

Spring Security in Action, Second Edition MEAP
V08

1. Copyright_2023_Manning_Publications
2. welcome
3. 1_Security_today
4. 2_Hello_Spring_Security
5. 3_Managing_users
6. 4_Managing_passwords
7. 5_A_web_app’s_security_begins_with_filters
8. 6_Implementing_authentication
9. 7_Configuring_endpoint-level_authorization:_Restricting_access

10. 8_Configuring_endpoint-level_authorization:_Applying_restrictions
11. 9_Configuring_Cross-Site_Request_Forgery_(CSRF)_protection
12. 10_Configuring_Cross-Origin_Resource_Sharing_(CORS)
13. 11_Implement_authorization_at_the_method_level
14. 12_Implement_filtering_at_the_method_level

MEAP Edition Manning Early Access Program Spring Security in Action,
Second Edition Version 8

Copyright 2023 Manning Publications
©Manning Publications Co. We welcome reader comments about anything in
the manuscript - other than typos and other simple mistakes. These will be
cleaned up during production of the book by copyeditors and proofreaders.
https://livebook.manning.com/#!/book/spring-security-in-action-second-
edition/discussion

For more information on this and other Manning titles go to

manning.com

welcome
Thank you for purchasing the MEAP of Spring Security in Action, 2nd
edition. With time, technologies evolve quickly. So does the Spring
ecosystem and Spring Security together with it. Spring is an ecosystem of
projects with a huge active community that continuously works to improve
the framework.

More and more developers are aware that security is an essential aspect that
needs to be considered from the very start of a software project. Since I wrote
the first edition of Spring Security in Action, essential things have changed in
how you write your Spring Security configurations. Clearly, you should
know these changes and apply them properly in apps.

By the end of the book, you will have covered the following topics:

Implementing authentication in a web app
Implementing authorization at the endpoint level in a web app
Implementing authorization at the method level in a web app
Implementing an OAuth 2 authorization server using the Spring Security
authorization server framework
Implementing OAuth 2 resource server and client.
Testing your Spring Security implementations

I have used Spring and Spring Security for many years with a great variety of
systems, from the technical perspective to the business domain. However,
teaching a complex subject such as Spring Security so it can be well
understood is not an easy task. This is why your feedback is invaluable and
will significantly help in the improvement of this book. Please let me know
what comments and suggestions you have in the liveBook Discussion forum.

Thank you again for your interest and for purchasing the MEAP!

-Perry Lea

In this book

Copyright 2023 Manning Publications welcome brief contents 1 Security
today 2 Hello Spring Security 3 Managing users 4 Managing passwords 5 A
web app’s security begins with filters 6 Implementing authentication 7
Configuring endpoint-level authorization: Restricting access 8 Configuring
endpoint-level authorization: Applying restrictions 9 Configuring Cross-Site
Request Forgery (CSRF) protection 10 Configuring Cross-Origin Resource
Sharing (CORS) 11 Implement authorization at the method level 12
Implement filtering at the method level

1 Security today
This chapter covers

What Spring Security is and what you can solve by using it
What security is for a software application
Why software security is essential and why you should care

Developers have become increasingly more aware of the need for secure
software, and are taking responsibility for security from the beginning of
software development.

Generally, as developers, we begin by learning that the purpose of an
application is to solve business issues. This purpose refers to something
where data could be processed somehow, persisted, and eventually displayed
to the user in a specific way as specified by some requirements. This
overview of software development, which is somehow imposed from the
early stages of learning these techniques, has the unfortunate disadvantage of
hiding practices that are also part of the process. While the application works
correctly from the user’s perspective and, in the end, it does what the user
expects in terms of functionality, there are lots of aspects hidden in the final
result.

Nonfunctional software qualities such as performance, scalability,
availability, and, of course, security, as well as others, can have an impact
over time, from short to long term. If not taken into consideration early on,
these qualities can dramatically affect the profitability of the application
owners. Moreover, the neglect of these considerations can also trigger
failures in other systems as well (for example, by the unwilling participation
in a distributed denial of service (DDoS) attack). The hidden aspects of
nonfunctional requirements (the fact that it’s much more challenging to see if
something’s missing or incomplete) makes these, however, more dangerous.

Figure 1.1 A user mainly thinks about functional requirements. Sometimes, you might see them
aware of performance, which is nonfunctional, but unfortunately, it’s quite unusual that a user
cares about security. Nonfunctional requirements tend to be more transparent than functional

ones.

There are multiple nonfunctional aspects to consider when working on a
software system. In practice, all of these are important and need to be treated
responsibly in the process of software development. In this book, we focus on
one of these: security. You’ll learn how to protect your application, step by
step, using Spring Security.

In this chapter, I want to show you the big picture of security-related
concepts. Throughout the book, we work on practical examples, and where
appropriate, I’ll refer back to the description I give in this chapter. Where
applicable, I’ll also provide you with more details. Here and there, you’ll find
references to other materials (books, articles, documentation) on specific

subjects that are useful for further reading.

1.1 Discovering Spring Security

In this section, we discuss the relationship between Spring Security and
Spring. It is important, first of all, to understand the link between the two
before starting to use those. If we go to the official website,
https://spring.io/projects/spring-security, we see Spring Security described as
a powerful and highly customizable framework for authentication and access
control. I would simply say it is a framework that enormously simplifies
applying (or “baking”) security for Spring applications.

Spring Security is the primary choice for implementing application-level
security in Spring applications. Generally, its purpose is to offer you a highly
customizable way of implementing authentication, authorization, and
protection against common attacks. Spring Security is an open-source
software released under the Apache 2.0 license. You can access its source
code on GitHub at https://github.com/spring-projects/spring-security/. I
highly recommend that you contribute to the project as well.

Note

You can use Spring Security for both standard web servlets and reactive
applications as well as non-web apps. In this book, we’ll use Spring Security
with the latest Java long-term supported, Spring, and Spring Boot versions
(Java 17, Spring 6, and Spring Boot 3).

I can guess that if you opened this book, you work on Spring applications,
and you are interested in securing those. Spring Security is most likely the
best choice for you. It’s the de facto solution for implementing application-
level security for Spring applications. Spring Security, however, doesn’t
automatically secure your application. And it’s not some kind of magic
panacea that guarantees a vulnerability-free app. Developers need to
understand how to configure and customize Spring Security around the needs
of their applications. How to do this depends on many factors, from the
functional requirements to the architecture.

Technically, applying security with Spring Security in Spring applications is
simple. You’ve already implemented Spring applications, so you know that
the framework’s philosophy starts with the management of the Spring
context. You define beans in the Spring context to allow the framework to
manage these based on the configurations you specify.

You use annotations to tell Spring what to do: expose endpoints, wrap
methods in transactions, intercept methods in aspects, and so on. The same is
true with Spring Security configurations, which is where Spring Security
comes into play. What you want is to use annotations, beans, and in general,
a Spring-fashioned configuration style comfortably when defining your
application-level security. In a Spring application, the behavior that you need
to protect is defined by methods.

To think about application-level security, you can consider your home and
the way you allow access to it. Do you place the key under the entrance rug?
Do you even have a key for your front door? The same concept applies to
applications, and Spring Security helps you develop this functionality. It’s a
puzzle that offers plenty of choices for building the exact image that
describes your system. You can choose to leave your house completely
unsecured, or you can decide not to allow everyone to enter your home.

The way you configure security can be straightforward like hiding your key
under the rug, or it can be more complicated like choosing a variety of alarm
systems, video cameras, and locks. In your applications, you have the same
options, but as in real life, the more complexity you add, the more expensive
it gets. In an application, this cost refers to the way security affects
maintainability and performance.

But how do you use Spring Security with Spring applications? Generally, at
the application level, one of the most encountered use cases is when you’re
deciding whether someone is allowed to perform an action or use some piece
of data. Based on configurations, you write Spring Security components that
intercept the requests and that ensure whoever makes the requests has
permission to access protected resources. The developer configures
components to do precisely what’s desired. If you mount an alarm system,
it’s you who should make sure it’s also set up for the windows as well as for
the doors. If you forget to set it up for the windows, it’s not the fault of the

alarm system that it doesn’t trigger when someone forces a window.

Other responsibilities of Spring Security components relate to data storage as
well as data transit between different parts of the systems. By intercepting
calls to these different parts, the components can act on the data. For
example, when data is stored, these components can apply encryption or
hashing algorithms to the data. The data encodings keep the data accessible
only to privileged entities. In a Spring application, the developer has to add
and configure a component to do this part of the job wherever it’s needed.
Spring Security provides us with a contract through which we know what the
framework requires to be implemented, and we write the implementation
according to the design of the application. We can say the same thing about
transiting data.

In real-world implementations, you’ll find cases in which two
communicating components don’t trust each other. How can the first know
that the second one sent a specific message and it wasn’t someone else?
Imagine you have a phone call with somebody to whom you have to give
private information. How do you make sure that on the other end is indeed a
valid individual with the right to get that data, and not somebody else? For
your application, this situation applies as well. Spring Security provides
components that allow you to solve these issues in several ways, but you
have to know which part to configure and then set it up in your system. This
way, Spring Security intercepts messages and makes sure to validate
communication before the application uses any kind of data sent or received.

Like any framework, one of the primary purposes of Spring is to allow you to
write less code to implement the desired functionality. And this is also what
Spring Security does. It completes Spring as a framework by helping you
write less code to perform one of the most critical aspects of an application—
security. Spring Security provides predefined functionality to help you avoid
writing boilerplate code or repeatedly writing the same logic from app to app.
But it also allows you to configure any of its components, thus providing
great flexibility. To briefly recap this discussion:

You use Spring Security to bake application-level security into your
applications in the “Spring” way. By this, I mean, you use annotations,
beans, the Spring Expression Language (SpEL), and so on.

Spring Security is a framework that lets you build application-level
security. However, it is up to you, the developer, to understand and use
Spring Security properly. Spring Security, by itself, does not secure an
application or sensitive data at rest or in flight.
This book provides you with the information you need to effectively use
Spring Security.

Alternatives to Spring Security

This book is about Spring Security, but as with any solution, I always prefer
to have a broad overview. Never forget to learn the alternatives that you have
for any option. One of the things I’ve learned over time is that there’s no
general right or wrong. “Everything is relative” also applies here!

You won’t find a lot of alternatives to Spring Security when it comes to
securing a Spring application. One alternative you could consider is Apache
Shiro (https://shiro.apache.org). It offers flexibility in configuration and is
easy to integrate with Spring and Spring Boot applications. Apache Shiro
sometimes makes a good alternative to the Spring Security approach.

If you’ve already worked with Spring Security, you’ll find using Apache
Shiro easy and comfortable to learn. It offers its own annotations and design
for web applications based on HTTP filters, which greatly simplify working
with web applications. Also, you can secure more than just web applications
with Shiro, from smaller command-line and mobile applications to large-
scale enterprise applications. And even if simple, it’s powerful enough to use
for a wide range of things from authentication and authorization to
cryptography and session management.

However, Apache Shiro could be too “light” for the needs of your
application. Spring Security is not just a hammer, but an entire set of tools. It
offers a larger scale of possibilities and is designed specifically for Spring
applications. Moreover, it benefits from a larger community of active
developers, and it is continuously enhanced.

1.2 What is software security?

Software systems manage large amounts of data, of which a significant part
can be considered sensitive, especially given the General Data Protection
Regulations (GDPR) requirements. Any information that you, as a user,
consider private is sensitive for your software application. Sensitive data can
include harmless information like a phone number, email address, or
identification number; although, we generally think more about data that is
riskier to lose, like your credit card details. The application should ensure that
there’s no chance for that information to be accessed, changed, or intercepted.
No parties other than the users for whom this data is intended should be able
to interact in any way with it. Broadly expressed, this is the meaning of
security.

NOTE

GDPR created a lot of buzz globally after its introduction in 2018. It
generally represents a set of European laws that refer to data protection and
gives people more control over their private data. GDPR applies to the
owners of systems that have users in Europe. The owners of such applications
risk significant penalties if they don’t respect the regulations imposed.

We apply security in layers, with each layer requiring a different approach.
Compare these layers to a protected castle (figure 1.2). A hacker needs to
bypass several obstacles to obtain the resources managed by the app. The
better you secure each layer, the lower the chance an individual with bad
intentions manages to access data or perform unauthorized operations.

Figure 1.2 The Dark Wizard (a hacker) has to bypass multiple obstacles (security layers) to steal
the Magic Sword (user resources) from the Princess (your application).

Security is a complex subject. In the case of a software system, security
doesn’t apply only at the application level. For example, for networking,
there are issues to be taken into consideration and specific practices to be
used, while for storage, it’s another discussion altogether. Similarly, there’s a
different philosophy in terms of deployment, and so on. Spring Security is a
framework that belongs to application-level security. In this section, you’ll
get a general picture of this security level and its implications.

"charitalics"Application-level security (figure 1.3) refers to everything that an

application should do to protect the environment it executes in, as well as the
data it processes and stores. Mind that this isn’t only about the data affected
and used by the application. An application might contain vulnerabilities that
allow a malicious individual to affect the entire system!

Figure 1.3 We apply security in layers, and each layer depends on those below it. In this book, we
discuss Spring Security, which is a framework used to implement application-level security at the
top-most level.

To be more explicit, let’s discuss using some practical cases. We’ll consider a
situation in which we deploy a system as in figure 1.4. This situation is
common for a system designed using a microservices architecture, especially
if you deploy it in multiple availability zones in the cloud.

Note

If you’re interested in implementing efficient cloud-oriented Spring apps, I
strongly recommend you Cloud Native Spring in Action by Thomas Vitale
(Manning, 2022). In this book, the author focuses on all the needed aspects a
professional needs to know for implementing well-done Spring apps for

cloud deployments.

With such microservices architectures, we can encounter various
vulnerabilities, so you should exercise caution. As mentioned earlier, security
is a cross-cutting concern that we design on multiple layers. It’s a best
practice when addressing the security concerns of one of the layers to assume
as much as possible that the above layer doesn’t exist. Think about the
analogy with the castle in figure 1.2. If you manage the “layer” with 30
soldiers, you want to prepare them to be as strong as possible. And you do
this even knowing that before reaching them, one would need to cross the
fiery bridge.

Figure 1.4 If a malicious user manages to get access to the virtual machine (VM) and there’s no
applied application-level security, a hacker can gain control of the other applications in the
system. If communication is done between two different availability zones (AZ), a malicious
individual will find it easier to intercept the messages. This vulnerability allows them to steal data
or to impersonate users.

With this in mind, let’s consider that an individual driven by bad intentions
would be able to log in to the virtual machine (VM) that’s hosting the first
application. Let’s also assume that the second application doesn’t validate the
requests sent by the first application. The attacker can then exploit this

vulnerability and control the second application by impersonating the first
one.

Also, consider that we deploy the two services to two different locations.
Then the attacker doesn’t need to log in to one of the VMs as they can
directly act in the middle of communications between the two applications.

NOTE

An availability zone (AZ in figure 1.4) in terms of cloud deployment is a
separate data center. This data center is situated far enough geographically
(and has other dependencies) from other data centers of the same region that,
if one availability zone fails, the probability that others are failing too is
minimal. In terms of security, an important aspect is that traffic between two
different data centers generally goes across a public network.

I referred earlier to authentication and authorization. These are present in
most applications. Through authentication, an application identifies a user (a
person or another application). The purpose of identifying these is to be able
to decide afterward what they should be allowed to do—that’s authorization.
I provide quite a lot of details on authentication and authorization, starting
with chapter 3 and continuing throughout the book.

In an application, you often find the need to implement authorization in
different scenarios. Consider another situation: most applications have
restrictions regarding the user accessing certain functionality. Achieving this
implies first the need to identify who creates an access to request for a
specific feature—that’s authentication. As well, we need to know their
privileges to allow the user to use that part of the system. As the system
becomes more complex, you’ll find different situations that require a specific
implementation related to authentication and authorization.

For example, what if you’d like to authorize a particular component of the
system against a subset of data or operations on behalf of the user? Let’s say
the printer needs access to read the user’s documents. Should you simply
share the credentials of the user with the printer? But that allows the printer
more rights than needed! And it also exposes the credentials of the user. Is
there a proper way to do this without impersonating the user? These are

essential questions, and the kind of questions you encounter when developing
applications: questions that we not only want to answer, but for which you’ll
see applications with Spring Security in this book.

Depending on the chosen architecture for the system, you’ll find
authentication and authorization at the level of the entire system, as well as
for any of the components. And as you’ll see further along in this book, with
Spring Security, you’ll sometimes prefer to use authorization even for
different tiers of the same component. In chapter 11, we’ll discuss more on
method security, which refers to this aspect. The design gets even more
complicated when you have a predefined set of roles and authorities.

I would also like to bring to your attention data storage. Data at rest adds to
the responsibility of the application. Your app shouldn’t store all its data in a
readable format. The application sometimes needs to keep the data either
encrypted with a private key or hashed. Secrets like credentials and private
keys can also be considered data at rest. These should be carefully stored,
usually in a secrets vault.

NOTE

We classify data as “at rest” or “in transition.” In this context, data at rest
refers to data in computer storage or, in other words, persisted data. Data in
transition applies to all the data that’s exchanged from one point to another.
Different security measures should, therefore, be enforced, depending on the
type of data.

Finally, an executing application must manage its internal memory as well. It
may sound strange, but data stored in the heap of the application can also
present vulnerabilities. Sometimes the class design allows the app to store
sensitive data like credentials or private keys for a long time. In such cases,
someone who has the privilege to make a heap dump could find these details
and then use them maliciously.

With a short description of these cases, I hope I’ve managed to provide you
with an overview of what we mean by application security, as well as the
complexity of this subject. Software security is a tangled subject. One who is
willing to become an expert in this field would need to understand (as well as

to apply) and then test solutions for all the layers that collaborate within a
system. In this book, however, we’ll focus only on presenting all the details
of what you specifically need to understand in terms of Spring Security.
You’ll find out where this framework applies and where it doesn’t, how it
helps, and why you should use it. Of course, we’ll do this with practical
examples that you should be able to adapt to your own unique use cases.

1.3 Why is security important?

The best way to start thinking about why security is important is from your
point of view as a user. Like anyone else, you use applications, and these
have access to your data. These can change your data, use it, or expose it.
Think about all the apps you use, from your email to your online banking
service accounts. How would you evaluate the sensitivity of the data that is
managed by all these systems? How about the actions that you can perform
using these systems? Similarly to data, some actions are more important than
others. You don’t care very much about some of those, while others are more
significant. Maybe for you, it’s not that important if someone would
somehow manage to read some of your emails. But I bet you’d care if
someone else could empty your bank accounts.

Once you’ve thought about security from your point of view, try to see a
more objective picture. The same data or actions might have another degree
of sensitivity to other people. Some might care a lot more than you if their
email is accessed and someone could read their messages. Your application
should make sure to protect everything to the desired degree of access. Any
leak that allows the use of data and functionalities, as well as the application,
to affect other systems is considered a vulnerability, and you need to solve it.

Not considering enough security comes with a price that I’m sure you aren’t
willing to pay. In general, it’s about money. But the cost can differ, and there
are multiple ways through which you can lose profitability. It isn’t only about
losing money from a bank account or using a service without paying for it.
These things indeed imply cost. The image of a brand or a company is also
valuable, and losing a good image can be expensive—sometimes even more
costly than the expenses directly resulting from the exploitation of a
vulnerability in the system! The trust that users have in your application is

one of its most valuable assets, and it can make the difference between
success or failure.

Here are a few fictitious examples. Think about how you would see these as a
user. How can these affect the organization responsible for the software?

A back-office application should manage the internal data of an
organization but, somehow, some information leaks out.
Users of a ride-sharing application observe that money is debited from
their accounts on behalf of trips that aren’t theirs.
After an update, users of a mobile banking application are presented
with transactions that belong to other users.

In the first situation, the organization using the software, as well as its
employees, can be affected. In some instances, the company could be liable
and could lose a significant amount of money. In this situation, users don’t
have the choice to change the application, but the organization can decide to
change the provider of their software.

In the second case, users will probably choose to change the service provider.
The image of the company developing the application would be dramatically
affected. The cost lost in terms of money in this case is much less than the
cost in terms of image. Even if payments are returned to the affected users,
the application will still lose some customers. This affects profitability and
can even lead to bankruptcy. And in the third case, the bank could see
dramatic consequences in terms of trust, as well as legal repercussions.

In most of these scenarios, investing in security is safer than what happens if
someone exploits a vulnerability in your system. For all of the examples, only
a small weakness could cause each outcome. For the first example, it could
be a broken authentication or a cross-site request forgery (CSRF). For the
second and third examples, it could be a lack of method access control. And
for all of these examples, it could be a combination of vulnerabilities.

Of course, from here we can go even further and discuss the security in
defense-related systems. If you consider money important, add human lives
to the cost! Can you even imagine what could be the result if a health care
system was affected? What about systems that control nuclear power? You

can reduce any risk by investing early in the security of your application and
by allocating enough time for security professionals to develop and test your
security mechanisms.

Note

The lessons learned from those who failed before you are that the cost of an
attack is usually higher than the investment cost of avoiding the vulnerability.

In the rest of this book, you’ll see examples of ways to apply Spring Security
to avoid situations like the ones presented. I guess there will never be enough
word written about how important security is. When you have to make a
compromise on the security of your system, try to estimate your risks
correctly.

1.4 What will you learn in this book?

This book offers a practical approach to learning Spring Security. Throughout
the rest of the book, we’ll deep dive into Spring Security, step by step,
proving concepts with simple to more complex examples. To get the most out
of this book, you should be comfortable with Java programming, as well as
with the basics of the Spring Framework. If you haven’t used the Spring
Framework or you don’t feel comfortable yet using its basics, I recommend
you first read "charitalics"Spring Start Here, another book I wrote (Manning,
2021). After reading that book, you can enhance your Spring knowledge with
"charitalics"Spring In Action, 6th edition, by Craig Walls (Manning, 2022) as
well as "charitalics"Spring Boot Up & Running by Mark Heckler (O’Reilly
Media, 2021).

In this book, you’ll learn

The architecture and basic components of Spring Security and how to
use it to secure your application
Authentication and authorization with Spring Security, including the
OAuth 2 and OpenID Connect flows, and how these apply to a
production-ready application
How to implement security with Spring Security in different layers of

your application
Different configuration styles and best practices for using those in your
project
Using Spring Security for reactive applications
Testing your security implementations

To make the learning process smooth for each described concept, we’ll work
on multiple simple examples.

When we finish, you’ll know how to apply Spring Security for the most
practical scenarios and understand where to use it and its best practices. I also
strongly recommend that you work on all the examples that accompany the
explanations.

1.5 Summary

Spring Security is the leading choice for securing Spring applications. It
offers a significant number of alternatives that apply to different styles
and architectures.
You should apply security in layers for your system, and for each layer,
you need to use different practices.
Security is a cross-cutting concern you should consider from the
beginning of a software project.
Usually, the cost of an attack is higher than the cost of investment in
avoiding vulnerabilities to begin with.
Sometimes the smallest mistakes can cause significant harm. For
example, exposing sensitive data through logs or error messages is a
common way to introduce vulnerabilities in your application.

2 Hello Spring Security
This chapter covers

Creating your first project with Spring Security
Designing simple functionalities using the basic components for
authentication and authorization
Underlying concept and how to use it in a given project
Applying the basic contracts and understanding how they relate to each
other
Writing custom implementations for the primary responsibilities
Overriding Spring Boot’s default configurations for Spring Security

Spring Boot appeared as an evolutionary stage for application development
with the Spring Framework. Instead of you needing to write all the
configurations, Spring Boot comes with some preconfigured, so you can
override only the configurations that don’t match your implementations. We
also call this approach "charitalics"convention-over-configuration. Spring
Boot is no longer a new concept and today we enjoy writing applications
using its third version.

Before Spring Boot, developers used to write dozens of lines of code again
and again for all the apps they had to create. This situation was less visible in
the past when we developed most architectures monolithically. With a
monolithic architecture, you only had to write such configurations once at the
beginning, and you rarely needed to touch them afterward. When service-
oriented software architectures evolved, we started to feel the pain of
boilerplate code that we needed to write for configuring each service. If you
find it amusing, you can check out chapter 3 from "charitalics"Spring in
Practice by Willie Wheeler with Joshua White (Manning, 2013). This chapter
of an older book describes writing a web application with Spring 3. In this
way, you’ll understand how many configurations you had to write for one
small one-page web application. Here’s the link for the chapter:
https://livebook.manning.com/book/spring-in-practice/chapter-3/

For this reason, with the development of recent apps and especially those for
microservices, Spring Boot became more and more popular. Spring Boot
provides autoconfiguration for your project and shortens the time needed for
the setup. I would say it comes with the appropriate philosophy for today’s
software development.

In this chapter, we’ll start with our first application that uses Spring Security.
For the apps that you develop with the Spring Framework, Spring Security is
an excellent choice for implementing application-level security. We’ll use
Spring Boot and discuss the defaults that are configured by convention, as
well as a brief introduction to overriding these defaults. Considering the
default configurations provides an excellent introduction to Spring Security,
one that also illustrates the concept of authentication.

Once we get started with the first project, we’ll discuss various options for
authentication in more detail. In chapters 3 through 6, we’ll continue with
more specific configurations for each of the different responsibilities that
you’ll see in this first example. You’ll also see different ways to apply those
configurations, depending on architectural styles. The steps we’ll approach in
the current chapter follow:

1. Create a project with only Spring Security and web dependencies to see
how it behaves if you don’t add any configuration. This way, you’ll
understand what you should expect from the default configuration for
authentication and authorization.

2. Change the project to add functionality for user management by
overriding the defaults to define custom users and passwords.

3. After observing that the application authenticates all the endpoints by
default, learn that this can be customized as well.

4. Apply different styles for the same configurations to understand best
practices.

2.1 Starting your first project

Let’s create the first project so that we have something to work on for the
first example. This project is a small web application, exposing a REST
endpoint. You’ll see how, without doing much, Spring Security secures this

endpoint using HTTP Basic authentication. HTTP Basic is a way a web app
authenticates a user by means of a set of credentials (username and password)
that the app gets in the header of the HTTP request.

Just by creating the project and adding the correct dependencies, Spring Boot
applies default configurations, including a username and a password when
you start the application.

Note

You have various alternatives to create Spring Boot projects. Some
development environments offer the possibility of creating the project
directly. If you need help with creating your Spring Boot projects, you can
find several ways described in the appendix. For even more details, I
recommend Mark Heckler’s Spring Boot Up & Running (O’Reilly Media,
2021) and Spring Boot in Practice (Manning, 2022) by Somnath Musib or
even Spring Start Here (Manning, 2021), another book I wrote.

The examples in this book refer to the book's companion source code. With
each example, I also specify the dependencies that you need to add to your
pom.xml file. You can, and I recommend that you do, download the projects
provided with the book and the available source code at
https://www.manning.com/downloads/2105. The projects will help you if you
get stuck with something. You can also use these to validate your final
solutions.

Note

The examples in this book are not dependent on the build tool you choose.
You can use either Maven or Gradle. But to be consistent, I built all the
examples with Maven.

The first project is also the smallest one. As mentioned, it’s a simple
application exposing a REST endpoint that you can call and then receive a
response as described in figure 2.1. This project is enough to learn the first
steps when developing an application with Spring Security and Spring Boot.
It presents the basics of the Spring Security architecture for authentication
and authorization.

Figure 2.1 Our first application uses HTTP Basic to authenticate and authorize the user against
an endpoint. The application exposes a REST endpoint at a defined path (/hello). For a successful
call, the response returns an HTTP 200 status message and a body. This example demonstrates
how the authentication and authorization configured by default with Spring Security works.

We begin learning Spring Security by creating an empty project and naming
it-ssia-ch2-ex1. (You’ll also find this example with the same name in the
projects provided with the book.) The only dependencies you need to write
for our first project are spring-boot-starter-web and spring-boot-
starter-security, as shown in listing 2.1. After creating the project, make
sure that you add these dependencies to your pom.xml file. The primary
purpose of working on this project is to see the behavior of a default
configured application with Spring Security. We also want to understand
which components are part of this default configuration, as well as their
purpose.

Listing 2.1 Spring Security dependencies for our first web app

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

We could directly start the application now. Spring Boot applies the default
configuration of the Spring context for us based on which dependencies we
add to the project. But we wouldn’t be able to learn much about security if

we don’t have at least one endpoint that’s secured. Let’s create a simple
endpoint and call it to see what happens. For this, we add a class to the empty
project, and we name this class HelloController. To do that, we add the
class in a package called controllers somewhere in the main namespace of
the Spring Boot project.

NOTE

Spring Boot scans for components only in the package (and its sub-packages)
that contains the class annotated with @SpringBootApplication. If you
annotate classes with any of the stereotype components in Spring, outside of
the main package, you must explicitly declare the location using the
@ComponentScan annotation.

In the following listing, the HelloController class defines a REST
controller and a REST endpoint for our example.

Listing 2.2 The HelloController class and a REST endpoint

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

The @RestController annotation registers the bean in the context and tells
Spring that the application uses this instance as a web controller. Also, the
annotation specifies that the application has to set the response body of the
HTTP response from the method’s return value. The @GetMapping annotation
maps the /hello path to the implemented method through a GET request.
Once you run the application, besides the other lines in the console, you
should see something that looks similar to this:

Using generated security password: 93a01cf0-794b-4b98-86ef-54860f36f7f3

Each time you run the application, it generates a new password and prints this
password in the console as presented in the previous code snippet. You must

use this password to call any of the application’s endpoints with HTTP Basic
authentication. First, let’s try to call the endpoint without using the
Authorization header:

curl http://localhost:8080/hello

NOTE

In this book, we use cURL to call the endpoints in all the examples. I
consider cURL to be the most readable solution. But if you prefer, you can
use a tool of your choice. For example, you might want to have a more
comfortable graphical interface. In this case, Postman is an excellent choice.
If the operating system you use does not have any of these tools installed, you
probably need to install them yourself.

And the response to the call:

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/hello"

}

The response status is HTTP 401 Unauthorized. We expected this result as
we didn’t use the proper credentials for authentication. By default, Spring
Security expects the default username (user) with the provided password (in
my case, the one starting with 93a01). Let’s try it again but now with the
proper credentials:

curl -u user:93a01cf0-794b-4b98-86ef-54860f36f7f3 http://localhost:8080/hello

The response to the call now is

Hello!

NOTE

The HTTP 401 Unauthorized status code is a bit ambiguous. Usually, it’s
used to represent a failed authentication rather than authorization. Developers

use it in the design of the application for cases like missing or incorrect
credentials. For a failed authorization, we’d probably use the 403 Forbidden
status. Generally, an HTTP 403 means that the server identified the caller of
the request, but they don’t have the needed privileges for the call that they are
trying to make.

Once we send the correct credentials, you can see in the body of the response
precisely what the HelloController method we defined earlier returns.

Calling the endpoint with HTTP Basic authentication

With cURL, you can set the HTTP basic username and password with the -u
flag. Behind the scenes, cURL encodes the string <username>:<password> in
Base64 and sends it as the value of the Authorization header prefixed with
the string Basic. And with cURL, it’s probably easier for you to use the -u
flag. But it’s also essential to know what the real request looks like. So, let’s
give it a try and manually create the Authorization header.

In the first step, take the <username>:<password> string and encode it with
Base64. When our application sends the call, we need to know how to form
the correct value for the Authorization header. You do this using the Base64
tool in a Linux console. You could also find a web page that encodes strings
in Base64, like https://www.base64encode.org. This snippet shows the
command in a Linux or a Git Bash console (the -n parameter means no
trailing new line should be added):

echo -n user:93a01cf0-794b-4b98-86ef-54860f36f7f3 | base64

Running this command returns this Base64-encoded string:

dXNlcjo5M2EwMWNmMC03OTRiLTRiOTgtODZlZi01NDg2MGYzNmY3ZjM=

You can now use the Base64-encoded value as the value of the
Authorization header for the call. This call should generate the same result
as the one using the -u option:

curl -H "Authorization: Basic dXNlcjo5M2EwMWNmMC03OTRiLTRiOTgtODZlZi01

[CA]NDg2MGYzNmY3ZjM=" localhost:8080/hello

The result of the call is

Hello!

There’re no significant security configurations to discuss with a default
project. We mainly use the default configurations to prove that the correct
dependencies are in place. It does little for authentication and authorization.
This implementation isn’t something we want to see in a production-ready
application. But the default project is an excellent example that you can use
for a start.

With this first example working, at least we know that Spring Security is in
place. The next step is to change the configurations such that these apply to
the requirements of our project. First, we’ll go deeper with what Spring Boot
configures in terms of Spring Security, and then we see how we can override
the configurations.

2.2 The big picture of Spring Security class design

In this section, we discuss the main actors in the overall architecture that take
part in the process of authentication and authorization. You need to know this
aspect because you’ll have to override these preconfigured components to fit
the needs of your application. I’ll start by describing how Spring Security
architecture for authentication and authorization works and then we’ll apply
that to the projects in this chapter. It would be too much to discuss these all at
once, so to minimize your learning efforts in this chapter, I’ll discuss the
high-level picture for each component. You’ll learn details about each in the
following chapters.

In section 2.1, you saw some logic executing for authentication and
authorization. We had a default user, and we got a random password each
time we started the application. We were able to use this default user and
password to call an endpoint. But where is all of this logic implemented? As
you probably know already, Spring Boot sets up some components for you,
depending on what dependencies you use (the convention-over-configuration
that we were discussing at the beginning of this chapter).

In figure 2.2, you can see the big picture of the main actors (components) in
the Spring Security architecture and the relationships among these. These
components have a preconfigured implementation in the first project. In this
chapter, I make you aware of what Spring Boot configures in your
application in terms of Spring Security. We’ll also discuss the relationships
among the entities that are part of the authentication flow presented.

Figure 2.2 The main components acting in the authentication process for Spring Security and the
relationships among these. This architecture represents the backbone of implementing
authentication with Spring Security. We’ll refer to it often throughout the book when discussing
different implementations for authentication and authorization.

In figure 2.2, you can see that

1. The authentication filter delegates the authentication request to the
authentication manager and, based on the response, configures the
security context.

2. The authentication manager uses the authentication provider to process
authentication.

3. The authentication provider implements the authentication logic.
4. The user details service implements user management responsibility,

which the authentication provider uses in the authentication logic.
5. The password encoder implements password management, which the

authentication provider uses in the authentication logic.
6. The security context keeps the authentication data after the

authentication process.

In the following paragraphs, I’ll discuss these autoconfigured beans:

UserDetailsService

PasswordEncoder

You can see these in figure 2.2 as well. The authentication provider uses
these beans to find users and to check their passwords. Let’s start with the
way you provide the needed credentials for authentication.

An object that implements a UserDetailsService interface with Spring
Security manages the details about users. Until now, we used the default
implementation provided by Spring Boot. This implementation only registers
the default credentials in the internal memory of the application. These
default credentials are “user” with a default password that’s a universally
unique identifier (UUID). This default password is randomly generated when
the Spring context is loaded (at the app startup). At this time, the application
writes the password to the console where you can see it. Thus, you can use it
in the example we just worked on in this chapter.

This default implementation serves only as a proof of concept and allows us
to see that the dependency is in place. The implementation stores the
credentials in-memory—the application doesn’t persist the credentials. This
approach is suitable for examples or proof of concepts, but you should avoid

it in a production-ready application.

And then we have the PasswordEncoder. The PasswordEncoder does two
things:

Encodes a password (usually using an encryption or a hashing
algorithm)
Verifies if the password matches an existing encoding

Even if it’s not as obvious as the UserDetailsService object, the
PasswordEncoder is mandatory for the Basic authentication flow. The
simplest implementation manages the passwords in plain text and doesn’t
encode these. We’ll discuss more details about the implementation of this
object in chapter 4. For now, you should be aware that a PasswordEncoder
exists together with the default UserDetailsService. When we replace the
default implementation of the UserDetailsService, we must also specify a
PasswordEncoder.

Spring Boot also chooses an authentication method when configuring the
defaults, HTTP Basic access authentication. It’s the most straightforward
access authentication method. Basic authentication only requires the client to
send a username and a password through the HTTP Authorization header.
In the value of the header, the client attaches the prefix Basic, followed by
the Base64 encoding of the string that contains the username and password,
separated by a colon (:).

NOTE

HTTP Basic authentication doesn’t offer confidentiality of the credentials.
Base64 is only an encoding method for the convenience of the transfer; it’s
not an encryption or hashing method. While in transit, if intercepted, anyone
can see the credentials. Generally, we don’t use HTTP Basic authentication
without at least HTTPS for confidentiality. You can read the detailed
definition of HTTP Basic in RFC 7617 (https://tools.ietf.org/html/rfc7617).

The AuthenticationProvider defines the authentication logic, delegating
the user and password management. A default implementation of the
AuthenticationProvider uses the default implementations provided for the

UserDetailsService and the PasswordEncoder. Implicitly, your application
secures all the endpoints. Therefore, the only thing that we need to do for our
example is to add the endpoint. Also, there’s only one user who can access
any of the endpoints, so we can say that there’s not much to do about
authorization in this case.

HTTP vs. HTTPS

You might have observed that in the examples I presented, I only use HTTP.
In practice, however, your applications communicate only over HTTPS. For
the examples we discuss in this book, the configurations related to Spring
Security aren’t different, whether we use HTTP or HTTPS. So that you can
focus on the examples related to Spring Security, I won’t configure HTTPS
for the endpoints in the examples. But, if you want, you can enable HTTPS
for any of the endpoints as presented in this sidebar.

There are several patterns to configure HTTPS in a system. In some cases,
developers configure HTTPS at the application level; in others, they might
use a service mesh or they could choose to set HTTPS at the infrastructure
level. With Spring Boot, you can easily enable HTTPS at the application
level, as you’ll learn in the next example in this sidebar.

In any of these configuration scenarios, you need a certificate signed by a
certification authority (CA). Using this certificate, the client that calls the
endpoint knows whether the response comes from the authentication server
and that nobody intercepted the communication. You can buy such a
certificate, if you need it. If you only need to configure HTTPS to test your
application, you can generate a self-signed certificate using a tool like
OpenSSL (https://www.openssl.org/). Let’s generate our self-signed
certificate and then configure it in the project:

openssl req -newkey rsa:2048 -x509 -keyout key.pem -out cert.pem -days 365

After running the openssl command in a terminal, you’ll be asked for a
password and details about your CA. Because it is only a self-signed
certificate for a test, you can input any data there; just make sure to remember
the password. The command outputs two files: key.pem (the private key) and
cert.pem (a public certificate). We’ll use these files further to generate our

self-signed certificate for enabling HTTPS. In most cases, the certificate is
the Public Key Cryptography Standards #12 (PKCS12). Less frequently, we
use a Java KeyStore (JKS) format. Let’s continue our example with a
PKCS12 format. For an excellent discussion on cryptography, I recommend
Real-World Cryptography by David Wong (Manning, 2020).

openssl pkcs12 -export -in cert.pem -inkey key.pem -out certificate.p12 -name "certificate"

The second command we use receives as input the two files generated by the
first command and outputs the self-signed certificate.

Mind that if you run these commands in a Bash shell on a Windows system,
you might need to add winpty before it, as shown in the next code snippet:

winpty openssl req -newkey rsa:2048 -x509 -keyout key.pem -out cert.pem -days 365

winpty openssl pkcs12 -export -in cert.pem -inkey key.pem -out certificate.p12 -name "certificate"

Finally, having the self-signed certificate, you can configure HTTPS for your
endpoints. Copy the certificate.p12 file into the resources folder of the Spring
Boot project and add the following lines to your application.properties file:

server.ssl.key-store-type=PKCS12

server.ssl.key-store=classpath:certificate.p12

server.ssl.key-store-password=12345 #A

The password (in my case, “12345”) was requested in the prompt after
running the command for generating the certificate. This is the reason why
you don’t see it in the command. Now, let’s add a test endpoint to our
application and then call it using HTTPS:

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

If you use a self-signed certificate, you should configure the tool you use to
make the endpoint call so that it skips testing the authenticity of the

certificate. If the tool tests the authenticity of the certificate, it won’t
recognize it as being authentic, and the call won’t work. With cURL, you can
use the -k option to skip testing the authenticity of the certificate:

curl -k -u user:93a01cf0-794b-4b98-86ef-54860f36f7f3 https://localhost:8080/hello

The response to the call is

Hello!

Remember that even if you use HTTPS, the communication between
components of your system isn’t bulletproof. Many times, I’ve heard people
say, “I’m not encrypting this anymore, I use HTTPS!” While helpful in
protecting communication, HTTPS is just one of the bricks of the security
wall of a system. Always treat the security of your system with responsibility
and take care of all the layers involved in it.

2.3 Overriding default configurations

Now that you know the defaults of your first project, it’s time to see how you
can replace these. You need to understand the options you have for
overriding the default components because this is the way you plug in your
custom implementations and apply security as it fits your application. And, as
you’ll learn in this section, the development process is also about how you
write configurations to keep your applications highly maintainable. With the
projects we’ll work on, you’ll often find multiple ways to override a
configuration. This flexibility can create confusion. I frequently see a mix of
different styles of configuring different parts of Spring Security in the same
application, which is undesirable. So this flexibility comes with a caution.
You need to learn how to choose from these, so this section is also about
knowing what your options are.

In some cases, developers choose to use beans in the Spring context for the
configuration. In other cases, they override various methods for the same
purpose. The speed with which the Spring ecosystem evolved is probably one
of the main factors that generated these multiple approaches. Configuring a
project with a mix of styles is not desirable as it makes the code difficult to
understand and affects the maintainability of the application. Knowing your

options and how to use them is a valuable skill, and it helps you better
understand how you should configure application-level security in a project.

In this section, you’ll learn how to configure a UserDetailsService and a
PasswordEncoder. These two components usually take part in authentication,
and most applications customize them depending on their requirements.
While we’ll discuss details about customizing them in chapters 3 and 4, it’s
essential to see how to plug in a custom implementation. The
implementations we use in this chapter are all provided by Spring Security.

2.3.1 Customizing user details management

The first component we talked about in this chapter was
UserDetailsService. As you saw, the application uses this component in the
process of authentication. In this section, you’ll learn to define a custom bean
of type UserDetailsService. We’ll do this to override the default one
configured by Spring Boot. As you’ll see in more detail in chapter 3, you
have the option to create your own implementation or to use a predefined one
provided by Spring Security. In this chapter, we aren’t going to detail the
implementations provided by Spring Security or create our own
implementation just yet. I’ll use an implementation provided by Spring
Security, named InMemoryUserDetailsManager. With this example, you’ll
learn how to plug this kind of object into your architecture.

NOTE

Interfaces in Java define contracts between objects. In the class design of the
application, we use interfaces to decouple objects that use one another. To
enforce this interface characteristic when discussing those in this book, I
mainly refer to them as contracts.

