


Alan Turing's Systems of Logic 



.. .....,.._,_, 
Jcl.l.SSoPSC�CED[!'ilnE� 

noM••"•C c1iwL11t 

TIUOMM RIL.L RATC 
�VLmER . DEIERRED 
HIOHJ. CAGl.£ 14CSt:AOI! l£n£R 

c'l'UP.;rim, . . o nmr:rs1.10nn AVRllTJ!l, OUII,DPOP.D; .EliGMll�. 

� NO'J CASH OR CH� 

CllCCK 

llMERLED 

floptor.ibor 101 1030 

You· AnE GI?AlJ'l'ED ADLIIOIJIOlt TO VllillCi:�orr GRADUA'l'I! sonooL 
llOil. c:o1ii11G YEAR., LRT'l'En 'FOLLOiTS. 

LU'l'II!m EISEI1IIAR'l'� DI::AU 

IIoto: A' i•oply up to ,tho .,,r.iount of ill .• 50 ic propnid on thia o�bio, 
Son.t ·n.o onblo nicht 10tter 

.. ·: 



Tk.. � �..:, �k.4'-"
t-<...1- I �l..b. o� '-4-L '- t...14. ...: �� �� � 
lt.J- I 44- �uy-Ju(. 44 ' ·�lvb....1- d rp N--�, &r I c.z... l_ 
""-e1..:.... � J,, kc.. u .s I iW"- 4. � V r � .Jk..ef. 

'-.(... "-J... t.,,..""-4 .. "' �u '- ""-'+ ..,,::_, V r � �� 
... ..,._.., __ . __ , . . ,,., 

" ... A--1- It... 16-4.. � It.../- I k-. � �A' f.Jf1Vt7 � 
t.A.'"U.. � J..t �r4'-'; � � � q rl� � rl-4., 

,(,,,,,� 11.""'1-f � '7;....<M I 





Alan Turing's Systems of Logic 
THE PRINCETON THESIS 

Edited and introduced by Andrew W. Appel 

PRINCETON UNIVERSITY PRESS 
PRINCETON AND OXFORD 



Copyright © 2012 by Princeton University Press 

Published by Princeton University Press, 

41 William Street, Princeton, New Jersey 08540 

In the United Kingdom: Princeton University Press, 6 Oxford Street, 

Woodstock, Oxfordshire OX20 l TW 

press.princeton.edu 

All Rights Reserved 

Second printing, and first paperback printing, 2014 

Cloth ISBN 978-0-691-15574-6 

Paper ISBN 978-0-691-16473-1 

Library of Congress Control Number: 2012931772 

British Library Cataloging-in-Publication Data is available 

Permission to publish a facsimile reproduction of Alan Turing's 

Princeton dissertation, "Systems of Logic Based on Ordinals;' has 

been granted by the Princeton University Archives. Department of 

Rare Books and Special Collection. Princeton University Library 

Frontispiece images are reproduced with permission from the 

Princeton University Archives. Department of Rare Books and 

Special Collections. Princeton University Library 

Title page image of Alan Turing is reproduced by kind permission of 

the Provost and Fellows, King's College, Cambridge 

Solomon Feferman's " Turing's Thesis," originally published in the 

Notices of the AMS, vol. 53, no. 10, is reprinted with permission 

This book has been composed in Minion Pro 

Printed on acid-free paper. "" 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 



ix Preface 

Contents 

1 The Birth of Computer Science at Princeton in the 1930s 

ANDREW W. APPEL 

13 Turing's Thesis 

SOLOMON FEFERMAN 

27 Notes on the Manuscript 

31 Systems of Logic Based on Ordinals 

ALAN TURING 

141 A Remarkable Bibliography 

143 Contributors 





Preface 

Alan M. Turing, after his great result in 1936 discovering a universal model of 
computation and proving his incompleteness theorem, came to Princeton in 
1936-38 and earned a PhD in mathematics. Before 1936 there were no univer
sal computers. By 1955 there was not only a theory of computation, but there 
were real universal ("von Neumann") computers in Philadelphia, Cambridge 
(Massachusetts) , Princeton, Cambridge (England) , and Manchester. The new 
field of computer science had a remarkably short gestation. 

The great engineers who built the first computers are well known: Kon
rad Zuse (Z3, Berlin, 1941) ;  Tommy Flowers (Colossus, Bletchley Park, 1943); 
Howard Aiken (Mark I, Harvard, 1944); Prosper Eckert and John Mauchley 
(ENIAC, University of Pennsylvania, 1946) .  

But computer science is not just the construction of hardware. Who were 
the creators of the intellectual revolution underlying the theory of computers 
and computation? 

Turing is very well known as a founder and pioneer of this discipline. In 
1936 at the age of twenty-four he discovered the universal model of computa
tion now known as the Turing machine; in 1938 he developed the notion of 
"oracle relativization"; in 1939-45 he was a principal figure in breaking the 
German Enigma ciphers using computational devices (though not "Turing 
machines") ;  in 1948 he invented the LU-decomposition method in numerical 
computation; in 1950 he foresaw the field of artificial intelligence and made 
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remarkably accurate predictions about the future of computing and comput
ers. And, of course, he famously committed suicide in 1954 after prosecution 
and persecution for practicing homosexuality in England. 

But as significant as Turing is for the foundation of computer science, he 
was not the only scholar whose work in the 1930s led to the birth of this field. 

In Fine Hall,1 home in the 1930s of the Princeton Mathematics Department 
and the newly established Institute for Advanced Study, were mathematicians 
whose students would form a significant part of the new fields of computer 
science and operations research. 

This volume presents the manuscript of Alan Turing's PhD thesis. It is ac
companied by two introductory essays that explore both the work and the 
context of Turing's stay in Princeton. My essay elucidates the significance of 
Turing's work (and that of his adviser, Alonzo Church) for the field of comput
er science; Solomon Feferman's essay describes its significance for mathemat
ics. Feferman also explains how to relate some of Turing's 1938 terminology to 
more current usage in the field. But on the whole, the notation and terminol
ogy in this field have been fairly stable: "Systems of Logic Based on Ordinals" 
is still readable as a mathematical and philosophical work. 

Andrew W Appel 
Princeton, New Jersey 

1 Fine Hall was built in 1930, named for the mathematician Henry Burchard Fine. During the 

1930s it housed the Mathematics Department of Princeton University and the mathematicians 

(e.g., Godel and von Neumann) and physicists (e.g., Einstein) of the Institute for Advanced 

Study. In 1939, the Institute moved to its own campus about a mile away from Princeton Uni

versity's central campus. In 1969, the University's Mathematics Department moved to the new 

Fine Hall on the other side of Washington Road. The old building was renamed Jones Hall, in 

honor of its original donors, and now houses the departments of East Asian Studies and Near 

Eastern Studies. 



PRE FAC E X I  

OSWALD VEBLEN, chairman of the Princeton University Mathematics 
Department and first professor at the Institute for Advanced Study. His stu
dents include Alonzo Church (PhD 1927) ,  and his PhD descendants through 
Philip Franklin (Princeton PhD 192 1) via Alan Perlis (Turing Award 1966) 
include David Parnas, Zohar Manna, Kai Li, Jeannette Wing, and 500 other 
computer scientists. Veblen has more than 8000 PhD descendants overall. 
He helped oversee the development of the pioneering ENIAC digital com
puter in the 1940s. 

(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti

tute for Advanced Study, Princeton, NJ, USA.) 
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ALONZO CHURCH, professor of mathematics, whose students include Alan 
Turing, Leon Henkin, Stephen Kleene, Martin Davis, Michael Rabin (Turing 
Award 1976) , Dana Scott (Turing Award 1976) , and Barkley Rosser, and whose 
PhD descendants include 3000 other mathematicians and computer scientists, 
among them Robert Constable, Edmund Clarke (Turing Award 2007) , Allen 
Emerson (Turing Award 2007) , and Les Valiant (Turing Award 20 10). 

(Photo from the Alonzo Church Papers. Department of Rare Books and Special Collec

tion. Princeton University Library.) 
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SOLOMON LEFSHETZ, professor of mathematics, whose students include 
John McCarthy (Turing Award 1971) ,  John Tukey, Ralph Gomory, and Rich
ard Bellman (inventor of dynamic programming), and whose 6 18 1  PhD de
scendants include John Nash (Nobel Prize 1994), Marvin Minsky (Turing 
Award 1969) , Manuel Blum (Turing Award 1995), Barbara Liskov (Turing 
Award 2008), Gerald Sussman, Shafi Goldwasser, Umesh and Vijay Vazirani, 
Persi Diaconis, and Peter Buneman. 

(Photo courtesy of the Princeton University Archives. Department of Rare Books and 

Special Collection. Princeton University Library.) 
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KURT GODEL, visitor to the Institute in 1933, 1934, and 1935, and professor 
at the Institute from 1940, had no students but had an enormous influence 
on the fields of mathematics and computer science. His 193 1 incompleteness 
result-that it will never be possible to enumerate in logic the true statements 
of mathematics-stunned mathematicians and philosophers with its unex
pectedness. His methods-the numerical encoding of syntax and the numeri
cal processing of logic-set the stage for many techniques of computer sci
ence. Major results of Church, Kleene, Turing, and von Neumann clearly and 
explicitly owe much to Godel. 

(Photo from the Kurt Godel Papers, the Shelby White and Leon Levy Archives Center, 

Institute for Advanced Study, Princeton, NJ, USA, on deposit at Princeton University.) 
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JOHN VON NEUMANN, at Princeton University from 1930 and professor at 
the Institute for Advanced Study from 1933, had only a few students (includ
ing the pioneer in parallel computer architecture Donald Gillies) , but also had 
an enormous influence on the development of physics, mathematics, logic, 
economics, and computer science. In 193 1 he was the first to recognize the 
significance of Godel's work, and toward 1950 he brought Turing's ideas of 
program-as-data to the engineering of the first stored-program computers. 
Stored-program computers are called "von Neumann machines:' and essen
tially all computers today are von Neumann machines. 

(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti

tute for Advanced Study, Princeton, NJ, USA.) 





The Birth of Comp uter Science 
at Princeton in the 1930s 

ANDREW W. APPEL 

The "Turing machine" is the standard model for a simple yet universal com
puting device, and Alan Turing's 1936 paper "On computable numbers . . .  " 
(written while he was a fellow at Cambridge University) is the standard cita
tion for the proof that some functions are not computable. But earlier in the 
same decade, Kurt Godel at the Institute for Advanced Study in Princeton had 
developed the theory of recursive functions; Alonzo Church at Princeton Uni
versity had developed the lambda-calculus as a model of computation; Church 
( 1936) had just published his result that some functions are not expressible as 
recursive functions; and he had stated what we know as Church's Thesis: that 
the recursive functions characterize exactly the effectively calculable functions. 
In hindsight, the first demonstration that some functions are not computable 
was Church's. 

It was only natural that the mathematician M. H. A. Newman (whose 
lectures on logic Turing had attended) should suggest that Turing come to 
Princeton to work with Church. Some of the greatest logicians in the world, 
thinking about the issues that in later decades became the foundation of com
puter science, were in Princeton's (old) Fine Hall in the 1930s: Godel, Church, 
Stephen Kleene, Barkley Rosser, John von Neumann, and others. In fact, it is 
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hard to imagine a more appropriate place for Turing to have pursued gradu
ate study. After publishing his great result on computability, Turing spent two 
years ( 1938-38) at Princeton, writing his PhD thesis on "ordinal logics" with 
Church as his adviser. 

If Turing was not the first to define a universal model of computable ft.mc
tions, why is the Turing machine the standard model? These three models
Godel's recursive functions, Church's A-calculus, and Turing's machine-were 
all proved equivalent in expressive power by Kleene ( 1936) and Turing ( 1937). 
But Turing's model is, most clearly of the three, a machine, with simple enough 
parts that one could imagine building it. As Solomon Feferman explains in 
his introduction to Turing's PhD thesis later in this volume, even Godel was 
not convinced that either A-calculus or his own model (recursive functions) 
was a sufficiently general representation of "computation'' until he saw Tur
ing's proof that unified recursive functions with Turing machines. That is, 
Church proved, and Turing independently re-proved, that some functions are 
not computable, but Turing's result was much more convincing about the defi
nition of "computable:' 

Turing's "On computable numbers" convinced Godel, and the rest of the 
world, in part because of the philosophical effort he put into that paper, as 
well as the mathematical effort. Turing described a process of computation 
as a human endeavor, or as a mechanical endeavor, in such a way that no 
matter which of these endeavors was dearest to the reader's heart, the result 
would come out the same: the Turing machine would express it. In contrast, 
it was not at all obvious that the Herbrand-Godel recursive functions or the 
A-calculus really constitutes the essence of "computation:' We know that they 
do only because of the proof of equivalence with Turing machines. 

The real computers of the 1940s and 1950s, like those of today, were never 
actually Turing machines with a finite control and an unbounded tape. But the 
electronic computers that were built, on both sides of the Atlantic, byvon Neu
mann and others, were heavily (and explicitly) influenced by Turing's ideas, so 
that from the very beginning the field of computer science has often referred 
to computers in general as Turing machines-especially when considering 
their expressive power as universal computation devices. 



T H E  B I RT H  OF C O M P U T E R S C I E NC E  3 

What became of the other two models-recursive functions and A-calculus? 
Most mathematicians working in computability theory use the theory of re
cursive functions; computer scientists working in computational complexity 
theory use both Turing machines and recursive functions. Turing himself used 
A-calculus in his own PhD thesis, but, as Feferman explains, 

One reason that the reception of Turing's [PhD thesis] may have been 

so limited is that (no doubt at Church's behest) it was formulated in 

terms of the A.-calculus, which makes expressions for the ordinals and 

formal systems very hard to understand. He could instead have followed 

Kleene, who wrote in his retrospective history: "I myself, perhaps unduly 

influenced by rather chilly receptions from audiences around 1933-35 
to disquisitions on A.-definability, chose, after general recursiveness had 

appeared, to put my work in that format. I cannot complain about my 

audiences after 1935:' 
For Feferman and Kleene, and for other mathematicians working in the field 

known as "recursive function theory;' the particular implementations of func
tions (as described in A-calculus) are rarely useful, and it is usually sufficient 
(and simpler) to talk more abstractly about the existence of implementations, 
that is, about definability and about enumerations of computable functions. 
Soare ( 1996) points out that the very name of the field (in mathematics) "re
cursive function theory" was invented by Kleene; Soare suggested "comput
ability theory" as a more descriptive name for the field, and pointed out that 
Turing and Godel used "computable" in preference to "recursive:' Of course, 
Soare is both a mathematician and a computer scientist, and it is my impres
sion that many of the latter used the term "computable" more frequently than 
"recursive" for decades before 1996, influenced (for example) by Martin Davis 
(PhD 1950 under Church) . 

So there were several models of computation, all known (by the end of the 
1930s) to be equivalent: recursive functions, A-calculus, Turing machines, and 
in fact others; for a few decades, mathematicians studied what can be repre
sented as recursive functions, while the computer scientists studied what can 
be calculated by Turing machines. 



4 ANDR EW W. APPEL 

But the A-calculus did not disappear. In 1960 it became the explicit model 
of the Lisp programming language (invented by John McCarthy, 1927-20 1 1 ; 
Turing Award 1971 ,  PhD Princeton 195 1 under Solomon Lefschetz) . And A
calculus is the implicit model of the Algol programming language (Perlis and 
Samelson 1958) . Almost all programming languages in use today are descend
ed from Lisp and Algol. Notions and mechanisms of variable binding, scope, 
functions, parameter passing, expressions, and type checking are all imported 
directly from Church's A-calculus. 

When the computers ("von Neumann machines") of the 1950s were built, 
with their (necessarily) sequential and mechanical universal control systems 
a la Turing, it was noticed that they were difficult to program. Programming 
these computers became easier with languages for specifying recursive func
tions (i.e., computations) that emphasized, to the degree possible with the 
technology of the time, functions (instead of procedures) , variables (instead of 
registers), binding (instead of the "move" instruction) , and typed data (instead 
of bit strings) . All of this is from Church, and none of it is from Turing, Godel, 
Kleene, or von Neumann. 

Some mathematicians' criticisms of Church have to do with his reputation 
for pedanticism and excessive rigor: Hodges (1983, p. 1 19) writes that Turing 
"was reduced to attending Church's lectures, which he found ponderous and 
excessively precise:' In part this reputation is undeserved. Feferman ( 1988, 
p. 120) writes that this "characterization of Church's style and personality" is 
"fair enough . . . .  But it should be added that Church was (and is) noted for the 
great care and precision of his writing and lecturing, and these virtues prob
ably benefited Turing-whose own writing was rough and ready and prone to 
minor errors:' Robert Soare, who took classes from Church as an undergradu
ate at the beginning of the 1960s, says that Church's lectures on computability 
theory were indeed precise but "made the subject exciting"; Church was a bet
ter teacher than most math professors at Princeton. 1  

Still, Kleene and Feferman clearly agree that A-calculus was not the most 
perspicuous vehicle for Turing to use in his PhD thesis, or for mathemati
cians to do many kinds of computability theory. This is because (typically) the 
mathematics they are doing depends only on the computability of a function, 

Robert Soare, personal communication, December 12, 2011. 
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not on which method is used to compute it. In contrast, the engineers and pro
grammers who have written programs from 1950 to the present are forced to 
write down a precise formulation of the function; otherwise we have bugs. So 
the notation for writing down representations of computable functions must 
be precise, and must also be both readable and writable (by humans and by 
other computer programs) both in the small and in the large. This is where the 
descendants of Church's notation work better than those of Turing's. 

Some of the ways in which early programming languages differed from A
calculus were forced by the limitations of early computers. Turing machines 
with an infinite tape and unbounded time can nicely simulate the A-calculus. 
The slow computers of the 1960s and 1970s with their tiny memories forced 
programmers, even those who used Lisp and Algol, to split the difference be
tween Church and von Neumann in how they wrote down their algorithms. 
But in the 1980s and 1990s, as computers became more powerful, it was pos
sible to develop and apply programming languages (such as ML and Haskell2) 
that were even closer to Church's A-calculus, and consciously so. 

This brings me to the subject of Turing's Princeton PhD thesis, the con
tent of the current volume. Here, Turing turns his attention from computa
tion to logic. Godel and Church would not have called themselves computer 
scientists: they were mathematical logicians; and even Turing, when he got his 
big 1936 result "On computable numbers;' was answering a question in logic 
posed by Hilbert in 1928. 

Turing's thesis, "Systems of Logic Based on Ordinals;' takes Godel's stun
ning incompleteness theorems as its point of departure. Godel had shown that 
if a formal axiomatic system (of at least minimal expressive power) is consis
tent, then it cannot be complete. And not only is the system incomplete, but 
the formal statement of the consistency of the system is true and unprovable if 
the system is consistent. Thus if we already have informal or intuitive reasons 
for accepting the axioms of the system as true, then we ought to accept the 
statement of its consistency as a new axiom. And then we can apply the same 
considerations to the new system; that is, we can iterate the process of adding 
consistency statements as new axioms. In his thesis, Turing investigated that 
process systematically by iterating it into the constructive transfinite, taking 

2 Named after another great logician, Haskell Curry, who was also visiting Princeton in 1938. 
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unions of logical systems at limit ordinal notations. His main result was that 
one can thereby overcome incompleteness for an important class of arithmeti
cal statements (though not for all) . 

It is clear that Turing regards the formalization of mathematics as a desir
able goal. He excuses himself at one point (on pp. 9- 10 of the manuscript) : 

There is another point to be made clear in connection with the point of 

view we are adopting. It is intended that all proofs that are given [in this 

thesis] should be regarded no more critically than proofs in classical anal

ysis. The subject matter, roughly speaking, is constructive systems oflogic, 

but as the purpose is directed towards choosing a particular constructive 

system of logic for practical use; an attempt at this stage to put our theo

rems into constructive form would be putting the cart before the horse. 

Here it is clear that Turing is a logician and not just a great mathemati
cian; few mathematicians believe that it would be a useful purpose to choose a 
constructive system of logic for practical use, and no ordinary mathematician 
would excuse himself for being no more rigorous than a mathematician. 

Just as one of the strengths of Turing's great 1936 paper was its philosophi
cal component-in which he explains the motivation for the Turing machine 
as a model of computation-here in the PhD thesis he is also motivated by 
philosophical concerns, as in section 9 (p. 60 of the manuscript) : 

We might hope to obtain some intellectually satisfying system of logical 

inference (for the proof of number theoretic theorems) with some ordinal 

logic. Godel's theorem shows that such a system cannot be wholly me

chanical, but with a complete ordinal logic we should be able to confine 

the non-mechanical steps entirely to verifications that particular formu

lae are ordinal formulae. 

Turing greatly expands on these philosophical motivations in section 1 1  
of the thesis. His program, then, is this: We wish to reason in some logic, so 
that our proofs can be mechanically checked (for example, by a Turing ma
chine) . Thus we don't need to trust our students and journal-referees to check 
our proofs. But no (sufficiently expressive) logic can be complete, as Godel 
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showed. If we are using a given logic, sometimes we may want to reason about 
statements unprovable in that logic. Turing's proposal is to use an ordinal logic 
sufficiently high in the hierarchy; checking proofs in that logic will be com
pletely mechanical, but the one "intuitive" step remains of verifying ordinal 
formulas. 

Unfortunately, it is not at all clear that verifying ordinal formulas is in any 
way "intuitive:' Feferman ( 1988, sec. 6) estimates that "the demand on 'intu
ition' in recognizing 'which formulae are ordinal formulae' is somewhat greater 
than Turing suggests:' Feferman concludes his essay included in this volume 
with a mention of his and Kreisel's subsequent approaches to this problem, 
between 1958 and 1970. 

Turing, in the thesis, recognizes significant problems with his ordinal log
ics, which can be summarized by his statement (manuscript, p. 73) that "with 
almost any reasonable notation for ordinals, completeness is incompatible 
with invariance" (and see also Feferman's essay) . 

But the PhD thesis contains, almost as an aside, an enormously influen
tial mathematical insight. Turing invented the notion of oracles, in which one 
kind of computer consults from time to time, in an explicitly axiomatized way, 
a more powerful kind. Oracle computations are now an important part of the 
tool kit of both mathematicians and computer scientists working in comput
ability theory and computational complexity theory (see Feferman 1992; So are 
2009) . This method may actually be the most significant result in Turing's PhD 
thesis. 

So the thesis exhibits Turing as logician. Alonzo Church also continued to 
be a logician, as in 1940 he published ''A Formulation of the Simple Theory of 
Types:' setting out the system now known as higher-order logic. As a practical 
means of actually doing mechanized reasoning, Turing's 1938 result was not 
nearly as influential as Church's higher-order logic. 

In many other fields of engineering, such as the construction of bridges, 
chemical processes, or photonic circuits, the applicable mathematics is from 
analysis or quantum mechanics (see Wigner 1960, "The Unreasonable Ef
fectiveness of Mathematics in the Natural Sciences"). But software does not 
(principally) rely on continuous or quantum artifacts of the natural world, 
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where that kind of math works so well. Instead, software follows the discrete 
logic of bits, and it obeys axioms specified by the engineers who designed the 
instruction-set architecture of the computer, and by those who specified the 
semantics of the programming languages. Thus the applicable mathematics is, 
in fact, logic (see Halpern et al. 200 1 ,  "On the Unusual Effectiveness of Logic 
in Computer Science'' ) .  

It might seem that the Boolean algebra of  bits i s  simpler than real analy
sis, but the problem is that software systems are so complex that the reason
ing is difficult. Thus in the twenty-first century many computer scientists do 
mechanized formal reasoning, and the most significant application domain 
for mechanized proof is in the verification of computer software itself. Soft
ware is large and complex, and for at least some software it is very desirable 
that it conform to a given formal specification. The theorems and proofs are 
too large for us to reliably build and maintain by hand, so we mechanize. 

Mechanized proof comes in two flavors; the first flavor is fully automated. 
Automated theorem proving is the use of computer programs to find proofs 
automatically. Automatic static analysis is the use of computer programs to cal
culate behavioral properties of other computer programs, sometimes by call
ing upon automated theorem provers as subroutines to decide the validity of 
logical propositions. Do not be frightened by Turing's result that this problem 
is uncomputable; his result is simply that no automated procedure can decide 
the provability of every mathematical proposition, and no automated proce
dure can test nontrivial properties of every other program.3 We do not need to 
prove every theorem or analyze every program; it will suffice to automatically 
prove many useful theorems, or analyze useful programs. Some automated 
provers work in undecidable logics, and (therefore) sometimes fail to find the 
proof. In those cases, the user is expected to simplify or reformulate the theo
rem as necessary, or provide hints. We would not ask Fermat to reformulate 
his Last Theorem for the convenience of Wiles; but when the theorem is "This 
horrible program meets its specification:' we might well rewrite the program 
to make it more easily reasoned about. Other automated provers work in de
cidable logics-for example, Presburger arithmetic or Boolean satisfiability. 

3 Actually, this generalization of Turing's 1936 result about halting is known as Rice's theorem 

(1953). 



T H E  B I RT H  OF C O M P U T E R S C I E NC E  9 

Do not be frightened by Cook's result ( 197 1) that satisfiability is NP-complete; 
that result is simply that no (known) automated procedure can solve every 
instance in polynomial time. In practice, SAT-solvers are now a big industry; 
they are quite effective in solving the actual cases that come up in theorem
proving applications. (Of course, SAT-solvers are not so effective in solving 
problems that arise from deliberately intractable problems, such as cryptog
raphy.) The extension of SAT-solvers to SMT (satisfiability modulo theories) 
is also now a big academic and commercial industry. Many of these solvers 
use variants of the Davis-Putnam algorithm for resolution theorem proving, 
discovered in 1960 by Martin Davis (PhD 1950 under Church) and Hilary 
Putnam (PhD UCLA 1951 ;  in 1960 a colleague of Church's at Princeton) . 

The other flavor of mechanized proof is the use of computer programs to 
check proofs automatically, and to assist in the bureaucratic details of their 
construction. These are the proof assistants. One of the earliest of these was 
Robin Milner's LCF (Logic for Computable Functions) system (Gordon et al. 
1979) . Milner was influenced by the work of Church and by that of Dana Scott 
(PhD 1958 under Church) , Christopher Strachey (a fellow student of Turing's 
at Cambridge, and one of the first to program the ACE computer in 19 5 1) ,  and 
Peter Landin (a student of Strachey's) . Strachey, Landin, and Milner, all British 
computer scientists, were important figures in the application of Church's >..
calculus and logic to the design of programming languages and formal meth
ods for reasoning about them. 

Although some proof assistants use first-order logics (i.e., logics where each 
quantifier ranges over elements of a particular fixed type) , for the expression 
of mathematical ideas it is much more convenient to use higher-order logics 
(i.e., where the type of a quantifier can itself be a variable bound in an outer 
scope) . One of the earliest higher-order logics is Church's "simple theory of 
types" ( 1940) , but even more expressive (and, to my taste, more useful) logics 
have dependent types, where the type of one variable may depend on the val
ue of another. Such logics include LF (the Logical Framework) and CoC (the 
Calculus of Constructions). Proof assistants such as HOL (using the simple 
theory of types) , Twelf (using LF) , and Coq (using CoC) are now routinely 
used to specify and prove substantial theorems about computers and com
puter programs. 
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Not only theorems about software; sometimes these proof assistants are 
even used to prove theorems in mathematics. Georges Gonthier (2008) used 
Coq to implement a proof of the four-color theorem end-to-end in "Church/ 
Turing-style" fully formal logic. Gonthier's implementation improved on the 
1976 proof by Kenneth Appel and Wolfgang Haken that relied in part on "von 
Neumann-style" Fortran programs to calculate reducibility and in part on 
"Pythagoras-style" traditional mathematics. (In 1976 the reaction of some 
mathematicians was to distrust those parts of Appel and Haken's proof that 
were calculated by computer, whereas the reaction of some computer scientists 
was to distrust the parts that were checked only "by hand:') In the twenty-first 
century, computer programs that prove mathematical theorems are expected 
themselves to be formalized within a mechanically checked logical system. 
Thomas Hales (2005) proved the Kepler conjecture about sphere packing, us
ing computer programs written in Mathematica and C++, about which the 
referees were "99% certain:' In order to reach 100%, Hales's current project 
(nearly complete) is to formalize this proof in the HOL Light proof assistant. 

In Cambridge, Turing ( 1936) had brilliant, unprecedented ideas about the 
nature of computation. He was certainly not the first to build an actual com
puter; there was already work in progress at (for example) the University of 
Iowa. But when Turing came to Princeton to work with Church, in the orbit of 
Godel, Kleene, and von Neumann,4 among them they founded a field of com
puter science that is firmly grounded in logic. In some of Turing's other work 
( 1950) he foresees the field (now within computer science) of artificial intel
ligence. But in his PhD thesis he makes it clear that he looks to a day when, 
in proving mathematical theorems, "the strain put on the intuition should be 
a minimum'' (manuscript, page 83). That is, to the extent possible, every step 
in a proof should be mechanically checkable. We all know the Church-Turing 
thesis: that no realizable computer will be able to compute more functions 
than A-calculus or a Turing machine. But in reading Turing's "Systems of Logic 
. . .  " we can see quite clearly another kind of Church-Turing thesis, that came 

4 Godel was away from Princeton during Turing's time here, and Kleene had already finished 

his PhD and left; but clearly they had an enormous influence on Turing's PhD thesis. Turing 

worked with von Neumann during his time at Princeton, but on other kinds of mathematics 

than logic and computation. 
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half a century later as a consequence of their work: mathematical reasoning 
can be done, and often should be done, in mechanizable formal logic. 
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Turing's Thesis 
SOL OMON FEFERM AN 

In the sole extended break from his life and varied career in England, Alan 
Turing spent the years 1936- 1938 doing graduate work at Princeton Univer
sity under the direction of Alonzo Church, the doyen of American logicians. 
Those two years sufficed for him to complete a thesis and obtain the Ph.D. 
The results of the thesis were published in 1939 under the title "Systems of 
logic based on ordinals" [23]. That was the first systematic attempt to deal 
with the natural idea of overcoming the Godelian incompleteness of formal 
systems by iterating the adjunction of statements-such as the consistency of 
the system-that "ought to" have been accepted but were not derivable; in fact 
these kinds of iterations can be extended into the transfinite. As Turing put it 
beautifully in his introduction to [23]: 

The well-known theorem of Godel ( 1931) shows that every system of 

logic is in a certain sense incomplete, but at the same time it indicates 

means whereby from a system L of logic a more complete system L' may 

be obtained. By repeating the process we get a sequence L, L1 = L', L2 = 

L' 1 • • •  each more complete than the preceding. A logic L., may then be 

constructed in which the provable theorems are the totality of theorems 

provable with the help of the logics L, L1 , L2, • • •  Proceeding in this way 

we can associate a system of logic with any constructive ordinal. It may 
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be asked whether such a sequence of logics of this kind is complete in the 
sense that to any problem A there corresponds an ordinal a such that A is 
solvable by means of the logic La . 

Using an ingenious argument in pursuit of this aim, Turing obtained a striking 
yet equivocal partial completeness result that clearly called for further inves
tigation. But he did not continue that himself, and it would be some twenty 
years before the line of research he inaugurated would be renewed by others. 
The paper itself received little attention in the interim, though it contained a 
number of original and stimulating ideas and though Turing's name had by 
then been well established through his earlier work on the concept of effective 
computability. 

Here, in brief, is the story of what led Turing to Church, what was in his 
thesis, and what came after, both for him and for the subject.1 

FROM CAMBRIDGE TO PRINCETON 

As an undergraduate at King's College, Cambridge, from 193 1  to 1934, Turing 
was attracted to many parts of mathematics, including mathematical logic. In 
1935 Turing was elected a fellow of King's College on the basis of a disserta
tion in probability theory, On the Gaussian error function, which contained his 
independent rediscovery of the central limit theorem. Earlier in that year he 
began to focus on problems in logic through his attendance in a course on that 
subject by the topologist M. H. A. (Max) Newman. One of the problems from 
Newman's course that captured Turing's attention was the Entscheidungsprob
lem, the question whether there exists an effective method to decide, given 
any well-formed formula of the pure first-order predicate calculus, whether 
or not it is valid in all possible interpretations (equivalently, whether or not 
its negation is satisfiable in some interpretation) . This had been solved in the 
affirmative for certain special classes of formulas, but the general problem was 

I have written about this at somewhat greater length in (10]; that material has also been in

corporated as an introductory note to Turing's 1939 paper in the volume, Mathematical Logic 

(25] of his collected works. In its biographical part I drew to a considerable extent on Andrew 

Hodges' superb biography, Alan Turing: 1he Enigma [16]. 
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still open when Turing began grappling with it. He became convinced that the 
answer must be negative, but that in order to demonstrate the impossibility of 
a decision procedure, he would have to give an exact mathematical explana
tion of what it means to be computable by a strictly mechanical process. He 
arrived at such an analysis by mid-April 1936 via the idea of what has come to 
be called a Turing machine, namely an idealized computational device follow
ing a finite table of instructions (in essence, a program) in discrete effective 
steps without limitation on time or space that might be needed for a computa
tion. Furthermore, he showed that even with such unlimited capacities, the 
answer to the general Entscheidungsproblem must be negative. Turing quickly 
prepared a draft of his work entitled "On computable numbers, with an appli
cation to the Entscheidungsproblem"; Newman was at first skeptical of Turing's 
analysis but then became convinced and encouraged its publication. 

Neither Newman nor Turing were aware at that point that there were al
ready two other proposals under serious consideration for analyzing the gen
eral concept of effective computability: one by Godel called general recursive
ness, building on an idea of Herbrand, and the other by Church, in terms of 
what he called the A.-calculus.2 In answer to the question, "Which functions of 
natural numbers are effectively computable?': the Herbrand-Godel approach 
was formulated in terms of finite systems of equations from which the values 
of the functions are to be deduced using some elementary rules of inference; 
since the functions to be defined can occur on both sides of the equations, this 
constitutes a general form of recursion. Godel explained this in lectures on the 
incompleteness results during his visit to the Princeton Institute for Advanced 
Study in 1934, lectures that were attended by Church and his students Stephen 
C. Kleene and J. Barkley Rosser. But Godel regarded general recursiveness 
only as a "heuristic principle" and was not himself willing to commit to that 
proposed analysis. Meanwhile Church had been exploring a different answer 
to the same question in terms of his A-calculus-a fragment of a quite gen
eral formalism for the foundation of mathematics, whose fundamental notion 

2 The development of ideas about computability in this period by Herbrand, Godel, Church, 

Turing, and Post has been much written about and can only be touched on here. For more 

detail I recommend the article by Kleene [17] and the articles by Hodges, Kleene, Gandy, and 

Davis in Part I of Herken's collection [15], among others. One of the many good online sources 

with further links is at http://plato.stanfordedu/entries/church-turing/, by B. J. Copeland 
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is that of arbitrary functions rather than arbitrary sets. The "A" comes from 
Church's formalism according to which if t[x ] is an expression with one or 
more occurrences of a variable x ,  then Xx. t[x ] is supposed to denote a func
tion f whose value f(s) for each s is the result, t[s!x ], of substituting s for x 
throughout t.3 In the A-calculus, function application of one expression t to 
another s as argument is written in the form ts . Combining these, we have the 
basic evaluation axiom: (h.t[x ])s = t[s!x ]. 

