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Preface

The objective of this text is to provide an elementary and reasonably self-contained overview of
reliability engineering that is suitable for an upper-level undergraduate or first-year graduate
course for students of any engineering discipline. In addition, the third edition has added material
for the “beginning” reliability engineer who is in the field and transferred to the reliability/safety
discipline. The materials reflect the inherently interdisciplinary character of reliability considera-
tions and the central role played by probability and statistical analysis in presenting reliability prin-
ciples and practices.
The examples and exercises are drawn from a variety of engineering and some nonengineering

fields. They can be understood, however, with only the knowledge from the physics, chemistry,
and basic engineering courses contained in the first years of nearly all engineering curricula.
Likewise, the reader is presumed to have completed only the standard mathematics sequence,
through ordinary differential equations, required of most engineering students. No prior knowl-
edge of probability or statistics is assumed; the development of the required concepts is contained
within the text.
Since the second edition, at least two major changes have taken place that are incorporated

into this new edition. The first is the increased industrial emphasis on quality in the product
development cycle and the vital role that reliability plays in providing an overall reliable and safe
product. The second is the rapid advances that have taken place in not only personal computer
software but the extent to which that software has penetrated the engineering profession in all
arenas, thus lending more time for thinking about the data and then thinking about the results of
the analysis rather than spending so much time “computing” the solutions. The reader will find
many instances in this edition where computer software is used not only to produce solutions to
specific problems but also to the generation of tables of values (normal probability, t tables, chi-
square tables, etc.).
For each appropriate example in this edition, the necessary steps for obtaining a solution are

indicated using readily available software. EXCEL™ is augmented in many cases with MINITAB®.
These two programs were chosen because they are widely available, and instructions for their use
are also widely available. There are other statistical software packages other than MINITAB that
can do most of the analyses (SAS™, SAS/JMP™, RELIASOFT++™, SUPERSMITH™, and others)
that are referenced in the third edition. The problems and solutions are amenable to all these soft-
ware packages as well as others.

xv



A number of additional improvements have been incorporated into the new edition. Reliabil-
ity Basics and the Exponential Distribution are introduced in Chapter 3; Chapter 4, Continuous
Distributions, Part 1, introduces the normal and lognormal distributions. The Weibull and
extreme value distributions are treated in Chapter 5, Continuous Distributions, Part 2.
Chapter 6 is dedicated to the topic of reliability testing. It is expanded from the second edition
to include many options for setting up reliability testing along with the analysis of the data, thus
emphasizing the importance of the Weibull distribution in the practice of reliability engineering.
Chapter 7 is dedicated to FMEA (Failure Modes and Effects Analysis), an indispensable tool in
reliability in all areas, not just design but virtually EVERY process in any industry including the
medical and most “soft” industries in terms of process FMEA. Chapter 8 on Loads, Capacity, and
Reliability; Chapter 9 on Maintained Systems; and Chapter 10 on Failure Interactions are basi-
cally unchanged from the second edition. Two sections have been added to the System Safety
Analysis (now Chapter 11) on FMECA (Failure Modes, Effects, and Criticality Analysis) and
Safety Risk Analysis and the Use of Monte Carlo Simulation.
Finally, the text now contains over 150 solved examples and well over 300 exercises, many of

which are new. The answers to the odd-numbered exercises are given at the end of the book.
The text contains more material than can be treated in detail in a normal one-semester under-

graduate course, providing some latitude in the topics that may be emphasized. If the students have
had some previous exposure to elementary probability, Chapter 2 can be somewhat telescoped
because those probability concepts that are more specific to reliability analysis are set forth in
Chapter 3. The statistical treatment of data contained mainly in Chapters 4, 5, 6, and 7 is essential
to a well-rounded undergraduate course in reliability engineering. The materials in the remaining
chapters may be covered independently in an advanced undergraduate or graduate course. For
example, the quantitative analysis of the effects of load and capacities contained in Chapter 8 is
critical to the understanding of failure mechanisms, but the reliability systems considerations con-
centrated in Chapters 9 and 11 may be read independently of it. Finally, the system safety analysis
contained in Chapter 11 may be understood without first covering the Markov analysis methods
developed in Chapter 10.
In addition to the continued thanks owed to the students and colleagues who provided their

advice and assistance with previous editions, we would like to acknowledge the help of specific
individuals in encouraging the authors to include the reliability engineering professionals in this
book’s prospective audience:

My sincere thanks to:
As well as the students at Northwestern University who have ferreted out errors in the first edi-

tion and made constructive criticisms and suggestions for improvements. George Coons of the
Motorola Corporation has been particularly helpful in providing materials and suggestions related
to the treatment of quality issues, and Jim Lookabaugh of Northwestern designed the data acqui-
sition system and obtained the light bulb reliability results that serve as the basis for several exam-
ples in Chapters 5 and 8. Finally, I would like to express my appreciation for the continued
understanding of my wife and children while I monopolized the family computer.

Elmer Lewis

My sincere thanks to:

• all my colleagues at Pratt & Whitney, especially Dr. Bob Abernethy, Wes Annas, Dave McDer-
mott, Steve Luko, and in particular, my P&WEngineeringmentor Jack Sammons, without whose
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encouragement I would not have explored the needs at P&W in Weibull Risk & Reliability
Analysis.

• Many former UTC divisions (Carrier, Otis, and Sikorsky) and many other companies I have
consulted for as well as university students who had the fortitude to listen to my advice and take
the many Reliability, Statistics, and Safety courses I have taught – thanks for helping me become
a better listener and teacher.

• My SAE, ASA, and ASQ professional associates have providedmewith their ideas and support: in
particular, Wes Fulton, Paul Barringer, Jim McLinn, and Trevor Craney.

Jim Breneman

Prof. Alan Hadad and Dr. Louis Manzione for their support in always helping me pursue my
goals. My portion of the materials in the book are influenced by discussions with my students over
the years at the University of Hartford and the State University of New York at Binghamton.
I received encouragement from my teacher, Prof. Rajendra Dubey of the University of Waterloo.
I am grateful to my industry collaborators who have transformed my approach to engineering
education. In particular, Jim Breneman, coauthor of the book, was an inspiration while serving
as the point of contact for University relations at Pratt and Whitney. I owe the most of thanks
to my wife, Saraswati Sahay, and my children, who stood by me and helped me stay focused.

Chittaranjan Sahay

Jim Breneman, Vergennes, VT, USA
Chittaranjan Sahay, West Hartford, CT, USA

Elmer Lewis, Evanston, IL, USA
December 2021
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1

Introduction

“When an engineer, following the safety regulations of the Coast Guard or the Federal
Aviation Agency, translates the laws of physics into the specifications of a steamboat boiler
or the design of a jet airliner, he is mixing science with a great many other considerations all
relating to the purposes to be served. And it is always purposes in the plural — a series of
compromises of various considerations, such as speed, safety economy and so on.”

Source: D. K Price, The Scientific Estate, 1968

1.1 Reliability Defined

The world demands that the performance of products and systems be improved while at the same
time reducing their cost. The requirement to minimize the probability of failures, whether those
failures simply increase costs and irritation or gravely threaten the public safety, has placed
increased emphasis on reliability and safety. The formal body of knowledge that has been devel-
oped for analyzing such failures and minimizing their occurrence cuts across virtually all engineer-
ing disciplines, providing the rich variety of contexts in which reliability considerations appear.
Indeed, deeper insight into failures and their prevention is to be gained by comparing and contrast-
ing the reliability characteristics of systems of differing characteristics: computers, electromechan-
ical machinery, energy conversion systems, chemical and materials processing plants, and
structures, to name a few.
In the broadest sense, reliability is associated with dependability, with successful operation, and

with the absence of breakdowns or failures. It is necessary for engineering analysis, however, to
define reliability quantitatively as a probability.
Thus, reliability is defined as the probability that a system will perform its intended function for a

specified period of time under a given set of conditions. System is used here in a generic sense so that
the definition of reliability is also applicable to all varieties of products, subsystems, equipment,
components, and parts.
A product or system is said to fail when it ceases to perform its intended function. When there is a

total cessation of function – an engine stops running, a structure collapses, a piece of communica-
tion equipment goes dead – the system has clearly failed. Often, however, it is necessary to define
failure quantitatively in order to take into account the more subtle forms of failure, through dete-
rioration or instability of function. Thus, a motor that is no longer capable of delivering a specified
torque, a structure that exceeds a specified deflection, a part that is seriously corroded or eroded (yet
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still working), or an amplifier that falls below a stipulated gain has failed. Intermittent operation or
excessive drift in electronic equipment and the machine tool production of out-of-tolerance parts
may also be defined as failures.
The way in which time is specified in the definition of reliability may also vary considerably,

depending on the nature of the system under consideration. For example, in an intermittently oper-
ated system one must specify whether calendar time or the number of hours of operation is to be
used. If the operation is cyclic, such as that of a switch, time is likely to be cast in terms of the num-
ber of operations. Some subsystems of the same system (e.g. jet engine) may have different time
criteria that drives their failure. If reliability is to be specified in terms of calendar time, it may also
be necessary to specify the frequency of starts and stops and the ratio of operating to total time.
In addition to reliability itself, other quantities are used to characterize the reliability of a system.

Themean time to failure and failure rate are examples, and in the case of repairable systems, so also
are the availability and mean time to repair. The definition of these and other terms will be intro-
duced as needed.

1.2 Performance, Cost, and Reliability

Much of engineering endeavor is concerned with designing and building products for improved
performance. We strive for lighter and therefore faster aircraft, for thermodynamically more effi-
cient energy conversion devices, for faster computers, and for larger, longer lasting structures. The
pursuit of such objectives, however, often requires designs incorporating features that more often
than not may tend to be less reliable than older, lower performance systems, at least initially when
the customer receives them. The trade-offs between performance, reliability, and cost are often sub-
tle, involving loading, system complexity, and the employment of new materials and concepts.
Load is most often used in the mechanical sense of the stress on a structure. But here we interpret

it more generally so that it also may be the thermal load caused by high temperature, the electrical
load on a generator, or even the information load on a telecommunications system. Whatever the
nature of the load on a system or its components may be, performance is frequently improved
through increased loading. Thus, by increasing the weight of an aircraft, we increase the stress
levels in its structure; by going to higher – thermodynamically more efficient – temperatures we
are forced to operate materials under conditions in which there are heat-induced losses of strength
and more rapid corrosion/erosion. By allowing for ever-increasing flows of information in commu-
nications systems, we approach the frequency limits at which switching or other digital circuitsmay
operate.
As the physical limits of systems or their components are approached in order to improve per-

formance, the number of failures increase unless appropriate countermeasures are taken. Thus,
specifications for a purer material, tighter dimensional tolerance, and a host of other measures
are required to reduce uncertainty in the performance limits and thereby permit one to operate
close to those limits without incurring an unacceptable probability of exceeding them (i.e. failure).
But in the process of doing so, the cost of the system is likely to increase. Even then, adverse envi-
ronmental conditions, product deterioration, and manufacturing flaws all lead to higher failure
probabilities in systems operating near their limit loads.
System performance may often be increased at the expense of increased complexity, the complex-

ity usually being measured by the number of required components or parts. Once again, reliability
will be decreased unless compensating measures are taken, for it may be shown that if nothing else
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is changed, reliability decreases with each added component. In these situations, reliability can only
be maintained if component reliability is increased or if component redundancy is built into the
system. But each of these remedies, in turn, must be measured against the incurred costs.
Probably the greatest improvements in performance have come through the introduction of

entirely new technologies. For, in contrast to the trade-offs faced with increased loading or com-
plexity, more fundamental advances may have the potential for both improved performance and
greater reliability. Certainly, the history of technology is a study of such advances; the replacement
of wood by metals in machinery and structures, the replacement of piston with jet aircraft engines,
and the replacement of vacuum tubes with solid-state electronics all led to fundamental advances in
both performance and reliability while costs were reduced. Any product in which these trade-offs
are overcome with increased performance and reliability, without a commensurate cost increase,
constitutes a significant technological advance.
With any major advance, however, reliability may be diminished, particularly in the early stages

of the introduction of new technology. The engineering community must proceed through a learn-
ing experience to reduce the uncertainties in the limits in loading on the new product, to under-
stand its susceptibilities to adverse environments, to predict deterioration with age, and to perfect
the procedures for fabrication, manufacture, and construction. Thus, in the transition fromwood to
iron, the problem of dry rot was eliminated, but failure modes associated with brittle fracture had to
be understood. In replacing vacuum tubes with solid-state electronics the ramifications of reliability
loss with increasing ambient temperature and vibration had to be appreciated.
Whether in the implementation of new concepts or in the application of existing technologies, the

way trade-offs are made between reliability, performance and cost, and the criteria on which they
are based is deeply imbedded in the essence of engineering practice, for the considerations and cri-
teria are as varied as the uses to which technology is put. The following examples illustrate
this point.

• Consider an air conditioner. What is the worst that can happen if it quits? The customer is warm.
So, when developing air conditioners, safety is not paramount, reliability is considered, but cost is
“king.” Hence, copper tubing for A/C units has given way to aluminum. Plastics for metal wher-
ever possible for weight saving, less testing, and lower confidence levels in the testing are used.

• At the opposite extreme is the design of a commercial airliner, where mechanical breakdown
could well result in a catastrophic accident. In this case, reliability is the overriding design con-
sideration; degraded speed, payload, and fuel economy are accepted in order to maintain a very
small probability of catastrophic failure. An intermediate example might be in the design of a
military aircraft, for here the trade-off to be achieved between reliability and performance is more
equally balanced. Reducing reliability may again be expected to increase the incidence of fatal
accidents. Nevertheless, if the performance of the aircraft is not sufficiently high, the number
of losses in combat may negate the aircraft’s mission, with a concomitant loss of life.

Hence, reliability of many products may be viewed primarily in economic terms. The design of a
piece of machinery, for example may involve trade-offs between the increased capital costs entailed
if high reliability is to be achieved and the increased costs of repair and of lost production that will
be incurred from lower reliability. Even here, more subtle issues come into play. For consumer pro-
ducts, the higher initial price that may be required for a more reliable item must be carefully
weighed against the purchaser’s annoyance with the possible failure of a less-reliable item as well
as the cost of replacement or repair. For these wide classes of products, it is illuminating to place
reliability within the wider context of product quality.
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1.3 Quality, Reliability, and Safety Linkage

In competitive markets there is little tolerance for poorly designed and/or shoddily constructed pro-
ducts. Thus, since the middle 1980s increasing emphasis has been placed on product quality
improvement as manufacturers have striven to satisfy customer demands. In very general terms,
quality may be defined as the totality of features and characteristics of a product or service that bear
on its ability to satisfy given needs. Thus, while product quality and reliability invariably are consid-
ered to be closely linked, the definition of quality implies performance optimization and cost min-
imization as well. Therefore, it is important to delineate carefully the relationships between quality,
reliability, and safety. We approach this task by viewing the three concepts within the framework of
the design and manufacturing processes, which are at the heart of the engineering enterprise.
In the product development cycle, careful market analysis is first needed to determine the desired

performance characteristics and quantify them as design criteria. In some cases, the criteria are
upper limits, such as on fuel consumption and emissions, and in others they are lower limits, such
as on acceleration and power. Still others must fall within a narrow range of a specified target value,
such as the brightness of a video monitor and the release pressure of a door latch. In conceptual or
system design, creativity is brought to the fore to formulate the best system concept and configu-
ration for achieving the desired performance characteristics at an acceptable cost. Detailed design is
then carried out to implement the concept. The result is normally a set of working drawings and
specifications from which prototypes are built. In designing and building prototypes, many studies
are carried out to optimize the performance characteristics.
If a suitable concept has been developed and the optimization of the detailed design is successful,

the resulting prototype should have performance characteristics that are highly desirable to the cus-
tomer. In this process, the costs that eventually will be incurred in production must also be mini-
mized. The design may then be said to be of high quality or more precisely of high characteristic
quality. Building a prototype that functions with highly desirable performance characteristics, how-
ever, is not in and of itself sufficient to assure that the product is of high quality; the product must
also exhibit low variability in the performance characteristics.
The customer who purchases an engine with highly optimized performance characteristics, for

example, will expect those characteristics to remain close to their target values as the engine is oper-
ated under a wide variety of environmental conditions of temperature, humidity, dust, and so on.
Likewise, satisfaction will not be long lived if the performance characteristics deteriorate prema-
turely with age and/or use. Finally, the customer is not going to buy the prototype but a mass pro-
duced engine. Thus, each engine must be very nearly identical to the optimized prototype if a
reputation of high quality is to bemaintained; variability or imperfections in the production process
that lead to significant variability in the performance characteristics should not be tolerated. Even a
few “lemons” will damage a product’s reputation for high quality.
To summarize, two criteria must be satisfied to achieve high quality. First, the product design

must result in a set of performance characteristics that are highly optimized to customer desires.
Second, these performance characteristics must be robust. That is, the characteristics must not be
susceptible to any of the three major causes of performance variability: (i) variability or defects in
the manufacturing process, (ii) variability in the operating environment, and (iii) deterioration
resulting from wear or aging.
In what we refer to as product dependability, our primary concern is in maintaining the perfor-

mance characteristics in the face of manufacturing variability, adverse environments, and product
deterioration. In this context, we may distinguish between quality, reliability, and safety.
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• Any variability of performance characteristics concerning the target values entails a loss of
quality.

• Reliability engineering is primarily concernedwith variability that is so severe as to cause product
failure.

• Safety engineering is focused on those failures that create hazards.

To illustrate these relationships, consider an automatic transmission for an automobile. Among
the performance characteristics that have been optimized for customer satisfaction are the speeds at
which gears automatically shift. The quality goal is then to produce every transmission so that the
shift takes place at as near as possible to the optimum speed, under all environmental conditions,
regardless of the age of the transmission and independently of where in the production run it was
produced. In reality, these effects will result in some variability in the shift speeds and other per-
formance characteristics. With increased variability, however, quality is lost. The driver will
become increasingly displeased if the variability in shift speed is large enough to cause the engine
to race before shifting or low enough that it grinds from operating in the higher gear at too low a
speed. With even wider variability the transmission may fail altogether, by one of a number of
modes, for example by sticking in either the higher or lower gear, or by some more catastrophic
mode, such as seizure.
Just as failures studied in reliability engineering may be viewed as extreme cases of the perfor-

mance variability closely associated with quality loss, safety analysis deals with the subset of failure
modes that may be hazardous. Consider again our engine example. If it is a lawn mower engine,
most failure modes will simply cause the engine to stop and have no safety consequences.
A safety problem will exist only if the failure mode can cause the fuel to catch fire, the blades
to fly off, or some other hazardous consequence. Conversely, if the engine is for a single-engine
aircraft, reliability and safety considerations clearly are very closely linked.
In reliability engineering, the primary focus is on failures and their prevention. The foregoing

example, however, makes clear the intimate relationship among quality loss, performance varia-
bility, and failure. Moreover, as will become clearer in succeeding chapters, there is a close corre-
lation between the three causes of performance variability and the three failure mode categories
that permeate reliability and safety engineering.

• Variability due to manufacturing processes tends to lead to failures concentrated early in product
life. In the reliability community, these are referred to as early or infant mortality failures.

• The variability caused by the operating environment leads to failures designated as random, since
they tend to occur at a rate which is independent of the product’s age.

• Finally, product deterioration leads to failures concentrated at longer times and is referred to in
the reliability community as aging or wear failures.

The common pocket calculator provides a simple example of the classes of variability and of fail-
ure. Loose manufacturing tolerances and imprecise quality control may cause faulty electrical con-
nections, misaligned keys, or other imperfections that are most likely to cause failures early in the
design life of the calculator. Inadvertently stepping on the calculator, dropping it in water, or leav-
ing it next to a strongmagnetmay expose it to environmental stress beyondwhich it can be expected
to tolerate. The ensuing failure will have little correlation to how long the calculator has been used,
for these are random events that might occur at any time during the design life. Finally, with use
and the passage of time, the calculator key contacts are likely to become inoperable, the casing may
become brittle and crack, or other components may eventually cause the calculator to fail from age.
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To be sure, these three failure mode classes often subtly interact. Nevertheless, they provide a useful
framework within which we can view the quality, reliability, and safety considerations taken up in
succeeding chapters.

1.4 Quality, Reliability, and Safety Engineering Tasks

The focus of the activities of quality, reliability, and safety engineers, respectively, differs signifi-
cantly as a result of the nature and amount of data that is available. This may be understood by
relating the performance characteristics to the types of data that engineers working in each of these
areas must deal with frequently. Quality engineers must relate the product performance character-
istics back to the design specifications and parameters that are directly measurable, the dimensions,
material compositions, electrical properties, and so on. Their task includes both setting those para-
meters and tolerances so as to produce the desired performance characteristics with a minimum of
variability and ensuring that the production processes conform to the goals. Thus, corresponding to
each performance characteristic there are likely to be many parameters that must be held to close
conformance. With modern instrumentation, data on the multitude of parameters and their vari-
ability may be generated during the production process. The problem is to digest the vast amounts
of raw data and put it to useful purposes rather than being overwhelmed by it. The processes of
robust design and statistical quality control deal with utilizing data to decrease performance char-
acteristic variability.
Reliability data is more difficult to obtain, for it is acquired through observing the failure of pro-

ducts or their components. Most commonly, this requires life testing in which a number of items are
tested until a significant number of failures occur. Unfortunately, such tests are often expensive,
since they are destructive, and to obtain meaningful statistics substantial numbers of the test speci-
mens must fail. They are also time consuming, since unless unbiased acceleration methods are
available to greatly compress the time to failure, the test time may be comparable or longer to
the normal product life. Reliability data, of course, is also collected from field failures once a prod-
uct is put into use. But this is a lagging indicator and is not nearly as useful as results obtained ear-
lier in the development process. It is imperative that the reliability engineer be able to relate failure
data back to performance characteristic variability and to the design parameters and tolerances. In
products that have evolved over many decades (e.g. airplanes, jet engines, and rocket engines) using
previous “Lessons Learned” from the basic failures of similar parts, subsystems, and systems can be
a beginning guide for a current design effort. Reviews of designs by EXPERIENCED Reliability,
Safety, and Quality engineers can point out possible areas of concern in a new design and recom-
mend actions to prevent the failures from occurring.
The paucity of data is even more severe for the safety engineer, for with most products, safety

hazards are caused by only a small fraction of the failures. Conversely, systems whose failures
by their very nature cause the threat of injury or death are designed with safety margins and main-
tenance and retirement policies such that failures are rare. In either case, if an acceptable measure
of safety is to be achieved, the prevention of hazardous failures must rely heavily on more quali-
tative methods. Hazardous design characteristics must be eliminated before statistically significant
data bases of injuries or death can develop. Thus, the study of past accidents and of potential unan-
ticipated uses or environments, along with failure modes and effects analysis and various other
“what if” techniques, finds extensive use in identifying potential hazards and eliminating them.
Careful attention must also be paid to field reports for signs of hazards incurred through product
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use – or misuse – for often it is only through careful detective work that hazards can be identified
and eliminated.

1.5 Preview

In the following chapter, we first introduce a number of concepts related to probability and discrete
distributions. Chapter 3 introduces the engineer to the Basics of Reliability and the Exponential
Distribution (since until the late 1950s/early 1960s the exponential distribution was virtually the
only distribution used in reliability studies). The bathtub curve is introduced as well, and the rela-
tionships of reliability to failure modes, component failures, and replacements are discussed. Chap-
ters 4 and 5 cover the continuous distributions important to reliability in the current world: normal,
lognormal, and Weibull/extreme value.
In Chapter 6, we investigate reliability testing and its prominent place in setting up and analyzing

data from laboratory tests as well as field test data. Accelerated life testing and its relationship to
failure rates and other phenomena where time is of the essence in the product development cycle is
covered extensively.
Chapter 7 covers the reliability engineering tool of FailureModes and Effects Analysis (FMEA) in

Design and Process. As discussed earlier in the Introduction, processes are just as (and evidence
exists that they are more) important in producing a reliable and hence highly safe and quality
product.
In contrast, Chapter 8 concerns the relationships between reliability, the loading on a system, and

its capacity to withstand those loads. This entails, among other things, an exposition of the prob-
abilistic treatment of safety factors and design margins. The treatment of repetitive loading allows
the time dependence of failure rates on loading, capacity, and deterioration to be treated explicitly.
Chapters 9 and 10 deal with the reliability of more complex systems. Chapter 9 concentrates on

maintained systems, examining the effects of both preventive and corrective maintenance and then
focusing onmaintainability and availability concepts for repairable system. In Chapter 10, the treat-
ment of complex systems and their failures is brought together through an introduction to contin-
uous-time Markov analysis.
Chapter 11 concludes the text with an introduction to system safety analysis. After discussions of

the nature of hazards caused by equipment failures and by human error, quantitative methods for
safety analysis are reviewed. The FMEA reliability engineering tool of Chapter 7 is expanded to
Failure Modes and Effects Criticality Analysis (FMECA), which can be used, in conjunction with
safety hazard analysis, to prioritize which failuremodes aremost hazardous in the design phase and
later in the early test, production, and field phases of a product. The construction and analysis of
fault tree analysis methods are then treated in some detail. Chapter 11 is completed with examples
of safety risk analyses using Monte Carlo simulation.
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2

Probability and Discrete Distributions

“Probability Theory is Nothing but Common Sense Reduced to Calculation”
–Laplace

2.1 Introduction

Fundamental to all reliability considerations is an understanding of probability, for reliability is
defined as the probability that a system will not fail under some specified set of circumstances.
In this chapter, we discuss the logic by which probabilities can be combined and manipulated.
Although quite elementary, the notions presented will be shown to have immediate applicability
to a variety of reliability considerations ranging from the reliability of parts to subsystems to the
reliability of a system.