To show you the way to override this component with an implementation that
we choose, we’ll change what we did in the first example. Doing so allows us
to have our own managed credentials for authentication. For this example, we
don’t implement our class, but we use an implementation provided by Spring
Security.

In this example, we use the InMemoryUserDetailsManager implementation.
Even if this implementation is a bit more than just a UserDetailsService,
for now, we only refer to it from the perspective of a UserDetailsService.
This implementation stores credentials in memory, which can then be used by
Spring Security to authenticate a request.

NOTE

An InMemoryUserDetailsManager implementation isn’t meant for
production-ready applications, but it’s an excellent tool for examples or proof
of concepts. In some cases, all you need is users. You don’t need to spend the
time implementing this part of the functionality. In our case, we use it to
understand how to override the default UserDetailsService implementation.

We start by defining a configuration class. Generally, we declare
configuration classes in a separate package named config. Listing 2.3 shows
the definition for the configuration class. You can also find the example in
the project ssia-ch2-ex2.

NOTE

The examples in this book are designed for Java 17, which is the latest long-
term supported Java version. For this reason, I expect more and more
applications in production to use Java 17. So it makes a lot of sense to use
this version for the examples in this book. If you app uses Java 8, or Java 11 I
recommend you read as well the first edition of this book which was designed
for earlier Java, Spring Boot, and Spring Security versions.

Listing 2.3 The configuration class for the UserDetailsService bean

@Configuration #A

public class ProjectConfig {

 @Bean #B

 UserDetailsService userDetailsService() {

 return new InMemoryUserDetailsManager();

 }

}

We annotate the class with @Configuration. The @Bean annotation instructs
Spring to add the instance returned by the method to the Spring context. If
you execute the code exactly as it is now, you’ll no longer see the
autogenerated password in the console. The application now uses the instance
of type UserDetailsService you added to the context instead of the default
autoconfigured one. But, at the same time, you won’t be able to access the
endpoint anymore for two reasons:

You don’t have any users.
You don’t have a PasswordEncoder.

In figure 2.2, you can see that authentication depends on a PasswordEncoder
as well. Let’s solve these two issues step by step. We need to

1. Create at least one user who has a set of credentials (username and
password)

2. Add the user to be managed by our implementation of
UserDetailsService

3. Define a bean of the type PasswordEncoder that our application can use
to verify a given password with the one stored and managed by
UserDetailsService

First, we declare and add a set of credentials that we can use for
authentication to the instance of InMemoryUserDetailsManager. In chapter 3,
we’ll discuss more about users and how to manage them. For the moment,
let’s use a predefined builder to create an object of the type UserDetails.

Note

You’ll sometimes see that I use var in the code. Java 10 introduced the
reserved type name var, and you can only use it for local declarations. In this
book, I use it to make the syntax shorter, as well as to hide the variable type.
We’ll discuss the types hidden by var in later chapters, so you don’t have to
worry about that type until it’s time to analyze it properly. But using var
helps me take out details that are unnecessary for the moment to allow you
focus on the discussed topic.

When building the instance, we have to provide the username, the password,

and at least one authority. The "charitalics"authority is an action allowed for
that user, and we can use any string for this. In listing 2.4, I name the
authority read, but because we won’t use this authority for the moment, this
name doesn’t really matter.

Listing 2.4 Creating a user with the User builder class for UserDetailsService

@Configuration

public class ProjectConfig {

 @Bean

 UserDetailsService userDetailsService() {

 var user = User.withUsername("john") #A

 .password("12345") #A

 .authorities("read") #A

 .build(); #A

 return new InMemoryUserDetailsManager(user); #B

 }

}

Note

You’ll find the class User in the
org.springframework.security.core.userdetails package. It’s the builder
implementation we use to create the object to represent the user. Also, as a
general rule in this book, if I don’t present how to write a class in a code
listing, it means Spring Security provides it.

As presented in listing 2.4, we have to provide a value for the username, one
for the password, and at least one authority. But this is still not enough to
allow us to call the endpoint. We also need to declare a PasswordEncoder.

When using the default UserDetailsService, a PasswordEncoder is also
auto-configured. Because we overrode UserDetailsService, we also have
to declare a PasswordEncoder. Trying the example now, you’ll see an
exception when you call the endpoint. When trying to do the authentication,
Spring Security realizes it doesn’t know how to manage the password and
fails. The exception looks like that in the next code snippet, and you should
see it in your application’s console. The client gets back an HTTP 401

Unauthorized message and an empty response body:

curl -u john:12345 http://localhost:8080/hello

The result of the call in the app’s console is

java.lang.IllegalArgumentException:

There is no PasswordEncoder mapped for the id "null"

 at

org.springframework.security.crypto.password

[CA].DelegatingPasswordEncoder$

[CA]UnmappedIdPasswordEncoder.matches(DelegatingPasswordEncoder.java:289) ~[spring-security-crypto-6.0.0.jar:6.0.0]

 at org.springframework.security.crypto.password

[CA].DelegatingPasswordEncoder.matches(DelegatingPasswordEncoder.java:237) ~[spring-security-crypto-6.0.0.jar:6.0.0]

To solve this problem, we can add a PasswordEncoder bean in the context,
the same as we did with the UserDetailsService. For this bean, we use an
existing implementation of PasswordEncoder:

@Bean

public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

}

NOTE

The NoOpPasswordEncoder instance treats passwords as plain text. It doesn’t
encrypt or hash them. For matching, NoOpPasswordEncoder only compares
the strings using the underlying equals(Object o) method of the String
class. You shouldn’t use this type of PasswordEncoder in a production-ready
app. NoOpPasswordEncoder is a good option for examples where you don’t
want to focus on the hashing algorithm of the password. Therefore, the
developers of the class marked it as @Deprecated, and your development
environment will show its name with a strikethrough.

You can see the full code of the configuration class in the following listing.

Listing 2.5 The full definition of the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 UserDetailsService userDetailsService() {

 var user = User.withUsername("john")

 .password("12345")

 .authorities("read")

 .build();

 return new InMemoryUserDetailsManager(user);

 }

 @Bean #A

 PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

Let’s try the endpoint with the new user having the username John and the
password 12345:

curl -u john:12345 http://localhost:8080/hello

Hello!

NOTE

Knowing the importance of unit and integration tests, some of you might
already wonder why we don’t also write tests for our examples. You will
actually find the related Spring Security integration tests with all the
examples provided with this book. However, to help you focus on the
presented topics for each chapter, I have separated the discussion about
testing Spring Security integrations and detail this in chapter 18.

2.3.2 Applying authorization at the endpoint level

With new management for the users in place, as described in section 2.3.1,
we can now discuss the authentication method and configuration for
endpoints. You’ll learn plenty of things regarding authorization configuration
in chapters 7 through 12. But before diving into details, you must understand
the big picture. And the best way to achieve this is with our first example.
With default configuration, all the endpoints assume you have a valid user
managed by the application. Also, by default, your app uses HTTP Basic

authentication, but you can easily override this configuration.

As you’ll learn in the next chapters, HTTP Basic authentication doesn’t fit
into most application architectures. Sometimes we’d like to change it to
match our application. Similarly, not all endpoints of an application need to
be secured, and for those that do, we might need to choose different
authentication methods and authorization rules. To customize authentication
and authorization, we’ll need to define a bean of type SecurityFilterChain.
For this example, I’ll continue writing the code in the project ssia-ch2-ex3.

Listing 2.6 Defining a SecurityFilterChain bean

@Configuration

public class ProjectConfig {

 @Bean

 SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 return http.build();

 }

 // Omitted code

}

We can then alter the configuration using different methods of the
HttpSecurity object as shown in the next listing.

Listing 2.7 Using the HttpSecurity parameter to alter the configuration

@Configuration

public class ProjectConfig {

 @Bean

 SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults()); #A

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated() #B

);

 return http.build();

 }

 // Omitted code

}

The code in listing 2.7 configures endpoint authorization with the same
behavior as the default one. You can call the endpoint again to see that it
behaves the same as in the previous test from section 2.3.1. With a slight
change, you can make all the endpoints accessible without the need for
credentials. You’ll see how to do this in the following listing.

Listing 2.8 Using permitAll() to change the authorization configuration

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll() #A

);

 return http.build();

 }

 // Omitted code

}

Now, we can call the /hello endpoint without the need for credentials. The
permitAll() call in the configuration, together with the anyRequest()
method, makes all the endpoints accessible without the need for credentials:

curl http://localhost:8080/hello

And the response body of the call is

Hello!

In this example you used two configuration methods:

1. httpBasic() – which helped you configure the authentication approach.
Calling this method you instructed your app to accept HTTP Basic as an
authentication method.

2. authorizeHttpRequests() – which helped you configure the
authorization rules at the endpoint level. Calling this method you
instructed the app how it should authorize the requests received on
specific endpoints.

For both methods you had to use a Customizer object as a parameter.
Customizer is a contract you implement to define the customization for either
Spring Security element you configure: the authentication, the authorization,
or particular protection mechanisms such as CSRF or CORS (which will
discuss in chapters 9 and 10). The following snippet shows you the definition
of the Customizer interface. Observe that Customizer is a functional
interface (so we can use lambda expressions to implement it) and the
withDefaults() method I used in listing 2.8 is in fact just a Customizer
implementation that does nothing.

@FunctionalInterface

public interface Customizer<T> {

 void customize(T t);

 static <T> Customizer<T> withDefaults() {

 return (t) -> {

 };

 }

}

In earlier Spring Security versions you could apply configurations without a
Customizer object by using a chaining syntax, as shows in the following
code snippet. Observe that instead of providing a Customizer object to the
authorizeHttpRequests() method, the configuration just follows the
method’s call.

http.authorizeHttpRequests()

 .anyRequest().authenticated()

The reason this approach has been left behind is because a Customizer object
allows you more flexibility in moving the configuration elsewhere where
that’s needed. Sure, with simple examples, using lambda expressions is
comfortable. But in real-world apps the configurations can grow a lot. In such
cases, the ability to move these configurations in separate classes helps you
keep these configurations easier to maintain and test.

The purpose of this example is to give you a feeling for how to override
default configurations. We’ll get into the details about authorization in
chapters 7 through 10.

Note

In earlier versions of Spring Security, a security configuration class needed to
extend a class named WebSecurityConfigurerAdapter. We don’t use this
practice anymore today. In case your app uses an older codebase or you need
to upgrade an older codebase, I recommend you read also the first edition of
Spring Security in Action.

2.3.3 Configuring in different ways

One of the confusing aspects of creating configurations with Spring Security
is having multiple ways to configure the same thing. In this section, you’ll
learn alternatives for configuring UserDetailsService and
PasswordEncoder. It’s essential to know the options you have so that you can
recognize these in the examples that you find in this book or other sources
like blogs and articles. It’s also important that you understand how and when
to use these in your application. In further chapters, you’ll see different
examples that extend the information in this section.

Let’s take the first project. After we created a default application, we
managed to override UserDetailsService and PasswordEncoder by adding
new implementations as beans in the Spring context. Let’s find another way
of doing the same configurations for UserDetailsService and
PasswordEncoder.

We can directly use the SecurityFilterChain bean to set both the

UserDetailsService and the PasswordEncoder as shown in the following
listing. You can find this example in the project ssia-ch2-ex3.

Listing 2.9 Setting UserDetailsService with the SecurityFilterChain bean

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated()

);

 var user = User.withUsername("john") #A

 .password("12345")

 .authorities("read")

 .build();

 var userDetailsService = #B

 new InMemoryUserDetailsManager(user);

 http.userDetailsService(userDetailsService); #C

 return http.build();

}

 // Omitted code

}

In listing 2.9, you can observe that we declare the UserDetailsService in
the same way as in listing 2.5. The difference is that now this is done locally
inside the bean method creating the SecurityFilterChain. We also call the
userDetailsService() method from the HttpSecurity to register the
UserDetailsService instance. Listing 2.10 shows the full contents of the
configuration class.

Listing 2.10 Full definition of the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated()

);

 var user = User.withUsername("john") #A

 .password("12345")

 .authorities("read")

 .build();

 var userDetailsService = #B

 new InMemoryUserDetailsManager(user);

 http.userDetailsService(userDetailsService); #C

 return http.build();

 }

 @Bean

 PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

Any of these configuration options are correct. The first option, where we
add the beans to the context, lets you inject the values in another class where
you might potentially need them. But if you don’t need that for your case, the
second option would be equally good.

2.3.4 Defining custom authentication logic

As you’ve already observed, Spring Security components provide a lot of
flexibility, which offers us a lot of options when adapting these to the
architecture of our applications. Up to now, you’ve learned the purpose of
UserDetailsService and PasswordEncoder in the Spring Security
architecture. And you saw a few ways to configure them. It’s time to learn

that you can also customize the component that delegates to these, the
AuthenticationProvider.

Figure 2.3 The AuthenticationProvider implements the authentication logic. It receives the
request from the AuthenticationManager and delegates finding the user to a UserDetailsService,
and verifying the password to a PasswordEncoder.

Figure 2.3 shows the AuthenticationProvider, which implements the
authentication logic and delegates to the UserDetailsService and
PasswordEncoder for user and password management. So we could say that
with this section, we go one step deeper in the authentication architecture to

learn how to implement custom authentication logic with
AuthenticationProvider.

Because this is a first example, I only show you the brief picture so that you
better understand the relationship between the components in the architecture.
But we’ll detail more in chapters 3 through 6.

I recommend that you consider the responsibilities as designed in the Spring
Security architecture. This architecture is loosely coupled with fine-grained
responsibilities. That design is one of the things that makes Spring Security
flexible and easy to integrate in your applications. But depending on how you
make use of its flexibility, you could change the design as well. You have to
be careful with these approaches as they can complicate your solution. For
example, you could choose to override the default AuthenticationProvider
in a way in which you no longer need a UserDetailsService or
PasswordEncoder. With that in mind, the following listing shows how to
create a custom authentication provider. You can find this example in the
project ssia-ch2-ex4.

Listing 2.11 Implementing the AuthenticationProvider interface

@Component

public class CustomAuthenticationProvider

[CA]implements AuthenticationProvider {

 @Override

 public Authentication authenticate

 [CA](Authentication authentication) throws AuthenticationException {

 // authentication logic here

 }

 @Override

 public boolean supports(Class<?> authenticationType) {

 // type of the Authentication implementation here

 }

}

The authenticate(Authentication authentication) method represents all
the logic for authentication, so we’ll add an implementation like that in listing

2.12. I’ll explain the usage of the supports() method in detail in chapter 6.
For the moment, I recommend you take its implementation for granted. It’s
not essential for the current example.

Listing 2.12 Implementing the authentication logic

@Override

public Authentication authenticate(

 Authentication authentication)

 throws AuthenticationException {

 String username = authentication.getName(); #A

 String password = String.valueOf(

 authentication.getCredentials());

 if ("john".equals(username) && #B

 "12345".equals(password)) {

 return new UsernamePasswordAuthenticationToken(

 username,

 password,

 Arrays.asList());

 } else {

 throw new AuthenticationCredentialsNotFoundException("Error!");

 }

}

As you can see, here the condition of the if-else clause is replacing the
responsibilities of UserDetailsService and PasswordEncoder. Your are not
required to use the two beans, but if you work with users and passwords for
authentication, I strongly suggest you separate the logic of their management.
Apply it as the Spring Security architecture designed it, even when you
override the authentication implementation.

You might find it useful to replace the authentication logic by implementing
your own AuthenticationProvider. If the default implementation doesn’t fit
entirely into your application’s requirements, you can decide to implement
custom authentication logic. The full AuthenticationProvider
implementation looks like the one in the next listing.

Listing 2.13 The full implementation of the authentication provider

@Component

public class CustomAuthenticationProvider

 implements AuthenticationProvider {

 @Override

 public Authentication authenticate(

 Authentication authentication)

 throws AuthenticationException {

 String username = authentication.getName();

 String password = String.valueOf(authentication.getCredentials());

 if ("john".equals(username) &&

 "12345".equals(password)) {

 return new UsernamePasswordAuthenticationToken(

 username, password, Arrays.asList());

 } else {

 throw new AuthenticationCredentialsNotFoundException("Error!");

 }

 }

 @Override

 public boolean supports(Class<?> authenticationType) {

 return UsernamePasswordAuthenticationToken

 .class

 .isAssignableFrom(authenticationType);

 }

}

In the configuration class, you can register the AuthenticationProvider in
the configure(AuthenticationManagerBuilder auth) method shown in the
following -listing.

Listing 2.14 Registering the new implementation of AuthenticationProvider

@Configuration

public class ProjectConfig {

 private final CustomAuthenticationProvider authenticationProvider;

 public ProjectConfig(

 CustomAuthenticationProvider authenticationProvider) {

 this.authenticationProvider = authenticationProvider;

 }

 @Bean

 SecurityFilterChain configure(HttpSecurity http) throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authenticationProvider(authenticationProvider);

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated()

);

 return http.build();

 }

}

You can now call the endpoint, which is accessible by the only user
recognized, as defined by the authentication logic—John, with the password
12345:

curl -u john:12345 http://localhost:8080/hello

The response body is

Hello!

In chapter 6, you’ll learn more details about the AuthenticationProvider
and how to override its behavior in the authentication process. In that chapter,
we’ll also discuss the Authentication interface and its implementations,
such as the UserPasswordAuthenticationToken.

2.3.5 Using multiple configuration classes

In the previously implemented examples, we only used a configuration class.
It is, however, good practice to separate the responsibilities even for the
configuration classes. We need this separation because the configuration
starts to become more complex. In a production-ready application, you
probably have more declarations than in our first examples. You also might
find it useful to have more than one configuration class to make the project
readable.

It’s always a good practice to have only one class per each responsibility. For
this example, we can separate user management configuration from

authorization configuration. We do that by defining two configuration
classes: UserManagementConfig (defined in listing 2.15) and
WebAuthorizationConfig (defined in listing 2.16). You can find this
example in the project ssia-ch2-ex5.

Listing 2.15 Defining the configuration class for user and password management

@Configuration

public class UserManagementConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var userDetailsService = new InMemoryUserDetailsManager();

 var user = User.withUsername("john")

 .password("12345")

 .authorities("read")

 .build();

 userDetailsService.createUser(user);

 return userDetailsService;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

In this case, the UserManagementConfig class only contains the two beans
that are responsible for user management: UserDetailsService and
PasswordEncoder. The next listing shows this definition.

Listing 2.16 Defining the configuration class for authorization management

@Configuration

public class WebAuthorizationConfig {

 @Bean

 SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated()

);

 return http.build();

 }

}

Here the WebAuthorizationConfig class needs define a bean of type
SecurityFilterChain to configure the authentication and authorization
rules.

2.4 Summary

Spring Boot provides some default configurations when you add Spring
Security to the dependencies of the application.
You implement the basic components for authentication and
authorization: UserDetailsService, PasswordEncoder, and
AuthenticationProvider.
You can define users with the User class. A user should at least have a
username, a password, and an authority. Authorities are actions that you
allow a user to do in the context of the application.
A simple implementation of a UserDetailsService that Spring Security
provides is InMemoryUserDetailsManager. You can add users to such
an instance of UserDetailsService to manage the user in the
application’s memory.
The NoOpPasswordEncoder is an implementation of the
PasswordEncoder contract that uses passwords in cleartext. This
implementation is good for learning examples and (maybe) proof of
concepts, but not for production-ready applications.
You can use the AuthenticationProvider contract to implement
custom authentication logic in the application.
There are multiple ways to write configurations, but in a single
application, you should choose and stick to one approach. This helps to
make your code cleaner and easier to understand.

3 Managing users
This chapter covers

Describing a user with the UserDetails interface
Using the UserDetailsService in the authentication flow
Creating a custom implementation of UserDetailsService
Creating a custom implementation of UserDetailsManager
Using the JdbcUserDetailsManager in the authentication flow

One of my colleagues from the university cooks pretty well. He’s not a chef
in a fancy restaurant, but he’s quite passionate about cooking. One day, when
sharing thoughts in a discussion, I asked him about how he manages to
remember so many recipes. He told me that’s easy. “You don’t have to
remember the whole recipe, but the way basic ingredients match with each
other. It’s like some real-world contracts that tell you what you can mix or
should not mix. Then for each recipe, you only remember some tricks.”

This analogy is similar to the way architectures work. With any robust
framework, we use contracts to decouple the implementations of the
framework from the application built upon it. With Java, we use interfaces to
define the contracts. A programmer is similar to a chef, knowing how the
ingredients “work” together to choose just the right “implementation.” The
programmer knows the framework’s abstractions and uses those to integrate
with it.

This chapter is about understanding in detail one of the fundamental roles
you encountered in the first example we worked on in chapter 2—the
UserDetailsService. Along with the UserDetailsService, we’ll discuss the
following interfaces (contracts):

UserDetails, which describes the user for Spring Security.
GrantedAuthority, which allows us to define actions that the user can
execute.
UserDetailsManager, which extends the UserDetailsService contract.

Beyond the inherited behavior, it also describes actions like creating a
user and modifying or deleting a user’s password.

From chapter 2, you already have an idea of the roles of the
UserDetailsService and the PasswordEncoder in the authentication process.
But we only discussed how to plug in an instance defined by you instead of
using the default one configured by Spring Boot. We have more details to
discuss:

What implementations are provided by Spring Security and how to use
them
How to define a custom implementation for contracts and when to do so
Ways to implement interfaces that you find in real-world applications
Best practices for using these interfaces

The plan is to start with how Spring Security understands the user definition.
For this, we’ll discuss the UserDetails and GrantedAuthority contracts.
Then we’ll detail the UserDetailsService and how UserDetailsManager
extends this contract. You’ll apply implementations for these interfaces (like
InMemoryUserDetailsManager, JdbcUserDetailsManager, and
LdapUserDetailsManager). When these implementations aren’t a good fit for
your system, you’ll write a custom implementation.

3.1 Implementing authentication in Spring Security

In the previous chapter, we got started with Spring Security. In the first
example, we discussed how Spring Boot defines some defaults that define
how a new application initially works. You have also learned how to override
these defaults using various alternatives that we often find in apps. But we
only considered the surface of these so that you have an idea of what we’ll be
doing. In this chapter, and chapters 4 and 5, we’ll discuss these interfaces in
more detail, together with different implementations and where you might
find them in real-world applications.

Figure 3.1 presents the authentication flow in Spring Security. This
architecture is the backbone of the authentication process as implemented by
Spring Security. It’s really important to understand it because you’ll rely on it

in any Spring Security implementation. You’ll observe that we discuss parts
of this architecture in almost all the chapters of this book. You’ll see it so
often that you’ll probably learn it by heart, which is good. If you know this
architecture, you’re like a chef who knows their ingredients and can put
together any recipe.

In figure 3.1, the shaded boxes represent the components that we start with:
the UserDetailsService and the PasswordEncoder. These two components
focus on the part of the flow that I often refer to as “the user management
part.” In this chapter, the UserDetailsService and the PasswordEncoder are
the components that deal directly with user details and their credentials. We’ll
discuss the PasswordEncoder in detail in chapter 4.

Figure 3.1 Spring Security’s authentication flow. The AuthenticationFilter intercepts the
request and delegates the authentication responsibility to the AuthenticationManager. To
implement the authentication logic, the AuthenticationManager uses an authentication provider.
To check the username and the password, the AuthenticationProvider uses a
UserDetailsService and a PasswordEncoder.

As part of user management, we use the UserDetailsService and
UserDetailsManager interfaces. The UserDetailsService is only
responsible for retrieving the user by username. This action is the only one
needed by the framework to complete authentication. The
UserDetailsManager adds behavior that refers to adding, modifying, or
deleting the user, which is a required functionality in most applications. The
separation between the two contracts is an excellent example of the
"charitalics"interface segregation principle. Separating the interfaces allows
for better flexibility because the framework doesn’t force you to implement
behavior if your app doesn’t need it. If the app only needs to authenticate the

users, then implementing the UserDetailsService contract is enough to
cover the desired functionality. To manage the users, UserDetailsService
and the UserDetailsManager components need a way to represent them.

Spring Security offers the UserDetails contract, which you have to
implement to describe a user in the way the framework understands. As
you’ll learn in this chapter, in Spring Security a user has a set of privileges,
which are the actions the user is allowed to do. We’ll work a lot with these
privileges in chapters 7 through 12 when discussing authorization. But for
now, Spring Security represents the actions that a user can do with the
GrantedAuthority interface. We often call these "charitalics"authorities, and
a user has one or more authorities. In figure 3.2, you find a representation of
the relationship between the components of the user management part of the
authentication flow.

Figure 3.2 Dependencies between the components involved in user management. The
UserDetailsService returns the details of a user, finding the user by its name. The UserDetails
contract describes the user. A user has one or more authorities, represented by the
GrantedAuthority interface. To add operations such as create, delete, or change password to the
user, the UserDetailsManager contract extends UserDetailsService to add operations.

Understanding the links between these objects in the Spring Security
architecture and ways to implement them gives you a wide range of options
to choose from when working on applications. Any of these options could be
the right puzzle piece in the app that you are working on, and you need to
make your choice wisely. But to be able to choose, you first need to know
what you can choose from.

3.2 Describing the user

In this section, you’ll learn how to describe the users of your application such
that Spring Security understands them. Learning how to represent users and
make the framework aware of them is an essential step in building an
authentication flow. Based on the user, the application makes a decision—a
call to a certain functionality is or isn’t allowed. To work with users, you first
need to understand how to define the prototype of the user in your
application. In this section, I describe by example how to establish a blueprint
for your users in a Spring Security application.

For Spring Security, a user definition should respect the UserDetails
contract. The UserDetails contract represents the user as understood by
Spring Security. The class of your application that describes the user has to
implement this interface, and in this way, the framework understands it.

3.2.1 Describing users with the UserDetails contract

In this section, you’ll learn how to implement the UserDetails interface to
describe the users in your application. We’ll discuss the methods declared by
the UserDetails contract to understand how and why we implement each of
them. Let’s start first by looking at the interface as presented in the following
listing.

Listing 3.1 The UserDetails interface

public interface UserDetails extends Serializable {

 String getUsername(); #A

 String getPassword();

 Collection<? extends GrantedAuthority>

 [CA]getAuthorities(); #B

 boolean isAccountNonExpired(); #C

 boolean isAccountNonLocked();

 boolean isCredentialsNonExpired();

 boolean isEnabled();

}

The getUsername() and getPassword() methods return, as you’d expect, the
username and the password. The app uses these values in the process of
authentication, and these are the only details related to authentication from
this contract. The other five methods all relate to authorizing the user for
accessing the application’s resources.

Generally, the app should allow a user to do some actions that are meaningful
in the application’s context. For example, the user should be able to read
data, write data, or delete data. We say a user has or hasn’t the privilege to
perform an action, and an authority represents the privilege a user has. We
implement the getAuthorities() method to return the group of authorities
granted for a user.

NOTE

As you’ll learn in chapter 6, Spring Security uses authorities to refer either to
fine-grained privileges or to roles, which are groups of privileges. To make
your reading more effortless, in this book, I refer to the fine-grained
privileges as authorities.

Furthermore, as seen in the UserDetails contract, a user can

Let the account expire
Lock the account
Let the credentials expire
Disable the account

If you choose to implement these user restrictions in your application’s logic,
you need to override the following methods: isAccountNonExpired(),
isAccountNonLocked(), isCredentialsNonExpired(), isEnabled(), such
that those needing to be enabled return true. Not all applications have
accounts that expire or get locked with certain conditions. If you do not need
to implement these functionalities in your application, you can simply make

these four methods return true.

NOTE

The names of the last four methods in the UserDetails interface may sound
strange. One could argue that these are not wisely chosen in terms of clean
coding and maintainability. For example, the name isAccountNonExpired()
looks like a double negation, and at first sight, might create confusion. But
analyze all four method names with attention. These are named such that they
all return false for the case in which the authorization should fail and true
otherwise. This is the right approach because the human mind tends to
associate the word “false” with negativity and the word “true” with positive
scenarios.

3.2.2 Detailing on the GrantedAuthority contract

As you observed in the definition of the UserDetails interface in section
3.2.1, the actions granted for a user are called authorities. In chapters 7
through 12, we’ll write authorization configurations based on these user
authorities. So it’s essential to know how to define them.

The authorities represent what the user can do in your application. Without
authorities, all users would be equal. While there are simple applications in
which the users are equal, in most practical scenarios, an application defines
multiple kinds of users. An application might have users that can only read
specific information, while others also can modify the data. And you need to
make your application differentiate between them, depending on the
functional requirements of the application, which are the authorities a user
needs. To describe the authorities in Spring Security, you use the
GrantedAuthority interface.

Before we discuss implementing UserDetails, let’s understand the
GrantedAuthority interface. We use this interface in the definition of the
user details. It represents a privilege granted to the user. A user must have at
least one authority. Here’s the implementation of the GrantedAuthority
definition:

public interface GrantedAuthority extends Serializable {

 String getAuthority();

}

To create an authority, you only need to find a name for that privilege so you
can refer to it later when writing the authorization rules. For example, a user
can read the records managed by the application or delete them. You write
the authorization rules based on the names you give to these actions.

In this chapter, we’ll implement the getAuthority() method to return the
authority’s name as a String. The GrantedAuthority interface has only one
abstract method, and in this book, you often find examples in which we use a
lambda expression for its implementation. Another possibility is to use the
SimpleGrantedAuthority class to create authority instances. The
SimpleGrantedAuthority class offers a way to create immutable instances of
the type GrantedAuthority. You provide the authority name when building
the instance. In the next code snippet, you’ll find two examples of
implementing a GrantedAuthority. Here we make use of a lambda
expression and then use the SimpleGrantedAuthority class:

GrantedAuthority g1 = () -> "READ";

GrantedAuthority g2 = new SimpleGrantedAuthority("READ");

3.2.3 Writing a minimal implementation of UserDetails

In this section, you’ll write your first implementation of the UserDetails
contract. We start with a basic implementation in which each method returns
a static value. Then we change it to a version that you’ll more likely find in a
practical scenario, and one that allows you to have multiple and different
instances of users. Now that you know how to implement the UserDetails
and GrantedAuthority interfaces, we can write the simplest definition of a
user for an application.

With a class named DummyUser, let’s implement a minimal description of a
user as in listing 3.2. I use this class mainly to demonstrate implementing the
methods for the UserDetails contract. Instances of this class always refer to
only one user, "bill", who has the password "12345" and an authority
named "READ".

Listing 3.2 The DummyUser class

public class DummyUser implements UserDetails {

 @Override

 public String getUsername() {

 return "bill";

 }

 @Override

 public String getPassword() {

 return "12345";

 }

 // Omitted code

}

The class in the listing 3.2 implements the UserDetails interface and needs
to implement all its methods. You find here the implementation of
getUsername() and getPassword(). In this example, these methods only
return a fixed value for each of the properties.

Next, we add a definition for the list of authorities. Listing 3.3 shows the
implementation of the getAuthorities() method. This method returns a
collection with only one implementation of the GrantedAuthority interface.

Listing 3.3 Implementation of the getAuthorities() method

public class DummyUser implements UserDetails {

 // Omitted code

 @Override

 public Collection<? extends GrantedAuthority> getAuthorities() {

 return List.of(() -> "READ");

 }

 // Omitted code

}

Finally, you have to add an implementation for the last four methods of the
UserDetails interface. For the DummyUser class, these always return true,

which means that the user is forever active and usable. You find the examples
in the following listing.

Listing 3.4 Implementation of the last four UserDetails interface methods

public class DummyUser implements UserDetails {

 // Omitted code

 @Override

 public boolean isAccountNonExpired() {

 return true;

 }

 @Override

 public boolean isAccountNonLocked() {

 return true;

 }

 @Override

 public boolean isCredentialsNonExpired() {

 return true;

 }

 @Override

 public boolean isEnabled() {

 return true;

 }

 // Omitted code

}

Of course, this minimal implementation means that all instances of the class
represent the same user. It’s a good start to understanding the contract, but
not something you would do in a real application. For a real application, you
should create a class that you can use to generate instances that can represent
different users. In this case, your definition would at least have the username
and the password as attributes in the class, as shown in the next listing.

Listing 3.5 A more practical implementation of the UserDetails interface

public class SimpleUser implements UserDetails {

 private final String username;

 private final String password;

 public SimpleUser(String username, String password) {

 this.username = username;

 this.password = password;

 }

 @Override

 public String getUsername() {

 return this.username;

 }

 @Override

 public String getPassword() {

 return this.password;

 }

 // Omitted code

}

3.2.4 Using a builder to create instances of the UserDetails type

Some applications are simple and don’t need a custom implementation of the
UserDetails interface. In this section, we take a look at using a builder class
provided by Spring Security to create simple user instances. Instead of
declaring one more class in your application, you quickly obtain an instance
representing your user with the User builder class.

The User class from the org.springframework.security.core.userdetails
package is a simple way to build instances of the UserDetails type. Using
this class, you can create immutable instances of UserDetails. You need to
provide at least a username and a password, and the username shouldn’t be
an empty string. Listing 3.6 demonstrates how to use this builder. Building
the user in this way, you don’t need to have a custom implementation of the
UserDetails contract.

Listing 3.6 Constructing a user with the User builder class

UserDetails u = User.withUsername("bill")

 .password("12345")

 .authorities("read", "write")

 .accountExpired(false)

 .disabled(true)

 .build();

With the previous listing as an example, let’s go deeper into the anatomy of
the User builder class. The User.withUsername(String username) method
returns an instance of the builder class UserBuilder nested in the User class.
Another way to create the builder is by starting from another instance of
UserDetails. In listing 3.7, the first line constructs a UserBuilder, starting
with the username given as a string. Afterward, we demonstrate how to create
a builder beginning with an already existing instance of UserDetails.

Listing 3.7 Creating the User.UserBuilder instance

User.UserBuilder builder1 =

[CA]User.withUsername("bill"); #A

UserDetails u1 = builder1

 .password("12345")

 .authorities("read", "write")

 .passwordEncoder(p -> encode(p)) #B

 .accountExpired(false)

 .disabled(true)

 .build(); #C

User.UserBuilder builder2 = User.withUserDetails(u); #D

UserDetails u2 = builder2.build();

You can see with any of the builders defined in listing 3.7 that you can use
the builder to obtain a user represented by the UserDetails contract. At the
end of the build pipeline, you call the build() method. It applies the function
defined to encode the password if you provide one, constructs the instance of
UserDetails, and returns it.

NOTE

Mind that the password encoder is given here as a Function<String,
String> and not in the shape of the PasswordEncoder interface provided by
Spring Security. This function’s only responsibility is to transform a

password in a given encoding. In the next section, we’ll discuss in detail the
PasswordEncoder contract from Spring Security that we used in chapter 2.
We’ll discuss the PasswordEncoder contract in more detail in chapter 4.

3.2.5 Combining multiple responsibilities related to the user

In the previous section, you learned how to implement the UserDetails
interface. In real-world scenarios, it’s often more complicated. In most cases,
you find multiple responsibilities to which a user relates. And if you store
users in a database, and then in the application, you would need a class to
represent the persistence entity as well. Or, if you retrieve users through a
web service from another system, then you would probably need a data
transfer object to represent the user instances. Assuming the first, a simple
but also typical case, let’s consider we have a table in an SQL database in
which we store the users. To make the example shorter, we give each user
only one authority. The following listing shows the entity class that maps the
table.

Listing 3.8 Defining the JPA User entity class

@Entity

public class User {

 @Id

 private Long id;

 private String username;

 private String password;

 private String authority;

 // Omitted getters and setters

}

If you make the same class also implement the Spring Security contract for
user details, the class becomes more complicated. What do you think about
how the code looks in the next listing? From my point of view, it is a mess. I
would get lost in it.

Listing 3.9 The User class has two responsibilities

@Entity

public class User implements UserDetails {

 @Id

 private int id;

 private String username;

 private String password;

 private String authority;

 @Override

 public String getUsername() {

 return this.username;

 }

 @Override

 public String getPassword() {

 return this.password;

 }

 public String getAuthority() {

 return this.authority;

 }

 @Override

 public Collection<? extends GrantedAuthority> getAuthorities() {

 return List.of(() -> authority);

 }

 // Omitted code

}

The class contains JPA annotations, getters, and setters, of which both
getUsername() and getPassword()override the methods in the UserDetails
contract. It has a getAuthority() method that returns a String, as well as a
getAuthorities() method that returns a Collection. The getAuthority()
method is just a getter in the class, while getAuthorities() implements the
method in the UserDetails interface. And things get even more complicated
when adding relationships to other entities. Again, this code isn’t friendly at
all!

How can we write this code to be cleaner? The root of the muddy aspect of
the previous code example is a mix of two responsibilities. While it’s true
that you need both in the application, in this case, nobody says that you have

to put these into the same class. Let’s try to separate those by defining a
separate class called SecurityUser, which decorates the User class. As
listing 3.11 shows, the SecurityUser class implements the UserDetails
contract and uses that to plug our user into the Spring Security architecture.
The User class has only its JPA entity responsibility remaining.

Listing 3.10 Implementing the User class only as a JPA entity

@Entity

public class User {

 @Id

 private int id;

 private String username;

 private String password;

 private String authority;

 // Omitted getters and setters

}

The User class in listing 3.10 has only its JPA entity responsibility remaining,
and, thus, becomes more readable. If you read this code, you can now focus
exclusively on details related to persistence, which are not important from the
Spring Security perspective. In the next listing, we implement the
SecurityUser class to wrap the User entity.

Listing 3.11 The SecurityUser class implements the UserDetails contract

public class SecurityUser implements UserDetails {

 private final User user;

 public SecurityUser(User user) {

 this.user = user;

 }

 @Override

 public String getUsername() {

 return user.getUsername();

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public Collection<? extends GrantedAuthority> getAuthorities() {

 return List.of(() -> user.getAuthority());

 }

 // Omitted code

}

As you can observe, we use the SecurityUser class only to map the user
details in the system to the UserDetails contract understood by Spring
Security. To mark the fact that the SecurityUser makes no sense without a
User entity, we make the field final. You have to provide the user through the
constructor. The SecurityUser class decorates the User entity class and adds
the needed code related to the Spring Security contract without mixing the
code into a JPA entity, thereby implementing multiple different tasks.

NOTE

You can find different approaches to separate the two responsibilities. I don’t
want to say that the approach I present in this section is the best or the only
one. Usually, the way you choose to implement the class design varies a lot
from one case to another. But the main idea is the same: avoid mixing
responsibilities and try to write your code as decoupled as possible to
increase the maintainability of your app.

3.3 Instructing Spring Security on how to manage
users

In the previous section, you implemented the UserDetails contract to
describe users such that Spring Security understands them. But how does
Spring Security manage users? Where are they taken from when comparing
credentials, and how do you add new users or change existing ones? In
chapter 2, you learned that the framework defines a specific component to
which the authentication process delegates user management: the

UserDetailsService instance. We even defined a UserDetailsService to
override the default implementation provided by Spring Boot.

In this section, we experiment with various ways of implementing the
UserDetailsService class. You’ll understand how user management works
by implementing the responsibility described by the UserDetailsService
contract in our example. After that, you’ll find out how the
UserDetailsManager interface adds more behavior to the contract defined by
the UserDetailsService. At the end of this section, we’ll use the provided
implementations of the UserDetailsManager interface offered by Spring
Security. We’ll write an example project where we’ll use one of the best
known implementations provided by Spring Security, the
JdbcUserDetailsManager class. Learning this, you’ll know how to tell
Spring Security where to find users, which is essential in the authentication
flow.

3.3.1 Understanding the UserDetailsService contract

In this section, you’ll learn about the UserDetailsService interface
definition. Before understanding how and why to implement it, you must first
understand the contract. It is time to detail more on UserDetailsService and
how to work with implementations of this component. The
UserDetailsService interface contains only one method, as follows:

public interface UserDetailsService {

 UserDetails loadUserByUsername(String username)

 throws UsernameNotFoundException;

}

The authentication implementation calls the loadUserByUsername(String
username) method to obtain the details of a user with a given username
(figure 3.3). The username is, of course, considered unique. The user returned
by this method is an implementation of the UserDetails contract. If the
username doesn’t exist, the method throws a UsernameNotFoundException.

Figure 3.3 The AuthenticationProvider is the component that implements the authentication
logic and uses the UserDetailsService to load details about the user. To find the user by
username, it calls the loadUserByUsername(String username) method.

NOTE

The UsernameNotFoundException is a RuntimeException. The throws
clause in the UserDetailsService interface is only for documentation
purposes. The UsernameNotFoundException inherits directly from the type
AuthenticationException, which is the parent of all the exceptions related
to the process of authentication. AuthenticationException inherits further
the RuntimeException class.

3.3.2 Implementing the UserDetailsService contract

In this section, we work on a practical example to demonstrate the
implementation of the UserDetailsService. Your application manages
details about credentials and other user aspects. It could be that these are
stored in a database or handled by another system that you access through a
web service or by other means (figure 3.3). Regardless of how this happens in
your system, the only thing Spring Security needs from you is an

implementation to retrieve the user by username.

In the next example, we write a UserDetailsService that has an in-memory
list of users. In chapter 2, you used a provided implementation that does the
same thing, the InMemoryUserDetailsManager. Because you are already
familiar with how this implementation works, I have chosen a similar
functionality, but this time to implement on our own. We provide a list of
users when we create an instance of our UserDetailsService class. You can
find this example in the project ssia-ch3-ex1. In the package named model,
we define the UserDetails as presented by the following listing.

Listing 3.12 The implementation of the UserDetails interface

public class User implements UserDetails {

 private final String username; #A

 private final String password;

 private final String authority; #B

 public User(String username, String password, String authority) {

 this.username = username;

 this.password = password;

 this.authority = authority;

 }

 @Override

 public Collection<? extends GrantedAuthority> getAuthorities() {

 return List.of(() -> authority); #C

 }

 @Override

 public String getPassword() {

 return password;

 }

 @Override

 public String getUsername() {

 return username;

 }

 @Override

 public boolean isAccountNonExpired() { #D

 return true;

 }

 @Override

 public boolean isAccountNonLocked() {

 return true;

 }

 @Override

 public boolean isCredentialsNonExpired() {

 return true;

 }

 @Override

 public boolean isEnabled() {

 return true;

 }

}

In the package named services, we create a class called
InMemoryUserDetailsService. The following listing shows how we
implement this class.

Listing 3.13 The implementation of the UserDetailsService interface

public class InMemoryUserDetailsService implements UserDetailsService {

 private final List<UserDetails> users; #A

 public InMemoryUserDetailsService(List<UserDetails> users) {

 this.users = users;

 }

 @Override

 public UserDetails loadUserByUsername(String username)

 throws UsernameNotFoundException {

 return users.stream()

 .filter(#B

 u -> u.getUsername().equals(username)

)

 .findFirst() #C

 .orElseThrow(#D

 () -> new UsernameNotFoundException("User not found")

);

 }

}

The loadUserByUsername(String username) method searches the list of
users for the given username and returns the desired UserDetails instance. If
there is no instance with that username, it throws a
UsernameNotFoundException. We can now use this implementation as our
UserDetailsService. The next listing shows how we add it as a bean in the
configuration class and register one user within it.

