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Foreword

An ounce of prevention is worth a pound of cure. This nugget of wisdom holds true in both the worlds 
of health and data. Unfortunately, trust in data is easily lost and hard to regain. Data contracts have 
taken our community by storm as a socio-technical solution to achieve and maintain high levels of trust.

My first exposure to data contracts was through Andrew’s presentation at a data quality meetup in 
London, hosted at the headquarters of a popular grocery chain. He and I both spoke at the meetup, 
although I was happy to be overshadowed. The room was rapt as he painted a picture of the whys, 
whats, and hows of data contracts at GoCardless. Most of us were only familiar with data contracts 
as a buzzword, but here Andrew is showing us the actual YAML specifications.

I remember that the Q&A portion was overflowing with questions for Andrew and we had to cut the 
section short. Thankfully, this book answers all of the questions I had.

Like his talk, this book is a bridge between theory and practice. Chapter 1, A Brief History of Data 
Platforms, paired with Chapter 7, Contract-Driven Data Architecture, provide a strong conceptual 
foundation for data contracts. The final two chapters, Chapter 9, Implementing Data Contracts in Your 
Organization, and Chapter 10, Data Contracts in Practice, provide powerful tools to think about the 
practice of data contracts.

Along the way, as a reader, I am grateful for how the book progressively introduces complexity, 
interweaves real examples between explanations, and leaves me with opportunities to learn further. 
Whether you’re a data practitioner who is tired of being blamed for data quality issues or a business 
stakeholder who wants to promote data trust, this book is the gold standard for learning about 
data contracts.

Kevin Hu, PhD

Co-founder and CEO at Metaplane
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Preface

Hello, and welcome to Driving Data Quality with Data Contracts! I’m excited to share with you 
everything I’ve learned about how data contracts solve some of the age-old problems we have in our 
data architectures, where, despite huge investments, we rarely have easy access to good-quality data 
that can be used to drive real business value.

This book and the ideas behind it have been three years in the making. It was in August 2020 when I 
started thinking about the problems I wanted to solve at GoCardless and started calling my solution 
data contracts, before writing about them publicly for the first time in April 2021, and describing 
our implementation in December 2021. Since then, they’ve really taken off, with countless articles, 
presentations, and podcasts around the subject.

Over that time, I’ve been lucky enough to have the opportunity to speak to many people in the data 
community, at organizations large and small, and through those discussions I have found that while, 
for each of us, our data is unique, our problems are not! In fact, they’re universal.

Data contracts solve these problems in two ways. The first is the implementation of a contract-backed 
architecture, which empowers the creation, management, and use of quality data through self-served, 
autonomous tooling.

The second is by changing our data culture to one where data is generated explicitly to meet use cases, 
where data generators and data consumers work closely together as partners, and where we focus on 
the quality of our data, not the quantity.

These go together, and both are required if we’re going to achieve our goal of driving a truly data-driven 
organization that creates real business value through the effective use of quality data.

Who this book is for
If you’re an experienced data engineer, data leader, architect, or practitioner thinking about your data 
architecture and how to design one that enables your organization to get the most value from your 
data, this book is for you. You should be aware of the challenges your organization has with its data 
and open to new approaches to solving them.
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What this book covers
Chapter 1, A Brief History of Data Platforms, looks at how, despite advances in technology, by not 
advancing architecture, we haven’t managed to move away from the same old problems of data lacking 
quality and failing to deliver business value.

Chapter 2, Introducing Data Contracts, introduces data contracts as the solution to those problems. 
We’ll provide a definition and discuss the four principles that underpin data contracts. We’ll also 
discuss how data contracts relate to data mesh.

Chapter 3, How to Get Adoption in Your Organization, starts us on the journey toward implementing 
and deploying data contracts, and the culture change needed for a successful adoption. We’ll also 
discuss the idea of data products and why applying a product mindset to your data is so important.

Chapter 4, Bringing Data Consumers and Generators Closer Together, looks at why it’s so important 
to bring these groups of people much closer together. We’ll define those roles and be clear on the 
responsibilities and accountabilities of each.

Chapter 5, Embedding Data Governance, discusses why data governance is so important and how, by 
embedding it into data contracts, we can unlock a range of automations that makes it easy to manage 
our data.

Chapter 6, What Makes Up a Data Contract, looks at exactly what makes up a data contract, including 
the schema. We’ll also discuss how to support the evolution of data, while still providing data consumers 
the stability they need to build on data with confidence.

Chapter 7, A Contract-Driven Data Architecture, shows how to use data contracts to drive our data 
architecture. We explain why this is a step-change in how we build data platforms, promoting the 
autonomous self-service of effective data tooling.

Chapter 8, A Sample Implementation, puts the concepts we have been learning into practice by building 
an end-to-end sample implementation of data contracts.

Chapter 9, Implementing Data Contracts in Your Organization, discusses how to get started with data 
contracts in your organization, building that up with the tooling and culture change required until 
you reach maturity.

Chapter 10, Data Contracts in Practice, looks at how we work with data contracts on a day-to-day 
level, including designing a data contract, monitoring and enforcement, and publishing patterns for 
data generators.
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To get the most out of this book
For the sample implementation in Chapter 8, A Sample Implementation, you will need to have a basic 
understanding of the command line, Python, Docker, and Google Cloud.

Software/hardware covered in the book Operating system requirements
Python 3.9.12 Windows, macOS, or Linux
Docker Windows, macOS, or Linux
Google Cloud Platform

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Much of this book is about the concept of data contracts and how we can use them to solve the key 
problems we have when attempting to drive business value from data. Only Chapter 8, A Sample 
Implementation, assumes this technical knowledge.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Driving-Data-Quality-with-Data-Contracts/tree/main. 
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We’ve 
created a DataContract class to hold our data contract-related code, which you can find in lib/
data_contracts.py.”

https://github.com/PacktPublishing/Driving-Data-Quality-with-Data-Contracts/tree/main
https://github.com/PacktPublishing/Driving-Data-Quality-with-Data-Contracts/tree/main
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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A block of code is set as follows:

import pulumi
from pulumi_gcp import bigquery
default_dataset = bigquery.Dataset(
    "defaultDataset",dataset_id="pulumi_introduction",
     friendly_name="Pulumi Introduction",
     description="This is an example description",

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

Config:
gcp:project:my-google-project-2468

Any command-line input or output is written as follows:

$ python3 –m venv venv
$ pip install -r requirements.txt

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, 
words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the 
Administration panel.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Driving Data Quality with Data Contracts, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1837635005
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook 
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83763-500-9

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83763-500-9


Part 1:  
Why Data Contracts?

In this part, we will look briefly at the history of data platforms and how that led us to our current 
state, where data is unreliable, untrustworthy, and unable to drive real business value. We’ll then 
introduce data contracts, what they are, their guiding principles, and how they solves those problems.

This part comprises the following chapters:

• Chapter 1, A Brief History of Data Platforms

• Chapter 2, Introducing Data Contracts





1
A Brief History of Data 

Platforms

Before we can appreciate why we need to make a fundamental shift to a data contracts-backed data 
platform in order to improve the quality of our data, and ultimately the value we can get from that 
data, we need to understand the problems we are trying to solve. I’ve found the best way to do this is 
to look back at the recent generations of data architectures. By doing that, we’ll see that despite the 
vast improvements in the tooling available to us, we’ve been carrying through the same limitations in 
the architecture. That’s why we continue to struggle with the same old problems.

Despite these challenges, the importance of data continues to grow. As it is used in more and more 
business-critical applications, we can no longer accept data platforms that are unreliable, untrusted, 
and ineffective. We must find a better way.

By the end of this chapter, we’ll have explored the three most recent generations of data architectures 
at a high level, focusing on just the source and ingestion of upstream data, and the consumption of 
data downstream. We will gain an understanding of their limitations and bottlenecks and why we 
need to make a change. We’ll then be ready to learn about data contracts.

In this chapter, we’re going to cover the following main topics:

• The enterprise data warehouse

• The big data platform

• The modern data stack

• The state of today’s data platforms

• The ever-increasing use of data in business-critical applications
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The enterprise data warehouse
We’ll start by looking at the data architecture that was prevalent in the late 1990s and early 2000s, 
which was centered around an enterprise data warehouse (EDW). As we discuss the architecture 
and its limitations, you’ll start to notice how many of those limitations continue to affect us today, 
despite over 20 years of advancement in tools and capabilities.

EDW is the collective term for a reporting and analytics solution. You’d typically engage with one 
or two big vendors who would provide these capabilities for you. It was expensive and only larger 
companies that could justify the investment.

The architecture was built around a large database in the center. This was likely an Oracle or MS 
SQL Server database, hosted on-premises (this was before the advent of cloud services). The extract, 
transform, and load (ETL) process was performed on data from source systems, or more accurately, 
the underlying database of those systems. That data could then be used to drive reporting and analytics.

The following diagram shows the EDW architecture:

Figure 1.1 – The EDW architecture

Because this ETL ran against the database of the source system, reliability was a problem. It created 
a load on the database that could negatively impact the performance of the upstream service. That, 
and the limitations of the technology we were using at the time, meant we could do few transforms 
on the data.

We also had to update the ETL process as the database schema and the data evolved over time, relying 
on the data generators to let us know when that happened. Otherwise, the pipeline would fail.

Those who owned databases were somewhat aware of the ETL work and the business value it drove. 
There were few barriers between the data generators and consumers and good communication.
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However, the major limitation of this architecture was the database used for the data warehouse. It 
was very expensive and, as it was deployed on-premises, was of a fixed size and hard to scale. That 
created a limit on how much data could be stored there and made available for analytics.

It became the responsibility of the ETL developers to decide what data should be available, depending 
on the business needs, and to build and maintain that ETL process by getting access to the source 
systems and their underlying databases.

And so, this is where the bottleneck was. The ETL developers had to control what data went in, and 
they were the only ones who could make data available in the warehouse. Data would only be made 
available if it met a strong business need, and that typically meant the only data in the warehouse was 
data that drove the company KPIs. If you wanted some data to do some analysis and it wasn’t already 
in there, you had to put a ticket in their backlog and hope for the best. If it did ever get prioritized, it 
was probably too late for what you wanted it for.

Note
Let’s illustrate how different roles worked together with this architecture with an example.

Our data generator, Vivianne, is a software engineer working on a service that writes its data to 
a database. She’s aware that some of the data from that database is extracted by a data analyst, 
Bukayo, and that is used to drive top-level business KPIs.

Bukayo can’t do much transformation on the data, due to the limitations of the technology and 
the cost of infrastructure, so the reporting he produces is largely on the raw data.

There are no defined expectations between Vivianne and Bukayo, and Bukayo relies on Vivianne 
telling him in advance whether there are any changes to the data or the schema.

The extraction is not reliable. The ETL process could affect the performance of the database, 
and so can be switched off when there is an incident. Schema and data changes are not always 
known in advance. The downstream database also has limited performance and cannot be 
easily scaled to deal with an increase in the data or usage.

Both Vivianne and Bukayo lack autonomy. Vivianne can’t change her database schema without 
getting approval from Bukayo. Bukayo can only get a subset of data, with little say over the 
format. Furthermore, any potential users downstream of Bukayo can only access the data he 
has extracted, severely limiting the accessibility of the organization’s data.

This won’t be the last time we see a bottleneck that prevents access to, and the use of, quality data. 
Let’s look now at the next generation of data architecture and the introduction of big data, which was 
made possible by the release of Apache Hadoop in 2006.
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The big data platform
As the internet took off in the 1990s and the size and importance of data grew with it, the big tech 
companies started developing a new generation of data tooling and architectures that aimed to reduce 
the cost of storing and transforming vast quantities of data. In 2003, Google wrote a paper describing 
their Google File System, and in 2004 followed that up with another paper, titled MapReduce: Simplified 
Data Processing on Large Clusters. These ideas were then implemented at Yahoo! and open sourced 
as Apache Hadoop in 2006.

Apache Hadoop contained two core modules. The Hadoop Distributed File System (HDFS) gave us 
the ability to store almost limitless amounts of data reliably and efficiently on commodity hardware. 
Then the MapReduce engine gives us a model on which we could implement programs to process 
and transform this data, at scale, also on commodity hardware.

This led to the popularization of big data, which was the collective term for our reporting, ML, and 
analytics capabilities with HDFS and MapReduce as the foundation. These platforms used open 
source technology and could be on-premises or in the cloud. The reduced costs made this accessible 
to organizations of any size, who could either implement it themselves or use a packaged enterprise 
solution provided by the likes of Cloudera and MapR.

The following diagram shows the reference data platform architecture built upon Hadoop:

Figure 1.2 – The big data platform architecture



The big data platform 7

At the center of the architecture is the data lake, implemented on top of HDFS or a similar filesystem. 
Here, we could store an almost unlimited amount of semi-structured or unstructured data. This still 
needed to be put into an EDW in order to drive analytics, as data visualization tools such as Tableau 
needed a SQL-compatible database to connect to.

Because there were no expectations set on the structure of the data in the data lake, and no limits 
on the amount of data, it was very easy to write as much as you could and worry about how to use 
it later. This led to the concept of extract, load, and transform (ELT), as opposed to ETL, where 
the idea was to extract and load the data into the data lake first without any processing, then apply 
schemas and transforms later as part of loading to the data warehouse or reading the data in other 
downstream processes.

We then had much more data than ever before. With a low barrier to entry and cheap storage, data 
was easily added to the data lake, whether there was a consumer requirement in mind or not.

However, in practice, much of that data was never used. For a start, it was almost impossible to 
know what data was in there and how it was structured. It lacked any documentation, had no set 
expectations on its reliability and quality, and no governance over how it was managed. Then, once 
you did find some data you wanted to use, you needed to write MapReduce jobs using Hadoop or, 
later, Apache Spark. But this was very difficult to do – particularly at any scale – and only achievable 
by a large team of specialist data engineers. Even then, those jobs tended to be unreliable and have 
unpredictable performance.

This is why we started hearing people refer to it as the data swamp. While much of the data was 
likely valuable, the inaccessibility of the data lake meant it was never used. Gartner introduced the 
term dark data to describe this, where data is collected and never used, and the costs of storing and 
managing that data outweigh any value gained from it (https://www.gartner.com/en/
information-technology/glossary/dark-data). In 2015, IDC estimated 90% of 
unstructured data could be considered dark (https://www.kdnuggets.com/2015/11/
importance-dark-data-big-data-world.html).

Another consequence of this architecture was that it moved the end data consumers further away 
from the data generators. Typically, a central data engineering team was introduced to focus solely on 
ingesting the data into the data lake, building the tools and the connections required to do that from 
as many source systems as possible. They were the ones interacting with the data generators, not the 
ultimate consumers of the data.

So, despite the advance in tools and technologies, in practice, we still had many of the same limitations 
as before. Only a limited amount of data could be made available for analysis and other uses, and we 
had that same bottleneck controlling what that data was.

https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.kdnuggets.com/2015/11/importance-dark-data-big-data-world.html
https://www.kdnuggets.com/2015/11/importance-dark-data-big-data-world.html
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Note
Let’s return to our example to illustrate how different roles worked together with this architecture.

Our data generator, Vivianne, is a software engineer working on a service that writes its data to 
a database. She may or may not be aware that some of the data from that database is extracted 
in a raw form, and is unlikely to know exactly what the data is. Certainly, she doesn’t know why.

Ben is a data engineer who works on the ELT pipeline. He aims to extract as much of the data 
as possible into the data lake. He doesn’t know much about the data itself, or what it will be 
used for. He spends a lot of time dealing with changing schemas that break his pipelines.

Leah is another data engineer, specializing in writing MapReduce jobs. She takes requirements 
from data analysts and builds datasets to meet those requirements. She struggles to find the 
data she wants and needs to learn a lot about the upstream services and their data models in 
order to produce what she hopes is the right data. These MapReduce jobs have unpredictable 
performance and are difficult to debug. The jobs do not run reliably.

The BI analyst, Bukayo, takes this data and creates reports to support the business. They often 
break due to an issue upstream. There are no expectations defined at any of these steps, and 
therefore no guarantees on the reliability or correctness of the data can be provided to those 
consuming Bukayo’s data.

The data generator, Vivianne, is far away from the data consumer, Bukayo, and there is no 
communication. Vivianne has no understanding of how the changes she makes affect key 
business processes.

While Bukayo and his peers can usually get the data they need prioritized by Leah and Ben, those 
who are not BI analysts and want data for other needs lack the autonomy and the expertise to access 
it, preventing the use of data for anything other than the most critical business requirements.

The next generation of data architectures began in 2012 with the launch of Amazon Redshift on 
AWS and the explosion of tools and investment into what became known as the modern data stack 
(MDS). In the next section, we’ll explore this architecture and see whether we can finally get rid of 
this bottleneck.
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The modern data stack
Amazon Redshift was the first cloud-native data warehouse and provided a real step-change in 
capabilities. It had the ability to store almost limitless data at a low cost in a SQL-compatible database, 
and the massively parallel processing (MPP) capabilities meant you could process that data effectively 
and efficiently at scale.

This sounds like what we had with Hadoop, but the key differences were the SQL compatibility and the 
more strongly defined structure of the data. This made it much more accessible than the unstructured 
files on an HDFS cluster. It also presented an opportunity to build services on top of Redshift and later 
SQL-compatible warehouses such as Google BigQuery and Snowflake, which led to an explosion of 
tools that make up today’s modern data stack. This includes ELT tools such as Fivetran and Stitch, 
data transformation tools such as dbt, and reverse ETL tools such as Hightouch.

These data warehouses evolved further to become what we now call a data lakehouse, which brings 
together the benefits of a modern data warehouse (SQL compatibility and high performance with 
MPP) with the benefits of a data lake (low cost, limitless storage, and support for different data types).

Into this data lakehouse went all the source data we ingested from our systems and third-party services, 
becoming our operational data store (ODS). From here, we could join and transform the data and 
make it available to our EDW, from where it is available for consumption. But the data warehouse 
was no longer a separate database – it was just a logically separate area of our data lakehouse, using 
the same technology. This reduced the effort and costs of the transforms and further increased the 
accessibility of the data.
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The following diagram shows the reference architecture of the modern data stack, with the data 
lakehouse in the center:

Figure 1.3 – The modern data stack architecture

This architecture gives us more options to ingest the source data, and one of those is using change 
data capture (CDC) tooling, for which we have open source implementations such as Debezium 
and commercial offerings such as Striim and Google Cloud Datastream, as well as in-depth write-
ups on closed source solutions at organizations including Airbnb (https://medium.com/
airbnb-engineering/capturing-data-evolution-in-a-service-oriented-
architecture-72f7c643ee6f) and Netflix (https://netflixtechblog.com/dblog-
a-generic-change-data-capture-framework-69351fb9099b). CDC tools connect 
to the transactional databases of your upstream servers and capture all the changes that happen to 
each of the tables (i.e., the INSERT, UPDATE, and DELETE statements run against the database). 
These are sent to the data lakehouse, and from there, you can recreate the database in the lakehouse 
with the same structure and the same data.

https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f
https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f
https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
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However, this creates a tight coupling between the internal models of the upstream service and database 
and the data consumers. As that service naturally evolves over time, breaking changes will be made 
to those models. When these happen – often without any notice – they impact the CDC service and/
or downstream data uses, leading to instability and unreliability. This makes it impossible to build on 
this data with any confidence.

The data is also not structured well for analytical queries and uses. It has been designed to meet the 
needs of the service and to be optimal for a transactional database, not a data lakehouse. It can take a 
lot of transformation and joining to take this data and produce something that meets the requirements 
of your downstream users, which is time-consuming and expensive.

There is often little or no documentation for this data, and so to make use of it you need to have 
in-depth knowledge of those source systems and the way they model the data, including the history 
of how that has evolved over time. This typically comes from asking teams who work on that service 
or relying on institutional knowledge from colleagues who have worked with that data before. This 
makes it difficult to discover new or useful datasets, or for a new consumer to get started.

The root cause of all these problems is that this data was not built for consumption.

Many of these same problems apply to data ingested from a third-party service through an ELT tool 
such as Fivetran or Stitch. This is particularly true if you’re ingesting from a complex service such as 
Salesforce, which is highly customizable with custom objects and fields. The data is in a raw form that 
mimics the API of the third-party service, lacks documentation, and requires in-depth knowledge of 
the service to use. Like with CDC, it can still change without notice and requires a lot of transformation 
to produce something that meets your requirements.

One purported benefit of the modern data stack is that we now have more data available to us than 
ever before. However, a 2022 report from Seagate (https://www.seagate.com/gb/en/
our-story/rethink-data/) found that 68% of the data available to organizations goes unused. 
We still have our dark data problem from the big data era.

The introduction of dbt and similar tools that run on a data lakehouse has made it easier than ever to 
process this data using just SQL – one of the most well-known and popular languages around. This 
should increase the accessibility of the data in the data lakehouse.

However, due to the complexity of the transforms required to make use of this data and the domain 
knowledge you must build up, we still often end up with a central team of data engineers to build and 
maintain the hundreds, thousands, or even tens of thousands of models required to produce data that 
is ready for consumption by other data practitioners and users.

https://www.seagate.com/gb/en/our-story/rethink-data/
https://www.seagate.com/gb/en/our-story/rethink-data/
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Note
We’ll return to our example for the final time to illustrate how different roles work together 
with this architecture.

Our data generator, Vivianne, is a software engineer working on a service that writes its data 
to a database. She may or may not be aware that the data from that database is extracted in a 
raw form through a CDC service. Certainly, she doesn’t know why.

Ben is a data platform engineer who works on the CDC pipeline. He aims to extract as much 
of the data as possible into the data lakehouse. He doesn’t know much about the data itself, 
or what it will be used for. He spends a lot of time dealing with changing schemas that break 
his pipelines.

Leah is an analytics engineer building dbt pipelines. She takes requirements from data analysts 
and builds datasets to meet those requirements. She struggles to find the data she wants and 
needs to learn a lot about the upstream services and their data models in order to produce what 
she hopes is the right data. These dbt pipelines now number in the thousands and no one has 
all the context required to debug them all. The pipelines break regularly, and those breakages 
often have a wide impact.

The BI analyst, Bukayo, takes this data and creates reports to support the business. They often 
break due to an issue upstream. There are no expectations defined at any of these steps, and 
therefore no guarantees on the reliability or correctness of the data can be provided to those 
consuming Bukayo’s data.

The data generator, Vivianne, is far away from the data consumer, Bukayo, and there is no 
communication. Vivianne has no understanding or visibility of how the changes she makes 
affect key business processes.

While Bukayo and his peers can usually get the data they need prioritized by Leah and Ben, those 
who are not BI analysts and want data for other needs have access to the data in a structured 
form, but lack the domain knowledge to use it effectively. They lack the autonomy to ask for 
the data they need to meet their requirements.

So, despite the improvements in the technology and architecture over three generations of data platform 
architectures, we still have that bottleneck of a central team with a long backlog of datasets to make 
available to the organization before we can start using it to drive business value.
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The following diagram shows the three generations side by side, with the same bottleneck highlighted 
in each:

Figure 1.4 – Comparing the three generations of data platform architectures

It’s that bottleneck that has led us to the state of today’s data platforms and the trouble many of us face 
when trying to generate business value from our data. In the next section, we’re going to discuss the 
problems we have when we build data platforms on this architecture.

The state of today’s data platforms
The limitations of today’s data architectures, and the data culture they reinforce, result in several 
problems that are felt almost universally by organizations trying to get value from their data. Let’s 
explore the following problems in turn and the impact they have:

• The lack of expectations

• The lack of reliability

• The lack of autonomy
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The lack of expectations

Users working with source data that has been ingested through an ELT or CDC tool can have very few 
expectations about what the data is, how it should be used, and how reliable it will be. They also don’t 
know exactly where this data comes from, who generated it, and how it might change in the future.

In the absence of explicitly defined expectations, users tend to make assumptions that are more 
optimistic than reality, particularly when it comes to the reliability and availability of the data. This 
only increases the impact when there is a breaking change in the upstream data, or when that data 
proves to be unreliable.

It also leads to the data not being used correctly. For example, there could be different tables and 
columns that relate to the various dimensions around how a customer is billed for their use of the 
company’s products, and this will evolve over time. The data consumer will need to know that in detail 
if they are to use this data to produce revenue numbers for the organization. They therefore need to 
gain in-depth knowledge of the service and the logic it uses so they can reimplement that in their ETL.

Successfully building applications and services on top of the data in our lakehouse would require 
the active transfusion of this knowledge from the upstream data generators to the downstream data 
consumers, including the following:

• The domain models the dataset describes

• The change history of the dataset

• The schematics and metadata

However, due to the distance between these groups, there is no feasible way to establish this exchange.

This lack of expectations, and no requirement to fulfill them, is also a problem for the data generators. 
Often, they don’t even know they are data generators, as they are just writing data to their internal 
models in their services database or managing a third-party service as best they can to meet their 
direct users requirements. They are completely unaware of the ELT/CDC processes running to extract 
their data and its importance to the rest of the organization. This makes it difficult to hold them 
responsible for the changes they make and their downstream impact, as it is completely invisible to 
them and often completely unexpected. So, the responsibility falls entirely on the data teams attempting 
to make use of this data.
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This lack of responsibility is shown in the following diagram, which is the same as we saw in the The 
modern data stack section earlier but annotated with responsibility.

Figure 1.5 – Responsibility in the modern data stack

This diagram also illustrates another of the big problems with today’s data platforms, which is the 
complete lack of collaboration between the data generators and the data consumers. The data generators 
are far removed from the consumption points and have little to no idea of who is consuming their data, 
why they need the data, and the important business processes and outcomes that are driven by that 
data. On the other side, the data consumers don’t even know who is generating the data they depend 
on so much and have no say in what that data should look like in order to meet their requirements. 
They simply get the data they are given.



A Brief History of Data Platforms16

The lack of reliability

Many organizations suffer from unreliable data pipelines and have done for years. This could be at a 
significant cost, with a Gartner survey (https://www.gartner.com/smarterwithgartner/
how-to-stop-data-quality-undermining-your-business) suggesting these cost 
companies millions of dollars a year.

There are many reasons for this unreliability. It could be the lack of quality of the data when ingested, 
or how the quality of that data has degraded over time as it becomes stale. Or the data could be late 
or incomplete.

The root cause of so many of these reliability problems is that we are building on data that was not 
made for consumption.

As mentioned earlier, data being ingested through ELT and CDC tools can change at any time, without 
warning. These could be schema changes, which typically cause the downstream pipelines to fail loudly 
with no new data being ingested or populated until the issue has been resolved. It could also be a 
change to the data itself, or the logic required to use that data correctly. These are often silent failures 
and may not be automatically detected. The first time we might hear about the issue is when a user 
brings up some data, maybe as part of a presentation or a meeting, and notices it doesn’t look quite 
right or looks different to how it did yesterday.

Often, these changes can’t be fixed in the source system. They were made for a good reason and have 
already been deployed to production. That leaves the data pipeline authors to implement a fix within 
the pipeline, which in the best case is just pointing to another column but more likely ends up being 
yet another CASE statement with logic to handle the change, or another IFNULL statement, or IF 
DATE < x THEN do this ELSE do that. This builds and builds over time, creating ever 
more complex and brittle data pipelines, and further increasing their unreliability.

All the while, we’re increasing the number of applications built on this data and adding more and 
more complexity to these pipelines, which again further increases the unreliability.

The cost of these reliability issues is that users lose trust in the data, and once that trust is lost it’s very 
hard to win back.

The lack of autonomy

For decades we’ve been creating our data platforms with a bottleneck in the middle. The team, typically 
a central data engineering or BI engineering team, are the only ones who have the ability and the time 
to attempt to make use of the raw source data, with everyone else consuming their data.

Anyone wanting to have data made available to them will be waiting for that central team to prioritize 
that ask, with their ticket sitting in a backlog. These central teams will never have the capacity to keep 
up with these requests and instead can only focus on those deemed the highest priority, which are 
typically those data sources that drive the company KPIs and other top-level metrics.

https://www.gartner.com/smarterwithgartner/how-to-stop-data-quality-undermining-your-business
https://www.gartner.com/smarterwithgartner/how-to-stop-data-quality-undermining-your-business
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That’s not to say the rest of the data does not have value! As we’ll discuss in the following section, 
it does, and there will be plenty of ways that data could be used to drive decisions or improve data-
driven products across the organization. But this data is simply not accessible enough to the people 
who could make use of this data and therefore sits unused.

To empower a truly data-driven organization, we need to move away from the dependence on a central 
and limited data engineering team to an architecture that promotes autonomy, opening that dark data 
up to uses that will never be important enough to prioritize, but that when added up provide a lot of 
business value to the organization and support new applications that could be critical for its success.

This isn’t a technical limitation. Modern data lakehouses can be queried by anyone who knows SQL, 
and any data available in the lakehouse can be made available to any reporting tool for use by less 
technical users. It’s a limitation of the way we have chosen to ingest data through ELT, the lack of 
quality of that data, and the data culture that embodies.

As we’ll discuss in the next section, organizations are looking to gain a competitive advantage with 
the ever-increasing use of data in more and more business-critical applications. These limitations in 
our data architecture are no longer acceptable.

The ever-increasing use of data in business-critical 
applications
Despite all these challenges, data produced on a data platform is being increasingly used in 
business-critical applications.

This is for good reason! It’s well accepted that organizations that make effective use of data can gain a 
real competitive advantage. Increasingly, these are not traditional tech companies but organizations 
across almost all industries, as technology and data become more important to their business. This has 
led to organizations investing heavily in areas such as data science, looking to gain similar competitive 
advantages (or at least, not get left behind!).

However, for these data projects to be successful, more of our data needs to be accessible to people 
across the organization. We can no longer just be using a small percentage of our data to provide 
top-level business metrics and nothing more.

This can be clearly seen in the consumer sector, where to be competitive you must be providing a 
state-of-the-art customer experience, and that requires the atomic use of data at every customer 
touchpoint. A report from McKinsey (https://www.mckinsey.com/industries/retail/
our-insights/jumpstarting-value-creation-with-data-and-analytics-in-
fashion-and-luxury) estimated that the 25 top-performing retailers were digital leaders. They 
are 83% more profitable and took over 90% of the sector’s gains in market capitalization.

https://www.mckinsey.com/industries/retail/our-insights/jumpstarting-value-creation-with-data-and-analytics-in-fashion-and-luxury
https://www.mckinsey.com/industries/retail/our-insights/jumpstarting-value-creation-with-data-and-analytics-in-fashion-and-luxury
https://www.mckinsey.com/industries/retail/our-insights/jumpstarting-value-creation-with-data-and-analytics-in-fashion-and-luxury
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Many organizations are, of course, aware of this. An industry report by Anmut in 2021 (https://
www.anmut.co.uk/wp-content/uploads/2021/05/Amnut-DLR-May2021.pdf) 
illustrated both the perceived importance of data to organizations and the problems they have utilizing 
it when it stated this in its executive summary:

We found that 91% of business leaders say data’s critical to their business success, 
76% are investing in business transformation around data, and two-thirds of 

boards say data is a material asset.

Yet, just 34% of businesses manage data assets with the same discipline as other 
assets, and these businesses are reaping the rewards. This 34% spend most of their 

data investment creating value, while the rest spend nearly half of their budget 
fixing data.

It’s this lack of discipline in managing their data assets that is really harming organizations. It manifests 
itself in the lack of expectations throughout the pipeline and then permeates throughout the entire data 
platform and into those datasets within the data warehouse, which themselves also have ill-defined 
expectations for its downstream users or data-driven products.

The following diagram shows a typical data pipeline and how at each stage the lack of defined 
expectations ultimately results in the consumers losing trust in business-critical data-driven products:

Figure 1.6 – The lack of expectations throughout the data platform

Again, in the absence of these expectations, users will optimistically assume the data is more reliable 
than it is, but now it’s not just internal KPIs and reporting that are affected by the inevitable downtime 
but revenue-generating services affecting external customers. Just like internal users, they will start 
losing trust, but this time they are losing trust in the product and the company, which can eventually 
cause real damage to the company’s brand and reputation.

https://www.anmut.co.uk/wp-content/uploads/2021/05/Amnut-DLR-May2021.pdf
https://www.anmut.co.uk/wp-content/uploads/2021/05/Amnut-DLR-May2021.pdf
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As the importance of data continues to increase and it finds its way into more business-critical 
applications, it becomes imperative that we greatly increase the reliability of our data platforms to 
meet the expectations of our users.

Summary
There’s no doubt that the effective use of data is becoming ever more critical to organizations. No longer 
is it only expected to drive internal reporting and KPIs, but the use of data is driving key products 
both internally and externally to customers.

However, while the tools we have available are better than ever, the architecture of the data platforms 
that underpin all of this have not evolved alongside them. Our data platforms continue to be hampered 
by a bottleneck that restricts the accessibility of the data. They are unable to provide the reliable, quality 
data that is needed to those teams who need it when it is needed.

We need to stop working around these problems within the data platform and address them at the source.

We need an architecture that sets expectations around what data is provided, how to use it, and how 
reliable it will be.

We need a data culture that treats data as a first-class citizen, where responsibility is assigned to those 
who generate the data.

