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Preface

Alan M. Turing, after his great result in 1936 discovering a universal model of
computation and proving his incompleteness theorem, came to Princeton in
1936-38 and earned a PhD in mathematics. Before 1936 there were no univer-
sal computers. By 1955 there was not only a theory of computation, but there
were real universal (“von Neumann”) computers in Philadelphia, Cambridge
(Massachusetts), Princeton, Cambridge (England), and Manchester. The new
field of computer science had a remarkably short gestation.

The great engineers who built the first computers are well known: Kon-
rad Zuse (Z3, Berlin, 1941); Tommy Flowers (Colossus, Bletchley Park, 1943);
Howard Aiken (Mark I, Harvard, 1944); Prosper Eckert and John Mauchley
(ENIAGC, University of Pennsylvania, 1946).

But computer science is not just the construction of hardware. Who were
the creators of the intellectual revolution underlying the theory of computers
and computation?

Turing is very well known as a founder and pioneer of this discipline. In
1936 at the age of twenty-four he discovered the universal model of computa-
tion now known as the Turing machine; in 1938 he developed the notion of
“oracle relativization”; in 1939-45 he was a principal figure in breaking the
German Enigma ciphers using computational devices (though not “Turing
machines”); in 1948 he invented the LU-decomposition method in numerical
computation; in 1950 he foresaw the field of artificial intelligence and made
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remarkably accurate predictions about the future of computing and comput-
ers. And, of course, he famously committed suicide in 1954 after prosecution
and persecution for practicing homosexuality in England.

But as significant as Turing is for the foundation of computer science, he
was not the only scholar whose work in the 1930s led to the birth of this field.

In Fine Hall,! home in the 1930s of the Princeton Mathematics Department
and the newly established Institute for Advanced Study, were mathematicians
whose students would form a significant part of the new fields of computer
science and operations research.

This volume presents the manuscript of Alan Turing’s PhD thesis. It is ac-
companied by two introductory essays that explore both the work and the
context of Turing’s stay in Princeton. My essay elucidates the significance of
Turing’s work (and that of his adviser, Alonzo Church) for the field of comput-
er science; Solomon Feferman’s essay describes its significance for mathemat-
ics. Feferman also explains how to relate some of Turing’s 1938 terminology to
more current usage in the field. But on the whole, the notation and terminol-
ogy in this field have been fairly stable: “Systems of Logic Based on Ordinals”
is still readable as a mathematical and philosophical work.

Andrew W. Appel
Princeton, New Jersey

1  Fine Hall was built in 1930, named for the mathematician Henry Burchard Fine. During the
1930s it housed the Mathematics Department of Princeton University and the mathematicians
(e.g., Godel and von Neumann) and physicists (e.g., Einstein) of the Institute for Advanced
Study. In 1939, the Institute moved to its own campus about a mile away from Princeton Uni-
versity’s central campus. In 1969, the University’s Mathematics Department moved to the new
Fine Hall on the other side of Washington Road. The old building was renamed Jones Hall, in
honor of its original donors, and now houses the departments of East Asian Studies and Near
Eastern Studies.



PREFACE XI

OSWALD VEBLEN, chairman of the Princeton University Mathematics
Department and first professor at the Institute for Advanced Study. His stu-
dents include Alonzo Church (PhD 1927), and his PhD descendants through
Philip Franklin (Princeton PhD 1921) via Alan Perlis (Turing Award 1966)
include David Parnas, Zohar Manna, Kai Li, Jeannette Wing, and 500 other
computer scientists. Veblen has more than 8000 PhD descendants overall.
He helped oversee the development of the pioneering ENIAC digital com-

puter in the 1940s.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)
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ALONZO CHURCH, professor of mathematics, whose students include Alan
Turing, Leon Henkin, Stephen Kleene, Martin Davis, Michael Rabin (Turing
Award 1976), Dana Scott (Turing Award 1976), and Barkley Rosser, and whose
PhD descendants include 3000 other mathematicians and computer scientists,
among them Robert Constable, Edmund Clarke (Turing Award 2007), Allen

Emerson (Turing Award 2007), and Les Valiant (Turing Award 2010).
(Photo fromthe Alonzo Church Papers. Department of Rare Books and Special Collec-
tion. Princeton University Library.)



PREFACE XIII

SOLOMON LEFSHETZ, professor of mathematics, whose students include
John McCarthy (Turing Award 1971), John Tukey, Ralph Gomory, and Rich-
ard Bellman (inventor of dynamic programming), and whose 6181 PhD de-
scendants include John Nash (Nobel Prize 1994), Marvin Minsky (Turing
Award 1969), Manuel Blum (Turing Award 1995), Barbara Liskov (Turing
Award 2008), Gerald Sussman, Shafi Goldwasser, Umesh and Vijay Vazirani,

Persi Diaconis, and Peter Buneman.
(Photo courtesy of the Princeton University Archives. Department of Rare Booksand
Special Collection. Princeton University Library.)
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KURT GODEL, visitor to the Institute in 1933, 1934, and 1935, and professor
at the Institute from 1940, had no students but had an enormous influence
on the fields of mathematics and computer science. His 1931 incompleteness
result—that it will never be possible to enumerate in logic the true statements
of mathematics—stunned mathematicians and philosophers with its unex-
pectedness. His methods—the numerical encoding of syntax and the numeri-
cal processing of logic—set the stage for many techniques of computer sci-
ence. Major results of Church, Kleene, Turing, and von Neumann clearly and

explicitly owe much to Gédel.
(Photo from the Kurt Godel Papers, the Shelby White and Leon Levy Archives Center,
Institute for Advanced Study, Princeton, NJ, USA, on deposit at Princeton University.)



PREFACE XV

JOHN VON NEUMANN, at Princeton University from 1930 and professor at
the Institute for Advanced Study from 1933, had only a few students (includ-
ing the pioneer in parallel computer architecture Donald Gillies), but also had
an enormous influence on the development of physics, mathematics, logic,
economics, and computer science. In 1931 he was the first to recognize the
significance of Godel's work, and toward 1950 he brought Turing’s ideas of
program-as-data to the engineering of the first stored-program computers.
Stored-program computers are called “von Neumann machines,” and essen-

tially all computers today are von Neumann machines.
(Photographer unknown, from the Shelby White and Leon Levy Archives Center, Insti-
tute for Advanced Study, Princeton, NJ, USA.)






The Birth of Computer Science
at Princeton in the 1930s

ANDREW W. APPEL

The “Turing machine” is the standard model for a simple yet universal com-
puting device, and Alan Turing’s 1936 paper “On computable numbers . . . ”
(written while he was a fellow at Cambridge University) is the standard cita-
tion for the proof that some functions are not computable. But earlier in the
same decade, Kurt Godel at the Institute for Advanced Study in Princeton had
developed the theory of recursive functions; Alonzo Churchat Princeton Uni-
versity had developed the lambda-calculus as a model of computation; Church
(1936) had just published his result that some functions are not expressible as
recursive functions; and he had stated what we know as Church’s Thesis: that
the recursive functions characterize exactly the effectively calculable functions.
In hindsight, the first demonstration that some functions are not computable
was Church’.

It was only natural that the mathematician M. H. A. Newman (whose
lectures on logic Turing had attended) should suggest that Turing come to
Princeton to work with Church. Some of the greatest logicians in the world,
thinking about the issues that in later decades became the foundation of com-
puter science, were in Princeton’s (old) Fine Hall in the 1930s: G6del, Church,
Stephen Kleene, Barkley Rosser, John von Neumann, and others. In fact, it is
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hard to imagine a more appropriate place for Turing to have pursued gradu-
ate study. After publishing his great result on computability, Turing spent two
years (1938-38) at Princeton, writing his PhD thesis on “ordinal logics” with
Church as his adviser.

If Turing was not the first to define a universal model of computable func-
tions, why is the Turing machine the standard model? These three models—
Godel’s recursive functions, Church’s A-calculus, and Turing’s machine—were
all proved equivalent in expressive power by Kleene (1936) and Turing (1937).
But Turing’s model is, most clearly of the three, a machine, with simple enough
parts that one could imagine building it. As Solomon Feferman explains in
his introduction to Turing’s PhD thesis later in this volume, even Godel was
not convinced that either A-calculus or his own model (recursive functions)
was a sufficiently general representation of “computation” until he saw Tur-
ing’s proof that unified recursive functions with Turing machines. That is,
Church proved, and Turing independently re-proved, that some functions are
not computable, but Turing’s result was much more convincing about the defi-
nition of “computable”

Turing’s “On computable numbers” convinced Godel, and the rest of the
world, in part because of the philosophical effort he put into that paper, as
well as the mathematical effort. Turing described a process of computation
as a human endeavor, or as a mechanical endeavor, in such a way that no
matter which of these endeavors was dearest to the reader’s heart, the result
would come out the same: the Turing machine would express it. In contrast,
it was not at all obvious that the Herbrand-Gédel recursive functions or the
A-calculus really constitutes the essence of “computation” We know that they
do only because of the proof of equivalence with Turing machines.

The real computers of the 1940s and 1950s, like those of today, were never
actually Turing machines with a finite control and an unbounded tape. But the
electronic computers that were built, on both sides of the Atlantic, by von Neu-
mann and others, were heavily (and explicitly) influenced by Turing’s ideas, so
that from the very beginning the field of computer science has often referred
to computers in general as Turing machines—especially when considering
their expressive power as universal computation devices.
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What became of the other two models—recursive functions and A-calculus?
Most mathematicians working in computability theory use the theory of re-
cursive functions; computer scientists working in computational complexity
theory use both Turing machines and recursive functions. Turing himself used
A-calculus in his own PhD thesis, but, as Feferman explains,

One reason that the reception of Turing’s [PhD thesis] may have been
so limited is that (no doubt at Church’s behest) it was formulated in
terms of the A-calculus, which makes expressions for the ordinals and
formal systems very hard to understand. He could instead have followed
Kleene, who wrote in his retrospective history: “I myself, perhaps unduly
influenced by rather chilly receptions from audiences around 1933-35
to disquisitions on A-definability, chose, after general recursiveness had
appeared, to put my work in that format. I cannot complain about my
audiences after 1935

For Feferman and Kleene, and for other mathematicians working in the field
known as “recursive function theory; the particular implementations of func-
tions (as described in \-calculus) are rarely useful, and it is usually sufficient
(and simpler) to talk more abstractly about the existence of implementations,
that is, about definability and about enumerations of computable functions.
Soare (1996) points out that the very name of the field (in mathematics) “re-
cursive function theory” was invented by Kleene; Soare suggested “comput-
ability theory” as a more descriptive name for the field, and pointed out that
Turing and Godel used “computable” in preference to “recursive” Of course,
Soare is both a mathematician and a computer scientist, and it is my impres-
sion that many of the latter used the term “computable” more frequently than
“recursive” for decades before 1996, influenced (for example) by Martin Davis
(PhD 1950 under Church).

So there were several models of computation, all known (by the end of the
1930s) to be equivalent: recursive functions, A-calculus, Turing machines, and
in fact others; for a few decades, mathematicians studied what can be repre-
sented as recursive functions, while the computer scientists studied what can
be calculated by Turing machines.
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But the A-calculus did not disappear. In 1960 it became the explicit model
of the Lisp programming language (invented by John McCarthy, 1927-2011;
Turing Award 1971, PhD Princeton 1951 under Solomon Lefschetz). And \-
calculus is the implicit model of the Algol programming language (Perlis and
Samelson 1958). Almost all programminglanguages in use today are descend-
ed from Lisp and Algol. Notions and mechanisms of variable binding, scope,
functions, parameter passing, expressions, and type checking are all imported
directly from Church’s A-calculus.

When the computers (“von Neumann machines”) of the 1950s were built,
with their (necessarily) sequential and mechanical universal control systems
a la Turing, it was noticed that they were difficult to program. Programming
these computers became easier with languages for specifying recursive func-
tions (i.e., computations) that emphasized, to the degree possible with the
technology of the time, functions (instead of procedures), variables (instead of
registers), binding (instead of the “move” instruction), and typed data (instead
of bit strings). All of this is from Church, and none of it is from Turing, Gédel,
Kleene, or von Neumann.

Some mathematicians’ criticisms of Church have to do with his reputation
for pedanticism and excessive rigor: Hodges (1983, p. 119) writes that Turing
“was reduced to attending Church’s lectures, which he found ponderous and
excessively precise” In part this reputation is undeserved. Feferman (1988,
p. 120) writes that this “characterization of Church’s style and personality” is
“fair enough. ...Butitshould be added that Church was (and is) noted for the
great care and precision of his writing and lecturing, and these virtues prob-
ably benefited Turing—whose own writing was rough and ready and prone to
minor errors.” Robert Soare, who took classes from Church as an undergradu-
ate at the beginning of the 1960s, says that Church’s lectures on computability
theory were indeed precise but “made the subject exciting”; Church was a bet-
ter teacher than most math professors at Princeton.!

Still, Kleene and Feferman clearly agree that A-calculus was not the most
perspicuous vehicle for Turing to use in his PhD thesis, or for mathemati-
cians to do many kinds of computability theory. This is because (typically) the
mathematics they are doing depends only on the computability of a function,

1  Robert Soare, personal communication, December 12, 2011.
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not on which method is used to compute it. In contrast, the engineers and pro-
grammers who have written programs from 1950 to the present are forced to
write down a precise formulation of the function; otherwise we have bugs. So
the notation for writing down representations of computable functions must
be precise, and must also be both readable and writable (by humans and by
other computer programs) both in the small and in the large. This is where the
descendants of Church’s notation work better than those of Turing’s.

Some of the ways in which early programming languages differed from A-
calculus were forced by the limitations of early computers. Turing machines
with an infinite tape and unbounded time can nicely simulate the A-calculus.
The slow computers of the 1960s and 1970s with their tiny memories forced
programmers, even those who used Lisp and Algol, to split the difference be-
tween Church and von Neumann in how they wrote down their algorithms.
But in the 1980s and 1990s, as computers became more powerful, it was pos-
sible to develop and apply programming languages (such as ML and Haskell?)
that were even closer to Churchs A-calculus, and consciously so.

This brings me to the subject of Turing’s Princeton PhD thesis, the con-
tent of the current volume. Here, Turing turns his attention from computa-
tion to logic. Gédel and Church would not have called themselves computer
scientists: they were mathematical logicians; and even Turing, when he got his
big 1936 result “On computable numbers,” was answering a question in logic
posed by Hilbert in 1928.

Turing’s thesis, “Systems of Logic Based on Ordinals,” takes Godel’s stun-
ning incompleteness theorems as its point of departure. Godel had shown that
if a formal axiomatic system (of at least minimal expressive power) is consis-
tent, then it cannot be complete. And not only is the system incomplete, but
the formal statement of the consistency of the system is true and unprovable if
the system is consistent. Thus if we already have informal or intuitive reasons
for accepting the axioms of the system as true, then we ought to accept the
statement of its consistency as a new axiom. And then we can apply the same
considerations to the new system; that is, we can iterate the process of adding
consistency statements as new axioms. In his thesis, Turing investigated that
process systematically by iterating it into the constructive transfinite, taking

2 Named after another great logician, Haskell Curry, who was also visiting Princeton in 1938.
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unions of logical systems at limit ordinal notations. His main result was that
one can thereby overcome incompleteness for an important class of arithmeti-
cal statements (though not for all).

It is clear that Turing regards the formalization of mathematics as a desir-
able goal. He excuses himself at one point (on pp. 9-10 of the manuscript):

There is another point to be made clear in connection with the point of
view we are adopting. It is intended that all proofs that are given [in this
thesis] should be regarded no more critically than proofs in classical anal-
ysis. The subject matter, roughly speaking, is constructive systems of logic,
but as the purpose is directed towards choosing a particular constructive
system of logic for practical use; an attempt at this stage to put our theo-
rems into constructive form would be putting the cart before the horse.

Here it is clear that Turing is a logician and not just a great mathemati-
cian; few mathematicians believe that it would be a useful purpose to choose a
constructive system of logic for practical use, and no ordinary mathematician
would excuse himself for being no more rigorous than a mathematician.

Just as one of the strengths of Turing’s great 1936 paper was its philosophi-
cal component—in which he explains the motivation for the Turing machine
as a model of computation—here in the PhD thesis he is also motivated by
philosophical concerns, as in section 9 (p. 60 of the manuscript):

We might hope to obtain some intellectually satisfying system of logical
inference (for the proof of number theoretic theorems) with some ordinal
logic. Godel’s theorem shows that such a system cannot be wholly me-
chanical, but with a complete ordinal logic we should be able to confine
the non-mechanical steps entirely to verifications that particular formu-
lae are ordinal formulae.

Turing greatly expands on these philosophical motivations in section 11
of the thesis. His program, then, is this: We wish to reason in some logic, so
that our proofs can be mechanically checked (for example, by a Turing ma-
chine). Thus we don’t need to trust our students and journal-referees to check
our proofs. But no (sufficiently expressive) logic can be complete, as Godel



THE BIRTH OF COMPUTER SCIENCE 7

showed. If we are using a given logic, sometimes we may want to reason about
statements unprovable in that logic. Turing’s proposal is to use an ordinal logic
sufficiently high in the hierarchy; checking proofs in that logic will be com-
pletely mechanical, but the one “intuitive” step remains of verifying ordinal
formulas.

Unfortunately, it is not at all clear that verifying ordinal formulas is in any
way “intuitive” Feferman (1988, sec. 6) estimates that “the demand on ‘intu-
ition’ in recognizing ‘which formulae are ordinal formula€’ is somewhat greater
than Turing suggests.” Feferman concludes his essay included in this volume
with a mention of his and Kreisel’s subsequent approaches to this problem,
between 1958 and 1970.

Turing, in the thesis, recognizes significant problems with his ordinal log-
ics, which can be summarized by his statement (manuscript, p. 73) that “with
almost any reasonable notation for ordinals, completeness is incompatible
with invariance” (and see also Feferman’ essay).

But the PhD thesis contains, almost as an aside, an enormously influen-
tial mathematical insight. Turing invented the notion of oracles, in which one
kind of computer consults from time to time, in an explicitly axiomatized way,
a more powerful kind. Oracle computations are now an important part of the
tool kit of both mathematicians and computer scientists working in comput-
ability theory and computational complexity theory (see Feferman 1992; Soare
2009). This method may actually be the most significant result in Turing’s PhD
thesis.

So the thesis exhibits Turing as logician. Alonzo Church also continued to
be a logician, as in 1940 he published “A Formulation of the Simple Theory of
Types,” setting out the system now known as higher-order logic. As a practical
means of actually doing mechanized reasoning, Turing’s 1938 result was not
nearly as influential as Church’s higher-order logic.

In many other fields of engineering, such as the construction of bridges,
chemical processes, or photonic circuits, the applicable mathematics is from
analysis or quantum mechanics (see Wigner 1960, “The Unreasonable Ef-
fectiveness of Mathematics in the Natural Sciences”). But software does not
(principally) rely on continuous or quantum artifacts of the natural world,
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where that kind of math works so well. Instead, software follows the discrete
logic of bits, and it obeys axioms specified by the engineers who designed the
instruction-set architecture of the computer, and by those who specified the
semantics of the programming languages. Thus the applicable mathematics is,
in fact, logic (see Halpern et al. 2001, “On the Unusual Effectiveness of Logic
in Computer Science”).

It might seem that the Boolean algebra of bits is simpler than real analy-
sis, but the problem is that software systems are so complex that the reason-
ing is difficult. Thus in the twenty-first century many computer scientists do
mechanized formal reasoning, and the most significant application domain
for mechanized proof is in the verification of computer software itself. Soft-
ware is large and complex, and for at least some software it is very desirable
that it conform to a given formal specification. The theorems and proofs are
too large for us to reliably build and maintain by hand, so we mechanize.

Mechanized proof comes in two flavors; the first flavor is fully automated.
Automated theorem proving is the use of computer programs to find proofs
automatically. Automatic static analysis is the use of computer programs to cal-
culate behavioral properties of other computer programs, sometimes by call-
ing upon automated theorem provers as subroutines to decide the validity of
logical propositions. Do not be frightened by Turing’s result that this problem
is uncomputable; his result is simply that no automated procedure can decide
the provability of every mathematical proposition, and no automated proce-
dure can test nontrivial properties of every other program.’* We do not need to
prove every theorem or analyze every program; it will suffice to automatically
prove many useful theorems, or analyze useful programs. Some automated
provers work in undecidable logics, and (therefore) sometimes fail to find the
proof. In those cases, the user is expected to simplify or reformulate the theo-
rem as necessary, or provide hints. We would not ask Fermat to reformulate
his Last Theorem for the convenience of Wiles; but when the theorem is “This
horrible program meets its specification,” we might well rewrite the program
to make it more easily reasoned about. Other automated provers work in de-
cidable logics—for example, Presburger arithmetic or Boolean satisfiability.

3 Actually, this generalization of Turing’s 1936 result about halting is known as Rice’s theorem
(1953).
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Do not be frightened by CooK’s result (1971) that satisfiability is NP-complete;
that result is simply that no (known) automated procedure can solve every
instance in polynomial time. In practice, SAT-solvers are now a big industry;
they are quite effective in solving the actual cases that come up in theorem-
proving applications. (Of course, SAT-solvers are not so effective in solving
problems that arise from deliberately intractable problems, such as cryptog-
raphy.) The extension of SAT-solvers to SMT (satisfiability modulo theories)
is also now a big academic and commercial industry. Many of these solvers
use variants of the Davis-Putnam algorithm for resolution theorem proving,
discovered in 1960 by Martin Davis (PhD 1950 under Church) and Hilary
Putnam (PhD UCLA 1951; in 1960 a colleague of Church’s at Princeton).

The other flavor of mechanized proof is the use of computer programs to
check proofs automatically, and to assist in the bureaucratic details of their
construction. These are the proof assistants. One of the earliest of these was
Robin Milner’s LCF (Logic for Computable Functions) system (Gordon et al.
1979). Milner was influenced by the work of Church and by that of Dana Scott
(PhD 1958 under Church), Christopher Strachey (a fellow student of Turing’s
at Cambridge, and one of the first to program the ACE computer in 1951), and
Peter Landin (a student of Strachey’s). Strachey, Landin, and Milner, all British
computer scientists, were important figures in the application of Church’ A-
calculus and logic to the design of programming languages and formal meth-
ods for reasoning about them.

Although some proof assistants use first-order logics (i.e., logics where each
quantifier ranges over elements of a particular fixed type), for the expression
of mathematical ideas it is much more convenient to use higher-order logics
(i.e., where the type of a quantifier can itself be a variable bound in an outer
scope). One of the earliest higher-order logics is Church’s “simple theory of
types” (1940), but even more expressive (and, to my taste, more useful) logics
have dependent types, where the type of one variable may depend on the val-
ue of another. Such logics include LF (the Logical Framework) and CoC (the
Calculus of Constructions). Proof assistants such as HOL (using the simple
theory of types), Twelf (using LF), and Coq (using CoC) are now routinely
used to specify and prove substantial theorems about computers and com-
puter programs.
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Not only theorems about software; sometimes these proof assistants are
even used to prove theorems in mathematics. Georges Gonthier (2008) used
Coq to implement a proof of the four-color theorem end-to-end in “Church/
Turing-style” fully formal logic. Gonthier’s implementation improved on the
1976 proof by Kenneth Appel and Wolfgang Haken that relied in part on “von
Neumann-style” Fortran programs to calculate reducibility and in part on
“Pythagoras-style” traditional mathematics. (In 1976 the reaction of some
mathematicians was to distrust those parts of Appel and Haken’s proof that
were calculated by computer, whereas the reaction of some computer scientists
was to distrust the parts that were checked only “by hand?”) In the twenty-first
century, computer programs that prove mathematical theorems are expected
themselves to be formalized within a mechanically checked logical system.
Thomas Hales (2005) proved the Kepler conjecture about sphere packing, us-
ing computer programs written in Mathematica and C++, about which the
referees were “99% certain.” In order to reach 100%, Hales’s current project
(nearly complete) is to formalize this proof in the HOL Light proof assistant.

In Cambridge, Turing (1936) had brilliant, unprecedented ideas about the
nature of computation. He was certainly not the first to build an actual com-
puter; there was already work in progress at (for example) the University of
Iowa. But when Turing came to Princeton to work with Church, in the orbit of
Godel, Kleene, and von Neumann,* among them they founded a field of com-
puter science that is firmly grounded in logic. In some of Turing’s other work
(1950) he foresees the field (now within computer science) of artificial intel-
ligence. But in his PhD thesis he makes it clear that he looks to a day when,
in proving mathematical theorems, “the strain put on the intuition should be
a minimum” (manuscript, page 83). That is, to the extent possible, every step
in a proof should be mechanically checkable. We all know the Church-Turing
thesis: that no realizable computer will be able to compute more functions

3«

than A-calculus or a Turing machine. But in reading Turing’s “Systems of Logic

»

. we can see quite clearly another kind of Church-Turing thesis, that came

4  Godel was away from Princeton during Turing’s time here, and Kleene had already finished
his PhD and left; but clearly they had an enormous influence on Turings PhD thesis. Turing
worked with von Neumann during his time at Princeton, but on other kinds of mathematics
than logic and computation.



THE BIRTH OF COMPUTER SCIENCE 11

half a century later as a consequence of their work: mathematical reasoning
can be done, and often should be done, in mechanizable formal logic.
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Turing’s Thesis

SOLOMON FEFERMAN

In the sole extended break from his life and varied career in England, Alan
Turing spent the years 1936-1938 doing graduate work at Princeton Univer-
sity under the direction of Alonzo Church, the doyen of American logicians.
Those two years sufficed for him to complete a thesis and obtain the Ph.D.
The results of the thesis were published in 1939 under the title “Systems of
logic based on ordinals” [23]. That was the first systematic attempt to deal
with the natural idea of overcoming the Godelian incompleteness of formal
systems by iterating the adjunction of statements—such as the consistency of
the system—that “ought to” have been accepted but were not derivable; in fact
these kinds of iterations can be extended into the transfinite. As Turing put it
beautifully in his introduction to [23]:

The well-known theorem of Godel (1931) shows that every system of
logic is in a certain sense incomplete, but at the same time it indicates
means whereby from a system L of logic a more complete system L’ may
be obtained. By repeating the process we get a sequence L, L = L', L, =
L', ... each more complete than the preceding. A logic L may then be
constructed in which the provable theorems are the totality of theorems
provable with the help of the logics L, L, L, , ... Proceeding in this way
we can associate a system of logic with any constructive ordinal. It may
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be asked whether such a sequence of logics of this kind is complete in the
sense that to any problem A there corresponds an ordinal & such that A is
solvable by means of thelogic L .