Listing 3.14 UserDetailsService registered as a bean in the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 UserDetails u = new User("john", "12345", "read");

 List<UserDetails> users = List.of(u);

 return new InMemoryUserDetailsService(users);

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

Finally, we create a simple endpoint and test the implementation. The
following listing defines the endpoint.

Listing 3.15 The definition of the endpoint used for testing the implementation

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

When calling the endpoint using cURL, we observe that for user John with
password 12345, we get back an HTTP 200 OK. If we use something else,
the application returns 401 Unauthorized.

curl -u john:12345 http://localhost:8080/hello

The response body is

Hello!

3.3.3 Implementing the UserDetailsManager contract

In this section, we discuss using and implementing the UserDetailsManager
interface. This interface extends and adds more methods to the
UserDetailsService contract. Spring Security needs the
UserDetailsService contract to do the authentication. But generally, in
applications, there is also a need for managing users. Most of the time, an app
should be able to add new users or delete existing ones. In this case, we
implement a more particular interface defined by Spring Security,
UserDetailsManager. It extends UserDetailsService and adds more
operations that we need to implement.

public interface UserDetailsManager extends UserDetailsService {

 void createUser(UserDetails user);

 void updateUser(UserDetails user);

 void deleteUser(String username);

 void changePassword(String oldPassword, String newPassword);

 boolean userExists(String username);

}

The InMemoryUserDetailsManager object that we used in chapter 2 is
actually a UserDetailsManager. At that time, we only considered its
UserDetailsService characteristics. Project ssia-ch3-ex2 accompanies the
example in this section.

Using a JdbcUserDetailsManager for user management

Beside the InMemoryUserDetailsManager, we often use another
UserDetailManager implementation, JdbcUserDetailsManager. The
JdbcUserDetailsManager class manages users in an SQL database. It
connects to the database directly through JDBC. This way, the
JdbcUserDetailsManager is independent of any other framework or
specification related to database connectivity.

To understand how the JdbcUserDetailsManager works, it’s best if you put
it into action with an example. In the following example, you implement an
application that manages the users in a MySQL database using the
JdbcUserDetailsManager. Figure 3.4 provides an overview of the place the
JdbcUserDetailsManager implementation takes in the authentication flow.

Figure 3.4 The Spring Security authentication flow. Here we use a JdbcUserDetailsManager as
our UserDetailsService component. The JdbcUserDetailsManager uses a database to manage
users.

You’ll start working on our demo application about how to use the
JdbcUserDetailsManager by creating a database and two tables. In our case,
we name the database spring, and we name one of the tables users and the
other authorities. These names are the default table names known by the
JdbcUserDetailsManager. As you’ll learn at the end of this section, the
JdbcUserDetailsManager implementation is flexible and lets you override

these default names if you want to do so. The purpose of the users table is to
keep user records. The JdbcUserDetailsManager implementation expects
three columns in the users table: a username, a password, and enabled, which
you can use to deactivate the user.

You can choose to create the database and its structure yourself either by
using the command-line tool for your database management system (DBMS)
or a client application. For example, for MySQL, you can choose to use
MySQL Workbench to do this. But the easiest would be to let Spring Boot
itself run the scripts for you. To do this, just add two more files to your
project in the resources folder: schema.sql and data.sql. In the schema.sql
file, you add the queries related to the structure of the database, like creating,
altering, or dropping tables. In the data.sql file, you add the queries that work
with the data inside the tables, like INSERT, UPDATE, or DELETE. Spring Boot
automatically runs these files for you when you start the application. A
simpler solution for building examples that need databases is using an H2 in-
memory database. This way, you don’t need to install a separate DBMS
solution.

Note

If you prefer, you could go with H2 as well (as I do in the ssia-ch3-ex2
project) when developing the applications presented in this book. But in most
example of this book, I chose to implement the examples with an external
DBMS to make it clear it’s an external component of the system and, in this
way, avoid confusion.

You use the code in the next listing to create the users table with a MySQL
server. You can add this script to the schema.sql file in your Spring Boot
project.

Listing 3.16 The SQL query for creating the users table

CREATE TABLE IF NOT EXISTS `spring`.`users` (

 `id` INT NOT NULL AUTO_INCREMENT,

 `username` VARCHAR(45) NOT NULL,

 `password` VARCHAR(45) NOT NULL,

 `enabled` INT NOT NULL,

 PRIMARY KEY (`id`));

The authorities table stores authorities per user. Each record stores a
username and an authority granted for the user with that username.

Listing 3.17 The SQL query for creating the authorities table

CREATE TABLE IF NOT EXISTS `spring`.`authorities` (

 `id` INT NOT NULL AUTO_INCREMENT,

 `username` VARCHAR(45) NOT NULL,

 `authority` VARCHAR(45) NOT NULL,

 PRIMARY KEY (`id`));

NOTE

For simplicity, and to allow you focus on the Spring Security configurations
we discuss, in the examples provided with this book, I skip the definitions of
indexes or foreign keys.

To make sure you have a user for testing, insert a record in each of the tables.
You can add these queries in the data.sql file in the resources folder of the
Spring Boot project:

INSERT INTO `spring`.`authorities`

(username, authority)

VALUES

('john', 'write');

INSERT INTO `spring`.`users`

(username, password, enabled)

VALUES

('john', '12345', '1');

For your project, you need to add at least the dependencies stated in the
following listing. Check your pom.xml file to make sure you added these
dependencies.

Listing 3.18 Dependencies needed to develop the example project

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-jdbc</artifactId>

</dependency>

<dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

</dependency>

NOTE

In your examples, you can use any SQL database technology as long as you
add the correct JDBC driver to the dependencies.

Remember, you need to add the JDBC driver according to the database
technology you use. For example, if you’d use MySQL, you need to add the
MySQL driver dependency as presented in the next snippet.

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <scope>runtime</scope>

</dependency>

You can configure a data source in the application.properties file of the
project or as a separate bean. If you choose to use the application.properties
file, you need to add the following lines to that file:

spring.datasource.url=jdbc:h2:mem:ssia

spring.datasource.username=sa

spring.datasource.password=

spring.sql.init.mode=always

In the configuration class of the project, you define the UserDetailsService
and the PasswordEncoder. The JdbcUserDetailsManager needs the
DataSource to connect to the database. The data source can be autowired
through a parameter of the method (as presented in the next listing) or
through an attribute of the class.

Listing 3.19 Registering the JdbcUserDetailsManager in the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService(DataSource dataSource) {

 return new JdbcUserDetailsManager(dataSource);

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

To access any endpoint of the application, you now need to use HTTP Basic
authentication with one of the users stored in the database. To prove this, we
create a new endpoint as shown in the following listing and then call it with
cURL.

Listing 3.20 The test endpoint to check the implementation

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

In the next code snippet, you find the result when calling the endpoint with
the correct username and password:

curl -u john:12345 http://localhost:8080/hello

The response to the call is

Hello!

The JdbcUserDetailsManager also allows you to configure the queries used.
In the previous example, we made sure we used the exact names for the

tables and columns, as the JdbcUserDetailsManager implementation expects
those. But it could be that for your application, these names are not the best
choice. The next listing shows how to override the queries for the
JdbcUserDetailsManager.

Listing 3.21 Changing JdbcUserDetailsManager’s queries to find the user

@Bean

public UserDetailsService userDetailsService(DataSource dataSource) {

 String usersByUsernameQuery =

 "select username, password, enabled

 [CA]from users where username = ?";

 String authsByUserQuery =

 "select username, authority

 [CA]from spring.authorities where username = ?";

 var userDetailsManager = new JdbcUserDetailsManager(dataSource);

 userDetailsManager.setUsersByUsernameQuery(usersByUsernameQuery);

 userDetailsManager.setAuthoritiesByUsernameQuery(authsByUserQuery);

 return userDetailsManager;

}

In the same way, we can change all the queries used by the
JdbcUserDetailsManager implementation.

Exercise

Write a similar application for which you name the tables and the columns
differently in the database. Override the queries for the
JdbcUserDetailsManager implementation (for example, the authentication
works with a new table structure). The project ssia-ch3-ex2 features a
possible solution.

Using an LdapUserDetailsManager for user management

Spring Security also offers an implementation of UserDetailsManager for
LDAP. Even if it is less popular than the JdbcUserDetailsManager, you can
count on it if you need to integrate with an LDAP system for user
management. In the project ssia-ch3-ex3, you can find a simple
demonstration of using the LdapUserDetailsManager. Because I can’t use a

real LDAP server for this demonstration, I have set up an embedded one in
my Spring Boot application. To set up the embedded LDAP server, I defined
a simple LDAP Data Interchange Format (LDIF) file. The following listing
shows the content of my LDIF file.

Listing 3.22 The definition of the LDIF file

dn: dc=springframework,dc=org #A

objectclass: top

objectclass: domain

objectclass: extensibleObject

dc: springframework

dn: ou=groups,dc=springframework,dc=org #B

objectclass: top

objectclass: organizationalUnit

ou: groups

dn: uid=john,ou=groups,dc=springframework,dc=org #C

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: John

sn: John

uid: john

userPassword: 12345

In the LDIF file, I add only one user for which we need to test the app’s
behavior at the end of this example. We can add the LDIF file directly to the
resources folder. This way, it’s automatically in the classpath, so we can
easily refer to it later. I named the LDIF file server.ldif. To work with LDAP
and to allow Spring Boot to start an embedded LDAP server, you need to add
pom.xml to the dependencies as in the following code snippet:

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-ldap</artifactId>

</dependency>

<dependency>

 <groupId>com.unboundid</groupId>

 <artifactId>unboundid-ldapsdk</artifactId>

</dependency>

In the application.properties file, you also need to add the configurations for
the embedded LDAP server as presented in the following code snippet. The
values the app needs to boot the embedded LDAP server include the location
of the LDIF file, a port for the LDAP server, and the base domain component
(DN) label values:

spring.ldap.embedded.ldif=classpath:server.ldif

spring.ldap.embedded.base-dn=dc=springframework,dc=org

spring.ldap.embedded.port=33389

Once you have an LDAP server for authentication, you can configure your
application to use it. The next listing shows you how to configure the
LdapUserDetailsManager to enable your app to authenticate users through
the LDAP server.

Listing 3.23 The definition of the LdapUserDetailsManager in the configuration file

@Configuration

public class ProjectConfig {

 @Bean #A

 public UserDetailsService userDetailsService() {

 var cs = new DefaultSpringSecurityContextSource(#B

 [CA]"ldap://127.0.0.1:33389/dc=springframework,dc=org");

 cs.afterPropertiesSet();

 var manager = new LdapUserDetailsManager(cs); #C

 manager.setUsernameMapper(#D

 [CA]new DefaultLdapUsernameToDnMapper("ou=groups", "uid"));

 manager.setGroupSearchBase("ou=groups"); #E

 return manager;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

Let’s also create a simple endpoint to test the security configuration. I added

a controller class as presented in the next code snippet:

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

Now start the app and call the /hello endpoint. You need to authenticate with
user John if you want the app to allow you to call the endpoint. The next code
snippet shows you the result of calling the endpoint with cURL:

curl -u john:12345 http://localhost:8080/hello

The response to the call is

Hello!

3.4 Summary

The UserDetails interface is the contract you use to describe a user in
Spring Security.
The UserDetailsService interface is the contract that Spring Security
expects you to implement in the authentication architecture to describe
the way the application obtains user details.
The UserDetailsManager interface extends UserDetailsService and
adds the behavior related to creating, changing, or deleting a user.
Spring Security provides a few implementations of the
UserDetailsManager contract. Among these are
InMemoryUserDetailsManager, JdbcUserDetailsManager, and
LdapUserDetailsManager.
The JdbcUserDetailsManager class has the advantage of directly using
JDBC and does not lock the application in to other frameworks.

4 Managing passwords
This chapter covers

Implementing and working with the PasswordEncoder
Using the tools offered by the Spring Security Crypto module

In chapter 3, we discussed managing users in an application implemented
with Spring Security. But what about passwords? They’re certainly an
essential piece in the authentication flow. In this chapter, you’ll learn how to
manage passwords and secrets in an application implemented with Spring
Security. We’ll discuss the PasswordEncoder contract and the tools offered
by the Spring Security Crypto module (SSCM) for the management of
passwords.

4.1 Using password encoders

From chapter 3, you should now have a clear image of what the UserDetails
interface is as well as multiple ways to use its implementation. But as you
learned in chapter 2, different actors manage user representation during the
authentication and authorization processes. You also learned that some of
these have defaults, like UserDetailsService and PasswordEncoder. You
now know that you can override the defaults. We continue with a deep
understanding of these beans and ways to implement them, so in this section,
we analyze the PasswordEncoder. Figure 4.1 reminds you of where the
PasswordEncoder fits into the authentication process.

Figure 4.1 The Spring Security authentication process. The AuthenticationProvider uses the
PasswordEncoder to validate the user’s password in the authentication process.

Because, in general, a system doesn’t manage passwords in plain text, these
usually undergo a sort of transformation that makes it more challenging to
read and steal them. For this responsibility, Spring Security defines a separate
contract. To explain it easily in this section, I provide plenty of code
examples related to the PasswordEncoder implementation. We’ll start with
understanding the contract, and then we’ll write our implementation within a
project. Then in section 4.1.3, I’ll provide you with a list of the most well-
known and widely used implementations of PasswordEncoder provided by

Spring Security.

4.1.1 The PasswordEncoder contract

In this section, we discuss the definition of the PasswordEncoder contract.
You implement this contract to tell Spring Security how to validate a user’s
password. In the authentication process, the PasswordEncoder decides if a
password is valid or not. Every system stores passwords encoded in some
way. You preferably store them hashed so that there’s no chance someone
can read the passwords. The PasswordEncoder can also encode passwords.
The methods encode() and matches(), which the contract declares, are
actually the definition of its responsibility. Both of these are parts of the same
contract because these are strongly linked, one to the other. The way the
application encodes a password is related to the way the password is
validated. Let’s first review the content of the PasswordEncoder interface:

public interface PasswordEncoder {

 String encode(CharSequence rawPassword);

 boolean matches(CharSequence rawPassword, String encodedPassword);

 default boolean upgradeEncoding(String encodedPassword) {

 return false;

 }

}

The interface defines two abstract methods and one with a default implementation. The abstract encode() and matches() methods are also the ones that you most often hear about when dealing with a PasswordEncoder implementation.

The purpose of the encode(CharSequence rawPassword) method is to return
a transformation of a provided string. In terms of Spring Security
functionality, it’s used to provide encryption or a hash for a given password.
You can use the matches(CharSequence rawPassword, String
encodedPassword) method afterward to check if an encoded string matches a
raw password. You use the matches() method in the authentication process
to test a provided password against a set of known credentials. The third
method, called upgradeEncoding(CharSequence encodedPassword),
defaults to false in the contract. If you override it to return true, then the
encoded password is encoded again for better security.

In some cases, encoding the encoded password can make it more challenging
to obtain the cleartext password from the result. In general, this is some kind

of obscurity that I, personally, don’t like. But the framework offers you this
possibility if you think it applies to your case.

4.1.2 Implementing your PasswordEncoder

As you observed, the two methods matches() and encode() have a strong
relationship. If you override them, they should always correspond in terms of
functionality: a string returned by the encode() method should always be
verifiable with the matches() method of the same PasswordEncoder. In this
section, you’ll implement the PasswordEncoder contract and define the two
abstract methods declared by the interface. Knowing how to implement the
PasswordEncoder, you can choose how the application manages passwords
for the authentication process. The most straightforward implementation is a
password encoder that considers passwords in plain text: that is, it doesn’t do
any encoding on the password.

Managing passwords in cleartext is what the instance of
NoOpPasswordEncoder does precisely. We used this class in our first example
in chapter 2. If you were to write your own, it would look something like the
following listing.

Listing 4.1 The simplest implementation of a PasswordEncoder

public class PlainTextPasswordEncoder

 implements PasswordEncoder {

 @Override

 public String encode(CharSequence rawPassword) {

 return rawPassword.toString(); #A

 }

 @Override

 public boolean matches(

 CharSequence rawPassword, String encodedPassword) {

 return rawPassword.equals(encodedPassword); #B

 }

}

The result of the encoding is always the same as the password. So to check if
these match, you only need to compare the strings with equals(). A simple

implementation of PasswordEncoder that uses the hashing algorithm SHA-
512 looks like the next listing.

Listing 4.2 Implementing a PasswordEncoder that uses SHA-512

public class Sha512PasswordEncoder

 implements PasswordEncoder {

 @Override

 public String encode(CharSequence rawPassword) {

 return hashWithSHA512(rawPassword.toString());

 }

 @Override

 public boolean matches(

 CharSequence rawPassword, String encodedPassword) {

 String hashedPassword = encode(rawPassword);

 return encodedPassword.equals(hashedPassword);

 }

 // Omitted code

}

In listing 4.2, we use a method to hash the string value provided with SHA-
512. I omit the implementation of this method in listing 4.2, but you can find
it in listing 4.3. We call this method from the encode() method, which now
returns the hash value for its input. To validate a hash against an input, the
matches() method hashes the raw password in its input and compares it for
equality with the hash against which it does the validation.

Listing 4.3 The implementation of the method to hash the input with SHA-512

private String hashWithSHA512(String input) {

 StringBuilder result = new StringBuilder();

 try {

 MessageDigest md = MessageDigest.getInstance("SHA-512");

 byte [] digested = md.digest(input.getBytes());

 for (int i = 0; i < digested.length; i++) {

 result.append(Integer.toHexString(0xFF & digested[i]));

 }

 } catch (NoSuchAlgorithmException e) {

 throw new RuntimeException("Bad algorithm");

 }

 return result.toString();

}

You’ll learn better options to do this in the next section, so don’t bother too
much with this code for now.

4.1.3 Choosing from the provided PasswordEncoder
implementations

While knowing how to implement your PasswordEncoder is powerful, you
must also be aware that Spring Security already provides you with some
advantageous implementations. If one of these matches your application, you
don’t need to rewrite it. In this section, we discuss the PasswordEncoder
implementation options that Spring Security provides. These are

NoOpPasswordEncoder—Doesn’t encode the password but keeps it in
clear-text. We use this implementation only for examples. Because it
doesn’t hash the password, "charitalics"you should never use it in a real-
world scenario.
StandardPasswordEncoder—Uses SHA-256 to hash the password. This
implementation is now deprecated, and "charitalics"you shouldn’t use it
for your new implementations. The reason why it’s deprecated is that it
uses a hashing algorithm that we don’t consider strong enough anymore,
but you might still find this implementation used in existing
applications. Preferably, if you find it in existing apps, you should
change it with some other, more powerful password encoder.
Pbkdf2PasswordEncoder—Uses the password-based key derivation
function 2 (PBKDF2).
BCryptPasswordEncoder—Uses a bcrypt strong hashing function to
encode the password.
SCryptPasswordEncoder—Uses an scrypt hashing function to encode
the password.

For more about hashing and these algorithms, you can find a good discussion
in chapter 2 of "charitalics"Real-World Cryptography by David Wong
(Manning, 2021). Here’s the link: https://livebook.manning.com/book/real-
world-cryptography/chapter-2/.

Let’s take a look at some examples of how to create instances of these types
of PasswordEncoder implementations. The NoOpPasswordEncoder doesn’t
encode the password. It has an implementation similar to the
PlainTextPasswordEncoder from our example in listing 4.1. For this reason,
we only use this password encoder with theoretical examples. Also, the
NoOpPasswordEncoder class is designed as a singleton. You can’t call its
constructor directly from outside the class, but you can use the
NoOpPasswordEncoder.getInstance() method to obtain the instance of the
class like this:

PasswordEncoder p = NoOpPasswordEncoder.getInstance();

The StandardPasswordEncoder implementation provided by Spring Security
uses SHA-256 to hash the password. For the StandardPasswordEncoder,
you can provide a secret used in the hashing process. You set the value of this
secret by the constructor’s parameter. If you choose to call the no-arguments
constructor, the implementation uses the empty string as a value for the key.
However, the StandardPasswordEncoder is deprecated now, and I don’t
recommend that you use it with your new implementations. You could find
older applications or legacy code that still uses it, so this is why you should
be aware of it. The next code snippet shows you how to create instances of
this password encoder:

PasswordEncoder p = new StandardPasswordEncoder();

PasswordEncoder p = new StandardPasswordEncoder("secret");

Another option offered by Spring Security is the Pbkdf2PasswordEncoder
implementation that uses the PBKDF2 for password encoding. To create
instances of the Pbkdf2PasswordEncoder, you have the following option:

PasswordEncoder p =

 New Pbkdf2PasswordEncoder(“secret”, 16, 310000,

 [CA]Pbkdf2PasswordEncoder.

 [CA]SecretKeyFactoryAlgorithm.PBKDF2WithHmacSHA256);

The PBKDF2 is a pretty easy, slow-hashing function that performs an
HMAC as many times as specified by an iterations argument. The first three
parameters received by the last call are the value of a key used for the
encoding process, the number of iterations used to encode the password, and

the size of the hash. The second and third parameters can influence the
strength of the result. The forth parameter gives the hash width. You can
choose out of the following options:

PBKDF2WithHmacSHA1
PBKDF2WithHmacSHA256
PBKDF2WithHmacSHA512

You can choose more or fewer iterations, as well as the length of the result.
The longer the hash, the more powerful the password (same for the hash
width). However, be aware that performance is affected by these values: the
more iterations, the more resources your application consumes. You should
make a wise compromise between the resources consumed for generating the
hash and the needed strength of the encoding.

Note

In this book, I refer to several cryptography concepts that you might like to
know more about. For relevant information on HMACs and other
cryptography details, I recommend Real-World Cryptography by David
Wong (Manning, 2020). Chapter 3 of that book provides detailed information
about HMAC. You can find the book at
https://livebook.manning.com/book/real-world-cryptography/chapter-3/ .

Another excellent option offered by Spring Security is the
BCryptPasswordEncoder, which uses a bcrypt strong hashing function to
encode the password. You can instantiate the BCryptPasswordEncoder by
calling the no-arguments constructor. But you also have the option to specify
a strength coefficient representing the log rounds (logarithmic rounds) used
in the encoding process. Moreover, you can also alter the SecureRandom
instance used for encoding:

PasswordEncoder p = new BCryptPasswordEncoder();

PasswordEncoder p = new BCryptPasswordEncoder(4);

SecureRandom s = SecureRandom.getInstanceStrong();

PasswordEncoder p = new BCryptPasswordEncoder(4, s);

The log rounds value that you provide affects the number of iterations the

hashing operation uses. The number of iterations used is 2log rounds. For the
iteration number computation, the value for the log rounds can only be
between 4 and 31. You can specify this by calling one of the second or third
overloaded constructors, as shown in the previous code snippet.

The last option I present to you is SCryptPasswordEncoder (figure 4.2). This
password encoder uses an scrypt hashing function. For the
ScryptPasswordEncoder, you have the following option to create its
instances as presented in figure 4.2.

Figure 4.2 The SCryptPasswordEncoder constructor takes five parameters and allows you to
configure CPU cost, memory cost, key length, and salt length.

4.1.4 Multiple encoding strategies with
DelegatingPasswordEncoder

In this section, we discuss the cases in which an authentication flow must
apply various implementations for matching the passwords. You’ll also learn
how to apply a useful tool that acts as a PasswordEncoder in your
application. Instead of having its own implementation, this tool delegates to
other objects that implement the PasswordEncoder interface.

In some applications, you might find it useful to have various password
encoders and choose from these depending on some specific configuration. A

common scenario in which I find the DelegatingPasswordEncoder in
production applications is when the encoding algorithm is changed, starting
with a particular version of the application. Imagine somebody finds a
vulnerability in the currently used algorithm, and you want to change it for
newly registered users, but you do not want to change it for existing
credentials. So you end up having multiple kinds of hashes. How do you
manage this case? While it isn’t the only approach for this scenario, a good
choice is to use a DelegatingPasswordEncoder object.

The DelegatingPasswordEncoder is an implementation of the
PasswordEncoder interface that, instead of implementing its encoding
algorithm, delegates to another instance of an implementation of the same
contract. The hash starts with a prefix naming the algorithm used to define
that hash. The DelegatingPasswordEncoder delegates to the correct
implementation of the PasswordEncoder based on the prefix of the password.

It sounds complicated, but with an example, you can observe that it is pretty
easy. Figure 4.3 presents the relationship among the PasswordEncoder
instances. The DelegatingPasswordEncoder has a list of PasswordEncoder
implementations to which it delegates. The DelegatingPasswordEncoder
stores each of the instances in a map. The NoOpPasswordEncoder is assigned
to the key noop, while the BCryptPasswordEncoder implementation is
assigned the key bcrypt. When the password has the prefix {noop}, the
DelegatingPasswordEncoder delegates the operation to the
NoOpPasswordEncoder implementation. If the prefix is {bcrypt}, then the
action is delegated to the BCryptPasswordEncoder implementation as
presented in figure 4.4.

Figure 4.3 In this case, the DelegatingPasswordEncoder registers a NoOpPasswordEncoder for the
prefix {noop}, a BCryptPasswordEncoder for the prefix {bcrypt}, and an SCryptPasswordEncoder
for the prefix {scrypt}. If the password has the prefix {noop}, the DelegatingPasswordEncoder
forwards the operation to the NoOpPasswordEncoder implementation.

Figure 4.4 In this case, the DelegatingPasswordEncoder registers a NoOpPasswordEncoder for the
prefix {noop}, a BCryptPasswordEncoder for the prefix {bcrypt}, and an SCryptPasswordEncoder
for the prefix {scrypt}. When the password has the prefix {bcrypt}, the
DelegatingPasswordEncoder forwards the operation to the BCryptPasswordEncoder
implementation.

Next, let’s find out how to define a DelegatingPasswordEncoder. You start
by creating a collection of instances of your desired PasswordEncoder
implementations, and you put these together in a
DelegatingPasswordEncoder as in the following listing.

Listing 4.4 Creating an instance of DelegatingPasswordEncoder

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public PasswordEncoder passwordEncoder() {

 Map<String, PasswordEncoder> encoders = new HashMap<>();

 encoders.put("noop", NoOpPasswordEncoder.getInstance());

 encoders.put("bcrypt", new BCryptPasswordEncoder());

 encoders.put("scrypt", new SCryptPasswordEncoder());

 return new DelegatingPasswordEncoder("bcrypt", encoders);

 }

}

The DelegatingPasswordEncoder is just a tool that acts as a
PasswordEncoder so you can use it when you have to choose from a
collection of implementations. In listing 4.4, the declared instance of
DelegatingPasswordEncoder contains references to a
NoOpPasswordEncoder, a BCryptPasswordEncoder, and an
SCryptPasswordEncoder, and delegates the default to the
BCryptPasswordEncoder implementation. Based on the prefix of the hash,
the DelegatingPasswordEncoder uses the right PasswordEncoder
implementation for matching the password. This prefix has the key that
identifies the password encoder to be used from the map of encoders. If there
is no prefix, the DelegatingPasswordEncoder uses the default encoder. The
default PasswordEncoder is the one given as the first parameter when
constructing the DelegatingPasswordEncoder instance. For the code in
listing 4.4, the default PasswordEncoder is bcrypt.

NOTE

The curly braces are part of the hash prefix, and those should surround the
name of the key. For example, if the provided hash is {noop}12345, the
DelegatingPasswordEncoder delegates to the NoOpPasswordEncoder that we
registered for the prefix noop. Again, remember that the curly braces are
mandatory in the prefix.

If the hash looks like the next code snippet, the password encoder is the one
we assign to the prefix {bcrypt}, which is the BCryptPasswordEncoder. This
is also the one to which the application will delegate if there is no prefix at all
because we defined it as the default implementation:

{bcrypt}$2a$10$xn3LI/AjqicFYZFruSwve.681477XaVNaUQbr1gioaWPn4t1KsnmG

For convenience, Spring Security offers a way to create a
DelegatingPasswordEncoder that has a map to all the standard provided
implementations of PasswordEncoder. The PasswordEncoderFactories class
provides a createDelegatingPasswordEncoder() static method that returns
an implementation of DelegatingPasswordEncoder with a full set of
PasswordEncoder mappings and bcrypt as a default encoder:

PasswordEncoder passwordEncoder = PasswordEncoderFactories.createDelegatingPasswordEncoder();

Encoding vs. encrypting vs. hashing

In the previous sections, I often used the terms encoding, encrypting, and
hashing. I want to briefly clarify these terms and the way we use them
throughout the book.

Encoding refers to any transformation of a given input. For example, if we
have a function x that reverses a string, function x -> y applied to ABCD
produces DCBA.

Encryption is a particular type of encoding where, to obtain the output, you
provide both the input value and a key. The key makes it possible for
choosing afterward who should be able to reverse the function (obtain the
input from the output). The simplest form of representing encryption as a
function looks like this:

(x, k) -> y

where x is the input, k is the key, and y is the result of the encryption. This
way, an individual who knows the key can use a known function to obtain the
input from the output (y, k) -> x. We call this reverse function decryption.
If the key used for encryption is the same as the one used for decryption, we
usually call it a symmetric key.

If we have two different keys for encryption ((x, k1) -> y) and decryption
((y, k2) -> x), then we say that the encryption is done with asymmetric
keys. Then (k1, k2) is called a key pair. The key used for encryption, k1, is
also referred to as the public key, while k2 is known as the private one. This
way, only the owner of the private key can decrypt the data.

Hashing is a particular type of encoding, except the function is only one way.
That is, from an output y of the hashing function, you cannot get back the
input x. However, there should always be a way to check if an output y
corresponds to an input x, so we can understand the hashing as a pair of
functions for encoding and matching. If hashing is x -> y, then we should
also have a matching function (x,y) -> boolean.

Sometimes the hashing function could also use a random value added to the

input: (x, k) -> y. We refer to this value as the salt. The salt makes the
function stronger, enforcing the difficulty of applying a reverse function to
obtain the input from the result.

To summarize the contracts we have discussed and applied up to now in this
book, table 4.1 briefly describes each of the components.

Table 4.1 The interfaces that represent the main contracts for authentication flow in Spring
Security

Contract Description

UserDetails Represents the user as seen by Spring Security.

GrantedAuthority

Defines an action within the purpose of the
application that is allowable to the user (for example,
read, write, delete, etc.).

UserDetailsService
Represents the object used to retrieve user details by
username.

UserDetailsManager

A more particular contract for UserDetailsService.
Besides retrieving the user by username, it can also be
used to mutate a collection of users or a specific user.

PasswordEncoder

Specifies how the password is encrypted or hashed
and how to check if a given encoded string matches a
plaintext password.

4.2 Take advantage of the Spring Security Crypto

module

In this section, we discuss the Spring Security Crypto module (SSCM), which
is the part of Spring Security that deals with cryptography. Using encryption
and decryption functions and generating keys isn’t offered out of the box
with the Java language. And this constrains developers when adding
dependencies that provide a more accessible approach to these features.

To make our lives easier, Spring Security also provides its own solution,
which enables you to reduce the dependencies of your projects by eliminating
the need to use a separate library. The password encoders are also part of the
SSCM, even if we have treated them separately in previous sections. In this
section, we discuss what other options the SSCM offers that are related to
cryptography. You’ll see examples of how to use two essential features from
the SSCM:

"charitalics"Key generators—Objects used to generate keys for hashing
and encryption algorithms
"charitalics"Encryptors—Objects used to encrypt and decrypt data

4.2.1 Using key generators

In this section, we discuss key generators. A "charitalics"key generator is an
object used to generate a specific kind of key, generally needed for an
encryption or hashing algorithm. The implementations of key generators that
Spring Security offers are great utility tools. You’ll prefer to use these
implementations rather than adding another dependency for your application,
and this is why I recommend that you become aware of them. Let’s see some
code examples of how to create and apply the key generators.

Two interfaces represent the two main types of key generators:
BytesKeyGenerator and StringKeyGenerator. We can build them directly
by making use of the factory class KeyGenerators. You can use a string key
generator, represented by the StringKeyGenerator contract, to obtain a key
as a string. Usually, we use this key as a salt value for a hashing or
encryption algorithm. You can find the definition of the StringKeyGenerator
contract in this code snippet:

public interface StringKeyGenerator {

 String generateKey();

}

The generator has only a generateKey() method that returns a string
representing the key value. The next code snippet presents an example of
how to obtain a StringKeyGenerator instance and how to use it to get a salt
value:

StringKeyGenerator keyGenerator = KeyGenerators.string();

String salt = keyGenerator.generateKey();

The generator creates an 8-byte key, and it encodes that as a hexadecimal
string. The method returns the result of these operations as a string. The
second interface describing a key generator is the BytesKeyGenerator, which
is defined as follows:

public interface BytesKeyGenerator {

 int getKeyLength();

 byte[] generateKey();

}

In addition to the generateKey() method that returns the key as a byte[], the
interface defines another method that returns the key length in number of
bytes. A default ByteKeyGenerator generates keys of 8-byte length:

BytesKeyGenerator keyGenerator = KeyGenerators.secureRandom();

byte [] key = keyGenerator.generateKey();

int keyLength = keyGenerator.getKeyLength();

In the previous code snippet, the key generator generates keys of 8-byte
length. If you want to specify a different key length, you can do this when
obtaining the key generator instance by providing the desired value to the
KeyGenerators.secureRandom() method:

BytesKeyGenerator keyGenerator = KeyGenerators.secureRandom(16);

The keys generated by the BytesKeyGenerator created with the

KeyGenerators.secureRandom() method are unique for each call of the
generateKey() method. In some cases, we prefer an implementation that
returns the same key value for each call of the same key generator. In this
case, we can create a BytesKeyGenerator with the
KeyGenerators.shared(int length) method. In this code snippet, key1 and
key2 have the same value:

BytesKeyGenerator keyGenerator = KeyGenerators.shared(16);

byte [] key1 = keyGenerator.generateKey();

byte [] key2 = keyGenerator.generateKey();

4.2.2 Encrypt and decrypt secrets using encryptors

In this section, we apply the implementations of encryptors that Spring
Security offers with code examples. An "charitalics"encryptor is an object
that implements an encryption algorithm. When talking about security,
encryption and decryption are common operations, so expect to need these
within your application.

We often need to encrypt data either when sending it between components of
the system or when persisting it. The operations provided by an encryptor are
encryption and decryption. There are two types of encryptors defined by the
SSCM: BytesEncryptor and TextEncryptor. While they have similar
responsibilities, they treat different data types. TextEncryptor manages data
as a string. Its methods receive strings as inputs and return strings as outputs,
as you can see from the definition of its interface:

public interface TextEncryptor {

 String encrypt(String text);

 String decrypt(String encryptedText);

}

The BytesEncryptor is more generic. You provide its input data as a byte
array:

public interface BytesEncryptor {

 byte[] encrypt(byte[] byteArray);

 byte[] decrypt(byte[] encryptedByteArray);

}

Let’s find out what options we have to build and use an encryptor. The
factory class Encryptors offers us multiple possibilities. For
BytesEncryptor, we could use the Encryptors.standard() or the
Encryptors.stronger() methods like this:

String salt = KeyGenerators.string().generateKey();

String password = "secret";

String valueToEncrypt = "HELLO";

BytesEncryptor e = Encryptors.standard(password, salt);

byte [] encrypted = e.encrypt(valueToEncrypt.getBytes());

byte [] decrypted = e.decrypt(encrypted);

Behind the scenes, the standard byte encryptor uses 256-byte AES encryption
to encrypt input. To build a stronger instance of the byte encryptor, you can
call the Encryptors.stronger() method:

BytesEncryptor e = Encryptors.stronger(password, salt);

The difference is small and happens behind the scenes, where the AES
encryption on 256-bit uses Galois/Counter Mode (GCM) as the mode of
operation. The standard mode uses cipher block chaining (CBC), which is
considered a weaker method.

TextEncryptors come in three main types. You create these three types by
calling the Encryptors.text(), Encryptors.delux(), or
Encryptors.queryableText() methods. Besides these methods to create
encryptors, there is also a method that returns a dummy TextEncryptor,
which doesn’t encrypt the value. You can use the dummy TextEncryptor for
demo examples or cases in which you want to test the performance of your
application without spending time spent on encryption. The method that
returns this no-op encryptor is Encryptors.noOpText(). In the following
code snippet, you’ll find an example of using a TextEncryptor. Even if it is a
call to an encryptor, in the example, encrypted and valueToEncrypt are the
same:

String valueToEncrypt = "HELLO";

TextEncryptor e = Encryptors.noOpText();

String encrypted = e.encrypt(valueToEncrypt);

The Encryptors.text() encryptor uses the Encryptors.standard() method
to manage the encryption operation, while the Encryptors.delux() method
uses an Encryptors.stronger() instance like this:

String salt = KeyGenerators.string().generateKey();

String password = "secret";

String valueToEncrypt = "HELLO";

TextEncryptor e = Encryptors.text(password, salt); #A

String encrypted = e.encrypt(valueToEncrypt);

String decrypted = e.decrypt(encrypted);

4.3 Summary

The PasswordEncoder has one of the most critical responsibilities in
authentication logic—dealing with passwords.
Spring Security offers several alternatives in terms of hashing
algorithms, which makes the implementation only a matter of choice.
Spring Security Crypto module (SSCM) offers various alternatives for
implementations of key generators and encryptors.
Key generators are utility objects that help you generate keys used with
cryptographic algorithms.
Encryptors are utility objects that help you apply encryption and
decryption of data.

5 A web app’s security begins with
filters
This chapter covers

Working with the filter chain
Defining custom filters
Using Spring Security classes that implement the Filter interface

In Spring Security, HTTP filters delegate the different responsibilities that
apply to an HTTP request. In Spring Security, in general, HTTP filters
manage each responsibility that must be applied to the request. The filters
form a chain of responsibilities. A filter receives a request, executes its logic,
and eventually delegates the request to the next filter in the chain (figure
5.1).

Figure 5.1 The filter chain receives the request. Each filter uses a manager to apply specific logic
to the request and, eventually, delegates the request further along the chain to the next filter.

Figure 5.2 At the airport, you go through a filter chain to eventually board the aircraft. In the
same way, Spring Security has a filter chain that acts on the HTTP requests received by the
application.

Let’s take an analogy as an example. When you go to the airport, from
entering the terminal to boarding the aircraft, you go through multiple filters
(figure 5.2). You first present your ticket, then your passport is verified, and
afterward, you go through security. At the airport gate, more “filters” might
be applied. For example, in some cases, right before boarding, your passport
and visa are validated once more. This is an excellent analogy to the filter

chain in Spring Security. In the same way, you customize filters in a filter
chain with Spring Security that act on HTTP requests. Spring Security
provides filter implementations that you add to the filter chain through
customization, but you can also define custom filters.

In this chapter, we’ll discuss how you can customize filters that are part of
the authentication and authorization architecture in Spring Security of a web
app. For example, you might want to augment authentication by adding one
more step for the user, like checking their email address or using a one-time
password. You can, as well, add functionality referring to auditing
authentication events. You’ll find various scenarios where applications use
auditing authentication: from debugging purposes to identifying a user’s
behavior. Using today’s technology and machine learning algorithms can
improve applications, for example, by learning the user’s behavior and
knowing if somebody hacked their account or impersonated the user.

Knowing how to customize the HTTP filter chain of responsibilities is a
valuable skill. In practice, applications come with various requirements,
where using default configurations doesn’t work anymore. You’ll need to add
or replace existing components of the chain. With the default implementation,
you use the HTTP Basic authentication method, which allows you to rely on
a username and password. But in practical scenarios, there are plenty of
situations in which you’ll need more than this. Maybe you need to implement
a different strategy for authentication, notify an external system about an
authorization event, or simply log a successful or failed authentication that’s
later used in tracing and auditing (figure 5.3). Whatever your scenario is,
Spring Security offers you the flexibility of modeling the filter chain
precisely as you need it.

Figure 5.3 You can customize the filter chain by adding new filters before, after, or at the position
of existing ones. This way, you can customize authentication as well as the entire process applied
to request and response.

5.1 Implementing filters in the Spring Security
architecture

In this section, we discuss the way filters and the filter chain work in Spring
Security architecture. You need this general overview first to understand the
implementation examples we work on in the next sections of this chapter.
You learned in chapters 2 and 3 that the authentication filter intercepts the
request and delegates authentication responsibility further to the authorization
manager. If we want to execute certain logic before authentication, we do this
by inserting a filter before the authentication filter.

The filters in Spring Security architecture are typical HTTP filters. We can
create filters by implementing the Filter interface from the jakarta.servlet
package. As for any other HTTP filter, you need to override the doFilter()
method to implement its logic. This method receives as parameters the
ServletRequest, ServletResponse, and FilterChain:

ServletRequest—Represents the HTTP request. We use the
ServletRequest object to retrieve details about the request.

ServletResponse—Represents the HTTP response. We use the
ServletResponse object to alter the response before sending it back to
the client or further along the filter chain.
FilterChain—Represents the chain of filters. We use the FilterChain
object to forward the request to the next filter in the chain.

Note

Starting with Spring Boot 3, Jakarta EE replaces the old Java EE
specification. Due to this change, you’ll observe that some packages changed
their prefix from “javax” to “jakarta”. For example, types such as Filter,
ServletRequest, and ServletResponse were previously in the javax.servlet
package, but you now find them in the jakarta.servlet package.

The "charitalics"filter chain represents a collection of filters with a defined
order in which they act. Spring Security provides some filter implementations
and their order for us. Among the provided filters

BasicAuthenticationFilter takes care of HTTP Basic authentication,
if present.
CsrfFilter takes care of cross-site request forgery (CSRF) protection,
which we’ll discuss in chapter 9.
CorsFilter takes care of cross-origin resource sharing (CORS)
authorization rules, which we’ll also discuss in chapter 10.

You don’t need to know all of the filters as you probably won’t touch these
directly from your code, but you do need to understand how the filter chain
works and to be aware of a few implementations. In this book, I only explain
those filters that are essential to the various topics we discuss.

It is important to understand that an application doesn’t necessarily have
instances of all these filters in the chain. The chain is longer or shorter
depending on how you configure the application. For example, in chapters 2
and 3, you learned that you need to call the httpBasic() method of the
HttpSecurity class if you want to use the HTTP Basic authentication
method. What happens is that if you call the httpBasic() method, an
instance of BasicAuthenticationFilter is added to the chain. Similarly,
depending on the configurations you write, the definition of the filter chain is

affected.

You add a new filter to the chain relative to another one (figure 5.4). Or, you
can add a filter either before, after, or at the position of a known one. Each
position is, in fact, an index (a number), and you might find it also referred to
as “the order.”

Figure 5.4 Each filter has an order number. This determines the order in which filters are
applied to a request. You can add custom filters along with the filters provided by Spring
Security.

