broad services that serve multiple use cases (see Figure 2.5).

Figure 2.5 – “Broad” services make it hard to find a certain use case within the code base

A broad service has many dependencies on the persistence layer and many components in the web
layer depend on it. This not only makes the service hard to test but also makes it hard for us to find
the code responsible for the use case we want to work on.

How much easier would it be if we had highly specialized, narrow domain services that each serve a
single use case? Instead of searching for the user registration use case in UserService, we would
just open up RegisterUserService and start hacking away.

They make parallel work difficult
Management usually expects us to be done with building the software they sponsor on a certain
date. Actually, they even expect us to be done within a certain budget as well, but let’s not complicate
things here.

Aside from the fact that I have never seen “done” software in my career as a software engineer, to be
“done” by a certain date usually implies that multiple people have to work in parallel.

You probably know this famous conclusion from “The Mythical Man-Month,” even if you haven’t read
the book: Adding manpower to a late software project makes it later.4

4 The Mythical Man-Month: Essays on Software Engineering by Frederick P. Brooks, Jr.,
Addison-Wesley, 1995.

How does this help me build maintainable software? 15

This also holds true, to a degree, in software projects that are not (yet) late. You cannot expect a large
group of 50 developers to be 5 times faster than a smaller team of 10 developers. If they’re working
on a very large application where they can split up into sub-teams and work on separate parts of the
software, it may work, but in most contexts, they will step on each other’s feet.

But on a healthy scale, we can certainly expect to be faster with more people on the project. And
management is right to expect that of us.

To meet this expectation, our architecture must support parallel work. This is not easy. And a layered
architecture doesn’t really help us here.

Imagine we’re adding a new use case to our application. We have three developers available. One can
add the needed features to the web layer, one to the domain layer, and the third to the persistence
layer, right?

Well, it usually doesn’t work that way in a layered architecture. Since everything builds on top of the
persistence layer, the persistence layer must be developed first. Then comes the domain layer and
finally the web layer. So only one developer can work on the feature at a time!

“Ah, but the developers can define interfaces first,” you say, “and then each developer can work against
these interfaces without having to wait for the actual implementation.”

Sure, this is possible, but only if we haven’t mixed our domain and persistence logic as discussed
previously, blocking us from working on each aspect separately.

If we have broad services in our code base, it may even be hard to work on different features in parallel.
Working on different use cases will cause the same service to be edited in parallel, which leads to
merge conflicts and potentially regressions.

How does this help me build maintainable software?
If you have built layered architectures in the past, you can probably relate to some of the issues discussed
in this chapter, and you could maybe even add some more.

If done correctly, and if some additional rules are imposed on it, a layered architecture can be very
maintainable and can make changing or adding to the code base a breeze.

However, the discussion shows that a layered architecture allows many things to go wrong. Without
good self-discipline, it’s prone to degrading and becoming less maintainable over time. And our self-
discipline usually takes a hit each time a team member rotates into or out of the team, or a manager
draws a new deadline around the development team.

Keeping the traps of layered architecture in mind will help us the next time we argue against taking
a shortcut and for building a more maintainable solution instead – be it in a layered architecture or
a different architecture style.

3
Inverting Dependencies

After the talk about layered architecture in the previous chapter, you’re right to expect this chapter to
discuss an alternative approach. We’ll start by discussing two of the SOLID1 principles and then apply
them to create a Clean or Hexagonal Architecture that addresses the problems of a layered architecture.

The Single Responsibility Principle
Everyone in software development probably knows the Single Responsibility Principle (SRP) or at
least assumes to know it. A common interpretation of this principle is this:

A component should do only one thing and do it right.

That’s good advice, but not the actual intent of the SRP.

Doing only one thing is actually the most obvious interpretation of “single responsibility,” so it’s no
wonder that the SRP is frequently interpreted like this. Let’s just observe that the name of the SRP
is misleading.

Here’s the actual definition of the SRP:

A component should have only one reason to change.

As we see, “responsibility” should actually be translated to “reason to change” instead of “do only one
thing.” Perhaps we should rename the SRP to the “Single Reason to Change Principle.”

If a component has only one reason to change, it might end up doing only one thing, but the more
important part is that it has only this one reason to change.

What does that mean for our architecture?

1 SOLID stands for Single Responsibility Principle, Open-Closed Principle, Liskov Substitution
Principle, Interface Segregation Principle, and Dependency Inversion Principle. You can read more
about these Principles in Clean Architecture by Robert C. Martin or on Wikipedia at https://
en.wikipedia.org/wiki/SOLID.

https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID

Inverting Dependencies18

If a component has only one reason to change, we don’t have to worry about this component at all
if we change the software for any other reason because we know that it will still work as expected.

Sadly, it’s very easy for a reason to change to propagate through code via the dependencies of a
component to other components (see Figure 3.1).

Figure 3.1 – Each dependency of a component is a possible reason to change this

component, even if it is only a transitive dependency (dashed arrows)

In the preceding figure, component A depends on many other components (either directly or transitively)
while component E has no dependencies at all.

The only reason to change component E is when the functionality of E must change due to some
new requirement. Component A, however, might have to change when any of the other components
change because it depends on them.

Many code bases grow harder – and thus more expensive – to change over time because the SRP is
violated. Over time, components collect more and more reasons to change. Having collected many
reasons to change, changing one component might cause another component to fail.

A tale about side effects
I once was part of a project where my team inherited a ten-year-old code base built by another software
shop. The client had decided to replace the development team to reduce the ongoing maintenance
costs and improve the development speed for new features. So, we got the contract.

As was to be expected, it was not easy to gain an understanding of what the code actually did, and the
changes we made in one area of the code base often had side effects in other areas. But we managed
by testing exhaustively, adding automated tests, and refactoring a lot.

The Dependency Inversion Principle 19

After some time of successfully maintaining and extending the code base, the client requested a new
feature. And they wanted us to build it in a way that was very awkward for the users of the software.
So, I proposed to do it in a more user-friendly way that was even less expensive to implement since it
needed fewer overall changes. It needed a small change in a certain very central component, however.

The client declined and ordered the more awkward and expensive solution. When I asked for the
reason, they said that they were afraid of the side effects because changes made to that one component
by the previous development team had always broken something else in the past.

Sadly, this is an example of how you can indoctrinate your client to pay extra for modifying badly
architected software. Luckily, most clients will not play along with this game, so let’s try to build well-
architected software instead.

The Dependency Inversion Principle
In our layered architecture, the cross-layer dependencies always point down to the next layer. When
we apply the Single Responsibility Principle on a high level, we notice that the upper layers have more
reasons to change than the lower layers.

Thus, due to the domain layer’s dependency on the persistence layer, each change in the persistence layer
potentially requires a change in the domain layer. But the domain code is the most important code in
our application! We don’t want to have to change it when something changes in the persistence code!

So, how can we get rid of this dependency?

The Dependency Inversion Principle (DIP) provides the answer.

In contrast to the SRP, the DIP means what the name suggests:

We can turn around (invert) the direction of any dependency within our code base2

How does that work? Let’s try to invert the dependency between our domain and persistence code
so that the persistence code depends on the domain code, reducing the number of reasons to change
the domain code.

We start with a structure like that in Figure 2.2 from Chapter 2, What’s Wrong with Layers? We have
a service in the domain layer that works with entities and repositories from the persistence layer.

First of all, we want to pull up the entities into the domain layer because they represent our domain
objects and our domain code pretty much revolves around changing the state of those entities.

2 Actually, we can only invert dependencies when we have control over the code on both ends of the
dependency. If we have a dependency on a third-party library, we cannot invert it, since we don't
control the code of that library.

Inverting Dependencies20

But now, we have a circular dependency between both layers since the repository from the persistence
layer depends on the entity, which is now in the domain layer. This is where we apply the DIP. We
create an interface for the repository in the domain layer and let the actual repository in the persistence
layer implement it. The result is something like that in Figure 3.2.

Figure 3.2 – By introducing an interface in the domain layer, we can invert the

dependency so that the persistence layer depends on the domain layer

With this trick, we have liberated our domain logic from the oppressive dependency on the persistence
code. This is a core feature of the two architectural styles we’re going to discuss in the upcoming sections.

Clean Architecture
Robert C. Martin coined the term “Clean Architecture” in his book with the same name.3 In a Clean
Architecture, in his opinion, the business rules are testable by design and independent of frameworks,
databases, UI technologies, and other external applications or interfaces.

This means that the domain code must not have any outward-facing dependencies. Instead, with the
help of the DIP, all dependencies point toward the domain code.

Figure 3.3 shows what such an architecture might look like on an abstract level.

3 Clean Architecture by Robert C. Martin, Prentice Hall, 2017, Chapter 22.

Clean Architecture 21

Figure 3.3 – In a Clean Architecture, all dependencies point inward toward

the domain logic (Source: Clean Architecture by Robert C. Martin)

The layers in this architecture are wrapped around each other in concentric circles. The main rule
in such an architecture is the “Dependency Rule,” which states that all dependencies between those
layers must point inward.

The core of the architecture contains the domain entities, which are accessed by the surrounding
use cases. The use cases are what we have called services earlier, but are more fine-grained to have a
single responsibility (i.e., a single reason to change), thus avoiding the problem of broad services, as
we discussed earlier.

Around this core, we can find all the other components of our application that support the business
rules. This support can mean providing persistence or providing a UI, for example. Also, the outer
layers may provide adapters to any other third-party component.

Since the domain code knows nothing about which persistence or UI framework is used, it cannot
contain any code specific to those frameworks and will concentrate on the business rules. We have all
the freedom we can wish for to model the domain code. We could, for example, apply Domain-Driven
Design (DDD) in its purest form. Not having to think about persistence or UI-specific problems
makes that so much easier.

As we might expect, Clean Architecture comes at a cost. Since the domain layer is completely
decoupled from the outer layers such as the persistence and UI layers, we have to maintain a model
of our application’s entities in each of the layers.

Inverting Dependencies22

Let’s assume, for instance, that we’re using an object-relational mapping (ORM) framework in our
persistence layer. An ORM framework usually expects specific entity classes that contain metadata
describing the database structure and the mapping of object fields to database columns. Since the
domain layer doesn’t know the persistence layer, we cannot use the same entity classes in the domain
layer and have to create them in both layers. This means that the persistence layer needs to map the
domain entities to its own representation. A similar mapping applies between the domain layer and
other outer layers.

But that’s a good thing! This decoupling is exactly what we wanted to achieve to free the domain code
from framework-specific problems. The Java Persistence API (the standard object-relational API
in the Java world), for instance, requires the ORM-managed entities to have a default constructor
without arguments that we might want to avoid in our domain model. In Chapter 9, Mapping between
Boundaries, we’ll talk about different mapping strategies, including a no-mapping strategy that just
accepts the coupling between the domain and persistence layers.

Since Clean Architecture by Robert C. Martin is somewhat abstract, let’s go a level of detail deeper and
look at Hexagonal Architecture, which gives the Clean Architecture principles a more concrete shape.

Hexagonal Architecture
The term Hexagonal Architecture stems from Alistair Cockburn and has been around for quite some
time.4 It applies the same principles that Robert C. Martin later described in more general terms in
Clean Architecture.

Figure 3.4 – A Hexagonal Architecture is also called a “Ports and Adapters” architecture

since the application core provides specific ports for each adapter to interact with

4 The primary source for the term "Hexagonal Architecture" seems to be an article on Alistair Cockburn's
website at https://alistair.cockburn.us/hexagonal-architecture/.

https://alistair.cockburn.us/hexagonal-architecture/

Hexagonal Architecture 23

Figure 3.4 shows what a Hexagonal Architecture might look like. The application core is represented
as a hexagon, giving this architectural style its name. The hexagon shape has no meaning, however,
so we might just as well draw an octagon and call it “Octagonal Architecture.” According to legend,
the hexagon was simply used instead of the common rectangle to show that an application can have
more than four sides connecting it to other systems or adapters.

Within the hexagon, we find our domain entities and the use cases that work with those entities.
Note that the hexagon has no outgoing dependencies so the Dependency Rule from Martin’s Clean
Architecture holds true. Instead, all dependencies point toward the center.

Outside the hexagon, we find various adapters that interact with the application. There might be a
web adapter that interacts with a web browser, some adapters interacting with external systems, and
an adapter that interacts with a database for persistence.

The adapters on the left side are adapters that drive our application (because they call our application
core) while the adapters on the right side are driven by our application (because they are called by
our application core).

To allow communication between the application core and the adapters, the application core provides
specific ports. For driving adapters, such a port might be an interface that is implemented by one
of the use case classes in the core and called by the adapter. For a driven adapter, it might be an
interface that is implemented by the adapter and called by the core. We might even have multiple
adapters implementing the same port: one for communicating with a real external system, and one
for communicating with a mock to be used in testing, for example.

To clearly call out a central attribute of Hexagonal Architecture, the application core (the hexagon)
defines and owns the interface to the outside (the ports). The adapters then work with this interface.
This is the Dependency Inversion Principle applied at the architecture level.

Due to its central concepts, this architecture style is also known as a Ports and Adapters architecture.

Just like Clean Architecture, we can organize this Hexagonal Architecture into layers. The outermost
layer consists of the adapters that translate between the application and other systems.

Next, we can combine the ports and use case implementations to form the application layer because
they define the interface of our application. The final layer contains the domain entities implementing
the business rules.

The business logic is implemented in the use case classes and entities. The use case classes are narrow
domain services, implementing just a single use case. We can choose to combine multiple use cases
to a broader domain service, of course, but ideally, we do this only when the use cases are often used
together, to increase maintainability.

Potentially, we will want to introduce the concept of application services, too. An application service
is a service that coordinates calls to use cases (domain services), as shown in Figure 3.5.

Inverting Dependencies24

Figure 3.5 – A Hexagonal Architecture using the DDD concepts of application and domain services

Here, the application services translate between the input and output ports and the domain services,
shielding the domain services from the outside world, and potentially coordinating between the domain
services. The Domain Service boxes are synonymous with the Use Case boxes from Figure 3.4; we’re
just now using terminology borrowed from DDD.

As this discussion implies, we’re free to design our application code as we see fit inside the hexagon.
We can go simple or sophisticated, matching the complexity and size of our application. We will learn
more about managing code within our hexagon in Chapter 13, Managing Multiple Bounded Contexts.

In the next chapter, we’ll discuss a way to organize such an architecture in code.

How does this help me build maintainable software?
Call it “Clean Architecture,” “Hexagonal Architecture,” or “Ports and Adapters Architecture” – by
inverting our dependencies so that the domain code has no dependencies on the outside, we can
decouple our domain logic from all those persistence- and UI-specific problems and reduce the
number of reasons to make changes throughout the code base. And fewer reasons to change lead to
better maintainability.

The domain code is free to be modeled as best fits the business problems, while the persistence and
UI code are free to be modeled as best fits the persistence and UI problems.

In the rest of this book, we’ll apply the Hexagonal Architecture style to a web application. We’ll start
by creating the package structure of our application and discussing the role of dependency injection.

4
Organizing Code

Wouldn’t it be nice to recognize the architecture just by looking at the code?

In this chapter, we’ll examine different ways of organizing code and introduce an expressive package
structure that directly reflects a Hexagonal Architecture.

In greenfield software projects, the first thing we try to get right is the package structure. We set up
a nice-looking structure that we intend to use for the rest of the project. Then, during the project,
things become hectic, and we realize that in many places the package structure is just a nice-looking
facade for an unstructured mess of code. Classes in one package import classes from other packages
that should not be imported.

We’ll discuss different options for structuring the code of the BuckPal example application that was
introduced in the Preface. More specifically, we’ll look at the Send money use case, which allows a user
to transfer money from their account to another.

Organizing By Layer
The first approach to organizing our code is by layer. We might organize the code like this:

Organizing Code26

For each of our layers – web, domain, and persistence – we have a dedicated package. As
discussed in Chapter 2, What’s Wrong with Layers?, simple layers may not be the best structure
for our code for several reasons, so we have already applied the Dependency Inversion Principle
here, only allowing dependencies toward the domain code in the domain package. We did this by
introducing the AccountRepository interface in the domain package and implementing it in
the persistence package.

We can find at least three reasons why this package structure is suboptimal, however:

• First, we have no package boundary between functional slices or features of our application.
If we add a feature for managing users, we’ll add a UserController to the web package;
a UserService, UserRepository, and User to the domain package; and a
UserRepositoryImpl to the persistence package. Without further structure, this
might quickly become a mess of classes, leading to unwanted side effects between supposedly
unrelated features of the application.

• Second, we can’t see which use cases our application provides. Can you tell what use cases the
AccountService or AccountController classes implement? If we’re looking for a
certain feature, we have to guess which service implements it and then search for the responsible
method within that service.

• Finally, we can’t see our target architecture within the package structure. We can guess that
we have followed the Hexagonal Architecture style and then browse the classes in the web
and persistence packages to find the web and persistence adapters. But we can’t see at a
glance which functionality is called by the web adapter and which functionality the persistence
adapter provides to the domain layer. The incoming and outgoing ports are hidden in the code.

Let’s try to address some issues of the “organize by layer” approach.

Organizing by feature
The next approach is to organize our code by feature:

In essence, we have put all the code related to accounts into the high-level package, account. We
have also removed the layer packages.

An architecturally expressive package structure 27

Each new group of features will get a new high-level package next to account and we can enforce
package boundaries between the features by using package-private visibility for the classes that should
not be accessed from the outside.

The package boundaries, combined with package-private visibility, enable us to avoid unwanted
dependencies between features.

We have also renamed AccountService SendMoneyService to narrow its responsibility
(we actually could have done that in the package-by-layer approach, too). We can now see that the
code implements the Send money use case just by looking at the class name. Making the application’s
functionality visible in the code is what Robert Martin calls a “Screaming Architecture” because it
screams its intention at us.1

However, the package-by-feature approach makes our architecture even less evident in the code than
the package-by-layer approach. We have no package names to identify our adapters, and we still don’t
see the incoming and outgoing ports. What’s more, even though we have inverted the dependencies
between the domain code and persistence code so that SendMoneyService only knows about
the AccountRepository interface and not its implementation, we cannot use package-private
visibility to protect the domain code from accidental dependencies on the persistence code.

So, how can we make our target architecture visible at a glance? It would be nice if we could point a
finger at a box in an architecture diagram like Figure 3.4 and instantly know which part of the code
is responsible for that box.

Let’s take one more step to create a package structure that is expressive enough to support this.

An architecturally expressive package structure
In a Hexagonal Architecture, we have entities, use cases, input and output ports, and input and output
(or “driving” and “driven”) adapters as our main architectural elements. Let’s fit them into a package
structure that expresses this architecture:

1 Screaming Architecture: Clean Architecture by Robert C. Martin, Prentice Hall, 2017, Chapter 21.

Organizing Code28

We can map each element of the architecture directly to one of the packages. At the highest level, we
have the adapter and application packages.

The adapter package contains the incoming adapters that call the application’s incoming ports and
the outgoing adapters that provide implementations for the application’s outgoing ports. In our case,
we’re building a simple web application with the web and persistence adapters, each having its
own sub-package.

Moving the adapters’ code to their own packages has the benefit that we can very easily replace one
adapter with another implementation, should the need arise. Imagine we have started implementing
a persistence adapter against a simple key-value database because we thought we knew the required
access patterns, but those patterns have changed, and we would be better off with an SQL database
now. We simply implement all relevant outgoing ports in a new adapter package and then remove
the old package.

The application package contains the “hexagon,” as in, our application code. This code consists
of our domain model, which lives in the domain package, and the port interfaces, which live in the
port package.

Why are the ports inside the application package and not next to it? The ports are our way to
apply the Dependency Inversion Principle. The application defines these ports to communicate with
the outside world. Putting the port package inside the application package expresses that the
application owns the ports.

An architecturally expressive package structure 29

The domain package contains our domain entities and domain services that implement the input
ports and coordinate between the domain entities.

Finally, there is a common package, which contains some code that is shared across the rest of the
code base.

Phew, that’s a lot of technical-sounding packages. Isn’t that confusing?

Imagine we have a high-level view of our Hexagonal Architecture hanging on the office wall and we’re
talking to a colleague about modifying a client to a third-party API we’re consuming. While discussing
this, we can point at the corresponding outgoing adapter on the poster to better understand each other.
Then, when we’re finished talking, we sit down in front of our IDE and can start working on the client
right away because the code of the API client we have talked about can be found in the adapter/
out/<name-of-adapter> package. Rather helpful instead of confusing, don’t you think?

This package structure is a powerful element in the fight against the so-called architecture/code gap
or model/code gap.2 These terms describe the fact that in most software development projects, the
architecture is only an abstract concept that cannot be directly mapped to the code. With time, if the
package structure (among other things) does not reflect the architecture, the code will usually deviate
more and more from the target architecture.