Using an ingenious argument in pursuit of this aim, Turing obtained a striking
yet equivocal partial completeness result that clearly called for further inves-
tigation. But he did not continue that himself, and it would be some twenty
years before the line of research he inaugurated would be renewed by others.
The paper itself received little attention in the interim, though it contained a
number of original and stimulating ideas and though Turing’s name had by
then been well established through his earlier work on the concept of effective
computability.

Here, in brief, is the story of what led Turing to Church, what was in his
thesis, and what came after, both for him and for the subject.!

FROM CAMBRIDGE TO PRINCETON

As an undergraduate at King’s College, Cambridge, from 1931 to 1934, Turing
was attracted to many parts of mathematics, including mathematical logic. In
1935 Turing was elected a fellow of King’s College on the basis of a disserta-
tion in probability theory, On the Gaussian error function, which contained his
independent rediscovery of the central limit theorem. Earlier in that year he
began to focus on problems in logic through his attendance in a course on that
subject by the topologist M. H. A. (Max) Newman. One of the problems from
Newman’s course that captured Turing’s attention was the Entscheidungsprob-
lem, the question whether there exists an effective method to decide, given
any well-formed formula of the pure first-order predicate calculus, whether
or not it is valid in all possible interpretations (equivalently, whether or not
its negation is satisfiable in some interpretation). This had been solved in the
affirmative for certain special classes of formulas, but the general problem was

1 Ihave written about this at somewhat greater length in [10]; that material has also been in-
corporated as an introductory note to Turing’s 1939 paper in the volume, Mathematical Logic
[25] of his collected works. In its biographical part I drew to a considerable extent on Andrew
Hodges’ superb biography, Alan Turing: The Enigma [16).
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still open when Turing began grappling with it. He became convinced that the
answer must be negative, but that in order to demonstrate the impossibility of
a decision procedure, he would have to give an exact mathematical explana-
tion of what it means to be computable by a strictly mechanical process. He
arrived at such an analysis by mid-April 1936 via the idea of what has come to
be called a Turing machine, namely an idealized computational device follow-
ing a finite table of instructions (in essence, a program) in discrete effective
steps without limitation on time or space that might be needed for a computa-
tion. Furthermore, he showed that even with such unlimited capacities, the
answer to the general Entscheidungsproblem must be negative. Turing quickly
prepared a draft of his work entitled “On computable numbers, with an appli-
cation to the Entscheidungsproblem”; Newman was at first skeptical of Turing’s
analysis but then became convinced and encouraged its publication.

Neither Newman nor Turing were aware at that point that there were al-
ready two other proposals under serious consideration for analyzing the gen-
eral concept of effective computability: one by Godel called general recursive-
ness, building on an idea of Herbrand, and the other by Church, in terms of
what he called the A-calculus. In answer to the question, “Which functions of
natural numbers are effectively computable?”, the Herbrand-Gddel approach
was formulated in terms of finite systems of equations from which the values
of the functions are to be deduced using some elementary rules of inference;
since the functions to be defined can occur on both sides of the equations, this
constitutes a general form of recursion. Godel explained this in lectures on the
incompleteness results during his visit to the Princeton Institute for Advanced
Study in 1934, lectures that were attended by Church and his students Stephen
C. Kleene and J. Barkley Rosser. But Godel regarded general recursiveness
only as a “heuristic principle” and was not himself willing to commit to that
proposed analysis. Meanwhile Church had been exploring a different answer
to the same question in terms of his A-calculus—a fragment of a quite gen-
eral formalism for the foundation of mathematics, whose fundamental notion

2 The development of ideas about computability in this period by Herbrand, Gédel, Church,
Turing, and Post has been much written about and can only be touched on here. For more
detail I recommend the article by Kleene [17] and the articles by Hodges, Kleene, Gandy, and
Davis in Part I of Herken’s collection [15], among others. One of the many good online sources
with further links is at http://plato.stanford.edu/entries/church-turing/, by B. J. Copeland.
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is that of arbitrary functions rather than arbitrary sets. The “A” comes from
Church’s formalism according to which if ¢[x] is an expression with one or
more occurrences of a variable x , then Ax.t[x] is supposed to denote a func-
tion f whose value f(s) for each s is the result, t[s/x], of substituting s for x
throughout t.°> In the A-calculus, function application of one expression ¢ to
another s as argument is written in the form ¢s . Combining these, we have the
basic evaluation axiom: (Ax.t[x])s = t[s/x].

Using a representation of the natural numbers in the A-calculus, a function
fis said to be A-definable if there is an expression ¢ such that for each pair of
numerals # and m, tn evaluates out to m if and only if f(n) = m . In conver-
sations with Godel, Church proposed A-definability as the precise explana-
tion of effective computability (“Church’s Thesis”), but in Godel’s view that
was “thoroughly unsatisfactory”. It was only through a chain of equivalences
that ended up with Turing’s analysis that Godel later came to accept it, albeit
indirectly. The first link in the chain was forged with the proof by Church and
Kleene that A-definability is equivalent to general recursiveness. Thus when
Church finally announced his “Thesis” in published form in 1936 [1], it was in
terms of the latter. In that paper, Church applied his thesis to demonstrate the
effective unsolvability of various mathematical and logical problems, includ-
ing the decision problem for sufficiently strong formal systems. And then in
his follow-up paper [2] submitted April 15, 1936—just around the time Tur-
ing was showing Newman his draft—Church proved the unsolvability of the
Entscheidungsproblem for logic. When news of this work reached Cambridge
a month later, the initial reaction was great disappointment at being scooped,
but it was agreed that Turing’s analysis was sufficiently different to still warrant
publication. After submitting it for publication toward the end of May 1936,
Turing tacked on an appendix in August of that year in which he sketched the
proof of equivalence of computability by a machine in his sense with that of
\-definability, thus forging the second link in the chain of equivalences [21].

In Church’s 1937 review of Turing’s paper, he wrote:

As a matter of fact, there is involved here the equivalence of three differ-

3 One must avoid the “collision” of free and bound variables in the process, i.e., no free variable
z of s must end up within the scope of a “Az”; this can be done by renaming bound variables as
necessary.
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ent notions: computability by a Turing machine, general recursiveness in
the sense of Herbrand-Godel-Kleene, and A-definability in the sense of
Kleene and the present reviewer. Of these, the first has the advantage of
making the identification with effectiveness in the ordinary (not explic-
itly defined) sense evident immediately. . . . The second and third have the
advantage of suitability for embodiment in a system of symbolic logic.*

Thus was born what is now called the Church-Turing Thesis, according to
which the effectively computable functions are exactly those computable by a
Turing machine.’ The (Church-)Turing Thesis is of course not to be confused
with Turing’s thesis under Church, our main subject here.

TURING IN PRINCETON

On Newman’s recommendation, Turing decided to spend a year studying with
Church, and he applied for one of Princeton’s Procter fellowships. In the event,
he did not succeed in obtaining it, but even so he thought he could manage
on his fellowship funds from King’s College of 300 pounds per annum, and
so Turing came to Princeton at the end of September 1936. The Princeton
mathematics department had already been a leader on the American scene
when it was greatly enriched in the early 1930s by the establishment of the
Institute for Advanced Study. The two shared Fine Hall until 1940, so that the
lines between them wereblurred and there was significant interaction. Among
the mathematical leading lights that Turing found on his arrival were Einstein,
von Neumann, and Weyl at the Institute and Lefschetz in the department;
the visitors that year included Courant and Hardy. In logic, he had hoped to
find—besides Church—Gédel, Bernays, Kleene, and Rosser. Godel had in-
deed commenced a second visit in the fall of 1935 but left after a brief period
due to illness; he was not to return until 1939. Bernays (noted as Hilbert’s
collaborator on his consistency program) had visited 1935-36, but did not
visit the States again until after the war. Kleene and Rosser had received their

4  Church’sreview appeared in J. Symbolic Logic 2 (1937), 42-43.
5  Godel accepted the Church-Turing Thesis in that form in a number of lectures and publica-
tions thereafter.
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Ph.D.s by the time Turing arrived and had left to take positions elsewhere. So
he was reduced to attending Church’s lectures, which he found ponderous and
excessively precise; by contrast, Turing’s native style was rough-and-ready and
prone to minor errors, and it is a question whether Church’s example was of
any benefit in this respect. They met from time to time, but apparently there
were no sparks, since Church was retiring by nature and Turing was somewhat
of a loner.

In the spring of 1937, Turing worked up for publication a proof in greater
detail of the equivalence of machine computability with A-definability [22]. He
also published two papers on group theory, including one on finite approxi-
mations of continuous groups that was of interest to von Neumann (cf. [24]).
Luther P. Eisenhart, who was then head of the mathematics department, urged
Turing to stay on for a second year and apply again for the Procter fellowship
(worth US$2,000 p.a.). This time, supported by von Neumann who praised
his work on almost periodic functions and continuous groups, Turing suc-
ceeded in obtaining the fellowship, and so decided to stay the extra year and
do a Ph.D. under Church. Proposed as a thesis topic was the idea of ordinal
logics that had been broached in Church’s course as a way to “escape” Godel’s
incompleteness theorems.

Turing, who had just turned 25, returned to England for the summer of
1937, where he devoted himselfto three projects: finishing the computability/A-
definability paper, ordinal logics, and the Skewes number. As to the latter,
Littlewood had shown that n(x) — li(x) changes sign infinitely often, with an
argument by cases, according to whether the Riemann Hypothesis is true or
not; priorto that it had been conjectured that n(n) < li(n) for all n, in view of
the massive numerical evidence into the billions in support of that® In 1933
Skewes had shown that li(n) < n(n) for some n < 10,(34) (triple exponen-
tial to the base 10) if the Riemann Hypothesis is true. Turing hoped to lower
Skewes’ bound or eliminate the Riemann Hypothesis; in the end he thought
he had succeeded in doing both and prepared a draft but did not publish his
work.” He was to have a recurring interest in the R.H. in the following years,

6  li(x) is the (improper) integral from 0 to x of 1/logx and is asymptotic to 7(x), the number of
primes < x.

7 A paper based on Turing’s ideas, with certain corrections, was published after his death by
Cohen and Mayhew [4].
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including devising a method for the practical computation of the zeros of the
Riemann zeta function as explained in the article by Andrew R. Booker in this
issue of the Notices. Turing also made good progress on his thesis topic and
devoted himself full time to it when he returned to Princeton in the fall, so that
he ended up with a draft containing the main results by Christmas of 1937. But
then he wrote Philip Hall in March 1938 that the work on his thesis was “prov-
ing rather intractable, and I am always rewriting part of it”® Later he wrote
that “Church made a number of suggestions which resulted in the thesis being
expanded to an appalling length” One can well appreciate that Church would
not knowingly tolerate imprecise formulations or proofs, let alone errors, and
the published version shows that Turing went far to meet such demands while
retaining his distinctive voice and original ways of thinking. Following an oral
exam in May, on which his performance was noted as “Excellent”, the Ph.D.
itself was granted in June 1938. Turing made little use of the doctoral title in
the following years, since it made no difference for his position at Cambridge.
But it could have been useful for the start of an academic career in America.
Von Neumann thought sufficiently highly of his mathematical talents to offer
Turing a position as his assistant at the Institute. Curiously, at that time von
Neumann showed no knowledge or appreciation of his work in logic. It was
not until 1939 that he was to recognize the fundamental importance of Tur-
ing’s work on computability. Then, toward the end of World War II, when von
Neumann was engaged in the practical design and development of general
purpose electronic digital computers in collaboration with the ENIAC team,
he was to incorporate the key idea of Turing’s universal computing machine
in a direct way.’

Von Neumann’s offer was quite attractive, but Turing’s stay in Princeton
had not been a personally happy one, and he decided to return home despite
the uncertain prospects aside from his fellowship at King’s and in face of the
brewing rumors of war. After publishing the thesis work he did no more on
that topic and went on to other things. Not long after his return to England,
he joined a course at the Government Code and Cypher School, and that was

8  Hodges [16], p. 144.

9  Its suggested implementation is in the Draft report on the EDVAC put out by the ENIAC team
and signed by von Neumann; cf. Hodges [16], pp. 302-303; cf. also ibid., p. 145, for von Neu-
mann’s appreciation by 1939 of the significance of Turing’s work.
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to lead to his top secret work during the war at Bletchley Park on breaking
the German Enigma Code. This fascinating part of the story is told in full in
Hodges’ biography [16], as is his subsequent career working to build actual
computers, promote artificial intelligence, theorize about morphogenesis, and
continue his work in mathematics. Tragically, this ended with his death in
1954, a probable suicide.

THE THESIS: ORDINAL LOGICS!®

What Turing calls a logic is nowadays more usually called a formal system, i.e.,
one prescribed by an effective specification of a language, set of axioms and
rules of inference. Where Turing used “L” for logics I shall use “S” for formal
systems. Given an effective description of a sequence(S,)  (N=1{0,1,2,...})
of formal systems all of which share the same language and rules of inference,
one can form a newsystem S = U S (n € N), by taking the effective union
of their axiom sets. If the sequence of S,s is obtained by iterating an effective
passage from one system to the next, then that iteration can be continued to
form S, ... and so on into the transfinite. This leads to the idea of an effec-
tive association of formal systems S_with ordinals «. Clearly that can be done
only for denumerable ordinals, but to deal with limits in an effective way, it
turns out that we must work not with ordinals per se, but with notations for
ordinals. In 1936, Church and Kleene [3] had introduced a system O of con-
structive ordinal notations, given by certain expressions in the A-calculus. A
variant of this uses numerical codes a for such expressions and associates with
each a € O a countable ordinal |a|. For baroque reasons, 1 was taken as the
notation for 0, 2* as a notation for the successor of |a|, and 3 « 5° for the limit
of the sequence |a |, when this sequence is strictly increasing and when e is a
code of a computable function é with é(n) = a_for each n € N . The least or-
dinal not of the form |a| for some a € O is the analogue, in terms of effective
computability, of the least uncountable ordinal w, and is usually denoted by

w, %, where “CK” refers to Church and Kleene. By an ordinallogic $* =S ), is

10 Thebackgroundto the material ofthis section in Godel’sincompleteness theorems is explained
in my piece for the Notices [11].
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meant any means of effectively associating with each a € O a formal system
S,. Note, for example, that there are many ways of forming a sequence of no-
tations @, whose limit is w, given by all the different effectively computable
strictly increasing subsequences of N. So at limit ordinals & < w we will
have infinitely many representations of a and thus also for its successors. An
ordinal logic is said to be invariant if whenever |a| = |b| then S, and S, prove
the same theorems.

In general, given any effective means of passing from a system S to an ex-
tension S’ of S, one can form an ordinal logic $* =S ) _, which is such that
for each a € O and b = 2° the successor of 4, S, = §', and is further such that
whenever a = 3 « 5 then S, is the union of the sequence of S, for eachn € N.
In particular, for systems whose language contains that of Peano Arithmetic
P A, one can take §' to be S U {Con}, where Con, formalizes the consistency
statement for S; the associated ordinal logic S* thus iterates adjunction of con-
sistency through all the constructive ordinal notations. If one starts with P A
as the initial system it may be seen that each S_is consistent and so S’ is strictly
stronger than S by Gédel's second incompleteness theorem. The consistency
statements are expressible in V(“for all”)-form, i.e., VXR(x) where R is an ef-
fectively decidable predicate. So a natural question to raise is whether S* is
complete for statements of that form, i.e., whether whenever VxR(x) is true in
Nthen it is provable in S_ for some a € O. Turing’s main result for this ordinal
logic was that that is indeed the case, in fact one can always choose such an
a with |a| = w + 1. His ingenious method of proof was, given R , to construct
a sequence &(n) that denotes # as long as (V x < n)R(x) holds and that jumps
to the successor of 3 « 5° when (3x < n)-R(x).!! Let b =3 « 5¢and a = 2°. Now
if VxR(x) is true, b € O with |b| = w. In S_ we can reason as follows: if VxR(x)
were not true then S, would be the union of systems that are eventually the
same as S, so S, would prove its own consistency and hence, by Godel’s theo-
rem, would be inconsistent. But S, proves the consistency of S,, so we must
conclude that VxR(x) holds after all.

Turing recognized that this completeness proof is disappointing because it
shifts the question of whether a V-statement is true to the question whether a

11 Note that e is defined in terms of itself; this is made possible by Kleene’s index form of the
recursion theorem.
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number a actually belongs to O. In fact, the general question, given a, is a €
Oy, turns out to be of higher logical complexity than any arithmetical state-
ment, i.e., one formed by the unlimited iteration of universal and existential
quantifiers, V and 3. Another main result of Turing’s thesis is that for quite
general ordinal logics, S* can’t be both complete for statements in V-form and
invariant. It is for these reasons that above I called his completeness results
equivocal. Even so, what Turing really hoped to obtain was completeness for
statements in V3 (“for all, there exists”)-form. His reason for concentrating on
these, which he called “number-theoretical problems”, rather than considering
arithmetical statements in general, is not clear. This class certainly includes
many number-theoretical statements (in the usual sense of the word) of math-
ematical interest, e.g., those, such as the twin prime conjecture, that say that
an effectively decidable set C of natural numbers is infinite. Also, as Turing
pointed out, the question whether a given program for one of his machines
computes a total function is in V3-form. Of special note is his proof ([23], sec.
3) that the Riemann Hypothesis is a number-theoretical problem in Turing’s
sense. This was certainly a novel observation for the time; actually, as shown
by Georg Kreisel years later, it can even be expressed in V-form.”? On the other
hand, Turing’s class of number-theoretical problems does not include such
statements as finiteness of the number of solutions of a diophantine equation
(3V) or the statement of Waring’s problem (V3V).

In section 4 Turing introduced a new idea that was to change the face of
the general theory of computation (also known as recursion theory) but the
only use he made of it there was curiously inessential. His aim was to pro-
duce an arithmetical problem that is not number-theoretical in his sense, i.e.,
not in V3-form. This is trivial by a diagonalization argument, since there are
only countably many effective relations R(x, y) of which we could say that
Vx3yR(x, y) holds. Turing’s way of dealing with this, instead, is through the
new notion of computation relative to an oracle. As he puts it:

Let us suppose that we are supplied with some unspecified means of solv-
ing number-theoretical [i.e., V3] problems; a kind of oracle as it were.
... With the help of the oracle we could form a new kind of machine

12 A relatively perspicuous representation in that form may be found in Davis et al. [6] p. 335.
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(call them o-machines), having as one of its fundamental processes that
of solving a given number-theoretic problem.

He then showed that the problem of determining whether an o-machine
terminates on any given input is an arithmetical problem not computable by
any o-machine, and hence not solvable by the oracle itself. Turing did nothing
further with the idea of 0-machines, either in this paper or afterward. In 1944
Emil Post [20] took it as his basic notion for a theory of degrees of unsolv-
ability, crediting Turing with the result that for any set of natural numbers
there is another of higher degree of unsolvability. This transformed the notion
of computability from an absolute notion into a relative one that would lead
to entirely new developments and eventually to vastly generalized forms of
recursion theory. Some of the basic ideas and results of the theory of effective
reducibility of the membership problem for one set of numbers to another
inaugurated by Turing and Post are explained in the article by Martin Davis in
this issue of the Notices.

There are further interesting suggestions and asides in the thesis, such as
consideration of possible constructive analogues of the Continuum Hypoth-
esis. Finally (as also mentioned by Barry Cooper in his review article), it con-
tained provocative speculations concerning intuition versus technical ingenu-
ity in mathematical reasoning. The relevance, according to Turing is that:

When we have an ordinal logic, we are in a position to prove number-
theoretic theorems by the intuitive steps of recognizing [natural numbers
as notations for ordinals]. . . . We want it to show quite clearly when a step
makes use of intuition and when it is purely formal. . . . It must be beyond
all reasonable doubt that the logic leads to correct results whenever the
intuitive steps [i.e., recognition of ordinals] are correct.

This Turing had clearly accomplished with his formulation of the notion of
ordinal logic and the construction of the particular S* obtained by iterating
consistency statements.

One reason that the reception of Turing’s paper may have been so limited is
that (no doubt at Church’s behest) it was formulated in terms of the A-calculus,
which makes expressions for ordinals and formal systems very hard to under-
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stand. He could instead have followed Kleene, who wrote in his retrospective
history [17]: “I myself, perhaps unduly influenced by rather chilly receptions
from audiences around 1933-35 to disquisitions on A-definability, chose, after
general recursiveness had appeared, to put my work in that format. I cannot
complain about my audiences after 1935

ORDINAL LOGICS REDUX

The problems left open in Turing’s thesis were attacked in my 1962 paper,
“Transfinite recursive progressions of axiomatic theories” [7]. The title con-
tains my rechristening of “ordinal logics” in order to give a more precise sense
of the subject matter. In the interests of perspicuity and in order to explain
what Turing had accomplished, I also recast all the notions in terms of gen-
eral recursive functions and recursive notions for ordinals rather than the A-
calculus. Next I showed that Turing’s progression based on iteration of consis-
tency statements is not complete for true V3 statements, contrary to his hope.
In fact, the same holds for the even stronger progression obtained by iterating
adjunction to a system S of the local reflection principle for S. This is a scheme
that formalizes, for each arithmetical sentence A, that if A is provable in S then
A (is true). Then I showed that a progression SV based on the iteration of the
uniform reflection principle is complete for all true arithmetical sentences. The
latter principle is a scheme that formalizes, given S and a formula A(x) that
if A(n) is provable in S for each n, then VxA(x) (is true). One can also find a
path P through O along which every true arithmetical sentence is provable in
the progression SU. On the other hand, invariance fails badly in the sense that
there are paths P’ through O for which there are true sentences in V-form not
provable along that path, as shown in my paper with Spector [12]. The recent
book Inexhaustibility [13] by Torkel Franzén contains an accessible introduc-
tion to [7], and his article [14] gives an interesting explanation (shorn of the
offputting details) of what makes Turing’s and my completeness results work.

The problem raised by Turing of recognizing which expressions (or num-
bers) are actually notations for ordinals is dealt with in part through the con-
cept of autonomous progressions of theories, obtained by imposing a boot-strap
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procedure. That allows one to go to a system S_ only if one already has a proof
in a previously accepted system S, that a € O (or that a recursive ordering of
order type corresponding to a is a well-ordering). Such progressions are not
complete but have been used to propose characterizations of certain informal
concepts of proof, such as that of finitist proof (Kreisel [18], [19]) and predica-
tive proof (Feferman [8], [9]).
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Notes on the Manuscript

The thesis, which in October [1937] he had hoped to finish by
Christmas, was delayed. “Church made a number of suggestions
which resulted in the thesis being expanded to an appalling length”
A clumsy typist himself, [Turing] engaged a professional, who in
turn made a mess of it. It was eventually submitted on 17 May.
—Andrew Hodges, Alan Turing: the Enigma
(Princeton University Press, 2012)

In fact, the thesis is not a mess. Until the 1980s typists of mathematical texts
routinely had to leave blank spaces where the mathematical symbols could
be written in by hand. It’s clearly Turing’s handwriting (compare the capital
A’s and lowercase f’s with his letter to Dean Eisenhart). There are only a few
typos, where (e.g.) Turing crossed out “for” to write “of” The worst that could
be said is that the typist did not always leave enough space for Turing to write
in the formulas.

But pages 74-78 are typed by a less expert typist on a different typewriter:
the type changes from elite to pica, and the typist does not strike all the letters
with equal force. Did Turing type pages 74-78 himself?

In May 1938, Turing submitted “Systems of Logic Based on Ordinals” for
publication in the Proceedings of the London Mathematical Society. It was ref-
ereed in June 1938 and appeared in 1939. The printed version adheres very
closely to the manuscript reproduced here. Where there are differences in the
refereed article that change the import of the mathematics, they are noted with
an arrowhead (5>) in the margin of the manuscript, and the corresponding
text from the Proc. LMS appears here.



28 NOTES ON THE MANUSCRIPT

11 (b)) ¢(x,s ..., x) = flxys ... x,);

12. 9(x, y) = 0(x) + a(x, y),

12.6,(0) = 3,

0,(x + 1) = 20+@,0ENP@0, ()1 G0, 36,6, EN41-0(9(@, 6,1 &6,

13. ¢(x, y) are primitive recursive functions. Without loss of generality, we
may suppose that the functions ¢, y take only the values 0, 1. Then, if we
define p(x) by the equation (3.1) and
p(0) = y(0)(1 - 6(0)),
plx+1)=1-(1-p(x))oll + 6(x) - y{®,(0,(x)}]

15. If x isthe G.R. of 2 (i.e. if x is 2% . 3%, 5,73, 11?8, 13 . 17.19%°, 232 29,
31.3710,41%.43.47%.53%,592. 61%. 67%) and let c(x) be 1 otherwise.

19. o-machine whose description number is r(#). This 0-machine is circle
free

27. Let Nm be a W.EE which enumerates all formulae with normal forms
and no free variables.

28. (D"){(A0)(D'(x)) & (x)(D'(x) > D(x))
23D’ (2) & (D'(y)DG(z, y)vz =)} (7.2)

34. (iv) If A, B, C are C-K ordinal formulae and B<A, C<A, then either B<C,
C<B, or B conv C.

34. for which B <B_ <A for eachr.

35. Suc (Aufx . B) conv Suc (Aufx . B’) and Aufx . u(R) conv Aufx . u(R’),

36. are convertible to the forms Aufx . B, Aufx . B'; but

38. (for some n')

39. the conditions Aufx . R(n) < Aufx . R(S(n)) in (B).

42, Sum > Aww’ pq . Bd(w, w', Hf(p), Hf(q),

Al(p, Al(g,w' (Hf(p), Hf(q)), 1), Al(S(q), w(Hf(p), Hf(q)), 2))),

43. sequence of ordinal formulae representing all the ordinals less than «
without repetitions other than repetitions of the ordinal 0.