Using a representation of the natural numbers in the A-calculus, a function 
f is said to be A-definable if there is an expression t such that for each pair of 
numerals n and m, tn evaluates out to m if and only if j(n) = m . In conver
sations with Godel, Church proposed A-definability as the precise explana
tion of effective computability ("Church's Thesis") , but in Godel's view that 
was "thoroughly unsatisfactory". It was only through a chain of equivalences 
that ended up with Turing's analysis that Godel later came to accept it, albeit 
indirectly. The first link in the chain was forged with the proof by Church and 
Kleene that A-definability is equivalent to general recursiveness. Thus when 
Church finally announced his "Thesis" in published form in 1936 [ 1], it was in 
terms of the latter. In that paper, Church applied his thesis to demonstrate the 
effective unsolvability of various mathematical and logical problems, includ
ing the decision problem for sufficiently strong formal systems. And then in 
his follow-up paper [2 ] submitted April 15, 1936-just around the time Tur
ing was showing Newman his draft-Church proved the unsolvability of the 
Entscheidungsproblem for logic. When news of this work reached Cambridge 
a month later, the initial reaction was great disappointment at being scooped, 
but it was agreed that Turing's analysis was sufficiently different to still warrant 
publication. After submitting it for publication toward the end of May 1936, 
Turing tacked on an appendix in August of that year in which he sketched the 
proof of equivalence of computability by a machine in his sense with that of 
A-definability, thus forging the second link in the chain of equivalences [2 1]. 

In Church's 1937 review of Turing's paper, he wrote: 

As a matter of fact, there is involved here the equivalence of three differ-

3 One must avoid the "collision" of free and bound variables in the process, i.e., no free variable 

z of s must end up within the scope of a "J\Z''; this can be done by renaming bound variables as 

necessary. 
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ent notions: computability by a Turing machine, general recursiveness in 

the sense of Herbrand-Godel-Kleene, and A.-definability in the sense of 

Kleene and the present reviewer. Of these, the first has the advantage of 

making the identification with effectiveness in the ordinary (not explic

itly defined) sense evident immediately .... The second and third have the 

advantage of suitability for embodiment in a system of symbolic logic.4 

Thus was born what is now called the Church-Turing Thesis, according to 
which the effectively computable functions are exactly those computable by a 
Turing machine.5 The (Church-)Turing Thesis is of course not to be confused 
with Turing's thesis under Church, our main subject here. 

TURING IN PRINCETON 

On Newman's recommendation, Turing decided to spend a year studying with 
Church, and he applied for one of Princeton's Procter fellowships. In the event, 
he did not succeed in obtaining it, but even so he thought he could manage 
on his fellowship funds from King's College of 300 pounds per annum, and 
so Turing came to Princeton at the end of September 1936. The Princeton 
mathematics department had already been a leader on the American scene 
when it was greatly enriched in the early 1930s by the establishment of the 
Institute for Advanced Study. The two shared Fine Hall until 1940, so that the 
lines between them were blurred and there was significant interaction. Among 
the mathematical leading lights that Turing found on his arrival were Einstein, 
von Neumann, and Weyl at the Institute and Lefschetz in the department; 
the visitors that year included Courant and Hardy. In logic, he had hoped to 
find-besides Church-Godel, Bernays, Kleene, and Rosser. Godel had in
deed commenced a second visit in the fall of 1935 but left after a brief period 
due to illness; he was not to return until 1939. Bernays (noted as Hilbert's 
collaborator on his consistency program) had visited 1935-36, but did not 
visit the States again until after the war. Kleene and Rosser had received their 

4 Church's review appeared in/. Symbolic Logic 2 (1937), 42-43. 

5 Godel accepted the Church-Turing Thesis in that form in a nwnber of lectures and publica

tions thereafter. 



18 S OLOMO N F E F E R MA N 

Ph.D.s by the time Turing arrived and had left to take positions elsewhere. So 
he was reduced to attending Church's lectures, which he found ponderous and 
excessively precise; by contrast, Turing's native style was rough-and-ready and 
prone to minor errors, and it is a question whether Church's example was of 
any benefit in this respect. They met from time to time, but apparently there 
were no sparks, since Church was retiring by nature and Turing was somewhat 
of a loner. 

In the spring of 1937, Turing worked up for publication a proof in greater 
detail of the equivalence of machine computability with X-definability [22]. He 
also published two papers on group theory, including one on finite approxi
mations of continuous groups that was of interest to von Neumann (cf. [24]) . 
Luther P. Eisenhart, who was then head of the mathematics department, urged 
Turing to stay on for a second year and apply again for the Procter fellowship 
(worth US$2,000 p.a. ) .  This time, supported by von Neumann who praised 
his work on almost periodic functions and continuous groups, Turing suc
ceeded in obtaining the fellowship, and so decided to stay the extra year and 
do a Ph.D. under Church. Proposed as a thesis topic was the idea of ordinal 
logics that had been broached in Church's course as a way to "escape" Godel's 
incompleteness theorems. 

Turing, who had just turned 25, returned to England for the summer of 
193 7, where he devoted himself to three projects: finishing the computability/A
definability paper, ordinal logics, and the Skewes number. As to the latter, 
Littlewood had shown that n(x) - li(x) changes sign infinitely often, with an 
argument by cases, according to whether the Riemann Hypothesis is true or 
not; prior to that it had been conjectured that n(n) < li(n) for all n, in view of 
the massive numerical evidence into the billions in support of that.6 In 1933 
Skewes had shown that li(n) < n(n) for some n < 10

3
(34) (triple exponen

tial to the base 10) if the Riemann Hypothesis is true. Turing hoped to lower 
Skewes' bound or eliminate the Riemann Hypothesis; in the end he thought 
he had succeeded in doing both and prepared a draft but did not publish his 
work.7 He was to have a recurring interest in the R.H. in the following years, 

6 li(x) is the (improper) integral from 0 to x of 1/logx and is asymptotic to n(x), the number of 

primes< x. 

7 A paper based on Turing's ideas, with certain corrections, was published after his death by 

Cohen and Mayhew [4]. 
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including devising a method for the practical computation of the zeros of the 
Riemann zeta function as explained in the article by Andrew R. Booker in this 
issue of the Notices. Turing also made good progress on his thesis topic and 
devoted himself full time to it when he returned to Princeton in the fall, so that 
he ended up with a draft containing the main results by Christmas of 193 7. But 
then he wrote Philip Hall in March 1938 that the work on his thesis was "prov
ing rather intractable, and I am always rewriting part of if' 8 Later he wrote 
that "Church made a number of suggestions which resulted in the thesis being 
expanded to an appalling length:' One can well appreciate that Church would 
not knowingly tolerate imprecise formulations or proofs, let alone errors, and 
the published version shows that Turing went far to meet such demands while 
retaining his distinctive voice and original ways of thinking. Following an oral 
exam in May, on which his performance was noted as "Excellent': the Ph.D. 
itself was granted in June 1938. Turing made little use of the doctoral title in 
the following years, since it made no difference for his position at Cambridge. 
But it could have been useful for the start of an academic career in America. 
Von Neumann thought sufficiently highly of his mathematical talents to offer 
Turing a position as his assistant at the Institute. Curiously, at that time von 
Neumann showed no knowledge or appreciation of his work in logic. It was 
not until 1939 that he was to recognize the fundamental importance of Tur
ing's work on computability. Then, toward the end of World War II, when von 
Neumann was engaged in the practical design and development of general 
purpose electronic digital computers in collaboration with the ENIAC team, 
he was to incorporate the key idea of Turing's universal computing machine 
in a direct way.9 

Von Neumann's offer was quite attractive, but Turing's stay in Princeton 
had not been a personally happy one, and he decided to return home despite 
the uncertain prospects aside from his fellowship at King's and in face of the 
brewing rumors of war. After publishing the thesis work he did no more on 
that topic and went on to other things. Not long after his return to England, 
he joined a course at the Government Code and Cypher School, and that was 

8 Hodges [16], p. 144. 

9 Its suggested implementation is in the Draft report on the EDVAC put out by the ENIAC team 

and signed by von Neumann; cf. Hodges [16], pp. 302-303; cf. also ibid, p. 145, for von Neu

mann's appreciation by 1939 of the significance of Turing's work. 
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to lead to his top secret work during the war at Bletchley Park on breaking 
the German Enigma Code. This fascinating part of the story is told in full in 
Hodges' biography [ 16 ], as is his subsequent career working to build actual 
computers, promote artificial intelligence, theorize about morphogenesis, and 
continue his work in mathematics. Tragically, this ended with his death in 
1954, a probable suicide. 

THE THE SIS : ORDINAL LOGIC S 1 0  

What Turing calls a logic is nowadays more usually called a formal system, i.e., 
one prescribed by an effective specification of a language, set of axioms and 
rules of inference. Where Turing used "L" for logics I shall use "S" for formal 
systems. Given an effective description of a sequence (S)n eN (N = {O, 1, 2, . . .  }) 
of formal systems all of which share the same language and rules of inference, 
one can form a new system Sw = U Sn (n E N) ,  by taking the effective union 
of their axiom sets. If the sequence of Sn 's is obtained by iterating an effective 
passage from one system to the next, then that iteration can be continued to 
form S w+ 1 ,  • • •  and so on into the transfinite. This leads to the idea of an eff ec
tive association of formal systems Sa with ordinals a. Clearly that can be done 
only for denumerable ordinals, but to deal with limits in an effective way, it 
turns out that we must work not with ordinals per se, but with notations for 
ordinals. In 1936, Church and Kleene [3 ] had introduced a system 0 of con
structive ordinal notations, given by certain expressions in the A-calculus. A 
variant of this uses numerical codes a for such expressions and associates with 
each a E 0 a countable ordinal la l . For baroque reasons, 1 was taken as the 
notation for 0, 2a as a notation for the successor of la l ,  and 3 • s• for the limit 
of the sequence lan l '  when this sequence is strictly increasing and when e is a 
code of a computable function e with e(n) = an for each n E N . The least or
dinal not of the form la l  for some a E 0 is the analogue, in terms of effective 
computability, of the least uncountable ordinal w1 and is usually denoted by 
w 1cK , where "CK" refers to Church and Kleene. By an ordinal logic S* = ( S) aEo is 
10 The background to the material of this section in Godel's incompleteness theorems is explained 

in my piece for the Notices [ 1 1 ] .  
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meant any means of effectively associating with each a E 0 a formal system 
Sa. Note, for example, that there are many ways of forming a sequence of no
tations an whose limit is w, given by all the different effectively computable 
strictly increasing subsequences of N. So at limit ordinals a < w

1
cK we will 

have infinitely many representations of a and thus also for its successors. An 
ordinal logic is said to be invariant if whenever la l  = l b l  then Sa and Sb prove 
the same theorems. 

In general, given any effective means of passing from a system S to an ex
tension S' of S ,  one can form an ordinal logic S* = (S)aEo which is such that 
for each a E 0 and b = 2a the successor of a, Sb = S' a' and is further such that 
whenever a = 3 • 5" then Sa is the union of the sequence of Se(n) for each n E N. 
In particular, for systems whose language contains that of Peano Arithmetic 
P A, one can take S' to be S U {Cons}, where Cons formalizes the consistency 
statement for S; the associated ordinal logic S* thus iterates adjunction of con
sistency through all the constructive ordinal notations. If one starts with P A 
as the initial system it may be seen that each Sa is consistent and so S� is strictly 
stronger than Sa by Godel's second incompleteness theorem. The consistency 
statements are expressible in V("for all")-form, i.e., \f xR(x) where R is an ef
fectively decidable predicate. So a natural question to raise is whether S* is 
complete for statements of that form, i.e., whether whenever \f xR(x) is true in 
N then it is provable in Sa for some a E 0 .  Turing's main result for this ordinal 
logic was that that is indeed the case, in fact one can always choose such an 
a with la l  = w + 1. His ingenious method of proof was, given R , to construct 
a sequence e(n) that denotes n as long as (V x ::;; n)R(x) holds and that jumps 
to the successor of 3 • 5" when (::Jx ::;; n)-.R(x) . 1 1  Let b =3 • 5" and a = 2b. Now 
if \fxR(x) is true, b E 0 with l b l  = w. In Sa we can reason as follows: if \f xR(x) 
were not true then Sb would be the union of systems that are eventually the 
same as Sa, so Sb would prove its own consistency and hence, by Godel's theo
rem, would be inconsistent. But Sa proves the consistency of Sb, so we must 
conclude that \f xR(x) holds after all. 

Turing recognized that this completeness proof is disappointing because it 
shifts the question of whether a \f -statement is true to the question whether a 

11 Note that e is defined in terms of itself; this is made possible by Kleene's index form of the 

recursion theorem. 
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number a actually belongs to 0. In fact, the general question, given a, is a E 
O?, turns out to be of higher logical complexity than any arithmetical state
ment, i.e., one formed by the unlimited iteration of universal and existential 
quantifiers, V and ::3 .  Another main result of Turing's thesis is that for quite 
general ordinal logics, S* can't be both complete for statements in \/-form and 
invariant. It is for these reasons that above I called his completeness results 
equivocal. Even so, what Turing really hoped to obtain was completeness for 
statements in \/::3 ("for all, there exists") -form. His reason for concentrating on 
these, which he called "number-theoretical problems': rather than considering 
arithmetical statements in general, is not clear. This class certainly includes 
many number-theoretical statements (in the usual sense of the word) of math
ematical interest, e.g., those, such as the twin prime conjecture, that say that 
an effectively decidable set C of natural numbers is infinite. Also, as Turing 
pointed out, the question whether a given program for one of his machines 
computes a total function is in '1/::3-form. Of special note is his proof ([23 ], sec. 
3) that the Riemann Hypothesis is a number-theoretical problem in Turing's 
sense. This was certainly a novel observation for the time; actually, as shown 
by Georg Kreisel years later, it can even be expressed in V -form.12 On the other 
hand, Turing's class of number-theoretical problems does not include such 
statements as finiteness of the number of solutions of a diophantine equation 
( :::JV) or the statement of Waring's problem (V::3 V) .  

In  section 4 Turing introduced a new idea that was to change the face of 
the general theory of computation (also known as recursion theory) but the 
only use he made of it there was curiously inessential. His aim was to pro
duce an arithmetical problem that is not number-theoretical in his sense, i.e., 
not in '1/::3 -form. This is trivial by a diagonalization argument, since there are 
only countably many effective relations R(x, y) of which we could say that 
Vx3yR(x, y) holds. Turing's way of dealing with this, instead, is through the 
new notion of computation relative to an oracle. As he puts it: 

Let us suppose that we are supplied with some unspecified means of solv

ing number-theoretical [i.e., '1/::3]  problems; a kind of oracle as it were. 

. . . With the help of the oracle we could form a new kind of machine 

12 A relatively perspicuous representation in that form may be found in Davis et al. [ 6] p. 335. 
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(call them a-machines), having as one of its fundamental processes that 

of solving a given nwnber-theoretic problem. 

He then showed that the problem of determining whether an o-machine 
terminates on any given input is an arithmetical problem not computable by 
any o-machine, and hence not solvable by the oracle itself. Turing did nothing 
further with the idea of o-machines, either in this paper or afterward. In 1944 

Emil Post [20] took it as his basic notion for a theory of degrees of unsolv
ability, crediting Turing with the result that for any set of natural numbers 
there is another of higher degree of unsolvability. This transformed the notion 
of computability from an absolute notion into a relative one that would lead 
to entirely new developments and eventually to vastly generalized forms of 
recursion theory. Some of the basic ideas and results of the theory of effective 
reducibility of the membership problem for one set of numbers to another 
inaugurated by Turing and Post are explained in the article by Martin Davis in 
this issue of the Notices. 

There are further interesting suggestions and asides in the thesis, such as 
consideration of possible constructive analogues of the Continuum Hypoth
esis. Finally (as also mentioned by Barry Cooper in his review article) , it con
tained provocative speculations concerning intuition versus technical ingenu
ity in mathematical reasoning. The relevance, according to Turing is that: 

When we have an ordinal logic, we are in a position to prove number

theoretic theorems by the intuitive steps of recognizing [natural nwnbers 

as notations for ordinals] .... We want it to show quite clearly when a step 

makes use of intuition and when it is purely formal .... It must be beyond 

all reasonable doubt that the logic leads to correct results whenever the 

intuitive steps [i.e., recognition of ordinals] are correct. 

This Turing had clearly accomplished with his formulation of the notion of 
ordinal logic and the construction of the particular S* obtained by iterating 
consistency statements. 

One reason that the reception of Turing's paper may have been so limited is 
that (no doubt at Church's behest) it was formulated in terms of the A-calculus, 
which makes expressions for ordinals and formal systems very hard to under-
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stand. He could instead have followed Kleene, who wrote in his retrospective 
history [ 17] : "I myself, perhaps unduly influenced by rather chilly receptions 
from audiences around 1933-35 to disquisitions on A-definability, chose, after 
general recursiveness had appeared, to put my work in that format. I cannot 
complain about my audiences after 1935:' 

ORDINAL LOGIC S REDU X 

The problems left open in Turing's thesis were attacked in my 1962 paper, 
"Transfinite recursive progressions of axiomatic theories" [7] . The title con
tains my rechristening of"ordinal logics" in order to give a more precise sense 
of the subject matter. In the interests of perspicuity and in order to explain 
what Turing had accomplished, I also recast all the notions in terms of gen
eral recursive functions and recursive notions for ordinals rather than the ;\
calculus. Next I showed that Turing's progression based on iteration of consis
tency statements is not complete for true V 3 statements, contrary to his hope. 
In fact, the same holds for the even stronger progression obtained by iterating 
adjunction to a system S of the local reflection principle for S. This is a scheme 
that formalizes, for each arithmetical sentence A, that if A is provable in S then 
A (is true) . Then I showed that a progression s<U) based on the iteration of the 
uniform reflection principle is complete for all true arithmetical sentences. The 
latter principle is a scheme that formalizes, given S and a formula A(x) that 
if A(n) is provable in S for each n, then VxA(x) (is true) .  One can also find a 
path P through 0 along which every true arithmetical sentence is provable in 
the progression s<U). On the other hand, invariance fails badly in the sense that 
there are paths P' through 0 for which there are true sentences in V-form not 
provable along that path, as shown in my paper with Spector [ 12] . The recent 
book Inexhaustibility [ 13 ]  by Torkel Franzen contains an accessible introduc
tion to [7] , and his article [ 14] gives an interesting explanation (shorn of the 
offputting details) of what makes Turing's and my completeness results work. 

The problem raised by Turing of recognizing which expressions (or num
bers) are actually notations for ordinals is dealt with in part through the con
cept of autonomous progressions of theories, obtained by imposing a boot-strap 
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procedure. That allows one to go to a system Sa only if one already has a proof 
in a previously accepted system Sb that a E 0 (or that a recursive ordering of 
order type corresponding to a is a well-ordering) . Such progressions are not 
complete but have been used to propose characterizations of certain informal 
concepts of proof, such as that of finitist proof (Kreisel [ 18] ,  [ 19 ] )  and predica
tive proof (Feferman [8] , [9] ) .  
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Notes on the Manuscript 
The thesis, which in October [ 1937] he had hoped to finish by 

Christmas, was delayed. "Church made a number of suggestions 

which resulted in the thesis being expanded to an appalling length:' 

A clumsy typist himself, [Turing] engaged a professional, who in 

turn made a mess of it. It was eventually submitted on 17 May. 

-Andrew Hodges, Alan Turing: the Enigma 
(Princeton University Press, 2012) 

In fact, the thesis is not a mess. Until the 1980s typists of mathematical texts 
routinely had to leave blank spaces where the mathematical symbols could 
be written in by hand. It's clearly Turing's handwriting (compare the capital 
X.s and lowercase f's with his letter to Dean Eisenhart). There are only a few 
typos, where (e.g.) Turing crossed out "for" to write "of.' The worst that could 
be said is that the typist did not always leave enough space for Turing to write 
in the formulas. 

But pages 7 4-78 are typed by a less expert typist on a different typewriter: 
the type changes from elite to pica, and the typist does not strike all the letters 
with equal force. Did Turing type pages 7 4-78 himself? 

In May 1938, Turing submitted "Systems of Logic Based on Ordinals" for 
publication in the Proceedings of the London Mathematical Society. It was ref
ereed in June 1938 and appeared in 1939. The printed version adheres very 
closely to the manuscript reproduced here. Where there are differences in the 
refereed article that change the import of the mathematics, they are noted with 
an arrowhead (�) in the margin of the manuscript, and the corresponding 
text from the Proc. LMS appears here. 
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1 1 . (b) cp(x1, . .  . , xn) = f(x2, . . .  , x); 
12. cp(x, y) = (J(x) + a(x, y) , 
12. 81(0) = 3, 

(J1 (x + 1)  = 2o+w2(81(x)))a(q>(w3(81 (x))-1 . wz<81(x)))) 3w3(81(x))+l -a(q>(w3(81(x))-1, wz<81 (x))))' 
13 .  cp(x, y) are primitive recursive functions. Without loss of generality, we 

may suppose that the functions cp, l/I take only the values 0, 1 .  Then, if we 
define p(x) by the equation (3. 1 )  and 
p(O) = l/f(O) ( l - 8(0) ) ,  
p(x + 1)  = 1 - ( 1 - p(x))a[ l + 8(x) - l/f{w2(81(x))} ] 

15 .  If x is the G.R. of 2 (i.e. if x is 23 • 310 • 5 .  73 • 1 128 • 13 . 17 . 1910 • 232 • 29. 
3 1 . 3710 • 4 l2 . 43 . 4728 • 532 • 592 • 6 l2 . 672) and let c(x) be 1 otherwise. 

19. a-machine whose description number is r(n). This a-machine is circle 
free 

27. Let Nm be a W.F.F. which enumerates all formulae with normal forms 
and no free variables. 

28. (D' ) { (3x) (D' (x)) & (x)(D' (x) :JD(x)) 
:J (3z)(y) [D' (z) & (D' (y) :J G(z, y)vz = y) ] } . (7.2) 

34. (iv) If A, B, C are C-K ordinal formulae and B<A, C<A, then either B<C, 
C<B, or B conv C. 

34. for which Br<Br_1<A for each r. 
35. Sue (A,ufx . B) conv Sue (A,ufx . B ' )  and A,ufx . u(R) conv Aufx . u(R') ,  
36. are convertible to the forms Aufx . B, Aufx . B ' ; but 
38. (for some n ' ) 
39. the conditions Aufx . R(n) < Aufx . R(S(n)) in (B). 
42. Sum ? Aww' pq . Bd(w, w' , Hf(p), Hf(q) ,  

Al(p, Al(q,w' (Hf(p) ,  Hf(q)) ,  1) ,  Al(S(q) ,  w(Hf(p) ,  Hf(q)) ,  2))) ,  
43. sequence of ordinal formulae representing all the ordinals less than a 

without repetitions other than repetitions of the ordinal 0. 
46. To prove this we shall show that to each C-K ordinal formula A there cor

responds a unique system C[A] such that: 
(i) A( e, K, mCo) conv mC[A] ' 

52. <r,[y0] :J( :::Jx0)((Db [x0, y0] • <r,[y0] ) V (Db [fx0,fy0] • ll,+1 [y0] )) 
and 
U,+1 [Yol :J (:::Jxo)((Db [xo, Yo] · <rJyo] ) V (Db [fxo,fYo] · U,+1 [Yo] )) . 
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56. (c) m = 2p - 1 ,  n = 2q - 1 ,  and O(p, q) conv 2. 

58. Ai 7 Akw . f(Ara . 8(4, 8(2, k(w, V(Nm(r))))  + 8(2, Nm(r, a)))) ,  
59. Ai(A, nv(LJ' B) is convertible to 

r(Ara . 8(4, 8(2, A(Ov(LJ' V(Nm(r)))) + 8(2, Nm(r, a))) ,  B) . 
64. Now let us turn to AH' 
64. if G is provable in P 0 it is provable in P 0 , .  AH is invariant. 
65. but, if A(c) is not convertible to 2, then 
68. This means that M(n) is convertible to 2. 
70. type 3 being the highest necessary. 
71 .  the ordinals less than w2 take the place of 
72. belong to the extent of A(G(<l>(Ar . Hg(A, r, E)))) ,  

78. Then we have as an axiom in P . . .  
and we can prove in pA 

96. g(r1 , r2, • •  . ,  rP) has the value p. 
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Tho wall kno'l'i'll thoor&m of 03do1 aho�m thnt evAry :Jyst�n or 

logic in in 11 cnrt.'li.n sonen incottr>loto ,  but nt the snmo ti?-.:e lt. in

<licntea l�eano nhoNby fro:t 4 nys tot'l L_ Of lozic a ttOrO CO!Dplete 

;,aystom L1 t11JY bo obtninml. By ropenttng tho procoso ".\'O ttot n 

L I 
I I scquenco t... , 1 = L 1  L,_ = L, J L 3 � L1. , .  • •  or locics each 1::orc 

<:otr.plete than th� proced!ng. A lo�ic l-"" m:1y then bo con!Itructcd 

in which the provnblc theorem!l n!"e t.h!3 totnJ.ity of thnorems pl'O"r

a.blo with the help or tho loe!cs '-, L, 1 L 1- , . .  • We t:r.y than . tor::l 

L 2.c.J rolated to- L t.Jtri tho setic 'ftDy' ns Lt.j 't'!lB related to L 

.Proceedincr in this wn:r wo can as:Joc1ato n syatem or logic; 'with bey 
l 3ivon constructi.vo ordinal. It mey be ue:!<ed r.hether a �c�cmco or 

"i:r�e-s��fl�i:n-� ;:i �11�� ;o-D�tt;;; ;s-i; ;;;a�; �y-t�t; :;d; -
o.rRU:nent. Soo pn.gea 44-48 . 

- - � - � - - � - - - - - - - - - - - - - - - - - - - - - - - - - - -

logi�o or this kind ia complete in tho sonse that to cn7 proble� 

A there corro5pc:m.ds nn ordinal 6l. such thnt A �o solvnblc by' 
mecno or tho logic '-" • I proposo to invootigato this problem 

in o. r�thor z:ioro cenornl caso, and to give :JO::)O otbor e:xnmploo or 

ways :In which syntcmo or logic may bo nssociatod \Tith construct1vo 

ordinn.lo. 

1. T'no cnlculu!l or conversion. Godel represenbittons .  

I t  will be convcniont to b e  nbla to uso the • conversion calcu-
of� . . . . 

lus t !J't Church for tho doacrlption or functions nnd soma other 

purposes .  Thio will �1ko groator clarity and air:lplicity or cx

preoaion possible . I shnll give n short account or this calcul.us. 

Por more detailed doscriptions soe Church [5] , [2] , 10.eeno [l] , 
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Church c.nd Ros.car [l] . 
Tho romulno or the cnlcuhlo aro for::t!d from the ey:ibols { , } 

( , ) , [ , J 1 �" �,  nnd nn !n1'1nitc lint ot others cnlled 

vnrlf!.blcr.;  r.o Ghtlll tnl:o ror our lnf1n1tn lint A; hJ • .  'J -z.J X 'i X 1� • • • 

Carta.in flnito noquoncoo or cuch nymbol� nro cnllcd l'l'nll-fo'l":1md 

f'or::ailno (nbbrcvintcd to \'1.F .F .) f WO shall dofino thio . class indU:c
tivel.y 1 nnd :l�tnnoo:uoly c.to!'ino tho rree o.nd the bound va.ritl.blos 

or n 17.F.F. /Jr.I vnr!nblo is a. W.�·;.F. J it 1o its only · i'rco variable, 
and it has no bound vnrio.bles. f is o. · w.F.F. nnd he.a no rroo or 

bound vnrinblcB.  It £:1 nnd ·!':!. aro W.F .F.  then {!::1J {Ji) io 11 fi.F .F. 

who:so tree vnrtnbloa n.ra tho rrce w..rinblco or M together with t.110 
� "� - .-. - ' } ' 

!'roo varlo.blco or N , nnd whoso bound vn.rinblo:i nro the bound wr--
inblos or H tocothor with thono or N • If M iu a: n.F.F. nnd - - -

Y. ono or it:1 free vnrinbloo, then XY[ tl] is c. vt.F.1''• t:hoao rreo 

wrlableo arc those . or M with tho oxception or ;V , und who$e 
' - . : -

bound vnrinbloo nro thoao. or tJ. toncthor .with Y ' ·< . Uo. oequenco or · 

oymbols 10 n W.F .F. cxcnpt in· .<:onocquonco·.-or thoso throo : ctntf>mcn�zs• 
In r.ioton:ithocntict:tl . ai:Atel'!ehts wo ohnll uco underlined lettora 

to .nto.nd for vnr!O.ble or undctori:11ncd £01"l!1Ulne, as Y.'t\S dono in the 

lAst pi:rr�aph1 and in tut.� auch .. �otter:J will at�d for ·\."O�-romed 
rori:Ula.o unloos otho rwise statod . S:::nll lottoro undorlinod wlll 

stnnd for foraulo.c ropresor�tins undetermined pou1tiw , intogero (tJl)O 
bOlow) . 

A t?.F.F. in Ba.itl to be 1n normal rorm 1r it has no pnrts or 

tho £or:n { >.. Y [t1J }{  � ) . and none ot' tho form f{ '} (t1)}{!YJ 
flhoro M ;o.nd N ho.vo no frvo v.o.do.blon. - -
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r.o oay tha.t one W.F.F. is im'llcdio.tolt eonvertiblo into nnothor 

it it in obto.inod £ro::o. it either lr.; 

( 'i) Replacing one occurrence or a T20ll-1'onncd ·pBrt A \i ft"] 
by A Q[ �] , whore the vnrlllblo '.:} does not occur in. M , and N 
is . obtnined rroa M by replacing the variable V, by \) throughout. 

' - - . -- - � 

(ii) :Rcplncinc n r.ell-!ol"l:led pnrt { � �[�Jj(�jby tho ro'r:wia/ 
which 1s obta.ined rro:n t1 by roplacina ':J. by � throughout,. provided 
that. the bound varinblos or M nro distinct both fron V nnd fJ:"Oo . 

tho tree variables or N .  
- -

(111) Tho convcrnc procoa3 or ii. 
(iv) Roplacins a. woll-.ronr.Cd part {(S}(t1Jl ( .�) by 

�[A)l..({fl({f} ('��J if t1 is in nonr.al tom end has no !'roe variables .  

(v} Roplncins a YOll-formed ptirt {{ S"} ( t1 ) }  ( fY) by 
��x.fft) (Y-)JJ 11' C1 and � nro in normnl form nnd not tranarorti
nbl& into ono nnotlw� by repeated npplication of 11 and bnvo no free 

v.::irinbloa. 

(vi) The convorsa proco9s or iv. 

(vii) Tho converso procosa or v. 

�bose rules could hnva bean c:xprooscd in such a 1'Jll.Y' thnt 1n no 

cane could thoro bo on:y doubt as to the iidmisnibllity or the rosult 

or the transformation (in pnrticuln.r this cP.n bo done pi the cnso 

or , procosa v•) . 
A f'ormuln A iG on.id to bo convnrt.lble into Mother ] (nbbrc-- ' -

v!ated to' A conv :81 ) it thero is an finite chn!n or il:codin.to 
' - -

convers!onn lee.dine rro:i one fnmuln t,o tho other. It · ia easily 
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seen thnt tho rolntion of convertibility ! o  nn .oquivulenco rolntion, 

1 .o .  it io �'l'J!r.otric , transitive o.nd rofloxivo . 

S!nco the rori:iulae ue liabl.C to be very . length7 vc noed molllls 

tor nbbrovint!ng the!ll. If we ·dab to introduco a pnrt.tc:uia:r lettor 

aa nn u.bbrcvint1on ror a piirt!culnr lenc;tey formula wo ehnll write 

tho letter i'ollowod' "" • � '  nnd then by the rormil9-, thus 
T '""""7 >.. ,,._ [ � J 

incliC:ntoa thnt 1 io ' sn abbrevintion :for )..;-.{!i] . Vrc abti.u nloo uifo 
tho arrow in 100:1 sharply defined scnaes, but never oo o.o to cnuso 

nny rotil confuoion. In those cnaoo tho r:cnning or the nrrow mey 

be rendered by tlle worilo 1 :itende i'or• . 

Ir n .ton:nilu f 10, or ia roprcocnted b;r n s1nclo oyuboi r.o - I 

abbrovlnte. ff } (�) to f (�) . A rormul.o. {{f} IJ.)j{)'j mn:r be 

nbbrevlnted to {£} ('i:1 J'J , or to £ (-:!:-, 'f} if E !a, or !G .  

l·oprosontod b;'-1 n aingle symbol. Sitt1hr� for { { { f 3 { � ]J( �JJ ('t} 
etc.. A formula � vj. [� v:r. . . .  [Av� [�J] . . . ] ll!\1 be ubbrcvitted 

to A Y1 lt-z.· . .  Vt . t1 • 

t'e bn.ve not ns .yet n:Jslzi�ed uny ciq:mJ.nr,s to ou� tormulne , nnd 

r.o · do not intend to do so in gcnornl.. /.n oi.coption · i:tey bo Mde 

for too cnsc or tho po91t1ve· 1ntecors nliich � very ccinvcnient.ly 
roprl.lsanted b;.· tho tortrulne >i"'f.. . { l1-) 
In ro.ct \'it$ ,introd\lcc tho nbbrc�1fationo 

etc . 

1 -) ,�� .  f l1-) a. -)' �1 '1- - � {� [f..)) 
3 -� '>--f Y.. ·i(� { { l �))) 

, �� ·+lf ('1-)) , • • •  
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and �llso say tor oxnttplo thnt (in full 

Af [At< [ { t} ({f} ( x )) ]] ropresonts tho positive integor 

2 • .  L!iter wo flhnll. nllow certain romulne to roprc:scnt orclino.ls, but 

othorwiso wo lea.w t.-,ciit wi:thout explicit monninu; nn ic:pllcit r:caning· 

tiny be suceosted , by' tho .o.bbrovlo.tlo_118 usod. tn nny cnse wharo any 

r:enn!nu ic a.ssicnod to rormnlno it io dcairnble tho.t the ct!l:\ninf) bG 

invariant undor · converaion . Our dof.lnltiona of tho poaitivo 1ntc�ors 
do not v!olAto this requ!rot:icnt1 as it ruiy bo proved that. no tT:O tor

rrJlno represcntinc dtrforent · pos1tive inteaors are convortiblo into 

one another. 

In connection with t.1lo positive .integers we introduce tho abbro

vlo.iion 
s -) >.. '4f 1- . t [(A. ( r, � ) ) 

Thi:i for:r.uln has the . property t.'tnt if ,!l' ropreaonts � po:J1t1ve in

teger S { !Y) ie ; convortiblo to n fo:r:rul.a.. :representing ita auccosoor. 2 
- - - - - - - - - � - - - - - - - - - - - - - - � - - - - - - - - - - -

:? Thia f ollowa troo. (A) below. 
. 