And so, in the next chapter, we’ll introduce data contracts, a new architecture pattern designed to 
solve these problems, and provide the foundations we need to empower true data-driven organizations 
that realize the value of their data.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• From Data Warehouse to Data Lakehouse: The Evolution of Data Analytics Platforms by Henry 
Golas: https://cloudian.com/blog/from-data-warehouse-to-data-
lakehouse-the-evolution-of-data-analytics-platforms/

• The Rise of ELT for DW Data Integration by Chris Tabb: https://www.leit-data.com/
the-rise-of-elt-for-dw-data-integration/

• The Modern Data Stack: Past, Present, and Future by Tristan Handy: https://www.getdbt.
com/blog/future-of-the-modern-data-stack/

• DBLog: A Generic Change-Data-Capture Framework: https://netflixtechblog.
com/dblog-a-generic-change-data-capture-framework-69351fb9099b

https://cloudian.com/blog/from-data-warehouse-to-data-lakehouse-the-evolution-of-data-analytics-platforms/
https://cloudian.com/blog/from-data-warehouse-to-data-lakehouse-the-evolution-of-data-analytics-platforms/
https://www.leit-data.com/the-rise-of-elt-for-dw-data-integration/
https://www.leit-data.com/the-rise-of-elt-for-dw-data-integration/
https://www.getdbt.com/blog/future-of-the-modern-data-stack/
https://www.getdbt.com/blog/future-of-the-modern-data-stack/
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
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• Capturing Data Evolution in a Service-Oriented Architecture by Jad Abi-Samra on the Airbnb 
Tech Blog: https://medium.com/airbnb-engineering/capturing-data-
evolution-in-a-service-oriented-architecture-72f7c643ee6f

• Data Systems Tend Towards Production by Ian Macomber: https://ian-macomber.
medium.com/data-systems-tend-towards-production-be5a86f65561

• How Netflix used big data and analytics to generate billions by Michael Dixon: https://
seleritysas.com/blog/2019/04/05/how-netflix-used-big-data-and-
analytics-to-generate-billions/

• How Uber uses data science to reinvent transportation? ProjectPro: https://www.
projectpro.io/article/how-uber-uses-data-science-to-reinvent-
transportation/290

• How DoorDash built the greatest go-to-market playbook ever by Lars Kamp: https://
findingdistribution.substack.com/p/how-doordash-built-the-
greatest-go

• Why Retailers Fail to Adopt Advanced Data Analytics by Nicole DeHoratius, Andrés Musalem, 
and Robert Rooderkerk: https://hbr.org/2023/02/why-retailers-fail-to-
adopt-advanced-data-analytics

• Companies are losing revenue opportunities and customers because of bad data practices by Bob 
Violino: https://www.zdnet.com/article/companies-are-losing-revenue-
opportunities-and-customers-because-of-bad-data-practices/

https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f
https://medium.com/airbnb-engineering/capturing-data-evolution-in-a-service-oriented-architecture-72f7c643ee6f
https://ian-macomber.medium.com/data-systems-tend-towards-production-be5a86f65561
https://ian-macomber.medium.com/data-systems-tend-towards-production-be5a86f65561
https://seleritysas.com/blog/2019/04/05/how-netflix-used-big-data-and-analytics-to-generate-billions/
https://seleritysas.com/blog/2019/04/05/how-netflix-used-big-data-and-analytics-to-generate-billions/
https://seleritysas.com/blog/2019/04/05/how-netflix-used-big-data-and-analytics-to-generate-billions/
https://www.projectpro.io/article/how-uber-uses-data-science-to-reinvent-transportation/290
https://www.projectpro.io/article/how-uber-uses-data-science-to-reinvent-transportation/290
https://www.projectpro.io/article/how-uber-uses-data-science-to-reinvent-transportation/290
https://findingdistribution.substack.com/p/how-doordash-built-the-greatest-go
https://findingdistribution.substack.com/p/how-doordash-built-the-greatest-go
https://findingdistribution.substack.com/p/how-doordash-built-the-greatest-go
https://hbr.org/2023/02/why-retailers-fail-to-adopt-advanced-data-analytics
https://hbr.org/2023/02/why-retailers-fail-to-adopt-advanced-data-analytics
https://www.zdnet.com/article/companies-are-losing-revenue-opportunities-and-customers-because-of-bad-data-practices/
https://www.zdnet.com/article/companies-are-losing-revenue-opportunities-and-customers-because-of-bad-data-practices/


2
Introducing Data Contracts

In the previous chapter, we looked at the problems we need to solve, and why it requires a new kind 
of data architecture. In this chapter, we’ll introduce data contracts as our solution. We’ll provide a 
definition and explore exactly what it is and how it solves those problems.

One of the best analogies for data contracts is that they act as APIs for your data. That sounds simple, 
but it’s a fundamental change in how we build our data architecture. As we’ll see later in this chapter, 
by thinking about providing an API for data, you’ll start defining expectations around that API and 
consider the ownership and responsibilities. People often refer to an API as a contract between the 
provider and consumer, and it’s that idea that eventually led to me calling them data contracts.

But an API is just one example of an interface, and really, it’s interfaces that are the key to designing 
and implementing an architecture that defines the right expectations, builds in reliability, and 
promotes autonomy.

After building a shared understanding of data contracts, we’ll consider when you should adopt data 
contracts, and discuss the types of organizations most ready for and best suited to applying data 
contracts to solve their problems.

Finally, in this chapter, we will discuss how data contracts relate to data mesh, another concept that aims 
to solve many of the same problems we want to solve with data contracts, and one of the inspirations 
for data contracts. We’ll look at how they align, where they differ, and how data contracts can be used 
as a step toward a full data mesh (or maybe, they might be all you need!).

After reading this chapter, you’ll have a solid understanding of data contracts, what they are, and how 
they solve the universal problems of today’s data architectures.

In this chapter, we’re going to cover the following main topics:

• What is a data contract?

• When to use data contracts

• Data contracts and the data mesh
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What is a data contract?
We’ll start by defining what a data contract is and break down that definition to explore the key 
principles that make up a data contract. Having an agreed definition will then allow us to understand 
how data contracts solve the problems we described in Chapter 1, A Brief History of Data Platforms, 
and give us the foundations we need in the later chapters as we look at exactly how to build and deploy 
an architecture built on data contracts – one that ultimately changes our data culture and allows us 
to extract the most business value from our data.

So, let’s start with a definition. I define a data contract as follows:

A data contract is an agreed interface between the generators of data and its consumers. It sets the 
expectations around that data, defines how it should be governed, and facilitates the explicit generation 
of quality data that meets the business requirements.

Those four keywords highlighted are the four key principles that data contracts are built on. We’ll 
discuss these in more detail in the following sections:

• An agreed interface between the generators of data, and its consumers

• Setting expectations around that data

• Defining how the data should be governed

• Facilitating the explicit generation of quality data

Note
Throughout this book, we’ll mostly be talking about applying data contracts to data your 
organization generates internally. This is the most important data to an organization, and 
therefore the data we need to make available to the business at the right quality. It’s also the 
data we have the most ability to change and improve.

There will be important data whose generation we have little control over, for example, data 
we ingest from third parties such as Salesforce or a partner’s API. We can still apply many of 
the same principles of data contracts to those datasets.

For example, we can have a conversation with our Salesforce admins and developers about the 
data we need, the format we need it in, how to handle migrations when that data changes, and 
so on. We could write that in a document, and that’s a data contract. We could codify these 
rules in a tool such as Great Expectations (https://greatexpectations.io/) or Soda 
(https://www.soda.io) and assign responsibility for any breakages to those admins.

For a partner whose API we depend on, that API can start to include data quality rules that 
they take responsibility for. We may even be able to start talking about data quality as part 
of the legal agreement we have with them, in the same we talk about their performance and 
dependability as part of service-level agreements (SLAs).

So, while it’s not the focus of this book, the principles of data contracts can certainly be applied 
to third-party data.

https://greatexpectations.io/
https://www.soda.io
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An agreed interface between the generators of data, and its 
consumers

Interfaces are the key to any architecture where we want to allow consumers to have confidence in 
their dependencies, which is why you see interfaces everywhere in software.

Consider when you import a third-party library into your code. That provides a well-documented 
interface in the way of public methods that you know you can rely on and use with confidence. That 
interface may evolve over time, and if so, a new version will be released. If it’s a breaking change, that 
would be made clear by there being a release of a new major version, and there will be a migration 
path from the old version to the new.

There are often ways you can avoid the public interface and call the private methods, and maybe 
that’s what you feel you need to do in order to meet your requirements. However, you can have no 
expectations that this method will continue to be supported from one version to the next. If/when it 
does break, that breakage is your responsibility, not the provider of the library.

Another great example of an interface in software is an API. These are of course used everywhere, 
both within organizations and between organizations, and as with software libraries are typically 
versioned, documented, and well-supported.

Within organizations, many have been building out service-orientated architectures (SOAs) or 
micro-service architectures for decades, which aim to reduce the coupling between different parts of 
a product or service that are owned and operated by different teams in order to improve developer 
speed, service resilience, and scalability. Interfaces underpin this in much the same way as they did 
for code libraries, although that interface also needs to set expectations around the performance of 
the service, its service-level objectives (SLOs), and support levels.

Sometimes these interfaces are taken further and become an industry standard that specifies exactly 
what the format should be. For example, ISO 8583 is an international standard that defines the format 
and protocol for exchanging financial transaction messages between different financial institutions. As 
with the other interfaces we’ve discussed, the standard is versioned. There have been several revisions 
released since the initial version in 1987 as the standard has evolved, ensuring it is still relevant and 
widely used today.

As well as providing a well-documented and supported foundation consumers can build upon with 
confidence, interfaces also provide an abstraction that hides the implementation details of the component. 
This decoupling allows the providers of the interface to make changes to that implementation quickly 
and with autonomy, knowing they won’t be impacting their consumers.

Furthermore, the creation of an interface naturally brings the providers and the consumers closer 
together as they come to an agreement on the structure and the expectations of that interface. The 
consumer can discuss their requirements and share the context of why they need this interface and the 
value they can build from it. With this understanding, the provider is more incentivized to provide a 
quality interface that meets their requirements and gains a sense of ownership of the business value 
they are helping to create.
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While the benefits of using interfaces are clear, there is of course a cost to building these interfaces. 
This cost can be significantly reduced with the right tooling and support. For example, most modern 
frameworks and libraries provide tools and utilities that simplify API development, including the 
definition of the endpoints, error handling, the generation of client libraries, and the publishing of 
documentation. There are also many resources and standards that help providers design an easy-to-
use API, including RFC 9110 for HTTP semantics (https://www.rfc-editor.org/rfc/
rfc9110) and semantic versioning for the consistent use of version numbers (https://semver.
org). We can provide the same quality of tooling for data contacts, as we’ll discuss in Chapter 7, A 
Contract-Driven Data Architecture.

This is why interfaces are a key part of data contracts. Data consumers – just like teams and organizations 
that consume and build upon APIs and standards – need an interface around the data they consume 
if they are going to build their analytics, models, and data products on that data with confidence.

We’ll be talking more about expectations in the following section, as it’s the next principle of data contracts.

Setting expectations around that data

Once we have an interface, we can use that to set the expectations around the data. It’s these expectations 
that define how to use the data, what the structure of the data is, and how performant the data will be.

Without having well-defined expectations for the data you depend on, you can’t set realistic expectations 
for your downstream users of the data product you are building. For example, if you don’t know 
how timely the data will be, you can’t confidently tell your users when to expect the latest data for 
their analysis.

A data contract can set the following expectations around the data, which we will be discussing in turn:

• The structure/schema of the data

• The valid/invalid data values (data quality checks)

• How performant and dependable the data is (via SLOs)

• Ownership and responsibilities

The structure/schema of the data

To make use of any data, you need to know what the structure of the data is. This is typically defined 
in a schema.

Schemas are of course nothing new. A relational database has a well-defined schema. There are a 
plethora of Interface Definition Languages (IDLs) that can be used to define schemas for serialized 
data, including protocol buffers (a.k.a., protobuf), Apache Thrift, and Apache Avro. There’s also JSON 
Schema for defining a schema over JSON documents, upon which standards such as OpenAPI and 
AsyncAPI are built.

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://semver.org
https://semver.org
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Alternatively, you could define your schemas in some custom or abstract format, for example in YAML 
or JSON, or even in code such as Python. This can give you more flexibility at the cost of interoperability.

We’ll be looking in detail at how to define a schema in Chapter 6, What Makes Up a Data Contract. These 
schemas define exactly what the structure of the data is, which at least should include the following:

• The name and data type of each field available

• Documentation for those fields describing their purpose and limitations

Some of these formats can also be extended to include more useful information on the structure of 
the data that can be useful to consumers, including the following:

• The primary key(s)

• Data quality rules, for example, a valid range of values

• What entity the data relates to (for example, is it about a customer, an order, etc.?)

• Semantics (for example, units of measure)

• Whether it is personal data, and if so, is it identifiable (PII)?

• How the data is classified according to your organization’s policies (for example, is it confidential, 
secret, or public knowledge?)

This is not an exhaustive list, and what you need to define in your schema will depend a lot on the 
kind of data it is and the organization implementing data contracts. But data contracts do provide 
a great place to define this metadata for use not just by consumers but also by other tooling, as we’ll 
explore later in this chapter.

The valid/invalid data values (data quality checks)

The schema sets some expectations for what values a field can contain. For example, if the data type is a 
number, you know you will receive a number, and if it’s a string you know it will be a string. However, 
what is a valid string for that field? How long can it be? Is there a limited number of allowed values, 
or any? Does it always conform to a particular format, such as an email address?

Knowing these make it a lot easier to work with the data and present it to the end users. For example, 
knowing a field named country_code will always be one of the few countries your business operates 
in, represented in the ISO 3166 format, allows you to decide how best to present that data. As a limited 
number of values, you know it will be fine to use as a dimension in a chart. If you wanted to present 
the country in the full form, you know how to perform that lookup.

Other data quality checks that could be implemented include the following:

• Minimum and/or maximum values for numbers

• Matches a defined standard, for example, a phone number or IP address
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• Contains unique values only

• Matches a regular expression

• Referential integrity checks, for example, if the value of one field is x, there must be a value 
in another field

Capturing these validations in the data contract makes it clear that the data generator is responsible 
for producing data that passes those validations, and if not, it would breach the agreement they made 
with their consumers.

It also allows the data generators to incorporate these validations in their code. They can use them 
as part of their test suite, helping ensure the code they write produces valid data. They can also use 
them in production and catch invalid data before it is sent downstream, limiting the impact of the 
issue and alerting the data generator instantly to the problem so they can fix it as soon as possible.

We’ll be showing how to define these validations in a data contract and how to use them to build 
libraries for data generators to use in Chapter 8, A Sample Implementation.

We now know what to expect from our data based on the schema and the valid data values. Next, we’ll 
look at when to expect that data and whether we can depend on it for our use case.

How performant and dependable the data is (via SLOs)

Having expectations around the structure and the quality of the data helps us use the data, but to build 
on it with confidence we also need to know about the performance and the dependability of the data.

How performant and dependable the data needs to be depends on your requirements. For many use 
cases, the data doesn’t need to be highly dependable, and therefore no further effort should be spent 
increasing its dependability. In other cases, for example, if your organization is using this data to provide 
a data-driven product to its customers, or if the data is required to accurately bill its customers, the 
dependability requirements increase.

When it comes to data, its performance and dependability can be measured in several ways. Three of the 
most useful measures are completeness, timeliness, and availability, as shown in the following diagram:
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Figure 2.1 – Data performance and dependability measures

These are examples of service-level indicators (SLIs), which are direct measurements taken on your 
system that tells you how it is performing from a user’s experience. They should be measured constantly 
with alerts raised instantly for the data generator when they indicate something is unhealthy.

From these measurements, you can create service-level objectives (SLOs). These are expressed as a 
percentage over time and define the expectations the data consumers can expect.

For example, we could measure the timeliness of our data by recording the difference in time between 
when the record was created, and when it was available for querying by the consumers. We could then 
set an SLO that the oldest available record is no older than (say) 1 hour. The data consumers now 
know how timely the data is expected to be and can make an informed choice on whether it meets 
their needs, and if it does what promises to make to their own users or consumers.

Unless you know what to expect from your data generators (and any other dependencies you have), 
you can’t set expectations for your consumers. So, typically, they will assume your product or service 
is more performant and dependable than it really is. When that turns out not to be true and the data 
users start to lose trust in the data, once that trust is lost it is very difficult to win back.

We’ve implicitly been implying that this is the responsibility of the data generator, as the owner of the 
data. But it’s always better to be explicit, so let’s look now at what the ownerships and responsibilities 
are around the data contract.
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Ownership and responsibilities

Finally, an interface helps to define the ownership and responsibilities clearly and explicitly. As we 
discussed in the previous chapter, with today’s data platforms almost all the responsibility falls on 
the data engineering teams and the data consumers, and very little is assigned to the data generators.

This is a big problem, as it is those data generators who have the most control over the completeness, 
timeliness, and availability of the data. They also have the most context on the data and know why 
it is shaped the way it is, how it might have been populated over time, and how it needs to evolve in 
the future.

With data contracts, we’re asking data generators to take on more responsibility for the data they create. 
It’s a shift-left of responsibility, so we can address the data quality and dependability issues earlier. It’s 
their data, and they need to provide it in a way that meets the requirements of the data consumers, 
in order to help the organization as a whole meet its objectives.

But we’re also giving data generators the autonomy to decide how best to do that. They own the 
data contract, they decide how best to provide the data in a structure that takes into account the 
requirements of the consumers but also considers the trade-offs on their side around how to provide 
that in a scalable and maintainable way.

They are also the ones setting the expectations around that data, and they will be held accountable to 
those expectations. This includes the schema, the semantics, and the valid data values. It also includes 
performance and dependability, as expressed as SLOs.

However, it is up to the data consumers to make a case for this data and why they need a certain level 
of performance and dependability. They need to be able to articulate the value of the data and the 
business goals they are supporting with this data.

Having an interface and defining these responsibilities helps bring the data generators and consumers 
much closer together. The generators can now clearly understand the importance and impact of their 
data, and the consumers can make the case for better-quality data.

A lot of this is part of the culture change we’re promoting with data contracts, and we’ll talk more 
about that in Chapter 4, Bringing Data Consumers and Generators Closer Together.
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Consumer-driven contracts
What we’ve been describing so far are known as producer-driven contracts. They are created and 
owned by the producer (the data generators), as it is they who have control over how the data is 
generated. APIs, as we discussed in the Interface section earlier, are also producer-driven contracts.

This is the only way to implement data contracts in a way that supports and drives a culture 
where data quality is the responsibility of the data generators.

Consumer-driven contracts are contracts created and owned by the consumer and applied to the 
data produced by the generator. They are a pattern often used in testing, for example, using Pact 
(https://pact.io), and can be implemented on data using tools such as Great Expectations 
(https://greatexpectations.io/) or Soda (https://www.soda.io).

This can be useful to implement on data you have little control over, for example, if it is coming 
from a third party. But with data contracts, we’re focused more on data we can control, typically 
produced internally, where we do have the ability to change how that data is produced, both 
through the implementation of tooling and by changing our data culture.

In the following section, we’ll look at the next principle of data contracts, which is around documentation 
and governance.

Defining how the data should be governed

Data governance includes the standards, policies, and processes that define how an organization’s data 
is managed. It is becoming increasingly important to organizations as data quantity and complexity 
grows, the risks of data misuse increase, and regulators across the world take steps to define how 
personal data can and can’t be handled.

As mentioned previously, in Setting expectations around that data, we can extend the data contract with 
metadata that helps describe what the data is. This includes several characteristics and classifications 
that can help with the governance of the data, including the following:

• Is the data related to a person? If so, is it a direct or an indirect identifier?

• How sensitive is this data? Is it confidential, secret, or public knowledge?

• Who can access this data? And for how long?

• What is the retention period for this data?

• How is this data expired? If it is to be anonymized, what’s the anonymization strategy?

• How has this data been processed?

https://pact.io
https://greatexpectations.io/
https://www.soda.io
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How important some of these are depends on your organization, the type of data you generate or 
collect, and the regulations in the territories you operate in. However, there is a clear direction of 
travel when it comes to privacy regulation, so even if you don’t need to track many of these today, you 
may well need to track them tomorrow.

The best people to determine how the data should be categorized and labeled are the data generators. 
They have the most context on the data, know what it is, where it’s come from, and – through data 
contracts – what use cases they are making this data available for.

This metadata that describes the data and its governance can be captured in the data contract. This 
ensures it is kept up to date, by those who own this data, as/when the data evolves.

We’re treating the data contract as the source of truth for everything we need to know about that data. 
This is not just useful for consumers and other stakeholders as they discover and make use of the data, 
but if the contract is available in a machine-readable format, then it can also be made available to 
other tools and services, including privacy tooling, data catalogs, and other data governance tooling.

We’ll talk more about how embedding governance in our data contracts enables a decentralized and 
more effective approach to managing our data, and how by collecting this in the data contract we can 
build tooling that automates our data governance processes, in Chapter 5, Embedding Data Governance.

In the next section, we’ll look at the last of our principles, and how data contracts facilitate the explicit 
generation of quality data.

Facilitating the explicit generation of quality data

In Chapter 1, A Brief History of Data Platforms, we looked at how the data on our data platform is 
typically in a very raw form that has been extracted as is from the source system using an extract, 
load, transform (ELT) tool. For example, we might use change data capture (CDC) to export a copy 
of the database to an operational data store, or an ELT provider such as Fivetran or Stitch. We saw 
how that led to unreliable and expensive data pipelines and the creation of a bottleneck that prevented 
access to much of the data.

The root cause of this is that the data we are building on was not built for consumption. It was designed 
to meet the needs and requirements of the upstream service and how it needs to model the world and 
is optimized for the transactional database underpinning that service.

And so the final principle in our definition highlights how, with data contracts, we are moving away 
from accepting data in a raw form that has been generated as a side product of the upstream services, 
to data that has been deliberately and explicitly generated for consumption, meeting the consumers’ 
requirements, and allowing us to effectively drive great business outcomes through the use of quality data.

To do this, we need to bring our data generators and consumers much closer together, and we use the 
data contract to facilitate this collaboration. It becomes the perfect place to discuss the data that might 
be missing or not in the right format, and any differences in the expectations set by the generators 
and what is required by the consumers.
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For a data consumer to drive that discussion, they need to be able to articulate the value of the data 
to them and to the organization. This is important, as it connects the data generators to the ultimate 
outcome, incentivizes them to help us achieve that outcome, and gives them a sense of ownership 
and responsibility for that outcome. We’ll be discussing this in more detail in Chapter 3, How to Get 
Adoption in Your Organization.

We also need to support the data generators by providing them with tooling that makes it easy to 
explicitly generate this data and make it available through a data contract-backed interface. This should 
include managing the resources that provide this interface, tools that help manage this data, and libraries 
and patterns to help publish this data from their services. For example, to replace the consistency 
guarantees provided by a CDC tool, you might need to make it easy to use publishing patterns such 
as outbox (https://microservices.io/patterns/data/transactional-outbox.
html) or listen to yourself (https://link.medium.com/8G6wGLjvSzb). We’ll explore how 
to support data generators in more detail in Chapter 7, A Contract-Driven Data Architecture, and the 
publishing patterns in Chapter 10, Data Contracts in Practice.

The four principles of data contracts

As we’ve seen, each of the four principles in our definition work together to drive a step change in 
building reliable, trusted, and effective data platforms, and help us achieve our aim of increasing the 
value our organizations can get from our data.

The data generators and the data consumers agree on an interface for the data that meets the business 
requirements and defines the expectations of that dataset and the governance around that dataset. It’s 
through this interface that the data is explicitly made available to the consumers, decoupling them from 
the internal models of the upstream service to provide something they can build on with confidence.

In the next section, we’ll discuss the concepts of data products, and how data contracts provide the 
interface for these products.

When to use data contracts
Now we have a good understanding of what data contracts are and how they solve the problems we 
saw in Chapter 1, A Brief History of Data Platforms, how do we know when is a good time to adopt 
data contracts in an organization?

Firstly, it depends on how your organization is using or wants to use its data. As discussed in the 
previous chapter, many organizations are starting to use data in more business-critical processes or 
in products they build for their customers. The ability to build these products quickly and effectively 
depends on the accessibility of easy-to-use, quality data, and data contracts help with the production 
of that data.

https://microservices.io/patterns/data/transactional-outbox.html)
https://microservices.io/patterns/data/transactional-outbox.html)
https://link.medium.com/8G6wGLjvSzb
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Then, once these data-driven applications are released, data contracts help ensure they stay performant 
and dependable by tracking the SLOs of the data and managing the evolution of that data, preventing 
breaking changes that impact downstream consumers.

Even if your organization is not ready to use data for critical use cases, if it is using data at all then the 
first thing the users of that data want to know is “Can I rely on this?”. They want to know whether it 
is correct, whether it is up to date, and whether it will be available when they need it. Above all, they 
favor the stability of that data application.

For these reasons, I believe data contracts are worth adopting early on and are not just something 
larger organizations will benefit from. The truth is, once you have product market fit, your core data 
models are fairly stable, so we’re not really sacrificing our organization’s velocity by adopting a more 
deliberate approach to data from the start.

To take GoCardless as an example, when I joined over 5 years ago, our core models were around 
payments, bank details, and so on. Since then, we’ve expanded into many countries around the 
world, started using open banking alongside direct debit to collect payments, and added new product 
offerings alongside our core product. And yet, the core models are not all that different. Of course, 
they’ve evolved and been extended, but at its core are still datasets describing payments, the amounts, 
the fees, the bank accounts those payments are between, and so on.

It’s also true that the later you adopt it, the harder it will be. The existing data culture will be much more 
ingrained and it’s going to take a lot of effort to change that. You will have legacy pipelines you will 
need to decommission and datasets that will need to be migrated to data contracts. It’s not impossible, 
and we’ll be providing plenty of advice in this book to help you! But it is harder.

If you are bringing data contracts into a larger organization, it is usually best to start with a few specific 
use cases. Take those data applications that are most critical for the business, and from there work 
back to improve the quality and dependability of the data they depend on. Measure the impact of this 
change, perhaps by looking at a reduction in data incidents, reduced ETL costs, or the speed of iteration 
on these products. Use these measurements to show the value in the move toward data contracts.

You can do this with minimal investment in tooling. The most basic data contract is a document 
describing the data, as agreed by the data generators and the data consumers. With just that, you’ve 
started bringing those groups together, increasing the understanding the data generators have of the 
problems faced by the consumers, and allowing the consumers to share their requirements and what 
they could do if the quality and accessibility of data was improved. Then iterate on the tooling you 
need to create more usable and enforceable data contracts as you work toward building your ideal 
data contract implementation.

We’ll be discussing more about how to make the case for data contracts in Chapter 3, How to Get 
Adoption in Your Organization.

In the next section, we’ll look at Data Mesh. This is a pattern also aiming to solve the problems we’ve 
been discussing throughout this book. We’ll explore where they are similar, and where they differ.
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Data contracts and the data mesh
Data mesh was invented by Zhamak Dehghani in 2019 (https://martinfowler.com/
articles/data-monolith-to-mesh.html) and is a design pattern for building a domain-
oriented, decentralized data platform. It focuses not just on the technology, but also the social and 
cultural changes required to achieve this goal and solve many of the problems we discussed in Chapter 1, 
A Brief History of Data Platforms.

The pattern is described through four principles:

• Domain ownership

• Data as a product

• Self-serve data platform

• Federated computational governance

Let’s go through each principle in turn and discuss how they relate to data contracts.

Domain ownership

Data mesh proposes a domain-oriented approach to organizing the responsibility and ownership of 
the data, where this ownership is decentralized to the business domains closest to the data – ideally, 
the data generators. They are the ones who know most about the data and can change that data. It’s 
their data.

Data contracts enable and promote domain ownership. They provide the interface where we can 
define this ownership, and related metadata such as the entity (or domain) that data relates to. It’s 
also where the generators set the expectations around the data, which gives the data consumers the 
confidence to rely on this data.

With data contracts, we’re encouraging data generators and data consumers to collaborate around this 
interface. The data consumers bring their requirements and describe why they need this data and the 
business value they want to create by building on this data. The data generators are then incentivized 
to produce quality data that meets those requirements.

Data contracts also promote domain ownership through the provision of tooling. That allows data 
generators in different domains to provide their data in the data warehouse, from where it can be made 
available to any other part of the business that needs it and joined with data from other domains. We’ll 
be discussing this further in Chapter 7, A Contract-Driven Data Architecture.

It is essential that there is a well-defined interface at the boundaries of the domains – the boundaries 
of ownership. Data contracts provide that interface.

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
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For domain owners to provide effective and easy-to-use data through these interfaces, they need to 
treat this data as a product they are providing to their consumers. This is the next principle of data 
mesh, which we’ll look at next.

Data as a product

The principle of data as a product encourages the application of product thinking to our data. It 
promotes the generation of data that not only meets the needs of customers but also provides a great 
user experience from discovery to implementation.

As we discussed in Chapter 1, A Brief History of Data Platforms, most data is generated as a side product 
from the upstream services. One of the principles of data contracts is to move away from this to a 
model where we are deliberately and explicitly producing data products that meet the requirements 
of consumers.

These data products require an interface on them that defines the expectations around that data, the 
schema, the version, and how it evolves, and so on – all of which are key parts of a data contract, as 
we’ve been discussing throughout this chapter.

Then what you end up with is something that looks a bit like a supply chain of data products, where 
products depend on other products in order to add some value. Each of these products should be useful 
independently, and by having an interface with well-defined expectations, we can build up a chain 
of products without losing confidence in the pipeline. The following diagram shows this data supply 
chain in action, with data contracts as the interface for each, and how independently or combined 
they drive business value:

Figure 2.2 – Data products with data contracts as the interface
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A strong case can be made that you don’t have a data product if you don’t have a data contract around it.

Data contracts also support the generation of data products through tooling, as we’ll discuss in the 
next section.

Self-serve data platform

In order to enable the first two principles, we need to provide the teams working in their data domains 
the ability and autonomy to build their own data products through self-serve tooling.

This is important, as without providing standard tooling that enables the common use cases of these 
data generators, the effort required to produce quality data products is simply too high.

Through data contracts, we will be providing tooling that makes it easy for data generators to produce 
good-quality data that meets the requirements of their consumers. They’ll be able to provide an 
interface to this data that is easy for them to write to, and easy for a consumer to read from. This 
tooling will be self-served and flexible, promoting the data generator’s autonomy in designing and 
delivering their data products.

This is a big change for many centralized data engineering/platform teams. In fact, at GoCardless we 
explicitly changed the mission of our Data Infrastructure team to move away from enabling GoCardless 
to make data-driven decisions, products, and services by providing a frictionless and trusted platform to 
instead providing best-in-class tooling so everyone can autonomously build reliable, scalable, and trusted 
data-driven products and services.

We’ll be discussing how to achieve this in detail in Chapter 7, A Contract-Driven Data Architecture, 
including making the case for a data infrastructure team to build and support this platform.

Federated computational governance

Data mesh is by design promoting a federated organizational structure, where domains have the 
autonomy to define their data products and the responsibility for them.

While the responsibility for governance is now shared across the organization, they still need to 
follow the standards and policies that have been set centrally. The proposal in data mesh is to utilize 
automation to help enforce these policies.

Data contracts provide the place where we can define the policies and provide the services that automate 
the enforcement of these policies.

For example, we discussed earlier, in What is a data contract?, how as part of the data contract, we can 
define whether the data relates to a person or not, whether it should be deleted or anonymized when we 
should no longer have that data, and what anonymization strategy to use. The responsibility for setting 
these definitions is assigned to the data generators, as they are the ones with the most context on this 
data, and they are supported by the standards, policies, and subject matter experts in the organization.
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Once we have that definition, it’s trivial to build tooling that can automate the expiry of that data when 
it exceeds its retention period, or in response to an action such as a deletion request from someone 
under the General Data Protection Regulation (GDPR). That tooling will work no matter how the 
schema has been designed. If we have a standard way to define a contract, which includes the metadata 
that describes how we should manage the data, we can build common tooling to perform the required 
actions on that data, without requiring every data generator to become experts in privacy regulations.

We’ll discuss more around how to embed data governance in data contracts in Chapter 5, Embedding 
Data Governance, and how we can build this kind of tooling on top of data contracts in Chapter 7, A 
Contract-Driven Data Architecture.

Data contracts enable a data mesh

As we have seen, there is a strong alignment between the goals and principles of data mesh and those 
of data contracts. In fact, data mesh was one of the inspirations behind data contracts. The articles 
came out around the same time I was thinking about solving the same problems and when I eventually 
came up with the concept. So, they should be considered complementary, rather than in competition.

What’s missing from data mesh is how, exactly, you provide the tooling that enables the pattern 
and supports the organizational structures proposed. Data contracts fill that gap by providing an 
architecture that provides the interfaces where domain ownership is defined and the expectations 
around the data products are set, enabled through the delivery of a self-served data platform that 
automates data governance.

In fact, you probably cannot implement a data mesh without using data contracts.

However, data contracts are an important architectural component even if you’re not attempting to 
implement a data mesh. You still need some interface to the data, and data contracts provide that. You 
still need somewhere to set expectations, including defining and implementing data quality checks. 
You still need to automate data governance and comply with current and future data regulations.

Just like you don’t need to be building micro-services to benefit from good API patterns and tooling, 
you don’t need to be implementing a data mesh to benefit from data contracts.

Summary
In this chapter, we introduced the concept of data contracts as our solution to the problems identified 
in Chapter 1, A Brief History of Data Platforms. We’ve provided a definition and discussed how data 
contracts provide an agreed interface between the generators of data and its consumers. That interface 
also sets the expectations around that data and how it should be governed. We then have everything 
we need to facilitate the explicit generation of quality data.

These are the four principles of data contracts, which work together to drive a step change in building 
reliable, trusted, and effective data platforms, and help us achieve our aim of increasing the value our 
organizations can get from our data.
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By applying these principles, we are shifting the responsibilities left, moving more upstream to the 
data generators. We’re addressing the data quality and dependability issues at source, by those who 
have the most knowledge of the data and the ability to change the data.

We also discussed when organizations should apply data contracts, why they should start as early as 
possible, and how to get started in a larger organization with an existing data culture.

Finally, we compared data contracts to data mesh, a design pattern and organizational framework that 
aims to solve many of the same problems, and how data contracts align with and enable the data mesh 
principles, but is ultimately an architectural pattern that brings benefits whether you are planning on 
implementing a data mesh or not.

In the next chapter, we’ll start looking at how to adopt data contracts in your organization, by exploring 
the people and culture changes we need to facilitate alongside the changes in our technical architecture.
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Part 2:  
Driving Data Culture Change 

with Data Contracts

In this part, we'll focus on the culture change that is required as part of our adoption of data contracts, 
why it is so important to bring consumers and generators closer together, and how we can embed 
and automate data governance.

This part comprises the following chapters:

• Chapter 3, How to Get Adoption in Your Organization

• Chapter 4, Bringing Data Consumers and Generators Closer Together

• Chapter 5, Embedding Data Governance





3
How to Get Adoption  
in Your Organization

Now that we have a good understanding of what data contracts are and how they can help solve the 
data problems we have in our organizations, let’s look at how we can get started on the journey toward 
implementing and deploying data contracts.

What we’ll find is that while data contracts are a technical architecture supported by our tooling, 
they’re also our vessel for changing the data culture in our organizations. We are moving away from 
data as a side product and instead applying more discipline to how we generate our data in order to 
meet the requirements of our data consumers. And we’re doing that because we understand the value 
our organization can get from its data, and how that will lead to better outcomes for the business.

Changing the data culture is not easy but is essential for the successful adoption of data contracts. 
Throughout this chapter, we’ll be discussing how to approach this culture change and providing 
actionable advice to help you get started.

By the end of this chapter, you’ll be able to articulate the value of your data and unlock that value 
by building data products. We’ll also walk through an example data product, showing how to apply 
these concepts in practice.