If you want to learn more details about which filters Spring Security provides
and what is the order in which these are configured, you can take a look in
the FilterOrderRegistration from
org.springframework.security.config.annotation.web.builders package.

You can add two or more filters in the same position (figure 5.5). In section
5.4, we’ll encounter a common case in which this might occur, one which
usually creates confusion among developers.

NOTE

If multiple filters have the same position, the order in which they are called is
not defined.

Figure 5.5 You might have multiple filters with the same order value in the chain. In this case,
Spring Security doesn’t guarantee the order in which they are called.

5.2 Adding a filter before an existing one in the
chain

In this section, we discuss applying custom HTTP filters before an existing
one in the filter chain. You might find scenarios in which this is useful. To
approach this in a practical way, we’ll work on a project for our example.
With this example, you’ll easily learn to implement a custom filter and apply
it before an existing one in the filter chain. You can then adapt this example
to any similar requirement you might find in a production application.

For our first custom filter implementation, let’s consider a trivial scenario.
We want to make sure that any request has a header called Request-Id (see
project ssia-ch5-ex1). We assume that our application uses this header for

tracking requests and that this header is mandatory. At the same time, we
want to validate these assumptions before the application performs
authentication. The authentication process might involve querying the
database or other resource-consuming actions that we don’t want the
application to execute if the format of the request isn’t valid. How do we do
this? To solve the current requirement only takes two steps, and in the end,
the filter chain looks like the one in figure 5.6:

1. Implement the filter. Create a RequestValidationFilter class that
checks that the needed header exists in the request.

2. Add the filter to the filter chain. Do this in the configuration class,
overriding the configure() method.

Figure 5.6 For our example, we add a RequestValidationFilter, which acts before the
authentication filter. The RequestValidationFilter ensures that authentication doesn’t happen if
the validation of the request fails. In our case, the request must have a mandatory header named
Request-Id.

To accomplish step 1, implementing the filter, we define a custom filter. The

next listing shows the implementation.

Listing 5.1 Implementing a custom filter

public class RequestValidationFilter

 implements Filter { #A

 @Override

 public void doFilter(

 ServletRequest servletRequest,

 ServletResponse servletResponse,

 FilterChain filterChain)

 throws IOException, ServletException {

 // ...

 }

}

Inside the doFilter() method, we write the logic of the filter. In our
example, we check if the Request-Id header exists. If it does, we forward the
request to the next filter in the chain by calling the doFilter() method. If the
header doesn’t exist, we set an HTTP status 400 Bad Request on the response
without forwarding it to the next filter in the chain (figure 5.7). Listing 5.2
presents the logic.

Figure 5.7 The custom filter we add before authentication checks whether the Request-Id header
exists. If the header exists on the request, the application forwards the request to be
authenticated. If the header doesn’t exist, the application sets the HTTP status 400 Bad Request
and returns to the client.

Listing 5.2 Implementing the logic in the doFilter() method

@Override

public void doFilter(

 ServletRequest request,

 ServletResponse response,

 FilterChain filterChain)

 throws IOException,

 ServletException {

 var httpRequest = (HttpServletRequest) request;

 var httpResponse = (HttpServletResponse) response;

 String requestId = httpRequest.getHeader("Request-Id");

 if (requestId == null || requestId.isBlank()) {

 httpResponse.setStatus(HttpServletResponse.SC_BAD_REQUEST);

 return; #A

 }

 filterChain.doFilter(request, response); #B

}

To implement step 2, applying the filter within the configuration class, we
use the addFilterBefore() method of the HttpSecurity object because we
want the application to execute this custom filter before authentication. This
method receives two parameters:

"charitalics"An instance of the custom filter we want to add to the chain
—In our example, this is an instance of the RequestValidationFilter
class presented in listing 5.1.
"charitalics"The type of filter before which we add the new instance—
For this example, because the requirement is to execute the filter logic
before authentication, we need to add our custom filter instance before
the authentication filter. The class BasicAuthenticationFilter defines
the default type of the authentication filter.

Until now, we have referred to the filter dealing with authentication generally
as the "charitalics"authentication filter. You’ll find out in the next chapters
that Spring Security also configures other filters. In chapter 9, we’ll discuss
cross-site request forgery (CSRF) protection, and in chapter 10, we’ll discuss
cross-origin resource sharing (CORS). Both capabilities also rely on filters.

Listing 5.3 shows how to add the custom filter before the authentication filter
in the configuration class. To make the example simpler, I use the
permitAll() method to allow all unauthenticated requests.

Listing 5.3 Configuring the custom filter before authentication

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.addFilterBefore(#A

 new RequestValidationFilter(), BasicAuthenticationFilter.class)

 .authorizeRequests(c -> c.anyRequest().permitAll());

 return http.build();

 }

}

We also need a controller class and an endpoint to test the functionality. The
next listing defines the controller class.

Listing 5.4 The controller class

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

You can now run and test the application. Calling the endpoint without the
header generates a response with HTTP status 400 Bad Request. If you add
the header to the request, the response status becomes HTTP 200 OK, and
you’ll also see the response body, Hello! To call the endpoint without the
Request-Id header, we use this cURL command:

curl -v http://localhost:8080/hello

This call generates the following (truncated) response:

...

< HTTP/1.1 400

...

To call the endpoint and provide the Request-Id header, we use this cURL
command:

curl -H "Request-Id:12345" http://localhost:8080/hello

This call generates the following (truncated) response:

Hello!

5.3 Adding a filter after an existing one in the chain

In this section, we discuss adding a filter after an existing one in the filter
chain. You use this approach when you want to execute some logic after

something already existing in the filter chain. Let’s assume that you have to
execute some logic after the authentication process. Examples for this could
be notifying a different system after certain authentication events or simply
for logging and tracing purposes (figure 5.8). As in section 5.1, we
implement an example to show you how to do this. You can adapt it to your
needs for a real-world scenario.

For our example, we log all successful authentication events by adding a
filter after the authentication filter (figure 5.8). We consider that what
bypasses the authentication filter represents a successfully authenticated
event and we want to log it. Continuing the example from section 5.1, we
also log the request ID received through the HTTP header.

Figure 5.8 We add the AuthenticationLoggingFilter after the BasicAuthenticationFilter to log
the requests that the application authenticates.

The following listing presents the definition of a filter that logs requests that
pass the authentication filter.

Listing 5.5 Defining a filter to log requests

public class AuthenticationLoggingFilter implements Filter {

 private final Logger logger =

 Logger.getLogger(

 AuthenticationLoggingFilter.class.getName());

 @Override

 public void doFilter(

 ServletRequest request,

 ServletResponse response,

 FilterChain filterChain)

 throws IOException, ServletException {

 var httpRequest = (HttpServletRequest) request;

 var requestId =

 httpRequest.getHeader("Request-Id"); #A

 logger.info("Successfully authenticated #B

 request with id " + requestId); #B

 filterChain.doFilter(request, response); #C

 }

}

To add the custom filter in the chain after the authentication filter, you call
the addFilterAfter() method of HttpSecurity. The next listing shows the
implementation.

Listing 5.6 Adding a custom filter after an existing one in the filter chain

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.addFilterBefore(

 new RequestValidationFilter(),

 BasicAuthenticationFilter.class)

 .addFilterAfter(#A

 new AuthenticationLoggingFilter(),

 BasicAuthenticationFilter.class)

 .authorizeRequests(c -> c.anyRequest().permitAll());

 return http.build();

 }

}

Running the application and calling the endpoint, we observe that for every
successful call to the endpoint, the application prints a log line in the console.
For the call

curl -H "Request-Id:12345" http://localhost:8080/hello

the response body is

Hello!

In the console, you can see a line similar to this:

INFO 5876 --- [nio-8080-exec-2] c.l.s.f.AuthenticationLoggingFilter: Successfully authenticated request with id 12345

5.4 Adding a filter at the location of another in the
chain

In this section, we discuss adding a filter at the location of another one in the
filter chain. You use this approach especially when providing a different
implementation for a responsibility that is already assumed by one of the
filters known by Spring Security. A typical scenario is authentication.

Let’s assume that instead of the HTTP Basic authentication flow, you want to
implement something different. Instead of using a username and a password
as input credentials based on which the application authenticates the user,
you need to apply another approach. Some examples of scenarios that you
could encounter are

Identification based on a static header value for authentication
Using a symmetric key to sign the request for authentication
Using a one-time password (OTP) in the authentication process

In our first scenario, identification based on a static key for authentication,
the client sends a string to the app in the header of HTTP request, which is

always the same. The application stores these values somewhere, most
probably in a database or a secrets vault. Based on this static value, the
application identifies the client.

This approach (figure 5.9) offers weak security related to authentication, but
architects and developers often choose it in calls between backend
applications for its simplicity. The implementations also execute fast because
these don’t need to do complex calculations, as in the case of applying a
cryptographic signature. This way, static keys used for authentication
represent a compromise where developers rely more on the infrastructure
level in terms of security and also don’t leave the endpoints wholly
unprotected.

Figure 5.9 The request contains a header with the value of the static key. If this value matches the
one known by the application, it accepts the request.

In our second scenario, using symmetric keys to sign and validate requests,
both client and server know the value of a key (client and server share the
key). The client uses this key to sign a part of the request (for example, to
sign the value of specific headers), and the server checks if the signature is
valid using the same key (figure 5.10). The server can store individual keys
for each client in a database or a secrets vault. Similarly, you can use a pair of
asymmetric keys.

Figure 5.10 The Authorization header contains a value signed with a key known by both client
and server (or a private key for which the server has the public key). The application checks the
signature and, if correct, allows the request.

And finally, for our third scenario, using an OTP in the authentication
process, the user receives the OTP via a message or by using an
authentication provider app like Google Authenticator (figure 5.11).

Figure 5.11 To access the resource, the client has to use a one-time password (OTP). The client
obtains the OTP from a third-party authentication server. Generally, applications use this
approach during login when multifactor authentication is required.

Let’s implement an example to demonstrate how to apply a custom filter. To
keep the case relevant but straightforward, we focus on configuration and
consider a simple logic for authentication. In our scenario, we have the value
of a static key, which is the same for all requests. To be authenticated, the
user must add the correct value of the static key in the Authorization header
as presented in figure 5.12. You can find the code for this example in the
project ssia-ch5-ex2.

Figure 5.12 The client adds a static key in the Authorization header of the HTTP request. The
server checks if it knows the key before authorizing the requests.

We start with implementing the filter class, named
StaticKeyAuthenticationFilter. This class reads the value of the static
key from the properties file and verifies if the value of the Authorization
header is equal to it. If the values are the same, the filter forwards the request
to the next component in the filter chain. If not, the filter sets the value 401
Unauthorized to the HTTP status of the response without forwarding the
request in the filter chain. Listing 5.7 defines the
StaticKeyAuthenticationFilter class.

Listing 5.7 The definition of the StaticKeyAuthenticationFilter class

@Component #A

public class StaticKeyAuthenticationFilter

 implements Filter { #B

 @Value("${authorization.key}") #C

 private String authorizationKey;

 @Override

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain filterChain)

 throws IOException, ServletException {

 var httpRequest = (HttpServletRequest) request;

 var httpResponse = (HttpServletResponse) response;

 String authentication = #D

 httpRequest.getHeader("Authorization");

 if (authorizationKey.equals(authentication)) {

 filterChain.doFilter(request, response);

 } else {

 httpResponse.setStatus(

 HttpServletResponse.SC_UNAUTHORIZED);

 }

 }

}

Once we define the filter, we add it to the filter chain at the position of the
class BasicAuthenticationFilter by using the addFilterAt() method
(figure 5.13).

Figure 5.13 We add our custom authentication filter at the location where the class
BasicAuthenticationFilter would have been if we were using HTTP Basic as an authentication
method. This means our custom filter has the same ordering value.

But remember what we discussed in section 5.1. When adding a filter at a
specific position, Spring Security does not assume it is the only one at that
position. You might add more filters at the same location in the chain. In this
case, Spring Security doesn’t guarantee in which order these will act. I tell
you this again because I’ve seen many people confused by how this works.
Some developers think that when you apply a filter at a position of a known
one, it will be replaced. This is not the case! We must make sure not to add
filters that we don’t need to the chain.

NOTE

I do advise you not to add multiple filters at the same position in the chain.
When you add more filters in the same location, the order in which they are
used is not defined. It makes sense to have a definite order in which filters are
called. Having a known order makes your application easier to understand
and maintain.

In listing 5.8, you can find the definition of the configuration class that adds
the filter. Observe that we don’t call the httpBasic() method from the
HttpSecurity class here because we don’t want the
BasicAuthenticationFilter instance to be added to the filter chain.

Listing 5.8 Adding the filter in the configuration class

@Configuration

public class ProjectConfig {

 private final StaticKeyAuthenticationFilter filter; #A

 // omitted constructor

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.addFilterAt(filter, #B

 BasicAuthenticationFilter.class)

 .authorizeRequests(c -> c.anyRequest().permitAll());

 return http.build();

 }

}

To test the application, we also need an endpoint. For that, we define a
controller, as given in listing 5.4. You should add a value for the static key on
the server in the application.properties file, as shown in this code snippet:

authorization.key=SD9cICjl1e

NOTE

Storing passwords, keys, or any other data that is not meant to be seen by
everybody in the properties file is never a good idea for a production
application. In our examples, we use this approach for simplicity and to allow
you to focus on the Spring Security configurations we make. But in real-
world scenarios, make sure to use a secrets vault to store such kinds of
details.

We can now test the application. We expect that the app allows requests
having the correct value for the Authorization header and rejects others,
returning an HTTP 401 Unauthorized status on the response. The next code
snippets present the curl calls used to test the application. If you use the
same value you set on the server side for the Authorization header, the call
is successful, and you’ll see the response body, Hello! The call

curl -H "Authorization:SD9cICjl1e" http://localhost:8080/hello

returns this response body:

Hello!

With the following call, if the Authorization header is missing or is
incorrect, the response status is HTTP 401 Unauthorized:

curl -v http://localhost:8080/hello

The response status is

...

< HTTP/1.1 401

...

In this case, because we don’t configure a UserDetailsService, Spring Boot
automatically configures one, as you learned in chapter 2. But in our
scenario, you don’t need a UserDetailsService at all because the concept of
the user doesn’t exist. We only validate that the user requesting to call an
endpoint on the server knows a given value. Application scenarios are not
usually this simple and often require a UserDetailsService. But, if you
anticipate or have such a case where this component is not needed, you can
disable autoconfiguration. To disable the configuration of the default
UserDetailsService, you can use the exclude attribute of the
@SpringBootApplication annotation on the main class like this:

@SpringBootApplication(exclude =

 {UserDetailsServiceAutoConfiguration.class })

5.5 Filter implementations provided by Spring
Security

In this section, we discuss classes provided by Spring Security, which
implement the Filter interface. In the examples in this chapter, we define
the filter by implementing this interface directly.

Spring Security offers a few abstract classes that implement the Filter
interface and for which you can extend your filter definitions. These classes
also add functionality your implementations could benefit from when you
extend them. For example, you could extend the GenericFilterBean class,
which allows you to use initialization parameters that you would define in a
web.xml descriptor file where applicable. A more useful class that extends
the GenericFilterBean is OncePerRequestFilter. When adding a filter to
the chain, the framework doesn’t guarantee it will be called only once per
request. OncePerRequestFilter, as the name suggests, implements logic to
make sure that the filter’s doFilter() method is executed only one time per
request.

If you need such functionality in your application, use the classes that Spring
provides. But if you don’t need them, I’d always recommend you to go as
simple as possible with your implementations. Too often, I’ve seen
developers extending the GenericFilterBean class instead of implementing

the Filter interface in functionalities that don’t require the custom logic
added by the GenericFilterBean class. When asked why, it seems they don’t
know. They probably copied the implementation as they found it in examples
on the web.

To make it crystal clear how to use such a class, let’s write an example. The
logging functionality we implemented in section 5.3 makes a great candidate
for using OncePerRequestFilter. We want to avoid logging the same
requests multiple times. Spring Security doesn’t guarantee the filter won’t be
called more than once, so we have to take care of this ourselves. The easiest
way is to implement the filter using the OncePerRequestFilter class. I wrote
this in a separate project called ssia-ch5-ex3.

In listing 5.9, you find the change I made for the
AuthenticationLoggingFilter class. Instead of implementing the Filter
interface directly, as was the case in the example in section 5.3, now it
extends the OncePerRequestFilter class. The method we override here is
doFilterInternal(). You find this code in project ssia-ch5-ex3.

Listing 5.9 Extending the OncePerRequestFilter class

public class AuthenticationLoggingFilter

 extends OncePerRequestFilter { #A

 private final Logger logger =

 Logger.getLogger(

 AuthenticationLoggingFilter.class.getName());

 @Override

 protected void doFilterInternal(#B

 HttpServletRequest request, #C

 HttpServletResponse response, #C

 FilterChain filterChain) throws

 ServletException, IOException {

 String requestId = request.getHeader("Request-Id");

 logger.info("Successfully authenticated request with id " +

 requestId);

 filterChain.doFilter(request, response);

 }

}

A few short observations about the OncePerRequestFilter class that you
might find useful:

"charitalics"It supports only HTTP requests, but that’s actually what we
always use. The advantage is that it casts the types, and we directly
receive the requests as HttpServletRequest and HttpServletResponse.
Remember, with the Filter interface, we had to cast the request and the
response.
"charitalics"You can implement logic to decide if the filter is applied or
not. Even if you added the filter to the chain, you might decide it doesn’t
apply for certain requests. You set this by overriding the
shouldNotFilter(HttpServletRequest) method. By default, the filter
applies to all requests.
"charitalics"By default, a OncePerRequestFilter "charitalics"doesn’t
apply to asynchronous requests or error dispatch requests. You can
change this behavior by overriding the methods
shouldNotFilterAsyncDispatch() and
shouldNotFilterErrorDispatch().

If you find any of these characteristics of the OncePerRequestFilter useful
in your implementation, I recommend you use this class to define your filters.

5.6 Summary

The first layer of the web application architecture, which intercepts
HTTP requests, is a filter chain. As for other components in Spring
Security architecture, you can customize them to match your
requirements.
You can customize the filter chain by adding new filters before an
existing one, after an existing one, or at the position of an existing filter.
You can have multiple filters at the same position of an existing filter. In
this case, the order in which the filters are executed is not defined.
Changing the filter chain helps you customize authentication and
authorization to match precisely the requirements of your application.

6 Implementing authentication
This chapter covers

Implementing authentication logic using a custom
AuthenticationProvider

Using the HTTP Basic and form-based login authentication methods
Understanding and managing the SecurityContext component

In chapters 3 and 4, we covered a few of the components acting in the
authentication flow. We discussed UserDetails and how to define the
prototype to describe a user in Spring Security. We then used UserDetails in
examples where you learned how the UserDetailsService and
UserDetailsManager contracts work and how you can implement these. We
discussed and used the leading implementations of these interfaces in
examples as well. Finally, you learned how a PasswordEncoder manages
passwords and how to use one, as well as the Spring Security crypto module
(SSCM) with its encryptors and key generators.

The AuthenticationProvider layer, however, is the one responsible for the
logic of authentication. The AuthenticationProvider is where you find the
conditions and instructions that decide whether to authenticate a request or
not. The component that delegates this responsibility to the
AuthenticationProvider is the AuthenticationManager, which receives
the request from the HTTP filter layer, which we discussed in chapter 5. In
this chapter, let’s look at the authentication process, which has only two
possible results:

"charitalics"The entity making the request is not authenticated. The user
is not recognized, and the application rejects the request without
delegating to the authorization process. Usually, in this case, the
response status sent back to the client is HTTP 401 Unauthorized.
"charitalics"The entity making the request is authenticated. The details
about the requester are stored such that the application can use these for
authorization. As you’ll find out in this chapter, SecurityContext is

responsible for the details about the current authenticated request.

To remind you of the actors and the links between them, figure 6.1 provides
the diagram that you also saw in chapter 2.

Figure 6.1 The authentication flow in Spring Security. This process defines how the application
identifies someone making a request. In the figure, the components discussed in this chapter are
shaded. Here, the AuthenticationProvider implements the authentication logic in this process,
while the SecurityContext stores the details about the authenticated request.

This chapter covers the remaining parts of the authentication flow (the shaded

boxes in figure 6.1). Then, in chapters 7 and 8, you’ll learn how authorization
works, which is the process that follows authentication in the HTTP request.
First, we need to discuss how to implement the AuthenticationProvider
interface. You need to know how Spring Security understands a request in the
authentication process.

To give you a clear description of how to represent an authentication request,
we’ll start with the Authentication interface. Once we discuss this, we can
go further and observe what happens with the details of a request after
successful authentication. After successful authentication, we can then
discuss the SecurityContext interface and the way Spring Security manages
it. Near the end of the chapter, you’ll learn how to customize the HTTP Basic
authentication method. We’ll also discuss another option for authentication
that we can use in our applications—the form-based login.

6.1 Understanding the AuthenticationProvider

In enterprise applications, you might find yourself in a situation in which the
default implementation of authentication based on username and password
does not apply. Additionally, when it comes to authentication, your
application may require the implementation of several scenarios (figure 6.2).
For example, you might want the user to be able to prove who they are by
using a code received in an SMS message or displayed by a specific
application. Or, you might need to implement authentication scenarios where
the user has to provide a certain kind of key stored in a file. You might even
need to use a representation of the user’s fingerprint to implement the
authentication logic. A framework’s purpose is to be flexible enough to allow
you to implement any of these required scenarios.

Figure 6.2 For an application, you might need to implement authentication in different ways.
While in most cases a username and a password are enough, in some cases, the user-
authentication scenario might be more complicated.

A framework usually provides a set of the most commonly used
implementations, but it cannot, of course, cover all the possible options. In
terms of Spring Security, you can use the AuthenticationProvider contract
to define any custom authentication logic. In this section, you learn to
represent the authentication event by implementing the Authentication
interface and then creating your custom authentication logic with an
AuthenticationProvider. To achieve our goal

In section 6.1.1, we analyze how Spring Security represents the
authentication event.
In section 6.1.2, we discuss the AuthenticationProvider contract,
which is responsible for the authentication logic.
In section 6.1.3, you write custom authentication logic by implementing
the AuthenticationProvider contract in an example.

6.1.1 Representing the request during authentication

In this section, we discuss how Spring Security understands a request during
the authentication process. It is important to touch on this before diving into
implementing custom authentication logic. As you’ll learn in section 6.1.2, to
implement a custom AuthenticationProvider, you first need to understand
how to describe the authentication event itself. In this section, we take a look
at the contract representing authentication and discuss the methods you need
to know.

Authentication is one of the essential interfaces involved in the process
with the same name. The Authentication interface represents the
authentication request event and holds the details of the entity that requests
access to the application. You can use the information related to the
authentication request event during and after the authentication process. The
user requesting access to the application is called a "charitalics"principal. If
you’ve ever used Java Security in any app, you learned that in Java Security,
an interface named Principal represents the same concept. The
Authentication interface of Spring Security extends this contract (figure
6.3).

Figure 6.3 The Authentication contract inherits from the Principal contract. Authentication
adds requirements such as the need for a password or the possibility to specify more details about
the authentication request. Some of these details, like the list of authorities, are Spring Security-
specific.

The Authentication contract in Spring Security not only represents a
principal, it also adds information on whether the authentication process
finishes, as well as a collection of authorities. The fact that this contract was
designed to extend the Principal contract from Java Security is a plus in
terms of compatibility with implementations of other frameworks and
applications. This flexibility allows for more facile migrations to Spring
Security from applications that implement authentication in another fashion.

Let’s find out more about the design of the Authentication interface, in the
following listing.

Listing 6.1 The Authentication interface as declared in Spring Security

public interface Authentication extends Principal, Serializable {

 Collection<? extends GrantedAuthority> getAuthorities();

 Object getCredentials();

 Object getDetails();

 Object getPrincipal();

 boolean isAuthenticated();

 void setAuthenticated(boolean isAuthenticated)

 throws IllegalArgumentException;

}

For the moment, the only methods of this contract that you need to learn are
these:

isAuthenticated()—Returns true if the authentication process ends or
false if the authentication process is still in progress.
getCredentials()—Returns a password or any secret used in the
process of authentication.
getAuthorities()—Returns a collection of granted authorities for the
authenticated request.

We’ll discuss the other methods for the Authentication contract in later
chapters, where appropriate to the implementations we look at then.

6.1.2 Implementing custom authentication logic

In this section, we discuss implementing custom authentication logic. We
analyze the Spring Security contract related to this responsibility to
understand its definition. With these details, you implement custom
authentication logic with a code example in section 6.1.3.

The AuthenticationProvider in Spring Security takes care of the
authentication logic. The default implementation of the
AuthenticationProvider interface delegates the responsibility of finding the
system’s user to a UserDetailsService. It uses the PasswordEncoder as well
for password management in the process of authentication. The following
listing gives the definition of the AuthenticationProvider, which you need
to implement to define a custom authentication provider for your application.

Listing 6.2 The AuthenticationProvider interface

public interface AuthenticationProvider {

 Authentication authenticate(Authentication authentication)

 throws AuthenticationException;

 boolean supports(Class<?> authentication);

}

The AuthenticationProvider responsibility is strongly coupled with the
Authentication contract. The authenticate() method receives an
Authentication object as a parameter and returns an Authentication
object. We implement the authenticate() method to define the
authentication logic. We can quickly summarize the way you should
implement the authenticate() method with three bullets:

The method should throw an AuthenticationException if the
authentication fails.
If the method receives an authentication object that is not supported by
your implementation of AuthenticationProvider, then the method
should return null. This way, we have the possibility of using multiple
Authentication types separated at the HTTP-filter level.
The method should return an Authentication instance representing a
fully authenticated object. For this instance, the isAuthenticated()
method returns true, and it contains all the necessary details about the
authenticated entity. Usually, the application also removes sensitive data
like a password from this instance. After a successful authentication, the
password is no longer required and keeping these details can potentially
expose them to unwanted eyes.

The second method in the AuthenticationProvider interface is
supports(Class<?> authentication). You can implement this method to
return true if the current AuthenticationProvider supports the type
provided as an Authentication object. Observe that even if this method
returns true for an object, there is still a chance that the authenticate()
method rejects the request by returning null. Spring Security is designed like
this to be more flexible and to allow you to implement an
AuthenticationProvider that can reject an authentication request based on
the request’s details, not only by its type.

An analogy of how the authentication manager and authentication provider
work together to validate or invalidate an authentication request is having a

more complex lock for your door. You can open this lock either by using a
card or an old fashioned physical key (figure 6.4). The lock itself is the
authentication manager that decides whether to open the door. To make that
decision, it delegates to the two authentication providers: one that knows how
to validate the card or the other that knows how to verify the physical key. If
you present a card to open the door, the authentication provider that works
only with physical keys complains that it doesn’t know this kind of
authentication. But the other provider supports this kind of authentication and
verifies whether the card is valid for the door. This is actually the purpose of
the -supports() methods.

Besides testing the authentication type, Spring Security adds one more layer
for flexibility. The door’s lock can recognize multiple kinds of cards. In this
case, when you present a card, one of the authentication providers could say,
“I understand this as being a card. But it isn’t the type of card I can validate!”
This happens when supports() returns true but authenticate() returns null.

Figure 6.4 The AuthenticationManager delegates to one of the available authentication providers.
The AuthenticationProvider might not support the provided type of authentication. On the other
hand, if it does support the object type, it might not know how to authenticate that specific object.
The authentication is evaluated, and an AuthenticationProvider that can say if the request is
correct or not responds to the AuthenticationManager.

Figure 6.5 shows the alternative scenario where one of the
AuthenticationProvider objects recognizes the Authentication but
decides it’s not valid. The result in this case will be an
AuthenticationException which ends up as a 401 Unauthorized HTTP
status in the HTTP response in a web app.

Figure 6.5 If none of the AuthenticationProvider objects recognize the Authentication or any of
them rejects it, the result is an AuthenticationException.

6.1.3 Applying custom authentication logic

In this section, we implement custom authentication logic. You can find this
example in the project ssia-ch6-ex1. With this example, you apply what
you’ve learned about the Authentication and AuthenticationProvider
interfaces in sections 6.1.1 and 6.1.2. In listings 6.3 and 6.4, we build, step by
step, an example of how to implement a custom AuthenticationProvider.
These steps, also presented in figure 6.5, follow:

1. Declare a class that implements the AuthenticationProvider contract.
2. Decide which kinds of Authentication objects the new

AuthenticationProvider supports:
3. Implement the supports(Class<?> c) method to specify which type of

authentication is supported by the AuthenticationProvider that we
define.

4. Implement the authenticate(Authentication a) method to
implement the authentication logic.

5. Register an instance of the new AuthenticationProvider
implementation with Spring Security.

Listing 6.3 Overriding the supports() method of the AuthenticationProvider

@Component

public class CustomAuthenticationProvider

 implements AuthenticationProvider {

 // Omitted code

 @Override

 public boolean supports(Class<?> authenticationType) {

 return authenticationType

 .equals(UsernamePasswordAuthenticationToken.class);

 }

}

In listing 6.3, we define a new class that implements the
AuthenticationProvider interface. We mark the class with @Component to
have an instance of its type in the context managed by Spring. Then, we have
to decide what kind of Authentication interface implementation this
AuthenticationProvider supports. That depends on what type we expect to
be provided as a parameter to the authenticate() method. If we don’t
customize anything at the authentication filter level (as discussed in chapter
5), then the class UsernamePasswordAuthenticationToken defines the type.
This class is an implementation of the Authentication interface and
represents a standard authentication request with username and password.

With this definition, we made the AuthenticationProvider support a
specific kind of key. Once we have specified the scope of our
AuthenticationProvider, we implement the authentication logic by
overriding the authenticate() method as shown in following listing.

Listing 6.4 Implementing the authentication logic

@Component

public class CustomAuthenticationProvider

 implements AuthenticationProvider {

 private final UserDetailsService userDetailsService;

 private final PasswordEncoder passwordEncoder;

 // Omitted constructor

 @Override

 public Authentication authenticate(Authentication authentication) {

 String username = authentication.getName();

 String password = authentication.getCredentials().toString();

 UserDetails u = userDetailsService.loadUserByUsername(username);

 if (passwordEncoder.matches(password, u.getPassword())) {

 return new UsernamePasswordAuthenticationToken(

 username,

 password,

 u.getAuthorities()); #A

 } else {

 throw new BadCredentialsException

 ("Something went wrong!"); #B

 }

 }

 // Omitted code

}

The logic in listing 6.4 is simple, and figure 6.6 shows this logic visually. We
make use of the UserDetailsService implementation to get the
UserDetails. If the user doesn’t exist, the loadUserByUsername() method
should throw an AuthenticationException. In this case, the authentication
process stops, and the HTTP filter sets the response status to HTTP 401
Unauthorized. If the username exists, we can check further the user’s
password with the matches() method of the PasswordEncoder from the
context. If the password does not match, then again, an
AuthenticationException should be thrown. If the password is correct, the
AuthenticationProvider returns an instance of Authentication marked as
“authenticated,” which contains the details about the request.

Figure 6.6 The custom authentication flow implemented by the AuthenticationProvider. To
validate the authentication request, the AuthenticationProvider loads the user details with a
provided implementation of UserDetailsService, and if the password matches, validates the
password with a PasswordEncoder. If either the user does not exist or the password is incorrect,
the AuthenticationProvider throws an AuthenticationException.

To plug in the new implementation of the AuthenticationProvider, we
define a SecurityFilterChain bean. This is demonstrated in the following
listing.

Listing 6.5 Registering the AuthenticationProvider in the configuration class

@Configuration

public class ProjectConfig {

 private final AuthenticationProvider authenticationProvider;

 // Omitted constructor

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authenticationProvider(authenticationProvider);

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

 }

 // Omitted code

}

NOTE

In listing 6.5, I use the dependency injection with a field declared with the
AuthenticationProvider interface. Spring recognizes the
AuthenticationProvider as an interface (which is an abstraction). But
Spring knows that it needs to find in its context an instance of an
implementation for that specific interface. In our case, the implementation is
the instance of CustomAuthenticationProvider, which is the only one of
this type that we declared and added to the Spring context using the
@Component annotation. For a refresher on dependency injection I
recommend you read Spring Start Here (Manning, 2021), another book I
wrote.

That’s it! You successfully customized the implementation of the
AuthenticationProvider. You can now customize the authentication logic
for your application where you need it.

How to fail in application design

Incorrectly applying a framework leads to a less maintainable application.
Worse is sometimes those who fail in using the framework believe that it’s
the framework’s fault. Let me tell you a story.

One winter, the head of development in a company I worked with as a
consultant called me to help them with the implementation of a new feature.
They needed to apply a custom authentication method in a component of
their system developed with Spring in its early days. Unfortunately, when
implementing the application’s class design the developers didn’t rely
properly on Spring Security’s backbone architecture.

They only relied on the filter chain, reimplementing entire features from
Spring Security as custom code.

Developers observed that with time, customizations became more and more
difficult. But nobody took action to redesign the component properly to use
the contracts as intended in Spring Security. Much of the difficulty came
from not knowing Spring’s capabilities. One of the lead developers said, “It’s
only the fault of this Spring Security! This framework is hard to apply, and
it’s difficult to use with any customization.” I was a bit shocked at his
observation. I know that Spring Security is sometimes difficult to understand,
and the framework is known for not having a soft learning curve. But I’ve
never experienced a situation in which I couldn’t find a way to design an
easy-to-customize class with Spring Security!

We investigated together, and I realized the application developers only used
maybe 10% of what Spring Security offers. Then, I presented a two-day
workshop on Spring Security, focusing on what (and how) we could do for
the specific system component they needed to change.

Everything ended with the decision to completely rewrite a lot of custom
code to rely correctly on Spring Security and, thus, make the application
easier to extend to meet their concerns for security implementations. We also
discovered some other issues unrelated to Spring Security, but that’s another
story.

A few lessons for you to take from this story:

 ∙ A framework, and especially one widely used in applications, is written
with the participation of many smart individuals. Even so, it’s hard to believe
that it can be badly implemented. Always analyze your application before
concluding that any problems are the framework’s fault.

 ∙ When deciding to use a framework, make sure you understand, at least, its
basics well.

 ∙ Be mindful of the resources you use to learn about the framework.
Sometimes, articles you find on the web show you how to do quick
workarounds and not necessarily how to correctly implement a class design.

 ∙ Use multiple sources in your research. To clarify your misunderstandings,
write a proof of concept when unsure how to use something.

 ∙ If you decide to use a framework, use it as much as possible for its
intended purpose. For example, say you use Spring Security, and you observe
that for security implementations, you tend to write more custom code
instead of relying on what the framework offers. You should raise a question
on why this happens.

When we rely on functionalities implemented by a framework, we enjoy
several benefits. We know they are tested and there are fewer changes that
include vulnerabilities. Also, a good framework relies on abstractions, which
help you create maintainable applications. Remember that when you write
your own implementations, you’re more susceptible to including
vulnerabilities.

6.2 Using the SecurityContext

This section discusses the security context. We analyze how it works, how to
access data from it, and how the application manages it in different thread-
related scenarios. Once you finish this section, you’ll know how to configure
the security context for various situations. This way, you can use the details
about the authenticated user stored by the security context in configuring
authorization in chapters 7 and 8.

It is likely that you will need details about the authenticated entity after the
authentication process ends. You might, for example, need to refer to the
username or the authorities of the currently authenticated user. Is this
information still accessible after the authentication process finishes? Once the
AuthenticationManager completes the authentication process successfully, it
stores the Authentication instance for the rest of the request. The instance
storing the Authentication object is called the "charitalics"security context.

Figure 6.7 After successful authentication, the authentication filter stores the details of the
authenticated entity in the security context. From there, the controller implementing the action
mapped to the request can access these details when needed.

The security context of Spring Security is described by the SecurityContext
interface. The following listing defines this interface.

Listing 6.6 The SecurityContext interface

public interface SecurityContext extends Serializable {

 Authentication getAuthentication();

 void setAuthentication(Authentication authentication);

}

As you can observe from the contract definition, the primary responsibility of
the SecurityContext is to store the Authentication object. But how is the
SecurityContext itself managed? Spring Security offers three strategies to
manage the SecurityContext with an object in the role of a manager. It’s
named the SecurityContextHolder:

MODE_THREADLOCAL—Allows each thread to store its own details in the
security context. In a thread-per-request web application, this is a
common approach as each request has an individual thread.

MODE_INHERITABLETHREADLOCAL—Similar to MODE_THREADLOCAL but
also instructs Spring Security to copy the security context to the next
thread in case of an asynchronous method. This way, we can say that the
new thread running the @Async method inherits the security context. The
@Async annotation is used with methods to instruct Spring to call the
annotated method on a separate thread.
MODE_GLOBAL—Makes all the threads of the application see the same
security context instance.

Besides these three strategies for managing the security context provided by
Spring Security, in this section, we also discuss what happens when you
define your own threads that are not known by Spring. As you will learn, for
these cases, you need to explicitly copy the details from the security context
to the new thread. Spring Security cannot automatically manage objects that
are not in Spring’s context, but it offers some great utility classes for this.

6.2.1 Using a holding strategy for the security context

The first strategy for managing the security context is the MODE_THREADLOCAL
strategy. This strategy is also the default for managing the security context
used by Spring Security. With this strategy, Spring Security uses
ThreadLocal to manage the context. ThreadLocal is an implementation
provided by the JDK. This implementation works as a collection of data but
makes sure that each thread of the application can see only the data stored in
its dedicated part of the collection. This way, each request has access to its
security context. No thread will have access to another’s ThreadLocal. And
that means that in a web application, each request can see only its own
security context. We could say that this is also what you generally want to
have for a backend web application.

Figure 6.8 offers an overview of this functionality. Each request (A, B, and
C) has its own allocated thread (T1, T2, and T3). This way, each request only
sees the details stored in their own security context. But this also means that
if a new thread is created (for example, when an asynchronous method is
called), the new thread will have its own security context as well. The details
from the parent thread (the original thread of the request) are not copied to
the security context of the new thread.

NOTE

Here we discuss a traditional servlet application where each request is tied to
a thread. This architecture only applies to the traditional servlet application
where each request has its own thread assigned. It does not apply to reactive
applications. We’ll discuss the security for reactive approaches in detail in
chapter 17.

Being the default strategy for managing the security context, this process
does not need to be explicitly configured. Just ask for the security context
from the holder using the static getContext() method wherever you need it
after the end of the authentication process. In listing 6.7, you find an example
of obtaining the security context in one of the endpoints of the application.
From the security context, you can further get the Authentication object,
which stores the details about the authenticated entity. You can find the
examples we discuss in this section as part of the project ssia-ch6-ex2.

Figure 6.8 Each request has its own thread, represented by an arrow. Each thread has access
only to its own security context details. When a new thread is created (for example, by an @Async
method), the details from the parent thread aren’t copied.

Listing 6.7 Obtaining the SecurityContext from the SecurityContextHolder

@GetMapping("/hello")

public String hello() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication a = context.getAuthentication();

 return "Hello, " + a.getName() + "!";

}

Obtaining the authentication from the context is even more comfortable at the
endpoint level, as Spring knows to inject it directly into the method
parameters. You don’t need to refer every time to the
SecurityContextHolder class explicitly. This approach, as presented in the
following listing, is better.

Listing 6.8 Spring injects Authentication value in the parameter of the method

@GetMapping("/hello")

public String hello(Authentication a) { #A

 return "Hello, " + a.getName() + "!";

}

When calling the endpoint with a correct user, the response body contains the
username. For example,

curl -u user:99ff79e3-8ca0-401c-a396-0a8625ab3bad http://localhost:8080/hello

Hello, user!

6.2.2 Using a holding strategy for asynchronous calls

It is easy to stick with the default strategy for managing the security context.
And in a lot of cases, it is the only thing you need. MODE_THREADLOCAL offers
you the ability to isolate the security context for each thread, and it makes the
security context more natural to understand and manage. But there are also
cases in which this does not apply.

The situation gets more complicated if we have to deal with multiple threads
per request. Look at what happens if you make the endpoint asynchronous.
The thread that executes the method is no longer the same thread that serves
the request. Think about an endpoint like the one presented in the next listing.

Listing 6.9 An @Async method served by a different thread

@GetMapping("/bye")

@Async #A

public void goodbye() {

 SecurityContext context = SecurityContextHolder.getContext();

 String username = context.getAuthentication().getName();

 // do something with the username

}

To enable the functionality of the @Async annotation, I have also created a
configuration class and annotated it with @EnableAsync, as shown here:

@Configuration

@EnableAsync

public class ProjectConfig {

}

NOTE

Sometimes in articles or forums, you find that the configuration annotations
are placed over the main class. For example, you might find that certain
examples use the @EnableAsync annotation directly over the main class. This
approach is technically correct because we annotate the main class of a
Spring Boot application with the @SpringBootApplication annotation,
which includes the @Configuration characteristic. But in a real-world
application, we prefer to keep the responsibilities apart, and we never use the
main class as a configuration class. To make things as clear as possible for
the examples in this book, I prefer to keep these annotations over the
@Configuration class, similar to how you’ll find them in practical scenarios.

If you try the code as it is now, it throws a NullPointerException on the line
that gets the name from the authentication, which is

String username = context.getAuthentication().getName()

This is because the method executes now on another thread that does not
inherit the security context. For this reason, the Authorization object is null
and, in the context of the presented code, causes a NullPointerException. In
this case, you could solve the problem by using the
MODE_INHERITABLETHREADLOCAL strategy. This can be set either by calling the
SecurityContextHolder.setStrategyName() method or by using the
system property spring.security.strategy. By setting this strategy, the
framework knows to copy the details of the original thread of the request to
the newly created thread of the asynchronous method (figure 6.9).

Figure 6.9 When using the MODE_INHERITABLETHREADLOCAL, the framework copies the security
context details from the original thread of the request to the security context of the new thread.

The next listing presents a way to set the security context management
strategy by calling the setStrategyName() method.

Listing 6.10 Using InitializingBean to set SecurityContextHolder mode

@Configuration

@EnableAsync

public class ProjectConfig {

 @Bean

 public InitializingBean initializingBean() {

 return () -> SecurityContextHolder.setStrategyName(

 SecurityContextHolder.MODE_INHERITABLETHREADLOCAL);

 }

}

Calling the endpoint, you will observe now that the security context is
propagated correctly to the next thread by Spring. Additionally,

Authentication is not null anymore.

NOTE

This works, however, only when the framework itself creates the thread (for
example, in case of an @Async method). If your code creates the thread, you
will run into the same problem even with the MODE_INHERITABLETHREADLOCAL
strategy. This happens because, in this case, the framework does not know
about the thread that your code creates. We’ll discuss how to solve the issues
of these cases in sections 6.2.4 and 6.2.5.

6.2.3 Using a holding strategy for standalone applications

If what you need is a security context shared by all the threads of the
application, you change the strategy to MODE_GLOBAL (figure 6.10). You
would not use this strategy for a web server as it doesn’t fit the general
picture of the application. A backend web application independently manages
the requests it receives, so it really makes more sense to have the security
context separated per request instead of one context for all of them. But this
can be a good use for a standalone application.