Also, this expressive package structure promotes active thinking about the architecture. We have to
actively decide which package our code to put into. But don’t so many packages mean that everything
has to be public in order to allow access across packages?

For the adapter packages, at least, this is not true. All the classes they contain may be package-private
since they are not called by the outside world except over port interfaces, which live within the
application package. So, there are no accidental dependencies from the application layer to
the adapter classes.

Within the application package, however, some classes indeed have to be public. The ports must
be public because they must be accessible to the adapters by design. The domain model must be public
to be accessible to the services and, potentially, to the adapters. The services don’t need to be public
because they can be hidden behind the incoming port interfaces.

So, yes, a fine-grained package structure such as this requires us to make some classes public that
might be package-private in a coarser-grained package structure. We’ll look at ways to catch unwanted
access to those public classes in Chapter 12, Enforcing Architecture Boundaries.

You might notice that this package structure contains only one domain, namely the domain handling
account transactions. Many applications will contain code from more than one domain, however.

2 Model/code gap: Just Enough Architecture by George Fairbanks, Marshall & Brainerd, 2010, page 167.

Organizing Code30

As we will learn in Chapter 13, Managing Multiple Bounded Contexts, Hexagonal Architecture doesn’t
really tell us how to manage multiple domains. We can, of course, put the code for each domain into
its own sub-package under the domain package and have the domains separated this way. If you’re
thinking about separating the ports and adapters per domain, however, be careful because this quickly
turns into a mapping nightmare. More about this in Chapter 13.

As with every structure, it takes discipline to maintain this package structure over the lifetime of a
software project. Also, there will be cases when the package structure just does not fit and we see no other
way than to widen the architecture/code gap and create a package that does not reflect the architecture.

There is no perfection. But with an expressive package structure, we can at least reduce the gap between
code and architecture.

The role of dependency injection
The package structure described previously goes a long way toward achieving a clean architecture, but an
essential requirement of such an architecture is that the application layer does not have dependencies
on the incoming and outgoing adapters, as we have learned in Chapter 3, Inverting Dependencies.

For incoming adapters, such as our web adapter, this is easy since the control flow points in the same
direction as the dependency between the adapter and the domain code. The adapter simply calls the
service within the application layer. In order to clearly bring out the entry points to our application,
we’ll want to hide the actual services behind port interfaces.

For outgoing adapters, such as our persistence adapter, we have to make use of the Dependency
Inversion Principle to turn the dependency against the direction of the control flow.

We have already seen how that works. We create an interface within the application layer, which is
implemented by a class within the adapter. Within our Hexagonal Architecture, this interface is a
port. The application layer then calls this port interface to call the functionality of the adapter, as
shown in Figure 4.1.

The role of dependency injection 31

Figure 4.1 – The web controller calls an incoming port, which is implemented by a service,

and the service calls an outgoing port, which is implemented by an adapter

But who provides the application with the actual objects that implement the port interfaces? We don’t
want to instantiate the ports manually within the application layer because we don’t want to introduce
a dependency on an adapter.

This is where dependency injection comes into play. We introduce a neutral component that has
a dependency on all layers. This component is responsible for instantiating most of the classes that
make up our architecture.

In the preceding example figure, the neutral dependency injection component would create instances
of the SendMoneyController, SendMoneyService, and AccountPersistenceAdapter
classes. Since SendMoneyController requires a SendMoneyUseCase, the dependency
injection mechanism will give it an instance of the SendMoneyService class during construction.
The controller doesn’t know that it actually got a SendMoneyService instance since it only needs
to know the interface.

Similarly, when constructing the SendMoneyService instance, the dependency injection
mechanism will inject an instance of the AccountPersistenceAdapter class, in the guise
of the UpdateAccountStatePort interface. The service never knows the actual class behind
the interface.

We’ll talk more about initializing an application using the Spring framework as an example in
Chapter 10, Assembling the Application.

Organizing Code32

How does this help me build maintainable software?
We looked at a package structure for a Hexagonal Architecture that takes the actual code structure as
close to the target architecture as possible. Finding an element of the architecture in the code is now a
matter of navigating down the package structure along the names of certain boxes in an architecture
diagram, helping with communication, development, and maintenance.

In the following chapters, we’ll see this package structure and dependency injection in action as we
implement a use case in the application layer, a web adapter, and a persistence adapter.

5
Implementing a Use Case

Let’s finally look at how we can manifest the architecture we have discussed in actual code.

Since the application, web, and persistence layers are so loosely coupled in our architecture, we’re totally
free to model our domain code as we see fit. We can do Domain-Driven Design (DDD), implement
a rich or anemic domain model, or invent our own way of doing things.

This chapter describes an opinionated way of implementing use cases within the Hexagonal Architecture
style we introduced in previous chapters.

As is fitting for a domain-centric architecture, we’ll start with a domain entity and then build a use
case around it.

Implementing the domain model
We want to implement the use case of sending money from one account to another. One way to model
this in an object-oriented fashion is to create an Account entity that allows us to withdraw money
from a source account and deposit it into a target account:

Implementing a Use Case34

A use case in a nutshell 35

The Account entity provides the current snapshot of an actual account. Every withdrawal from and
deposit to an account is captured in an Activity entity. Since it would not be wise to always load
all activities of an account into memory, the Account entity only holds a window of the last few
days or weeks of activities, captured in the ActivityWindow value object.

To still be able to calculate the current account balance, the Account entity additionally has the
baselineBalance attribute, representing the balance the account had just before the first activity
of the activity window. The total balance, then, is the baseline balance plus the balance of all activities
in the window.

With this model, withdrawing and depositing money into an account is a matter of adding a new
activity to the activity window, as is done in the withdraw() and deposit() methods. Before
we can withdraw, we check the business rule that says that we cannot overdraw an account.

Now that we have an Account that allows us to withdraw and deposit money, we can move outward
to build a use case around it.

A use case in a nutshell
First, let’s discuss what a use case actually does. Usually, it follows these steps:

1. Take the input.

2. Validate the business rules.

3. Manipulate the model state.

4. Return the output.

A use case takes input from an incoming adapter. You might wonder why I didn’t call the first step
Validate input. The answer is that I believe use case code should only be concerned with domain
logic and we shouldn’t pollute it with input validation. So, we’ll do input validation somewhere else,
as we’ll see shortly.

The use case is, however, responsible for validating business rules. It shares this responsibility with the
domain entities. We’ll discuss the distinction between input validation and business rule validation
later in this chapter.

If the business rules were satisfied, the use case then manipulates the state of the model in one way
or another, based on the input. Usually, it will change the state of a domain object and pass this new
state to a port implemented by the persistence adapter to be persisted. If the use case drives other side
effects than persistence, it invokes an appropriate adapter for each side effect.

The last step is to translate the return value from the outgoing adapter into an output object, which
will be returned to the calling adapter.

With these steps in mind, let’s see how we can implement our Send money use case.

Implementing a Use Case36

To avoid the problem of broad services discussed in Chapter 2, What’s Wrong with Layers?, we’ll create
a separate service class for each use case instead of putting all use cases into a single service class.

Here’s a teaser:

The service implements the SendMoneyUseCase incoming port interface and calls the Load
AccountPort outgoing port interface to load an account and the UpdateAccountState
Port port to persist an updated account state in the database.

The service also sets the boundary for a database transaction, as implied by the @Transactional
annotation. More about this in Chapter 7, Implementing a Persistence Adapter.

Figure 5.1 provides a visual overview of the relevant components:

Figure 5.1 – A service implements a use case, modifies the domain model,

and calls an outgoing port to persist the modified state

Validating input 37

Note
UpdateAccountStatePort and LoadAccountPort, in this example, are port interfaces
implemented by a persistence adapter. If they are often used together, we could also combine
them into a broader interface. We could even call that interface AccountRepository to
stick with the DDD language. In this example, and in the rest of the book, I chose to use the
name “Repository” only in the persistence adapter, but you may choose different names!

Let’s take care of those TODO comments we left in the preceding code.

Validating input
Now, we’re talking about validating input, even though I just claimed that it’s not the responsibility
of a use case class. I still think, however, that it belongs in the application layer, so this is the place to
discuss it.

Why not let the calling adapter validate the input before sending it to the use case? Well, do we want
to trust the caller to have validated everything as needed for the use case? Also, the use case might
be called by more than one adapter, so the validation would have to be implemented by each adapter,
and one might get it wrong or forget it altogether.

The application layer should care about input validation because, well, otherwise it might get invalid
input from outside the application core. This might cause damage to the state of our model.

But where do we put the input validation if not in the use case class?

We’ll let the input model take care of it. For the Send money use case, the input model is the
SendMoneyCommand class we have already seen in the previous code example. More precisely,
we’ll do the validation within the constructor:

Implementing a Use Case38

To send money, we need the IDs of the source and target account and the amount of money that is
to be transferred. None of the parameters may be null and the amount must be greater than zero.
If any of these conditions is violated, we simply refuse object creation by throwing an exception
during construction.

By using a record to implement SendMoneyCommand, we make it immutable. So, once constructed
successfully, we can be sure that the state is valid and cannot be changed to something invalid.

Since SendMoneyCommand is part of the use cases’ API, it’s located in the incoming port package.
Thus, the validation remains in the core of the application (at the edge of the hexagon of our architecture)
but does not pollute the sacred use case code.

But do we really want to implement each validation check by hand when there are libraries that can
do the dirty work for us? I have often heard statements such as “You shouldn’t use libraries in your
model classes.” There’s wisdom in reducing dependencies to a minimum, of course, but if we can get
away with a small-footprint dependency that saves us time, then why not use it? Let’s explore what
this might look like with Java’s Bean Validation API.1

1 Bean Validation: https://beanvalidation.org/.

https://beanvalidation.org/

Validating input 39

Bean Validation allows us to express the validation rules we need as annotations on the fields of a class:

The class Validator provides the method validate(), which we simply call as the last statement
in the constructor. This will evaluate the Bean Validation annotations on the fields (@NotNull, in
this case) and throw an exception in case of a violation. If the default Bean Validation annotations are
not expressive enough for a certain validation, we can implement our own annotations and validators
as we did with the @PositiveMoney annotation.2

The implementation of the Validator class might look like this:

2 You can find the full code implementing the @PositiveMoney annotation and validator in the
GitHub repository at https://github.com/thombergs/buckpal.

https://github.com/thombergs/buckpal

Implementing a Use Case40

With validation located in the input model, we have created an anti-corruption layer around our
use case implementations. This is not a layer in the sense of a layered architecture, calling the next
layer below it, but instead a thin, protective screen around our use cases that bounces bad input back
to the caller.

Note that the term “command,” as used in the SendMoneyCommand class, does not match the common
interpretation of the “command pattern.”3 In the command pattern, a command is executable, that is,
it has a method called execute() that actually invokes the use case. In our case, the command is
just a data transfer object that transfers the required parameters to the use case service that executes
the command. We could call it SendMoneyDTO instead, but I like the term “command” to make it
very clear that we’re changing the model state with this use case.

The power of constructors
Our input model, SendMoneyCommand, puts a lot of responsibility on its constructor. Since the
class is immutable, the constructor’s argument list contains a parameter for each attribute of the class.
And since the constructor also validates the parameters, it’s not possible to create an object with an
invalid state.

In our case, the constructor has only three parameters. What if we had more parameters? Couldn’t
we use the builder pattern to make it more convenient to use? We could make the constructor with
the long parameter list private and hide the call to it in the build() method of our builder. Then,
instead of having to call a constructor with 20 parameters, we could build an object like this:

We can still let our constructor do the validation so that the builder cannot construct an object with
an invalid state.

Sound good? Think about what happens if we have to add another field to SendMoneyCommandBuilder
(which will happen quite a few times in the lifetime of a software project). We add the new field to the
constructor and to the builder. Then, a colleague (or a phone call, an email, a butterfly…) interrupts
our train of thought. After the break, we go back to coding and forget to add the new field to the code
that calls the builder to create an object.

We don’t get a word of warning from the compiler about trying to create an immutable object in an
invalid state! Sure, at runtime – hopefully in a unit test – our validation logic will still kick in and
throw an error because we missed a parameter.

3 Command pattern: https://en.wikipedia.org/wiki/Command_pattern.

https://en.wikipedia.org/wiki/Command_pattern

Different input models for different use cases 41

But if we use the constructor directly instead of hiding it behind a builder, each time a new field is
added or an existing field is removed, we can just follow the trail of compile errors to reflect that
change in the rest of the code base.

Long parameter lists can even be formatted nicely, and good IDEs help with parameter name hints:

Figure 5.2 – The IDE shows parameter name hints in parameter lists to help us to not get lost

To make the preceding code even more readable and safer to work with, we can introduce immutable
value objects to replace some of the primitives we used as constructor parameters. A value object is
an object whose value is its identity. Two value objects with the same value are considered the same.
Instead of passing the street, city, zip code, country, and state separately, we could combine them
into an Address value object, for example, because they belong together. We could even go a step
further and create City and ZipCode value objects, for example. This would reduce the chance of
confusing one String parameter with another, because the compiler would complain if we tried to
pass a City into a ZipCode parameter and vice versa.

There are cases where a builder may be the better solution, though. If some parameters in
ClassWithManyFields from the preceding example were optional, for example, we would have to
pass null values into the constructor, which is ugly at best. A builder would allow us to define only the
required parameters. But if using builders, we should make very sure that the build() method fails
loudly when we forget to define a required parameter because the compiler doesn’t check that for us!

Different input models for different use cases
We might be tempted to use the same input model for different use cases. Let’s consider the Register
account and Update account details use cases. Both will initially need almost the same input, namely
some account details, such as a username and email address.

The Update use case will need the ID of the account that needs to be updated, however, while the
Register use case does not. If both use cases use the same input model, we will always have to pass a
null account ID into the Register use case. This is annoying at best, and detrimental at worst, because
both use cases are coupled to evolve together now.

Implementing a Use Case42

Allowing null as a valid state of a field in our immutable command object is a code smell by itself.
But more importantly, how are we handling input validation now? Validation has to be different for
the Register and Update use cases since one needs an ID and the other doesn’t. We’d have to build
custom validation logic into the use cases themselves, polluting our sacred business code with input
validation concerns.

Also, what do we do if the account ID field accidentally has a non-null value in the Register account
use case? Do we throw an error? Do we simply ignore it? These are the questions the maintenance
engineers – including future us – will ask when seeing the code.

A dedicated input model for each use case makes the use case much clearer and also decouples it from
other use cases, preventing unwanted side effects. It comes at a cost, however, because we have to map
incoming data to different input models for different use cases. We’ll discuss this mapping strategy
along with other mapping strategies in Chapter 9, Mapping between Boundaries.

Validating business rules
While validating input is not part of the use case logic, validating business rules definitely is. Business
rules are the core of the application and should be handled with appropriate care. But when are we
dealing with input validation and when are we dealing with a business rule?

A very pragmatic distinction between the two is that validating a business rule requires access to
the current state of the domain model while validating input does not. Input validation can be
implemented declaratively, as we did with the @NotNull annotations previously, while a business
rule needs more context.

We might also say that input validation is a syntactic validation, while a business rule is a semantic
validation in the context of a use case.

Let’s take the rule the source account must not be overdrawn. As per the previous definition, this is
a business rule since it needs access to the current state of the model to check the balance of the
source account.

In contrast, the rule the transfer amount must be greater than zero can be validated without access to
the model and thus can be implemented as part of the input validation.

I’m aware that this distinction may be subject to debate. You might argue that the transfer amount is
so important that validating it should be considered a business rule in any case.

The distinction helps us, however, to place certain validations within the code base and easily find
them again later on. It’s as simple as answering the question of whether the validation needs access
to the current model state or not. This not only helps us to implement the rule in the first place but it
also helps the future maintenance engineer to find it again. It’s also a great example of my claim from
Chapter 1, Maintainability, that maintainability supports decision-making.

Validating business rules 43

So, how do we implement a business rule?

The best way is to put the business rules into a domain entity as we did for the rule the source account
must not be overdrawn:

This way, the business rule is easy to locate and reason about because it’s right next to the business
logic that requires this rule to be honored.

If it’s not feasible to validate a business rule in a domain entity, we can do it in the use case code before
it starts working on the domain entities:

We call a method that does the actual validation and throws a dedicated exception if this validation
fails. The adapter interfacing with the user can then display this exception to the user as an error
message or handle it in any other way it deems fit.

Implementing a Use Case44

In the preceding case, the validation simply checks whether the source and target accounts actually
exist in the database. More complex business rules might require us to load the domain model from
the database first and then do some checks on its state. If we have to load the domain model anyway,
we should implement the business rule in the domain entities themselves, as we did with the rule the
source account must not be overdrawn.

Rich versus anemic domain model
Our architecture style leaves open how to implement our domain model. This is a blessing because we
can do what seems right in our context, and a curse because we don’t have any guidelines to help us.

A frequent discussion is whether to implement a rich domain model following the DDD philosophy
or an “anemic” domain model. Let’s discuss how each of these fits into our architecture.

In a rich domain model, as much of the domain logic as possible is implemented within the entities at
the core of the application. The entities provide methods to change the state and only allow changes that
are valid according to the business rules. This is the way we pursued the Account entity previously.
Where is our use case implementation in this scenario?

In this case, our use case serves as an entry point to the domain model. A use case then only represents
the intent of the user and translates it into orchestrated method calls to the domain entities, which do the
actual work. Many of the business rules are located in the entities instead of the use case implementation.

The Send money use case service would load the source and target account entities, call their
withdraw() and deposit() methods, and send them back to the database.4

In an “anemic” domain model, the entities themselves are very thin. They usually only provide fields
to hold the state and getter and setter methods to read and change the state. They don’t contain any
domain logic.

This means that the domain logic is implemented in the use case classes. They are responsible for
validating business rules, changing the state of the entities, and passing them into the outgoing ports
responsible for storing them in the database. The “richness” is contained within the use cases instead
of the entities.

Either style, and any number of other styles, can be implemented using the architecture approach
discussed in this book. Feel free to choose the one that fits your needs.

4 Actually, the Send Money use case would also have to make sure that no other money transfer to
and from the source and target account was happening at the same time to avoid overdrawing
an account.

Different output models for different use cases 45

Different output models for different use cases
Once the use case has done its work, what should it return to the caller?

Similar to the input, it has benefits if the output is as specific to the use case as possible. The output
should only include the data that is really needed for the caller to work.

In the example code of the Send money use case, we return a Boolean. This is the minimal and most
specific value we could possibly return in this context.

We might be tempted to return a complete Account with the updated entity to the caller. Perhaps
the caller is interested in the new balance of the account.

But do we really want to make the Send money use case return this data? Does the caller really need it? If
so, shouldn’t we create a dedicated use case for accessing that data that can be used by different callers?

There is no single right answer to these questions. But we should ask them to try to keep our use cases
as specific as possible. When in doubt, return as little as possible.

Sharing the same output model between use cases also tends to tightly couple those use cases. If one
of the use cases needs a new field in the output model, the other use cases have to handle this field
as well, even if it’s irrelevant to them. Shared models tend to grow tumorously for multiple reasons
in the long run. Applying the Single Responsibility Principle and keeping models separated helps in
decoupling use cases.

For the same reason, we might want to resist the temptation to use our domain entities as the output
model. We don’t want our domain entities to change for more reasons than necessary. However, we’ll
talk more about using entities as input or output models in Chapter 11, Taking Shortcuts Consciously.

What about read-only use cases?
As of now, we have discussed how we might implement a use case that modifies the state of our model.
How do we go about implementing read-only cases? Let’s assume the UI needs to display the balance
of an account. Do we create a specific use case implementation for this?

It’s awkward to talk of use cases for read-only operations like this one. Sure, the UI needs the data
for a use case we might call View Account Balance, but in some cases, calling this a “use case” is a
bit artificial. If this is considered a use case in the context of the project, by all means, we should
implement it just like the other ones.

From the viewpoint of the application core, however, this is a simple query for data. So, if it’s not
considered a use case in the context of the project, we can implement it as a query to set it apart from
the real use cases.

One way of doing this within our architecture style is to create a dedicated incoming port for the
query and implement it in a “query service:”

Implementing a Use Case46

The query service acts just as our “command” use case services do. It implements an incoming port
we named GetAccountBalanceUseCase and calls the outgoing port, LoadAccountPort,
to actually load the data from the database. It’s using the GetAccountBalanceQuery type as
its input model.

This way, read-only queries are clearly distinguishable from modifying use cases (or “commands”) in
our code base. We just have to look at the names of the input types to know which we’re dealing with.
This plays nicely with concepts such as Command-Query Separation (CQS) and Command-Query
Responsibility Segregation (CQRS).