_ _  ... _ __ _ _ _ _ _  ...., _ __ _ _ __ __ __ _  . _ _ __ _ _ _ _ _  ,... _ __ _  ._. _ _ _  _ 

Fon:ulne .rep�sdntinB ::, unde'tomlnod pos:ttive intognrn trill be re

presented lT,1 S!:tnll lottoro underlined, and tl:'e ohnll n.dopt onco for all 

tho convention tlmt if n lotter, Iv say, st.."Ulds for v. pooitivo integor, 

then tho Gll.t'.0 lotter underlinod, � - , abnda :for the fomuln. representing -
t..'ic poaitbo intogor. 1'1hen no cont"nnicn orines £ro:n dolnG so � shall 

o:nit to dlati.Dguinh between nn 1ntegor tuui tho forz:iul.a lfhich rcpro:sonto it. 
Suppo!5o f (u.. ) ls a runetlon 9f po:i1t1vo intocera tnkinz 

pon!tivo intogors nri vtluest o.nd that tbero is u r..F.F. F not 
" . 

contninine b such thnt fo� cnch poilitivo inteeor n, , f { '.:!) is 

converttblo to tho formula. :representing r.c shall then any 
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th!lt f{ Ii\) 5J9 " -doi'innblo or tormnl.ly dofinnblo • end thnt F 
torMllY do t'lno e ff"') . Slmlnr convontionD t1l'n unod for 1'unot1onn 

or moro tho.n ono vodablo . Tho su1:1 tunction 1o for lnstonoo 

tortlnl.ly . dotinod by AtA.b f � . o. ( f / b ff; X)} ; 1n rnct tor nny 

pollitivo 1ntosoru h\ , I\ 1 '{' tor Tib1ch '4t + "' =- 1' t<o h�1vo 

{At:. £fY. . O.  {f, � (£ Y..8{�1;) conv 'f 
-

In order to ol'.:lphn91�o th1o rolotion r.o introcluco tho a1>brov1ot1on 

Dnd will uuo olmilnr· notutt�rm for ou:iw ot throe or �oro torr:w , 

Jlroducta oto. 

For any ii�b'.1'' .  G- no shnll eay thnt G onumorntoo 
-

tho 110.(lUO�CO §" ( 1 ) t g ( 2.) , • • ' end f.U11 OthEJr OOClUODCO 

t7hooo torms nro convertible to tho.30 ot thi a ooquonca . 

mum a tomula 10 convertible to anothor which ia in normal 

t� tho oocond le daacrlbCd,, an a ·nonnnl form. ot thD tlrot , 
which 1u thon oaid. to hBvo o nomnl torm. · I quoto horo oomo ot ' 

tbJ moro iti2portont thoorems co11corning .normnl tormn. 

(A) It n tomulu hn.u ho norm:ll form they nro conv«srtlblo 

into om nnotbor by tho uvo ot ( 1 )  olono . (Church ond Roouer [l),  
4'19 , 4Bl) .  

( D) It a torZL'Ulo hao a norml :tom thon ovory. woll-torm'ld 

part or it hon u no1"Zll.�l torm. (Ohurch and noasor [l], 4S0-4Sl) .  
(C ) 'l'horo lo (damonatrnbly) no procoon "horoby ono _con 
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toll or n tor.:rulo. �hatbar it bna n nomnl for.n. (Church [$] , 
360, Tneoroa IVIII.)  

4 1  

r.'o o!'tc:i need to . be ublo to do:Jcribo !'oratil.no by :ncnnn or 

p')oitiva inte�ro. The l?Othod uned here ia duo to , G6dol (G3del 
(1) ) . To cnch a�glo symbol S or the �nlculus we uasign an inte

gt;r r[s]as in tho te.ble below. 
s {, {th[ }, ) �] A b a, I ,. ' z x' 

x.1 xn ' " . 
�[sJ 1 a 3 4- !{ 30 31 3'2 33 . . .  

I 

�[.r2J r[Sz.J [s J If 51 S1. . • .  S k !a o. sequence of symbols thon � 3 'f kV- k (whore 'Pk ia tho M t� pr!r.10 numbor) is called ' the �ol roprr.-

oantnt:t.on (G.R. ) or. thnt &oquonce or OYJ:lbolo. No tTro T7.l'.F. have 

tho Oit?:to G.R. 

Two. ihooreiao on G.n. or W.F.F. nre quot5d ·1Wrc . 

(D) Thoro is a VI.F.F • .  fo rM  Stich tbnt if a.. in the G.R. 

Of Ii V7.f ·� • fl Without free VC.rlabloO then fttt°IM { ! ) COnv-ft • (Thia 
folloTtS from a aiolln.r thcorc:i to bo found in Churcb [3) , 55-6.G. 

Mot.ads a.re used thoi"e in plnco or G.R.) 
(E) Thero is a Yi .F .Ji'. q=-y such thnt if' fl i:3 n l7 .F .F. 

'17ith fl nomn.l tor111 without free varinblos. then � r (fl) conv � 1 

I 

trhero a. io t.lio. G.R. of a normnl ram or fl • (Church [3] , 55-66� { 
llS (U) ) • 
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2 .  Eftect.ivo cttlculnbilit;y:. Abbrevint!On of' tron,tmmt. 

A function is onid to be ' offoct1voly calculnblo ' 1£ ito veluoo 

can be found by oone purezy mechanical process . Although it· ia fcirlj
<'o.sy to got rui intuitive :,, grasp or t}rl,il idea it is �evortholos::s do• 

airnblo to have some more dof'1n1to , r.u:i.thcl:Ult1.cally exprec;i>ible defini
tion . Such e. definition was first given by G5dol at Princoton ' in  
1954 (G8dol [2] , 26) .tallowing in part nn unpublished uuggestio??- ot 

llorbrand, and has since boon dove loped by Kloeno (Kleono [2] ) . Wo 

shall not be concerned much here with tllia particular definition . 

Another definition or effective culculo.bllity hno boon given 'UJ 

Church (Church [S] ; 356�58) r1ho idont11'1o o - it with � -definability. 

Tho author h.ns rocentzy ouccontod n de1'1nition �orro spori.ding tioro 

close� to the intuitive idoo. {Turing [l] J .  soe a.loo Pont [l] ) . It 

waa said above "n function io orrectively c�lculnbl.£1 1£ ita valu�a 

can be found b,y somo pi.iroly l:lcehnnical process . "  we ·mn.y tako thia . . b 
statement litcrttl.zy, linderatnndini;(o. purely uiechanical>:P�RcoBa . · 

ono which could bo carried out by a muohino . It is ponG,ible to 

give n mathecntice.l doeJcription, in a certain nori:uil. .rom, or thl) 

otructuroo or those �acbirie o .  Tllo davelopi:ient pf tho se ideas 
lends to tho author• a  def'hlition of o. . computa.ble . tunction, nnd · o.n  

. .  . , . . . ' 

identification ot· computab1lity3 with orroctivo calculability. 
S ;o-o�a�-u:o-t� -e;,;e;s7:n ;c:m���l: ;;;e;,;n-; ;o-m:,;_; - - -

. function cnlcUlable by. ci · machino1 end lot 1 e.f£octiwzy calcu�.bl:!' 
refor to the .intuitive idea without particular ident1f1ca.t!on :with· ·  
nny .  ono of the so definitions .- ,  We do not. restrict the valuoo tnkon by n computo.blc function to bo no.tura.l nuobors; we mo.y for instance , .  
hnvo computnblo propositional. fun<?tionn.-· . . . 

-- - - - - - - - - - - - - - ....... ...... - - - · - · - - ... - - ... -· - · ·-· - - - .-. -

It is not d1f1'1cu1t tlrfour)i so::ol1hat lnborlouu, to prove theco 
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thrco .do£1ntt1on9 equivnlont (Elaeno [3] , Turin5 [2) ) . 
In tho prooont pnpor VPl nhull make conoidernble uao · or 

Chl.lrch' s idontil'icction or. oi'rootlvo cu.lculabillty wlth A 
cloi'!nnb1l1ty, or, uhnt co::ies to tho "nee , or tho idont1!1cntion · 

Yd.:th cotiputabllity ; nnd ono or the equtvnlcnce theoroz:io. In most 

caDc D whoro wo havo to doal with an ortcctivolj" cnlculnble !'unction 

\te ahtlll introduce tho correopondmg t1,.F.F. with ooce ouch phrnso na 

11the function f ia effoot1voq eo.lculnblo, let F bo n ror=uln )\ -
d.et'ining i tn or "lot F bo .a formula ouch .thnt F (�) lo convcrtiblo 

to .. . . .. whonover � ropreoonts . n.  pi:>:Jitive intego rn .  In such cnaoa 

tberc in no d1.fticult7 in aoeing hott a mnchinc could in pr1nciplo 
be designed to ca.lculato the values of tbo !'unction concomod , r.nd 

n�sumina this done tho oqu1va.l.enco theoro� Cll.ll be nppliod . ·A 

atc.teitiont no to -wba.t the rormul.4 F actually 1a mny bo omitted. r.o 

�� introdueo Ui:odie.tOl,s· on thin bads c. W.�·.F. �with the property 

t.hnt 'U( � ,  !!) conv .. . !'. ii' r is .tbo gronteat positive integer for 
r 

r.bich '" d1v1dco hi , if ney1 nnd le l if there is nono . 'r.e nlso 

introduce :0 L- wit,h the propert1eo 

J) t ( b 1 � )  conv 3 

J>t(JJ + � 1  h )  conv 2 

:P r { IJ J � -t !!') conv l 

Thero ie anotbor point t� bo en.de clcnr in connection with 

tho point or view �� nro ndopt!ng. It in 1ntonded thnt all prooro 
thnt nre civon ohould .bo re,enrded no t10l'C erittco.lly thnn. proofs 

in clnasical ennlyo1:.s . The aubjoct .matter, roug�· apenktng, ia 



.4 4  -10-

conntrnotivo syoto:::is of locic, but as triv purpono . !.G directed to .. 
trardo choosing n pnrtic\llnr conntruct1vo nyotam or _locic for prnc-

ticlll · U.1301 till n.tt.o::rpt at t.'1 lo ott\f;O to pu_t our thooremn into 

eonotructive tom would bO puttinl(·th' ,ea.rt bOforo tho horse . 

Those co:Jputnble iunct1on3 which tuko ... on� the va.luos O o.n� l 

t\N ot particular h:port.:llll!O since tht,y •dotomlntJ and 4l'O detemlnod 
by computo.blo proport.icu,  ns.. un:r bo soon . _by roplnctng •ot und •1• , . . 

by l tr.1e t  nnd ' 1falsof ,. But be:sif:IOO tbi:s tyJX! Of property \l:'O Jany 
bnva to cona!der n dU'forcnt typo , which to , �ui:;hi:1 aPanldnth ie:is 
cqnstruct:tve tho.n the co:npu?ble propcrtieo , but noro ao t!lm tho 

g�noral prcdicntoo or clnssicBl t10.th.e�ticB .  Suppi:>Bo 'tt'C h..�vo A 

cocputnblc function or the nnturnl nu.�bor� tuld.ng natui-e.l numbero 
.tLIJ valuoo ,  then corroapondinr; to this runction there la tile prf)

party or bot.ug a .  vnl�o or the function. Suell �; property we shell 

do scribo na •'.a.xloutic' ;  tho ronson for' hsinr� .  thi:i . tom io 'tlu.l.t 1t 
. . '. , _ .:· 

lQ possible to define Stich e. proport.Y'· by, ciVtng . t'l oet o;r axioms, •
. . 

.

· 

.

. . 

tho property to . hold for n. &tven n.rewncnt it and on� tr it ls pon-' 

aiblo· to df.!dUco that ,it holdtr from .tho axiomo. 

Axiom.!lU.c pr.oportion cny a.lso bo chorac�erized in thtB W.t1Y. A 

�,�oporty f or po::i1t1vo integers in �tomri.tic 11" and'  only if the re 

ia n CO:A!'Utnblo proport'V" cp of two pooittvn into&Oru,  ouch thnt 

f ( 't.) 1� true 1£ and only· it thoro is n poattlve integer y nuoh that 

'f'tX1 'f) io t�e. Or ngdn f iD .uto:uatic if. · nnd only if thora is 

a Yl.FS. E ouch thnt fl�1n trtio fr nnd onq tr, f ( �) conv' 2. 
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3 ..  Jfumbar thoorctio theorems 

.Dy a. nre:iber thoo1"0tlc thoorer:i4 wo sllnll u.en.n a theorem of tho 
i - � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

· I boliovo thoro ia no ccnorally accepted acaning for this tcrz:l, but 
·it should bo noticod that wo .nro using it in n rather restricted 
sensn . Tha noat ·cenerlll.l:r accopted tiol'lriirlE� ie prob!lbl;,r thiti: suppose 
wo ta.ko nn nrb1trar-; forttllln or the function ·calculus or first ordo r 

-/- and roplsco tho f'uncti�n va.rinblos by prilllitive recursive rolatious. 
The ronulting formul.n represents n �pical n\l:tbcr thoorctic theoro� 
in th!� (moro cenoral) Dcnao . 

- - - - - - - - ... - ... - - -· .i:-- - - - ..... ... -· - - - - - - - - - - - - - -
:fom ' 8(  2(.) vo.n1sboa tor intinltoly ronn;y nntur:il numbers J<. ' ,  

whore 9( 1-) is o. prJr.1.ttvo recursivo5 i'unction. 
i - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Prit'lltlvo rocuraive !'unctions of natural nu:::i.bero ere dofinod 1.idue-tive].y na !'ollowa .� Suppose f (f(..1 ,  • .  '.> >t ,, .. , ) J ff (x.1 J • •  ') ')l,... ), '1.(j..1 1  • • •  , " �+ t  ) 
nro pl'ioitivo recursive then � (� , ,  • •  'J 'f,0b , primit1vo reour::iivo 11' 

1t is dartncd by ·ono or the ecta of equations (n) - (c) . 
(o.) cp{  � , , • .  ' J  r- 1-\) :  f... ( -1., ,  . . .  , "- �  .. .  ) a-(x.,, . . '] �"4)) ><-... + 1 J  . . . , )(.k- ''"") ) ( / �kf� k) 

·� (b) cp (� , ,  . . .  , )'..k ) � f ( 'f.. 1 1  . . . ) '1-. '1- 1) 
(c) . <p( � , )  = a.. , �here tt ?  1 nnd a, is some purttculnr nat

ural number. (d) q> ( � , ) : "-1 + 1  ( k = J.)  
(o) ft.><.;t ] • • . J 1'" . I  I 0) :: f ( '(.." . . .  , )(.i. - 1 ) 

, cp (� L ) • • • ) � 6' - r l x_J\tl) : t._ ( �l ) " ' I  )(.. .,_ ,  'f lY.. 1 J ' " ' J  'f..,..) )  
l'hc cla::i:s or prlmitiw recursive £unction is tJoro reotrlctod than the 
couputablo i\tnctioni;J , :ln W hna the o.dvru1tage th!it there is n proces !!  whcroby one can tell or a oo t or equn.tiono nhethor 1.£ defines a priz:itive 
recursive ilunetion 1n tho ti..."Ulnor doocribed abovo . 

Ir q>(�, , . . . ; ;:."') is prirlitiw recursive thon tp{"/..1_ 1 • • • , 1-- ac ) �  0 
in described o.a a prlt1it1vc rocuraivo rolntion ootnoen� , ,  . . . 1 r.,., . 

- - - - - - - - - - - - - - - - � - - � - - - - - - - - - - - - - - -

Y.'o oha.ll sny thi:i.t n pl"obleti is nu:.ibor theorotic H it h�n boon GhoYm 

that any solution or tho problem tl!ly bo put in th� fort:'I of a proof 

ot one or 1:1oro nUJ:lber theorotic theoroma. L!oro nccurntoly V.'O ::.sy 
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a� thnt n cln:is or probleca 1s number th!'loretic if the oolution 

or mty' ono or ther.i � bo trnnarormod (by ll unitor;i procots3) into 

the torn or proora . or nimbor theoretic thooro::i.s. 

I shnli now draw a raw consoquen,coa rroo tho definition or 

•number theoretic theore:lla 1 , ond in nootion 5 will try to ju6t1fy 
con.finini our consldr�ratlons to ' this typo of probloo. 

An alternative !'orm tor ,:numbor theoretic theorcm:s i io • .ror 

on.ch no.tural number X. ·there oxtsts o. natural number '/ ouch that 

cp (1'-) '{}  vnniohoa• , r.hero cp{'K1 'J) ia prlmlttvo recursivo nnd con

voreozy. In other worda, thoro ts a. rule whereby given tho f'uric
tion 6 (v.) "° Cllll find n !unction q>l�J "I) , or elven cp{�, 'f} 
r.e can !'ind a 1'unct1on 8(�) ·, oo tha.t • 8(�) venishes infinitoli 
otton• is n necoosnry and uutt1c1ent condition tor • tor oach '1\. 

tbero ta '/ ao thnt cp ( � ,  'f) :. O t .  In to.ct E;ivon S{�J wo de

fine 

<pl�, y) : 8( "f) � t< (?'J y )  
w:r.oro cl { 'X. 1  'f )  is the (primitive recur:ilvo) 1'unct1on with tho 
proportion 

cl ( '(..} 't )  :: 1 l '( � y,.) 
� 0 ( 'I ,. Y..) 

Ir on tho other b!lnd WC ere given er ('I.., 'I) 'l'i'D dotino &(y.,) by 
· tho equn tiooo 

where 

'2- (  ( )cr(<t (2r:J { &1 ['1  .. )) - 1 , 'il3 (9, (Y.J)) 
e l.  ()C.-f-1) : J .  3 &, Y..J 
S ( x) :. cp ( �J (B, lx.)) - 1 1 <tJ-,_ (� ('f.. ) }) 'Q;. ( 'I() 1B to bo dai'ined so na to neon t the largest '5' for 
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,,.. s '2-whicb. 1 dividoa X. ' and 3 �  to bo dot!ncd prWtivc recursively 
oo ns to bavo its usunl ccnnine ii' X 1s o. tntltiple or 3. The 

function �{'/..) is to be. dortncd by t.he equattono u{o) � o, cr(Y. +1)=.1.. • 

It io onsily verified thnt tlie f"unctiono ·so detincd ·have the do-

D!rod proporties. 

r.o ahall now show tha.t qliaotlona ns to tho truth or str.:to:nents 
o.r: i"om 1does f (Y..) vtinish ide�t!call.yf,_ __ T:hcro f ("!'.. ) is ii. com

puto.ble 1'unct1on, can be reduced to queBtio:J O as to tho truth or 

n'Ut\bor theoretic thoore1:1s. It ia undorotood that 1n eo.ch case 

tho rule for tho C4lc-.Jl.ntion or f tY.J ls civcn nnd thnt one ls 

satisricd · the.t this role is · valid, i.e . thnt tho cnchlno which 

ohould calculato f ( �) !o circle !rco (Turin� [l] ,  2�S) . The 

i'unct.ion f (Y.. ) bo1ng coi:iputnblo ls cenernl recursive in_ tho 

· Horbrnnt1-Godel sonso , and therefore by e. ceneral theorem due to 

Kl.oeno6 is exprooaible in tho rorm 
- - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - � -

G . · .  
. . Klocno [3] 1  12.7. Thia result iB reill.y truporfluous for our 

ptirpose, as tho proof that overy cocputable function is eeneral 
rec:uratvo proccods tr.r ohowing thnt thoao functions nro or fom (3.2) . (Turtng [2] ,  161) . . 

- � - - � - - - - - - - - - - - - - - � - - - - - - - - - - - - -

- f { (: y [ 'f ( Y.., 'I) c 0 J ) (5.2) 
whoro G YL;/)z('/)] moa.ns ' tho lea.st f tor which ,(}[(y}is true• and 

� 'f l'f ) and ''f l�,*'/)  are pril?l1t1vo reeursive !'unctions . T'n.en tr 

tre. define e(t<.) by tho O(\uations (S.l) and 

e l  r-1 � 'f ( �J ( &, (1<-)) - 1 1 �,,..l B, ("!.)) + f ( tr--i.. { FJ, {y..J)) 
it will bo seen thnt f ( ..,,) vanishes identicnlly tr and only U' 

e ( x) vnnishes !or 1n1'.1nitc� mnny vnluos of '!- • 

Tho convorso or thi.B rosult is not q,uito truo . V:e camiot so.y 
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t�t the question ns to tho truth or any number thoorotic thooren 

is reducible to a quootion ns to whethor n corresponding comput• 

nblo function vaniahoa identtCnl.ly; '\'l'O should hnvo rather to Bhy 

tlmt it is reduciblo to tho problem ll[ J to whether . a  cortnln muchino 
ia circle rrco and cnlculo.te.n nn identlc� vantohintt ;function. 
But 1I1orc is truo: oveey .nuaber theoretic theorem is oqulvnlent to the 
sbtcmont thnt a correspondint: mnchine is clrclo frco .  Tho be-

havior or tho machine mny bo do ecl'ibod roughly ns !"ollov:IJI the inach1ne 

ts ono for .the co.lculntion or tho primitive rocuroivo function (){"'1 
ot tho numbor tbeorotic probloi:i, oxcopt tha.t the rcwlts or the 

calcul.'ltion nro fir::st arrnnacd in a torm in which the £1guroa 0 and 

l do not occur, ond the machino iB then tiodifiod DO tho.t whonovcr 

it hno boon found thut tho £urict1on vnn1ahoo for oorno Valuo or the 

arG\IC1Cnt, t.'1on 0 is printed .  Tbe ciachino io clrclo. froo , if rind 
only it il!1 1n1'in1ty or thouo tiauros a.re printed, i.e .  u· and onit 
it G- (  � }ve.niahoa tor inf�itoly mtwy vnluos ·or 'the 11rawnont. 

Thnt, on the other hand, quostions no to circle froedo::: x:my be re

duced to «iucstionu · or tho truth or numbor theoretic tb&orcz:n followo 

i'rom tlto ract tha.t B ("'f-) is prin1t1vo rccura!vo '1hen it iu defined 
to hn.ve the val\le 0 1f a certain oochino eJJ&. prints 0 or l in ita 

' . .  
( -,.. + 1) th co:nploto contigurntion, nnd to bnvo the vnluo 1 other-

wise . 

Tho conversion calculua provides another not"Zllnl rorm tor the 
� . 

nu::iber thcorottc thcorcca, nnd the ono we shell find tho most 

convenient to uoe . Ever,y numbor theoretic t�orerl' !n ' cqUivnlcnt 
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to n stater.amt or tho ro:rm • A[!! )  i s  convertible to 2 ror evc17 
� 

-
W.F.F.treprose�tine a positive intecor' , d beir.c c. t\'.F.F. dcter.:iin-

cd by the thoorea; the propert;; or Fl here ruJ:!Orted wf..ll be des-
. · -

r t:l " crlbed bricf]S as � in dual. Convcrcoly ouch statel!:cntu nre re-

duotbl.O tO n\l:Qbor theoretic thoorot:1::i . Tho first hill or thin 

as�ertion tollor.s froo our results for conputnblo £unctions, or 

directly in this 'Vtn'Y• Since &(x.-1) +- d... ic P?'.lmitivo recuraive 

it is i'omnl'.cy · detinnblo, by means of c. torr.:ula q- 1et us Bey. llor. . -
there is (Kleene [1] 1 252) a W.P'.F. IP Ytl.th the property. th.1t it Tl! } 
is convortihla to n .t:omul.i:. representing 4 positive integer for 

each . positive intoee1• v- ' then cJ5 (T, !1 )  in convertible to � 
whoro s is the "' th  pooitivo integer t: (it there 1o ono) for which 

T( t) conv 2J  tr T ( t) conv 2 for . less thnn /v vnluco or t then 

cr(T, ·b.)ha.s no: · n0r:iul rorm. 'l'ho romule g-(tt>{�, i.-��thererore 
' bo .  convertible to 2 · 1£' nnd oniy if · 9{Y...) yanishes for at lecat 

Ji., valuoti ot x· t and · will bO convertible to 2 tor ovoey poai

tive integer Y-. i! nnd only il' &lr:/ vrmislles lni'initcly o!.'tcn . 

To provo tho t:ocond hill of tho o.s:sertio:i. t:e tnko GOdel reprc

eenta.tiona tor the ' .fomule.o ot thc : �conve1·s1on cn.lculua . Let c['f.) 
· ·� ( . · :r 3 10 6- 3 1 z t? be. 0 it " is · the G. R. at 2 i.e. if' l'.. t.t. � • 

• • 7 I 
� 1 3  t 7  1 9 '0 23� z.q . 3 t  0 7 " '  4 1 � 4-3 47 "603'L !>q i.. � t � 67'-) 

o.nd otheri'Jisa b& i. Tnlce nn onUlllerntion of' tho - G•  a. or the tor-

mul.ne into r:hicb � { �) 1a convertibles let 4 ( � 1 '4) bo thn "' th 

nuaibc):" 1n the enumeration. · t'e cnn arrange the enumoration co that 

o.. lu., k} is prir.J1tivo recursive . ?tow the ntntcment thnt tJ f ':!' J 
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la convortiblo to 2 for every pos1t1vo 1nteeer h-v' 19 oquivrilcnt 

to the etntooent that for cuch positivo integer "v'there is a 

Positive integer w ouch thnt c (,._(,.,., "-> )-:.. 0 and this is ' j 

nucber theoretic . 

It is cnay to show thnt n number or unsolved problems such 

no tho problo� ns to tbo truth or Fol"l:Ul.t' s lnat tho.orom nro 

nu.11bcr thcorotic . Thero o.ro , ho\1ovor, nleo problC1:1lJ or eruilysio 
which nrc nu:ibor thoorotic. Tho Riomnnn hypothosis givoo us en 

e:xru:iplc or thts. 'r.o donoto by J{s)tho i"unct1on dot!nod tor 
°" I iR .s .,. r > 1 by tho ocrico L hi nnd over tho rest of' tho co:n-

11 • I 

plex plnnc with tho oxcoption or tho point · S = 1 by nnnl7tic 
cont1nu.�t1on. Tho Riemann hypothosio no3orto tbnt this !'unction 

doos not vanish in tho domnin C>7i_. It io enaUy shown that thts 

io equivalent to sn7ing thnt it does  not vnnioh for 2.)u')',.!, � S-:. £-- .) Z. . 2 
1.oo. that 1 t dooo not vnll!oh insido ony rectangle 2. ) <r �. i + :f= J T.> t )' 2-
wllore T is nn integer cronter than 2 .  Now : the function sn.tisfies 

tho inoqualitiea r-.r , / !{!) - i_ 1-\-s - :- , I <.  2. t (N--2.) - ;. } 2. � 0-� � ) r ;, z_  
I I t t '  I � (s )  -- :r (s 'J l .t.. \ r - s ' ) .  {, ()  t 2. 4 G"" � ;.  � � 2. 

nnd � can dofino o. pr11l11t1ve recursive !'unction s { .I, I. �  lt.1 "-'; �· � 
such thtit 

N i -.r / I  { !'( IJ i :  �, �; N1 M) - M { t- k-r _.. s�) t.. 2. 
and t.'1ereforo ·if .we put 



-17-

we shall have 
a 

0 ' ) I 
X( i1 ""' ·  M)  - / Q .O.r 

� - + L  - ? M . M  M 

5 1  

I L f + 'V  "" ... "V' ....... , 

l ... .!. � !=...! <. �. <. :2 ... .L J 2 <: � < '!.!J L.. T - ' � ,J i.  I - I <J�4 
.. ,- M l'1 M t1 M , I 

if · \'.':C  dofine :B (t11 T) to be the otM,].leat value or X( �J "1 1  M) 
.l I / ,,, e I f k1. f for �1hich "'" ::=  + :A  � -M 4'. 2. - - J '2..+ - '- -P < -1 _ - , i. 1 n M t1 M M 

then the ntel?ltU'ln lzy'pothosis is true ii' for each ;- there is 1'1 
oe.tiofyinc :B { M, I) ) I '2. '2-'T tr on the other hand there is 

T such . tha.t for nil MJ :BC M, 7? � r 2. 2- T , the RioCl!!.lln 

hypothaois .1s . fnlsej £or lot i.11 , k1 M bo such that 

X( .e.M ,  � M l M )  � l'Z. 2. I then 

I 
( e.., ... &. """")/ 2.4.4- I . .  , . j - M 6 M 

e M  ... ' "1  tro·u if o.. is n condonsntion point or the sequence 
M 

M thon 

since::f{.tJls contfrluous except e.t $ <a. l  11e mus t  havo sc� )  ': 0 
' . 

ir:iplyinc the i'alsity' ot the RieJ£nn hypotheois . Thus r.e hnve 
. . . � 

reduced the problem to the question 0.8 to ·Whether for each l 

there 1o M £or uhich $( 11, 'T) > 1 2.  2. T j3 ( M1 T) 
is priiuitive recuraivo , nnd the problem is theref'orc number theoretic. 
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4 .  J. typo of' problon vzh1ch In riot hu!:!bor thcoretic .7 

? �o-;p:; �:s:r-[l]� - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - -

Lat us suppose thtlt wcH11-o nupplied with so:ie lUlSpocit!ed 

mc nns or eolvine nlL'llbor thoorot�c proble::io; n kind or oracle ns it 

'\'/O ro .  Tio will not go MY furtbor into tho nnture of' this oracle 

thun to say thnt it cnnnot bo a mchino . With the holp or the 

oracl.e wo could r�rm a new kind ot mnchino (cnll - the� o-mnchinco) , 
lmving as ono or its fund111:ental processes thnt or solving a glvon 

nuuber theoretic probloa. Uoro definltoly thane nnchincB nro to 

bohn.vo 1n thio way. The mow:s or tho rncch!ne arc do terr.if.nod no 

uaunl b"/ n tnb'l:,o excapt 1n t.he etl.llo or moven tron1 n cortnin intP.l"

n11l con.Ci(tUrntion tfJ-'. Ii' the cachlno io 1n tbe lnterocl conrtg

urot1on-tYnnd if the oequonce of oyabol11 mnrl�cd with l ls tllen tho 

rioll formed� formuln R , then tho mo.chino goeo into tho inten:iill - . . . . . . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 Without renl loss or aenoraltty we may auppoec tbnt '.'<fl 
1s nl.T7l1YS woll f on:iod. - '· ;o-;;r7;;;t7.o; -.,-o-;-:f o.;c-;,;�c-o.; 7t-1; -;,t'-i; ;o� -;;e-t�a-;: � q-
is dual... Tho decision as to which i:s the caoc is ro!'orred to tho 

oro.clo . 

Tbeso ma.chlnoa mey- be doacrtbcd b'/ t.nbloe of the Sn'Clo kind 
cu1 uaod for tho dcacrlption or o.-mnchino:r, thero boiug no ontrios_J 

homver, ror. the internal configum.tton ' r. no obtn1n description 

numberu from thoso tabloa in tho saco wrsy ns bo!ore . tr mi cake 

tho convention that 1n assi&nin� num'bars to 1ntorruil conf1GUrat1ons 
4"' t t� f'nro Blr.ayo to bo "Vs- , 'jl� 1 I} ir' thon tho dcocr1pt1on 

n�bors dotor::Uno tbo bchnvfour or tho mnchlno o uniquely. 
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Given nny one or these mt.lChlnos r.-e mn:; nok ourselves tho ques-

tion whether or not it prints nn infinity or f:!.c;urea o or 1; I 

· aosert tha.t ,this ·clnas o! problo1:1s is not nu:nber theoretic. In 

view or the dc£!n1tion or •number theoretic problem' thin r.;enns to 

say thnt it is not posoiblo · to construct en o-machino which when 

rmp;.ilied9 wl th the de:scription o!' any otJ1er a-machine will dete.rmine 
- - --- - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - - -

9 Co:;ipnro Turina [l] , l a,1. 
_ ..... _ _ _ _ _  ..,.. _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _  ..,.. . _ _ _ _ _ _  _ 

whothor th.'lt mnchino io o-circlo freo . The Arfs'tl:!:Ont r.:ny be tnken 

over directly trol!l Tur!nc [l] ,  p. a.. We say that n number ia 

o-cc.tis!actory if it is tho description nuober or an a-circle free machine • .  

Then i!' thoro io an c>-1nMhino v:htch will dctcrr.:iinn or nny intoear 

whether it is o-snt1ofncto:cy tbon thoro is nlco c.n o-n!lchino to cal-

culnto the vo.luoa of tho function 1 - cp" {n) • Lot Y("') bo �he 
rv,th o..satlofnctor-/ number c.nd lot <f c.. { w.J bo the k-vth figure 

> printed bi the o-mnchtne ?.hose. dcs�riptio:i n'W::lber is IV .  Thio 

o-1113.chine ls circle f.reo . e.nd there is therefore on o-oaticfnctor,r 

numbor '1 such thnt Cf� { '1) :. 1 - q> ... {") .t.i.ll w • Put1.ng "' :. /I\ 
y-!olds e. contrruUction. This completes the proo:r thnt problems of 

circle rrcedo� or o-machinos arc not riuober theoretic. 

Propositions or tho !orn thnt sn 0-Mchino 19 o-circl.C f'rco 

cen nly;nys be put in· t.ho for:t or propositiono obtn.ined from .ror::r.11.ao 

or t1:c rimction:.l cnleulus or ffrnt order by_ rcplric!ng 90::10 or the 

!'unction.el vnriablos tr.r primitive recursivo reletiono.  Coapnre 

!oot.note6 • 
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5 .  S:mtnct1 cnl theo-rot'ls ns rimnbar tbP.O?'tltlc thooromn, 

I sha1l r.iention · a  proporty or nUttbe.i:• theoretic tbol)rc1ns trhich 

sueee sts that thoro 1:3 roaaon tor regt.rding them nn of pa.rticulnr 

i.'11portcnce . 

S11ppono th:it we havo so::.o .n::ioi:uitic syatoc or a pure� forttal 

naturo . \lo da not interest ouraolve11 , at . all 1n interprotnt1.ons . .ror 

tho tor:nuloa of this tiystom. They nre to be rai;ardcd as or interest 

!or themaolvos .  An CXDJ!lplo or whnt i s  in mind i a  n£!'o�ed by the 

conversion calculus ( � 1) . Every uequ�nce or eyinbolo 'IJ  conv � 1  
'7hero fl nnd ] are well formed f ormulc.o, ia n for::rul!l or. tho - -
n..""tionnt:!.c n-Jotcrn nnd . is proW.ble it t.ho ii.F .F • .  � io convertible to 

13 , The ruloo or conversion gtve us the nilos of procedure in this 
- •. 

nxloc�tic oystcc. 