46. To prove this we shall show that to each C-K ordinal formula A there cor-
responds a unique system C[A] such that:

(i) A(6, K, ch) convmg,,

52. @ [,]2(3x)((Dblx, y,] . €, [y,]) v/ (Db [fxy, ] - 1., [y, D)
and
1,y ]2Gx)(Dblx, v, . € [y,]) v (Dblfx, fr ] . 1L, [y ).
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56.(c) m=2p—1,n=2q9 - 1,and Q(p, q) conv 2.
58. Ai> Mkw . T(Ara . 8(4, 8(2, k(w, V(Nm(r)))) + 6(2, Nm(r, a)))),
59. Ai(A, QV(L), B) is convertible to
T'(Ara . 6(4, 8(2, A(QV(L), V(Nm(r)))) + 6(2, Nm(r, a))), B).
64. Now let us turnto A
64. if G is provable in P_ it is provable in P . A, is invariant.
65. but, if A(c) is not convertible to 2, then
68. This means that M(n) is convertible to 2.
70. type 3 being the highest necessary.
71. the ordinals less than w? take the place of
72. belong to the extent of A(G(®(Ar . Hg(A, 7, E)))),
78. Then we have asan axiominP. ..
and we can prove in PA
96. g(rl, Tys eees rp) has the value p.
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The wall Ynown theoren of Gddel shows that every systen of
‘Logic ia in a cortain sense incomplotse, but at the sane tire it in-
dlcates means whoreby from a aystom [ of logic a more complete
‘aysten L., nay be obtained. By repeating the process wo got a
sequenco A, L,’L',’ L,: L,I} L= L,

coplete than the preceding. A logic L., may then be constructed

! gees of logies cach riore

in vhich the provable thaorems are tha totslity of theorems prov-
ablo with the help of tho logles L, L, L, ,... Ve zny then form
L?_ ., Todated to L ,1n the senc wiy as L ¢ ¥as related to L.
Pracseding in this way wo can associnte a system of logiciwith tny
givon constructive ordino.l.l It moy be usked vhethoer a seguence of

W O CIP CuR TYE CED S G D G SN D Gt D G M GED CHD D BUI GEE TED GEN G CUN W CEA G UV CED GED Gan GED W= =D

he situstion ia nol quite so sinple as 13 sugzested by this crude
argunent. Soe pages 44-48.

-logléc of this kind is c:m.;lete in the sense that to cny.—p:oblan -
A there corresponds an ordinal 6 such that A 1s solvable by

means of tho logic L-.( « I propose to investigate this problem

in a rathor more general caso, and to give some other sxamples of
ways in which systems of logic may be assoclated with constructive
ordinala,

1. Tho cnlculus of conversion. GESdal representations.

It will be convenlent to be able to use the tconversion calcu-

Jus! gof"(.‘.hurch for the description of functions and some other
purposes. This will nuke groator clarity and mimplicity of cx-
prossion possible. T sholl give o short account of this calculus.
For more detailed descriptions see Church [8], [2], Kleene [1],
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Church znd Roscer [1].

Tho formleo of the calecwlus are formed from the symbols { ’ }

( ; ) s [ s J , AS , and an infinite list of others called

varipbles; ve sholl tako for our iInfinita list a; bJ vy Z x‘, y 3 'J .
Cartain finite Gequences of such symbols ars called well~formed.
formilne (abbreviated to W.F.F.); wo ‘shall define this class induce
tively, ond sizultaneously dofine the fres and the bound variables
of o W.F.,F. Any voriable is a W.,F.,F.,; it io its only {ree varinble,
and it has no bound varlables. § is .o W.F.F. ond has no froe or
bowd varisblen. If M and N are W.F.F. then {1 (N)dio a W.F.F.
whose frec verinbles aro the free varinbles:of _(rl together with the
freo variables of L\l » and whose bound vnriabloé arc the bound vare
inblos of _l‘:l togothor with thoss of V . If M 41a a WoF.F. and
V ono of ita free variables, then AV[M] iea W.F.F, vhose frec
varlables arc those of M with tho oxcéption of V ; and vhose
bound variables are thoss of M togethe’é' with vV o sequence of
symbols 1s a W.F.F. except in consequence:of those threo- statenments.

In motarathomatical astatements wo shell uge underlined letters
to stend for variable or undetermined formulee, as was done in the
last paragraph, and in future guch latters will stand for well-formed
forzulao unless othorwise stated. 8mall lettors undorlined will
stand for foraulee represcrgting undsternined positiv'e; integers (a_qn
bolon).

A W.F.F, 1o s0id to be in norosl form if £t has no parts of
tho form {X\! [NJ }( [\_’) and nons of tho forn {'{ Sl}(_l\j)}(_[y)

vhere M and _N hove no froo variabloa.
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Ve say that onc W.F.F. is imredintoly convertibls into another
1f 1t is obtained from it either by
(1) Replacing one occurrence of & woll-formed part AV L M]
ty AU[N] , whore the variable U doos not occur n'™ , and N
is obtained from M by replacing the varisble y by U throughout.
(41) Replacing a vell-formed part AV[M]} (M the formia {
which is obtained from M by replacing V bty N throughout, provi_'ded
that the bound variables of M are distinct both from V' end from.
the free variables of IN.
(415) The converse process of ifi.
{iv) Replacing & well-formed part {{S}(lﬁ)}( M)
)\“..,\x[{ﬂ(ﬂ} [x)n'_'] if M is in normal form and has no free varisbles.
(v) Replecing a woll-formed port { { 1Y _} ( m)} (N ) by
N[AKH*} (x)]]ir ™M and N ore in normol form ond not transforn-
able into ono anothor by repeated a_pplicatian of 3, and have no free
variables.
(vi) The converse process of iv.
(vii) The conversc process of Ve
These rules could hava besn expressed in asuch a voy thet in no
case could thoro be any doubt as to the admissibility or the result
of the tranaformation (in particulnr this can bo done in the case
of pProcass vs)e

A formln A 4o said to bo convertible into another B (nbbre-

_ ( ) _
viated to A conv B ) 4f thers 18 an finite chain of imzediate

conversions lecding from one formula to tho other. It is ecasily
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seen that the relation of convertibility is an equivalence rolaticn,
i.0. it is symrotric, transitive and reflexivo.

Since tle formulae are liable to be very lengthy we noed means
for abbrovieting them. If we wish o introduce a particular letter
as an abbrevistion for a particular lengthy formula wo shall write
tho letter followed by '—>! and then by the formuld, thus

T—> An[x]
indieatos that [ Ip &n abbreviation forAx[%]. We #hall nlso wsge
the arrow in less shkarply defined senges, but never so as to cause
cny real confusion. In those cases the recaning of the arrow may
be rendered by the worda 'stands for'.

If a formuls F is, or is ropresented by, o single synbol ve
sbbroviate {f}(z&) to F(X) . A formle {{f} &)}(X}my be
abbreviated to {f} ()_(, _\_/) » or to f(l() }’) it F ig, or is.
ropresonted by n single ‘symbol. Simtlarly for { { { f}(?.()} ( ]‘)}( §)
ctce A formula )‘\.{1 [)\V,_. .. [)\V‘r [,UJJ ] nay be abbrevisted
o AY,V..¥. M.

Te have not as yet naslzed any meanings to our formulae, and
we -do not Intend to do @0 in genorals A areaption nay bo nade
for thn casc of the positive  Integers which ore very conveniently
roprasented by the formulne }\‘1#. \%Cﬁ) s ¢ ?(4-[{ (%)) goss
In fact we Introduce the nbbrpvlationo

1— N*.d&)
a - k{x. ‘f(‘f(f‘))
3 2 M)

aetc.



and algo sny for oxnmplo that }\‘LP‘. {-/ Yl( *) ) (in fuld
k\L [ Ax[ {‘t} ({)L} (X) )]J represcnts the positive integer
2.. Luter we shall allow certain formulas to represent ordinals, but
oti;;rwiso wo leave thenm without explicit moaning; an implicit reaning
nay be suggested by the abtroviations wsed, In any cage wherc any
.reaning is assignod to formilne it io desirable that the mnoaning be
invariant under -conversion. Our definitlons of the positive integers
do not violato this requirement, as 1t may be proved that no tvo for-
mlnoe representing different positive integers are convertible into
one anothier.

In connection with the positive intogers we introduce the abbro-
vintion

S = Au{% ‘L[“- (4, »))

This formula has the property that if #/ represents a positive in-

—

tegor S ( 'V) 1z convertible to & formula ropresenting its succes.xor.z

'—-——v.—-.-———-..n-—‘u-—--n—-—_-—-—-———0-——‘-———--

? Thig folloms from (k) below, o

" Formulae roprosenting undetorntned positive integors will bo ro-

presented by smnll lotters underlired, and we shall adopt once for all

the convention thet if a letter, A/ say, stands for n positive integor,

then the sams lotter underlined, M - , stands for the formula reprosentiog:

tho positive integor. ¥Vhen no confusion arises from doing so we shall

omit to distinguish betweon on integer and the forwula which reprosents $te
Suppone -f («) 13 & function of positivo integers taking

positive integers as valuss, and that there is o W.F.F, f not

conhﬁhg §  such that for each positive integer h , F [ ﬂ) is

convortible to the formula representing f (“ ) e ahall then gay
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that f() 4o A _aofinable or formally definable, end that I

forramlly definos -F(K) « Similar convontions are used for functions

of rmore than ono variable. Tho sum function is for instance
foroally dofined by \ebfx.a(fb(F%)) ; in fact ror any

‘pasitive intogora M , h , P for vhich W + 4 = P va have

fAcbfx.o (H (£ x)f(w4)com P
In order to emphasize this rolation wo introduco tho abbreviation
K+y = { Aabfx.a (g b (9} (X, Y)

ond will uso pimilar-notatinns for sume of threa or mora teras,
products etce

For any HoF.Fe. _G_' wo shall say  that Q onumoraten
tho zoguenco _C_';'(l) » &l2) , .. s and any otber sequance
vwhoaso torm;é"ﬁm convertible to thoso of this soquonca.

When a formula 16 convertiblo to ancthor which ia in norrel

forn- tho socond {s doseribcd. as a normal form of tho firat,

vhich fu then said to havo g normal form. I quote here somo of

tlo more important theorems concerning normal forms.

(A) If c formula haos two normal forms thay ara convertible
into ono another by tho use of (4) mlons. (Church ond Rogser (1],

479, 481).

(B) If o forrula han a norml fornm then evory woll-formad
part of it has a normal form. (Church and Rossor [1], 480-481).

{C) Thoro io (demonstrably) no procoas. uhpmi’y ons .can
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toll of n formla whether it has a normal form. (Church [8],
360, Theorem XVIII.)

Te often need:to be sble to deacride formilse by means of
pasitive integers. The method used here is due to-Gddel (G3ddel
[1]). To cach single symbol § of the caleulus we sasign an inte-

zer M[5]as in the table below.

s 0ttt ndlA 8] o T2]X[RTT <

v[s] 1 2 13|45 30(31(32(33] . - .
2 rESIJ 3 r[szj

If §4S,.-.S; 1o a sequenco of symbols thon
(where Px 15 the k th prime number) is called the __G'ES_@'_]._ ropre~
gontation (G.R.) of. that sequence of symbols. No two W.F.F. have
the seme G.R.

Tro theorens on G.R. of W.F.F. are quot&d here.

(D) Thero.is & W.F.F, fori such that 1f ¢t f{s the G.R,
of a W.F,F. ﬁ without free voriables then fori (a) comrﬂ «(This
follows from a similar theorem to be found in Church [3], 53-66.
Motads are used there in place of G.R.)

(E) There 1s a W.F.F. @ such that if A i3 a W.F.F.
vith « nornal form without free variables, then &G v () conv G,
rhere a. 18 the G.R. of a normal f{orm of _F_’ + (Church [3], s3-68,

25 (D).

k
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2. Effective calculability., Abbreviation of treatment.

A function is said to be *effectlvely calculable' if its values
can be found by sone purely mechanical process. Although it is feirly
casy to got on intuitivegrasp of this idea it is nevertheloss de-
sirablo to have 8ore more definite, mathematically expressible d'ef_ini-
tion. Such = definition was first given by Gédol at Princoton ‘in
1934 (Gddel [2], 28) following in part an unpﬁbnshed suggestion of
Herbrand, and has since besn dovelopsd by Klcene (Kleone [2]). To
shall not be concerned much here with this particular definition.
Another definition of effective culculability has been given by
Chureh (Church [3]; 856-558) who identifies. it with ) -definability.
The author has recently suggestod a definitlon corresponding more
clossly to the intuitive idon {Turing [1], sce also Post [1]). It
was said above "a function is effectively calculable if 1ta valuaa
¢an be found by aomo purely mechanical process."” We may take this

)

statement literally, understanding/a purely mochanical; procosa

onc vhich could be carried out by & muchine. It is posqible to
givo a mathematical doscription, in a certain nomnl_,fom, of the
structurcs of these machines. The development of these ideas
leads to tho author!s definition of n computable function, and an
identification of- c'.onq:m‘l:ubi.].!.t;y?J with effective calculability.

o——-——————————-————o————--—_————--—-

T'o shall use the expression 'computable function! to mean o
function calculable by & machine, and let feffectively calculablas?
refor to the intuitive fdea without particular identification with-
any one ol these definitions.. Te do not restrict the valueg taken
by a computable function to be natural nunbors; we may for instdnce-
hnve conputable propositional functionn.

It is not difficult thfough gozovwhat laborious, to prove theee



three definitions equivalent (Eleeno [3], Turing [2)).

In the present papor w2 ghall meke considerable use of
Church's ddentification of effective calculability withA-
dofinebility, or, what comes to the szme, of the identification:
with computebility and one of the equivalence theorems. In most
cases whoro wo have to deal with an effoctively calculable functicn
vwe shell introduce the corresponding W.F.F. with soze such phrzse as
"the function § 1is effoctively calculable, let F be a formula A -
defining it" or "let F be a formule guch that F(4)1s convertiblo
10 «» « o .Whenover h represents.a positive integor". In such cases
there 18 no difficulty in sceing how a machine could in principlo
be designed to calenlate the values of the function concerned, snd
assuming this done the equivalence theoronm can be applied. A
stetomont as to what the farmula F oectually is moy be omitted. Yo
zoj introduce inmediately on this basls & ¥W.F.F. @ with the property
that W, ﬂ) conv' I if ¥ isthoc greatest positive integor for
vhich er divides W , 1if eny, and 15 L if there ia nome. Ve also
introduce DL with the properties

:Dt(ﬂ,b) conv 3
Dbfn+wm, n) conv2
o i, net -_;:.) conv 1

There is another point to bo made clenr in conncotion with
the point of view vo are adopting. It is intended that all proofs
that are glven nh_ould. be z;gagnrde‘d no nore critlcally than proofs
in cleasicel cnalysis. The subject matter, roughly speaking, is
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conntructive systeas of logie, but as the purpose. 45 directed to-
warda chooaing & particular conatrictive system of logic for prace
tlcal use; an ntiempt at this stuge to put our theorems into
constructive forn would be putiinglth: cart before the horse.

Those coaputable functions vhich take only the values O and 1
are of particular izportanco since they determine and are determined
by computable properties, as uny bo aeen. by replacing 'O' and 1Y
by 'true' and-*false’s But besides this type of property wo may
havo to consider a difforent typs, which is, roughly spoaking, leas
constructive then the computable propsrties, tut nore so then the
genoral predicatos of clossical mathemstics, Suppose we have a
computable functlion of the natural mumbers taliing natuial nunbera
as values, then corrcsponding to this function there 1z the pro-
perty of bolug a-va)zl;o of the function. 8uch n property we shell
doscribo na 'hx!.owiﬁic'_, ; tho réason ror-f-ﬁainr;.thia tornm 1o thnt 1t
1o possible to dofine much & property: by, piving n set of nxlos,
the property to hold for a given argument if and only if it is pé;t-"‘
sible to doduce that it holds from the axloazs.

Axionatic pr'opurtioo eay also bo characterized in this way. A
proporty ‘// of positive integers is axfomitic 1T and only 1f there
is a conputable property (]0 of two positive integors, such that
4’ ( X] i3 true if and only if there 18 a positive intogor Y such that
¢(x,Y) 10 true. Or agatn o 1p axioantic 1f-aad énly iF thore is
a WEF, F ouch that (%10 true 4 and enly 4f F (%) conv'e,
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3. Humbor theorstic theoorems
By a number theoretic theoren” we sholl mean a theorem of the

——--.——-uu——-—-—n—-—v———-————-a

I ‘beliavo there 13 no generally accepted meaning for this term, but
it chould be noticed that we are using it in a rather restricted
gense. Ths moot generclly nccepted memning is probably thiss suppose
we take an arbitrary formila of the function calculus of first order
and roplace tho function varisbles by primitive recursive relations.
The resulting formula represents a typical nusber thecoretic thsorem
in thia (more genoral) sonso.

form ¢ G(X) vanishes for 1nf1nltoly rany natural numbers X t,
miere B(%X) 18 a prizttive recursive function.

Primitlvo rocursive functions of naturul nunbers ere durincd induc-
‘tively «s follows: Suppose 'F(*:.)- .. :...,), %(x') ) Y5 STRTRTR TP )

are primjitive recursive then @ [M [RRES! ‘f~.\>1a,pri.mit1vn regursive if
it 15 dofined Ly one of the scts of equationé (a) ~ (e).

(@) Pl Rpyeeoy Tz h(RpperyRmers 400wy K Kt oy e o) [1648)

> (b) (?(7((;--- xu)‘-‘r(*n'-')"n—l)

(c) X ) 0., where k= 1 und a 1is some particulsr nat-
ural numbur.
@ %)z x+L1  (ne1)

(&) P(Ryyer vy By, O) 2 F(Ripery R
(Y‘L) '?*k-)x"'l) L\(X“ k"P(xU x«))

The class of primitive recursive function is more restricted than the
conputable functiong, :-but' has the advantage that there 1s a process whero-
by one can tell of a et of equations whelher 1f defines a primitive
recursive function in tho manner doccribed above.

I (P(%y)-++ 7 *u) 18 prinitive vecursive thon P¥%,;... .‘) o
is deseribed os a prinmitive rocursive rolation betvee'x , b

—-—.—-_.---—-——-——.—----—.-..---—.——.-———.—a—-—-—.——-.—-———

Vo shall gay that a problex i3 nunbor theorotic if 1t has boen shown
that any solutfon of the problem may bo put in the form of a praof

of one or more number theorctic theorems. MUlore accurately va may
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ooy that o class of problems is number theoretic if the solution
of any ono of them can be transformed (by a unifora process) into
the forn of proofs of nunber theorotic thoorons.

T shall nov draw a fov consequences fron the definition of’
"number theoretic theorems®, snd in section § will try to Justify
confining our considerations to this type of problen.

An olternative form for ‘number theoretic theorems’ is !for
cach natursl nunber X ‘there cxists a natural number Y such that
¢ ()L, y) vanishes?!, where (P( X, )’) iz primitive recursive and con=~
vorsely. In other words, thero is a rule whereby given the func-
tion B(%) wo can find a finctton P(x,y) , or given (P(K, Y )
we can find a function 9(&) » 80 that ? B(K) venishes infinitely
ofton' is a necessary and sufficient condition for *for cuch X
thero 1o 7’ 50 that LP(v_,,\/): O '+ In fact givon B(x] wo de—
fine

QL% y) = B(Y)+ %(x,¥y)
vinera ¥ ( X,y) 13 the (primitive recursive) function with the

properties
(%) 1 [Yé%)

=0 (y>W
If on the other hand we cre given <P( X,\/) vo dofine O(X) by

‘the equations
8,(0) =3
0, (x+1)= 3. 2(6,(x)
0(x) 2 Q(¥3(8,(x)~2, ¥ (8(x)))

vhere 3’;‘,-(7(-) 13 to bo defined so-as to menn 'the largest & for

(3% (8,0)~1, 3,(8,(x))
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vidch V' divides X ¥ and ZX to be defined prinitive recursively

80 a8 to have its usual meaning if X is a multiple of 3. The

function € ( &) i3 to be defined by the equations © (0)=0 , T (x +1)=1, .
It ia easily verified that the functions so defined have the de~

aired properties.

Vo shall now show that questions ns to the truth of stetements
of form 'does f (%) vanish identically', vhero (%) is a com-
puteble function, can te reduced to questions as to the truth of
nunbor theoretic thoorems. It is undorstood that in each case
the ruls for the calculation of {-(_‘R) 15 given and that one is
satisfied that this rule is valid, if.e. that the machine which
should calculato f(x) is circle free (Turing [1], 233). The
finction ‘F'(.‘l‘) boing computable is general rocursive in the
‘Herbrand-Gbdel senso, and therefore by e general theorem due to
Kloenes is expranﬁible in the form

——-—-—————-——--.—.——.--——-—c—-“—-‘-—-‘—p———.-

6 Kleene [8], 727. This result 1s really suporflusus for our
purpose, as the proof that every computable function 18 general
recursive procceds by showing that these functionsarc of form

(5.8). (tortng [2}, 260). _—
pley Loty - OJ) (s.2)
whera G)’_E(]l(\/)] moans 'the least ) for which «ﬂ(}')is true? ond
lf(\” and 'f ('ﬁ,\[) are primitive recursive functions. Then if
ve define e(?() by the ocquationa (5.1) and
e(x)z ¢ ¥ (8i(K) =1, % (B,(X) + ¢ (%2 (8,(x)))
1t will be seon that () vanishes identically if and only if
P (X) vanishes for infinitely many values of X .
Ths convorse of this rosult is no.t quite true. Ye camot soy
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that the question as to the truth of any number theorotic theoren
is reducible to a question as to whethor a corresponding comput~
eble function vanishes identically; we should have rather to say
that 1t is reducible to the problem as to whether a cortaln muchine
ia circle free and calculates an mentiéulh' vanishing function.
But more is true: every number theorotic theorem is oquivalent to the
statement thet a corresponding machine is circle free. The be-
havior of tho machine may be described roughly as followst the machine
i3 ono for the calculation of tho primitive recursive functlon 9(’(-)
of tho number theorotic problem, excopt that the results of the
calculation are first arranged in a form in which the figures 0 and
1 do not occur, and the machine is then modified so that whenover
1t has boen found that the function vanishes for gome valuo of the
argunent, then O is printed. The machine ia circle froo, if and
only 1f an infinity of those figures are printed, i.e. if and only
4 G(X)vannishcs for infinitely many values of ‘the argumont.
That, on the other hand, quostions oo to circle froedom may be re-
duced to questions: of the truth of number theoretic theorems follows
from tho fact that O(%) 1s prinmitive recursive when it is defined
to have the value O if » cortain machine e/l printa 0 or 1 in 1ts
(w+ 1) th complote configuration, and to bavo the valuo 1 other-
vise,.

The con:mrsion celculus provides another normal form for the:
number theoretic theorems, and the one wo shall £ind the noat

convenient. to use. Every number theorstic theorem is eguivalent
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to a statemont of the form * _@ (5) 1s convertible to 2 for every
E.F.F.Ivzv;'cpmsepting a positive integor', A being a W.F.F. deterain-
¢d by the theoren; tho property of fj kore easerted will be des-
cribed briefly as‘f_i i5 dual. Converaoly such statercnts are re-
ducible t6 nmumbor theoretic theorems. The first holf of this
assertion follows from our results for computeblo functions, or
directly in this vay. Since O(x-1) +& ig primitive recursive

it is formally-definable, by means of o formula ( let us soy. MNow
there 1s (Kleene [1], 232) a W.P.F.(® with the property that 4f T (¥)
18 convertihlé to a formule representing a positive integer for

cach positive integer v , then (T, n) is convertibls to S

whore § 18 the ath positive integer ( (if there io one) for vhich
T(Q) conv 23 if T{ ,(_‘) conv 2 for.less than A values of £ then
.PC’I’,}»;)MS no norzal form. The formule _g(@[_&,b))v;lltherefore

‘ba’ convertible to 2 if ond only if 9()&) vanishes for at leeat

A values of X s and will'bé convertible to 2 for every posi-
tive integor X Aif and only 1f O(¥ venishes infinitely often.