In the preceding code, the service doesn’t really do any work other than passing the query on to the
outgoing port. If we use the same model across layers, we can take a shortcut and let the client call
the outgoing port directly. We’ll talk about this shortcut in Chapter 11, Taking Shortcuts Consciously.

How does this help me build maintainable software?
Our architecture lets us implement the domain logic as we see fit, but if we model the input and output
of our use cases independently, we avoid unwanted side effects.

Yes, it’s more work than just sharing models between use cases. We have to introduce a separate model
for each use case and map between this model and our entities.

But use case-specific models allow for a crisp understanding of a use case, making it easier to maintain
in the long run. Also, they allow multiple developers to work on different use cases in parallel without
stepping on each other’s toes.

Together with tight input validation, use case-specific input and output models go a long way toward
a maintainable code base.

In the next chapter, we’re taking a step “outward” from the center of our application and will explore
building a web adapter that provides a channel for users to talk to our use case.

6
Implementing a Web Adapter

Most applications today have some kind of web interface – either a UI that we can interact with via a
web browser or an HTTP API that other systems can call to interact with our application.

In our target architecture, all communication with the outside world goes through adapters. So, let’s
discuss how we can implement an adapter that provides such a web interface.

Dependency Inversion
Figure 6.1 gives a zoomed-in view of the architecture elements that are relevant to our discussion of
a web adapter – the adapter itself and the ports through which it interacts with our application core:

Figure 6.1 – An incoming adapter talks to the application layer through dedicated

incoming ports, which are interfaces implemented by the domain services

The web adapter is a “driving” or “incoming” adapter. It takes requests from the outside and translates
them into calls to our application core, telling it what to do. The control flow goes from the controllers
in the web adapter to the services in the application layer.

Implementing a Web Adapter48

The application layer provides specific ports through which the web adapter may communicate. Each
port is what I have called a “use case” in the previous chapter, and it is implemented by a domain
service in the application layer.

If we look closer, we notice that this is the Dependency Inversion Principle in action. Since the control
flow goes from left to right, we could just as well let the web adapter call the use cases directly, as
shown in Figure 6.2.

Figure 6.2 – We can remove the port interfaces and call the services directly

So why do we add another layer of indirection between the adapter and the use cases? The reason is
that the ports are a specification of the places where the outside world can interact with our application
core. By having ports in place, we know exactly which communication with the outside world takes
place, which is valuable information for any maintenance engineer working on your legacy code base.

Knowing the ports that drive the application also lets us build a test driver for the application. This
test driver is an adapter that calls the input ports to simulate and test certain usage scenarios – more
about testing in Chapter 8, Testing Architecture Elements.

Having talked about the importance of input ports, one of the shortcuts we’ll talk about in Chapter 11,
Taking Shortcuts Consciously, is just leaving the incoming ports out and calling the application
services directly.

One question remains, though, which is relevant for highly interactive applications. Imagine a server
application that sends real-time data to the user’s browser via WebSocket. How does the application
core send this real-time data to the web adapter, which in turn sends it to the user’s browser?

For this scenario, we definitely need a port because, without a port, the application would have to depend
on an adapter implementation, breaking our efforts to keep the application free from dependencies
on the outside. This port must be implemented by the web adapter and called by the application core,
as depicted in Figure 6.3:

Responsibilities of a web adapter 49

Figure 6.3 – If an application must actively notify a web adapter, we need to go

through an outgoing port to keep the dependencies in the right direction

The WebSocketController on the left implements the port interface in the out package, and
services in the application core can call this port to send real-time data to the user’s browser.

Technically speaking, this would be an outgoing port and make the web adapter an incoming and
outgoing adapter. But there is no reason that the same adapter cannot be both at the same time. For
the rest of this chapter, we’ll assume that the web adapter is an incoming adapter only since this is
the most common case.

Responsibilities of a web adapter
What does a web adapter actually do? Let’s say we want to provide a REST API for our BuckPal
application. Where do the responsibilities of the web adapter start and where do they end?

A web adapter usually does these things:

1. Maps the incoming HTTP request to objects.

2. Performs authorization checks.

3. Validates the input.

4. Maps the request objects to the input model of the use case.

5. Calls the use case.

6. Maps the output of the use case back to HTTP.

7. Returns the HTTP response.

First of all, a web adapter must listen to HTTP requests that match certain criteria such as a URL path,
HTTP method, and content type. The parameters and the content of a matching HTTP request must
then be deserialized into objects we can work with.

Commonly, a web adapter then does an authentication and authorization check and returns an error
if it fails.

Implementing a Web Adapter50

The state of the incoming objects can then be validated. But haven’t we already discussed input
validation as a responsibility of the input model to the use cases? Yes, the input model to the use cases
should only allow input that is valid in the context of the use cases. But here, we’re talking about the
input model to the web adapter. It might have a completely different structure and semantics from
the input model to the use cases, so we might have to perform different validations.

I don’t advocate implementing the same validations in the web adapter as we have already done in
the input model of the use cases. Instead, we should validate that we can transform the input model
of the web adapter into the input model of the use cases. Anything that prevents us from doing this
transformation is a validation error.

This brings us to the next responsibility of a web adapter: to call a certain use case with the transformed
input model. The adapter then takes the output of the use case and serializes it into an HTTP response,
which is sent back to the caller.

If anything goes wrong on the way and an exception is thrown, the web adapter must translate the
error into a message that is sent back to the caller.

That’s a lot of responsibilities weighing on the shoulders of our web adapter. But it’s also a lot of
responsibilities that the application layer should not be concerned with. Anything that has to do with
HTTP must not leak into the application layer. If the application core knows that we’re dealing with
HTTP on the outside, we have lost the option to perform the same domain logic from other incoming
adapters that do not use HTTP. In a maintainable architecture, we want to keep options open.

Note that this boundary between the web adapter and application layer comes naturally if we start
development with the domain and application layers instead of with the web layer. If we implement
the use cases first, without thinking about any specific incoming adapter, we are not tempted to blur
the boundary.

Slicing controllers
In most web frameworks – such as Spring MVC in the Java world – we create controller classes that
perform the responsibilities we have discussed previously. So, do we build a single controller that
answers all requests directed at our application? We don’t have to. A web adapter may certainly consist
of more than one class.

We should take care, however, to put these classes into the same package hierarchy to mark them as
belonging together, as discussed in Chapter 4, Organizing Code.

So, how many controllers do we build? I say we should rather build too many than too few. We should
make sure that each controller implements a slice of the web adapter that is as narrow as possible and
that shares as little as possible with other controllers.

Let’s take the operations on an account entity within our BuckPal application. A popular approach is to
create a single AccountController that accepts requests for all operations that relate to accounts.

Slicing controllers 51

A Spring controller providing a REST API might look like the following code snippet:

Implementing a Web Adapter52

Everything concerning the account resource is in a single class, which feels good. But let’s discuss the
downsides of this approach.

First, less code per class is a good thing. I have worked on a legacy project where the largest class had
30,000 lines of code.1 That’s no fun. Even if the controller only accumulates 200 lines of code over the
years, it’s still harder to grasp than 50 lines, even when it’s cleanly separated into methods.

The same argument is valid for test code. If the controller itself has a lot of code, there will be a lot
of test code. And often, test code is even harder to grasp than production code because it tends to
be more abstract. We also want to make the tests for a certain piece of production code to be easy to
find, which is easier in small classes.

Equally important, however, is that putting all operations into a single controller class encourages the reuse
of data structures. In the preceding code example, many operations share the AccountResource model
class. It serves as a bucket for everything that is needed in any of the operations. AccountResource
probably has an id field. This is not needed in the create operation and will probably confuse
here more than it will help. Imagine that an Account has a one-to-many relationship with User
objects. Do we include those User objects when creating or updating an account? Will the users be
returned by the list operation? This is an easy example, but in any above-play-size project, we’ll ask
these questions at some point.

So, I advocate the approach to create a separate controller, potentially in a separate package, for each
operation. Also, we should name the methods and classes as close to our use cases as possible:

1 30,000 lines of code: it was actually a conscious architecture decision (by our predecessors, mind
you) that lead to those 30,000 lines being in a single class: to change the system at runtime, without
re-deployment, it allowed them to upload compiled Java bytecode in a .class file. And it only
allowed them to upload a single file, so this file had to contain all the code.

Slicing controllers 53

We can take primitives as input, as we did with sourceAccountId, targetAccountId, and
amount in the example. But each controller can also have its own input model. Instead of a generic
model such as AccountResource, we might then have a model specific to the use case such as
CreateAccountResource or UpdateAccountResource. Those specialized model classes
may even be private to the controller’s package to prevent accidental reuse. Controllers may still share
models, but using shared classes from another package makes us think about it more and perhaps we
will find out that we don’t need half of the fields and will create our own, after all.

Also, we should think hard about the names of the controllers and services. Instead of CreateAccount,
for instance, wouldn’t RegisterAccount be a better name? In our BuckPal application, the only
way to create an account is for a user to register it. So, we use the word “register” in class names
to better convey their meaning. There are certainly cases where the usual suspects (Create...,
Update..., and Delete...) sufficiently describe a use case, but we might want to think twice
before actually using them.

Another benefit of this slicing style is that it makes parallel work on different operations a breeze. We
won’t have merge conflicts if two developers work on different operations.

54

How does this help me build maintainable software?
When building a web adapter to an application, we should keep in mind that we’re building an adapter
that translates the HTTP protocol to method calls on the use cases of our application, translates the
results back to HTTP, and does not do any domain logic.

The application layer, on the other hand, should not do HTTP, so we should make sure not to leak
HTTP details. This makes the web adapter replaceable with another adapter should the need arise.

When slicing web controllers, we should not be afraid to build many small classes that don’t share a
model. They’re easier to grasp and test, and they support parallel work. It’s more work initially to set
up such fine-grained controllers, but it will pay off during maintenance.

Having looked at the incoming side of our application, we’ll now take a look at the outgoing side and
how to implement a persistence adapter.

7
Implementing a

Persistence Adapter

In Chapter 2, What's Wrong with Layers? I complained about a traditional layered architecture and
claimed that it promotes database-driven design because, ultimately, everything depends on the
persistence layer. In this chapter, we’ll have a look at how to make the persistence layer a plugin to
the application layer to invert this dependency.

Dependency inversion
Instead of a persistence layer, we’ll talk about a persistence adapter that provides persistence functionality
to the domain services. Figure 7.1 shows how we can apply the Dependency Inversion Principle to
do just that:

Figure 7.1 – The services from the core use ports to access the persistence adapter

Our domain services call port interfaces to access persistence functionality. These ports are implemented
by a persistence adapter class that does the actual persistence work and is responsible for talking to
the database.

Implementing a Persistence Adapter56

In Hexagonal Architecture lingo, the persistence adapter is a driven or outgoing adapter because it’s
called by our application and not the other way around.

The ports are effectively a layer of indirection between the domain services and the persistence code.
Let’s remind ourselves that we’re adding this layer of indirection in order to be able to evolve the
domain code without having to think about persistence problems, meaning without code dependencies
on the persistence layer. Refactoring in persistence code will not lead to a code change in the core.

Naturally, at runtime, we still have a dependency from our application core to the persistence adapter.
If we modify the code in the persistence layer and introduce a bug, for example, we may still break
the functionality in the application core. However, as long as the contracts of the ports are fulfilled,
we’re free to do what we want in the persistence adapter without affecting the core.

Responsibilities of a persistence adapter
Let’s have a look at what a persistence adapter usually does:

1. Takes the input.

2. Maps the input into database format.

3. Sends the input to the database.

4. Maps the database output into application format.

5. Returns the output.

The persistence adapter takes input through a port interface. The input model may be a domain entity
or an object dedicated to a specific database operation, as specified by the interface.

It then maps the input model to a format it can work with to modify or query the database. In Java
projects, we commonly use the Java Persistence API (JPA) to talk to a database, so we might map
the input into JPA entity objects that reflect the structure of the database tables. Depending on the
context, mapping the input model into JPA entities may be a lot of work for little gain, so we’ll talk
about strategies without mapping in Chapter 9, Mapping between Boundaries.

Instead of using JPA or another object-relational mapping framework, we might use any other technique
to talk to the database. We might map the input model into plain SQL statements and send these
statements to the database, or we might serialize incoming data into files and read them back from there.

The important part is that the input model to the persistence adapter lies within the application core,
and not within the persistence adapter itself, so that changes in the persistence adapter don’t affect
the core.

Next, the persistence adapter queries the database and receives the query results.

Slicing port interfaces 57

Finally, it maps the database answer into the output model expected by the port and returns it. Again,
it’s important that the output model lies within the application core and not within the persistence
adapter to have the dependencies point in the right direction.

Aside from the fact that the input and output models lie in the application core instead of the persistence
adapter itself, the responsibilities are not really different from those of a traditional persistence layer.

However, implementing a persistence adapter as described here will inevitably raise some questions
that we probably wouldn’t ask when implementing a traditional persistence layer, as we’re so used to
the traditional way that we don’t think about them.

Slicing port interfaces
One question that comes to mind when implementing services is how to slice the port interfaces that
define the database operations available to the application core.

It’s a common practice to create a single repository interface that provides all database operations for
a certain entity, as outlined in Figure 7.2.

Figure 7.2 – Centralizing all database operations into a single outgoing port

interface makes all services depend on methods they don’t need

Each service that relies on database operations will then have a dependency on this single “broad”
port interface, even if it uses only a single method from the interface. This means we have unnecessary
dependencies in our code base.

Dependencies on methods that we don’t need in our context make the code harder to understand and
test. Imagine that we’re writing a unit test for RegisterAccountService from the preceding
figure. Which of the methods of the AccountRepository interface do we have to create a mock
for? We have to first find out which of the AccountRepository methods the service actually calls.
Having mocked only part of the interface may lead to other problems, as the next person working
on that test might expect the interface to be completely mocked and run into errors. So, they again
have to do some research.

Implementing a Persistence Adapter58

To put it in the words of Robert C. Martin, “Depending on something that carries baggage that you
don’t need can cause you troubles that you didn’t expect.”1

The Interface Segregation Principle provides an answer to this problem. It states that broad interfaces
should be split into specific ones so that clients only know the methods they need. If we apply this to
our outgoing ports, we might get a result as shown in Figure 7.3.

Figure 7.3 – Applying the Interface Segregation Principle removes unnecessary

dependencies and makes the existing dependencies more visible

Each service now only depends on the methods it actually needs. What’s more, the names of the ports
clearly state what they’re about. In a test, we no longer have to think about which methods to mock
since most of the time, there is only one method per port.

Having very narrow ports such as these makes coding a plug-and-play experience. When working on
a service, we just “plug in” the ports we need. There is no baggage to carry around.

Of course, the “one method per port” approach may not be applicable in all circumstances. There
may be groups of database operations that are so cohesive and often used together that we may want
to bundle them together in a single interface.

Slicing persistence adapters
In the preceding figures, we saw a single persistence adapter class that implements all persistence
ports. There is no rule, however, that forbids us to create more than one persistence adapter, as long
as all persistence ports are implemented.

1. Interface Segregation Principle: Clean Architecture by Robert C. Martin, page 86.

Slicing persistence adapters 59

We might choose, for instance, to implement one persistence adapter per group of domain entities
for which we need persistence operations (or aggregate in Domain-Driven Design lingo), as shown
in Figure 7.4.

Figure 7.4 – We can create multiple persistence adapters, one for each aggregate

This way, our persistence adapters are automatically sliced along the seams of the domain that we
support with persistence functionality.

We might split our persistence adapters into even more classes – for instance, when we want to
implement a couple of persistence ports using JPA (or another object-relational mapper) and some
other ports using plain SQL for better performance. We might then create one JPA adapter and one
plain SQL adapter, each implementing a subset of the persistence ports.

Remember that our domain code doesn’t care about which class ultimately fulfills the contracts
defined by the persistence ports. We’re free to do as we see fit in the persistence layer, as long as all
ports are implemented.

The one persistence adapter per aggregate approach is also a good foundation to separate the persistence
needs for multiple bounded contexts in the future. Say, after a time, we identify a bounded context
responsible for use cases around billing. Figure 7.5 adds that new domain to the application.

Implementing a Persistence Adapter60

Figure 7.5 – If we want to create hard boundaries between bounded contexts,

each bounded context should have its own persistence adapter(s)

Each bounded context has its own persistence adapter (or potentially more than one, as described
previously). The term “bounded context” implies boundaries, which means that services of the
account context may not access persistence adapters of the billing context, and vice versa. If one
context needs something of the other, they can call each other’s domain services, or we can introduce
an application service as a coordinator between the bounded contexts. We will talk more about this
topic in Chapter 13, Managing Multiple Bounded Contexts.

An example with Spring Data JPA
Let’s have a look at a code example that implements AccountPersistenceAdapter from the
preceding figures. This adapter will have to save and load accounts to and from the database. We
already saw the Account entity in Chapter 5, Implementing a Use Case, but here is its skeleton again
for reference:

An example with Spring Data JPA 61

Note
The Account class is not a simple data class with getters and setters but instead tries to be as
immutable as possible. It only provides factory methods that create an account in a valid state,
and all mutating methods do some validation, such as checking the account balance before
withdrawing money, so that we cannot create an invalid domain model.

Implementing a Persistence Adapter62

We’ll use Spring Data JPA to talk to the database, so we also need @Entity-annotated classes to
represent the database state of an account:

The state of an account consists merely of an ID at this stage. Later, additional fields such as a user
ID may be added. More interesting is ActivityJpaEntity, which contains all the activities of a
specific account. We could have connected ActivitiyJpaEntity with AccountJpaEntity
via JPA’s @ManyToOne or @OneToMany annotations to mark the relation between them, but we
have opted to leave this out for now, as it adds side effects to the database queries. In fact, at this

An example with Spring Data JPA 63

stage, it would probably be easier to use a simpler object-relational mapper than JPA to implement
the persistence adapter, but we will use it anyway because we think we might need it in the future.2

Next, we will use Spring Data to create repository interfaces that provide basic Create, Read, Update,
and Delete (CRUD) functionality out of the box, as well as custom queries to load certain activities
from the database:

2. Java Persistence API: does that sound familiar to you? You choose JPA as an OR mapper because
it’s the thing people use for this problem. A couple of months into development, you curse eager
and lazy loading and the caching features, wishing for something simpler. JPA is a great tool, but
for many problems, simpler solutions may be, well, simpler. Take a look at Spring Data JDBC or
jOOQ as an alternative.

Implementing a Persistence Adapter64

Spring Boot will automatically find these repositories, and Spring Data will do its magic to provide an
implementation behind the repository interface that will actually talk to the database.

Having JPA entities and repositories in place, we can implement the persistence adapter that provides
the persistence functionality to our application:

An example with Spring Data JPA 65

The persistence adapter implements two ports that are needed by the application, LoadAccountPort
and UpdateAccountStatePort.

To load an account from the database, we load it from AccountRepository and then load the
activities of this account for a certain time window through ActivityRepository.

To create a valid Account domain entity, we also need the balance the account had before the start of
this activity window, so we get the sum of all withdrawals and deposits of this account from the database.

Finally, we map all this data to an Account domain entity and return it to the caller.

To update the state of an account, we iterate over all activities of the Account entity and check whether they
have IDs. If they don’t, they are new activities, which we then persist through ActivityRepository.

In the scenario described previously, we have a two-way mapping between the Account and
Activity domain models and the AccountJpaEntity and ActivityJpaEntity database
models. Why do we make the effort to map back and forth? Couldn’t we just move the JPA annotations
to the Account and Activity classes and directly store them as entities in the database?

Implementing a Persistence Adapter66

Such a no-mapping strategy may be a valid choice, as we’ll see in Chapter 9, Mapping between Boundaries,
when we talk about mapping strategies. However, JPA then forces us to make compromises in the
domain model. For instance, JPA requires entities to have a no-args constructor. Alternatively, it might
be that in the persistence layer, a “many-to-one” relationship makes sense from a performance point
of view, but in the domain model, we want this relationship to be the other way around.

So, if we want to create a rich domain model without making compromises to the persistence layer,
we’ll have to map between the domain model and the persistence model.

What about database transactions?
We have not touched on the topic of database transactions yet. Where do we put our transaction boundaries?

A transaction should span all write operations to the database that are performed within a certain use
case, ensuring that all those operations can be rolled back together if one of them fails.

Since the persistence adapter doesn’t know which other database operations are part of the same use
case, it cannot decide when to open and close a transaction. We have to delegate this responsibility
to the services that orchestrate the calls to the persistence adapter.

The easiest way to do this with Java and Spring is to add the @Transactional annotation to the
domain service classes so that Spring will wrap all public methods with a transaction:

But doesn’t the @Transactional annotation introduce a dependency on a framework that we
don’t want to have in our precious domain code? Well, yes, we have a dependency on the annotation,
but we get transaction handling for that dependency! We wouldn’t want to build our own transaction
mechanism just for the code to stay “pure.”