Jlow consider [!, new rulo or procoduro wh1.ch in roputad to yiold 
onJ.;r f oJ:'t'lUl.D.o provnblo ht the or!ginc,1/ Dense • V!'o n:ey llOk OurtlclV�S 
whot.her auch a rulo io valid . The stntemcnt. tlUlt ouch ii rulJ! , 'io 

valid would bo numbor theoretic . To prove this let uo tn.l.co GOdol 

r·:prescntntiona for the formulno , nnd an nnumcrntlon or the pro\rnblo 

!'omulne; let 'f ( rJ be the G, R. of the V" th forculn in the enum

oration . We 1:1ny suppoao Cf {r) .  in primitive r,ocur:sivo if we do 

not hind repetitiono in tho enu!l1era.t!on . Lot f {1') ·bo the , G .  R. 

or the V' th forimlln obtnincd by the now rulo , then the atnteccnt 
· • 

that thiB new rule 1::1 vnlid is equivnlent to the o.asortlon or 
� . 

l v- ) { Es) [ r ( r) ;: q> ( .s8 
(tho doMin or individunls bcine the nntural numbora) . It hns 
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bocn �hown in f S tho.t nuch ata.tecents .nrc nU:tber thooratic. 

It might pl.ttuaiblv• bo argued that nll theoro:1m or ll8.thecnticn 
which have SD;Y otgni.Ucnnco <whtin taken nlono, are in orroct ayntac

tical thooreco or this kind , ate.ting the validity or ccrtnin 'derived 

ntlco1 or procedure . Without goLtig so tnr as this I should soy that 

thoorona or thio kind ho.ve an bportence which mo.kos 1 t worth while 

to give them upocinl. conn!dcratton. 
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6 .  f,op;ic fomulno 

no sbllll cnll n £�rtt:Ula /_ n logic torr.ml.a. (of, if it is clenr 

that wo n.ro speaking or a tr.F.F .. ., simply .n logic) U" , it hns the 
property trait U' � in a !omula auoh that !::: { B )  conv 2 ' tbcn j]' 
is dunl. 

A loeic ro:i-::1.uln 3iv0s us n. i:lDnna of sntirifying ourselves or the 

truth or nll!:lbor theoretic thooroi:is. For to onch numbor theoretic 

proposition thore cor.ro'spondo ,;n: Vl.F,.F • .f!. t7h1ch in duni. 1£ and only 
tr tho proposition is truo � ?IO'ri tr L. is n logic and J:. { fl ) eonv 

2 then R ls dunl. and � know that tllo correapondinLt number theore

tic proposition, is truo . It does not follow thn.t it !::. is a .  logic 

wo can uso L to satisfy ouroolves or the truth of .!!DI. tnt6 numbor 

theoretic theorom. 

If' L- is n logic tho aet or formulno !!, for w_hich . .  J:. {fl) conv 

2 wlll bo called tho ext.ca1t ot L • 

It i?ln.y bO proved by the 'USO or (D) ' ct>· p ? I that there 1n ll 

£ormuln )\ such thn t it M has n non:iil fori:i nnd no trco Vn.rinbloo 
-

and iB not convertible to 2, then X (ti) conv 11 but U' tj conv 2 

than 1'(tf )  conv 2. Ir b is a logic then- A� . �lb-lx l) to a.lso 

0. logic 1 whozse extent is the S�O D.D thut of b .,. ana has the propcrt.1 
that ti' B hn:s no free vnrinblcs thon [ h � .  X.{ !:-(1'))} {B ) 19 

nl1m1o convertiblo t.o l or . to 2 or else has no normal form. A 

logic �1th this proporty wlll be an1d to . be  oUindnrd12od. 
I 

lTo ahtlll say thnt o. logic !::: is nt lcnst f\S connlgto ns n. 

loatc !::: li' tho oxtent ot ·b 10 n. oubsot or tho extent or b 1 • Tho· .  

lottJ.c b '  will be r.iore comnlote t.han !: if tho oxtent or I: le n 
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proper subnet or the oxtont of !:: 1 .. 

Bupposo thn.t n hnvo nn eft'ect1vc .. set or rulco b'J nhich 't1C Ctlll 

provo for:::ul.ao.  to bo dual; ieOe  : WO  ha.VO ti. 8".(Stcm of' tJynbolic logic 
1n wllich tho prcpositiono proved nro of tho tom thnt certain fomu

lno r.1.1� dual , Then :r.e cnn find a logic i'ormulo. whooe extent con

aiat:i of· juot thoao t'omulao whtch c:i.n bo proved to be dual 'b-/ tho 

rulc�J thn.t is to Gey thnt there iB n rulo for obtaining the loeia 
i'omuln. · f'ro;:i tho Dy'Stol'l ot oyt.tbollc logic . . In fact tho nyoteiis ot 

ey1:1bolic logic �nables ua to obtain10 a cooputablo !unction of posi-

12-;Q;;o-��; [1),�;2: :c:;d-t:o7.n:t:,-[;]: �;.- - - - - - -
� - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - -

tive intoaers whoso values run throua11 · the GOdal representations of 

the fortnllne provable by means or tho given rulcn. Dy tho thcoro� 

or equtva.lcnco or computable 4nd � -detinablo runctiono thoro io n 

to� .t such thnt J (1), J(2.), 
he� How let 

are tho G. n. 0£ thece ton:iu-

\V --'f }..i " .  cP ( >.. u. .  S ( J°[..,), tr}, 1, � 2.. ) 
thiin 1 lt.ooert th:it \,./( l) is n logic '!?1th tho required propol"tiea .  

Tho '1>ropertie5 o f  (> . imply that (i (' , 1} in canvortiblo to the 

lenst positivo , integer � for which £,. ( !1. )  conv 2 nnd luis no normal 

t'om · if there 1a no such intocor •. Consoquontly /i{f;-, 1 ,  1, 2. )  
_la convertible to 2 U" · {: ( !! J conv 2 tor soico positive intoger kl , 

D.n� hns no normnl torm othorw:tse • .  tbnt 1a to �ny tho.t w ( {, !J) 
conv 2 1r .and on� if S ( ll� ), !} ) conv 2, some w:, 1.0. if [(!J} 
conv fl - aot'.o 1-v • 

I r Thero i:l ,  convorsoly a. formula 'W such thut if !::- is n logic 
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thon w'( &.) enumerates the extent or ·L  .. For there is a formula. (j) 
such that </)( f::.., f1,.!:! )  conv 2 tr and onlf if /::.(fl.) is convertible 

to 2 in leas than Iv steps. 'We then put 

W 1  � X f iv . for.W { 'ir{ 2. J tfl(A'I...,,. f.p( -lJ for1tv{&fi;}t..J), cq{��)}/ '�)j) 
or couraa. w' ( wt I)) will normally'. be· ent_tre1y dtrterent trom ;r 
and W (W'(!:.}} troa b- . 

In tho caae. whore wo hBve O-JDlbolic logic wbosa proponit1on8 

cnn bo interpreted as nw:ibor theoretic thoore1:1s ,. but are not exprooS

ed 1n tho !'om of tho duality or formtllae r.e ab.all ng�in have a 

corresponding logic formula. but its relation to tho ) oyz:ibolio logic 

.•111 not bo so simple. Ao nn "xample let us Uike tho .ease tha.t . t��
symbolic logic proven that certain primitive rocunrivo. tunct1ons 

ynnish !ntini tely o!'ton. lo ns shown in � S we can assoc:!.a,to 

with each 11uch. proposition a W.F.F. wh1ch . 1� dual it and only if tho 

proposition 1s trrie .  When \f8 replJ:ico the proposi t1one or tho sym-
• :•· • • • • • • < � 

bolic loaic by thooroms on the ; dut\lity :�r .formulae 1n ,tli1s W4l'" 0ur 
. . . .. � · : . · . 

provioua argument applieo,  mid we obtnin a corta.in logic form_ulnk . 

Howovor, � does not determine uni.quo� which are the propositions 

provo.blo in the Sytt(bOliC log1CJ for it iS pOSs.ib].e that I c91 l V.) 
�anisboS _in.finitely oftent an� I 8'2.· (�) vfulflJheS infinitely Olten' 

aro both aiJaocio.ted with t f1 .is dual' ;· nnd that the .i'irat or these 

propositions iG provable . in the system, .but tho socond not,.. Hnw-
. - I , ,  

ever, ; 1t '1e  suppoa� thn.t the system or sym�olic logic :lo auffic-. .� ' . . . 

S.ontly powerful to . be ablo to carry out tho .nrgument on p. ·is .. . then '.. � -� . . . 

th.ts• diti'ieultq' cannot arise • '.!'here 1tf also �he posaibility · that 
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there may bo tomulno in tho extent o r  L. with n o  propodtionB of 

tho ror:i ' G l ><) vnn!:Jho :s inf in� tcly o.rum 1 corre epond tne to thor:i• 

But. to ench Zlucl1 rormula. . :wo CM a�oign (b.r I\ dU'1"orent nraun:ent) n 

propos ition 'fl of the tr,riabolic logic which i:s tho nccoosncy � 
su1".f'iclont condition tor ·ft to bo dunl. ra.tn· 1' is unocinted ( in  

. tho f'irut. •Wny) n 1"ori:itl..ti t! n Non' •l=: dan always 'be>Z!lodltied 00 that 
· I ib extont contn!ns fl whonovor it conta.1m.1 fl • - -

Y:o snnll bo !ntoi'C ::itod principally in queat!ons or eoaplotene:ss. 

Lot u:J mippo::ie t.'la.t 'l'IO iulvo a cla.a:i or. cyntei.1s or nycbolic iogic tho 

propos1tiona or thoao oy5te�s boing cxpronnod in a unii'orm ,notation 
and ·1nte1·prete.blo na nwli.ber theoretic tlteorocs ) auppo:Je ilso thore 

19 n rulo tr; which wo cnn naaisn to or.ch propoaltfon · 'f or tho 

notation lL W.F.r". Fr which 1.t1 duC\l 1£ nnd only if r b true , tmd 

that .to each W.F .F. ·� r.c cnn n�stgn a propo::s1t1on ·'f' /l Y:bich is ·tho 

nocos:Jney nnd nuff1C1ent condition !or fl to bo dunL f.>R · . in to · be .- ': · . - 1' 
oxpected to dirfor .from T To ench DYJ:1bo11.c " logtc C ''tTe : cnn 

nss!en two loeic !orilulao L and LC1 • A ·  .forr.uln fJ. bolones . ·to tho - c.. -
I 

·ox.tent or ,_ c if 1' � ls prova.blo 1n c ' whllo tho extent or !: c 
COn:>fotll Of ill a f> T!hOrA I' 111  provable 1n c Le t  UU 6tt.y tbnt 

tho clnoo of symbolic loclcs is cor.iplete H oach truo propoDi iion 
la provable in ono of tl1o:a1 lot uo n.loo any that a clo.so ot ior.ic 
tor-.:iulno ls co-o:ple to if t.ho set theoretic mi= of the oxtonts or 

theao logics includes nll aun.l ·rorrauln.e . 

condition for o clnoD ot symbolic lostoo C to bo complotc :la thn:t 
tho cl.nos .or logico . LC bo cot11ple te • tihilt) o. oufiiciont cond!ti.on 
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L (  its thut the clnss or !og1cn -c ba co:-.iplote . Lo t us suppo!3o thn.t 

the Cl.:1.33 of � .. �bolio loglc:J i� COtlplote J COnBider 7' f} l1i.1el'C fl iD 

arbitrary but dWll . !t ri:tttst· be provnblc in one or the syater:mt C 

an;,•. IJ thercl'oro beloims to :  the c�:len t or b C , i_e. th� clnm:i or 
I 

logicD L . 1:> co::iplete . llow :mpj>O!lc tho claas or lo5ics L is 
- c  � - c  

co:nplc t.c . Lo t  T be an !lrbitrary true proposition or the notntion ; 

Fl L I  _ 7 .rmz:it belong to th� e�nt o!' SO:nf:? -C , and this ?loans tlmt 7 
in provublc 1n C 

il'o Dll411 :my tho.t n ainglo logic fornuln !::: is cooplote if ita 

extent includeo all dunl rorwia.o; that ia t.o sey thn.t it is � c" •••:p hie. 
if !.t onablos us to prove OV'cl"'/ true nunl::or · theoretic theorec. It 

is . n conaoquenco of tho thooren or Godel (if suitnbly oxtonrled) thnt 

no loi;ic i'on.iuln 1.s co1npleto , nnd thia c.luo i'ollowo fro=. (C) p. 6 ,  

or !r�:n tho renul.ta or TUring [l] :. � s .  when tnken in conjunction 
with � 3 .: or the prooont paper. The idea or comple tcnooa of a logic 

:formula will not therc.rore be very tmportnnt1 a:lthough it ia u.soful 

to have n tom tor it. 

Suppoco Y. is a W.F.-F. such thnt 'J. { � )  1o a loglc !or cnch 

positive tntoe:or It Tho i"onnulno of tho extent or y ( �) o.ro 
- ' -

enu:noruted by 'vi C':J {� )} , and the coabined extents or thoco 

logtco b,; A .... 'W ( Y. ( �('1, r) I I sr {-sJ r) ) Putting 

T' -7 'Ay.  v.;1( � r. 'vi ( 'I  ( �li, v')), 9-(t, r) )) 
1' { ':!.) 1:J n logic whoae oxtent !a the co:ibinod extent or j { 1) , 
'j{ 2), 'j_( 3) , • •  

To ea.ch W.F.F. b r.o .Cllll ns:J�gn n U .F.F. V { '- ) ouch thnt tho 
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neces,�ry nn1 su!'!icient · condition for I-. to bo a lo&ic tormuln. iB 

thnt V { b:) bo dunl. Let N >w be a W.F .F .. wlllch on'Wl!eratos all 

� fol'Jlll.llao with normal fom:s.. Th�n tho condition that L. be a locic 

1:3. that 1= {N11v {t�1 ,t) conv 2 .for nll positivo 1.I_ltogers V' ,  s , 

1.0. tln1t �a.. � I:- ( tJw { &{21 �)).1 &-[3.,o.)) be dunl. Ue 

aicy· tborororo pUt 
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7 .  Ordiools .. 

r.o bccin our tront=cnt or ordlnnlo wit.� so�o brier dofinitlons 

from tho Cantor tl1oory or oroinal.P, but for tho und6rstnnding of 

oo:i:o of' tho proora c great.or m:iount of tho CnntOr tboor:r' ill ·nccsosli:ey-'. 
thnn 1D horo oot out. 

Suppooo uo ha.vo a cl.nos dotol"Qined by tho propooitionnl. i'wiction ){'"f-..) nnd 11 relntion Gr l':t-J  "f} ordorlng them, i.o. isnt1sfY1ng 
Gr{�"JJ .,_. li-('f, -z.) ;:, G{1'J z.) 
J>(Y.) �l ('f) ::> Gr('l.J 'J ) Y' G-( 'f) �) v x = y 
6;( �) '/) ;) 'J)( 1.) Of- JJl"'f) "' Gt(x, �) 

I . ·  I 

ii 
\ . .  I I  . 
IV  

The clo.so do.flnod 'by :J>( �} lo then ruled .0. rcsrioa r.ltb tho ordoring 
rclnt1on fil'!-J'/} • Tho aorlos 1o oatd to be well ord�rod and tho 

ordorinc rolat:l.on la cnl.lod nn ordipn.l lf ovory sub-aol".ioD which is 
· ,  . ·, · 

not void has a first te�, i.o. 1r 

.. � fJ> '1 ,f(:i�j (1> 1(Y..)) cir·(")(J>'fr •. f;, j,(.,.. )) .::> 

? (3 -z) ( 'f }  [ :J) 1 (2-) -r (:r/( �) :, &-(2) y) v z �y)JJ 
Th� condition (7.2) lo oqutwlont to onotbor, more �itable for 

our purponoo, · nru:e� the condition thn.t ovcey doucond1ng · cubsoqucnco 

must terminate J .tontlll� 
(>c.) [ :D1{Y.) ::> J){y.j -+- (�y }  ( J>1l"f)'*"'Gr(Y)'�•))J -;J<Y..) {Ni1(1-)) f7.t} 

'l'ho ordoring roln�ion G- {"-J 'I )  is add .to bo oimllnr to G-1( '1.1 'f} 
it thoro Js 4 pne -ono corro:sponilenco bo tweon tho norio� trnnsforming 
tho one rclntion in�o tho other. Thia io beat oxproosed ·rorcnlly 
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(:i MJ ({Y-) {3>(1') :J [ '3  .,.,) M lx., x 'J} DI- ( '1.' ) [:n '{� 'J :J {-:J x.) M{x., "' ')j 
.,_ { {M ( �, x ' ) .,. M ( 'I.. , � 1 1 � v ( M { x.', >t} cf- M{ x.'� x.)} :> Y-..1 = �"} ( 7•4 ) 
<f- { M {1', �') � M {y, -y �  ;:J {G-(-1.J'f) : 6-'(Y-� y 'J )} J 
Ordering rolntions ti.re regarded ns belonslng ta the ·sa::e ordinal if 

and ohly· ir they nre elc1Uo.r. 

V!o wish to give nnmoo to nil tho ordinals, but this will not 

be pos%Jiblo Until thny �VO been rootrictod in 00:!!0 way; tho ClnSS 

or ordinnl:J e.o at pro::sont dofincd is moro than enU:!!Ornblo . Tho rco

tr!Qtions r.c actually put are thoocr ') (Y-) 1a to imply thti.t X 

ia a positive intogor; ) ( "1-) o.nd 6- l 'f...) Y 7 o.ro to bo computnblc 

proport1oo. Doth or tho propo3itiona.l !unctions 'J) {1-) , Cr( X.1 y} 
can then be describ9d ey i:1ot.ms or 4 single W.,F .F. g with the propor-

tios • 

.f2.(� , �Jconv 4 unlos o  both J){.._) nnd 'J)b") .are true ,  

-� { '!'��) wnv s if ]{It\ ) is truo, 

�[.!!:', !? ) coiw :? 1!' J>{i...) • ){"') • ·' ·' 6- {  ,..., ") , N {JM � ") nro true • 

.g.£�, .!:1) conv l i1'  ']("") , "J>.fk} ,"'& l �J "') 1 -v{1tt<> h}1 are truo, 

Owing to the conditions to which :D {'1-) , <Jr (.,.., '( )  are oubjocted J2. 
JnU:Jt further astisi"y 

(0.) it Jl.. [�, .!:! )  ia ccnvortiblo to l : or .. 2 then .gl�, �Jand 
..g.(� ,  !1 )  arc aonwrtiblo to a, 

(b) if· J?, l�,� ) and g ( \:V 1  b? arc convortiblo to S .  then .g. {1!41 �} 
1o convertible to _l , 2, , or a, _  

(c) U' g.{� 1 �) in convertible to l than .g..(':J 1 �) is convortiblo 

to 2 and convorsely, 

(d) if fl{� , � ) end .g. (� J 1.)� convertible to 1 thon Jl. { !!t J T) 
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l a  also, 

{e) thoro is no aoquenco 1tt1 1 1tt2.,  • • • ouch tb.o.t .[!. {":!Ci. +  l ,  '!$ 4 )  
conv 2 for each positive !ntecer C. · 1 

(.f) ..g. l!!i, �} iD olwnyo convortible to 11 2, 51 or 4• 

If 1.1. for:;niln. .2. s�tlstlos thooo conditions then. ihero nro corres

pond1na propo:i1tionnl tunctiono :J)(1-) , Gr(v.> '{) • We 011.1211 thera

rore sey that .Q is an ord1.nnl i'ormuln 1r it ontisfien tho condl

tionn (n) - (i') . It will bo seen �hat n. conBoqucnco or this dofini
tion is that J) t" ia nn ordinal tor.:ula. It roprcaento tho ordinal 

{,,.) • 'lhc dof!nition wa havo elven doon not protond to hnvo' virtues 

ouch o.s eloeance · or convenionce. It. hnn been ·irit';-oduced rather to 

!ix our id1mo mid to show how lt iB poosiblo in principle to deocr1bo 

ordinnlo by moans of T:oll tormed tormlae . The dc:f'!nitions could 

bo mod tried :tn · o. nm:i.bar or \tays . Some such nodit'icn tious aro · c:iu! te 

tr1vir4; they e.re typified by moditic.o.tions .. ouch as changing t.he 
ntlilborB 1,2,3,4, uocd 1n tho ' dof1nit1on to ooco :othors . . Two: ouch 

dof1n1t1onD will bo miid to bo oqu1vnlentJ 1n ecnoral we shnll sey-
- _ ,  

tho.t two dofinitiona o.ro oquivo.l.ent 1f thero are W.F .F. 1 , 1 
ouch that it fl io an ordinal tormula. undor ono clei'inition and 

reprot1onts t� ordinal Ol , thon L1{ fl ) ' !a an ord1nt\l. .formula. 
under t."io oecond dotin1.tion . end roprosP.nts · the Brute ordinal, and 

fl '  . . comrsel.y it _ 10 an ordiho.l tomuln undor the second de_1'1nit1.on 

raproccnting tJ. , thon T ( 6 1  · roproaonta tJ.. unclor tho rtrat do� 

tinition. Dosi.don do!'init1ono CCJ.Uiviil.e�t · in thia) 30nso to our 

orlcinol dofinition thoro uro ' L\  nu::ibor or othor posJibUitioti opon. 
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Suppooo !or instance thn t \10 do not :cquiro 'J) ( �) and fr ( Y.. , 'f) 
ta bo co:::putablo, hut only that 'J) c�) Ctnd Ci- {y..J '/) Cf-- )( � '/ be 

uxio::uttic.15 'l'his lea.da to n definition of' ordinal foroula Trh1ch 

lo�T:��X:(T[;",'IJ�o-ll: :x7o.��i: �o:l� ��t-t� ��u�r�� �{�, y) 
computable on account ,of (7.l) i i  

�is-(;r:o�:bly) ;o� :C1:1:i�c�t-t: �h: �o;�i�i:n�w: :r� �s��.14- -
I4-0: �h: :t�o; ��d-1; J>(;)-� �o:�i: :n� -6-r;.;:;5 �o�;i:b�o 
in the tlodU'ied sons"! th11t tllero is a rulo for dotor:::iinin;. -r:hether f;.('f. , ..f ) ia truo \vh1ch lends to n doi'ln:tte result in nll en.sos 
whore 'J)(Y.) · nnd 'J) l "f) a.re truo , the corre sponding dofini.tton of 
ordln:il. fomuln 1s equtvnlont to our Joi'inition. To give tba proof' 
would bo too much or n digresaion . Probably n nuabor or other 
equlvlll.encoo or this klnd. hold. 

- - - - - - - - _,. -- .... - · - - - - -- - - - - - - - - - - - - - - - - -
Thero are · nll!:lOrous possibilitios,  .r.nd . litUo to t."llido us as to '7h1ch 

dof1n1t1on should bo choocn . Ho one or them could r.ell ba de scribod 

ns • wrong• ; so�o or th�� i:my be found mora ynlunblo 1n applicntlonD 

thm1 others 1 e.nd the particulo.r choico v;o hnv� mru:to h110 boon partly 
doterotncd by tho nppllcations r.-c ht.i.vo :tn viow. In tho cnse of 

thoorems of .n. nognt1ve chnracter one would wioh to prove tho::i for 

oach on� of the poooiblo definition� or • ordinal fon:uln1 • Th1o 

proera:n could I thin}: b& cnrr1cd throu:;h for tho nogo.tivo re:mlto 

or � . 9, , lo. 
Boforo leavlll;S .tho subject or poosible 'tn:,rs o! dotiiling ordinol. 

rorcnlno I wut cention another. de.t'init1.oh duo to Church nnd Klceno 

(Church nnd Klccno [l] ) .  'l'l'e can tmko · uco or thta do!'ln1t!on 1n 

conBtructin� ordtnnl logics , but it 1o t!loro convenient to u�o n 

slightly dtr!'eront definition which 1.G oqu1vnlrmt ( in  tho llonse 

doocribod on P• 29 ) to the Church-Kleono d.oflnition as cOdtried in 

Cbu.rch [ 4) • 
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Introduce th& abbreviations 

U � X 14f '1- . "- { >.'I .  f ('/ {I, "A ))) 
s"' __, A4.14f y. • r {a. { "1 T I  y.. )) . .  . - ) 

Wo dofine .rirst "'. partial ol"dcr1nc rcla.tion ' t.., ' wl,li.cb holds betwoon 

certn!n pairs or W.F.F. (conuitioris (l) • (5) ) .  
(l) :tr fl co:.v 'B then fl < c implies i < c nnd f < a - , -- - - - -

it1pl1es f <: � 
(2) � -< S' �c ( !1 ) 
(3) For nny pos1t1V"e intoeers � "' J  1\ kf Y.. . 'B (1t:-) < 'A. c.../Y. ·  'B l � )  

implioo }\ '4f � . 'B { !! ) < /\ '4f 'I- .  4 ('Bo). 
(4) xr ·� < � and .� { f ·thon fjl.._C • (1) - (4) lll'C 

required tor cn,y r:.r.F.� 1 � 1 C , �uf'(. · 'B • 

(5) Tho rclntion fl <.  1B holdo o� when compelled to do so - -
. by, (1) - (�) . 
'We detino � onltnnl rorcrullle by the conditi�na . (�) - · Cl.Oh 

�G) tr B conv -� and ·� "J,a n C:.:lt ordinnl · tormulfl. then � · 

io a. 0-I ord:tnal f omuln. 

(7) U la a C-X Ol<dilml !omuln. 

(B) It fl is a C:-K ordinal tormule. thon $c. { !l ) 1o o. C-K 

ord1nc.l l"or:nuln. 

(9) Ir � r../1- · 'B l�) io a. C-K ordinnl rormuln nnd �c1'f. · 'Elh) < 
< }\� '/- .  � {S l � .)) tor onclqxnsitivo tntoccr l'V then A t...fY- · � { 'B )  
is n C-K ord1nnl fort:nllA . 

(lO) A torcruln io n 0-lC ordinnl formulA only 1!' co:upellod ·· to 
bo DO by (6) - (9) . 



'l'ho roprosentntion of ord!nnls by 1'orwla.o !a described by (ll) -
(15) . 

rJ ' • 

- (ll) U �··. conv 3 and fl reproaontu · Dl then ':B rcproacnts - · -

(l.2) U represcntu l. 

(lS) It fl repreuente K theu Jue {fi) rt'.'prcacnts Cl. '"f- 1  • 

(14) If � c....;� '.. 'B {Id) rep1•eeento c( "'. for ench poo1tlvc 

intocor � - then 'A �1'1- . k ( � )  1 reprommts the upper bound or the 

aequonco ot1 1 «'2 1 «� • • • (15) A f or:;ula ropresontn nn ordinnl only' whon col:lpClled to 

do :so by (ll) - (14) . 
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We · donotc ney ordinnJ. raprooented °b'J fl ey .=,p dthout projud1co 
to tbo po:Jsibil1ty th.i.t m.oro then one ordinal ::.ny ho l't'Pre:icnted by 
fl 'r:o oht1.ll write fl� :B to s:e:i.n R < :B or R conv � • 

- ... ,,,_ - - -

In proving ·prop-9rt:ios of C-K ordiual rorr.n.ilno TW shtlll o()en 
use a kind or · enalocuo or' tho pr�qiplo · of transtinito . 1tiduct1on. 

It 'f' is :Jo!!O property and· we ·hn.vo 

(a) It � conv 2 and 'f' { (j ) tbon Cf(�} • 

{b) cpl u) • 

(c) Uf{fl} then 'f(StAt {f1)) 
. (d) It �{ �u.j 'f. . 'g{tt)} nnd X 11..J1- . �{�) ( ��f'1- / jJ(S{�J}or each 

positive integer IA 'tbo:l , q> ( A"f 1- .  "- ( J1 )) 
t!lon <p (fl ) for co.ch �K ordinal .ro1'!luln fl To provo the validity 
of thi:s pr!riciplc \To ha.Ve only :t.o observe ' that the cl.a.SC of for:na.ne 

fl ao.tisfyin" cpl.fl) is one of tho:so or which the cl.ns::J ot C-K 
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ordin11l fornulne mis detinod to ho . tho nmcllost. Wo cnn use thia 

principlo to holp uo provo :-

(1)  Evory C-K ord:lnnl f ormul.A in conwrt1blo, to the form 
>."/"'· � whoro � 10 in nori:al i"ol"lll. 

(U) Thore is c �othod by Tthich ono ca.n dotcrmlne or � 
C-K ordinal for:nulo. into which or tho ror:na U 1 S !AC ('A t..('1· .  1) 1 )\ " 1� . tA. ( i )J 
vrliero . '4,  in troo 1n � it is convort 1blo, and to . .  dotormino 'B , 'B • . . J . · 

-

Ita cnch caso :8 , 'R nre unique apnrt trora convoraiono. 
. - -

(iii) If' � rcpro1.1onta ney ordinnl ;8 in uniquo. tr EA , 
� 'B oxiot and p .(. � thon ..:=:.� I.. := ') . -

-

- (iv) If' IT .. rn .  , C nr'O C-'lt· �1na.l ronulno nnd - � (. R _ , Jd - - -- , 
� C <.  R tbon eithar .( '.B · , 'B <. C or '8 conv C • - - - - - - -

(v) .A formula. � ie a. C-K ordinal formula it 

(A) U � R 
(») If >. ,,�. LA. ('B),;fl  :nnd � la n positive intO• 

gor, then )\ C..t.,.. . � {�} <  ·� 1.4.t'I- .'fJ{S{ �)) 
(C) For nny two w.r�F. ] , f with i < A • C. < A '· t - - ' --

mt hdvo B < C , C � 8 or 'll conv C , but. neve r '! .( :B • ... - - - ..- -- - -

(D) Thoro is no infinite uequonce � t J'2. 1 • • • 

� tor which �t-< B ... ,< � onch 'r • 

(vi) Tnore is a. tor::n11::\ H fJUCh thnt U" fl �o n C-K ordinnl. 
'f.'onnul.n thun H ( fl  ) 'its an ordinal toroula. roproa,cnting tl1o oame 

ordinal. H { B}  ia not· an ordinal .fomuli. \mloos {!. 
io a C-K C>rdinril 

formula.. 

Proor or (t) . Tnlco 'f (fl) to bo ' B io convortiblo to tho torm 



�i.,J-;. . � 'There ] io in normal !om' . Tho conditions (n) 1 (b) 
arc tr1v1nl. For (c) suppose P conv � ty '!(. � _ .:B ltllere � iu in 

nom.U ro�11, then �c. ( fi ) conv Au.t-.,. . f { 1J. ) and f { �-) is in 

no:rulal !'or-.:i. For (d) 't.'O hnvo onl;; to &ho1v· that c... (�} M.s a nor:::al 

forci, i.e . thc.t � bnCJ n noX':!lal i'am, which ifl tl"l19 Dinco :g ( 1) h.lts 

n nor.:sal rorm. 
' . 
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Proo� of' (11) • Sm ee 1T,r hypothooi:s tho ::ormula is c. C-l"C . ordinal 

fomuln \te lw.vo only to pcrfo1-:: conversions on it until it is in 

ono or tho · to1'13S do ocribod. It ia not pos�ible to con-Vort it into 
two or theso threo torina . For ou_ ppose r\�-,.. . f { 8 { "'' t, "�)) conv 

. f w.-1\t...f '1-; .  "' C! D  nnd io u C-K ordinnl· formulaJ 1t is -the�foro conver-

tible to tho fore � t..i"f. . � vihore � ·1a 1n nortm.l form. But tbo 

normal !'or.� or >.""/""- · IA ('/j) can be obtained by convor::rio�:> on Z, , 

i.tnd that or ).. '":/..,.. f (f1 ( ttJ fJ KV  by convoroiona on fi {tt., fJ ix) 
(as follows tro::i Cbtireb and Itc113acr [l] theorora 2) but this would i!:ply 
thnt tho !'omuln in qucotioJ:i. hnd bo nor.nal .fO:r:!lO , ono or .tom A<A.f" · �t.r) 
encl ono or r.01'Cl '). "f ..,._ . f ( C ) (,� which 1o iz:lpoadblo. Or :ruppo:.;o U 
conv A1Ai'1-· 4 (�) \·rliore � is n \':OU tort:ed ton:iuln with LA ns a !'roe . 
varinblo .• Wo � auppose -� io 1n nomnl. rorm. Now LJ in A1A.f�· . <.. {Ay . j{"f(�'1.)); 
By 1(A)  p .  6 .  1$ is · identice.l'. with' •A.\y-.-f ('j {I/�·)) T."bich 

. 

doetJ not hnvo 1.4.. as a .ri-ec vnrinblo. It. noi: onl,y rei:mim1 to shon 

thllt. if J,1A.c. {1\"fx . �) conv .fuc { 1\'1Y. . � �  and A�..,. . k ('fi )  
. }ii;> conv � '-' t '1- .  l\ { �} tlten � conv � / und 'R vonv ?5 1• 

I!" � ( t\ '4f'/l . f!} conv � r. ( t"i i...f 'lo • § 1} 
then. 'A�� ; f{ � }  conv >-. "V 'i- • f { !} 1} 
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but both or thono rornulae can be brought to nornW. fol"'ii by convor-
? I I 

siono on v , 'B .and thorororo /3 c;·mv .§ Tho a:mo o.rgw::ont - - -
npplle a in th!? ca.ao th1.1.t 'A"f i<. .  � C 'B )  con"r t. ""t' . .  t.c..  ( $ 1) 

?roof or ( Ht) . 'l'o prove the !"irot h:U!' tttlto 'f' (.fl ) to be , .  

' -== is unique• . (7.5) (n ) io trivial .and (b) !ollow3 fro::t tho fact 
-R - -

th.at U io not convortiblc _a ithor to the !orm �t!. {fj J or to· 

?-. ""{'I·· c... ( 'E) where 1!, ho.a lL. no n. free vnrtnble . For (ch S1&c (fl.) 
i!l not convortlblo to tho 1�orm �-� � .  c.c. l '8 )  J the posa1bility or 

sk(. ( !1 )  roprc sentlnc rm. o�dinnl on :nceount or (12) or (14) is 

there.Core clioinntcd .  By (13) J,. c,;  { 8 }  roproeents ot '+ l it !J / 

roproaonts 6< 1 .and �c { f! J conv Sue. ( IJ _9 If we oup-

poac fl roproccnta O{ , then fl , fl 1 boinc C-K ordinal i"omulno - - - I � cro convcrtiblo to tho tores � '4f � .  1 , )'\ "'-y"I- . ] / but 
I - I 

then by (11) .B conv� L . e .  A conv A , nnd thoreforo by the hypo--- -- -- . 

thoaia · Cf[�� at �  cL 1  Thon �SCAr:. (IJ) � �1-+ 1- io unique • .  For (d) I 
'A u f"' . w ( B) iri not convertible to the f om � c. { fJ) or to 

U it � has � an n !rco varinb�o. If r\ c..f "" · Lt. ( 1 )  rcpre

sont& an ordinal it io therefore in virtue or (14)1 pooaibly toac thor 

with cu�. Mo\7 U' 1\"fjy.. . k LW) conv � " I� . Ct c '8. ') .then :8 
conv :B , Do that tho nequonco A i../Y.. • :,B (J ) , r\ y.,_ . 'f!.ffJ.), • •  • 

in . (14) ia unique npart. from convoroionn. Thon by the induction bifpo-
the sis th9 seqlionco Kl. , «1. 1 � , is uniquo . Tho· only 

ord!nnl that l::J rcpl'C Dentod lr.r � '"'{ � • W. (':fi} ia tho Ui)por bound 

or thio aoqucnco which is uniquo . 