2.2 Probability Concepts

We denote the probability of an event, say a failure, A, as P(A). This probability has the following
interpretations:
There are three approaches to probability:

Relative Frequency

Counts the number of times an event (A) actually occurs, so that

P A =
number of times A occurs

number of times A occurs + number of times it did not occur
2 1a

Example 2.1 Suppose that we perform an experiment in which we test 100 light bulbs. By the end
of the test, six light bulbs failed. The probability that a light bulb fails the test is the relative fre-
quency with which failure occurs. In this case

P A =
number of times A occurs

number of times A occurs + number of times it did not occur
=

6
6 + 94

=
6
100
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Classical

Events have an equal chance of occurring, so that

P A =
number of times A occurs

number of different sample events
2 1b

Example 2.2 In some situations, symmetry or other theoretical arguments also may be used to
define probability. For example, one often assumes that you have a “fair” coin, then the probability
of a coin flip resulting in “heads” is ½. Theoretically, in the long run, as you flip more and more
times, the probability of a “heads” will approach½. So, if you flip a fair coin 100 times, on the aver-
age you would expect

P A =
number of times A occurs

number of different sample events
=

50
100

=
1
2

Closer to reliability considerations, if one has two pieces of equipment,A and B,which are chosen
from a lot of equipment of the same design and manufacture, one may assume that the probability
thatA fails before B is 1/2. If the hypothesis is doubted in either case, onemust verify that the coin is
true or that the pieces of equipment are identical by performing a large number of tests to which
Eq. (2.2) may be applied.

Subjective

P(A) is estimated based on previous experience, i.e. no way of counting the number of times A
occurred, nor are all events of equal probability.

Example 2.3 It often happens in industry that when a new design is being started, and the reli-
ability and safety implications are being
reviewed, no data is available. In situations like that, the experienced judgment of engineers will

be used to give a subjective answer to questions such as

“howoftenwill the temperature go beyond the limit of the part’s capability during operation?”

or “Based on your judgment which of these suppliers has the least chance (read smallest probability)
of producing a bad part?”Thesewill be subjective judgments, to be used initially, and updated as test-
ing and other data become available.
In reliability engineering, you will use probability at one time or another in all three of these

approaches.
Therefore, in general terms, we can define the probability of X in any of the above forms, if N is

the number of samples, and r is the number of failures, as repeated samples are taken:

P X = lim
N ∞

r
N

2 2

Sample space (S) = set of all possible outcomes

e.g.
So, the set of all possible outcomes = sample space

(S) = (W, L), e.g. toss a fair coin (assume two faces per coin)
(Figure 2.1)
S = (Heads, Tails)

Outcome (e) = an element of the sample space

So, in the spin once example:

W is an outcome
L is also an outcome.

L

W

Spin once:
W = win
L = lose

Figure 2.1 Spinner sample space with
two outcomes (win, lose).
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In the toss coin example:

Tails is an outcome
Heads is another outcome.

Typical sample space in manufacturing (Table 2.1):

Event = A subset of outcomes

Using the spin once example,

Define the sample space for spin twice:
Spin twice sample space (S) = (WW, WL, LW, LL)
where the outcomes are= WW, WL, LW, & LL

Now, an event is a subset of outcomes, and suppose that we use
Symbols A, B, C, D… for events. We can define events for the “spin twice” sample space.
For example, let

Event A = at least one W = (WW, WL, LW)
Event B = both spins are L = (LL)

In terms of probability, if all outcomes were equally likely,
P(A) = 3/4
P(B) = ¼

Probability Axioms

Probability outcome ≥ 0 2 3

Prob all outcomes = 1 2 4

Table 2.1 Select 10 parts for inspection at random from a bin
of parts.

Part Defective Good

1 ×

10
outcomes

2 ×
3 ×
4 ×
5 ×
6 ×
7 ×
8 ×
9 ×
10 ×
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So, all probabilities are between 0 and 1 (Figures 2.2–2.5).

Law of complement P A = 1− P A 2 5

Addition Law P A B = P A + P B −P A B 2 6

If A, B are mutually exclusive, P(A B) = 0
Note: If A and B are mutually exclusive

P A B = P A + P B 2 7

If A, B are independent, then

P A B = P A P B 2 8

Conditional probability, written P(A|B), means the probability that A occurs, given the “condi-
tion” that event B has already occurred.

P A B = P A B P B 2 9a

or

P A B = P B ∗P A B 2 9b

Example 2.4 Suppose we know that the probability that the width of amachine-made part will be
within specified bounds is 0.90, and the probability that its length will be within the bounds is 0.95.
Suppose further that 80% of the parts are within specified bounds for length andwidth. Are the two
events “width within bounds” and “length within bounds” independent?
Solution: Let P(A) = 0.90, P(B) = 0.95. Then, we need to check whether P(A B) = P(A)P(B) in

this case.
Here, (0.90)(0.95) = 0.855 0.80. Therefore, the two events are not independent.

A

Not A

Figure 2.2 Complement of
A, A = NOT A

A⋃B is the shaded areaA B

Figure 2.3 Union A B = A or B or both.

A B

A ⋂ B is this area

Figure 2.4 Intersection A B = A and B.

A  B A ⋂ B = ∅ (the empty set)

Figure 2.5 A and B are mutually exclusive
means A and B cannot occur simultaneously.
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Example 2.5 An experiment results in one of the following events: E1, E2, E3, E4, or E5.

a) find P(E3) if P(E1) = 0.1, P(E2) = 0.3, P(E4) = 0.2, P(E5) = 0.1
b) find P(E3) if P(E1) = P(E3), P(E2) = 0.1, P(E4) = 0.2, P(E5) = 0.1
c) find P(E3) if P(E1) = P(E2) = P(E4) = P(E5) = 0.1

Solution:
Sum of all probabilities = 1; therefore,

P E1 + P E2 + P E3 + P E4 + P E5 = 1

Then, a) 0.1 + 0.3 + P(E3) + 0.2 + 0.1 = 1, so P(E3) = 0.3
b) P(E1) + 0.1 + P(E3) + 0.2 + 0.1 = 1, but P(E1) = P(E3), P(E3) + 0.1 + P(E3) + 0.2 +

0.1 = 1, so 2P(E3) = 0.6, and P(E3) = P(E1) = 0.3
c) 0.1 + 0.1 + P(E3) + 0.1 + 0.1 = 1, P(E3) = 0.6.

Example 2.6
a) List the events in the sample space for this experiment (Figure 2.6).
b) Assign reasonable probabilities to the simple events.
c) Find the probability of each of the following events:

A: (at least one system “works”),
B: (Exactly one system works),
C: (no system works)

Solution: (a) Sample space: where capital “W” indicates that a system “works,” and capital “F” indi-
cates that a system “fails.”
(b) Eight outcomes, so the probability of each = 1/8.
(c) P(A) = P (at least one system “works”) = 7/8
P(B) = P (exactly one system “works”) = 3/8
P(C) = P (no system “works”) = 1/8.
(Moral of this example: if you can enumerate the sample space, you reduce your chances of

an error!!).
See Table 2.2.

X Y Z
Figure 2.6 A machine consists of three linked systems:
each system can “work” or “fail.”

Table 2.2 All possible outcomes of a series of three
components where each component either “fails” or “works.”

System

X Y Z

W W W

W W F

W F W

W F F

F W W

F W F

F F W

F F F
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Example 2.7 Brand X aircraft manufacturing company
has a backup control system that operates independently
of the primary control. Each of the systems has a probability
of 0.01 of failing on a particular mission. List the four events
if we define the experiment to be observing the success or
failure of the two operating systems. Now find the probabil-
ity of the following events (Figure 2.7):

A: (Both systems function properly)
B: (At least one of the systems fail)

C: (Exactly one of the systems fails)
D: (At least one system functions properly).

Solution: Construct a table with all outcomes of primary and backup control:

Then,

A: P(both systems functioning properly) = 0.9801
B: P(at least one of the systems failing) = 1− P(none failing) = 1− 0.9801 = 0.0199
C: P(exactly one of the systems failing) = 0.0099 + 0.0099 = 0.0198
D: P(at least one system functions properly) = 1− P(none working) = 1− 0.0001 = 0.9999

Example 2.7 Extended
Another useful way of tackling many probability problems is to draw a probability tree. For exam-

ple, using the information on the backup and primary control, we illustrate the probability tree
approach (Figure 2.9).

Back-up
control

Primary
control

O

Figure 2.7 Primary and backup control
configuration.

Primary control Back-up control P(System Working)

P(Works) = 0.99

P(Works) = 0.99

P(Does not work) = 0.01

P(Does not work) = 0.01

P(Works) = 0.99

P(Does not work) = 0.01

P(Works) = 0.99

P(Does not work) = 0.01

(0.99)*(0.99) = 0.9801

(0.99)*(0.01) = 0.0099

(0.01)*(0.99) = 0.0099

(0.01)*(0.01) = 0.0001

Figure 2.8 All possible outcomes for primary and backup control systems.

P(Primary Works ⋂ Backup Works) =
(0.99)(0.99) = 0.9801

P(Primary Works ⋂ B/U Fails) =
(0.99)(0.01) = 0.0099

P(Primary Fails ⋂ B/U Works) =
(0.01)(0.99) = 0.0099

P(Primary Fails ⋂ B/U Fails) =
(0.01)(0.01) = 0.0001

B/U Fails

B/U Fails

B/U W
orks

B/U W
orks

Primary Fails

Prim
ar

y W
or

ks

Figure 2.9 A probability tree approach works well when presenting results, in particular when there are more
than two choices.
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Example 2.8 The space shuttle had 12 O-rings. If any of the 12 rings fail, the shuttle would
explode. If the probability of a single O-ring failing is 0.01, what is the probability of an explosion?
Assume that the rings operate independently. Recalculate if the probability of a single O-ring failing
is 0.001.

Solution:
(a) If P(O-ring failure) = 0.01

Prob at least 1 O-ring fails = 1−Prob No O-rings fail

= 1− P O1does not fail ∗P O2does not fail ∗ ∗P O12does not fail

= 1− 0 99 12 ≈ 0 113

= 1− 99 12 ≈ 0 113

(b) If P(O-ring failure) = 0.001

Prob at least 1 O-ring fails = 1− Prob No O-rings fail
= 1− P O1does not fail ∗P O2does not fail ∗ ∗P O12does not fail
= 1− 0 999 12 ≈ 0 012

When Challenger Flight 51-L exploded due to O-ring failure (January 28, 1986), there had been 1
failure in 25 missions, for a point estimate of 1/25 = 0.04. (Note: 0.113 > 0.04 > 0.012.)

Example 2.9 A test was done on ultrasonic inspection kits to determine how effective they are in
discovering microscopic cracks in aircraft parts. When a crack was present, the equipment signaled
a crack of 98% of the time. There was a “false alarm” on 3% of the parts which had no cracks. Sup-
pose that 5% of all the parts have a crack in them. If the percentages in the test can be assumed to be
the true probabilities, find the probability that a part is really bad when a kit signals a crack.

Solution:
Let A = event that the part has a crack.
Let B vent ultrasonic inspection indicates a part has a crack.
Now,
P(A) = 0.05 (5 parts in 100 have a crack).
P(B|A) = 0.98 (the probability of a positive test, given a crack, is 0.98).
P(B|NOT A) = 0.03 (the probability of a false positive, given no crack, is 0.03).
P(A|B) = ? (the probability of having a crack, given a positive test).

Table 2.3a Step one.

A Not A Sum

B P(A B) P(Not A B) P(B)

Not B P(A Not B) P(Not A Not B) P(Not B)

0.05 0.95 1.0

Table 2.3b Step two.

A Not A Sum

B 0.049 0.0285 0.0775

Not B P(A Not B) P(Not A Not B) P(Not B)

0.05 0.95 1.0
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The easiest way to visualize this the solution is in Table 2.3a
First, P(A B) = P(B|A)P(A) = (0.98)(0.05) = 0.049
P(Not A B) = P(B|Not A)P(Not A) = (0.03)(0.95) = 0.0285
After filling in the information from the two above equations into Table 2.3a, we have Table 2.3b

and, finally Table2.3c is the finished calculation for this conditional probability problem.
Finally, the probability that a part is really bad, given an ultrasonic inspection indicates a crack:

P A B = P A B P B = 0 049 0 0775 = 0 6322

Not intuitive, but given the data, when you have a positive test means that there is only a 63%
chance of a crack in this case!

Example 2.10 Two circuit breakers of the same design each have a failure-to-open-on-demand
probability of 0.02. It takes both to fail before the system fails. What is the probability of the system
failure (a) if the failures are independent, and (b) if the probability of a second failure is 0.1, given
the failure of the first? (c) In part a, what is the probability of one or more breaker failures on
demand? (d) In part b, what is the probability of one or more failures on demand?

Solution: Let X = failure of first circuit breaker
Y = failure of second circuit breaker
Then, P(X) = P(Y) = 0.02

P X Y = = P X P Y = 0 0004

a) P(Y|X) = 0.1, so

P X Y = P Y X P X = 0 1 × 0 02 = 0 002

P X Y = P X + P Y – P X P Y

= 0 02 + 0 02− 0 02 2 = 0 0396

P X Y = P X + P Y − P Y X P X

= 0 02 + 0 02− 0 1 × 0 02 = 0 038

Example 2.11 A critical seam in an aircraft wing must be reworked if any one of the 28 identical
rivets is found tobedefective.Qualitycontrol inspections find that 18%of theseamsmustbe reworked.
(a)Assuming that the defects are independent,what is the probability that a rivetwill be defective? (b)
To what value must this probability be reduced if the rework rate is to be reduced below 5%?

Solution:
(a) Let xi represent the failure of the ith rivet.
Then, since P(x1) = P(x2) = = P(x28):

Table 2.3c Final result.

A Not A Sum

B 0.049 0.0285 0.0775

Not B 0.001 0.9215 0.9225

0.05 0.95 1.0
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P at least 1 rivet being defective = 1-P no rivets being defective

= 1- 1-P x1 1-P x2 1-P x28

0 18 = 1- 1-P x1
28

0 82 = 1-P x1
28

P x1 = 1- 0 82 1 28 = 0 0071

(b) Since 0 05 = 1- 1− P x1
28

P x1 = 1- 0 95 1 28 = 0 0018

More Than Two Events

The foregoing equations state the axioms of probability and provide us with the means of combin-
ing two events. The procedures for combining events may be extended to three or more events, and
the relationships may again be presented graphically as Venn diagrams. For example, in
Figure 2.8a,b is shown, respectively, the intersection of X, Y, and Z, X Y Z, and the union of
X, Y, and Z, X Y Z. The probabilities P(X Y Z) and P(X Y Z) may be interpreted as
the cross-hatched areas.
The following observations are often useful in dealing with combinations of two or more events.

Whenever we have a probability of a union of events, it may be reduced to an expression involving
only the probabilities of the individual events and their intersection. The probability of the union of
two events is an example of this … P(A B) = P(A) + P(B)− P(A B). Similarly, probabilities of
more complicated combinations involving unions and intersections may be reduced to expressions
involving only probabilities of intersections. The intersections of events, however, may be elimi-
nated only by expressing them in terms of conditional probabilities, as in P(A B = P(B|A)P
(A), or if the independence may be assumed, they may be expressed in terms of the probabilities
of individual events as in Eq. (2.8) (Figure 2.10).
The treatment of combinations of events is streamlined by using the rules of Boolean algebra

listed in Table 2.4. If two combinations of events are equal according to these rules, their probabil-
ities are equal. Thus, since according to Rule la (Table 2.4), X Y= Y X, we also have P(X Y) = P
(Y X). The communicative and associative rules are obvious. The remaining rules may be verified
from a Venn diagram. For example, in Figure 2.11a, b, respectively, we show the distributive laws
for X (Y Z) and X (Y Z).

Z

YX

Z

YX

X ⋂ Y ⋂ Z   X ⋃ Y ⋃ Z

(a) (b)

Figure 2.10 Venn diagrams for the intersection and union of three events.

2.2 Probability Concepts 17



Table 2.4 Rules of Boolean algebra.

(1a) X Y = Y X Commutative law

(1b) X Y = Y X

(2a) X (Y Z) = (X Y) Z Associative law

(2b) X (Y Z) = (X Y) Z

(3a) X (Y Z) = (X Y) (X Z) Distributive law

(3b) X (Y Z) = (X Y) (X Z)

(4a) X X = X Idempotent law

(4b) X X = X

(5a) X (X Y) = X Law of absorption

(5b) X (X Y) = X

(6a) X X = φa Complementation

(6b) X X = Ia

(6c) X = X

(7a) X Y = X Y de Morgan’s theorem

(7b) X Y = X Y

(8a) X = Operations with I

(8b) X = X

(8c) I X = X

(8d) I X = I

(9a) X X Y = X Y These relationships are unnamed

(9b) X X Y = X Y = X Y

a , null set; I, universal set.
Source: Adapted from Roberts et al. (1981).

Z

YX

X ⋂ (Y ⋃ Z) X ⋃ (Y ⋂ Z)

Z

YX

(a) (b)

Figure 2.11 Venn diagrams for combinations of three vents.
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Note that in Table 2.4, φ is used to represent the null event for which P(φ)= 0, and I is sometimes
used to represent the universal event for which P(I) = 1.
Probabilities of combinations involving more than two events may be reduced to sums of the

probabilities of intersections of events. If the events are also independent, the inter-
section probabilities may further be reduced to products of probabilities. These properties are
illustrated with the following two examples.

Example 2.12 Express P(X (Y Z)) in terms of the probabilities of intersections of X, Y, and Z.
Then, assume that X, Y, and Z are independent events and express the result in terms of P(X), P(Y),
and P(Z).

Solution: Rule 3a: P(X (Y Z)) = P((X Y) (X Z)).
This is the union of two composites X Y and Y Z. Therefore, from Eq. (2.6):

P X Y Z = P X Y + P X Z − P X Y X Z

Associative rules 2a and 2b allow us to eliminate the parenthesis from the last term by first
writing (X Y) (X Z) = (Y X) (X Z) and then using Rule 4a to obtain

Y X X Z = Y X X Z = Y X Z = X Y Z

Utilizing these intermediate results, we have

P X Y Z = P X Y + P X Z – P X Y Z

If the events are independent, we may employ Eq. (2.6) to write

P X Y Z = P X P Y + P X P Z – P X P Y P Z

Example 2.13 Repeat Example 2.12 for P(X Y Z).

Solution: From the associative law, P(X Y Z) = P(X (Y Z)). Since this is the union of event
X and (Y Z), we use Eq. (2.6) to obtain P(X Y Z) = P(X) + P(Y Z) – P(X (Y Z)) and again to
expand the second term on the right as

P Y Z = P Y + P Z – P Y Z

Finally, wemay apply the result fromExample 2.2 to the last term, yielding P(X Y Z) = P(X) +
P(Y) + P(Z)− P(X Y)− P(X Z)− P(Y Z) + P(X Y Z).
Applying the product rule for the intersections of independent events, we have
P(X Y Z) = P(X) + P(Y) + P(Z) – P(X)P(Y)− P(X)P(Z)− P(Y)P(Z) + P(X)P(Y)P(Z)

Often, we will have occasion to deal with intersections and unions of large numbers of n independ-
ent events: X1, X2, X3,…Xn. For intersections, the treatment is straightforward through the repeated
application of the product rule:

P X1 X2 X3 Xn = P X1 P X2 P X3 P Xn 2 10

To obtain the probability for the union of these events, we first note that the unionmay be related
to the intersection of the nonevents/complements

P X1 X2 X3 Xn + P X1 X2 X3 Xn = 1 2 11

which may be visualized by drawing a Venn diagram for three or four events.
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Now, if we apply Eq. (2.9) to the independent Xi, we obtain, after rearranging terms

P X1 X2 X3 Xn = 1−P X1 P X2 P X3 P Xn 2 12

Finally, from Eq. (2.3) we must have for each Xi,

P Xi = 1− P Xi 2 13

Thus, we have,

X1 X2 X3 Xn = 1− 1− P X1 1− P X2

1−P X3 1− P Xn
2 14

or more compactly

P X1 X2 X3 Xn = 1−
n

i = 1

1−P Xi 2 15

This expression may also be shown to hold for the X.
One other expression is very useful in the solution of certain reliability problems. It is sometimes

referred to as the law of “total probability.” Suppose that we divide a Venn diagram into regions ofX
andX as shown in Figure 2.12.We can always decompose the probability of Y, denoted by the circle,
into two mutually exclusive contributions:

P Y = P Y X + P Y X 2 16

Thus, using Eqs. (2.9a) and (2.9b), we have

P Y = P Y X P X + P Y X P X 2 17

Example 2.14 A motor-operated relief valve opens and closes intermittently on demand to con-
trol the coolant level in an industrial process. An auxiliary battery pack is used to provide power for
the approximately 1/2% of the time when there are plant power outages. The demand failure prob-
ability of the valve is found to be 3 × 10−5 when operated from the plant power and 9 × 10−5 when
operated from the battery pack. Calculate the demand failure probability assuming that the number
of demands is independent of the power source. Is the increase due to the battery pack operation
significant?

Solution:

Let X signify a power outage. Then P(X) = 0.005 and P X = 0 995.

YX Y ⋂ X

(a) (b)

Y ⋂ X

Figure 2.12 Venn diagram for total probability law.
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Let Y signify value failure. Then P Y X = 3 × 10-5 and P(Y X) = 9 × 10-5.

From Eq. (2.16), the value failure per demand is,

P Y = 9 × 10− 5 × 0 005 + 3 × 10− 5 × 0 095 = 3 03 × 10− 5

The net increase in the failure probability over operation entirely with plant power is 1%.

Combinations and Permutations

We will be discussing arrangements of objects and the combinations and permutations of objects.
First, arrangements:
The number of ways of arranging n unlike objects in a line.
The number of ways of arranging n unlike independent objects in a line is n!∗

For example, consider the letters A, B, C, and D. The number of ways of arranging the four letters
is 4! = 24 (Figures 2.13a and 2.13b).
Checking this, the arrangements are:

ABCD ABDC ACBD ACDB ADCB ADBC
BCDA BCAD BDAC BDCA BACD BADC
CDBA CDAB CABD CADB CBAD CBDA
DABC DACB DBCA DBAC DCAB DCBA

Next, the number of ways of arranging in a line of n objects, of which ps are alike, is n!/p!. For
example, given the letters A, A, A, and D, the 24 arrangements listed previously reduce to AAAD
AADA ADAA DAAA or using the formula 4!/3! = 4.

∗n = 1 × 2 × 3 × × n

A

B

C

1 2 3 4 5 6

D A

C

B

D

A

C B

D

A

C

B

D

A

CB

D

A

C

B D

Figure 2.13a Illustration of the number of ways of arranging A, B, C, and D in a circle if clockwise and
counterclockwise arrangements are considered different.

A

B

C

D A

C

B

D

A

C B

D

Figure 2.13b Illustration of the number of ways of arranging
A, B, C, and D in a circle if clockwise and counterclockwise
arrangements are considered the same.
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Further, the number of ways of arranging in a line of n objects, of which ps of one type are alike,
qs of a second type are alike, rs of a third type are alike, and so on, is n!/(p!q!r!…).
Another step further, the number of ways of arranging n unlike objects in a ring when clockwise

and counterclockwise arrangements are different is (n− 1)!
For example, consider four people A, B, C, and D, who are seated at a round table. To find the

number of different arrangements, we fix A and then consider the number of ways of arranging B,
C, D, or (4− 1)! = 3! = 6.
One more step: Notice that in the above example, we have six arrangements, but 1&6, 2&4, and

3&5 are simply clockwise–counterclockwise of each other.
When this happens, the number of ways of arranging n unlike objects in a ring, when clockwise

and counterclockwise arrangements are the same, is (n− 1)!/2.

Example 2.15 Given a “rainbow”wheel of 36 blades,
with 4 different vendors (9 blades each):
1. Howmanyways can these 36 blades be arranged in

this wheel?

Solution: (36− 1)!/2 = 35!/2.
2. Howmanyways can these 36 blades be arranged in

this wheel, considering the 4 vendors?

Solution: (36− 1)!/(9!9!9!8!).

Bladed disk1

A permutation ofN different objects taken R at a time
is an arrangement of R out of the N objects with atten-
tion given to the order of arrangement.
Written:

NPR =
N

N −R
,where N = 1 × 2 × 3 × × N,

and 1 = 1 and 0 = 1

2 18

Example 2.16 How many ways can five parts be selected randomly from a bin of 100 parts when
order is important?
(Note: P11 P23 P41 P68 P96 and P96 P23 P41 P68 P11 are different events.)

Solution:

100P5 =
100

100− 5
=

100
95

=
100 × 99 × 98 × 97 × 96 × 95

95
= 903, 450, 240

A combination of N different objects taken R at a time is a selection of R out of the N objects with
NO attention given to the order of arrangement.

1 en.wikipedia.org
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Written:

NCR =
N

R N −R
, where N = 1 × 2 × 3 × × N,

and 1 = 1 and 0 = 1

2 19

Example 2.17 How many ways can 5 parts be selected randomly from a bin of 100 parts when
order is NOT important?
(Note: P11 P23 P41 P68 P96 and P96 P23 P41 P68 P11 are the same event.)