How does this help me build maintainable software?
Building a persistence adapter that acts as a plugin to the domain code frees the domain code from
persistence details so that we can build a rich domain model.

How does this help me build maintainable software? 67

Using narrow port interfaces, we’re flexible to implement one port in one way and another port in
another way, perhaps even with a different persistence technology, without the application noticing.
We can even switch out the complete persistence layer, as long as the port contracts are obeyed.3

Now that we’ve built a domain model and some adapters, let’s take a look at how we can test that
they’re really doing what we expect them to do.

3. Switching out the persistence layer: while I have seen it happen a few times (and for good reasons),
the probability of having to switch out the whole persistence layer is usually rather low. Even then,
having dedicated persistence ports is still worthwhile, because it increases testability. We can easily
implement an in-memory persistence adapter to be used in tests, for example.

8
Testing Architecture Elements

In many projects I’ve witnessed, especially projects that have been around for a while and have rotated
in and out many developers over time, automated testing is a mystery. Everyone writes tests as they
see fit because it’s required by some dusty rule documented in a wiki, but no one can answer targeted
questions about a team’s testing strategy.

This chapter provides a testing strategy for a Hexagonal Architecture. For each element of our
architecture, we’ll discuss the type of test to cover it.

The test pyramid
Let’s start the discussion about testing along the lines of the test pyramid1 in Figure 8.1, which is a
metaphor that helps us to decide on how many tests of which type we should aim for.

Figure 8.1 – According to the test pyramid, we should create many cheap tests and fewer expensive ones

1 The test pyramid can be traced back to Mike Cohn’s book Succeeding with Agile from 2009.

Testing Architecture Elements70

The basic statement of the pyramid is that we should have high coverage of fine-grained tests that are
cheap to build, easy to maintain, fast-running, and stable. These are unit tests that verify that a single
unit (usually a class) works as expected.

Once tests combine multiple units and go across unit boundaries, architectural boundaries, or even
system boundaries, they tend to become more expensive to build, slower to run, and more brittle
(failing due to some configuration error instead of a functional error). The pyramid tells us that the
more expensive those tests become, the less we should aim for high coverage of these tests because,
otherwise, we’ll spend too much time building tests instead of new functionality.

Depending on the context, the test pyramid is often shown with different layers. Let’s take a look at
the layers I chose to discuss testing our Hexagonal Architecture.

Note
The definitions of unit test, integration test, and system test vary with context. In one project,
they may mean a different thing than in another.

The following are interpretations of different test types as we’ll use them in this chapter:

• Unit tests are the base of the pyramid. A unit test usually instantiates a single class and tests
its functionality through its interface. If the class under test has non-trivial dependencies on
other classes, we can replace those dependencies with mock objects that simulate the behavior
of the real objects, as required by the test.

• Integration tests form the next layer of the pyramid. These tests instantiate a network of
multiple units and verify whether this network works as expected, by sending some data into
it through the interface of an entry class. In our interpretation, integration tests will cross the
boundary between two layers, so the network of objects is not complete or must work against
mocks at some point.

• System tests, finally, spin up the whole network of objects that make up our application and
verify whether a certain use case works as expected through all the layers of the application.

Above the system tests, there might be a layer of end-to-end tests that include the UI of the application.
We’ll not consider end-to-end tests here since we’re only discussing a backend architecture in this book.

Note
The test pyramid, like any other guidance, is not a silver bullet for your test strategy. It’s a
good default, but if, in your context, you can create and maintain integration or system tests
cheaply, you can and should create more of those tests, as they are less vulnerable to changes
in implementation details than unit tests. This would make the sides of the pyramid steeper,
or maybe even invert them.

Now that we have defined some test types, let’s see which type of test fits best with each of the layers
of our Hexagonal Architecture.

Testing a domain entity with unit tests 71

Testing a domain entity with unit tests
We will start by looking at a domain entity at the center of our architecture. Let’s recall the Account
entity from Chapter 5, Implementing a Use Case. The state of Account consists of a balance an
account had at a certain point in the past (the baseline balance) and a list of deposits and withdrawals
(activities) made since then.

We now want to verify that the withdraw() method works as expected:

The preceding test is a plain unit test that instantiates an Account in a specific state, calls its
withdraw() method, and verifies that the withdrawal was successful and had the expected side
effects on the state of the Account object under test.

The test is rather easy to set up, is easy to understand, and runs very fast. Tests don’t come much
simpler than this. Unit tests such as these are our best bet to verify the business rules encoded within
our domain entities. We don’t need any other type of test since domain entity behavior has little to
no dependencies on other classes.

Testing Architecture Elements72

Testing a use case with unit tests
Going a layer outward, the next architecture element to test is the use cases implemented as domain
services. Let’s look at a test for SendMoneyService, discussed in Chapter 5, Implementing a Use
Case. The Send money use case withdraws money from the source account and deposits it into the
target account. We want to verify that everything works as expected when the transaction succeeds:

To make the test a little more readable, it’s structured into given/when/then sections, which are
commonly used in Behavior-Driven Development.

Testing a web adapter with integration tests 73

In the given section, we create the source and target Account objects and put them into the correct
state with some methods whose names start with given...(). We also create a SendMoneyCommand
object to act as input to the use case. In the when section, we simply call the sendMoney() method
to invoke the use case. The then section asserts that the transaction was successful and verifies that
certain methods have been called on the source and target Account objects.

Under the hood, the test makes use of the Mockito library to create mock objects in the given...()
methods.2 Mockito also provides the then() method to verify whether a certain method has been called
on a mock object.

Note
If used too much, mocking can give a false sense of security. Mocks may behave differently
from the real thing, causing issues in production even though our tests are green. If you can
use real objects instead of mocks without too much extra effort, you should probably do it. In
the preceding example, we might choose to work with real Account objects instead of mocks,
for example. This shouldn’t prove much more effort because the Account class is a domain
model class that doesn’t have any complicated dependencies on other classes.

Since the use case service under test is stateless, we cannot verify a certain state in the then section.
Instead, the test verifies that the service has interacted with certain methods on its (mocked)
dependencies. This means that the test is vulnerable to changes in the structure of the code under
test and not only its behavior. This, in turn, means that there is a higher chance that the test has to be
modified if the code under test is refactored.

With this in mind, we should think hard about which interactions we actually want to verify in the
test. It might be a good idea not to verify all interactions as we did in the preceding test and instead
focus on the most important ones. Otherwise, we have to change the test with every single change to
the class under test, undermining the value of the test.

While this test is still a unit test, it borders on being an integration test because we test the interaction
on dependencies. However, it’s easier to create and maintain than a full-blown integration test because
we’re working with mocks and don’t have to manage the real dependencies.

Testing a web adapter with integration tests
Moving outward another layer, we arrive at our adapters. Let’s discuss testing a web adapter.

Recall that a web adapter takes input, for example, in the form of JSON strings, via HTTP, might do
some validation on it, maps the input to the format a use case expects, and then passes it to that use case.
It then maps the result of the use case back to JSON and returns it to the client via an HTTP response.

2 Mockito: https://site.mockito.org/.

https://site.mockito.org/

Testing Architecture Elements74

In the test for a web adapter, we want to make certain that all those steps work as expected:

The preceding test is a standard integration test for a web controller named SendMoneyController,
built with the Spring Boot framework. In the testSendMoney() method, we send a mock HTTP
request to the web controller to trigger a transaction from one account to another.

With the isOk() method, we then verify that the status of the HTTP response is 200, and we verify
that the mocked use case class has been called.

Most responsibilities of a web adapter are covered by this test.

We’re not actually testing via the HTTP protocol since we’re mocking that away with the MockMvc
object. We trust that the framework translates everything to and from HTTP properly. There’s no
need to test the framework.

Testing a persistence adapter with integration tests 75

However, the whole path from mapping the input from JSON into a SendMoneyCommand object
is covered. If we build the SendMoneyCommand object as a self-validating command, as explained
in Chapter 5, Implementing a Use Case, we even make sure that this mapping produces syntactically
valid input to the use case. Also, we have verified that the use case is actually called and that the HTTP
response has the expected status.

So, why is this an integration test and not a unit test? Even though it seems that we only test a single
web controller class in this test, there’s a lot more going on under the hood. With the @WebMvcTest
annotation, we tell Spring to instantiate a whole network of objects that is responsible for responding
to certain request paths, mapping between Java and JSON, validating HTTP input, and so on. And
in this test, we verify that our web controller works as a part of this network.

Since the web controller is heavily coupled to the Spring framework, it makes sense to test it when
integrated into this framework instead of testing it in isolation. If we tested the web controller with a
plain unit test, we’d lose coverage of all the mapping, validation, and HTTP stuff, and we could never be
sure whether it actually worked in production, where it’s just a cog in the mechanics of the framework.

Testing a persistence adapter with integration tests
For a similar reason, it makes sense to cover persistence adapters with integration tests instead of unit
tests since we not only want to verify the logic within the adapter but also the mapping into the database.

We want to test the persistence adapter we built in Chapter 7, Implementing a Persistence Adapter.
The adapter has two methods, one to load an Account entity from the database and another to save
new account activities to the database:

Testing Architecture Elements76

With @DataJpaTest, we tell Spring to instantiate the network of objects that are needed for database
access, including our Spring Data repositories that connect to the database. We use the @Import
annotation to import some additional configurations to make sure that certain objects are added to
that network. These objects are needed by the adapter under test to map incoming domain objects
into database objects, for instance.

Testing main paths with system tests 77

In the test for the loadAccount() method, we put the database into a certain state using an SQL
script with the name AccountPersistenceAdapterTest.sql. Then, we simply load the
account through the adapter API and verify that it has the state that we would expect it to have, given
the database state in the SQL script.

The test for updateActivities() goes the other way around. We create an Account object
with a new account activity and pass it to the adapter to persist. Then, we check whether the activity
has been saved to the database through the API of ActivityRepository.

An important aspect of these tests is that we’re not mocking away the database. The tests actually hit
the database. Had we mocked the database away, the tests would still cover the same lines of code,
producing the same high coverage of lines of code. However, despite this high coverage, the tests
would still have a rather high chance of failing in a setup with a real database, due to errors in SQL
statements or unexpected mapping errors between database tables and Java objects.

Note that, by default, Spring will spin up an in-memory database to use during tests. This is very practical,
as we don’t have to configure anything, and the tests will work out of the box. However, since this
in-memory database is most probably not the database we use in production, there is still a significant
chance of something going wrong with the real database even when the tests work perfectly against
the in-memory database. Database vendors love to implement their own flavor of SQL, for instance.

For this reason, persistence adapter tests should run against the real database. Libraries such as
Testcontainers are a great help in this regard, spinning up a Docker container with a database on demand.3

Running against the real database has the added benefit that we don’t have to take care of two different
database systems. If we use the in-memory database during tests, we might have to configure it in
a certain way, or we might have to create separate versions of database migration scripts for each
database, which is a big hit on the maintainability of our tests.

Testing main paths with system tests
At the top of the pyramid are what I call system tests. A system test starts up the whole application
and runs requests against its API, verifying that all our layers work in concert.

Hexagonal Architecture is all about creating a well-defined boundary between our application and
the outside world. Doing so makes our application boundaries very testable by design. To test our
application locally, we just need to swap out the adapters with mock adapters, as outlined in Figure 8.2.

3 Testcontainers: https://www.testcontainers.org/.

https://www.testcontainers.org/

Testing Architecture Elements78

Figure 8.2 – By replacing the adapters with mocks, we can run and test

our application without dependencies on the outside world

On the left, we can replace the input adapters with a test driver that calls the application’s input ports
to interact with it. The test driver can implement certain test scenarios that simulate user behavior
during an automated test.

On the right, we can replace the output adapters with mock adapters that simulate the behavior of a
real adapter and return previously specified values.4

This way, we can create “application tests” that cover the “hexagon” of our application from the input
ports, through our domain services and entities, to the output ports.

I would argue, however, that, instead of writing “application tests” that mock away the input and output
adapters, we should aim to write “system tests” that cover the whole path from a real input adapter
to a real output adapter. These tests uncover many subtle bugs that we wouldn’t catch if we mocked
away the input and output adapters. These bugs include mapping errors between the layers, or simply
wrong expectations between the application and the outside systems it’s talking to.

A “system test” such as this requires that we can spin up the real external systems our application
talks to in a test setup.

4 Mocks: depending on who you ask and what you’re doing in your test, instead of calling it a “mock”,
you should call it a “fake” or “stub”. Each term seems to have a slightly different semantic, but in
the end, they all replace a “real” thing with a “mock” thing to be used in tests. I’m usually a fan of
naming things just right, but in this case, I don’t see value in discussing the nuances between where
a mock ends and a stub starts. Or is it the other way around?

Testing main paths with system tests 79

On the input side, we need to make sure that we can make real HTTP calls to our application, for
example, so that the requests go through our real web adapter. That should be rather easy, however,
since we just need to start our application locally and let it listen to HTTP calls like it would in a
production environment.

On the output side, we need to spin up a real database, for example, so that our tests go through the
real persistence adapter. Most databases make that easy today by providing a Docker image that we
can spin up locally. If our application talks to a third-party system that is not a database, we should
still try to find (or create) a Docker image that contains that system so we can test our application
against it by spinning up a local Docker container.

If no Docker image is available for a given external system, we can write a custom mock output adapter
that simulates the real thing. Hexagonal Architecture makes it easy for us to replace the real output
adapter with this mock for the purpose of our tests. And if a Docker image becomes available, we can
switch to the real output adapter without too much effort.

There are valid reasons to test against mock adapters instead of real adapters, of course. If our application
runs in multiple profiles, for example, and each profile uses a different (real) input or output adapter
implemented against the same input and output ports, we might want to have tests that isolate errors
in the application from errors in the adapters. Application tests that cover only our hexagon are exactly
the tool we want, then. However, for a standard web application with a database, where the input and
output adapters are rather static, we probably want to focus on system tests instead.

What would a system test look like? In a system test for the Send money use case, we send an HTTP
request to the application and validate the response as well as the new balance of the account.

In the Java and Spring world, this is what it might look like:

Testing Architecture Elements80

With @SpringBootTest, we tell Spring to start up the whole network of objects that makes up
the application. We also configure the application to expose itself on a random port.

In the test method, we simply create a request, send it to the application, and then check the response
status and the new balance of the accounts.

We use a TestRestTemplate to send the request, and not MockMvc, as we did earlier in the
web adapter test. This means that the test makes real HTTP calls, bringing the test a little closer to a
production environment.

How much testing is enough? 81

Just as we go over real HTTP, we go through the real output adapters. In our case, this is only a
persistence adapter that connects the application to a database. In an application that talks to other
systems, we would have additional output adapters in place. It’s not always feasible to have all these
third-party systems up and running, even for a system test, so we might mock them away, after all.
Our Hexagonal Architecture makes this as easy as it can be for us since we only have to stub out a
couple of output port interfaces.

Note that I went out of my way to make the test as readable as possible. I hid every bit of ugly logic
within helper methods. These methods now form a domain-specific language that we can use to
verify the state of things.

While a domain-specific language such as this is a good idea in any type of test, it’s even more
important in system tests. System tests simulate the real users of the application much better than unit
or integration tests can, so we can use them to verify the application from the viewpoint of the user.
This is much easier with a suitable vocabulary at hand. This vocabulary also enables domain experts,
who are best suited to embody a user of the application and probably aren’t programmers, to reason
about the tests and give feedback. There are whole libraries for behavior-driven development, such
as JGiven5, that provide a framework to create a vocabulary for your tests.

If we create unit and integration tests as described in the previous sections, the system tests will cover
a lot of the same code. Do they even provide any additional benefits? Yes, they do. Usually, they flush
out other types of bugs than the unit and integration tests do. Some mapping between the layers could
be off, for instance, which we would not notice with the unit and integration tests alone.

System tests play out their strength best if they combine multiple use cases to create scenarios. Each
scenario represents a certain path a user might typically take through the application. If the most
important scenarios are covered by passing system tests, we can assume that we haven’t broken them
with our latest modifications and are ready to ship.

How much testing is enough?
A question many project teams I’ve been part of couldn’t answer is how much testing we should do.
Is it enough if our tests cover 80% of our lines of code? Should it be higher than that?

Line coverage is a bad metric to measure test success. Any goal other than 100% is completely
meaningless because important parts of the code base might not be covered at all.6 And even at 100%,
we still can’t be sure that every bug has been squashed.

I suggest measuring test success by how comfortable we feel shipping the software. If we trust the
tests enough to ship after having executed them, we’re good. The more often we ship, the more trust
we have in our tests. If we only ship twice a year, no one will trust the tests because they only prove
themselves twice a year.

5 JGiven: https://jgiven.org/.
6 Test coverage: if you want to read more about 100% test coverage, have a look at my article with the

tongue-in-cheek title Why you should enforce 100% code coverage at https://reflectoring.
io/100-percent-test-coverage/.

https://jgiven.org/
https://reflectoring.io/100-percent-test-coverage/
https://reflectoring.io/100-percent-test-coverage/

82

This requires a leap of faith the first couple of times we ship, but if we make it a priority to fix and
learn from bugs in production, we’re on the right track. For each production bug, we should ask the
question, “Why didn’t our tests catch this bug?”, document the answer, and then add a test that covers
it. Over time, this will make us comfortable with shipping, and the documentation will even provide
a metric for gauging our improvement over time.

It helps, however, to start with a strategy that defines the tests we should create. One such strategy for
our Hexagonal Architecture is this:

• While implementing a domain entity, cover it with a unit test.

• While implementing a use case service, cover it with a unit test.

• While implementing an adapter, cover it with an integration test.

• Cover the most important paths a user can take through the application with a system test.

Note the phrase while implementing – when tests are done during the development of a feature and
not after, they become a development tool and no longer feel like a chore.

However, if we have to spend an hour fixing tests every time we add a new field, we’re doing something
wrong. Probably, our tests are too vulnerable to structural changes in the code, and we should look at
how to improve that. Tests lose their value if we have to modify them for each refactoring.

How does this help me build maintainable software?
The Hexagonal Architecture style cleanly separates domain logic and outward-facing adapters. This
helps us to define a clear testing strategy that covers the central domain logic with unit tests and the
adapters with integration tests.

The input and output ports provide very visible mocking points in tests. For each port, we can decide
to mock it or use the real implementation. If the ports are each very small and focused, mocking them
is a breeze instead of a chore. The fewer methods a port interface provides, the less confusion there
is about which of the methods we have to mock in a test.

If it becomes too much of a burden to mock things away, or if we don’t know which kind of test we
should use to cover a certain part of the code base, that's a warning sign. In this regard, our tests have
the additional responsibility of being a canary – to warn us about flaws in the architecture and steer
us back on the path to creating a maintainable code base.

So far, we have talked about our use cases and our adapters mostly in isolation. How do they communicate
with each other? In the next chapter, we’ll take a look at some strategies for how to design data models
that make up the common language between them.

9
Mapping between Boundaries

In the previous chapters, we’ve discussed the web, application, domain, and persistence layers and
what each of those layers contributes to implementing a use case.

We have, however, barely touched on the dreaded and omnipresent topic of mapping between the
models of each layer. I bet you’ve had a discussion at some point about whether to use the same model
in two layers in order to avoid implementing a mapper.

The argument might have gone something like this:

Pro-mapping developer:

“If we don’t map between layers, we have to use the same model in both layers, which means that the
layers will be tightly coupled!”

Contra-mapping developer:

“But if we do map between layers, we produce a lot of boilerplate code, which is overkill for many use
cases since they’re only doing CRUD and have the same model across layers anyways!”

As is often the case in discussions such as this, there’s truth to both sides of the argument. Let’s discuss
some mapping strategies with their pros and cons and see whether we can help these developers make
a decision.

Mapping between Boundaries84

The “No Mapping” strategy
The first strategy is actually not mapping at all.

Figure 9.1 – If the port interfaces use the domain model as the input and

output model, we can choose not to map between layers

Figure 9.1 shows the components that are relevant for the Send Money use case from our BuckPal
example application.

In the web layer, the web controller calls the SendMoneyUseCase interface to execute the use case.
This interface takes an Account object as an argument. This means that both the web and application
layers need access to the Account class – both are using the same model.

On the other side of the application, we have the same relationship between the persistence and
application layer.

Since all layers use the same model, we don’t need to implement mapping between them.

But what are the consequences of this design?

The web and persistence layers may have special requirements for their models. If our web layer
exposes its model via REST, for instance, the model classes might need some annotations that define
how to serialize certain fields into JSON. The same is true for the persistence layer if we’re using an
object-relational mapping (ORM) framework, which might require some annotations that define
the database mapping. The framework might also require the class to follow a certain contract.