For tho sr:cond half -Y-0 use n type of argueien,t rathor d ifferent 
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from our trnnsfintto induction principle . The fomulu.o 13 for, nhich 

R � E' for:n the G:?ln.l.le&t clnss for which - - . 

�' l (J. )  ·boloncs to the cln£1a . • 

If f belongs to tho class then .s4c ( £ )  belonga to it. 

Ii' ��"f..· 'B {�)  belongs to the class and °AL4f� . 'ij{�) < Ai"' · 'K(f11 ) 
whero 111. , k. nro so:na pos1t1vo integers then ..,.._ LA.f Y.. • tt ( '!J) bolongs 

to it. 

it. 

I I 
If C beloni:;s to the clo.:Js t>.nd C conv C then C belongs to - - ..... .... 

It will auftice to prove tho.t the clnss of for.il\llnc � for whi.�h 
e1tbor .·.:=. doco not e:dat or :=:... < .:= 0 sntinfien tho conditiom1 . .  � (7.s) . n;,-, 

-

R .1-1 - -

- -- """' > if ' C is in ' the class. 
·.- L.c. (£) / .::.. , - � -it .::. �.,...,.. 'Bl � ]  does not exist then 

..::.. � "' f"" .  14 l'B ) doeG not 

exist, ruul t.horofore ')..l.\.f � . .  1.1 (:8 ) in in tho cl.a!H h Ir =- ';\�1' . <,E (1.:J)  
oxiots nnd is greater thnn ::: !! nnd A 1.e. / .,,_· 15 { !! ) < r\ 1.1.rJ"f.. . 'B { � )  
th on 

� � �  - >-. .... f'(� .  � l B ) v - �" i 'f. .  'Bl� >  
so that �u.t "'- · !.\. L .B)lxllones. to tho clnas. 

-
/ - e.  

�roor or (1v) .. Tio prove thia by inductlon rlth resp� ct to fl 
Take Cf{ d )  to bo 1 whenover 9_ -<  /2. nnd f < fl  thon fl < £ or 

£ � ..[ or � conv f ' . Cf ( U }  follons tro:l tho t'e.ct tho.t , \\'C 

nov,or hnvo � < v rr 'VIO havo cp l B )  and !2 < �(.' ( �)  then 

c1thor � I.. B or � conv f!. ; . fer 'll'e cnn find :D ao that '.§ � 1! , 
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ond � < Suc {6) ' ann bo . proved tvithout ap,oaling ei.t.hGr to (l) 
or (5) ; (4) dooa not np� so n-e must hnvo J> con•1 B. • Then if 

.� .<. �' ( B. ) nnd f' � �c ( fi ) wo havo four 1>0"1sibilitios 

1\ conv -a- , . .  � conv e 
� conv ·� .· , f: ( !J 
� < � , f conv 8 
l; "- � , f < � 

In the first ca.so � conv g , in tho aocond f <. � , in tho third 
'B � e nnd in tho fourth tho induotion bypothoais npplloa .  it - -

Ho., auppo:ie tho.t �CA./'1- • 'B {� J iS n C-Y. ord!nnl fonmln, 

� tc.f�• 1J (� )  ( A14j'1-. 'B{f(!1))i.uid f{B(� )) ,· for oacl.1 positive 1nto

gor /.\ , nncl � conv A'1i. k ( BJ • Thon if � .( f thia oocns thn.t 

1» < X1.1. f "j:. • 13 ( � ) tor ao;:o � J if WO hnve nl:JO Q <: e f.hen 

}ii;> � l.. �u./"'-:' ·�{tJ.) , f t... AlA.f r- .  � lti ') GOl:lo '1 1 • Thim. £or thosfS 

� , � tho requirod result !'ollowa · from . lf· ( >.. 1.o./��. �/!J -� 
Proor of Cv} . The corid1tiona (C) ,  (D_) icply thnt tho olea5cs 

oil interconvcrtiblo tortl'lllD.c � , ! '<  t! nro r.oll-oroerod by t.110 . - -

rolo.tion t (� ' f:o prove (v) b:r (ordinary) tranartn1to . inrluction 

tilth reapoct to tho ord�r type o( of tho ser!.e::i tor:nod lT; tlu: Me . claa:iosJ  

( e (  1a  in fact tho solution c;f tho equation l,':f' K1.. ,=: B but we . do.  

not nood this) . l'!'o suppoao thbtl that (v) . is truo for rill oroor t.ypoo 
,loas thnn cl • If !f < 8. thon Ji :mtiaL'icc tho c::mditions or fv) 
nnd the col'l'()sponding ordar typo is smnUori f in thorof'oro a C-K 

ordinnl rormuln. Thi9 oxpro 33os. �ll con�oquencoo of tho inducti�n 
hypothests thrit �c need . ThEJro , , are throe ca.sos to conaidor. 

(:c) ti:::. 0 
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fr> ti -:.  t-t- 1 
(z) 0( 1s or neithor : o£ the rormu (x) , (y) . 

In co.z:ie (x) T.D roust have. {J conv U on n.ccount or (A) . In cn:;q (y) 
thero ts a rol.'r.JUl.a � ouch thnt � < 'f! , . and � f '1> whonovcr 

� < (1 TI1e relation 1l <'. fl.. w:it. hold in virtue e ither or (l) , 
(2) , (3) , or ()i) . It cnnnot be 1n virtuo or (4) . tor then thoro 

would be � I g � ff " ]) I... l contrnry to (C) taken in conjunc-- - - -
tion with tho dotinit1on ot J> • !£ it is 1n v1rtuo of (�) then ex - ' 

is tho upper bound of n sequence d , d.4· ;,, • • or ordinals 1 which ' :1. 
are incronsing on account or (til) end tho conditions 1\cy.,.. �(�) < 

� (C\�1"- ·�{r{�Jln (3) . This is in�onslotent wl.th f>/ -af-+ 1 • Th1o 

mos.no that (2) npplieo (nftor wo lw.vo olL-:iino.ted (l) b1 suit.i.blo 

conversions on 0 , � ) and Tm ·Soe t!Ult � conv �t. C';P).; but 

since J>< fl , "]) 1:1 a C-K ordinlll formula, L\lld fi cru�t therefore 
.... � - ... 

be a 'c-It· ordinal rormule. bY �) .  ?to" take case (s) . It is i.':lposDible 

tho.t fJ bo or torm S«c· (1>) , for then '\!:O should bnvo :8 4. } 
whonovnr l { · f! which T:ould tiean that wo b:i.d caso (7) •. Sinco 

lJ 'I.. . ff there muot be an f wch tlmt f .( R. is demonstrable - . - . - .... . 
oithor by (2) or by (5) (after a possible converaton on R ) J it . ' -

munt or courao bo dor.ionatrnblo by (5) . Thon ti is or !o� A ""t°" . L\. '( :B ) .  
By. (3) , (B) w sno tbat )\'!..,.. . 'J?(l!) < ff for · ouch poa1t1vo 

intogor IV . ·; cnch "A 'j "f- • � l �) la thorotoro a C-Y. ordino.l for
Jm.Jln. Applylna (9) , (B) t:o soo thn� fl is n C-K ordinal !'omul.o.. 

Proor or vi . To prow tho !'irat ball' it oui'!iceo to !'ind o. 
. . . � 

method '1heroby ·rrom n C-X ordinal formula {I we cnn !ind tho 
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cor.roopondine ordinal formuln ..Q. • For t.hen thoro ia n !'o:n:;ula. 1-1 1 - -
ouch that 1-11 (� ) conv "f if CL io tho G.R. o!' B_ nnd f th!l.i 'Jf 

.Q 1-/ is then to bo c!efincd by - -

H -"7 >. Q. .  f o t-� L H1(& y (a..))) 
Tho cothoi for rindlnc.Q. reey bo replaced by n r.:othod or finding 

.!l {'ttt 1 � )  iivon 8 nnd M7 tTro pon1t1vo . inteeora If/I , w • 'r.c 

shall nrrnnne th'l' r::othod oo thnt whenove r fl iri not on ordinal for-. -

muln e ither the cnlculntion or the vnlue n does_ not come ::1 to nn end 

or cloe the valuoa nrc not conaiDt(!nt 'Pith .g. being nn ordinal 

fomuJ.a., �n· this rtay ml CM prove the: tlCCOrid h:i.11' of (Vi) • 

Let Ls be n forouln auch thnt Ls( 8 )  cnumcr.atoa the cla.aoes 
ol' !or::mlne J 1 'B .( E (i.e . if :p· < fi t.hcre i o  one nnd only 
ono ponitive inte aer h for vrhich Ls/DJ � )  conv � ) •  Then the 

nilo tor i'indin(pthc valuo ot .g (�, ti) ls ns tollow:i.s• 
Firut doter::iin6 nhethcr 

to tho rom r {At., t.i) 
ordin:.il !'o.r:iuln . 

,t:md l'lhether Ji io convertible 

This COJ'lOS to t.m ond if fl iD A e-r. 

If � con•1 !:: ( S..... t,, U) and either "" i" r ... 1 or '1 > r .,.  :! 
then the irnluo io 4.  If � ( k ' .\"-f 1 the vnlue b 2 ,.  If I'\ � -·141 £ Y-+ 1 
the vnl.uo iD l. Ir � = � � r.Y'l tho vti.luo is 3 .  

If f1 i s  not convortlblo to this fo1"?:1 1fe dcto minc whether -
oither B or Ls {B 1 �) ia convadible to t.110 .!'°.rz.1 � � �'1-- . -� ( �)  
nnd: if ! aithe r of."; the'm ,ia v:o v�rlfy that � CA.� 'f.. . � ( �) c( �"' t� • Z,t {S(�)) 
'Wo obnll ovcntual� . co:r.o a to an. ,o.f.!'irnintivc . -answer if fl is Ii c;.;.K 

ordinal formula. 
.. ... .. 
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P.nv!ni; chocked this oo deter::iiM or IA... , w vpother /...s { 01 �) ( Li { 0, �)  
f_s( �i b)  L.. L S  {fi/ �} , or lk ::  Jv , and the vnluc i:i to be 

ziccoroingl.y_ l,, z, or 3.-
Ir (J is D. C-K ordinal tomuln this proce1:10 certainly coco s to en end . 

To sco thnt thB vnluoo so calculnted correspond to rm ordinal ror

mul.a• �d one roprei;onting :=:- , first ob:Jorn tlw.t this ls so �hen 
R - ' -.. ' 

-= in rintto . In t..�e otbor ca:ie ( iii) , (1-v} aho\'1' thnt .:::. "' detor-- n  � minOB n. one-one correspondence botv10en th� ordinals f 1 1 1.  (3 � =.:.B 
nnd tho cln:nsos or in.torconvert1blo rormulne 1J,  :8 < A • If' T.O take - - -

G- (  1.4-\ / "') to be L.r( fl, !!' )  � L s  { � 1 !:J.) tJe aoo that q.{i.., "-)lD 
15 -� ��o��Z-1.��t_:o� �-n-s�r;,o!l ';..r_ o��r-tYP'}_ _ -=a..e.::d_ o;: _:h_: �t,:O,:: 

15 The order typo is f3 v:hore 1+/h 'E:.f1 but fa ::. :=:: R n1nco =:_fl 
1s inrlntto . • I - I - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

�- thnt tho va.lues of � ( !!t, .� ) � relo.tod to <i' {"", ""') a.B·;on P• 29. 

To prove tho nccond lw.lr suppose � ie not a C-K ordinnl roruuln.� 

Then ono or tho .condlt.1ons (A)-(D) in (v) J!:Ust not bo satioriod. 

If (A) is not aatioficd 1'10 ohall not obtain � ronult even in tho 

calculo.tion or � {l1 1} If (B) is not .sa.tis,fled,. for sol:ie 

poB1tivo intoscri.J p • jt w :Jhnll have Ls{�, f )  conv 

�f�; '4 l� ) but not Au.1� . B{JJ< � u./v. . � {S(jtJ) •  Then 

the. procesa of c!ll.cula.tin� .g. LT 1 j') will not co;te to nn ond. In 

ca.no of' · taUuro or (C) or (D) the ' viluoo or .g {� 1 �) 1:1!\Y all 'bo 

cnlcuinbl.o btlt condition (b} , . (d) , or (o) P• 29, z;o �ul bo vtolntod. 
Thu'iJ if 12 is not 'n C-K ordinal 1'omula. tho�· H {fl) 1s - n.,t· nn o� 
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dinnl romuln.. 

I propose no71 to do fine three rorcul!.le .r"'"' ,  cl� , I �f or impor

t11nco 1:::. connection nith ordinn.l for.::mJ.no !  As they are comllnra

tivc� uir.iplc they will for once be elven alrilost in i\llli 

Tho formula lla- is one with tho proporty thnt LJa {� ) j.a .  conver

tible to tho i'or'.nuln represcnt1na tho largeot ocld integer dividing 

6"" i it is. not givon in f'ull. 7' d:s'Ltlte· 1h:t'edeo.�ssol?1-fun6¥-f6n/P(Sf�odnv !:!! 

FIL � >.ir�'Y · 1 ( "&et.er. §'f u:i"), 'AIA. IJ', u. ( � ,;), � y) 
f.. l f -) >. "' . 13(144 (A� k tr. a- fv, S(1it}}) ""'""·u-(T., i..)1 1, 2.},) 
:B et  �,. ,\c.r lJ' 1 o.. a.1  )( , R l  {A,f. IA({o., tLJ e.r1/1.. : af f� �' i/-) 
S"- _,. A CJ' ,,,. , 7'} . 'BoL. {� CJ"� H f  {?)J Hf Ct)} Rl{'PJ Rl{t, is '( f-lf {1}/lffjJ� 

� l), Rl ( °r8,r (Hf {?)1 H f  {"v J))) 
rJ.;,,. � Ai 111 . { �£� �J-{:1:/tt),.. zti),'u�b)J u�{1t), f:1t{Df(4�' &) ·+ 

+ ,w, ... 1, :ii�(., i>, z. t•, viM u4" trJJ))}(&t2, 1,, �&,1')) 
Ji .. f _, ,\ iu � er t . R L { � r . .  c.r( a. , 'P.1 ,.,. t 4, °J'J f l)' CJ' c ,,J 'V) ' "") 

Tho osscmt.1al proportioa ot theno rorr:mlnc nrc described b,r 
Fil { l ! - 1 J � 1 �) conv � 

· Hf (a � )  . conv � 
FIL l2x 1 �· , � )  ·conv � 
Hf (�� - 1) conv · ·  1' 

1,«, r .g., g :g, g� �) l�onv 4 unless ' bot.ii � c�. s. ) ·�otiV' .3' n l ( � ' ,. I) . . . . . nnd � - 1 � conv 3 in' 'Ylhich case · it is 

convortible to x 
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If .g. '.g. I nro ord ino.l i"oroulno reprcsontinc C( J r rctl?OCt.ivaly 

then .f "'4t\ { .g., J1. 1} is an ordillnl forr.rula. l'Oprosr.nting 6' 7 /3 
Ir: Z in a W.F.F.; c:mu.":l�rc.tina n sequence of a:dinn.l !'ormu.lno repro-

·t ' t  'is nn ordinal £on:iuln 

reproscnting t.'1.o 1n£1.nito u� at1 '1- «'2. + 11.3+. . .  . Ir� lo an ordi inl 

formula roprll senting til then /k.f ( .g ) enu:norc.tes n sequence o� 

ordinal for::rule.e representing nll tho 01-di.nnlo lea:> thD.n � -without 

� repotit1ono. 
To pro,10 tho.t there i.l'l no generol method for dotorninlne of a 

for:ula �hether it ls nn ordino.l rormulc. we u ce nn nr(!l.lOCnt t.U:in 

to thnt loading to tho Duro.11-Forti paradox, but t.ho eoplmsia nnd 

the conclusion are different. Lo t us suppoua that &uch en nlgorith::? 

1.s a.vnil.nbl.o . 'l'bio ennblos ue to obtain a. recurs ive enuoerntion 

� ,.g-z.,  • • •  or tho ord1nnl t'ori:mlne in normal f'orm. 

tormiilA Z· aucll tho.t ? { �} conv .Q • How r1.t1A.t (Z) - . . - �  -

Thorc ls n 

ropro!lent:i 

an ordi.n!ll grentor tbnn ti.nY reproeonted b'; nn .!Z.&1. , and hno thore

rore been onltted .fro:n tha cnmnorntion . 

Th!s nl'gu.�ont proves r.torci than . wn.:1 . or!ginnll.y n:rnertcd. In 

tnot it provoi:s thnt ii' \rCJ tal<o nny claoa /[or ordinal !omulllo in 

normt for.11, ·  uuch that if fl is nny ordlnn.l fo:r:ruln then there is 
- . 

n. formula in If' roproaontinf� tho S!lmo . ordlno.l as fl , then there ls 

no Cl)thod whoreby one. cnn tell "11110.thor n i'i.F.1l. � nor=cil tom be

lo.1gs to If 
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.fu._Q rdinal lotttce. 

An ord!nr.l logio is a. W.F�F. _j_ auch thatjl. {:ff} is a logic 

tomul.n whencvor .Q.. io nn ordinal torll:.Ula• 

Thia definition its intended to bring nndor one bending a n'IJt.1-

ber or vn.ya or constructlna logics "Phich hn.ve rocontly boen pro

posed or nro tnt(mestod by recent ndvancos. .In tJ.1is soctlon I p.ro

poso to oho11 ho'IT to obtain OOD'.O or the:se ordinal logica .  

Suppose TIO havo n clnso W of· loc1cnl systems. Tho oynbols 
uaod in each or the.oo syatei:ls nro tho sru:e ., end n class or oequencos 

or oymbola c�llcd • rormulno • is dofinod, 1ndat:>endontly or tho par

ticulnr' syDt.eCi in vi The rules of proC!odurtJ or· a system c dct!lie 
nn n:tio�atlc subsot or tho £ormul.ao, tl1ey a1•e to bo doscribod as 

tho 1 prova.blo fOl."tlWO ot C I •  Suppose further thBt TIO ho.VO fl 

r:tethod whoroby, rro::i cny syatom or C or W' ·1t0 can ·obtnln · a  nett 

system C J J Abo 1n \,./ J and SUOll that ;the �G� of provable i°Orirolno 
of C 1 lliCludo tho provable :forwl.ca or C · (we ::·eh!lll bo most 1ntE)r
osted in tho CtU)O whoro thoy ura included o.s a propar aubsot.) It 

is to be undorstood that thio •mothod1 is en ottect1ve procedure 

!'or obto.ining the nilou of procedure of { I trom those of C • 

Suppose , tlmt to certain of t?-o , toraulao ot .. \,./, \':a znaf..e correspond 
nuabor thoorot1c tlmoror:i::n by moc:U.f;rinc the do£1n1tion or tori:ula. 

r,e ?nliy SUppO!JO tlmt thi.8 i's done for fil forwlno. '70 ,i1he.il 883 

'. ihl.\t one or tho system C is vnl 1.d it tho provabil1 ty of a. tomu

la 1n C implies tho tn1th or tho corresponding number tboorotic 
· ·, , I 

thoorot1. lfow l.Ot the relation of C to C be ouch thn.t tllo 
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v11lirl ity o r  c I . :!.mplioa tho validi t1 or C , nnd 1et thc1·.:.i bo e. viilid 

Finally supposo that eivcn nny computt.1.blo cc-:;ucnce 

• • .. at' systcr.::s 1n W the tlilllit syotc!':l1 in '-•hich n ror-

�u1a· io p�ovable if and onlj· if it in provnbla in one or the systems 

C ' ulso bolcng!l to \./ : J  Tho�o limit:·�ystcno ti.re to bo rogn.rd�:d, 

not n s  functiens ot th� aeq'f.lonco el.ven in extenoion, but n s  functiono 

or tho rules of torr-..:ition or thnir terms. Jo. soqucncc given in o:ctcn-

aion c.ny bo deocribcd b'/ vnrious ruloo of form11tion, c...-id thore will be 

aovcrul corresponding li?nit oystemo. Ea.ch or thc11e rtny bo doacribt:d na 

.!L li.."lit ayute� or tha sequence . 

Under thet::o cirC'Jmotnncea v.o mny constt:uct 1:J.n ordinnl locic . Let 

uo aui:soc1n.tc ponitivc 1ntecor."l with the syntar.1a, in such a. l'rll.Y t.hllt 

to onch C corrcspontls a positive intor.cr ""1C 1 and ""'c co21plotoly 
dotscrlbos tho l�los of procedure or c Then thoro is :i T7 .F .F. ff . , 

�cli that L�.'{ � c ) conv �C / ror oach C in \V i;' nnd there ia a. 

w.F.F. '� . such tha.t 1r ;p ( r )  conv �CV' ror ca.ch ;posltivo integer 

Y' tht)n � ( 'J?) COnV �c \'/hero C ill a. limlt tr.Tllt�m Of Cj J c,_ > 

• "' ·  • • �!lth onch tr/ntc:.1 C 01'.' 'vJ it in poaaiblo to ua.;ociato o. locic 

£omulu L.. ; tho relnti.on bct\101.m thoi.t is t.h.o.t it &- ia a. for:rul.n of' 
-:-c vl t.tnd the nu�bcr thooretic ·theO:t'OI:'. correaponcli.'lf; to CT (ns:::w:ed ex-

preo!!oil in tho converoiou cn:t.culu..1 i'om) ncs:Jertn tlmt :B is dual, 

then !:;.c_ (�} co:iv 2 1£ m\d 01ily if & is p:rovnblc in _  C There 

lrill ho n W.F.F. G- Guell thnt & (�C ) conv be fo1• co.ch C tJ!' 'W • 

Put 
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t nnsert that N { B ) i n  n logic tormula tor each C -K  onUnnl f'ormnl.a. -8_ , and tho. t if f! (. 75 thon tv ( � ] is uoro comple te than. N (fl)'; 
provided thnt thoro c. re  tor.::ru.le.o prova.ble in C 1 but not ii\ C tor 

er.ch vn.lid C 0£ 'W 
To prova this r.o ohe.ll chow that to cnch C-X. ordinnl, rorciula 

thcro correspond:;s n unique oyntoa C[ a] 6UCb thnt 

(i) 
and tbat it turther sntiofios 

conv "1 l - c;,  
( 11) C[ U]  in a limtt syatoQ ot C,..� C0 � 
<1111 c[ '11c. C�  )] . 1n .  ( C.[ BJ) 
(iv) c[t\"4./1- . to\ C'8V10 !l limit t.-yotom ot c [Ay'f. � � (1)] ' 

c [" '4�'{. • f? (t )j t .. • • ' 
. . � and � ""t '<- • ·"' { 'B ) beinc o.usur.ted to bo C-K ordlnnl !'omalne. 

'l'b.e uniqueness or the system follows trom ·tho t'a.�t 7that � dotom!noa 
C coeipl.Otf;iy. Lot us tri to prove tho cxiotenco of c[B J ror o�eh .C..K 

: ordinal formula A • Ac wo havo noon . (p. 3:\) it. aut.!'icos to prove 

(n) C [ U] exists, 
(b) it C [� J c:r.lsta then C [ L...c. l 8 )  J oxlsta, 

Cc) 1r C[Ata.f1- · <Jl l1)] , C[At4l� · fj {�}j • • exist then 

cp\IA./Y. . � l'& '[lonota . 
?roof or (o.) . 
{ ,\� . {1 {'/ {'f:I �Co )) J L �)  conv � {�C . ) conv �C ' 

0 0 
tor oll po:J1t1vo intcgora II\ ' ond tberoforo by tho definition or @) 
there ia a "YlJtom, which tro w!�l call C [U] ,, nnd which io n liinit 

' c ' . 
oyptEJu of C0 , 0 , • • •  , outiofylng 
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f) ( �'I · !j ( '/ ( T, '±())) conv !!] c [. v J 
Dut on the othor hnncl 

U{� t!, �c. )  conv � , { �y .  lj {YL f)  'fjc,,)}) 
Thia proveo (n) nnd ineldcnto.lly (ii) 

J'root .. or (bl,. 
..fu.t.. {_ 6, @, l11 �r) conv 

conv 

fj { � { @, IS I �  l't> J) 
tf { � c c BJ ) 

conv "� (C[B J ) '  
trenco · c[f'-'t. ( fl)] oxista and il'J e;i'Von by (iii) . 

Proof or Cal . 
{{ >.v.fv. ·'B  j (g>, ti �,)}l�) oonv f"u.f"- ·  'B c� )j { ffi>, Ii ,  �ro ) 

conv � C [ A '4.T v. .  'B. l � )] 
by bypothasis. Oonuoquentfy by tl10 dofinition or S thoro oxiato . -
C Ythich is a limit syston ()f . c[A u./._. . 'B,l1)]1 C {t\�r. .i(1 . •  

and Ba.tisrics 
@{(>..'4f� · �}(g?J; 15, �c, J ) conv· � c  

l\'o dotino cf Ac. .. , l(. .  "- l'B >J to bs thi:J c . Wo then hnve (iv) and {>.'--f "- · tt l � )tl � !J 1 t�(0 ) conv � { { A 14 f  Y- .  'Jl }{ �' Ii 1 �c0 )} 
conv � C [Ai.../�· "- l 'IJ �) , 

This com'plotcs t110 proof of t.'10 properties (1) - (iv) . Fro:::i 
I (U) , (iii) , (iv) t.M racts that C 0ia Vlllid nnd thnt C its vnlld 

�hen C i:J vnltd .11o inter that C[ fl] is vnl.id pir·onch C-K 
. I 

ordinnl tormuln � t oleo tha.t there are rio ro tor:nulao provnblo 1n 

C[ :§ J thnn in C [ Q] when fl � ?, . : ·--
The. truth of our assar-

tions rsgurdins N 1'ollo'Ws now 1n vtev1 or (1) and the detinit.iono - . 
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or N nnd (i--
i'To canuot conclude that !JI 1s nn ordinnl logic, :sinco the . romul.no 

Fl wre C-K ord1.nnl i'omulo.o, but �e i'or::rul.n /-1 enabioa :us to ob-- .' .. · "' 

tnin an ordinal logic .from N - D,Y tho USO of tho i'omuln. (it'" '8:'& - ,..._ { obta.in a far.nuia I ff., ouch that it ff haa a nomnl' form thon I "'- iJ )  
i . . 

enuci:>ratco tho G.tta. or tho formultt.o into which {J is conwl"tibl.8. 

Also there 111 n rormulo. CI< such that if /... io tho G.R. of c. formula 

�l { �} then Ck. { b) conv � , but othor\'iioc Ck. { J )  · eonv U 
Since H { � ) is nn ordinal tormuln only if 'B iB n c�K · ordinal for-- -

.t!Uln, CA £ Tk. { g_ 1 b ) } is o. C-K ordinal torcultl. tor onch· ordinnl 
. . . , · , : '  ' :r  , 

For J:Sv.ny ordinn.l torwul.no it �111 bo 

convertible to U , but for �u1 tab� .g. , � it rrill be convort1ble 

to any «iven C-K ord1nal torz:ulo... It we put 

_ll.. � � �a. • T' (.,\ t1. .  Ji ( C k. { T"" ( i.tj �J)} 4-,) 
- ' .(.. '.' . •" J\ . will bo the require� ordinnl loc:l.co. In fact on 'nccount ot" �he -

pro1>9rtiou or T' , {)-(9:-i 8) w1ll bo convertible to 2 !f'. nnd. 
only 1r there io n pooltive intocer h- such tha.t 

fJ { C k. (  Tk {B:, !!)), !J. )  c mv 2 

U £ conv M {] ) thoro mll bo . nn  1ntogor I\, such that 

C I� l Tl\ { g,!J ) ) conv ] , nnd then 

fJ ( Ck  [Tl\ ( $1-1!1 ))J fl) conv !f {] ,  fJ. }  
For Cl11 IV} ( k (T,,. (.g I 

·� ). ) !a convertiblo to {) · ·or to s� 
� whoro fl:. conv /-1 { ]) • Thun Jl ( g.1 D) conv 2 1!' .g conv 

H { � )  nnd ff {'§1 fl )  ccmv 2 or if f::!.{YJ fi) conv 2;·: but .not, 
in nny othor cnoo . 
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'r.o n;q now opecic.liec nnd cono1dcr parU.culo.r cln::ice \./ or 

Sy1$toms • Firat let u::s tr'/ to construct. tha ord.inttl logic de:lcribad 

roue,hly in the introduction. Fo1• W'·we � tnko the class of oys tcr.:a 
· lG nr1a1ng from tho oystem of Principia Liathei:iaticn by ndjoininc to 

Tt°�;itri�;;d-a;d-I;s:ell"*[�J: -'I�e-�;m;."tln� ;ui"c; �f-p;�;��u�-o� -
n ·Bimil:lr syatec P will be t'oluid in u convenient torm 1n G3del [l] . 
I ah.tl.l !'allow G8dcl. The oyc.bols tor: the natural nm:bcrs ·  1.n P nrc 
o, f .G:l • .) ff o, . � .  TMo . .  ·

. Vn.riableo nth t,ho suffix 1j)t  stnnd for 
ns.turaJ. nunibero. 

- - - - � - - � � - - - - - � � - - � - - - - - - - - - - - -17 - - � it nxf.om�tic (in t.�e oenao doacribad on P• lO ) seta or nxlo:i:a • l7 .... -- - .... -- -- - .... .... - - - � - ...... � ..... .... ... - - - - � - - - - - - - - - - -
. It 111 sometilsco rognrdcd as necossnry thnt · tho act of nx1o:is u::cd 
be co:i'[l'Jtnble , the i1itcntion being thnt it nhould bo possible to verify 
0£ n. .tor:nul.n ropnted t<> bo nn nxiom whether it rcnlly is ao. '!io can 
obtain the oruto eftoct with n.."<iomatic eot,s or oxtomn 1n thi!l mry. In 
tho rulos or procodura tloacrlbing which nro the nxio:nn rn 1ncorpornto 
a �athod or cn1ltlcrat1n� them, end l10 nlso introduce n rule th�t in tho 
.i:ain pnrt Of ths cleduction v.ihouevor WO wri to down · an l'.Xio:::i Cl5 011Ch l':'S reust 
nleo wr!to dom ito po:1tt1on in tho e'nu:ioration. It io po::rn1blo to verity nbethor thfo baa · oocn · aone correctly. 

< . , • • ' ' '�a�� hhi':;� �:t-p;�1�1:0��:.;1;,,-r;;;t�o;sra-c:n-.;. �;;,:s�; -
, ' � 

. 

. 
'.· 

: • 

' ·. ' 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

18 A relntion F ( "°"' ; · · · , "'4. y- }  1B primttivo rocursivo if it is the 
neceDIJ0l7 and aui'i'!ciont conditi�n for' tho: . vnnishing or a pri!11t1VD ::_o:_u:_s!:_� ��c_:t�n-i L � � ·_: � � !:) _ _  • _ _ _ _ _ _ _ _ _ _ _

_ _
_

_ 
_ 

b1 rnennn or !ormulaa in P • In fact thoro is n rule whereby civcm tho 

recursion equntiono dotininC n prlmtttvo rocursivo rolnt1on 

r.o c:m find. a !or.roJla.19 »i['>'oJ • • .� , z6 ] such that �[/""'1 '0, • . .  1 -f� .. )O] 
.... ._. _ _  - -- - _ _ _  ....,. _ _.. ...... ... .... - ...., _ _  - .... - - - - - - - - - .,_ _ _ _  _ � ; ' 

Capito.l ' Oor.t".an lotter:> trill be Ul3cd to Dt."Uld for vnrinblo or undoter-
minod rormtlne in P. An e.xprc aoion such n.o .OZ[.iJ., l J will 6tand 
£or the reault .�r ,aubntituting /,. �.e�d ( tor X.0 and y 0 in ,{Ji • 

�s-�:n;1: � -P�� -F {14t� J-. �.� :.�Ji� �;o: :n; �t: �e;n;i� -1: - -
prowble otherwlrJ<t. Furtl".or thnre io c. tllothod ·UJ 1t'h1ch one cnn tell 
or n, fo� .{)[;[Y...o �  · - ., "Z�J nhethor it ariaefJ tro:i l!l prinitive 
recursive rola.tion · in thi:J \TllY'i und by tJhich c:mo cn."1 find tho cquntions 
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which doflnr.d tha relation . Fo1-mulno of thi.a kind �d.l.l be called 

rocursion forouloo . Wo ohnll en.kc uso or a property thoy hnvo , 

which t'lO cnnnot orovo rorinally hero 'l'titbout glvina their definition • 
�, I . • 

in .ful.11 but which ia eo:iantinl.ly tr1virtl. l>b ["'-01 "/0] ln to 

ntand i"or n. co:i.•tain recursion romul.n such that J) b [ f fko.) OJ f (,.) 0] 
io prova.blo in P if 11\ :L 2.i.. and it& noga.tion ifl provable other1'71se , 
Suppooo that ..{Jl[ �o] , J;.[ 1-o] nro two recursion fonnulao . 

Thon tho thoorc� I no nsSU::?Jlng is thnt thoro io a recursion relation 

l'J,,, [,.. ()(..0 ]  ouch th:l.t vte can provo 

i ,(JI, h-(i<.o] :: @ y, J(('M [ 1'-,1 y,J , 1'i[Y,]) v 
(8.1) 

1n �· / 
V {J>b [-f�o J fy,,J, f,.[yoJ)) 

Tho s1cnlf1CU\llt rorr.iuloo 1n n:ny or our oxtenniono or . p  arc thoae 
or tho form 

(�o) l�'to )  a �0/ 'lo] (8.2) 
whore ,,.IJl [�o, '/ D] io a rectirsion romul.c., nr!stng rrott tho relation 

1\{ "" '  ") lot us cny. Tho correspondinc nu:nber theoretic toooroo 

stnto a thnt for oach natural nUJ:lber ""- thero to a natural number Iv 

ouch tho.t �{ '4-f1 Ii.) is truo . 

Tho oyotems 1n W which tiro not valid O:ro thoae in -which n 

rorl:iuln or tom (8.2) ls provnblo, but Clt the oar�c timo thBro ls a 

nntural nU!!lber, Jw any, ouch that tor each z:ie.turn.l number 1'v ,  

� ( ki 1  Lt )  10 fnl.�e . Thia r.JetlllO to s11!: thnt N ..l7l.[fl""f,J f'14�] ia 

provnblo tor each na.turl.l.l nwDbor w Since (8.2) is provnblo 
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(3'io) AJl [ f {.._) D .1 YD ] ts provnblo1 so that. 