Solution:

100C5 =
100

5 100− 5
=

100
5 95

=
100 × 99 × 98 × 97 × 96 × 95

1 × 2 × 3 × 4 × 5 95
= 7, 528, 752

2.3 Discrete Random Variables

Frequently, in reliability considerations, we need to know the probability that a specific number of
events will occur, or we need to determine the average number of events that are likely to take
place. For example, suppose that we have a computer with Nmemory chips, and we need to know
the probability that none of them, that one of them, two of them, and so on, will fail during the first
year of service. Or suppose that there is a probability p that a Christmas tree light bulb will fail
during the first 100 hours of service. Then, on a string of 25 lights, what is the probability that there
will be n (0 ≤ n≤ 25) failures during this 100-hour period? To answer such reliability questions, we
need to introduce the properties of discrete random variables. We do this first in general terms,
before treating two of the most important discrete probability distributions.

Properties of Discrete Variables

A discrete random variable is a variable that can only take on a countable number of values. We
refer to such a variable with the bold-faced character x, and denote by xn the values to which it may
be equal. In most cases, these values are integers so that xn= n. By random variables, we mean that
there is associated with each xn a probability f(xn) that x = xn. We denote this probability as

f xn = P x = xn 2 20

We will, for example often be concerned with counting numbers of failures (or of successes).
Thus, we may let x signify the number n of failures inN tests. Then, f(0) is the probability that there
will be no failure, f(1) the probability of one failure, and so on. Based on what we have shown in the
probability axioms, the probabilities of all the possible outcomes must add to one

f xn = 1 2 21

where the sum is taken over all possible values of xn. Eq. (2.21) is often referred to as the normal-
ization condition.
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The function f(xn) is referred to as the probability mass function (PMF) of the discrete random
variable x. A second important function of the random variable is the cumulative distribution func-
tion (CDF) defined by

F xn = P x ≤ xn 2 22

the probability that the value of x will be less than or equal to the value x.
Clearly, it is just the sum of probabilities:

F xn =
n

i = 0

f xi 2 23

Closely related is the complementary cumulative distribution function (CCDF), defined by

F xn = 1−F xn = 1−
n

i = 0

f xi =
N

i = n + 1

f xi , 2 24

where xN is the largest value for which f(xn) > 0.
It is often convenient to display discrete random variables as bar graphs of the PMF. Thus, if we

have, for example the discrete random variable

f 0 = 0, f l = 1 16, f 2 = ¼ , f 3 = 3 8, f 4 = ¼ , f 5 = 1 16

whose PMF may be plotted as in Figure 2.14a. Similarly, from Eq. (2.23) the bar graph for the CDF
appears as in Figure 2.14b.
Several important properties of the random variable x are defined in terms of the PMF f(xn).
The mean value, μ, of x is

μ =
n
xnf xn 2 25

and the variance of x is

σ2 =
n

xn − μ 2f xn =
n
x2nf xn − μ2 2 26

The mean is a measure of the expected value or central tendency of xwhen a very large sampling
is made of the random variable, whereas the variance is a measure of the scatter or dispersion of the
individual values of xn about μ. It is also sometimes useful to talk about themost probable value of x,
themode, the value of xn for which the largest value of f(xn) occurs, assuming that there is only one
largest value. Finally, the median value is defined as that value x = xn for which the probability of
obtaining a smaller value is 1/2:

i ≥ n

f xi =
1
2
, and also,

i ≤ n

f xi =
1
2

2 27

Example 2.18 A discrete probability distribution is given by

f xn = An for n = 0, 1, 2, 3, 4, 5

a) Determine A.
b) What is the probability that x≤ 3?
c) What is μ?
d) What is σ?
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Solution:
(a) From Eq. (2.21):

1 =
5

n = 0

An = A 0 + 1 + 2 + 3 + 4 + 5 = 15A

A =
1
15

(b) From Eqs. (2.22) and (2.23):

P x ≤ 3 = F 3 =
3

n = 0

n
15

=
1
15

0 + 1 + 2 + 3 =
6
15

=
2
5

(c) From Eq. (2.25): μ =
5

n = 0
n

n
15

=
1
15

0 + 1 + 4 + 9 + 16 + 25 =
11
3

0.4

0.3

0.2

0.1

0.0
0 1 2 3 4 5

x

f(
x)

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5

x

C
D

F
 o

f f
(x

)
(a)

(b)

Figure 2.14 Discrete probability distribution: (a) probability mass function (PMF) and (b) the corresponding
cumulative distribution function (CDF).
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(d) Using Eq. (2.26),

σ2 =
n

xn − μ 2f xn =
n
x2nf xn − μ2

First,
5

n = 0

x2nf xn =
5

n = 0

n2An =
5

n = 0

n3
1
15

=
1
15

0 + 1 + 8 + 27 + 64 + 125 = 15

Then,

σ2 = 15− μ2 = 15−
11
3

2

= 1 555

σ = 1 247

The idea of the expected value is an important one. In general, if there is a function g(xn) of the
random variable x, the expected value E(g) is defined for a discrete random variable as

E g =
i

g xi f xi 2 28

Thus, the mean and variance given by Eqs. (2.22) and (2.23) may be written as

μ = E x =
n
xn f xn 2 29

σ2 = E x− μ 2 =
n

xn − μ 2f xn 2 30a

or

σ2 =
n
x2nf xn − μ2 = E x2 − μ2 2 30b

The quantity σ = σ2 is referred to as the standard deviation of the distribution. The notion of
expected value and variance is also applicable to the continuous random variables discussed in the
following chapter.

The Binomial Distribution

The binomial distribution is themost widely used discrete distribution in reliability engineering. To
derive it, suppose that p is the probability of failure for some piece of equipment in a specified
test and

q = 1− p 2 31

is the corresponding success (i.e. nonfailure) probability. If such tests are truly independent of one
another, they are referred to as Bernoulli trials. A discrete random variable is a Bernoulli trial if it
can take on only the values zero and one. Bernoulli random variables are used to model events
having two possible outcomes. For example:

• Coin toss (p = 0.5, q = 0.5)

• O-ring failure on Space Shuttle Solid Rocket booster (p = 0.04, q = 0.96)

In summary, a series of Bernoulli trials, each independent of the other trials, and each having the
same probability of success, makes up a binomial distribution. With parameters:
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n = number of trials
p = probability of failure
q = 1 – p = probability of success
If such tests are truly independent of one another, they are referred to as Bernoulli trials.
We wish to derive the probability

f n = P n = n N , p 2 32

that in N independent tests, there are n failures. To arrive at this probability, we first consider the
example of the test of two units of identical design and construction. The tests must be independent
in the sense that success or failure in one test does not depend on the result of the other. There are
four possible outcomes, each with an associated probability: qq is the probability that neither unit
fails, pq the probability that only the first unit fails, qp the probability that only the second unit fails,
and pp the probability that both units fail. Since these are the only possible outcomes of the test, the
sum of the probabilities must equal 1. Indeed,

p2 + 2pq + q2 = p + q 2 = 1 2 33

and by the definition of Eq. (2.2)

f 0 = q2, f 1 = 2pq, f 2 = p2 2 34

In a similar manner, the probability of n independent failures may also be covered for situations
in which a larger number of units undergo testing. For example, with N= 3, the probability that all
three units fail independently is obtained by multiplying the failure probabilities of the individual
units together. Since the units are identical, the probability that none of the three fails is qqq. There
are now three ways in which the test can result in one unit failing: the first fails, pqq; the second
fails, qpq; or the third fails, qqp. There are also three combinations that lead to two units failing:
units 1 and 2 fail, ppq; units 1 and 3 fail, pqp; or units 2 and 3 fail, qpp. Finally, the probability of all
three units failing is ppp.
In the three-unit test, the probabilities for the eight possible outcomes must again add to 1. This is

indeed the case, for by combining the eight terms into four, we have

q3 + 3q2p + 3qp2 + p3 = q + p 3 = 1 2 35

The probabilities of the test resulting in 0, 1, 2, or 3 failures are just the successive terms on
the left:

f 0 = q3, f 1 = 3q2p, f 2 = 3qp2, f 3 = p3 2 36

The foregoing process may be systematized for tests of any number of units. ForN units, Eq. (2.36)
generalizes to

NC0q
N + NC1pq

N − 1 + NC2p
2qN − 2 + + NCN − 1p

N − 1q + NCNp
N = q + p N = 1

2 37

since q = 1− p. For this expression to hold, it may be shown that the NCn must be the binomial
coefficients. These are given by

NCn =
N

N − n n
, where N “N”factorial = 1 × 2 × 3 × × N 2 38
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A convenient way to tabulate these coefficients is in the form of Pascal’s triangle; this is shown in
Table 2.5. Just as in the case of N = 2 or 3, the N + 1 terms on the left-hand side of Eq. (2.37) are the
probabilities that there will be 0, 1, 2,…, N failures. Thus, the PMF for the binomial distribution is

f n = NCnp
n 1− p N − n, n = 0, 1,…,N 2 39

That the condition Eq. (2.21) is satisfied follows from Eq. (2.37). The CDF corresponding to f(n) is

F n =
n

n = 0
NCn p

n 1− p N − n 2 40

and of course if we sum over all possible values of n as indicated in Eq. (2.21), we must have

n

n = 0
NCnp

n 1− p N − n = 1 2 41

The mean of the binomial distribution is

μ = Np 2 42

and the variance is

σ2 = Np 1− p 2 43

The proof of Eqs. (2.42) and (2.43) requires some manipulation of the binomial terms. From
Eqs. (2.25) and (2.39), we see that

μ =
N

n = 1

n NCnp
n 1− p N − n 2 44

where the n= 0 term vanishes and therefore is eliminated. Making the substitutionsM=N− 1 and
m = n− 1, we may rewrite the series as

μ = p
N

m = 0

m + 1 M + 1Cm + 1p
m 1− p M −m 2 45

Since it is easily shown that

m + 1 M + 1Cm + 1 = M + 1 MCm 2 46

Table 2.5 Pascal’s triangle.

1 N = 0

1 1 N = 1

1 2 1 N = 2

1 3 3 1 N = 3

1 4 6 4 1 N = 4

1 5 10 10 5 1 N = 5

1 6 15 20 15 6 1 N = 6

1 7 21 35 35 21 7 1 N = 7

1 8 28 56 70 56 28 8 1 N = 8
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we may write

μ = M + 1 p
M

m = 0
MCmp

m 1− p M −m 2 47

However, Eq. (2.41) indicates that the sum on the right is equal to 1. Therefore, noting thatM +
1 = N, we obtain the value of the mean given by Eq. (2.42).
To obtain the variance, we begin by combining Eqs. (2.26), (2.39), and (2.42)

σ2 = p
N

n = 1

n2NCnp
n 1− p N − n

−N2p2 2 48

Employing the same substitutions for N and n, and utilizing Eq. (2.46), we obtain

σ2 = M + 1 p
M

m = 0

mMCmp
m 1− p M −m +

M

m = 0
MCmp

m 1− p M −m
−N2p2 2 49

But from Eqs. (2.41) and (2.44), we see that the first of the two sums is just equal to Mp, and the
second is equal to 1. Hence,

σ2 = M + 1 p Mp + 1 −N2P2 2 50

Finally, since M = N − 1, this expression reduces to Eq. (2.43).

Example 2.19 Suppose that N = 10, p = probability of the event = 0.08, q = probability of no
event = 1− p = 0.92, μ = Np = 10(0.08) = 0.8, and variance = Npq = 10(0.08)(0.92) = 0.736.
So, σ = (0.736)0.5 = 0.858

Let us look at P x out of N = N
x N-x pxq N − x for x = 0 to 10:

P 0 in 10 = 1 0 08 0 0 92 10 = 0 434

P 1 in 10 = 10 0 08 1 0 92 9 = 0 378

P 2 in 10 = 45 0 08 2 0 92 8 = 0 148

P 3 in 10 = 120 0 08 3 0 92 7 = 0 034

P 4 in 10 = 210 0 08 4 0 92 6 = 0 005

P 5 in 10 = 252 0 08 5 0 92 5 = 0 001

P 6 in 10 = 210 0 08 6 0 92 4 = 0 000

P 7 in 10 = 120 0 08 7 0 92 3 = 0 000

P 8 in 10 = 45 0 08 8 0 92 2 = 0 000

P 9 in 10 = 10 0 08 9 0 92 1 = 0 000

P 10 in 10 = 1 0 08 10 0 92 0

all Probabilites

=

=

0 000

1 000

Note: With an expected value of 0.8, the P(0 events) = 0.43. So, the probability of 1 or more
events = 1− 0.43 = 0.57.
Note: The sum of every probability distribution must be 1.0 (Eq. 2.4).

Example 2.20 Ten compressors with a failure probability p = 0.1 are tested. (a) What is the
expected number of failures E(n)? (b) What is σ2? (c) What is the probability that none will fail?
(d) What is the probability that two or more will fail?
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Solution:
(a)

E n = μ = Np = 10 × 0 1 = 1

(b)

σ2 = Np l− p = 10 × 0 1 1− 0 1 = 0 9

(c)

P n = 0 10, p = f 0 = 10C0 p 0 q 10-0 = 1 × 1 × 0 9 10-0 = 0 349

(d)

P n32 10, p = l-P n < 2 10, p = 1-
x

i = 0
nCi p

i q n− i

= 1-10C0 0 1 0 0 9 10-0 + 10C1 0 1 1 0 9 10-1

= 1- 0 349 + 10 0 1 0 387 = 0 264

Example 2.21 A parts manufacturer has determined that 30% of all parts installed last year are
defective.
If 15 parts are inspected at random from all parts installed last year, what is the probability that

more than 10 of the 15 will have defects?

Solution:

P > 10 are defective =
15

i = 11
15Ci 3 i 7 15− i = 15C11 3

11 74 + 15C12 3
12 73 +

15C13 3
13 72 + 15C14 3

14 71 + 15C15 3
15 70 = 000672

Using EXCEL™: N = 15, p = 0.3.
Type this in any cell: =1-BINOMDIST(10,15,0.30,TRUE).
TRUE indicates that cumulative answer will appear in the cell: =0.00067223.

The Poisson Distribution

Situations in which the probability of failure p becomes very small, but the number of units tested,
N, is large, are frequently encountered. The binomial distribution can be approximated by the Pois-
son distribution, whenN is very large and p is very small such that their productNp is a finite quan-
tity. For practical purposes, N has to be greater than 30, and p has to be smaller than 0.1.
Poisson distribution was introduced by the French mathematician, engineer, and physicist Sim-

eon Denis. Poisson is a distribution of rare events, i.e. the events whose probability of occurrence is
very small, but the number of trials, which could lead to the occurrence of the event, are very large.
Generally speaking, the Poisson distribution is used to model the probability of a given number of
events occurring in a fixed interval of time or space if these events occur with a known constant rate
and independently of the time since the last event. The Poisson distribution can also be used for the
number of events in other specified intervals such as distance, area, and volume.
Specific examples of the use of the Poisson modeling include (1) the number of commercial air

accidents in a year, (2) the number of telephone calls coming into a large office everyminute, (3) the
defects per square foot in a composite sheet of material, (4) the number of horse kick deaths in the
Prussian Cavalry, and (5) the number of bacteria in a certain amount of liquid.
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The Poisson distribution may be shown to result from taking the limit of the binomial distribu-
tion as p 0 and N ∞, with the product Np remaining constant. To obtain the distribution we
first multiply the binomial PDF given by Eq. (2.39) by Nn/Nn and rearrange the factors to yield

f n =
N

N − n Nn 1− p − n Np n

n
1− p N 2 51

Now assume that p 1 so that we may write ln (1− p) ≈−p, and hence, the last factor becomes

1− p N = exp N ln 1− p ≈ e−Np 2 52

Likewise, as p becomes vanishingly small (1 – p)− n 1 for finite n, and as N ∞, we have

N
N −n Nn = 1−

n− 1
N

1−
n− 2
N

… 1−
1
N

1 1 2 53

Hence, as p 0 and N ∞, with Np = μ, Eq. (2.51) reduces to

f n =
μn

n
e− μ 2 54

which is the PMF for the Poisson distribution.
Unlike the binomial distribution, the Poisson distribution can be expressed in terms of a single

parameter, μ. Thus, f(n) may be written as the probability

P n = n μ =
μn

n
e− μ, n = 0, 1, 2, 3, … 2 55

The normalization condition, Eq. (2.21), must, of course, be satisfied. This may be verified by first
recalling the power series expansion for the exponential function

eμ =
∞

n = 0

μn

n
2 56

Thus, we have

∞

n = 0

f n =
∞

n = 0

μ

n
e− μ = eμe− μ = 1 2 57

In the foregoing equations, we have chosenNp= μ because it may be shown to be the mean of the
Poisson distribution. From Eqs. (2.54) and (2.56), we have

∞

n = 0

nf n =
∞

n = 0

n
μ

n
e− μ = μ 2 58

Likewise, since it may be shown that

∞

n = 0

n2f n =
∞

n = 0

n2
μ

n
e− μ = μ μ + 1 2 59

we may use Eq. (2.30b) to show that the variance is equal to the mean,

σ2 = μ 2 60
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Example 2.22 Horse kick deaths in Polish Cavalry.
Event: A cavalryman being killed by a horse kick per year per army corps. Data: 122 deaths in 200

corps years, enumerated in Table 2.6a.
Does a Poisson distribution explain this data?

Solution:

Average = μ = 122 200 = 0 61

Probability Calculation Expected Number

P 0 = e− 0 61 = 0 543 0 543 × 200 = 109

P 1 = 0 61 e− 0 61 = 0 331 0 331 × 200 = 66 3

P 2 =
0 612

2
e− 0 61 = 0 101 0 101 × 200 = 20 2

P 3 = − − − − − = 0 021 0 021 × 200 = 4 1

P 4 = − − − − − = 0 003 0 003 × 200 = 0 6

Table 2.6b shows that the Poisson distribution is a good predictor of horse kick deaths in the Pol-
ish Cavalry.

Example 2.23 Do the preceding 10-compressor example (Example 2.20) approximating the bino-
mial distribution by a Poisson distribution. Compare the results.

Solution:

a) μ = Np = 1.
b) σ2 = μ = 1 (0.9 for binomial).
c) P(n = 0|μ = 1) = e−μ = 0.3678 (0.3874 for binomial).
d) P(n ≥ 2|μ = l) = 1− f(0)− f(l) = 1− 2e−μ = 0.2642 (0.2639 for binomial).

Example 2.24 Suppose that a Lyme disease has an incidence of 1 in 1000 person-years. Assuming
that members of the population are affected independently, find the probability of exactly 0, 10, or
20 cases in a population of 10,000 (over the next year).

Table 2.6a Observed deaths by corp year.

Obs deaths/army corps/year 0 1 2 3 4 5 6

Corps years with Obs deaths 109 65 22 3 1 0 0

Ten army corps, 20 years = 200 corps years.

Table 2.6b Summary comparison of observed vs Poisson predicted.

Obs deaths/army corps/year 0 1 2 3 4 5 6

Corps years with Obs deaths 109 65 22 3 1 0 0

Poisson expected 109 66.3 20.2 4.1 0.6 0 0
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Solution:
The expected value (mean) = μ = (1/1000) × 10,000 = 10.
Ten new cases expected in this population over the next year,

f x =
e− μμx

x

for x = 0, f 0 =
e− 10100

0
= 0 0000454

for x = 10, f 10 =
e− 101010

10
= 0 125

for x = 20, f 20 =
e− 101020

20
= 0 0019

The solution is shown in Table 2.7.

Confidence Intervals

Motivation for Confidence Intervals

Suppose that we want to estimate the failure probability p of a system and also gain some idea of the
precision of the estimate. Our experiment consists of testingN units for failure, with the assumption
that the N units are drawn randomly from a much larger population. If there are r failures, the
failure probability, defined by Eq. (2.2), may be estimated by

p = r N 2 61

We use the caret to indicate that p is an estimate, rather than the true value p. It is referred to as a
point estimate of p, since there is no indication of how close it may be to the true value.
The difficulty, of course, is that if the test is repeated, a different value of r, and therefore of p, is

likely to result. The number of failures is a random variable that obeys the binomial distribution
discussed in the preceding section. Thus, p is also a random variable. We may define a PMF as

P p = pr N , p = f pr r = 0, 1, 2,…N 2 62

where pn = r N is just the value taken on by pwhen there are r failures in N trials. The PMF is just
the binomial distribution given by Eq. (2.34)

f pr = CN
r p

r 1− p N − r 2 63

Table 2.7 EXCEL solution to Example 2.24.

x P (exactly x) P(Σ(0 − X)Poisson)

0 4.53999E−05 4.53999E−05

10 0.125110036 0.58303975

20 0.001866081 0.998411739

Showing equations

x Exactly x Cumulatively by x

0 POISSON(H17, 10, FALSE) POISSON(H17, 10, TRUE)

10 POISSON(H18, 10, FALSE) POISSON(H18, 10, TRUE)

20 POISSON(H19, 10, FALSE) POISSON(H19, 10, TRUE)
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This PMF indicates that the probability for obtaining a particular value pr from our test is just
f pr , given that the true value is p.
For a specified value of p, we may gain some idea of the precision of the estimate for a given

sample size N by plotting the f pr . Such plots are shown in Figure 2.15 for p = 0.25 with several
different values of N. We see – not surprisingly – that with larger sample sizes the distribution
bunches increasingly about p, and the probability of obtaining a value of p with a large error
becomes smaller. With p = 0.25, the probability that p will be in error by more than 0.10 is about
50% when N = 10, about 20% when N = 20, and only about 10% when N = 40.
Wemay show that Eq. (2.61) is an unbiased estimator: If many samples of sizeN are obtained, the

mean value of the estimator (i.e. the mean taken over all the samples) converges to the true value of
p. Equivalently, we must show that the expected value of p is equal to p. Thus, for p to be unbiased
we must have E pr = p. To demonstrate this, we first note by comparing Eqs. (2.34) and (2.63)
thatf pr = f r . Thus, with pr = r N , we have

μp E p =
r
prf pr =

1
N r

rf r 2 64

The sum on the right, however, is just Np, the mean value of r. Thus, we have

μp = p 2 65

(a) (b)

(c) (d)

N = 5 N = 10

N = 40N = 20
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f(

p
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f(
p

)^
f(

p
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p̂ p̂

p̂ p̂

Figure 2.15 Probability mass function for binomial distribution where p = 0.25.
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The increased precision of the estimator with increased N is demonstrated by observing that the
variance of the sampling distribution decreases with increased N. From Eq. (2.26), we have

σ2p =
n
p2nf pn − μ2p 2 66

Inserting μ = Np, p = n N , and f pn = f n , we have

σ2p =
1
N2

n
n2f n − μ2 2 67

but since the bracketed term is just Np(1− p), the variance of the binomial distribution, we have

σ2p =
1
N
p 1− p 2 68

or equivalently

σp =
1

N
p 1− p 2 69

Unfortunately, we do not know the value of p beforehand. If we did, wewould not be interested in
using the estimator to obtain an approximate value. Therefore, we would like to estimate the pre-
cision of p without knowing the exact value of p. For this, we must introduce the somewhat more
subtle notion of the confidence interval.

Introduction to Confidence Intervals

The confidence interval is the primary means by which the precision of a point estimator can be
determined. It provides lower and upper confidence limits to indicate how tightly the sampling dis-
tribution is compressed around the true value of the estimated quantity. We will treat confidence
interval more extensively in Chapter 5. Here, we confine our attention to determining the values of

P− = p−A where P− indicates the lower confidence bound

and p =
r
N

2 70

and

p + = p + B 2 71

where these lower and upper confidence limits are associated with the point estimator p.
To determine A and B, and therefore the limits, we first choose a risk level designated by α:

α = 0.05, which, for example would be a 5% risk. Suppose that we are willing to accept a risk of
α/2 in which the estimated lower confidence limit p−will turn out to be larger than p, the true value
of the failure probability. This may be stated as the probability

P p− > p = α 2 2 72

which means we are 1− α/2 confident that the calculated lower confidence limit will be less or
equal to the true value:

P p− ≤ p = 1− α 2 2 73

To determine the lower confidence limit, we first insert Eq. (2.70) and rearrange the inequality to
obtain

P p− ⩽ p + A = 1− α 2 2 74
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But this is just the CDF for the sampling distribution evaluated at p + A. Thus, from the definition
of the CDF given in Eq. (2.23), we may write

pr ⩽ p + A

f pr = 1− α 2 2 75

Recalling that pr = r N and copying the PMF explicitly from Eq. (2.63), we have

N p + A

r = 0

CN
r p

r 1− p N − r = 1− α 2 2 76

Thus, to find the lower confidence limit, we must determine the value of A for which this con-
dition is most closely satisfied for specified α, N, and p.
Similarly, to obtain the upper limit at the same confidence, we require

P p⩽ p + = 1− α 2 2 77

which upon insertion of Eq. (2.71) yields

P p>p−B = 1− α 2 2 78

and leads to the analogous condition on B,

N

r = N p + B

CN
r p

r 1− p N − r = 1− α 2 2 79

To express the confidence interval more succinctly, the combined results of the foregoing equa-
tions are frequently expressed as the probability

P p− ⩽ p⩽ p + = 1− α 2 80

Solutions for Eqs. (2.71) and (2.74) have been presented in convenient graphical form for obtain-
ing p+ and p− from the point estimator pn = n N. A graphical depiction of this for 95% confidence is
depicted in Figures 2.16–2.18.
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Figure 2.16 Upper 95% bound.
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Binomial Confidence Intervals

While the chances of a value being between an upper and lower bound is shown in Figure 2.18.
For those times when a quick approximate bound is needed for a binomial ratio of r/N, a plot of

failure probability vs observed proportion can be useful. These are shown for a 95% confidence
interval, corresponding to α/2 = 0.025, in Figure 2.19 for values of N ranging from 10 to 1000.
The corresponding graphs for other confidence intervals are given in Appendix B.
The results in Figure 2.19 indicate the limitations of classical samplingmethods if highly accurate

estimates are required, particularly when small failure probabilities are under considerations. Sup-
pose, for example, that 10 items are tested with only one failure, our 95% confidence interval is then
0.001 < p < 0.47.
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Figure 2.18 Illustration of 95% “two-sided” confidence bound.
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Figure 2.17 Lower 95% bound.
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With that in mind, what follows is a method to estimate more accurately confidence intervals for
small numbers of failures and/or small sample sizes.
As we will show you in Chapter 4, the confidence limits for the binomial where Np ≥ 5 or

N(1− p) ≥ 5 are easily solved using the normal approximation to the binomial.
However, for small numbers of failures or small sample sizes (Np< 5 orN(1− p) < 5), the approx-

imations are not as useful as they have too much error for some applications. The following will
show how to achieve exact intervals in those situations.
To construct a two-sided confidence interval at the 100(1 − α)% confidence level for the true pro-

portion defective p where r defects are found in a sample of size N, follow the steps below.
The equations to solve for a two-sided confidence interval 100(1 – α)% for the true proportion

defective p where Nd defects were found in a sample of size N:
1. Solve the equation:

Nd

k = 0
NCkp

k
U 1− pU

N − k =
α

2
2 81

for pU to obtain the upper 100(1 – α)% confidence limit for p.
2. Solve the equation:

Nd − 1

k = 0
NCkp

k
L 1− pL

N − k = 1−
α

2
2 82

for pL to obtain the upper 100(1 – α)% confidence limit for p.
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Figure 2.19 A 95% confidence interval for binomial sampling. Source: From Pearson and Clopper (1934).
Public Domain.
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This interval (pL, pU) is an exact 100(1 – α)% confidence limit for p.