In the example, all of those special requirements have to be dealt with in the Account domain
model class, even though the domain and application layers are not interested in them. This violates
the Single Responsibility Principle since the Account class has to be changed for reasons related to
the web, application, and persistence layers.

Aside from the technical requirements, each layer might require certain custom fields on the Account
class. This might lead to a fragmented domain model with certain fields only relevant in one layer.

Does this mean, though, that we should never, ever implement a “no mapping” strategy? Certainly
not. Even though it might feel dirty, a “no mapping” strategy can be perfectly valid.

The “Two-Way” mapping strategy 85

Consider a simple CRUD use case. Do we really need to map the same fields from the web model into
the domain model and from the domain model into the persistence model? I’d say we don’t.

And what about those JSON or ORM annotations on the domain model? Do they really bother us?
Even if we have to change an annotation or two in the domain model if something changes in the
persistence layer, so what?

As long as all layers need exactly the same information in exactly the same structure, a “no mapping”
strategy is a perfectly valid option.

As soon as we’re dealing with web or persistence issues in the application or domain layer (aside from
annotations, perhaps), however, we should move to another mapping strategy.

There is a lesson for the two developers from the introduction here: even though we have decided on
a certain mapping strategy in the past, we can change it later.

In my experience, many use cases start their life as simple CRUD use cases. Later, they might grow
into a full-fledged business use case with rich behavior and validations that justify a more expensive
mapping strategy. Or they might forever keep their CRUD status, in which case, we’re glad that we
haven’t invested in a different mapping strategy.

The “Two-Way” mapping strategy
A mapping strategy where each layer has its own model is what I call the “Two-Way” mapping strategy,
as outlined in Figure 9.2.

Figure 9.2 – With each adapter having its own model, the adapters are

responsible for mapping their model into the domain model and back

Each layer has its own model, which may have a structure that is completely different from the
domain model.

The web layer maps the web model into the input model that is expected by the incoming ports. It
also maps domain objects returned by the incoming ports back into the web model.

The persistence layer is responsible for a similar mapping between the domain model, which is used
by the outgoing ports, and the persistence model.

Both layers map in two directions, hence the name “Two-Way” mapping.

Mapping between Boundaries86

With each layer having its own model, it can modify its own model without affecting the other layers
(as long as the contents are unchanged). The web model can have a structure that allows for optimal
presentation of the data. The domain model can have a structure that best allows for implementing the
use cases. And the persistence model can have the structure needed by an OR-mapper for persisting
objects to a database.

This mapping strategy also leads to a clean domain model that is not dirtied by web or persistence
concerns. It does not contain JSON or ORM mapping annotations. The Single Responsibility Principle
is satisfied.

Another bonus of “Two-Way” mapping is that, after the “No Mapping” strategy, it’s conceptually
the simplest mapping strategy. The mapping responsibilities are clear: the outer layers/adapters map
into the model of the inner layers and back. The inner layers only know their own model and can
concentrate on the domain logic instead of mapping.

As with every mapping strategy, the “Two-Way” mapping also has its drawbacks.

First of all, it usually ends up in a lot of boilerplate code. Even if we use one of the many mapping
frameworks out there to reduce the amount of code, implementing the mapping between models
usually takes up a good portion of our time. This is partly due to the fact that debugging mapping
logic is a pain – especially when using a mapping framework that hides its inner workings behind a
layer of generic code and reflection.

Another potential drawback is that the incoming and outgoing ports use domain objects as input
parameters and return values. The adapters map these into their own model, but this still creates
more coupling between the layers than if we introduce a dedicated “transport model” as in the “full”
mapping strategy we’re going to discuss next.

Just like the “No Mapping” strategy, the “Two-Way” mapping strategy is not a silver bullet. In many
projects, however, this kind of mapping is considered a holy law that we have to comply with throughout
the whole code base, even for the simplest CRUD use cases. This unnecessarily slows down development.

No single mapping strategy should be considered an iron law. Instead, we should decide for each use case.

The “Full” mapping strategy
Another mapping strategy is what I call the “Full” mapping strategy, as outlined in Figure 9.3.

Figure 9.3 – With each operation requiring its own model, the web adapter and application layer

each map their model into the model expected by the operation they want to execute

The “One-Way” mapping strategy 87

This mapping strategy introduces a separate input and output model per operation. Instead of using
the domain model to communicate across layer boundaries, we use a model specific to each operation,
such as SendMoneyCommand, which acts as an input model to the SendMoneyUseCase port in
the figure. We can call those models “commands,” “requests,” or similar.

The web layer is responsible for mapping its input into the command object of the application layer.
Such a command makes the interface to the application layer very explicit, with little room for
interpretation. Each use case has its own command with its own fields and validations. There’s no
guessing involved as to which fields should be filled and which fields would be better left empty since
they would otherwise trigger a validation we don’t want for our current use case.

The application layer is then responsible for mapping the command object into whatever it needs to
modify the domain model according to the use case.

Naturally, mapping from one layer into many different commands requires even more mapping
code than mapping between a single web model and a domain model. This mapping, however, is
significantly easier to implement and maintain than a mapping that has to handle the needs of many
use cases instead of only one.

I don’t advocate this mapping strategy as a global pattern. It plays out its advantages best between the
web layer (or any other incoming adapter) and the application layer to clearly demarcate the state-
modifying use cases of the application. I would not use it between the application and persistence
layers due to the mapping overhead.

Usually, I would restrict this kind of mapping to the input model of operations and simply use a
domain object as the output model. SendMoneyUseCase might then return an Account object
with the updated balance, for instance.

This shows that the mapping strategies can and should be mixed. No single mapping strategy needs
to be a global rule across all layers.

The “One-Way” mapping strategy
There is yet another mapping strategy with another set of pros and cons: the “One-Way” strategy
visualized in Figure 9.4.

Figure 9.4 – With the domain model and the adapter models implementing the same “state”

interface, each layer only needs to map objects it receives from other layers one way

Mapping between Boundaries88

In this strategy, the models in all layers implement the same interface, which encapsulates the state
of the domain model by providing getter methods on the relevant attributes.

The domain model itself can implement a rich behavior, which we can access from our services within the
application layer. If we want to pass a domain object to the outer layers, we can do so without mapping
since the domain object implements the state interface expected by the incoming and outgoing ports.

The outer layers can then decide whether they can work with the interface or whether they need to
map it into their own model. They cannot inadvertently modify the state of the domain object since
the modifying behavior is not exposed by the state interface.

Objects we pass from an outer layer into the application layer also implement this state interface. The
application layer then has to map it into the real domain model in order to get access to its behavior.
This mapping plays well with the Domain-Driven Design concept of a factory. A factory in terms
of DDD is responsible for reconstituting a domain object from a certain state, which is exactly what
we’re doing.1

The mapping responsibility is clear: if a layer receives an object from another layer, we map it into
something the layer can work with. Thus, each layer only maps one way, making this a “One-Way”
mapping strategy.

With the mapping distributed across layers, however, this strategy is conceptually more difficult than
the other strategies.

This strategy plays out its strength best if the models across the layers are similar. For read-only
operations, for instance, the web layer then might not need to map into its own model at all since the
state interface provides all the information it needs.

When to use which mapping strategy?
This is the million-dollar question, isn’t it?

The answer is the usual, dissatisfying it depends.

Since each mapping strategy has different advantages and disadvantages, we should resist the urge
to define a single strategy as a hard-and-fast global rule for the whole code base. This goes against
our instincts, as it feels untidy to mix patterns within the same code base. But knowingly choosing a
pattern that is not the best pattern for a certain job, just to serve our sense of tidiness, is irresponsible,
plain and simple.

1 Factory: Domain Driven Design by Eric Evans, Addison-Wesley, 2004, p. 158.

How does this help me build maintainable software? 89

Also, as software evolves over time, the strategy that was the best for the job yesterday might not still
be the best for the job today. Instead of starting with a fixed mapping strategy and keeping it over
time – no matter what – we might start with a simple strategy that allows us to quickly evolve the code
and later move to a more complex one that helps us to better decouple the layers.

In order to decide which strategy to use when, we need to agree upon a set of guidelines within the
team. These guidelines should answer the question of which mapping strategy should be the first
choice in which situation. They should also answer why they are the first choice so that we’re able to
evaluate whether those reasons still apply after some time.

We might, for example, define different mapping guidelines to modifying use cases than we do to
queries. Also, we might want to use different mapping strategies between the web and application
layers and between the application and persistence layers.

Guidelines for these situations might look like this:

• If we’re working on a modifying use case, the “Full” mapping strategy is the first choice between
the web and application layer, in order to decouple the use cases from one another. This gives
us clear per-use-case validation rules and we don’t have to deal with fields we don’t need in a
certain use case.

• If we’re working on a modifying use case, the “No Mapping” strategy is the first choice between the
application and persistence layer in order to be able to quickly evolve the code without mapping
overhead. As soon as we have to deal with persistence issues in the application layer, however,
we move to a “Two-Way” mapping strategy to keep persistence issues in the persistence layer.

• If we’re working on a query, the “No Mapping” strategy is the first choice between the web
and application layer and between the application and persistence layer in order to be able to
quickly evolve the code without mapping overhead. As soon as we have to deal with web or
persistence issues in the application layer, however, we move to a “Two-Way” mapping strategy
between the web and application layer or the application layer and persistence layer, respectively.

In order to successfully apply guidelines like these, they must be present in the minds of the developers.
So, the guidelines should be discussed and revised continuously as a team effort.

How does this help me build maintainable software?
Incoming and outgoing ports act as gatekeepers between the layers of our application. They define
how the layers communicate with each other, and how we map models across layers.

With narrow ports in place for each use case, we can choose different mapping strategies for different
use cases, and even evolve them over time without affecting other use cases, thus selecting the best
strategy for a certain situation at a certain time.

Mapping between Boundaries90

Selecting a different mapping strategy for each use case is harder and requires more communication
than simply using the same mapping strategy for all situations, but it will reward the team with a code
base that does just what it needs to do and is easier to maintain, as long as the mapping guidelines
are known.

Now that we know which components make up our application and how they communicate, we can
explore how to assemble a working application out of the different components.

10
Assembling the Application

Now that we have implemented some use cases, web adapters, and persistence adapters, we need to
assemble them into a working application. As discussed in Chapter 4, Organizing Code, we rely on a
dependency injection mechanism to instantiate our classes and wire them together at start-up time.
In this chapter, we’ll discuss some approaches to doing this with plain Java and the Spring and Spring
Boot frameworks.

Why even care about assembly?
Why aren’t we just instantiating the use cases and adapters when and where we need them? Because
we want to keep the code dependencies pointed in the right direction. Remember: all dependencies
should point inward, toward the domain code of our application, so that the domain code doesn’t
have to change when something in the outer layers changes.

If a use case needs to call a persistence adapter and just instantiates it itself, we have created a code
dependency in the wrong direction.

This is why we created outgoing port interfaces. The use case only knows the interface and is provided
an implementation of this interface at runtime.

A nice side effect of this programming style is that the code we’re creating is much easier to test. If we
can pass all objects a class needs into its constructor, we can choose to pass in mocks instead of the
real objects, which makes it easy to create an isolated unit test for the class.

So, who’s responsible for creating our object instances? And how do we do it without violating the
Dependency Rule?

The answer is that there must be a configuration component that is neutral to our architecture and
that has a dependency to all classes in order to instantiate them, as shown in Figure 10.1.

Assembling the Application92

Figure 10.1 – A neutral configuration component may access all classes in order to instantiate them

In the Clean Architecture introduced in Chapter 3, Inverting Dependencies, this configuration component
would be in the outermost circle, which may access all inner layers, as defined by the Dependency Rule.

The configuration component is responsible for assembling a working application from the parts we
provided. It must do the following:

• Create web adapter instances.

• Ensure that HTTP requests are actually routed to the web adapters.

• Create use case instances.

• Provide web adapters with use case instances.

• Create persistence adapter instances.

• Provide use cases with persistence adapter instances.

• Ensure that the persistence adapters can actually access the database.

Besides that, the configuration component should be able to access certain sources of configuration
parameters, such as configuration files or command-line parameters. During application assembly, the
configuration component then passes these parameters on to the application components to control
behavior such as which database to access or which server to use to send emails.

Assembling via plain code 93

These are a lot of responsibilities (read: reasons to change). Aren’t we violating the Single Responsibility
Principle here? Yes, we are, but if we want to keep the rest of the application clean, we need an outside
component that takes care of the wiring. And this component has to know all the moving parts to
assemble them into a working application.

Assembling via plain code
There are several ways to implement a configuration component responsible for assembling the
application. If we’re building an application without the support of a dependency injection framework,
we can create such a component with plain code:

This code snippet is a simplified example of how such a configuration component might look. In Java,
an application is started from the main method. Within this method, we instantiate all the classes we
need, from the web controller to the persistence adapter, and wire them together.

Finally, we call the mystic method startProcessingWebRequests(), which exposes the web
controller via HTTP.1 The application is then ready to process requests.

1 The method startProcessingWebRequests()is just a placeholder for any bootstrapping
logic that is necessary to expose our web adapters via HTTP. We don’t really want to implement
this ourselves. In a real-world application, a framework does that for us.

Assembling the Application94

This plain code approach is the most basic way of assembling an application. It has some
drawbacks, however:

• First of all, the preceding code is for an application that has only a single web controller, use
case, and persistence adapter. Imagine how much code like this we would have to produce to
bootstrap a full-blown enterprise application!

• Second, since we’re instantiating all classes ourselves from outside of their packages, those
classes all need to be public. This means, for example, that the Java compiler doesn’t prevent
a use case from directly accessing a persistence adapter since it’s public. It would be nice if we
could avoid unwanted dependencies like this by using package-private visibility.

Luckily, there are dependency injection frameworks that can do the dirty work for us while still
maintaining package-private dependencies. The Spring framework is currently the most popular
one in the Java world. Spring also provides web and database support, among a lot of other things, so
we don’t have to implement the mystic startProcessingWebRequests() method after all.

Assembling via Spring’s classpath scanning
If we use the Spring framework to assemble our application, the result is called the application context.
The application context contains all objects that together make up the application (beans in Java lingo).

Spring offers several approaches to assemble an application context, each having its own advantages and
drawbacks. Let’s start by discussing the most popular (and most convenient) approach: classpath scanning.

With classpath scanning, Spring goes through all classes that are available in a certain slice of the
classpath and searches for classes that are annotated with the @Component annotation. The framework
then creates an object from each of these classes. The classes should have a constructor that takes
all required fields as an argument, like our AccountPersistenceAdapter from Chapter 7,
Implementing a Persistence Adapter:

Assembling via Spring’s classpath scanning 95

In this case, we didn’t even write the constructor ourselves, but instead let the Lombok library do
it for us using the @RequiredArgsConstructor annotation, which creates a constructor that
takes all final fields as arguments.

Spring will find this constructor and search for @Component-annotated classes of the required
argument types and instantiate them in a similar manner to add them to the application context. Once all
required objects are available, it will finally call the constructor of AccountPersistenceAdapter
and add the resulting object to the application context as well.

Classpath scanning is a very convenient way of assembling an application. We only have to sprinkle
some @Component annotations across the code base and provide the right constructors.

We can also create our own stereotype annotation for Spring to pick up. We could, for example, create
a @PersistenceAdapter annotation:

Assembling the Application96

This annotation is meta-annotated with @Component to let Spring know that it should be picked up
during classpath scanning. We could now use @PersistenceAdapter instead of @Component
to mark our persistence adapter classes as parts of our application. With this annotation, we have
made our architecture more evident to people reading the code.

The classpath scanning approach has its drawbacks, however. First, it’s invasive in that it requires us
to add a framework-specific annotation to our classes. If you’re a Clean Architecture hardliner, you’d
say that this is forbidden as it binds our code to a specific framework.

I’d say that in usual application development, a single annotation on a class is not such a big deal and
can easily be refactored, if at all necessary.

In other contexts, however, like when building a library or a framework for other developers to
use, this might be a no-go since we don’t want to encumber our users with a dependency on the
Spring framework.

Another potential drawback of the classpath scanning approach is that magic things might happen.
And by magic, I mean the bad kind of magic causing inexplicable effects that might take days to figure
out if you’re not a Spring expert.

Magic happens because classpath scanning is a very blunt weapon to use for application assembly. We
simply point Spring at the parent package of our application and tell it to go looking for @Component-
annotated classes within this package.

Do you know every single class that exists within your application by heart? Probably not. There are
bound to be some classes that we don’t actually want to have in the application context. Perhaps this
class even manipulates the application context in evil ways, causing errors that are hard to track.

Let’s look at an alternative approach that gives us a little more control.

Assembling via Spring’s Java Config
While classpath scanning is the cudgel of application assembly, Spring’s Java Config is the scalpel.2 This
approach is similar to the plain code approach introduced earlier in this chapter, but it’s less messy
and provides us with a framework so that we don’t have to code everything by hand.

In this approach, we create configuration classes, each responsible for constructing a set of beans that
are to be added to the application context.

For example, we could create a configuration class that is responsible for instantiating all our
persistence adapters:

2 Cudgel versus scalpel: if you don’t spend far too many hours of your life killing monsters in role-
playing video games like me and don’t know what a cudgel is, a cudgel is a stick with a weighted
end that can be used as a weapon. It’s a very blunt weapon that can do a lot of damage without
having to aim particularly well.

Assembling via Spring’s Java Config 97

The @Configuration annotation marks this class as a configuration class to be picked up by
Spring’s classpath scanning. So, in this case, we’re still using classpath scanning, but we only pick up our
configuration classes instead of every single bean, which reduces the chance of evil magic happening.

The beans themselves are created within the @Bean-annotated factory methods of our configuration
classes. In the preceding case, we add a persistence adapter to the application context. It needs two
repositories and a mapper as input to its constructor. Spring automatically provides these objects as
input to the factory methods.

But where does Spring get the repository objects from? If they are created manually in a factory method
of another configuration class, then Spring will automatically provide them as parameters to the
factory methods of the preceding code example. In this case, however, they are created by Spring itself,
triggered by the @EnableJpaRepositories annotation. If Spring Boot finds this annotation, it
will automatically provide implementations for all Spring Data repository interfaces we have defined.

If you’re familiar with Spring Boot, you might know that we could have added the @EnableJpa
Repositories annotation to the main application class instead of our custom configuration class.
Yes, this is possible, but it will activate JPA repositories every time the application is started up, even if
we start the application within a test that doesn’t actually need persistence. So, by moving such “feature
annotations” into a separate configuration “module,” we’ve just become much more flexible and can
start up parts of our application instead of always having to start the whole thing.

With the PersistenceAdapterConfiguration class, we have created a tightly scoped
persistence module that instantiates all objects we need in our persistence layer. It will be automatically

Assembling the Application98

picked up by Spring’s classpath scanning while we still have full control over which beans are actually
added to the application context.

Similarly, we could create configuration classes for web adapters, or for certain modules within our
application layer. We can now create an application context that contains certain modules but mocks
the beans of other modules, which gives us great flexibility in tests. We could even push the code of
each of those modules into its own code base, package, or JAR file without much refactoring.

Also, this approach does not force us to sprinkle @Component annotations all over our code base,
like the classpath scanning approach does. So, we can keep our application layer clean without any
dependency on the Spring framework (or any other framework, for that matter).

There is a catch with this solution, however. If the configuration class is not within the same package
as the classes of the beans it creates (the persistence adapter classes in this case), those classes must
be public. To restrict visibility, we can use packages as module boundaries and create a dedicated
configuration class within each package. This way, we cannot use sub-packages, though, as will be
discussed in Chapter 12, Enforcing Architecture Boundaries.

How does this help me build maintainable software?
Spring and Spring Boot (and similar frameworks) provide a lot of features that make our lives easier.
One of the main features is assembling the application out of the parts (classes) that we, as application
developers, provide.

Classpath scanning is a very convenient feature. We only have to point Spring to a package and it
assembles an application from the classes it finds. This allows for rapid development, with us not
having to think about the application as a whole.

Once the code base grows, however, this quickly leads to a lack of transparency. We don’t know which
beans exactly are loaded into the application context. Also, we cannot easily start up isolated parts of
the application context to use in tests.

By creating a dedicated configuration component responsible for assembling our application, we can
liberate our application code from this responsibility (read: “reason for change” – remember the “S”
in “SOLID”?). We’re rewarded with highly cohesive modules that we can start up in isolation from
each other and that we can easily move around within our code base. As usual, this comes at the price
of spending some extra time to maintain this configuration component.

We’ve talked a lot about different options of how to do things “the right way” in this and the previous
chapters. However, sometimes “the right way” is not feasible. In the next chapter, we’ll talk about
shortcuts, the price we pay for them, and when they’re worth taking.

11
Taking Shortcuts Consciously

In the preface of this book, I cursed the fact that we feel forced to take shortcuts all the time, building
up a great heap of technical debt we never have the chance to pay back.