8 5  

(3 '/o ) dJl[f{�OJ Yo]) ,vJJi[ f (i..)o) o]J f\J 4[f(�f0} . .  (B.5) 
' ' ' 

&re all provable in tho nyr:steo. \1a �r sicplify (8.3) . For a given 

[ {"4.) J · .  
M-·· r.ro!! QZ?.Y provo a tomula or rorm -di f o) Yo � J;{ y,] in 

P1 whore J; [ y 0]  !D n recursion !'ormuln . Thuo '\'!"C find that tho 

necoi:u.mry and eufficiont condition tor n eyatom or \J to be valid 

10 thnt !'or UO; 'I'OCllt"lliOn fomula. �[ °X.o] aro nil of tho fomulno 

provnblo.. An import1U:1t ccnnequance or th� io th11t if 

,(Ji I ['1--o ]1 ..tSi2.: [� o] J • J dJl 1-\ {J-"j 
nre . rccuroion tormuln.o and 

(8.'1) 

(3�c.)� I fr.o] V (3 � o )JJl.1.. �o] V • • • v{� �ol "'1.,, £1.o] (0.5) 
is provnblo in c > oncl c io valid, then r.o can prove ,{)t.,. [ f {o..) o] 
1n C for oo:e natural · numbcro r , a. whore I � Y '- Iv .  Ut us 

tlarine @... to bo the rorctUlo. 

(3 � 0 ) ,.{)[1 [r-.o] V V (3 K0 )  4rfr.o] 
and do£1ne !r [Y. o ]  rocursivoly boJ the condition that !, ['1<-o] 
1.10 ,(}/, [J<.o J nncl § [ �oJ bo [� �t, [('·o] • Uow I I t-.+:t... G t'"J """�t+l 
nay that 

0 r :J ('3 ><..o )  � t- fr. o] (B.G) 
iD provablo ror I ' \"" � " • It is clenrly- provnblo for .... :. 1 i 

suppooo it provablo ror Jl given r . tie cnn pro'V1:t 
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fro!!? \vhich we .ob,,i.n1n 
};;> f,. [ y 0] ":> (31.a){f 1J �[1'1J1 Yo] ir['t�]) V (J>b[!.," Yo] · .dl. .... ,ftPJ)) 

nnd 

� �  .. , [yJ -=>(��o ) ((."J>� [1-a,''/,J · f._ [y"]) v {l> '[�o/Y,] .  Ut,.+ 1 GJ)) 
Thaoe together nlth (8.l) yield 

('a y,') «� C'ioJ v Ca 't.,) ...tJl .--+ , [..,oJ :J (3r..o) ,{�t' , 4., .. , [�o] 
which GUfi'icca to provo (8.6) for t'"+ I llow o1nco (8.�) ia provable 

in C , (:J �O ) e M [ �oJ munt bo also, ancl Binco C iO valid 

this CCMiJ thnt §&<\ [-f  (,_) 0 J tl�Bt bo provable .for · fJOm& natural 
nu=.bc1· hv • Fror:i (8el) nnd the definition or 6111. [ Y..o] we ,see that t ' ) 
tbia itlplion thnt � r [ f o. ()] iG provnblo ior SO� natural 

nucber 4. , nnd integer. \-" , l 6 r � h '! 

To rm::! cyst0c1 C ot VI ''"' can noalgn n priutttva rocurstVe 

relation p C. ( � �: )  wt th the intuitivo mooning 1 fft.,U tho .G.R.- Of a 

proor or tho £or� whose a.n. in IY ' ·  Tho corre opondinc rccuroion 

tor::niln 1a ?�c �o> '/o] (1.0.  ?�c [ fl"''c; ffi.>o] _ 1B 
provable whon PC ('411 .k) is . true, nnd its nogo.tion to pi."Ovablo other

' wiso) . Wo can now explain whnt 10 the .rclo.tlon of' n synten C to 

itn pradccon�or C .Tho sat or e.xioi:a which T:o adjoin to P to obtn!n 

c/ COnoilStS Of;tllO:JO t.tttjoint.od in obtfd.ning - c  I together .�1th all 

tomulc.o or ,tho .rorr.i 

(3 '!-..,) <j)� C c�o 1 f C"'J DJ :::> cf 
whero Irv ia the G.R. ot · .:f • 
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iTo 'rlinh to ohow thr.it n contrndlcU.on cnn bo obta.1ned by namll'ltng ( C to be invnlid but . C to bo vnlid. Let us aupposo that n nat or 
( . 

fomult.!.e or tom (8 .4} 1D provnblo in c Lot 4i , Olz. , 
./91 I . vr.-k bo tb�sc n.."d.0:29 or c. of tom (8.7) vm1ch cro uood in the proot' or 

<;I� 0 }  of}. [ ><,,] Wo .cny cuppose t�t :nono of thct:i a re  provable 

in C • Then by tho deduction tbeorol:! 'tfO see ' tha.t 

{oi., .t't. ,_ . . . . ,(}[, k ) :::>( 31-.) J;-[ x .] . . <"' l (o.e) 
io provnblo in c Lot ae bo (3xo) rp�c f!.o, f t 0] ::> � 
Then tro:n (a .a) we find thitt 

( '3 'I. 0) '1l-J c fr . . ,  f 1"'il O J v . . .  " {� r. 0 )  'P"'f Jx., l"'4! 0] v (::J x 0) .B{x.] 
1o provablo in C • It followa !'rom n romilt r.e lla.vc juat proved thr.t 

oithor b- [ f�' 0] in provable !'or BOl:'.o. nc.turtU nus'boi< C • or tilse 

'f 11 c, [ f '"> 0 J f C � t )  o J la provable in C for. 1.10;.no nntural 

DU.'!lbor U.. and SO!:lO e 1 '' J. {, k I but' .thiO WO'\lld.· t\Ct.m t.ho.t . .!£.. vitUJ 

prOvtlble in C (thin i:i one or the .POints . lfhoro !if> 'tlSSUQo .. tlie vniidtty 
or C ) nnd therefore nlno ; k  C � cont�ney to .eyp�thoa1s. Then _ /;-_[ ftt.fJ] 
cm.st b3 provable in C ; . but· wo nro a.loo aasu:riin{S "' /,-[ f ( c) {) J 

· c ' · c '  12Lt1rovnble in Thoro is thoro£oro a eontra.dictton in 
I 

Lot ua suppoae thnt the nxtonn JJt/ .4Jt k' ot .for:it (8.7) wlu>n 
ndJof.nod to c suffice to obtain the contr:tdiction nnd thnt none ' or thoso 

axio:iu nro provo.blo in C Then 
N J9t I 19' I . 19-1 i "f/C, I V f'J ML � V • •  , V rV 'r/f,, j( 1 

• 

h pronblo in c ' nnd if at is L3 x.,) 'P ""¥ c. [!.. J f "'/} 0 J.) .f. I 
th on l 
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io provable in C But by ropotition or n previous nrgu:::cnt thio 

moans thiit ,(){,_/ is provo.ble £or soma f , I �. f � k.1  contrary 

to b,ypothesia. This ia the r<:quired .contra.d!ction. 

We r:ay now construct nn ordinal logic in tho 1nannc� described 

on p. 44;48 • Dut let ua carr,r out the construction in ratbor !!Ore 

dotnll, nnd with sor.io modll'icn.tions np?roprie..tc to tho p:i.rticulnr 
cnne. Ench syotcl:l C or our not \.V n:ay bo dcocribod b"J C?enns or n 

l"i.F.F. MC which enu.'l1Dr1itos tho a.Rs. or the n:xioos or C • There 

i:s n '1.F .F .. If cuch thnt if a.. in the G.R. or no::o proposition J! 
then E"("1C J 9:-} 1a convortiblo to tho o.R. or 

(3 "'0) "P�c [�o, f Co.>o] � .F 
u Q.. is not tho a.rt. or ony proposition in p then 

is to bo convortiblo to tho G.n. or o = o .  From k- wo obtnln a. 

w.F.F� K tlUCh thnt k{ Mc ) a � +  1)  conv Mr ( �), 11· (MCJ 2 !J )  
conv 1::-{Mcf!J) . The succeanor system C 1 in denned b7 }( ( Mc ) 
conv Mc I • .  Let U!J chootio e. f'omul.o. Ci such that (i ( M c  J B )  
conv 2 if nnd only if tho number thcorot!c t.hoorc� oquivsl�nt to 

t� is dual' is provabln in C Thon vro dci'ino � ey 
1 A1' _,, r\w- a. . T' (  � y. Gr{Ck(T"'{t.r, y) ,  ).1441v ,� (�{z, "), �/� "J� H, �)),� 

Thia - is nn ordinn1 logic provided th�t P is vcl.ld • 

.Another ordin�l loc1c of thio type hss in ef!'ect been introduced 

-1.>1 · Churcbeo • Supcrficio.Uy .this . ordtn.il l.Ogic eooms to .have :r_io more 

iox: :U�7n: ��r:li-[�]: ;7;_;e;.- ;n-,;:;;r-;;t:;;, �h:X-:h-[;]� - -
Chnp. X. . 

- - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - -

ln COm.'llon with A than that they both ari:Jo. b°'J tho ootbod t.'O havo 
'P . 

dcscribod which uaoo C-K ordinnl !omulno . The initial systc1:1s 
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I 
arc entire�· difforont. HoY10Vor, in the rolo.tion botwocn C .o.nd C 
thoro is nn intcrootinc Mnlogy. In Church' s  mothod the atop from 

I C to C ia . perf or:nod by ::eans or subsidinry axlor.is or which tho 

cost importnnt '(Church [2h P· · OB, lm) is el.moat a. direct tranolntton 
into his symbollor.i of tho rulo that � mey tnko any romuln or form 

(8.4.) nn en axto:i. Thero nre other extra ti.xioms, hor.ever, in Churcht c  
n-;stc%!1, nnd it is thcrcroro not unllkol,y thnt it i s  1n so:no senoo 

moro completo thnn A?.  
Thero nre other typea or ordinal logic, oppn:rontly quito 'Urirelntod 

to tho type Ti\? havo so to.r cons!doroci • I hnvo in mind tvo types or . 
ord!nnl loai.c, both o� which cmi bo bo:Jt .desert.bed directfy in terms or 

ordinnl !'o�o Tri.thout any roforonce to C-K ordinal ror:iulno . I 

ahnll doocribo hore a npoci�cn or one type , ouggostcd by Hilbert 

{Hilbert ;� [,iJ ,: 183tt}, nnd lev.vo tho other typo over to - -� 12. 

Suppono 110 havo seloctod a pnrticulo.r ordinlll f"or:aula g tro 

oluill construe� n aodification P.a.. or the oyoto:n P or_ GUdol (seo 
- . ,l'• "' ·: · 

footnote lG ) • r.'o oluill soy that n natural nu:Jber Iv is a. txoo if it 

·is oithor oven or :l. r - I v;horc .!J.. l.T, 1) conv 5 .  Tho doi'inition_ 

or n vnrinblo 1n P is to � modifiod b;r tho COI\dition that tho only c.tl

r.i1as1blc mtb::icripts . aro to be the typoa in otir nonsc . Elomentnr/ 

oxpreauiono nro then defined no in P 1  in pnrticuln1• the dotinition or 

OJl elo:iwnta.ry CXpt'eGSlon Of typo 0 15 'uncluingod . An · clcmcntnr; tomuJ.a 

la dortnod to bo u sequence or - oymbo1s of. the form bf,,,., aw r.ho:ro 

� ,.. J AJv w nro oloTJlentnry oxpreaBions or typos """ , W snt

iotyine ono or. tho conditions ·(o) , (b) , (c) . 
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(o.) hv nnd Iv arc both even nnd h-v oxcccds w , 

{b) � is odd nnd w io �ven, 

};;> ( c) "" � � 1' - 1 ,. k � 'Z. � • 1 nnd .g. ( T., �) con-v .:Z .  

With thoao . modif!catlona the t'or:tnl dovolop:::ont or P.S, is the StL."tB 

au tlw.t or P. Tio t-iah hotttt,•o:r to ·h�vo n nothod or aasociatin& mll:2bor 

thoorot!e theorems ttith certain of tho fomul.no. or P 41- • T.o cannot 

tnko ovor directly tho ns3ocintion we used in P. Suppose � is n 

for::rulc in P intorpt'Otablo no n nu::ibor theoretic theoroti 1n tho rey 

we descrlbod when constructins A (p .  50 ) .  Then U' ovary typa ' 
. 1' 

miffix in ti' is doubled r.o .shill obto.in a i'omuln in ·P .g which i� 

:to bs · intorprotcd as tho snme nu:nbor thcoret1o tbeorec. Dy the 
r.:iothod or e G T.'O can now ob�1n fro:n p J2. � f'ori:uln L which is n 

- :a. -
logic formula or p J2. is Vtilid ; 1n fe.ct CiVOn fl.. thore 1S a ?:Othod of 

obto.!ning L.JJ.. , so �t thora is n rormula Jl.H such that At-\ ( g) 
convv L .si. . r�r ee.ch ordinal rormuia .g. 

Havine 11011 tru:i!linrizsd ·ot1rcolwo with ordinal lo�ics by noa.na 

of theoo cxaoploa wo may begin to conaiclor genernl quentiono concerning 

them. 
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�-. Co:ipl(?toncss ouoaU.ons. 

Tho purpo::m of in�ducing orclinnl loi:iCa -r.ns to nvoid nn far n:s 

poi:uslblci tho o!'!ects oi' Crildol' n ·  theoron. It is n consequnnco or thi:: 

tfioorei:, su:!.-tabfy modtfiad, that it is 1.cpossible to obtain n comploto 

logic for::uln, or (rou[!hly r.penki.n3 non) c. ootlpl;t.e ayutec or . logic . 

r.o ;,ere nblo ,, ho'?;ovar, fro;n a given system -to obtnin n core co::iploto one 

tr.r the ndjtmation ns axio!.1S or t'orm.ulnc, ceen intuitively to b'3 
. 21 conect, but t:hich tho GOdol thoorem shom:J c.ro unprov::.ble in tho 

21-� �1; :a:�-o; -.p - ;e-n�j:;;; ;l� :r-t�c-�l:;; (iit:)-i°�;(x-:;-f ,,..,a]; 
Tlhero � la tho G.R. or � SO::l$ or r.hich tho Godol thaoroo �hO'l'fG to - �  

be unprovabl1Lin "P • , 
� - - - - - - - - - - - � - - - - - � - - - - - - - - - - - - - - - - -

orietnal system; £fo::i this \':o obtninod n yet core coIJplato system by a 

roptttltion of tho procoss , .nnd so on. t:e fowid tbo.t tho repetition or 

tho .procc�s gn.vc us n new system . for each C-K ordin:il for:tU!.n. �e 

ahould liko to kno'l'7 '1hother this procee� auirtces,, or r.hether the 

frJStetii : should be extended in other v:cyn ns v.ell. I!' 1 t r.(lro poifsible 

to toll or n t:.F.P. 1n no?"Q4l .fom nhetbor it ns ri.n ordiriBl :torr.ml.a 

\70 shoul(l kno;r roi· certain that it Tto.s necccani-.r to extend 1n other 

weyo. In fact for o.ny ordinul rormul.n /j. it ";Tould then be poirn1blo 

to !'"ind n sinalc lo�ic for::rul.n b: :mch th.'\t 1f .fJ-( g., IJ }  conv 2 

for ooS.e ordinnl tomuh .g.. tJmn b (t!) conv 2. Since L. Clist , 

bo 1nco::1plotu there i:nrnt bo !'or.:nulno [! !or which .(>. ( g.. .1 !J. } 
iD not convortiblo ' to 2 tor �riy ordinal fonw� � "  Ho�ever, in 

viotr . or the fact, proved 11?- �- 1) thnt thoro is no ttot.hod or dcter.:ining 

or e. forr.iul.4 in normal fom T1}1othor i:t.. ia nn ordi.ncl fo=-.mln • the 

cnac dooa not a.ri:w , r(nd t.hero is still n po:iaibillty that r.omo 
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orcllnal logics e.e;y bo complete in somo ncnao . Thora in quito n nntural. 

r.ny or dctin!na co::iplotcnean. 
Def."in:J.tjon or <!gmplotoMG:J o� nn_ 9-r.Unnl lodq. Ke �· ·thnt. an 

ordinal logic A is eo:i:plcte 1r !or oacb. duul tomuln lJ there ia an. 

ordinnl £0� ..g..� such thnt /j. ( .g.. l!,  �} coriv 2.  
A:J bas been oxplnined in e 2, tho rererarico in th e  daftnition to 

tho cxlstcnco · at .g !! for ottch � is to be un,derDtood in the� ari..'llO 

nnivo r.ny na nny reforoncr> to ox!ntcnc& 1n mitho::i..'\Uco. 

Thero is room for riod1fica.t1on in this dorinition: tro r.i1cht re

qutro that thore bo a for:rula � llUch thnt ,!S {fl ) conv :g_ fl , 

D {fl ) boing :m ordinal. .f'or:iula whcnowr ff in dua.l. 'niero j_s n� 

· ' nood , hor:cwr, to discuno the rolntivo merits of thcao tr.-0 doi'inttiono, 

boeo.uso in nll cncos whcro r.o prove nn ordino.l. loaic to be comploto 

wo ttbnll . provc 1.t. to b9 co;:nploto even ·in tho · codirtod oonso , but .in 

canes T:hore wo prow an ordinnl lo.ate to .bo incomplcta r.e 'liao . tho. ·du

finition ao it atnnds. 

In tho tcrrilnoloror o.f' � G /l io co:nplote it tho clABll or 
-=-

logica .. 1 { .g.) is CIX'lpleto \'fhon .£. runs throllgh all ordinal !'orrnuin.o. 
Thora is nnothcr co::ipletonocn property ubich is rolo.t.cd to tllts 

ona . Lot u:i £or the t'lo:ncnt atiy thtit an· ordinnl 1ogic Jl 1B tlll· inaln• 

� U' to onch logic rorr.iulo. L thero corroripondn nn ordinul f or.:uln - . 

.glJ�)such tlmt lj.{.g_ l�} J io UD compl�te as b. Clearly e�91o;y 

ell lncluoivo orcllnnl logic ia co:nplete,. ror il' 8 itJ dual thou rl fl) 
is n lozic uith ·� in 1tn extent. Dut if A io co:ipleto :ind 

� Ff � _., A � i.ra.. . T' {A v-. r{41-, S{2., Jc{�· v(w ... {�))))r f{'J., Nw("j a.)))) 
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then fl :  {-1) i s  an nll inclullivo ordlnnl logic. " For if fi is 

in tho oxtont. or .(}. ( g fl )  .for ench fi , nud 'i\'C put �J -? 0 v02J 
thon I say thn.t · ti'  13 io in tho extent o r  b: it r.ruat bo 1n .  tho -
c�<mt or fl;, { .{J.1 J2. (!;- l J In. !'net fl i { .{).1 SJ..V U::: ) ,  ] } 

� conv T'( ;\r-.  S' (4-; r{'2, � {g.\t ll:: ) ., V (N� t�>)))-r r{zJ w ... {t-_, �)))} 
For :iui tnblo "' , N' lei ( � J conv b nnd then 

4-( .g. Vll:) , V {N164.{ ti))) conv 2 

ri�-(�1 :§ )  conv 2 

nrtd thorefore by the proporties of r ' � 
fl� { ./J: 1 !J.. Vll:) I - �) conv 2 

Conver:iely fl-�{A J ..Q l .  ) 1)• cnn only be convertible to 2 if - .  - V !: l -
both f111t. { 'J 1 ']} and .!). { .g Vl � ) ' V { NJti {b >)) nro 

conwrtiblo to 2 for so"o poa�ive ·!Jitoger w 1 but if ./}.. { .f1:. Vl!,)' V (rt .. (� )Jj 
conv 2·  then N"'- (n.) must bo'{logic ·tind since N'11tt {� � 'B) conv 2, 

.:B muBt bo . .  dual. 
- fl -

It should be noticed thnt our ·defiilitiono or co:npietenos�f rofor. i 
only to number theoretic theoro:nu . /1lthou3h it would bo po:Jsiblo 

to introduce £omulao ana.locouo to ordinal loeics which would prove 

more: general theorems thnn number theoretic onea, and hnve o. cori-os

pondine def1nltion of completencas, yot if our theorems are too 

genernl wo shall find thnt our (modified) ordinn.l logica nro never 

co::ipl.ote. Thia .rollowa rro:n tho argument or � 4. If our • or:icle ' 

tells us, not whether ·nny ei.von nu1:1bor theoretic stAte;:cnt is true, 

but 11hether a given formula la an ordinnl .for::ula, n tho argu;;::cnt 

still npplies, and wo tind there ere clnssoo or probloa which cannot 
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bo solved by a unii'om proceso even �"'1th the help o r  thi=J ornclo . 

Thia  iD equivalent to anyin� thnt there ia no ordinal logic or the 

proposed modified type which in co�ploto with respect to tho 5e 

proble::13. Thia aituntion l:eco:ies mare definite li' V:O -t:.t.ko !'omulnc 

anti::ifyine conditions (n} - (o) , er:•) (ns do scr1bcd nt the end of fl2) 
instend of orditlnl rormulnc ; l t io thon ' not possible !'or the" ordinal 

lo�ic to bo cocpleto TJi_th rca�ct to.� any clans or P,roble:s :norc 
exten31ve than tho n11mbcr theorotiC problcos . 

We might hope to .obtnin ao:no intollcctunlly oa.tist"!'ll;llI :?yst.e::s or. 

losico.l inference (for tho proor or nu.�ber thaorot1c theorems) 'l\'ith 

so::ie ordinnl logic. GOdol's ,tbcorom showo thnt .sucb n . systE>n cannot 

. bo Tiholly 'l:ochnnicnl, but w1 th n co:nplotc ordinal locic we uboul<i bo 

able to confine tho non-mochnnicnl steps. entirely to verificn.tionD 

thn.t pnrticul�r £01-mulno nre ordinD.l. formulnc. 

We might also t::xpoct , to obtain an 1ntere::st1uG clnsd!�cati.on or 

nurabor theoretic theoreris nccordine to 1 dopth1 • 1� thooreo · which re-
, ' ' . , r •  : · ' J" ;' 

qutrad nn ordinal Cl to provo · it would be deopar th.!ln ono which could 

bG prov.�d by tho uoc of nn ordinal. f loso thnn 0( 
presup:!OSotJ coro thnn 1B justified . !!a dofine 

Uotvever, t.lils 

Detin ltion or tnvarlnrice or ordinnl lo�ico. /'3l ol'd.innl locic

A is nnid - to bo invnrtant un t.o en "ordinal IX if, whenever ..Q , � I  -
� nro ord1nnl :.fort1Ul.nc reprct:cnt�e the Bw:lo ordinal. lea s  thnn 

()( , tho extent or .£1.{..g.) io identtcnl with t.1lo c'ctcnt of: -'J..(.g.9. 
An ordinnl logic 1o inverinnt tr it i::i invnrillllt up to onch ordinal 

ropreoented b:r nn ordinal formula. 
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Clonrly tho cla::i9ll'icr.tion into doptho prcauppooco thnt the 

ordinnl logic used in invnrinnt .. 

A1:1ong tba quootior:> wo should now like t<? c.sk nro 

(n) nn! the1� any cornplotc ordinnl loeico? 

(b) nro thoro nny- coraploto invnrinnt ordinal logics? 

9 5  

To .tboae .we mieht h.f\VO n<ldod • o.rc nll ordinnl logics co:Jplote? ' ;  but 

thia is trivlnl.; in fnct there are ordinnl loe1cn which do not sutfico 

to prove &.t\Y' nli.':tbor theoretic theorems whO:tevor. 

'Wo shs.11 now nhow thnt (o.) r:ruet. bo nnsworod afrir.nntivoJ.:r. In 

!'o.ct · l\'O  -can write donn a co:::lpleto ordinal .logic at once . Put 

Md 

I shall shaw tb�t (tf'44f is a co�plote .  orcHnal loriic. 
Inr 11' C tMf { .g..J B)  conv 2, then 

.g. conv {;el, (B) 
conv }\ '"'� � 'Jt ( tl{Ar� t- {J, {!(IM/, 11 kt)}J /5(,\ r. t-{� fJf1' � 11)) 

.[l.. [ '.1:'1 !:1) hns n nol"Jlnl ror.:i it .g. is an ordin11l ror:::ula., so that 

then /J l�v-. r-'(J.1 Db�J}, 1 ) ruts n norrnnl form; this oenna 

that ! (I, fl l� )} conv 2 no::io .. 1 i;.o. 8 { �} conv 2.. Thus 11' 

�lfl-1 8)  · conv 2 and . ..a. i!Hl!l ordinnl' formula then R is . '-- . -
dual. C,..,, is thororore nn .ordinal loe1c. llow oupposo convorsely' 
thnt fl is dual • .  ! shn.11 sho\'I thnt 6d. {fi.) :ts nn ordinnl £orz:ul.n 

representing the ordinal tJ In .c£t, F.d"".t.-� 
/ •  
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convt 1{ �) oouvr .ht 

,... ··. - 1 6et{�1 '!!1jj} ol>ii:W ":Jt-(�, !!) 
1.c . bri.. ( !J} i� c.n ordinal forrrilln repros�nt!rig the nm.m ordinal 

e.a J) r  But 

[� ( (!)d. [�) /J) co!lV b ( 6cl.. ( !1 J J Ool.. {fi)) conv 2 

Thio proves tho co:nplotcnco:i or r�r . 
or cournc � is not the ldnd or oo:npl�to ordinal logic 

that \ro ahoule. z•(inlly w:mt to uso . Tho use of � d.aos not mko 

it any nn:Jior to eoe thnt fl in dunl. �n-ract it ';e really 'l'tlnt to -
U!lc en ordinal. logic n proof of co�pletonoes for thtl.t particular 

ord1nt\l. locic will bo or litUe vnlue J the ordinc.ls given by tho 
:�'� cornplotenaso proof will not _oo one a which cnn bo soen 1ntu1• 

cw tively to bo ord1ii11lG. Tho obl,y Vtl.lue pf completenoSB �roof. of thfu 

kind would have would bo to shO\'\' thut if ney .objection.  lo to be .  

roised ncatnst an ord!nnl logtc it must· be on O:ccount or. so:nct...'1:tnt: 
rnoro subtlo then inco�plotonoaa. 

The thooreo or cor.iploteno:Js is nlao unnxpected in thnt the 

ordin11l £or-..mlc.o used nre nll fomulc.a rcprcccnting 4> This itt 

contrary to OU:t' intentionn in conatructine Jl 7' for inato.nco1 :hl

plicitly we hnd in mind lareo ordinals ex�rt:1Dned in n �implo rnr.nner 

ltere r.o bnvo oonll ordina.lo c:cprensed 1n 11 "10ry coupl�x nnd nrt:lfi-

c1nl . wr.y. 

Bcforo tryfog to x;olve the probie!:l. (b) ,  let un EOe how tar A 1' 
end A nro 1nvnr1nnt. \'ro ohoultl cortn� not, expect _fl to T . . p 
bo invnrinnt, no the extent or i.\_ {.g) wll � depend on nhethor .fl.. ,, . -
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is convortible to c. fori:ula. of .form fl {OJ : but suppooe ;:-e cnll t\n o� 

dinlll logtc.d. C-X invar!nnt up to IA if the extent or A.{1-1 ( fl)) ia tho - -
e.mne as tho extent of /). { H {] )) whenever� and l nro C-K ordinnl 

£or�1.Wio reprcnenti.ng the aaco ordind less tha.n k • HO\T re..r is t1. . - ? C-K. invarinnt'l It i:S not difficult �o see that it iB . C-K tinvnriant �up t o  .any 

.finite ordind, that is to any up to " • It lr: nlso C-K invnrinnt 

up to lJ+ l i  nnd tollowo !roti the i'act that t�e extent or A_,, (H ( >.�� · " ( '8))} 
is tho sot theoretic l1U!:1 or tbe cxtonts or 

.111' ( H l >.� .,. .  'BC 1)) )  I 111' ( H { >-. u.fy. � {2.})) I • .  

However, thoro 1tJ no obvious renaon to bolievc tho.t it i:s C-K invnr!.nnt 

up to "' ""2 ,  and in· tact it 1G domonntro.blo the.t thi� 1:J not the caso 

(Boo tho omL·or thi:l aoction) . tot us try to Bee whnt happenD 1f t:o 

try to provo thnt the extent or Ll-r .(H {.s1.c.. ( � "-rj"i- . u. ( 'B'l )}}}is the 

811.CG n's tho extent or 111' { M { � f: � '4./ � ,  u. ( �-:iJ))}mero At.c.t 'I'. " l'R.1. ) 
and c\ v...J '1'- .  ti,.. L�i.) ·O.re two C-K ordinal'' fo�lne 1"8J>..""etsonting 14? ,; 
Tio should have to provo that a i'oraul.n. intkrpretnblo a:s a. theorsr:1 .or 

nur.iber theory ia provable in C [ �e. [ 1' .... f � · k ( 211)) ] it c..11d only 
u tt is provable tn c[.r..., l )\ ,.. f � · "' l'R2.))] r1or. c [L..i. ( >.y'lo . Cl.. tB1))j 
is obtained r:rOm c[�u.�'f.. ,14 ('F.�]u1.. .adjoining all axioms . or f'orm 

(;a "' o )  1'� [ {"' ) G
.
"J f c�oJ ":J IF (s.1) 11c Au.f 1- ·  14 ,\1 . 

whero hv is tbo G�R. or cP, ' nnd  c{!ue (A�y.. . tc. ('B1J}]b obtained 

rrcm c[A c../"' · u l'B,JJ b'J ndJo1nin£: nu nxtoms or. �· 'tom 

(3 1<. .) 'P-f c[ /l.  ... f�- k (1!,JJ ["'• ' f<-i b] :> � C•.2> 
Tlle uio:.1.� tr.hich. mitat be ndjoined to ·p to obtain c[Acy1- .1J.{�aro 
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oaccntlnlly tho SMIJ nl'f thooc -wrhlch t:.'Us t  be :.u!jolncd to obtain 

C [ � '1..,._ .  t.c.{11:,.fl : hol1ev1)r tha rnlo s or pr�cedur" vrh:tch h1:1.ve to be 

nnnliNl bofor<l t.h( •:JP P.x!.o:ria c11.n lie 1.rd tt.on dom'l wtll iJl p;Elncrnl be 

or: H 'n < H.rrorent, 1.u 1;ho t.':'10 cnoEHJ . Conooquently (9 .l) r.nd (9.2) �iill 

be quite dll"forent n:x1o".'lo 1 rui1 tlli)re lo no reason to expect their 

noriscquencos to lie the mine . ;.\ pro�r unclersblllling or this ":Tlll 

tnnko our trcutmnt of question (b) nuch mol"'J intelligible . See elco 

!ootnote 

� Now lot ua tum to A,-. Thia ordin:il loJ.:lc 1a invr,riont. 
I 

Supposo . .£. , fl. rapreaent tho so.mo ord!nnl, :ind SUPi'O::Jo no l:o.vo 

n proo!' or t� nu;:iber tboorotic theoreq � L"l P .g. .. Tho forr.mln 

expro D ::Jing tho numbor theoretic tb€lorea doen not involve any odd 

typos.  llo\1 there is a ono-ono correspondenco hiltt."Cen the odd typos 
, rruch that if d/tf. -1 correnponds to �u. 1• 1.. and 21t - 1  to //.11 '- l. 

then J). {  � '  !') co11v :? i.l!lplica .g./{e ', b 1} conv . 2. Let uo 

modify tho odd t.ypo-nubocr1pttl occ\lrr!nz 1n the proor or ti • ro-

plac:lna ot.i.ch by !to w1to in tho one-one corrcepondoncc . Tharo m

oults a proof in P.a..' with tho Da::to end for:rula 6f- • 'l'ha.t is to 

� r.ny thnt !1' � io ;.ovable :In P .g. it is provnblo in P s;;.. ' · • AT 
is inv:irinnt. 

The quoation (b) cuut oo nn:nmrod necsnti:voJ.Y. �uch :norc cnn bo 

proved , but � ahnll £irst prove nn even T."O.ll!wr remilt which CM be 

estcbliahed \-Ory quickly, 1n order to illuotr.a.tc tho ir.othod . 

I aha.ll prove tllt.t nn ordinal logtc .f}. cc�1:1ot ba lnval"!unt nnd 

luwe the proporty that the oxtcnt oi' ./).{$I) i:J n otrictly incrensing 
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:tunctton o r  tho ordlm11 repro::icnted by .g. . Supposo A lw.:l thoao 

propartiea; �& ahall obtnin a contradiction. L�t f:/ bo n r:.F.F. in 

_norm..'11 form a."ld ' nithout free v:iriE.bles , and connf.dor tho proceGs ot 

earry:1ng out convtJraionn on ff (l) tt.'ltil r.-o hnva sho�m it coavertible 

t.o 2, t!1on conv>:?rtin� IJ { 3) to 2 1  then !J { '3Jand so on; nuppose 

t.hat nrtar r :rteps \te cro still perforaine the ccnvcroion on fl{ !:!Jr) • 

Thorc la a . fomuln -;{'/,., such thnt ;fl {ff1 r) conv �r £or £a.ch 
poo:ttivc intcaor r' Ilo·ir lot Z be n formula. S\Jch that £or each 

poa1tive int.P.g�r Iv ,. Z { �)  is nn orrlint.l iomuln rcprccentfag 

e.J IV , nnd suppose � is a tlfor.iber oi" the extent of" 4 ( �( �{Z) )) 
0 but not of"t.he e�t�nt or 4 (l�{z)) Put 

-
�� � A A. • .tJ._ { .k ( 6'� ( >- r.  2. {J:�{ �, t"PJJ, ]} 

tl:on /{ is n cotiplete logic. For 1f !J to dunl, thon 

·�{J� ( t\r. Z(rfv{O, r)}}} ropresnnt:J tl:o ordinnl 

·�- W "'+ 1 1  and .t.heroforc. /j+ { 8} conv 2 ;  \)\it U" /J ( �) is not ccn

"VCrtiblo to 2, t.'lon J;c. (� ( Ar;Z(:Ti ( 8 1  ,... )) )) represents 

en ot""J.innl not c:ccccding (,.) "" +  1 , rind 15.*{n) in therc!'ol"e n�t 
convcrtiblo to :?.  Sinco there r..ro no co:iplr:t9 logic fo�c tl1is 

pro70 r. our no�orti.o:i. 

t'e c�y no� prove core poworful rc:sultn . 