In this chapter, we’re going to cover the following main topics:

• Using data contracts to change an organization

• Articulating the value of your data

• Building data products

• Walking through an example of a data product
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Using data contracts to change an organization
We’ll start by understanding how we can use the adoption of data contracts to change an organization. 
We’ll learn about the two major roles involved in the extraction of value from data, and how they both 
need to change if we are to achieve our objectives.

It’s important to keep in mind that data contracts are not just about implementing some tooling 
and defining a new architecture. If we want to make cultural changes, as we discussed in Chapter 2, 
Introducing Data Contracts, we need to change how people within the organization work with data.

In fact, I’d say data contracts are about affecting and facilitating this change in culture than the 
technology and how it is implemented.

There are two distinct roles we refer to in the context of data contracts:

• Data generator: The people generating data intended to be consumed by one or more data 
consumers. They often work in a product engineering team, and this data is typically generated 
by a service they support. They are the owners of this data.

• Data consumer: The people consuming this data. Often, we think of these as data practitioners, 
such as data engineers, business analysts, or data scientists, but often they are also software 
engineers, tech leads, or product managers who support a service that consumes data generated 
from another service and take action based on that data.

As we discussed in Chapter 1, A Brief History of Data Platforms, data generators often don’t identify 
themselves as such, due to the way data is extracted from their databases and the little to no interaction 
they have with the data engineers maintaining these pipelines, let alone the data consumers.

And so, with data contracts, our data generators will feel they are taking on a new role. We are empowering 
them with greater autonomy and assigning them greater responsibility. We are showing them the value 
our organization gets from data and asking them to help enable it. Together with the data consumers, 
the data generators will now take some ownership, and some recognition, for those outcomes.

This will be a substantial change for them! Particularly if they are in a product team that is busy with 
other commitments, and now it sounds like they’re being asked to do more. It may not even be clear 
why they should. That is why it’s so important to have a strategy for culture change alongside your 
plans to roll out the new data architecture and the tooling around it.

You will need to be able to communicate the benefits of data contracts to data generators and other 
stakeholders at all levels and get their buy-in and sponsorship.

It’s best to start this as early as possible and before any solution has been designed. You can present 
your ideas and get feedback from data generators on the direction you are considering taking. This 
early engagement will give them a sense of involvement and a feeling of ownership right from the 
start, and as the project develops, they will become your allies and help evangelize the approach and 
represent you and the data teams when you are not in the room.
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As you do this, you’re going to hear a lot of concerns. It’s important to treat every concern as genuine 
and react with empathy, while being honest about what we’re asking for and why we’re doing this. This 
builds a strong relationship with the stakeholders, which will help get their buy-in.

But it’s not just the data generators we are asking to change. We’re also asking the data consumers 
to change.

They need to start asking for the data they need and being clear why they need it. This sounds easy, 
but after years of just accepting the data they’re given, it’s often a new skill they need to learn.

This is all part of how we start to bring the data generators and consumers much closer together, 
which we’ll be covering in more detail in Chapter 4, Bringing Data Consumers and Generators Closer 
Together. They are partners who are working together to add value to their organization through the 
effective use of data.

Key to this is the ability of data consumers to effectively articulate the data they are providing to the 
business, which we’ll be discussing in the next section.

Articulating the value of your data
Now, let’s look at how to effectively articulate the value of your data, and why that is important as we 
adopt data contracts.

As we discussed in the previous section, we’re explicitly asking the data generators to take on this 
new role and assigning them that responsibility. By doing this, we are moving the accountability for 
the quality of data left, upstream from the data engineers and their pipelines. This shift-left approach 
ensures data quality issues are addressed at source, by those who have the most knowledge of the data 
and the ability to change the data – the product teams.

If data consumers are going to ask our product teams to do more and incentivize them to do so, they 
need to be particularly good at articulating the value of our data, and the positive outcomes we are 
generating for the organization with that data.

This is why we are doing it. Why is it worth the investment in improving data quality? What are 
the positive outcomes we are generating for the business? Why are we investing in data instead of 
something else?

Without being clear on the why, we’re not going to get data generators to adopt data contracts. Or even 
if they do, maybe because they are being mandated to by leadership, they’re not going to be motivated 
to do it well and in line with the principles we discussed in Chapter 2, Introducing Data Contracts. It 
will just be the bare minimum to get it done.

How you articulate the value of data, and then data contracts, depends on who you are communicating 
with and how they are incentivized. If you’re talking to the leaders in the organization, it’s highly likely 
there are parts of the company-wide strategy that will only succeed with good-quality data.
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Leaders are also most interested in how to make better decisions, and one way to do that is to use data 
to help them understand the past and the present and make predictions about the future.

Furthermore, there’s a lot of value in making faster decisions. For example, using data and services 
built upon quality data to automatically take an action, either because it needs to happen in real time, 
or because to decide manually for thousands of cases isn’t economical.

Your organization may also be investing in more data-driven products, particularly those driven by 
machine learning (ML). If so, it should be quite easy to articulate the value of these investments, as 
those products will likely have revenue targets already associated with them.

Some of these things can be hard to measure in dollar terms, so instead I would suggest making these 
achievements more visible. There could be a regular newsletter highlighting a decision or business 
change that was driven by data. Or we could run presentations that show the data and how it tells a 
story about the performance of the business.

Either way, it’s best to start with the business problem we’re trying to solve with data and work back 
from there. You can rank these problems by criticality and value, then gradually roll data contracts 
out to other datasets as you prove the concept and develop your tooling.

How successful you are in articulating the value of your data will influence how you choose to roll 
out data contracts. It may be best to focus on a demonstrably high-value area first and prove the 
concept there. You can then use that as evidence of the impact of data contracts. For example, can you 
estimate the time it would have saved in creating that data-driven application had there been better 
quality data from the start? Is the resulting data-driven application more reliable and now achieving its  
service-level objectives (SLOs)? Is better or faster decision-making leading to more or higher-value sales?

Once we’re clear on the value and how to communicate it, we can start asking for well-defined data 
products, supplying quality data, backed by data contracts.

We’ll discuss moving your organization toward a data products approach and mindset more in the 
following section.

Building data products
As we discussed in Chapter 1, A Brief History of Data Platforms, most of the data made available to 
data teams is in tables and datasets extracted in raw form as is from source systems using an extract, 
load, transform (ELT) tool. That leads to unreliable and expensive data pipelines and the creation 
of a bottleneck where a central data engineering team effectively control access to any data of value.

With data contracts, we want to move away from thinking about the tables and datasets in the source 
system and instead start creating data products.
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In the following sub-sections, we are going to cover the following:

• What is a data product?

• Adopting a data product mindset

• Designing a data product

What is a data product?

We introduced the concept of data products and the benefits of them in Chapter 2, Introducing Data 
Contracts. Let’s go into more detail about the concept and define exactly what a data product is.

A data product is a high-quality dataset that has been designed for consumption by others. It aims 
to meet the requirements and expectations of those consumers and provide them with a dataset they 
can trust and build on with confidence. These expectations may include the setting of SLOs that the 
provider of the data product is accountable for meeting.

The data product may relate to one or more business entities (e.g., customers, orders), but should be 
scoped to a single business domain. That domain, and the teams within it, owns the data product and 
supplies it to the rest of the business.

Each data product has value on its own and can be used by anyone in the business looking to make 
use of data in their decision-making, processes, and applications.

Data products must be discoverable and accessible. They are provided through a well-defined, 
stable interface and include the necessary details needed to address that interface. They also include 
documentation on the fields and values of the data contained within the product and their meaning, 
semantics, and limitations.

Often, this discovery and accessibility is promoted through data catalogs and by surfacing the data 
lineage. We will discuss how data contracts help with data product discoverability in Chapter 9, 
Implementing Data Contracts in Your Organization.

The following diagram shows how these data products, with data contracts as the interface, drive the 
use of data in business applications. It also highlights how data products can be derived from other 
data products to combine data from different domains, building a supply chain of data products:
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Figure 3.1 – Data products with data contracts as the interface

Data products should not be produced solely by central data teams. They should also be produced by 
those business domains that own the data. This promotes the shift left of data production, assigning 
responsibility for these data products to those who are the domain owners, who know most about 
the data and can change and improve and support it in the long term.

This shift left of responsibility is the key to removing the bottleneck we discussed in Chapter 1, A Brief 
History of Data Platforms, where the only accessible data is through the datasets produced by central 
data engineering and BI teams. By encouraging and supporting the creation of data products by all 
those who generate data, we’re making accessible what was previously dark data and allowing anyone 
in the organization to build upon that data to drive business value.

The following diagram shows how the move to decentralized data products removes the bottleneck we 
had in our centralized data platforms and changes the assignment of responsibility. The data products 
are made available in our data lakehouse, having been explicitly produced by the source systems, and 
owned by the data generators within that domain. The interface for those data products is provided 
through data contracts:
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Figure 3.2 – The decentralized data products and the shift left of responsibility

Data products provide many benefits. They are more stable, accessible, and useful than datasets that 
have not been produced as a product. They encourage collaboration between the provider and the 
consumer, who work together as partners in the creation of business value using an organization’s 
data. As the quality of the data increases, the time to insight and action is reduced.

There is also a reduction in costs, as data products provide the source of truth for data about a domain, 
with fewer duplicates created. Furthermore, any issues with that data are localized and the impact and 
cost of resolution are also reduced.

However, to create effective data products, we also need to adopt a data product mindset. Let’s discuss 
that next.

Adopting a data product mindset

Now that we have a good understanding of what a data product is, let’s explore how to create quality 
data products by applying a data product mindset.

A data product isn’t all that different from any other product created by your organization. Of course, 
they’re typically (but not always) for internal consumption. But applying product thinking to internal 
products is becoming increasingly common in other areas – for example, developer tooling – so your 
organization may already be familiar with the concept.
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The first step is to understand why we need a data product. Who is it for? What are their requirements 
and expectations? This is another example of how data products, and data contracts, facilitate greater 
collaboration between data consumers and data generators. You can’t build a great product without 
knowing who it is for.

The data consumers should have a good idea of the business needs they are looking to solve by building 
on this data product, and as discussed in the previous section, they will have been able to articulate 
that to the data generators. Knowing this, the data generators can appreciate the business value they 
are creating by providing this product, giving them a sense of ownership of that value.

These data products should be useful by themselves for driving data-driven applications and services, 
for example, dashboards and analytics, ML models, and internal or external services. They can also 
be sources for other data products and become part of a supply chain that builds value at each step.

As a principle, these supply chains should be kept as short and as efficient as possible. That reduces 
complexity and ensures no one team becomes a bottleneck in the use of our data. It also keeps the 
data generators close to the end consumers, so they can see the value of the data they create and feel 
ownership over the outcomes.

For example, if an engineering team can supply the data in the right format for a dashboard required 
by a finance team, they should feel empowered to do so, without needing permission or resources 
from a central data team. This is how we can remove those bottlenecks we discussed in Chapter 1, A 
Brief History of Data Platforms.

To aid with this shift in mindset, you may consider formalizing a Data Product Manager role, 
either as a full-time role or as part of an existing product manager role. They take responsibility for 
understanding the requirements of the data consumers and work with their product teams to meet 
those requirements. The core skill set of this role is much the same as any other product manager – 
they just need to learn about the different datasets their team owns and how the data products they 
build around those datasets unlock business value.

Now that we understand the data product mindset, in the next section, we’ll look at how to design 
a data product.

Designing a data product

Let’s discuss how to design a data product. This is a new skill for the data generators, who were 
previously detached from the data consumers and how they were using the data. They now need to 
learn how to design and build effective data products.

At an architectural level, we don’t need to distinguish between who builds these data products. They 
could be engineering or data teams, depending on the product. What’s important is that they are 
present at the boundaries of services, domain, or ownership, have a well-defined interface consumers 
can build on, and set the expectations around their dependability, performance, and support levels.
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Knowing this, the data generators can start proposing a data contract. This will include the schema 
and some idea of the expectations around the data, for example, the suggested SLOs.

There will be several trade-offs the data generators make as they start working on the contract, 
including the following:

• What’s the interface we will provide for this data? How will it be accessed?

• How does the production of this data impact their services and their performance?

• Can they produce this dataset at the expected scale, with the timeliness the consumers expect?

• Is this in a format they are happy to commit to supporting and keeping relatively stable?

• Does it have the flexibility to evolve as their services and the business evolves?

• Is the data sensitive, and if so, are the right controls in place around the data (for example, 
encryption, data minimization, and so on)?

This is why it’s important that the data generators own the contract and have the autonomy to define 
it as they see it best. Only they have the required context to answer these questions and design a data 
product they are happy to support.

Data products should not be designed based on how the data is modeled and stored in the source 
system. That’s internal to the service generating the data and is not necessarily a useful way of modeling 
the data outside of that system.

Instead, it should be related to a business entity and/or domain and be supplied to enable one or more 
known use cases.

Of course, a business evolves over time, and our data products will too. That’s why we ensure our data 
contracts are versioned, with new versions being created as needed and a migration path that allows 
consumers to move to a newer version without any downtime or data loss.

But as discussed earlier, in Chapter 2, Introducing Data Contracts, our core data models do not change 
as often as you might think. Once your business has found its product market fit, the core models will 
be stable, even as your organization grows, and your product features expand. It’s for this reason we can 
expect our data products to be stable, and our data consumers can build upon them with confidence.

Data products are an incredibly valuable way to think about how data is generated and how it’s 
consumed. It’s worth investing in data products early, particularly if they are around your core models 
or related to important business processes.

Over time, you’ll find these products being applied to more use cases around the business, perhaps 
in combination with other data products, unlocking value you hadn’t realized when you started. 
Furthermore, the more data that is available in the data product adds to its value and unlocks the 
ability to use that historical data in modeling and forecasting.

In the next section, we’ll walk through a worked example of building a data product and put these 
ideas and concepts into practice.
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Walking through an example of a data product
Let’s work through a simple example that shows how to create a usable data product. This will solidify 
the ideas we’ve discussed so far in this chapter by applying them in practice.

Imagine we are building an e-commerce website that sells physical products directly to customers. 
We have many products and often apply discounts on these products as we react quickly to external 
factors in the market and internal factors such as our stock levels.

The way these discounts have been modeled and applied to orders has changed several times in the 
database that drives the service behind our e-commerce service. Initially, we added another field to 
the products table, but that meant a particular discount could only apply to a specific product, 
rather than many.

It was then extracted out to a new discounts table, which provided more flexibility in how we 
applied discounts across our product lines. However, the data was never backfilled in that table and 
the old column is still in the products table.

That gives us a database schema as shown in the following diagram. To keep things simple, we’ll ignore 
other tables that would likely be present, such as the customers table:

Figure 3.3 – Database schema for our e-commerce site
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We’re currently extracting that data through a change data capture (CDC) tool that recreates the data 
in our data lakehouse. It has the same structure, the same schema, and the same data. From there, the 
data consumers perform our ETL to convert this data into something that meets the requirements 
of their users.

In the future, the data generators are considering linking discounts to the order instead of the product 
as we look to personalize the discounts applied to our customers. That’s something that’s worrying our 
data consumers, as it could mean a substantial change in the underlying data models.

This discount data has a lot of value to the business. It’s by looking at the performance of past discounts 
that the sales team decides what discounts to offer in the future, how much stock we will need in 
place, how best to market these discounts, and so on. We might even have a team of data scientists 
trying to model the expected impact of offering a discount, to help support the sales team in making 
those decisions.

Ultimately, it’s the sales performance that matters most to the business and drives our revenue, and 
the effective use of discounts can drive a competitive advantage. And yet, despite that, the data is of 
poor quality and difficult to use.

As a consumer, you’ve had to encode a lot of business logic in your data pipelines. You have several 
CASE and IFNULL statements that change the logic based on the values, or absence of values. The 
SQL is now at over 800 lines and is expensive to run and hard to maintain.

You’re not notified when the upstream logic changes and the first people to notice are your users, 
who don’t understand why discounts seem to be missing from the dashboards or why they have been 
applied to some models and not others. They’re starting to lose trust in this data.

Let’s summarize the problems we’re having with this approach based on building on top of the internal 
models of the database:

• Data generators need to be able to change the schema of their database, with autonomy, to 
deliver product features. We can’t slow them down by having our data engineers review each 
change. So, we must accept regular schema changes.

• Our data pipelines are becoming ever more complex as we handle those changes. They are 
hard to reason with and we don’t have confidence when making changes to those pipelines.

• That complexity is also further increasing the unreliability of the pipelines, and it takes longer 
to resolve those incidents.

• Users are losing trust in the data and are unsure whether they can rely on it.

• This lack of confidence prevents the effective use of this data. It’s not being used to make 
decisions on discounts, leading to worse business performance.

So, how are we going to address these problems?
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Thankfully, you and your colleagues have been reading this book! You have decided to move this to a 
dataset where a data product is provided, with an interface provided by a data contract. You have the 
right tooling in place to explicitly generate this data, and the culture has changed at the organization 
to one where data is treated as a first-class citizen, enabling us to extract the most value from our data 
to provide better outcomes for the business.

Moving to a data product aims to solve our problems as follows:

• The data generators explicitly supply data through a new interface. That decouples consumers 
from their internal models, allowing them to continue to make changes to their database quickly 
and with autonomy without affecting downstream consumers.

• The data provided through the data product meets the requirements of the consumers, reducing 
the amount of work needed in the data pipelines to make it useful. The transformations are 
simpler and easier to understand.

• The reduction in complexity increases the reliability of the data pipelines. When something 
does go wrong, it’s easier to find and fix that problem.

• The data products set clear expectations on the performance and dependability of the data. 
The data engineers can also set similar expectations for their users. Those expectations allow 
users to trust the data.

• Users now have the confidence to use the data to support better decision-making, which leads 
to better business outcomes.

Let’s look now at how we build this data product.

As we discussed earlier, in the Adopting a product mindset section, we should start with the data 
generators talking to the data consumers to understand their requirements. Once the data generators 
have a clear understanding of the requirements, they can define a schema for this data product.

This schema will be represented in the data contract. For this example, we will represent it as a YAML 
document, but we’ll discuss the different ways to represent a data contract in Chapter 6, What Makes 
Up a Data Contract. As well as the schema, we will add an owner, a description, and a version to our 
data contract.

The following code snippet shows the data contract. For brevity, we haven’t included all the fields here, 
but the full contract is available on GitHub at Chapter03/order_events.yaml:

description: An event generated when an order is created
owner: product-team@data-contracts.com
version: 1
fields:
  id:
    type: string
    description: The unique identifier for the order
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  created_at:
    type: timestamp
    description: The date and time the order was created
  items:
    type: array
    fields:
      product_id:
        type: string
        description: The unique identifier for the product
      price:
        type: float
        description: The price of the product, in cents
      quantity:
        type: integer
        description: The amount of this product ordered
…

With this schema, represented in our data contract, we’re now abstracted away from how discounts are 
modeled in the database. We don’t have to maintain any logic downstream that determines whether 
to use the field in the orders table or the discounts table. We also don’t have to keep that logic 
up to date when it changes again in the future. All we care about is the amount of discount applied to 
the item in the order, not how that discount is modeled in the upstream service.

We also agree to set expectations around this data. Currently, all decisions on discounts are made 
during the working day. It is useful to track how a discount is performing in close to real time, so if 
the sales team gets it wrong, they can quickly cancel the discount so as not to lose the business too 
much money. But this isn’t critical to business performance in the same way as keeping the website 
up is, for example, and so neither is the availability of the data.

However, we do expect the order data to be complete. We don’t want to have a mismatch between the 
orders in our system of record and those in our analytical database.

That leads to us defining the following SLOs for the data product:

• Completeness: The data will be 100% complete

• Timeliness: The data will be present within 60 minutes of being generated

• Availability: The data will be available for querying through the agreed interface 95% of the time

Of course, we could argue about the specifics of these SLOs, but the point is we’ve set the expectations 
and have agreement on them from the generators and consumers of the data. It’s also been agreed 
that the interface for this product will be a table in the data lakehouse, from where it is consumed as 
a dashboard in a BI tool.
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Let’s add these SLOs and the location of the table to the data contract, as follows:

slos:
  completeness_percent: 100
  timeliness_mins: 60
  availability_percent: 95
lakehouse_path: order_events

Now that everything has been agreed upon by both the data generators and the data consumers and 
we have our data contract, the data generators get to work creating the dataset and start populating 
the data through the agreed interface. They also backfill the historical data, and this dataset becomes 
the source of truth for all consumers.

A lot of the complexity the data engineers had written into their data pipeline has been removed, 
and the pipeline is quicker and cheaper to run. The consumers are meeting their SLOs, and they are 
confident they will always be able to do so while the data generators meet theirs.

This schema is likely to be stable well into the future but could still change. If/when it does, the data 
generators now know who is consuming their data, and why this data is important for some key 
business processes. They will reach out to the consumers when that migration needs to happen and 
ensure there is a plan in place that prevents any impact on the business users.

This walk-through has been a relatively simple example, but one that illustrates how data products, 
backed by data contracts, change the way data is treated in an organization. By bringing the data 
generators and consumers closer together, they built a partnership toward the business goal. They set 
expectations, and now the data is more dependable and can be trusted by business users.

Later, in Chapter 9, Implementing Data Contracts in Your Organization, we’ll provide more details on 
how to make the move to data products, backed by data contracts, in your organization.

Summary
In this chapter, we’ve started to see how data contracts are much more than a technical architecture 
with tooling to support it. They’re a vessel for driving change in the data culture to one that invests 
in its data in order to deliver better business outcomes.

We introduced the two major roles involved, data generators and data consumers, and how they both 
need to change in order to achieve this goal.

Data consumers need to be clear about the value they can generate with data and why it’s in the 
best interest of the organization to invest in quality data. We gave practical advice on how they can 
articulate the value of data.

Data generators need to buy into this and take on more ownership and responsibility for this data. They 
need to start building data products that meet the needs of the consumers and the wider organization. 
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We discussed exactly how they build these products and finished the chapter by walking through a 
simple example that showed these ideas in practice.

In the next chapter, we’ll be building on these ideas and exploring how we can use them to bring data 
generators and consumers much closer together.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Sinek, S. (2011). Start With Why. Penguin

• Bring Product Thinking to Non-Product Teams by Jeff Gothelf: https://hbr.org/2020/04/
bring-product-thinking-to-non-product-teams

• Manifesto for the Data-Informed by Julie Zhuo: https://joulee.medium.com/
the-data-informed-manifesto-9dd8c240382f

• The importance of data quality for product-led companies by Kevin Hu, PhD: https://
kevinzenghu.medium.com/the-importance-of-data-quality-for-
product-led-companies-661d7d50d3b9

• Manage data like a product to unlock full value: https://www.mckinsey.com/
capabilities/quantumblack/our-insights/how-to-unlock-the-full-
value-of-data-manage-it-like-a-product

• Building Data Products for Data Transformation by Teresa Tung: https://www.accenture.
com/th-en/insights/technology/data-products

• How to Build Great Data Products by Emily Glassberg Sands: https://hbr.org/2018/10/
how-to-build-great-data-products

• What Is A Data Product And What Are The Key Characteristics? by Sanjeev Mohan: https://
www.forbes.com/sites/forbesbusinesscouncil/2022/09/21/what-is-
a-data-product-and-what-are-the-key-characteristics/

• How to identify Data Products? Welcome Data Product Flow by P Platter: https://medium.
com/agile-lab-engineering/how-to-identify-data-products-welcome-
data-product-flow-76d7d85d23af

• Build data products in a data mesh: https://cloud.google.com/architecture/
build-data-products-data-mesh

• Why Your Company Needs Data-Product Managers: https://hbr.org/2022/10/
why-your-company-needs-data-product-managers?ab=at_art_art_1x4_s03

• On Data Products and How to Describe Them by Max Illis: https://medium.com/@
maxillis/on-data-products-and-how-to-describe-them-76ae1b7abda4
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4
Bringing Data Consumers and 

Generators Closer Together

In this chapter, we’ll look at the importance of bringing data consumers and generators closer together 
and why that is one of the key objectives when adopting data contracts. It’s only by being clear on the 
roles and responsibilities that these two groups of people can work effectively and efficiently to realize 
our goal of extracting the most business value from our data. Therefore, we’ll start by defining these 
roles and what each of those roles expect from the other, before being explicit about the responsibilities 
and accountabilities of each role.

Next, we’ll discuss a data consumer that is often overlooked – the product engineering teams. They 
are maybe the most important consumers in your organization and yet, like other consumers, are 
often unable to rely on the data that is generated. This leads to unreliable services or the inability to 
use the valuable data generated in other parts of the business.

Finally, we’ll discuss how to support the evolution of your data as your organization itself evolves.

In this chapter, we’ll cover the following main topics:

• Who is a consumer, and who is a generator?

• Assigning responsibility and accountability

• Feeding data back to the product teams

• Managing the evolution of data

Who is a consumer, and who is a generator?
We’ve spoken a lot about the consumers and generators of data in this book, but what exactly do people in 
these roles do? What do they care about? What are their requirements, and what are their expectations?

In the following subsections, we’ll look at both roles in more detail, starting with the data consumers.
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Data consumers

A data consumer is a person, a team, or a service that consumes data to inform and/or take some 
action. Typically, we think of data consumers as a data practitioner – for example, a data engineer, a 
BI analyst, or a data scientist. Their primary tasks require them to consume and work with data, and 
as such, they are highly reliant on the quality and dependability of that data.

However, they are not the only data consumers in your organization. There are an increasing number 
of people who are not data practitioners but are data literate. They are comfortable using a data analysis 
tool or another frontend (yes, including spreadsheets!) to consume the data themselves, helping them 
to perform a business process or support their decision-making.

Beyond people, both internal and external services are also data consumers. They take data as input 
and perform some tasks, or make a decision based on that data. Like all other data consumers, they 
too are reliant on the quality and dependability of the data. The only difference is that the services 
require a programmatic interface for the data, whereas people typically use a data analysis tool as 
their interface.

We can break these consumers down into different personas, each with their own requirements and 
data access patterns:

• Software engineer (product team):

 � They integrate data into their service so that they can take some action on it. This can involve 
consuming data synchronously through an API call, or asynchronously by consuming from 
a message broker or event streaming platform.

 � Their data tends to be associated with a single business domain, either their own or an 
adjacent one.

 � Access patterns:

 � They may have low latency requirements

 � They need to be able to deserialize that data easily in their programming language of choice

• Data scientist:

 � They explore datasets to uncover patterns, correlations, and trends. Identifying and building 
features for use in their AI models. They typically use a notebook-based interface and access 
data in batches through a programming language such as Python.

 � They may work in a single domain on a specific product, or centrally across multiple domains.

 � Access patterns:

 � They need to understand the data and its context in detail

 � They often need access to historical data
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• Data/BI/analytics engineer:

 � They join and transform data using an SQL-based tool, such as dbt (https://www.
getdbt.com/), and provide this transformed data as a product to data analysts and/or 
business users

 � They can work within a single domain but often join data across domains

 � Access patterns:

 � Typically, they are not latency-sensitive and often run their transformations daily

 � They require a SQL-based interface

• Data analysts and business users:

 � They query curated data products through a BI tool or a spreadsheet-based interface, or 
within a service they already use. They use the data as part of a business process or to 
support decision-making.

 � They can be within a specific domain or look across multiple domains.

 � Access patterns:

 � They require the data to be available through their interface of choice

No matter which persona of data consumer they belong to, to be able to build on this data with 
confidence, they need to know what to expect from the data they consume.

Firstly, to make use of the data, they need to understand how it is structured and the fields that are 
available to them. That needs to be documented, to explain the meaning and context of that data and 
define the semantics. Depending on the data, this might also define whether it is personally identifiable, 
whether it is confidential or secret, what processing they are allowed to do with it, and other types of 
categorizations related to the compliance and governance of the data.

They then need to be clear about the dependability and performance of this data. This includes how 
timely the data is expected to be, how correct and how complete it is, and its availability. They also 
need to know who owns this data, and the support levels they provide.

Altogether, this forms the data contract.

While the data consumers do not own the data contract, they do play a major role in shaping that 
contract. They need to be able to articulate their requirements to the data generators and demonstrate 
the value they can generate through the application of data.

By providing quality data products through a data contract, we give the data consumers what they need 
so that they can work more effectively and deliver greater business value. They are then accountable 
for the delivery of that value.

https://www.getdbt.com/
https://www.getdbt.com/
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Of course, many data consumers are also data generators – for example, a data engineer building a 
pipeline that transforms and combines data in order to meet the requirements of their consumers, or 
a service that takes data in, performs an action, and exports the result of that action. So, let’s move to 
the next subsection and explore the role of the data generator.

Data generators

A data generator is a person or a service that generates data for later consumption. This may be an 
internal service that generates data as it runs or takes an action, a data pipeline that returns transformed 
or aggregated data, or a third-party service that provides us data as part of a commercial agreement.

As with the data consumers, we can break data generators down into personas:

• Software engineer (product team) :

 � They work on a service that generates data as the result of some action it has taken – for 
example, collecting an order from a customer or making a payment to a bank account. 
That data is needed by other teams and groups to build adjacent services and analyze 
business performance.

 � A service will usually belong to a single business domain.

• Data/BI/analytics engineer:

 � They build data products for consumption by data analysts and/or business users, meeting 
a specific requirement

 � They may work within a domain or across multiple domains

• Third-party service:

 � They typically make data available through an API. That API and/or the data it provides, 
and its dependability, may form part of a commercial agreement.

 � Some services may be specific to a single domain, and some may be used across domains.

In many organizations, the roles and responsibilities of data generators have not been well defined. 
In fact, those generating data might not even see themselves as data generators. As we discussed in 
Chapter 1, A Brief History of Data Platforms, this is because data was extracted from their systems 
with little to no involvement from them, and from then on, the process was owned by another team 
– typically, a data engineering or data platform team.

With data contracts, we are explicit about the role of the data generator and their responsibilities. It’s 
they who know most about the data, and only they who can improve the quality and dependability of it.

By working closely with the consumers, data generators can gain a sense of ownership over the value 
they create and the positive outcomes for a business. This collaboration and knowledge sharing 
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help incentivize the data generators to prioritize this work. Regular feedback from data consumers 
reinforces this further, and by recognizing the success of these projects and the role played by the data 
generators, we can foster and build on this data-driven culture, encouraging similar collaborations 
throughout the organization. We discussed this in more detail in Chapter 3, How to Get Adoption in 
Your Organization.

With this information, the data generator is empowered to provide the right data, with the right 
expectations, to meet the needs of their data consumers.

However, there are always trade-offs that data generators need to make. Consumers may prefer to have 
data in a particular format, but that could be expensive for the generator to provide. The consumers 
may ask for a particular level of performance, but the effort to meet that may be too high relative to 
the value. Generating this data may also impact the performance of the service they operate. So, a 
balance will need to be found between the requirements of the data consumers and what the data 
generators can provide.

This is why data generators must be the owner of the data contract. Only they can make decisions 
around these trade-offs, as only they have the full context. They need to be comfortable taking on the 
responsibility to generate this data and meet the expectations they commit to. It’s the data generators 
who will support and maintain this data over the long term.

A data generator also has the responsibility to manage their data in line with their organization’s 
policies. This could include categorizing the data, managing access, and ensuring the data is removed 
when it passes its retention period.

To support them in these tasks, they should have access to easy-to-use, self-served tooling. This should 
make it easy for them to do the right thing, without needing to become experts in data privacy and 
security, or, where possible, automate these tasks completely. Data contracts provide the foundations 
we need to provide this tooling, and we’ll discuss what this should look like in Chapter 7, A Contract-
Driven Data Architecture.

In the next section, we’ll assign responsibility and accountability to both the data generators and the 
data consumers.

Assigning responsibility and accountability
Now that we have defined the roles, we need to specify the responsibilities and accountabilities of 
each role. This ensures that everyone knows what is expected of them and allows them to work most 
effectively together.

We’ll start with the data generators. As we discussed in the previous section, many of them didn’t 
realize they were data generators. Therefore, those responsibilities were taken by the data engineering 
team who built the pipelines that extracted the raw data from upstream services.
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This data engineering team became accountable for the reliability of the data, even though they were 
not involved in how it was generated or how the structure of the data evolved. This team was very 
reactive to upstream changes and did their best to try and limit the impact of those changes. However, 
there is only so much they can do, and there’s no quick fix you can deploy if the generator upstream 
suddenly stops writing the data you relied on.

We believe the only way to improve the quality and reliability of our data is to address how it is 
generated and be clear about the responsibilities of those who generate it.

This does mean these data generators will gain more responsibilities. If they are to accept that, they 
need to fully understand why they should do so. We discussed how to articulate that in Chapter 3, 
How to Get Adoption in Your Organization.

However, this is just a shift in the assignment of those responsibilities. They were already assigned, but 
to the data engineering teams. By shifting this responsibility left to the data generators, we put that 
responsibility on the team that has the most insight on why data is structured the way it is.

By assigning responsibility as early as possible, we are proactive in our approach to data quality. Only at 
the source can we be in complete control of the accuracy and dependability of data. If data is incorrect 
or missing from the source, it’s going to be incorrect or missing from all downstream consumers. And if 
that issue cannot be resolved at the source, there’s nothing we can do downstream to recover that data.

Shifting responsibility left also reduces the overall costs to the business. There will be fewer incidents 
caused by upstream data changes and a much-reduced impact from those incidents.

Over time, we can add more data quality checks at the source, moving them upstream from the data 
pipelines. This further reduces the risk and impact of data incidents and reinforces the assignment of 
responsibility to the data generators.

To take an example, we might have several data pipelines building upon the raw data model of an 
upstream service. The responsibility of those pipelines lies with the data engineering teams building 
those pipelines, but no one really has responsibility for the data generation.

When the expectations of the data changes, such as a schema change resulting in the generation of 
invalid data, each of those pipelines is affected. This is shown in the following diagram:



Assigning responsibility and accountability 63

Figure 4.1 – The impact of invalid data when consuming raw data

This has an expensive impact because, now, each data pipeline needs to be updated to handle the 
change in data. That results in a duplication of code and effort that adds no value to an organization.

Instead, with data contracts, we provide an interface separated from the raw data. We also make clear 
that it is the responsibility of the data generator – in this case, the software engineers who own the 
upstream service – to provide data that conforms to that contract, and if not, they are accountable 
for fixing it. As shown in the following diagram, the impact is reduced:

Figure 4.2 – The impact of invalid data when consuming from a data contract
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The fix now only needs to happen in one place, and all downstream consumers benefit from it. 
Furthermore, as the data generators know this is part of their responsibility and are aware of the impact 
on their consumers, they will be more incentivized to prevent a similar incident from occurring in 
the future.