To prove the second half of the assertion we take G?del repre-
sentations for the forrmlee of the:conversion caleulus. Let clx)
be 0 4f X 45 'the G. R. of 2 (fee. 1f X i» &°. 3§, 73 Thad
3017 197 ast 29 31 37 wiles 47"t sqt et
and otherwise he 1. Take an enumeration of the-G: R. of the for- |
milne into vhich F (w)1s convertibles let & (4 ,u)be tho 4 th
number ‘In the enumeration. Ve can arrange the enuneration so that

a (@, u) 18 prinitive rccursive. MNov the statement that /7 ( w)
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1s convortible to 2 for cvery positive integer #+ is equivalent

to the statenent that for each positivo integer My /there is a

positive integer W 'such that ¢ (&(%y®))= O, and this 1s

nunber theoretic.
It 18 easy to show that a numbor of unsolved problems such

as the problem as to the truth of Fermat's last theorem are

nunber theorotic, Thero are, however, elso problems of anslysis

which are nuober theoretic. Tho Riemann hypotheals gives us an

exanple of this. e denote by,)' [s)the function defined for

QRs> T > 1 by the aeriesz ,‘s and over tho rest of the com-

plex plane with the oxcnpﬁ::a'of ;t.ho point' = 1 by snalytic

continudtion. Tho Riemann hypothesis asaserta that this function

does not vanish in the domain G77. It ia eanily shown that this

isequivalent to saying that it does not vanish for 2)5}-’ Rs= l‘.) 2

i.0. that 1t does not vanish inside ony rectangle 2. > G"? + TyE >2.

whore | 4s an integer greater than 2, Now:the function sntisfies

the moqualities
l?!’( s) - Z W
| 3¢) - 3-(;')]4 \r s'l Lot

and wo can dofine n primitive recursive function §(4, é; ) , NM )

NI-J -1 '
- = l & 2b(N-2)"3 ] 2¢0¢ ], b
2_46-45_ t’>2

such that
[ el / N-I
[ 508 & mun/ N M) - M{zu >
and therefore if we put

E(4,M, m, M M+2, M) = X(4m M)

£ 2 Zs=§7*‘fl_)
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we shall have

/ [€+'\9 ““.19/)’? X[(,IMJM)—-IQ-Q—I_

—— e |, emnascsme—
M

M

! e-1 8+I A el Wt - Y

P § o T KAN g, 2 T AT, Sk, e
if ve dofine B (M, T) to bte the omalleat value of X4, “4 M)

for which l-‘-"_. +'v-“- ’%41"—'-)?.*"\ < 3

then the Rlemana hypothesis is true if for cach T there is |"l
satisfying B ( M,"") p AL XN T If on the other hand there is
T ouch that for all M, B(M,T) <€ 12227  , the Riscemn
hypotheois is.false; for let e m M be such that

X('eﬂ:-“"mam><‘27-‘thanl ( Ep+elum )l zuu

é + ¢ W
" M then

low Lf ov is a condonsation point of the sequence
sincef(8) 1s continuous except et §=1 we must have Y(la )= O
inplying the falsity of the Riencun hypotheois. Thus we have

reduced the problen to the question as to whether for each |

there 1o M for vhich B(M, l)>12.?. [ B(M,'T)

is primitive recursive, and the problem is. therefore number theorctic.
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1ch 18 _not nunber ‘theoret c.7
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Lot us suppose that wo mre supplied with soze wngpecified
means of solving number theoretic problé:nn; a kind of oracle nz it
vere. Vo will not go any further into tho mnture of this oracle
than to say that it cannot bo a2 nachine. With the help of the
oracle wo could form & now kind of machine (call thea o-machines),
having as one of its fundamental proceases that of solving a given
nunber theoretic problenm. Ulore definiteoly these nnchines are to
behave in this waye. The moves of the nmechine are deternined as
usurl by a table excopt In the cane of moves from a certain inter-
nal configuration 4. If the machine 18 in the Internzl config-
uration4”end if the sequence of synbols marked with £ 1e then tho
viell formed® formils f , then the machine goes Inta tho internal

————-.———-—.u--——-‘—-.—-—-.—o-—o—...-u—a—-—-——-—

8 Without real loss of genorality we may suppose that H
is alvays well formed.

:o:fzg:r:tzo; 39/-0: /7" a:c:r; i:g-n; .;t—i.: :v-i.; ;o-t- -t-r:e-.t-l:a.: -/3 -
i3 dual. Tho decision as to which is the cose is rcferred to the
oraclo.

These machines may be degcrlbed by tablos of the same kind
a8 uscd for the description of a-mschines, thero being no entries;
howover, for the internal coanfiguration. &7 Te obtain description
numbers from these tables in the same way as bofore. If va make
tho convention that in assigning numbers to internal configuratione
£ #,, ¥ are always to bo %, » ?/3 s 9,", then the description
nucbors detoraine tho behaviourof the nachinen wmiquely.
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Given any one of these machines we mey ask ourselves the ques-
ticn vihether or not it prints an infinity of figures O or 13 I
-39sort that this clnss of ‘problems 4s not number theorotic. In
view of the definition of 'number theoretic problem' this i:eans to
say that it 13 not possible to construct an o-machine which when

!mpglicd with the description of any othor o-machine will determine

Comnare Turing_[.]..’], é G,Z. L L

;h:t;e; :h:t.“m:china 1: :-circlo free. The argument rnay be tn‘ten N
over directly from Turing [1], p. 8. Ve say that a numbor 1is
o-cetisfactory 4f it is the description number of an o-circle free machine..
Then if thore 13 an o-mtichine which will def‘,omine of any integer
whother it i3 o-satlsfactory then there. 43 also en o-machine to cale
culate the values of the function 7 — @, (n) . Let v(w«) bo the

i th o-satisfactory nuzber and let <P,\{ ia) o the Wwth figure
printed by the o-machine vhose description rumber is k. This
o-machine 13 circle free.end there is therefore on o-patisfactory
numbor K such that ¢ (4): 1= @, () a2l w. Puting wn= i
yiolds e contradiction. Thils completes the proof that problems of
circle freedo: of o-machines are not number theoretic.

Propositioas of the forn that sn o-machine is o-circle free

cen-always be put in the form of propositions obtzined from formulac
of the functionsl calevlus of first order by replsclng scme of the

functionel variables by primitive recursive reletions. Compare
footnote®,
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I shall rmention'a proporty of numbesr theoretic theorems which
suggests that there 13 roagson for regarding thea as of particular
inportance.

Suppose that we have soze axiomatic system of a purcly formal
neture. We do not interest ourselves:-zt.all in interpretations. for
the formulae of this system. They zre to be regarded a3 of interest
for themselves. An cxample of what ig in mind 1a afforded by the
conversion calculus (é 1). Every sequonce of symbols (fl conv '_3'
where A and ._B are vell formed formuleo, is a formla of the
axionatic gsystem and is provable if the W.F.F. /1 1s convertible to
_@ e« The rmles of converaion giva ua the rules of procedure in this
nxionatic systen.

Now consider e new rule of procoduro which 1s reputed to yleld
only forrmlse provable in the originel’sense. Ve may esk oursclves
whether such a rule 18 valid. The.._.atatgme_nt that such a ruls: :is
valid wonld bo numbor theoretic. ‘To prove ‘this let us take GSdol
representations for the formulae, and en enumeration of the provabla
formlne; lot ‘P( r) be the Go Ro of the v th forrula in the enun-
eration. ¥We may suppose @ (r) 1s primitive recursive if we do
not nnind repetitions in the enusmerction. Lot t,b(?) ‘bo the G. R.
of the v th formiln obtnined by the now rule, then the statement
that this new rule i3 wvalid is equivnlé;nt to the assortion of

IEDIRIGERION

(the domain of individuals being the natural numbers). It has
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been shown in % 8 that such atatements are number theoratic.

It night pleusibly be argued that all theorems of nathemetics
which have any significance whon taken alone, are in offect syntac-
tical theorems of this kind, stating the valldity of certsin 'derived
rales' of procedure. Without going so far as this I should say that
thoorena of this kind hove an importance which makes it worth while

to pive them spacianl conanideration.
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6. Lozic formlac

Ve shall call a formula _L__ o lopic formula (of, if 1t is clear
that we are speaking of a W.F.F., oinply a logic) if it hns the
property that 1f A $s & formula such that L (A)conv 2'then A
is dual.

A logic forzula gives us a means .of satisfying ourselves of the
truth of number theoretic thecorenms. For to each number thooretic
proposition there corresponds a W.F.F. A which in dual if and oniy
1f tho proposition is true: Nov if L 18 a logic and L ( ﬂ) conv
2 then E is dunl and vwe know that the corresponding number thicore-
tic proposition is true. It dosa not follow that if L 4s'a logic
¥0 can use E to satisfy ourselves of the truth of mpy true number
theorotic theoronm.

If L is n logic the gset of formilne E for which L [ﬂ) conv
2 will bo called tho extent of L . |

It may bo proved by the use of (D), (E) p- 7, that there in &
formla x such that if _l‘_4_ has a noraal form and no freo variables
and 18 not convertiblo to 2, then X(M) conv 1, tut 1 M conv 2
then X(?_']) conv 2. If L isa logic then M. XU:("))_ is also
2 logic whose extent is the save ao that of L , and has the property
that 4f A hns no free variablos then (Xx . X[EUQ)}' lﬂ) i3
always convertible to 1 or.to 2 or else has no normsl form. A
lozic with this proporty will bs said to.be standardized.

Vo shall say that & logic é ! 1s at lenst as completo an.a
logic L. Af the oxtent of ‘L 15 a subset of tho extent of A-"'. « The-
logle é’ vill be more complote than L if tho extent of L e a
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propsr subset of the extont of I:I .

Buppose that wo have en effective set of rules by which we can
prove forzulae to be duel; 1.0, :we have o systen ori'synbolj.c logic
in which ths propositions proved arc of the forn that certain form-
lno nre dunl, Then.we can find e logic foraula whose extent con-
gists of just thoso formilas which ¢zn be proved to be dual by the
rules; that is to say that there is a rule for obtaining the logzic
formule -from the syston of symbolic Logle. .In fact the system of
symbolic logzic enables us to obta: 10 a conmputabls function of posi-

g
D U GS IV WD ATO WL Guh VED CMA SR WA WD G Pl WVD GEP NS WP G GUD GAS WY GO WED Geh EmG B CER CUED weh D =0 G

12 Compare Turing [1], 252, second footnote, [2], 1se.
4vo intogors whose values run through the Gadel roprosentations of
the formulne provable by means of tho given rules. By the theorex
of equivalcncs of computable and \=-definable functions thero is e
formila J” such that J(1) 7(2) are tho G R, of theze form-
lae, Now let

w = \jv. @ (Au. S(jlw,v) 2,1 2)
then I assert that W( J ) 18 o logic with the required propsrties.
The ‘proparties of (ﬁ Amply that ] [ g, 1 ) ia convertible to ths
lenst positive.integer W for which Clu ) coav 2 and has no normal
form if there ia no such integor. Consequontly (F[ c,1, _'_1') 1)
18 convertible to 2 1 C.(u) conv 2 for sozs positive intoger W ,
and has no norgal fora othorwlse.. That o to say that W (J, A)
conv 2 1f and only if 5(;7_'(5], A) conv 2, some W, L.e. 18 J(4)
conv Agomo A

. 1r
There is.conversely a forsula W snch that 4f L is = loglc
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then W’/é) enunerates the extent of L. . For there 1s a formula @
such that (,D( L, ﬁ,ﬁ) conv 2 if and only if L(f1) is convertible
t0 2 in less than W steps. Ve then put

W' = Nu . form (F(2, (A @4, Form. (%(2,1)), ¥(5x)); “’)))
of course W/( W(J )) will normally, be entirely different from _y
and W'(W'(Q))from __ .

In the case whors we have symbolic lopic whose propositions
can bo interproted as number theoretic thaorens y but are not express-
ed {n the form of the dunlity of formilse we shall again have a
corresponding logle formuls, but its relation to tho symbolic logic
will not b8, so simple. As on _qxample let ua take the .case.-that,tlge,j
symbolic logic proves that certain primitive rocursive functions |
vanish infinitely often. Ao was shown4n § 3 we can assoclato
vith each such proposition a W.F,F. which 1s dunl if and anly if the
proposition is true. VWhen we replice the. propositions of the sym-
bolic logic by theorema on the’duality of formulae :b: tbis wny our’
previoua argument applies, and ws obtain a cortain logic formulaL.
However, L= does not determine uniquely which .are the propesitions
provable in the symbolic logicy for it 1s possibls t,hat' 6 ()
vanishes infinitely often' and ' §,-() venishes infinitely often
are both agsociated with ! [l is duall; end that the firat of these
proposltions 18 provable in the systen, but tho sccond nots How-
_ever, 11‘ we auppose that the system of aymbolic logic :lﬂ suffic-
1enﬂ.y___powe:;jful to.ba ablo to carry out the argument on p. 15 : then
this difficulty cannot srise. There is alao ‘_ﬂi‘a possibility that
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thore may ba formulee in tho extent of L with no propozitions of
the fora ' §(x) vanishes infinitely often! corresponding to thon.
But to each such formula.we can assign (by e different argument) a
proposition 7’ of the sypbolic loglc which is the ='noquaryf;aﬁd-
sufficlont condition for _fl to bo dunl. With 7’ 13 associated (in
‘the first way) a forcula E/; How"il. ~can almays be'modified so ihat
its extont contalns ﬁ‘/whonovar 1t contatna A,

¥o shall bs intorested principally in questions of comploteness.,
Lot us suppose that wo have & eleass ol oyastens of aynbolic logic the
propoaitions of thoso syi:tems beiny exprossed in a unifors ,noiation
and interpreteble as nuxber theoretic theorens; suppose elso there
is & rule by which we can assign to cuch proposition P of the
notation a V.F.F. ﬂ? vhich 13 dual 3if and only 1f r i1s true, and

that to cach W.F.F.'fl we can azsign a proposition P

necessary ond sufficfent conditlon for A tote dunl. ?Ff ‘18 to be

vhich 1s the

oxpected to differ from P To each symbolic logic C ‘we:-can
. / . ,
assign two logic formlas L. and EC o & formule ﬁ belongs. to the

- /
‘ =C
conoists of all B » whore P is provable in C Let uy gay that

oxtent of L ¢ 1f Ppq is provablo in C , while tho oxtent of L

the clada of symbolic logics {5 complete if oach irue proposition
1o provable in one of --the;:ﬁs lot us 2lso Gay that a class of lopic
formulae is conplete if the set theoretic sum of the extents of
thése loglcs includea all dual formulme. I sssert that &-necessary”
condition for a class of symbalic logles C to bo complate is that
the clags of logicon , .l_._.-c.-be_-;;con_xplet_e ,"r}hilq a sufficiont condition
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/
33 that the claas of logics L. be conplete. Lot us suppose thnt

-C
the class of symbolic logica is completes consider ?ﬂ wirere A is
arbitrery but dual., It must te provable in one of the systems, C
ooy e _/_7 thercefore belongs to:ithe esctent of _1:. c? fe, the class of
dogico é_.c 19 conplete. Mow suppose the class of logies EC, i
complete. Let T be un arbitrary trie proposition of the notation;
A,

ig i?rb~mblo in C

/
must belong to the extent of some L . s end this noans thet -p

To shall say that s single logic formula L 4s complote if its
extent includes all dual formilac; that is to say that it is dwel complele
if St encbles us to prove every true nunter theorctic theoren. It
is. a consaqueonce of the thooren of G§de1 (1f suitably extonsled) tkat
no logic formla is complets, and this also follows frox (C) p. 6,
or from tho results of Turing [1] k 8, when taken in conjunction
with é':’::iél‘ the presont paper. The idea of completencss of a logic
formule will not therefors be very important, although it is useful
to have & tora for 1t.

Suppose Y s a W.FF. such that :/ (1) 18 a loglc for coch
positive intag:r h The formulde of the extent of :/( L) arc
onunorated by W(:/ ( n )) s &nd the combined extents of thece
logles by Ar, W( _\_(( &l '))_, & (3,r)) Putting

T — Ay, W/(Ar W(y (&G, v), B0, r)))
™ :/) 13 n loglc whose oxtent iz the combined extent of _}’( 1),

_}’[2)1 N(3) s

To each W.F.F. L. we can assign a W.F.F. V( _l=) puch that tho
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necessary and sufficient condition for L. to be a logic formula ia
that V' ( l-.-') be dual. Let N be a W.F.F. which enurerates all
formloe with normal forms. Then the condition that L be a logic
12 that I:['Nnv ( _r), _S:) conv 2 for all positive integers vV, § ,
f.0. that Aa. L ( Nw (8(2,0)) ¥(5,4))  bo aual. e
nay therofore put

V.~ Mo, £( Nuw (972,4)) B734))
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7. Ordinals.

To begln our troatment of ordinals with sone brief definitions
from the Cantor thaory of ordinals, but for the understanding of
soro of the proofs & grester emount of the Cantor 'theory"'ia:f"necaésdiy?
than is here sot: out.

Suppose wo have a clnss deternined by the propositicnal function
3(‘(\) and o relation (r(¥,y) ordoring them, i.c. satisfying

Glxy) ¥G(y,2) 2 &(x2) i

D(¥) +DY) D G(x,y) v &(y,x) v x=y i (73
G(%Y) 2 D)+ ]Y) Vi

~ G(%,%) tv

The class defined by (x) 13 then called a gories with tho ordering
relntion (r(%,y) « Tho serios is said to be well ordéred and the
ordoring rolation is called an prdinad, if every sub-series which 1o
not void has a first tern, l.o. if
1) {@H (20) + (R)( D)2 D)) 2
DE=)N[ =)~ (¥ a(zy)vay)]) 72
Tho condition (7.2) s equivalent to enothor, more gultable for
our purposes, nacsly the condition that overy desconding cubsoquence
mast terminate; formally '
(W D'(x) > D)~ (Iy) (D'ty)* G(¥ W)} 2 (W)  Ha.
Tho ordoring rolation 'Gr ( %Y) is said to be simtlar to G'( % Y)
Af there 18 & one-oné corrospondenca between the sorios tfané%rming"

tho one relation into tho other. Thin 1s best expressed foreally
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@ M)[(V-){:bu) (I ) Mlxx)} (x')[:o’(x') 2@x)Mlx,x1)
+{Ilox) ¥ 0 X v (MO i ) 5wt x

+ {H(x, )+ MY,y 5 (Glry) = &’(*’,v'))ﬂ

Ordering rolations are repgarded as belonging to the saze ordinal if
angd ohly 4f they ore similar.
Vo wish to give nomes to all tho ordinals, but this will not
bo possiblo until they have been restricted in soze way; the class
of ordinals es at prosent defined ls more than enumerable. The res-
trictions wo actually put are thoses D (X) 1s to imply that X
18 a positive intoger; D(*) and G (*,Y) are to bo computable
proporties. Both of tho propositional functions D) y G(%, ‘/)
can then be deseribsd by mneana of o single W.F.E._.Q_ with the proper-
tiea.
Q (w, )eonv 4 unloss both D(m) and D(n) are true,
__g_(- m)vomr 8 1f D(m) 13 true,
0 (m, w) conv 2 4 D(u) , Dlw) , o Gr(mn), ~ (M2 1) oo truo,
Q) ooy 135 D) 4 D) G () ol v o,
Owing to the cond{tions to which D (¥), &G ( 'M‘I) are subjected Q.
muat further gatlafy
(2) 4f Q (m u) 4a convertibls to 1 ‘or. 2 then Q (=, ) and
Q (v, u) are convertible to 3,
(b) :U',Q[-,_) and. Q.(EV,"')nre convertible to 5. then .Q[ .‘1)
18 convertible to 1, 2, or &,
(c) i Q-['::,ﬂ) is convertible to 1 then ._Q(ﬂ,‘_‘.') is convertibloe
to 2 and conversely,
(@) 1f ___Q,(y_\,-l_ﬂ) and Q.(‘.‘,_’B)m convertible to 1 then Q. (b)T)
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is alsgo,

{e) there is no soquence M My, .- . such that Lo(m; oy, )
conv 2 for each positive integer ¢ -,

() 2(m, g) is always convertible to 1, 2, 5, or 4,
If o formule £ sctisfion those conditlons then thers aro corres-
ponding propositionnl functions :DC*) » G'(Y-, Y ) « Ve ohell thero-
fore say that Q is on ordinsl formuln if it satlsfies tho condi-
tians (a) - (£). It will bo secn that n conseguence of this defini-
tlon is that Db 1o on ordinal forsmla. It ropredents the ordinal
L . The dofinition we have piven does not protend to have virtues
ouch a8 elogance-or convenionce. It han been introduced rather to
fix our ideas and to show how 1t is possible in principle to describe
ordinals by moans of well formed formulee. The definitions could.
be modified in‘a nudber of ways. Some. such nodifications are quits
trivial; thoy are typified by nodi.fications,,_guch as chanping the
nunboxs 1,2,%,4, used in the:definition to sone others,  Two' such
definitions will be asnid to be equivalent; in general we shnll soy
that two dofinitions ere oquivalent Af thero are W.F.F. | , T'
such that 4 _f? 16 an ordinal forrmla undor one definition and
reprosonta tho ordinal ™ , then T’( A )"ia an ordinal formle
undey the second definition end reprosents the game ordinal, end
convorgely if E ,10"an ordinal formula under the aacond-*da__finition
roprogonting of , then T{ a ') reprosenta X under the first do-
finition. Besides definitions oquivﬁle_ntvin thia sense to our
original dofinftion thore aro'a numbor of other posaibiliiies opon.
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Suppose for instance that wo do not require D (¥) end &(¥, 7’)
to bo computable, but only that D(*) and G (x,¥) ¥ XLY e
mn:i.O':m:i.c.M~ This leads to a definit.ion of ordinal forzula which

— o m— ——..-.-———-o—.—-...—.-———————-———-————-

10 require G (*Y) to o axiozatic would unount to requiring G(x,y)
computablo on account of (7.1) i

T s - - " —— S WD G S S uD G Cw W S WD A P CmS T TS b GEE eum e ene tam

———-.—.——.—————o_————-————-———- -t e et et em e oo = e -

% On the other band 1f D(*) be axiomatic and &(x ( ‘/) computable
in the nodified sense that there is a rule for c.o‘beraininr; whether
G+ »Y) 18 true which leads to a definite result in 2ll cases
whore D(+)" and D(Y) are true, the corresponding definition of
ordinal formule is equivalent to ocur Jdefinition. To give the proof
would be too much of a digression. Probably a numbor of other
equivelences of thls kind hold.

There are:numerous pos..ibilitias, ond. 1ittle to guide us as to which
definition should be chosen. No one of them could rell be described
us furong?s some of them may ke found more wvaluvable in gpplications
than others, end the particular choico ve have mado has been partly
deternined by the applications ve have in view. In the case of
theorens of a nogui.ive -cha:ac't;er one would wish to prove then for
oach one of the possitls definitions of *ordinal forcula!, Thio
prograns could T think be carried through for the nogative results
of 9.9, 10.

Before leaving the subject of possible ways of defining ordinnl
formilze I must montion snother. definitioh due to Church and Klcene
(Church and Kleene [1]). We can mnke: use of this definition in
constructing oxdinal logics, but it 18 more convenient %o use n
slightly different definition which s equivalent (in the sense
described on p..29 ) to the Church-Kleens definition as modified in

Church [4].



66 3R

Introduce the ebbroviations
U—> Xupr. Ny, F LT, *)))
Sic =7 Nawfx ,L (a (49,x)

Vo dofine first a partiesl oxdering relation '/ ' which holds between
certein pairs of W.F.F. (conditions (1) = (5)).

(1) 1t [} coav B than A< € inplies B C and C<A
inplies €< B |

(2) A £ Sue ()

(3) Yor any pozitive intogers moh, l\hY“i-- B[‘-‘) <A “{7" Rw)
mplios Nk, R») ¢ Augh. w (R),

(4) 10 A< B amd BLC Ahen ALLC . (1) = (4) exo
required for any W.F.F.f,8,C, ?su'l% R .;

(8) The relation A < B holde only when compelled to do so
by, (1) - (4).
We defino C-X ordinal formulse by the condlticna (6) - (10).

(6) Ir A conv B end - 18 @ C-X ordinumfor:mln, then B
is a C-K ordinal formula.

(7) U 1s a C-X ordinal formula,

(8) Ir A 15 & C<X ordinol formule then Juc (A ) io o C-K
ordingl formula.

(0 1¢ Auft B(x) 150 =K ordtnnl formla end  Auf¥. R(x) <
4 \&4* B [ S( _'-'2)) for cuch:positive integer A then )\b-vl *. ‘*(8)
is a C-X ordinzl formula,

(10) A formula is a C-X ordinal formuls only if compslled to
be so by (8) - (9).
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The reprosentation of ordinals by formulae is described by (1l) -
(15).

(11) ¢ A conv B and Q reprosents-of then _.:b, reproscnts
o, B

(12) U represents L.

(13) 1f ﬁ represents K then Jue ( ﬁ ) roprescnts &+71

(14) Ir Auv(‘& B [ ‘J) ropregents o, for ench positive
intoger A then l\ﬁ’/ﬁ w( _73) » repreasenta the upper bourd of the
sequence &, & Oz v oo

{15) A formula ropresontis an ordinal only whon compelled to
da %o by (11) - (14).

‘:-'o'donof'.u any ordinal ropresented by ﬁ byf a without prejudice
to the ponssibility that moro then one ordinal may —bo repreaented by
ﬂ ?oahallwi'iteﬁS:B taszeanf('_:,ﬁ or Al coxw_$.

In proving propertios of C-X or;iinal forrmlae we shall of _ten
use a kind of analogue of the prmc',iﬁlc' of transfinite.induction,
If cP is gore property and we have

(o) Ir A conv'B and (P(ﬂ) then CP(_'B).
® ¢(U)
(c) 2 @(f) ton p(Juc (A))
(@) 1z Lp(r\u{m f(b)) and Aufw. R(4)< %m‘l%:ﬁ'(ffb)}or each
ﬂb’sltlve Anteger I “thon C? ( .(\'L,_,?Lx . u( i ) )
thon IP( ﬁ) for cach: C-K ‘ordinal fornula _ﬂ To prove the validity
of thls principle we have only to observa:that the class of foraulae
f) satisfying ({D[ ﬂ) is one of thoze of which the class of C-X
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ordinal formmlne vas defined to bo the amallest. Vo can use this
principle to help us prave:-
(1) Every C—X ordinal formula is convertillo to the form
!\k’l'& 3 vhore _B 10 in norzsl form.
(1) Thore i3 o method by which onc can determine of any
C-K ordinal formula into which of tho forms U, Juc(Aud+. 3) Xu}x «(B)
where & is freo in '? it is convertidle, md to determine 'B 'R
In ecach casc B ﬂ are unique apart from converalons.
(111) If A reprosents any ordinal = = 13 unique. If = ,
oxist and 943 thun._( =3° ?
(v h,B, Q_ are C—K ordinal formulae and- BL ﬁ
CL R then either < B ,B4C or B eonv C .
(v) A formila A is o C-K ordinal forrula if
() V&R

S P -
-—
—

B

n

() 1f !\“{*- “(B)é.ﬂ and 1 18 @ positive inte-
gor, then >\a{.v~ ﬂ(h)ti t\ u.‘lﬁ q /5(“))

(0) For any two W,F.F. 'B C with B( H s ££8
wohave BLC , C4 B or BcOnvC but never BLB .

(D) Thoro is no infinite zequance '_31,_31_ s 0
for which 3‘,< B,.{Roench’y .

(v1) Thore 1s a formula M such that 1r B is a C-K ordinal
formada then H ( A )'ia en ordinal fornula ropregenting the sece
ordinal. H( E) 11 not an ordinal formula.unless ﬂ 1a a C-X ordinal
formala,

Proof of ). Tako @(A) to bo ' A 1o convertible to the forn
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AV* § where E 15 in normnl fora', The conditions (z), (b)
are trivisl, For (c) suppose A conv ’\"7/ % B vwhere _f_B is in
nornal form, then Jue (f) conv Au{%.-f (B) ama f(8) 15 in
nomﬁal foria. For (d) we have only to uhou;‘ that o (B ) has ¢ normal
forn, $.e+ thet R bns o norsal form, which is trus aince R(1) hus
a noraal form.