Inr.oT.lolotenoas thoo:roct'!. (A) If en ordi!lel logic A !s in-- · 

<vnrlant up ·to , nn ordinnl , o< , then for nit:! ord innl 1'01'1!1\llo. g 
rcprcacnt1ng nn ordinal /' , f < « , the extent or .{). { ..!l..) is 

contained in the (aet-thooretle) ·£iuo of the eitcnts of tho logics 

Li ( P) wl1ere P is i'!ni to . 
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(B) If nn ordinal locic Jl in C-K invnrinnt up to nn ordinal -
� , thon !or nny C-K ordinal for:i.uln E repl.•eaonting ·n:1 ordinal / 1 

f (. el- 1 the oxtent or .fj. ( H ( f! )  J in containod in tho (net-theoretic) 
aum or tl10 .extents or the logics fl ( H { e )) whoro F is a C-K 

.,.. 
ordinal i'or::n1ln raprenonting nn ordinal loos tha.n ""' · • 

Proof or CA.t. It Gui'f'ioea to provo that it .g roprenenta an ordinnl 

0 ,  "' �  o<  oc , thon tho oxtont or ../),.{.JJ.)  ia oontainod in/ the set 

thoorotic Out\ or the o:xtonts or tho logics ./J.{g.? whsro .g ropre:sonts an 

ordinal loaa thnn r . 'l'he ordinnl rzau::i.t be or tho .form ,, ""' (' whero e 
1& finito and 1•oprooented by! ar.;y, nnd ro ia not tho suocossor or tU\Y 

ord:lnnl Md ia not loss thnn W • .Thoro t.Ll'O two casoB to considora Q� C. 4) 

nnd ro :, 2w • In co.ch or thom wn shall obtnin n contr.ruUction i'ro: tbo 

aiinumption thnt thore .1B n n.�.F. :§ such tho.t .f).. (.g.J '!J} conv· 2 ·  'Tlhcnovor 

.g :reprc.oents r ' but 1o not convertibla to 2 ii' .g represents n o:.mller 

or-J1n!.l. L&t · uo. tnko ti?"Bt tho cano .a--0 � 2cJ .  Suppono, 04 � c.J"'°f'l 1 nn� 
tha.t .Q. ia nn ordinal i'orrW.n: ro1u'Oaontlng V. Lot fl he nny- W�F�F. w1tb 

- 1  a • · - · 

a normnl. tom and no i'rco variqbloo, und lot Z be tho cl.MB or tho!Jo 

poei.tiV!:, intoeora which nro oxcoedcd by nll intego.ra S'\ for "'hich .fi(!J) io 

not convortiblo to 2. Let /5' be tho clo.co of inttJcorG 2.'P such thllt .Ji. (J 1 .!! } 
conv 2 for no�jb!Jlonclnc to Z • ' The claso /! • togeihor with tho· clans 

<p or nll o:ld intogora 1a con!Jtructivaly. 'Onucornble . It io ' cvi�ont that 
tho clnns CDll bo enunoratild- wit.h ropet:Ltionc, and it1neo it iii irifinite the 

required cnumarntion cnn be obtcined lrJ stri.J.-J.ng out tho ropottttons.  

Thero 18, tl1eroforo1 a fomuln such tbnt 

runs �·through'·. the :Cormuls?. -.:of : \tho; ioless �G:�1+: .cp· without -
repet itions e s  r runs through the pos it ive intege rs . We de fine 
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� t- � t.. t.J' A 114. I'\ • ..r ''°" c 'J I:', tJ, IF fl ( tJ, a., w. ), tf II\ ( c.r, QI i\)) 
Thon '!l. L·(.g., I !!. } io an ordinal torr.iula which represents {o U' � 
is dunl.1 bu� a amtill.er , ordinal othel"Vlittc. , In !'net 

<Rf ( JJ:.1 1 81 �1 fj )  conv { S � { 3 f':, .a.., )  J {/Fl\ { .g. t J P. 1 �)  1 l::"t... { !1.t., �, � �, 
?low it !J :to dual_ IF+ tp ittcludeo nll integer& "11 tar which 

( .n,..46' {'Dlj ..Q.. 1 )} ( � 1 ':!:1) conv s. Puttina '' 1:- 114. / .!J..1. ,  �'  "P) 
conv 'V '' 't:or M('P, 'V) wo soo that condition (7.4) is snti:J.tied,. 

so tlmt 'Rt{ .g,.:J,. ' !! ) iu nn ordinal :l'or.ml.c. representing 0, . Br.!t 

U' � 1D not.  dual the aot /£ + ft' consist� or all intcgor:s Wt tor 

�l�ic,h {SIAMi.{J�.!2..1 )}{!!!, r) conv 2, Tihera r dopondo o1ily on fl • 

Iz� thio ca.sa <Ht( .!2.1 1 11) ia an ordinal fot'lllUb i'Elpreaentinc tho 

tcuitt ord inal ll:J /14./{.ft.Ui.,(��Jl."J.)J r }  , nnd this 10 s::i:i.llcr tb:ln 

Qo • Now consl.dar J5. i 

. � � /\ o. � . !J.  ( J'� (?U·{JJ.1 ,  tJ. ), P)J � )  R p 
:It f! ia drinl,. t{ ( B_. ) , b  convcr.tiblo -to 2, sinco s� ('Rt(.fl.1 1 - J, -J  
ropre�ents O Dut 1£ [!.. iG not dual it i.i1 not convertible to 21 

£or ...r� ('Rt-{g.IJ� )/ E} then. roprcsonto nn ordlnnl cnller than 

r· . In /'( r�� . t.llo.roforo 'h4�o 11 Co:tplote logic .t'omul.D., which iB 1.-:>po:J:J!blo . 

JtoTi' WG �o tho ca:so ro : /.) 'r.e introduce a W.F.F. · ·� such 

thnt 1f' IV io tho n.u. or a computing oachlne °" , end if b�y:. l"h e. 

�:"' corl\plete co�1'1gurati�n· or 6" tll<l, f'.iauro o 'bno boon prlntod �n 
M� ( � I � ) 18 convortlblo to >. 1''/t . 11l { 4- {'e 2. 'P 1" Z.y )I �/ +) 
(rzh1ch is nn orcUniil: f'ormula ro.prcaont1ng tbs ordinnl l) , but it 0 

� not been printed n 1s con.wrtt�10 to Ar} . rp C7", I, 4) 
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(':'rhich repreDonts 0) . How connldor t:J , 
_ti -? >-."' . .{). ( s'- {� { M� ( 11.JJ1 f' ), � J 

If ·tho mnchino never printa 0 then � (1+.·v-. Md" {tJ, rJ) represents 

"' nnd J'........, {�{Mtf(!:!)Jrjropresent.s Q This moans: that MO- (b) 
is convertible to 2.  Ir, hov:over , d{ r'Bver prints o, j� l�(Mq.(� ))1 e)� 
reprosenta n .finite ordinal ond � ( � 1::J not convertible to 2 .  In 

M we therefore have a ?J:eans of do torainin� o! c aachino whether it -
over prints o, which ia 1tlposaible22• (Turing [l) , k 6) . This co�-

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
£2. Thia part or tho argur.ient co.n equally '\Veil bo baaed on the icpoaai-
bility of doterminlnc of two T1.F .F. whether they are intorconvortlblo. ( Church [5] , SGS . )  

- - - - - - - - - - - - - - - - - _ _  .,... - - - - - - - - - - - - - - - - -
plcton the proof of (A) . 

Proof of (B) . It aurrices to provo that it f rcproaonh nn 

ordiniU. y , t.J "" �  r < «  then tho oxtont or /). l H { � ) ) ts in

cluded in tho set-theoretic sum or tho extents or {)... (,..I {§' J)  where 
§: repro:ients an ordinnl loss than O 

from tho n.ss�ption that there is a romuln � ?.bich is in. tho 

extent or l)..(H {f:!" )) 1.f fj roi,resents r , but not if 1t roprc

aonta nny m::nller ordinal. Tho ord inal r iG of tho form 

5_,. w"-+ S 'l'lhoro f <: �,.._, . Let 1! bo n C-K ordinnl 1'omula ropre

oonting r nna tp one roprcaonttng I -
l':o now dofino n for:nule. H� • Suppose tJ. io n ti' .F .F. in 

normtl forz:1 nnd without free vnriablo:J ;  conoider the pro�c:Js of 

cnrrJinr. out conversiono on fl (l J until 1 t i� brought into tho 

i'oro 2, then convorting IJ ('l..} to . 2, then fl (3} , nnd :so on. 

Suppo:s� that at tho r th step or this proco s11 r:o nre doing tho "1 rth 
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atop in tho converoion or � ( �.,) • Thus £or in::rtnnco if /!{ 3) 
ho not convertible to 2,  �r CWl nevor oxceod z.  Thon H� ( &1 .!: ) 
is to be conve?'tible to �f . /(!!!' r, b f') . for eo.ch positive integer 

y • Put 

s'V o.-1J> .A ti. ,.., "' .  � ( .L..� · lf4  (_ r\Q. 14f-1- • CA. ( � ..,  • 1 (.I'tJ.'.J � .. � {1 1<);, « {� {, '/(.>) 
'"' -.l) � 0. .... , 'f. .  2 { � f) 11.. [ >.-y • 1-lt (A,, y,, .r 'Y' l;J  )) ) ) 
Jj:L -7 XA . 4 ( t\(tt )  ... 'B )  

then I ony that lf 'l is n cocplotc logic foroule.. S'1" { .P, �' !:!) is 

n C-K ordind i'ort.'IUln rcpreocnting f +1t1 61 -+ k , and therefore 

Ha-(fl I r, S'} ( 'JJ. )} represents nn ordina.l �r 'r.hich incron:iea 

stoodily with incrottaing \"" , nnd tends to the lir::it b-+ � 'l.- ii' � 
is dual. Further Hq.( �I r, J''Y l!. J)< 1-ltf fi J S{rJ., S'y {�J) £or 
onch pooitivo integer � >. �� . u. ( �Y . H3 ({j, y1 S''j! {;p}) io 

therefore n C-K ordinnl formula nnd reprosents t.'lte Unit or the 

sequence :r:L > :r'2. , �.3 • • •  Thia is r+ l.J .... if � 1G dual, but n 

s::inller ordinal othorwise . Likor.iao !:) {(1) represents � if /} is 

dual, but n s:naller ordinnl otherwise . Tho ror:ula :B therefore 

bolongo to tho extent or .£). { f..I {t:'.t  (f!))} if; ;and on; if B is dual, 

nnd thi:s implioo thnt fi 1 ill a comple te loeic forouln ao r.ns aaoerted. 

But this iB itipo9:iiblo o.nd v:a ho.vo tho required cont.rnd 1ction. 

Aa n carollaey to (A) l:'e seo that /l.,_1 10 inco:uplcto and in 

rnct tbnt the extent or !\. f.f ( 'J) t- )  contnins the extent or 

A.H (£.) f'or MY' ordino.l romulo. � • Th.is result, augeostcd to mo 
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first by tho aolution of question (b) , mny also bo obtnincd more directly. 

In fnct 1r n number thoorotic theorco cun bo proved in any pnrticulnr 
p ,Q:. it cnn bo proved in P � '"' l1  . ..... (k, !, 4.) Tho rormuln, descrtbing 

nuJ::Jbcr theoretic thooremo in P do no .involv0 more thnn n finite 

� nU:3ber of types,  type 5 boing tho higherit �ecossnry. The ror:nulo.e 

doacriblrie ·tho nUI:lbor theoretic thooroms in any P � \fill be obti:r.tned: 
by doubling tho typo oubscr1ptn. now suppoae �o lw.vo n proor or n 

nu:nbor thoorotic theorem G 1n P .g nnd tha.t tho typos occurring 1n 

the proof are lllllonr, o, 2 ,  4,, s ,  a, 10, t1 , t;_ ,.  � ,  • • • <:-R • r.e 

cny suppose they hnvc been arranged with nll the oven typoo prcc�ding 
nll. tho odd types, tho even .. typos in order or i:w.cn1tude nnd the type 
3,.. - 1  preceding 2.111- l ir .p_[ l;!t / !1 )  conv 2. llo\'I" let each tr 
bo replaced b".f 10 + 2. r U1rou{!hout tho proof or {i- • ):e obtain 

o. proor or � in P >. "" "' ·  ..,(,., I, 11-) . 
As \71.th probloo (a) the ilolution of problom (b) does not r,oquiro 

tho use or hi.uh ordinnln (o•C• if r.e make the,S:Jsucption i.ha.t til�: 
extent or A (.g J 1a a otond1ly 1ncrens,nc functton or :tho ordinal -
represented by .g. we do not hnvo to consider ordinnlo higher than 

2 .. cJ -r 2. ) • Hor.over, if r.c restrict wbnt v:o nro to cnll ordinnl for

mu1'to in so:no -r:ny r.o oholl bnvo correspondina modii'icd probleos· (n) 
nnd (b) J the aoluttons will presumably be c3sentially tho lfMIO but 

will involve hi&hor ord1nt1ls. Sup�o3e for oxa.t:lplo that '? -'Ure/; iS c. 

l'T.��.F. t1ith the proporty tha.t "f!Lnl ( B-1 J JJ.i..)' ls nn o�innl for

mul.ndroprcsenting oc't �'2. r.hon �'1 , -£-... o.ro ordinnl fori:ntl:ne ropre

nonting fl. , « rospectivol.y nnd sup;>0se r.o c11ll a w.F .F. n 
I ,._ 
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i..:.ordlnnl i'ormul."J. Tohen. it i s  convertibl.e to the. roru .J,,.,_, (1'"""" {.fl:., 'b t  ), .f} 
'lvhore J1. _P - 1  

are . ordin.U :f.'omul11e·.of wh�cb p rcprcoent::s n 

,!'init.c ord.in!il .. . We ctr/ de£'ine . l-ordin.al loaies, :1-eo::pleteness nnd 

. .  i;,.!iivs.rinnce in nn ob-.ritJUS ., 'f:tJ.Yi nnd obtaj.n a Soluti.on Of. problen (b) . ' . ' . . . . 
. m1ich dif!'ero rro� the solution 1n tho ord!M.ry cnnc in th.qt tho 

. .. � . ' : . 
� ord1nulc losil thnn IA> te1'e the plnco o!' the finito orc!t.'li!l.S.,  L!oro 

generally tho cn.soa I hr.vo 1n t1ind will bG covered by th� follo�ir1c 

thooror.t. 

Suppose. l?C ' hn.vc o. cln.nll V or i'o�lm roprcsenting ordinnls in 
. .  � so�o t:nnnor ';'fC do not _ propose to specify definitely, nnd e l'IUbact U i3�. � �- .� -:  � ... ..... --:-. � - - - � -- - ..... - - -- .... - - - -- - - - .... - - - - ._.. 

The. subset U wholly aupel"Zedea V in v.•bnt follo'ITs. The introduction 
or V zorve s to enphMi!ic the .fact tho.t th!l sot or ordinalo rcproccnted by r;in.cbers or u fll13.- hnve ga.p�. 

0£. the clil.:JG V ouch tlw.� 
(i) Thero ia n .forauln .fP ::mch that if. T <mu:io.rn.ten a .  Gequenco - . 

D!' r:cc.borti .or u roproaentin�· nn increnning coqunnco or ordinnl.51 then 

, ·:f{IJ is ::. met'lber· or u representing the- limit or the sequence • 

. ( ii) '!hore b ll. tor:nuln 1:.- mtCh tll.'\t g {�I � ) in 1.!. :<Owber 

Of U .  for t"":D.Ch pf?.ir Of positi\"O 1ntogereJ H1 ,t "" nnd if it rcpNtentn 

e U. k. then f � £ 1 I if oithor #f < lt4 I or l+c � At � H 4' k I 
I · llf, lt IM l '1  (111) There - 1G a formula G- auch that 1r fl ie "- t:cnber oi" · U  . - -

than fr (,8) 1.5 a. r.1o::i�bor o!' U roprosonting o. larger ordinal tbnn doos 

�- , arid such thD.t ti- { f { �;-!:1 " )) , til.miya re�re:Jonta nn ordinal 

not , larger thun f,,. ,... .,. + 1; . ·i . :.  

!m'e der!ne n -\l'-iromril loGic to be e. W.F.F • .L\. such that Ll ( f!)  
in a. logic whennvar A - bolo:1es to V. 

- -fl. i:J V-!nvar!Jlnt it' the extent 
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of J:i { 8 )  clependa only on the ordinnl roprcDcnted by- .E Then 
-

it is not poonible for a V-ordinnl loc1c ./'i to bo V-invnriant and -
lw.vc the property thnt U' �I reproocnta n greater ordinnl thnn .('2... • 

( ft uhd £-z.. b:Jth boing mombors o.e U) then the ·extent . or ./J-C C1) 
io crca.ter thnn th·.: extent or ..£1. { C�) • 

We BUppose tho contrary. Lat J bo n i'omula belonging to tho -
extent of ./).. { §! {� (A'<". ff { .,.., 1)))) but not to tJ1e extent of 

.{). { § { t\ ..- .  5-( ... ; 1 )) )3u'D?,osetho.t our nosertion 1S fnlso and 

that 

ff / -'l (\� · !). ( {fJ{ A 'r · H� ( �, r1 !;"))1 £) 
Then If 1 is a complcto logic . For -

I-� ( �} !-1 f) COllV §' ( � t" I  � ... ) 
;-{ � ... 1 !s � J is n ocqucnco or V-ordina.l formulno repre senting nn 

increno tns acquenco or ordinnl:l . Their limit lo rep re sontod by 

S [r\ .,.. . H�(ll  .- i. ). ; . let ua see \l.hn.t tbio li::l1t ia. · Firot 
- CJ _ ,  J -

supposo f!. b' .:ct'iinlt the� � r  tends to Infinity ns V' tends t? 

tnflnity, and @ ( � t"'. /.f� (fi 1 V1 f )) therefore rep:rasents tho 

snme ordinal ns � { A t-, If { t-, 1} } In this cnso v;e must hnvo 

]51 { fl  ) conv 2.  How suppose f1 is not duo.lt ""v- io cvcntu.nlly 

equal to so::.c con:J�t number, � .ony, nnd @ { Ar .  kq (fi, 1 "'i Ji)} 
raprommt:J the onr.o ordinal aa � (A .- .  !§' { �J r)) which ia floaller 

thnn that roprononted by 'f! {  � t"' . S ( .-, 1.J} 1 cnimot therefore 

}ii;> belong to tho extent or @ ( A r . 1-f 3' { B 1 t" J §} , nnd }j { fi) io 

not convertible to 2. Wo have proved thnt/1 ' is n co:nplcto logic -
l'lbich "t:s iDposcible . 
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Thia thoo1•c1n cen no doubt be improved in t1anj• .imys . Hor.ever, it 

io sufficiently eoneral to show that, 11ith al.cost. nny rco.sonnble 

notation for ordinals, completeness is incocpatiblo with invnrinnce. 

r.o cnn still give n certnin �o&ning to the claso!£icntion into 

dopths with highly restricted kinds or ordinnla . Suppose ""° tnke n 

particulnr ordinal logic 4.nnd n particular ord inal fomuln. i' 
-

representing the ordinnl Ol- say (preferably n lnrgo one) , ruid ·roe 

rc otr1ct ourselves to ordinnl rormulne or t r..c form IV{ f, ,!!: ) 
r.o shall then hnvc n. clnsai:f!cntion into depths , but the extents or 

n.U the logics r.e so obtain will be contnined in the extent or a s ingle logic . 

v:'o now at.tempt n problen of n rntbar dU'ferent chn.rncter, thnt 
or the co::iplet.eneos of fl.,, . It ls to be expected thnt t�is ordinal 

logic is complete. I cnnnot nt present give e proof or this , hut I 

cnn eivo n proof truit it is col!lplete ns regards a sii:pler typo or 

thc.orcr.i thnn tho number theoretic theorems viz • thoee or tom ' fJ(x.} 
vnriishoa identieul�' 1'1he1.:0 f) (�) is pr!nitive recursive .  'I'ho 

proof will hnvo to be much ebbroviatcd AS r.e do not wioh to co into 

tho ror:nnl detnUs or tho systor.i P. Also tbero is e certnin lock or 

dofhiitonooa in the problem as at present stated, owing to the rnct 

tb:it tho ror.aul.ne {i- , /! , Ml' 'll'Crc not co::iplotol.y defined. Our 

nttitnde horc is that it ia open to tho sceptical render to givo 

detailed definitions for these tormilao and then verify tbnt the re

m1n1ng detn.ila or the proof cnn bo tilled in uoing his definition . 

It ls not nsserted that the se dcto.ild cnn be filled in r.h:itovcr bo 

tho deflnitiona or 6- , £ 1 M 'j>  consistent with tho propertioa 
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olrdu<.17 ro c!Uirod of' ·thoz1111 only t.h� t ·it io oo vrith tho moro 

naturtll dof'initioruJ. 

I oholl provo tlw couplotonoon thoorc:a in the tolltr:iing 
tom. lf /;-[!. ·o J is a rccu1•0!0J1 'fo1'Ui.110. end � [OJ 
J;.[ of? o J , . .i ·  • nro oli p'L"Ovoblo in ? , than thare 11 a 

c-:r:: orcliri..111 i'ol"ll\lln ft :mch thnt (1C..0)/;/}o] in provobio 1n 

tho oyst(:tJ, :i? f ot logic ctibtal'tm'd from P by odjoJning 
ao axiOI!l!J o ll :rorculno t:ho3o g ,oR •:s n1� of tho form 

(providecl thoy ropr-�cent p1�01>ooit.tonn ;) 
li"irnt let U!l defino tho i'OI"!!lula f1 • Su:..i1>oso '! io u r: (t\•1) 

\1 .F .L"'. r;!tb tho p:i.�ovorty tha t � { � ) c onv 2 if J;.Lf o] is 

• 

!)rovable in P ,  but 1 (� )  ,oonv 1 if""b[ft .. ·•>o] 1a i1rovobio in 

? (j;> W boin(; tlD8urtld OOWliotont) • lat e 00 definod by 

e � {r\ "' "' . ""c ""t u; � >J J ( � ..,.  "' .  (J"c tTl v;, u.JJ) 
and lot V bo a fortlllla. i;·ritll · tbo i>roport ioo 

V{2.) o onv 

V{1l o ouv 

� CA- • &A.. {J'14.c. , u) 
� c.. _ CA.. c r, e c S1.c.. >I 

Tho oxiatonoo o� suoh o 1'orr1Ule. ia ooto.bliohou in 11ocno 1, 

c orollary on p m�o .. lio"1 put 
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* 
I no::;ort tlmt !J. , !! aro C-K ordinal fom ulna \'lhanovor 

it. io true tll:;1t J;..f. OJ • IJ..[f o] , • • • oro all provt'.ble 

B * is ). ·..y-'t. . u.{'lJ) \':bore in l? / !!'or 1n thin ccum 

and thon )\�.,. . � {!1) 
" l  � l'y), y, &A., f 1 �) 

conv A u./ "f.. · Y [ J> l � ) ,. � , I.A,, f) �} 
o onv ). CAf � . V ( 2., � / "" J { ' x.} 
o onv A lA.t � . { � "'  . "' { !1.s U)} ( � 1 u / y 1 "') 
conv �lA.Y ¥- ·•· � (S'ec� ��f,�·,;;llicb io o 

C-K ordinal £ormuln , c.nd 

�u..f1.. .. S{Jd)fj,.e.i p, � f,t<.) conv.;· �e- ( ).. y'f.. . � ( tu.c,, U) 11.,f .1 "A) 
�ho�o rolutiontt hold �or an1 arbitl"{lry �ositiva into5or � 

and thorofore �* is a C-K roramal 1:'ormul.11 (condition (tJ)  
P• 32) : i t  foll0\'.7n 1nl:.-;ed1atoly'  tJiat fl iD n loo n C-!i: 

ordinal i'onmiZld • .  It romino !tp · provo that (x0 ) JJ.[?'.o] lo 

provable in l? ; Jf. • .  'l'o do thio ·1t io nccoo ·Jor-3 to e::.mttino 

tho otruot�- mt fl,* in tho': cuoo tllat ('f..0 )J;.fl<oJ 19 
:ralno . '.Le t uo toupposo thrrt1:V1,b.[f(4-- •)0J io t.ruo so th·-� t r:D{�) 
aonv 1 ,  and lbt ua ooneidcr ] whoro 
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oonbo1� o'i: ita fI.tnt1n::J.Ont:ll OGqU9noo ; but 

c onv A c... f'f- V(J., g;. J u., f> x) 
conv i\ "" f  tc- .  { A c,.. . � { I, <El( A.cJ)J(g. , "'i f·, x )  
c onv � C4 f "'1-- • (EJ (�t.,, "' f1 l<} 
c onv A u.y � · { � u. .  � f(iY{r...JJ } (  !'u.cJ "i f> x) 
c cnv >.. u.t� .fuc. { IB{ fut.)J tt ,  VJ Y..} 
c onv .kc. { >.. IA.. f1- . fE>( .CU.c.1 CA, V' )(;, V 
conv L..c ( j ) 

'l'h,.n  of o ourco h1I>l1oo th·:t � c( p und tborotoi-a tlmt 13 
in no C-K ordinul :ComUla.. Tbio , oltltough fimclau:ontal 

to tl10 i;ioosibllity o:r provinG -our QOtiJ�loteneso ttiooroo 
do:u.l not form an actual ntop in t!U> n�gu:mi)nt. Roughly 

opoal:ing our crgu::iont 't.'1111 tltlount. to thio . Tllo roll.ltion . . . 

( o.s ) 1I:1plioo th:it tho oyotrm ? .! 1o .tr1oono iatent and 

tlYJ1"01'oro tll'.it P �* in incon!liotcnt , nt1d in<10;1d no 011n 

prove 1n J? • (end 0 i'Ol�iori :in ?* � ) th:�t N c�o) b [-,..a ]  
iuyl1o�J tho inCO?'..OiGtcnoy oi' P fl. • On tho otbor h.11nd in 

R ff* .P - , .• 'J can l>l'ovo tho cons intonay o:r P - • 'l1ho 

inoo1m1ntonoy of ll l io vrovod by tllo Godol argu;:i.ont, 

lot un rotu:·n to tho dotuilo . 
'.l.'110 oxio:::n in p, g nro tltooo wbo�e t;..R• a nr�� ot tho i'ot-m 
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noplnoing :, by- J1 c  (� ) thin booomoa 

.G4c ( �1 i\u.. 11 . 1to. { 'ffr{i> 11.)1 it-{?,, i..)), 111 M'P , r )  
oonv Ji ( ].( �� 11 . i.t (ir(.,..1 ,..,)1 'tlr{s,, "'-})1 11 1  M'P , �J 

, opnv ] (� .... .. . kA. ( 'itrl.t1 '4.i 't:rf.; i..J).1 l'i ,  M,,_, r )  
11" ! conv 2. p -to 1 -

it ! conv 2. '1' -
1: rthon ,.;o i·cam1bor the OO!::ontitll property oi' tho fo:mulo � 

•.::o ��co that tho nxiot1'3 of P ! :I.noludo all tomuloa 

of tho form 

(�1' a) P�1 � [Ko, f-c,,J oJ :;, ,f 
whore V is tho G.R� oi' tho fo1i::tUltl r:f' • -

Lot b bo tho G.H. of tho 1'omul.n LJt 
#\l@Yo }  {q � o) { <fl11-1'§ f!.01 "'/ 0J . S6 {z o1 zo, /"]} ( Ill) 

s� ["01 'fo 1 'Z a  J lo 0 partioul.ar l'OCUl"SiOn forouln GUO?l thot 

r. u; t*l · "41, 7 Sb i..f (JI r o, f OJ holdo if ena only tt I\. 1o the G .u. Of tl10 

rormit of oubstitutins f {1A4) 0 ror Z0 in, tho toroula. 

\7honc G.R. io l nt ull y1oint:J wllcro z0 is f1"eo .  IJ"Jt 'l' 
be tho G .P.. of tho :fo1'l!1Ula of. 
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� onu ·.·:o can prove in P 

13 
? -

ainco £ � (6' 
io tho 1'0oult. 01' oubotitut!n;:; T 0 1'01 .. 2 ln 0 _,a ; whcnco 

r.J @ yt>) 1'�1 � [ 'lo J f CfJ o] 
io provnblo hi r. U::; inz ( 9.4 ) ognin W.:> sec th.'"lt 

be proved in P !'.! • Eut 11' \';o cc.n provo [ in 

( 9.5 ) 
[ c an 

? g than 

t::o onn !>rovo 'lts I'rovab111ty 1n G ? - , tho proof be 1ng in 

? ; 1.o .  l-:o ccn :vravo 

in P (oinco 1' io tho G.n. o:t J:. ) • llut thia contrridiotn 
( 9 .5) , oo tlr.1t if "-'JJ..[f (4.-8)1� ti·uo"" , , e oun provo a 

coutrodiction in l? � or 1n P .ft • !low ! n:Hic rt th�i ·t 

tbo t'Jllolo ar\;U!JOnt up to thls 1>01nt. con 'bo our1·iod tbrouzb 
rol.'tDlly in tho oy.otom P ,  in :root 'thr'!t if' c bo tho 

G.R. of "-'( 0 :.  0} than 

N ( a.t)h-[ o.o] j (otr;, ) ql�p fi* [ U"o ) f (C) 0] (O.G )  
i o  provable 1n P .  f1111 not attempt to g1vo any :::r.or,:t 

dotni�od proof of th13 mmort.1on . 



-78' -

13 an ax1001 in P !! • Combinins (9.6) , ({).'l) "'° obtn1:1. 
' . . . . fl (�o) Ji..C� 0J in P - • 

�his cOI!l.Plotonooa thooron na usual is or no value .  

Although it ohcr.10 'for inat.l'.lnce tlmt it :la poosibl.O to 

provo Form!lt'o loot thooron with A'P ( tt  it is truo ) 
yet th� truth or the thoorom would reall y ba nGGLtl1:1.ed 

by takint'; o. cortqin fomuJ.a ns an ordinal 1'01'm\lln .  

T11at /i 1' is not invariant tll'ljl' bo provod onolly by 

our senor�l thcorou1 c.lte1-nativoly tt t•o11o·;m :rron tho 

fa.ct th.'lt . 1n :proving ow.� pa.r·tie.l complotonasn theorem 

wo- novar uood Ordinnln l.dahGr than w + 1 • C:Chin �not 

cun al3o be i.uled ·. to · prove th�t .fL ,., 1a not C-!t 

1nv111·iunt up to w + •2- • 

1 1 3 
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10 . Tha contihuum h:Y..I!.Q!.!te�!� .  : l\ dif!rosni.on 

Tho matbods or e !.) :Ja:r be applied to proble1�a which nro con

atructive nnc.lofiUcs of the .continuun hypotho ato problem. The con

tinilllLl hypothesis nsuortn t.bnt d. 'No : j\(l. ' in other words thnt tr 
lJl. ls tho Grmll.eat onlinal � groator than 4' such thnt n Stl·rion 

with ordor typo a( cnnnot ba put 1.nto one-ono corroopondonco with 

the positivo integc1•s, thon the ordinnla lesa thnn Wl, can bo put 

into ono-ono .corrospondenco uith 'the 'nubsota or the poe1tivo i11tegoro. 

To obtain a conatructivo nnaloguo or this propo:J.1tion 'l":(t 'l!lllY replace 

tho ord:tnn.la 1003 thnn �1 oit.1-icr ·b'.r the ordinal i'or::n1lo.n , o� by the 

ord tnnls reproucnted by them; \'TO rnn:r replnco tho subsets of the 

posltivo lntogors eithor by the computtible sequencoo or i'igurea o, l 

or by tho doocription numbo r:J of tho · mo.chines whlch compute these 

ut.iqucncoa • .  In tho :?ll.lMe r  in Vfhich th� correapondonce io · to be set 

up thoro is . also noro thon ono� po:.1i.d.bili t.y. Thus evcin v1ben r.e use 

onlj ono ldnd or ordinn� i'ornrol.ti �hero ia 'ntill gront nmbiauity n o .  

to v.hnt t.lie conotructivo nrui.logul) or tho contlnu� hypothe:d.s nhould 
:?3 ho.. I ohall provo n Dingle result in this connection • A nur.-1l'Cr is- - - - - - - - - - ... - ...... ... - - � - ... -- ... - - - - - -. - - - - .- - -

A :mgcootion to coneida r tbia problem cue to me indiroctly from 
F.  Bnrnstoin. A rclntcd. problem 11.nG sum�eatcd by P.  Bornnyn. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � - - -

or others r.iey bo prOV�d in. tlla llJl.MO Wll"J • 

V.o n:sk ' Is it poooiblo to find u com�1:1table .functiot'l of ord lnnl 
i'orcn11.!le determining 0. ono-omt corrcapondenc& botf.llEln tho ordirialo 

. roproaonted by ordinnl ro1'1lUl.C.O nncl thEI cornputnblo uoquoncea 0£ 

tlgurco 0' l? ' .  More accurately .• Ia there ti. tomuln F ouch that 1!' · � · · · -
Sl ls nn ordinal i'or:n11ln and 11 n poo1t1ve integer then P { .g. , � )  -
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is convertible to l or to 2, nnd such tllnt f ( g.., it) com'" £ ( .Q. � 1! ) , 
I '.for ei:ich poaitivo intogor "" , if nnd only 1t g nnd .g rop1·oflent 

th& 0:0.e ordinnl? 1 .  The nnawer io' •uo• , na wil l. be seon to folloTT 

f'roru tbi�n  .tliere ts no formula f such that f {.fl:.) onucerntcs a 

certo.in soouonce of inte(Iera (each beintt l or 2) v:hon .Q. represents ' . -
� nnd enuaaratoa o.notlmr sequenco nhon $2. rcprosonts o. If thore 

.ls such an .f. then the�o io nn a.. aueh that f (g J �) conv f ( ') t-J !=} 
tr� ropreDcntD l.J but f (.B-, � ) and ,  E �� �)  .nrc convortible 

to di.fforcnt intogera (l or ;?) 11' '8 representa o. To obt!iin o. 

contro.dictlon from this WCI introduce o. T1 .F .F. G-,... not unlike M J- • 

Ir tho eachino 'eJt whoso D.H. is :i-\ hns printed 0 by the tir.lo tho 

"1 th CO!llpletc confi1JU.r11tion iu renchod then 6"' { � 1 �) conv 

A ltt " . IM ( IA. J I, 4 ) othe1·w1se rr IM (�I 11:1 ) conv 

Afjt · R.l { 4-('f', t7+-21'j � r· How connidor f {� � � ) nnd f ( o!.A.'"" { 6 � { !J) )1 �) 
It aJ.tnevor prints o �tk... (&""' (!3 >) ropresents ·tho ordilml � • 

Otbor:fi50 it reprosento o. Consequon� theso t�o fori:ruln� nro 

convertible to one anothor if end on'.cy 1r g/,(, nover prints o. This 

gives uo a conno or tollirig or ney mncbino r.hethor it cvor prints o, 

which is itlpoasible . 

Ronul.tn or thin kind ·havo of course no renl rolcvnnco for the 
clasoical continuu.� hypothesis . 
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�athcnaticnl roaoon inc tnS.Y be rcgnrded rnther scho�nticnlly na 

the exercise of n combination or two . 1'ncul't.iea24 , which wo may call 
- - - - - - - - - - - - � - - - - � - - � - - - - - - - - - - - - - - -

24 i:'e aro leaving out or nccount that z:ioat important f'a.Culty which 
d! stlnGUiahos topic:J or · intorost from othoro; in' fact. 1'.'o aro regnrdil'ig 
tho function of the I!lathennticinn n:J Dimply to deterc.tne tho truth Of 
ful!!:tty or propositions • ...... - - - - - - -- - - ... - - -- -- - ·- -- ,- - -- - --- - ......, ..;.. · ·- -· - - .... ... .... _ . _ 

which v:o. f..'IC'.Y co.ll �nt.u\tfon n.nd in��cnuttz. The ncttvit;r of tho intui

tion conoists in making opontnue oun judgmonts 't.'hich nro not tho rom.ilt 

of cou!Jcious trains or ronaonine. Theao judgments 111•0 ortcn, but by 

no muns invnrinb� correct (lea.vim� aside tho question as to wht\t 

ia t?:cont by •correct• ) .  Often it  ia ponotble to !incl aomo othor '\'u1y 

of verifying the correctnei:fa ,or · en intuitive judgment� ·ane';� £01• 

instance judeo thnt nll po31tivo integora ru.·e uniq\10].y' fnctor1::nble 

into prit!a a;  n dotntled cnthor.mticnl nr.gm!lont lends to t110 sru:io result.a. 