This shift left also means we can spend less time, effort, and money getting the data into the right shape 
in the data warehouse. Referring again to the previous diagrams, in Figure 4.1, each of those pipelines 
performs the same transformations and implements the same business logic. Alternatively, if we can 
move that earlier, as shown in Figure 4.2, it only needs to be done once, at the source.

We’ll also be able to confidently set service-level objectives (SLOs) and other expectations in this 
data contract, building trust throughout the pipelines and the wider organization, and unlocking the 
use of data in business-critical applications. (We discussed SLOs and expectations in more detail in 
Chapter 2, Introducing Data Contracts, in the Setting expectations around our data section.)

And if the data generators understand why that data is important, they’ll have the incentives to manage 
it with the care and discipline required to meet business goals.

This is where the data consumers responsibilities come in. If we're asking teams to invest in better 
quality and more reliable data, prioritizing it against other work they might be doing, we need our 
consumers to deliver impactful data products as a return on that investment.

It’s well known that, today, many organizations struggle to see the returns on their investment in data. 
Despite that, they continue to invest, based on the assumption that there is value to be gained from 
their data. We believe we need to do better and hold our data consumers to account for the realization 
of the value we get from our data, and how that leads to greater outcomes for the business.

Data contracts provide us with the means to be more explicit about these responsibilities and 
accountabilities. Adopting data contracts is an opportunity to revisit our past assumptions and look 
again at how our data generates value for our organization. With data generators and data consumers 
working together, aided by clearly defined roles and responsibilities, we can more effectively deliver 
that value.

If we manage to achieve this, and we start generating quality data we can rely on, we can start to 
confidently use this data in different areas. For example, we can feed this data back to our product 
teams and use this data in business-critical applications that differentiate us in the market.

Let’s explore this in more detail in the next section.

Feeding data back to the product teams
As mentioned earlier in this chapter in the Who is a consumer, and who is a generator? section, although 
we often think of a data consumer as a data practitioner (for example, a BI analyst or a data scientist), 
they’re not the only ones who consume data. In fact, product teams, and the services they create, are 
perhaps the largest and most important data consumers in your organization.
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These services do not exist in isolation. They all take some data as input, perform some process or 
take some action, and return new data as output. And when it comes to input data, they have the same 
expectations as any other data consumer. They need to understand what data is available, how it is 
structured, and any other context around the data. They need to know how dependable, correct, and 
available that data is. They need to know where that data comes from, who owns it, and the support 
levels being provided.

Often, these services make data available synchronously to each other through HTTP-based APIs, 
and it’s those APIs that define the expectations. The APIs also provide the interface over which this 
data can be accessed. This is illustrated in the following diagram:

Figure 4.3 – Synchronous inter-service communication, direct between services

However, it’s becoming increasingly common to move data asynchronously between services by 
adopting patterns such as microservices or event-driven architectures, and using a message broker 
such as Apache Kafka and Google Cloud Pub/Sub, as illustrated in the following diagram:

Figure 4.4 – Asynchronous inter-service communication, with a message broker

These are tools and patterns that also have widespread usage in data platforms and are used to provide 
data to data engineering teams and other data practitioners.

This is why data contracts are often referred to as an API for data. If we think about them from a 
software architecture point of view, they both provide interfaces between generators and consumers, 
with the same goals around dependability and the setting of expectations.

We’ve found that data contracts add a lot of benefits to these architecture patterns, irrespective of 
whether that same data is also made available for use by data practitioners. In fact, at the time of writing, 
nearly 80% of the asynchronous communication between services at GoCardless uses data contracts 
to define these interfaces, and that’s growing every month as we continue to adopt data contracts.
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In addition, by using the same concepts and tooling around our data, no matter who creates or 
consumes it, we open up data that had previously been generated solely for data teams to the rest of 
the organization. That’s because it doesn’t really matter who generates it or how. What matters are 
the expectations that have been set around that data, and whether they satisfy the requirements of 
the consumers.

This opens our existing data to many more use cases. You can use this data to build products and 
drive services that are more critical to a business, and you can do so with confidence because you 
know what to expect.

As these products are driven by your data, they can differentiate your business from your competitors 
and greatly increase your defensibility. No one else has the data you have, and the more you can leverage 
it, the better the business outcomes. It becomes an asset, with real economic value for your organization.

You can then monitor the use of these assets and the business processes they are associated with, 
using this as a measure of the business value generated through your data, proving the return on your 
investment in your data products.

Of course, all the while, your organization evolves, and your data needs to too. Therefore, you need 
a way to support that evolution without impacting these products and services. In the next section, 
we’ll look at how to manage that evolution with data contracts.

Managing the evolution of data
Data evolves over time, just as your organization does, and we’ll need to manage that appropriately in 
order to minimize the impact of that evolution on downstream users – particularly the most critical 
use cases. However, just like your organization, your core models and data products will also be stable 
over many years.

You can see that reflected in the public APIs, for those that have them, and how little they change over 
time. There’s little reason why our internal data products should change much more frequently than 
those if we build them with the same discipline and a product mindset.

Given that, it’s fine for there to be some friction when it comes to evolving our data contracts. In fact, 
this friction is desirable. By having some friction here, we’re signifying the importance of the data 
contract and the commitment we make to its maintenance and stability over the long term.

How much friction there should be depends on the type of change we make to the contract, and 
whether it is a breaking or non-breaking change.

A non-breaking change has no effect on those that already consume the data if they consume it as 
documented. An example would be adding a new field to a contract. Consumers should just ignore 
that field, and no code changes or changes to a dashboard would be required.
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A breaking change would require data consumers to make changes to their services, or their analytics to 
be compatible with the change. It could be that a field has been removed and they need to get that data 
from somewhere else, or it could be a larger refactor of the data due to changing business requirements.

For a non-breaking change, there is little reason to introduce much friction. You want the change to 
be considered and made for a reason, but it should not affect the stability or dependability of the data.

However, for a breaking change, there should be friction. We don’t want to release these changes without 
considering the impact on downstream consumers. They need to be notified ahead of time so that 
they can give their feedback on the changes, ensuring that they don’t impact their use of the data. They 
then need time to make the required changes to their applications, avoiding any unplanned downtime.

There should be a documented migration path to manage this transition. In many cases, that may 
require both data contracts to be populated alongside each other for a certain period to ease the 
migration to the new version.

In larger organizations, it can be difficult to get visibility on all downstream consumers accessing a 
dataset and how they use it. Data lineage tools can be used to provide this information, which can 
be used to plan the migration and determine when it is safe to remove a previous version of a data 
contract. We’ll cover data lineage in more detail in Chapter 9, Implementing Data Contracts in Your 
Organization, in the Discovering data contracts section.

Of course, how much you invest in this migration depends on the importance of this dataset and the 
expectations you have set up front. If you have set the expectation that this dataset comes with low or 
no support, has no SLOs, and so on, and your consumers have accepted that, then maybe you don’t 
need to spend so much time on the migration when you evolve your data.

In this case, you’re favoring your agility over providing stability for your consumers. Personally, I’d 
question the usefulness of any data that has such low expectations, and whether anyone would want 
to build anything of any value on top of that data if it could change at any time and its correctness is 
not guaranteed.

All in all, the main thing is ensuring that the expectations are clear and have been defined in a 
data contract.

Summary
In this chapter, we clearly defined the different roles of the data consumer and the data generator, 
as well as what each expects from the other. We also went into detail on the responsibilities and 
accountabilities of each role. It’s by defining these roles and responsibilities that we enable these groups 
of people to work together closely and effectively, with the knowledge of what is expected of them.

We use data contracts to provide a clear understanding of responsibility and ownership for each of 
those roles. And it’s by bringing these roles closer together that we improve the accessibility and quality 
of our data, along with the business value we can generate from it.
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Data generators need to feel a sense of ownership over those outcomes if they are to be incentivized 
to provide data that consumers can build on with confidence. They get that from data consumers, 
who can share what they need and why they need it.

These consumers include the product teams. In fact, they could be the most important consumers 
in an organization. We discussed how, by feeding data back to the product teams with well-defined 
expectations, we can unlock a whole host of different use cases. We can use this data as an asset, powering 
data-driven products that differentiate our business from our competitors and build defensibility.

Finally, we considered how data evolves over time, just like our organization. However, like the 
organization, there is a lot of stability in our data, so it’s fine if there is some friction when data evolves. 
In fact, it is desirable. We can’t confidently build on data that changes all the time, and the friction is 
relative to the importance of stable, quality data.

However, there is more to be done if we are to achieve this goal. If our data has value and is to be an 
asset, it’s critical that we have the right governance in place to manage it over the long term, and we 
need to ensure that we are compliant with our data policies and external regulations. We’ll explore this 
in detail in the next chapter as we look at how we can embed data governance into our data contracts.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Roles and responsibilities: Why defining them is important by Kay Rose: https://www.
betterup.com/blog/roles-and-responsibilities-why-define-them

• Eliminating the Data Creation Tax by Imran Patel: https://www.syftdata.com/blog/
eliminating-the-data-creation-tax

• Data as an Asset: Realizing the Economic Potential of Data: https://atlan.com/data-
as-an-asset/

• The Golden Rule of Value by Joe Reis: https://joereis.substack.com/p/the-golden-
rule-of-value

• Designing Event-Driven Systems: https://www.confluent.io/resources/ebook/
designing-event-driven-systems/

• Kleppmann, M. (2016). Designing Data-Intensive Applications. O’Reilly

• Dean, A. and Crettaz, V. (2019). Event Streams in Action. Manning

• How we evolve APIs by Robert Fink: https://blog.palantir.com/how-we-evolve-
apis-60dbcfecc439

• Tips for successful API migration by Pooja Nihalani: https://www.linkedin.com/
pulse/tips-successful-api-migration-pooja-nihalani/
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5
Embedding Data Governance

In this chapter, we’re going to look at the rather broad area of data governance. We’ll explore what we 
mean by data governance, and why it’s so important.

As we’ll see, effective governance of data is critical to an organization, but rarely achieved. With data 
contracts, we can embed our data governance controls alongside the data. We’ll show you how to do 
this and how powerful it can be, as it unlocks an array of potential automation and tooling that makes 
it easy to manage our data.

Finally, we’ll assign responsibility for data governance. As we learned in the previous chapter, it’s by 
clearly defining roles and responsibilities that we enable groups of people to work together closely 
and do so effectively with the knowledge of what is expected of them.

These roles and responsibilities look different in a data contract-backed architecture than in more 
traditional implementations of data governance, but as we’ll discuss, they strike a much better balance 
between promoting agility and speed of data use and the management of risk.

In this chapter, we’re going to cover the following main topics:

• Why we need data governance

• Promoting data governance through data contracts

• Assigning responsibility for data governance

Why we need data governance
We’ll start by discussing what we mean by data governance, what it covers, and why it is needed. Once 
we have a shared understanding, we’ll look at how we can promote effective data governance through 
data contracts, and finish by discussing the roles and responsibilities involved.

There are many definitions of data governance, and organizations implement it in different ways. 
Broadly, it is a combination of people, processes, standards, and technology that supports and promotes 
data that is accessible, usable, accurate, consistent, secure, and compliant.
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The following diagram illustrates the data requirements supported by data governance using a 
combination of different programs:

Figure 5.1 – Data requirements supported by the different data governance programs

To gain a better understanding of what data governance is and why we need it, let’s explore the 
following topics in more detail:

• The requirements of data governance

• How data governance programs are typically applied

The requirements of data governance

Ensuring our data is secure and compliant is one of the primary goals of data governance.

There are two types of data when it comes to law. There is personal data, where the handling and 
transformation of that data are governed by increasingly strict rules. And then there is non-personal 
data, which is mostly unregulated.

Personal data versus Personally Identifiable Information (PII)
The terms personal data and PII are often used interchangeably, but legally are not the same. 
Personal data refers to any information that relates to an individual, such as their name, address, 
photographs, and so on. PII is a subset of personal data that specifically refers to information 
that can be used to identify someone, for example, their social security number, financial 
account information, and biometric data.

This distinction is important when it comes to understanding what data is affected by different 
regulations. For example, the General Data Protection Regulation (GDPR) in the European 
Union regulates the handling of personal data, that is, the broader definition.
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When it comes to personal data, an increasing number of regulations passed in countries and territories 
around the world demand that the data is managed responsibly and kept accurate, complete, and 
true. More specifically, there may be legal obligations that require organizations to track the following 
information about the data:

• How they obtained this data.

• The purpose of processing. This includes why they are handling the data and whether it is 
involved in any decisions – including decisions made by ML models.

• Whether the data has undergone any transformation, such as anonymization or pseudonymization.

• The retention period for this data, and the legal reasons why we must keep the data for that period.

• Whether the data can be accessed and attributed to a specific person.

• Whether the use of the data is ethical, and in line with the values of the organization.

• The physical location of the data and where it might be used.

• Risk assessments for certain activities.

These legal obligations are becoming stricter, and the penalties for violation greater. Therefore, 
it is increasingly important to handle personal data appropriately and to be able to demonstrate 
your compliance.

Moreover, the size of data continues to grow dramatically and includes ever more sensitive data. The 
use cases for that data are also growing, as is the number of people who need access to the data. That’s 
something we want to encourage! But also, something that increases the risks.

Due to several high-profile stories on data misuse and data leaks in recent years, regulators across the 
world are passing laws to ensure data is managed to a certain standard. They are also under pressure 
from an increasingly skeptical public, concerned about the misuse of their personal data.

For example, the European Union (EU) is currently working on an artificial intelligence (AI) 
Act, which aims to strictly govern data specifically used in AI applications. It proposes a risk-based 
approach, ranking risks from minimal to unacceptable, with the riskiest applications required to take 
on more accountability and provide greater transparency of those AI applications expected behavior 
and the data they use.

While it will only apply to organizations operating in the EU, the act will likely have a global impact, 
as other countries and territories start drafting their own regulations with increased urgency following 
the release of ChatGPT and other recent advancements in AI applications.

This is just one example of an upcoming regulation that affects the handling and use of data, but there 
is a clear direction of travel towards greater regulation of technology in general, and data specifically. 
Organizations need to start preparing for this now, by establishing effective governance structures 
that meet the requirements today and are flexible enough to meet any future requirements. The failure 
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to prepare could be costly, and organizations found to have mishandled or misused data could suffer 
large fines and damage to their brands and reputations that may be difficult to recover from.

Now we’ve understood the key requirements for data governance, let’s see how data governance 
programs designed to meet those requirements are typically applied today.

How data governance programs are typically applied

Data governance teams define policies and standards to support the handling of data in accordance 
with the regulatory requirements they operate under. They may also provide tooling to help track 
this information and ensure it is kept up to date. This allows an organization to prove it has met its 
regulatory requirements and pass any related audits.

Often this is a very manual process, with a centralized team trying to keep an inventory or catalog 
up to date. Therefore, few organizations can claim to have an accurate, complete, or true inventory of 
everything they do with the personal data they collect.

More successful data governance initiatives can also be used to promote the data culture of the 
organization. They take the lead in educational initiatives to promote data literacy, which improves 
the accessibility of the data. They also set standards for the effective use of data across the business, 
showing how data can be used to drive decisions.

This could be accelerated by defining and building better processes for collaboration between data 
generators and consumers. There could also be the creation of roles within the business to allocate 
responsibility for stewarding and championing data.

Unfortunately, data governance has a bit of a bad reputation today. The way it’s been implemented in 
organizations means it is often seen as a central gatekeeper on how data can be used, with a committee 
reviewing that use. That committee is primarily concerned with reducing risk, and therefore is 
incentivized to slow down or block the use of data – particularly in areas they are less familiar with.

This leads to one of two outcomes. You could let this become a bottleneck that limits the amount of 
data that’s available to use and get value from, just like the data engineering bottlenecks we discussed 
in Chapter 1, A Brief History of Data Platforms.

Or you can choose to only apply governance to a select few of your critical datasets. The rest will 
not be managed in accordance with your policies and standards. They become unusable, lose their 
accuracy, and become inconsistent. If they contain personal data, they will not be managed securely 
and become non-compliant. They increase your overall risk of data misuse and data leaks.

With data contracts, we will promote a different way of implementing data governance. We’ll empower 
decisions to be made by those closest to the data and give them the autonomy to do so. We’ll support 
them with the right guidance and tooling, supplied by the experts and available to everyone.

Let’s explore how data contracts can promote effective data governance in the next section.
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Promoting data governance through data contracts
Data contracts are the perfect place to promote data governance. In this section, we’ll explore how you 
can use data contracts to improve the visibility of data governance, collect up-to-date categorization of 
data, and provide the tooling and guardrails the data generators need to handle their data effectively.

As mentioned in Chapter 2, Introducing Data Contracts, the contract definition can be extended to 
capture any metadata we need to ensure we’re handling our data in accordance with our standards. 
This could include the following:

• Whether it is personal data.

• What entity the data relates to (for example, is it about a customer, an order, or another entity?).

• Who has access to the data, and when that access expires.

• How the data is classified according to your organization’s policies (for example, is it confidential, 
secret, or public knowledge?).

• How long we keep this data for (the retention period).

• The deletion or anonymization policy to apply when the data needs to be removed.

• The physical location of the data.

Having this metadata defined with the data ensures it is accurate and complete, and kept up to date 
as the data evolves.

We’re intentionally being very explicit about how we populate the metadata around the data and 
asking this to be done by the owner of the data contract. It’s the only way we can build an accurate, 
complete, and true inventory of our data assets and how we use them.

Having the task of completing this metadata become a daily activity also increases the visibility of data 
governance and the risks associated with handling data. Just like any other management of risk, such 
as securing services or managing passwords, handling data correctly is something everyone should 
understand and have some accountability for.

This metadata, and the rest of the data contract, is machine readable. We can use it to implement 
validation and guardrails on the contract to ensure the metadata is being set correctly, alerting the 
author to any issues. It also enables us to build tooling that supports the correct handling of the data 
by data generators.

For example, we can use the classifications of the data to automate the access rights for that data. You 
could grant people holding certain roles in your organization permission to access confidential data for 
customers that reside in their physical location, based on how the data has been classified. As the data 
evolves and new data contracts are created, that permission is automatically applied and kept in sync.

By implementing access controls through data contracts and the change management processes we 
have in place for them, we’re increasing the autonomy of data generators and consumers and improving 
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the accessibility of our data. With the right guardrails and guidelines, we empower decisions on access 
to data to be made locally, while managing the risk at an acceptable level.

Another example would be to automate the deletion and anonymization process. When the data has 
passed its retention period, or if an individual asks for their personal data to be removed, a service could 
use the policies defined within the data contract to carry out that task. As the owner of the contract, 
the data generator doesn’t need to know everything about these processes or become an expert in 
data regulations. They just need to categorize their data in line with how they use it. We demonstrate 
how to implement this tooling in Chapter 8, A Sample Implementation, in the Implementing contract-
driven tooling section.

Furthermore, we could bring all this metadata, and the actions taken on the data, into a central privacy 
tool that catalogs the use of data across the organization. From there, it can be regularly reviewed 
internally and by external auditors.

That’s just a few examples, but there are many more use cases and process automations that are enabled 
by having a complete and accurate set of metadata defined in the data contract. As illustrated in the 
following diagram, the metadata is the source of truth, and can be presented from the data contract 
and used wherever it needs to be, depending on how your organization manages the data:

Figure 5.2 – Data governance tooling driven by data contract metadata

We’ll be looking further at how we can build tooling and automation driven by data contracts in 
Chapter 7, A Contract-Driven Data Architecture.

In the meantime, let’s explore the roles and responsibilities for data governance when building on 
data contracts.
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Assigning responsibility for data governance
To implement effective data governance in our organization, we need to be clear on the roles and 
responsibilities involved. In this section, we’ll define those roles and responsibilities and how they 
work together.

We will cover this in the following subsections:

• Responsibilities of the data generators

• Introducing a data architecture council

• Working together to implement federated data governance

Responsibilities of the data generators

By using a data contracts-backed architecture, we promote a more decentralized operating model. 
We give data generators the autonomy and responsibility to own and manage their data, supported 
by the right self-served tooling and guardrails.

Consequently, we need to rethink our approach to data governance. We don’t want to create a central 
team to try to take control of the data. These teams become a bottleneck, slowing down access to and 
use of data. They also don’t have the full context of the data, what it contains, and why we are generating 
it. Nor can they directly change or improve how the data is generated.

The only people that do have that context and ability are the data generators. Therefore, they must 
ultimately take responsibility for the governance of that data. That’s not as much work as it might 
sound! With data contracts, the data generators are largely responsible for populating the metadata 
that describes the data in the contract and keeping it up to date. This would include whether the data is 
personal or not, classifying the data based on its sensitivity, and defining the deletion or anonymization 
policies. The rest is automated away through tooling.

We’ll cover exactly how they can define this metadata when we look at creating a data contract in 
Chapter 6, What Makes Up a Data Contract, but the following snippet shows an example YAML-based 
data contract with two fields, name and email, categorized as containing personal data and with an 
anonymization strategy defined:

fields:
  name:
    type: string
    description: The name of the customer.
    personal_data: true
    anonymization_strategy: hex
  email:
    type: string
    description: The email address of the customer.
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    personal_data: true
    anonymization_strategy: email

That should be all a data generator needs to do! They are then supported in making the decisions on 
how to categorize the data and how to manage that data through a combination of people, processes, 
standards, and technology. For example, the standards should define the different classifications in use 
in the organization. Technology can ensure they are applied correctly, such as ensuring all personal 
data has a specified anonymization policy.

This support can be provided in part through a data governance council. We’ll explore this council 
and its responsibilities in the next subsection.

Introducing the data architecture council

One of the ways we can bring together the different people required to support data governance is to 
introduce a data governance council. This is a central, cross-functional group of people representing 
different parts of the business who pool their expertise. Together, they have the responsibility to define 
the data governance policies and standards and identify areas where tooling can be introduced to 
support the correct implementation of these policies and standards.

In this section, we’ll introduce a data governance council and the roles involved before providing 
some guidance on how to set one up. We’ll cover the following topics:

• The roles on the data governance council

• Setting up a data governance council

The roles on the data governance council

Data governance councils come in many different shapes and sizes, and exactly what it should look 
like depends on your organization and your governance requirements. However, there are certain 
roles that should be present and certain responsibilities they should be accountable for if they are to 
be successful.

The council should have representatives from each area of the business that generates or consumes 
data. This could be the data product manager for that area, or someone else from that business area 
who is taking on that role. They are responsible for the quality and fit of the data products they own. 
They bring to the council any concerns about their ability to deliver those data products.

The council should also have some of your organization’s legal, privacy, and security experts. These 
are the people who know the most about the regulations you need to comply with in the different 
parts of the world in which you operate. They bring to the council the data-handling requirements 
and can also clarify the internal classifications and policies.

Finally, there are the representatives of the team implementing data contracts and the tooling it drives. 
Typically, this is the product manager and/or tech lead of the data platform or data infrastructure team. 
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They are responsible for implementing and deploying the technology based on the requirements that 
come out of council discussions. We discuss this tooling and make the case for a data infrastructure 
team in Chapter 7, A Contract-Driven Data Architecture.

There may be other roles represented. For example, you may have people representing the key data 
stakeholders, such as BI analysts or data scientists. You may also appoint someone with a strong 
managerial background to lead the council and run it effectively.

With these roles in mind, let’s now discuss how to set up a data governance council in your organization.

Setting up a data governance council

As we mentioned in the previous section, exactly what the data governance council should look like 
depends on your organization and your data governance requirements. So, the first step towards 
setting up a data governance council is to be clear on the scope and objectives of the council. As we’ve 
discussed throughout this chapter, this might include bringing together different roles within the 
organization, defining or refining policies and standards to make them easier to follow and implement, 
and promoting a data-driven culture through education and other activities.

Once you’re clear on your objectives you can start to consider the people you need on the council and 
their roles. You’ll want to have a balance of technical expertise, business representation, and governance 
oversight, whilst also ensuring that everyone on that council is going to be an active participant in 
achieving these objectives. The membership should be limited to no more than 10 participants at a 
time, as the more people you have on the council, the harder it will be to have effective conversations 
and make decisions.

You may also need to secure sponsorship of the council from a senior leader or one of your executives. 
This helps give some authority to the council and assigns accountability for its success to both the 
sponsor and the members. This accountability also encourages members to prioritize their contribution 
to the council and its deliveries.

The sponsor could be the leader or chair of the council but doesn’t have to be. However, someone 
needs to be assigned this role and will be the one facilitating the discussions and the other activities 
carried out by the council, ensuring the focus remains on meeting the objectives you defined.

The council, its membership, and its objectives should be visible to the rest of the organization. You 
should favor transparency and regularly communicate your discussions and activities and how they 
contribute towards meeting your objective.

You should now have everything in place to get started! The leader of the council can then organize 
the meetings and bring these key people together to support your data generators and improve your 
organization’s data governance.

Now we’ve defined the responsibilities of the data generators and introduced how a data governance 
council can support them, let’s see how they work together to implement an effective model of 
data governance.
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Working together to implement federated data governance

As we discussed, the data governance council is responsible for defining the policies and standards 
and keeping them up to date. This includes providing a single definition for the terms used to classify 
data, and the processes to follow when granting access to that data.

However, the council must also ensure these policies strike the right balance between managing the 
risks and promoting agility in the use of data to drive business value.

One way to achieve this is to explicitly give data generators the autonomy to make decisions locally 
about how to classify their data. There should be adequate standards and documentation to help that 
decision, defined by the central data governance council. There could also be guardrails implemented 
in the technology layer to protect against common mistakes.

But despite that, we must acknowledge that these data generators are human, and are not experts in 
privacy regulation. They will make mistakes. But for most organizations, this provides a good trade-off 
between allowing teams to move fast and managing the risk to an acceptable level. It avoids putting 
in a bottleneck, where any generation of data requires a review from a central team before it can be 
made available, in the unobtainable pursuit of reducing risk to zero.

We can apply this model of responsibility to any of the data governance activities we explored at the 
start of this chapter. What that gives us is a central council that brings together the right people to 
define the processes and standards and supply the right self-served tools to implement them. Together 
this enables data generators to locally manage data that is accessible, usable, accurate, consistent, 
secure, and compliant.

The following diagram shows the different data requirements supported by data governance programs, 
as we had in Figure 5.1, but this time showing the responsibilities:

Figure 5.3 – Responsibilities of data governance

This is sometimes described as federated data governance. It’s also one of the principles of data mesh, 
as we covered in Chapter 2, Introducing Data Contracts. By using data contracts, we can safely promote 
autonomy and local decision making. With the support of a central data governance council, we can 
strike the right balance between moving fast and managing our risk.



Summary 79

Summary
In this chapter, we looked at what data governance is and discussed why the effective governance of 
data is critical. This is particularly important when we look at how we handle our data and manage 
the risks associated with that. But data governance is more than managing risk, and when done well 
can help promote a data-driven culture in your organization.

We then looked at how, with data contracts, we can embed our data governance alongside the data. 
This ensures the classifications and other metadata are correct, accurate, and kept up to date as the 
data evolves. That metadata can also be used to drive tooling and services to support the effective 
management and handling of our data, ideally by automating a lot of it away.

With that in place, we’re able to assign the responsibility of data governance to the data generators. 
They are the best placed to carry out that task, as only they have the full context of the data, what it 
contains, and why we are generating it. They are supported in this task by the data governance council, 
which brings together the people needed to define the policies and standards used to manage our data 
and build the technology to support those policies.

This gives us a model of federated data governance, where decisions are made locally by data generators, 
supported by the central data governance council. It strikes the right balance between the management 
of risk and promoting agility in our use of data to drive business value.

In the next chapter, we’ll start looking at how to implement data contracts, starting with what exactly 
makes up a data contract.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Madsen, L. (2019). Disrupting Data Governance: A Call to Action. Technics Publications

• Eryurek, E. Gilad, U. Lakshmanan, V. Kibunguchy-Grant, A. Ashdown, J. (2021). Data 
Governance: The Definitive Guide. O’Reilly Media, Inc.

• The European Union’s draft Artificial Intelligence Act: https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206&from=EN

• How Europe is leading the world in building guardrails around AI by Kelvin Chan: https://
apnews.com/article/tech-ai-artificial-intelligence-europe-eu-
15ac394679519084478e15217c156abc

• Tide’s Story of GDPR Compliance: Embedding Privacy into Automated Processes: https://
humansofdata.atlan.com/2023/02/tide-gdpr-automated-privacy/

• Data Governance, but Make It a Team Sport by Maggie Hays: https://towardsdatascience.
com/data-governance-but-make-it-a-team-sport-30dc0164fb7c
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humansofdata.atlan.com/2021/11/data-governance-branding-problem/

• Data Governance Checklist by the U.S. Department of Education: https://nces.ed.gov/
Forum/pdf/data_governance_checklist.pdf

• Dehghani, Z. (2022). Data Mesh. O’Reilly Media, Inc.

• Data governance council - what is it and why do you need one? By George Firican: https://
www.lightsondata.com/data-governance-council/

• Data Mesh 101: Why Federated Data Governance Is the Secret Sauce of Data Innovation by Seb 
Bulpin: https://www.mesh-ai.com/blog-posts/data-mesh-101-federated-
data-governance

• How to Create a Data Governance Team? 3 Essential Steps by Tanmay Sarkar: https://www.
moderndatastack.xyz/journal/how-to-create-a-data-governance-
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https://humansofdata.atlan.com/2021/11/data-governance-branding-problem/
https://humansofdata.atlan.com/2021/11/data-governance-branding-problem/
https://nces.ed.gov/Forum/pdf/data_governance_checklist.pdf
https://nces.ed.gov/Forum/pdf/data_governance_checklist.pdf
https://www.lightsondata.com/data-governance-council/
https://www.lightsondata.com/data-governance-council/
https://www.mesh-ai.com/blog-posts/data-mesh-101-federated-data-governance
https://www.mesh-ai.com/blog-posts/data-mesh-101-federated-data-governance
https://www.moderndatastack.xyz/journal/how-to-create-a-data-governance-team-3-essential-steps-4e01
https://www.moderndatastack.xyz/journal/how-to-create-a-data-governance-team-3-essential-steps-4e01
https://www.moderndatastack.xyz/journal/how-to-create-a-data-governance-team-3-essential-steps-4e01


Part 3:  
Designing and Implementing  

a Data Architecture Based  
on Data Contracts

In this part, we’ll look at exactly how to design and implement data contracts, including a sample 
implementation, and provide practical advice to implement data contracts in your organization.

This part comprises the following chapters:

• Chapter 6, What Makes Up a Data Contract

• Chapter 7, A Contract-Driven Data Architecture

• Chapter 8, A Sample Implementation

• Chapter 9, Implementing Data Contracts in Your Organization

• Chapter 10, Data Contracts in Practice
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What Makes Up a Data Contract

In this chapter, we’re going to look at what exactly makes up a data contract. This includes the schema, 
which describes and documents the structure of the data. We’ll discuss why this is important and 
show how we can define the schema in several open source schema formats.

A schema can only describe data at a point in time. However, as the needs of the organization change, 
so too does our data. We’ll explore how we can support the evolution of our data, while still providing 
data consumers the stability they need to build on this data with confidence.

However, data contracts are more than just a schema. As we’ve discussed in previous chapters, we need 
our data contracts to capture metadata that describes how the data can be used, how it is governed, 
and the controls around the data. We’ll show how we do that, and how we can use that metadata to 
drive tooling and integrate with other services.

By the end of this chapter, we’ll have seen how the makeup of a data contract unlocks a whole range of 
possibilities, which, along with the culture change we’ve discussed previously, enables an organization 
to get the most value from its data.

In this chapter, we’re going to cover the following main topics:

• The schema of a data contract

• Evolving your data over time

• Defining governance and controls

The schema of a data contract
We’ll start this section by looking at the schema of a data contract, what to put in it, and why. Then 
we’ll look at how to make these schemas accessible to both data generators and consumers, by storing 
them in a system (or a registry) that is recognized as the source of truth.
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We’ll cover these topics in the following subsections:

• Defining a schema

• Using a schema registry as the source of truth

Defining a schema

The schema defines the structure of the data. At a minimum, it will hold the complete list of the fields 
available and their data type.

The following code block shows an example of a schema that defines a Customer record with fields 
and their types using Protocol Buffers (https://protobuf.dev), as well as a unique field number, 
as required by Protocol Buffers:

message Customer {
  string id       = 1;
  string name     = 2;
  string email    = 3;
  string language = 4;
}

All data contracts must have a schema that defines the structure of the data.

Data that is well structured is easier for a data consumer to consume. It sets some basic expectations 
around the data, what will be present, and how it is presented. It is the minimum bar in guaranteeing 
the quality of the data.

Schemas can also be used by tooling to further increase the ease of use. For example, if using an open 
standard, there will almost certainly be open source libraries that help with efficiently encoding and 
decoding the data backed by the schema.

Some services are also able to ingest these schemas and use that to drive some functionality. Examples 
include data catalogs, data governance tools, and data validation services.

Many schema formats can hold more than just the list of fields and their types. For example, when 
using Apache Avro (https://avro.apache.org) we can add some documentation to the 
schema to help the consumer understand the context of that field.

The following code block shows a schema in Apache Avro holding the same Customer record we 
saw earlier in Protocol Buffers, with the added documentation highlighted:

{
  "type": "record",
  "name": "Customer",
  "doc": "A customer of our e-commerce website",
  "fields": [

https://protobuf.dev
https://avro.apache.org
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    {
      "name": "id",
      "type": "string",
      "doc": "The unique identifier for the customer."
    },
    {
      "name": "name",
      "type": "string",
      "doc": "The name of the customer."
    },
    {
      "name": "email",
      "type": "string",
      "doc": "The email address of the customer."
    },
    {
      "name": "language",
      "type": "string",
      "doc": "The language preference of the customer."
    }
  ]
}

Both Apache Avro and Protocol Buffers are serialization frameworks. They use their schemas to 
encode the data in a compact binary format that can be efficiently serialized and deserialized. There 
are other open source schema formats that have different aims, including JSON Schema (https://
json-schema.org), which simply uses JSON for serialization but has other features, including 
the validation of data.