Proof of (i1). Since by hypothesls the formula is o C-X.ordinal
formula wie have only to perfor: conversions on it untdl 1% is in
one of tho forms described, It is not possible to convert it into
two of “theso three forms. For guppose (\b{?\- 'F ( ij ( b, f, K) ) conv
.1\L.‘l~[;. w(R) ond 45 o C-X ordinal formuls; 1t is -thee’rtg';re conver-
tiblo 4o tho form Awlt. B vwhore B s in normal form. But tuo
normal fora of Awlw.w ( ﬂ) tan be obtained by convorsions on Z ’
and that of I\k{'f- 'f:(@ (o, f, x')) by convarsions on.ﬁ[&, %)
(as follows fron Church and Hosser [1] theorcm 2) but this would imply
‘thot the formila 4n yuestion hed two normal forms, one of fornm r\uyl_x. u[é" )
end one of form ;\u{%_. f(¢C ) 5 which i6 impossible. Or suppose U
conv >\u *. 4 ( 8) where flS’ 18 & wvoll forced formula with U as a froe
varinblo. We may suppose ’73 18 in normzl form. Now U is Xu{%.q(,\y, {(‘/(:’;X));
By (A) p. 6. _7_? 1s 1dentital’ with'-: :\\/,v-.—F'(\[ ( I,%)  whten "
doea not have W as a frec varinble. It now only remaina to show
that §& J‘u.[:\u{x B) conv Jue [l\kyhlg’} and I\V% A(Z\’j
conv AuJ%. & [_73} then B ’convf_B'und _7_? Tony 7_{1.
1w S (Nugx. B) conv Luc( c\u.ylv-._B’)
then ?\u{m.f{_@) conv Aué‘(- . -F (_f_3 I)
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but both of thess fornulae can be brought to normal fors by convor-
siong on _8 » _’_B /und therefore _@ comv _B ! The mano crgwsent
applies in the cage that }W-'l x.u(R) conr A‘-—Vl%. « [_W /J-
Proof of (i1i)., To prove the firnt half take (P (4 ) to be -
' = » is unique'. (7.5) (a) i3 trivial and (o) follows from the fact
that U/ 1is not convertible efiher to ihe form J;is ( _l_?) or Lo
Aafw. g) where ﬂ has & 03 a free variable. TFor (c)s JSue C_l?)
i3 not convertible to the form f\'AY/\t. « (B) 5 tho posoibility of
See (A) representing wn ordinal on sccount of (12) or (14) is
‘therefore climinated. By (13) Jue ( ﬂ) ropreeents ﬂ(’-«-]_ i E /
roprogents 5(, and Jue (A ) conv  Juc ( I_‘_?(/ If we sup-
pose E roprosents & , then f , _fj ! boing C-K ordinal formulas
are convertiblo to the forms A u{ w. _'B ! y A u.{'r-. B / but
then by (11) B conv}li;e. A coav R ! , and thereforo by the hypo-
thesin- Q[@) e o!/ Then ES’«:(G) s 4"4- 1. s unique. ,_Fbg (@ze
Ru{% A ﬁ) 15 not convertible to the fora Juc ( A ) or ta
U 1 R mas w as a freo vartable. If (\u{l_u (8] sop-
sonts an ordinal it ¢s therefore in virtue of (14)’ posaibly topether
mith (). dos 15 Aufru (B ey A afx. (R') @ R
conv B I, go that the sequanco I\ ‘t{* . B(J) ’ _(\uylﬁ Z\’(ﬂ) gs e e
4n (14) 1s unique apart from convarsions. Theﬂ by the induction hypo-
thesis the sequonce “1. » & ) QS A is wniquo. Tho only
ordinal that is reprosented by A u{ v.u( Ze) 1 tho uppor bound

of this sequence which is unique.

For the sscond half vo use a typs of argument rather different
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from our transfinite induction principle. The formulae _3 for. which
H 4 B Lforn the smallest class for which
Sue (@) belongs to the clasa,
If C belongs to the class then Sec (C ) belongs to it.
Ie ?\u{% R (u) bolongs to the class and }\u{x R(») < r\u/ - Rl)
whero M , h oro some positive integers then )uYL*b el 8) bolongs
to it.
It C belongs to the class end £ conv C / then ( ,balongs to
it.
Tt will suffice to prove that the class of formilne B for which

eitlior 13cioc.'s not extst or = L = 8 satisfies the conditions
R 2

-

(7.8). Mow

Sseegy T Sptl7 I,
ESHCCQ) > YEC > Eﬁ if’ _C_ is in"the class.

T = ‘\ . (R(“) does not ‘exist then — }\ {_* w (B) does not
exiat, and therefore Xu‘lv\ - (R) 15 in the class, If _\ ~. B (1)
exists and is greater than ":ﬂ end r\u\hk. ‘3[_) 4 r\uvhk. R(w)

thon

= Afr(B) 7 Taage. R) T —p
fo that A.w**. L ['B)balonga to the classz,.

Broof of (iv). Te prove this by induction with respact to E
Take {[ ﬂ) to bo 'vhenover B L A and £4{P then B L C  or
€L B or _@ conv C 1o cP{ U) follows from tho fact that we
never have B U If wo have (P(ﬂ) and B { Suc [ﬁ) then
ettror B A or B conv A ; for we can find D g0 that BL D ,
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and D < Sue ( f ) can be proved without appsalin: either to (1)
or (8); (4) doos not epply so we must have @ conv ﬂ « Then if
@ £ Sue (ﬂ ) and C £ Suc ( a ) wo have four poaszibilities

_B conv  ,- C conv f
B cwvf,& < A
B <R, L cav B
B <A, <8
In the ﬁrst-case 3 conv C , in tho second € £ 3 s in the third

3 & C and in the fourth the induction hypothesis applles.

Now suppose that t\u.{'(-.B(h) 1 a C-X ordinal formula,
(\__u‘l)ﬁ. _73 (‘a) ( r\u{ r. K(Y(B))md ?( K [ u )) » to: eech positive into-
gor A , and A conv (\u'li.u (Zy « Then if _B < A this noens that
3L Au{.ﬁ. B(p) for soxe h 3 if wo have also € £ A then
g 4 ku{ng[a’) s g 4 (\U-{-*- ?_e_ (-’—”J sone b, Thus for thasd
% s € tho required result follows from. cP( Aqu'f. 8/_;_.’//.

Proof of {v}. The con‘du';ons. (¢), (p) mi;l,y_ thzii tho clesscs
of interconvertiblo forzulae 3 , _ﬂ( A are mll-ordered by the
relation ! <’ ' Vo prove (v) by (ordinary) transfinito.induction
with reopect to the ordor type o®d of the series formed by these.clagaesy
(ol 13 in fact the solution.of tho equation l*da = p Putvedo
not need this). Ye suppose thth that (v) 45 true for nll_orﬁer types
loss than ® . If 54 [ then & satinfics tho conditions of (v)
and the corresponding order type is amallers _L_:: is therefore a C-X
ordinal formula. This oxpresses all congoquences of ths ‘induetion

hypothesis that we need. There.are throe cascs to considor.

(x) o= 0
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(z) K %3 of nelthaer:-of the forma (x), (¥).
In case (x) wo must have (7 conv U/ on account of (A). In case (y)
thero 18 & formla J such that D A ,.ana B ¢ D whenever
BL A The rolation D < i mst hold in virtue either of (1),
(2), (3), or (#). Tt cannot be in virtue of (4) for then thoro
vould be B , 84 8 , D LB contrary to (C) taken in conjunc-
tlon with the dofinition of D . If it is In virtue of (Z) then

is tho uppsr bound of a sequence 0(1 » & . o of ordinals, which

2
are incroasing on account of (111) and the conditions (\uyl'# Z( 4) L
> --('c\u{t.@(f(y))ln (8). This is inconsistent with o/=/8+1 . This
moana that (2) epplies (after we hnve elininoted (1) by suitable
conversions on f , D ) and wo see that _/_9 conv Jue ( ,3.’) 5 tut
since DL A, D 13 a C-K ordinal formmla, and (7 wmust therefove
‘be a ;c-l":f"b:xﬂihal formula by )« MNow take case (3). Tt is imposaible
that A be of form Juc (D) , for then vo should have B4 D
‘whenever .Z { 'R vwhich vould mean that we had caso (y). Since
UL R there muot be an F such thnt £ £ A 1s denonetrable
oithor Yy (2) or by (5) (after a poasible conversion on A )5 4t
must of course be domonotrable by (8)e Then A is of forn Auv’% W (R).
By (3), (B) vo sse that o ‘Ix_‘z\)[ _t_c)< _f_? for- such positive
integor A . each A fx. Z [ .".‘.) 13 thorefore a C-K ordinal for-
milo. Applying (9), (B) we see that A 1s n C-K ordinel formula,
Proof of Vi, To prove the {irat half it suffi.ces*to find &
method ﬁhe;oby from o C-X ordinal formula _/_7 we can ﬁ:nd tho
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corresponding ordinal formla £2 . For then thero is a forzula Hl
mch that H_(a) conv P 1f @ i tho G.R. of A and P that of
-_g Fl 15 then to be_dei‘inud by

H—=> \a. form (:Hi(&v(a-)))
The nethod for rindlnc-g nay bo replaced by a method of finding
Q (w, 5) ztven A ond any two positive. integors M , b . Te
shall arrange the method so that whenever f is not an ordinal for-
mula either the calculation of the volues does. not comes to zn end
or eloe the values are not conslstent with -g being an ordinal
formula. In this way we cen prove the second half of (vi).

Let LS be o formla such that LS(Q ) cnumerates the cladses
of formlose B , B { P (i.e. 4 B< A there 10 one and only
ono positive integer h for vwhich LS / ﬁ, h conv § )« Then the
rule for findini-the value of 2 { n, 4 ) 13 us followss-

First doternminé whother /€ £  end whether [ 1s convertible
to the form ¥ ['ﬁ“, U) This comes to an end if [fli4s a C-X
ordinal foraula,

r Reonv F (-c‘“, U) and oither M 2Fr+1 or WD r+]
then the valup 25 4, If ML M & v+ 1 the valuo 49 8, If A< £ v+ 1
the valuo 15 L. If Mz U & v+1  tho value s 3.

It f_' 18 not convertible to this form we detoraine whather
olther & or ﬁS ( A, '5) is convertible to the forn A u{‘(-u ( ..'3}
and iftaither of them s ve verlfy that Xu{ ~. R(u) < ;\ufx. R (SC s))
Vo ohall oventunlly.comes to an affirmative -answer if ﬁ {5 a C=K |
ordinal formule,
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flaving checked thig we determine of i , v v}ibther Ls ( Vi p 1_4_1) £ L.S( ﬂl “n )
Ls(f,x) £ Ls(B, w) yor Mz , and tho volue i3 to be
accordingly 1, 2, or B

1£ A 15 o C-X ordinal fornule this procesa certainly cores to en end.
To sce that the valuos so colcnlated correspond to an ordinal fore
muiln, znd one representing ER y firat obgorve that this 1s so when
= 1ia finito. In the othor case (111), (iv) show that :’B detor-
nin'é'ﬂe o one-one correapondence botween the ordinals /g) 14 /3 < =
nnd the classes of intorconvartible formilae _3 ,_:_3 £ _@ « If mo take
G (w1, u) to e Le(B wm) e Ls(h, u) we sco that & (m, wts
tho ordcrinﬂ_.mlntion of o serles of arder typel __a_nnd on the otker
35 1y ordor typo 18 8 "V,Zo;"f«fs: = /3 T = e z,
I e L.
hand that the values of .0.(m u) ore related to & (%, u) as.on p. 29,
To prove the second helf suppose Q is not & C-K-ordinel formula.
Then one of tho conditions (A)-(z;) in (v) must not bo satisfied.
I£ (A) is not satisfied wo ahnll-not obtain & rosult even in the
calculntion of 2 ( 1 1 ) If (B) is not satisfled, for some
positive intogers 77 7/ we shell have L S [ﬂ 7’) conv
Au’.\( W LR) but not /\u{& R[C‘/) ey '[ [5[1/)) Tken
the process of calculating L. ("[’, CV) will not come %o on ende In
case of Failure of (C) or (D) the values of .Q (__, ,,) pay a1l be
calculable tut-condition (b}, (d), or (o) p. 29, 30 will be violatad.

Thus if E‘_ 13 not 2 C-K ordinal formules then: H (ﬁ) $s not an or-
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dinal formule.

I propose now to dofine three forrmilas Sm ,du:a, lkf of impore
tanco 1n connsction with ordinal formulee, A3 they are compura=
tively simple they will for ones be glven almost in fulls
Taoc formula Ua, 1s one wlth the proparty that: 08( bb) {8. conver=
tible to the formuls representing the largest odd integer dividing

200

¢ e . ! Vi Lii D
M : it is. not givon in full. ? ':ts"'--tpe‘-‘f:fredbopssont~fun¢4é'ionlo?_(.S'( }co’nv w

AL — ,\1“5,.?( :\'&ur, &(q;u)) Aulr, u(l}zr)_, X, y)
Hf = A, P m (’\auw.a,(ct;-f(k7)j )\uv-v'(:",u), 1, 2.))

Ba =» M wrlaa’ x. AL (Af. T (0,0, ur!(e)a] fAx, &)

Stm = Awr ! P9 . Bd [w, ol HER), HEGy), Az, .}.?(/1,, u)/ Hf[?),ﬁlf(i));
> 1), AL(yar (HE(R), HEly))

dim — Az g b, Bd(2fa), 2(8), Uy p), Uply), ALLDE(s )+
+ 9k (4a), D(a,8), 248, Uy(r) Uy G)))} (32, 0,4

hi = (\Ua'r'y. RL(M.w(a, P U{%%{));“[?)?}, 4-)

Tho ossential propartios of “thené formmlao are deseribed by

Al (2_7' -1, w, _lg) conv 4 AL l?-r, M, h) conv 8
H'F (51 n ) ‘conv M H¥f (am -_1_) conv: M

- / . ‘ . : y o
Bad (-9-,-9 ,Q,_Qj 7() ‘conv 4 unless both :_Q (-9’; & ] ‘conv. 3

{ /! 4 . .
and -Q- (‘l )8 ) conv 3 in which case“it is

convertible to X
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w0 ,0 ! are ordinal formulue represonting X , /5 respoctively
then Jum /._Q,_g‘) is an ordinal formule representing o= f{

e Z 13 & W.F.F. cnumercting 2 sequonce of adinel formulno repro-
senting N:L s 0,5 « + oy then 04“!/ Z ) “is en ordinal formula
reprosenting the infinite sua & +& + al3+..'. o IrQ inan ordiml
formla reprasenting « then /"\'f(-g) enumcrates a sequence of
ordinal formlee represcnting nll tho ordinals leas then X without
repotitions,

To prove thet there I8 no general method for deteraining of a
for=ula vhether it is an ordinsl formule we use an argunent aizin
to that leading to the Burali-Forti paradox, but. the enphasis and
the conclusion are differant. Lot us supposs that such cn algorithm
13 avallable. This enablos us to obtain e recursive enumeration
-%'g’). » » « « Of the ordinal formilae in normsl form. There is a
formila Z ouch that £ (4) 'conv.gk-. Now oliw ( Z) reprasents
an ordinal greater than any reprezented by an _g“ s 2nd has there-
fore been onitted frox the enumeration.

This arguannt proves mord than. was.orfiginally asserted. In
fact it proves that if wo take any claos Z:'Pof ordinal forrlse in
normal fora,-cuch that if _/i 18 any ordinal forzule then there is
a forale in E reprosonting the ssme. ordinal as E y then there is

no rothod whersby one cun tell whother o W.F.F. 25 nor=il for: be-

loags to E
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8, Ordinal lopsics,

——————r

An ordincl logle 18 a W.F.F. A  such that /] [g) 18 a logic

-
—

foroula whanuvor.g. 10 an ordinml forrula,

This definition is intendod to bring under ocne heading a nun-
ber of ways of constructing logles vwhich have recontly been pro-
posed or are suggestod by rocent advances. In this saction I pro-
pose to show how to obtain somo of these ordinal logics.

Supnose wo have a.clasg \A/ of loglcal systems. The oymbols
uged in each of these systems are tho same, and & class of gequencas
of symbols called 'formulno! is defined, independently of the par-
ticulnr'systen iInW  The rules of procedure of o system G defins.
an asxctonatic subsat of the foroulae, they are to bo doscriboed as
the 'provable formulae of C 's Suppose further that we have a
method whoreby, fron eny systom of C of W wo -can obtaln a new
systen ¢! » als0 4n \/, and guch that the sot ;f'prové;bl'o fortmloe
of C.l include the provable formules of .C “(we ‘shall ba most inter-
eated in the case whors thoy are included a3 a propor subsot.) It
is to be undorstood that this 'mothod! is en offective procedure
for obtaining the ruléa of procedure of ( ! fros those of € .

Suppose. that to certain of the. formulas of W. e make ‘correspond
nunber theorotic thoorens:s by modifying the definition of forrula
ve moy suppose that this is done for &1l formulno. Ve.shall say.
‘that one of the systens C is valid if the provability of a formie
la in C inmpliea the truth of the corrosponding number theorotic
thoorem. MNow lot the relation of C, to C be-such that the

!
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validity of C implies tho validity of c , and let thers bo & veldd
syaton Co in w Finally suppose that given ony computablo cezuence
C.’l ’ C,_ s » o o of systens in W the t1imit syotant in vhich a for-
anla is provable 1f and only if 1t 13 provabla in one of ths systess
C J' also belengs to W These limit systens arc to be regard:d,
n;t a8 functicns of the oequence given in extension, but as functions
of the rules of formation of thoir terms. & soquence given in exten-
sion may be described by varlous rules of formation, cnd there will te
several corrssponding limit oystems. ZEach of these moy bo deacribed as
& linit systen of the sequence.

Under theze circunstances vo may construet ‘an ordinal logic. Let
us assocliate poaltive Iintegors with the systems, in such o way thut

40 cach C corresponds a positive integer MC' , and M _ complotely

_ C
descrlbes tho rules of procedure of ( Then thers is a W.F,F, ﬁf »

su:h that M ( m ) cony : for each C in W 3 and ‘there 13 a

-..CI

Y;'.r JF.'© such that 1’ :D (r ) conv m C for each positive integer
= v

v then @(?}) conv "C

e o o o Uith onch systen C of W it in possible to assoclato a logic

vhere C 18 a linmlt gvstenm of C C, »
formula _[_-__acz tho relation betwesn thes is that if O 10 a formule of
W' and the hunber theoratic theorem correoponding to & (ascuzed ex-
proozed in the conversion calculus form) asserts that '.B is dual,

then L. ( B) coiv 2 Af and enly if G ia provable 1n C There
will bo n °v F.Fe G such that @ ( Mc) conv L~ fareach C of W .
Put

= Ao &(a(®,H i)
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I assert that A/ { B )is n loglc formuln for cach C-K ordinal formila
A, and that ir A<LB then V(B) is nore complete than N(8),
provided that there cre formlee provable in C ,bdt not i1 C for
ezch volid £ o2 W

To prove this weo shell show that to each C-X ordinel formula

thore corresponds & unique systen. C[ &J such that

(1) ﬁ/.@.(.’.( y ‘ﬁco) conv
and that 1t further satinfies
(11) 'C[ U] in & linit syston of Co’ Co:
(111) CLSuc (A )_7 in. (C[.QJ) /
(iv) C[I\k{'ﬁ-u(?gﬂlﬂ a linit systom of C[AMTI% . '3(1)] s
C[aule. f{(z)_] $oe ey
A sna r\'*{‘f\ . u( '!3) being assumed to be C-K ordinal formmlae,

_Q'/

Tne uniqueness of the system follows from tho fact ‘that W'C dotermines
C completely. Lot us try to prove tho oxistence of cl B ] tor oach C-K
‘ordinal formula R . 4s wo havo soen {p.33 it suffices to prove |
(@) C [ UJ exists,
(b) it CE,@J exista then C E Sue (A )J oxista,
(c) 12 C[t\u+$ ‘ ‘_7_(_(1)_7 R C[,\u{n,ﬂ[;_)], « exist then
CLw s (R)extata.

Proof of (n). __

{'\Y I{_i (\[ (I’ "“Co)) }[ “4) conv _Ij [‘-‘-‘Cg) eonv mq,
for al) positive integers M , and therefore by the definition of @
there 18 a systom, which we will esll C [U] s and which 18 o limit
oysten of Co, ’ Ca/’ » « » p ootiofying



P 81

_@(?\7’. 4 (‘/(l,.‘l"cp))) conv W 01y
But on the other hand

-U(@I_/'.,?‘-“c,) conv @'(?\\(- ﬁ[\/l r; ch)))
This proves (a) and incldentally (11)

Proof of (b).
&(.[ﬂ@/’f )comr Il(ﬁ[@ K, we ))

cony K[,“ACCQJ)

conv ‘W
(cral)’
Henca- C[ :‘*6(9)] exicts and is given by (11t).

Broof of (e).
{0 RO B ooy {Aupe. RL)T (B, 4,
conv &'C[ ,\q_‘(,; 'R(u):‘

by hypothesiz. Oonsequently by the definitlon of @ there exists
C vhich 1s.a limit systen of " C[A U-‘l'l- Q(J_)J C[\‘* (R(_]. “«o
end satisfica

@({X“F‘ 3}(.@, .K, ﬂ.‘[,')) conv. M,
Yo defino C[ Awd.w (R)] 40 be this C « ¥o then kave (iv) and

{Au*t‘tc@)}(@ _’j‘,‘i"(o ) conv @ ({'\b’fx' ﬂ }(@ l‘j ! L"(o))

cony W CL’\“’* (R )J
This complotss the proof of tho proporties (1) - (iv). Fron

(11), (£11), (1v} tho factsthat C 1o valid and that C ia valid
vhen C is valid ve infer that C [ (7] s valta o oach C-K
ordinal forsula '3 t aleo that there are more foraulne provable in
CLBJ then i C[ 8] men A< 23 The, truth of our asser-
‘tions regarding A/ followa now in view of (1) and the definiiions
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of _f‘_/ and _(_i_’
Ve canmot conclude that [V 13 an ordinal logie, since the:formulae’

R wero €% ordinel formulas, but the formula A/ encbles us to obe
toin an ordinal logic from N By the uso of the formila OFr wo
obtain & formila Th ouch that 1¢ £l has a normal fora then Tu_- ( i _ )
enunsrates the GeRa. of the formulme into which fl is cox{vcrtlbl_.'e.
Aloo there 1s a formula CK  such that if A 40 the G.R. of ¢ formula
K (@) then C/((é) conv B , tut othervise C/([!‘) cony U

Stnce H(B) 15 an ordinal formula only if B 15 a C-X ordinal for-
mla, Ck (Tk[ Q—, L} ) ) i3 o C-K ordinal fornula for each ordinal
formla & and intoger W ¥or muny ordinal foremlao Lt will be
convertible to U , tut for suitablo 2 , i 1t will bo convertible

to eny given C-K ordinal formula. If we puf

A.-—? Awa. T An. N(Ck( T (v )) )
é. .will be the required ordinzl logic. In fact on ‘account of the
propartics of 1, N2, A) will bo convertibla to 2 1f-@ad
only if there 1is a posiltive intoger h such that
N(Ck(Tu(L,1)),A) cave

1t L conv H (B) thero will be an Intogor b ouch that
Ck({Tu(L2 ﬂ)) conv B, ond then

N(Ck(Tu(Qu)),B) e N(B,E]
For any A, Ck( T.,[___Q,,,_,_‘ )) 18 convertiblo to U -or to sons

B whora Q. conv H (_B) « Thus /) (:_Q./ _f_?/ conv 2 1£ .0 conv

H [3) and _N(BIB) conv 2 or if ﬂ(UJ ﬁ) conv 2, but not
in any other case.
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Wo may now gpeclelize nud conslder particular clasaes W ot
systomss First let us try to construct the ordinal logic described
roughly in the introduction. TFor W'We::takn the class of systens
ariging from thoe ays’wm of Frincipia x.lathemt:.cnle by adjoining to

16 vhitehead and Russell [1]. The axtoms dnd rules of proczdure of
n simflsr systen P will be found in a convenlent form in Gddel [1].
I aoha1l follow Gbdel. The aymbols for the natural nucbers in P are
0,0, ff0,.. F™0... Veriables with tho suffix 'o* stand for
natumf numbera.

T D GO T W THS D N G GG = EO D D A G GrD D GEL GHS Cwy S WD Gre NS S Gt v nd Gt = = Gw =t

it exiomatic (in the sense uoscrth&d on p.10 ) sets of exioxza
17 It in sometimes regarded ag neconaury that the sct of axioms uscé

‘be cozpratable, the intentien basing that it should be possible to verify

of & forsmla roputed to be an axiom whether it really is so. Yo osn
obtain the sare effect with axiomatic sets of axlous in this waye In

the rules of procedura describing which aro the axioms we incorporate

a nethod of enumerating them, and wo also introduce a rule that in the
zmain part of the deduction whunever ¥o write down an exion as such we must
also writo dowm itn position in the enumeration. It is poasible to
werify whether this haz been done gorrectly.

-—----—-.-—-—-—-—-—o—.—unu—---n.-.—.—-—-.———”-—- _-.-'—-.——-

G8del has’ shovn that primitive rocursive relationsm can_be expresaed

.-—-—-——-——-———.-”.-—-.——--n-—..—————. — e o e s e

8 5 relation F(4y)-=-; My) 15 primitive recursive if it is the
necessary and sufficient condition for the vanishing of a priaitive
recursive function il“‘" coy My)

— S GO W T @S emt Cwe WO = S W N YD W CEE CEE P CE WIS ED CHD CEG UM WD TET GUD GNU GED Cun GEP WED D GER =B

by means of formulee in P& In fact thore 10 a rule vhereby given the

recursion equations defining a primitive recursive relation

vo.can £ind a-‘fomlalg /01«[7‘0) very 2 J such that ﬁ[‘flm Y ,.. /‘f{“"‘rO]

T W D s AV BUU G GED A Gwn GV B D G b CIT B = W B Y O G=p O

Cupitol’ Gerzan lottors will be used to stand for variablo or undeter—
zined formmilue in P. An expression such as 1[4, L] will stund
for the. result of substituting f:and [ for X, and Yo _in .