To prevent shortcuts, we must be able to identify them. So, the goal of this chapter is to raise awareness
of some potential shortcuts and discuss their effects.

With this information, we can identify and fix accidental shortcuts. Or, if justified, we can even
consciously opt in to the effects of a shortcut.1

Why shortcuts are like broken windows
In 1969, psychologist Philip Zimbardo conducted an experiment to test a theory that later became
known as the Broken Windows Theory.2

His team parked one car without license plates in a Bronx neighborhood and another in an allegedly
“better” neighborhood in Palo Alto. Then, they waited.

The car in the Bronx was picked clean of valuable parts within 24 hours and then passersby started
to randomly destroy it.

The car in Palo Alto was not touched for a week, so Zimbardo’s team smashed a window. From then
on, the car had a similar fate to the car in the Bronx and was destroyed in the same short amount of
time by people walking by.

The people taking part in looting and destroying the cars came from across all social classes and
included people who were otherwise law-abiding and well-behaved citizens.

1 Imagine talking about shortcuts in a book about construction engineering or, even scarier, in a
book about avionics! Most of us, however, are not building the software equivalent of a skyscraper
or an airplane. And software is soft and can be changed more easily than hardware, so sometimes
it’s actually more economic to (consciously!) take a shortcut first and fix it later (or never).

2 The Broken Windows Theory: https://www.theatlantic.com/magazine/
archive/1982/03/broken-windows/304465/.

https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/
https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/
https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/

Taking Shortcuts Consciously100

This human behavior has become known as the Broken Windows Theory. In my own words:

As soon as something looks run-down, damaged, [insert negative adjective here], or generally untended,
the human brain feels that it’s OK to make it more run-down, damaged, or [insert negative adjective here].

This theory applies to many areas of life:

• In a neighborhood where vandalism is common, the threshold to loot or damage an untended
car is low.

• When a car has a broken window, the threshold to damage it further is low, even in a
“good” neighborhood.

• In an untidy bedroom, the threshold to throw our clothes on the ground instead of putting
them into the wardrobe is low.

• In a classroom where students often disrupt the lesson, the threshold to crack another joke to
classmates is low.

Applied to working with code, this means the following:

• When working on a low-quality code base, the threshold to add more low-quality code is low.

• When working on a code base with a lot of coding violations, the threshold to add another
coding violation is low.

• When working on a code base with a lot of shortcuts, the threshold to add another shortcut is low.

With all this in mind, is it really a surprise that the quality of many so-called “legacy” code bases has
eroded so badly over time?

The responsibility of starting clean
While working with code doesn’t really feel like looting a car, we all are unconsciously subject to the
Broken Windows psychology. This makes it important to start a project clean, with as few shortcuts
and as little technical debt as possible. This is because, as soon as a shortcut creeps in, it acts as a
broken window and attracts more shortcuts.

Since a software project often is a very expensive and long-running endeavor, keeping broken windows
at bay is a huge responsibility for us as software developers. We may not even be the ones finishing
the project and others have to take over. For them, it’s a legacy code base they don’t have a connection
to yet, lowering the threshold for creating broken windows even further.

There are times, however, when we decide a shortcut is the pragmatic thing to do, be it because
the part of the code we’re working on is not that important to the project as a whole, because we’re
prototyping, or for economical reasons.

Sharing models between use cases 101

We should take great care to document such consciously added shortcuts, for example, in the form of
Architecture Decision Records (ADRs), as proposed by Michael Nygard in his blog.3 We owe that to
our future selves and our successors. If every member of the team is aware of this documentation, it
will even reduce the Broken Windows effect because the team will know that the shortcuts have been
taken consciously and for good reason.

The following sections each discuss a pattern that can be considered a shortcut in the Hexagonal
Architecture style presented in this book. We’ll have a look at the effects of the shortcuts and the
arguments that speak for and against taking them.

Sharing models between use cases
In Chapter 5, Implementing a Use Case, I argued that different use cases should have different input
and output models, meaning that the types of the input parameters and the types of the return values
should be different.

Figure 11.1 shows an example where two use cases share the same input model:

Figure 11.1 – Sharing the input or output model between use

cases leads to coupling between the use cases

3 Architecture Decision Records: http://thinkrelevance.com/blog/2011/11/15/
documenting-architecture-decisions.

http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions

Taking Shortcuts Consciously102

The effect of sharing in this case is that SendMoneyUseCase and RevokeActivityUseCase are
coupled to each other. If we change something within the shared SendMoneyCommand class, both
use cases are affected. They share a reason to change in terms of the Single Responsibility Principle
(which should be named the “Single Reason to Change Principle,” as discussed in Chapter 3, Inverting
Dependencies). The same is true if both use cases share the same output model.

Sharing input and output models between use cases is valid if the use cases are functionally coupled,
that is, if they share a certain requirement. In this case, we actually want both use cases to be affected
if we change a certain detail.

If both use cases should be able to evolve separately from each other, however, this is a shortcut. In
this case, we should separate the use cases from the start, even if it means duplicating input and output
classes if they look the same at the start.

So, when building multiple use cases around a similar concept, it’s worthwhile to regularly ask the
question of whether the use cases should evolve separately from each other. As soon as the answer
becomes “yes,” it’s time to separate the input and output models.

Using domain entities as the input or output model
If we have an Account domain entity and an incoming port, SendMoneyUseCase, we might be
tempted to use the entity as the input and/or output model of the incoming port, as Figure 11.2 shows.

Figure 11.2 – Using a domain entity as the input or output model of

a use case couples the domain entity to the use case

The incoming port has a dependency on the domain entity. The consequence of this is that we’ve
added another reason for the Account entity to change.

Wait, the Account entity doesn’t have a dependency on the SendMoneyUseCase incoming port
(it’s the other way around), so how can the incoming port be a reason to change for the entity?

Skipping incoming ports 103

Say we need some information about an account in the use case that is not currently available in the
Account entity. This information is ultimately not to be stored in the Account entity, however, but
in a different domain or bounded context. We’re tempted to add a new field to the Account entity
nevertheless, because it’s already available in the use case interface.

For simple create or update use cases, a domain entity in the use case interface may be fine since the
entity contains exactly the information we need to persist its state in the database.

As soon as a use case is not simply about updating a couple of fields in the database, but instead
implements more complex domain logic (potentially delegating part of the domain logic to a rich
domain entity), we should use a dedicated input and output model for the use case interface, because
we don’t want changes in the use case to propagate to the domain entity.

What makes this shortcut dangerous is the fact that many use cases start their lives as a simple create
or update use case only to become beasts of complex domain logic over time. This is especially true
in an agile environment where we start with a minimum viable product and add complexity as we
move forward. So, if we used a domain entity as the input model at the start, we must find the point
in time to replace it with a dedicated input model that is independent of the domain entity.

Skipping incoming ports
While the outgoing ports are necessary to invert the dependency between the application layer and
the outgoing adapters (to make the dependencies point inward), we don’t need the incoming ports
for dependency inversion. We could decide to let the incoming adapters access our application or
domain services directly, without incoming ports in between, as shown in Figure 11.3.

Figure 11.3 – Without incoming ports, we lose clearly marked entry points to the domain logic

By removing the incoming ports, we have reduced a layer of abstraction between incoming adapters
and the application layer. Removing layers of abstraction usually feels rather good.

Taking Shortcuts Consciously104

The incoming ports, however, define the entry points into our application core. Once we remove
them, we must know more about the internals of our application to find out which service method we
can call to implement a certain use case. By maintaining dedicated incoming ports, we can identify
the entry points to the application at a glance. This makes it especially easy for new developers to get
their bearings in the code base.

Another reason to keep the incoming ports is that they allow us to easily enforce architecture. With
the enforcement options we’ll learn about in Chapter 12, Enforcing Architecture Boundaries, we can
make certain that incoming adapters only call incoming ports and not application services. This makes
every entry point into the application layer a very conscious decision. We can no longer accidentally
call a service method that was not meant to be called from an incoming adapter.

If an application is small enough or only has a single incoming adapter and we can grasp the whole
control flow without the help of incoming ports, we might want to do without incoming ports. However,
how often can we say that we know that an application will stay small or will only ever have a single
incoming adapter over its whole lifetime?

Skipping services
Aside from the incoming ports, for certain use cases, we might want to skip the service layer as a
whole, as Figure 11.4 shows.

Figure 11.4 – Without services, we don’t have a representation of a use case in our code base anymore

Here, the AccountPersistenceAdapter class within an outgoing adapter directly implements
an incoming port and replaces the service that usually implements an incoming port.

It is very tempting to do this for simple CRUD use cases since in this case a service usually only forwards
a create, update, or delete request to the persistence adapter, without adding any domain logic. Instead
of forwarding, we can let the persistence adapter implement the use case directly.

How does this help me build maintainable software? 105

This, however, requires a shared model between the incoming adapter and the outgoing adapter, which
is the Account domain entity in this case, so it usually means that we’re using the domain model as
the input model, as described previously.

Furthermore, we no longer have a representation of the use case within our application core. If a CRUD
use case grows to something more complex over time, it’s tempting to add domain logic directly to
the outgoing adapter since the use case has already been implemented there. This decentralizes the
domain logic, making it harder to find and maintain.

In the end, to prevent boilerplate pass-through services, we might choose to skip the services for
simple CRUD use cases after all. Then, however, the team should develop clear guidelines to introduce
a service as soon as the use case is expected to do more than just create, update, or delete an entity.

How does this help me build maintainable software?
There are times when shortcuts make sense from an economic point of view. This chapter provided some
insights into the consequences some shortcuts might have to help decide whether to take them or not.

The discussion shows that it’s tempting to introduce shortcuts for simple CRUD use cases since, for
them, implementing the whole architecture feels like overkill (and the shortcuts don’t feel like shortcuts).
Since all applications start small, however, it’s very important for the team to agree on when a use case
grows out of its CRUD state. Only then can the team replace the shortcuts with an architecture that
is more maintainable in the long run.

Some use cases will never grow out of their CRUD state. For them, it might be more pragmatic to
keep the shortcuts in place forever, as they don’t really entail a maintenance overhead.

In any case, we should document the architecture and the decisions why we chose a certain shortcut
so that we (or our successors) can re-evaluate the decisions in the future.

Even though shortcuts may be acceptable at times, we want to make the decision to take a shortcut
consciously. That means that we should define one “right” way of doing things and enforce this way,
so that we can deviate from that way if there are good reasons to do so. In the next chapter, we’ll look
at some ways of enforcing our architecture.

12
Enforcing Architecture

Boundaries

We talked a lot about architecture in previous chapters and it feels good to have a target architecture
to guide us in our decisions on how to craft code and where to put it.

In every above-playsize software project, however, architecture tends to erode over time. Boundaries
between layers weaken, code becomes harder to test, and we generally need more and more time to
implement new features.

In this chapter, we’ll discuss some measures that we can take to enforce the boundaries within our
architecture and thus fight architecture erosion.

Boundaries and dependencies
Before we talk about different ways of enforcing architecture boundaries, let’s discuss where the
boundaries lie within our architecture and what enforcing a boundary actually means.

Enforcing Architecture Boundaries108

Figure 12.1 – Enforcing architecture boundaries means enforcing that dependencies point in the right

direction (dashed arrows mark dependencies that are not allowed according to our architecture)

Figure 12.1 shows how the elements of our Hexagonal Architecture might be distributed across four layers,
resembling the generic Clean Architecture approach introduced in Chapter 3, Inverting Dependencies.

The innermost layer contains domain entities and domain services. The application layer around it
may access those entities and services to implement a use case, usually through an application service.
Adapters access those services through incoming ports or are being accessed by those services through
outgoing ports. Finally, the configuration layer contains factories that create adapter and service objects
and provides them to a dependency injection mechanism.

Visibility modifiers 109

In the preceding figure, our architecture boundaries become pretty clear. There is a boundary between
each layer and its next inward and outward neighbor. According to the Dependency Rule, dependencies
that cross such a layer boundary must always point inward.

This chapter is about ways to enforce the Dependency Rule. We want to make sure that there are no
illegal dependencies that point in the wrong direction (dashed arrows in the figure).

Visibility modifiers
Let’s start with the most basic tool that object-oriented languages in general, and Java in particular,
provide us with to enforce boundaries: visibility modifiers.

Visibility modifiers have been a topic in almost every entry-level job interview I have conducted in
the last couple of years. I would ask the interviewee which visibility modifiers Java provides and what
their differences are.

Most of the interviewees only list the public, protected, and private modifiers. Only a few
of them know the package-private (or default) modifier. This is always a welcome opportunity
for me to ask some questions about why such a visibility modifier would make sense in order to find
out whether the interviewee can abstract from their previous knowledge.

So, why is the package-private modifier such an important modifier? Because it allows us to use Java
packages to group classes into cohesive “modules.” Classes within such a module can access each other,
but cannot be accessed from outside of the package. We can then choose to make specific classes public
to act as entry points to the module. This reduces the risk of accidentally violating the Dependency
Rule by introducing a dependency that points in the wrong direction.

Let’s have another look at the package structure discussed in Chapter 4, Organizing Code, with visibility
modifiers in mind:

Enforcing Architecture Boundaries110

We can make the classes in the persistence package package-private (marked with o in the tree
above) because they don’t need to be accessed by the outside world. The persistence adapter is accessed
through the output ports it implements. For the same reason, we can make the SendMoneyService
class package-private. Dependency injection mechanisms usually use reflection to instantiate classes,
so they will still be able to instantiate those classes even if they’re package-private.

With Spring, this approach only works if we use the classpath scanning approach discussed in Chapter 10,
Assembling the Application, however, since the other approaches require us to create instances of those
objects ourselves, which requires public access.

The rest of the classes in the example have to be public (marked with +) as defined by our architecture:
the domain package needs to be accessible by the other layers and the application layer needs
to be accessible by the web and persistence adapters.

Post-compile fitness function 111

The package-private modifier is awesome for small modules with no more than a handful of classes.
Once a package reaches a certain number of classes, however, it grows confusing to have so many
classes in the same package. In this case, I like to create sub-packages to make the code easier to find
(and, I admit, to satisfy my sense of aesthetics). This is where the package-private modifier fails to
deliver, since Java treats sub-packages as different packages and we cannot access a package-private
member of a sub-package. So, members in sub-packages must be public, exposing them to the
outside world and thus making our architecture vulnerable to illegal dependencies.

Post-compile fitness function
As soon as we use the public modifier on a class, the compiler will let any other class use it, even if the
direction of the dependency points in the wrong direction according to our architecture.

Since the compiler won’t help us out in these cases, we have to find other means to check that the
Dependency Rule isn’t violated.

One way is to introduce a fitness function – a function that takes our architecture as input and
determines its fitness in regard to a specific aspect. In our case, fitness is defined as the Dependency
Rule is not violated.

Ideally, a compiler runs a fitness function for us during compilation, but, lacking that, we can run
such a function at runtime, after the code has already been compiled. Such runtime checks are best
run during automated tests within a continuous integration build.

A tool that supports this kind of architectural fitness function for Java is ArchUnit.1 Among other
things, ArchUnit provides an API to check whether dependencies point in the expected direction. If
it finds a violation, it will throw an exception. It’s best run from within a test based on a unit testing
framework such as JUnit, making the test fail in case of a dependency violation.

With ArchUnit, we can now check the dependencies between our layers, assuming that each layer has
its own package, as defined in the package structure discussed in the previous section. For example, we
can check that there is no dependency from the domain model on anything outside the domain model:

1 ArchUnit: https://github.com/TNG/ArchUnit.

Enforcing Architecture Boundaries112

This rule validates the dependency rules visualized in Figure 12.2.

Figure 12.2 – Our domain model may access itself and some library packages, but it

may not access code in any other packages, for example, the packages containing our

adapters (inspired by the diagrams at https://www.archunit.org/use-cases)

The problem with the preceding rule is that if we use some library code in the domain model, we
have to add an exception to this rule for every dependency we introduce (like I did with lombok and
java in the example). In Chapter 14, A Component-Based Approach to Software Architecture, we will
see a rule that doesn’t have this problem.

Post-compile fitness function 113

With a little work, we can even create a kind of domain-specific language (DSL) on top of the
ArchUnit API that allows us to specify all relevant packages within our Hexagonal Architecture and
then automatically check whether all dependencies between those packages point in the right direction:

In the preceding code example, we first specify the parent package of our application. We then go on
to specify the sub-packages for the domain, adapter, application, and configuration layers. The final
call to check() will then execute a set of checks, verifying that the package dependencies are valid
according to the Dependency Rule. The code for this Hexagonal Architecture DSL is available on
GitHub if you would like to play around with it.2

While post-compile checks like the previous one can be a great help in fighting illegal dependencies,
they are not fail-safe. If we misspell the package name buckpal in the preceding code example,
for example, the test will find no classes and thus no dependency violations. A single typo, or, more
importantly, a single refactoring renaming a package, can make the whole test useless. We should
strive to make these tests refactoring-safe, or at least make them fail when a refactoring has broken
them. In the preceding example, we can fail the test when one of the mentioned packages does not
exist, for example (because it was renamed).

2 Hexagonal Architecture DSL for ArchUnit: https://github.com/thombergs/buckpal/
blob/master/src/test/java/io/reflectoring/buckpal/archunit/
HexagonalArchitecture.java.

https://github.com/thombergs/buckpal/blob/master/src/test/java/io/reflectoring/buckpal/archunit/HexagonalArchitecture.java
https://github.com/thombergs/buckpal/blob/master/src/test/java/io/reflectoring/buckpal/archunit/HexagonalArchitecture.java
https://github.com/thombergs/buckpal/blob/master/src/test/java/io/reflectoring/buckpal/archunit/HexagonalArchitecture.java

Enforcing Architecture Boundaries114

Build artifacts
Until now, our only tool for demarcating architecture boundaries within our code base was packages.
All of our code has been part of the same monolithic build artifact.

A build artifact is the result of a (hopefully automated) build process. The most popular build tools
in the Java world are currently Maven and Gradle. So, until now, imagine we had a single Maven or
Gradle build script and we could call Maven or Gradle to compile, test, and package the code of our
application into a single JAR file.

A main feature of build tools is dependency resolution. To transform a certain code base into a build
artifact, a build tool first checks whether all the artifacts the code base depends on are available. If
not, it tries to load them from an artifact repository. If this fails, the build will fail with an error before
even trying to compile the code.

We can leverage this to enforce the dependencies (and thus enforce the boundaries) between the
modules and layers of our architecture. For each such module or layer, we create a separate build
module with its own code base and its own build artifact (JAR file) as a result. In the build script of
each module, we specify only those dependencies to other modules that are allowed according to our
architecture. Developers can no longer inadvertently create illegal dependencies because the classes
are not even available on the classpath and they would run into compile errors.

Figure 12.3 – Different ways of dividing our architecture into multiple

build artifacts to prohibit illegal dependencies

Build artifacts 115

Figure 12.3 shows an incomplete set of options to divide our architecture into separate build artifacts.

Starting on the left, we see a basic three-module build with a separate build artifact for the configuration,
adapter, and application layers. The configuration module may access the adapters module,
which in turn may access the application module. The configuration module may also access the
application module due to the implicit, transitive dependency between them. The adapters module
contains the web adapter as well as the persistence adapter. This means that the build tool will
not prohibit dependencies between those adapters. While dependencies between those adapters
are not strictly forbidden by the Dependency Rule (since both adapters are within the same outer
layer), in most cases, it’s sensible to keep adapters isolated from each other. After all, we usually don’t
want changes in the persistence layer to leak into the web layer and vice versa (remember the Single
Responsibility Principle!). The same holds true for other types of adapters, for example adapters
connecting our application to a certain third-party API. We don’t want details of that API leaking
into other adapters by adding accidental dependencies between adapters.

Thus, we may split the single adapters module into multiple build modules, one for each adapter, as
shown in the second column of Figure 12.3.

Next, we could decide to split up the application module further. It currently contains the incoming
and outgoing ports to our application, the services that implement or use those ports, and the domain
entities that should contain much of our domain logic.

If we decide that our domain entities are not to be used as transfer objects within our ports (i.e., we
want to disallow the No Mapping strategy from Chapter 9, Mapping between Boundaries), we can apply
the Dependency Inversion Principle and pull out a separate api module that contains only the port
interfaces (the third column in Figure 12.3). The adapter modules and the application module
may access the api module, but not the other way around. The api module does not have access to
the domain entities and cannot use them within the port interfaces. Also, the adapters no longer have
direct access to the entities and services, so they must go through the ports.

We can even go a step further and split the api module in two, one part containing only the incoming
ports and the other part only containing the outgoing ports (the fourth column in Figure 12.3). This
way, we can make it very clear whether a certain adapter is an incoming adapter or an outgoing adapter
by declaring a dependency only on the input or the outgoing ports.