Figure 6.10 With MODE_GLOBAL used as the security context management strategy, all the threads
access the same security context. This implies that these all have access to the same data and can
change that information. Because of this, race conditions can occur, and you have to take care of
synchronization.

As the following code snippet shows, you can change the strategy in the same
way we did with MODE_INHERITABLETHREADLOCAL. You can use the method
SecurityContextHolder.setStrategyName() or the system property
spring.security.strategy:

@Bean

public InitializingBean initializingBean() {

 return () -> SecurityContextHolder.setStrategyName(

 SecurityContextHolder.MODE_GLOBAL);

}

Also, be aware that the SecurityContext is not thread safe. So, with this
strategy where all the threads of the application can access the
SecurityContext object, you need to take care of concurrent access.

6.2.4 Forwarding the security context with
DelegatingSecurityContextRunnable

You have learned that you can manage the security context with three modes
provided by Spring Security: MODE_THREADLOCAL,
MODE_INHERITEDTHREADLOCAL, and MODE_GLOBAL. By default, the framework
only makes sure to provide a security context for the thread of the request,
and this security context is only accessible to that thread. But the framework
doesn’t take care of newly created threads (for example, in case of an
asynchronous method). And you learned that for this situation, you have to
explicitly set a different mode for the management of the security context.
But we still have a singularity: what happens when your code starts new
threads without the framework knowing about them? Sometimes we name
these "charitalics"self-managed threads because it is we who manage them,
not the framework. In this section, we apply some utility tools provided by
Spring Security that help you propagate the security context to newly created
threads.

No specific strategy of the SecurityContextHolder offers you a solution to
self-managed threads. In this case, you need to take care of the security
context propagation. One solution for this is to use the
DelegatingSecurityContextRunnable to decorate the tasks you want to
execute on a separate thread. The DelegatingSecurityContextRunnable
extends Runnable. You can use it following the execution of the task when
there is no value expected. If you have a return value, then you can use the
Callable<T> alternative, which is
DelegatingSecurityContextCallable<T>. Both classes represent tasks
executed asynchronously, as any other Runnable or Callable. Moreover,
these make sure to copy the current security context for the thread that
executes the task. As figure 6.11 shows, these objects decorate the original
tasks and copy the security context to the new threads.

Figure 6.11 DelegatingSecurityContextCallable is designed as a decorator of the Callable
object. When building such an object, you provide the callable task that the application executes
asynchronously. DelegatingSecurityContextCallable copies the details from the security context
to the new thread and then executes the task.

Listing 6.11 presents the use of DelegatingSecurityContextCallable. Let’s
start by defining a simple endpoint method that declares a Callable object.
The Callable task returns the username from the current security context.

Listing 6.11 Defining a Callable object and executing it as a task on a separate thread

@GetMapping("/ciao")

public String ciao() throws Exception {

 Callable<String> task = () -> {

 SecurityContext context = SecurityContextHolder.getContext();

 return context.getAuthentication().getName();

 };

 // Omitted code

}

We continue the example by submitting the task to an ExecutorService. The
response of the execution is retrieved and returned as a response body by the
endpoint.

Listing 6.12 Defining an ExecutorService and submitting the task

@GetMapping("/ciao")

public String ciao() throws Exception {

 Callable<String> task = () -> {

 SecurityContext context = SecurityContextHolder.getContext();

 return context.getAuthentication().getName();

 };

 ExecutorService e = Executors.newCachedThreadPool();

 try {

 return "Ciao, " + e.submit(task).get() + "!";

 } finally {

 e.shutdown();

 }

}

If you run the application as is, you get nothing more than a
NullPointerException. Inside the newly created thread to run the callable
task, the authentication does not exist anymore, and the security context is
empty. To solve this problem, we decorate the task with
DelegatingSecurityContextCallable, which provides the current context
to the new thread, as provided by this listing.

Listing 6.13 Running the task decorated by DelegatingSecurityContextCallable

@GetMapping("/ciao")

public String ciao() throws Exception {

 Callable<String> task = () -> {

 SecurityContext context = SecurityContextHolder.getContext();

 return context.getAuthentication().getName();

 };

 ExecutorService e = Executors.newCachedThreadPool();

 try {

 var contextTask = new DelegatingSecurityContextCallable<>(task);

 return "Ciao, " + e.submit(contextTask).get() + "!";

 } finally {

 e.shutdown();

 }

}

Calling the endpoint now, you can observe that Spring propagated the
security context to the thread in which the tasks execute:

curl -u user:2eb3f2e8-debd-420c-9680-48159b2ff905

[CA]http://localhost:8080/ciao

The response body for this call is

Ciao, user!

6.2.5 Forwarding the security context with
DelegatingSecurityContextExecutorService

When dealing with threads that our code starts without letting the framework
know about them, we have to manage propagation of the details from the
security context to the next thread. In section 6.2.4, you applied a technique
to copy the details from the security context by making use of the task itself.
Spring Security provides some great utility classes like
DelegatingSecurityContextRunnable and
DelegatingSecurityContextCallable. These classes decorate the tasks you
execute asynchronously and also take the responsibility to copy the details
from security context such that your implementation can access those from
the newly created thread. But we have a second option to deal with the
security context propagation to a new thread, and this is to manage
propagation from the thread pool instead of from the task itself. In this
section, you learn how to apply this technique by using more great utility
classes provided by Spring Security.

An alternative to decorating tasks is to use a particular type of Executor. In
the next example, you can observe that the task remains a simple
Callable<T>, but the thread still manages the security context. The
propagation of the security context happens because an implementation
called DelegatingSecurityContextExecutorService decorates the
ExecutorService. The DelegatingSecurityContextExecutorService also
takes care of the security context propagation, as presented in figure 6.12.

Figure 6.12 DelegatingSecurityContextExecutorService decorates an ExecutorService and
propagates the security context details to the next thread before submitting the task.

The code in listing 6.14 shows how to use a
DelegatingSecurityContextExecutorService to decorate an
ExecutorService such that when you submit the task, it takes care to
propagate the details of the security context.

Listing 6.14 Propagating the SecurityContext

@GetMapping("/hola")

public String hola() throws Exception {

 Callable<String> task = () -> {

 SecurityContext context = SecurityContextHolder.getContext();

 return context.getAuthentication().getName();

 };

 ExecutorService e = Executors.newCachedThreadPool();

 e = new DelegatingSecurityContextExecutorService(e);

 try {

 return "Hola, " + e.submit(task).get() + "!";

 } finally {

 e.shutdown();

 }

}

Call the endpoint to test that the
DelegatingSecurityContextExecutorService correctly delegated the

security context:

curl -u user:5a5124cc-060d-40b1-8aad-753d3da28dca http://localhost:8080/hola

The response body for this call is

Hola, user!

Note

Of the classes that are related to concurrency support for the security context,
I recommend you be aware of the ones presented in table 6.1.

Spring offers various implementations of the utility classes that you can use
in your application to manage the security context when creating your own
threads. In section 6.2.4, you implemented
DelegatingSecurityContextCallable. In this section, we use
DelegatingSecurityContextExecutorService. If you need to implement
security context propagation for a scheduled task, then you will be happy to
hear that Spring Security also offers you a decorator named
DelegatingSecurityContextScheduledExecutorService. This mechanism
is similar to the DelegatingSecurityContextExecutorService that we
presented in this section, with the difference that it decorates a
ScheduledExecutorService, allowing you to work with scheduled tasks.

Additionally, for more flexibility, Spring Security offers you a more abstract
version of a decorator called DelegatingSecurityContextExecutor. This
class directly decorates an Executor, which is the most abstract contract of
this hierarchy of thread pools. You can choose it for the design of your
application when you want to be able to replace the implementation of the
thread pool with any of the choices the language provides you.

Table 6.1 Objects responsible for delegating the security context to a separate thread

Class Description

DelegatingSecurityContextExecutor

Implements the Executor
interface and is designed to
decorate an Executor
with the capability of
forwarding the security
context to the threads
created by its pool.

DelegatingSecurityContextExecutorService

Implements the
ExecutorService

and is designed to decorate
an ExecutorService
with the capability of
forwarding the security
context to the threads
created by its pool.

DelegatingSecurityContextScheduledExecutorService

Implements the
ScheduledExecutorService

interface and is designed to
decorate a
ScheduledExecutorService

object with the capability of
forwarding the security
context to the threads
created by its pool.

DelegatingSecurityContextRunnable

Implements the Runnable
interface and represents a
task that is executed on a
different thread without
returning a response. Above
a normal Runnable
able to propagate a security
context to use on the new

thread.

DelegatingSecurityContextCallable

Implements the Callable
interface and represents a
task that is executed on a
different thread and that will
eventually return a response.
Above a normal Callable
it is also able to propagate a
security context to use on
the new thread.

6.3 Understanding HTTP Basic and form-based
login authentications

Up to now, we’ve only used HTTP Basic as the authentication method, but
throughout this book, you’ll learn that there are other possibilities as well.
The HTTP Basic authentication method is simple, which makes it an
excellent choice for examples and demonstration purposes or proof of
concept. But for the same reason, it might not fit all of the real-world
scenarios that you’ll need to implement.

In this section, you learn more configurations related to HTTP Basic. As
well, we discover a new authentication method called formLogin. For the rest
of this book, we’ll discuss other methods for authentication, which match
well with different kinds of architectures. We’ll compare these such that you
understand the best practices as well as the anti-patterns for authentication.

6.3.1 Using and configuring HTTP Basic

You are aware that HTTP Basic is the default authentication method, and we
have observed the way it works in various examples in chapter 3. In this
section, we add more details regarding the configuration of this
authentication method.

For theoretical scenarios, the defaults that HTTP Basic authentication comes
with are great. But in a more complex application, you might find the need to
customize some of these settings. For example, you might want to implement
a specific logic for the case in which the authentication process fails. You
might even need to set some values on the response sent back to the client in
this case. So let’s consider these cases with practical examples to understand
how you can implement this. I want to point out again how you can set this
method explicitly, as shown in the following listing. You can find this
example in the project ssia-ch6-ex3.

Listing 6.15 Setting the HTTP Basic authentication method

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 return http.build();

 }

}

You can call the httpBasic() method of the HttpSecurity instance with a
parameter of type Customizer. This parameter allows you to set up some
configurations related to the authentication method, for example, the realm
name, as shown in listing 6.16. You can think about the realm as a protection
space that uses a specific authentication method. For a complete description,
refer to RFC 2617 at https://tools.ietf.org/html/rfc2617.

Listing 6.16 Configuring the realm name for the response of failed authentications

@Bean

public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(c -> {

 c.realmName("OTHER");

 c.authenticationEntryPoint(new CustomEntryPoint());

 });

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

}

Listing 6.16 presents an example of changing the realm name. The lambda
expression used is, in fact, an object of type
Customizer<HttpBasicConfigurer<HttpSecurity>>. The parameter of type
HttpBasicConfigurer<HttpSecurity> allows us to call the realmName()
method to rename the realm. You can use cURL with the -v flag to get a
verbose HTTP response in which the realm name is indeed changed.
However, note that you’ll find the WWW-Authenticate header in the response
only when the HTTP response status is 401 Unauthorized and not when the
HTTP response status is 200 OK. Here’s the call to cURL:

curl -v http://localhost:8080/hello

The response of the call is

/

...

< WWW-Authenticate: Basic realm="OTHER"

...

Also, by using a Customizer, we can customize the response for a failed
authentication. You need to do this if the client of your system expects
something specific in the response in the case of a failed authentication. You
might need to add or remove one or more headers. Or you can have some
logic that filters the body to make sure that the application doesn’t expose
any sensitive data to the client.

NOTE

Always exercise caution about the data that you expose outside of the system.
One of the most common mistakes (which is also part of the OWASP top ten
vulnerabilities - https://owasp.org/www-project-top-ten/) is exposing
sensitive data. Working with the details that the application sends to the client
for a failed authentication is always a point of risk for revealing confidential
information.

To customize the response for a failed authentication, we can implement an
AuthenticationEntryPoint. Its commence() method receives the
HttpServletRequest, the HttpServletResponse, and the
AuthenticationException that cause the authentication to fail. Listing 6.17
demonstrates a way to implement the AuthenticationEntryPoint, which
adds a header to the response and sets the HTTP status to 401 Unauthorized.

NOTE

It’s a little bit ambiguous that the name of the AuthenticationEntryPoint
interface doesn’t reflect its usage on authentication failure. In the Spring
Security architecture, this is used directly by a component called
ExceptionTranslationManager, which handles any
AccessDeniedException and AuthenticationException thrown within the
filter chain. You can view the ExceptionTranslationManager as a bridge
between Java exceptions and HTTP responses.

Listing 6.17 Implementing an AuthenticationEntryPoint

public class CustomEntryPoint

 implements AuthenticationEntryPoint {

 @Override

 public void commence(

 HttpServletRequest httpServletRequest,

 HttpServletResponse httpServletResponse,

 AuthenticationException e)

 throws IOException, ServletException {

 httpServletResponse

 .addHeader("message", "Luke, I am your father!");

 httpServletResponse

 .sendError(HttpStatus.UNAUTHORIZED.value());

 }

}

You can then register the CustomEntryPoint with the HTTP Basic method in
the configuration class. The following listing presents the configuration class
for the custom entry point.

Listing 6.18 Setting the custom AuthenticationEntryPoint

@Bean

public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(c -> {

 c.realmName("OTHER");

 c.authenticationEntryPoint(new CustomEntryPoint());

 });

 http.authorizeHttpRequests().anyRequest().authenticated();

 return http.build();

}

If you now make a call to an endpoint such that the authentication fails, you
should find in the response the newly added header:

curl -v http://localhost:8080/hello

The response of the call is

...

< HTTP/1.1 401

< Set-Cookie: JSESSIONID=459BAFA7E0E6246A463AD19B07569C7B; Path=/; HttpOnly

< message: Luke, I am your father!

...

6.3.2 Implementing authentication with form-based login

When developing a web application, you would probably like to present a
user-friendly login form where the users can input their credentials. As well,
you might like your authenticated users to be able to surf through the web
pages after they logged in and to be able to log out. For a small web
application, you can take advantage of the form-based login method. In this
section, you learn to apply and configure this authentication method for your
application. To achieve this, we write a small web application that uses form-
based login. Figure 6.13 describes the flow we’ll implement. The examples in
this section are part of the project ssia-ch6-ex4.

NOTE

I link this method to a small web application because, this way, we use a
server-side session for managing the security context. For larger applications
that require horizontal scalability, using a server-side session for managing
the security context is undesirable. We’ll discuss these aspects in more detail
in chapters 12 through 15 when dealing with OAuth 2.

Figure 6.13 Using form-based login. An unauthenticated user is redirected to a form where they
can use their credentials to authenticate. Once the application authenticates them, they are
redirected to the homepage of the application.

To change the authentication method to form-based login, using the
HttpSecurity object of the SecurityFilterChain bean, instead of
httpBasic(), call the formLogin() method of the HttpSecurity parameter.
The following listing presents this change.

Listing 6.19 Changing the authentication method to a form-based login

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.formLogin(Customizer.withDefaults());

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

 }

}

Even with this minimal configuration, Spring Security has already configured
a login form, as well as a log-out page for your project. Starting the
application and accessing it with the browser should redirect you to a login
page (figure 6.14).

Figure 6.14 The default login page auto-configured by Spring Security when using the
formLogin() method.

You can log in using the default provided credentials as long as you do not
register your UserDetailsService. These are, as we learned in chapter 2,
username “user” and a UUID password that is printed in the console when
the application starts. After a successful login, because there is no other page
defined, you are redirected to a default error page. The application relies on
the same architecture for authentication that we encountered in previous

examples. So, like figure 6.14 shows, you need to implement a controller for
the homepage of the application. The difference is that instead of having a
simple JSON-formatted response, we want the endpoint to return HTML that
can be interpreted by the browser as our web page. Because of this, we
choose to stick to the Spring MVC flow and have the view rendered from a
file after the execution of the action defined in the controller. Figure 6.15
presents the Spring MVC flow for rendering the homepage of the application.

Figure 6.15 A simple representation of the Spring MVC flow. The dispatcher finds the controller
action associated with the given path, /home, in this case. After executing the controller action,
the view is rendered, and the response is sent back to the client.

To add a simple page to the application, you first have to create an HTML
file in the resources/static folder of the project. I call this file home.html.
Inside it, type some text that you will be able to find afterward in the browser.
You can just add a heading (for example, <h1>Welcome</h1>). After creating

the HTML page, a controller needs to define the mapping from the path to the
view. The following listing presents the definition of the action method for
the home.html page in the controller class.

Listing 6.20 Defining the action method of the controller for the home.html page

@Controller

public class HelloController {

 @GetMapping("/home")

 public String home() {

 return "home.html";

 }

}

Mind that it is not a @RestController but a simple @Controller. Because of
this, Spring does not send the value returned by the method in the HTTP
response. Instead, it finds and renders the view with the name home.html.

Trying to access the /home path now, you are first asked if you want to log
in. After a successful login, you are redirected to the homepage, where the
welcome message appears. You can now access the /logout path, and this
should redirect you to a log-out page (figure 6.16).

Figure 6.16 The log-out page configured by Spring Security for the form-based login
authentication method.

After attempting to access a path without being logged in, the user is

automatically redirected to the login page. After a successful login, the
application redirects the user back to the path they tried to originally access.
If that path does not exist, the application displays a default error page. The
formLogin() method returns an object of type
FormLoginConfigurer<HttpSecurity>, which allows us to work on
customizations. For example, you can do this by calling the
defaultSuccessUrl()method, as shown in the following listing.

Listing 6.21 Setting a default success URL for the login form

@Bean

public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.formLogin(c -> c.defaultSuccessUrl("/home", true));

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

}

If you need to go even more in depth with this, using the
AuthenticationSuccessHandler and AuthenticationFailureHandler
objects offers a more detailed customization approach. These interfaces let
you implement an object through which you can apply the logic executed for
authentication. If you want to customize the logic for successful
authentication, you can define an AuthenticationSuccessHandler. The
onAuthenticationSuccess() method receives the servlet request, servlet
response, and the Authentication object as parameters. In listing 6.22,
you’ll find an example of implementing the
onAuthenticationSuccess()method to make different redirects depending
on the granted authorities of the logged-in user.

Listing 6.22 Implementing an AuthenticationSuccessHandler

@Component

public class CustomAuthenticationSuccessHandler

 implements AuthenticationSuccessHandler {

 @Override

 public void onAuthenticationSuccess(

 HttpServletRequest httpServletRequest,

 HttpServletResponse httpServletResponse,

 Authentication authentication)

 throws IOException {

 var authorities = authentication.getAuthorities();

 var auth =

 authorities.stream()

 .filter(a -> a.getAuthority().equals("read"))

 .findFirst(); #A

 if (auth.isPresent()) { #B

 httpServletResponse

 .sendRedirect("/home");

 } else {

 httpServletResponse

 .sendRedirect("/error");

 }

 }

}

There are situations in practical scenarios when a client expects a certain
format of the response in case of failed authentication. They may expect a
different HTTP status code than 401 Unauthorized or additional information
in the body of the response. The most typical case I have found in
applications is to send a "charitalics"request identifier. This request identifier
has a unique value used to trace back the request among multiple systems,
and the application can send it in the body of the response in case of failed
authentication. Another situation is when you want to sanitize the response to
make sure that the application doesn’t expose sensitive data outside of the
system. You might want to define custom logic for failed authentication
simply by logging the event for further investigation.

If you would like to customize the logic that the application executes when
authentication fails, you can do this similarly with an
AuthenticationFailureHandler implementation. For example, if you want
to add a specific header for any failed authentication, you could do something
like that shown in listing 6.23. You could, of course, implement any logic
here as well. For the AuthenticationFailureHandler,
onAuthenticationFailure() receives the request, response, and the
Authentication object.

Listing 6.23 Implementing an AuthenticationFailureHandler

@Component

public class CustomAuthenticationFailureHandler

 implements AuthenticationFailureHandler {

 @Override

 public void onAuthenticationFailure(

 HttpServletRequest httpServletRequest,

 HttpServletResponse httpServletResponse,

 AuthenticationException e) {

 try {

 httpServletResponse.setHeader("failed",

 LocalDateTime.now().toString());

 httpServletResponse.sendRedirect("/error");

 } catch (IOException ex) {

 throw new RuntimeException(ex);

 }

 }

}

To use the two objects, you need to register them in the configure() method
on the FormLoginConfigurer object returned by the formLogin() method.
The following listing shows how to do this.

Listing 6.24 Registering the handler objects in the configuration class

@Configuration

public class ProjectConfig {

 private final CustomAuthenticationSuccessHandler

[CA]authenticationSuccessHandler;

 private final CustomAuthenticationFailureHandler

[CA]authenticationFailureHandler;

// Omitted constructor

@Bean

public UserDetailsService uds() {

 var uds = new InMemoryUserDetailsManager();

 uds.createUser(

 User.withDefaultPasswordEncoder()

 .username("john")

 .password("12345")

 .authorities("read")

 .build()

);

 uds.createUser(

 User.withDefaultPasswordEncoder()

 .username("bill")

 .password("12345")

 .authorities("write")

 .build()

);

 return uds;

}

@Bean

public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.formLogin(c ->

 c.successHandler(authenticationSuccessHandler)

 .failureHandler(authenticationFailureHandler)

);

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

 }

}

For now, if you try to access the /home path using HTTP Basic with the
proper username and password, you are returned a response with the status
HTTP 302 Found. This response status code is how the application tells you
that it is trying to do a redirect. Even if you have provided the right username
and password, it won’t consider these and will instead try to send you to the
login form as requested by the formLogin method. You can, however, change
the configuration to support both the HTTP Basic and the form-based login
methods, as in the following listing.

Listing 6.25 Using form-based login and HTTP Basic together

@Bean

public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.formLogin(c ->

 c.successHandler(authenticationSuccessHandler)

 .failureHandler(authenticationFailureHandler)

);

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(c -> c.anyRequest().authenticated());

 return http.build();

}

Accessing the /home path now works with both the form-based login and
HTTP Basic authentication methods:

curl -u user:cdd430f6-8ebc-49a6-9769-b0f3ce571d19

[CA]http://localhost:8080/home

The response of the call is

<h1>Welcome</h1>

6.4 Summary

The AuthenticationProvider is the component that allows you to
implement custom authentication logic.
When you implement custom authentication logic, it’s a good practice to
keep the responsibilities decoupled. For user management, the
AuthenticationProvider delegates to a UserDetailsService, and for
the responsibility of password validation, the AuthenticationProvider
delegates to a PasswordEncoder.
The SecurityContext keeps details about the authenticated entity after
successful authentication.
You can use three strategies to manage the security context:
MODE_THREADLOCAL, MODE_INHERITABLETHREADLOCAL, and MODE_GLOBAL.
Access from different threads to the security context details works
differently depending on the mode you choose.

Remember that when using the shared-thread local mode, it’s only
applied for threads that are managed by Spring. The framework won’t
copy the security context for the threads that are not governed by it.
Spring Security offers you great utility classes to manage the threads
created by your code, about which the framework is now aware. To
manage the SecurityContext for the threads that you create, you can
use

DelegatingSecurityContextRunnable

DelegatingSecurityContextCallable

DelegatingSecurityContextExecutor

Spring Security autoconfigures a form for login and an option to log out
with the form-based login authentication method, formLogin(). It is
straightforward to use when developing small web applications.
The formLogin authentication method is highly customizable.
Moreover, you can use this type of authentication together with the
HTTP Basic method.

7 Configuring endpoint-level
authorization: Restricting access
This chapter covers

Defining authorities and roles
Applying authorization rules on endpoints

Some years ago, I was skiing in the beautiful Carpathian mountains when I
witnessed this funny scene. About ten, maybe fifteen people were queuing up
to get into the cabin to go to the top of the ski slope. A well-known pop artist
showed up, accompanied by two bodyguards. He confidently strode up,
expecting to skip the queue because he was famous. Reaching the head of the
line, he got a surprise. “Ticket, please!” said the person managing the
boarding, who then had to explain, “Well, you first need a ticket, and second,
there is no priority line for this boarding, sorry. The queue ends there.” He
pointed to the end of the queue. As in most cases in life, it doesn’t matter
who you are. We can say the same about software applications. It doesn’t
matter who you are when trying to access a specific functionality or data!

Up to now, we’ve only discussed authentication, which is, as you learned, the
process in which the application identifies the caller of a resource. In the
examples we worked on in the previous chapters, we didn’t implement any
rule to decide whether to approve a request. We only cared if the system
knew the user or not. In most applications, it doesn’t happen that all the users
identified by the system can access every resource in the system. In this
chapter, we’ll discuss authorization. "charitalics"Authorization is the process
during which the system decides if an identified client has permission to
access the requested resource (figure 7.1).

Figure 7.1 Authorization is the process during which the application decides whether an
authenticated entity is allowed to access a resource. Authorization always happens after
authentication.

In Spring Security, once the application ends the authentication flow, it
delegates the request to an authorization filter. The filter allows or rejects the
request based on the configured authorization rules (figure 7.2).

Figure 7.2 When the client makes the request, the authentication filter authenticates the user.
After successful authentication, the authentication filter stores the user details in the security
context and forwards the request to the authorization filter. The authorization filter decides

whether the call is permitted. To decide whether to authorize the request, the authorization filter
uses the details from the security context.

To cover all the essential details on authorization, in this chapter we’ll follow
these steps:

1. Gain an understanding of what an authority is and apply access rules on
all endpoints based on a user’s authorities.

2. Learn how to group authorities in roles and how to apply authorization
rules based on a user’s roles.

In chapter 8, we’ll continue with selecting endpoints to which we’ll apply the
authorization rules. For now, let’s look at authorities and roles and how these
can restrict access to our applications.

7.1 Restricting access based on authorities and roles

In this section, you learn about the concepts of authorization and roles. You
use these to secure all the endpoints of your application. You need to
understand these concepts before you can apply them in real-world scenarios,
where different users have different permissions. Based on what privileges
users have, they can only execute a specific action. The application provides
privileges as authorities and roles.

In chapter 3, you implemented the GrantedAuthority interface. I introduced
this contract when discussing another essential component: the UserDetails
interface. We didn’t work with GrantedAuthority then because, as you’ll
learn in this chapter, this interface is mainly related to the authorization
process. We can now return to GrantedAuthority to examine its purpose.
Figure 7.3 presents the relationship between the UserDetails contract and
the GrantedAuthority interface. Once we finish discussing this contract,
you’ll learn how to use these rules individually or for specific requests.

Figure 7.3 A user has one or more authorities (actions that a user can do). During the
authentication process, the UserDetailsService obtains all the details about the user, including
the authorities. The application uses the authorities as represented by the GrantedAuthority
interface for authorization after it successfully authenticates the user.

Listing 7.1 shows the definition of the GrantedAuthority contract. An
"charitalics"authority is an action that a user can perform with a system
resource. An authority has a name that the getAuthority() behavior of the
object returns as a String. We use the name of the authority when defining
the custom authorization rule. Often an authorization rule can look like this:
“Jane is allowed to "charitalics"delete the product records,” or “John is
allowed to "charitalics"read the document records.” In these cases,

"charitalics"delete and "charitalics"read are the granted authorities. The
application allows the users Jane and John to perform these actions, which
often have names like read, write, or delete.

Listing 7.1 The GrantedAuthority contract

public interface GrantedAuthority extends Serializable {

 String getAuthority();

}

The UserDetails, which is the contract describing the user in Spring
Security, has a collection of GrantedAuthority instances as presented in
figure 7.3. You can allow a user one or more privileges. The
getAuthorities() method returns the collection of GrantedAuthority
instances. In listing 7.2, you can review this method in the UserDetails
contract. We implement this method so that it returns all the authorities
granted for the user. After authentication ends, the authorities are part of the
details about the user that logged in, which the application can use to grant
permissions.

Listing 7.2 The getAuthorities() method from the UserDetails contract

public interface UserDetails extends Serializable {

 Collection<? extends GrantedAuthority> getAuthorities();

 // Omitted code

}

7.1.1 Restricting access for all endpoints based on user
authorities

In this section, we discuss limiting access to endpoints for specific users. Up
to now in our examples, any authenticated user could call any endpoint of the
application. From now on, you’ll learn to customize this access. In the apps
you find in production, you can call some of the endpoints of the application
even if you are unauthenticated, while for others, you need special privileges
(figure 7.4). We’ll write several examples so that you learn various ways in
which you can apply these restrictions with Spring Security.

Figure 7.4 Authorities are actions that users can perform in the application. Based on these
actions, you implement the authorization rules. Only users having specific authorities can make
a particular request to an endpoint. For example, Jane can only read and write to the endpoint,
while John can read, write, delete, and update the endpoint.

Now that you remember the UserDetails and GrantedAuthority contracts
and the relationship between them, it is time to write a small app that applies
an authorization rule. With this example, you learn a few alternatives to
configure access to endpoints based on the user’s authorities. We start a new
project that I name ssia-ch7-ex1. I show you three ways in which you can
configure access as mentioned using these methods:

hasAuthority()—Receives as parameters only one authority for which
the application configures the restrictions. Only users having that
authority can call the endpoint.
hasAnyAuthority()—Can receive more than one authority for which
the application configures the restrictions. I remember this method as
“has any of the given authorities.” The user must have at least one of the

specified authorities to make a request.
I recommend using this method or the hasAuthority() method for their
simplicity, depending on the number of privileges you assign the users.
These are simple to read in configurations and make your code easier to
understand.
access()—Offers you unlimited possibilities for configuring access
because the application builds the authorization rules based on a custom
object named AuthorizationManager you implement. You can provide
any implementation for the AuthorizationManager contract depending
on your case. Spring Security provides a few implementations as well.
The most common implementation is the
WebExpressionAuthorizationManager which helps you apply
authorization rules based on Spring Expression Language (SpEL). But
using the access() method can make the authorization rules more
difficult to read and understand. For this reason, I recommend it as the
lesser solution and only if you cannot apply the hasAnyAuthority() or
hasAuthority() methods.

The only dependencies needed in your pom.xml file are spring-boot-
starter-web and spring-boot-starter-security. These dependencies are
enough to approach all three solutions previously enumerated. You can find
this example in the project ssia-ch7-ex1

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

We also add an endpoint in the application to test our authorization
configuration:

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

}

In a configuration class, we declare an InMemoryUserDetailsManager as our
UserDetailsService and add two users, John and Jane, to be managed by
this instance. Each user has a different authority. You can see how to do this
in the following listing.

Listing 7.3 Declaring the UserDetailsService and assigning users

@Configuration

public class ProjectConfig {

 @Bean #A

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager(); #B

 var user1 = User.withUsername("john") #C

 .password("12345")

 .authorities("READ")

 .build();

 var user2 = User.withUsername("jane") #D

 .password("12345")

 .authorities("WRITE")

 .build();

 manager.createUser(user1); #E

 manager.createUser(user2);

 return manager;

 }

 @Bean #F

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

The next thing we do is add the authorization configuration. In chapter 2
when we worked on the first example, you saw how we could make all the
endpoints accessible for everyone. To do that, you created a
SecurityFilterChain bean in the app’s context, similar to what you see in
the next listing.

Listing 7.4 Making all the endpoints accessible for everyone without authentication

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll()

); #A

 return http.build();

 }

}

The authorizeHttpRequests() method lets us continue with specifying
authorization rules on endpoints. The anyRequest() method indicates that the
rule applies to all the requests, regardless of the URL or HTTP method used.
The permitAll() method allows access to all requests, authenticated or not.

Let’s say we want to make sure that only users having WRITE authority can
access all endpoints. For our example, this means only Jane. We can achieve
our goal and restrict access this time based on a user’s authorities. Take a
look at the code in the following listing.

Listing 7.5 Restricting access to only users having WRITE authority

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest()

 .hasAuthority("WRITE")

); #A

 return http.build();

 }

}

You can see that I replaced the permitAll() method with the
hasAuthority() method. You provide the name of the authority allowed to
the user as a parameter of the hasAuthority() method. The application
needs, first, to authenticate the request and then, based on the user’s
authorities, the app decides whether to allow the call.

We can now start to test the application by calling the endpoint with each of
the two users. When we call the endpoint with user Jane, the HTTP response
status is 200 OK, and we see the response body “Hello!” When we call it
with user John, the HTTP response status is 403 Forbidden, and we get an
empty response body back. For example, calling this endpoint with user
Jane,

curl -u jane:12345 http://localhost:8080/hello

we get this response:

Hello!

Calling the endpoint with user John,

curl -u john:12345 http://localhost:8080/hello

we get this response:

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

In a similar way, you can use the hasAnyAuthority() method. This method

has the parameter varargs; this way, it can receive multiple authority names.
The application permits the request if the user has at least one of the
authorities provided as a parameter to the method. You could replace
hasAuthority() in the previous listing with hasAnyAuthority("WRITE"), in
which case, the application works precisely in the same way. If, however,
you replace hasAuthority() with hasAnyAuthority("WRITE", "READ"),
then requests from users having either authority are accepted. For our case,
the application allows the requests from both John and Jane. In the following
listing, you can see how you can apply the hasAnyAuthority() method.

Listing 7.6 Applying the hasAnyAuthority() method

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest()

 .hasAnyAuthority("WRITE", "READ");

); #A

 return http.build();

 }

}

You can successfully call the endpoint now with any of our two users. Here’s
the call for John:

curl -u john:12345 http://localhost:8080/hello

The response body is

Hello!

And the call for Jane:

curl -u jane:12345 http://localhost:8080/hello

The response body is

Hello!

To specify access based on user authorities, the third way you find in practice
is the access() method. The access() method is more general, however. It
receives as a parameter an AuthorizationManager implementation. You can
provide any implementation for this object that can apply any kind of logic
that defines the authorization rules. This method is powerful, and it doesn’t
refer only to authorities. However, this method also makes the code more
difficult to read and understand. For this reason, I recommend it as the last
option, and only if you can’t apply one of the hasAuthority() or
hasAnyAuthority() methods presented earlier in this section.

To make this method easier to understand, I first present it as an alternative to
specifying authorities with the hasAuthority() and hasAnyAuthority()
methods. As you learn in this example, you’ll use an AuthorizationManager
implementation where you have to provide a SpEL expression as a
parameter. The authorization rule we defined becomes more challenging to
read, and this is why I don’t recommend this approach for simple rules.
However, the access() method has the advantage of allowing you to
customize rules through the AuthorizationManager implementation you
provide as a parameter. And this is really powerful! As with SpEL
expressions, you can basically define any condition.

Note

In most situations, you can implement the required restrictions with the
hasAuthority() and hasAnyAuthority() methods, and I recommend that
you use these. Use the access() method only if the other two options do not
fit and you want to implement more generic authorization rules.

I start with a simple example to match the same requirement as in the
previous cases. If you only need to test if the user has specific authorities, the
expression you need to use with the access() method can be one of the
following:

hasAuthority('WRITE')—Stipulates that the user needs the WRITE
authority to call the endpoint.
hasAnyAuthority('READ', 'WRITE')—Specifies that the user needs
one of either the READ or WRITE authorities. With this expression, you
can enumerate all the authorities for which you want to allow access.

Observe that these expressions have the same name as the methods presented
earlier in this section. The following listing demonstrates how you can use
the access()method.

Listing 7.7 Using the access() method to configure access to the endpoints

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest()

 .access("hasAuthority('WRITE')")

); #A

 return http.build();

 }

}

The example presented in listing 7.7 proves how the access() method
complicates the syntax if you use it for straightforward requirements. In such
a case, you should instead use the hasAuthority() or the
hasAnyAuthority() method directly. But the access() method is not all evil.
As I stated earlier, it offers you flexibility. You’ll find situations in real-world
scenarios in which you could use it to write more complex expressions, based
on which the application grants access. You wouldn’t be able to implement
these scenarios without the access() method.

In listing 7.8, you find the access() method applied with an expression that’s

not easy to write otherwise. Precisely, the configuration presented in listing
7.8 defines two users, John and Jane, who have different authorities. The user
John has only read authority, while Jane has read, write, and delete
authorities. The endpoint should be accessible to those users who have read
authority but not to those that have delete authority.

NOTE

In Spring apps, you find various styles and conventions for naming
authorities. Some developers use all caps, other use all small letters. In my
opinion, all of these choices are OK as long as you keep these consistent in
your app. In this book, I use different styles in the examples so that you can
observe more approaches that you might encounter in real-world scenarios.

It is a hypothetical example, of course, but it’s simple enough to be easy to
understand and complex enough to prove why the access() method is more
powerful. To implement this with the access() method, you can use an
AuthorizationManager implementation that takes a SpEL expression. The
SpEL expression must reflect the requirement. For example:

"hasAuthority('read') and !hasAuthority('delete')"

The next listing illustrates how to apply the access() method with a more
complex expression. You can find this example in the project named ssia-
ch7-ex2.

Listing 7.8 Applying the access() method with a more complex expression

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager();

 var user1 = User.withUsername("john")

 .password("12345")

 .authorities("read")

 .build();

 var user2 = User.withUsername("jane")

 .password("12345")

 .authorities("read", "write", "delete")

 .build();

 manager.createUser(user1);

 manager.createUser(user2);

 return manager;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 String expression =

 """hasAuthority('read') and #A

 !hasAuthority('delete') #A

 """; #A

 http.authorizeHttpRequests(

 c -> c.anyRequest()

 .access(new WebExpressionAuthorizationManager(expression));

);

 return http.build();

 }

}

Let’s test our application now by calling the /hello endpoint for user John:

curl -u john:12345 http://localhost:8080/hello

The body of the response is

Hello!

And calling the endpoint with user Jane:

curl -u jane:12345 http://localhost:8080/hello

The body of the response is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

The user John has only read authority and can call the endpoint successfully.
But Jane also has delete authority and is not authorized to call the endpoint.
The HTTP status for the call by Jane is 403 Forbidden.

With these examples, you can see how to set constraints regarding the
authorities that a user needs to have to access some specified endpoints. Of
course, we haven’t yet discussed selecting which requests to be secured based
on the path or the HTTP method. We have, instead, applied the rules for all
requests regardless of the endpoint exposed by the application. Once we
finish doing the same configuration for user roles, we discuss how to select
the endpoints to which you apply the authorization configurations.

7.1.2 Restricting access for all endpoints based on user roles

In this section, we discuss restricting access to endpoints based on roles.
Roles are another way to refer to what a user can do (figure 7.5). You find
these as well in real-world applications, so this is why it is important to
understand roles and the difference between roles and authorities. In this
section, we apply several examples using roles so that you’ll know all the
practical scenarios in which the application uses roles and how to write
configurations for these cases.

Figure 7.5 Roles are coarse grained. Each user with a specific role can only do the actions granted
by that role. When applying this philosophy in authorization, a request is allowed based on the
purpose of the user in the system. Only users who have a specific role can call a certain endpoint.

Spring Security understands authorities as fine-grained privileges on which
we apply restrictions. Roles are like badges for users. These give a user
privileges for a group of actions. Some applications always provide the same
groups of authorities to specific users. Imagine, in your application, a user
can either only have read authority or have all: read, write, and delete
authorities. In this case, it might be more comfortable to think that those users
who can only read have a role named READER, while the others have the
role ADMIN. Having the ADMIN role means that the application grants you
read, write, update, and delete privileges. You could potentially have more
roles. For example, if at some point the requests specify that you also need a
user who is only allowed to read and write, you can create a third role named
MANAGER for your application.

NOTE

When using an approach with roles in the application, you won’t have to

define authorities anymore. The authorities exist, in this case as a concept,
and can appear in the implementation requirements. But in the application,
you only have to define a role to cover one or more such actions a user is
privileged to do.

The names that you give to roles are like the names for authorities—it’s your
own choice. We could say that roles are coarse grained when compared with
authorities. Behind the scenes, anyway, roles are represented using the same
contract in Spring Security, GrantedAuthority. When defining a role, its
name should start with the ROLE_ prefix. At the implementation level, this
prefix specifies the difference between a role and an authority. You find the
example we work on in this section in the project ssia-ch7-ex3. In the next
listing, take a look at the change I made to the previous example.

Listing 7.9 Setting roles for users

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager();

 var user1 = User.withUsername("john")

 .password("12345")

 .authorities("ROLE_ADMIN") #A

 .build();

 var user2 = User.withUsername("jane")

 .password("12345")

 .authorities("ROLE_MANAGER")

 .build();

 manager.createUser(user1);

 manager.createUser(user2);

 return manager;

 }

 // Omitted code

}

To set constraints for user roles, you can use one of the following methods:

hasRole()—Receives as a parameter the role name for which the
application authorizes the request.
hasAnyRole()—Receives as parameters the role names for which the
application approves the request.
access()—Uses an AuthorizationManager to specify the role or roles
for which the application authorizes requests. In terms of roles, you
could use hasRole() or hasAnyRole() as SpEL expressions together
with the WebExpressionAuthorizationManager implementation.

As you observe, the names are similar to the methods presented in section
7.1.1. We use these in the same way, but to apply configurations for roles
instead of authorities. My recommendations are also similar: use the
hasRole() or hasAnyRole() methods as your first option, and fall back to
using access() only when the previous two don’t apply. In the next listing,
you can see what the configure() method looks like now.

Listing 7.10 Configuring the app to accept only requests from admins

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().hasRole("ADMIN")

); #A

 return http.build();

 }

}

NOTE

A critical thing to observe is that we use the ROLE_ prefix only to declare the
role. But when we use the role, we do it only by its name.

When testing the application, you should observe that user John can access
the endpoint, while Jane receives an HTTP 403 Forbidden. To call the
endpoint with user John, use

curl -u john:12345 http://localhost:8080/hello

The response body is

Hello!

And to call the endpoint with user Jane, use

curl -u jane:12345 http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

When building users with the User builder class as we did in the example for
this section, you specify the role by using the roles() method. This method
creates the GrantedAuthority object and automatically adds the ROLE_ prefix
to the names you provide.

NOTE

Make sure the parameter you provide for the roles() method does not
include the ROLE_ prefix. If that prefix is inadvertently included in the role()
parameter, the method throws an exception. In short, when using the
authorities() method, include the ROLE_ prefix. When using the roles()
method, do not include the ROLE_ prefix.

In the following listing, you can see the correct way to use the roles()

method instead of the authorities() method when you design access based
on roles. You can also compare listing 7.11 with listing 7.9 to observe the
difference between using authorities and roles.