18 provable in P ae F (W, .. ‘) r)is-truo, and its negotion is
provabls othefwlno. Furthor there 1o a method by which one can tell
of o formula /ﬁb[ﬁm .- .»};Za’] whether it arises from a prinitive
recursive rolation in this way, and by which one can find the equations
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which €ofined tho rolation. Tormulae of this kind will be called
recursion formulne. ¥e shall make uss of a property thoy havae,

which wo camnot provs fornally here without glvs.ng their definition

in full, but which 1o esgentinlly trivial, Db [%or ¥, ] s to
stand for & certein recursion formula such that Db [ f 0 o, f (“JOJ
i3 provabls in P 4f M3 2u and its nogation is provable otherwise,
Suppose that AL Xo] , b %o | are two recursion foroulae.

Then the theorem I am assuming i3 that there is a recuraion relation

[»()L 3’ [Xo:l such that we cun prove

x (3 . O] (8.1)
&[ 0= 7)((:0[ Ak e H’J”‘J 51.]))

Tho significant formulae in any of our oxtensions of P are those

in P.

of the form

[ xo)(’ ‘/a) A E‘w 70 (8.’25:)'3‘

whore AL E’LN */,,] i8 o recursion forsuls, nrisins, fron the relation
7(( , k) let us say., Tho corresponding nunber theoretic theoren
states that for cach natural number M there 18 & natural number 4~
ouch that R w, 1) 1s tru.

The systems in W thich aro not valid arc thoss -in which n.
formula of form (8.2) is provablo, but at the sar:e time thers s a
natural nunber, Mv say, such that for each netural number W,

R ( W, h) is falgse. This means to sy that "Nﬁl[’f M)_b) { mo‘]ia

provable for each natural nunber W 8ince (8.2) is provable
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("57‘,, ) a[f(koo J Yo] is provable, so that
@) [, y,],~ [0, 0]~/ f0] to.0

ey
arc all provable in the systen. Ve mayr simplify (8.3). For a given
M we ey prove & formla of fora w[f (‘“)0) Y,J 2 a@-[\/,] in
P, where e& [)'0_7 is « recursion formula. Thus we £ind that the
necessary and sufflcient condition for a system of \1/ to be velid

15 that for no:recuraion formla £—£ Xoj arc all of tho forrulao

(a*o)eﬁ‘["o]}"’a&[oj) ~ G f OJ, (842)

provable. &n important c¢cnsequence of this is that if

»UL, ["0]/ A, [*], . ) AL, [*e]

o8 recursion formulose and

(%)L, [%e] v @xo) B, k] v . v@ %o| 42, [*,] (8.5)

. | "
is provable in C , ond C 4o valid, then ve can prove £, [ ,F[ ) OJ

in C for soze natural-numbers ¥ , Qvkere [ & Y < Ay Ldt us
define 8?‘ to bo the formula

@x)21, (rv v @x,) A [0]

and dofine ﬁ . Cioj rocursively by the condition that g f [xoj

to '0411:“] and é\-ﬁ_/—x"-.] bo d L wrﬂ[}-oj . MNowI
say that

@, 2@x,) &[] (8.9)
is provable for /& V< h . Tt is clearly provable for k= ] 3
supposs 1t provable for a given V™ . Ve can prove

(¥,) (3%5) D[ Xes Yo ]
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and
(¥, ) (@%o) Db (F%o, 100)
from which we obtain |
f,_ [7’0] > (El'&a){(-'l?&["o, Yol é’r [Yo]) v (:Db[}.,, Yo - ar-u[‘t‘evj
and
7 [YJ 3(97\0) ((‘:95 [For %] - gl- [‘/o])V (:D "£%°’Y’3 ' 'arﬂﬁa])}
Those together with (8.1) yield
(.3‘7’) g, NeJ v (3‘/)’0“--” [~.] > (QK,) Be) s [
which ouffices to prove (8.6) for bt-+! Now since (B.5) is provable
, ( IR, ) g " [Y\oj must be also, and since C 49 valid
this ceans that gh_ ):-? ) o ] nust be provable for soms natural
nuzber ‘M ., From (8.1) and the definition of g,,‘ [ *0_7 wve See that
this implies that a r E ‘F (=) OJ iz provable for soze natural
nunber & , and integer v , SV <& h,
To any oysten C of W wo can assigm a prinitive mu\irsﬁé‘
Telation Pc ( W, W) with the intuitive moaning ' s is the G.Re of a
proof of tho foraula whose G,R. 13 A '. The corresponding recursion
formla is }\.Ng E"an Yo [ (tec. 7"’#C ["F(h 'F(“)OJ ina
provable vhon P ( -, u) 43 true, and 1its negation in pmvablo other—
wiso). Ve can now cxpluin what is tho reletion of n systen C to
its predecessor C Tho aset of axioms which we adjoin to P to obtain
C;’ consists of thoeo sdjointod in obtuining C , together with all
formlco of the fornm
3x,) !m;{,c [xe, £™0] D F (8.7)

vhero M 1s the GoR. of F .
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e visoh to show that a contradfetion can be obtained by assuning
C ‘ to bo invalid but .C to be valid. Let us guppose that n sot of
formulae of fora (B.4) is provnblo in C Lot % 05
AL, bo those axions of €' of forn (8.7) shten are used m ‘the prost of
@Xo ) b E X,J We coy’ cuppose that none of then.are provable

in C . Then by the deduction theorem we see that

b, o.,... 0, 2,) 3038 5157 (0.0
g Do (JX /'u’q—cﬂxoa 'F OJ

i3 provable in C

Then froz (8.8) we find thet
(2%,) Pog Lx, £20 ] v v (TR,) Tuof [, f(“'*?o]v(am) Fx.]
in provablo in . It follows from & result we have just proved that
oither ,@— [-F (C,O_] is provable f'or soro natural nusber € , or else
/1,4 c [ f (“) .F Cmg) 1 18 provable in C for sone natural

nuzber w and some £ , {€ 4 £ ks but this would moan that J'} g
provable in C (this &3 one of the points whore ve ‘ass vy t.ha validtty

of C ) und therefore zlso in C contrary to hypothoals. Thun .6—[-{ wo]
tmst be provable in C ; but wo aro also assuming ~ aB‘E‘F(c j

i3 provable in C ! Thore 13 therefors a contradiction in C’

Lot w3 suppose that the axions ’(-}L»..v/ /& /(// of fora .(8?7) when
adjotned to C suffice to obtain the contradiction and that nore of these

axiono aro provnblo in C Then

N.ﬁl V!'J,M v...VN’”Z ,
i3 provable in C , and 5.1‘ ae 1s L] x) /‘ﬂ’#c[’&o} )OJDJE

then

(3%) Tt [ 470 v v @) Teg [, 1707
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is provable in C But by repetition of a previous arguzent this
moans thet »05; is provoble for some 'd , 1€ £k g contrary
to hypothesis.. This is the required contradiction.

Ve ray now ‘construct an ordinal logic in the ranner described
on p. 44-48 . But let ua carry aut the construction in rather more
‘detatl, and with some modifications apprapricte to the particular
case. Each system C of our sat W may bo deseribod by ceans of a
W.F.F. MC which enumorntes the G.Rs. of the axioms of C . There
13 n W.F.F. £ such that if @ ia the G.R. of goze proposition J°
then & ( MC ) g.) 13 convortible to tho G.R. of

(Ix,) Pael, [%;$ 0] > F
If @ is not the G.R. of eny proposition in P then l.:( M c) 2 )
13 to be convortible to the G.R. of 0 = 0. From & wo obtaln a
WoF.Fs K such thet K(MC}2n+1) conv M ( ) A ('MCJQh)
conv b ( MC PR ‘4) The successor systom C is de“ined by /1' ( M )
conv MC' Lot u3 chooss & formula @ such that & ( M cs D )
conv 2 if and only if the numbsr theorotic theorea cquivalent to
‘ﬁ is dua)! is provable In C  Then ve dcfine Apby

A - Awa. —\( l\)' Cr[c,((lh(u;y) N m(&(z ‘\) ?/3 u)) KM ))19

This -is an orduml logic’ provided that P is volid.

Another ordinal logic of this type has in effect been introduced
by Church?. Superficlally thls ordinsl logic soems to have no more

——-—-—-\-—-—-——————-—-—’--.———-.—--——--—————-

O 14 outline Church [1) » 270-280. In gronter detail Church [2),
Chap. X.

.--——--o-o-—-’-—————--—--.-———..——o———'-—_——-——-————

in common with A? than that thuy both nrisa by the nothod s have
described which uses C-X ordinal formulac, The initlel systems
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are entirely difforent. Hovever, in the rolation Wotween C and C ’
there 13 an interosting analogy. In Church's mothod the step from

C to C ! is perforzod by meana of subsidiary exioms of which the
rost important (Church [2], p. 88, 1 ) is elmost o direct translation
into his gymbolism of tho rule that ve may take any formula of form
(8.4) an an axiom. There are other extra axioms, however, in Church's
systen, and it 13 thorofore not unlikely that it is In some .sense
nore completo than A >

There are other types of ordinal logic, apparently quite unrelatod
to the type we have so far conside_rcé; T have in mind two types of
ordinnl logic, both of which can bo best described dl;:'ectly in terms of
ordinal foraulne without any referonce to C-K ordinal formulac. I
shall describe here a apecinmen of one type, sugiested by Hilbert
{R11bert] [1],71830¢), and deave tho other type over to & 12.

‘Suppose we have selocted a particular ordinal forzula .Q Fo
ohall construct a modification P g of the syatom P of Gidel. (sc6
footnote 16 ). Ta shall say that a natural number A .ts na type if 1t
18 oithor oven or & P- I vhore -__Q.L‘_P, f) conv 3. The definition
of a variable in P i to be modifiod by tho condition that the only ad-
nisstible subacripts aro to be the typos in our sense. Elcmentary
expressions are then defined as in P: in particulnr the definition of
-an elexentary expression of type O is unchanged. An-elementary forrula
is dofinod to be u sequence of -symwols of the form £, %, whore
"01’& ) AV, oro olementary oxpressions of types kv, W  sat-

isfying one of the conditions '(a), (b), (c).
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(2) A and W are both even and M oxceeds A2 ,

(b) mv s 0dd and A 1o even,

(c) ma 2p-Jy n229-1 and 'Q'(T’ _tl,) conv 1,
Tith those Tinadificationa “the forznl dovelopzont of P;a_ {5 the sane
ay that of P. Te wish howover to have & method of a;'ociating mnbor
theoretic theorcms with cortain of tho forzmulae of Pg. e Ta cannot
take ovor directly the association wo uged in Po Suppose &G4 1is a
for:mla in P intorprutablo as a number theorctic theorom in the way
we described when constructing _A_ (p. 50)¢ Then if every typo
guffix in (F 13 doublod wo shall obtuin & formils in Pg which is

“to ba interproted as the same muber theoretic theorem. By the

mothod of @ 6 ve can now obtain froa Po a formula L_.g. vhich 1s n
logie formila of Pg s valid; in fact gim.Q thore 16 = mothod of
obiaining [_. s 80 thot there 1s a formula A ¢'uc:h thet A ( -Q-)
conve' L Q Tor ezch ordinal formuls £

Ha.ving now familiarised ourselves with ordinal logics by neans
of theso oxaoples we may begin to consider general quesiions concerning

thon,
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9. Completeness ouostions.

The purpose of introducing ordinal logics wms to avold &s far 2a
poasibla the effects. of Gddel'a theoren. It 15 2 consequence of this
theorem, suitably modified, that it is inpossible to obtiin a comploto
loglc fomula? or {roughly spealking now) o couplete syster of loglc.

Ye were able, hovover, from a glven system-to obinin o more coapleto one
by the adjunction es axions of Lormulae, scen intuitively to bo
correct, but which the G3decl theorem shows cre unprovab1321 in the

- e S G eGP S® SER W@ e G e GE A G GED Smn GmA e D M M G AN GMS s S e G e e

2 1n the caso of P we adjoln ‘all of the cxtons (Ix,) Preet Em,f‘“"al
where M ig tho G.Re of -.f; gonz of which the G6del theoreon shows to
be unprovable .in P

:rI :n:l:;s:c:,”f;o: :h:»“r: :b:u;n:d-u yet more complete system by 2
ropstition of the process, and 5o on. Te found thot the repetition of
the process gave us a new systen for sach C-X ordinasl formuln. ¥e
should %o to lmow whother this process suffices, or whether the
a:.rste:iﬁ_’ should be extended in other weys as well. If it worc possible
to tell of a Y.FuF. in'normal forn whether it was an ordinal formuls
ve should lmow for certain that it was neceesary to extond in other
vays. In fact for any ordinul formula A 1t would then be possible
to find o single logic formla L suen that 1r A (2, A ) cowe
for soe ordinal formula Q- then.b (8 ) conv 2. Since L mist,
bte inconplots. there must be Lformulas ﬁ for which A( .-Q- 7 _@ )

%3 not convertible to 2 for any ordinal forrule Q. Hovever, in
viow of the fact, proved 1in i_? Jtl‘mt there 13 no mothod of deter=ining
of & formule in nomai_.__ forn vhother it is an ordinel fommula, the

case does not arise, und thers is st111 o possibility that soue



ordinal logica mey be complote 4n some ocnso. There 1s quito a natural
wvay of defining complateneas.

Definition of cor leom;';o an_ordinal logig. l"esa) ‘that an
ordinal logic. A is coxplete Af for cach dual formula F’ therc i3 an
ordtunl formite Do such that [\ (L, B) coniv .

A3 has been oxpledned in % 2, tho reference in the definition to
tho existence -of L a for occh B 18 to be undersiosd in the samo
naive way &s cny 'ref;roncr: to oxistcnce 4n nmathenatico.

There 18 room {or modification in this dofinition: we night re-
qui.ro that there be a formula X such that X [ i ) convy Q s
X ( A ) boing an ordinal forrmla whenover /7 i dual. There. ‘a 1o

“need, however, to discuss the rolative merits of thess tevo definitions,
bocouse in all cases wliere wo prove an ordinal logic to be complete
wvo shall .prove it to be gomplo'te even in the nodified bqnsa, but in
cases vhere wo prove an ordinal logic to.be incomplets we uge tho do-
finition as it stnnds,

In the terminology ofﬁ 6 4 ig complote if the clasa of
logica _4_ (.2. ) is completo when ._9. runs through all ordinal formulao,

There is another completenesn property which 1s related to this
one. Lot uz for the moment say that an ordinal ,-llﬁgic. __/_l is nll inclu.

Blve if to each logic formula _‘L_. there corresponds an ordinul forzula

2y

such that _A_[ ;9. 0_)) is as complote as L Cloaxrly every
8ll Inclusive ordinal logic 1a complete, for if 8 is dual then § L f})

is a logic with & In ity extent. But if _/\_ in coaplete and

b Ri~ Ahwa, T(Ar (4 5 k(5 v (Vu (rD)y Sz, Nu(50))))
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then A\ (-ﬂ-.) is an gll inclusive ordinal logic.- For if _@ is
in tho extent of A(-_Qﬁ) for each ﬁ » and we put '—Qll:)_? ‘Q‘-V(B)
thon I say that if ’B 138 in tho extent of L. 4t st be in. the
extcnt of HU. [A Q‘(L.)) In fact ﬁ‘[A}—V(L B)
comv T(Av. S (4,5(2 B (2,4, ,V(Nm[r))))-f- S(z Nu(v, 3))))
For suitable # , Nu { 14) conv L, and then
A(.Q- V(L) V(NM(.‘J))) conv 2
Nn(.‘.‘, B) conv 2

and therefore by the properties of T‘ ’ S'
A: (A) = (L), 'B) conv 2
.-Conversely H‘c( _A. ‘( ¢ L) ’ 'B) can only be convertible to 2 if

voth  Me(u, B) ang A[_ch,_,, V(N (s))) aro
.convertible to 2 for some poaitive integer W ; but if .A. [ Q2 V(L) V( Now ( “))}l
conv 2 then N (n.) st bo(logic end since Nwm (a, 'B) conv 2,
B st vo. dusl.

It should be noticed that our definitions of cozpletenoss refor.:
only to number theoretic theorems. Although it would be possible
to introduce formulse annlogous to ordinal logics which would prove
morc general theorems than number theoretic ones, and have & corres—
ponding definition of completencss, yet 1f our theorems are too
gereral wo shall f£ind that our (modified) ordinsl logics are never
coaplote. This follows from the argument of % 4. If our foracle!
tells us, not whether any given numbor theoretic statezent is true,
but vhether a given formula is an ordinal formula, :r the arguzent
atill applies, and wo find there are clmsses of problem which cannot
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bo solved by a uniform process even with the help ol this oracle.
This 1s equivalent to saying that there is no ordinal logic of the
proposed modified type which i3 complete with respect to these
problems. This situation tecomes more definite IL ve -take formulae
satisfying conditions (n) - (o), (£))(as described at the end ofél?.)
instead of ordinal formulee; it is thon not possible for the-ordindl
logic to be complete with respact to.any clesa of problems more
extenaive than the number theorstic problenms.

Te might hope to obtain some intellectuelly satisying systen of.
logical inference (for the proof of number theoretlc theorsms) with
soxme ordinal logic. Godelts.thcorom showa that such a systenm cannot
.be wholly mechanicnl, but with a coapletc ordinal logic we should bo
able to confine the non-mechanieanl steps. entirely to verificetions
that particulzfr formulee are ordinal formlae.

Ve might also expect. to obtain an interesting clnsslf_;cgtion of
nunber theoretic theorens according to 'depth'. & theo;om‘wﬂichl_;e-
quired an ordinal & to prove it would be deeper than one which could
ba provad by the use of an ordinal /l logs than &  However, thia
presuproges nore than 1s justified. Yo -define

Definition of invarinnce of ordinal loxfes. jn ordinal logic
A. is aaid-to be invariant up to en ordinal & if, whonever -_(_2 ’

Y

2" pre ordinal formulee reprecenting the saco ordinel less then

X , the extent of A[_Q_.) 18 identical with the extent of _Q.(-_C_’-?.
An ordinel lopgic 1s inverlant i€ 4t i3 invariant up to each ordinal

ropresented by an ordinal formula.
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Clearly the clesasification inte dopths presupposcs that the
ordinal logic used is invariant.
knong the quostiorswo should naw like to osk are
() are there eny complote ordinal logica?
{b) arc there any. complote invarient ordinal loglcs?
To these we mipht have addod 'are all ordinal logics complete??; tui
this 1s trivial; in fact there are ordinal logics which do not suffico
to prove any numter theorotic theorems whatever.
Ve shall now show that (a) muat bo answered affiraatively. In

fact-ve can write dom a coapleto ordinal logic at once. Put
Oct —> Ao { Mfmn. DE(F(), #)}(As. B(Mr v(Tess),1,5))

and
(omp —» Ao, £( w, 005(“—))
I ohall bhow that ["""f’ 1s o complote ordinal logic.
Inji}et ir (st (-Q- H) conv 2, then
g conv (ol ( ﬁ)
con N . Dt (B (Av. v (I () 3 ), B(Ar.e(T, B+ 3 +))
-Q-( ™, ﬂ) has o normal fora 11‘.2- is an ordinal formula, so that
then B Cc\v'. r-'(-_'i:’ ﬁ(p_n)), 1 > has a normal form; this means
that .‘f(l-, E(‘.ﬂ.“)) conv 2 gome ¥ , i.c. A (ga) conv 2. Thus if
&s!:[ ._Q./- a ) conv 2 and Q. 1s-an ordinal formula then A is
dual, G“"P is therofors an ordinal logic. Nosr suppose conversely
that [ 1a dual. T shall show that O ( £ ) 15 an ordinal forrmula

representing the ordinal & In fdet. Foe.

(f’()\v- r-(../ Alw) ) 1,:»9_') ‘conv JS[M‘- v(I,2),1, *:)
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conw I(#m) convr .m
Gt (B, ,4) oot Dt(oe, 1)

l.c. @d.[ _l? } 15 en ordinal Torrmln repressnting the pare ordinal
as Db But

["‘“f (o,((_@),_f_)) conv S(@d(ﬂ)) Gdl. [ﬁ)) conv 2
This proves the completencas of ('U“-'[’ -

Of courne &m«p {3 not the kind of complote ordinal logic
that wa should really vont to use. Tho use of CD“’? d‘uos not mako
4t ony ensier to goe that ﬂ 15 dugl. In-fact if we reslly want to
vae an ordinal logic a proof -of completcness for that particular
ordinal logic will be of 1litile voluej the ordinals glven by the
completennsa proof will not bs ones which can et be soen intui-
tively to be ordinals. The ohly value ;% completenecss 1_)"1'00{'~ of this
kind would have would be-te show that if any objectlon.1s ta be.
raised ngeinst an ordinal logic 1t must be on account of. somcthing
rnore subtle then incomplotcnons,

The theoren of comploteress is also unexpected in that the
ordinal formulee used are all formulee representing @ This i3
contrary to our intentions in constructing A,.me‘ ingtonce; im-
plicitly we had in mind large ordinals exoressed in a gimple manner
Here wo have sanll ordinals expressed in a vory couplex and artifi-
clal wey,

Before trying to colve the problem (b), let us see how far A

‘P

end A ero invariant. Ve ghould certainly not expect _A__P to

be invariant, 25 the extent of A_ (-g) wili depond on whether Q.
% -
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is convertible to & formula of form H [ ﬁ) ¢ btut suppoge we call an or-
dinad ogic/] C-X invartunt up to K 4if tho extent of A(H(E)) 15 the
ssms 23 the oxtent of /A (H(B)) vhenover f and B are C-K ordinal
formulae representing the vace ordinal less than K . How far is 'A"P
C-K invariant? "It is not difficult to see that it 13.C-K tinvariantwp to any
finlte ordinal, that is to eay up to & « Tt ic nlso C-K invariant
up tol+7, and follows from the fact that the extsnt of A’P (H(’*'*-)b‘ U [ﬁ)})
is the sot theorstic sum of the extents of
AT(H (M. R(D))), A, (H{Auds R(2))),..
Howaver, there 1a no obvious remson to believe that 1t is C-X irvariant
up to &+2, and in fact it 45 domonstroble thet this 1a not the case
(zee the ond-of this section). Lot us try to gee vhat happens if wo
try to prove that the extent of A'r* ‘(_H'(&c( A uvlua (B, )15 the
saze o3 the extent of .A.? (M (Luef d h-'l *. 'u,(..‘,_)))}whero (\u* %. 4 Cﬂ;)
and Au-"l'b. w (_'B,.,_) ‘are two C-K ordinal forsulne representing W
Ve should have to prove that a forumla interpretablo as a theorsn .of
nunber theory ia provable in [.i'u.( Mc)l'& N (31))] if end only
if 1t 18 provable in CE&-«:[M{,Y-. w(B))]  tor c[&r.(mle. u[B;))J

18 obtained £rom C_[M{x.u(ﬂi\]b-,:-adjoming a1l nxiors of form

) (w)

X (s.1)
@) e Laugr.ulry) E"é» £70] > F

whore Mv 18 the G.R. of ) and C[Sue (A#x-u(ﬂ.,))]is obtained
fron C [,\ " ( e la CR;J by adjoining all axioms of.: Torn

@x.) Pode Mg & (8,)] e VET

The axions which ruat be cdjoined to P to obtain [f\ﬁ(*-u[gam
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escentially the same aw thope vhich rust be ndjoined to obtain

c [(\ ‘lf*- “(:R‘)J: however the rules of procedurc vhieh heve to be

annlied befora thuge sxions can be wp

guite difforent in the two cages, Congequently (9.1) and (9.2) vwild

be quite different axioms, and there 18 no rezson to expect their
consequences to be the sane. & proper understonding of this wlll
make our treatnent of question (b) much more intelligible. Se= elso
footnote

Now leot un tum to AT This ordinal logic is {nvarient.
Supnose. .Q- .Q ropregent the same ordinal, and suppoae wo Lavo
& proof of u nmusher thooreti¢ theoren G- inP_, . The formla
expressing the number theoretic theorem doez not Involve any odd
types. HNow there is a one-one correspondence botween the odd typos

.such that if o -7 corresponds to Lo L 1 and 2n-1 to Lu - 1
then 2L (W, 1) conv 2 implien ._Q.[[l: ! n ’} conv.2. Lot us

modify tho odd type-subscripts occurring in the proof of & ; ro-
placing cach by its nate in the one-one correspondence. There re-
gults a proof in P/ with the saze end foramula & . That is to

soy that if & 1o provable in Py it is provablo in P/ A_’_

is invariant.

The quostion (b) must be answered negatively. Xuch more can be
proved, but wo shall first prove an evon wealer result which con: be
esteblighed vory quickly, in order to 1llustrate the method.

I shall prove that an ordinal loglc A cenot be 1nva2'5..mt and

have the proporty that the extent of A[ Q0 ) i3 a strictly increasing
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function of the ordinal reprosentsd by ._@ . Supposeo _’/_X has theso
propartlea; ve ghall obtain u« contradiction. Let 1__q bo a W.F.Fe« In
Ihox'm'l form and without free veriebles, and consider the process. of
carrying out conversions on ﬁ ({ .7) matil e kova shom it convertible
to 2, then converting A (2) 102, then E( 3)'and s0 on: suppose
hat after b steps we ere still perforzaing the cenversion on ﬂ( esr) 5
Tore 15 o formile ¥ such thet v ( fig r) conv M. for each
pusitive integer ¥ Hoz let Z- be a formla such that for each

positive integer b , Z ( _l;t) is on ordinel forcula repreceniing

av , and supnose B 13 o member of the extent of __/_S. ( QIZ——( Jél;«[ 2)))

‘but not of the extent of /[ ({un(Z))  Pu
(' —> Na. [ (S (din(Ar. 2 (Th(sv])), B)

tken K 18 ¢ cemplete logic. For 1f [ s dual, thon
&at.(o/uu (t\l" Z[JAJ(H P)))) represnnts ihke ordinal
A +_’L, and thercfore /’f (ﬂ) conv 23 but if ﬂ (‘t) is not cen-
vertible to 2, then .ﬂc,( i, (r\Y' Z('T ‘( ﬁ ")) )) ropresents
en ordinal not oxcceding O+ 1, and fS [ ﬂ) i3 therefore not
convertiblo to 2. Since there ore no complete logic forrulee this
pro7os our assortion.