However, it is not symmetric about the observed proportion defective, p =
r
N
.

Solving these equations can be done using EXCEL’s Solver add-in, but this can take a bit of time
each time you want to find an upper and lower bound on a binomial proportion where p is small.
But a solution using a shortcut “Nomograph” called a Thorndike chart can yield quicker results.

Cumulative Sums of the Poisson Distribution (Thorndike Chart)

No discussion of binomial confidence bounds, and the Poisson approximation to binomial confi-
dence bounds, would be complete without bringing up the only Nomograph that the author uses
to this day.
The Thorndike chart (Figure 2.20) is used to find the probability that an event will occur at least c

times in a large group of trials for which the average number of occurrences is μ orNp. In addition,
it is often used for a quick answer during the heat of a teammeeting to the question of “What are the
confidence bounds on the expected.”
The Thorndike chart probability scale is proportional to the normal probability integral (see

Chapter 3), while the x-axis is a logarithmic scale.

Example 2.25 Given that based on other analyses you expect (μ’) incidents over a specific length
of time of 2.3.

a) What is the probability of having seen 0 incidents?
b) What is the probability of 1 or more incidents?
c) What are the 80% confidence bounds on 2.3 failures?

Solution:

a) Entering the x-axis of Figure 2.20 at 2.3, and proceeding up to the “C = 1” line, you will follow
that point of intersection to the y-axis and read 0.1. So, having observed 2.3 incidents on the
average, you can be assured that your chance of seeing 0 incidents is <10%.

b) Since your chance of 0 incidents is <0.10, your probability (more than 1) = 1.0− 0.1 = 0.9.
c) Moving up the x-axis scale from 2.3, you read off the 0.9 probability and 0.1 probability y-axis

lines at 1 incident and ~4.8, respectively. If the average of 2.3 was based on 100 samples you
could then use these numbers to state a 0.023 (failure rate) with 80% bounds (0.01, 048).

In Chapter 5, we will discuss risk analysis and use the Thorndike chart to be able to quickly
answer confidence-bound questions when time is of the essence (e.g. customer or management
meetings).

Example 2.26 Five of a batch of 100 computer chips fail the final screening test. Estimate the
failure probability and the 90% confidence interval.
Again, in Chapter 4, we will introduce an approximation to confidence bounds for larger samples,

and in Chapter 6, we will introduce exact confidence bounds for binomial testing.
Solution: p = 5 100 = 0 05. Using Figure 2.21 and the dotted lines for 90% bounds and solid line

at Np = 5, the 90% confidence bounds are ~(2.2, 9.3), and therefore, the 90% confidence bounds on
0.05 are ~(0.022, 0.093).
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Figure 2.20 The Thorndike chart. Source: Reused with permission of Nokia Corporation and AT&T archives.
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Exercises

2.1 Suppose that P(X) = 0.32, P(Y) = 0.44, and P(X U Y) = 0.58.
a) Are the events mutually exclusive?
b) Are they independent?
c) Calculate P(X|Y)
d) Calculate P(Y|X)

2.2 Suppose that X and Y are independent events with P(X) = 0.28 and P(Y) = 0.41. Find (a) P X ,

(b) P(X Y), (c) P Y , (d) P X Y , (e) P(X Y), and (f) P X Y .

2.3 Suppose that P(A) = 1/2, P(B) = 1/4, and P(A B) = 1/8. Determine P(A|B), (b) P(B|A),

(c) P(A B), and (d) P A B .

2.4 Given: P(A) = 0.4, P(A B) = 0.8, and P(A B) = 0.2.
Determine (a) P(B), (b) P(A|B), and (c) P(B|A).

2.5 Two relays with demand failures of p = 0.15 are tested.
a) What is the probability that neither will fail?
b) What is the probability that both will fail?

2.6 For each of the following, draw a Venn diagram and shade the indicated areas: (a)

X Y Z, (b) X Y Z, (c) X Y Z, and (d) X Y Z).

2.7 An aircraft-landing gear has a probability of 10−5 per landing of being damaged from exces-
sive impact. What is the probability that the landing gear will survive a 10,000 landing design
life without damage?

2.8 Consider events A, B, and C. If P(A) = 0.8, P(B) = 0.3, P(C) = 0.4, P(A|B C) = 0.5, and
P(B|C) = 0.6:
a) Determine whether events B and C are independent.
b) Determine whether events B and C are mutually exclusive.
c) Evaluate P(A B C).
d) Evaluate P(B C|A).

2.9 A particulate monitor has a power supply consisting of two batteries in parallel (see dia-
gram). Either battery is adequate to operate the monitor. However, since the failure of
one battery places an added strain on the other, the conditional probability that the second
battery will fail, given the failure of the first, is greater than the probability that the first will
fail. On the basis of testing it is known that 7% of the monitors in question will have at least
one battery failed by the end of their design life, whereas in 1% of themonitors, both batteries
will fail during the design life.
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Parallel Battery System
powering particulate

Monitor

Battery 1

Battery 2

Particulate

a) Calculate the battery failure probability under normal operating conditions.
b) Calculate the conditional probability that the battery will fail, given that the other has

failed.

2.10 Two pumps operating in parallel supply secondary cooling water to a condenser. The cooling
demand fluctuates, and it is known that each pump is capable of supplying the cooling
requirements 80% of the time in case the other fails. The failure probability for each pump
is 0.12; the probability of both failing is 0.02. If there is a pump malfunction, what is the
probability that the cooling demand can still be met?

2.11 For the discrete PMF,

f xn = Cx2n, where xn = 1, 2, 3

a) Find C. (b) find F(xn). (c) calculate μ and σ.

2.12 Repeat Exercise 2.11 for

f xn = Cxn 6− xn , where xn = 0, 1, 2,…, 6

2.13 Consider the discrete random variable defined by

xn 0 1 2 3 4 5

f xn
11
36

9
36

7
36

5
36

3
36

1
36

Compute the mean and the variance

2.14 A discrete random variable x takes on the values 0, 1, 2, and 3 with probabilities 0.4, 0.3, 0.2,
and 0.1, respectively. Compute the expected values of x, x2, 2x+ 1, and e−x.

2.15 Evaluate the following:

a 5C3, b 9C2, c 12C7, d 20C19

2.16 A discrete PMF is given by f(0) = 1/6,

f 1 = 1 3, f 2 = 1 2

a) Calculate the mean value μ.
b) Calculate the standard deviation σ.

2.17 Ten engines undergo testing. If the failure probability for an individual engine is 0.10, what
is the probability that more than two engines will fail the test?
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2.18 A boiler has four identical relief valves. The probability that an individual relief valve will
fail to open on demand is 0.06. If the failures are independent:
a) What is the probability that at least one valve will fail to open?
b) What is the probability that at least one valve will open?

2.19 If the four relief valves were to be replaced by two valves in the preceding problem, to what
value must the probability of an individual valve’s failing be reduced if the probability that
no valve will open is not to increase?

2.20 The discrete uniform distribution is

f n = 1 N , n = l, 2, 3, 4,…N

a) Show that the mean is (N+ 1)/2.
b) Show that the variance is (N2 − l)/12.

2.21 The probability of an engine’s failing during a 30-day acceptance test is 0.3 under adverse
environmental conditions. Eight engines are included in such a test. What is the probability
of the following? (a) None will fail. (b) All will fail. (c) More than half will fail.

2.22 The probability that part A causes a failure is 3/1000.
Determine:

a) The probability that no failure is involved in 30 events reported.
b) The probability that four failures are included in 20 events.

2.23 A manufacturer produces 1000 ball bearings. The failure probability for each ball bearing
is 0.002.
a) What is the probability that more than 0.1% of the ball bearings will fail?
b) What is the probability that more than 0.5% of the ball bearings will fail?

2.24 Suppose that there is a disease that infects 1 out of 1000 people in a population and there is a
test for this disease. If a person has the disease, the test comes back positive 99% of the time.
BUT about 2% of uninfected patients also test positive. Now, you just tested positive. What
are your chances of having the disease?

2.25 Suppose that the probability of a diode’s failing an inspection is 0.006.
a) What is the probability that in a batch of 500, more than 3 will fail?
b) What is the mean number of failures per batch?
(Note: Use the Poisson distribution.)

2.26 The geometric distribution is given by

f n = p 1− p n− 1 n = 1, 2, 3,…∞

show that
n
f xn = 1 is satisfied

a) Show that Eq. (2.21) is satisfied.
b) Find that the expected value of n is 1/p.
c) Show that the variance of f(n) is (1− p)/p2.
(Note: The summation formulas in Appendix A may be useful.)
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2.27 One thousand capacitors undergo testing. If the failure probability for each capacitor is
0.0010, what is the probability that more than two capacitors will fail the test?

2.28 Let p equal the probability of failure, and n be the trial upon which the first failure occurs.
Then, n is a random variable governed by the geometric distribution given in Exercise 2.26.
An engineer wanting to study the failure mode proof tests on a new chip. Since there is only
one test setup, she must run them one chip at a time. If the failure probability is p = 0.2:
a) What is the probability that the first chip will not fail?
b) What is the probability that the first three trials will produce no failures?
c) How many trials will she need to run before the probability of obtaining a failure

reaches 1/2?

2.29 A manufacturer of 16K byte memory boards finds that the reliability of the manufactured
boards is 0.98. Assume that the defects are independent. Assume Rn = e−np is the reliability
formula.
a) What is the probability of a single byte of memory being defective?
b) If no changes are made in the design or manufacture, what reliability may be expected

from 128K byte boards?
(Note: 16K bytes = 214 bytes and 128K bytes = 217 bytes.)

2.30 A problem of great concern to a manufacturer is the cost of repair and replacement required
under a guarantee agreement. Assume that it is known that 10% of all units are returned for
repair while their guarantee is still in effect. If the manufacturer sells 25 units, what is the
probability that five or more of these units will need repair while their guarantees are still in
effect?

2.31 Diesel engines used for generating emergency power are required to have a high reliability of
starting during an emergency. If the failure to start on demand probability of 1% or less is
required, how many consecutive successful starts would be necessary to ensure this level of
reliability with a 90% confidence?

2.32 An engineer feels confident that the failure probability on a new electromagnetic relay is less
than 0.01. The specifications require, however, only that p< 0.04. How many units must be
tested without failure to prove with 95% confidence that p< 0.04?

2.33 A supplier of parts claims it has a manufacturing process in which 90% of parts are defect
free. To check this theory, a customer randomly samples 25 parts and finds seven that are
defective.
If the supplier’s claim is true, what is the probability that 7 or more of the 25 sampled parts

are defective?

2.34 Let us assume that the probability of a hurricane eye going into Palm Beach County is 0.1 per
season. Howmany hurricanes should you expect in a decade? What is the probability of 4 or
more hurricanes in a decade?

2.35 Suppose that 100 pressure sensors are tested, and 14 of them fail the calibration criteria.
Make a point estimate of the failure probability and then estimate the 90% and the 95% con-
fidence interval using Figure 2.21.
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90% bounds (on μ = Np = 14) approx. (8.8, 20) or (pL, pU) = (0.088, 0.20).
95% bounds (on μ = Np = 14) approx. (7.7, 22) or (pL, pU) = (0.07, 0.22).

2.36 Suppose that the average number of lions seen on a 1-day safari is 5. What is the probability
that tourists will see fewer than four lions on the next 1-day safari?

2.37 As a management team, paying for performance, without regard to gender is an important,
indeed essential, responsibility. Using some probability skills to answer these questions can
be useful:
About 21% of the managers in a large firm are at the top salary level. It is further known

that 40% of all managers at the firm are women. Also, 6.4% of all managers are women and
are at the top salary level, Recently, a question arose among executives at the firm as to
whether there is any evidence of salary inequity. Do the percentages reported above provide
any evidence of salary inequity?

2.38 As an example of a spatial distribution of random points, consider the statistics of flying
bomb hits in the south of London during World War II. The entire area is divided into a
grid of N = 576 small areas of size one-quarter square kilometer each. The table below
records the number of squares with 0, 1, 2, 3, etc. hits each. The total number of hits is
537. The average number of hits per square is then 537/576 = 0.9323 hits per square. It
can be shown that if the targeting is completely random, then the probability that a square
is hit with 0, 1, 2, 3, etc. hits is governed by a Poisson distribution; i.e. the probability that a
given square suffers k hits is Poisson distributed. Fill in the table below with the Poisson
distribution fit and comment on the comparison to actual.

# of hits 0 1 2 3 4 5
# of hits per cell actual 229 211 93 35 7 1
Poisson fit predicted

2.39 The probability that a golfer hits the ball onto the green if it is windy as he strikes the ball is
0.4, and the corresponding probability if it is not windy as he strikes the ball is 0.7. The prob-
ability that it will be windy is 0.3.
Find the probability that (a) he hits the ball on to the green and (b) it was not windy, given

that he does not hit the ball onto the green.
Use a probability tree.
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3

The Exponential Distribution and Reliability Basics

“A good scientist is a person with original ideas. A good engineer is a
person who makes a design that works with as few original ideas as possible”

– Unknown

3.1 Introduction

Generally, reliability is defined as the probability that a system will perform properly for a specified
period of time under a given set of operating conditions. Implied in this definition is a clear-cut
criterion for failure from which we may judge at what point the system is no longer functioning
properly. Similarly, the treatment of operating conditions requires an understanding both of the
loading to which the system is subjected and of the environment within which it must operate.
Perhaps the most important variable to which we must relate reliability, however, is time. For it
is in terms of the rates of failure that most reliability phenomena are understood.
In this chapter we examine reliability as a function of time, and this leads to the definition of the

failure rate. Examining the time dependence of failure rates allows us to gain additional insight into
the nature of failures – whether they be infant mortality failures, failures that occur randomly in
time, or failures brought on by aging. Similarly, the time dependence of failures can be viewed in
terms of failure modes in order to differentiate between failures caused by different mechanisms
and those caused by different components of a system. This leads to an appreciation of the relation-
ship between failure rate and system complexity. Finally, we examine the impact of failure rate on
the number of failures that may occur in systems that may be repaired or replaced.

3.2 Reliability Characterization

We begin this section by quantitatively defining reliability in terms of the probability density func-
tion (PDF) and the cumulative distribution function (CDF) for the time to failure. The failure rate
and the mean time to failure are then introduced. The failure rate is discussed in detail, for its
characteristic shape in the form of the so-called bathtub curve provides substantial insight into
the nature of the three classes of failure mechanisms: infant mortality, random failures, and aging.

47

Introduction to Reliability Engineering, Third Edition. James E. Breneman, Chittaranjan Sahay, and Elmer E. Lewis.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons,
Companion website:



Basic Definitions

Reliability is defined in Chapter 1 as the probability that a system survives for some specified period
of time. It may be expressed in terms of the random variable t, the time to system failure. The PDF,
f(t), has the physical meaning

f t Δt = P t < t ≤ t + Δt =

probabiltity that failure

takes place at a time

between t and t + Δt
3 1

for vanishingly small Δt. From Eq. (3.1) we see that the CDF now has the meaning

F t = P t ≤ t =

probability that failure

takes place at a time less

than or equal to t

3 2

We define the reliability as

R t = P t > t =

probability that a system

operates without failure

for a length of time t

3 3

Since a system that does not fail for t≤ t must fail at some t > t, we have

R t = 1−F t 3 4

or equivalently either

R t = 1−
t

0
f t dt 3 5

or

R t =
∞

t
f t dt 3 6

From the properties of the PDF, it is clear that

R 0 = 1 3 7

and

R ∞ = 0 3 8

We see that the reliability is the complement of the CDF of t, that is R t = F t . Similarly, since F
(t) is the probability that the system will fail before t = t, it is often referred to as the unreliability or
failure probability; at times, we may denote the unreliability as

R t = 1−R t = F t 3 9

Equation (3.5) may be inverted by differentiation to give the PDF of failure times in terms of the
reliability:

f t = −
d
dt

R t 3 10
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Insight is normally gained into failure mechanisms by examining the behavior of the failure rate.
The failure rate, λ(t), may be defined in terms of the reliability or the PDF of the time to failure as
follows. Let λ(t) Δt be the probability that the system will fail at some time t < t + Δt, given that it
has not yet failed at t = t. Thus, it is the conditional probability

λ t Δt = P t < t + Δt t > t 3 11

Using Eq. (2.9a), the definition of conditional probability, we have

P t < t + Δt t > t =
P t > t t < t + Δt

P t > t
3 12

The numerator on the right-hand side is just an alternative way of writing the PDF, that is

P t > t t < t + Δt P t < t < t + Δt = f t Δt 3 13

The denominator of Eq. (3.12) is just R(t), as may be seen by examining Eq. (3.3). Therefore,
combining equations, we obtain

λ t =
f t
R t

3 14

This quantity, the failure rate, is also referred to as the hazard or mortality rate.
Themost useful way to express the reliability and the failure PDF is in terms of the failure rate. To

do this, we first eliminate f(t) from Eq. (3.14) by inserting Eq. (3.10) to obtain the failure rate in
terms of the reliability,

λ t = −
1

R t
d
dt

R t 3 15

Then, multiplying by dt, we obtain

λ t dt = −
dR t
R t

3 16

Integrating between zero and t yields

t

0
λ t dt = − ln R t 3 17

since R(0) = 1. Finally, exponentiating results in the desired expression for the reliability

R t = exp −
t

0
λ t dt 3 18

To obtain the PDF for failures, we simply insert Eq. (3.18) into Eq. (3.14) and solve for f(t):

f t = λ t exp −
t

0
λ t dt 3 19

Probably, the single most-used parameter to characterize reliability is themean time to failure (or
MTTF). It is just the expected or mean value E{t} of the failure time t. Hence,

MTTF =
∞

0
tf t dt 3 20
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The MTTF may be written directly in terms of the reliability by substituting Eq. (3.10) into
Eq. (3.20) and integrating by parts:

MTTF = −
∞

0
t
dR
dt

dt = − tR t
∞

0

+

∞

0

R t dt 3 21

Clearly, the tR(t) term vanishes at t = 0. Similarly, from Eq. (3.18), we see that R(t) will decay
exponentially or faster, since the failure rate λ(t) must be greater than zero. Thus, tR(t) 0 as
t ∞. Therefore, we have

MTTF =
∞

0
R t dt 3 22

Example 3.1 An engineer approximates the reliability of a cutting assembly by

R t =
1− t t0

2, 0 ≤ t < t0,

0 t ≥ t0

a) Determine the failure rate.
b) Does the failure rate increase or decrease with time?
c) Determine the MTTF.

Solution (a) From Eq. (3.10),

f t = −
d
dt

1− t t0
2 =

2
t0

1− t t0 , 0 ≤ t < t0

and from Eq. (3.14),

λ t =
f t
R t

=
2

t0 1− t t0
, 0 ≤ t < t0

(b) The failure rate increases from 2/t0 at t = 0 to infinity at t = t0.
(c) From Eq. (3.22)

MTTF =
t0

0
dt 1− t t0

2 = t0 3

The Bathtub Curve

The behavior of failure rates with time is quite revealing. Unless a system has redundant compo-
nents, such as those discussed later in this chapter the failure rate curve usually has the general
characteristics of a “bathtub” such as shown in Figure 3.1. The bathtub curve, in fact, is an ubiq-
uitous characteristic of living creatures as well as of inanimate engineering devices, andmuch of the
failure rate terminology comes from demographers’ studies of humanmortality distributions. In the
biomedical community, for example reliability is referred to as the survivability and denoted as S(t).
Moreover, comparisons of human mortality and engineering failures add insight into the three
broad classes of failures that give rise to the bathtub curve.
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The short period of time on the left-hand side of Figure 3.1 is a region of high but decreasing
failure rates. This is referred to as the period of infant mortality or early failures. Here, the failure
rate is dominated by infant deaths caused primarily by congenital defects or weaknesses. The death
rate decreases with time as the weaker infants die and are lost from the population, or their defects
are detected and repaired. Similarly, defective pieces of equipment, prone to failure because they
were not manufactured or constructed properly, cause the high initial failure rates of engineering
devices. Missing parts, substandard material batches, components that are out of tolerance, and
damage in shipping are a few of the quality weaknesses that may cause excessive failure rates near
the beginning of design life.
Early failures in engineering devices are nearly synonymous with the “product noise” quality

loss stressed in the Taguchi methodology. The preferred method for eliminating such failures is
through design and production quality control measures that will reduce variability and hence
susceptibility to infant mortality failures. If such measures are inadequate, a period of time
may be specified during which the device undergoes wear-in/burn-in/run-in. During this time,
loading and use are controlled in such a way that weaknesses are likely to be detected and
repaired without failure, or so that failures attributable to defective manufacture or construction
will not cause inordinate harm or financial loss. Alternately, in environmental stress screening
and in proof testing products are stressed beyond what is expected in normal use so that weak
units will fail before they are sold or put in service (see Chapter 6-Reliability Testing)
The middle section of the bathtub curve contains the smallest and most nearly constant failure

rates and is referred to as the useful life. This flat behavior is characteristic of failures caused by
random events and hence referred to as random failures. They are likely to stem from unavoidable
loads coming from without, rather than from any inherent defect in the device or system under
consideration. Consequently, the probability that failure will occur in the next time increment
is independent of the system’s age. In human populations, deaths during this part of the bathtub
curve are likely to be due to accidents or infectious disease. In engineering devices, the external
loading may take a wide variety of forms, depending on the type of system under consideration:
earthquakes, power surges, vibration, mechanical impact, temperature fluctuations, and moisture
variation are some of the common causes. In the Taguchi quality methodology such loads are
referred to as “outer noise.”

t

λ(
t)

Figure 3.1 A “bathtub” curve representing a time-dependent failure rate.
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Random failure can be reduced by improving designs: making them more robust with respect to
the environments to which they are subjected. This may be accomplished by increasing the ratio
of the components’ capacities relative to the loads placed upon them (see Chapter 8). The net out-
come may be visualized as in Figure 3.2, where for an assumed operating environment, the failure
rate decreases as the component load is reduced. This procedure of deliberately reducing the load-
ing is referred to as derating. The terminology stems from the deliberate reduction of voltages of
electrical systems, but it is also applicable to mechanical, thermal, or other classes of loads as well.
Conversely, the chance of component failure is decreased if the capacity or strength of the compo-
nent is increased.
The right of the bathtub curve is a region of increasing failure rates. During this period of time

aging failures become dominant. Again, with an obvious analogy to the loss of bone mass, arterial
hardening, and other aging effects found in human populations, the failures tend to be dominated
by cumulative effects such as corrosion, embrittlement, fatigue cracking, and diffusion of materials.
The onset of rapidly increasing failure rates normally forms the basis for determining when parts
should be replaced and for specifying the system’s design life. Design with more durable compo-
nents and materials, inspection and preventive maintenance, and control of deleterious environ-
mental stresses are a few of the approaches in the enduring battle to produce longer lived
products. In the Taguchi methodology, the causes of deterioration are referred to as “inner noise.”
Although Figure 3.1 displays the general features present in failure rate curves for many types of

devices, one of the three mechanisms may be predominant for a particular class of system. Exam-
ples of such curves are given in Figure 3.3. The curve in Figure 3.3a is representative of much

l1

l2

l3

t

λ(
t)

Figure 3.2 Time-dependent failure rates at different levels of loading: l1 > l2 > l3.

tt

(b)(a)

λ(
t)

λ(
t)

Figure 3.3 Representative failure rates for different classes of systems. (a) Electronic hardware. (b)
Mechanical equipment.
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computer and other electronic hardware. In particular, after a rather inconspicuous wear-in period,
there is a long span of time over which the failure rate is essentially constant. For systems of this
type, the primary concerns are with random failures and with methods for controlling the environ-
ment and external loading to minimize their occurrence.
The failure rate curve in Figure 3.3b is typical of valves, pumps, engines, and other pieces of

equipment that are primarily mechanical in nature. Their initial wear-in period is followed by a
long span of time with a monotonically increasing failure rate. In these systems, for which the pri-
mary failure mechanisms are fatigue, corrosion, and other cumulative effects, the central concern is
in estimating safe and economical operating lives and in determining prudent schedules for pre-
ventive maintenance and for replacing parts.
Thus far, we have not discussed the reliability consequences of logical errors or oversights com-

mitted in the design of complex systems. These, for example may take the form of circuitry errors
imbedded in microprocessor chips, bugs in computer software, or even equation mistakes in engi-
neering reference books. Prototypes normally undergo extensive testing to find and eliminate such
errors before a product is put into production. Nevertheless, it may be impossible – or at least
impractical – to test a device against all possible combinations of inputs to assure that the correct
output is produced in every case. Thus, there may exist untested sets of inputs that will cause the
system tomalfunction. In general, the resultingmalfunctions may be expected to occur randomly in
time, contributing to the time-independent component of the failure rate curve.
There is sometimes confusion with regard to failure rate definitions for computer software. This

results from the common practice of finding and correcting bugs after, as well as before, the soft-
ware is released for use. Such bugs tend to occur less and less frequently, giving rise to the notion of
a decreasing failure rate. But that is not a failure rate in the sense in which it is defined here. In
debugging, the software design is modified after each failure, whereas the definition used here
is only valid for a product of fixed design. Hardware and software reliability growth attributable
to test-fix debugging processes is taken up in Chapter 6.
In the following sections, models for representing failure rates with one, or at most a few para-

meters, are discussed. These are particularly useful when most of the failures are caused by early
failures, random events, or aging effects. Even when more than one mechanism contributes sub-
stantially to the failure rate curve, however, these models can often be used to represent the com-
bined failure modes and their interactions.