The following code block is an example of JSON Schema holding the same Customer record we’ve 
seen in Apache Avro and Protocol Buffers. The parts that define the data validations are highlighted:

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "type": "object",
  "title": "customer",
  "description": "A customer of our e-commerce website",
  "properties": {
    "id": {
      "type": "string",
      "description": "The unique identifier for the customer.",
    },
    "name": {
      "type": "string",

https://json-schema.org
https://json-schema.org
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      "description": "The name of the customer.",
    },
    "email": {
      "type": "string",
      "description": "The email address of the customer.",
      "pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
    },
    "language": {
      "type": "string",
      "description": "The language preference of the customer.",
      "enum": ["en", "fr", "es"]
    }
  },
  "required": ["id", "name", "email", "language"]
}

These validations can be used by libraries to prevent incorrect data from being emitted from the source 
systems. If the data fails validation, an exception will be raised in that service and an alert will be sent 
to the data generator. They can then resolve the issue before that incorrect data gets to each of their 
data consumers, reducing the impact caused. We discuss data validations with data contracts in more 
detail in Chapter 10, Data Contracts in Practice , in the Monitoring and enforcing data contracts section.

While these schema formats work well for their primary use case of aiding the serialization of data 
between services, they are not easy to extend to meet different or more advanced use cases, including 
those we plan to cover with data contracts. That’s why most data contract implementations use a 
higher-level definition language such as YAML (https://yaml.org/) and Jsonnet (https://
jsonnet.org/), or even dynamic programming languages such as Python and TypeScript. We 
discuss why that is in more detail later in this chapter, in the Defining governance and controls section, 
but to round off this discussion, the following shows our JSON Schema converted into YAML:

name: Customer
description: A customer of our e-commerce website.
fields:
  id:
    type: string
    description: The unique identifier for the customer.
    required: true
  name:
    type: string
    description: The name of the customer.
    required: true
  email:
    type: string
    description: The email address of the customer.

https://yaml.org/
https://jsonnet.org/
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    pattern: "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
    required: true
  language:
    type: string
    description: The language preference of the customer.
    enum: [en, fr, es]

Now we have implemented the schemas, we need somewhere to store them. This will be the source of 
truth for the schemas we have defined, and accessible to both the data generators and the consumers, 
and their services. This is known as a schema registry, which we’ll look at next.

Using a schema registry as the source of truth

The schemas we’ve implemented can be used by both data generators and data consumers in several 
different applications.

Both Apache Avro and Protocol Buffers schemas can be used to generate source code. As binary 
formats, this code must be used by the data generators to write data that conforms to the schema 
and is serialized correctly. The data consumers also need to use the generated code to deserialize the 
binary representation into something their code can understand.

While JSON Schema events are serialized in the widely used and text-based JSON format, the schemas 
can be loaded by libraries to help write the data in the correct format and to run the validation checks.

These schemas can also be used in Continuous Integration (CI) checks, giving both the generators and 
consumers confidence that their code is using the data models correctly as they develop their services.

Furthermore, as open formats, these schemas can often be ingested into other applications or used to 
define resources such as a table in a data warehouse. We discuss these use cases in more detail later 
in this chapter, in the Defining governance and controls section.

When using the schemas across many different applications, we need to ensure they are kept in sync. 
So, when one application refers to version 1 of our Customer schema, that needs to be the same 
schema as the next application that refers to it.

We achieve this by creating a central service to store these schemas. This makes the schemas accessible 
to any application that needs them and acts as our source of truth for those schemas. We call this the 
schema registry.
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Depending on our requirements, the schema registry can be as simple as a Git repository or a shared 
folder on a distributed filesystem such as Amazon S3, or a service that presents a rich API for the 
saving and retrieving of schemas and performing compatibility checks. Whatever we choose to use 
as our registry, it should be capable of the following:

• Publishing a new schema

• Publishing an updated version of an existing schema

• Retrieving a schema with a particular version, including those superseded by a newer version

• Retrieving the latest version of a schema

There are many schema registry services available, some of which are open source, and some are 
implemented by platform and cloud providers. Examples include the following:

• Confluent Schema Registry (https://github.com/confluentinc/schema-
registry), which is part of Confluent’s Kafka-based platform and supports Apache Avro, 
JSON Schema, and Protocol Buffers schemas

• Iglu (https://github.com/snowplow/iglu), an open source registry supporting 
Apache Avro, JSON Schema, and Apache Thrift schemas

• AWS Glue Schema Registry (https://docs.aws.amazon.com/glue/latest/dg/
schema-registry.html), which is part of the cloud platform and supports schemas 
defined in Apache Avro, JSON Schema, and Protocol Buffers

However, one drawback of using services such as these is that as more and more data generators 
and consumers make use of them to serialize and deserialize data, they can become a performance 
bottleneck and a single source of failure in your architecture. So, you’ll need to consider how best to 
mitigate that potential issue when designing your data architecture.

We’ve seen how we can implement schemas that define the structure of the data and understand why 
we need them and the benefits we can derive from them.

However, schemas can only define the structure of the data as it is at a particular point in time. Our 
data will evolve as our organization evolves, and so the schemas must evolve too. We’ll look at how 
to manage that evolution next.

https://github.com/confluentinc/schema-registry
https://github.com/confluentinc/schema-registry
https://github.com/snowplow/iglu
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry.html
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Evolving your data over time
In this section, we’ll discuss how we can manage the evolution of our data, and the schemas that define 
it, while still giving the data consumers the stability they need to build on the data with confidence.

We spoke in detail about how data evolves in an organization and why managing the evolution of 
data well is important for consumers in Chapter 4, Bringing Data Consumers and Generators Closer 
Together, in the Managing the evolution of data section. We also discussed the difference between a 
breaking change and a non-breaking change, and how for a breaking change we want to deliberately 
introduce some friction to ensure the migration to that new version is managed to reduce the impact 
on downstream consumers.

It’s this concept of versions that allows us to evolve schemas. We use versioning to track and manage 
the changes to a schema over time. The previous versions of the schema are used to validate whether 
the new version introduces any breaking changes.

In this section, we’ll look at the following topics:

• Evolving your schemas

• Migrating your consumers

Evolving your schemas

When evolving a schema, you need to consider the type of change you are making, and how compatible 
that change is with your previous version.

Both Apache Avro (https://avro.apache.org/docs/1.11.1/specification/#schema-
resolution) and Protocol Buffers (https://protobuf.dev/programming-guides/
proto3/#updating) clearly define the rules for schema compatibility in their specifications, but 
essentially the rules are the same for any schema format.

Based on those rules, the change will either be a non-breaking change or a breaking change.

Let’s walk through these changes using the example Protocol Buffers schema from earlier in this 
chapter, as follows:

message Customer {
  string id       = 1;
  string name     = 2;
  string email    = 3;
  string language = 4;
}

https://avro.apache.org/docs/1.11.1/specification/#schema-resolution
https://avro.apache.org/docs/1.11.1/specification/#schema-resolution
https://protobuf.dev/programming-guides/proto3/#updating
https://protobuf.dev/programming-guides/proto3/#updating
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A non-breaking schema change means that data generated against a new version of the schema can 
still be read by a service using any previous version of the schema, without any data loss or other 
impact. Similarly, data generated against the previous version of the schema can be read by the new 
version. Examples of a non-breaking change include adding a new optional field and removing a field 
that is not required and has a default value specified.

Adding a new address field to our schema as follows is a non-breaking change:

message Customer {
  string id       = 1;
  string name     = 2;
  string email    = 3;
  string language = 4;
  string address  = 5;
}

This change has no impact on existing data consumers, as they simply ignore the address field. 
Those who need the added field can upgrade to the latest schema once it’s been released and update 
their code to start using it.

As non-breaking changes are low impact, data generators should be able to make these changes with 
low friction.

A breaking change is anything that does have an impact on existing data consumers. For example, 
removing a required field would result in data generated against the new schema being invalid to any 
consumers using the existing schema. Another example would be changing the data type of a field, 
such as from a string to an integer.

Removing the email field from our schema, as shown in the following code snippet, is a breaking change:

message Customer {
  string id       = 1;
  string name     = 2;
  string language = 4;
}

This change will immediately impact any existing data consumers. It could cause their pipelines and 
applications to fail or break any dashboards built on this data. Given the impact, we may choose to 
add friction to limit these changes, setting the expectation that they should be relatively infrequent 
and promoting the stability of the schemas.

These changes can and will still happen, so when making a breaking change, we’ll need to create a plan 
to aid the consumers as they migrate to the new version. Let’s talk about migrating data consumers next.
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Migrating your consumers

A data generator may need to evolve their data and create a new version of a schema and a data contract 
for a few reasons. It may be required to meet new requirements from one or more data consumers, 
or it may be needed to allow the data generator to make changes to their service that support new 
features or improve its performance.

The first thing a data generator should do is discuss the changes with their data consumers and ensure 
the new version of the data contract still meets their requirements. Once that has been agreed, they 
need to consider how they will migrate their consumers to that new version, without causing major 
disruption or breaking existing applications unexpectedly. They can manage this through the creation 
of a migration plan.

What that migration plan will look like depends on the size of the change, the criticality of the data, 
and the number of consumers of that data. If the data has one or two consumers and the change 
is relatively small, you might run the two versions side by side for just a couple of weeks while the 
consumers upgrade to the newest version. If it’s a larger change or affects many consumers, then you 
might need to produce data for each version for a longer period and consider providing libraries to 
ease the migration.

The important thing is that there is a plan, and that plan has been agreed between the data generator 
and their consumers. This aligns strongly with our aims of bringing data generators and consumers 
together, as we discussed in detail in Chapter 4, Bringing Data Consumers and Generators Closer Together.

All of this does introduce friction for the data generator and slow them down, but that is deliberate. 
It’s this friction that prevents these changes from happening without consideration. It shows that we 
are favoring stability over agility, which is what we need if we want reliable data consumers can trust 
and build on with confidence.

The use of schemas, and the support for schema evolution on those schemas, are key to implementing 
data contracts and using them to increase the dependability and quality of our data. But it’s not just 
the schema we want to manage – it’s the data itself, and the way we use it to further the goals of 
the organization.

To that end, we also want to define the governance and controls around the data and manage that 
just as effectively as we do the schemas. The next section will explore in detail why we want to do 
that, and how we’ll do it.

Defining the governance and controls
In Chapter 5, Embedding Data Governance, we discussed the importance of data governance and how 
we embed those controls alongside the data. We also spoke about how the responsibility of those 
controls is assigned to the data generators, supported by a central data governance committee through 
policies, standards, and tooling.
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In this section, we’ll look at exactly how we can define the governance and controls in the data contract.

Every data contract must have an owner. This is the data generator, and it is they who take on the 
responsibilities and accountabilities we discussed in Chapter 4, Bringing Data Consumers and Generators 
Closer Together.

Depending on your requirements, you might want to embed some of the following in your data contract:

• The version number of the contract

• The service-level agreements (SLAs)

• How to access the data (for example, is the interface a table in a data warehouse, a topic on a 
stream-processing platform, and so on)

• The primary key(s)

• What entity the data relates to (for example, whether it is about a product, an order, and so on)

• Semantics (for example, units of measure)

• Whether it is personal data

• How the data is classified according to your organization’s policies (for example, whether it is 
confidential, secret, or public knowledge)

• How long we’ll keep this data for (the retention period)

• The deletion or anonymization policy to apply when the data needs to be removed

• The physical location of the data

While some of the schema formats we looked at earlier in this chapter are extensible to a degree, they 
have all been developed primarily to aid the serialization of data sent between services. None have 
been designed to capture the variety of extensive metadata about the data the schema applies to.

Therefore, we may choose to use a higher-level definition language that can capture this metadata 
alongside the data. Examples include YAML (https://yaml.org/) and Jsonnet (https://
jsonnet.org/), but could even be dynamic programming languages such as Python and TypeScript. 
These are flexible enough to capture what we need, in the format we need it. They also provide a 
balance between being human-friendly and machine-readable.

Which schema definition language to use to define your data contracts depends on your requirements 
and what is already in use at your organization. For example, at GoCardless we use Jsonnet, as it is the 
language of choice for our infrastructure platform, and therefore our engineers are already familiar 
with it. But there’s nothing particularly special about Jsonnet that makes it perfect for defining data 
contracts, so I wouldn’t necessarily recommend it if you don’t already use it in your organization.

https://yaml.org/
https://jsonnet.org/
https://jsonnet.org/
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YAML is probably one of the better choices for implementing data contracts. The following code 
block is an example data contract for our Customer record defined in a custom YAML schema, 
highlighting some of the extra metadata we can define:

name: Customer
description: A customer of our e-commerce website.
owner: product-team@data-contracts.com
version: 2
fields:
  id:
    type: string
    description: The unique identifier for the customer.
    required: true
    primary_key: true
  name:
    type: string
    description: The name of the customer.
    required: true
    personal_data: true
    anonymization_strategy: hex
  email:
    type: string
    description: The email address of the customer.
    pattern: "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
    required: true
    personal_data: true
    anonymization_strategy: email
  language:
    type: string
    description: The language preference of the customer.
    enum: [en, fr, es]

This custom schema format is the interface you are providing to define the data contract, primarily 
for use by data generators but also for data consumers to use to discover and understand the data. But 
it’s also machine-readable, so you can use it to integrate with other systems and tools. For example, at 
GoCardless we use the contract to drive our data handling tooling, which deletes or anonymizes data 
when we no longer have a legitimate reason to retain it or in response to a request from a customer.

We can also use a data contract to generate a schema in any other format and benefit from the open 
ecosystem of that format. At GoCardless, we take our Jsonnet data contract and convert it to a valid 
Protocol Buffers schema. We then apply that schema to a Google Cloud Pub/Sub topic, which enforces 
schema validation at the infrastructure layer (https://cloud.google.com/pubsub/docs/
schemas).

https://cloud.google.com/pubsub/docs/schemas
https://cloud.google.com/pubsub/docs/schemas
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We also convert the same contract to a Google BigQuery table, which is defined in a custom JSON 
format (https://cloud.google.com/bigquery/docs/reference/rest/v2/
tables#TableSchema).

We even convert the contract to a valid JSON Schema. Developers can then use one of the many 
open source JSON Schema libraries to validate the data in their code, before publishing to Pub/Sub 
or writing to BigQuery.

The following diagram shows how we convert the data contract into these different formats to power 
our internal data handling tooling and integrate with other services:

Figure 6.1 – Using the data contract to produce schemas in various formats

In fact, we can convert the data contract into any format we like! This allows us to integrate with any 
number of tools and services to support data generators, consumers, and other stakeholders. The data 
contract remains the source of truth for this metadata, with everything else derived from it.

We’ll look at further examples of using schemas to drive tooling and automation in Chapter 7, A 
Contract-Driven Data Architecture.

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableSchema
https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableSchema
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Summary
In this chapter, we’ve started to see exactly what makes up a data contract. A large part of the data 
contract is the schema. We explored various open source schema formats to understand how we can use 
them to define schemas and the different functionality we can add to those schemas. We also looked at 
how we can make schemas accessible by using a schema registry to act as the source of truth for them.

However, schemas can only define how the data looks at a set point in time. Data will evolve, and so will 
the schema. So, we then discussed how to evolve your data over time and how to migrate your consumers 
to a new version without causing major disruption or breaking existing applications unexpectedly.

We finished the chapter by looking at how we can use data contracts to manage the governance and 
controls of data through the specification of metadata that describes the data.

We can then use that metadata to integrate with any tool or service. This can be done by using the data 
contract directly, as it is machine-readable, or we can convert the data contract to any number of open 
and custom schema formats for integration with other services, benefitting from existing ecosystems.

We’re going to take this concept further in the next chapter, as we explore how the data contract can 
be used to create a contract-driven data architecture.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Protocol Buffers: https://protobuf.dev/

• Apache Avro: https://avro.apache.org/

• JSON Schema: https://json-schema.org/

• YAML: https://yaml.org/

• Jsonnet: https://jsonnet.org/

• Schemata: https://github.com/ananthdurai/schemata

• Protocol Buffers Best Practices for Backward and Forward Compatibility by John Gramila: https://
earthly.dev/blog/backward-and-forward-compatibility/

• Understanding Avro Compatibility by Kyle Carter: https://medium.com/codex/
understanding-avro-compatibility-e2f9afa48dd1

• Understanding JSON Schema Compatibility by Robert Yokota: https://yokota.
blog/2021/03/29/understanding-json-schema-compatibility/

• Data contracts: The missing foundation by Tom Baeyens: https://medium.com/@
tombaeyens/data-contracts-the-missing-foundation-3c7a98544d2a
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• Template for a data contract used in a data mesh: https://github.com/paypal/data-
contract-template

• Implementing Data Contracts at GoCardless by Andrew Jones: https://medium.com/
gocardless-tech/implementing-data-contracts-at-gocardless-
3b5c49074d13
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7
A Contract-Driven  
Data Architecture

In the previous chapter, we saw exactly what makes up a data contract. In this chapter, we’re going 
to build on that by looking at how we can use the data contract to drive our data architecture. We’ll 
introduce the concept of a contract-driven data architecture and show how powerful this can be. We 
believe this is a step-change in how we build data platforms, and we’ll discuss the many benefits we 
get when adopting this architecture pattern.

As part of that discussion, we’ll introduce the three principles that unlock those benefits: autonomy, 
guardrails, and consistency, and you’ll learn how those principles benefit the data generators, the 
data consumers, and the organization. To promote autonomy, we need to provide tooling that can be 
self-served by the data generators. We’ll finish this chapter by looking at why that is important and 
show an example of how to achieve it.

By the end of this chapter, you’ll fully understand this new architecture pattern and the benefits of 
using it, so you can see how you could apply the same ideas in your organization.

In this chapter, we’re going to cover the following main topics:

• A step-change in building data platforms

• Introducing the principles of a contract-driven data architecture

• Providing self-served data infrastructure

A step-change in building data platforms
To start this section, we’ll explain exactly what we mean by a contract-driven data architecture. We’ll 
explore how it is powered by using data contracts as the place to capture the metadata that describes 
the data, and we’ll see just how powerful it can be to create a contract-driven data architecture. We’ll 
show why we believe it is a step-change in building data platforms.
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We’ll finish by walking through a case study from GoCardless, where we implemented a solution we 
thought was promoting autonomy but wasn’t as successful as we expected! What we learned from that 
greatly influenced our implementation of data contracts, where we have been much more successful 
in promoting autonomy through a self-serve interface.

We’ll explore the following topics in turn:

• Building generic data tooling

• Introducing a data infrastructure team

• A case study from GoCardless in promoting autonomy

• Promoting autonomy through decentralization

Building generic data tooling

Most data engineering teams build tools and services for their own use, to facilitate the movement 
and preparation of data ready for other data practitioners to consume. These solutions are often tied 
to a specific use case or deployment.

An example would be a data pipeline that ingests customer data from a third-party service, such as 
Salesforce, and stores it in the data warehouse. It would be made specifically for that data, writing the 
data to a specific part of the data warehouse.

There might then be other services that help manage that data, for example, by taking regular backups, 
or by anonymizing personal data. These services are also written specifically for that data and know 
exactly how it is structured, with the business logic encoded in the service itself, as part of the code.

A very similar service would then be created for the next third-party service you want to integrate. 
Then again for a different type of source data, such as a change data capture (CDC) solution that 
ingests data from an internal database.

By building point solutions like this, the data engineering team becomes a bottleneck. Only they can 
ingest data into the data warehouse. Only they can manage the data correctly and in accordance 
with company policies. Each data source becomes a ticket in their backlog, but realistically only the 
top-priority ones will ever be delivered.

This severely limits the accessibility of data and reduces the value that we can extract from our data.

The following diagram illustrates the duplication when building point solutions to extract data from 
sources, be they third-party sources such as Salesforce or internal databases using a CDC solution:
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Figure 7.1 – Building data pipelines as point solutions

There’s no technical reason why this is the case. Each of the services that make up the pipeline in the 
earlier example doesn’t have to be built for a specific use case or dataset. They just need to know enough 
about the data so they can take the right action. In our example, that would include the following:

• Where in the data warehouse to write the data

• How often to take backups, and how long to keep them for

• The anonymization strategy for each field containing personal data

As we discussed in Chapter 6, What Makes Up a Data Contract, we can capture this and other governance- 
and control-related metadata in the data contract. The following example shows a YAML-based data 
contract, with the most relevant parts for this discussion highlighted:

name: Customer
description: A customer record ingested from Salesforce.
owner: product-team@data-contracts.com
version: 2
warehouse_path: sales_data.salesforce.customers
backups:
  schedule: @daily
  expire: P60D
fields:
  id:
    type: string
    description: The unique identifier for the record.
  name:
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    type: string
    description: The name of the customer.
    personal_data: true
    anonymization_strategy: hex
  email:
    type: string
    description: The email address of the customer.
    personal_data: true
    anonymization_strategy: email

With a contract definition like this, in a machine-readable format, we can build the services that made 
up the pipeline in our example so they can process any data, of any shape, just by using the metadata 
defined in the data contract.

For example, the service that writes the data to the data warehouse knows the structure of the data from 
the schema and can use that to ensure the table in the warehouse is present and with the same schema.

Similarly, the backups service can be configured to run daily, as per the cron expression in the contract. 
It also knows to expire data after 60 days.

And finally, the data handling service can anonymize the personal data when required, as we know 
how to find the personal data in the data warehouse, and what anonymization strategy to use. In our 
example, we’ll overwrite the customer’s name with random hexadecimal characters, and replace the 
email address with anonymized+<id>@data-contracts.com.

As well as aiding the development of this tooling, defining this metadata as part of the contract 
increases the visibility of our data handling requirements and makes it clear who is responsible and 
accountable for the correct handling of the data. We discussed this previously in detail in Chapter 5, 
Embedding Data Governance.

This is obviously a win for the data engineering team. It reduces the effort required to build new 
pipelines and reduces the number of distinct services they need to maintain. But they are still a 
bottleneck and still restrict access to data.

We want to remove these bottlenecks wherever we find them. We want to increase the accessibility 
of data, by empowering data generators to take ownership of the data they create and provide high-
quality data products to their data consumers to drive business value.

To enable this, we need to open this tooling – and data contracts – to everyone who generates data. 
This requires the formation of a team with the focus and remit to build that tooling. We’ll discuss this 
next, and build the case for a data infrastructure team.
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Introducing a data infrastructure team

To support our data generators – whoever they are – we need to provide them with the tooling that 
promotes their autonomy and allows them to focus on the data itself. It should be self-serve, with no 
unnecessary processes adding friction or slowing them down.

For example, we don’t need every data generator to be an expert in privacy regulation. We can automate 
that concern away through the tooling, and by implementing guidelines and guardrails around that 
tooling. We do need the data generators to tell us about the data they are generating, and we trust 
them to do that as best they can. But from then on, the tooling does the right thing.

This tooling and related services should, like all internal tooling (and like our data!) be built and 
delivered with a product mindset. We treat our customers with empathy. We aim to understand their 
problems and collaborate with them to provide the right solutions. Those solutions should have a 
great user experience that delights them.

A lot of this is likely to be beyond the remit of the data engineering team, and they may not have 
the right expertise to do this. Therefore, we’d encourage organizations to set up a dedicated data 
infrastructure team to build and support this tooling.

This team should be made up of software engineers, and possibly Site Reliability Engineers (SREs). 
They’re a central team, best working alongside the other central teams building internal tooling, such 
as those working on the infrastructure platform and related tooling. The data tooling has a different 
focus but shouldn’t be implemented much differently from the rest of the infrastructure tooling you 
have. They all have to work well together and provide a seamless experience to both the software and 
the data engineers.

This is how we are set up at GoCardless, and that helped create the conditions for us to come up with 
data contracts and implement them so successfully. We’re a team of software engineers – not data 
engineers. We report to the product development function – not the data function. We’re focused on 
enablement through autonomy – not on building a central platform that inevitably becomes a bottleneck.

Of course, we didn’t join GoCardless as a data infrastructure team and immediately start working on 
data contracts! It’s been a journey to get here and continues to be a journey as we learn, take feedback, 
and improve our tooling and our understanding of what we want to build.

There’s a step we took on this journey that in hindsight looks like a mistake but is a great case study 
in our attempts to promote autonomy, without which we may never have created data contracts. Let’s 
walk through that case study now.

A case study from GoCardless in promoting autonomy

As the data infrastructure team at GoCardless, we had always been thinking about how best to promote 
autonomy to our data generators. In 2018, that led us to implement an application we called the Data 
Platform Gateway.
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This was our solution to the proliferation of point solutions we mentioned in the A step-change in 
building data platforms section earlier. It was an application that provided an HTTP-based API, which 
allowed data generators to push data to the data warehouse. At the time it was the second supported 
method for getting data into the data warehouse (the first being our change data capture service).

This API validated any events it received against schemas, stored in a schema registry. If the event 
matched the schema and was valid, it would be sent to a Google Cloud Pub/Sub topic. From there, 
another service took those events and inserted them into the correct place in the data warehouse, 
which for us is Google BigQuery.

The schemas themselves were stored and managed in a Git repository, and anyone could add or change 
a schema without requiring approval from us or any other central team. Once merged into the main 
branch, the schemas would automatically be pushed to the schema registry and events could then 
be written.

The overall architecture of the Data Platform Gateway is shown in the following diagram:

Figure 7.2 – The Data Platform Gateway architecture, showing the key components and services

These schemas themselves were quite basic. They were in a custom YAML format, but that was just a 
thin abstraction over Apache Avro schemas, which we used under the hood. We didn’t have any extra 
metadata in there beyond the schema.
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The following example shows the YAML-based schema we were using:

name: transaction_fee_calculated
doc: Records the calculation of a transaction fee that would be 
collected from a merchant.
primary_keys:
  - event_id
fields:
  - name: event_id
    doc: Unique deterministic ID of the event.
    type: string
    required: true
  - name: created_at
    doc: RFC 3339 time at which the event was emitted.
    type: timestamp
    required: true
  - name: payment_currency
    doc: >
      ISO 4217 currency code of the payment which this fee is been 
charged for.
      Examples include AUD, CAD, DKK, EUR, GBP, NZD, SEK, USD
    type: string
  - name: amount
    doc: The amount (in minor currency unit) of the calculated fee.
    type: long
  - name: net_amount
    doc: The amount (in minor currency unit) of the calculated fee, 
minus tax
    type: long

The Data Platform Gateway shared some of the same goals we’re now realizing with data contracts. We 
were hoping to promote autonomy by allowing teams to specify their own schemas. We also expected 
teams to consume from the Pub/Sub feed if they needed access to near real-time data or were building 
event-driven services, which we knew there was some demand for.

Initially, this service was quite successful. The ability to write data directly to the warehouse, from 
anywhere, was a new capability for us. Several schemas were created by users, who appreciated the 
autonomy they had to do so without requiring central approval.

However, the use cases were all simple, and the number of schemas created each month soon 
dropped to single figures and eventually to near zero. We never had anyone consume directly from 
the Pub/Sub topics.
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Meanwhile, other solutions that on the surface were very similar to the Data Platform Gateway were 
being built in other parts of the organization. We hadn’t achieved our goal of removing the need to 
implement custom point solutions.

So, what went wrong? Let’s look at the reasons this wasn’t successful, and what we learned.

Promoting autonomy through decentralization

In this section, we’ll look at what we learned about why the Data Platform Gateway wasn’t a success, 
and how that influenced the design of data contracts.

After spending some time with the teams to understand why they were spending valuable time 
building their own solutions instead of using ours, three key concerns with the Data Platform Gateway 
were highlighted:

• Disagreement on design choices: We were opinionated in our design choices, and not everyone 
shared our opinions! This included choosing Apache Avro as our serialization framework, 
which had poor support for Ruby – the language of choice for our engineering teams. It also 
related to the shape of the schemas we supported, which could only be one level deep and only 
allowed simple data structures.

• Lack of ownership of the resources and data: These were still owned and managed by the central 
data infrastructure team, and any change to them required going through the team. This 
included granting access to the BigQuery tables and the Pub/Sub topics, and changing the 
configuration of those resources in order to improve performance. It also included changing the 
data, for example, to recover from an incident or aid the evolution of a schema (as we discussed 
in Chapter 4, Bringing Data Consumers and Generators Closer Together, in the Managing the 
evolution of data section).

• Undefined expectations and service-level objectives (SLOs): We hadn’t set any SLOs on the service, 
and the data infrastructure team was not on call. This meant users could not depend on it for 
anything supporting important business processes. Furthermore, a lot of the resources were 
shared among all users of the Data Platform Gateway, including the API, the schema registry, 
the Pub/Sub topic, and the service that wrote the data to BigQuery. An issue with any of those 
would impact everyone’s data, even if the issue was localized to a particular dataset or an 
individual record causing a bug on one of those.

What we’d done was simply move the bottleneck we discussed in Chapter 1, A Brief History of Data 
Platforms – rather than removing it. The Data Infrastructure team became the bottleneck, instead 
of the Data Engineering team. Furthermore, the data generators were still as far away from the data 
consumers as before, and there was still a complete lack of collaboration.
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The following diagram shows these problems, and as you may notice, it is very similar to Figure 1.5:

Figure 7.3 – The Data Platform Gateway became a bottleneck, the gap between the 

data generators and consumers remained, and responsibility did not change

What users were clearly asking for was more autonomy. They wanted the autonomy to make some of 
their own design choices. They wanted the autonomy to manage their resources, and even take on 
the responsibility to do so to ensure those resources and the support around them met the reliability 
expectations they required.
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We took that on board and started thinking about the different ways we could provide our users with as 
much autonomy as we could, and identified four areas to guide the next iteration of our data platform:

• Decentralization: We wanted to design an architecture that allowed them to define their 
own schemas in their workspace, which would then bring up the required resources in their 
infrastructure, alongside the services they owned.

• Ownership: We would explicitly assign them ownership of those resources. This would include 
granting access, tweaking the configuration, and scaling services up or down depending on 
the load they were generating. It would also apply to the data within those resources, which 
they could manage and make changes to as needed. For example, to fix the data following an 
incident, or to manage the evolution of their schemas.

• Flexibility: A more flexible implementation where the data generators had more control over their 
schemas, the tools they used, and the resources they created would further increase autonomy. 
We trusted them to provide datasets that met the requirements of their users, without limiting 
them to follow our opinions on exactly what that should look like.

• Isolation: A more decentralized architecture would ensure different datasets are isolated from 
each other. Each dataset could have its own SLOs and expectations around it, and they would 
be easier to meet without the worry someone else’s data or services could impact your data 
or services.

Then, considering the schemas themselves, we realized the reason we were so opinionated about them 
is that it made the development of tooling around that data easier if they were all the same shape.

But it wasn’t really the shape we needed to know – it was the context of the data. If that context could 
be defined in metadata alongside the data, and if that metadata was machine-readable, it would only 
take a little more effort to build the same tooling. In return for that effort, users would have much 
more flexibility over their data.

And so all this together led us toward creating data contracts and implementing a contract-driven 
architecture. We believe this is a step-change in how to build data platforms, and having spent the 
last three years building this, we have proven we are on the right path.

In fact, we have seen teams organically migrate away from their own point solutions and onto data 
contracts. And that’s the best validation we could have had.

The Data Platform Gateway is now decommissioned, with all users moved to data contracts, but it 
was a key step in our journey toward a contract-driven architecture.

There are many benefits to building data platforms in this way, and while we’ve mentioned some 
examples already, we’ll look at those in detail in the following section, along with the principles that 
help us achieve those benefits.
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Introducing the principles of a contract-driven data 
architecture
Building a contract-driven data architecture provides many benefits to both the data generators and 
consumers, and the wider organization. These benefits are achieved through these three principles:

• Automation

• Guidelines and guardrails

• Consistency

Let’s look at each of these in turn.

Automation

There are several common tasks that need to be carried out on the data and the resources we use to 
manage it, no matter what that data is and who owns it. These tasks are great candidates to automate, 
reducing the effort the data generators need to spend managing the data.

The resources required for our data will almost always include the tables in the data warehouse. We 
can use the data contract to automate the creation and management of that table, for example, by 
creating the table when the contract is created and keeping the schema of the table in sync with the 
schema in the contract.

Other resources might include a topic in a streaming service such as Apache Kafka or Google Cloud 
Pub/Sub, the collection of metrics for SLOs, and the assignment of access controls. All of these can 
be automated too, using the data contract and the schema and metadata contained within it as the 
source of truth.

There are also regular actions we need to take on the data, which might include taking backups of the 
data, moving data to different storage engines based on its age, and anonymizing or deleting personally 
identifiable data as it exceeds its retention period.

Using the metadata defined in the data contract, we can easily build small services that automate these 
tasks. These services can be deployed alongside each contract and have sensible defaults, so most data 
generators never need to configure them.

We’ll be looking at examples of implementing this automation in Chapter 8, A Sample Implementation.



A Contract-Driven Data Architecture108

Guidelines and guardrails

We want to enable data generators across the organization, but we can’t expect everyone generating 
data to be experts in data contracts and other best practices. Instead, we can provide them with the 
tooling that guides them and take care of as many of these concerns for them as we can.

These act as our guidelines and guardrails. They help the users align with our contract-driven architecture 
by leading them in the right direction. They allow the data generators to focus on their data products 
and meeting the requirements of their consumers, knowing that if they use the supported tools and 
categorize the data accurately, they are complying with the organization’s data management standards.

The guidelines and guardrails also allow the data generators to move fast. They don’t need constant 
engagement and review from central data or privacy engineering teams, which become a bottleneck 
and slow down development speed across the organization.

These guidelines and guardrails are best implemented as part of the data generators day-to-day 
workflows. For example, Continuous Integration (CI) checks could ensure the data is categorized, 
and any field categorized as personal data has an anonymization strategy defined. We’ll discuss these 
checks in more detail and provide further examples in Chapter 10, Data Contracts in Practice, in the 
Monitoring and enforcing data contracts section.

You won’t be able to create guidelines for every question, or perfect guardrails that prevent all issues, 
and you’ll need to keep adding and refining them as those issues arise. But they do significantly reduce 
the risks, without compromising on the agility and autonomy of the data generators.

Consistency

By providing this standard tooling to all data generators through data contracts, we’re promoting greater 
consistency in how our data is managed, accessed, and consumed. Every data consumer knows how 
to discover data that is managed through a data contract. They know how to look up the expectations 
around that data, and how to find its owner. They know how the access controls are set up, and how 
to ask for the permissions they need.

Similarly, every data generator knows how their data and resources are being managed. They can 
switch between working on different datasets without losing context or having to learn new tools or 
a slightly different implementation of the same tools. When there is an incident, they know exactly 
where to look for their service configuration, to view their observability metrics, and recover data 
from their backups. This contract-driven tooling becomes the golden path. It is the only supported 
tooling and the default choice for data generators across the organization.

Achieving that greatly increases the return on investment in the tooling and justifies the investment 
in the data infrastructure team. The greater the usage, the fewer point solutions need to be built in 
different parts of the organization, and the time saved can be invested in generating business value.
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However, this is only going to be achieved if the tooling is of the right quality and meets most of 
the needs of most of the data generators. The tooling needs to support those needs without creating 
unnecessary friction or reducing their autonomy.