Te ney now prove more powerful resulis.

Innompletenoss 3_theoroums. (A) "If en ordinsl loglc A_ 13 in-

“variant up %o an ordinal K , then for any ordinal forrmla -g
repreasenting an ordinod /9 » /J(d s the extent of A (.g.) 1s
contained. in the (set-theoretic) sum of the extents of the logics

A( P) vhere P iz finito.
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(B) If an ordinal logle A io C-X invariant up to an ordinal
oL , then for any C-X onlinal—_i‘or:mla. _/_7 representing 'an ordinal /3 ’
(L4 5 the oxtent of A (H(8)) is contained in the (sst-thooretic)
oun of the extents of ‘the logles /) (H (€ )) vhore E 1s a C-K
ordinel formule raeprésenting on ordinal leas than o,

Proof of (A). It suffices to prove that if Q. roprecents an ordinal
y:o ¢y<% , thon the oxtent of L.(2) 15 contatnea S.n} the set
thoorotic sun of the extents of the logics _A_(g'}whare .g represents an
ordinal loss than X « The ordinal dfmust be of the form J"*P vhere @
1z finite and represented by f ey, and afo ia not tne successor of eny
ordinal and ig not less than O . Thors are two-'cases to consider; :aod-.e. [5)
and afo 72w . In cach of thom wo 8hall obtain a contradiction froz the
assuaption that there is o W.E.F.g such that =/_l (-.-‘-7-, 3 ) conv 2 whenever
2 reprogents X , but 10 not convertible to 2 ir-;g represents & oualler
ordinal. Lot us take firat the caso___%z 2w, Supposo m 2 “.f')é » 0nd
thet ._(_21 is an ordingzl formln roprosenting X‘ Lot £ o eny w.FoPe with
a normal form and no freo varigblos, and let Z be tho olass of thoss
positive intogors which are exceeded by all integora N for which ﬂ/ .‘J) 1o
not convertibls to 2. Lot & be the class of integors 2 such that _.@(f , ﬁ)
conv 2 for aomo‘Zbolonglng to Z . The class £ s togethor with the claas
P of all odd integors 4o conatructively enumorable. It ia evident that
the clans con bo emuorated with ropetitions, and since it i3 Infinite the
required cnun_mmtion can be obtained by striking out the rapotitions.

Thero 1s, thernforo, e formla Ew such that l;hhe [ ;_Z j f’ /_r\ )
runs:»through the formulag-_:ofntheifo‘.'tasbiﬁ";ﬁ-ﬁi‘Q" ‘without - |
repetitions ss I* runs through the positive integers. We define
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Rt — Awa mn, Sum C:N?, o, l:"u(u;a., M)’ Eu{ula) n))

mon RE( g, J i / in an ordinel formula which represents J’o i f
is duel, but a gmallor ordinal otherwise. .Xn fact

ﬂf"(-a_-nﬁ,’.‘},-ﬁ7 conv {JM [:N:.Q.‘)} (_Fk (-.0:11 -n_, ‘.::‘), Eu (-Q,_, ﬁ,.i‘)}'
Now if _f_? is dna"l. = 40 fireludes all integers M for which
"

{fm (‘m-) _g_')} (4_4) p_‘_,) conv §. Putting E-u./_-a-._‘_, f,’-, 1’)

conv gy ¥ Tor M( P)Q/) we seo that condition (7.4) is sntisfied,

so t!m_t- R / -.-.Q-_-“ .@ ) ig an ordinel formuls representing 34’ « But

1t A 15 not dual the sot £+ () consista of all integors m for

which { Sow (’Jl}.ﬂ.t)}[w,r) conv 2, whers  depends only on __ﬁ .

In thid case QG(-QJ_ ) Q) is an ordinal formula repreaenting the

§ake ordinal a3 Iu{[fm[wg.ﬂi), r) » ond this 18 sagller than

bfo « Now consider _/f s

K= da. A(Sun (RE(2,,8),P) B)

It A 1o aual, K ( g')- Ao convertible to 2, since S ( Wf.‘/ {2,_, A J/ £ )
ropresents )/ Dut 1 f 1s not dual it in not convertiblo to 2,

gor Vi R(2,,A ), P)  thon ropresents an ordinal szaller than

X. « In M ve therefore have a cozplote logle formula, which is imposuible.

How o tako the case Yp2® Ve introduce a WEF. Mg such

that f W 10 the D.N. of & computing nachine o/ , cnd if by the

#ith complete cpz}_i‘isurauqniog_;,% the figure O hng beon printed then

Ma, (‘-‘/ w ) 15 convartiblo to AT"}/ . FH(4(’B 2p "'z-‘i/)/ 3, 4—)
(vhich 18 an ordinal: formula ropresenting ths ordinal 1), tut £ O

has not ‘been printed 1t ts convortible to  Apd,, P(Y, T 4)
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(which represents 0). How conscider Lﬂ .
—2 Anu. A. (‘9““‘ [“4“'(”&(“))/ P) B)
If th nachine never prints O then oaw (A, Mg (2,") ) reprosents
W and Joaw (‘4“‘ (H&(“ ))P)ropresents X This means: that Ma, (“‘)
is convertible to 2. If, however, &% r@ver prints 0, J’ e (A‘“( gl ( 4] )) P }
reprasents a finite ordinal ond m ( 5} is not convertible to 2. In
M we therefore have a wmeans of determining of & machine whether it

ever prints 0, vhich is mpossible22 (Turing [1], } 8)s This com-

et Gt G M G e T GED G Tt G- - S~ -— e am m— - o= ot = T G D Gwe e = et e o=

21 This part of the argument can equally well be bascd on the impossi-
bility of determining of two W.F.F. whether they are interconvertible.
(Church [3], $63.)

plctoa the proof of (A).

Proof of (B). It suffices to prove that if £ roprosents an
ordinal ) , @& Y & then the extont of A [HCC)) 15 in-
cluded in tho set-theorotic sum of the extonts of A( H{(&) ) where.
_G_'- reprosents an ordinal less than X’ Ve -ohtnin e .contradiction
from the nssumption thst there is-z forsula B which is in the
extent of !_\,(H (&)) it G reprosents Y » but not if it ropre-
sents any scaller ordinal, The ordinal &/ is of the forn
St w™+ E vhere $< o™ . Let 2 Ye a C-K ordinal formuls repre-
sonting § and 97 one representing §

Yo now define o formule Hj . Suppose A 1o a W.F.F. in
normal form and without free variables; consider the process of
carrying out conversions on ﬁ {1) until it is brought into the
forn 2, then convorting (7(2) to.2, then £(3) , ond 8o on.

Suppose that at the ¥ th step of this proceas we are doing the Hrth
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otep in the converaion of _/? ( '-"v) « Thus for instance if f ( 3)
-be not convertible to 2, “(r cen nevor oxceed 3. Then Ha,( g £ )
is to be convertible to ,\f . Yl( ", —et’) for each positive integer
¥ . Put
S5 = Adun, & (Luc, n ((\Qu‘('ﬁ cu Ay_\/[ﬁ;g q,u,{,X)Jd(u,”,x))
M= danfr. @y fuldy. Haloy, J5(2)))

M= Aa. A (M), B)

then T ooy that 51 15 a conplote logic formile. 67;, ( D wmy)is
a C-K ordinel formula representing S+ &+u , and thorefore
H& ( E’ r' J'}i’ (]_)) } reprosents an ordinal :)'v, vhich mix;enses
stondily with incrousing Y , and tonds to the limit S5+ wV ir A
is dusl, Purther H& (8¢, % (2))< He(R,Str) Sy (D)) tor
czch positive integer ¥ Au‘l-r. u( Ay. Ha (4,y, &‘i, (2)) 1s
therefore a C-X ordinal formula ond represents the linmit of the
o _ " .

sequence ¥, | f,“ 33 e« This is §+ w“ 1r (# 1o dual, but a
saaller ordinal otherwise. Likerise M (ﬂ) rep_resentsb/ ir ﬁ' is
dual, but a sasller ordinal otherwise. The formula B therefore
bolongs to the extent of _A ( H { M(A )» if.and only if 5 is dual,
and this implies that _l'f,‘, is a complete logic formula as was asserted.
But this is inpossible ond ve have the reguired contradiction.

Ag a  carollary to (4) we sec that A " {8 incomplete and in
fact that the extent of N » ('.D t) contains the cxtent of
AH (.2-) for any ordinal formula .g. o This result, suggested to me
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first by the solution of question (b), may also bo obteined more directly.
In fact if a number theorotic theorem can bo proved in any particular
P.Q_.. it can be proved in P, n. wli, I, 4) The formulatdescribing
nunber theoretic theorems in P do no involvo more than a finite

nmunber of types, type § being the highest necessary. The formulae
deacribing the number theoretic theorems in any P g Vill be obtained

by doubling the type subseripts. How suppose we h—;va a proof of a

nusbor theoretic theorem (@ in Pg and that the types occurring in

the proof are among O, 2, 4, 6, 8, 10, C‘I, €
zay suppose they have been arranged with ‘all the even typen preceding

(;’.c- (.—R. Te

all the odd types, the even. types in order of magnitude and the type
dm -7 preceding dn~ 1 ii‘-,g.(g_u,!g) conv 2. low let ecach t",.
be replaced by /O + ¥ throughout tho proof of ( . We obtain
a proof of (¥ in P Noaw, s, T 4)° |
As with problem (a) the solution of problem (b) does not require
the use of high ordinala (e.g. if ve nake the(assumption that tiig_
extent of ._/_l. (2 ) is a stendily increasing function of the ordinal
represented by .Q_. we do not have to consider ordinals hiah_or than
2@ +2 ). Howavor, if we restrict what ve aro to call ordinal for-
mulze in gome way we sholl have corresponding modificd problems (a)
and (b); the solutions will presumably be essentlally the same but
will involve highar ordinals. Supgoso for exanple that '?Apdz 1§
W.F.F. with the proporty that PAsel ( _S_Z, ) 2, ) is an or;unnl for-
mula.representing o . ¥ vhen '-Q:t. ’ '91, are ordinal formulae ropre-
sonting 6(‘_ s &, respectively and suppose wo call a W.F.F. a
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l-ordinel formuls when it is convertible to tha. form Je uuv( Thoe [ 2 vt ) , P )
where ._Q.’ P are.ordinal forrulaedf rhich P ropresents a
finite ordinal.. Te ray define l-ordina) logies, il-completencss nnd
».,l?iﬂw.rj.ance in an obvious way, and obiain a solution of problen (b)
wiich differs, from the solution in the ordinary case in that the
ordinule lass then W teke thc place of the finite ordinals. loras
generally the eases I have Inmind will be covered by the following
theorom.
‘Suppase. we have 2 class V of fornulee representing ordinals in
some ‘manner we do not._proposz to specifly definitely, and a mxbnetzs U

D CED VD ke BED GEN CEP Cw? THD GRS T S W S WAD TEN G TP W GNP = G ) " = T WD W = AN WS Cum - WD -

£ The éubsat U wholly supersedes V in vhat follows. The introduction
of V sorves to emphasise the fact that the set of ordinals represcented
by members of U nay have gaps.

of the clasg V guch that T
(1) There {2 a formmla g such that ii‘-T enuwzerates & sequence
of membors. of U reprementing n; .increasing ceqﬁn’ncé of ordinals, tren
é[I) 18 = member of U representing the limit of the sequsnce.
- (31) There iz a formuln §' such that £(w , 4 ) is . momber
of U for each pelr of positive integera Mm , W and If it reprecentn
f..‘,,.{ then £m,n_ £ fm’m/ if oither m<m' or M-‘-‘“’, hdh ¢
(111) Thers 4s 2 formla 9_’ suck that 1¢ _@ 13 o menber of'U
than & (R) 1s o nember of U reprosenting a larger ordinal than docs
_f_’ s and such that _Cj' [ E ( .. g)) ‘alwaya represents an ordinal
not larger than £ n+g
%We define nlv—der‘d_lnnl.. logic to be e W.F.F. A svehk that _4 ( _Q)

is a logle whenever ﬂ bolongs to V. A i3 V-invariont if the coxtent
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of _/l [ _@) depends only on the ordinal represented by ﬁ Then
it 1: not possible for a V-ordinal logic _A__ to be V-invariant and
have the property that if C, ) reprosonts a greater ordinal than _{;_
( _C( and. ;1_ both being menmbors of U) then the extent of __/_l( C,)
1s greater then the extent of _/_}__ [ C,_) .

e suppose the contrary. “Lat_z bo a formula belonging to tho
extent of _é, [_6_[ (é (t\\“. E (v 1)))) but not to the extont of
A [ 5 [ Abr. E'( ‘3-1 ) ) Pub?‘osetimt our assertion 1ls false and
that

K/-7 da. ((j(,\v- H&(a L)), _]_3)
Then K is a completo logic. For
Ha(ﬂ, l’,_[;') conv !_::{.‘f‘r/ 4y)
E'( _;iﬂn y V) {s a sequence of V-ordinal foraulae representing an
increasing sequence of ordinala. Thelr limit is represonted by
@ Cc\ r. H&[ﬂ v k ) 3 let us seewthat f:!i'ia linit ia. First
suppose H is’, dual: t‘mn m tends to mfinity as  tends to
infinity, and @ ( Ar, He ( _ﬁ’ v, -l:- )) therefore reprosents the
same ordinal as @( Ar "( K, 1)] In this case we must have
’( / [ H) conv 2. Now suppose B 13 not dualt M, is eventunlly
equal to some constant number, G vay, and @ (P\r H (H [ )}
represents the same ordinal as @ ( A\r. 1: [ 1’)) which 13 gmaller
than that repregented bty @/ Avr, E (l’ 1.)) 3 cannot therefore
belong to the extent of @ ( Ar. H (H ) E) s tnd M[ﬂ)in
not convertlble to 2. Te have proved that. )/ is a complete loglc
which 1s impossible.
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This theorem cen no doubt be improved in many ways. However, it
is sufficiently general to show that, with almost any reasonable
notation for ordinals, completenecas is incompatible with invariance.

Ve can still give a cértain mezning to the classification into
depths with highly restricted kinds of ordinals. Suppose we take a
‘particular ordinal logic .[_&..und a particular ordinal formula ?
representing the ordinal K say (preferably a lerge one), and 'r.-e’
restrict ourselves to ordinal formulae of the form /a,l[ ’F, a)

Ve shall then have a claasification into depths, but the :xtents of
all the logica we so obtain will be contained in the extent of a single logic,

Ve now attempt & problem of a rather different character, that
of the completencss of A‘P « It is to be expected that this ordinal
logic is complete. I cannot at present glve & oroof of this, tut I
can give o proof that it is complete as regards a simpler type of
theorem than the number theoretic theorems viz. thoge of form ! §( x)
vanishes identically' where {( X) is prinitive recursive. The
proof will have to be much zbbreviated as vwe do not wish to go into
the foramal details of the systes P. Also there 18 & certnin lack of
definitonoss in the problem as at present stated, owing to the fact
that the formilae (¢ , [ , M P not coapletely defined. Our
attitude here is that it 15 open to tho sceptlcal recder to give
detailed definitions for these formulae and then vorify that.the re-
naining details of the proof can bo filled in using his definition.

It 15 not asserted that these details can be filled in whatever be
the definitions of & ’ Iy » M? conaistent with the propertios
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olriady roouirod of them, only that it 1s so with tho nore
natural doi'initions.

I shall prove the counplotcnoss thoorem in the following
forn. i7 .E-Lﬂ‘o_] ie o rcewrsion fornulo ond o [ 03 ’
S[LR0] ., - «. ore nll provablo in P, thon thers i1 o
C-Xl ordinnl formule @ such that (X,)d8[k,] is provoble in
tho systen P £ of logic obtalted from P by cdjeining

as oxicns 211 formulce vhose G.,R% are of the forn
A (Aun. (o020, B(5,4), 4, Mp,r)

(provided thoy roprecent propcsitions:)
Firot let us define tho formule A . Susposo D is o

(-
(/eFoI'e tith tho property that Q[ 1_4) conv 2 ir J}EF ! D] is
vroveble in P, but D (u) conv 1 if ~ff['F #%7 1a provavio in
? (P io bolng ecosumwd conaistont)s Iot @  bo derined by

® —9{Au-u. w(v(v, u.))} (Avu. olvly u.))}
and lot V be a fortmlae with the2 propertles

V(2) conv f\u-..u.(:.f'uc_, U)
V(1) ocomv Au.w (I, O (Sue))

The oxiatonco of such a forrmle ig ostablished in idecna 1,

corollary on p 220, liow put
A% 5 Nugn. ol M. VR [y y, ug, %)
B~ L (A%)
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*
I aszert thet ﬂ _ B oYo C-X ordinal fomulame vhenever

it is true that .B—E OJ 5'[-!-' OJ « « o arc gll proveble
in P, For in this ceso H is A “'YL‘( «(R) vhore

.ﬂ_ — \\/. V(-' (7)/ Y, “/?‘7 71)
and thon

A«fn.ﬁ(a) ooy Aug%. VIDls), u, i,
conv Au{—?‘.V[Z,ﬂ,u,(,x)
conv /\u.*-'ﬁ, [AM.M[&C) U)}[QIQJY'/)\)

conv  Auy* o (S ‘-{"-Jf;)?which is a
C-X ordinol fdérrmuie, cnd

Au.{y. S[‘Mﬂn ’J, Jf?i) cony: 5“—[)\“{" U (Sue, U ) “/f’xj

Yhoso relationz hold for an arbitrary vositive iantegor A
and thorefors _f_’I* is o C-X brdinal formula (condition (9)
p. 32)¢ it foliows imediatoly that A is also a C-X
ordinal fortmidg, It remains th 'prove that (KD) .@[:K,J is
provablo in P ﬂ
tho structure of H in tho cooo that (K,)B[X.] is

faloo. ‘Lot us ‘supposo thntA, 5&( 0_7 is truc co th:t ‘D[CL)

conv 1, and Jét us consider P whexe
.:'Bi- —2 A u-.l,v,_. \ (,l(g-),g ’/ “‘/V; K)

Ir _ﬂf_ﬁ- vufro ajC-X ordinal formula then _@ would be a

N '.I‘o do this ‘1% 1o ncces:oary to exenine
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perbor of its fundamontal scquenos; bub
B oaw Aefr V(I &, hx)

corw Aujr. {Au.n (T, O(sc)) (e, « ¢y %)

cowv Aufr. O (le vy 5]

s Aufr. [ Au.w (@) }( S, “fs %)

conv  Augn fue (B(%e), w,d, %)

conv  fuc [Au.’Lﬁ. O( e, v, ¢, %))

comv  Luc (B) (9,3)

Th.s of courco fmplics th:t B B end thorefore that B
is no C-X ordinal formula. This, :'thhough fundarental

to tho ,iogoibllity of proving onr comploteness thooren
doas not form an nctuol stop in tho aroumcnt. Roughly
opoaliing our crgulont will amount to_thig, Fhio relntion
(9.3) implics that tho systen 2 B is inconnistent and
thorafore that P -@* is inconsistent, nnd inde:d v gan

prove in P (and g_fortiord in P'*ﬁ ) that fv(:x,;) oﬁ-["a]

lmplios tho inconsistency of P il « On ‘ch_xsi othior hnnd in
2 ﬁ e cen prove tho consistoney of 2 B « Tho

inconsiatoney of P 3 5 proved by +ho Godol craunont,

1ot us roturn to tho dotoils,
“hie nzioxn in P = are those whose G.R'e ar: of the form

B ((\mn. m ((T(2,u), Tls4)), K, Moy, r)
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Roplacing 3 by.ﬁ«c (3) this becames
.ﬁdc[_@, Y m( B(2,u) B(3,4)), K, Mo, r)
oomv K (B(Amn. w(Blr,0), S5 u)), b, My, ¢ )
_oonv _B{.Al«.“. M(H?-,K)/ 3{3,‘4])} ,’ll M?Jr)
i ¥ conv 2.9 +1
cowt (B (A n (001, B3u), 6, 4,), p)
it ¥ comv 29 )

Tihon v© remembor the essontinl progerty of the formada &
we sce thot tho azious of P 2 Inoclude all formulee
of the form
(3Ix,) Pugtpn [Ko, £P0] o 5
whore q, 49 tho G.R. of the formila £ .
lot 4 bo tho Gele of tho formiln <%

@) Q%) { s [0 v0]- S (20 20 0] ()

S b [“o, Yo, 2_pJ is o partioular rocursion formuls such that

Y ‘fwo, fMO ; f [‘%Jhama if end ouly if h is the G.Re of tho
result of substituting -f’cm)O for Z, in ths farmule
whoso GeRe 15 £ et 01l pointa vhers 2, 1s fico, 1ot P
be the G.Re. of tho formula &£

~(3y, ) K,)r[ ?w#.? s ["oz 70] . b ['F wa, f (b)o) 70_7 } (oi)
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/4]
Thon vo hovo oo cnazslon n P °

(3%) Tued g [%e, F70] 2 L

and w0 cen prove in P
_ _ b) J
(%o) T4 (%0, % x,7>5 %, = £ (9.4)

b
sinco oC io tho rosult of substituting 'F( ,0 for 20 in

A ., whenee
~ (370) ql‘"ﬁ"pﬁ [Yo, 'F(PJO:] {9.5)

ig provoble in P, Using (9.4) ognin wo sce that [ con
be proved in P 5 « But if wo cen prove .[,' in 2 8 thon
vo cnll prove its provability In P g s the proof bLelng in

P si.,0, w0 con prove

C'g Ko) (,,%q‘?_ﬂ [x'o/ 'F(P)OJ

in P (oinco p is tho G.H. of { ). Dut this controdicts
(9.,5), oo that i? ~.5-[';° (4-(2713 Tue € can prove o
contradiction in P 2 or in ? f* o How I angert thet
the whole argwient up to this point can bo exyriiod through
formlly in tho systom P, in fact thnt if € VLo the
GeRe of ~(0= 0) thon

~ ()b a0] 2 (Fv, ) ‘17«.,% a* [, f“’o] (9+6)
i provable in P, '!’('.'111 not attonpt to glve any mom:

dotnlled proof of this assertion.
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The formala

@ro) T o [¥o, £ P0] 2 v(020) (o)

15 onaxlon in P & . Combining {9.6),(0,7) wo obtain
(x,) BL¥o] i ? 2,

This completoness thoorcr as usunl is of no valuo,
Altheugh it showus for instance that it is possivle to
prove Format®s last theoron with A"P (1r 1t is true)
yet the truth of the thoorom would roelly bo assumed
by taking a ecortgin fornula as an ordinal formila,

Tat A'P 15 not invariamnt may bo proved casily by
our genorzl theorem; elternatively 1f followa froa tho
fact thot in proving our particl completomess theoren
we nevor used drdinals higher thon @+ 1 . This fack
¢on alzo be used to prove that A‘"P 18 not C-X
invariant up to W+2. .
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10.__The_gontinuum hypotheais. ' A digresaion

The methods of é 9 nay be applied to prodblems which are cone-
astructive anclogues of the contimmun hypothesis prablém. The con-
tininm hypothesis nsgorts that o e NJ_ ». in other vords :that if
tJl is the smellest omiinal ¥ groator than @ such that a series
with order type 6{ cnnnot ba put into one-one ‘correaspondence mith
the positive integer's, thon the ordinals lesa than w1 can be put
into one-one correspondencoe with the tubsets of the positive integers.
To obtaln a constructive nnalogue of this propoaltion we may roplace
tho ordincls lesa than wl either by the ordinal formmlee, or by the
oriinnls reprosented by them; we may replace the subsets of the
positive integers eithor by the computable sequences of fipures 0,1
or by the descriptlon numbers of tho:nmachines v;h'l.ch compute thsze
pequences. .In tho manner in vhich the correspondence 1s to be set
up thore i3.also noro than ono, poauibility. Thua sven when ve use
only ono yind of ordinal i'orxﬁﬁla there is still groat ambiguity as.
to vhat the conntructive annloguo of the continuua hypothesis ﬁhould
be. I shall prove & single result in thls connectlon 8. A number

5 A sugrostion to consider this problem come to me 1ndimct]y from
Fe Borngstoin. A rclntcd problem was sugbestcc. b;,f P. Bernnya.

of others nay be prcvod in the same vay.

Vo nsk 'Is it possible to find u computable functiion of ordinel
formlee determining & one-onr: correspondence boiveen tho ordinala
.roeprosanted by ordinal formulee and the computable sequences of
figuren .0, 1?7, lore accurately *Is there o formula f such that if
_Q. 13 on ordinol formula and h a positive integer then F (& , 8
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is convertible to 1 or to &, and such that-f(g-, .‘.‘.) conv f (-Qz h ),
‘for each positive intogor 4w , if and only if Q mdg’ reprogent

the saze ordinal?!, The anaver is 'Mo', as will be seen to follow

from thig: there 13 no formula F such that F(2) cnumerates a
certain sequonce of integers (each being 1 or 2) whong represents

@ end enunecrates another sequencoe when .g represents O. If there

15 suchan F then there is an & such that F(2 a) conv E(rt _0;)
1 Q. ropresents & but EFle , 8 Jand, F (PE &) are convortible

to difforent integers (1 or 2) if-_Q repregents O. To obtain a
contradictlon from this we introduce a WeF.F. G not unltke M &

If tho nachine B% whose D.N. is i has printed O by the time the

M th complete configuration {3 reached then Gia 4 , ga) conv

Alqh' w(l«} .'(:4,) otherwise G'GM(‘.‘, w ) conv
'A'Pj/- H.‘(”'('P; 2?*'21,),39/. Now consider F(Dt a) and F (&‘m (6“‘('.")))5)
ff'f/“néver printa 0 o th[&u«( ) )) ropresents ‘the ordinsl @ .
Otherwisoc it reprosents O. Consecquently these two forrmlea are
convertible to one another if end only if /) never prints 0. This
Zives us a monns of telling of any machine whethar it ever prints 0,
walch is imposglible,

Rooults of this kind have of course no renl relevance for the

classical continuum hypothesis,
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11. The purpose. of ordinal logles.,

Nathenatical reasoning may be rogarded rather schenmatically na

the exercise of a combination of two facul‘t.ieuzd‘, which we moy call

-——————--—-—-——s—-——--————.—._-.——-.—-—-——-.——.——.——-

24 o ara leaving out of account that moat important faculty which
distinguishes topics of interest from otherss in fact we are regarding
the function of the mathematiclan as simply to determine the truth of
falaity of propositions.