3.3 Constant Failure Rate Model

Random failures that give rise to the constant failure rate model are the most widely used basis for
describing reliability phenomena. They are defined by the assumption that the rate at which the
system fails is independent of its age. For continuously operating systems this implies a constant
failure rate, whereas for demand failures it requires that the failure probability per demand be inde-
pendent of the number of demands.
The constant failure rate approximation is often quite adequate even though a system or some of

its components may exhibit moderate early failures or aging effects. The magnitude of early-failure
effects is limited by strict quality control in manufacture and installation and may be further
reduced by a wear-in period before actual operations are begun. Similarly, in many systems, aging
effects can be sharply limited by careful preventive maintenance, with timely replacement of the
parts or components in which the wear effects are concentrated. Conversely, if components are
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replaced as they fail, the overall failure rate of a “many-component system”will appear nearly con-
stant, for the failure of the components will be randomly distributed in time as will the ages of the
replacement parts. Finally, even though the system’s failure rate may vary in time, we can use a
constant failure rate that envelops the curve; this rate will be moderately pessimistic.
In the following sections, we first consider the exponential distribution. It is employed when con-

stant failure rates adequately describe the behavior of continuously operating systems. We then
examine two demand failure models, one in which the demands take place at equal time intervals,
and the other in which the demands are randomly distributed in time. Both may be represented as
constant failure rates. Finally, we formulate a composite model to describe the behavior of inter-
mittently operating systems that may be subject to both operating and demand modes of failure.

The Exponential Distribution

The constant failure rate model for continuously operating systems leads to an exponential distri-
bution. Replacing the time-dependent failure rate λ(t) by a constant λ in Eq. (3.19) yields, for
the PDF,

f t = λe− λt 3 23

Similarly, the CDF becomes

F t = 1− e− λt 3 24

and from Eq. (3.18), the reliability may be written as

R t = e− λt 3 25

Plots of f(t), R(t), and λ(t) (the failure rate) are given in Figure 3.4. With the constant failure rate
model, the resulting distributions are described in terms of a single parameter, λ. TheMTTF and the
variance of the failure times are also given in terms of λ. From Eq. (3.22), we obtain

MTTF =
1
λ

3 26

and the variance is found from Eq. (3.16) to be

σ2 =
1

λ2
3 27

A device described by a constant failure rate, and therefore by an exponential distribution of
times to failure, has the following property of “memorylessness”: The probability that it will fail

λ(
t)

R
(t

)

f(
t)

1/λ 2/λ 3/λ
t t t

1/λ 2/λ 3/λ 1/λ 2/λ 3/λ

(c)(b)(a)

Figure 3.4 The exponential distribution. (a) Time to failure PDF, (b) reliability, and (c) failure rate.
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during some period of time in the future is independent of its age. This is easily demonstrated by the
following example.

Example 3.2 A device has a constant failure rate of λ = 0.02/hours.
(a) What is the probability that it will fail during the first 10 hours of operation?
(b) Suppose that the device has been successfully operated for 100 hours. What is the probability

that it will fail during the next 10 hours of operation?

Solution (a) The probability of failure within the first 10 hours is

P t ≤ 10 =
10

0
f t dt = F 10 = 1− e− 0 02 × 10 = 0 181

(b) From Eq. (2.9a), the conditional probability is

P t ≤ 100 t > 100 =
P t ≤ 110 t > 100

P t = 100
=

P 100 ≤ t ≤ 100
P t = 100

=

110

100
f t dt

1−F 100

=

110

100
0 02 e− 0 02t dt

1− 1 + exp − 0 02 × 100

=
exp − 0 02 × 100 − exp − 0 02 × 110

exp − 0 02 × 100

= 1− exp − 0 02 × 10 = 0 181

That the probability of failure within a specified time interval is independent of the age of the
device should not be surprising. Random failures are normally those caused by external shocks
to the device; therefore, they should not depend on past history. For example, the probability that
a satellite will fail during the next month owing to meteor impact would not depend on how long
the satellite had already been in orbit. It would depend only on the frequency with which meteors
pass through the orbit.

Demand Failures

The constant failure rate model has thus far been derived for a continuously operating system. It
may also be shown to be applicable to a system exposed to a series of demands or shocks, each one of
which has a small probability of causing failure. Suppose that each time a demand is made on a
system, the probability of survival is r, giving a corresponding probability of failure of

p = 1− r 3 28

The term demand here is quite general; it may be the switching of an electric relay, the opening of
a valve, the start of an engine, or even the stress on a bridge as a truck passes over it. Whatever the
application, there are two salient points. First, we must be able to count or at least infer the number
of demands; and second, the probability of surviving each demand must be independent of the
number of previous demands.
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We define the reliability Rn as the probability that the system will still be operational after n
demands. Let Xn signify the event of success in the nth demand. Then, if the probabilities of
surviving each demand are mutually independent, Rn is given by Eq. (2.8) as

Rn = P X1 P X2 P X3 …P Xn 3 29

or since P{Xn} = r for all n,

Rn = rn 3 30

Then, using Eq. (3.28), we obtain

Rn = 1− p n 3 31

We may put this result in a more useful approximate form. First, note that the exponential of

ln Rn = ln 1− p n = n ln 1− p 3 32

is

Rn = en ln 1− p 3 33

If the probability for failure on demand is small, we may make the approximation

ln 1− p ≈ − p 3 34

for p 1, yielding

Rn = e− np 3 35

Since p 1 is often a good approximation, we see that the reliability decays exponentially with
the number of demands. If the rate at which demands are made on the system is roughly constant,
we may express the number of demands occurring before time t as

n = γt 3 36

where γ is the frequency at which demands arrive. Thus, if they arrive at time intervals Δt we
have γ = 1/Δt. We may then calculate the reliability R(t), defined as the probability that the
system will still be operational at time t, as

R t = e− λt 3 37

where the failure rate λ is now given by

λ = γp 3 38

Equation (3.35) indicates that the exponential distribution arises for systems that are subjected to
many independent shocks or demands, each of which creates only a small probability of failure. If
we drop the assumption that the demands appear at equal time intervals Δt, and assume that the
shocks arrive at random intervals, the same result is obtained without assuming that the probability
p of failure per shock is small. Let γ represent the mean number of demands per unit time. Then,

μ = γt 3 39
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is the mean number of demands over a time interval t. If the demands appear randomly in time
obeying a Poisson process, we may represent the probability that there will be n demands per unit
time with the Poisson probability mass function given in Eq. (2.59):

f n =
γt n

n
e− γt 3 40

Since the reliability after n independent demands is just rn, the reliability at time twill just be the
expected value of rn at t. Using Eq. (2.25) for the expected value, we have

R t =
∞

n = 0

rnf n 3 41

which yields in combination with Eq. (3.40):

R t =
∞

n = 0

rγt n

n
e− γt 3 42

We next note that upon moving e−γt outside the sum, we obtain a power series for erγt. Thus, the
reliability simplifies to

R t = e r− 1 γt 3 43

and upon inserting Eq. (3.28), we again obtain

R t = e− γpt 3 44

where the failure rate is given by Eq. (3.38).

Example 3.3 A telecommunications leasing firm finds that during the one-year warranty period,
6% of its telephones are returned at least once because they have been dropped and damaged. An
extensive testing program earlier indicated that in only 20% of the drops should telephones be
damaged. Assuming that the dropping of telephones in normal use is a Poisson process, what is
the MTBD (mean time between drops)? If the telephones are redesigned so that only 4% of drops
cause damage, what fraction of the phones will be returned with dropping damage at least once
during the first year of service?
Solution (a) The fraction of telephones not returned is R = e−γpt or 0.94 = e–γ×0.2×1. Therefore,

γ =
1

0 2 × 1
1n

1
0 94

= 0 3094 year

MTBD =
1
γ
= 3 23 years

(b) For the improved design, R = e-γpt = e−0.3094×0.04×1 = 0.9877. Therefore, the fraction of the
phones returned at least once is

1− 0 9877 = 0 0123 or 1 23

Time Determinations

Careful attention must be given to the determination of appropriate time units. Is it operating time
or calendar time? A warranty of 100,000 miles or 10 years, for example includes both, since the
100,000 miles is converted to an equivalent operating time. Two failure rates are then relevant,
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one for when the vehicle is operating, and another presumably smaller one for when it is not.
A third consideration is the number of start–stop cycles that the vehicle is likely to undergo, for
the related stress and thermal cycling may aggravate some failure mechanisms. Whatever the sit-
uation, we must clearly state what measure of time is being used. If the reliability is to be expressed
in calendar time rather than operating time, the duty cycle or capacity factor c, defined as the frac-
tion of time that the engine is running, must also enter the calculations.
Consider as an example a refrigerator motor that runs some fraction c of the time; the failure rate

is λ0 per unit operating time. The contribution to the total failure rate from failures while the refrig-
erator is operating will then be cλ0 per unit calendar time. If the demand failure is also to be taken
into account, we must know how many times the motor is turned on. Suppose that the average
length of time that the motor runs when it comes on is t0. Then, the average number of times that
the motor is turned on per unit operating time is 1 t0. The average number of times that it is turned
on per unit calendar time ism = c t0. To obtain the total failure rate, we add the demand and oper-
ating failure rates. Consequently, the composite failure rate to be used in Eqs. (3.23) through
(3.27) is

λ =
c
t0
p + cλ0 3 45

In the foregoing development we have neglected the possibility that the motor may fail while it is
not operating, that is while it is in a standby mode. Often, such failure rates are small enough to be
neglected. However, for systems that are operated only a small fraction of the time, such as an emer-
gency generator, failure in the standby mode may be quite significant. To take this into account, we
define λs as the failure rate in the standby mode. Since the system in our example is in the standby
mode for a fraction 1− c of the time, we add a contribution of (1− c)λs to the composite failure rate
in Eq. (3.45):

λ =
c
t0
p + cλ0 + 1− c λs 3 46

Example 3.4 A pump on a volume control system at a chemical process plant operates intermit-
tently. The pump has an operating failure rate of 0.0004/hour and a standby failure rate of 0.00001/
hour. The probability of failure on demand is 0.0005. The times at which the pump is turned on tu
and turned off td over a 24-hour period are listed in Tables 3.1a and 3.1b.
Assuming that these data are representative: (a) Calculate a composite failure rate for the pump

under these operating conditions. (b) What is the probability of the pump’s failing during any one-
month (30-day) period?

Table 3.1a Chemical process plant tui (uptime) and tdi (downtime).

tui 0.78 1.69 2.89 3.92 4.71 5.97 6.84 7.76

tdi 1.02 2.11 3.07 4.21 5.08 6.31 7.23 8.12

tui 8.91 9.81 10.81 11.87 12.98 13.81 14.87 15.97

tdi 9.14 10.08 11.02 12.14 13.18 14.06 15.19 16.09

tui 16.69 17.71 18.61 19.61 20.56 21.49 22.58 23.61

tdi 16.98 18.04 19.01 19.97 20.91 21.86 22.79 23.89
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Solution (a) From the data given, we first calculate:

M

ι = 1

tdi = 326 28 and
M

ι = 1

tui = 318 34

whereM = 24 is the number of operations. The average operating time t0 of the pump is estimated
for the data to be

t0 =
1
M

M

ι = 1

tdι − tuι =
1
M

M

ι = 1

tdi −
M

ι = 1

tuι

=
1
24

326 28− 318 34 = 0 33083 hours

Then, the capacity factor is

c =
Mt0
24

=
24 × 0 33083

24
= 0 33083

Thus, the failure rate from Eq. (3.46) is

λ =
c
t0
p + cλ0 + 1− c λs =

0 33083
0 33083

× 0 0005 + 0 33083 × 0 0004

+ 1− 0 33083 × 0 0001 = 0 000699 per hour

(b) The reliability is

R = exp − λ × 24 × 30 = exp − 0 50328 = 0 60454

yielding a 30-day failure probability of

1 – R = 0 395453

Table 3.1b Uptime and downtime in a 24-hour period.

tui tdi Down/up Uptime Downtime tui tdi Down/up Uptime Downtime

0 0.78 Down 12.98 13.18 Up 0.2 0.84

0.78 1.02 Up 0.24 0.78 13.81 14.06 Up 0.25 0.63

1.69 2.11 Up 0.42 0.67 14.87 15.19 Up 0.32 0.81

2.89 3.07 Up 0.18 0.78 15.97 16.09 Up 0.12 0.78

3.92 4.21 Up 0.29 0.85 16.69 16.98 Up 0.29 0.6

4.71 5.08 Up 0.37 0.5 17.71 18.04 Up 0.33 0.73

5.97 6.31 Up 0.34 0.89 18.61 19.01 Up 0.4 0.57

6.84 7.23 Up 0.39 0.53 19.61 19.97 Up 0.36 0.6

7.76 8.12 Up 0.36 0.53 20.56 20.91 Up 0.35 0.59

8.91 9.14 Up 0.23 0.79 21.49 21.86 Up 0.37 0.58

9.81 10.08 Up 0.27 0.67 22.58 22.79 Up 0.21 0.72

10.81 11.02 Up 0.21 0.73 23.61 23.89 Up 0.28 0.82

11.87 12.14 Up 0.27 0.85 23.89 24 Down 0.11
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Example 3.5 An automobile was driven for a total of 120,000 km. It had 11 failures
at the odometer readings as listed in Table 3.21:
Does the failure distribution follow an exponential distribution?

Solution:
Using MINITAB®, find MTBF and discuss the least-squares fit to the data (Figure 3.5).

Example 3.6 An electronic system in an aircraft showed the following table of failures
(Table 3.3).
As a system it has historically followed an exponential distribution. Is this failure data fit by an

exponential distribution?
What is the MTBF?

1 Kapur & Lamberson, Wiley, p. 270.

Table 3.2 Failures over 120,000-km test course.

4123 27720 63582

4497 28,496 66,057

10,506 40,887 100,763

12,317 48,323

Figure 3.5 Exponential distribution fit to test course failures. Notice how closely the data follows the straight
line fit on “exponential” paper. (See Appendix D “Exponential Distribution” for background on how the
probability plot is generated.)
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Solution
Using MINITAB, the following exponential probability plot was generated:
By eye: The data shows a very good fit to the exponential line with an MTBF = 53,742 hours.
The p-value being >0.95 also indicates that the exponential distribution fits this data

(Figure 3.6).

3.4 Time-Dependent Failure Rates

A variety of situations in which the explicit treatment of early failures or aging effects, or both,
require the use of time-dependent failure rate models. This may be illustrated by considering
the effect of the accumulated operating time T0 on the probability that a device can survive for
an additional time t. Suppose that we define R(t|T0) as the reliability of a device that has previously
been operated for a time T0. We may therefore write

Table 3.3 Electronic system failures.

1100 13,489 33180 50545 98674

6697 16,818 35,367 60,280 101,702

8238 23,885 39,703 67,084 102,829

9766 24,323 49,412 70,740 158,880

10,455 27,987 49,729 76,039 206,640

Probability plot for failure times

53742

63.2

Table of statistics

Exponential

Mean
StDev
Median
IQR
Failure
Censor
AD*

53742.5
53742.5
37251.4
59042.1
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Figure 3.6 Weibull of electronic system failures.
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R t T0 = P t > T0 + t t > T0 3 47

where t = T0+ t is the time elapsed at failure since the device was new. From the definition of
conditional probability given in Eq. (2.9), we may write the conditional probability as

P t > T0 + t t > T0 =
P t > T0 + t t > T0

P t > T0 + t
3 48

However, since t > T0 + t t > T0 = t > T0 + t t > T0 + t, we may combine equations to obtain

R t T0 =
P t > T0 + t
P t > T0

3 49

The reliability of a new device is then just

R t = R t T0 = 0 = P t > t 3 50

and we obtain

R t T0 =
R t + T0

R T0
3 51

Finally, using Eq. (3.18), we obtain

R t T0 = e
−

t + T0

T0
λ t dt

3 52

The significance of this result may be interpreted as follows. Suppose that we view T0 as a wear-in
time undergone by a device before being put into service and t as the service time. Now, we ask
whether the wear-in time decreases or increases the service life reliability of the device. To deter-
mine this, we take the derivative of R(t|T0) with respect to the wear-in period and obtain

∂

∂T0
R t T0 = − λ T0 − λ T0 + t R t T0 3 53

Increasing the wear-in period thus improves the reliability of the device only if the failure rate is
decreasing (i.e. λ(T0) > λ(T0 + t)). If the failure rate increases with time, wear-in only adds to the
deterioration of the device, and the service life reliability decreases.
To model early failures or wear effects more explicitly, we must turn to specific distributions of

the time to failure. In contrast to the exponential distribution used for random failures, these dis-
tributions must have at least two parameters. Although the normal and lognormal distributions are
frequently used to model aging effects, the Weibull distribution is probably the most universally
employed. With it we may model early failures and random failures as well as aging effects. We
will cover the Weibull distribution in Chapter 5.

3.5 Component Failures and Failure Modes

In Sections 3.3 and 3.4 the quantitative behavior of reliability is modeled for situations with con-
stant and time-dependent failure rates, respectively. In real systems, however, failures occur
through a number of different mechanisms, causing the failure rate curve to take a bathtub shape
too complex to be described by any single one of the distributions discussed thus far. The mechan-
isms may be physical phenomena within a single monolithic structure, such as the tread wear,
puncture, and defective sidewalls in an automobile tire, or physically distinct components of a
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system, such as the processor unit, disk drives, and memory of a computer, may fail. In either case,
it is usually possible to separate the failures according to the mechanism or the components that
caused them. It is then possible, provided that the failures are independent, to generalize and treat
the system reliability in terms of mechanisms or component failures. We refer to these collectively
as independent failure modes.

Failure Mode Rates

Whether we refer to component failure or failure modes – and the distinction is sometimes
blurred – we may analyze the reliability of a system in terms of the component or mode failures,
provided they are independent of one another. Independence requires that the probability of failure
of any mode is not influenced by that of any other mode. The reliability of a system withM different
failure modes is

R t = P X1 X2 X3 XM 3 54

where Xι is the event in which the ith failure mode does not occur before time t. If the modes are
independent, we may write the system reliability as the product of the mode survival probabilities:

R t = P X1 P X2 P X3 P XM 3 55

where the mode i reliability is

Ri t = P Xi 3 56

yielding

R t =
i = M

i = 1

Ri t 3 57

Naturally, if mode i is the failure of component i, then Ri(t) is just the component reliability.
This is illustrated by a three-component block diagram of a simple computer system in Figure 3.7.
A reliability block diagram (RBD) is a graphical depiction of a system’s components that can be

used to determine the overall system reliability.
In this case, the components are independent of and describe the computer system as a series

system whose reliability (using Eq. (3.57)) is

R system = R1 × R2 × R3

For each mode, we may define a PDF for time to failure, fi(t), and an associated failure rate, λι(t).
The derivation is exactly the same as in Section 3.2, yielding

Ri t = 1−
t

0
f i t dt 3 58

R1 R2 R3

(CPU) (RAM) (Disk drive)

Figure 3.7 Simple computer system block diagram. R1 is the reliability of the CPU, R2 is the reliability of the
RAM, and R3 is the reliability of the disk drive.
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λi t =
f i t
Ri t

3 59

Ri t = e−
t

0
λi t dt 3 60

and

f i t = λi t e
−

t

0
λi t dt 3 61

Combining Eqs. (3.55) and (3.56) with Eq. (3.60) then yields

R t = exp −
t

0
λ t dt 3 62

where

λ t =
i = M

i = 1

λi t 3 63

Thus, to obtain the system reliability, we simply add the mode failure rates.
For situations in which independent failure modes may be approximated by constant failure

rates, λι(t) λι, the reliability is given by Eq. (3.25) with

λ = λi 3 64

and Eq. (3.26) may be used to determine the system’s mean time to failure. If we define the mean
time to failure as

MTTFi =
1
λi

3 65

the system mean time to failure is related by

1
MTTF

=
1

MTTFi
3 66

In our simple computer system, this would become

Rsystem = e− λ1t × e− λ2t × e− λ3t = e− λ1 + λ2 + λ3 t

so, e− λsystemt = e− λ1 + λ2 + λ3 t

then, λsystem = λ1 + λ2 + λ3

and,
1

MTTFsystem
=

1
MTTF1

+
1

MTTF2
+

1
MTTF3

3 67

Component Counts

The ability to add failure rates is most widely applied in situations in which each failure mode cor-
responds to a component or part failure. Often, failure rate data may be available at a component
level but not for an entire system. This is true, in part, because several professional organizations
collect and publish failure rate estimates for frequently used items, whether they be diodes,
switches, and other electrical components; pumps, valves, and similar mechanical devices; or a
number of other types of components. At the same time, the design of a new system may involve

64 3 The Exponential Distribution and Reliability Basics



new configurations and numbers of such standard items. The foregoing equations then allow reli-
ability estimates to be made before the new design is built and tested. In this chapter, we first con-
sidered only systems without redundancy. Without redundancy, failure of any component implies
system failure. In systems with redundant components, the idea of a failure mode is still applicable
in a more general sense. We will treat such systems later in this chapter.
When component failure rates are available, the most straightforward, but crudest, estimate of

reliability comes from the parts count method. We simply count the number nj of parts of type j in
the system. The system’s failure rate is then

λ =
j = M

j = 1

n jλ j 3 68

where the sum is over the part types in the system.

Example 3.7 A computer-interface circuit card assembly for airborne application is made up of
interconnected components in the quantities listed in the first column of Table 3.4. If the assembly
must operate in a 50 C environment, the component failure rates are as given in column 3 of
Table 3.4. Calculate

a) the assembly failure rate,
b) the reliability for a 12-hour mission, and
c) the MTTF

Table 3.4 Components and failure rates for computer circuit card.

Component type Quantity Failure rate/106 hour Total failure rate/106 hour

Capacitor tantalum 1 0.0027 0.0027

Capacitor ceramic 19 0.0025 0.0475

Resistor 5 0.0002 0.0010

J—K, M—S flip flop 9 0.4667 4.2003

Triple Nand gate 5 0.2456 1.2286

Diff line receiver 3 0.2738 0.8214

Diff line driver 1 0.3196 0.3196

Dual Nand gate 2 0.2107 0.4214

Quad Nand gate 7 0.2738 1.9166

Hex invertor 5 0.3196 1.5980

8-bit shift register 4 0.8847 3.5388

Quad Nand buffer 1 0.2738 0.2738

4-Bit shirt register 1 0.8035 0.8035

And-or-inverter 1 0.3196 0.3196

PCB connector 1 4.3490 4.3490

Printed wiring board 1 1.5870 1.5870

Soldering connections 1 0.2328 0.2328

Total 67 21.6616

Source: Reprinted from Ling (1981) (Arithmetic errors corrected).
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Solution (a) We have calculated the total failure rate njλj for each component type with Eq. (3.89)
and listed them in the third column of Table 3.4. For a nonredundant system, the assembly failure
rate is just the sum of these numbers, or as indicated, λ = 21.6610 × 10–6/hour.
(b) The 12-hour reliability is calculated from R = e–λt to be

R 12 = exp − 21 6610 × 12 × 10 – 6 = 0 9997

(c) For constant failure rates, the MTTF is

MTTF =
1
λ
=

106

21 6610
= 46, 165 9 hours

The parts count method, of course, is no better than the available failure rate data. Moreover, the
failure rates must be appropriate to the particular conditions under which the components are to be
employed. For electronic equipment, extensive computerized databases have been developed that
allow the designer to take into account the various factors of stress and environment as well as the
quality of manufacture. For military procurement, such procedures have been formalized as the
parts stress analysis method.
In parts stress analysis, each component failure rate, λi, is expressed as a base failure rate, λb, and

as a series of multiplicative correction factors:

λi = λbΠEΠQ ΠN 3 69

The base failure rate, λb, takes into account the temperature at which the component operates
as well as the primary electrical stresses (i.e. voltage, current, or both) to which it is subjected.
Figure 3.8 shows qualitatively the effects these variables might have on a particular compo-
nent type.
The correction factors, indicated by the s in Eq. (3.69), take into account the environmental,

quality, and other variables that are designated as having a significant impact on the
failure rate. For example, the environmental factor ΠE accounts for environmental stresses
other than temperature; it is related to the vibration, humidity, and other conditions encoun-
tered in operation. For purposes of military procurement, there are nine environmental
categories, as listed in Table 3.5. For each component type, there is a wide range of values

Stress level 3

Stress level 2

Stress level 1

Temperature

λ h

Figure 3.8 Failure rate versus temperature for different levels of applied stress (power, voltage, etc.).
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of E; for example, for microelectronic devices, IIE ranges from 0.2 for “ground, benign” to 10.0
for “missile launch.”
Similarly, the quality multiplier Q takes into account the level of specification and therefore

the level of quality control under which the component has been produced and tested. Typically,
IIQ = 1 for the highest levels of specification andmay increase to 100 or more for commercial parts
procured under minimal specifications. Other multiplicative corrections are also used. These
include A, the application factor to take into account stresses found in particular applications,
and factors to take into account cyclic loading, system complexity, and a variety of other relevant
variables.