Listing 7.11 Setting up roles with the roles() method

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager();

 var user1 = User.withUsername("john")

 .password("12345")

 .roles("ADMIN") #A

 .build();

 var user2 = User.withUsername("jane")

 .password("12345")

 .roles("MANAGER")

 .build();

 manager.createUser(user1);

 manager.createUser(user2);

 return manager;

 }

 // Omitted code

}

More on the access() method

In sections 7.1.1 and 7.1.2, you learned to use the access() method to apply
authorization rules referring to authorities and roles. In general, in an
application the authorization restrictions are related to authorities and roles.
But it’s important to remember that the access() method is generic and it
only depends on what implementation of the AuthorizationManager contract
you provide as a parameter. Moreover, in our example, we only used the
WebExpressionAuthorizationManager implementation which applies the
authorization restrictions based on a SpEL expression. With the examples I
present, I focus on teaching you how to apply it for authorities and roles, but

in practice, WebExpressionAuthorizationManager receives any SpEL
expression. It doesn’t need to be related to authorities and roles.

A straightforward example would be to configure access to the endpoint to be
allowed only after 12:00 pm. To solve something like this, you can use the
following SpEL expression:

T(java.time.LocalTime).now().isAfter(T(java.time.LocalTime).of(12, 0))

For more about SpEL expressions, see the Spring Framework documentation:

https://docs.spring.io/spring/docs/current/spring-framework-
reference/core.html#expressions

We could say that with the access() method, you can basically implement
any kind of rule. The possibilities are endless. Just don’t forget that in
applications, we always strive to keep syntax as simple as possible.
Complicate your configurations only when you don’t have any other choice.
You’ll find this example applied in the project ssia-ch7-ex4.

7.1.3 Restricting access to all endpoints

In this section, we discuss restricting access to all requests. You learned in
section 5.2 that by using the permitAll() method, you can permit access for
all requests. You learned as well that you can apply access rules based on
authorities and roles. But what you can also do is deny all requests. The
denyAll() method is just the opposite of the permitAll()method. In the next
listing, you can see how to use the denyAll() method.

Listing 7.12 Using the denyAll() method to restrict access to endpoints

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.anyRequest().denyAll()

); #A

 return http.basic();

 }

}

So, where could you use such a restriction? You won’t find it used as much
as the other methods, but there are cases in which requirements make it
necessary. Let me show you a couple of cases to clarify this point.

Let’s assume that you have an endpoint receiving as a path variable an email
address. What you want is to allow requests that have the value of the
variable addresses ending in .com. You don’t want the application to accept
any other format for the email address. (You’ll learn in the next chapter how
to apply restrictions for a group of requests based on the path and HTTP
method and even for path variables.) For this requirement, you use a regular
expression to group requests that match your rule and then use the denyAll()
method to instruct your application to deny all these requests (figure 7.6).

Figure 7.6 When the user calls the endpoint with a value of the parameter ending in .com, the
application accepts the request. When the user calls the endpoint and provides an email address
ending in .net, the application rejects the call. To achieve such behavior, you can use the
denyAll() method for all endpoints for which the value of the parameter doesn’t end with .com.

You can also imagine an application designed as in figure 7.7. A few services
implement the use cases of the application, which are accessible by calling
endpoints available at different paths. But to call an endpoint, the client
requests another service that we can call a gateway. In this architecture, there
are two separate services of this type. In figure 7.7, I called these Gateway A
and Gateway B. The client requests Gateway A if they want to access the
/products path. But for the /articles path, the client has to request Gateway B.
Each of the gateway services is designed to deny all requests to other paths
that these do not serve. This simplified scenario can help you easily
understand the denyAll() method. In a production application, you could
find similar cases in more complex architectures.

Figure 7.7 Access is done through Gateway A and Gateway B. Each of the gateways only delivers
requests for specific paths and denies all others.

Applications in production face various architectural requirements, which
could look strange sometimes. A framework must allow the needed flexibility
for any situation you might encounter. For this reason, the denyAll() method
is as important as all the other options you learned in his chapter.

7.2 Summary

Authorization is the process during which the application decides if an
authenticated request is permitted or not. Authorization always happens
after authentication.
You configure how the application authorizes requests based on the
authorities and roles of an authenticated user.
In your application, you can also specify that certain requests are
possible for unauthenticated users.
You can configure your app to reject any request, using the denyAll()
method, or permit any requests, using the permitAll()method.

8 Configuring endpoint-level
authorization: Applying restrictions
This chapter covers

Selecting requests to apply restrictions using matcher methods
Learning best-case scenarios for each matcher method

In chapter 7, you learned how to configure access based on authorities and
roles. But we only applied the configurations for all of the endpoints. In this
chapter, you’ll learn how to apply authorization constraints to a specific
group of requests. In production applications, it’s less probable that you’ll
apply the same rules for all requests. You have endpoints that only some
specific users can call, while other endpoints might be accessible to everyone.
Each application, depending on the business requirements, has its own
custom authorization configuration. Let’s discuss the options you have to
refer to different requests when you write access configurations.

Even though we didn’t call attention to it, the first matcher method you used
was the anyRequest() method. As you used it in the previous chapters, you
know now that it refers to all requests, regardless of the path or HTTP
method. It is the way you say “any request” or, sometimes, “any other
request.”

First, let’s talk about selecting requests by path; then we can also add the
HTTP method to the scenario. To choose the requests to which we apply
authorization configuration, we use the requestMatchers() method.

8.1 Using the requestMatchers() method to select
endpoints

In this section, you learn how to use the requestMatchers() method in
general so that in sections 8.2 through 8.4, we can continue describing

various approaches you have to select HTTP requests for which you need to
apply authorization restrictions. By the end of this chapter, you’ll be able to
apply the requestMatchers() method in any authorization configurations
you might need to write for your application’s requirements. Let’s start with a
straightforward example.

We create an application that exposes two endpoints: /hello and /ciao. We
want to make sure that only users having the ADMIN role can call the /hello
endpoint. Similarly, we want to make sure that only users having the
MANAGER role can call the /ciao endpoint. You can find this example in the
project ssia-ch8-ex1. The following listing provides the definition of the
controller class.

Listing 8.1 The definition of the controller class

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String hello() {

 return "Hello!";

 }

 @GetMapping("/ciao")

 public String ciao() {

 return "Ciao!";

 }

}

In the configuration class, we declare an InMemoryUserDetailsManager as
our UserDetailsService instance and add two users with different roles. The
user John has the ADMIN role, while Jane has the MANAGER role. To
specify that only users having the ADMIN role can call the endpoint /hello
when authorizing requests, we use the requestMatchers() method. The next
listing presents the definition of the configuration class.

Listing 8.2 The definition of the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager();

 var user1 = User.withUsername("john")

 .password("12345")

 .roles("ADMIN")

 .build();

 var user2 = User.withUsername("jane")

 .password("12345")

 .roles("MANAGER")

 .build();

 manager.createUser(user1);

 manager.createUser(user2);

 return manager;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.requestMatchers("/hello").hasRole("ADMIN") #A

 .requestMatchers("/ciao").hasRole("MANAGER") #B

);

 return http.build();

 }

}

You can run and test this application. When you call the endpoint /hello with
user John, you get a successful response. But if you call the same endpoint
with user Jane, the response status returns an HTTP 403 Forbidden.

Similarly, for the endpoint /ciao, you can only use Jane to get a successful
result. For user John, the response status returns an HTTP 403 Forbidden.
You can see the example calls using cURL in the next code snippets. To call
the endpoint /hello for user John, use

curl -u john:12345 http://localhost:8080/hello

The response body is

Hello!

To call the endpoint /hello for user Jane, use

curl -u jane:12345 http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

To call the endpoint /ciao for user Jane, use

curl -u jane:12345 http://localhost:8080/ciao

The response body is

Ciao!

To call the endpoint /ciao for user John, use

curl -u john:12345 http://localhost:8080/ciao

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/ciao"

}

If you now add any other endpoint to your application, it is accessible by
default to anyone, even unauthenticated users. Let’s assume you add a new
endpoint /hola as presented in the next listing.

Listing 8.3 Adding a new endpoint for path /hola to the application

@RestController

public class HelloController {

 // Omitted code

 @GetMapping("/hola")

 public String hola() {

 return "Hola!";

 }

}

Now when you access this new endpoint, you see that it is accessible with or
without having a valid user. The next code snippets display this behavior. To
call the endpoint /hola without authenticating, use

curl http://localhost:8080/hola

The response body is

Hola!

To call the endpoint /hola for user John, use

curl -u john:12345 http://localhost:8080/hola

The response body is

Hola!

You can make this behavior more visible if you like by using the
permitAll() method. You do this by using the anyRequest() matcher
method at the end of the configuration chain for the request authorization, as
presented in listing 8.4.

NOTE

It is good practice to make all your rules explicit. Listing 8.4 clearly and
unambiguously indicates the intention to permit requests to endpoints for
everyone, except for the endpoints /hello and /ciao.

Listing 8.4 Marking additional requests explicitly as accessible without authentication

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.mvcMatchers("/hello").hasRole("ADMIN")

 .mvcMatchers("/ciao").hasRole("MANAGER")

 .anyRequest().permitAll() #A

);

 return http.build();

 }

}

NOTE

When you use matchers to refer to requests, the order of the rules should be
from particular to general. This is why the anyRequest() method cannot be
called before a more specific requestMatchers() method.

Unauthenticated vs. failed authentication

If you have designed an endpoint to be accessible to anyone, you can call it
without providing a username and a password for authentication. In this case,
Spring Security won’t do the authentication. If you, however, provide a

username and a password, Spring Security evaluates them in the
authentication process. If they are wrong (not known by the system),
authentication fails, and the response status will be 401 Unauthorized. To be
more precise, if you call the /hola endpoint for the configuration presented in
listing 8.4, the app returns the body “Hola!” as expected, and the response
status is 200 OK. For example,

curl http://localhost:8080/hola

The response body is

Hola!

But if you call the endpoint with invalid credentials, the status of the response
is 401 Unauthorized. In the next call, I use an invalid password:

curl -u bill:abcde http://localhost:8080/hola

The response body is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/hola"

}

This behavior of the framework might look strange, but it makes sense as the
framework evaluates any username and password if you provide them in the
request. As you learned in chapter 7, the application always does
authentication before authorization, as this figure shows.

The authorization filter allows any request to the /hola path. But because the application first
executes the authentication logic, the request is never forwarded to the authorization filter.
Instead, the authentication filter replies with an HTTP 401 Unauthorized.

In conclusion, any situation in which authentication fails will generate a
response with the status 401 Unauthorized, and the application won’t forward
the call to the endpoint. The permitAll() method refers to authorization
configuration only, and if authentication fails, the call will not be allowed
further.

You could decide, of course, to make all the other endpoints accessible only
for authenticated users. To do this, you would change the permitAll()
method with authenticated() as presented in the following listing.
Similarly, you could even deny all other requests by using the denyAll()
method.

Listing 8.5 Making other requests accessible for all authenticated users

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.requestMatchers("/hello").hasRole("ADMIN")

 .requestMatchers("/ciao").hasRole("MANAGER")

 .anyRequest().authenticated() #A

);

 return http.build();

 }

}

Here, at the end of this section, you’ve become familiar with how you should
use matcher methods to refer to requests for which you want to configure
authorization restrictions. Now we must go more in depth with the syntaxes
you can use.

In most practical scenarios, multiple endpoints can have the same
authorization rules, so you don’t have to set them up endpoint by endpoint.
As well, you sometimes need to specify the HTTP method, not only the path,
as we’ve done until now.

Sometimes, you only need to configure rules for an endpoint when its path is
called with HTTP GET. In this case, you’d need to define different rules for
HTTP POST and HTTP DELETE. In the next section, we take each type of
matcher method and discuss these aspects in detail.

8.2 Selecting requests to apply authorization
restrictions

In this section, we deep dive into configuring request matchers. Using the
requestMatchers() method is a common approach to refer to requests for
applying authorization configuration. So I expect you to have many
opportunities to use this method to refer to requests in the applications you
develop.

This matcher uses the standard ANT syntax (table 8.1) for referring to paths.
This syntax is the same one you use when writing endpoint mappings with
annotations like @RequestMapping, @GetMapping, @PostMapping, and so
forth. The two methods you can use to declare MVC matchers are as follows:

requestMatchers(HttpMethod method, String... patterns)—Lets
you specify both the HTTP method to which the restrictions apply and
the paths. This method is useful if you want to apply different
restrictions for different HTTP methods for the same path.
requestMatchers(String... patterns)—Simpler and easier to use if
you only need to apply authorization restrictions based on paths. The
restrictions can automatically apply to any HTTP method used with the
path.

In this section, we approach multiple ways of using requestMatchers()
methods. To demonstrate this, we start by writing an application that exposes
multiple endpoints.

For the first time, we write endpoints that can be called with other HTTP
methods besides GET. You might have observed that until now, I’ve avoided
using other HTTP methods. The reason for this is that Spring Security
applies, by default, protection against cross-site request forgery (CSRF). In
chapter 9, we’ll discuss how Spring Security mitigates this vulnerability by
using CSRF tokens. But to make things simpler for the current example and
to be able to call all endpoints, including those exposed with POST, PUT, or
DELETE, we need to disable CSRF protection in our configure() method:

http.csrf(

 c -> c.disable()

);

NOTE

We disable CSRF protection now only to allow you to focus for the moment
on the discussed topic: matcher methods. But don’t rush to consider this a
good approach. In chapter 9, we’ll discuss in detail the CSRF protection
provided by Spring Security.

We start by defining four endpoints to use in our tests:

/a using the HTTP method GET
/a using the HTTP method POST
/a/b using the HTTP method GET

/a/b/c using the HTTP method GET

With these endpoints, we can consider different scenarios for authorization
configuration. In listing 8.6, you can see the definitions of these endpoints.
You can find this example in the project ssia-ch8-ex2.

Listing 8.6 Definition of the four endpoints for which we configure authorization

@RestController

public class TestController {

 @PostMapping("/a")

 public String postEndpointA() {

 return "Works!";

 }

 @GetMapping("/a")

 public String getEndpointA() {

 return "Works!";

 }

 @GetMapping("/a/b")

 public String getEnpointB() {

 return "Works!";

 }

 @GetMapping("/a/b/c")

 public String getEnpointC() {

 return "Works!";

 }

}

We also need a couple of users with different roles. To keep things simple,
we continue using an InMemoryUserDetailsManager. In the next listing, you
can see the definition of the UserDetailsService in the configuration class.

Listing 8.7 The definition of the UserDetailsService

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var manager = new InMemoryUserDetailsManager(); #A

 var user1 = User.withUsername("john")

 .password("12345")

 .roles("ADMIN") #B

 .build();

 var user2 = User.withUsername("jane")

 .password("12345")

 .roles("MANAGER") #C

 .build();

 manager.createUser(user1);

 manager.createUser(user2);

 return manager;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance(); #D

 }

}

Let’s start with the first scenario. For requests done with an HTTP GET
method for the /a path, the application needs to authenticate the user. For the
same path, requests using an HTTP POST method don’t require
authentication. The application denies all other requests. The following
listing shows the configurations that you need to write to achieve this setup.

Listing 8.8 Authorization configuration for the first scenario, /a

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.requestMatchers(HttpMethod.GET, "/a")

 .authenticated() #A

 .requestMatchers(HttpMethod.POST, "/a")

 .permitAll() #B

 .anyRequest()

 .denyAll() #C

);

 http.csrf(

 c -> c.disable()

); #D

 return http.build();

 }

}

In the next code snippets, we analyze the results on the calls to the endpoints
for the configuration presented in listing 8.8. For the call to path /a using the
HTTP method POST without authenticating, use this cURL command:

curl -XPOST http://localhost:8080/a

The response body is

Works!

When calling path /a using HTTP GET without authenticating, use

curl -XGET http://localhost:8080/a

The response is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/a"

}

If you want to change the response to a successful one, you need to
authenticate with a valid user. For the following call

curl -u john:12345 -XGET http://localhost:8080/a

the response body is

Works!

But user John isn’t allowed to call path /a/b, so authenticating with his
credentials for this call generates a 403 Forbidden:

curl -u john:12345 -XGET http://localhost:8080/a/b

The response is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/a/b"

}

With this example, you now know how to differentiate requests based on the
HTTP method. But, what if multiple paths have the same authorization rules?
Of course, we can enumerate all the paths for which we apply authorization
rules, but if we have too many paths, this makes reading code uncomfortable.
As well, we might know from the beginning that a group of paths with the
same prefix always has the same authorization rules. We want to make sure
that if a developer adds a new path to the same group, it doesn’t also change
the authorization configuration. To manage these cases, we use
"charitalics"path expressions. Let’s prove these in an example.

For the current project, we want to ensure that the same rules apply for all
requests for paths starting with /a/b. These paths in our case are /a/b and
/a/b/c. To achieve this, we use the ** operator. You can find this example in
the project ssia-ch8-ex3.

Listing 8.9 Changes in the configuration class for multiple paths

@Configuration

public class ProjectConfig {

 // Omitted code

 @Bean

 public void configure(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.requestMatchers("/a/b/**").authenticated() #A

 .anyRequest().permitAll();

);

 http.csrf(

 c -> c.disable()

);

 return http.build();

 }

}

With the configuration given in listing 8.9, you can call path /a without being
authenticated, but for all paths prefixed with /a/b, the application needs to
authenticate the user. The next code snippets present the results of calling the
/a, /a/b, and /a/b/c endpoints. First, to call the /a path without authenticating,
use

curl http://localhost:8080/a

The response body is

Works!

To call the /a/b path without authenticating, use

curl http://localhost:8080/a/b

The response is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/a/b"

}

To call the /a/b/c path without authenticating, use

curl http://localhost:8080/a/b/c

The response is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/a/b/c"

}

As presented in the previous examples, the ** operator refers to any number
of pathnames. You can use it as we have done in the last example so that you
can match requests with paths having a known prefix. You can also use it in
the middle of a path to refer to any number of pathnames or to refer to paths
ending in a specific pattern like /a/**/c. Therefore, /a/**/c would not only
match /a/b/c but also /a/b/d/c and a/b/c/d/e/c and so on. If you only want to
match one pathname, then you can use a single *. For example, a/*/c would
match a/b/c and a/d/c but not a/b/d/c.

Because you generally use path variables, you can find it useful to apply
authorization rules for such requests. You can even apply rules referring to
the path variable value. Do you remember the discussion from section 8.1
about the denyAll() method and restricting all requests?

Let’s turn now to a more suitable example of what you have learned in this
section. We have an endpoint with a path variable, and we want to deny all
requests that use a value for the path variable that has anything else other
than digits. You can find this example in the project ssia-ch8-ex4. The
following listing presents the controller.

Listing 8.10 The definition of an endpoint with a path variable in a controller class

@RestController

public class ProductController {

 @GetMapping("/product/{code}")

 public String productCode(@PathVariable String code) {

 return code;

 }

}

The next listing shows you how to configure authorization such that only
calls that have a value containing only digits are always permitted, while all
other calls are denied.

Listing 8.11 Configuring the authorization to permit only specific digits

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.requestMatchers

 [CA]("/product/{code:^[0-9]*$}") #A

 .permitAll()

 .anyRequest()

 .denyAll()

);

 return http.build();

 }

}

NOTE

When using parameter expressions with a regex, make sure to not have a
space between the name of the parameter, the colon (:), and the regex, as
displayed in the listing.

Running this example, you can see the result as presented in the following
code snippets. The application only accepts the call when the path variable
value has only digits. To call the endpoint using the value 1234a, use

curl http://localhost:8080/product/1234a

The response is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":"/product/1234a"

}

To call the endpoint using the value 12345, use

curl http://localhost:8080/product/12345

The response is

12345

We discussed a lot and included plenty of examples of how to refer to
requests using requestMatchers() method. Table 8.1 is a refresher for the
path expressions you used in this section. You can simply refer to it later
when you want to remember any of them.

Table 8.1 Common expressions used for path matching with MVC matchers

Expression Description

/a Only path /a.

/a/*
The * operator replaces one pathname. In this case, it
matches /a/b or /a/c, but not /a/b/c.

/a/**

The ** operator replaces multiple pathnames. In this
case, /a as well as /a/b and /a/b/c are a match for this
expression.

/a/{param} This expression applies to the path /a with a given path
parameter.

/a/{param:regex}

This expression applies to the path /a with a given path
parameter only when the value of the parameter matches
the given regular expression.

8.2.1 Using regular expressions with request matchers

In this section, we discuss regular expression (regex). You should already be
aware of what regular expressions are, but you don’t need to be an expert in
the subject. Any of the books recommended at https://www.regular-
expressions.info/books.html are excellent resources from which you can learn
about the subject in more depth. For writing regex, I also often use online
generators like (figure 8.1).

Figure 8.1 Letting your cat play over the keyboard is not the best solution for generating regular
expressions (regex). To learn how to generate regexes you can use an online generator like
https://regexr.com/.

You learned in sections 8.2 and 8.3 that in most cases, you can use path
expression syntaxes to refer to requests to which you apply authorization
configurations. In some cases, however, you might have requirements that are
more particular, and you cannot solve those with path expressions. An
example of such a requirement could be this: “Deny all requests when paths
contain specific symbols or characters.” For these scenarios, you need to use

a more powerful expression like a regex.

You can use regexes to represent any format of a string, so they offer
limitless possibilities for this matter. But they have the disadvantage of being
difficult to read, even when applied to simple scenarios. For this reason, you
might prefer to use path expressions and fall back to regexes only when you
have no other option. To implement a regex request matcher you can use the
requestMatchers() method with a RegexRequestMatcher implementation as
parameter.

To prove how regex matchers work, let’s put them into action with an
example: building an application that provides video content to its users. The
application that presents the video gets its content by calling the endpoint
/video/{country}/{language}. For the sake of the example, the application
receives the country and language in two path variables from where the user
makes the request. We consider that any authenticated user can see the video
content if the request comes from the US, Canada, or the UK, or if they use
English.

You can find this example implemented in the project ssia-ch8-ex5. The
endpoint we need to secure has two path variables, as shown in the following
listing. This makes the requirement complicated to implement with request
matchers.

Listing 8.12 The definition of the endpoint for the controller class

@RestController

public class VideoController {

 @GetMapping("/video/{country}/{language}")

 public String video(@PathVariable String country,

 @PathVariable String language) {

 return "Video allowed for " + country + " " + language;

 }

}

For a condition on a single path variable, we can write a regex directly in the
path expression. We referred to such an example in section 8.2, but I didn’t
go in depth about it at that time because we weren’t discussing regexes.

Let’s assume you have the endpoint /email/{email}. You want to apply a rule
using a matcher only to the requests that send as a value of the email
parameter an address ending in .com. In that case, you write a request
matcher as presented by the next code snippet. You can find the complete
example of this in the project ssia-ch8-ex6.

http.authorizeHttpRequests(

 c -> c.requestMatchers("/email/{email:.*(?:.+@.+\\.com)}").permitAll()

 .anyRequest().denyAll();

);

If you test such a restriction, you find that the application only accepts emails
ending in .com. For example, to call the endpoint to jane@example.com, you
can use this command:

curl http://localhost:8080/email/jane@example.com

The response body is

Allowed for email jane@example.com

And to call the endpoint to jane@example.net, you use this command:

curl http://localhost:8080/email/jane@example.net

The response body is

{

 "status":401,

 "error":"Unauthorized",

 "message":"Unauthorized",

 "path":/email/jane@example.net

}

It is fairly easy and makes it even clearer why we encounter regex matchers
less frequently. But, as I said earlier, requirements are complex sometimes.
You’ll find it handier to use regex matchers when you find something like the
following:

Specific configurations for all paths containing phone numbers or email
addresses

Specific configurations for all paths having a certain format, including
what is sent through all the path variables

Back to our regex matchers example (ssia-ch8-ex6): when you need to write
a more complex rule, eventually referring to more path patterns and multiple
path variable values, it’s easier to write a regex matcher. In listing 8.13, you
find the definition for the configuration class that uses a regex matcher to
solve the requirement given for the /video/{country}/{language} path. We
also add two users with different authorities to test the implementation.

Listing 8.13 The configuration class using a regex matcher

@Configuration

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var uds = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("john")

 .password("12345")

 .authorities("read")

 .build();

 var u2 = User.withUsername("jane")

 .password("12345")

 .authorities("read", "premium")

 .build();

 uds.createUser(u1);

 uds.createUser(u2);

 return uds;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.httpBasic(Customizer.withDefaults());

 http.authorizeHttpRequests(

 c -> c.regexMatchers(".*/(us|uk|ca)+/(en|fr).*") #A

 .authenticated()

 .anyRequest()

 .hasAuthority("premium"); #B

);

 }

}

Running and testing the endpoints confirm that the application applied the
authorization configurations correctly. The user John can call the endpoint
with the country code US and language en, but he can’t call the endpoint for
the country code FR and language fr due to the restrictions we configured.
Calling the /video endpoint and authenticating user John for the US region
and the English language looks like this:

curl -u john:12345 http://localhost:8080/video/us/en

The response body is

Video allowed for us en

Calling the /video endpoint and authenticating user John for the FR region
and the French language looks like this:

curl -u john:12345 http://localhost:8080/video/fr/fr

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/video/fr/fr"

}

Having premium authority, user Jane makes both calls with success. For the
first call,

curl -u jane:12345 http://localhost:8080/video/us/en

the response body is

Video allowed for us en

And for the second call,

curl -u jane:12345 http://localhost:8080/video/fr/fr

the response body is

Video allowed for fr fr

Regexes are powerful tools. You can use them to refer to paths for any given
requirement. But because regexes are hard to read and can become quite long,
they should remain your last choice. Use these only if path expressions don’t
offer you a solution to your problem.

In this section, I used the most simple example I could imagine so that the
needed regex is short. But with more complex scenarios, the regex can
become much longer. Of course, you’ll find experts who say any regex is
easy to read. For example, a regex used to match an email address might look
like the one in the next code snippet. Can you easily read and understand it?

(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

8.3 Summary

In real-world scenarios, you often apply different authorization rules for
different requests.
You specify the requests for which authorization rules are configured
based on path and HTTP method. To do this, you use the
requestMatchers() method.
When requirements are too complex to be solved with path expressions,
you can implement them with the more powerful regexes.

9 Configuring Cross-Site Request
Forgery (CSRF) protection
This chapter covers

Understanding CSRF attacks
Implementing cross-site request forgery protection
Customizing CSRF protection

You have learned about the filter chain and its purpose in the Spring Security
architecture. We worked on several examples in chapter 5, where we
customized the filter chain. But Spring Security also adds its own filters to
the chain. In this chapter, we’ll discuss the filter that configures CSRF
(Cross-Site Request Forgery) protection. You’ll learn to customize these
filters to make a perfect fit for your scenarios.

You have probably observed that in most of the examples up to now, we only
implemented our endpoints with HTTP GET. Moreover, when we needed to
configure HTTP POST, we also had to add a supplementary instruction to the
configuration to disable CSRF protection. The reason why you can’t directly
call an endpoint with HTTP POST is because of CSRF protection, which is
enabled by default in Spring Security.

We’ll now discuss CSRF protection and when to use it in your applications.
CSRF is a widespread type of attack, and applications vulnerable to CSRF
can force users to execute unwanted actions on a web application after
authentication. You don’t want the applications you develop to be CSRF
vulnerable and allow attackers to trick your users into making unwanted
actions.

Because it’s essential to understand how to mitigate these vulnerabilities, we
start by reviewing what CSRF is and how it works. We then discuss the
CSRF token mechanism that Spring Security uses to mitigate CSRF
vulnerabilities. We continue with obtaining a token and use it to call an

endpoint with the HTTP POST method. We prove this with a small
application using REST endpoints. Once you learn how Spring Security
implements its CSRF token mechanism, we discuss how to use it in real-
world application scenarios. Finally, you learn possible customizations of the
CSRF token mechanism in Spring Security.

9.1 How CSRF protection works in Spring Security

In this section, we discuss how Spring Security implements CSRF protection.
I consider it essential first to understand the underlying mechanism of CSRF
protection. I encounter many situations in which misunderstanding the way
CSRF protection works leads developers to misuse it, either disabling it in
scenarios where it should be enabled or the other way around. Like any other
feature in a framework, you have to use it correctly to bring value to your
applications.

As an example, consider this scenario (figure 9.1): you are at work, where
you use a web tool to store and manage your files. With this tool, in a web
interface you can add new files, add new versions for your records, and even
delete them. You receive an email asking you to open a page for a specific
reason (for example, a promotion at your favorite store). You open the page,
but the page is blank or it redirects you to a known website (the online shop
of your favorite store). You go back to your work but observe that all your
files are gone!

What happened? You were logged into your work application so you could
manage your files. When you add, change, or delete a file, the web page you
interact with calls some endpoints from the server to execute these
operations. When you opened the foreign page by clicking the unknown link
in the email, that page called your app’s backend and executed actions on
your behalf (it deleted your files).

It could do that because you logged in previously, so the server trusted that
the actions came from you. You might think that someone couldn’t trick you
so easily into clicking a link from a foreign email or message, but trust me,
this happens to a lot of people. Most web app users aren’t aware of security
risks. So it’s wiser if you who know all the tricks, protect your users, and

build secure apps rather than rely on your apps’ users to protect themselves.

CSRF attacks assume that a user is logged into a web application. They’re
tricked by the attacker into opening a page that contains scripts that execute
actions in the same application the user was working on. Because the user has
already logged in (as we’ve assumed from the beginning), the forgery code
can now impersonate the user and do actions on their behalf.

Figure 9.1 After the user logs into their account, they access a page containing forgery code. This
code impersonates the user and can execute unwanted actions on behalf of the user.

How do we protect our users from such scenarios? What CSRF protection
wants to ensure is that only the frontend of web applications can perform
mutating operations (by convention, HTTP methods other than GET, HEAD,
TRACE, or OPTIONS). Then, a foreign page, like the one in our example,
can’t act on behalf of the user.

How can we achieve this? What you know for sure is that before being able
to do any action that could change data, a user must send a request using
HTTP GET to see the web page at least once. When this happens, the
application generates a unique token. The application now accepts only
requests for mutating operations (POST, PUT, DELETE, and so forth) that
contain this unique value in the header.

The application considers that knowing the value of the token is proof that it
is the app itself making the mutating request and not another system. Any
page containing mutating calls, like POST, PUT, DELETE, and so on, should
receive through the response the CSRF token, and the page must use this
token when making mutating calls.

The starting point of CSRF protection is a filter in the filter chain called
CsrfFilter. The CsrfFilter intercepts requests and allows all those that use
these HTTP methods: GET, HEAD, TRACE, and OPTIONS. For all other
requests, the filter expects to receive a header containing a token. If this
header does not exist or contains an incorrect token value, the application
rejects the request and sets the status of the response to HTTP 403 Forbidden.

What is this token, and where does it come from? These tokens are nothing
more than string values. You have to add the token in the header of the
request when you use any method other than GET, HEAD, TRACE, or
OPTIONS. If you don’t add the header containing the token, the application
doesn’t accept the request, as presented in figure 9.2.

Figure 9.2 To make a POST request, the client needs to add a header containing the CSRF token.
The application generates a CSRF token when the page is loaded (via a GET request), and the
token is added to all requests that can be made from the loaded page. This way, only the loaded
page can make mutating requests.

The CsrfFilter (figure 9.3) uses a component named CsrfTokenRepository
to manage the CSRF token values that generate new tokens, store tokens, and
eventually invalidate these. By default, the CsrfTokenRepository stores the
token on the HTTP session and generates the tokens as random string values.
In most cases, this is enough, but as you’ll learn in section 9.3, you can use
your own implementation of CsrfTokenRepository if the default one doesn’t
apply to the requirements you need to implement.

In this section, I explained how CSRF protection works in Spring Security
with plenty of text and figures. But I want to enforce your understanding with
a small code example as well. You’ll find this code as part of the project
named ssia-ch9-ex1. Let’s create an application that exposes two endpoints.

We can call one of these with HTTP GET and the other with HTTP POST.

As you know by now, you are not able to call endpoints with POST directly
without disabling CSRF protection. In this example, you learn how to call the
POST endpoint without disabling CSRF protection. You need to obtain the
CSRF token so that you can use it in the header of the call, which you do
with HTTP POST.

Figure 9.3 The CsrfFilter is one of the filters in the filter chain. It receives the request and
eventually forwards it to the next filter in the chain. To manage CSRF tokens, CsrfFilter uses a
CsrfTokenRepository.

As you learn with this example, the CsrfFilter adds the generated CSRF

token to the attribute of the HTTP request named _csrf (figure 9.4). If we
know this, we know that after the CsrfFilter, we can find this attribute and
take the value of the token from it. For this small application, we choose to
add a custom filter after the CsrfFilter, as you learned in chapter 5. You use
this custom filter to print in the console of the application the CSRF token
that the app generates when we call the endpoint using HTTP GET. We can
then copy the value of the token from the console and use it to make the
mutating call with HTTP POST. In the following listing, you can find the
definition of the controller class with the two endpoints that we use for a test.

Figure 9.4 Adding the CsrfTokenLogger (shaded) after the CsrfFilter. This way, the
CsrfTokenLogger can obtain the value of the token from the _csrf attribute of the request where
the CsrfFilter stores it. The CsrfTokenLogger prints the CSRF token in the application console,
where we can access it and use it to call an endpoint with the HTTP POST method.

Listing 9.1 The controller class with two endpoints

@RestController

public class HelloController {

 @GetMapping("/hello")

 public String getHello() {

 return "Get Hello!";

 }

 @PostMapping("/hello")

 public String postHello() {

 return "Post Hello!";

 }

}

Listing 9.2 defines the custom filter we use to print the value of the CSRF
token in the console. I named the custom filter CsrfTokenLogger. When
called, the filter obtains the value of the CSRF token from the _csrf request
attribute and prints it in the console. The name of the request attribute, _csrf,
is where the CsrfFilter sets the value of the generated CSRF token as an
instance of the class CsrfToken. This instance of CsrfToken contains the
string value of the CSRF token. You can obtain it by calling the getToken()
method.

Listing 9.2 The definition of the custom filter class

public class CsrfTokenLogger implements Filter {

 private Logger logger =

 Logger.getLogger(CsrfTokenLogger.class.getName());

 @Override

 public void doFilter(

 ServletRequest request,

 ServletResponse response,

 FilterChain filterChain)

 throws IOException, ServletException {

 CsrfToken o =

 (CsrfToken) request.getAttribute("_csrf"); #A

 logger.info("CSRF token " + token.getToken());

 filterChain.doFilter(request, response);

 }

}

In the configuration class, we add the custom filter. The next listing presents
the configuration class. Observe that I don’t disable CSRF protection in the
listing.

Listing 9.3 Adding the custom filter in the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain configure(HttpSecurity http)

 throws Exception {

 http.addFilterAfter(

 new CsrfTokenLogger(), CsrfFilter.class)

 .authorizeRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

 }

}

We can now test the endpoints. We begin by calling the endpoint with HTTP
GET. Because the default implementation of the CsrfTokenRepository
interface uses the HTTP session to store the token value on the server side,
we also need to remember the session ID. For this reason, I add the -v flag to
the call so that I can see more details from the response, including the session
ID. Calling the endpoint

curl -v http://localhost:8080/hello

returns this (truncated) response:

...

< Set-Cookie: JSESSIONID=21ADA55E10D70BA81C338FFBB06B0206;

...

Get Hello!

Following the request in the application console, you can find a log line that
contains the CSRF token:

INFO 21412 --- [nio-8080-exec-1] c.l.ssia.filters.CsrfTokenLogger : CSRF token tAlE3LB_R_KN48DFlRChc…

NOTE

You might ask yourself, how do clients get the CSRF token? They can
neither guess it nor read it in the server logs. I designed this example such
that it’s easier for you to understand how CSRF protection implementation

works. As you’ll find in section 9.2, the backend application has the
responsibility to add the value of the CSRF token in the HTTP response to be
used by the client.

If you call the endpoint using the HTTP POST method without providing the
CSRF token, the response status is 403 Forbidden, as this command line
shows:

curl -XPOST http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

But if you provide the correct value for the CSRF token, the call is
successful. You also need to specify the session ID (JSESSIONID) because the
default implementation of CsrfTokenRepository stores the value of the
CSRF token on the session:

curl -X POST http://localhost:8080/hello

-H 'Cookie: JSESSIONID=21ADA55E10D70BA81C338FFBB06B0206'

-H 'X-CSRF-TOKEN: tAlE3LB_R_KN48DFlRChc…'

The response body is

Post Hello!

9.2 Using CSRF protection in practical scenarios

In this section, we discuss applying CSRF protection in practical situations.
Now that you know how CSRF protection works in Spring Security, you
need to know where you should use it in the real world. Which kinds of
applications need to use CSRF protection?

You use CSRF protection for web apps running in a browser, where you

should expect that mutating operations can be done by the browser that loads
the displayed content of the app. The most basic example I can provide here
is a simple web application developed on the standard Spring MVC flow. We
already made such an application when discussing form login in chapter 6,
and that web app actually used CSRF protection. Did you notice that the
login operation in that application used HTTP POST? Then why didn’t we
need to do anything explicitly about CSRF in that case? The reason why we
didn’t observe this was because we didn’t develop any mutating operation
within it ourselves.

For the default form login, Spring Security correctly applies CSRF protection
for us. The framework takes care of adding the CSRF token to the login
request. Let’s now develop a similar application to look closer at how CSRF
protection works. As figure 9.5 shows, in this section we

Build an example of a web application with the login form
Look at how the default implementation of the login uses CSRF tokens
Implement an HTTP POST call from the main page

Figure 9.5 The plan. In this section, we start by building and analyzing a simple app to
understand how Spring Security applies CSRF protection, and then we write our own POST call.

In this example application, you’ll notice that the HTTP POST call won’t
work until we correctly use the CSRF tokens, and you’ll learn how to apply
the CSRF tokens in a form on such a web page. To implement this
application, we start by creating a new Spring Boot project. You can find this
example in the project ssia-ch9-ex2. The next code snippet presents the
needed dependencies:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-thymeleaf</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

Then we need, of course, to configure the form login and at least one user.
The following listing presents the configuration class, which defines the
UserDetailsService, adds a user, and configures the formLogin method.

Listing 9.4 The definition of the configuration class

public class ProjectConfig {

 @Bean #A

 public UserDetailsService uds() {

 var uds = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("mary")

 .password("12345")

 .authorities("READ")

 .build();

 uds.createUser(u1);

 return uds;

 }

 @Bean #B

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

 @Bean #C

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.formLogin(

 c -> c.defaultSuccessUrl("/main", true)

);

 http.authorizeHttpRequests(

 c -> c.anyRequest().authenticated()

);

 return http.build();

 }

}

We add a controller class for the main page in a package named controllers

and in a main.html file in the resources/templates folder of the Maven project.
The main.html file can remain empty for the moment because on the first
execution of the application, we only focus on how the login page uses the
CSRF tokens. The following listing presents the MainController class,
which serves the main page.

Listing 9.5 The definition of the MainController class

@Controller

public class MainController {

 @GetMapping("/main")

 public String main() {

 return "main.html";

 }

}

After running the application, you can access the default login page. If you
inspect the form using the inspect element function of your browser, you can
observe that the default implementation of the login form sends the CSRF
token. This is why your login works with CSRF protection enabled even if it
uses an HTTP POST request! Figure 9.6 shows how the login form sends the
CSRF token through hidden input.

But what about developing our own endpoints that use POST, PUT, or
DELETE as HTTP methods? For these, we have to take care of sending the
value of the CSRF token if CSRF protection is enabled. To test this, let’s add
an endpoint using HTTP POST to our application. We call this endpoint from
the main page, and we create a second controller for this, called
ProductController. Within this controller, we define an endpoint,
/product/add, that uses HTTP POST. Further, we use a form on the main page
to call this endpoint. The next listing defines the ProductController class.

Figure 9.6 The default form login uses a hidden input to send the CSRF token in the request. This
is why the login request that uses an HTTP POST method works with CSRF protection enabled.

Listing 9.6 The definition of the ProductController class

@Controller

@RequestMapping("/product")

public class ProductController {

 private Logger logger =

 Logger.getLogger(ProductController.class.getName());

 @PostMapping("/add")

 public String add(@RequestParam String name) {

 logger.info("Adding product " + name);

 return "main.html";

 }

}

The endpoint receives a request parameter and prints it in the application
console. The following listing shows the definition of the form defined in the
main.html file.

Listing 9.7 The definition of the form in the main.html page

<form action="/product/add" method="post">

 Name:

 <input type="text" name="name" />

 <button type="submit">Add</button>

</form>

Now you can rerun the application and test the form. What you’ll observe is
that when submitting the request, a default error page is displayed, which
confirms an HTTP 403 Forbidden status on the response from the server
(figure 9.7). The reason for the HTTP 403 Forbidden status is the absence of
the CSRF token.

Figure 9.7 Without sending the CSRF token, the server won’t accept the request done with the
HTTP POST method. The application redirects the user to a default error page, which confirms
that the status on the response is HTTP 403 Forbidden.

To solve this problem and make the server allow the request, we need to add
the CSRF token in the request done through the form. An easy way to do this
is to use a hidden input component, as you saw in the default form login. You
can implement this as presented in the following listing.

Listing 9.8 Adding the CSRF token to the request done through the form

<form action="/product/add" method="post">

 Name:

 <input type="text" name="name" />

 <button type="submit">Add</button>

 <input type="hidden" #A

 th:name="${_csrf.parameterName}" #B

 th:value="${_csrf.token}" /> #B

</form>

NOTE

 In the example, we use Thymeleaf because it provides a straightforward
way to obtain the request attribute value in the view. In our case, we need to
print the CSRF token. Remember that the CsrfFilter adds the value of the
token in the _csrf attribute of the request. It’s not mandatory to do this with
Thymeleaf. You can use any alternative of your choice to print the token
value to the response.

After rerunning the application, you can test the form again. This time the
server accepts the request, and the application prints the log line in the
console, proving that the execution succeeds. Also, if you inspect the form,
you can find the hidden input with the value of the CSRF token (figure 9.8).

Figure 9.8 The form defined on the main page now sends the value for the CSRF token in the
request. This way, the server allows the request and executes the controller action. In the source
code for the page, you can now find the hidden input used by the form to send the CSRF token in
the request.

After submitting the form, you should find in the application console a line
similar to this one:

INFO 20892 --- [nio-8080-exec-7] c.l.s.controllers.ProductController : Adding product Chocolate

Of course, for any action or asynchronous JavaScript request your page uses
to call a mutating action, you need to send a valid CSRF token. This is the
most common way used by an application to make sure the request doesn’t
come from a third party. A third-party request could try to impersonate the
user to execute actions on their behalf.

CSRF tokens work well in an architecture where the same server is
responsible for both the frontend and the backend, mainly for its simplicity.
But CSRF tokens don’t work well when the client is independent of the
backend solution it consumes. This scenario happens when you have a
mobile application as a client or a web frontend developed independently. A
web client developed with a framework like Angular, ReactJS, or Vue.js is
ubiquitous in web application architectures, and this is why you need to know
how to implement the security approach for these cases as well. We’ll discuss
these kinds of designs in part 4 of this book.

In chapters 13 through 16, you’ll learn to implement the OAuth 2
specification, which has excellent advantages in decoupling the component.
This makes the authentication from the resources for which the application
authorizes the client.