The key to achieving that is to build the tooling in a way that data generators can self-serve themselves. 
Let’s discuss why that is so important and how to provide that next.

Providing self-served data infrastructure
Data generators must be able to create and manage their data products with agility and autonomy 
if we are going to improve the accessibility of quality data that leads to valuable business outcomes.

To enable that, the tooling implemented as part of our contract-driven architecture needs to be self-
servable by those data generators. There should be no waiting on a central data or operations teams 
for review, slowing the data generators down and becoming a bottleneck.

We can be confident in allowing this because we have implemented the guidelines and guardrails that 
manage the risks, as we discussed in the previous section. That allows us to trust our data generators, 
and by showing we trust them we are promoting a sense of ownership of the data. That sense of 
ownership automatically translates into a feeling of responsibility and accountability for the data, and 
the data products they are providing.

As we’ve discussed throughout this chapter, data contracts make it easy to build this tooling and have 
it driven by the schema and the metadata within the contract.

We can see how this works by looking at how data contracts have been implemented at GoCardless. 
The following code block shows an example data contract defined in Jsonnet, which is how we define 
the contracts at GoCardless:

{
  contract: new() {
    metadata+: {
      name: 'bank_account_information',
      description: 'Information on bank accounts used for ...',
    },
    schema+: {
      versions: [
        new_version('1', anonymisation_strategy.overwrite,
          [
            field(
              'bank_account_id',
              'Unique identifier for a specific bank account, 
following the standard GC ID format.',
              data_types.string,
              field_category.gocardless_internal,
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              is_personal_data.yes,
              personal_data_identifier.indirect,
              field_anonymisation_strategy.none,
              required=true,
              primary_key=true,
            ),
            field(
              'account_balance',
              'Payer\'s account balance. May be positive or 
negative.',
              data_types.double,
              field_category.payer_confidential,
              is_personal_data.yes,
              personal_data_identifier.direct,
              field_anonymisation_strategy.nilable
            ),
            field(
              'account_holder_name',
              'Payer\'s account holder name, as entered by the 
payer.',
              data_types.string,
              field_category.payer_confidential,
              is_personal_data.yes,
              personal_data_identifier.direct,
              field_anonymisation_strategy.hex
            ),
          ],
          [ ddrSubject('bank_accounts', 'bank_account_id') ],
        ) + withPubSub() + withBigQuery(),
      ],
    },
  },
}

That’s all a data generator needs to do to create a data contract. The key part for this discussion is the 
following line:

+ withPubSub() + withBigQuery()

This is how the data generator can provision the resources and services they need, completely self-
served. In this example, they are requesting a Google Cloud Pub/Sub topic and a Google BigQuery 
table. The data contract will be used to configure those with the correct schemas and keep those 
schemas in sync as the contract evolves.
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Other services and resources are provisioned automatically and come with sensible defaults, including 
a data handling service to manage the life cycle of the data and a service that takes regular backups of 
the data. If they did want to configure these services, they could do so in the contract. For example, 
the following code changes the backups to weekly:

withBigQuery(backup_schedule="@weekly")

The data contract also integrates with several central services, including the data catalog and our 
observability platform.

Once they are happy with their data contract, they merge it to a Git repository – without central 
review – and those services and resources are created.

The following diagram shows how the different services and resources work together to give the data 
generator everything they need to create and manage their data:

Figure 7.3 – The services and resources created and managed by the data contract

Looking forward, we expect to create all the tooling and services we will ever need in the same way, 
driven by the data contract and the metadata within it.

By having the ability to create and manage all these services and resources, and to do so through a 
self-serve interface, we allow our data generators to move fast and with autonomy as they focus on 
generating the quality data products our data consumers need.
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Summary
In this chapter, we introduced the concept of a contract-driven data architecture. This is an architecture 
driven by data contracts and the metadata we define within them. We showed how powerful this idea 
is, and why we believe it’s a step-change in how we build data platforms.

We use this pattern to build more generic data tooling, where instead of building similar pipelines 
as point solutions we can build tooling that doesn’t mandate anything about the data and how it is 
structured if we have enough context about the data, defined as metadata in the data contract. When 
adopting this pattern, it’s recommended to build a data infrastructure team, whose remit is to build 
this tooling for the adoption of all data generators, wherever they are in the organization.

To illustrate how this pattern is different from how we built platforms before, we walked through a 
case study of a previous service we implemented at GoCardless, the Data Platform Gateway, and how 
that wasn’t as successful as we’d hoped. We showed how we learned about the importance of autonomy, 
and how that led to us adopting this architecture pattern.

We then looked in detail at the benefits of this architecture pattern, and how they are achieved by 
three principles: autonomy, guardrails, and consistency. Finally, we discussed how important it is that 
the tooling is self-servable, and how that is the key to promoting autonomy.

In the next chapter, we’re going to see this concept in action as we look at a sample implementation 
of this architecture pattern, driven by data contracts.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Implementing Data Contracts at GoCardless: https://medium.com/gocardless-tech/
implementing-data-contracts-at-gocardless-3b5c49074d13

• 3 Things Our Software Engineers Love About Data Contracts: https://medium.com/
gocardless-tech/3-things-our-software-engineers-love-about-
data-contracts-3106e1f1602d

• The Data Engineer is dead, long live the (Data) Platform Engineer by Robert Sahlin: https://
robertsahlin.substack.com/p/the-data-engineer-is-dead-long-live

• Data-First Stack as an Enabler for Data Products by Animesh Kumar: https://
moderndata101.substack.com/p/data-first-stack-as-an-enabler-for

• Building Great Cloud Security Guardrails by Rich Mogull: https://devops.com/
building-great-cloud-security-guardrails/

• How We Use Golden Paths to Solve Fragmentation in Our Software Ecosystem by Gary 
Niemen https://engineering.atspotify.com/2020/08/how-we-use-
golden-paths-to-solve-fragmentation-in-our-software-ecosystem/

https://medium.com/gocardless-tech/implementing-data-contracts-at-gocardless-3b5c49074d13
https://medium.com/gocardless-tech/implementing-data-contracts-at-gocardless-3b5c49074d13
https://medium.com/gocardless-tech/3-things-our-software-engineers-love-about-data-contracts-3106e1f1602d
https://medium.com/gocardless-tech/3-things-our-software-engineers-love-about-data-contracts-3106e1f1602d
https://medium.com/gocardless-tech/3-things-our-software-engineers-love-about-data-contracts-3106e1f1602d
https://robertsahlin.substack.com/p/the-data-engineer-is-dead-long-live
https://robertsahlin.substack.com/p/the-data-engineer-is-dead-long-live
https://moderndata101.substack.com/p/data-first-stack-as-an-enabler-for
https://moderndata101.substack.com/p/data-first-stack-as-an-enabler-for
https://devops.com/building-great-cloud-security-guardrails/
https://devops.com/building-great-cloud-security-guardrails/
https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/
https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/
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• Self Service Pattern: https://www.cnpatterns.org/infrastructure-cloud/
self-service

• What is a Self-Service Infrastructure Platform? by Romaric Philogène: https://medium.
com/@rphilogene/what-is-a-self-service-infrastructure-platform-
726a8d0dc2e1

https://www.cnpatterns.org/infrastructure-cloud/self-service
https://www.cnpatterns.org/infrastructure-cloud/self-service
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1




8
A Sample Implementation

In this chapter, we’ll walk through a sample implementation of data contracts. We’ll use it to illustrate the 
concepts we have been learning about throughout the book and put what we have learned into practice.

We’ll start by creating a YAML-based interface for the data generator to use to create a data contract. 
Then, using that data contract as the foundation, we’ll provide a few examples of how we can use it 
to drive our contract-driven architecture.

Firstly, we’ll create a table in our BigQuery data warehouse from the data contract, with a matching 
schema that will stay in sync with the contract as it evolves. We’ll also introduce an Infrastructure 
as Code (IaC) tool to help us build this. Then we’ll look at how we can create libraries for the data 
generators to aid the generation of data that matches the contract and conforms to the data quality 
checks we have defined in the contract.

Next, we’ll explore how to populate a schema registry from the contract, and how that helps make 
our schemas accessible to any code that needs it. The schema registry also allows us to store multiple 
versions of a contract, and we’ll use that functionality to help us manage the evolution of our data 
contracts. Finally, we’ll show how we can implement contract-driven tooling, using an anonymization 
service as an example.

By the end of this chapter, you’ll have seen how easy and powerful it is to implement a 
data-contract-driven architecture.

In this chapter, we’re going to cover the following main topics:

• Creating a data contract

• Providing the interfaces to the data

• Creating libraries for data generators

• Populating a central schema registry

• Implementing contract-driven tooling
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Technical requirements
You can find all the code for this chapter in the Chapter08 directory in the GitHub repository 
at https://github.com/PacktPublishing/Driving-Data-Quality-with-Data-
Contracts.

To follow along with the code samples in this chapter, download the code from GitHub. Ensure you 
have Python version 3.9.12 or above installed on your local machine, and then run the following 
commands from the Chapter08 directory to install the dependencies in a virtual environment:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

You’ll also need a Google Cloud account. If you don’t have one already, you can sign up at https://
cloud.google.com. Once created, you will need to ensure you have permission to create BigQuery 
datasets and tables in your project by following the instructions at https://cloud.google.
com/bigquery/docs/access-control.

Next, install the gcloud CLI by following the instructions at https://cloud.google.com/
sdk/docs/install, and initialize and authenticate the CLI as documented at https://cloud.
google.com/sdk/docs/initializing.

The actions we will take in this chapter will not incur any charges.

We’ll also be using Pulumi (https://www.pulumi.com) in this chapter. Install the pulumi CLI 
by following the instructions at https://www.pulumi.com/docs/get-started/install/.

Finally, we’ll use Docker to run services locally. Install Docker Desktop from https://docs.
docker.com/desktop/.

Creating a data contract
We’ll start by defining a specification for data generators to create a data contract. We’ll discuss why we 
have chosen to define it in this way, and how it acts as the foundation of our sample implementation.

We’ll be using this data contract to drive the contract-driven architecture we’ll be building out in this 
chapter. It will be the foundation that drives the following resources and services:

• A BigQuery table, acting as the interface to the data.

• Code libraries for the data generators to use, by converting our data contract to JSON Schema 
and using existing open source libraries.

• A schema registry, so the schemas are available to others. Again, we used our JSON Schema 
representation of the data contract to interact with that.

https://github.com/PacktPublishing/Driving-Data-Quality-with-Data-Contracts
https://github.com/PacktPublishing/Driving-Data-Quality-with-Data-Contracts
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com/bigquery/docs/access-control
https://cloud.google.com/bigquery/docs/access-control
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/initializing
https://cloud.google.com/sdk/docs/initializing
https://www.pulumi.com
https://www.pulumi.com/docs/get-started/install/
https://docs.docker.com/desktop/
https://docs.docker.com/desktop/
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• An anonymization service, which uses the data contract directly to anonymize some data.

The following diagram shows how each of these resources is driven by the data contract, which 
is highlighted:

Figure 8.1 – Using the data contract to drive our contract-driven architecture

As we discussed in Chapter 6, What Makes Up a Data Contract, there are many ways we can implement 
this interface. From using an existing schema definition language such as Apache Avro and Protocol 
Buffers, to higher-level definition languages such as YAML and Jsonnet, to writing in code such as 
Python and TypeScript.

For this example, we’ll be using a custom interface captured in YAML. YAML is a popular and well-
known definition language that is easy for humans to read and write while still being machine-readable. 
Its flexibility also allows us to capture as much metadata as we need to implement the features we will 
be building throughout this chapter. This includes the following:

• A schema holding the fields, their data types, and whether they are required or optional

• Optional validation rules for the fields

• An anonymization strategy for the data
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The following code block from contracts/Customer.yaml shows a data contract for our 
Customer record:

name: Customer
description: A customer of our e-commerce website.
owner: product-team@data-contracts.com
version: 1
fields:
  id:
    type: string
    description: The unique identifier for the customer.
    required: true
  name:
    type: string
    description: The name of the customer.
    required: true
    anonymization_strategy: hex
  email:
    type: string
    description: The email address of the customer.
    pattern: "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
    required: true
    anonymization_strategy: email
  language:
    type: string
    description: The language preference of the customer.
    enum: [en, fr, es]

This will be all our data generators need to do to create the data contract. From this, we will be able 
to provision the resources and services using the patterns described in Chapter 7, A Contract-Driven 
Data Architecture.

It’s important the data contract is machine-readable, and there are libraries that make it easy to read 
YAML in all the major programming languages. The following code from parse_contract.py 
shows us parsing the data contract in Python and extracting some of the metadata from it:

import yaml

with open("contracts/Customer.yaml", "r") as stream:
    contract = yaml.safe_load(stream)

print(
    f'Successfully parsed the `{contract["name"]}` contract, which is 
owned by `{contract["owner"]}`.')
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You can run this and view the output as follows:

$ ./parse-contract.py
Successfully parsed the `Customer` contract, which is owned by 
`product-team@data-contracts.com`.

We can take this a little further by implementing checks to validate the data contract. To take a simple 
example, we can mandate every data contract has an owner by adding the following lines to our code, 
which are implemented in validate_contract.py:

if 'owner' not in contract:
    raise ValueError(f'`{contract["name"]}` contract does not have an 
owner')

Running that code against the contracts/Customer-invalid.yaml data contract, where 
we’ve removed the owner field, will throw an error, as follows:

$ ./validate_contract.py
Traceback (most recent call last):
  File "Driving-Data-Quality-with-Data-Contracts/Chapter08/validate_
contract.py", line 7, in <module>
    raise ValueError(f'`{contract["name"]}` contract does not have an 
owner')
ValueError: `Customer` contract does not have an owner

We can obviously take this further and add as many validations as we need. A script such as this can 
then be used to fail builds or continuous integration checks, ensuring the correctness and consistency 
of our data contracts.

We now have a way to define a data contract, but we’re not doing much with it yet. Next, let’s look at 
how we can use the data contract to supply an interface to the data through the provision of a table 
in a data warehouse.

Providing the interfaces to the data
In this section, we’ll use the data contract to provision a Google BigQuery table. This will act as the 
interface to the data, through which the data generators will make their data available to the data 
consumers. We’ll learn how to use the contract and its schema to dynamically provision and manage 
those resources, keeping them in sync with the data contract.

This BigQuery table is the first of our contract-driven resources. To create it, we’ll need to convert our 
data contract to a custom JSON format that defines a BigQuery table and its schema (https://
cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableSchema), 
as highlighted in the following diagram:

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableSchema
https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableSchema
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Figure 8.2 – Using the data contract to define and create a BigQuery table

We’ll also need a way to send that JSON to the Google Cloud APIs, which will then create the table. 
To do that, we are going to make use of an IaC tool, so we’ll introduce that first before showing how 
we can use it to provision these resources.

In the following subsections, we’re going to cover the following topics:

• Introducing IaC

• Creating the interfaces from the data contract

Introducing IaC

IaC tools enable us to provision and manage resources through code. The result of running that code 
defines the desired state, and these tools provision and configure the infrastructure accordingly.
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There are several benefits to IaC, including the flexibility to describe complex infrastructure in a 
consistent and well-documented format. It promotes reusability and testability, and the code is typically 
stored using a version control system such as Git. Popular IaC tools include Terraform (https://
www.terraform.io) and Ansible (https://www.ansible.com).

Much like a data contract, there are many languages you can use to define your infrastructure as 
code, including definition languages such as JSON and YAML and programming languages such as 
TypeScript and Python.

For this example, we’ll be using Pulumi (https://www.pulumi.com) as our IaC tool. Pulumi 
allows us to define our infrastructure using programming languages such as Python, which makes it 
flexible and enables the integration of IaC into other workflows:

1. To illustrate this, the following Python code snippet from pulumi_introduction/__
main__.py shows how to create a BigQuery dataset and table using Pulumi:

import pulumi
from pulumi_gcp import bigquery

default_dataset = bigquery.Dataset(
    "defaultDataset",
    dataset_id="pulumi_introduction",
    friendly_name="Pulumi Introduction",
    description="This is an example description",
)
default_table = bigquery.Table(
    "defaultTable",
    dataset_id=default_dataset.dataset_id,
    table_id="my_table",
    deletion_protection=False,
    schema="""[
  {
    "name": "id",
    "type": "STRING",
    "mode": "REQUIRED",
    "description": "The ID"
  },
  {
    "name": "state",
    "type": "STRING",
    "description": "State where the head office is located"
  }
]
""")

https://www.terraform.io
https://www.terraform.io
https://www.ansible.com
https://www.pulumi.com
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2. To run this, you first need to edit Pulumi.introduction.yaml and set the Google 
Cloud project you are using by changing the following highlighted configuration parameter:

config:
  gcp:project: my-google-project-2468

3. Next, we need to tell Pulumi where to store state. It compares this state against the infrastructure, 
so it knows what changes to make. Pulumi supports a few different backends in which it will 
store the state, including cloud storage services such as AWS S3 and Google Cloud Storage, as 
well as the Pulumi cloud. See https://www.pulumi.com/docs/intro/concepts/
state/ for more details.

4. To keep things simple, we’ll store state on our local filesystem. Run the following command to 
log in to Pulumi with local state:

$ pulumi login --local
Logged in to AC1234 as andrewjones (file://~)

5. Now let’s ask Pulumi to create the BigQuery dataset and table by running the following from 
the pulumi_introduction directory:

$ pulumi up

You’ll be prompted to enter a new stack name. A stack is an isolated instance of a Pulumi 
program. More details on stacks can be found at https://www.pulumi.com/docs/
intro/concepts/stack/.

6. Enter introduction at the prompt and hit Enter. You will be asked for a passphrase and 
after entering one, you’ll see the following output:

Previewing update (introduction):
     Type                     Name                         Plan 
       Info
+   pulumi:pulumi:Stack      data-contracts-introduction  create
+   ├─ gcp:bigquery:Dataset  defaultDataset               create
+   └─ gcp:bigquery:Table    defaultTable                 create

Do you want to perform this update?  [Use arrows to move, type 
to filter]
  yes
> no
  details

Pulumi has now run our Python code and found the BigQuery dataset and table resources we 
defined. It has queried the Google Cloud APIs and found they do not already exist, and so is 
telling us that it intends to create them, along with the stack as it’s our first time running against 

https://www.pulumi.com/docs/intro/concepts/state/
https://www.pulumi.com/docs/intro/concepts/state/
https://www.pulumi.com/docs/intro/concepts/stack/
https://www.pulumi.com/docs/intro/concepts/stack/
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it. You can see more details on the resources we’re provisioning by selecting details, which 
will show the properties we have defined.

7. Let’s go ahead and create these resources by choosing yes from the prompt. You’ll see the 
following output:

Do you want to perform this update? yes
Updating (introduction):
     Type                     Name                          
Status
     pulumi:pulumi:Stack      data-contracts-introduction
+   ├─ 
gcp:bigquery:Dataset  defaultDataset               created 
(0.98s)
+   └─ 
gcp:bigquery:Table    defaultTable                 created 
(0.83s)

Resources:
    + 3 created

Well done, you’ve provisioned some resources using Pulumi!

8. Let’s confirm by looking at the Google Cloud console. Open your web browser and go to 
https://console.cloud.google.com/bigquery. Log in and, if needed, select the 
correct project from the dropdown. You’ll then see the following screen, showing the dataset 
on the left (pulumi_introduction) and the table (my_table), with the correct schema 
applied to the table:

Figure 8.3 – The Google Cloud console showing the BigQuery resources we provisioned with Pulumi

That concludes our introduction to Pulumi. We have successfully defined our infrastructure 
as code. We ran that code with Pulumi, which provisioned the resources as we defined them.

https://console.cloud.google.com/bigquery
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9. We no longer need these resources, so let’s remove them by running pulumi destroy, 
choosing yes when asked whether we want to destroy these resources:

$ pulumi destroy
Previewing destroy (introduction):
     Type                     Name                         Plan
-   pulumi:pulumi:Stack      data-contracts-introduction  delete
-   ├─ gcp:bigquery:Table    defaultTable                 delete
-   └─ gcp:bigquery:Dataset  defaultDataset               delete

Resources:
    - 3 to delete

Do you want to perform this destroy? yes
Destroying (introduction):
     Type                     Name                          
Status
-   pulumi:pulumi:Stack      data-contracts-
introduction  deleted
-   ├─ 
gcp:bigquery:Table    defaultTable                 deleted 
(0.77s)
-   └─ 
gcp:bigquery:Dataset  defaultDataset               deleted 
(0.42s)

Resources:
    - 3 deleted

Let’s look now at how we can use Pulumi to create the interfaces to our data from the data contract.

Creating the interfaces from the data contract
We now have a way to define a data contract, through our custom YAML definition, and an infrastructure 
as code tool to programmatically define and manage infrastructure via Pulumi. Let’s combine them 
to create an interface for our data.

In this example, we’ll be creating a Google BigQuery table to act as the interface. BigQuery is a popular 
data warehouse, and data contracts are often used to populate and manage data in a data warehouse 
to make it available to data consumers, including BI analysts and data scientists.

For this section, we’ll be using the Pulumi application defined in the pulumi directory. As before, 
we need to set the Google Cloud project to the one we’ll using by changing the following highlighted 
configuration parameter in Pulumi.contracts.yaml:

config:
  gcp:project: my-google-project-2468
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As we discussed in Chapter 6, What Makes Up a Data Contract, one of the benefits of data contracts 
is the ability to convert the contract into different formats, depending on what we want to integrate 
with. If we capture the right metadata in the contract, we can integrate with any system we like.

To illustrate that point, we’ll be doing the following:

• Creating a BigQuery schema from our data contract

• Using Pulumi to create and manage our BigQuery table

Creating a BigQuery schema from our data contract

As we saw in our Pulumi introduction earlier, BigQuery schemas are defined through a custom JSON 
document. All we need to do is generate that JSON from the data contract.

We’ve created a DataContract class to hold our data-contract-related code, which you can find 
in lib/data_contracts.py. The relevant code for this example is shown in the following 
code snippet, and simply converts our YAML-based data contract into the custom JSON used to 
define a BigQuery schema by iterating over the fields items in our contract and extracting the 
required metadata:

bq_schema = []
for name, metadata in self.fields().items():
    schema = {
        'name': name,
        'type': metadata['type'].upper(),
        'description': metadata['description']
    }
    if 'required' in metadata and metadata['required'] is True:
        schema['mode'] = 'REQUIRED'
    bq_schema.append(schema)

return json.dumps(bq_schema, indent=2)

We'll use the output of this code in the next step, where we'll create our data contracts-backed 
BigQuery table.

Using Pulumi to create and manage our BigQuery table

Now we have the schema represented in the BigQuery JSON specification, we can call this from 
Pulumi to define the BigQuery table resources, as shown in the following code snippet from  
Pulumi/__main__.py:

data_contract = DataContract("../contracts/Customer.yaml")
customer_table = bigquery.Table("customerTable",
    dataset_id=dataset.dataset_id,
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    table_id=data_contract.name(),
    deletion_protection=False,
    schema=data_contract.bigquery_schema())

Let’s run this through Pulumi by running pulumi up in the pulumi directory. You’ll be asked 
whether you want to use our existing introduction stack or create a new one. Since this is a new 
Pulumi application, create a new stack called contracts and enter a new passphrase for it. Pulumi 
will then show you the resources it plans to provision:

$ pulumi up
Previewing update (contracts):
     Type                     Name                      Plan
+   pulumi:pulumi:Stack      data-contracts-contracts  create
+   ├─ gcp:bigquery:Dataset  dataProductsDataset       create
+   └─ gcp:bigquery:Table    customerTable             create

Resources:
    + 3 to create

You can choose details from the prompt to see the schema definition Pulumi will use for the table, 
represented in BigQuery’s JSON format, as follows:

schema            : (json) [
    [0]: {
        description: "The unique identifier for the customer."
        mode       : "REQUIRED"
        name       : "id"
        type       : "STRING"
    }
    [1]: {
        description: "The name of the customer."
        mode       : "REQUIRED"
        name       : "name"
        type       : "STRING"
    }
    [2]: {
        description: "The email address of the customer."
        mode       : "REQUIRED"
        name       : "email"
        type       : "STRING"
    }
    [3]: {
        description: "The language preference of the customer."
        name       : "language"
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        type       : "STRING"
    }
]

That looks as expected! So, choose yes from the prompt to provision the resources. When Pulumi 
has finished, open your web browser and go to https://console.cloud.google.com/
bigquery. You’ll then see the following screen, showing the dataset on the left (data_products) 
and the table (Customers), with the contract-driven schema applied to the table:

Figure 8.4 – The Google Cloud console showing the BigQuery resources we 

provisioned from the data contract definition, through Pulumi

That was easy! With just a few lines of code, we’re able to create a BigQuery table from our data 
contract. Feel free to play around and see what happens as you make changes to the data contract, 
maybe by adding a new field. Run pulumi up again and see how it keeps the table’s schema in sync 
with the data contract. When you are finished with this example, you can remove the resources with 
pulumi destroy.

This example illustrates how powerful it is to create and manage resources driven by the data contract, 
and how easy it is to do so. We can apply this pattern to any kind of resource, including alternative 
data warehouses such as Snowflake and Amazon Redshift.

We can also supply different interfaces to the data, including for streaming use cases. For example, 
we could use Pulumi to create a Google Cloud Pub/Sub topic to act as a contract-driven interface for 
streaming data and apply a schema to that topic by converting our data contract to Avro or Protocol 
Buffers (https://cloud.google.com/pubsub/docs/schemas).

Refer to Chapter 7, A Contract-Driven Data Architecture, for more examples based on this 
architecture pattern.

https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery
https://cloud.google.com/pubsub/docs/schemas
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Now we’ve created a BigQuery table to act as an interface for the data, we want to make it easy for 
the data generators to write the data to that table. Let’s see how we can generate libraries for them, 
using the data contract.

Creating libraries for data generators
As well as making it easy for data generators to provision and manage resources, we can also make it 
easy for them to generate and publish their data to those resources. One way to do that is to supply 
some client libraries. These can help with data conversion, perform validation checks, or perform 
custom logic that helps ensure data generated by different services is consistent.

These client libraries are also useful to the consumers of the data, helping with the deserialization of 
data or the deduction of any custom logic.

You could decide to implement these libraries yourself, using the raw data contract as the input. 
Alternatively, you can convert the data contract into an open source format and use the existing ecosystem.

That’s what we’ll be doing. In this section, we’ll convert our data contract to JSON Schema (https://
json-schema.org) and learn how to use existing libraries to validate our data, as highlighted in 
the following diagram:

Figure 8.5 – Converting the data contract to JSON Schema to create libraries for data generators

https://json-schema.org
https://json-schema.org
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We’ll start by writing the code to generate a JSON Schema from our data contract. This is easy to 
do, with some code that iterates over the fields items from our contract and extracts the required 
metadata. The relevant code from lib/data_contracts.py is shown in the following snippet:

properties = {}
required = []
for name, metadata in self.fields().items():
    properties[name] = {
        'description': metadata['description'],
        'type': metadata['type']
    }
    if 'enum' in metadata:
        properties[name]['enum'] = metadata['enum']
    if 'pattern' in metadata:
        properties[name]['pattern'] = metadata['pattern']

    if 'required' in metadata and metadata['required'] is True:
        required.append(name)

schema = {
    "$schema": "https://json-schema.org/draft/2020-12/schema",
    "title": self.name(),
    "description": self.contract['description'],
    "type": "object",
    "properties": properties,
    "required": required
}
return schema

You can use this code to generate a full JSON Schema representation of our data contract by running 
the following script from the Chapter08 directory:

$ ./generate-json-schema.py
Written JSON Schema of `Customer` data contract to `customer.schema.
json`

The full JSON Schema is written to customer.schema.json, and a snippet of that schema follows:

{
  "title": "Customer",
  "description": "A customer of our e-commerce 
website.",  "properties": {
    "id": {
      "description": "The unique identifier for the customer.",
      "type": "string"
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    },
    "email": {
      "description": "The email address of the customer.",
      "type": "string",
      "pattern": "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$"
    },
  },
  "required": ["id", "name", "email"]
}

As a popular open format, we can use this JSON Schema in a wide variety of applications and use 
various open source libraries, as listed at https://json-schema.org/implementations. 
One of those libraries is the Python jsonschema library (https://pypi.org/project/
jsonschema/), which can be used to validate data against a JSON Schema in just one line of code, 
as shown in the following code snippet from validate-data.py:

validate(event, data_contract.json_schema())

In validate-data.py we have created several example events to show this validation in action 
and run them through the validate function from jsonschema. Run it as follows and see the 
output, a sample of which is shown in the following code block:

$ ./validate-data.py
Successfully validated event {'id': 'DC12', 'name': 'Andrew', 'email': 
'andrew@data-contracts.com', 'language': 'en'}
Successfully validated event {'id': 'DC13', 'name': 'Deborah', 
'email': 'deborah@data-contracts.com'}
Error validating event {'id': 'DC14', 'name': 'Bukayo', 'language': 
'en'}
'email' is a required property
Error validating event {'id': 'DC15', 'name': 'Bukayo', 'email': 
'bukayo', 'language': 'en'}
'bukayo' does not match '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]
{2,}$'
Error validating event {'id': 'DC16', 'name': 'Vivianne', 'email': 
'vivianne@data-contracts.com', 'language': 'nl'}
'nl' is not one of ['en', 'fr', 'es']

By converting our data contract to an existing open format, we have quickly been able to produce a 
client library that data generators can use to perform validation on their data, both when developing 
their applications and in production. They can then act on this result, for example, by raising an alert 
for them to investigate, preventing this data from affecting downstream users.

To do this, we need to make the data contracts, or a representation of the contracts, available to code 
in various places. Let’s look next at how a schema registry can help with that.

https://json-schema.org/implementations
https://pypi.org/project/jsonschema/
https://pypi.org/project/jsonschema/
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Populating a central schema registry
We’ve just seen how, by having our schemas accessible to our code, we can make use of a variety of 
libraries to ease the generation and consumption of data. That relies on having easy access to those 
schemas, wherever you need them. In this section, we’ll learn how to populate a schema registry from 
our data contract, making our schemas available to any service or code, at any time.

Again, we’ll be converting our data contract to JSON Schema, then using that to populate the schema 
registry, as highlighted in the following diagram:

Figure 8.6 – Converting the data contract to JSON Schema to populate a schema registry

We discussed schema registries and their benefits in Chapter 6, What Makes Up a Data Contract, 
under the Using a schema registry as the source of truth section. One of the benefits we mentioned is 
that they act as a central store for the schemas, so any application can access them. They also act as a 
source of truth, so when one application refers to version 1 of our Customer schema, that needs to 
be the same schema as the next application that refers to it.

Many schema registries also support schema evolution. They allow the storing of many versions of 
a particular schema and perform compatibility checks when we try to register a new version of that 
schema. We’ll also look at how those checks work in practice.
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In this section, we’re going to cover the following topics:

• Registering a schema with the Confluent schema registry

• Managing schema evolution

While in this section we are focusing on the capabilities a schema registry provides, this is also a 
good example of integrating data contracts with central services. Other central services such as data 
catalogs, privacy systems, and BI tools can be populated from a data contract in much the same way, 
particularly if they support open standards such as JSON Schema.

Registering a schema with the Confluent schema registry

Let’s start by looking at how to register a schema with a schema registry, using the data contract as 
the source of that schema. There are many implementations of a schema registry. For this example, 
we’ll be using the Confluent schema registry (https://docs.confluent.io/platform/
current/schema-registry/), as it is one of the few that has native support for JSON Schema, 
including schema evolution:

1. We’ll be using Docker to run the schema registry on our local machines, along with its 
dependencies (Apache Kafka and Apache ZooKeeper). To start the schema registry, run the 
following from the Chapter08/schema_registry/ directory:

$ docker-compose up

2. It may take a few minutes to start up. We can confirm the registry is available by running the 
following in a different terminal window, which lists the schema types supported by the schema 
registry, and should include JSON, confirming JSON Schema support:

$ curl http://localhost:8081/schemas/types
["JSON","PROTOBUF","AVRO"]

3. Let’s upload our JSON Schema representation of the data contract to the schema registry. We’re 
using the Confluent Python libraries to do this in just a few lines of code. Run the script with 
the following command:

$ ./create-schema.py
Registered schema `Customer` with ID of 1

Our schema is now registered in the schema registry!

4. Every schema has a unique ID, which we can use to fetch the schema by calling the following API:

$ curl http://localhost:8081/schemas/ids/1/schema
{"$schema":"https://json-schema.org/draft/2020-12/
schema","title":"Customer","description":"A customer of ...

https://docs.confluent.io/platform/current/schema-registry/
https://docs.confluent.io/platform/current/schema-registry/
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5. We may not always know the ID of the schema we want. Most often, we will want to retrieve a 
schema based on the name of it (or subject, as the Confluent schema registry calls them). We 
can find the subjects known to the schema registry by calling the following API:

$ curl http://localhost:8081/subjects
["Customer"]

6. The schema registry has support for storing many versions of a schema. We can see how many 
versions are registered for a subject as follows:

$ curl http://localhost:8081/subjects/Customer/versions
[1]

7. For now, we only have one version of our Customer schema. Given the name of the subject 
and the version number, we can now get the schema we want without using the ID by calling 
the following API:

$ curl http://localhost:8081/subjects/Customer/versions/1/schema
{"$schema":"https://json-schema.org/draft/2020-12/
schema","title":"Customer","description":"A customer of ...

8. Or, if we only care about fetching the latest schema, we can use the latest instead of the version 
number, as follows:

$ curl http://localhost:8081/subjects/Customer/versions/latest/
schema
{"$schema":"https://json-schema.org/draft/2020-12/
schema","title":"Customer","description":"A customer of ...

The support for multiple versions of a schema allows us to manage the evolution of those schemas. 
Let’s see why that is important and how to make use of these features next.

Managing schema evolution

As we discussed in Chapter 6, What Makes Up a Data Contract, under the Evolving your data over time 
section, our data contracts need to evolve over time to support the evolution of our organization’s data.

The Confluent schema registry helps us manage this evolution by storing the history of all the versions 
we’ve had for a schema and by providing APIs that let us test the compatibility of a schema against 
those earlier versions:

1. Let’s start by adding a new optional field to our Customer schema. This is a non-breaking 
change. By this, we mean the change can be implemented by the generators without affecting 
any existing consumers. The generators can start populating the field, and existing consumers 
who are using the earlier version simply ignore that field.