3.6 Replacements

Thus far, we have considered the distribution of the failure times, given that the system is new at
t = 0. In many situations, however, failure does not constitute the end of life. Rather, the system is
immediately replaced or repaired, and operation continues. In such situations, a number of new

Table 3.5 Environmental symbol identification and description.

Environment
πε
symbol Nominal environmental conditions

πε
valuea

Ground, benign GB Nearly zero environmental stress with optimum engineering
operation and maintenance.

0.2

Space, flight SF Earth orbital. Approaches GB conditions without access for
maintenance. Vehicle neither under powered flight nor in
atmospheric reentry

0.2

Ground, fixed GF Conditions less than ideal: installation in permanent racks with
adequate cooling air, maintenance by military personnel, and
possible installation in unheated buildings

1.0

Ground, mobile
(and portable)

GM Conditions less favorable than those for GF, mostly through
vibration and shock. The cooling air supply may be more limited,
and maintenance less uniform

4.0

Naval, sheltered Ns Surface ship conditions similar to GF but subject to occasional high
levels of shock and vibration

4.0

Naval,
unsheltered

Nv Nominal surface shipborne conditions but with repetitive high
levels of shock and vibration

5.0

Airborne,
inhabited

At Typical cockpit conditions without environmental extremes of
pressure, temperature, shock, and vibration

4.0

Airborne,
uninhabited

Av Bomb bay, tail, or wing installations, where extreme pressure,
temperature, and vibration cycling may be aggravated by
contamination from oil, hydraulic fluid, and engine exhaust

3.0

Missile, launch ML Severe noise, vibration, and other stresses related tomissile launch,
boosting space vehicles into orbit, vehicle reentry, and landing by
parachute. Conditions may also apply to installation near main
rocket engines during launch operations

10.0

aValues for monolithic microelectronic devices.
Source: From Anderson (1976).
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pieces of information became important. We may want to know the expected number of failures
over some specified period of time in order to estimate the costs of replacement parts. More impor-
tant, it may be necessary to estimate the probability that more than a specific number of failures
N will occur over a period of time. Such information allows us to maintain an adequate inventory
of repair parts.
In modeling these situations, we restrict our attention to the constant failure rate approximation.

In this, the failure rate is often given in terms of themean time between failures (MTBF), as opposed
to the mean time to failure, or MTTF. In fact, they are both the same number if when a system fails,
it is assumed to be repaired immediately to an as-good-as-new condition. In what follows, we use
the constant failure rate model to derive pn(t), the probability of there being n failures during a time
interval of length t. The derivation leads again to the Poisson distribution introduced in Chapter 2.
From it we can calculate the numbers of failures and replacement requirements.
We first consider the times at which the failures take place and therefore the numbers that occur

within any given span of time. Suppose that we let n be a discrete random variable representing the
number of failures that take place between t = 0 and a time t. Let

pn t = P n = n t 3 70

be the probability that exactly n failures have taken place before time t. Clearly, if we start counting
failures at time zero, we must have

p0 0 = 1 3 71

pn 0 = 0, n = 1, 2, 3,…, ∞ 3 72

In addition, at any time

∞

n = 0

pn t = 1 3 73

For small Δt, let failure λΔt be the probability that the (n + l)th failure will take place during the
time increment between t and t +Δt, given that exactly n failures have taken place before time t.
Then, the probability that no failure will occur duringΔt is 1− λΔt. From this we see that the prob-
ability that no failures have occurred before t + Δt may be written as

p0 t + Δt = 1− λΔt p0 t 3 74

Then, noting that

d
dt

pn t = lim
Δt 0

pn t + Δt − pn t
Δt

3 75

we obtain the simple differential equation

d
dt

p0 t = − λp0 t 3 76

Using the initial condition, Eq. (3.71), we find

p0 t = e− λt 3 77

With p0(t) determined, we may now solve successively for pn(t), n = 1, 2, 3,... in the following
manner. We first observe that if n failures have taken place before time t, the probability that
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the (n+ l)th failure will take place between t and t+Δt is λΔt. Therefore, since this transition prob-
ability is independent of the number of previous failures, we may write

pn t + Δt = λΔtpn− 1 t + 1− λΔt pn t 3 78

The last term accounts for the probability that no failure takes place during Δt. For sufficiently
small Δt we can ignore the possibility of two or more failures taking place.
Using the definition of the derivative once again, we may reduce Eq. (3.78) to the differential

equation

d
dt

pn t = − λpn t + λpn− 1 t 3 79

This equation allows us to solve for pn(t) in terms of pn–1(t). To do this, we multiply both sides by
the integrating factor exp(λt). Then, noting that

d
dt

eλtpn t = eλt
d
dt

pn t + λpn t 3 80

we have

d
dt

eλtpn t = λpn− 1 t eλt 3 81

Multiplying both sides by dt and integrating between 0 and t, we obtain

eλtpn t − pn 0 = λ
t

0
pn− 1 t eλt dt 3 82

But, since from Eq. (3.72) pn(0) = 0, we have

pn t = λe− λt
t

0
pn− 1 t eλt dt 3 83

This recursive relationship allows us to calculate the pn successively. For p1, insert Eq. (3.98) on
the right-hand side and carry out the integral to obtain

p1 t = λte− λt 3 84

Repeating this procedure for n = 2 yields

p2 t =
λt 2

2
e− λt 3 85

and so on. It is easily shown that Eq. (3.83) is satisfied for all n≥ 0 by

pn t =
λt n

n
e− λt 3 86

and these quantities in turn satisfy the initial conditions given by Eqs. (3.71) and (3.72).
The probabilities pn(t) are the same as the Poisson distribution f(n), provided that we set μ= λt.

We may therefore use Eqs. (2.25) through (2.26) to determine the mean and the variance of
the number n of events occurring over a time span t. Thus, the expected number of failures during
time t is

μn = E n = λt 3 87
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and the variance of n is

σn
2 = λt 3 88

Of course, since pn(t) are the probability mass functions of a discrete variable n, we must have,
according to Eq. (2.21),

∞

n = 0

pn t = 1 3 89

The number of failures can be related to the MTBF by

μn =
1

MTBF
3 90

We have derived the expression relating μn and theMTBF assuming a constant failure rate. It has,
however, much more general validity (see e.g., Barlow and Proschan 1965). Although the proof
is beyond the scope of this book, it may be shown that Eq. (3.90) is also valid for time-dependent
failure rates in the limiting case that t MTBF. Thus, in general, the MTBF may be deter-
mined from

MTBF =
t
n

3 91

where n, the number of failures, is large.
We may also require the probability that more than N failures have occurred. It is

P n > N =
∞

n = N + 1

λt n

n
e− λt 3 92

Instead of writing this infinite series, however, we may use Eq. (3.89) to write

P n > N = 1−
N

n = 0

λt n

n
e− λt 3 93

Example 3.8 In an industrial plant there is a dc power supply in continuous use. It is known to
have a failure rate of λ= 0.40/year. If replacement supplies are delivered at six-month intervals, and
if the probability of running out of replacement power supplies is to be limited to 0.01, how many
replacement power supplies should the operations engineer have on hand at the beginning of the
six-month interval.

Solution First calculate the probability that the supply will have more than n failures with
t = 0.5 year,

λ t = 0 4 × 0 5 = 0 2; e− 0 2 = 0 819

Now use Eq. (3.93)

P n > 0 = 1− e− λt = 0 181

P n > 1 = 1− e− λt 1 + λt = 0 018

P n > 2 = 1− e− λt 1 + λt +
1
2

λt 2 = 0 001
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There is less than a 1% probability of more than two power supplies failing. Therefore, two spares
should be kept on hand.

3.7 Redundancy

It is a fundamental tenet of reliability engineering that as the complexity of a system increases, the
reliability will decrease, unless compensatory measures are taken. Since a frequently used measure
of complexity is the number of components in a system, the decrease in reliability may then be
expressed in terms of the product rule derived in Eq. (3.57). To recapitulate, if the component fail-
ures are mutually independent, the reliability of a system with N nonredundant component is

R = R1R2…Rn…RN 3 94

where Rn is the reliability of the nth component. The dramatic deterioration of system reliability
that takes place with increasing numbers of components is illustrated graphically by considering
systems with components of identical reliabilities. In Figure 3.9, system reliability versus compo-
nent reliability is plotted, each curve representing a systemwith a different number of components.
It is seen, for example that as the number of components is increased from 1 to 2, where each com-
ponent has a reliability of 0.85, the system reliability is decreased from 0.85 to 0.921.
An alternative to the requirements for increased component reliability is to provide redundancy

in part or all of a system. In what follows, we examine a number of different redundant configura-
tions and calculate the effect on system reliability and failure rates. We also discuss specifically sev-
eral of the trade-offs between different redundant configurations as well as the increased problem of
common-mode failures in highly redundant systems.
The graphical presentation of systems provided by (Reliability BlockDiagrams) RBDs adds clarity

to the discussion of redundancy. In these diagrams, which have their origin in electric circuitry, a
signal enters from the left, passes through the system, and exits on the right. Each component is
represented as a block in the system; when enough blocks fail so that all the paths by which the
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Figure 3.9 As complexity of a series system increases, reliability decreases.
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signal may pass from left (input) to right (output) are cut, the system is said to fail. The RBD of a
nonredundant system is the series configuration shown in Figure 3.10a; the failure of either block
(unit) clearly causes system failure. The simplest redundant configurations are the parallel systems
shown in Figure 3.10b,c. In the active-parallel system shown in Figure 3.10b both blocks (units)
must fail to cut the signal path and thus cause system failure. In the standby parallel system shown
in Figure 3.10c the arrow switches from the upper block (the primary unit) to the lower block (the
standby unit) upon failure of the primary unit. Thus, both units must fail for the system to fail. More
general redundant configurations may also be represented as RBDs and will be discussed later in
this chapter.

Active and Standby Redundancy

We begin our examination of redundant systems with a detailed look at the two-unit parallel con-
figurations pictured in Figure 3.10. They differ in that both units in active parallel are employed and
therefore subject to failure from the onset of operation, whereas in a standby parallel the second
unit is not brought into operation until the first fails and therefore cannot fail until a later time. In
this section, we derive the reliabilities for the idealized configurations, and then in Section 3.7, we
discuss some of the limitations encountered in practice. Similar considerations also arise in treating
multiple redundancy with three or more parallel units, and in the more complex redundant con-
figurations considered the subsequent sections.

Active Parallel

The reliability Ra(t) of a two-unit active-parallel system is the probability that either unit 1 or unit 2
will not fail until a time greater than t. Designating random variables t1 and t2 to represent the fail-
ure times, we have

Ra t = P t1 > t t2 > t 3 95

Thus, Eq. (2.6) yields

Ra t = P t1 > t + P t2 > t −P t1 > t P t2 > t 3 96

Next, we make an important assumption. Assume that the failures are independent events and
thus replace the last term in Eq. (3.96) by P{t1 > t}P{t2 > t}. Denoting the reliabilities of the units as

Ri t = P ti > t 3 97

we may then write

Ra t = R1 t + R2 t −R1 t R2 t 3 98

(a)

(b) (c)

Figure 3.10 Reliability block diagrams: (a) series, (b) active parallel, and (c) standby parallel.
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Standby Parallel

The derivation of the standby parallel reliability Rs(t) is somewhat more lengthy since the failure
time t2 or the standby unit is dependent on the failure time t1 of the primary unit. Only the second
unit must survive to time t for the system to survive, but with the condition that it cannot fail until
after the first unit fails. Hence, we may write

Rs t = P t2 > t t2 > t1 3 99

There are two possibilities. Either the first unit does not fail, t1 > t, or the first unit fails, but the
standby unit does not, t1 < t t2 > t. Since these two possibilities are mutually exclusive, according
to Eq. (2.7), we may just add the probabilities,

Rs t = P t1 > t + P t1 < t P t2 > t 3 100

The first term is just R1(t), the reliability of the primary unit. The second term requires more care-
ful attention. Suppose that the PDF for the primary unit is f1(t). Then, the probability of unit 1 fail-
ing between t and t + dt is f1(t ) dt . Since the standby unit is put into operation at t , the probability
that it will survive to time t is R2 (t− t ). Thus, the system reliability, given that the first failure takes
place between t and t + dt , is R2 (t− t’) f1(t ) dt . To obtain the second term in Eq. (3.100), we inte-
grate primary failure time t between zero and t:

P t1 < t P t2 > t =
t

0
R2 t− t f 1 t dt 3 101

The standby system reliability then becomes

Rs t = R1 t +
t

0
R2 t− t f 1 t dt 3 102

or using Eq. (3.10) to express the PDF in terms of reliability, we obtain

Rs t = R1 t −
t

0
R2 t− t

d
dt

R1 t dt 3 103

Constant Failure Rate Models

General expressions for active or standby systems reliability can be obtained by inserting Eq. (3.18)
for the reliability with time-dependent failure rates into Eqs. (3.98) or (3.103). Comparisons are
simplest, however, if we employ a constant failure rate model. Assume that the units are identical,
each with a failure rate λ. Equation (3.25), R = exp(−λt), may then be inserted to obtain

Ra t = 2e− λt − e− 2λt 3 104

for active parallel, and

Rs t = 1 + λt e− λt 3 105

for standby parallel.
The system failure rate can be determined for each of these cases using Eq. (3.15). For the active

system, we have

λa t = −
1
Ra

d
dt

Ra = λ
1− e− λt

1− 0 5e− λt
3 106
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while for the standby system

λs t = −
1
Rs

d
dt

Rs = λ
λt

1 + λt
3 107

Figure 3.11 shows both the reliability and the failure rate for the two parallel systems, along with
the results for a system consisting of a single unit. The results for the failure rates are instructive. For
even though the units’ failure rates are constants, the failure rates of the redundant systems as a
whole are functions of time. Characteristic of systems with redundancy, they have zero failure rates
at t = 0. The failure rates then increase to an asymptotic value of λ, the value for a single unit. At
intermediate times, the failure rate for the standby system is smaller than for the active-parallel
system. This is reflected in a larger reliability for the standby system.
Two additional measures are useful in assessing the increased reliability that results from redun-

dant configurations. These are the mean time to failure or MTTF and the rare-event estimate for
reliability at times which are small compared to the MTTF of single units. The values of the MTTF
for active and standby parallel systems of two identical units are obtained by substituting
Eqs. (3.104) and (3.105) into Eq. (3.22). We have

MTTFa =
3
2
MTTF 3 108

and

MTTFs = 2MTTF 3 109

where MTTF = 1/λ for each of the two units. Thus, there is a greater gain in MTTF for the standby
than for the active system.
Frequently, the reliability is of most interest for times that are small compared to theMTTF, since

it is within the small-time domain where the design life of most products falls. If the single unit
reliability, R = exp(−λt), is expanded in a power series of λt, we have

R t = 1− λt + 1 2 λt 2
− 1 6 λt

3 + … 3 110

The rare-event approximation has the form of one minus the leading term in λt. Thus,

R t ≈ 1− λt, λt 1 3 111

Standby
parallel

Standby parallel

Active parallelActive parallel

e-λτ

λ

λ(
t)

R
(t

)

λτ λτ
0 1 2 30 1 2 3

(a) (b)

Figure 3.11 Properties of two-unit parallel systems: (a) reliability and (b) failure rate.
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for a single unit. Employing the same exponential expansion for the redundant configurations, we
obtain

Ra t ≈ 1− λt 2, λt 1 3 112

from Eq. (3.104) and

Rs t ≈ 1− 1 2 λt 2, λt 1 3 113

from Eq. (3.105). Hence, for short times, the failure probability, 1− R, for a standby system is only
one-half of that for an active-parallel system.

Example 3.9 The MTTF of a system with a constant failure rate has been determined. An engi-
neer is to set the design life so that the end-of-life reliability is 0.9.

a) Determine the design life in terms of the MTTF.
b) If two of the systems are placed in active parallel, to what value may the design life be increased

without causing a decrease in the end-of-life reliability?

Solution Let the failure rate be λ ≡ 1/MTTF.
(a) R = e−λT. Therefore, T = (1/λ) ln (l/R).

T = ln
1
R

× MTTF = ln
1
0 9

MTTF = 0 105 MTTF

(b) From Eq. (3.104), R = 2e−λT − e−2λT. Let x ≡ e−λT. Therefore, x2 − 2x + R = 0. Solve the quad-
ratic equation:

x =
+ 2 ± 4− 4R

2
= 1− 1−R

The “+” solution is eliminated, since x cannot be greater than 1. Since x = e− λT = 1− 1−R,
then with λ = 1/MTTF,

T = ln
1

1− 1−R
× MTTF

= ln
1

1− 1− 0 9
× MTTF = 0 380MTTF

Thus, the redundant system may have nearly four times the design life of the single system, even
though it may be seen from Eq. (3.108) that the MTTF of the redundant system is only 50% longer.

3.8 Redundancy Limitations

The results for active and standby reliability presented thus far are highly idealized. In practice, a
number of factors can significantly reduce the reliability of redundant systems. In reality, these fac-
tors and their mitigation often are dominant in determining the level of reliability which can be
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achieved. For active-parallel systems, common-mode failures and load-sharing phenomena tend to
be of most concern. For standby systems, switching failures and failure of the standby unit before
switching are important considerations.

Common-Mode Failures

Common-mode failures are caused by phenomena that create dependencies between two or more
redundant components which cause them to fail simultaneously. Such failures have the potential
for negating much of the benefit gained with redundant configurations. Common-mode failures
may be caused by common electric connections, shared environmental stresses such as dust or
vibration, common maintenance problems, or a host of other factors. In commercial aviation,
for example a great deal of redundancy is employed, allowing high levels of safety to be achieved.
Thus, when problems do occur frequently they may be attributed to common-mode failures: the
dust rising from a volcanic eruption in Alaska that caused simultaneous malfunctioning of all
of a commercial airliner’s engines, or the pieces of a fractured jet engine turbine blade that cut
all of the redundant hydraulic control lines and caused the crash of a DC10.
Viewed in terms of the RBDs in Figure 3.10, common-mode failure mechanisms have the same

effect as putting in an additional component in series with the parallel configuration. For identical
units with reliability R, the active-parallel reliability given by Eq. (3.98) becomes

Ra = 2R−R2 R 3 114

where R is the contribution to decreased reliability from common-mode failures. The effects are
illuminated if we recast this equation in terms of the failure probability p = 1 − R, p = 1 − R ,
and pa = 1−Ra corresponding to each of the reliabilities. Equation 3.114 may be written as

pa = p + p2 − p p2 3 115

Suppose that we have an aircraft engine with a failure probability per flight of p = 10−6 and a
common-mode failure probability a thousand times smaller: p = 10−9. For a two-engine aircraft
in the absence of common-mode failures, the failure probability would be p2 = 10−12, but from
Eq. (3.115) we see that

pa = 10− 9 + 10− 12 − 10− 21 3 116

Thus, the system failure probability, pa ≈ 10− 9, is totally dominated by common-mode failure,
although it is still far more reliable than if a single engine had been used.
A great deal of the engineering of redundant systems is expended on identifying possible com-

mon-mode mechanisms and eliminating them. Nevertheless, some possibilities may be impossible
to eliminate entirely, and therefore, reliability modeling must take them into account. Most com-
monly, such phenomena aremodeled through the following constant failure rate model (Flemming
and Raabe 1978). Suppose that λ is the total failure rate of a single unit. We divide λ into two
contributions

λ = λI + λc 3 117

where λI is the rate of independent failure, and λc is the common-mode failure rate. These partial
failure rates may be used to express common-mode failure rates in active-parallel systems as fol-
lows. Define the factor ζ as the ratio

ζ = λc λ 3 118
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Each of the units then has a failure mode reliability of

RI = e− λI t 3 119

which accounts only for independent failures. Therefore, the system reliability for independent fail-
ure is determined using λI, in Eq. (3.104). Wemultiply this system reliability by exp(−λct) to account
for common-mode failures. Thus, for the two units in parallel

Ra t = 2e− λI t − e− 2λI t e− λct 3 120

or using λc = ζλ and λI = (1− ζ)λ, we may write

Ra t = 2− e− 1− ζ λt e− λt 3 121

The loss of reliability with the increase in the ζ factor is clearly seen by looking at the rare-event
approximation at small λt, for we now have a term which is linear in λt:

Ra t ≈ 1− ζλt− 1− 2ζ + ζ2 2 λt 2 + 3 122

as opposed to 1− (λt)2 as in Eq. (3.112). The effect of common-mode failures can also be seen in the
reduction in the meantime to failure:

MTTFa = 2−
1

2− ζ
MTTF 3 123

Example 3.10 Suppose that a unit has a design-life reliability of 0.95.

a) Estimate the reliability if two of these units are put in active parallel and there are no common-
mode failures.

b) Estimate the maximum fraction ζ of common failures that is acceptable if the parallel units in a
are to retain a system reliability of at least 0.99.

Solution From Eq. (3.131), take λt = 0.05.
(a) R ≈ 1− (λT)2, R = 0.9975.
(b) From Eq. (3.122),

R = 1−R = 0 01≈ ζλT + 1− 2ζ +
ζ2

2
λT 2

Thus, with λT≈ 0.05, we have

0 00125ζ2 + 0 045ζ− 0 0075 = 0

Therefore,

ζ =
− 0 045 ± 2 0625 × 10− 3 1 2

0 0025

For ζ to be positive, we must take the positive root. Therefore, ζ ≤ 0.166.

Load Sharing

Load sharing is a second cause of reliability degradation in active-parallel systems. For redundant
engines, motors, pumps, structures, andmany other devices and systems, the failure of one unit will
increase the stress level on the other and therefore increase its failure rate. A simple example is two
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flashlight batteries placed in parallel to provide a fixed voltage. Assume the circuit is designed so
that if either fails, the other will supply adequate voltage. Nevertheless, the current through the
remaining battery will be higher, and this will cause greater heating in the internal resistance.
The net result is that the remaining battery will operate at a higher temperature and thus tend
to deteriorate faster.
Fortunately, in a redundant system with sufficient capacity, the increased failure rate should not

lead to unacceptable failure probabilities. If the first failure is detected, the system may be required
to operate for only a short period of time before repairs are made. Thus, if one engine fails in a
multiengine aircraft, it is only necessary that the flight continue to the nearest airfield without
incurring a significant probability of a second engine failure. From this standpoint, the degradation
is less serious than the potential for common-mode failures.
In Chapter 10, Markov methods are used to develop the following model for shared load redun-

dancy with time-independent failure rates. Suppose that λ∗ > λ is the increased failure rate of the
remaining unit after the first has failed. Then, in the absence of common-mode failures,

Ra t = 2λ− λ∗ − 1 2λe− λ∗t − λ∗e− 2λt 3 124

This may be seen to reduce to Eq. (3.104) in the limiting case that λ∗ = λ. A conservative design
procedure, which always gives an underestimate of the reliability, is to replace λ by λ∗ in Eq. (3.104),
thereby assuming that each unit is carrying the entire load of the system.
If λ∗ becomes too large, all of the benefits of the redundancy may be lost, and in fact, the system

may be less reliable than a single unit with failure rate A. For example, it may be shown that if λ∗ >
1.56λ, the MTTF will be less than for a single unit. In the limit as λ∗ ∞, Eq. (3.104) reduces to the
reliability for the two units placed in series. This may be understood as follows: If either unit failing
gives rise to the second unit failing almost instantaneously, then indeed the system failure rate will
be twice that of a single unit. For in doubling the number of units, one increases the possibility of a
first failure.

Example 3.11 In an active-parallel system, each unit has a failure rate of 0.002/hours.

a) What is the MTTFa if there is no load sharing?
b) What is the MTTFa if the failure rate increases by 20% as a result of increased load?
c) What is the MTTFa if one simply (and conservatively) increased both the unit failure rates

by 20%?