NOTE

It might look like a trivial mistake, but in my experience, I see it too many
times in applications—never use HTTP GET with mutating operations! Do
not implement behavior that changes data and allows it to be called with an
HTTP GET endpoint. Remember that calls to HTTP GET endpoints don’t
require a CSRF token.

9.3 Customizing CSRF protection

In this section, you learn how to customize the CSRF protection solution that
Spring Security offers. Because applications have various requirements, any
implementation provided by a framework needs to be flexible enough to be
easily adapted to different scenarios. The CSRF protection mechanism in
Spring Security is no exception. In this section, the examples let you apply
the most frequently encountered needs in the customization of the CSRF
protection mechanism. These are

Configuring paths for which CSRF applies
Managing CSRF tokens

We use CSRF protection only when the page that consumes resources
produced by the server is itself generated by the same server. It can be a web
application where the consumed endpoints are exposed by a different origin,
as we discussed in section 9.2, or a mobile application. In the case of mobile
applications, you can use the OAuth 2 flow, which we’ll discuss in chapters
13 through 16.

By default, CSRF protection applies to any path for endpoints called with
HTTP methods other than GET, HEAD, TRACE, or OPTIONS. You already
know from chapter 5 how to completely disable CSRF protection. But what if
you want to disable it only for some of your application paths? You can do

this configuration quickly with a Customizer object, similar to the way we
customized HTTP Basic for form-login methods in chapter 6. Let’s try this
with an example.

In our example, we create a new project and add only the web and security
dependencies as presented in the next code snippet. You can find this
example in the project ssia-ch9-ex3. Here are the dependencies:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

In this application, we add two endpoints called with HTTP POST, but we
want to exclude one of these from using CSRF protection (figure 9.9). Listing
9.9 defines the controller class for this, which I name HelloController.

Figure 9.9 The application requires a CSRF token for the /hello endpoint called with HTTP
POST but allows HTTP POST requests to the /ciao endpoint without a CSRF token.

Listing 9.9 The definition of the HelloController class

@RestController

public class HelloController {

 @PostMapping("/hello") #A

 public String postHello() {

 return "Post Hello!";

 }

 @PostMapping("/ciao") #B

 public String postCiao() {

 return "Post Ciao";

 }

}

To make customizations on CSRF protection, you can use the csrf() method
of the HttpSecurity object in the configuration() method with a
Customizer object. The next listing presents this approach.

Listing 9.10 A Customizer object for the configuration of CSRF protection

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.csrf(c -> { #A

 c.ignoringRequestMatchers("/ciao");

 });

 http.authorizeRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

}

Calling the ignoringRequestMatchers(String paths) method, you can
specify the path expressions representing the paths that you want to exclude
from the CSRF protection mechanism. A more general approach is to use a
RequestMatcher. Using this allows you to apply the exclusion rules with
regular path expressions as well as with regexes (regular expressions). When
using the ignoringRequestMatchers() method of the CsrfCustomizer
object, you can provide any RequestMatcher as a parameter. The next code
snippet shows how to use the ignoringRequestMatchers() method with an
MvcRequestMatcher instead of using ignoringRequestMatchers() with a
path given as a String value:

HandlerMappingIntrospector i = new HandlerMappingIntrospector();

MvcRequestMatcher r = new MvcRequestMatcher(i, "/ciao");

c.ignoringRequestMatchers(r);

Or, you can similarly use a regex matcher as in the next code snippet:

String pattern = ".*[0-9].*";

String httpMethod = HttpMethod.POST.name();

RegexRequestMatcher r = new RegexRequestMatcher(pattern, httpMethod);

c.ignoringRequestMatchers(r);

Another need often found in the requirements of the application is
customizing the management of CSRF tokens. As you learned, by default, the
application stores CSRF tokens in the HTTP session on the server side. This
simple approach is suitable for small applications, but it’s not great for
applications that serve a large number of requests and that require horizontal
scaling. The HTTP session is stateful and reduces the scalability of the
application.

Let’s suppose you want to change the way the application manages tokens
and store them somewhere in a database rather than in the HTTP session.
Spring Security offers three contracts that you need to implement to do this:

CsrfToken—Describes the CSRF token itself
CsrfTokenRepository—Describes the object that creates, stores, and
loads CSRF tokens
CsrfTokenRequestHandler – Describes and object that manages the
way in which the generated CSRF token is set on the HTTP request.

The CsrfToken object has three main characteristics that you need to specify
when implementing the contract (listing 9.11 defines the CsrfToken
contract):

The name of the header in the request that contains the value of the
CSRF token (default named X-CSRF-TOKEN)
The name of the attribute of the request that stores the value of the token
(default named _csrf)
The value of the token

Listing 9.11 The definition of the CsrfToken interface

public interface CsrfToken extends Serializable {

 String getHeaderName();

 String getParameterName();

 String getToken();

}

Generally, you only need the instance of the CsrfToken type to store the three
details in the attributes of the instance. For this functionality, Spring Security
offers an implementation called DefaultCsrfToken that we also use in our
example. DefaultCsrfToken implements the CsrfToken contract and creates
immutable instances containing the required values: the name of the request
attribute and header, and the token itself.

The interface CsrfTokenRepository is the contract that represents the
component that manages CSRF tokens. To change the way the application
manages the tokens, you need to implement the CsrfTokenRepository
interface, which allows you to plug your custom implementation into the
framework. Let’s change the current application we use in this section to add
a new implementation for CsrfTokenRepository, which stores the tokens in
a database. Figure 9.10 presents the components we implement for this
example and the link between them.

Figure 9.10 The CsrfToken uses a custom implementation of CsrfTokenRepository. This custom
implementation uses a JpaRepository to manage CSRF tokens in a database.

In our example, we use a table in a database to store CSRF tokens. We
assume the client has an ID to identify themselves uniquely. The application
needs this identifier to obtain the CSRF token and validate it. Generally, this
unique ID would be obtained during login and should be different each time
the user logs in. This strategy of managing tokens is similar to storing them in
memory. In this case, you use a session ID. So the new identifier for this
example merely replaces the session ID.

An alternative to this approach would be to use CSRF tokens with a defined
lifetime. With such an approach, tokens expire after a time you define. You
can store tokens in the database without linking them to a specific user ID.
You only need to check if a token provided via an HTTP request exists and is

not expired to decide whether you allow that request.

Exercise

Once you finish with this example where we use an identifier to which we
assign the CSRF token, implement the second approach where you use CSRF
tokens that expire.

To make our example shorter, we only focus on the implementation of the
CsrfTokenRepository, and we need to consider that the client already has a
generated identifier. To work with the database, we need to add a couple
more dependencies to the pom.xml file:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

 <groupId>com.mysql</groupId>

 <artifactId>mysql-connector-j</artifactId>

</dependency>

In the application.properties file, we need to add the properties for the
database connection:

spring.datasource.url=jdbc:mysql://localhost/spring?useLegacyDatetimeCode=false&serverTimezone=UTC

spring.datasource.username=root

spring.datasource.password=

spring.sql.init.mode=always

To allow the application to create the needed table in the database at the start,
you can add the schema.xml file in the resources folder of the project. This
file should contain the query for creating the table, as presented by this code
snippet:

CREATE TABLE IF NOT EXISTS `spring`.`token` (

 `id` INT NOT NULL AUTO_INCREMENT,

 `identifier` VARCHAR(45) NULL,

 `token` TEXT NULL,

PRIMARY KEY (`id`));

We use Spring Data with a JPA implementation to connect to the database, so

we need to define the entity class and the JpaRepository class. In a package
named entities, we define the JPA entity as presented in the following listing.

Listing 9.12 The definition of the JPA entity class

@Entity

public class Token {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private int id;

 private String identifier; #A

 private String token; #B

 // Omitted code

}

The JpaTokenRepository, which is our JpaRepository contract, can be
defined as shown in the following listing. The only method you need is
findTokenByIdentifier(), which gets the CSRF token from the database
for a specific client.

Listing 9.13 The definition of the JpaTokenRepository interface

public interface JpaTokenRepository

 extends JpaRepository<Token, Integer> {

 Optional<Token> findTokenByIdentifier(String identifier);

}

With access to the implemented database, we can now start writing the
CsrfTokenRepository implementation, which I call
CustomCsrfTokenRepository. The next listing defines this class, which
overrides the three methods of CsrfTokenRepository.

Listing 9.14 The implementation of the CsrfTokenRepository contract

@Component

public class CustomCsrfTokenRepository implements CsrfTokenRepository {

 private final JpaTokenRepository jpaTokenRepository;

 // Omitted constructor

 @Override

 public CsrfToken generateToken(

 HttpServletRequest httpServletRequest) {

 // ...

 }

 @Override

 public void saveToken(

 CsrfToken csrfToken,

 HttpServletRequest httpServletRequest,

 HttpServletResponse httpServletResponse) {

 // ...

 }

 @Override

 public CsrfToken loadToken(

 HttpServletRequest httpServletRequest) {

 // ...

 }

}

CustomCsrfTokenRepository injects an instance of JpaTokenRepository
from the Spring context to gain access to the database.
CustomCsrfTokenRepository uses this instance to retrieve or to save the
CSRF tokens in the database. The CSRF protection mechanism calls the
generateToken() method when the application needs to generate a new
token. In listing 9.15, you find the implementation of this method for our
exercise. We use the UUID class to generate a new random UUID value, and
we keep the same names for the request header and attribute, X-CSRF-TOKEN
and _csrf, as in the default implementation offered by Spring Security.

Listing 9.15 The implementation of the generateToken() method

@Override

public CsrfToken generateToken(HttpServletRequest httpServletRequest) {

 String uuid = UUID.randomUUID().toString();

 return new DefaultCsrfToken("X-CSRF-TOKEN", "_csrf", uuid);

}

The saveToken() method saves a generated token for a specific client. In the

case of the default CSRF protection implementation, the application uses the
HTTP session to identify the CSRF token. In our case, we assume that the
client has a unique identifier. The client sends the value of its unique ID in
the request with the header named X-IDENTIFIER. In the method logic, we
check whether the value exists in the database. If it exists, we update the
database with the new value of the token. If not, we create a new record for
this ID with the new value of the CSRF token. The following listing presents
the implementation of the saveToken() method.

Listing 9.16 The implementation of the saveToken() method

@Override

public void saveToken(

 CsrfToken csrfToken,

 HttpServletRequest httpServletRequest,

 HttpServletResponse httpServletResponse) {

 String identifier =

 httpServletRequest.getHeader("X-IDENTIFIER");

 Optional<Token> existingToken = #A

 jpaTokenRepository.findTokenByIdentifier(identifier);

 if (existingToken.isPresent()) { #B

 Token token = existingToken.get();

 token.setToken(csrfToken.getToken());

 } else { #C

 Token token = new Token();

 token.setToken(csrfToken.getToken());

 token.setIdentifier(identifier);

 jpaTokenRepository.save(token);

 }

}

The loadToken() method implementation loads the token details, if these
exist, or returns null, otherwise. The following listing shows this
implementation.

Listing 9.17 The implementation of the loadToken() method

@Override

public CsrfToken loadToken(

 HttpServletRequest httpServletRequest) {

 String identifier = httpServletRequest.getHeader("X-IDENTIFIER");

 Optional<Token> existingToken =

 jpaTokenRepository

 .findTokenByIdentifier(identifier);

 if (existingToken.isPresent()) {

 Token token = existingToken.get();

 return new DefaultCsrfToken(

 "X-CSRF-TOKEN",

 "_csrf",

 token.getToken());

 }

 return null;

}

We use a custom implementation of the CsrfTokenRepository to declare a
bean in the configuration class. We then plug the bean into the CSRF
protection mechanism with the csrfTokenRepository() method of
CsrfConfigurer. The next listing defines this configuration class.

Listing 9.18 The configuration class for the custom CsrfTokenRepository

@Configuration

public class ProjectConfig {

 private final CustomCsrfTokenRepository customTokenRepository;

 // Omitted constructor

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.csrf(c -> {

 c.csrfTokenRepository(customTokenRepository); #A

 });

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

 }

}

The last piece we need to plug in for everything to work fine is a
CsrfTokenRequestHandler. Fortunately, we can use an implementation that
Spring Security provides – the CsrfTokenRequestAttributeHandler. This
implementation simply uses the generateToken() method of the
CsrfTokenRepository to generate a new token when an endpoint is called
using the HTTP GET method. It then add the generated CrsfToken on the
request as an attribute.

You can customize the simple behavior of the
CsrfTokenRequestAttributeHandler object by extending its class. For
example, the default implementation Spring Security uses (named
XorCsrfTokenRequestAttributeHandler) has a more complex behavior.
This implementation generates a random value using a SecuredRandom object
and then mixes its byte array with the token generated by the
CsrfTokenRepository using an XOR logic operation.

But to avoid adding to much complexity to our example and allow you focus
on the configuration part, we will set up a simple
CsrfTokenRequestAttributeHandler to handle the management of the
CSRF token on the HTTP request object. Listing 9.19 shows you how to
configure the CsrfTokenRequestAttributeHandler in the configuration
class.

Listing 9.19 The configuration class for the custom CsrfTokenRepository

@Configuration

public class ProjectConfig {

 private final CustomCsrfTokenRepository customTokenRepository;

 // Omitted constructor

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.csrf(c -> {

 c.csrfTokenRepository(customTokenRepository);

 c.csrfTokenRequestHandler(#A

 new CsrfTokenRequestAttributeHandler() #A

); #A

 });

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

 }

}

In the definition of the controller class presented in listing 9.9, we also add an
endpoint that uses the HTTP GET method. We need this method to obtain the
CSRF token when testing our implementation:

@GetMapping("/hello")

public String getHello() {

 return "Get Hello!";

}

You can now start the application and test the new implementation for
managing the token. We call the endpoint using HTTP GET to obtain a value
for the CSRF token. When making the call, we have to use the client’s ID
within the X-IDENTIFIER header, as assumed from the requirement. A new
value of the CSRF token is generated and stored in the database. Here’s the
call:

curl -H "X-IDENTIFIER:12345" http://localhost:8080/hello

Get Hello!

If you search the token table in the database, you find that the application
added a new record for the client with identifier 12345. In my case, the
generated value for the CSRF token, which I can see in the database, is
2bc652f5-258b-4a26-b456-928e9bad71f8. We use this value to call the
/hello endpoint with the HTTP POST method, as the next code snippet
presents. Of course, we also have to provide the client ID that’s used by the
application to retrieve the token from the database to compare with the one
we provide in the request. Figure 9.11 describes the flow.

curl -XPOST -H "X-IDENTIFIER:12345" -H "X-CSRF-TOKEN:2bc652f5-258b-4a26-b456-928e9bad71f8" http://localhost:8080/hello

Post Hello!

Figure 9.11 First, the GET request generates the CSRF token and stores its value in the database.
Any following POST request must send this value. Then, the CsrfFilter checks if the value in the
request corresponds with the one in the database. Based on this, the request is accepted or
rejected.

If we try to call the /hello endpoint with POST without providing the needed
headers, we get a response back with the HTTP status 403 Forbidden. To
confirm this, call the endpoint with

curl -XPOST http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

9.4 Summary

A cross-site request forgery (CSRF) is a type of attack where the user is
tricked into accessing a page containing a forgery script. This script can
impersonate a user logged into an application and execute actions on
their behalf.
CSRF protection is by default enabled in Spring Security.
The entry point of CSRF protection logic in the Spring Security
architecture is an HTTP filter.
You can customize the capability that offers CSRF protection. Spring
Security offers three simple contracts that you can implement and plug
in to define custom CSRF protection capabilities:

CsrfToken—Describes the CSRF token itself
CsrfTokenRepository—Describes the object that creates, stores,
and loads CSRF tokens
CsrfTokenRequestHandler – Describes and object that manages
the way in which the generated CSRF token is set on the HTTP
request.

10 Configuring Cross-Origin
Resource Sharing (CORS)
This chapter covers

What is cross-origin resource sharing (CORS)
Applying cross-origin resource sharing configurations

In this chapter, we discuss cross-origin resource sharing (CORS) and how to
apply it with Spring Security. First, what is CORS and why should you care?
The necessity for CORS came from web applications. By default, browsers
don’t allow requests made for any domain other than the one from which the
site is loaded. For example, if you access the site from example.com, the
browser won’t let the site make requests to api.example.com. Figure 10.1
shows this concept.

Figure 10.1 Cross-origin resource sharing (CORS). When accessed from example.com, the
website cannot make requests to api.example.com because they would be cross-domain requests.

We can briefly say that an app uses the CORS mechanism to relax this strict
policy and allow requests made between different origins in some conditions.
You need to know this because it’s likely you will have to apply it to your
applications, especially nowadays where the frontend and backend are
separate applications. It is common that a frontend application is developed
using a framework like Angular, ReactJS, or Vue and hosted at a domain like
example.com, but it calls endpoints on the backend hosted at another domain

like api.example.com.

For this chapter, we develop some examples from which you can learn how
to apply CORS policies for your web applications. We also describe some
details that you need to know such that you avoid leaving security breaches in
your applications.

10.1 How does CORS work?

In this section, we discuss how CORS applies to web applications. If you are
the owner of example.com, for example, and for some reason the developers
from example.org decide to call your REST endpoints (api.example.com)
from their website, they won’t be able to. The same situation can happen if a
domain loads your application using an iframe, for example (see figure
10.2).

NOTE

An iframe is an HTML element that you use to embed content generated by
a web page into another web page (for example, to integrate the content from
example.org inside a page from example.com).

Any situation in which an application makes calls between two different
domains is prohibited. But, of course, you can find cases in which you need
to make such calls. In these situations, CORS allows you to specify from
which domain your application allows requests and what details can be
shared. The CORS mechanism works based on HTTP headers (figure 10.3).
The most important are

Figure 10.2 Even if the example.org page is loaded in an iframe from the example.com domain,
the calls from the content loaded in example.org won’t load. Even if the application makes a
request, the browser won’t accept the response.

Access-Control-Allow-Origin—Specifies the foreign domains
(origins) that can access resources on your domain.
Access-Control-Allow-Methods—Lets us refer only to some HTTP
methods in situations in which we want to allow access to a different
domain, but only to specific HTTP methods. You use this if you’re

going to enable example.com to call some endpoint, but only with HTTP
GET, for example.
Access-Control-Allow-Headers—Adds limitations to which headers
you can use in a specific request. For example, you don’t want the client
to be able to send a specific header for a given request.

Figure 10.3 Enabling cross-origin requests. The example.org server adds the Access-Control-
Allow-Origin header to specify the origins of the request for which the browser should accept the
response. If the domain from where the call was made is enumerated in the origins, the browser
accepts the response.

With Spring Security, by default, none of these headers are added to the
response. So let’s start at the beginning: what happens when you make a

cross-origin call if you don’t configure CORS in your application. When the
application makes the request, it expects that the response has an Access-
Control-Allow-Origin header containing the origins accepted by the server.
If this doesn’t happen, as in the case of default Spring Security behavior, the
browser won’t accept the response. Let’s demonstrate this with a small web
application. We create a new project using the dependencies presented by the
next code snippet. You can find this example in the project ssia-ch10-ex1.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-thymeleaf</artifactId>

</dependency>

We define a controller class having an action for the main page and a REST
endpoint. Because the class is a normal Spring MVC @Controller class, we
also have to add the @ResponseBody annotation explicitly to the endpoint.
The following listing defines the controller.

Listing 10.1 The definition of the controller class

@Controller

public class MainController {

 private Logger logger = #A

 Logger.getLogger(MainController.class.getName());

 @GetMapping("/") #B

 public String main() {

 return "main.html";

 }

 @PostMapping("/test")

 @ResponseBody

 public String test() { #C

 logger.info("Test method called");

 return "HELLO";

 }

}

Further, we need to define the configuration class where we disable CSRF
protection to make the example simpler and allow you to focus only on the
CORS mechanism. Also, we allow unauthenticated access to all endpoints.
The next listing defines this configuration class.

Listing 10.2 The definition of the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.csrf(

 c -> c.disable()

);

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

 }

}

Of course, we also need to define the main.html file in the
resources/templates folder of the project. The main.html file contains the
JavaScript code that calls the /test endpoint. To simulate the cross-origin call,
we can access the page in a browser using the domain localhost. From the
JavaScript code, we make the call using the IP address 127.0.0.1. Even if
localhost and 127.0.0.1 refer to the same host, the browser sees these as
different strings and considers these different domains. The next listing
defines the main.html page.

Listing 10.3 The main.html page

<!DOCTYPE HTML>

<html lang="en">

 <head>

 <script>

 const http = new XMLHttpRequest();

 const url='http://127.0.0.1:8080/test'; #A

 http.open("POST", url);

 http.send();

 http.onreadystatechange = (e) => {

 document #B

 .getElementById("output")

 .innerHTML = http.responseText;

 }

 </script>

 </head>

 <body>

 <div id="output"></div>

 </body>

</html>

Starting the application and opening the page in a browser with
localhost:8080, we can observe that the page doesn’t display anything. We
expected to see HELLO on the page because this is what the /test endpoint
returns. When we check the browser console, what we see is an error printed
by the JavaScript call. The error looks like this:

Access to XMLHttpRequest at 'http://127.0.0.1:8080/test' from origin 'http://localhost:8080' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource.

The error message tells us that the response wasn’t accepted because the
Access-Control-Allow-Origin HTTP header doesn’t exist. This behavior
happens because we didn’t configure anything regarding CORS in our Spring
Boot application, and by default, it doesn’t set any header related to CORS.
So the browser’s behavior of not displaying the response is correct. I would
like you, however, to notice that in the application console, the log proves the
method was called. The next code snippet shows what you find in the
application console:

INFO 25020 --- [nio-8080-exec-2] c.l.s.controllers.MainController : Test method called

This aspect is important! I meet many developers who understand CORS as a
restriction similar to authorization or CSRF protection. Instead of being a
restriction, CORS helps to relax a rigid constraint for cross-domain calls. And

even with restrictions applied, in some situations, the endpoint can be called.
This behavior doesn’t always happen. Sometimes, the browser first makes a
call using the HTTP OPTIONS method to test whether the request should be
allowed. We call this test request a preflight request. If the preflight request
fails, the browser won’t attempt to honor the original request.

The preflight request and the decision to make it or not are the responsibility
of the browser. You don’t have to implement this logic. But it is important to
understand it, so you won’t be surprised to see cross-origin calls to the
backend even if you did not specify any CORS policies for specific domains.
This could happen, as well, when you have a client-side app developed with a
framework like Angular or ReactJS. Figure 10.4 presents this request flow.

When the browser omits to make the preflight request if the HTTP method is
GET, POST, or OPTIONS, it only has some basic headers as described in the
official documentation at https://fetch.spec.whatwg.org/#http-cors-protocol

In our example, the browser makes the request, but we don’t accept the
response if the origin is not specified in the response, as shown in figures
10.1 and 10.2. The CORS mechanism is, in the end, related to the browser
and not a way to secure endpoints. The only thing it guarantees is that only
origin domains that you allow can make requests from specific pages in the
browser.

10.2 Applying CORS policies with the
@CrossOrigin annotation

In this section, we discuss how to configure CORS to allow requests from
different domains using the @CrossOrigin annotation. You can place the
@CrossOrigin annotation directly above the method that defines the endpoint
and configure it using the allowed origins and methods. As you learn in this
section, the advantage of using the @CrossOrigin annotation is that it makes
it easy to configure CORS for each endpoint.

Figure 10.4 For simple requests, the browser sends the original request directly to the server. The
browser rejects the response if the server doesn’t allow the origin. In some cases, the browser
sends a preflight request to test if the server accepts the origin. If the preflight request succeeds,

the browser sends the original request.

We use the application we created in section 10.1 to demonstrate how
@CrossOrigin works. To make the cross-origin call work in the application,
the only thing you need to do is to add the @CrossOrigin annotation over the
test() method in the controller class. The following listing shows how to
use the annotation to make the localhost an allowed origin.

Listing 10.4 Making localhost an allowed origin

@PostMapping("/test")

@ResponseBody

@CrossOrigin("http://localhost:8080") #A

public String test() {

 logger.info("Test method called");

 return "HELLO";

}

You can rerun and test the application. This should now display on the page
the string returned by the /test endpoint: HELLO.

The value parameter of @CrossOrigin receives an array to let you define
multiple origins; for example, @CrossOrigin({"example.com",
"example.org"}). You can also set the allowed headers and methods using
the allowedHeaders attribute and the methods attribute of the annotation. For
both origins and headers, you can use the asterisk (*) to represent all headers
or all origins. But I recommend you exercise caution with this approach. It’s
always better to filter the origins and headers that you want to allow and
never allow any domain to implement code that accesses your applications’
resources.

By allowing all origins, you expose the application to cross-site scripting
(XSS) requests, which eventually can lead to DDoS attacks. I personally
avoid allowing all origins even in test environments. I know that applications
sometimes happen to run on wrongly defined infrastructures that use the
same data centers for both test and production. It is wiser to treat all layers on
which security applies independently, as we discussed in chapter 1, and to
avoid assuming that the application doesn’t have particular vulnerabilities
because the infrastructure doesn’t allow it.

The advantage of using @CrossOrigin to specify the rules directly where the
endpoints are defined is that it creates good transparency of the rules. The
disadvantage is that it might become verbose, forcing you to repeat a lot of
code. It also imposes the risk that the developer might forget to add the
annotation for newly implemented endpoints. In section 10.3, we discuss
applying the CORS configuration centralized within the configuration class.

10.3 Applying CORS using a CorsConfigurer

Although using the @CrossOrigin annotation is easy, as you learned in
section 10.2, you might find it more comfortable in a lot of cases to define
CORS configuration in one place. In this section, we change the example we
worked on in sections 10.1 and 10.2 to apply CORS configuration in the
configuration class using a Customizer. In the next listing, you can find the
changes we need to make in the configuration class to define the origins we

want to allow.

Listing 10.5 Defining CORS configurations centralized in the configuration class

@Configuration

public class ProjectConfig {

 @Bean

 public SecurityFilterChain securityFilterChain(HttpSecurity http)

 throws Exception {

 http.cors(c -> { #A

 CorsConfigurationSource source = request -> {

 CorsConfiguration config = new CorsConfiguration();

 config.setAllowedOrigins(

 List.of("example.com", "example.org"));

 config.setAllowedMethods(

 List.of("GET", "POST", "PUT", "DELETE"));

 config.setAllowedHeaders(List.of("*"));

 return config;

 };

 c.configurationSource(source);

 });

 http.csrf(

 c -> c.disable()

);

 http.authorizeHttpRequests(

 c -> c.anyRequest().permitAll()

);

 return http.build();

 }

}

The cors() method that we call from the HttpSecurity object receives as a
parameter a Customizer<CorsConfigurer> object. For this object, we set a
CorsConfigurationSource, which returns CorsConfiguration for an HTTP
request. CorsConfiguration is the object that states which are the allowed
origins, methods, and headers. If you use this approach, you have to specify
at least which are the origins and the methods. If you only specify the origins,
your application won’t allow the requests. This behavior happens because a

CorsConfiguration object doesn’t define any methods by default.

In this example, to make the explanation straightforward, I provide the
implementation for CorsConfigurationSource as a lambda expression using
the SecurityFilterChain bean directly. I strongly recommend to separate
this code in a different class in your applications. In real-world applications,
you could have much longer code, so it becomes difficult to read if not
separated by the configuration class.

10.4 Summary

Cross-over resource sharing (CORS) refers to the situation in which a
web application hosted on a specific domain tries to access content from
another domain.
By default, the browser doesn’t allow cross origin requests to happen.
CORS configuration enables you to allow a part of your resources to be
called from a different domain in a web application run in the browser.
You can configure CORS both for an endpoint using the @CrossOrigin
annotation or centralized in the configuration class using the cors()
method of the HttpSecurity object.

11 Implement authorization at the
method level
This chapter covers

Method security in Spring applications
Preauthorization of methods based on authorities, roles, and permissions
Postauthorization of methods based on authorities, roles, and
permissions

Up to now, we discussed various ways of configuring authentication. We
started with the most straightforward approach, HTTP Basic, in chapter 2,
and then I showed you how to set form login in chapter 6. But in terms of
authorization, we only discussed configuration at the endpoint level. Suppose
your app is not a web application—can’t you use Spring Security for
authentication and authorization as well? Spring Security is a good fit for
scenarios where your app isn’t used via HTTP endpoints. In this chapter,
you’ll learn how to configure authorization at the method level. We’ll use this
approach to configure authorization in both web and non-web applications,
and we’ll call it method security (figure 11.1).

Figure 11.1 Method security enables you to apply authorization rules at any layer of your
application. This approach allows you to be more granular and to apply authorization rules at a
specifically chosen level.

For non-web applications, method security offers the opportunity to
implement authorization rules even if we don’t have endpoints. In web
applications, this approach gives us the flexibility to apply authorization rules
on different layers of our app, not only at the endpoint level. Let’s dive into
the chapter and learn how to apply authorization at the method level with
method security.

11.1 Enabling method security

In this section, you learn how to enable authorization at the method level and
the different options that Spring Security offers to apply various authorization
rules. This approach provides you with greater flexibility in applying
authorization. It’s an essential skill that allows you to solve situations in
which authorization simply cannot be configured just at the endpoint level.

By default, method security is disabled, so if you want to use this
functionality, you first need to enable it. Also, method security offers
multiple approaches for applying authorization. We discuss these approaches
and then implement them in examples in the following sections of this
chapter and in chapter 12. Briefly, you can do two main things with global
method security:

Call authorization—Decides whether someone can call a method
according to some implemented privilege rules (preauthorization) or if
someone can access what the method returns after the method executes
(postauthorization).
Filtering—Decides what a method can receive through its parameters
(prefiltering) and what the caller can receive back from the method after
the method executes (postfiltering). We’ll discuss and implement
filtering in chapter 12.

11.1.1 Understanding call authorization

One of the approaches for configuring authorization rules you use with
method security is call authorization. The call authorization approach refers
to applying authorization rules that decide if a method can be called, or that
allow the method to be called and then decide if the caller can access the
value returned by the method. Often we need to decide if someone can access
a piece of logic depending on either the provided parameters or its result. So
let’s discuss call authorization and then apply it to some examples.

How does method security work? What’s the mechanism behind applying the
authorization rules? When we enable method security in our application, we
actually enable a Spring aspect. This aspect intercepts the calls to the method
for which we apply authorization rules and, based on these authorization
rules, decides whether to forward the call to the intercepted method (figure

11.2).

Figure 11.2 When we enable global method security, an aspect intercepts the call to the protected
method. If the given authorization rules aren’t respected, the aspect doesn’t delegate the call to
the protected method.

Plenty of implementations in Spring framework rely on aspect-oriented
programming (AOP). Method security is just one of the many components in
Spring applications relying on aspects. If you need a refresher on aspects and
AOP, I recommend you read chapter 6 of Spring Start Here (Manning, 2021)
, another book I wrote. Briefly, we classify the call authorization as

Preauthorization—The framework checks the authorization rules before
the method call.
Postauthorization—The framework checks the authorization rules after
the method executes.

Let’s take both approaches, detail them, and implement them with some
examples.

Using preauthorization to secure access to methods

Say we have a method findDocumentsByUser(String username) that
returns to the caller documents for a specific user. The caller provides
through the method’s parameters the user’s name for which the method
retrieves the documents. Assume you need to make sure that the
authenticated user can only obtain their own documents. Can we apply a rule
to this method such that only the method calls that receive the username of
the authenticated user as a parameter are allowed? Yes! This is something we
do with preauthorization.

When we apply authorization rules that completely forbid anyone to call a
method in specific situations, we call this preauthorization (figure 11.3). This
approach implies that the framework verifies the authorization conditions
before executing the method. If the caller doesn’t have the permissions
according to the authorization rules that we define, the framework doesn’t
delegate the call to the method. Instead, the framework throws an exception
named AccessDeniedException. This is by far the most often used approach
to global method security.

Figure 11.3 With preauthorization, the authorization rules are verified before delegating the
method call further. The framework won’t delegate the call if the authorization rules aren’t
respected, and instead, throws an exception to the method caller.

Usually, we don’t want a functionality to be executed at all if some
conditions aren’t met. You can apply conditions based on the authenticated
user, and you can also refer to the values the method received through its
parameters.

Using postauthorization to secure a method call

When we apply authorization rules that allow someone to call a method but
not necessarily to obtain the result returned by the method, we’re using
postauthorization (figure 11.4). With postauthorization, Spring Security
checks the authorization rules after the method executes. You can use this
kind of authorization to restrict access to the method return in certain
conditions. Because postauthorization happens after method execution, you
can apply the authorization rules on the result returned by the method.

Figure 11.4 With postauthorization, the aspect delegates the call to the protected method. After
the protected method finishes execution, the aspect checks the authorization rules. If the rules
aren’t respected, instead of returning the result to the caller, the aspect throws an exception.

Usually, we use postauthorization to apply authorization rules based on what
the method returns after execution. But be careful with postauthorization! If
the method mutates something during its execution, the change happens
whether or not authorization succeeds in the end.

NOTE

Even with the @Transactional annotation, a change isn’t rolled back if
postauthorization fails. The exception thrown by the postauthorization
functionality happens after the transaction manager commits the transaction.

11.1.2 Enabling method security in your project

In this section, we work on a project to apply the preauthorization and

postauthorization features offered by method security. Method security isn’t
enabled by default in a Spring Security project. To use it, you need to first
enable it. However, enabling this functionality is straightforward. You do this
by simply using the @EnableMethodSecurity annotation on the configuration
class.

I created a new project for this example, ssia-ch11-ex1. For this project, I
wrote a ProjectConfig configuration class, as presented in listing 11.1. On
the configuration class, we add the @EnableMethodSecurity annotation.
Method security offers us three approaches to define the authorization rules
that we discuss in this chapter:

The pre-/postauthorization annotations (enabled by default)
The JSR 250 annotation, @RolesAllowed
The @Secured annotation

Because in almost all cases, pre-/postauthorization annotations are the only
approach used, we discuss this approach in this chapter. This approach is pre-
enabled once you add the @EnableMethodSecurity annotation. We present a
short overview of the other two options previously mentioned at the end of
this chapter.

Listing 11.1 Enabling method security

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

}

You can use global method security with any authentication approach, from
HTTP Basic authentication to OAuth 2 (which you’ll learn in the 3rd part of
this book). To keep it simple and allow you to focus on new details, we
provide method security with HTTP Basic authentication. For this reason, the
pom.xml file for the projects in this chapter only needs the web and Spring
Security dependencies, as the next code snippet presents:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

Note

In the previous Spring Security versions, we used the
@EnableGlobalMethodSecurity annotation, and the pre and post-
authorization wasn’t enabled by default. If you need to work with method
authorization and a previous Spring Security version (older than 6), you will
find useful to read chapter 16 from the first edition of Spring Security in
Action.

11.2 Applying preauthorization rules

In this section, we implement an example of preauthorization. For our
example, we continue with the project ssia-ch11-ex1 started in section 11.1.
As we discussed in section 11.1, preauthorization implies defining
authorization rules that Spring Security applies before calling a specific
method. If the rules aren’t respected, the framework doesn’t call the method.

The application we implement in this section has a simple scenario. It
exposes an endpoint, /hello, which returns the string "Hello, " followed
by a name. To obtain the name, the controller calls a service method (figure
11.5). This method applies a preauthorization rule to verify the user has write
authority.

Figure 11.5 To call the getName() method of NameService, the authenticated user needs to have
write authority. If the user doesn’t have this authority, the framework won’t allow the call and
throws an exception.

I added a UserDetailsService and a PasswordEncoder to make sure I have
some users to authenticate. To validate our solution, we need two users: one
user with write authority and another that doesn’t have write authority. We
prove that the first user can successfully call the endpoint, while for the
second user, the app throws an authorization exception when trying to call the
method. The following listing shows the complete definition of the
configuration class, which defines the UserDetailsService and the
PasswordEncoder.

Listing 11.2 The configuration class for UserDetailsService and PasswordEncoder

@Configuration

@EnableMethodSecurity #A

public class ProjectConfig {

 @Bean #B

 public UserDetailsService userDetailsService() {

 var service = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("natalie")

 .password("12345")

 .authorities("read")

 .build();

 var u2 = User.withUsername("emma")

 .password("12345")

 .authorities("write")

 .build();

 service.createUser(u1);

 service.createUser(u2);

 return service;

 }

 @Bean #C

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

To define the authorization rule for this method, we use the @PreAuthorize
annotation. The @PreAuthorize annotation receives as a value a Spring
Expression Language (SpEL) expression that describes the authorization rule.
In this example, we apply a simple rule.

You can define restrictions for users based on their authorities using the
hasAuthority() method. You learned about the hasAuthority() method in
chapter 7, where we discussed applying authorization at the endpoint level.
The following listing defines the service class, which provides the value for
the name.

Listing 11.3 The service class defines the preauthorization rule on the method

@Service

public class NameService {

 @PreAuthorize("hasAuthority('write')") #A

 public String getName() {

 return "Fantastico";

 }

}

We define the controller class in the following listing. It uses NameService as
a dependency.

Listing 11.4 The controller class implementing the endpoint and using the service

@RestController

public class HelloController {

 private final NameService nameService; #A

 // omitted constructor

 @GetMapping("/hello")

 public String hello() {

 return "Hello, " + nameService.getName(); #B

 }

}

You can now start the application and test its behavior. We expect only user
Emma to be authorized to call the endpoint because she has write
authorization. The next code snippet presents the calls for the endpoint with
our two users, Emma and Natalie. To call the /hello endpoint and authenticate
with user Emma, use this cURL command:

curl -u emma:12345 http://localhost:8080/hello

The response body is

Hello, Fantastico

To call the /hello endpoint and authenticate with user Natalie, use this cURL
command:

curl -u natalie:12345 http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

Similarly, you can use any other expression we discussed in chapter 7 for
endpoint authentication. Here’s a short recap of them:

hasAnyAuthority()—Specifies multiple authorities. The user must have
at least one of these authorities to call the method.
hasRole()—Specifies a role a user must have to call the method.
hasAnyRole()—Specifies multiple roles. The user must have at least
one of them to call the method.

Let’s extend our example to prove how you can use the values of the method
parameters to define the authorization rules (figure 11.6). You find this
example in the project named ssia-ch11-ex2.

Figure 11.6 When implementing preauthorization, we can use the values of the method
parameters in the authorization rules. In our example, only the authenticated user can retrieve
information about their secret names.

For this project, I defined the same ProjectConfig class as in our first
example so that we can continue working with our two users, Emma and
Natalie. The endpoint now takes a value through a path variable and calls a
service class to obtain the “secret names” for a given username. Of course, in
this case, the secret names are just an invention of mine referring to a

characteristic of the user, which is something that not everyone can see. I
define the controller class as presented in the next listing.

Listing 11.5 The controller class defining an endpoint for testing

@RestController

public class HelloController {

 private final NameService nameService; #A

 // omitted constructor

 @GetMapping("/secret/names/{name}") #B

 public List<String> names(@PathVariable String name) {

 return nameService.getSecretNames(name); #C

 }

}

Now let’s take a look at how to implement the NameService class in listing
11.6. The expression we use for authorization now is #name ==
authentication.principal

.username. In this expression, we use #name to refer to the value of the
getSecretNames() method parameter called name, and we have access
directly to the authentication object that we can use to refer to the currently
authenticated user. The expression we use indicates that the method can be
called only if the authenticated user’s username is the same as the value sent
through the method’s parameter. In other words, a user can only retrieve its
own secret names.

Listing 11.6 The NameService class defines the protected method

@Service

public class NameService {

 private Map<String, List<String>> secretNames =

 Map.of(

 "natalie", List.of("Energico", "Perfecto"),

 "emma", List.of("Fantastico"));

 @PreAuthorize #A

 ("#name == authentication.principal.username")

 public List<String> getSecretNames(String name) {

 return secretNames.get(name);

 }

}

We start the application and test it to prove it works as desired. The next code
snippet shows you the behavior of the application when calling the endpoint,
providing the value of the path variable equal to the name of the user:

curl -u emma:12345 http://localhost:8080/secret/names/emma

The response body is

["Fantastico"]

When authenticating with the user Emma, we try to get Natalie’s secret
names. The call doesn’t work:

curl -u emma:12345 http://localhost:8080/secret/names/natalie

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/secret/names/natalie"

}

The user Natalie can, however, obtain her own secret names. The next code
snippet proves this:

curl -u natalie:12345 http://localhost:8080/secret/names/natalie

The response body is

["Energico","Perfecto"]

NOTE

Remember, you can apply method security to any layer of your application.
In the examples presented in this chapter, you find the authorization rules

applied for methods of the service classes. But you can apply authorization
rules with method security in any part of your application: controllers,
repositories, managers, proxies, and so on.

11.3 Applying postauthorization rules

Now say you want to allow a call to a method, but in certain circumstances,
you want to make sure the caller doesn’t receive the returned value. When we
want to apply an authorization rule that is verified after the call of a method,
we use postauthorization. It may sound a little bit awkward at the beginning:
why would someone be able to execute the code but not get the result? Well,
it’s not about the method itself, but imagine this method retrieves some data
from a data source, say a web service or a database. The conditions you need
to add for authorization depend on the received data. So you allow the
method to execute, but you validate what it returns and, if it doesn’t meet the
criteria, you don’t let the caller access the return value.

To apply postauthorization rules with Spring Security, we use the
@PostAuthorize annotation, which is similar to @PreAuthorize, discussed in
section 11.2. The annotation receives as a value the SpEL defining an
authorization rule. We continue with an example in which you learn how to
use the @PostAuthorize annotation and define postauthorization rules for a
method (figure 11.7).

Figure 11.7 With postauthorization, we don’t protect the method from being called, but we
protect the returned value from being exposed if the defined authorization rules aren’t respected.

The scenario for our example, for which I created a project named ssia-ch11-
ex3, defines an object Employee. Our Employee has a name, a list of books,
and a list of authorities. We associate each Employee to a user of the
application. To stay consistent with the other examples in this chapter, we
define the same users, Emma and Natalie. We want to make sure that the
caller of the method gets the details of the employee only if the employee has
read authority. Because we don’t know the authorities associated with the
employee record until we retrieve the record, we need to apply the
authorization rules after the method execution. For this reason, we use the

@PostAuthorize annotation.

The configuration class is the same as we used in the previous examples. But,
for your convenience, I repeat it in the next listing.

Listing 11.7 Enabling method security and defining users

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var service = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("natalie")

 .password("12345")

 .authorities("read")

 .build();

 var u2 = User.withUsername("emma")

 .password("12345")

 .authorities("write")

 .build();

 service.createUser(u1);

 service.createUser(u2);

 return service;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

We also need to declare a class to represent the Employee object with its
name, book list, and roles list. The following listing defines the Employee
class.