A Sample Implementation134

2. In contracts/Customer-v2.yaml, we’ve added a new optional country field to 
the schema. No other changes to the contract have been made. We can see the difference by 
running the following command:

$ diff -u contracts/Customer.yaml contracts/Customer-v2.yaml
--- ../contracts/Customer.yaml    2023-04-25 17:40:18
+++ ../contracts/Customer-v2.yaml    2023-05-02 17:26:51
@@ -24,3 +24,6 @@
     type: string
     description: The language preference of the customer.
     enum: [en, fr, es]
+  country:
+    type: string
+    description: The country the customer resides in.

3. Let’s register this schema as an updated version in our schema registry. From the schema_
registry directory, run the following script, which is identical to the one we used to create 
the schema, except using Customer-v2.yaml as the source:

$ ./update-schema-v2.py
Updated schema `Customer` with ID of 2

4. Once again, we have a unique ID for this schema, which can be used to retrieve it. We can also 
run the following command to see that the schema registry has saved this as an updated version:

$ curl http://localhost:8081/subjects/Customer/versions
[1,2]

5. The schema registry also stores this as the latest version of the schema, so it can be retrieved 
as follows:

$ curl http://localhost:8081/subjects/Customer/versions/latest/
schema
{"$schema":"https://json-schema.org/draft/2020-12/
schema","title":"Customer","description":"A customer of ...

So, we now have an updated version of the schema. As a non-breaking change that doesn’t 
affect existing consumers, we were able to introduce this change with low friction. We may not 
even need to notify our consumers, and they can continue using the earlier version until they 
need access to that new field.

6. Now let’s look at how the schema registry can help us manage breaking changes. In contracts/
Customer-v3-incompatible.yaml, we have removed the email field, as shown by 
running the following command:

$ diff -u contracts/Customer-v2.yaml contracts/Customer-v3-
incompatible.yaml
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--- contracts/Customer-v2.yaml    2023-05-08 15:22:45
+++ contracts/Customer-v3-incompatible.yaml    2023-05-08 
15:22:51
@@ -12,12 +12,6 @@
     description: The name of the customer.
     required: true
     anonymization_strategy: hex
-  email:
-    type: string
-    description: The email address of the customer.
-    pattern: "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]
{2,}$"
-    required: true
-    anonymization_strategy: email
   language:
     type: string
     description: The language preference of the customer.

Any consumer using this field would be affected instantly by this change if it were to be made 
without them first updating their code or reports. Depending on the data and its importance 
to the organization, that impact could be wide-ranging and affect many consumers. It could 
potentially affect business-critical applications that serve our customers and perhaps directly 
affect our revenue.

When we register this schema as an updated version of our Customer subject, the schema 
registry will first run some checks to ensure the schema is compatible with the earlier versions. 
If it fails these checks, the schema will not be registered, and an error will be returned.

7. Let’s see this in action by running the update-schema-v3-incompatible.py script. 
This script is the same as the others except using the Customer-v3-incompatible.
yaml contract as the source. The output of that script follows:

$ ./update-schema-v3-incompatible.py
confluent_kafka.schema_registry.error.SchemaRegistryError: 
Schema being registered is incompatible with an earlier schema 
for subject "Customer", details: [Found incompatible change: 
Difference{jsonPath='#/properties/email', type=PROPERTY_ADDED_
TO_OPEN_CONTENT_MODEL}] (HTTP status code 409, SR code 409)

These compatibility checking features provided by the schema registry can be used to prevent 
these changes from being deployed to production and affecting consumers of our data contract, 
for example, as a continuous integration check.

As we discussed in Chapter 4, Bringing Data Consumers and Generators Closer Together, under 
the Managing the evolution of data section, when making breaking changes like this, we need 
to first discuss a migration plan with our data consumers. Often, that will include publishing 
the data side by side for a period while the consumers update their code and reports, so we 
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will want both versions of the schema in the schema registry. While this does add friction, 
this is intentional. It’s the trade-off we are choosing to make where we promote stability over 
ease of change.

The Confluent schema registry doesn’t have support for publishing a new line of versions against 
an existing subject. So instead, we would need to register the schema as a new subject and use 
a naming convention, so we know it is an updated version of the same event.

For example, we could have registered our first Customer schema as Customer.v1, with 
the major version as part of the subject name. Each of our compatible versions could then be 
referenced as minor versions of that contract. In our case, we would have v1.1 and v1.2. The 
version that introduced the breaking change would then be a new subject named Customer.
v2, a version v2.1 of that contract.

With this strategy, our data contracts follow semantic versioning (https://semver.
org), a versioning scheme widely adopted in software development with clear rules around the 
meaning of a major and a minor change. (Although we aren’t using patch numbers here, if we 
wanted to, we could use them to track changes such as documentation and other non-schema 
updates. Otherwise, we don’t really need them.)

That completes our look at how to use a schema registry with data contracts, and how they make 
the schemas accessible through a rich API. We’ve also seen how we can use the schema registry 
to store many versions of a contract, and how we can use compatibility checks implemented 
in the schema registry to manage schema evolution.

8. We no longer need our schema registry, so we can remove the resources by running the 
following command:

$ docker-compose down

The schema registry helps our data generators and data consumers by managing our schemas and 
making them accessible. But from the contract itself, there’s even more we can build. Next, we’ll be 
looking at how we can implement this contract-driven tooling.

Implementing contract-driven tooling
The final part of our sample implementation looks at how we can easily implement tooling driven by 
the data contract, using the example of a data anonymization service.

As we discussed in Chapter 7, A Contract-Driven Data Architecture, one of the key benefits of data 
contracts is that we can use the metadata we capture to build generic data tooling. These tools don’t 
know or care about the data itself or how it is structured. If it knows enough about the data, it can 
take the right action.

As the data contract itself is machine-readable, and we’re writing custom code, we can use it directly 
from this service, as highlighted in the following diagram:

https://semver.org
https://semver.org
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Figure 8.7 – Using the data contract directly to implement an anonymization service

As with all the examples shown in this chapter, the code is simple. The following code from anonymize.
py shows a simple anonymization function driven by the contract:

def anonymize(event: dict, data_contract: DataContract):
    anonymized = event.copy()
    for name, metadata in data_contract.fields().items():
        if 'anonymization_strategy' in metadata:
            if metadata['anonymization_strategy'] == 'email':
                anonymized[name] = f"anonymized+{event['id']}@data-
contracts.com"
            if metadata['anonymization_strategy'] == 'hex':
                anonymized[name] = event[name].encode("utf-8").hex()

    return anonymized
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This code will work on any data contract and anonymize the data according to the rules in that data 
contract. It can be executed as follows:

$ ./anonymize.py
Anonymizing: {'id': 'DC12', 'name': 'Andrew', 'email': 'andrew@
data-contracts.com', 'language': 'en'}
{'id': 'DC12', 'name': '416e64726577', 'email': 'anonymized+DC12@data-
contracts.com', 'language': 'en'}
Anonymizing: {'id': 'DC13', 'name': 'Deborah', 'email': 
'deborah@data-contracts.com'}
{'id': 'DC13', 'name': '4465626f726168', 'email': 'anonymized+DC13@
data-contracts.com'}
Anonymizing: {'id': 'DC14', 'name': 'Bukayo', 'email': 'bukayo@
data-contracts.com', 'language': 'en'}
{'id': 'DC14', 'name': '42756b61796f', 'email': 'anonymized+DC14@data-
contracts.com', 'language': 'en'}

While this is a simple example, it does illustrate the ease with which such tools can be built and applied 
to all data that is managed with a data contract. It really is possible to build any data tooling in the 
same way, including the following:

• Implementing data quality checks

• Automating data access controls

• Collecting and reporting on service-level agreements (SLAs)

• Sending the data on to other systems or third parties

• Taking regular backups of the data

And by providing this tooling for data generators, they can focus on generating quality data that 
meets the needs of their consumers and not spend time implementing their own similar tooling for 
common tasks.

With this, we’ve completed our sample implementation of a data-contract-backed architecture, by 
using our data contract as a foundation to drive the following resources and services:

• A BigQuery table, acting as the interface to the data.

• Code libraries for the data generators to use, by converting our data contract to JSON Schema 
and using existing open source libraries.

• A schema registry, so the schemas are available to others. Again, we used our JSON Schema 
representation of the data contract to interact with that.

• An anonymization service, which used the data contract directly to anonymize some data.
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The following diagram shows how we built each of these just from the data contract:

Figure 8.8 – Our sample implementation of a data contract-driven architecture

Each of these is just an example of what can be built with data-contracts, through a contract-driven 
architecture. Any data tooling or integration can be built in much the same way. Feel free to take this 
sample implementation and see what else you can build!

Summary
In this chapter, we walked through a sample implementation of a data-contract-driven architecture 
and used that to illustrate the concepts we have been learning throughout the book and show them 
in action. We started by defining a contract in a custom YAML-based interface, and used that to drive 
a few different applications and services.

The first of those was a BigQuery table, which acts as the interface between the data generators and 
the consumers. We introduced an IaC tool called Pulumi and showed how it can be used to create 
and manage resources driven by the data contract.
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We then showed how, by converting our data contract to JSON Schema, an open standard, we can 
easily produce libraries to help the data generators publish data that matches the schema and passes 
the data quality checks we defined.

That same JSON Schema was then used to populate a schema registry. We showed how that allows 
the schemas to be easily accessible through its rich API and also looked at its versioning features to 
help us manage schema evolution.

Finally, we gave an example of an anonymization tool driven by the data contract to show how easy it is 
to build tools that, driven only by the data contract, can act on any data of any shape and size to perform 
its task, allowing the data generators to focus solely on generating quality data for their consumers.

Of course, this sample implementation can only illustrate the concepts and is unlikely to be something 
you can copy directly. So, in the next chapter, we’ll discuss how to implement data contracts in 
your organization.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• Implementing Data Contracts at GoCardless: https://medium.com/gocardless-tech/
implementing-data-contracts-at-gocardless-3b5c49074d13

• What is a Self-Service Infrastructure Platform? by Romaric Philogène: https://medium.
com/@rphilogene/what-is-a-self-service-infrastructure-platform-
726a8d0dc2e1

• The Pulumi Book by Christian Nunciato: https://leanpub.com/pulumi

• https://json-schema.org

• Understanding JSON Schema Compatibility by Robert Yokota: https://yokota.
blog/2021/03/29/understanding-json-schema-compatibility/

• The Many Amazing Uses of JSON Schema: Client-side Validation by Phil Sturgeon: https://
medium.com/apis-you-wont-hate/the-many-amazing-uses-of-json-
schema-client-side-validation-c78a11fbde45

• Data Contracts for Schema Registry: https://docs.confluent.io/platform/
current/schema-registry/fundamentals/data-contracts.html

• Major.Minor.Patch. An illustrated guide to semantic versioning: https://medium.com/
fiverr-engineering/major-minor-patch-a5298e2e1798

https://medium.com/gocardless-tech/implementing-data-contracts-at-gocardless-3b5c49074d13
https://medium.com/gocardless-tech/implementing-data-contracts-at-gocardless-3b5c49074d13
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1
mailto:https://medium.com/@rphilogene/what-is-a-self-service-infrastructure-platform-726a8d0dc2e1
https://leanpub.com/pulumi
https://json-schema.org
https://yokota.blog/2021/03/29/understanding-json-schema-compatibility/
https://yokota.blog/2021/03/29/understanding-json-schema-compatibility/
https://medium.com/apis-you-wont-hate/the-many-amazing-uses-of-json-schema-client-side-validation-c78a11fbde45
https://medium.com/apis-you-wont-hate/the-many-amazing-uses-of-json-schema-client-side-validation-c78a11fbde45
https://medium.com/apis-you-wont-hate/the-many-amazing-uses-of-json-schema-client-side-validation-c78a11fbde45
https://docs.confluent.io/platform/current/schema-registry/fundamentals/data-contracts.html
https://docs.confluent.io/platform/current/schema-registry/fundamentals/data-contracts.html
https://medium.com/fiverr-engineering/major-minor-patch-a5298e2e1798
https://medium.com/fiverr-engineering/major-minor-patch-a5298e2e1798
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Implementing Data Contracts 

in Your Organization

In this chapter, we’ll look at how to implement data contracts in your organization. We’ll discuss 
how to get started with your implementation by identifying a strong use case and using it to prove 
the concept. We’ll also look at the minimal data contract implementation you need to support that 
proof of concept.

Next, we’ll build on that and discuss how to migrate the rest of your datasets to data contracts and 
consider a couple of approaches to doing that. That will lead to more data contracts being created. 
And that, with the increased distribution of ownership, means we’ll need to provide some services 
to help with the discovery of data contracts, so we’ll look at what those services are and why they are 
needed. Finally, we’ll look at what is required to build a mature data contracts-backed data culture.

As with any introduction of a new approach and architecture to an organization, it can feel daunting, 
but by the end of this chapter, you’ll have everything you need to start your journey and progress 
toward building a truly data-driven organization, backed by data contracts.

In this chapter, we’re going to cover the following main topics:

• Getting started with data contracts

• Migrating to data contracts

• Discovering data contracts

• Building a mature data contracts-backed data culture

Getting started with data contracts
In this section, we’re going to look at exactly how to get started with implementing data contracts in 
your organization. We’ll learn how to identify a use case, prove the concept, and build the minimum 
required tooling.
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The first step is to decide on your key objective(s) for implementing data contracts in your organization. 
What are the problems you want to solve first, and why are they important to the business?

This could be improving the dependability and performance of your data pipelines, maybe because you 
are seeing that users are losing trust in the data they are being provided and lack confidence in using it 
to support their decision-making. Or, it could be you want to make your data more accessible and easier 
to use in business-critical applications, including machine learning applications, as the development 
and successful deployment of those applications form an important part of the business goals.

Whatever it is, you need to be clear on your objectives and the problems you want to solve. To start 
with, you probably want to focus on one or two of these objectives, while keeping in mind a vision 
for where your organization will be once data contracts have been successfully adopted and the data 
culture has changed with it.

The next step is to find a use case where deploying data contracts will help with that objective. This will 
be our proof of concept (POC) where, through data contracts, we’ll be delivering some value while 
laying the foundations with our tooling to support further adoption. As well as being a relevant use 
case, it also needs the right people and resources available to support the POC. This will include the 
data generators, who will take on the responsibility for the data and make changes to produce data 
that aligns with the contract, and the data consumers, who know what data they need and the value 
they can create with that data.

With that in place, we can already start having conversations about the data contracts. The data consumers 
can start defining what they need, where the interface should be, and the expected requirements. 
Notice how we're already starting to bring the data generators and data consumers together! See 
Chapter 4, Bringing Data Consumers and Generators Closer Together, for more information on why 
this is important and how to approach it.

Now we can start thinking about the data contract tooling we need to support this use case. When 
designing this tooling, we need to ensure it will support the decentralization and assignment of 
ownership goals of data contracts, as we discussed in Chapter 2, Introducing Data Contracts. Data 
generators must be able to self-serve the tooling, so we’re not building in new bottlenecks or reducing 
their autonomy.

It’s best to get the data generators involved with the design of the tooling. This could include those 
working on the POC and other interested parties around the organization. As well as likely leading 
to a better outcome, this gives them a sense of ownership over the project and its outcomes. Once the 
POC has been successfully delivered, these early stakeholders become cheerleaders for data contracts 
as you roll them out across the business.

We should aim to build the minimum viable product (MVP) required to support the POC and deliver 
it as quickly as possible. We will deliver the minimum functionality we can with regular deliverables 
to the users, taking their feedback and iterating on it further. Just as with our data products, we will 
apply a product mindset to the data contracts-backed platform we are creating. We may change our 
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scope of minimum and viable for these deliverables, but it’s still a product and still needs to be of the 
right quality.

There are three parts of this tooling we need in place for any minimal data contract implementation:

• The ability to define a data contract

• The ability to provision an interface for the data for consumers to query

• The ability for generators to write data to that interface

Let’s look at each of these in turn in the following sections.

The ability to define a data contract

In this section, we’re going to look at how to define data contracts, where to store them, and what to 
capture in them, and consider how best to make those decisions.

As we discussed in Chapter 6, What Makes Up a Data Contract, we have a few options when deciding 
how and where to define a data contract. When deciding which to use for your organization, it’s likely 
best to choose one that is already well-established and familiar to the data generators.

For example, at GoCardless we define our data contracts in Jsonnet (https://jsonnet.org). 
That’s because Jsonnet was already widely used by our engineering teams, as it’s how they provision 
resources and deploy services through our infrastructure platform. There’s nothing that makes Jsonnet 
a better choice for data contracts than anything else, but it was the obvious choice for us and meant 
the data generators didn’t have to learn how to use a new definition language, and we didn’t have to 
implement any new tooling to support that language.

If you don’t have any existing tooling that you can build on or align with, then the best option is 
probably YAML, as we used in Chapter 8, A Sample Implementation. It’s widely popular, so many 
users will be familiar with it, and it’s both human- and machine-readable, so we can easily build on 
it as we develop our tooling.

Once we have decided how to define data contracts, we next need to decide where to store them.

Again, the best place is probably where your data generators already are, or somewhere they would 
most expect them to be, given what is already available in your organization. For us at GoCardless, 
that was in the central repository that contained the infrastructure code. It also allowed us to build 
on all that existing tooling and was by far the quickest way to build our MVP.

If you don’t have something to build on, then you have a few options. You could create a code repository 
to hold the data contracts and build your tooling on that. Or you could allow data contracts to be 
defined alongside the data generators’ code, in their existing repositories. This has the benefit of 
reinforcing the decentralization and ownership goals, as well as making it easier for data generators 
to use the contracts in their tests and through their continuous integration systems. However, the 
implementation can be a lot more difficult, so that’s a trade-off you’ll need to make.

https://jsonnet.org
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Now we’ve decided how and where to define a data contract, we finally need to consider what we 
want to capture in that contract. As we discussed in Chapter 7, A Contract-Driven Data Architecture, 
metadata allows us to provision resources to deploy tooling that supports data. It can also drive our 
data governance implementation, as discussed in Chapter 5, Embedding Data Governance.

This is where you need to balance the need to produce an MVP quickly with your vision for data contracts 
in the future. To support this POC, you may only need the following defined in your data contract:

• The name of the data contract

• The owner

• The schema, including fields and their types

• The interface where the data will be written to by the data generators and consumed from by 
the data consumers

However, we know we will want to support the evolution of data contracts, so we should have a 
version number captured there. We may also have a good idea of how we want to support our data 
governance implementation, so we could already enforce the categorization of data, for example, 
whether it contains personal data and/or whether that data is personally identifiable.

Even if you’re not planning to build data governance tooling anytime soon, it could still be worthwhile 
having this categorization as a requirement from the start. It will prevent you from going back to the 
data generators later and asking them to categorize the data, which is always a difficult ask when they 
have moved on from the project.

Bringing all this together, you might have a data contract defined as something like the following example:

name: Customer
description: A customer of our e-commerce website.
owner: product-team@data-contracts.com
version: 1
warehouse_path: app.customers
fields:
    name:
        type: string
        description: The name of the customer.
        personal_data: true
        anonymization_strategy: hex
    email:
        type: string
        description: The email address of the customer.
        personal_data: true
        anonymization_strategy: email
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But of course, you can’t expect all the decisions you make now to be perfect! Even if they are the best 
decisions you can make now, things change both internally within your organization and externally, 
with regulations and other requirements. That’s why the data contract definition itself must be versioned.

For example, in our Jsonnet definition at GoCardless, our data contracts version is part of the function 
call to create a new one, as shown in the following code snippet:

datacontracts.v1.new({...})

If you’re using YAML or similar, you could put the version number in the path of the file, in the name 
of the code repository, or wherever else makes the most sense for you. But it must allow you to make 
a breaking change to the contract definition without needing to migrate all data contracts and their 
data at the same time, as that would be very time-consuming and highly risky.

By having the data contract definition itself versioned, we’re giving ourselves options in the future to 
make large changes. If we did so, it would still require a migration plan and we’d still have to work 
with our data generators and/or consumers. We’ll avoid this work if we can, but if not, it’s achievable.

The importance of versioning
Versioning has come up a lot in this book! We’ve spoken about how important it is to version 
the data contract and the interface (for example, the table in the data warehouse) provided 
through it. We do that to ensure stability. We prevent any breaking changes from being made 
to that version of the interface. When a breaking change does need to be made, a new version is 
created, with a planned migration to that new version (as discussed in Chapter 6, What Makes 
Up a Data Contract, in the Evolving your data over time section).

Now we’ve discussed how the data contract definition itself must also be versioned, and 
the reasons are the same! We want the definition to be stable so our users can build on data 
contracts with confidence, without a breaking change to that definition affecting their data or 
their consumers. But we also need the ability to evolve that definition, and when we do, we’ll 
perform a planned migration to that new version.

That just shows how important this is as a concept, and how any kind of interface being provided 
to users should be versioned.

Now we can define data contracts, have somewhere to store them, and decide what they should contain, 
let’s look next and how to use them to create an interface for the data.

The ability to provision an interface for the data for consumers to 
query

Let’s look now at how to provide the interface data consumers will query, using the data contract 
definition we decided on in the previous section.
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Typically, this interface will be a table in a data warehouse or lakehouse, such as Snowflake or Google 
BigQuery, but it could also be a topic on an event streaming platform such as Apache Kafka or Google 
Pub/Sub. For this MVP, we want to avoid bringing in new platforms of that complexity, so it’s likely 
best to use whatever we already have in place.

As we discussed in Chapter 7, A Contract-Driven Data Architecture, we’ll be using the data contract to 
provision the interface. The tooling we build will use the schema defined in the contract to configure 
the schema for the interface and keep them aligned as the data contract evolves.

We want to allow for flexibility in these schemas. We don’t want to tell generators they must structure 
their data in a certain way. Instead, we want them to have the autonomy to decide how best to structure 
the data, so it meets the requirements of the data consumers.

Data generators must have the ability to self-serve the deployment of this interface. We shouldn’t introduce 
a bottleneck on a central team performing the deployment, or even approving it. We trust our data 
generators to provision the right interface, with the right schema, through the right data contract. The 
tooling we have in place should prevent any human errors from negatively affecting that deployment.

We may also provide various options for configuring the interface, but this could be something we can 
cut from the scope of the MVP if it’s not essential for the POC. For example, we may like to optimize 
the provision of access controls. But for now, we can configure that outside of the data contract, 
through whatever existing method you use to configure your resources.

With the interface provisioned through the data contract, let’s finally look at how data generators 
write to the interface.

The ability of generators to write data to the interface

The final part of the tooling we’ll need to support the POC gives the data generators the ability to 
write data to the interface we provisioned in the previous section.

The easiest way to do this is to write directly to that interface, and if that works for your use case then 
that is likely what you should do. If you’re using a popular warehouse, lakehouse, or event streaming 
platform, there will be libraries available that make it easy to write to them in whatever programming 
language your data generators are using.

However, for some use cases, there will be a bit more complexity involved.

Often, we need the data that is made for consumption to be consistent with the source system. But 
how do we guarantee that is the case when writing to two different systems: the services database and 
the data consumers’ interface?

One of the most popular methods to achieve this is the transactional outbox pattern. With this, the 
service only writes to its database directly. When it does so, as well as updating its internal models, it also 
writes an event to a separate table in the database, known as the outbox. At some time later, this event 
is taken from the outbox and written to our data contracts-backed interface, ready for consumption.
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The key feature of the pattern is that these writes all happen within the same database transaction. If 
the service fails to write the record to its internal models, an event will not be written to the outbox. 
If the service fails to write to the outbox, the internal models will not be updated. This is how we 
guarantee consistency.

The following diagram shows the transactional outbox pattern in action:

Figure 9.1 – The transactional outbox pattern

If the transactional outbox pattern is already in use in your organization, this is a great method to use 
to generate events, using the existing tooling and libraries you have.

An alternative might be to build on your change data capture (CDC) service if you have one. Instead 
of having the data generators write to the interface from their service, they could maintain a small 
pipeline that uses the CDC data to populate the interface. The CDC service provides transactional 
guarantees, but the downside to this approach is software engineers have to learn how to build and 
maintain these data pipelines and update them as their internal models change. It’s better than having 
another team try to do this without their context, but we’re still relying on the internal models of the 
database for consumption, so I wouldn’t recommend this in the long term.
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This pattern is shown in the following diagram:

Figure 9.2 – Materialized views on a change data capture service, 

with those views owned by the data generators

However, if you can get away without needing this strong data consistency in the datasets for your use 
case, you can avoid a lot of complexity and improve performance. So, it is always worth questioning 
how important the transactional guarantee is for each use case you have.

We’ll cover all of this in more detail and introduce other useful patterns in Chapter 10, Data Contracts 
in Practice, in the Data contracts publishing patterns section.

We now have the three parts of the tooling we need for our MVP:

• The ability to define a data contract

• The ability to provision an interface for the data for consumers to query

• The ability for generators to write data to that interface

This tooling and how it works together is shown in the following diagram, with the data consumers 
consuming data from our interface:
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Figure 9.3 – The minimum viable data contract tooling

We now have everything in place to support the POC and prove the value of data contracts. Following 
on from the success of this, we’ll start migrating the rest of our data assets to data contracts. Let’s look 
at how to do that next.

Migrating to data contracts
Now we’ve proved the concept of data contracts and started delivering some value, let’s look at how 
to migrate the rest of our data assets to data contracts.

We’ll need to come up with a migration plan that balances the need to complete this migration in a 
reasonable amount of time, so we can decommission our legacy platform and tools, against the needs 
of product teams to deliver against their existing roadmaps and commitments.

Unfortunately, there is no perfect way to do this, and the approach you take will highly depend on 
your organization and its objectives.

One good approach is to ask your key data consumers (typically data/analytics engineers and data 
scientists) to work together and prioritize the datasets most critical to them. This could take the form 
of a working group, where a few people from each team will work together on this exercise. There’s 
likely to be a lot of overlap, as those teams and other data consumers will care most about the same 
core data models that are at the heart of your business.

With this, we can go to the data generators and make the case for a data contract to be provided for 
this data. As we discussed in Chapter 3, How To Get Adoption In Your Organization, we will need to 
clearly articulate the value this data provides you and your end users, and use the company-wide goals 
to help incentivize the data generators to take on this work.

Another approach might be to set a deadline for the migration. This could be a date when you need 
to decommission your existing architecture, or something more arbitrary. The risk with this approach 
is that the data generators may not buy into the objectives as much and instead look for the quickest 
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way to hit the deadline. If this happens, we haven’t done much to bring the data generators and data 
consumers together – we’ve just changed the tooling used to move data around.

Whichever approach we take, it can sometimes be difficult to assign ownership to datasets, particularly 
those that have shared ownership over teams and groups. At this stage, it can be simplest to assign 
ownership of the data to the team that owns the service that generated the data. That should roll out 
to the right group and domain. As we increase adoption and maturity, those groups can change the 
ownership within the domain as needed.

Throughout the migration, we should regularly measure its progress and communicate its impact. 
Simple measures such as the adoption rate are useful for keeping track of progress. Other measures 
that help more on the impact might include the amount of data incidents you have, which we’d expect 
to decrease with more adoption as the quality and stability of the data improves. We might also expect 
the costs associated with your ETL to decrease.

These can be communicated regularly to the business using newsletters and other internal communications. 
We may have different methods to communicate to different audiences, tailoring the message to them. 
They could include recognition of those teams who have successfully migrated to data contracts, 
celebrating the impact of that change.

As we progress with the migration, we’ll need to keep iterating on the tooling, providing more self-
serve capabilities that meet the needs of our growing number of data generators. This might include 
governance tooling that automates the handling of data, tools that automate backups, or tools that 
help with the migration of data as schemas evolve.

It may also include some centralized services. For example, we may want to build a data catalog, to 
make it easier for data consumers to find data backed by a data contract. We might also need some 
data lineage capabilities. As we migrate more datasets to data contracts and move ownership to the 
data owners, the amount of data owners grows. Data lineage allows us to more easily find the owners 
of the datasets that we depend on, whoever they may be. We’ll discuss the importance of data catalogs 
and data lineage later in this chapter, in the Discovering data contracts section.

Now is probably a good time to make the case for a data infrastructure team, dedicated to building 
and supporting this data contract tooling. We discussed this team and how to make a case for it in 
Chapter 7, A Contract-Driven Data Architecture.

With this investment and continuous iteration, we are building out our data contract tooling and 
supporting services. We’ll now have an architecture similar to the one shown in the following diagram:
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Figure 9.4 – Building out our data contract tooling and supporting services

We’re now well on the way with our migration to data contracts. But, with this increase in data contracts 
and the distribution of ownership, we’ll need to provide some support to data consumers that helps 
them discover them. Let’s look at that next.

Discovering data contracts
As the amount of data contracts increase and we successfully shift ownership of those left to the data 
generators, the ownership of data increases. That will make it more difficult for data consumers to 
know where the data is, how to access it, and who owns it.

There are two related tools that can help us with this problem: a data catalog, and data lineage. In 
this section, we’ll introduce each of these tools in turn and explain why they are important when 
implementing data contracts in your organization.

We’ll cover the following topics in this section:

• What is a data catalog?

• Why are data catalogs important for discovering data contracts?

• What is data lineage?

• Why is data lineage important for data contracts?
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What is a data catalog?

Before discussing how data catalogs help us discover data products built with data contracts, let’s first 
explain what a data catalog is.

A data catalog is an inventory of our organization’s available data. It is centralized, providing a single 
place to search for and discover data products no matter where they reside, who owns them, or what 
domain they belong to. It aims to improve productivity by allowing any potential consumer of data 
to autonomously find and access that data through a self-serve interface.

This is an important part of supporting a data-driven organization. By improving the discovery and 
accessibility of the data, users can spend more time creating value from that data by using it to support 
their decision making and embedding that data into their applications.

The data catalog provides users with the context they need to make effective use of the data products 
they describe. This may include the following attributes:

• The owner of the data product

• Documentation on what the data product contains and how to use it

• The format and schema of the data

• The expectations of the data, including its criticality, support levels, and any service-level 
objectives (SLOs)

• Where the data is stored, and how to address it through the correct interface

• Access controls, and how to request access

• Compliance requirements and data usage policies

In short, the data catalog should contain everything a data consumer needs to know so they can use 
the data product with confidence.

Organizations have benefitted from the use of data catalogs for many years. They are particularly 
important when promoting the use of decentralized data products, as we are with data contracts. Let’s 
discuss why that is in the next section.

Why are data catalogs important for discovering data contracts?

Now we understand what data catalogs are and the features they provide, let’s look at why they are 
such an important tool to support your data contract implementation.

As we’ve been discussing throughout this book, with data contracts we’re moving to a decentralized 
data architecture, where data is owned by the data generators within a particular domain. That data 
is then made available to consumers through an interface, which, as we discussed in Chapter 7, A 
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Contract-Driven Data Architecture, will be isolated to help promote ownership and limit the impact 
of any issues.

For example, that interface could be a table in your data lakehouse that resides within an area (for 
example, a project or database) for that domain. There may be many different domains, each with its 
own area in the data lakehouse. While modern data lakehouses allow us to query across different areas 
without penalty, we need a way to discover those data products and find out how to address them.

The data catalog solves this problem. It’s a centralized inventory of all the data products in our 
organization, across all domains, and from all data generators. It’s what allows our data to be isolated, 
but not siloed, and promotes a federalized data architecture where access to data can be self-served.

We can use the data contract to populate the data catalog, creating an entry for each data product. Every 
attribute we want to populate about that data product, including all those we listed in the previous 
section, is defined in the data contract, which remains the source of truth. The data generators remain 
responsible for keeping the data contract, including those attributes, up to date.

Another tool that’s increasingly important to support the implementation of data contracts is a data 
lineage tool. Let’s look at what that is, and why it’s important, next.

What is data lineage?

Let’s start by exploring what data lineage is, before looking at why it is increasingly important in a 
data contract-driven architecture.

Data lineage tracks the relationships between data products, both upstream and downstream, 
including their use in data applications such as reporting tools or ML models. From any given point, 
it allows you to see the origin of the data, how it has been processed and transformed, and where the 
data product is used.

This traceability of data as it moves around your organization allows you to see how and where the 
data is being used. This can be useful for impact analysis, for example, seeing who would be affected by 
evolving a schema, or who is affected by an ongoing incident. It can also be used to meet compliance 
and regulatory requirements around the access and processing of data, which can help explain how 
a decision was made, for example, by an ML model.

Consumers of data can use the lineage information to understand how the data they are using was 
generated. The transparency and visibility help the user trust the data they are using, giving them the 
confidence to use that data to support their decision-making or integrate it into their applications.

Data engineering teams are often already heavy users of data lineage. They use it to understand their 
pipelines and identify any performance bottlenecks that can be optimized. By looking at the patterns 
in tables of queries by downstream consumers, they can consider refactors that reduce costs.

Lineage is also useful for troubleshooting issues with their data pipelines, particularly as the complexity 
of those will have grown as they attempt to ingest and transform raw data from many different sources.
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With data contracts, we want to remove a lot of that complexity by encouraging the creation of quality 
data products. However, that doesn’t lessen the importance of lineage – in fact, it increases it, as we’ll 
discuss next.

Why is data lineage important for data contracts?

With that understanding of data lineage, let’s look at why it becomes even more important when 
implementing data contracts.

As mentioned in the Discovering data contracts section previously, with data contracts we’re moving to 
a decentralized architecture, where data is owned by the data generators within a particular domain.

This means that the ownership of the data grows. Previously, you might have assumed that for any data 
question you have, for example, on the use of that data, how to get access, and whether it is performing 
as expected, you would have asked a centralized data team. Now, they are not likely to be the owners 
of that data and won’t have the answers you need. Instead, that owner will be a data generator in the 
business domain that owns that data.

Not only that, but the ownership may change at each step in the supply chain of data products that 
ultimately lead to the data product you are consuming from, as data is enriched both within that 
domain and as it passes to other domains.

Data lineage solves this problem by making it easy to see what data you depend on at every step and 
the owner of that step. It gives you the confidence to use that data, knowing you can find out who to 
contact if you need more context on the data or in the event of an issue.

There are many data lineage tools available, both paid and open source. They often include data catalog 
functionality, so you may be able to find one tool that satisfies both these requirements and supports 
your implementation of data contracts.

With the data catalog and data lineage implemented, we have everything we need implemented in our 
tooling. But that’s only one part of our objective. We also wanted to change the data culture. So now 
let’s look at what else we need to put in place to build a mature data contracts-backed data culture.

Building a mature data contracts-backed data culture
In this section, we’ll look at what to build as your data culture matures through the adoption of 
data contracts.