Also, we could split the application module even further, creating a module containing only the services
and another containing only the domain model. This ensures that the domain model doesn’t access the
services, and it would allow other applications (with different use cases and thus different services) to
use the same domain model by simply declaring a dependency on the domain build artifact.

Figure 12.3 illustrates that there are a lot of different ways to divide an application into build modules,
and there are of course more than just the four ways depicted in the figure. The gist is that the finer we
cut our modules, the stronger we can control dependencies between them. The finer we cut, however,
the more mapping we have to do between those modules, enforcing one of the mapping strategies
introduced in Chapter 9, Mapping between Boundaries.

Enforcing Architecture Boundaries116

Besides that, demarcating architecture boundaries with build modules has a number of advantages
over using simple packages as boundary:

1. First, build tools absolutely hate circular dependencies. Circular dependencies are bad because
a change in one module within the circle would potentially mean a change in all other modules
within the circle, which is a violation of the Single Responsibility Principle. Build tools don’t
allow circular dependencies because they would run into an endless loop while trying to resolve
them. Thus, we can be sure that there are no circular dependencies between our build modules.

The Java compiler, on the other hand, doesn’t care at all if there is a circular dependency between
two or more packages.

2. Second, build modules allow isolated code changes within certain modules without having to
take the other modules into consideration. Imagine we have to do a major refactoring in the
application layer that causes temporary compile errors in a certain adapter. If the adapters and
application layer are within the same build module, some IDEs will insist that all compile errors
in the adapters must be fixed before we can run the tests in the application layer, even though
the tests don’t need the adapters to compile. If the application layer is in its own build module,
however, the IDE won’t care about the adapters at the moment, and we could run the application
layer tests at will. The same goes for running a build process with Maven or Gradle: if both
layers are in the same build module, the build would fail due to compile errors in either layer.

So, multiple build modules allow isolated changes in each module. We could even choose to
put each module into its own code repository, allowing different teams to maintain different
modules.

3. Finally, with each inter-module dependency explicitly declared in a build script, adding a new
dependency becomes a conscious act instead of an accident. A developer who needs access to
a certain class they currently cannot access will hopefully give some thought to the question if
the dependency is really reasonable before adding it to the build script.

These advantages come with the added cost of having to maintain a build script, though, so the
architecture should be somewhat stable before splitting it into different build modules.

Also, build modules tend to be less supple to change over time. Once chosen, we tend to stick with
the modules we have initially defined. If the slicing of modules wasn’t right from the start, we are less
likely to correct it later because of the added effort of refactoring. Refactoring is easier when all the
code lies within a single build module.

How does this help me build maintainable software?
Software architecture is basically all about managing dependencies between architecture elements. If
the dependencies become a big ball of mud, the architecture becomes a big ball of mud.

How does this help me build maintainable software? 117

So, to preserve the architecture over time, we need to continually make sure that dependencies point
in the right direction.

When producing new code or refactoring existing code, we should keep the package structure in
mind and use package-private visibility when possible, to avoid dependencies to classes that should
not be accessed from outside the package.

If we need to enforce architecture boundaries within a single build module, and the package-private
modifier doesn’t work because the package structure won’t allow it, we can make use of post-compile
tools such as ArchUnit.

Any time we feel that the architecture is stable enough, we should extract architecture elements into
their own build modules because this gives explicit control over the dependencies.

All three approaches can be combined to enforce architecture boundaries and thus keep the code
base maintainable over time.

In the next chapter, we’ll continue to explore architecture boundaries, but from a different perspective:
we’ll think about how to manage multiple domains (or bounded contexts) in the same application,
while keeping the boundaries between them distinct.

13
Managing Multiple
Bounded Contexts

Many applications consist of more than one domain, or, to stick with Domain-Driven Design language,
more than one bounded context. The term “bounded context” tells us that there should be boundaries
between the different domains. If we don’t have boundaries between different domains, there are no
restrictions on dependencies between classes in these domains. Eventually, dependencies will grow
between the domains, coupling them together. This coupling means that the domains can no longer
evolve in isolation, but can only evolve together. We could just as well not have separated our code
into different domains in the first place!

The whole reason to separate code into different domains is so that these domains can evolve in
isolation. This is an application of the Single Responsibility Principle, discussed in Chapter 3, Inverting
Dependencies. Only, this time, we’re not talking about the responsibilities of a single class, but about
the responsibilities of a whole group of classes that make up a bounded context. If the responsibilities
of one bounded context change, we don’t want to change the code for other bounded contexts!

Managing bounded contexts, that is, keeping the boundaries between them clear, is one of the main
challenges of software engineering. Many of the pains developers associate with so-called “legacy software”
stem from unclear boundaries. And it turns out that software doesn’t need long to become “legacy.”

So, unsurprisingly (at least in retrospect), many readers of the first edition of this book asked me how
to manage multiple bounded contexts with Hexagonal Architecture. Unfortunately, the answer is not
simple. As is so often the case, there are multiple ways to go about it and none of them are right or
wrong per se. Let’s discuss some ways of separating bounded contexts.

Managing Multiple Bounded Contexts120

One hexagon per bounded context?
When working with Hexagonal Architecture and multiple bounded contexts, our reflex is to create
a separate “hexagon” for each bounded context. The result would look something like Figure 13.1.

Figure 13.1 – If each bounded context is implemented as its own hexagon, we need an outgoing port,

an adapter, and an incoming port for each line of communication between bounded contexts

Each bounded context lives in its own hexagon, providing input ports to interact with it and using
output ports to interact with the outside world.

Ideally, the bounded contexts don’t need to talk to each other at all, so we don’t have any dependencies
between the two. In the real world, however, this is rarely the case. Let’s assume that the bounded
context on the left needs to call some functionality of the bounded context on the right.

If we use the architecture elements that Hexagonal Architecture provides us with, we add an output
port to the first bounded context and an input port to the second bounded context. Then, we create
an adapter that implements the output port, does any necessary mapping, and calls the input port of
the second bounded context.

One hexagon per bounded context? 121

Problem solved, right?

Indeed, on paper this looks like a very clean solution. The bounded contexts are optimally separated
from each other. The dependencies between them are clearly structured in the form of ports and
adapters. New dependencies between bounded contexts require us to explicitly add them to the existing
ports or to add a new port. It’s unlikely that dependencies creep in “by accident” because there is a lot
of ritual involved in creating such a dependency.

If we think further than just two bounded contexts, however, it becomes apparent that this architecture
doesn’t scale very well. For two bounded contexts with one dependency, we need to implement one
adapter (the box named Domain Adapter in the preceding figure). If we exclude circular dependencies,
we might have to implement three adapters for three bounded contexts, six adapters for four bounded
contexts, and so on, as shown in Figure 13.2.1

Figure 13.2 – The number of potential dependencies between bounded contexts grows

disproportionately to the number of bounded contexts, even if we exclude circular dependencies

For each dependency, we would have to implement one adapter with at least one associated input and
output port. Each adapter would have to map from one domain model to another. This quickly becomes
a chore to develop and maintain. If it’s a chore and requires more effort than it brings value, the team
will take shortcuts to avoid it, resulting in an architecture that looks like a Hexagonal Architecture at
first glance but doesn’t have the benefits it promises.

1 The formula I used to calculate the potential dependencies between n bounded contexts is n-1 +
n-2 + ... + 1. The first bounded context has n-1 potential, non-circular dependencies, the second
n-2, and so on. The last bounded context cannot have any dependency on another bounded context
because every dependency it can have would be a circular dependency, and we don’t want to allow
circular dependencies.

Managing Multiple Bounded Contexts122

If we look at the original article introducing Hexagonal Architecture, it was never the intent of Hexagonal
Architecture to encapsulate a single bounded context in ports and adapters.2 Instead, the intent is to
encapsulate an application. This application may consist of many bounded contexts or none at all.

It does make sense to wrap each bounded context in its own hexagon when we’re preparing to extract
them into their own applications, that is, their own (micro)services. That means we should be very
certain that the boundaries we’re putting between them are the right boundaries, however, and we
don’t expect them to change.

The takeaway here is that Hexagonal Architecture doesn’t provide a scalable solution for managing
multiple bounded contexts in the same application. And it doesn’t have to. We can instead take
inspiration from Domain-Driven Design to decouple our bounded contexts, because within a hexagon,
we can do whatever we like.

Decoupled bounded contexts
In the previous section, we learned that the ports and adapters should encapsulate the whole application,
not each bounded context separately. How do we keep the bounded contexts separate from each
other, then?

In a simple case, we might have bounded contexts that don’t communicate with each other. They
provide completely separate paths through the code. In this case, we could build dedicated input and
output ports for each bounded context like in Figure 13.3.

Figure 13.3 – If bounded contexts (dashed lines) don’t need to talk to each other,

each can implement its own input ports and call its own output ports

2 The original article on Hexagonal Architecture:
https://alistair.cockburn.us/hexagonal-architecture/.

https://alistair.cockburn.us/hexagonal-architecture/

Appropriately coupled bounded contexts 123

This example shows a Hexagonal Architecture with two bounded contexts. A web adapter is driving
the application and a database adapter is driven by the application. These adapters are representative
of any other input and output adapters – not every application is a web application with a database.

Each bounded context exposes its own use cases via one or more dedicated input ports. The web
adapter knows all input ports and thus can call the functionality of all bounded contexts.

Instead of having dedicated input ports for each of our bounded contexts, we could also implement
one “broad” input port through which the web adapter routes requests to multiple bounded contexts.
In this case, the boundaries between the contexts would be hidden from the outside of our hexagon.
This may or may not be desirable depending on the situation.

Furthermore, each bounded context defines its own output port to the database so that it can store
and retrieve its data independently of any other bounded context.

While splitting the input ports per bounded context is optional, I would strongly recommend keeping
the output ports that store and retrieve the domain data for a bounded context separate from other
bounded contexts. If one bounded context is concerned with financial transactions and the other with
user registrations, there should be one (or more) output port that is dedicated to storing and retrieving
transaction data and another dedicated to storing and retrieving registration data.

Each bounded context should have its own persistence. If bounded contexts share output ports to
store and retrieve data, they will quickly become strongly coupled because they both depend on the
same data model. Imagine that we need to pull one bounded context out of the Hexagonal application
and into its own microservice because we learned that it has different scalability requirements from
the rest of the application. If that bounded context shares a database model with another bounded
context, it becomes very hard to extract. We wouldn’t want the new microservice to reach into another
application’s database, would we? For the same reason, we want to keep the database model of each
bounded context separate.

As long as multiple bounded contexts are executed in the same runtime, they might share a physical
database and participate in the same database transactions. But within that database, there should
be clear boundaries between the data of different bounded contexts, for example, in the form of a
separate database schema, or at least different database tables.

Splitting up the input and output ports like this has the nice effect that the bounded contexts are
completely decoupled. Each bounded context can evolve by itself without affecting the others in any
way. But they are only decoupled because they’re not talking to each other. What if we have use cases
that span multiple bounded contexts or if one bounded context needs to speak to another?

Appropriately coupled bounded contexts
If all coupling could be avoided, software architecture would be a lot easier. In real-world applications,
a bounded context very likely needs the help of another bounded context to do its work.

Managing Multiple Bounded Contexts124

An example is again our bounded context that is concerned with money transactions. For security
reasons, we’ll want to log which user has issued a transaction. That means that our bounded context
needs some information about the user, which lives in another bounded context. But our bounded
context doesn’t need to be tightly coupled to the user management context.

Instead of having to know the whole user object in our “transaction management” bounded context,
it might be enough to just know the user’s ID. While a user object in the “registration” context is a
complex object with many attributes, a representation of a user in the transaction context may only
be a wrapper around the user ID. In the Send money use case, we could now just accept the ID of
the user executing the transaction as input and then log it. We don’t need to couple the transaction
context to all the other details of a user.

But we might want to validate that the user is not blocked from transactions. In this case, we can use
a domain event.3 Whenever the status of a user changes in the user management context, we trigger a
domain event that can be received by other bounded contexts. Our transaction context might listen
to events when a user is newly registered or has been blocked, for example. It can then store that
information in its own database for later use in the Send money use case to validate the status of the user.

Another possible solution is to introduce an application service as the orchestrator between the user
management and transaction contexts.4 The application service implements the Send money input
port. When called, it first asks the user management bounded context for the status of the user and
then passes the status into the Send money use case provided by the transaction context – a different
implementation, but the same effect as when using domain events.

These were just two examples of how to “appropriately” couple bounded contexts. If you haven’t yet,
I recommend reading through the Domain-Driven Design literature to get inspired.

Coming back to Hexagonal Architecture, appropriately coupling multiple bounded contexts may look
something like in Figure 13.4.

3 Events in Domain-Driven Design: Implementing Domain-Driven Design by Vaughn Vernon, Pearson,
2013, Chapter 8.

4 Application Services in Domain-Driven Design: Implementing Domain-Driven Design by Vaughn
Vernon, Pearson, 2013, Chapter 14.

How does this help me build maintainable software? 125

Figure 13.4 – If we have use cases spanning multiple bounded contexts, we can introduce an

application service to orchestrate and domain events to share information between contexts

We have introduced an application service as the orchestrator above our bounded contexts. The
input ports are now implemented by this service instead of by the bounded contexts themselves. The
application service may call output ports to get the required information from other systems and then
calls one or more domain services provided by the bounded contexts. In addition to orchestrating the
calls to the bounded contexts, the application service also acts as a transaction boundary so that we
can call multiple domain services in the same database transaction, for example.

The domain services within the bounded contexts each still use their own database output ports to
keep the data model between the bounded contexts separated. We may decide that this separation is
not necessary and use a single database output port instead (but we should be aware that sharing a
data model leads to very tight coupling).

The bounded contexts have access to a set of shared domain events that they can emit and listen to,
respectively, to exchange information in a loosely coupled fashion.

How does this help me build maintainable software?
Managing boundaries between domains is one of the hardest parts of software development. In a
small code base, boundaries might not be necessary because the mental model of the whole code
base still fits into our brain’s working memory. But as soon as the code base reaches a certain size, we
should make sure to introduce boundaries between domains, so we can reason about each domain
in isolation. If we don’t do this, dependencies will creep in, turning our code base into one of those
dreaded “big balls of mud.”

Managing Multiple Bounded Contexts126

Hexagonal Architecture is all about managing a boundary between an application and the outside
world. The boundary is made up of certain input ports provided by the application and certain output
ports expected by the application.

Hexagonal Architecture does not help us to manage finer-grained boundaries within our application.
Inside our “hexagon,” we can do whatever we want. If the code base gets too big for our working
memory, we should fall back to Domain-Driven Design or other concepts to create boundaries within
our code base.

In the next chapter, we will explore a lightweight method of creating boundaries that we can use with
or without Hexagonal Architecture.

14
A Component-Based Approach

to Software Architecture

When we’re starting a software project, we never know all the requirements that the users will throw
at us once they are actually using the software. A software project is always associated with taking
chances and making educated guesses (we like to call them “assumptions” to make it sound more
professional). The environment of a software project is just too volatile to know in advance how
everything will play out. This volatility is why the Agile movement was born. Agile practices make
organizations flexible enough to adapt to change.

But how can we create a software architecture that can cope with such an agile environment? If
everything can change at any time, should we even bother with architecture?

Yes, we should. As discussed in Chapter 1, Maintainability, we should make sure that our software
architecture enables maintainability. A maintainable code base can evolve over time, adapting to
external factors.

Hexagonal Architecture takes a big step toward maintainability. It’s creating a boundary between our
application and the outside world. On the inside of our application (within the hexagon), we have our
domain code, which provides dedicated ports to the outside world. These ports connect the application
to adapters, which talk to the outside world, translating between the language of our application and
the languages of outside systems. This architecture enhances maintainability because the application
can mostly evolve independently of the outside world. As long as the ports don’t change, we can evolve
anything within the application to react to changes in the agile environment.

But, as we learned in Chapter 13, Managing Multiple Bounded Contexts, Hexagonal Architecture
doesn’t help us to create boundaries within our application core. We might want to apply a different
architecture within our application core that helps us in this regard.

Also, I’ve heard quite a few times that Hexagonal Architecture feels hard, especially for a software
project just starting out. It’s hard to get the team on board because not everyone understands the
value of dependency inversion and the mapping between the domain model and the outside world.
Hexagonal Architecture might just be overkill for a fledgling application.

A Component-Based Approach to Software Architecture128

For cases like this, we might want to start out with a simpler architecture style that still provides the
modularity we need to evolve into something else in the future but that’s simple enough to get everyone
on board. I propose that a component-based architecture is a good starting point, and we’ll use this
chapter to discuss this architecture style.

Modularity through components
One of the drivers of maintainability is modularity. Modularity allows us to conquer the complexity of
a software system by dividing it into simpler modules. We don’t have to understand the whole system
to be able to work on one specific module. Instead, we can focus on that one module and potentially
the modules it interfaces with. Modules can evolve mostly independently of each other, as long as
the interfaces between modules are clearly defined. We’re probably able to fit a mental model of one
module into our working memory, but good luck with creating a mental model if there are no modules
in the code base. We would jump around in the code rather helplessly.

Only modularity allows us humans to create complex systems. In his book Modern Software Engineering,
Dave Farley talks about the modularity of the Apollo space program:1

“This modularity had lots of advantages. It meant that each component could be built to focus on one
part of the problem and would need to compromise less in its design. It allowed different groups – in this
case, completely different companies – to work on each module largely independently of the others. As
long as the different groups agreed on how the modules would interface with each other, they could work
to solve the problems of their module without constraint.”

Modularity allowed us to go to the Moon! Modularity allows us to build cars, aircraft, and buildings.
It should be no surprise that it also helps us build complex software.

But what is a module? I feel the term is overloaded in (object-oriented) software development.
Everything and its cat is called a “module,” even if it’s just a bunch of classes that were haphazardly
thrown together to do a useful thing. I prefer the term “component” to describe a group of classes that
were thoughtfully engineered to implement certain functionality that can be composed together with
other groups of classes to build a complex system. The composition aspect implies that components
can be composed to form a bigger whole and potentially even re-composed to react to changes in
the environment. Composability requires a component to define a clear interface that tells us what
it provides to and needs from the outside world (input and output ports, anyone?). Think of LEGO
bricks. A LEGO brick provides a certain layout of studs for other bricks to attach to, and it requires
a certain layout of studs to attach to other bricks. All that said, I won’t judge you if you use the term
“module,” but I’ll refer to “components” in the rest of this chapter.

1 Modularity of the Apollo space program: Modern Software Engineering by Dave Farley, Pearson,
2022, Chapter 6.

Modularity through components 129

For the sake of this chapter, a component is a set of classes that has a dedicated namespace and a
clearly defined API. If another component needs this component’s functionality, it can call it via its
API, but it may not reach into its internals. A component may be made up of smaller components.
By default, these sub-components live inside the internals of the parent component, so that they are
not accessible from the outside. They can, however, contribute to the parent component’s API if they
implement functionality that should be accessible from the outside.

Like any other architecture style, component-based architecture is all about which dependencies are
allowed and which are discouraged. This is illustrated in Figure 14.1.

Figure 14.1 – Dependencies on an internal package are invalid but dependencies on an API

package are valid, provided that the API package is not nested in an internal package

Here, we have two top-level components, A and B. Component A is made up of two sub-components,
A1 and A2, while component B only has a single sub-component, B1.

If A1 needs access to B’s functionality, it can get it by calling B’s API. It cannot, however, access B1’s
API, because, as a sub-component, it’s part of its parent’s internals and thus hidden from the outside.
B1 can still contribute functionality to its parent’s API, though, by implementing an interface in the
parent API. We will see this in action in the case study later.

A Component-Based Approach to Software Architecture130

The same rules apply between the sibling components, A1 and A2. If A1 needs access to A2’s functionality,
it can call its API, but it cannot call into A2’s internals.

And that’s all there is to component-based architecture. It can be summarized in four simple rules:

1. A component has a dedicated namespace to be addressable.

2. A component has a dedicated API and internals.

3. A component’s API may be called from the outside, but its internals may not.

4. A component may contain sub-components as part of its internals.

To make the abstract concrete, let’s see a component-based architecture in real code.

 Case study – building a “Check Engine” component
As a case study for the component-based architecture presented in this chapter, I extracted a component
from a real software project I worked on into a standalone GitHub repository.2 The fact alone that
I extracted the component with relatively little effort and that we can reason about this component
without knowing anything about the software project it comes from shows that we have successfully
conquered complexity by applying modularity!

The component is written in object-oriented Kotlin, but the concepts apply to any other
object-oriented language.

The component is called “check engine.” It was meant to be a kind of web scraper that goes through
web pages and runs a set of checks against them. These checks can be anything from “check that the
HTML on that web page is valid” to “return all spelling errors on that web page.”