Listing 11.8 The definition of the Employee class

public class Employee {

 private String name;

 private List<String> books;

 private List<String> roles;

 // Omitted constructor, getters, and setters

}

We probably get our employee details from a database. To keep our example
shorter, I use a Map with a couple of records that we consider as our data
source. In listing 11.9, you find the definition of the BookService class. The
BookService class also contains the method for which we apply the
authorization rules. Observe that the expression we use with the
@PostAuthorize annotation refers to the value returned by the method
returnObject. The postauthorization expression can use the value returned
by the method, which is available after the method executes.

Listing 11.9 The BookService class defining the authorized method

@Service

public class BookService {

 private Map<String, Employee> records =

 Map.of("emma",

 new Employee("Emma Thompson",

 List.of("Karamazov Brothers"),

 List.of("accountant", "reader")),

 "natalie",

 new Employee("Natalie Parker",

 List.of("Beautiful Paris"),

 List.of("researcher"))

);

 @PostAuthorize #A

 ➥("returnObject.roles.contains('reader')")

 public Employee getBookDetails(String name) {

 return records.get(name);

 }

}

Let’s also write a controller and implement an endpoint to call the method for
which we applied the authorization rule. The following listing presents this
controller class.

Listing 11.10 The controller class implementing the endpoint

@RestController

public class BookController {

 private final BookService bookService;

 // omitted constructor

 @GetMapping("/book/details/{name}")

 public Employee getDetails(@PathVariable String name) {

 return bookService.getBookDetails(name);

 }

}

You can now start the application and call the endpoint to observe the app’s
behavior. In the next code snippets, you find examples of calling the
endpoint. Any of the users can access the details of Emma because the
returned list of roles contains the string “reader”, but no user can obtain the
details for Natalie. Calling the endpoint to get the details for Emma and
authenticating with user Emma, we use this command:

curl -u emma:12345 http://localhost:8080/book/details/emma

The response body is

{

 "name":"Emma Thompson",

 "books":["Karamazov Brothers"],

 "roles":["accountant","reader"]

}

Calling the endpoint to get the details for Emma and authenticating with user
Natalie, we use this command:

curl -u natalie:12345 http://localhost:8080/book/details/emma

The response body is

{

 "name":"Emma Thompson",

 "books":["Karamazov Brothers"],

 "roles":["accountant","reader"]

}

Calling the endpoint to get the details for Natalie and authenticating with user
Emma, we use this command:

curl -u emma:12345 http://localhost:8080/book/details/natalie

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/book/details/natalie"

}

Calling the endpoint to get the details for Natalie and authenticating with user
Natalie, we use this command:

curl -u natalie:12345 http://localhost:8080/book/details/natalie

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/book/details/natalie"

}

NOTE

You can use both @PreAuthorize and @PostAuthorize on the same method
if your requirements need to have both preauthorization and
postauthorization.

11.4 Implementing permissions for methods

Up to now, you learned how to define rules with simple expressions for
preauthorization and postauthorization. Now, let’s assume the authorization
logic is more complex, and you cannot write it in one line. It’s definitely not

comfortable to write huge SpEL expressions. I never recommend using long
SpEL expressions in any situation, regardless if it’s an authorization rule or
not. It simply creates hard-to-read code, and this affects the app’s
maintainability. When you need to implement complex authorization rules,
instead of writing long SpEL expressions, take the logic out in a separate
class. Spring Security provides the concept of permission, which makes it
easy to write the authorization rules in a separate class so that your
application is easier to read and understand.

In this section, we apply authorization rules using permissions within a
project. I named this project ssia-ch11-ex4. In this scenario, you have an
application managing documents. Any document has an owner, which is the
user who created the document. To get the details of an existing document, a
user either has to be an admin or they have to be the owner of the document.
We implement a permission evaluator to solve this requirement. The
following listing defines the document, which is only a plain Java object.

Listing 11.11 The Document class

public class Document {

 private String owner;

 // Omitted constructor, getters, and setters

}

To mock the database and make our example shorter for your comfort, I
created a repository class that manages a few document instances in a Map.
You find this class in the next listing.

Listing 11.12 The DocumentRepository class managing a few Document instances

@Repository

public class DocumentRepository {

 private Map<String, Document> documents = #A

 Map.of("abc123", new Document("natalie"),

 "qwe123", new Document("natalie"),

 "asd555", new Document("emma"));

 public Document findDocument(String code) {

 return documents.get(code); #B

 }

}

A service class defines a method that uses the repository to obtain a
document by its code. The method in the service class is the one for which
we apply the authorization rules. The logic of the class is simple. It defines a
method that returns the Document by its unique code. We annotate this
method with @PostAuthorize and use a hasPermission() SpEL expression.
This method allows us to refer to an external authorization expression that we
implement further in this example. Meanwhile, observe that the parameters
we provide to the hasPermission() method are the returnObject, which
represents the value returned by the method, and the name of the role for
which we allow access, which is 'ROLE_admin'. You find the definition of
this class in the following listing.

Listing 11.13 The DocumentService class implementing the protected method

@Service

public class DocumentService {

 private final DocumentRepository documentRepository;

 // omitted constructor

 @PostAuthorize #A

 ("hasPermission(returnObject, 'ROLE_admin')")

 public Document getDocument(String code) {

 return documentRepository.findDocument(code);

 }

}

It’s our duty to implement the permission logic. And we do this by writing an
object that implements the PermissionEvaluator contract. The
PermissionEvaluator contract provides two ways to implement the
permission logic:

By object and permission—Used in the current example, it assumes the
permission evaluator receives two objects: one that’s subject to the
authorization rule and one that offers extra details needed for
implementing the permission logic.

By object ID, object type, and permission—Assumes the permission
evaluator receives an object ID, which it can use to retrieve the needed
object. It also receives a type of object, which can be used if the same
permission evaluator applies to multiple object types, and it needs an
object offering extra details for evaluating the permission.

In the next listing, you find the PermissionEvaluator contract with two
methods.

Listing 11.14 The PermissionEvaluator contract definition

public interface PermissionEvaluator {

 boolean hasPermission(

 Authentication a,

 Object subject,

 Object permission);

 boolean hasPermission(

 Authentication a,

 Serializable id,

 String type,

 Object permission);

}

For the current example, it’s enough to use the first method. We already have
the subject, which in our case, is the value returned by the method. We also
send the role name 'ROLE_admin', which, as defined by the example’s
scenario, can access any document. Of course, in our example, we could have
directly used the name of the role in the permission evaluator class and
avoided sending it as a value of the hasPermission() object. Here, we only
do the former for the sake of the example. In a real-world scenario, which
might be more complex, you have multiple methods, and details needed in
the authorization process might differ between each of them. For this reason,
you have a parameter that you can send the needed details for use in the
authorization logic from the method level.

For your awareness and to avoid confusion, I’d also like to mention that you
don’t have to pass the Authentication object. Spring Security automatically
provides this parameter value when calling the hasPermission() method.

The framework knows the value of the authentication instance because it is
already in the SecurityContext. In listing 11.15, you find the
DocumentsPermissionEvaluator class, which in our example implements the
PermissionEvaluator contract to define the custom authorization rule.

Listing 11.15 Implementing the authorization rule

@Component

public class DocumentsPermissionEvaluator

 implements PermissionEvaluator { #A

 @Override

 public boolean hasPermission(

 Authentication authentication,

 Object target,

 Object permission) {

 Document document = (Document) target; #B

 String p = (String) permission; #C

 boolean admin = #D

 authentication.getAuthorities()

 .stream()

 .anyMatch(a -> a.getAuthority().equals(p));

 return admin || #E

 document.getOwner()

 .equals(authentication.getName());

 }

 @Override

 public boolean hasPermission(Authentication authentication,

 Serializable targetId,

 String targetType,

 Object permission) {

 return false; #F

 }

}

To make Spring Security aware of our new PermissionEvaluator
implementation, we have to define a MethodSecurityExpressionHandler
bean in the configuration class. The following listing presents how to define a
MethodSecurityExpressionHandler to make the custom

PermissionEvaluator known.

Listing 11.16 Configuring the PermissionEvaluator in the configuration class

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 private final DocumentsPermissionEvaluator evaluator;

 // omitted constructor

 @Bean #A

 protected MethodSecurityExpressionHandler createExpressionHandler() {

 var expressionHandler = #B

 new DefaultMethodSecurityExpressionHandler();

 expressionHandler.setPermissionEvaluator(

 evaluator); #C

 return expressionHandler; #D

 }

 // Omitted definition of the UserDetailsService and PasswordEncoder beans

}

NOTE

We use here an implementation for MethodSecurityExpressionHandler
named DefaultMethodSecurityExpressionHandler that Spring Security
provides. You could as well implement a custom
MethodSecurityExpressionHandler to define custom SpEL expressions you
use to apply the authorization rules. You rarely need to do this in a real-world
scenario, and for this reason, we won’t implement such a custom object in
our examples. I just wanted to make you aware that this is possible.

I separate the definition of the UserDetailsService and PasswordEncoder to
let you focus only on the new code. In listing 11.17, you find the rest of the
configuration class. The only important thing to notice about the users is their
roles. User Natalie is an admin and can access any document. User Emma is
a manager and can only access her own documents.

Listing 11.17 The full definition of the configuration class

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 private final DocumentsPermissionEvaluator evaluator;

 // Omitted constructor

 @Override

 protected MethodSecurityExpressionHandler createExpressionHandler() {

 var expressionHandler =

 new DefaultMethodSecurityExpressionHandler();

 expressionHandler.setPermissionEvaluator(evaluator);

 return expressionHandler;

 }

 @Bean

 public UserDetailsService userDetailsService() {

 var service = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("natalie")

 .password("12345")

 .roles("admin")

 .build();

 var u2 = User.withUsername("emma")

 .password("12345")

 .roles("manager")

 .build();

 service.createUser(u1);

 service.createUser(u2);

 return service;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

To test the application, we define an endpoint. The following listing presents

this definition.

Listing 11.18 Defining the controller class and implementing an endpoint

@RestController

public class DocumentController {

 private final DocumentService documentService;

 // Omitted constructor

 @GetMapping("/documents/{code}")

 public Document getDetails(@PathVariable String code) {

 return documentService.getDocument(code);

 }

}

Let’s run the application and call the endpoint to observe its behavior. User
Natalie can access the documents regardless of their owner. User Emma can
only access the documents she owns. Calling the endpoint for a document
that belongs to Natalie and authenticating with the user "natalie", we use
this command:

curl -u natalie:12345 http://localhost:8080/documents/abc123

The response body is

{

 "owner":"natalie"

}

Calling the endpoint for a document that belongs to Emma and authenticating
with the user "natalie", we use this command:

curl -u natalie:12345 http://localhost:8080/documents/asd555

The response body is

{

 "owner":"emma"

}

Calling the endpoint for a document that belongs to Emma and authenticating

with the user "emma", we use this command:

curl -u emma:12345 http://localhost:8080/documents/asd555

The response body is

{

 "owner":"emma"

}

Calling the endpoint for a document that belongs to Natalie and
authenticating with the user "emma", we use this command:

curl -u emma:12345 http://localhost:8080/documents/abc123

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/documents/abc123"

}

In a similar manner, you can use the second PermissionEvaluator method to
write your authorization expression. The second method refers to using an
identifier and subject type instead of the object itself. For example, say that
we want to change the current example to apply the authorization rules before
the method is executed, using @PreAuthorize. In this case, we don’t have the
returned object yet. But instead of having the object itself, we have the
document’s code, which is its unique identifier. Listing 11.19 shows you how
to change the permission evaluator class to implement this scenario. I
separated the examples in a project named ssia-ch11-ex5, which you can run
individually.

Listing 11.19 Changes in the DocumentsPermissionEvaluator class

@Component

public class DocumentsPermissionEvaluator

 implements PermissionEvaluator {

 private final DocumentRepository documentRepository;

 // Omitted constructor

 @Override

 public boolean hasPermission(Authentication authentication,

 Object target,

 Object permission) {

 return false; #A

 }

 @Override

 public boolean hasPermission(Authentication authentication,

 Serializable targetId,

 String targetType,

 Object permission) {

 String code = targetId.toString(); #B

 Document document = documentRepository.findDocument(code);

 String p = (String) permission;

 boolean admin = #C

 authentication.getAuthorities()

 .stream()

 .anyMatch(a -> a.getAuthority().equals(p));

 return admin || #D

 document.getOwner().equals(

 authentication.getName());

 }

}

Of course, we also need to use the proper call to the permission evaluator
with the @PreAuthorize annotation. In the following listing, you find the
change I made in the DocumentService class to apply the authorization rules
with the new method.

Listing 11.20 The DocumentService class

@Service

public class DocumentService {

 private final DocumentRepository documentRepository;

 // Omitted contructor

 @PreAuthorize #A

 ("hasPermission(#code, 'document', 'ROLE_admin')")

 public Document getDocument(String code) {

 return documentRepository.findDocument(code);

 }

}

You can rerun the application and check the behavior of the endpoint. You
should see the same result as in the case where we used the first method of
the permission evaluator to implement the authorization rules. The user
Natalie is an admin and can access details of any document, while the user
Emma can only access the documents she owns. Calling the endpoint for a
document that belongs to Natalie and authenticating with the user "natalie",
we issue this command:

curl -u natalie:12345 http://localhost:8080/documents/abc123

The response body is

{

 "owner":"natalie"

}

Calling the endpoint for a document that belongs to Emma and authenticating
with the user "natalie", we issue this command:

curl -u natalie:12345 http://localhost:8080/documents/asd555

The response body is

{

 "owner":"emma"

}

Calling the endpoint for a document that belongs to Emma and authenticating
with the user "emma", we issue this command:

curl -u emma:12345 http://localhost:8080/documents/asd555

The response body is

{

 "owner":"emma"

}

Calling the endpoint for a document that belongs to Natalie and
authenticating with the user "emma", we issue this command:

curl -u emma:12345 http://localhost:8080/documents/abc123

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/documents/abc123"

}

Using the @Secured and @RolesAllowed annotations

Throughout this chapter, we discussed applying authorization rules with
global method security. We started by learning that this functionality is
disabled by default and that you can enable it using the
@EnableMethodSecurity annotation over the configuration class. Moreover,
when using pre and post authorization you don’t need to specify a certain
way to apply the authorization rules using an attribute of the
@EnableMethodSecurity annotation. We used the annotation like this:

@EnableMethodSecurity

The @EnableMethodSecurity annotation offers two attributes that you can
use to enable different annotations. You use the jsr250Enabled attribute to
enable the @RolesAllowed annotation and the securedEnabled attribute to
enable the @Secured annotation. Using these two annotations, @Secured and
@RolesAllowed, is less powerful than using @PreAuthorize and
@PostAuthorize, and the chances that you’ll find them in real-world
scenarios are small. Even so, I’d like to make you aware of both, but without
spending too much time on the details.

You enable the use of these annotations the same way we did for

preauthorization and postauthorization by setting to true the attributes of the
@EnableMethodSecurity. You enable the attributes that represent the use of
one kind of annotation, either @Secure or @RolesAllowed. You can find an
example of how to do this in the next code snippet:

@EnableMethodSecurity(

 jsr250Enabled = true,

 securedEnabled = true

)

Once you’ve enabled these attributes, you can use the @RolesAllowed or
@Secured annotations to specify which roles or authorities the logged-in user
needs to have to call a certain method. The next code snippet shows you how
to use the @RolesAllowed annotation to specify that only users having the
role ADMIN can call the getName() method:

@Service

public class NameService {

 @RolesAllowed("ROLE_ADMIN")

 public String getName() {

 return "Fantastico";

 }

}

Similarily, you can use the @Secured annotation instead of the
@RolesAllowed annotation, as the next code snippet presents:

@Service

public class NameService {

 @Secured("ROLE_ADMIN")

 public String getName() {

 return "Fantastico";

 }

}

You can now test your example. The next code snippet shows how to do this:

curl -u emma:12345 http://localhost:8080/hello

The response body is

Hello, Fantastico

To call the endpoint and authenticating with the user Natalie, use this
command:

curl -u natalie:12345 http://localhost:8080/hello

The response body is

{

 "status":403,

 "error":"Forbidden",

 "message":"Forbidden",

 "path":"/hello"

}

You find a full example using the @RolesAllowed and @Secured annotations
in the project ssia-ch9-ex6.

11.5 Summary

Spring Security allows you to apply authorization rules for any layer of
the application, not only at the endpoint level. To do this, you enable the
method security functionality.
The method security functionality is disabled by default. To enable it,
you use the @EnableMethodSecurity annotation over the configuration
class of your application.
You can apply authorization rules that the application checks before the
call to a method. If these authorization rules aren’t followed, the
framework doesn’t allow the method to execute. When we test the
authorization rules before the method call, we’re using preauthorization.
To implement preauthorization, you use the @PreAuthorize annotation
with the value of a SpEL expression that defines the authorization rule.
If we want to only decide after the method call if the caller can use the
returned value and if the execution flow can proceed, we use
postauthorization.
To implement postauthorization, we use the @PostAuthorize annotation
with the value of a SpEL expression that represents the authorization
rule.

When implementing complex authorization logic, you should separate
this logic into another class to make your code easier to read. In Spring
Security, a common way to do this is by implementing a
PermissionEvaluator.
Spring Security offers compatibility with older specifications like the
@RolesAllowed and @Secured annotations. You can use these, but they
are less powerful than @PreAuthorize and @PostAuthorize, and the
chances that you’ll find these annotations used with Spring in a real-
world scenario are very low.

12 Implement filtering at the
method level
This chapter covers

Using prefiltering to restrict what a method receives as parameter values
Using postfiltering to restrict what a method returns
Integrating filtering with Spring Data

In chapter 11, you learned how to apply authorization rules using global
method security. We worked on examples using the @PreAuthorize and
@PostAuthorize annotations. By using these annotations, you apply an
approach in which the application either allows the method call or it
completely rejects the call. Suppose you don’t want to forbid the call to a
method, but you want to make sure that the parameters sent to it follow some
rules. Or, in another scenario, you want to make sure that after someone calls
the method, the method’s caller only receives an authorized part of the
returned value. We name such a functionality filtering, and we classify it in
two categories:

Prefiltering—The framework filters the values of the parameters before
calling the method.
Postfiltering—The framework filters the returned value after the method
call.

Filtering works differently than call authorization (figure 12.1). With
filtering, the framework executes the call and doesn’t throw an exception if a
parameter or returned value doesn’t follow an authorization rule you define.
Instead, it filters out elements that don’t follow the conditions you specify.

Figure 12.1 The client calls the endpoint providing a value that doesn’t follow the authorization
rule. With preauthorization, the method isn’t called at all and the caller receives an exception.
With prefiltering, the aspect calls the method but only provides the values that follow the given
rules.

It’s important to mention from the beginning that you can only apply filtering
to collections and arrays. You use prefiltering only if the method receives as
a parameter an array or a collection of objects. The framework filters this
collection or array according to rules you define. Same for postfiltering: you
can only apply this approach if the method returns a collection or an array.
The framework filters the value the method returns based on rules you
specify.

12.1 Applying prefiltering for method authorization

In this section, we discuss the mechanism behind prefiltering, and then we
implement prefiltering in an example. You can use filtering to instruct the
framework to validate values sent via the method parameters when someone
calls a method. The framework filters values that don’t match the given
criteria and calls the method only with values that do match the criteria. We
name this functionality prefiltering (figure 12.2).

Figure 12.2 With prefiltering, an aspect intercepts the call to the protected method. The aspect
filters the values that the caller provides as the parameter and sends to the method only values
that follow the rules you define.

You find requirements in real-world examples where prefiltering applies well
because it decouples authorization rules from the business logic the method
implements. Say you implement a use case where you process only specific
details that are owned by the authenticated user. This use case can be called
from multiple places. Still, its responsibility always states that only details of
the authenticated user can be processed, regardless of who invokes the use
case. Instead of making sure the invoker of the use case correctly applies the
authorization rules, you make the case apply its own authorization rules. Of

course, you might do this inside the method. But decoupling authorization
logic from business logic enhances the maintainability of your code and
makes it easier for others to read and understand it.

As in the case of call authorization, which we discussed in chapter 11, Spring
Security also implements filtering by using aspects. Aspects intercept specific
method calls and can augment them with other instructions. For prefiltering,
an aspect intercepts methods annotated with the @PreFilter annotation and
filters the values in the collection provided as a parameter according to the
criteria you define (figure 12.3).

Figure 12.3 With prefiltering, we decouple the authorization responsibility from the business
implementation. The aspect provided by Spring Security only takes care of the authorization
rules, and the service method only takes care of the business logic of the use case it implements.

Similar to the @PreAuthorize and @PostAuthorize annotations we discussed
in chapter 11, you set authorization rules as the value of the @PreFilter
annotation. In these rules, which you provide as SpEL expressions, you use
filterObject to refer to any element inside the collection or array that you
provide as a parameter to the method.

To see prefiltering applied, let’s work on a project. I named this project ssia-

ch12-ex1. Say you have an application for buying and selling products, and
its backend implements the endpoint /sell. The application’s frontend calls
this endpoint when a user sells a product. But the logged-in user can only sell
products they own. Let’s implement a simple scenario of a service method
called to sell the products received as a parameter. With this example, you
learn how to apply the @PreFilter annotation, as this is what we use to make
sure that the method only receives products owned by the currently logged-in
user.

Once we create the project, we write a configuration class to make sure we
have a couple of users to test our implementation. You find the
straightforward definition of the configuration class in listing 12.1. The
configuration class that I call ProjectConfig only declares a
UserDetailsService and a PasswordEncoder, and I annotate it with
@EnableMethodSecurity. For the filtering annotation, we still need to use the
@EnableMethodSecurity annotation and enable the pre-/postauthorization
annotations. The provided UserDetailsService defines the two users we
need in our tests: Nikolai and Julien.

Listing 12.1 Configuring users and enabling method security

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var uds = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("nikolai")

 .password("12345")

 .authorities("read")

 .build();

 var u2 = User.withUsername("julien")

 .password("12345")

 .authorities("write")

 .build();

 uds.createUser(u1);

 uds.createUser(u2);

 return uds;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

I describe the product using the model class you find in the next listing.

Listing 12.2 The Product class definition

public class Product {

 private String name;

 private String owner; #A

 // Omitted constructor, getters, and setters

}

The ProductService class defines the service method we protect with
@PreFilter. You can find the ProductService class in listing 12.3. In that
listing, before the sellProducts() method, you can observe the use of the
@PreFilter annotation. The Spring Expression Language (SpEL) used with
the annotation is filterObject.owner == authentication.name, which
allows only values where the owner attribute of the Product equals the
username of the logged-in user. On the left side of the equals operator in the
SpEL expression; we use filterObject. With filterObject, we refer to
objects in the list as parameters. Because we have a list of products, the
filterObject in our case is of type Product. For this reason, we can refer to
the product’s owner attribute. On the right side of the equals operator in the
expression; we use the authentication object. For the @PreFilter and
@PostFilter annotations, we can directly refer to the authentication object,
which is available in the SecurityContext after authentication (figure 12.4).

Figure 12.4 When using prefiltering by filterObject, we refer to the objects inside the list that
the caller provides as a parameter. The authentication object is the one stored after the
authentication process in the security context.

The service method returns the list exactly as the method receives it. This
way, we can test and validate that the framework filtered the list as we
expected by checking the list returned in the HTTP response body.

Listing 12.3 Using the @PreFilter annotation in the ProductService class

@Service

public class ProductService {

 @PreFilter #A

 ➥("filterObject.owner == authentication.name")

 public List<Product> sellProducts(List<Product> products) {

 // sell products and return the sold products list

 return products; #B

 }

}

To make our tests easier, I define an endpoint to call the protected service
method. Listing 12.4 defines this endpoint in a controller class called

ProductController. Here, to make the endpoint call shorter, I create a list
and directly provide it as a parameter to the service method. In a real-world
scenario, this list should be provided by the client in the request body. You
can also observe that I use @GetMapping for an operation that suggests a
mutation, which is non-standard. But know that I do this to avoid dealing
with CSRF protection in our example, and this allows you to focus on the
subject at hand. You learned about CSRF protection in chapter 9.

Listing 12.4 The controller class implementing the endpoint we use for tests

@RestController

public class ProductController {

 private final ProductService productService;

 // omitted constructor

 @GetMapping("/sell")

 public List<Product> sellProduct() {

 List<Product> products = new ArrayList<>();

 products.add(new Product("beer", "nikolai"));

 products.add(new Product("candy", "nikolai"));

 products.add(new Product("chocolate", "julien"));

 return productService.sellProducts(products);

 }

}

Let’s start the application and see what happens when we call the /sell
endpoint. Observe the three products from the list we provided as a parameter
to the service method. I assign two of the products to user Nikolai and the
other one to user Julien. When we call the endpoint and authenticate with
user Nikolai, we expect to see in the response only the two products
associated with her. When we call the endpoint and we authenticate with
Julien, we should only find in the response the one product associated with
Julien. In the following code snippet, you find the test calls and their results.
To call the endpoint /sell and authenticate with user Nikolai, use this
command:

curl -u nikolai:12345 http://localhost:8080/sell

The response body is

[

 {"name":"beer","owner":"nikolai"},

 {"name":"candy","owner":"nikolai"}

]

To call the endpoint /sell and authenticate with user Julien, use this
command:

curl -u julien:12345 http://localhost:8080/sell

The response body is

[

 {"name":"chocolate","owner":"julien"}

]

What you need to be careful about is the fact that the aspect changes the
given collection. In our case, don’t expect it to return a new List instance. In
fact, it’s the same instance from which the aspect removed the elements that
didn’t match the given criteria. This is important to take into consideration.
You must always make sure that the collection instance you provide is not
immutable. Providing an immutable collection to be processed results in an
exception at execution time because the filtering aspect won’t be able to
change the collection’s contents (figure 12.5).

Figure 12.5 The aspect intercepts and changes the collection given as the parameter. You need to
provide a mutable instance of a collection so the aspect can change it.

Listing 12.5 presents the same project we worked on earlier in this section,
but I changed the List definition with an immutable instance as returned by
the List.of() method to test what happens in this situation.

Listing 12.5 Using an immutable collection

@RestController

public class ProductController {

 private final ProductService productService;

 // omitted constructor

 @GetMapping("/sell")

 public List<Product> sellProduct() {

 List<Product> products = List.of(#A

 new Product("beer", "nikolai"),

 new Product("candy", "nikolai"),

 new Product("chocolate", "julien"));

 return productService.sellProducts(products);

 }

}

I separated this example in project ssia-ch12-ex2 folder so that you can test it

yourself as well. Running the application and calling the /sell endpoint results
in an HTTP response with status 500 Internal Server Error and an exception
in the console log, as presented by the next code snippet:

curl -u julien:12345 http://localhost:8080/sell

The response body is:

{

 "status":500,

 "error":"Internal Server Error",

 "path":"/sell"

}

In the application console, you can find an exception similar to the one
presented in the following code snippet:

java.lang.UnsupportedOperationException: null

 at java.base/java.util.ImmutableCollections.uoe(ImmutableCollections.java:73) ~[na:na]

...

12.2 Applying postfiltering for method
authorization

In this section, we implement postfiltering. Say we have the following
scenario. An application that has a frontend implemented in Angular and a
Spring-based backend manages some products. Users own products, and they
can obtain details only for their products. To get the details of their products,
the frontend calls endpoints exposed by the backend (figure 12.6).

Figure 12.6 Postfiltering scenario. A client calls an endpoint to retrieve data it needs to display in
the frontend. A postfiltering implementation makes sure that the client only gets data owned by
the currently authenticated user.

On the backend in a service class the developer wrote a method
List<Product> findProducts() that retrieves the details of products. The
client application displays these details in the frontend. How could the
developer make sure that anyone calling this method only receives products
they own and not products owned by others? An option to implement this
functionality by keeping the authorization rules decoupled from the business
rules of the application is called postfiltering. In this section, we discuss how
postfiltering works and demonstrate its implementation in an application.

Similar to prefiltering, postfiltering also relies on an aspect. This aspect
allows a call to a method, but once the method returns, the aspect takes the
returned value and makes sure that it follows the rules you define. As in the
case of prefiltering, postfiltering changes a collection or an array returned by
the method. You provide the criteria that the elements inside the returned
collection should follow. The post-filter aspect filters from the returned
collection or array those elements that don’t follow your rules.

To apply postfiltering, you need to use the @PostFilter annotation. The
@PostFilter annotation works similar to all the other pre-/post- annotations
we used in chapter 11 and in this chapter. You provide the authorization rule
as a SpEL expression for the annotation’s value, and that rule is the one that
the filtering aspect uses as shown in figure 12.7. Also, similar to prefiltering,
postfiltering only works with arrays and collections. Make sure you apply the
@PostFilter annotation only for methods that have as a return type an array
or a collection.

Figure 12.7 Postfiltering. An aspect intercepts the collection returned by the protected method
and filters the values that don’t follow the rules you provide. Unlike postauthorization,
postfiltering doesn’t throw an exception to the caller when the returned value doesn’t follow the
authorization rules.

Let’s apply postfiltering in an example. I created a project named ssia-ch12-
ex3 for this example. To be consistent, I kept the same users as in our
previous examples in this chapter so that the configuration class won’t
change. For your convenience, I repeat the configuration presented in the
following listing.

Listing 12.6 The configuration class

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 @Bean

 public UserDetailsService userDetailsService() {

 var uds = new InMemoryUserDetailsManager();

 var u1 = User.withUsername("nikolai")

 .password("12345")

 .authorities("read")

 .build();

 var u2 = User.withUsername("julien")

 .password("12345")

 .authorities("write")

 .build();

 uds.createUser(u1);

 uds.createUser(u2);

 return uds;

 }

 @Bean

 public PasswordEncoder passwordEncoder() {

 return NoOpPasswordEncoder.getInstance();

 }

}

The next code snippet shows that the Product class remains unchanged as
well:

public class Product {

 private String name;

 private String owner;

 // Omitted constructor, getters, and setters

}

In the ProductService class, we now implement a method that returns a list
of products. In a real-world scenario, we assume the application would read
the products from a database or any other data source. To keep our example
short and allow you to focus on the aspects we discuss, we use a simple
collection, as presented in listing 12.7.

I annotate the findProducts() method, which returns the list of products,
with the @PostFilter annotation. The condition I add as the value of the
annotation, filterObject.owner == authentication.name, only allows
products to be returned that have the owner equal to the authenticated user
(figure 12.8). On the left side of the equals operator, we use filterObject to
refer to elements inside the returned collection. On the right side of the
operator, we use authentication to refer to the Authentication object stored
in the SecurityContext.

Figure 12.8 In the SpEL expression used for authorization, we use filterObject to refer to the
objects in the returned collection, and we use authentication to refer to the Authentication
instance from the security context.

Listing 12.7 The ProductService class

@Service

public class ProductService {

 @PostFilter #A

 ➥("filterObject.owner == authentication.name")

 public List<Product> findProducts() {

 List<Product> products = new ArrayList<>();

 products.add(new Product("beer", "nikolai"));

 products.add(new Product("candy", "nikolai"));

 products.add(new Product("chocolate", "julien"));

 return products;

 }

}

We define a controller class to make our method accessible through an
endpoint. The next listing presents the controller class.

Listing 12.8 The ProductController class

@RestController

public class ProductController {

 private final ProductService productService;

 // Omitted constructor

 @GetMapping("/find")

 public List<Product> findProducts() {

 return productService.findProducts();

 }

}

It’s time to run the application and test its behavior by calling the /find
endpoint. We expect to see in the HTTP response body only products owned
by the authenticated user. The next code snippets show the result for calling
the endpoint with each of our users, Nikolai and Julien. To call the endpoint
/find and authenticate with user Julien, use this cURL command:

curl -u julien:12345 http://localhost:8080/find

The response body is

[

 {"name":"chocolate","owner":"julien"}

]

To call the endpoint /find and authenticate with user Nikolai, use this cURL
command:

curl -u nikolai:12345 http://localhost:8080/find

The response body is

[

 {"name":"beer","owner":"nikolai"},

 {"name":"candy","owner":"nikolai"}

]

12.3 Using filtering in Spring Data repositories

In this section, we discuss filtering applied with Spring Data repositories. It’s
important to understand this approach because we often use databases to
persist an application’s data. It is pretty common to implement Spring Boot
applications that use Spring Data as a high-level layer to connect to a
database, be it SQL or NoSQL. We discuss two approaches for applying
filtering at the repository level when using Spring Data, and we implement
these with examples.

The first approach we take is the one you learned up to now in this chapter:
using the @PreFilter and @PostFilter annotations. The second approach we
discuss is direct integration of the authorization rules in queries. As you’ll
learn in this section, you need to be attentive when choosing the way you
apply filtering in Spring Data repositories. As mentioned, we have two
options:

Using @PreFilter and @PostFilter annotations
Directly applying filtering within queries

Using the @PreFilter annotation in the case of repositories is the same as
applying this annotation at any other layer of your application. But when it
comes to postfiltering, the situation changes. Using @PostFilter on
repository methods technically works fine, but it’s rarely a good choice from
a performance point of view.

Say you have an application managing the documents of your company. The

developer needs to implement a feature where all the documents are listed on
a web page after the user logs in. The developer decides to use the findAll()
method of the Spring Data repository and annotates it with @PostFilter to
allow Spring Security to filter the documents such that the method returns
only those owned by the currently logged-in user. This approach is clearly
wrong because it allows the application to retrieve all the records from the
database and then filter the records itself. If we have a large number of
documents, calling findAll() without pagination could directly lead to an
OutOfMemoryError. Even if the number of documents isn’t big enough to fill
the heap, it’s still less performant to filter the records in your application
rather than retrieving at the start only what you need from the database
(figure 12.9).

Figure 12.9 The anatomy of a bad design. When you need to apply filtering at the repository
level, it’s better to first make sure you only retrieve the data you need. Otherwise, your
application can face heavy memory and performance issues.

At the service level, you have no other option than to filter the records in the
app. Still, if you know from the repository level that you need to retrieve only
records owned by the logged-in user, you should implement a query that
extracts from the database only the required documents.

NOTE

In any situation in which you retrieve data from a data source, be it a
database, a web service, an input stream, or anything else, make sure the
application retrieves only the data it needs. Avoid as much as possible the

need to filter data inside the application.

Let’s work on an application where we first use the @PostFilter annotation
on the Spring Data repository method, and then we change to the second
approach where we write the condition directly in the query. This way, we
have the opportunity to experiment with both approaches and compare them.

I created a new project named ssia-ch12-ex4, where I use the same
configuration class as for our previous examples in this chapter. As in the
earlier examples, we write an application managing products, but this time
we retrieve the product details from a table in our database. For our example,
we implement a search functionality for the products (figure 12.10). We write
an endpoint that receives a string and returns the list of products that have the
given string in their names. But we need to make sure to return only products
associated with the authenticated user.

Figure 12.10 In our scenario, we start by implementing the application using @PostFilter to filter
products based on their owner. Then we change the implementation to add the condition directly
on the query. This way, we make sure the application only gets from the source the needed
records.

We use Spring Data JPA to connect to a database. For this reason, we also
need to add to the pom.xml file the spring-boot-starter-data-jpa
dependency and a connection driver according to your database management
server technology. The next code snippet provides the dependencies I use in
the pom.xml file:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <scope>runtime</scope>

</dependency>

In the application.properties file, we add the properties Spring Boot needs to
create the data source. In the next code snippet, you find the properties I
added to my application.properties file:

spring.datasource.url=jdbc:mysql://localhost/spring

➥?useLegacyDatetimeCode=false&serverTimezone=UTC

spring.datasource.username=root

spring.datasource.password=

spring.datasource.initialization-mode=always

We also need a table in the database for storing the product details that our
application retrieves. We define a schema.sql file where we write the script
for creating the table, and a data.sql file where we write queries to insert test
data in the table. You need to place both files (schema.sql and data.sql) in the
resources folder of the Spring Boot project so they will be found and
executed at the start of the application. The next code snippet shows you the
query used to create the table, which we need to write in the schema.sql file:

CREATE TABLE IF NOT EXISTS `spring`.`product` (

 `id` INT NOT NULL AUTO_INCREMENT,

 `name` VARCHAR(45) NULL,

 `owner` VARCHAR(45) NULL,

 PRIMARY KEY (`id`));

In the data.sql file, I write three INSERT statements, which the next code
snippet presents. These statements create the test data that we need later to
prove the application’s behavior.

INSERT IGNORE INTO `spring`.`product` (`id`, `name`, `owner`) VALUES ('1', 'beer', 'nikolai');

INSERT IGNORE INTO `spring`.`product` (`id`, `name`, `owner`) VALUES ('2', 'candy', 'nikolai');

INSERT IGNORE INTO `spring`.`product` (`id`, `name`, `owner`) VALUES ('3', 'chocolate', 'julien');

NOTE

Remember, we used the same names for tables in other examples throughout
the book. If you already have tables with the same names from previous
examples, you should probably drop those before starting with this project.
An alternative is to use a different schema.

To map the product table in our application, we need to write an entity class.
The following listing defines the Product entity.

Listing 12.9 The Product entity class

@Entity

public class Product {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private int id;

 private String name;

 private String owner;

 // Omitted getters and setters

}

For the Product entity, we also write a Spring Data repository interface
defined in the next listing. Observe that this time we use the @PostFilter
annotation directly on the method declared by the repository interface.

Listing 12.10 The ProductRepository interface

public interface ProductRepository

 extends JpaRepository<Product, Integer> {

 @PostFilter #A

 ➥("filterObject.owner == authentication.name")

 List<Product> findProductByNameContains(String text);

}

The next listing shows you how to define a controller class that implements

the endpoint we use for testing the behavior.

Listing 12.11 The ProductController class

@RestController

public class ProductController {

 private final ProductRepository productRepository;

 // Omitted constructor

 @GetMapping("/products/{text}")

 public List<Product> findProductsContaining(

 @PathVariable String text) {

 return productRepository.findProductByNameContains(text);

 }

}

Starting the application, we can test what happens when calling the
/products/{text} endpoint. By searching the letter c while authenticating with
user Nikolai, the HTTP response only contains the product candy. Even if
chocolate contains a c as well, because Julien owns it, chocolate won’t
appear in the response. You find the calls and their responses in the next code
snippets. To call the endpoint /products and authenticate with user Nikolai,
issue this command:

curl -u nikolai:12345 http://localhost:8080/products/c

The response body is

[

 {"id":2,"name":"candy","owner":"nikolai"}

]

To call the endpoint /products and authenticate with user Julien, issue this
command:

curl -u julien:12345 http://localhost:8080/products/c

The response body is

[

 {"id":3,"name":"chocolate","owner":"julien"}

]

We discussed earlier in this section that using @PostFilter in the repository
isn’t the best choice. We should instead make sure we don’t select from the
database what we don’t need. So how can we change our example to select
only the required data instead of filtering data after selection? We can provide
SpEL expressions directly in the queries used by the repository classes. To
achieve this, we follow two simple steps:

1. We add an object of type SecurityEvaluationContextExtension to the
Spring context. We can do this using a simple @Bean method in the
configuration class.

2. We adjust the queries in our repository classes with the proper clauses
for selection.

In our project, to add the SecurityEvaluationContextExtension bean in the
context, we need to change the configuration class as presented in listing
12.12. To keep all the code associated with the examples in the book, I use
here another project that named ssia-ch12-ex5.

Listing 12.12 Adding the SecurityEvaluationContextExtension to the context

@Configuration

@EnableMethodSecurity

public class ProjectConfig {

 @Bean #A

 public SecurityEvaluationContextExtension

 securityEvaluationContextExtension() {

 return new SecurityEvaluationContextExtension();

 }

 // Omitted declaration of the UserDetailsService and PasswordEncoder

}

In the ProductRepository interface, we add the query prior to the method,
and we adjust the WHERE clause with the proper condition using a SpEL
expression. The following listing presents the change.

Listing 12.13 Using SpEL in the query in the repository interface

public interface ProductRepository

 extends JpaRepository<Product, Integer> {

 @Query("SELECT p FROM Product p

 ➥WHERE p.name LIKE %:text% AND #A

 ➥p.owner=?#{authentication.name}")

 List<Product> findProductByNameContains(String text);

}

We can now start the application and test it by calling the /products/{text}
endpoint. We expect that the behavior remains the same as for the case where
we used @PostFilter. But now, only the records for the right owner are
retrieved from the database, which makes the functionality faster and more
reliable. The next code snippets present the calls to the endpoint. To call the
endpoint /products and authenticate with user Nikolai, we use this command:

curl -u nikolai:12345 http://localhost:8080/products/c

The response body is

[

 {"id":2,"name":"candy","owner":"nikolai"}

]

To call the endpoint /products and authenticate with user Julien, we use this
command:

curl -u julien:12345 http://localhost:8080/products/c

The response body is

[

 {"id":3,"name":"chocolate","owner":"julien"}

]

12.4 Summary

Filtering is an authorization approach in which the framework validates
the input parameters of a method or the value returned by the method

and excludes the elements that don’t fulfill some criteria you define. As
an authorization approach, filtering focuses on the input and output
values of a method and not on the method execution itself.
You use filtering to make sure that a method doesn’t get other values
than the ones it’s authorized to process and can’t return values that the
method’s caller shouldn’t get.
When using filtering, you don’t restrict access to the method, but you
restrict what can be sent via the method’s parameters or what the
method returns. This approach allows you to control the input and
output of the method.
To restrict the values that can be sent via the method’s parameters, you
use the @PreFilter annotation. The @PreFilter annotation receives the
condition for which values are allowed to be sent as parameters of the
method. The framework filters from the collection given as a parameter
all values that don’t follow the given rule.
To use the @PreFilter annotation, the method’s parameter must be a
collection or an array. From the annotation’s SpEL expression, which
defines the rule, we refer to the objects inside the collection using
filterObject.
To restrict the values returned by the method, you use the @PostFilter
annotation. When using the @PostFilter annotation, the returned type
of the method must be a collection or an array. The framework filters the
values in the returned collection according to a rule you define as the
value of the @PostFilter annotation.
You can use the @PreFilter and @PostFilter annotations with Spring
Data repositories as well. But using @PostFilter on a Spring Data
repository method is rarely a good choice. To avoid performance
problems, filtering the result should be, in this case, done directly at the
database level.
Spring Security easily integrates with Spring Data, and you use this to
avoid issuing @PostFilter with methods of Spring Data repositories.

	Copyright_2023_Manning_Publications
	welcome
	1_Security_today
	2_Hello_Spring_Security
	3_Managing_users
	4_Managing_passwords
	5_A_web_app’s_security_begins_with_filters
	6_Implementing_authentication
	7_Configuring_endpoint-level_authorization:_Restricting_access
	8_Configuring_endpoint-level_authorization:_Applying_restrictions
	9_Configuring_Cross-Site_Request_Forgery_(CSRF)_protection
	10_Configuring_Cross-Origin_Resource_Sharing_(CORS)
	11_Implement_authorization_at_the_method_level
	12_Implement_filtering_at_the_method_level