It will o.l:Jo involve intuitive judgments, bUt they will b& ono s lens . '. . . 
. : , ,  

open to cr!ticitfo1 tbfU1 tha or!Blnnl judcme'nt about rilctorizntio�. I 
ahnll not attempt to explo.fo th!:J idoo. or ' intuit.ion • any more 

oxpUcitl.y. 
Tho oxorci:;c or ineenuiig in tmthocitltics conaints in aiding tho 

intuition thl•oi.1Bh suit:.blo v.rrnnser..antn of proponit1on:s, nnd porlmp:J 

coo:et1cc.i fleurcn or drnwinga . It . is intended thnt when thiino nre 

reni.ly woll nrraJlbod vo.lid1ty or t�1e !ntuit:lvo utopa l'l'blch Aro re

quired cnnnot aoriously bo doubted. 

Tho p�rts played b1 thG�o two focultiou differ or course from 

occno1on to occe::i1on, nntl fro::'I mrithemutician to C'.nthemat1ci.nn. Th1o 
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nrbltrnr!nooa can bo removed by tho introduction ot a formal lo�ic . 

The nocesaity for uaing the intuition is then groa.tly reduced lT.r 

catting dolm i'o:mal rules tor carr/ing out Wcronces which c.re nltrays 

intuitively vnlid . When working with n fori:ml. los1c the idea or 

inacnuiti takes n more dofinito sho.po . In gencrnl n i'o�al logic r.Ul 

be .rrao.ed so ns to ndmit n conoldorable vnrioty or possible steps in 

nny stage in n  proof'. Ingenuity will then determine which otapu arc 

the �oro protitnblo for tl10 purposo of provinc a pnrticulnr proposition. 

In pre-G3del times it \'m.S thought i>'J som� that it would probnb� bo 

posolblo to cnrey thin progrll!l to ouch n point that nll the intuitive 

judgi:ionts of mnthor.lllttcs coulci ba replaced by ll fin1 to n\Ulber or these 

rules .  Tho nocossity for intuition would then b e  entirely ol:!.minntcd. 

In OUl" dincusa lono,  ho�over, w e  have gone t o  tho opposite extror.o 

and elir:linated not intuition but ingenuity, t1nd this 1n apite of tho 

.fact t�nt OUl' aim .he.rs boon in much tho snme direction. We havo been 

tr.ring to sne how f'Ar it is possible to ollrdnato intuition, :md 

lonvo only ingenuity. t:o do not �ind how much ingenuity is required, 

and ther�fore nsslll:lo it to bo e.va.11.o.ble in unlic11tod supply. In our 

cetru:ia.thomnticol discussiono w o.ctually cxprooo this oooumption 

ruther differently. vro nre t\111.wti nble · to obtain i'roi:\ tho rulea of' n 

fortW.� logtc n i:ethod for cnumeratina the propositions proved by its 

mcms . V:o then iriag!no tlmt nll proofe take the form or a oonrch 

through this enumoration i'or tbe theorem for which ti proof ls doo1rod. 

�n this way ingenuity is roplnced by pntiencc. In the!le hourlotic 

diacuos1o� honevor, it is bettor not to make this rdduction.  
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Orrin& to the impossibility OC findinG a £or�al lo�iC which Will 

wholly ol!i:iinn.te the noceosity of uoin(! intuition we nr..tura.lly turn 

to 'non-constructive ' nystems of logic with �hicb not nll the stops 

in a proof nl'c irochnnicnl, t10::0 bc tne intuitive . An cxncpto or n 

non�onatructivo logic ia n!forded by a.ny ordino.l logic. l'Iheh �� 

ha.vo an ordinal , loeie no nro in a ponition to provo nu."nber thooretic 

theoro�s by the intuitive steps of re·cognb ing f'ornru.lno no ord inal 

f'ormulaa , and tho mocha.n lcnl oteps or carr-.ring our convoralono . 

Tlhat propertie s do �o deoirc n non-conotructivo loGic to have if wo 

nre to rn!lko unc or it , for the oxpro :;sion of muthemllt1cnl pro;>fn? 

trc r:rsnt it to bo q\tite clonr when 11 otop mnkos use or intuition, nnd 

when 1t in purol,y formnl. The strnin put on the intuition ehould · be 

n rn1nmuo .  Uost ir.iportnnt o r  nll, it mu:Jt bo beyond all rea:ionabla 

doubt ihnt tho locic lends to correct rooultl) whenever the intuitive 

stop:.1 arc corroct25� It .ia o.lno desirnblo that the iogio be adequate 

ifs-nit: ��u7X:m:n� 7e-,,:;; ;a:ru: .- �t�i� �o� :r-c:u;ti: ��ctd:d-thn; 
the critor1on of tho . corroctnoBD Of tho intuitiVG fltopi> :!bo tho car;.. 
rectnofrn or tho tinnl result. The mennintt bccozea clenre1• �· encb 
intuitivo atop be rogardod as o Judgment thnt n pnrticulnr proposition 
ill true . In the CD.t!O or t.n ordino.l logic it is eJ.wny:J n judemcnt thnt 
n fornula in an ordinal i'ormul.a, nnd this in cqu 1vnlont to judetns 
that n nttt1bo r thoorotic propooition la trut h In thio caso then tho 
rcqUiroMnt lo tbn.t the reputad ordinnl locic !g, nn ordimil logic. 

- - - - - - - � - - - - - - - - - - - - - - - - - - - - - - - - - - -

for tho o:xproanion of number theorotic theorems, ':ln 01-der that it i::ay 

bo uaccl 1n motnmnthomnticnl. diacuoaionrs (cf 2, 5) . 
or tho parttculnr ordinal .logics t"tl hnw diacusocd � ond /i,1-J 

cortnin]\y rlll not oattary us . In tho en.so or A v:-o nrc in no . H 
be tter poaitlon thnn with a constructivo logic . In tho cv.s� of A . . . T 
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(and £or that �ntt�r nlao .Li ) we nl\'l by no ccnns certain thnt we 
H 

shall nowr obtr..in sny but true rcaulta, because wre do not knotr 

whothor llll th9 nt1::1bcr theoretic theorems provnble in the sy�tc� P 

o.rc truo . To tnkc A ns n i'undcu:lontal non-constructive logic !or 
,, 

cotact!tbcc�ticnl nrgumcnts \70Uld be �ost unsound . The1-e re�ains tho 

cystoo or Church which is !'roe of tbcao objections. It is probably 

coopl�to (nlthough thia 110uld not noccanarlly :ciecn much) and tt is 

beyond rcn.nonnblo doubt tho.t it . nl-r.ays leads to correct rc oults26• 

2a-;;t� :��� �o;c :;;.a:s-f;o: � ;e;�� :y;t;?l- �0-1: ;s:o�t7n�fy 
the sn..":le Tm"J ns .D..., nrooe from P. By cm nreu::ient sliUnr to one 
occurring in � 8 we can ohow thn.t tho ordinnl logic lcc.da to correct 
rosultn U' and on� if C is valid; tho validity of C is proved in Church[l] , making use or0thc results of Church nnd' no�scr Ll] . · 

- � - - - - � � - - - - - - - - � - � - - - - - - - - - - - - - - � -

In tho next section I propooe to doacribe nnother ord1nn.l logic , o! 

n very different typo, which ia suggested by tho �ork or Gentzen, 

and which should nlso bo e.dcquato tor tho formalbe.tion or nuaber 

theoretic 'theoreirls. In particular it should bo , suit&blo ror 

proofs ot' metaciathemnticnl tl1eoroms (er � S) . 



1 2 0 -85-

.,l'P. . Gent.,;on5w.�or,d1rm_l,,..losics . 
In proving tho , conaistoncy, of c cortnin �rsto� or for�nl. logic 

Gontr.en (Gontzen [l]) hno mlldo use of tho principle of' trannfinito 
induction for oi-dinals leos tho.n f0 , nnd aucaeotcd thnt it is to ' ba  

expected thtt.t tranarinito induction curded :suf.riciontly rar would 

oufi'ico to solve nil problet?a or conabteney. Another nuggestion to 

bnse oystecs of logic on tro.nsfinite induction hns been mado by Zortlolo 
(Zo:r:uolo [l] ) .  In this aectton I 'propose to ahow how this mctliOd or 

proor J:!EL)' be put !nt.o tho form or a formal (non-constructtvo) loe1c, 

nnd nt•terwnrds to obtnin !'rem it nn ord1nn� logic. 

Wo could exproas the Gontzen mothod of proof . fomally 1n thb 

tt'tlY'• Lot us talco th.e ayrite:.'l p and ndjoin:' to it on axioo a.a.. mth 

tho intuttivo l'.l!!nnina that tho VT.1".F. -B- . iD tU1 ordinal tor::ulu, 

· whenever ma feel cortllin thnt ..a.. 19 n n  ordinnl i"ormuln. 'l'hi:s 1:J n . . ..,,., ' ' 

non-constructive cyutem ot logic which p:nf oaoily be put into the 

form. or an ordinal logic . By the lllGthod or e. 6 t10 tw.k,8 corronpond 

to the o�·stcn or logic con:datine; or P nith ·tho n.xioro. 4� adjo!nod n 

logic formula. L .,.  : L.si. is un · eftcct1vol.; cnlculublo !Unction or ..g • 
� - 1 1 .nnd tbore ia thoroi'oro o. forculn A ·  cuch tlmt /1. (.0.) conv J2. .l l.Gf � - -

A 1  · . ·  

for cnch formule .Q. • .LJ:..6 1.s �rtainly not o.n ordinal 1o61c unl.co:s 
P lo w.Ud, nnd thoro!oro connintcnt. This fori:i.'l112ntion of Gentzon• B 

iden would tbcrof oro u,ot bo appUcnblo tor tho problem. T;i th which 

Gcntzon him:.lcl! wan concernocl, for bo vma · prov!nu tho connlotonC, or 

n Bynto::l weaker then P. lloTJovor, thore a.re other imyn in ' �hich the 

Onnbon ::iethod or proof enn bO ror-nlbod. I slinll explain onB , 
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beginning lT.r describing o. certi:iin nyatcci of �bolic logic. 
· The oymboln . 0:£ the c.Blculua are f , X · , 1 , · ,  0 ,, S , 

I � ' T' ' tl • /::.- , J ' CJ ' { · ,  ( , ) , = · ,.  und tho 

CODQ.'L ' , t .  v:c urta capital German letters to .stnnd tor vnrio.blo or un

determined �equencos or theao symbols . 

It ls to be understood that iho relationo that Tro are about to 

define hold ·an}f when compelled to do 00 by thG · COriditions WC lay down. 

The conditionD ahould ba tnkon tocethar as n oimulta.neous i."lductive 

do.finition or nll the relations involved, 

Suftixea 

I io n suf'!'ix. I£ O" is n mltfb: thon � is a. suffix. 

In}licol! 
· 1  ·. q t:t I is : tin �x. It '1· is an index then � is an index. 

' lfomerical variable!! 
· , 

If· � is a su!'f:lx . thnn X. r·io a numericnl varinblo . 
Functionnl vnr!nbloo 

Ir r is : A suf!'!x· and 1 is an index thon f ';''! i!J e. func

tional vnrinblo of' index fl . 
Argumnnts 

( J )  is an nrgumont or index tr {AJt.} 1o an nrgw:iont 

or index �· o.nd ¥ is a 'teri:i then (.iJi �) is an nrgumont. or inilGx :/ I 
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lhtr.iornlo 

�D ·,, i:s.:.a J nuilsral . 
i l . � 

1.r rt1s. n nurn:aral than s(; �)is °' nuro.ornl. 

In entai::atbe:iat:tcnl ot.n.tel!lcnts Tto lllmll donotc tho numorill in 

S O")( 0 ) 
. 

which S occurs r tL-:en UJ ) > • 

t.xproooioua or atv�n in� 
A functionnl v�riti.blo ot: index .f 1a �·· expression o!' index ;/ . ,., . 

If 'fV la n nua·�ral then it . .11i nlno an oxp:e.sa:1� . of !ndox . .  

Guppooo 1{f i s  en expre•oion or index 1 • t one ·or l.ndax :f I 
nnd l{ ono or indox 

9 1 1  11 
then {fl A{/) nnd {A 4J) o.re :  expronis-

iono Or index j • whllot {f AH) arid { '°J. CD (I.,} =\•· @- /lg) 
and {"a' ! 'tJ { {f,) •r<i expre•Siona or l.ndox ! I 

Function con't�ntn 

llfl e:tpra�mion or 1ndox :J in whieh uo ftmcttonnl' vririn.blo . : 

oecurG 1:.s n !\incUon connto.nt or !nde:t :/ It . in addition , <fl.: cio 
not occur tho cxproa�ion 1� cnlled n nr;tnittve tunot!on ,cgnpt.en!._. 

Tnm.J!. 

0 i:s a term:;. 

, . . ' "' . 

Evory nucorica.l. varinbl.o. 1= n tore. 
' 

It � b nn cxproas!on or index :/ nnd (JJt} iff nn1 n�$Uf.9tft 
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or indox 1 t11on ./{/-(""') is n tern. 

Eou11tion! 
Ir 1¥ 1. and rl- a.re temo then .'Ii ¥' '1. ir.t an oquntion. 

frovnblo oquntiono 

1 2 3  

'\10 dorinn \thnt 1a meo.nt D-.r tho provable equntiono .relnti�m to 

n. eivon net or equatlona ns nxioms . 

(o.) The provnblo Elqun.tions include nil the nx1ooa. Tho a::io:w 

nro ot tho !'ori: ot oquD.tto�1s in which the cyabolB i'- 1 A 1 IF , 

/ , 0 , ./ do not appear. 

" I I (b) Ir fill f'Jl cxprcos::toh of index \/ and (JJt} is on 

nrgw:;ont or index 1 thon 

(PAOJ [ ;/Jt x ,  ' x 1 1 ' ) = b/ (1'i x 1 1 ' " I :. )  
la n provablo oqUB.t1on. 

(c) If "U' 1• en oxprosllion or !ndox :/ I, aid { ,/Jt,} 10 ... 

11l'gul!lcnt of indCX j I thon 

is . n provnble equation. 

(d) It AlJ is m oxproasion or indox 3 ,. and ( LJt,} 10 m 

argu:ient or · index :/ 1 · thon 
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ia a provo.blo equation. 

(o) Ir 4ff'. is an expl"(JDtsio.n ot indox 'J and "J' i:i ono of index 

:/ 1 • nnd ( a} is on urgumont or index t/ ,: thon 

ia n provnblc equation. 

(r) rr-'Y1t1s nn OXi>rcO:>i.on or ifidc:c I then ?V( :> )  =- n 
!a n provi.l.blo oquntion. 

, (g) If Alt is on expression o! index j .and (/{_ ono or indox 4 11 1  �(}�., ) . d i  v , nnd ( -vv nn nrgurJent or index ..J , then 

end 

nro provnblo equationo. Ir in addition � iri an oxprounion o!' 

indox :/ 1 ond 

is provablo thon 

�.I( !  'a-)( a S() x 1  > ),) = �( AJt,'#'(4S(, "f."),) , S(, 'y.,,,), 

(-f- 1 '- J f}) (�'f{ IJl,, ${, x ,, )� ): J,) 



-90- 1 2 5  

nnd 

nro provnblo . 

' (b) xr� � � and �:  \ nre -provable wharo �1 ' -� • � ' 

nnd � aro tor:n:s then �4-: � o.nd tho roaul.t or substituting ·9J· 
for q!t,. at any- PJll'ticular occurrence in � :. � 2- are provable oquntionu. 

(i) I£ � = t, 1s n provnblo equo.tion then tho rosult of substituting 

Nl:I tom £or n p:irticuln.r nu.'!l.Or1ct\l v.n.rinble throur,hout thlo oque.tion in 

· provnblo . 

. el I (j) SuppoDo tho.t 1 • q 1 nre exproo&iono of index v / th:lt ( ,IJt,) 
i:s nn nrgtl!lltlnt or index J not containing the nut'lcricnl varinblo de an d 

thn� 1{/{ ,IJt, O> } ::.4J-1 ( IJt q}1s provnblo . .,\loo suppoao thnt 1f V-) 

a.dd "d { ,(}/,, �):-411( a �..)) to tho c.xiomB end rcntdct (1) SO th.nt 

it cnn n9vor bo nppl.iod to the numoricnl variable at thon 

lxtco:ios n p�vnblo equation; 1n tho bypothot1cnl proof or this oquntion 

this rulo (j) itaolf may oo u:�od pro·.ridod that a dil'fcront varlnblo 

ia cho:zon to to.lee tho pttrt or � • 

Under thetie conditions 4{j { t(}f,, � } �ff  1 ( ,()/, JE.J)in n pro

vtlble oq,untion. 

(kl Suppose thnt '1f • /JJ ,_ ,  q ""' expression• or index J 1; 
thnt { dft} io nn c.rgu.'l\cnt of' indox .J not containing tho nu.-:erlcnl 
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'vadnblo Je. und thnt . {If { ,/Jt, 0) } = 4/-, ( IJt �) and 1?() /t { /)/,, SG ae) h ) , s 6 �) h) :; 0 nro pravnble equationa . 

Supposo nl�o tbnt if wo add 

to tho nx1ol!l!!, and a�ain roatrlct (1) co as not to a.pp� to .0\2. than 

(U.l) 
boco::ian a. p�vn'blo equation; ill 'tho hypothotical. proof ·0'1�. (12.l) tho 

r.Jl.c (k) L'll11 bo uood 11' o. tltrrerent · ve.rJ.o.ble tiikoa tho part or � 
Under thou conditions . (l:?.l) b a provable oq,uation. 

\7e hnvo nou comploted tho derlnttton of n provablo equation ro

lntivo to o. Civcn set or exio�a. Hold. wo :sbllll 011011 how to obtain 

nn ord!nnl locic fro::i thia ca.lculuD.. 'the £1rzst otop ia to not up a 

corroa1,ondonco bGt-ooon oome or the cqua.tiona and number theoro.tic 
theororis, in othor wordiJ to show how they can � intcrproted ne number 
theoretic theorems . Lot fl bo � pr�itivo .ClUlct!on conatnnt or indo:x 
1 1 1 • A{f daocr!bos ii. cortnin primitivo recursiw tune.ti.on f{"}�, do

terrd.ne� by th<.: condition tho.t tor ail r.4 vFh'i.::: the equation , 

I S ,.,,.,( ) S l'V; () ). ·). � S (tpl"4, 14)} ( 0. }  
1ff (I . J OJ ) l ' J J ) ' 

1 almll bo provable without ustnr. the nx101:1B · (o.h Suppone nlso that 

in mi c:cprona1on o� 1ndoxJ Then to the oquation 
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ll'e mako correspond tho m.lt.\ber tbooro ·tic theorer.i wll1ch a.ssertn thnt 

for ottch niitural number 11\ thoro ia a natural nu�bcr 11 auch that 
<p_ { "'11 �J :. 0 • (Tho circurn.at:mcos thnt thore i:J r.ioro than ono 

equntion to roprcsent CQCh numoor theoretic theorem could oo nvoided 

by a trivinl. cwdif'ication 01' the cn.lculu$.) 
How lot us a11ppo:se :!lo:ie dof:ln!to method is choeen for de scr1b1na 

tho oot:J of o.xioins by means of positive intogera, tho null set or axio::io 

be1ne deacriood by tho integor l. Dy nn lU'k,"Ul!Hlllt used in e 6 the�o is 

o. W.F.1'. I: ouch th!l.t if r ia tha integer de ncr!bing a set fJ of' 

momn then .Z (t) 1a a loe1c rormul.n. enabling us to provo just thoso 

DU1'!1bor theoretic theorem:> l'Ihich aro assoc1ntod with oqua.tiona provable 

\Tith the ubovo doeoribod cnlculuf)• the a:dotl:J boinr, just thoso de i;

cribed by tho numbor r • 

I :ihnll show two \vayo in which tho oonutruct1on or the ordinal 

loai.c l!l:l.Y' bo completed. 
In tho rirut me thod w mnke uso o:C tho · theor:r or gcnoro.l rccursS.ve 

£unctiona (Kl.cone [2] ) . Lot us ccr.i:Jidor all equations or t.'le !'or::t 

which a.l-o obtainnblo from tho nxio:i:s by tho nso or rules (h) , (1) . It 

is a cansoq�enco or t.'1c tbeoren of oquivnlenco or A -dofinnblo nnd 

gennml. recureivo function (Kleone. [5] ) that 1r r(  1tt1 h} 1a r.ny 

� -detlnnbla !'unction of two vurio.blos then �e can cl1oose tho nxio'.ll!J 

oo that (i2.�) "With � :. Y( t.c.\1 II\) iD obtn!nablo 1n thia y;:iy for each 
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pair or nnturnl number:s u... , w , e.nd no cquntion or the i'orra. 

(12.s) 
is obtainnblo.- rn po.rticulo.r this io the case if �(�, k) is do

tinod bj tho condition that 

.g.{!!41 �) conv S(J) implies 1' '- ,.- { ,,.., it) 
y{ OJ 14 ) i 0 nU "' "'7 01 y {"J o) :. �  

whoro g. iD o.n orclinnl tomi.iln. Thora iB n .method for obtaining the 
a.xi� givon the ordinal rormuli, end consequcmtly a for::ntlo. · $ic. 
ouch that for any ordinal i'oroula. .g.) ??it. ( g} conv !?;l· Wbaro ht. !o 

tho integer describing the set or sxioma corre:spondlng to g · Then 

the fori:lula 

io an ordinal logic . . Lot ua lonvo the proo� of thie a.sido tor tho 

proGent. 

Our second ordinnl logic io to · bo conatructcd by a motbod not 

unllko tho ono m:i used in conntructina Ll . We begin by o.oaienina 
1' 

ordinal. forcrulna to all soto of o.xlo�s onttsfying certain conditions. 

For thiu 'purpo'cc n ngn1n conaidor ·thnt pnrt ot tho .cliiculus \lhich 
io obtnincd bi reutricting • expraaolons ' to bo tunctiono.l varinblca 

or tR. or S . nnd rcatrlcting tho ince.ning; or . .  • terin' nccordingly; thl1l · 

naw �rovable oquntiono aro eivon by conditions (a) ; (h) ; (1) •. tocothcr 

with an oxtrn condition (l) 
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is provnblo . 
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Wo could dosicn a mnchinc which uould obttlin �ll equ.o,ttona or 

the form (12.P.) , with ""' :#:- � , prowblo in thia ucnse 1 and cl.1 or 

the f'om (12.3) , o:xcept that 1� t7ould conrm to obtain nny i:ioro oquntiono 

-nllen it had once obtained one of tho latter ' contrru:l1ctoey1 oqutitione. 

1'�ro: tiui description or t.he machine 't'a obtain n .torculo. g ouch thn.t 

is obtnined by tho t.:mchino ( f {�, �) conv 1 1r 'R {J S ( .. ·•) (, D,, ),,  S '"·!l(, OJ ),, ) :. 0 
is obtained by the ma.chine 

!}_.(IA-\ . "') conv ! nlwaya , 
.,., . - 1 -

Tho !'omul.tt .Q. is rui of'!'octivoly co.l.culnblci tUnction or ' tho : set' or · . - . 

nxio:is, Md. thareforc i\lno or lflt,, ' conaoquon� thoro its n !'omuln · M 
such t.hat M L�) conv g when '4v doacrloos tho not or IJ.l:io::a;. llo':t 

lot c � b9 e. rorr.:uln �uch thnt it b io tho G.R. or a. !'armula M ( � j 
then ("' ( � )  ca.iv· !V, but'. othcrniae Ck\ (} ) conv l. Lot 

A� � � c-.ra. .  T'{ �u . _ 'Z.{C""'(rk(� '4-})1 ,<l.) 
Then � {g.J fi) conv 2 if end only 1.C' .g conv M{�)'wre """° 

c}oacrlbeo ,;; e,ot .ot: rudo�s uii!ch, taken with our ci1lculu:s1 anrti.caa 
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to prove the oquation r.hich is, rouchly spccltint:1 oquivnlont to 
� 

r fl iu dunl' . 'l'o prove thnt .A lo nn ordirull logic it cu£!'1coa - � ' 
. 

to prove thnt the calc:ulua w!.th the e.:rlo:il'J described bjr hv proves 

on�� true nucber th�o:rotic theorcmo. when .fb is nn ord1nsl tomul.e.. 

Thfa condition on � msy  nlno be; cxprcasod in tbio �· .. tot uis put ' ' tD( s {r....){ ) s ( ... ){ )·. )' · ftt ( ( Iv it Vt� cnn provo t\ ) ,  > D.; , ) o,, , . · :. 0 
\rlth (n.) , (h) , (i) , Clh tho condition ic thnt "1 4' <. "' bo a  t:oll 

ordorinct or tho natut"al 'nU!:loora tmd tha.t no contrudtctocy oq_uat!.on 

(12.5) bo provnblo "1th the sa1:10 rulos (n) , (h) 1 (:l.) 1 (l) .  Lot ue. 
' 3  ' 

a�� tl1a.t :ruch n oa t of axio::i.a is ndoiontble. A.�. is nn ordf.nnl logic 

if tho cnlcu.lus l.Oo..da to nono but true numbar theoretic thool'i!ma whon 

c.11 lUL'lllaotblo sot or nxior.is iD uccd. 

In tho enc� or Jl: , 'RA C.  { g) dcscriboo nn nd1:d.:miblo uoi 

or t1xio!!ls 11henevor � ia nn ord1nnl t'ormul!l. jl.� wUl th�reforo 

bo c.n .ord1nnl 1ogic U' the calculus loa.da to corroct reaulte when 

ndotssiblo nx.to:s oro used . 

To prove that ndtl1oaiblo a:domB ha.ve t.h!o rn·oporty I ohnll. not 

attompt to do coro than oho'IV bo\r intorprotnt1ous can b� alvon to tho 

equntionc of tho calculua so th�t the ruloo of 1.nforonco (u) - (k) 
booots 1ntu1tivoly vnl1d mothodi> or deduction, end no that the 1i_nter

protntion nu1-con tl'ith ow• convention rolr.'rdine mtrJbol' thoorotic theoroma . 

En.ch oxproonlon io too nnmo or a. t\tnction1 tth!.ch r.iny oo only 
p1U"tiol.zy dofinorl. Tho cxprc.aston S corroapondn sicply to the suc

cossor function. It'd ta oitlmr � or a i'unctiono.l vnt'!nblo '1.nd i? 
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or ind.ox (/ ( 'f+l r;im.bols in t.ho index) thon lt corresponds to e. 

!'unction � or 1' n!\tural numoorn deflried tu1 rollono. I!' 

1/ (, .r ' "> l o,,� s lr-.. >(, o, ), ' s l"fJ {, o,), ) "  s u1{, 0,) 
is provable by the uao of (a) , (h) » , ( i) 1 (1) only, then 8 ( r-, , · • · / \I"' 'f) 

� bns tho vnlue t . It nmy not bo doi'inod tor nll ar�nto, but its 

valuo io el1n1.ya unique , !or othcrni:le 'f.'o · could prove a •contrnd!ctor.r' 

oqttGt!on and Ml�} t.•ould thon not. be e.n ordlno.l .romula. Tho 

.functiono corroapond1nr; to tho other oxpreosions nre onscntinlly do

rtnod b:r (b) - 1(r) . For ·c-r.mnpl.o ir 3-' ·  ia tho function corrcspondinG 

to 1 nnd a tht.t COl."r<!! Sponding to (r f) then 

8 ' ( r, J "'i- , . . . , �71 f, w.. ) :.  q- {r, ' r'I. , • .  ·1 t-7',, ..._, 2) 
The vfiluoo ot: tho £nnot1ons nro clcr..rly tm1qUo (when dorined n.t all) 
if uivon b'J on.o of (b) • (o) • Tho caso (£) ia lonD obvious olnco tho 

tunction dt1rtncd appaaro nirio 1n the dd.tiniontJ• !' shn.U ·not trcnt tho 

cnso or .tqj Q '<fl ns th!a !o tho well knolln. dci'in!tton �· priiuitivo 
rocursion, but lot u:J :sbo\7 the valuoo of the function corre sponding 

to (le/ / � { 12_} nm uniquo "' l?i tho�t loss , ot cenonili ty ::·o m:iy 

supposo tlw.t {�) is of indox I ,. We hnvo thon to ebow tbnt it 

h { "'-) io tl10 runctton corresponding to 'fl nnd r ( ,..,, k,) t.'lzit 

corroupo-ildina .to 'R , nnd ·k ( 1.c, V, IJ") n giv-.;n i'unction ond a.. 

c. �von no.turnl number then tlw o qquattons 

l(o) = � «) 
{{JJi..,i) : k {  k'( ... ·i.); IK +1 ,  ./ (A{lf\+1}}} f) 
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<lo no t. evor assi&n tl'lo different valuoo ·for the tunctton l ( W.} 
ConsidQr those clues or r for vthich Tio obtaln more thnn one vnluo or 

f(t-) i! nnd eupponc tlw.t tho:ro io at lonat ono imeh. Clonrl;r 0 
:f..B not one .for .f { 0) cnrt only bo definod lTj ft) .a\D the relo.t1oti <'.< 
io a 'l?Ol.1. ordering thore is on intocor t"0 auch that 

·is not un!qua, nncl if S' c(t r0 und .f {s) tn not unique tbon Y'0 << S 

Putting S e.  /,. "( t"0 ) wo find nlao .S < <. .., 0 which is impoaisibltt. 

'l.'horo is thoro.tore no v:ilue tor which \'l'e obtdn more than one vcluo 
\ 

for tho function R-l t"') • 

;.'.OU.r' 1ntorprotat1on of oxpresoions nu .functions f!lVO us nn im.

tledinta intorprotation .for equa.tlonts with no nnmcirlcal variables.. .  In 

ccnoral \'ID 1ntorprot . an  equation with numorlclll vnr!ablea as tho 

conjunction or � oquationa obtninablo by roplnc.lng tha var!Bbloo by 

num(trala. With thit1 intorprotntion (h) , (t) . fll'a seen to be "rnltd 

z:othoda ·or proof. .In (j) tho provability of 

"ff{,(}/,, Slx1,); )-: !J1 ( /Jt.S{? �., , ); ) 
tthen "lf { ,(Jf;, X 

l l  
) ::. i' :L { !}!,,, X. / ) } is 1111ou�d to be intel'

pro ted no meaning thnt tha implicutieu between tht! so equations holda 

for o.ll substitutiona or nu.-ncrals !or X. I • To Jt1nt1fy this ono 

ahould sntiufy oncnoi.t; t�t tho:.io 1apUcnt1ono al:wm.ys hDld whon the 

bypotheticnl · proof cnn ·  bo carried ou·t;.. Tho ru1o of procoduro (J) 
is now socn to bo zsimply Mthcca.tionl induct.ion. Tbo .rulo (k) iD ·l'l  

tom or trn..'lni'inito induat.ion.. In p.rovinr� th:l vo.iidity of (le) ml 

may ngnin aup,oac [t()f,, ) iG or index I .  Lnt. r{1t1, 1.1.) ' a-tu.. JJ t1 f'4\)) '/..(IA.) 
llo the' tun.ctions correspondin{; roiJpect1w�· .to ·'f? .,,()f ;(}/ . ,  .JI!, • ) -(/) -(/1 '(} 
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Roprooontotion ot or41nalo , by ordinal formulno 
by C-!: or<linnl 1'ormulno 
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33 
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A Remarka b l e  B i b l iogra p h y  

The bibliography of Alan Turing's PhD thesis is most remarkable in that every author cited 
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for many results in logic, particularly the fast-growing Ackermann function, which is 

computable but not primitive-recursive. 

Alonzo Church, 1903- 1995, created the A-calculus, on which almost all modern program

ming languages are based. He is buried in the Princeton Cemetery. 

Gerhard Gentzen, 1909- 1945, was a pioneer in proof theory. He died of starvation at the 

end of World War II after being arrested as a German national in Prague. 

Kurt Godel, 1906- 1978, stunned the mathematical world with his great incompleteness 

results of 193 1.  Shortly thereafter he moved to the Institute for Advanced Study in 

Princeton; he is buried in the Princeton Cemetery. 

David Hilbert, 1862- 1943, the most influential mathematician of the early twentieth cen

tury, was chairman of mathematics at Gi:ittingen from 1895. He contributed greatly to 

the increased rigor of mathematics, and in 1920 posed the problems of whether math

ematical truth and proof could always be derived by a mechanical procedure. Between 

193 1  and 1936, Godel, Church, and Turing demonstrated conclusively that the answer 

is no. 

Stephen Kleene, 1909- 1994, earned his PhD at Princeton under Alonzo Church in 1934, 

and was extremely influential in the creation of modern recursive function theory. He 

spent most of his career at the University of Wisconsin. 

Emil Post, 1897- 1954, was a mathematician and logician best known for helping create the 

field of computability theory. Having emigrated from Poland to New York as a child, he 
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completed a PhD at Columbia University in 1920 and then a postdoc at Princeton. In 
the late 1940s he was the first to recognize the importance of Turing's two-page digres

sion (pp. 18- 19) about oracle machines. 

J. Barkley Rosser, 1907- 1989, who earned his PhD under Alonzo Church in 1934, is known 

for the Church-Rosser theorem (confluence of reduction) and other important early 

results in A-calculus; later in his career he worked on prime number computations, the 

Riemann zeta function, and numerical methods, as well as logic. 

Bertrand Russell, 1872- 1970, was a philosopher, mathematician, logician, and social crit

ic, and a PhD student of Alfred North Whitehead's. Their joint work, Principia Math

ematica ( 1 9 10) ,  was an attempt to derive real mathematics in a fully formal, logical way. 

Practically it was not a great success, but the attempt was enormously influential-the 

title of Godel's great 193 1 result was "On formally undecidable propositions of Prin

cipia Mathematica and related systems." 

Alfred Tarski, 190 1 - 1 983, one of the greatest logicians of the twentieth century, emigrated 

from Poland in 1939 and taught at the University of California, Berkeley for forty years. 

'�long with his contemporary, Kurt Godel, he changed the face of logic in the twen

tieth century, especially through his work on the concept of truth and the theory of 

models" (Feferman). 

Alan Turing, 19 1 2- 1954, an English mathematician, earned his PhD under Alonzo 

Church in 1938. He is widely considered to be the father of computer science and 

artificial intelligence. 

Alfred North Whitehead, 186 1 - 1 947, was an English mathematician, logician, and phi

losopher. 

Ernst Zermelo, 187 1- 1953, the developer of modern set theory, worked in Berlin, Got

tingen, Zurich, and Freiburg, except during the years 1935- 1945, when he resigned his 

position in disapproval of the Nazi regime. 
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