Solution

(a)

MTTFa =
3
2
MTTF =

3
2λ

=
3

2 × 0 002
= 750 hours

(b)

MTTFa =
∞

0
Ra t dt =

∞

0
2λ− λ∗ − 1 2λe− λ∗t − λ∗e− 2λt dt

or

MTTFa =
1
2λ

1 + 2
λ

λ∗
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Thus, with

λ∗ = 1 2 × 0 002 = 0 0024 hour

we have

MTTFa =
1

2 × 0 002
1 + 2 x

1
1 2

= 667 hours

(c)

MTTFa =
3
2λ∗ =

3
2 × 0 0024

= 625 hours

Switching and Standby Failures

Common-mode failures are less likely for standby than for active-parallel configurations because
the secondary system may be quite different from the primary. For example, the causes of the fail-
ure of electric power are likely to be quite different than those that may cause the diesel backup
generator to fail. Nevertheless, care must also be exercised in the design and operation of systems
with standby redundancy. Some smaller possibility of common-mode failure incapacitating both
primary and secondary units may remain. In addition, two new failure modes, unique to standby
configurations, must be addressed: switching failures and secondary unit failure while in the
standby mode. The following illustration may be helpful in understanding these modes.
Suppose that power is supplied by a diesel generator. A second identical generator is used for

backup. If there is some probability, p, that a switch cannot be made to the second generator upon
failure of the primary unit, as derived in Chapter 10, the reliability of the system is obtained by
multiplying the second term in Eq. (3.105) by (1− p):

Rs t = 1 + 1− p λt e− λt 3 125

One cause of switching failures is the failure of the control mechanism in sensing the primary
unit failure and turning on the secondary unit. Time is also an important consideration, for in cer-
tain situations some delay can be tolerated before the backup unit takes over. For example, if a
pump supplying coolant to a reservoir fails, it may only be necessary for the backup system to come
on before the reservoir drains. On a shorter time scale, if a process control computer fails, there may
be a period of seconds or less before the backup is required. If some time delay is tolerable, repeated
attempts to switch the system may be made, or parts replaced.
Failure of the secondary unit to function may result not only from switching failures. The sec-

ondary system may also have failed in the standby mode before the primary system failure. Such
failures are most prone to happen in situations where the secondary unit is called upon very infre-
quently and therefore may have been allowed to deteriorate while in the standby mode. In
Chapter 10 an expression for reliability in which both failure modes are present is developed.
The result is equivalent to affixing the multiplicative factor (λ+ t)−1 (l− e−λ+t) to the second term
in Eq. (3.125)

Rs t = 1 + 1− p
λ

λ + 1− e− λ + t e− λt 3 126

where λ+ is the failure rate of the secondary unit while in standby.
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Example 3.12 An engineer designs a standby systemwith two identical units to have an idealized
MTTF of 1000 days. To be conservative, she then assumes a switching failure probability of 10% and
the failure rate of the unit in standby of 10% of the unit in operation.
Assuming constant failure rates, estimate the reduced MTTFs of the system with switching and

standby failures included.
Solution For the idealized MTTF, we have MTTFS = 2/λ or λ = 2/1000 days = 0.002/day.
For the reduced MTTFs, we have

MTTFs =
∞

0
Rs t dt =

∞

0
1 + 1− p

λ

λ + 1− e− λ + t e− λt dt

or

MTTFs =
1
λ

1 + 1− p 1 + λ + λ
− 1

Thus, with p = 0.1 and λ+/λ = 0.1, we have

MTTFs =
1

0 002
1 + 1− 0 1 1 + 0 1 − 1 = 909 days

Cold, Warm, and Hot Standby

The trade-off between switching failures and failure in standby must be considered in the design of
standby redundancy; it is the primary consideration in determining whether cold, warm, or hot
standby is to be used. In cold standby, the secondary unit is shut down until needed. This typically
reduces the value of λ+ to a minimum. However, it tends to result in the largest values of p. Thus, in
our example of the diesel generator, it is most likely not to have failed if it has not been operating.
However, coming from cold startup to a fully loaded operation on short notice may cause sufficient
transient stress to result in a significant demand failure probability. In warm standby, the transient
stresses are reduced by having the secondary unit continuously in operation but in an idling or
unloaded state. In this case, p may be expected to be smaller, at the expense of a moderately
increased value of λ+. Even smaller values of p are achieved by having the secondary unit in
hot standby, that is continuously operating at a full load. In this case – for identical units – the fail-
ure rate will equal that of the primary system, λ+ = λ, causing Eq. (3.126) to reduce to

Rs t = 2− p e− λt − 1− p e− 2λt 3 127

We see from this equation that if the switching failure can bemade very small, which is the object
of hot standby, the equation is equivalent to an active-parallel system. Thus, the reliability is mark-
edly less than for an idealized standby system. In many instances of warm or hot standby, however,
secondary unit failures in standby can be detected and repaired fairly rapidly. The modeling of such
repairable systems is taken up in Chapters 9 and 10.
Redundant computer control systems present a somewhat different situation than that encoun-

tered with motors, engines, pumps, or other energy or mass delivery systems. In order to start from
cold standby not only must the computer be powered, but the current data must also be loaded to
memory. Hot standby is particularly advantageous in these cases where switching the output from
the primary to the secondary computer is a relatively simple matter. There is, however, one diffi-
culty. A means must be established for detecting which computer is wrong. This is straightforward
if the computer stops functioning altogether. However, if the failure mode is a type that caused the
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computer to give incorrect but plausible output, then a means for knowing where the incorrect
information is being produced is a necessity. For these situations the 2/3 voting systems discussed
in the following section are widely used.

3.9 Multiply Redundant Systems

The reliability of a system can be further enhanced by placing increased numbers of components in
parallel. Such redundancy can take either active or standby form. In 1/N and m/N redundancy,
respectively, one orm of the A units must function for the system to function. Consider 1/N redun-
dancy first for active and then for standby parallel. In either of these configurations, the probability
of system malfunction becomes increasingly small, and as a result, increased attention must be
given to the complications discussed in Section 3.7.

1/N Active Redundancy

Suppose that we have N components in parallel; if any one of them functions, the system will func-
tion successfully. Thus, in order for the system to fail, all the components must fail. This may be
written as follows. Let Xi denote the event of the ith component failure, and X the system failure.
Thus, for a system of N parallel components, we have

X = X1 X2 XN 3 128

and the system reliability is

Ra = 1− P X1 X2 XN 3 129

If the failures are mutually independent, we may use the definition of independence to write

Ra = 1− P X1 P X2 P XN , where P Xi = 1−Ri 3 130

The P{Xi} are the component failure probabilities; therefore, they are related to the reliabilities by

P Xi = 1−Ri 3 131

Consequently, we have for 1/N active redundancy

Ra = 1−Π
i
1−Ri 3 132

For identical components this may be simplified. Suppose that all the Ris have the same value,
Ri = R. Equation (3.131) then reduces to

Ra = 1− 1−R N 3 133

The degree of improvement in system reliability brought about by multiple redundancy is indi-
cated in Figure 3.12, where system reliability is plotted versus component reliability for different
numbers of parallel components. Two other characterizations of the increased reliability are given
by the rare-event approximation and the MTTF. The expansion of Eq. (3.111) yields 1− R≈ λt for
small λt and results in the reduction of Eq. (3.133) to

Ra t ≈ 1− λt N , λt 1 3 134
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Wemay use the binomial expansion, introduced in Chapter 2, to express the reliability in a form
that is more convenient for evaluating the MTTF. The binomial coefficients allow us to write in
general

p + q N =
N

n = 0
NCnP

N − nqn 3 135

where the NCn coefficients are given by NCR = N
R N −R . Taking p = 1 and q =−R, we obtain

1−R N =
N

n = 0
NCn − 1 nRn 3 136

Therefore, since CN
0 = 1, we may write Eq. (3.152) as

Ra =
N

n = 1

− 1 n− 1
NCnR

n 3 137

We next assume a constant failure rate for each component and replace R with e−λt. Applying
Eq. (3.22), to express the MTTF in terms of Ra(t), we obtain

MTTFa =
N

n = 1

− 1 n− 1 NCn

nλ
3 138

While the forgoing relationships indicate that in principle, reliabilities very close to 1 are obtain-
able, common-mode failures become an increasingly overriding factor when N is taken to be 3 or
more. If the ζ factor method is applied, for example the loss of reliability may be dominated not by
the (λt)N of Eq. (3.133) but by a ζ λt term as in Eq. (3.122). Likewise, the load-sharing phenomena
become increasingly serious as additional units fail. A four-engine aircraft, flying on one engine,
may be expected to be under higher stress than a two-engine aircraft flying on one.

where:
Rs = 1-(1-R)N  
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Figure 3.12 Reliability improvement by N parallel components.
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Example 3.13 A temperature sensor is to have a design-life reliability of no less than 0.98. Since a
single sensor is known to have a reliability of only 0.90, the design engineer decides to put two of
them in parallel. From Eq. (3.98) the reliability should then be 0.99, meeting the criterion. Upon
reliability testing, however, the reliability is estimated to be only 0.97. The engineer first deduces
that the degradation is due to common-mode failures and then considers two options: (i) putting a
third sensor in parallel and (ii) reducing the probability of common-mode failures.

a) Assuming that the sensors have constant failure rates, find the value of ζ that characterizes the
common-mode failures.

b) Will adding a third sensor in parallel meet the reliability criterion if nothing is done about com-
mon-mode failures?

c) By how much must ζ be reduced if the two sensors in parallel are to meet the criterion?

Solution: If the design-life reliability of a sensor is R1= e−λt = 0.9, then λT = ln (l/R1) =
ln (l/0.9) = 0.10533.
(a) Let R2= 0.97 be the system reliability for two sensors in parallel. Then, ζis found in terms of R2

from Eq. (3.121) to be

ζ = 1 +
1
λT

ln 2−R2e
λT

= 1 +
1

0 10536
ln 2−

0 97
0 9

= 0 2315

(b) The reliability for three sensors in parallel is given by Eq. (3.133) with N = 3. Using λ1 = (1
− β)λ and λc = ζλ, we may expand the bracketed term to obtain

R3 = 3− 3e− 1− ζ λT + e− 2 1− ζ λT e− λT

From a we have (1− ζ) λT = (1− 0.2315) × 0.10536 = 0.08097, and thus e−(1− ζ)λT = 0.92222.
Thus, the reliability is

R3 = 3− 3 × 0 92222 + 0 92222 2 × 0 9 = 0 975

Therefore, the criterion is not met by putting a third sensor in parallel.
(c) Tomeet the criterion with two sensors in parallel, wemust reduce enough so that the equation

in part a is satisfied with R2= 0.98. Thus,

ζ = 1 +
1

0 10536
ln 2−

0 98
0 9

= 0 1165

Therefore, ζ must be reduced by at least

1−
0 1165
0 2315

≈ 50

1/N Standby Redundancy

Wemay derive expressions for 1/N standby reliability by noting that the derivation of the recursive
equation, Eq. (3.103), is valid even if R1(t) represents a standby system. Thus, we may derive the
reliability of a standby system of N identical units in terms of a system of N− 1 units. Suppose that
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we denote the reliability of the n unit system as Rn, and thus of the n − 1 system as Rn−1 where the
reliability of a single unit is R1= R. We may now rewrite Eq. (3.103) as

Rn t = Rn− 1 t −
t

0
Rn t− t

d
dt

Rn− 1 t dt 3 139

Thus, R2, in the constant failure rate approximation given by Eq. (3.105), may be shown to result
from inserting R = R1= e−λt into the right-hand side of this expression. Likewise, if Eq. (3.105) is
inserted into the right-hand side of this expression, we obtain

R3 t = 1 + λt +
1
2

λt 2 e− λt 3 140

This expression can be inserted into the right of Eq. (3.139) to obtain R4 and so on. In general, for
N units in standby redundancy, we obtain

Rs t =
N − 1

n = 0

1
n

λt ne− λt 3 141

Equation (3.22) then yields a standby MTTF of

MTTFs = N λ 3 142

To calculate the rare-event approximation, we first note that the exponential expansion can be
written as two sums:

eλt =
N − 1

n = 0

1
n

λt n +
∞

n = N

1
n

λt n 3 143

Solving for the first sum, and inserting the result into Eq. (3.141), we obtain after simplification

Rs t = 1−
∞

n = N

1
n

λt ne− λt 3 144

Thus, taking the lowest order terms, we find for small λt that

Rs t ≈ 1−
1
Ν

λt N 3 145

We see that the 1/N standby configuration comes closer to 1 in the rare-event approximation than
does Eq. (3.134) for the active-parallel system. Of course, switching failures and failures in the
standby state must be included to make more realistic comparisons.

m/N Active Redundancy

In the 1/N systems considered thus far, if any one of the two or more units functions, the system
operates successfully. We now turn to the m/N system in which m is the minimum number that
must function for successful system operation. Them/N is popular for relief valves, pumps, motors,
and other equipment that must have a specified capacity tomeet the design criteria. In such systems
it is often possible to increase reliability without a commensurate cost increase, for components of
off-the-shelf sizes maymeet capacity requirements while at the same time allowing for some degree
of redundancy. In instrumentation and control systems m/N configurations are popular for two
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reasons. The spurious fail-safe operation of a single unit is prevented from causing undesirable con-
sequences. Likewise, voting can be applied to the output of redundant instruments or computers.
An m/N system may be represented in a RBD, as shown for a 2/3 system in Figure 3.13. Now,

however, the block representing each component must be repeated in the diagram. Thus, the sys-
tem reliability cannot be calculated as in earlier 1/N cases because the three parallel chains contain
some of the same components and therefore cannot be independent of one another.
For identical components, the reliability of anm/N systemmay be determined by again returning

to the binomial distribution. Suppose that p is the probability of failure over some period of time for
one unit. That is

p = 1−R 3 146

where R is the component reliability. From the binomial distribution, the probability that n units
will fail is just

P n = n = CN
n p

n 1− p N − n 3 147

The m/N system will function if there are no more than N −m failures. Thus,

P n ≤ N −m =
N −m

n = 0

CN
n p

n 1− p N − n 3 148

is the reliability. Combining Eqs. (3.146) and (3.14) then yields

Ra =
N −m

n = 0

CN
n 1−R nRN − n 3 149

Alternately, since

P n > N −m =
N

n = N −m + 1

CN
n p

n 1− p N − n 3 150

is the probability that the system will fail, we may also write the system reliability as

Ra = 1−
N

n = N −m + 1

CN
n 1−R nRN − n 3 151

1 2

2 3

1 3

Figure 3.13 Reliability block diagram for a 2
3 system.
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Equations (3.149) and (3.151) are identical in value. Depending on the ratio of m to N, one may
be more convenient than the other to evaluate. For example, in a 1/N system, Eq. (3.151) is sim-
pler to evaluate, since the sum on the right-hand side has only one term, n = N, yielding
Eq. (3.133).
In dealing with redundant configurations, whether of the 1/N orm/N variety, we can simplify the

calculations substantially with little loss of accuracy if the component failure probabilities are small
(i.e. when the component’s reliability approaches 1). In these situations, a reasonable approxima-
tion includes only the leading term in the summation of Eq. (3.151). To illustrate, suppose that R is
very close to 1; we may replace it by 1 in the RN−n term to yield

Ra ≈ 1−
N

n = N −m + 1

CN
n 1−R n 3 152

We note, however, that the terms in the (1− R)n series decrease very rapidly in magnitude as
the exponent is increased. Consequently, we need to include only the term with the lowest power
of 1− R. Thus, the reliability is approximately

Ra ≈ 1−CN
N −m + 1 1−R N −m + 1 3 153

If the rare-event approximation, 1 – R≈ λt, is employed, then

Ra ≈ 1−CN
N −m + 1 λt N −m + 1 3 154

Example 3.14 A pressure vessel is equipped with six relief valves. Pressure transients can be con-
trolled successfully by any three of these valves. If the probability that any one of these valves will
fail to operate on demand is 0.04, what is the probability on demand that the relief valve system will
fail to control a pressure transient? Assume that the failures are independent.

Solution In this situation, the foregoing equations are valid if unreliability, Ra = 1−Ra, is defined
as demand failure probability. Using the rare-event approximation, we have from Eq. (3.153), with
N= 6 and m = 3, 0.04 = 1 − R:

Ra ≈C6
4 0 04 4 =

6
2 4

0 04 4 = 15 × 256 × 10− 8

Ra ≈ 0 384 × 10− 4

3.10 Redundancy Allocation

High reliability can be achieved in a variety of ways; the choice will depend on the nature of the
equipment, its cost, and its mission. If we were to provide an emergency power supply for a hospital,
an air traffic control system, or a nuclear power plant, for example the most cost-effective solution
might well be to use commercially available diesel generators as the components in a redundant
configuration. On the other hand, the use of redundancymay not be the optimal solution in systems
in which the minimum size and weight are overriding considerations, for example in satellites or
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other space applications, in well-logging equipment, and in pacemakers and similar biomedical
applications. In such applications, space or weight limitations may dictate an increase in compo-
nent reliability rather than redundancy. Then, more emphasis must be placed on robust design,
manufacturing quality control, and on controlling the operating environment.
Once a decision is made to include redundancy, a number of design trade-offs must be

examined to determine how redundancy is to be deployed. If the entire system is not to be
duplicated, then which components should be duplicated? Consider, for example the simple
two-component system shown in Figure 3.14a. If the reliability Ra = R1R2 is not large enough,
which component should be made redundant? Depending on the choice, the system in
Figure 3.14b,c will result.
It immediately follows that

Rb = 2R1 −R2
1 R2 3 155

Rc = R1 2R2 −R2
2 3 156

Or taking the differences of the results, we have

Rb −Rc = R1R2 R2 −R1 3 157

Not surprisingly, this expression indicates that the greatest reliability is achieved in the
redundant configuration if we duplicate the component that is least reliable; if R2 > R1, then
system Rb is preferable, and conversely. This rule of thumb can be generalized to systems with
any number of nonredundant components; the largest gains are to be achieved by making the
least reliable components redundant. In reality, the relative costs of the components also must
be considered. Since component costs are normally available, the greatest impediment to mak-
ing an informed choice is lack of reliability data for the components involved. Trade-offs in the
allocation of redundancy often involve additional considerations. Two examples are those
between high- and low-level redundancy, and those between fail safe and fail to danger
consequences.

Example 3.15 Suppose that in the system shown in Figure 3.14 the two components have the
same cost, and R1= 0.7, R2= 0.95. If it is permissible to add two components to the system, would
it be preferable to replace component 1 by three components in parallel or to replace components
1 and 2 each by simple parallel systems?

Solution If component 1 is replaced by three components in parallel, then from Eq. (3.152)

Ra = 1− 1−R1
3 R2 = 0 973 × 0 95 = 0 92435

If each of the two components is replaced by a simple parallel system,

(a) (b) (c)

1 2 2

2

2

1

1

1

Figure 3.14 Redundancy allocation.

3.10 Redundancy Allocation 87



Rb = 1− 1−R1
2 1− 1−R2

2 = 0 91 × 0 9975 = 0 9077

In this problem, the reliability R1 is so low that even the reliability of a simple parallel system,
2R1 −R2

1 , is smaller than that of R2. Thus, replacing component 1 by three parallel components
yields the higher reliability.

High- and Low-level Redundancy

One of themost fundamental determinants of component configuration concerns the level at which
redundancy is to be provided. Consider, for example the system consisting of three subsystems, as
shown in Figure 3.15. In high-level redundancy, the entire system is duplicated, as indicated in
Figure 3.15a, whereas in low-level redundancy the duplication takes place at the subsystem or com-
ponent level indicated in Figure 3.15b. Indeed, the concept of the level at which redundancy is
applied can be further generalized to lower and lower levels. If each of the blocks in the diagram
is a subsystem, each consisting of components, we might place the redundancy at a still lower com-
ponent level. For example, computer redundancy might be provided at the highest level by having
redundant computers, at an intermediate level by having redundant circuit boards within a single
computer, or at the lowest level by having redundant chips on the circuit boards.
Suppose that we determine the reliability of each of the systems in Figure 3.15 with the compo-

nent failures assumed to be mutually independent. The reliability of the system without redun-
dancy is then

R0 = RaRbRc 3 158

The reliability of the two redundant configurations may be determined by considering them as
composites of series and parallel configurations.
For the high-level redundancy shown in Figure 3.15a, we simply take the parallel combination of

the two series systems. Since the reliability of each series subsystem is given by Eq. (3.158), the high-
level redundant reliability is given by

RHL = 2R0 −R2
0 3 159

or equivalently,

RHL = 2RaRbRc −R2
aR

2
bR

2
c 3 160

Conversely, to calculate the reliability of the low-level redundant system, we first consider the
parallel combinations of component types a, b, and c separately. Thus, the two components of type
a in parallel yield

RA = 2Ra −R2
a 3 161

and similarly,

RB = 2Rb −R2
b, RC = 2Rc −R2

c 3 162

The low-level redundant system then consists of a series combination of the three redundant sub-
systems. Hence,

RLL = RARBRC 3 163
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or, inserting Eqs. (3.161) and (3.162) into this expression, we have

RLL = 2Ra −R2
a 2Rb −R2

b 2Rc −R2
c 3 164

Both the high- and low-level redundant systems have the same number of components. They do
not result, however, in the same reliability. This may be demonstrated by calculating the quantity
RLL − RHL. For simplicity, we examine systems in which all the components have the same relia-
bility, R. Then,

RHL = 2R3 −R6 3 165

and

RLL = 2R−R2 3
3 166

After some algebra, we have

RLL −RHL = 6R3 1−R 2 3 167

Consequently, RLL > RHL.
Regardless of how many components the original system has in series, and regardless of whether

two or more components are put in parallel, low-level redundancy yields higher reliability, but only
if a very important condition is met. The failures must be truly independent in both configurations.
In reality, common-mode failures are more likely to occur with low-level than with high-level
redundancy. In high-level redundancy, similar components are likely to bemore isolated physically
and therefore less susceptible to common local stresses. For example, a faulty connector may cause
a circuit board to overheat and then the two redundant chips on that board to fail. But if the redun-
dant chips are on different circuit boards in a high-level redundant system, this common-mode fail-
ure mechanism will not exist. Physical isolation, in general, may eliminate many causes of
common-mode failures, such as local flooding and overheating.
Some insight into common-mode failures may be gained as follows. Consider the same high- and

low-level redundant systems for which the results are given by Eqs. (3.165) and (3.166), and let the
component reliability be represented by R = e−λt. Suppose that because components in the high-
level system are physically isolated, there are no significant common-mode failures. Then, we
may write simply

RHL = e− 3λt 2− e− 3λt 3 168

(a) (b)

A B C

A B C

A

A B

B C

C

Figure 3.15 High- and low-level redundancy. (a) High-level redundancy and (b) low-level redundancy
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In the low-level system, however, we specify that some fraction, ζ, of the failure rate λ is due to
common-mode failures. In this case, the quantities Ra, Rb, and Rc will no longer reduce to
Eq. (3.166), or

RLL = 2e− λt − e− 2λt 3
3 169

where there are no common-mode failures. Rather, the ζ-factor model replaces Eqs. (3.161) and
(3.162) by Eq. (3.121) to yield

RA = RB = RC = 2e− λt − e− 2λteβλt 3 170

Then, from Eq. (3.163), we find that the low-level redundant system reliability is reduced to

RLL = 2e− λt − e− 2λteβλt
3

3 171

This must be compared to Eq. (3.168) to determine how large β can become before the advantage
of low level is lost. Consider the following example.

Example 3.16 Suppose that the design-life reliability of each of the components in the high- and
low-level redundant systems pictured in Figure 3.15 is 0.99. What fraction of the failure rate in the
low-level system may be due to common-mode failures, without the advantage of low-level redun-
dancy being lost?
Solution Set RHL = RLL using Eqs. (3.168) and (3.171) at the end of the design life:

e− 3λT 2− e− 3λT = 2e− λT − e− 2λT + ζλT 3

Solving for ζ yields

ζ =
1
λT

ln 2− 2− e− 3λT 1 3
+ 1

Since e−λT = 0.99, λT = 0.01005. Thus,

ζ =
1

0 01005
ln 2− 2− 0 993

1 3
+ 1 = 0 0197

Fail Safe and Fail to Danger

Thus far, we have lumped all failures together. There are situations, however, in which different
failure modes can have quite different consequences. Judgment must then be exercised in allocat-
ing redundancy betweenmodes. One of themost common examples occurs in the trade-off between
fail safe and fail to danger encountered in the design of m/N alarm and safety systems.
Consider an alarm system. The alarm may fail in one of two ways. It may fail to function even

though a dangerous situation exists, or it may give a spurious or false alarm even though no
danger is present. The first of these is referred to as fail to danger and the second as fail safe.
Generally, the fail-to-danger probability is made much smaller than the fail-safe probability.
Even then, small fail-safe probabilities are also required. If too many spurious alarms are
sounded, they will tend to be ignored. Then, when the real danger is present, the alarm is also
likely to be ignored.
Two factors are central to the trade-offs between fail safe and fail to danger modes. First,

many design alterations that decrease the fail-to-danger probability are likely to increase the
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fail-safe probability. Power supply failures, which are often a primary cause of failure of crudely
designed safety systems, are an obvious example. Often, the system can be redesigned so that
power supply failure will cause the system to fail safe instead of to danger. Specifically, instead
of leaving the system unprotected following the failure, the power supply failure will cause the
system to function spuriously. Of course, if no change is made in the probability of power supply
failure, the amelioration of system fail to danger will result in an increased number of spurious
operations.
Second, as increased redundancy is used to reduce the probability of fail to danger, more fail-safe

incidents are likely to occur. To demonstrate this, consider a 1/N parallel system with which are
associated two failure probabilities pd and ps for fail to danger and fail safe, respectively. The system

fail-to-danger unreliability Rdg is found by noting that all units must fail. Hence,

Rdg = pNd 3 172

However, the system fail-safe reliability is calculated by noting that any one-unit failure with
probability ps will cause the system to fail safe. Thus,

Rsf = 1− 1− ps
N 3 173

If ps 1, then (1− ps)
N≈Nps, and we see that the fail-safe probability grows linearly with the

number of units in parallel,

Rsf ≈Nps 3 174

The m/N configuration has been extensively used in electronic and other protection systems to
limit the number of spurious operations at the same time that the redundancy provides high reli-
ability. In such systems, the fail-to-danger unreliability is obtained from Eq. (3.1):

Rdg = P n ≥ N −m =
N

n = N −m + 1
NCnp

n
d 1− pd

N − n 3 175

With the approximation that pd 1 this reduces to a form analogous to Eq. (3.154):

Rdg ≈ NCN −m + 1p
N −m + 1
d 3 176

Conversely, at least m spurious signals must be generated for the system to fail safe. Assuming
independent failures with probability ps, we have

Rsf = P n ≥ m =
N

n = m
NCnp

n
s 1− ps

N − n 3 177

Now, assuming that ps 1, we may approximate this expression by

Rsf ≈ NCmp
m
s 3 178

From Eqs. (3.176) and (3.178), the trade-off between fail to danger and spurious operation is seen.
The fail-safe probability is decreased by increasingm, and the fail-to-danger probability is decreased
by increasing N−m. Of course, as N becomes large, common-mode failures may severely limit fur-
ther improvement.
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Example 3.17 You are to design an m/N detection system. The number of components, N, must
be as small as possible to minimize cost. The fail to danger and the fail safe probabilities for the
identical components are

pd = 10− 2, ps = 10− 2

Your design must meet the following criteria:

1) Probability of system fail to danger <10−4.
2) Probability of system fail safe <10−2.