———.—-——.—-.—-———-—--—-'—-’---.--————--—-—u—-————o-n—.-

vhich vo ngy cell intuition and ingenuity. The uctlvity of the intul-

tion consists in m}:ing spontaneous judgments which are not the reosult
of couscious trainsof reagsoning. These judgments me often, but by
no means invariably corréct (leaving aside the question as to whet

is meant by Ycorrect'). Often it is pospible to find some other way
of verifying the correctness of an intuitive judgment: Oneimay for
instance judge that all positive integers are uniquely factorizable
into priwes; a dotailed wathemotical argument leads to the same resuli.
It vill also involve intultive judgments, but- they will be . onos leas
open to criticism then the original Judgment about .féctbrlzafibq. I
ghall not attempt to explain this idea of 'intuftion' any more
oxplicitly.

Tho oxercise of ingenuity in nathomatics consists in ailding the
Intuition thyvough suiteble arrangements of propositions, and perhaps
‘goozetical flzurca or drawings. fllft'is intended that when théso rre
really woll arranged validity of the intultive uteps which are ree
quired. cannot soriously be doubted.

Tha parts pleyed by these two faculties differ of course from

occaolon to occesion, and from mathermntlclan to mathematiclan. This
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arbltrariness can be removed by the introduction of a formal logic.
The noceasity for uging the intuition is then greatly: reduced by
sotting dovn formal rules for carrying out infercnces which ere always
intultively valid. Vheén working with n formal logic the ides of
ingonuity takes a more definite shape. In general o formal logic will
be franed so a3 to admit a considerable variety of posaible steps in
any stage in & proof. Ingenulty will then determine which steps are
the more profitable for the purpose of proving 2 particular proposition.
In pre-Gddel times it was thought by some that it would probably be
possible to carry this progranm to such a point that sll the intuitive
judgnents of mathematics could be replaced by a finite nunber of those
rules. Tho necessity for Intuition would then be entirely eliminated.
In cur discusalons, howover, we have gone to the opposite extrore
and elininated not intultion but ingenuity, and this in spite of the
fact that our aim hes been in much the snme direction. We have been
trying to =mee how far it 1s possible to elinminato intuition, and
loave only inganuity. %o do not mind how much ingenuity %s required,
und ‘therefore assume it to be available in unlimi"tod supply. In our
notannthematical discussions ve actually cxprons this assumption
rather differently. Ve are always able ‘to obtain from the rulee of a
formal. loglc o method for enumerating the propositions proved by its
neens. ¥e then imagine that all proofs take the form of a search
through this enumaration for the theorem for which a proof 1s deslred.
In tbis wvay ingenuity i3 replaced by patience. In these houristic
diacussiony however, it is better not to make thias rédduction.



Oving to the impossibility of finding a formal logic which will
wholly oliminate the necessity of using intuition we noturally turn
to fnon-constructive! systems of logic with which not all the oteps
in a proof ars mechanical, aome being intuitive. An cxazple of a
non-constructive logic iz afforded by .any ordinel logic. Wheh wo
have an ordinal logic we are in a position to prove nunber theoretic
theorens by the intuitive steps of recognizing formulae as ordinal
formlae, and tho mechenlcal asteps of carrying ouk converslions,

Yhat properties do we desire a non-constructive logic to have if we
are to moke use of it .for the exprossion of mathematical proofas?

Ve want it to bo guite clear when a stop makes use of intuition, and
when 1% is purely formal. The strain put on the intuition should be
2 nininun, Most important of all, it st bo beyond all reasonable
doubt that the logic leeds to corrfict results whenever the intuitive
stepa are corroct . It is ulao desimblo that the loglc be adequate
This requirement is very vague. It. 1s not of course mtended that’
the critorion of the correctness of tho intuitive steps fbe the cor-
rectnegs of tho finnl result. The meaning becoxes clearer iL' ench
intuitive atep be regarded as a judgment that a particular proposition
is trus. In the caze of zn ordinal logic it is 2lways a judgment that
a formuls 18 an ordinal forrula, and this ig cqu!.valcnt to judging

that a nunber thoorotic proposition 1s trus. In this case then the
requiremant is that tho reputed ordinal logic be en ordinal loglce -

for tho oxproa;-i:n‘o; ;u:n‘b:r theoretic theorsms, ‘in order that it cay
bo used in motamathematicel discussions (ef § 5).

Of the pnrticular ordinal logiecs wu have digcussed /LP ‘and A,
cortainly will not satisfy us. In the caso of A ve are in no

better position than with a constructive loglc. In the case of -/l
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{and for that matier alse AH) we are by no means certain that we
shall never gbtzin any but true results, bocause we do not lmow
whother all ths number theoretic theorems provable in the systen P
ere true, To take AT" as & Tundamental non-constructive logic for
metanethenatical arguments would be most unsound. There remains the
systen of Church which 15 froe of thewse objectlons. It is probably
complote (although this would not neceasarily meen much) and it is

beyond rengonable doubt that it alwuys leads to correct rcsultszs.

D G S CUD RO DY U Wt SR GMD D D N R D CED N TEp B D G P MG CED GMe ED GAD WD Wl e CE - =

26 onin ordinal logic arises from £ certain systen C_ in esscntially
the saze way a8 L\p arose from P, By an argument sinmilar to one
occurring in § 8 we can show that the ordinal logic leeds to corrcct
results if and only if C_ 1s valid; the validity of C_ 18 proved in
Church[1), making use of®the results of Church and RoSser fl].
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In the next section I propose to deseribe another ordinal logic, of

a very different type, which is suggested by the work of Gentzen,
and which should also be adequate for the formalization of nuaber
theoretic ‘theorens. In particular it should be.suiteble for

proofs of metamathemntical theorems (ef és).
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12. Gentzon type ordinal logles.

In proving the. consistency of' 2 certain system of formal logic
Gontuen (Gontzen [1)) has made use of the principle of transfinite
induction for omdinals legs than Eo s and oupgested that it 4o to ba
oxpectod that transfinite induction carried sufficlently fer would
sulffice to solve all problems of conslstency. Another suggestion to
bagse systens of logic on transfinite Induction has been made by Zornelo
(Zormolo [1]). In this section I propose to show how this method of
proof nay be put into the form of a formal (non-constructive) logle,
and afterrards to obtain from it an ordinal logic.

Fo could expross the Gantzen method of proof formally in this
waye Lot us toke the system P and adjoin’ to it an axiom {ﬁl with
the intuitive neening that the W.F,.F. __Q_. .10 an ordinal toz".::ulu,
-whenever we foel cortain that Q- is an ordinal formuls. This isa
non-constructive system of logic which may cas{ly be put into ‘tho
fora of an ordinal logic. By the method of 6 wo .nake corrospond
to the systen of logic consiating of P with the axion d_n adjoinod o
logle formiln Lyt Lo 1san errecuvoz.,v calculublo function of 2,
and there ia theroforo a formula A. such that A. ( -Q-) conv _Q
for each formuln .Q _A_ is certainly not an ordinul logic unless
P 15 valid, and thorofore consintcnt. This formalizntion of Gentzon's
iden would therefore not ko applicable far the problen with which
Gentzen himself was concerned, for he was proving the consistency of
a systez weaker then Po Howover, there are other ways in shich the

Gentzen method of proof can bs formalized. I shnll explaln ono,
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beginning by describing e certain system of symbolic logic.

‘The gymbols of the calculus are 'f s Xy ! » | ‘» 0 s S' s
ﬂ ¥ 7-‘: 9 A ¥ h. » l ’ @’ .{ ', ( ] ) » = ." und the
cormaa ',7, Ve uge capital Germon letters to .stand for variable or un-

detérmined sequences of these symbols.

It is to be understood that the relations that we are about to
define hold anly when compslled to do bo by the conditions we lay dovm.
The conditions should bo takon together as a sisultaneous inductive
definition of ell the relations involved,

Suffixes

| foe suffix. TI¢ T is a suffix then 2‘; is & suffiz.

Tndles

1. I _
! is an Index. If 7 i8 an {ndox then 7 is an index,

.7l€umex_-ica1 veriableg
It a" 15 a suffix then X BV is & numerical warianblae,

Punctional varfables
Ir r iz a puffix end \7 is an index thon ‘f 3’7 i3 & funce

tlonal variable of index ﬂ .

Arsumenta
( ) ) is an argumont of index ! Ir [,01_) 19 an argument

of index g and Ql is a’tern then [m %) is an argumont of inflex
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Hunerala
D is:a.numeral,
'Ii' 7%5 a numeral then 5 [ 5 (% )is a nunoral.
In-eolazathematical statements we phell donote the numéral 4n

(r)
vhich S occurs v tires by S () 0 )

Exnresgions of jpiven Indox
L functional varieble of indox \7 13 an expression of index \7

H

? S oxe expressions of 1ndex roppactively.

1t TV 15 a nuneral then it is algo an expresasion of index '.

7 - 7!
Buppose '(g is en expression of index ,}?« ane of index
I .
3 tkmn_(ﬂ/%) und (A /ﬂ arc’ exXproqf-

fons of tndex , vattat (I q) asid (@ O@U it @/?)
m‘d(’% g { &) urs expregsions of Index j

Function gonatonta

anda ons of indox

dn exprassion of index j in which no functionel variabla..
occurs {s o functlon constont of index j If. in addition ; ﬂ do
not occur the exprassion is called a prinitfve funetion c‘gngtm\'_(-.;g_,

Jorns
0 13 a torm,
Every aurerical. variahle :la o tors.

If {g i3 an exprassion of index 7 and [,01) 13 an:avguasnt.
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of tndex J  then »g/%) is o tern.

Equationg
If 79 =nd '?;_ are teras then %_ 9’—,_ is an equation.

‘Provnble equations
To define whai 15 meont by the provable cquations relative to

‘a given sat of equatlono zs sxioms.

(2) The provable equatinas include all the axioms, The axions
are of the forz of oquations in which the symbols T A NP
/ » O s I do not. appear.

/
(v) If U} iz en expressioh of index \7 and [f%} iz an
arguront of index «7 then

(T‘/lﬁ)[,%X, > xu:) = ’%[’w’ Xirs x")
1s a provable equation.

(e) 1f /% is en expression of indox j l, end [ %} 15 an

argument of index y thon
(A/DJ/){/{}L x,;) = ’%’(J x:"m)
i13.a provable equation.

(a) 1t /% is an oxprension of index (7 » and / ﬂ ) 1a en
argunent of $ndex 7 s thon

(Ep) (8 %,5) =4 (02)
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is a provable equation.

(o) I£ /q/ 48 on exprossion of index 7 end »?/ia ono of index
| _
‘7 s ond (w) 18 an argument of index j s then

(1 8y)(42) = p (L0 (),

is a provable equatlon.

(£) If'rI/is ‘an axpreasion of index J then n/ J) = 7‘&

13 & provable aguation,

. (@) Ir /% is an expression of index j and ﬂ one of index
1 .
j { » and [ 4’/’('/) an arguuent of index j ! s then

(g 0&)( 21 0,) = 4 (1)

and

(g7 OR)( 01 5(:,5),) =L (A %,>S) (408

aro provable equations. If in addition in an exprenolon of
{
index 7 and

'R[)'?’(%S() K]J): )JXD )--: 0

(4! ,9)[,0& $G%15),) = @f(u/%(ws(,x,, ),)>8G%1)s
‘ (4141 4)(0 gl 256¥5),),))
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m(gzm@)(wo,p 4 ()

2o provablo.

() ::r‘?i:-’n);_ and "%Jinm provable whoro Wy , % 4 ¥y
and % are terms then q‘:,f '13 ond thoe result of substituting ?3

for a‘;’_ at any particular occurrence in .¥1 2 v,_ are proveble oquatlons.

(1) 12 I%f a;_ia a provable equation then the result of substituting
any tern for a particular mumarieal variable throughout this equetion 1o

, /
(3) suppose that '% s qi are expressions of index j , that / /%/

i3 an arguzent of index \7 not containing the nunerical varlable % and
that [ 1)L 0) )5/%1( '{)l 0)15 provable, Also suppoas that 4 wo

K]
add q (VL 3%)',%1(05 &, ) to tho axioms end restrict (1) so that

it can never bo applicd to the numerical variable & then

(2 S62,),)= 4, (4 $63%,),)

bacomes a provable equation; in the hypothotical proof of this equation
this rulo (§) itoolf may bo used provided that o difforent variablo
15 choson to toke the part of 6\'? .

Under these conditions ’g('ﬁb 9&) ): ?l/ﬁl 58))13 B pro-

vable oquation.

) : . /
(k) Buppose thot /% ’ ql' @r are expressions of Index j n

that [ /()L} is an ergument of index j not containing the muzerieal
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‘vartable o€ and thot . //0& o)] ='% /&0) an
(R() »@4[% S() ae) b ), S() x) )’)"’ O aro pravable equations,

Suppose alto that if wo add

(Gl S2), )= 9, (Yl 5(3) )

to the axloms, end again restrict (1) go as not to apply to % thon

q(w ®): Y () (12.2)
becomias a provable equation; ln the hypothotical proof ds (12,1) the

rule (k) may be uged Af o different veriablo takes tho part of A
Under thore conditiona.(1%,1) is a provable equation.

Y have now comploted the definfticn of a provable equation re-
lativa to o glven et of axions. Next wo shall shar how to obtain
an ordinal logle from this calcwluse The first step 10 to set up a
correspondance bstwreon gome of the equations and number titaom,tic
{thoorons, {n othor words to show how they can bo intei'pre{vbd as number
theoretic theorems. Lot %bﬁ a prisitive function conatant of indox
., /% descritos o cortatn prinitive recursive function P44, do-
tem!.ncq by the condition that for all r,le wWriz the equation.

o [, 5,0, ) )})z 5“?1'",.«))/; 0,)

shall bs provablo without using the axionms: (a)e Suppone alaso that 4?
ip an cxprossion of mdoxj Then to the oquation

/%(wa 'gc"u%) =0
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wa moke correspond the nmusber theorotic thooren which asserts that
for each natural numbor M thero is & natural nuxber # such that
(P{l»n, u) = O. (The circumotances that there i3 more than ons
equation to reprosent cach number theoretic theorem could be avoided
by a triviol modification of the celeulus.)

How let us suppose some definite method is choesen for deseribing
the pota of axioms by means of positive integers, tho null set of axions
being deacribed by the integer l. By an srgument used in § 6 thers is
& W.F.F. 2. nuoch that 1€ ¥ 45 the integer dencribing a set /A of
exions then Z [r) i3 a lopic formula enabling us to prove just thoso
number theoretic theorems which arc assoclated with equations provable
with the abovo described cnleulus, the axions being just those des~
cribed by the numbor ¥ .

I shnll ghow two ways in which the conatruction of the ordinal
logic may bo completed.

Tn tho firat method ve muke use of the theory of general recursive
functions (Klcone [2])« Lot us consider all equations of the forn

R(, 5%0),5%0),)= $760)  wa

vhich aro obtainablo from tho exlozs by the nse of rules (h), (1). Xt
is a consequence of the theorem of equivalenco of /\-dofinnblo and
general recursive function (Klecne [5]) that 1f r(m , 4 ) is eny
A ~definnble function of tvo vorinbles then we can chosse the axfoma
so that (i2.2) with - v w, u) 1o obtaineble in this way for cach



128 -03~

pair of naturel numbera # , i , end no equation of the form
) ()
S Go)=S (0) (m#tu) (12.3)

is obtainable. In particular this 15 the cese'if Vi (“', K) 15 do-
{ined by the condition that

._._Q(y,g) conv S(f) implies P> r(w u)

¥(0,n):01 w30, r(0,0)>2
whore ._g. is on ordinal formuln. There is a method for obiaining the
axions given the ordinal formule, and consequontly a formula- Rec
such that for any ordinal foraula .Q- 5 ﬁl&[ ._Q ) conv M- whoro M ip
tho integer describing the sot of axions corresponding to -_Q "Thon
the formula

./L: — A Z (T (w))

ia an ordinal logic. Let us léave the proof of ihia gnido'..for tho.
prosent.

Our second ordinal logic is to be constructed by a mothod not
unliko the one twre used in constructing A?. T'e 'bogin by assigaing
ordinal formulee to 2ll sota of axioms patisfying ceriain conditions.
For this purposc o again.consider that part of ‘the .caleulus which
is obtained by restricting ‘expreasions' to be functionel varlableg
or R or.s and rcotricting the meaning: of_":'tem' nccordingly; the -
nov provable equations are given by conditions (2), (h), (i), togother
with an oxtra condition (1)



. 7 129

(1) Tho cquaticn
R(,0, S(%,),) =0

iz proweblo.

Wo could design a machine which would obtain 211 equationn of
the fora (12.2), with M F N , provable in this sense, and £1l of
the form (12.3), oxcept that it would cease to obtain any more oquations
when 1t had once obtained one of the latter 'contradictory' equaotions.
From tuo’ degseription of the machine we obtain a foraula 2 gueh that

Q(w,9) ez R(S“7(0), $°700),)
i3 obtained by the machine (o (- ,)
_g(g'v_a__)cmvlir 7\7()5 -')/,0)))5 /JOJ)/).
13 obtained by the machine

_Q_\(u‘, u.)con_v 2 always,
-l =] - :

G

Q

The formla L2 1a an offectively calculable finction of -tho'set of
axiqng, and tharefore aloo of v ¢ condoquently there i a fomlﬁ.u M
such that M é‘.‘ﬁ) conv 2 wvhen W doseribes the sot of axionss How ‘
Lot Ciws bo o formila much that if b 1o the G.R. of o forwula M ( ] )
then (w ( b.) conv’ W, but otherwise Cu / _b) conv 1. Lot

A-; =2 Awa. T‘( XQ.GZ-(CM(TP\(U‘, u_))/;a.)

Then A:; (___Q, H) gonv 2 if ond only if 2 conv M[b) ‘whore s
doscribes a ant of nxlona which, taken with our calculus, eulficas
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to prove the cquation vhich is, roughly speeking, equivalont to

' ﬁ i3 dunl?, To prove thnt.A.Z 1o en ordinal logic it sufficos

to prove that the colculus with the axionm deseribed by he proves
only true number theorotic theorems whm'-g__ iz an ordinal {ormuls.
This condition on Mv may nlso be;expreassed in thio m + Lot us put
‘m{< W if we con prove ﬂ() (M>[.v OJ)) u)(JO ) ) o
vith (o), (h), (1), (1)1 tho condition 1o that ML < A 1o o vell
ordoring of tho natural nunbers end that no contradictory equation
(12.8) bo provable with the same rules (u), (b), (i), (1). Lot us
gay that such o set of axioma is admigaible. A .12 on ordinel logic
if the colevluz loads to nono btut true number theomtic thoorens whon
en adnisatble sot of axlens is weed,

In tho caso of AC:. ’ ﬂ-c ( -Q) describes en adnissiblo set
of axioma vhenover .Q. is an ordinal formuln. A; wvill thereforo
bo an.ordinal logic if the celculns leads to correct regults when
adniasiblo axiozs are used.

To prove that andmisaiblo axioms have this property I shall not
attompt to do mora then show how interpretations ean bo given to the
equations of the calculus so that the rules of $nference (a) - (k)
beoor:s intultively valid zethods of deduction, end so that the inter-
protation ngrees with owr conventlon rogarding numbor theoretic theoroms.

Each oxprooalon i tho name of o function, which may bo only
partially dofined. Tho oxpression O corrosponds simply to the suc-
cogsor function. Irog 1a oithar R or a functional varinblo and is
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of indnx .7 ( 7—"+_7_ srmbole in the index) thon 1t corresponds to o
function. 3, of 7‘) natural numbers defined ag follows. If

Ry ; n lr . ),
/Q](,SW/JQ-), G >(}0,)) ) S(?)'[,U:),)-= $70,)

is provable by the use of (a), (h), (1), (1) only, then 8( Pigeee, ?T)
has the velue £ » It may not bo dofined for 1l argusents, but its
valuw is elways unique, for othermise wo could prove & 'contradfctoryt
equation and M (‘:‘) would then not be an ordinal forsula. The

functions corresponding to the other expressions are essentially do-
fincd by (b) -,(:). For cxample if 3, is the function corresponding

to q and | a that corrasponding to (T‘ rg ) then
g ,("cl "L;---,"Tvi,‘") : &(r,, aseny Yo, W, J.’)

The values of the functions aro clearly unique (when defined at all)
Af given by orie of (b) « (o). The case (£) 15 oss obvious since the
function defincd appoars clso in the ddfinicns. Xshall not treat the
czso of,é{g ® %) 23 this 1o the woll known definition by primitive
recursion, but lot us shov the valuoo of the functlion corsesponding
to@ ! a _/ ) are wnique., Without loss of generality we may
suppoge that ( J)Z) i3 of index / « We have then to ghow that if

h( w) 4 the fuﬁct_ion corrosponding to end F(*, n) tnat
corresponding to R 5 and te ( u, v, “r) a given function end &

2 given natural number then the:aquations
2( D) : o €)
L(ms2): ke h(mez) ma1, £ (h(u+1)) /a)
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do not evor assipgn two different valuos for the function ¢ ( w)
Consider those values of I for vhich wo obtaln more than one valuo of
£(r¥) » ond euppose thet there is at least one suchs Clenrly O
12 not one for £(0) con only bo definod by ®)  As the relation <<
is & woll ordering there is an integer b, ouch that V, >0, 2(r)
18 not uniquo, snd 4f $cp ¥, and £(§) 1o not unique then Vp << &
Putting Se A( F,) wo find alaso S & & ¥, which 43 impossible,
There {5 thercfore no valug for which we obtain more than one velua
for tho function £(¥),

xQur intorpretetion of oxpressions as functions givo ug an ime
nedinte interprotation for equatlons with no numerical varieblss,. In
genoral wo interpret.an equation with numerical variablea as the
conjunction of 21l equations obtalnable by replacing tha variables by
numprels. Tith thins interprotation (h), (1) axe seen to be valid
zathods of proof. In () the provability of

A O S(F,,),) > Yo (O SGRD))
when ,%[,0& K“) ,gl[,&b K,,) 15 agsumed to bo inter-

proted as meaning that tha fmplicaticn betwesn thesso eguations holds

for all substitutions of pumerals for X [ To Justily this one

should satisfly onogolf that thode Implications elways hold whon-the.

hypothetical proof can ba earrled out. The rule of procedure (J)

is now socn to bo sinply nathematical induction. Tho mulo (k) io.a

forn of tranafinite induction. In prav:ln(, the vniidiﬁr of (k) ve

pay again supposs [,{}L) i3 of mdez o Lot l"(l« u) a,(tu) ﬁ’ (l«) /\(“)

Lo the functions corresponding respesctively to ‘ t{% r% »v% .
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A Remarkable Bibliography

The bibliography of Alan Turing’s PhD thesis is most remarkable in that every author cited
is one of the most influential logicians of all time.

Wilhelm Ackermann, 1896-1962, earned his PhD from Hilbert in 1925, and is known
for many results in logic, particularly the fast-growing Ackermann function, which is
computable but not primitive-recursive.

Alonzo Church, 1903-1995, created the A-calculus, on which almost all modern program-
ming languages are based. He is buried in the Princeton Cemetery.

Gerhard Gentzen, 1909-1945, was a pioneer in proof theory. He died of starvation at the
end of World War II after being arrested as a German national in Prague.

Kurt Godel, 1906-1978, stunned the mathematical world with his great incompleteness
results of 1931. Shortly thereafter he moved to the Institute for Advanced Study in
Princeton; he is buried in the Princeton Cemetery.

David Hilbert, 1862-1943, the most influential mathematician of the early twentieth cen-
tury, was chairman of mathematics at G6ttingen from 1895. He contributed greatly to
the increased rigor of mathematics, and in 1920 posed the problems of whether math-
ematical truth and proof could always be derived by a mechanical procedure. Between
1931 and 1936, Gédel, Church, and Turing demonstrated conclusively that the answer
is no.

Stephen Kleene, 1909-1994, earned his PhD at Princeton under Alonzo Church in 1934,
and was extremely influential in the creation of modern recursive function theory. He
spent most of his career at the University of Wisconsin.

Emil Post, 1897-1954, was a mathematician and logician best known for helping create the
field of computability theory. Having emigrated from Poland to New York as a child, he
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completed a PhD at Columbia University in 1920 and then a postdoc at Princeton. In
the late 1940s he was the first to recognize the importance of Turing’s two-page digres-
sion (pp. 18-19) about oracle machines.

J. Barkley Rosser, 1907-1989, who earned his PhD under Alonzo Church in 1934, is known
for the Church-Rosser theorem (confluence of reduction) and other important early
results in A-calculus; later in his career he worked on prime number computations, the
Riemann zeta function, and numerical methods, as well as logic.

Bertrand Russell, 1872-1970, was a philosopher, mathematician, logician, and social crit-
ic, and a PhD student of Alfred North Whitehead’s. Their joint work, Principia Math-
ematica (1910), was an attempt to derive real mathematics in a fully formal, logical way.
Practically it was not a great success, but the attempt was enormously influential—the
title of Godel’s great 1931 result was “On formally undecidable propositions of Prin-
cipia Mathematica and related systems.”

Alfred Tarski, 1901-1983, one of the greatest logicians of the twentieth century, emigrated
from Poland in 1939 and taught at the University of California, Berkeley for forty years.
“Along with his contemporary, Kurt Godel, he changed the face of logic in the twen-
tieth century, especially through his work on the concept of truth and the theory of
models” (Feferman).

Alan Turing, 1912-1954, an English mathematician, earned his PhD under Alonzo
Church in 1938. He is widely considered to be the father of computer science and
artificial intelligence.

Alfred North Whitehead, 1861-1947, was an English mathematician, logician, and phi-
losopher.

Ernst Zermelo, 1871-1953, the developer of modern set theory, worked in Berlin, Got-
tingen, Zurich, and Freiburg, except during the years 1935-1945, when he resigned his
position in disapproval of the Nazi regime.
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