Since a lot can go wrong when scraping web pages, we decided to run the checks asynchronously. That
means that the component needs to provide an API to schedule checks and an API to retrieve the
results of a check after it has been executed. This implies a queue in which to store incoming check
requests and a database in which to store the results of these checks.

From the outside, it doesn’t matter whether we build the check engine “in one piece” or split it up into
sub-components. As long as the component has a dedicated API, these details are hidden from the
outside. The requirements above, however, outline certain natural boundaries for sub-components
within the check engine. Breaking the check engine up along these boundaries allows us to manage
complexity within the check engine component because each sub-component will be simpler to
manage than the whole problem.

2 The GitHub project with the “check engine” implemented in component-based architecture:
https://github.com/thombergs/components-example.

https://github.com/thombergs/components-example

 Case study – building a “Check Engine” component 131

We came up with three sub-components for the check engine:

• A queue component that wraps the access to a queue to queue and dequeue check requests.

• A database component that wraps the access to a database to store and retrieve check results.

• A checkrunner component that knows which checks to run and runs them whenever a check
request comes in from the queue.

Note that these sub-components introduce mostly technical boundaries. Very similarly to output
adapters in Hexagonal Architecture, we’re hiding away the specifics of accessing an external system
(the queue and database) in sub-components. But then, the check engine component is a very technical
component with little to no domain code. The only component that we could consider “domain code”
is the checkrunner, which acts as a controller of sorts. Technical components lend themselves very
well to a component-based architecture because the boundaries between them are clearer than the
boundaries between different functional domains.

Let’s take a look at an architecture diagram of the check engine component to dig into the details
(Figure 14.2).

Figure 14.2 – The check engine component is made up of three sub-

components that contribute to the parent component’s API

The diagram mirrors the structure of the code. You can think of each box as a Java package (or a simple
source code folder in other programming languages). If a box is within a larger box, it’s a sub-package
of that larger box. The boxes at the lowest level, finally, are classes.

The public API of the check engine component consists of the CheckScheduler and CheckQueries
interfaces, which allow scheduling a web page check and retrieving the check results, respectively.

A Component-Based Approach to Software Architecture132

CheckScheduler is implemented by the SqsCheckScheduler class living in the queue
component internals. This way, the queue component contributes to the parent component’s API. Only
when we look at the name of this class does it tell us that it’s using Amazon’s Simple Queue Service
(SQS). This implementation detail is not leaked to the outside of the check engine component. Not
even the sibling components know which queue technology is used. You might notice that the queue
component doesn’t even have an API package, so all of its classes are internal!

The CheckRequestListener class, then, listens to incoming requests from the queue. For each
incoming request, it calls the CheckRunner interface in the checkrunner sub-component’s API.
DefaultCheckRunner implements that interface. It reads the web page URL from the incoming
request, determines which checks to run against it, and then runs those checks.

When a check has finished, the DefaultCheckRunner class stores the results in the database
by calling the CheckMutations interface of the database sub-component’s API. This interface is
implemented by the CheckRepository class, which handles the details of connecting and talking to
a database. Again, the database technology is not leaked to the outside of the database sub-component.

The CheckRepository class also implements the CheckQueries interface, which is part of the
check engine’s public API. This interface provides methods to query for check results.

By splitting up the check engine component into three sub-components, we have divided the complexity.
Each sub-component solves a simpler part of the overall problem. It can evolve mostly by itself. A
change in queue or database technologies because of costs, scalability, or other reasons doesn’t leak
into other sub-components. We could even replace the sub-components with simple in-memory
implementations for tests if we wanted.

All this we get by structuring our code into components, following the convention of having dedicated
API and internal packages.

Enforcing component boundaries
Conventions are good to have, but if that’s all there is, someone will break them, and the architecture
will erode. We need to enforce the conventions of the component architecture.

The nice thing about the component architecture is that we can apply a relatively simple fitness function
to make sure that no accidental dependencies have crept into our component architecture:

No classes that are outside of an “internal” package should access a class inside of that “internal” package.

Enforcing component boundaries 133

If we put all the internals of a component into a package called “internal” (or a package marked as
“internal” in some other way), we just have to check that no class in that package is called from outside
of that package. For JVM-based projects, we can codify this fitness function with ArchUnit:3

We just need a way to identify internal packages during each build and feed them all into the function
above, and the build will fail if we have accidentally introduced a dependency to an internal class.

The fitness function doesn’t even need to know anything about the components in our architecture.
We just need to follow a convention for identifying internal packages and then feed those packages
into the function. This means that we don’t need to update the test that’s running the fitness function
whenever we add or remove a component to/from the code base. Very convenient!

Note
This fitness function is an inverted form of the fitness function we introduced in Chapter 12,
Enforcing Architecture Boundaries. In Chapter 12, we verified that classes from a certain package
don’t access classes outside of that package. Here, we verify that classes from outside the package
are not accessing classes inside the package. This fitness function is much more stable, as we
don’t have to add exceptions for every library we’re using.

We can still introduce unwanted dependencies by just not following our convention for internal packages,
of course. And the rule still allows a loophole: if we put classes directly into the “internal” package of a
top-level component, the classes of any sub-components may access it. So, we might want to introduce
another rule that disallows any classes directly in the “internal” package of a top-level component.

3 ArchUnit rule to validate that no code accesses code within a certain package:
https://github.com/thombergs/components-example/blob/main/
server/src/test/kotlin/io/reflectoring/components/Internal
PackageTest.kt.

https://github.com/thombergs/components-example/blob/main/server/src/test/kotlin/io/reflectoring/components/InternalPackageTest.kt
https://github.com/thombergs/components-example/blob/main/server/src/test/kotlin/io/reflectoring/components/InternalPackageTest.kt
https://github.com/thombergs/components-example/blob/main/server/src/test/kotlin/io/reflectoring/components/InternalPackageTest.kt

A Component-Based Approach to Software Architecture134

How does this help me build maintainable software?
Component-based architecture is very simple. As long as each component has a dedicated namespace,
dedicated API and internal packages, and classes within an internal package are not called from the
outside, we get a very maintainable code base consisting of many composable and re-composable
components. If we add the rule that components may be composed of other components, we can
build a whole application out of smaller and smaller parts where each part solves a simpler problem.

Even though there are loopholes to get around the rules of the component architecture, the architecture
itself is so simple that it’s very easy to understand and communicate. If it’s easy to understand, it’s easy
to maintain. If it’s easy to maintain, the loopholes are less likely to be exploited.

Hexagonal Architecture cares about boundaries at the application level. Component-based architecture
cares about boundaries at the component level. We can use this to embed components within a
Hexagonal Architecture, or we can choose to start out with a simple component-based architecture
and evolve it in any other architecture should the need arise. A component-based architecture is
modular by design and modules are easy to move around and refactor.

In the next and last chapter, we’ll close the discussion around architecture and try to answer the
question of when we should choose which architecture style.

15
Deciding on

an Architecture Style

So far, this book has provided an opinionated approach to building a web application in a Hexagonal
Architecture style. From organizing code to taking shortcuts, we have answered many questions that
this architecture style confronts us with.

Some of the answers in this book can be applied to the conventional layered architecture style. Some
answers can only be implemented in a domain-centric approach, such as the one proposed in this book.
And some answers you might not even agree with because they haven’t worked in your experience.

The final questions we want answers for, however, are these: when should we actually use the Hexagonal
Architecture style? And when should we rather stick with the conventional layered style (or any other
style for that matter)?

Start simple
An important point that took me far too long to realize is that software architecture isn’t just something
we define at the beginning of a software project that will take care of itself after. We can’t know everything
we need to know to design a great architecture at the beginning of a project! The architecture of a
software project can and should evolve over time to adapt to changing requirements.

This means that we won’t know which architecture style will be the best for the software project in the
long run, and we might need to change the architecture style in the future! To make this possible, we
need to make certain that our software is supple to change. We need to plant a seed of maintainability.

Maintainability means that we need to make our code modular so that we can work on each module
in isolation and move it around in the code base, should the need arise. Our architecture needs to make
the boundaries between those modules as clear as possible so that unwanted dependencies between
those modules don’t accidentally creep in, reducing maintainability.

Deciding on an Architecture Style136

The start of a project might only involve a collection of CRUD use cases, and a domain-centric
architecture such as Hexagonal Architecture might be overkill, so we opt for something simpler such
as the component-based approach. Or we might know enough about the project already that we start
building out a rich domain model, in which case the Hexagonal Architecture style might be the right
one to start with.

Evolve the domain
Over time, we learn more and more about the requirements of our software, and we can make better
and better decisions about the best architecture style. The application might evolve from a collection
of simple CRUD use cases to a rich domain-centric application with a lot of business rules. At this
point, the Hexagonal Architecture style becomes a good option.

It should have become clear in the previous chapters that the main feature of a Hexagonal Architecture
style is that we can develop domain code free from diversions, such as persistence concerns and
dependencies on external systems. In my opinion, evolving domain code free from external influence
is the single most important argument for the Hexagonal Architecture style.

This is why this architecture style is such a good match for DDD practices. To state the obvious, in
DDD, the domain drives the development, and we can best reason about the domain if we don’t have
to think about persistence concerns and other technical aspects simultaneously.

I would even go so far as to say that domain-centric architecture styles such as the hexagonal style are
enablers of DDD. Without an architecture that puts the domain at the center of things, and without
inverting dependencies toward domain code, we have no chance of really doing DDD. The design
will always be driven by other factors.

So, as a first indicator of whether to use the architecture style presented in this book or not: if the domain
code is not the most important thing in your application, you probably don’t need this architecture style.

Trust your experience
We’re creatures of habit. Habits automate decisions for us, so we don’t have to spend time on them.
If there’s a lion running toward us, we run. If we build a new web application, we use the layered
architecture style. We have done it so often in the past that it has become a habit.

I’m not saying that habitual decisions are necessarily bad decisions. Habits are just as good at helping to
make a good decision as they are at helping to make a bad one. I’m saying that we’re doing what we’re
experienced in. We’re comfortable with what we’ve done in the past, so why should we change anything?

Therefore, the only way to make an educated decision about an architecture style is by having experience
in different architecture styles. If you’re unsure about the Hexagonal Architecture style, try it out
on a small module of the application that you’re currently building. Get used to the concepts. Get
comfortable. Apply the ideas in this book, modify them, and add your own ideas to develop a style
that you’re comfortable with.

It depends 137

This experience can then guide your next architecture decision.

It depends
I would love to provide a list of multiple-choice questions to decide on an architecture style, just like
all those “Which personality type are you?” and “If you were a dog, what kind of dog would you be?”
tests that regularly swirl around on social media.1

However, it isn’t as easy as that. My answer to the question of which architecture style to choose remains
the professional consultant’s – “It depends.” It depends on the type of software to be built. It depends
on the role of the domain code. It depends on the experience of the team. And finally, it depends on
being comfortable with a decision.

I hope, however, that this book has provided some sparks of inspiration to help with the question
of architecture. If you have a story to tell about architecture decisions, with or without Hexagonal
Architecture, I’d love to hear about it.2

1 In case you wanted to know, I’m the “Defender” personality type, and if I were a dog, I would
apparently be a pitbull.

2 Contact: you can drop me an email at tom@reflectoring.io.

mailto:tom@reflectoring.io

Index

A
adapters 23

driven 56
driving 47
incoming 47
outgoing 56
persistence 55
web 49

anemic domain model
versus rich domain model 44

application context 94
application layer 29, 30
application service 23
architecture boundaries 107-109
architecture/code gap 29
Architecture Decision Records (ADRs) 101
ArchUnit 111
assembling 91, 92

via plain code 93, 94
via Spring’s classpath scanning 94-96
via Spring’s Java Config 96-98

authentication 49
authorization 49

B
beans 94
Behavior-Driven Development 72
big ball of mud 4, 116
big design up front (BDUF) 4
boundaries

enforcing 107
bounded context 60, 119-121

appropriately coupled 123-125
decoupled 122, 123

Broken Windows Theory 12, 99, 100
build artifact 114-116
builder 6
builder pattern 40

C
classpath scanning 94
Clean Architecture 20-23
Command-Query Responsibility

Segregation (CQRS) 46
Command-Query Separation (CQS) 46
component 129

Index140

component-based architecture 129
conventions, enforcing 132, 133
rules 130

constructors 40, 41
controllers

slicing 50-53
Create, Read, Update, and Delete 63, 104

D
database-driven design 10, 55
database transactions 66
decision-making 6
dependency injection 6, 30, 31, 91
dependency inversion

in persistence adapter 55, 56
in web adapter 48

Dependency Inversion Principle
(DIP) 19, 20, 48

Dependency Rule 21, 91, 109
validate 111

developer enablement 4
developer experience 4
developer joy 4
Domain Adapter 121
domain-centric architecture styles 136
Domain-Driven Design

(DDD) 21, 33, 44, 119
domain entities 29

testing, with unit tests 71
using, as input or output model 102, 103

domain layer 9
domain model

anemic 44
compromising 66
implementing 33-35
rich 44

domain services 23, 29
domain-specific language (DSL) 113
don’t repeat yourself (DRY) 6
driven adapter 27
driving adapter 27

F
fitness function 111
Full mapping strategy 86, 87
functional requirements 1

H
Hexagonal Architecture 22-24, 135, 136

I
immutable 40
incoming ports

skipping 103
input models

domain entities, using as 102, 103
for persistence adapter 56
for use cases 41, 42
for web adapter 50

input port 27
integration tests 70

persistence adapter, testing with 75-77
web adapter, testing with 73-75

Interface Segregation Principle 58

J
Java Persistence API (JPA) 56

Index 141

L
layered architecture 9, 10
layers 9, 10
layers, issues

difficulty, in parallel working 14, 15
hard to test 12, 13
hide use cases 13, 14
promotes database-driven design 10, 11
prone to shortcuts 12

M
main paths

testing, with system tests 77-81
maintainability 1, 2, 135

decision-making 6, 7
developer joy 4, 5
functionality 2-4
maintaining 7, 8

mapping strategy
full 86
guidelines 89
no mapping 66
one-way 87
two-way 85
usage scenarios 88, 89

Mockito library 73
mock objects 73
model/code gap 29
models

sharing, between use cases 101, 102
modularity 128

N
No Mapping strategy 84, 85
non-functional requirements 1

O
object-relational mapping (ORM) 11, 22
One-Way mapping strategy 87, 88
organizing code

architecturally 27
by feature 26
by layer 25

output models
domain entities, using as 102, 103
for use cases 45

output port 27

P
package-private 94, 109
persistence adapter 55

dependency inversion, applying 55, 56
responsibilities 56
slicing 58-60
testing, with integration tests 75-77

persistence layer 9
plain code

assembling via 93, 94
port interfaces

slicing 57, 58
ports 23

outgoing 49
Ports and Adapters architecture 23
post-compile fitness function 111-113
project

starting clean 100

Q
quality requirements 1, 2
query 45

Index142

R
read-only use cases 45, 46
refactoring 116
rich domain model

versus anemic domain model 44

S
services

skipping 104
shortcuts 12

Broken Windows Theory 99
side effects 18, 19
Single Responsibility Principle

(SRP) 17, 18, 45, 102
SOLID principles 17
some design up-front (SDUF) 4
SPACE framework 5
Spring controller 51
Spring Data JPA

example 60-65
Spring’s classpath scanning

assembling via 94-96
Spring’s Java Config

assembling via 96-98
system tests 70

main paths, testing with 77-81

T
technical debt 99, 100
Testcontainers 77
test pyramid 69, 70
tests

integration tests 70
system tests 70
unit tests 70

transaction boundary 125
Two-Way mapping strategy 85, 86

U
unit tests 70

domain entity, testing with 71
use case, testing with 72, 73
vulnerability to structural change 73

use case 35
business rules, validating 42-44
constructors 40, 41
input models 41, 42
input validation 37-40
output models 45
read-only use cases 45, 46
Send money use case 35, 36

V
validation

of business rules 35, 42
of input 35-37

value objects 41
visibility modifiers 109-111

W
web adapter

application layer 48
architecture elements 47
dependency inversion, applying 48
implementing 47
responsibilities 49, 50
testing, with integration tests 73-75

web layer 9

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Software Architecture with Java

Giuseppe Bonocore

ISBN: 9781800207301

• Understand the importance of requirements engineering, including functional versus
non-functional requirements

• Explore design techniques such as domain-driven design, test-driven development (TDD),
and behavior-driven development

• Discover the mantras of selecting the right architectural patterns for modern applications

• Explore different integration patterns

• Enhance existing applications with essential cloud-native patterns and recommended practices

• Address cross-cutting considerations in enterprise applications regardless of architectural
choices and application type

https://www.packtpub.com/product/hands-on-software-architecture-with-java/9781800207301

145Other Books You May Enjoy

Designing Hexagonal Architecture with Java

Davi Vieira

ISBN: 9781801816489

• Find out how to assemble business rules algorithms using the specification design pattern

• Combine domain-driven design techniques with hexagonal principles to create powerful
domain models

• Employ adapters to make the system support different protocols such as REST, gRPC,
and WebSocket

• Create a module and package structure based on hexagonal principles

• Use Java modules to enforce dependency inversion and ensure isolation between
software components

• Implement Quarkus DI to manage the life cycle of input and output ports

https://www.packtpub.com/product/designing-hexagonal-architecture-with-java/9781801816489

146

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Get Your Hands Dirty on Clean Architecture–Second Edition, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-805-12837-X
https://packt.link/r/1-805-12837-X

147

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805128373

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805128373

	Cover
	Title Page
	Copyright
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Maintainability
	What does maintainability even mean?
	Maintainability enables functionality
	Maintainability generates developer joy
	Maintainability supports decision-making
	Maintaining maintainability

	Chapter 2: What’s Wrong with Layers?
	They promote database-driven design
	They’re prone to shortcuts
	They grow hard to test
	They hide the use cases
	They make parallel work difficult
	How does this help me build maintainable software?

	Chapter 3: Inverting Dependencies
	The Single Responsibility Principle
	A tale about side effects
	The Dependency Inversion Principle
	Clean Architecture
	Hexagonal Architecture
	How does this help me build maintainable software?

	Chapter 4: Organizing Code
	Organizing By Layer
	Organizing by feature
	An architecturally expressive package structure
	The role of dependency injection
	How does this help me build maintainable software?

	Chapter 5: Implementing a Use Case
	Implementing the domain model
	A use case in a nutshell
	Validating input
	The power of constructors
	Different input models for different use cases
	Validating business rules
	Rich versus anemic domain model
	Different output models for different use cases
	What about read-only use cases?
	How does this help me build maintainable software?

	Chapter 6: Implementing a Web Adapter
	Dependency Inversion
	Responsibilities of a web adapter
	Slicing controllers
	How does this help me build maintainable software?

	Chapter 7: Implementing a Persistence Adapter
	Dependency inversion
	Responsibilities of a persistence adapter
	Slicing port interfaces
	Slicing persistence adapters
	An example with Spring Data JPA
	What about database transactions?
	How does this help me build maintainable software?

	Chapter 8: Testing Architecture Elements
	The test pyramid
	Testing a domain entity with unit tests
	Testing a use case with unit tests
	Testing a web adapter with integration tests
	Testing a persistence adapter with integration tests
	Testing main paths with system tests
	How much testing is enough?
	How does this help me build maintainable software?

	Chapter 9: Mapping between Boundaries
	The “No Mapping” strategy
	The “Two-Way” mapping strategy
	The “Full” mapping strategy
	The “One-Way” mapping strategy
	When to use which mapping strategy?
	How does this help me build maintainable software?

	Chapter 10: Assembling the Application
	Why even care about assembly?
	Assembling via plain code
	Assembling via Spring’s classpath scanning
	Assembling via Spring’s Java Config
	How does this help me build maintainable software?

	Chapter 11: Taking Shortcuts Consciously
	Why shortcuts are like broken windows
	The responsibility of starting clean
	Sharing models between use cases
	Using domain entities as the input or output model
	Skipping incoming ports
	Skipping services
	How does this help me build maintainable software?

	Chapter 12: Enforcing Architecture Boundaries
	Boundaries and dependencies
	Visibility modifiers
	Post-compile fitness function
	Build artifacts
	How does this help me build maintainable software?

	Chapter 13: Managing Multiple Bounded Contexts
	One hexagon per bounded context?
	Decoupled bounded contexts
	Appropriately coupled bounded contexts
	How does this help me build maintainable software?

	Chapter 14: A Component-Based Approach to Software Architecture
	Modularity through components
	 Case study – building a “Check Engine” component
	Enforcing component boundaries
	How does this help me build maintainable software?

	Chapter 15: Deciding on
an Architecture Style
	Start simple
	Evolve the domain
	Trust your experience
	It depends

	Index
	About Packt
	Other Books You May Enjoy