Data contracts should now be an explicit part of your organization’s strategy and architecture. You 
expect all useful data to be provided through data contracts, providing the interface and all the tooling 
to support that data.

We’ll have formalized the concept of data products within the organization, hiring data product 
managers to take on the responsibility of creating great data products that meet the requirements of the 
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data consumers. As we discussed in Chapter 3, How To Get Adoption In Your Organization, by adopting 
a data product mindset and creating data products for the rest of your organization to consume, you 
increase the amount of accessible data you have available to drive business outcomes. With better data 
quality from the source, we reduce the time to insight and action, as well as reducing costs.

We may also want to consider the organizational structure that supports these data products. We 
can get quite far on our journey toward maturity by asking software engineers to build and support 
these data products. However, when you start having many of these data products in each group or 
domain, it may be better to put together a specialist data engineering team to build and support them.

Being embedded in that group, the data engineers will gain a good understanding of the domain and 
the data that describes it. They will see how it has changed over time and have visibility of how it 
might change in the future. Their expertise and focus will allow them to perform tasks such as data 
domain modeling, leading to data products that are better optimized for the data lakehouse they 
reside in, reducing the costs of consumption by users.

How easy this is to achieve depends on your existing organizational structure. Many organizations 
have experience building these cross-functional teams, with specialists such as designers, quality 
assurance, or site reliability engineers embedded within teams. These specialists benefit from gaining 
a deeper understanding of the group’s domain and the problems they have, and use their expertise to 
solve those problems quickly and effectively.

If this is new to your organization, it may be more difficult to make the case for cross-functional 
teams, but there are many resources available to help build that case. Some are listed at the end of this 
chapter, under the Further reading section.

We also want to have a mature data governance process, with the policies set centrally and the 
responsibility embedded locally and assigned to the data generators. But this shouldn’t be much of 
a burden for them, as we have automated much of this with the tooling we described in Chapter 5, 
Embedding Data Governance. The data generators do not need to be experts in data regulations and 
best practices. They just need to categorize the data, and the tooling takes care of the rest.

With all this in place, we’re well-placed to become a truly data-driven organization. Through data 
contracts, we have an agreed interface between the generators of data and its consumers. We’ve set the 
expectations around that data, defined how it should be governed, and facilitated the explicit generation 
of data that meets the business requirements. We’ve delivered data contracts as per the four principles 
we introduced back in Chapter 2, Introducing Data Contracts.

Through our adoption of data contracts, we have created the data culture we wanted, where data is 
supplied through data products that meet user requirements. These products are accessible to and 
useful for any data consumer, who can trust the data and build on it with confidence.
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Summary
In this chapter, we’ve shown how to adopt data contracts in your organization. We discussed how to 
get started by identifying a suitable use case to prove the concept and supported that with a minimum 
viable product (MVP) of our data tooling.

Once we’ve proved the value of data contracts, we can start migrating the rest of our datasets over, so 
we next looked at how to approach that migration. As that progresses, we’ll not only have more data 
contracts, we’ll also have increased the distribution of ownership. So, we looked next at how to ensure 
they remain discoverable and accessible through the implementation of a data catalog and data lineage.

Finally, we developed this further by showing how to build a mature, data contracts-backed data 
culture that delivers on our objective to become a truly data-driven organization.

In the next chapter, we’ll close the book by looking at working with data contracts in practice on a 
day-to-day level.

Further reading
For more information on the topics covered in this chapter, please see the following resources:

• What is a Proof of Concept (PoC) in Software Development? By Piotr Szczechowiak: https://
www.netguru.com/blog/proof-of-concept-in-software-development

• Minimum Viable Product - What is a MVP and why is it important: https://www.
productplan.com/glossary/minimum-viable-product/

• How to Get Started with Data Mesh: Strategy and Execution by Zhamak Dehghani: https://
www.starburst.io/resources/how-to-get-started-with-data-mesh-
strategy-and-execution/

• Data Catalogs Will Change Data Culture Within Your Company by Madison Schott: https://
blog.devgenius.io/data-catalogs-will-change-data-culture-within-
your-company-49253d72a72

• Your Data Catalog Shouldn’t Be Just One More UI by Mahdi Karabiben: https://
towardsdatascience.com/your-data-catalog-shouldnt-be-just-one-
more-ui-e6bffb793cf1

• Data catalog ROI – A Primer by Louise de Leyritz: https://medium.com/castor-app/
data-catalog-roi-a-primer-a57d42d054cf

• What is Data Lineage and How Can It Ensure Data Quality? by Michael Bogan: https://
levelup.gitconnected.com/what-is-data-lineage-and-how-can-it-
ensure-data-quality-9a15b3c5b48b
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• Creating a Transparent Data Environment with Data Lineage by Madison Schott: https://
towardsdatascience.com/creating-a-transparent-data-environment-
with-data-lineage-12e449597f6

• Skelton, M and Pais, M. (2019). Team Topologies. IT Revolution Press.

• What Are Cross Functional Teams? By Christine Organ and Cassie Bottorff: https://www.
forbes.com/advisor/business/cross-functional-teams/

• How to Build a Cross-Functional Team: https://www.atlassian.com/work-
management/project-collaboration/cross-functional-teams

• A Brief Introduction to Domain Modeling by Oleg Chursin: https://olegchursin.
medium.com/a-brief-introduction-to-domain-modeling-862a30b38353
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Data Contracts in Practice

In this final chapter, we’ll look at working with data contracts in practice, on a day-to-day basis. We’ll 
start by looking at how to design a data contract, breaking that down into four easy steps that, through 
strong collaboration between the data generators and the data consumers, will lead to a data contract 
being deployed to production.

Next, we’ll look at enforcing and monitoring these data contracts. This includes the data contract 
definition itself, the quality of the data, and the performance and dependability of the data. We’ll 
provide solutions that guarantee the quality of the data through the data contract.

Finally, we’ll look at how best to publish data to a data contract. This can be more complex than it 
sounds as there are a few things you need to consider when publishing the data if it needs a high level 
of consistency between the source system and the data contract. We’ll describe a few implementation 
patterns that can be used to publish the data and discuss their benefits and drawbacks.

By the end of this chapter, you’ll have everything you need to drive data quality with data contracts.

In this chapter, we’re going to cover the following main topics:

• Designing a data contract

• Monitoring and enforcing data contracts

• Data contract publishing patterns

Designing a data contract
We’ll start by looking at how to design a data contract. This can be broken down into four steps:

1. Identifying the purpose.

2. Considering the trade-offs.

3. Defining the data contract.

4. Deploying the data contract.
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However, designing a data contract is an iterative process, and you may need to revisit and refine 
these steps as more information is gathered through discussions between the data generators and 
data consumers.

With that in mind, let’s look at each step in turn.

Identifying the purpose

The first step is to identify the purpose of this data product for which you are defining a data contract. 
Who is this data for, and how will they use it? What problems will it solve? What business value will 
it drive?

Answering these questions will naturally start a discussion between the data generators and the data 
consumers, and as we’ve been discussing throughout this book, bringing these groups of people 
together is one of the key objectives of data contracts. See Chapter 4, Bringing Data Consumers and 
Generators Closer Together, for more on this.

Through these discussions, the data generators can collect the requirements of the data consumers. 
Those requirements could include the following:

• The data they need

• What structure it needs to be in

• The interface they need to consume from and its availability

• How timely the data needs to be

• Whether we can accept incomplete data, and if so, how much

However, these requirements may not necessarily be something the data generators can meet. There 
will be various trade-offs they will need to consider before committing to this data contract. We’ll 
look at those next.

Considering the trade-offs

The data generators will need to consider various trade-offs, constraints, and limitations before they 
can commit to meeting the data contract.

Some of these could impact how the data is structured. For example, it may be quite expensive to 
generate events that contain all the fields being requested. That expense could be the cost of compute 
or other resources or could be the performance impact it has on the service generating the data.

They may also not be able to meet some of the performance requirements requested by the data 
consumers. For example, it could be the existing methods to publish data to the requested interface 
are too slow to meet that requirement.
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This is why the data generator must own the data contract. Only they have the full context of their 
service and the data to make these decisions. They will be the ones generating and publishing the 
data and supporting it in the long term, so they need to be comfortable with the responsibilities they 
are signing up for.

After this, there will be more discussions between the data generators and the data consumers around 
the specifics of the requirements. Maybe the scope will change, or the consumers will decide they can 
still deliver most of the value with less performant data. Or maybe the value of the data application 
means extra work can be prioritized by the data generators and/or teams that support the data 
contract’s implementation.

All of this should be captured in a document somewhere. This could be in a standard project document 
or a request for comment (RFC) document that’s already in use in your organization, or you may 
have something specific for data contract discussions. This document supports these discussions and 
allows you to review the decisions that have been taken.

Eventually, the data generators and the data consumers will come to an agreement and will be ready 
to start defining the data contract itself. We’ll discuss what that will look like next.

Defining the data contract

At this stage, we can start to get into the specifics of the data contract, which forms the agreement 
between the data generators and the data consumers. This will include the schema of the data and 
all the fields. They will have some documentation associated with them to make it clear to everyone 
exactly what they are, and their data types will have been defined.

We may also want to start defining some data quality checks if we have that functionality in our 
data contracts and can measure and enforce them once it has been deployed. For example, we might 
specify a valid range for a numeric value, that a string matches a known format (for example, an email 
address), and so on. We’ll discuss how to monitor and enforce these data quality checks later in this 
chapter, in the Monitoring and enforcing data contracts section.

The data contract should also have SLOs defined. These should be at a level the data generator feels 
comfortable meeting and should be no higher than the minimum required by the data consumers. 
Increasing the performance and dependability of data is costly, and that cost increases exponentially 
as the target level increases. Going beyond what is required is a waste of money and effort.

Finally, we will want to categorize the data to comply with our data governance policies, particularly 
if they impact the use of the data downstream. See Chapter 5, Embedding Data Governance, for more 
information on why this is important and how we can use this categorization to automate data governance.

With all this agreed, we’re ready to deploy the data contract.
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Deploying the data contract

Now that we have an agreement between the data generators and the data consumers and have defined 
the data contract, we’re ready to deploy it to production. Exactly how you do that depends on how 
you’ve implemented data contracts, but if you’ve been following the guidance in this book, you will 
probably merge to a Git repository, after which the interface and any services that support the data 
contract will be provisioned and deployed. See Chapter 7, A Contract-Driven Data Architecture, for 
more information on how to build that.

Once deployed, the data generator can start writing data to the interface, which can then be consumed 
by the data consumer. Writing the data can sometimes be more complex than it sounds. We’ll discuss 
why that is and offer some patterns to help you with this later in this chapter, in the Data contracts 
publishing patterns section.

Other tasks may also be required. For example, often, the data consumer will need access to historical 
data, which the data generator will need to backfill into this interface. Some monitoring may also need 
to be set up on the data, including the data quality checks. We’ll discuss that in more detail shortly in 
the Monitoring and enforcing data contracts section.

Following this, we should now have a data contract providing an interface to a quality data product! 
It’s ready to be consumed by data consumers, who can use it to deliver some business value.

But to ensure that the data being published continues to match the contract, we’ll want to implement 
some monitoring and enforcement. We’ll look at this in detail in the next section.

Monitoring and enforcing data contracts
In this section, we’ll look at how to monitor and enforce our data contracts. This is important, as one 
of the four principles we looked at in Chapter 2, Introducing Data Contracts, is setting expectations. 
There’s little point in setting these expectations if we cannot prove we’re meeting them. It’s that proof 
that gives data consumers the confidence to build on this data.

There are three areas where we can add some monitoring and/or enforcement:

• The data contract’s definition

• The quality of the data

• The performance and dependability of the data

Let’s look at each of these in turn.

The data contract’s definition

Data contracts are written by humans and, as such, are susceptible to human error. They are also 
intended to be self-served, without requiring a central review, as that slows teams down and reduces 
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their autonomy. Therefore, we will want to add some automated checks to ensure the data contract 
itself is valid before any mistakes are deployed to production.

The first set of enforcement we’ll need will ensure certain metadata fields are present in the data contract. 
This will likely include checking it has a valid version number, an owner, some documentation, and so on.

Then, for each field, we will want to ensure it has, at a minimum, a name, a type, and a description. 
If we’ve also embedded data governance (as discussed in Chapter 5, Embedding Data Governance) 
we may want to check that the field has been categorized, and, if it contains personal data, has an 
anonymization strategy defined.

As we continue to invest in data contracts, we will be adding more to our data contract definition. 
For example, we might allow data generators to define SLOs in the data contract, and we could add 
checks to ensure they are set correctly with a valid measure.

Whatever definition language we’ve chosen to define our data contract in (for example, Avro, JSON, or 
YAML), it should be easy to write some code that performs those validations, as we did in Chapter 8, A 
Sample Implementation. Alternatively, we can make use of tools such as CUE (https://cuelang.
org/) to validate YAML and JSON-based data contracts by simply defining those using its concise 
validation syntax and running its command-line tool.

We will also need some checks to ensure schema evolution is managed correctly. We’ll want to prevent 
breaking changes, such as the removal of a required field, from being applied to an existing data 
contract in production as that could impact data consumers or, in the worst case, lead to data loss.

Again, we could write code to implement this ourselves, but it’s probably easiest to rely on a schema 
registry to perform those checks for you, particularly as we will likely need one anyway to make 
the schemas available to different tools and services. We also showed this in Chapter 8, A Sample 
Implementation, in the Managing schema evolution section.

To prevent invalid contracts from being released to production, we will run these checks as part of our 
continuous integration pipelines. These will be triggered when a data generator pushes their commit 
to their code repository and will only allow that commit to be released to production if each of the 
checks is successful.

Once the data contract has been deployed to production, we can publish data through it. Next, we’ll 
look at how to monitor that data and enforce the data contract.

The quality of the data

In this section, we’ll look at how to enforce and monitor the quality of our data. By quality, we mean 
does the data itself match our expectations? We’ll cover the following topics:

• The two types of data quality issues

• Where to implement data quality checks

https://cuelang.org/
https://cuelang.org/
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The two types of data quality issues

There are two types of data quality issues we can enforce and/or monitor: those we predicted and 
tested for in advance, and those we didn’t.

The issues we predicted and tested in advance include everything we define in our schemas. For 
example, we know that if a number suddenly became a string, that would break any mathematical 
functions being run on that number downstream. So, we make use of schemas to protect us from 
that issue. They also include any tests on the data we perform, such as ensuring a number is within 
a certain range. Depending on where these tests are implemented, they can prevent the issue from 
affecting downstream data consumers directly and only need to be resolved in the affected system.

However, in complex systems, we’ll never predict every possible failure – nor should we assume we 
could. There is a range of issues that will occur that we didn’t think of implementing checks for in 
advance. Each of these issues may rarely happen, but there are many of them, so we should expect 
them to occur regularly. Examples might include a distribution anomaly or even a code change that 
prevented our predicted tests from running, allowing invalid data to be published.

The best defense against these unpredictable data quality issues is to try to build applications that 
are resilient to failure. For example, your application may not expect a particular record to contain a 
timestamp in the future and that may cause an exception, but that exception doesn’t have to prevent 
the valid records that come after it from being processed. Those invalid records could be written to 
a dead letter queue, which takes them out of the service and stores them somewhere to aid with 
debugging and allows us to replay that data once the issue has been resolved.

We can also make use of data observability tools to detect these issues. They use techniques such as 
data profiling and anomaly detection to look at how recent data compares to previous records and 
can alert us if they identify data that appears to be unexpected.

These issues are usually detected after the data has been published from the source system, so they 
may impact downstream consumers directly until the issue is resolved. However, by making use of 
observability tools, we can at least ensure they are detected quickly and that the data generator is 
alerted as soon as possible – ideally before the downstream consumers notice.

Now, let’s look at where we can implement both types of data quality checks while using data contracts.

Where to implement data quality checks

There are three places we can implement monitoring and enforce data quality to catch data quality issues:

• At publishing time

• In the infrastructure

• After publishing
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The first two have the benefit that any issues identified can be contained at the source system. The 
data does not get written to the interface and therefore does not directly impact every data consumer. 
This limits the scope of the incident and reduces the time to resolution.

Identifying issues after the data has been published means the data may have already been consumed 
by data consumers, who may or may not have been resilient to that issue. Furthermore, once the issue 
has been resolved, the data may have to be republished to the consumers so that they can correct the 
data in their applications, and the owners of those applications may need to take some manual action.

The following diagram shows the three different places we can monitor and enforce data quality:

Figure 10.1 – Implementing data quality checks at publishing 

time, in the infrastructure, and after publishing

Implementing these checks at the infrastructure level is often the easiest to do. As part of our data 
contracts implementation, we are creating resources to support the generation of data and providing 
the interface to be used to consume the data. These resources typically have support to define a schema 
and will not allow data to be written to it if it does not match that schema.

For example, by having a table in the data warehouse driven by a data contract, as we showed in 
Chapter 8, A Sample Implementation, we know that the schema will always match the one defined in 
the contract. A data generator cannot write data to that interface that doesn’t match the schema and 
they will get an error if they try to do so. A data consumer will know they can rely on this schema and 
that there won’t be a breaking change on it unless a new version of the contract is deployed.
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Aside from tables in data warehouses and lakehouses, many event streaming platforms also support 
schemas, including Apache Kafka and Google Cloud Pub/Sub, and work in much the same way.

However, these schemas only check that the basic types are correct. We also want to check that the 
data itself is as expected – for example, the numbers are within a certain range, or the string matches 
a certain format, such as an email address or country code.

We can implement these checks at publishing time by providing libraries for our data generators to 
use. These libraries can look up the quality checks defined in the data contract, perhaps from a schema 
registry, and run those tests on each record. If the tests fail, the data will not be written downstream 
and the owner of the service – the data generator – will receive an alert.

We can provide custom libraries for our data consumers that implement the checks defined in the data, 
or we can use something such as JSON Schema and take advantage of existing libraries. This is what 
we did in Chapter 8, A Sample Implementation, in the Creating libraries for data generators section.

If we can’t enforce these checks at publishing time, an alternative is to monitor the data’s quality by 
running these checks after publishing. This can be implemented using tools such as Great Expectations 
(https://greatexpectations.io) and Soda (https://www.soda.io). This is likely the 
only option you will have when validating data that’s been generated or transformed as part of a batch 
pipeline, such as when using something like dbt (https://www.getdbt.com/). However, as 
mentioned previously, this does mean the data may have already been consumed and that the impact 
of the issue could be greater.

After publishing is also where we typically deploy data observability tools to catch those issues we 
hadn’t predicted would occur. This is because they often query the interface directly and may need to 
query large amounts of historical data to detect any anomalies.

By implementing data quality checks across these three places, we can catch data quality issues quickly 
and limit their impact.

Now, let’s look at the final area we want to monitor and enforce with data contracts – the performance 
and dependability of the data.

The performance and dependability of the data

The final area of monitoring is around the performance and dependability of the data being published 
through our data contract.

As we discussed in Chapter 2, Introducing Data Contracts, these are key expectations a data consumer 
needs to know if they are to build on this data with confidence. For example, depending on their use 
case, they may need to know if the data is going to be available to be queried within 1 second, 10 
minutes, or 1 hour. With that expectation set, they can decide if it is suitable for their use case and, if 
so, set expectations for their users based on those timings.

https://greatexpectations.io
https://www.soda.io
https://www.getdbt.com/
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These service-level objectives (SLOs) can be defined in the data contract. From there, they can be 
used as part of the documentation of the data contract, so that the data consumers are aware of it, 
and automate the process of collecting and reporting these metrics.

For example, if we were using a YAML-based data contract, we could add the following fields to it to 
allow the data generator to define the SLOs for this data product:

slos:
  completeness_percent: 100
  timeliness_mins: 60
  availability_percent: 95

Automating the process of collecting and reporting these SLOs depends on the resources you are using 
to support your data contract’s implementation and the monitoring stack you use. But to illustrate 
how this could be done, we will walk through an example while using Google Cloud Pub/Sub, where, 
through data contracts and the tooling we provide, we can establish a simple design pattern that makes 
use of these attributes to automate the collection of our timeliness SLO.

Every event or message you send through a Pub/Sub topic is annotated with a few fields by the Pub/Sub 
servers when it is accepted. One of those is publishTime, which is the time at which the message 
was published to the server. Pub/Sub messages can also be annotated with a set of custom attributes, 
set by the data-generating service.

Let’s say that for data generators to make use of this automation, they must populate a generationTime 
attribute on their Pub/Sub message, which is the time the event was generated in their source system.

Expressed as JSON, our Pub/Sub messages now have the following schema, where data is the 
message itself:

{
  "data": string,
  "attributes": {
    generationTime: timestamp,
  },
  "publishTime": timestamp,
}

The timeliness of the message is simply publishTime subtracted from generationTime. This 
measurement will grow if there is a delay in publishing the message, maybe due to a backlog of events 
that the service needs to process or an incident that prevented it from writing to Pub/Sub for some time.

We can collect this measurement by implementing a simple monitoring system that runs that 
calculation in near real time, perhaps on a sample of the data. It could make this measure available 
to an existing monitoring stack, or it could be responsible for sending an alert to the data generator 
when that measure breaches the SLO defined in the data contract.
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The following diagram shows how we’ve automated the measurement of this performance-related SLO:

Figure 10.2 – Automating the measurement of the timeliness SLO

This monitoring service could be extended to measure other performance and dependability SLOs, 
including the completeness and availability of our data, and can do so for any data backed by a 
data contract.

We now have a well-designed data contract that we can use to monitor and enforce our data governance 
policies, data quality, and performance and dependability. Next, we’ll explore the various patterns a 
data generator can use to publish their data to the data contract.

Data contract publishing patterns
Data generators need to be able to publish their data easily and reliably to the interface they are 
providing to their data consumers, which will typically be a table in a data warehouse or lakehouse, 
such as Snowflake or Google BigQuery, or a topic in an event streaming platform such as Apache 
Kafka or Google Pub/Sub.
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In this section, we’ll look at the different patterns they can use to publish their data to these systems, 
and the pros and cons of each.

Perhaps the key consideration you need to make is whether you need a transactional guarantee 
between the source system and the interface you’re providing to the data consumer. It’s what ensures 
consistency between the data in our service and the data used by our data consumers.

Consider the scenario where you have a user of the system taking some action that results in a new 
record being written to the services database – for example, placing an order. Writing to that database is 
a single unit of work. It will either succeed or fail. Whatever the outcome, your data store will correctly 
reflect the result of that action. This is shown in the following diagram:

Figure 10.3 – The single unit of work when writing to the database

Now, we want to publish an event that describes that action and makes it available to our consumers 
through our data contract-backed interface. This becomes a second unit of work. To guarantee data 
consistency, we need these two units of work to be atomic: if one succeeds, the other must succeed. 
If one fails, the other must also fail.

If you picture how you’d write this in code, you might implement the following steps:

1. Write to the systems database.

2. If successful, write to the data contracts-backed interface.

If we can’t write to the systems database, we won’t publish to the interface, so that’s fine. But what about 
if we can, but, as illustrated in the following diagram, we can’t publish to the interface? This could be 
because the interface is unavailable, or the service/server crashes in between the two units of work:
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Figure 10.4 – Introducing a second unit of work when writing to the 

database and the data contracts-backed interface

To ensure consistency between both data stores, you’d need to be able to prevent that change from 
being committed to the systems database, restoring it to the previous state. And we can’t simply do 
that as a third unit of work as we’re still at risk of breaking the consistency if the service/server crashes. 
Furthermore, the record may have been updated in the meantime, so we’d potentially lose that update.

This is where we need to implement a transaction guarantee, ensuring data consistency across both 
units of work.

There are a few patterns to solve this, and they work in the same way. First, you modify only one of 
these data stores at a time, as a single unit of work. Then, later, that update is applied to the second 
data store. That second data store is then eventually consistent with the first.

We’ll cover two of the most popular patterns for implementing transactional guarantees: the transactional 
outbox and the listen-to-yourself patterns. However, if you can get away without needing this strong 
data consistency in the datasets for your use case, you can avoid a lot of complexity and improve 
performance. So, it is always worth challenging how important this is for each use case you have.

We’ll cover the following publishing patterns in turn:

• Writing directly to the interface

• Materialized views on change data capture (CDC)

• The transactional outbox pattern

• The listen-to-yourself pattern
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Writing directly to the interface

The simplest method is, of course, to write directly to the interface itself. If you’re using a popular 
warehouse, lakehouse, or event streaming platform, libraries will be available that make it easy to write 
to them in whatever programming language your data generators are using.

This simplicity is evident when we draw the implementation, as in the following diagram:

Figure 10.5 – Writing directly to the data contracts-backed interface

However, there are some limitations to this approach, which could make it unsuitable for your use case.

One may be the performance of these writes. Data warehouses and lakehouses tend to be relatively 
slow at writing single records. If you are storing each record in response to a user action, and that user 
is waiting for a response stating that the record has been written, it will likely be too slow.

However, they are more optimized for loading large batches of records. So, if you’re writing many 
records as part of a batch process happening asynchronously to the user’s interaction, that performance 
is likely to be good enough.

For streaming platforms, the performance varies but tends to be very good. For example, a well-tuned 
Apache Kafka setup is reported to be capable of processing ~600 MB/s under benchmarking conditions 
(https://developer.confluent.io/learn/kafka-performance/), which could be 
fast enough for your use case, even if the user is waiting on a response.

A bigger limitation is that we haven’t provided a pattern for handling transactional guarantees. This 
might be fine, and if it is and you’re happy with the performance of the writes, then this is the approach 
you should use. If not, you’ll need a more complex pattern.

We’ll look at one of those next, which is implemented on a CDC service.

Materialized views on CDC

CDC services capture the changes that are made to the tables in a transactional database (that is, the 
INSERT, UPDATE, and DELETE statements ran against the database) and generate events detailing 
those changes. They can then be used later to recreate the structure and the data in a different database 
– for example, a data warehouse.

https://developer.confluent.io/learn/kafka-performance/
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We’ve discussed CDC a few times already in this book, starting back in Chapter 1, A Brief History of 
Data Platforms. Back then, we spoke about how we wanted to move away from consuming CDC and 
similar ELT approaches since we’re building on the internal models of the upstream service, rather 
than data that has been explicitly built for consumption.

That is still the case! But there is a pattern where you can build on CDC and still provide an interface 
for data consumers, and that is by having the data generators maintain a transformed or materialized 
view of the data on top of the CDC data – not the data engineers or another data consumer. This pattern 
is shown in the following diagram:

Figure 10.6 – Materialized views on a change data capture service, 

with those views owned by the data generators

Let’s see what this looks like and consider the benefits and limitations of this approach.

First, we’ll need a CDC service in place, which if you don't already have can be quite a complex system 
to manage. As this CDC service is capturing all the events at the database layer, it takes care of the 
transactional guarantees some of our use cases might need. Only changes that have been successfully 
written to the database will be propagated downstream. If that propagation is dependable, we’ll have 
our data consistency.

Most modern CDC implementations have a relatively small impact on the source database’s performance. 
Often, they consume from the replication log, so when all is working well, they add a similar load to 
adding another database replica. If the CDC service has a problem, it could cause a backlog of events 
on the database, which, if it becomes too large, could impact the upstream database, so we should 
ensure it is well-supported and incidents are resolved quickly.
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Next, we’ll need to provide a way for data generators to transform or materialize the raw CDC change 
events so that they match the data contract they agreed upon with their consumers, and meet their 
requirements for dependable and quality data.

If that interface is in a data warehouse, we may need to introduce a tool such as dbt (https://
www.getdbt.com/) to the organization or, if used already, to our data generators, who in many 
organizations could be software engineers. Or if it is in an event streaming platform, we may need to 
use something such as Apache Flink (https://flink.apache.org/) or Benthos (https://
www.benthos.dev/). These tools may not be ones they are familiar with, so they will be required 
to learn them.

Given that the transformation pipeline is likely to be separate from their services code, we’d probably 
also want some continuous integration checks that prevent them from making schema changes that 
break their transforms or the contract since they are tightly coupled to their internal models.

While this approach does have the benefit of providing data through a data contracts-backed interface 
and solving the transactional guarantees, it has a few drawbacks and limitations. The data generators 
must now maintain two distinct services that depend on their internal models – the service they are 
primarily responsible for, and the data transformations. Those transformations may be using tooling 
they are not familiar with, further adding to their maintenance load and slowing them down.

For those reasons, this isn’t a pattern I’d recommend.

Next, we’ll look at the transactional outbox pattern, which is a different approach that can be used to 
achieve a similar outcome, with its own pros and cons.

The transactional outbox pattern

The transactional outbox pattern is a pattern designed primarily to provide transactional guarantees across 
multiple services and databases. It is commonly used in microservices and other distributed architectures.

With this pattern, you create an outbox table in the applications database. Whenever a change is made 
within the service that we want to publish to our data consumers, we also write the event to the outbox 
table. A separate process will pick up events from that table and publish them – in our case, to the 
data contracts-backed interface – so that they can be consumed.

This transactional guarantee is achieved because both the write to the applications table(s) and the 
outbox table are performed within the same database transaction, as a single unit of work. Therefore, 
if any of those writes fail or the service itself fails part way through the writes, the entire transaction 
is rolled back to the previous state.

https://www.getdbt.com/
https://www.getdbt.com/
https://flink.apache.org/
https://www.benthos.dev/
https://www.benthos.dev/
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The following diagram shows the transactional outbox pattern in action:

Figure 10.7 – The transactional outbox pattern

The events that are published via the outbox don’t need to match the structure of the applications 
database – and shouldn’t. At the time we generate the event, we can use all the context we have 
available to us to produce an event that matches our data contract and meets the requirements of the 
downstream consumers. After that, we decouple the structure of our event from the structure of our 
database, allowing the data generators to make changes to their database with autonomy and without 
breaking downstream consumption.

Aside from the transactional guarantee, the outbox pattern can also be used to queue events locally 
before inserting them as a batch into the data warehouse or event streaming platform. Taking that out 
of the user response flow could improve the performance of the application for its users.

However, the transactional pattern does add some load to the database. We’re adding an extra write 
to our application’s critical path. We’re also running a separate process that polls or otherwise listens 
to the events from the outbox table.

Despite those drawbacks, the outbox pattern is a popular solution that provides transactional guarantees 
across multiple services and data stores.
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There’s another, similar pattern that we can use to achieve transactional guarantees called the listen-
to-yourself pattern. We’ll look at that next and see how its benefits and drawbacks compare to the 
transactional outbox pattern.

The listen-to-yourself pattern

The final pattern we’ll introduce is the listen-to-yourself pattern. This is less well-known compared 
to the transactional outbox pattern but is a good alternative for achieving transactional guarantees 
across multiple services and databases.

As with the transactional outbox pattern, this provides transactional guarantees by writing to a single 
data store as a single unit of work and replicating that change later, providing eventual consistency. The 
difference is that this data store is not the applications database, but a secondary datastore – typically, 
an event streaming platform or message broker.

Later, a separate process will pick up events from that stream and write them to our applications 
database. The message broker will also replicate that event to any other subscriber, so in our case, we 
would have another process to write that same event to the data contracts-backed interface so that 
they can be consumed.

The following diagram shows the listen-to-yourself pattern:

Figure 10.8 – The listen-to-yourself pattern

If our data contracts-backed interface is provided as an event streaming platform, then we can use 
that rather than a separate message broker, with those events already matching the schema of the 
data contract.



Data Contracts in Practice176

This pattern does reduce a bit of the load on the database compared to the outbox pattern since we’re 
no longer writing each change to it twice. The performance may also be better for the user, depending 
on how quickly we can write to the message broker.

The listen-to-yourself pattern is also useful if the database the application is using has limited support 
for transactions across tables, which prevents us from using the transactional outbox pattern.

However, the applications database itself is now eventually consistent, which means it may take 
some time before that change is reflected in its database. So, if the user of the service makes a request 
immediately to get the current state, it may be missing the latest changes, which could be unexpected.

Another consideration is that depending on the message broker we’re using, we may receive the 
events out of order and/or duplicate events. We may need to use a different message broker that 
guarantees the order, and for duplicates, we would need to ensure that the writes to our services 
database are idempotent.

Summary
We have concluded this book by looking at what it is like working with data contracts in practice. We 
started this chapter by looking at how to design a data contract, going step-by-step through identifying 
the purpose of the contract, considering the trade-offs the data generator needs to make, defining the 
agreed data contract, and deploying it to production.

Then, we looked at how to monitor and enforce those data contracts, including the definition itself, and 
then, once it is in production, the quality, performance, and dependability of the data. We discussed how, 
with data quality, there are two types we need to monitor: those we predicted in advance, and those we 
didn’t. After this, we discussed how we can detect those issues at different places in our architecture.

Finally, we looked at how to publish data to the data contract. We described why you might need to 
implement transactional guarantees if your data needs a high level of consistency between the source 
system and the data contract and introduced some publishing patterns to aid with publishing data, 
along with their benefits and drawbacks.

With these best practices, we have everything we need to drive data quality with data contracts! 
Congratulations! I hope that with this knowledge about the use of data contracts, you succeed in 
creating a truly data-driven organization that gets real business value from its data.
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Further reading
For more information on the topics that were covered in this chapter, please see the following resources:

• RFCs for Engineering Organizations: https://github.com/jakobo/rfc

• Data Mesh Architecture: Designing Data Products: https://www.datamesh-architecture.
com/data-product-canvas

• Is observability just monitoring with another name?, by Charity Majors: https://www.
honeycomb.io/blog/observability-whats-in-a-name

• The Dead Letter Queue pattern, by Andrew Jones: https://andrew-jones.com/blog/
the-dead-letter-queue-pattern/

• Data Consistency in Microservices Architecture, by Dilfuruz Kizilpinar: https://dilfuruz.
medium.com/data-consistency-in-microservices-architecture-
5c67e0f65256

• An Engineer’s Guide to Data Contracts, by Chad Sanderson and Adrian Kreuziger: https://
dataproducts.substack.com/p/an-engineers-guide-to-data-contracts

• Pattern: transactional outbox, by Chris Richardson: https://microservices.io/
patterns/data/transactional-outbox.html

• Reliable Microservices Data Exchange with the Outbox Pattern, by Gunnar Morling: https://
debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-
with-the-outbox-pattern/

• Transactional Events Publishing At Brex, by Yingying Tang: https://medium.com/
brexeng/transactional-events-publishing-at-brex-66a5984f0726

• Listen to Yourself: A Design Pattern for Event-Driven Microservices, by Oded Shopen: https://
medium.com/@odedia/listen-to-yourself-design-pattern-for-event-
driven-microservices-16f97e3ed066
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