What values of m and N should be used?

Solution Ans: At least four components are required to meet both criteria. They are met by a 2/4
system.

Voting Systems

In addition to the use ofm/N redundancy to reduce the spurious operation of safety and alarm sys-
tems, it plays an important role in the design of computer control systems that must feed contin-
uous streams of highly reliable output to guarantee safe operations (Table 3.6). Temperature
controllers in chemical plants, automated avionics controls, controls for respirators, and other bio-
medical devices offer a few examples where accurate sensing and control often requires the use of
redundancy.
In these situations the most frequent configuration is a 2/3 voting system. Three process compu-

ters or other instruments operate in parallel. A voter then compares the outputs of the three units,
and if one differs from the other two, its output is ignored. The configuration reliability is then
obtained by putting the voter reliability in series with the 2/3 result obtained from Eq. (3.149):

Rsys = 3R2 − 2R3 Rv 3 179

where R and Rv are the computer and voter reliabilities, respectively. Clearly, the voter must have a
very small failure probability if the system is to operate satisfactorily. Fortunately, the voter is

Table 3.6 Make a table of unreliabilities (i.e. the failure probabilities) for fail safe and fail
to danger using the rare-event approximations given by Eqs. (3.178) and (3.176).

m/N Rsf Eq. (3.178) Rdg Eq. (3.176)

1/1 ps = 10−2 pd = 10−2

1/2 2ps, = 2 × 10−2 p2d = 10− 4

2/2 p2s = 10− 4 2pd = 2 × 10−2

1/3 3ps = 3 × 10−2 p3s = 10− 6

2/3 3p2s = 3 × 10− 4 3p2d = 3 × 10− 4

3/3 p3s = 10− 6 3pd = 3 × 10−2

1/4 4ps, = 4 × 10−2 p4d = 10− 8

2/4 6p2s = 6 × 10− 4 4p3d = 4 × 10− 6

3/4 4p3s = 4 × 10− 6 6p2d = 6 × 10− 6

4/4 p4s = 10− 8 4pd = 4 × 10−2
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typically a very simple device compared to the computer and therefore may be expected to have a
much smaller failure probability.
In some situations the electronic voter may be replaced by an operator decision. Suppose, for

example that three computers are used to calculate the pitch and yawl of an aircraft. The pilot
and copilot might have the displays from two of the computers in front of them with a third placed
to be readily visible by both of them. Therefore, comparisons can bemade readily, and the malfunc-
tioning computer switched out of the system. Of course, this system also creates an additional
opportunity for pilot error.
More extensive voting systems may be required to achieve exceedingly small failure probabilities

in computer-controlled systems. In one such configuration each of the computers has a spare,
which may be kept in hot standby and switched into the circuit upon detection of a failure by
the voter. An alternative configuration is a 3/5majority vote system. In each of these configurations,
at least three computers must fail before the system fails, but each requires that additional compu-
ters be purchased.

Example 3.18 Derive the MTTF and the rare-event approximation for

a) a 2/3 voting system,
b) a 3/5 voting system.

Assume that the failure probability of the voter can be neglected. How do the results compare to
those for a single unit?
Solution (2/3) From Eq. (3.149), we have

R = e− λt R2 3 = 3e− 2λt − 2e− 3λt

Using the definition of MTTF given by Eq. (3.22) and evaluating the integrals, we have

MTTF2 3 =
3
2λ

−
2
3λ

=
5
6
MTTF

For the rare-event approximation, Eq. (3.154) yields

R2 3 ≈ 1− 3C2 λt 2 = 1− 3 λt 2

(3/5) From Eq. (3.149), we have

R3 5 =
2

n = 0
5Cn 1−R nR5− n = R5 + 5 1−R R4 + 10 1−R 2R3

Thus,

R3 5 = 10R3 − 15R4 + 6R5 = 10e− 3λt − 15e− 4λt + 6e− 5λt

and we can again apply Eq. (3.22) to obtain

MTTF3 5 =
10
3λ

−
15
4λ

+
6
5λ

=
47
60

MTTF

For the rare-event approximation, Eq. (3.154) yields

R3 5 ≈ 1− 5C3 λt 3 = 1− 10 λt 3

Increased number of voting components decreases the systemMTTF. However, at short times the
rare-event approximations indicated that the reliability is increasingly close to 1. For example with
λt = 0.1, we have
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R1/1≈ 0.90, R2/3≈ 0.97, and R3/5≈ 0.99
Finally, it should be noted that in an electronic system, transient faults, which may last only a

fraction of a second, are expected to occur more frequently than “hard” irrecoverable failure. Thus,
in voting systems, software is often included to test for transient faults and restart the computer
once the fault is corrected. If this is not done, the failure probability may be too large even if three
or more faults must occur before the system will fail. In this case, the failure mode is referred to as
“exhaustion of spares.” Conversely, if the testing to determine whether a correctable fault or an
irreparable failure has taken place takes a significant length of time, there is a small possibility that
a fault will cause a second computer to malfunction before the spare can be switched in. The system
is then said to have a fault handling or switching failure. The achievement of very small failure
probabilities in systems such as shown in Figure 3.16 often hinges on balancing the gains and losses
incurred with the use of such sophisticated fault-handling systems.

3.11 Redundancy in Complex Configurations

Systems may take on a variety of complex configurations. In what follows we examine the analysis
of redundancy in two classes of systems: those that may be analyzed in terms of series and parallel
configurations, and those in which the components are linked in such a way that they cannot. For
brevity, we primarily treat configurations involving only active-parallel units. However, with
proper care the analysis can be extended to systems containing standby configurations.

Series–Parallel Configurations

As long as a system can be decomposed into series and parallel subsystem configurations, the tech-
niques of the preceding sections can be employed repeatedly to derive expressions for system reli-
ability. As an example, consider the RBD shown for a system in Figure 3.17. Components a1
through a4 have reliability Ra, and components b1 and b2 have reliability Rb. For the following anal-
ysis to be valid, the failures of the components must be independent of one another.

...

...

...

...

N + S
functional

units

M1

M2

M3

MN + S

Disagreement
detector

Control
lines

N

Voter

Switch
Select

N out of
(N + S)

Voter-Switch-Detector (VSD)

Voted
output

Figure 3.16 Basic organization of a hybrid redundant system. Source: From Elkind (1982).
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We begin by noting that there are two sets of subsystems with type a components, consisting of a
simple parallel configuration as shown in Figure 3.18a. Thus, we define the reliability of these con-
figurations as

RA = 2Ra −R2
a 3 180

The system configuration then appears as the reduced block diagram shown in Figure 3.18b. We
next note that each newly defined subsystem A is in series with a component of type b. We may
therefore define a subsystem B by

RB = RARb 3 181

and the reduced block diagram then appears as in Figure 3.18c. Since the two subsystems B are in
parallel, we may write

RC = 2RB −R2
B 3 182

b1

b2

a1

a2

a3

a4

c

Figure 3.17 Reliability block diagram of a
series–parallel configuration.
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b2

a1

a2

a3

a4
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(b)

A

A

B

B

c

A

A

b1

b2

c

(c)
(d)

C

C c

B

B

c

Figure 3.18 Decomposition of the system in Figure 3.17.
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to yield the simplified configuration shown in Figure 3.18d. Finally, the total system consists of the
series of subsystems C and component c. Thus,

R = RCRc 3 183

Having derived an expression for the system reliability, we may combine Eqs. (3.180) through
(3.183) to obtain the system reliability in terms of that of Ra, Rb, and Rc

R = 2Ra −R2
a Rb 2− 2Ra −R2

a Rb Rc 3 184

Standby configurations can also be included within series–parallel configurations. Suppose that
components a1 and a2 are in a 1/2 standby configuration, and that components a3 and a4 are in the
same configuration. In the constant failure rate approximation, we would simply replace RA by Rs,
given by Eq. (3.105), and proceed as before. We would obtain, instead of Eq. (3.184),

R = RsRb 2−RsRb Rc 3 185

Example 3.19 Suppose that in Figure 3.15, Ra = Rb = e−λ≡ R∗ and Rc= 1. Find R in the rare-event
approximation.

Solution We simplify Eq. (3.184),

R = R2
∗ 2−R∗ 2− 2−R∗ R2

∗

and write it as a polynomial in R∗:

R = 4R2
∗ − 2R3

∗ − 4R4
∗ + 4R5

∗ −R6
∗

Then, we expand RN
∗ = e−Nλt 1−Nλt + 1

2N
2 λt 2

− to obtain for small λt

RN
∗ 4 1−2λt+2 λt 2

−2 1−3λt+
9
2
λt 2

−4 1−4λt+8 λt 2 + 4 1−5λt+
1
2
25 λt 2

−1−6λt+18 λt 2+

R 4− 2− 4 + 4− 1 − 8− 6− 16 + 20− 6 λt − − 8 + 9 + 32− 50 + 18 λt 2 +

R 1− λt 2

Had the coefficient of the (λt)2 term also been zero, we would have needed to carry terms in (λt)3.

Linked Configurations

In some situations, the linkage of the components or subsystems is such that the foregoing tech-
nique of decomposing into parallel and series configurations cannot be applied directly. Such is the
case for the system configuration shown in Figure 3.19, consisting of subsystem types 1, 2, and 3,
with reliabilities R1, R2, and R3.

1a

1b 2b

2a 3a

3b

Figure 3.19 Reliability block diagram of a cross-linked system.
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To analyze this and similar systems, we decompose the problem into a combination of series–
parallels by utilizing the total probability rule given in Eq. (2.17):

P Y = P Y X P X + P Y X P X 3 186

Suppose that we let X be the event that subsystem 2a fails. Then, P{X} = 1− R2 and P X = R2. If

we then let Y denote successful system operation, the system reliability is defined as R = P{Y}. Now
suppose that we define the conditional reliabilities that the system function with subsystem 2a
failed as

R− = P Y X 3 187

and with 2a operational as

R + = P Y X 3 188

Inserting these probabilities into Eq. (3.186), we may write the system reliability as

R = R− 1−R2 + R + R2 3 189

We must now evaluate the conditional reliabilities R+ and R−. For R− in which 2a has failed, we
disconnect all the paths leading through 2a in Figure 3.19; the result appears in Figure 3.20a. Con-
versely, for R+ in which 2a is functioning, we pass a path through 2a, thereby bypassing 2bwith the
result shown in Figure 3.20b.
We see that when 2a is failed, the reduced system consists of a series of three subsystems, lb, 2b,

and 3b; subsystems la and 3a no longer make any contribution to the value of R−. We obtain

R− = R1R2R3 3 190

When 2a is operating, we have a series combination of two parallel configurations, la and lb in the
first and 3a and 3b in the second; since component 2b is always bypassed, it has no effect on R+.
Therefore, we have

R + = 2R1 −R2
1 2R3 −R2

3 3 191

Finally, substituting these expressions into Eq. (3.189), we find the system reliability to be

R = R1R2R3 1−R2 + 2R1 −R2
1 2R3 −R2

3 R2 3 192

Example 3.20 Evaluate Eq. (3.192) in the rare-event approximation with Rn = e−λt for all n.

Solution Let R∗ =Rn. Then, Eq. (3.192) becomes R = R3
∗ 1−R∗ + 2R∗ −R2

∗
2
R∗ . Writing this

expression as a polynomial in R∗, we have R = 5R3
∗ − 5R4

∗ + R5
∗ . Now we expand RN

∗ =

e− λt = 1−Nλt + 1 2N2 λt 2
− to obtain:

R = 5− 15λt + 1 245 λt 2
−

− 5 + 20λt + 1 280 λt 2 +

+ 1− 5λt + 1 225 λt 2
−

1a

1b 2b

3a

3b

1a

1b 2b

3a

3b

(a) (b)

Figure 3.20 Decomposition of the system in Figure 3.19.
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Hence,

R = 1− 5 λt 2 +

If the (λt)2 term were zero, we would need to carry the (λt)3 term in the expansion.
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Exercises

3.1 The PDF for the time to failure of an appliance is

f t =
32

t + 4 3 , t > 0

where t is in years
a) Find the reliability of R(t).
b) Find the failure rate λ(t).
c) Find the MTTF.
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3.2 The reliability of a machine is given by

R t = exp − 0 04t− 0 008 t2 t in years

a) What is the failure rate?
b) What should the design life be to maintain a reliability of at least 0.90?

3.3 The failure rate for a high-speed fan is given by

λ t = 2 × 10− 4 + 3 × 10− 6t hour

where t is in hours of operation. The required design-life reliability is 0.95.
a) How many hours of operation should the design life be?
b) If, by preventivemaintenance, the wear contribution to the failure rate can be eliminated,

to how many hours can the design life be extended?
c) By placing the fan in a controlled environment, we can reduce the constant contribution

to λ(t) by a factor of 2. Then, without preventive maintenance, to how many hours may
the design life be extended?

d) What is the extended design life when both reductions from (b) and (c) are made?

3.4 If the CDF for times to failure is

F t = 1−
100

t + 10 2

a) Find the failure rate as a function of time.
b) Does the failure rate increase or decrease with time?

3.5 Repeat Exercise 3.3 but fix the design life at 100 hr and calculate the design-life reliability for
conditions (a), (b), (c), and (d).

3.6 An electronic device is tested for two months and found to have a reliability of 0.990; the
device is also known to have a constant failure rate.
a) What is the failure rate?
b) What is the mean time to failure?
c) What is the design-life reliability for a design life of four years?
d) What should the design life be to achieve a reliability of 0.950?

3.7 A device has a constant failure rate of 0.7/year.
a) What is the probability that the device will fail during the second year of operation?
b) If upon failure the device is immediately replaced, what is the probability that there will

be more than one failure in three years of operation?

3.8 The failure rate on a new brake drum design is estimated to be

λ t = 1 2 × 10− 6 exp 10− 4t

per set, where t is in kilometers of normal driving. Forty vehicles are each test-driven for
15,000 km.
a) How many failures are expected, assuming that the vehicles with failed drives are

removed from the test?
b) What is the probability that more than two vehicles will fail?
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3.9 The failure rate for a hydraulic component is given empirically by

λ t = 0 001 1 + 2e− 2t + et 40 year

where t is in years. If the system is installed at t= 0, calculate the probability that it will have
failed by time t. Plot your results for 40 years.

3.10 A home computer manufacturer determines that his machine has a constant failure rate of
λ= 0.4 year in normal use. For how long should the warranty be set if nomore than 5% of the
computers are to be returned to the manufacturer for repair?

3.11 A one-year guarantee is given based on the assumption that no more than 10% of the items
will be returned. Assuming an exponential distribution, what is the maximum failure rate
that can be tolerated?

3.12 There is a contractual requirement to demonstrate with 90% confidence that a vehicle can
achieve a 100-km mission with a reliability of 99%. The acceptance test is performed by run-
ning 10 vehicles over a 50,000-km test track.
a) What is contractual MTTF?
b) What is the maximum number of failures that can be experienced on the demonstration

test without violating the contractual requirement? (Note: Assume an exponential distri-
bution and review Section 2.5.)

3.13 Suppose that the CDF for time to failure is given by

R t =
1− at2, t < 1 a

0, t > 1 a

Determine the following:
a) the PDF f(t),
b) the failure rate,
c) the MTTF.

3.14 Suppose that amplifiers have a constant failure rate of λ = 0.08/month. Suppose that four
such amplifiers are tested for six months. What is the probability that more than one of them
will fail? Assume that when they fail, they are not replaced.

3.15 A device has a constant failure rate with an MTTF of two months. One hundred of the
devices are tested to failure.
a) How many of the devices do you expect to fail during the second month?
b) Of the devices that survive two months, what fraction do you expect to fail during the

third month?
c) If you are allowed to stop the test after 80 failures, how long do you expect the test to last?

3.16 A manufacturer determines that the average television set is used 1.8 hour/day. A one-year
warranty is offered on the picture tube having an MTTF of 2000 hr. If the distribution is
exponential, what fraction of the tubes will fail during the warranty period?

3.17 Ten control circuits are to undergo simultaneous accelerated testing to study the failure
modes. The accelerated failure rate has previously been estimated to be constant with a
value of 0.04/days.
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a) What is the probability that there will be at least one failure during the first day of
the test?

b) What is the probability that there will be more than one failure during the first week of
the test?

3.18 The reliability of a cutting tool is given by

R t
1− 0 2t 2, 0<t<5

0, t > 5

where t is in hours.
a) What is MTTF?
b) How frequently should the tool be changed if failures are to be held to no more than 5%?
c) Is the failure rate decreasing or increasing? Justify your result.

3.19 A motor-operated valve has a failure rate λ0 while it is open and λc while it is closed. It also
has a failure probability p0 to open on demand and a failure probability pc to close on
demand. Develop an expression for the composite failure rate similar to Eq. (3.46) for
the valve.

3.20 Night watchmen carry an industrial flashlight eight hours per night, seven nights per week.
It is estimated that on the average the flashlight is turned on about 20 min per eight-hour
shift. The flashlight is assumed to have a constant failure rate of 0.08/hour while it is turned
on and 0.005/hour when it is turned off but being carried.
a) In working hours, estimate the MTTF of the light.
b) What is the probability of the light’s failing during one eight-hour shift?
c) What is the probability of its failing during one month (30 days) of eight-hour shifts?

3.21 If waves hit a platform at the rate of 0.4/min and the “memoryless” failure probability is
10–6/wave, estimate the failure rate in days–1.

3.22 The one-month reliability on an indicator lamp is 0.95 with the failure rate specified as con-
stant. What is the probability that more than two spare bulbs will be needed during the first
year of operation? (Ignore replacement time.)

3.23 A part for a marine engine with a constant failure rate has an MTTF of two months. If two
spare parts are carried,
a) What is the probability of surviving a six-month cruise without losing the use of the

engine as a result of part exhaustion?
b) What is the result for part a if three spare parts are carried?

3.24 In Exercise 3.27, suppose that there are three watchmen on duty every night for eight hours.
a) How many flashlight failures would you expect in one year?
b) Assuming that the failures are not caused by battery or bulb wear-out (these are replaced

frequently), how many spare flashlights would be required to be on hand at the begin-
ning of the year, if the probability of running out of spares is to be less than 10%?
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3.25 An electronics manufacture mixes 1000 capacitors with an MTTF of three months and 2000
capacitors with an MTTF of six months. Assuming that the capacitors have constant fail-
ures rates:
a) What is the PDF for the combined population?
b) Use Eq. (3.15) to derive an expression for the failure rate of the combined population.
c) What is the failure rate at t = 0?
d) Does the failure rate increase or decrease with time?
e) What is the failure rate at very long times?

3.26 A servomechanism has an MTBF of 2000 hours with a constant failure rate.
a) What is the reliability for a 125-hour mission?
b) Neglecting repair time, what is the probability that more than one failure will occur dur-

ing a 125-hour mission?
c) That more than two failures will occur during a 125-hour mission?

3.27 Assume that the occurrence of earthquakes strong enough to be damaging to a particular
structure is governed by the Poisson distribution. If the mean time between such earth
quakes is twice the design life of the structure:
a) What is the probability that the structure will be damaged during its design life?
b) What is the probability that it will suffer more than one damaging earthquake during its

design life?
c) Calculate the failure rate (i.e. damage rate due to earthquakes).

3.28 A relay circuit has an MTBF of 0.8 year. Assuming random failures,
a) Calculate the probability that the circuit will survive one year without failure.
b) What is the probability that there will be more than two failures in the first year?
c) What is the expected number of failures per year?

3.29 A logic circuit is known to have a decreasing failure rate of the form

λ t =
1
20

t− 1 2 year

where t is in years.
If the design life is one year, what is the reliability?
If the component undergoes wear-in for one month before being put into operation, what

will the reliability be for a one-year design life?

3.30 The MTBF for punctures of truck tires is 150,000 miles. A truck with 10 tires carries 1 spare.
a) What is the probability that the spare will be used on a 10,000-mile trip?
b) What is the probability that more than the single spare will be required on a 10,000-mile

trip?

3.31 Widgets have a constant failure rate withMTTF= 5 days. Ten widgets are tested for one day.
a) What is the expected number of failures during the test?
b) What is the probability that more than one will fail during the test?
c) For how long would you run the test if you wanted the expected number of failures to

be five?
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Redundancy

3.32 Anonredundant systemwith 100 components has a design-life reliability of 0.90. The system
is redesigned so that it has only 70 components. Estimate the design life of the redesigned
systems, assuming that all the components have constant failure rates of the same value.

3.33 At the end of one year of service, the reliability of a component with a constant failure rate
is 0.95.
a) What is the failure rate (include units)?
b) If two of the components are put in active parallel, what is the one year reliability?

(Assume no dependencies)
c) If 10% of the component failure rate may be attributed to common-mode failures, what

will the one-year reliability be of the two components in active parallel?

3.34 Thermocouples of a particular design have a failure rate of λ = 0.008/hour. How many ther-
mocouples must be placed in active parallel if the system is to run for 100 hours with a sys-
tem failure probability of no more than 0.05? Assume that all failures are independent.

3.35 In an attempt to increase the MTTF, an engineer puts two devices in parallel and tests the
resulting parallel system. The MTTF increases by only 40%. Assuming the device failure rate
is a constant, what fraction of it, β, is due to common-mode failures of the parallel system?

3.36 A disk drive has a constant failure rate and an MTTF of 5000 hours.
a) What will the probability of failure be for one year of operation?
b) What will the probability of failure be for one year of operation if two of the drives are

placed in active parallel and the failures are independent?
c) What will the probability of failure be for one year of operation if the common-mode

errors are characterized by ζ = 0.2?

3.37 Suppose that the design-life reliability of a standby system consisting of two identical units
must be at least 0.95. If the MTTF for each unit is three months, determine the design life
(assume constant failure rates and neglect switching failures, etc.).

3.38 Find the variance in the time to failure, assuming a constant failure rate λ:
a) For two units in series.
b) For two units in active parallel.
c) Which is larger?

3.39 A component has a one-year design-life reliability of 0.9; two such components are placed in
active parallel. What is the one-year reliability of the resulting system:
a) In the absence of common-mode failures?
b) If 20% of the failures are common-mode failures?

3.40 Suppose that the PDF for time to failure for a single unit is uniform:

f t =
1 T 0 < t < T

0 otherwise
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a) Find and plot R(t) for a single unit.
b) Find and plot R(t) for two units in active parallel.
c) Find and plot R(t) for two units in standby parallel.
d) Find the MTTF for parts a, b, and c.

3.41 An amplifier with constant failure rate has a reliability of 0.90 at the end of one month of
operation. If an identical amplifier is placed in standby parallel and there is a 3% switching
failure probability, what will the reliability of the parallel system be at the end of one year?

3.42 Consider the standby system described by Eq. (3.126)
a) Find the MTTF.
b) Show that your result from (a) reduces to Eq. (3.108) as p 0 and λ+ λ.
c) Show that your result from (a) reduces to a single unit MTTF as p 1.
d) Find the rare-event approximation for Eq. (3.126).

3.43 Consider a system with three identical components with failure rate λ. Find the system fail-
ure rate:
a) For all three components in series.
b) For all three components in active parallel.
c) For two components in parallel and the third in series.
d) Plot the results for a, b, and c on the same scale for 0≤ t≤ 5/λ.

3.44 For a 1/2 parallel system with load sharing:
a) Show that λ∗/λ > 1.56 will have a smaller MTTF than a single unit.
b) Find the rare-event approximation for the case where λ∗/λ = 1.56.
c) Using rare-event approximations, compare reliabilities at λt = 0.05 for a single unit, for

λ∗/λ = 1.56 and for λ∗/λ = 1.0.
(d)Discuss your results.

3.45 In a 1/2 active-parallel system each unit has a failure rate of 0.05/day.
a) What is the system MTTF with no load sharing?
b) What is the systemMTTF if the failure rate increases by 10% as a result of increased load?
c) What is the system MTTF if one increases both unit failure rates by 10%?

3.46 An engineer running a 1/2 identical unit system in cold standby finds the switching failure
probability to be 0.2 while the failure rate in standby is negligible. He converts to hot standby
and eliminates the switching failure probability but discovers that now the failure rate of the
unit in standby is 30% of the active unit. As measured by system MTTF, has going from cold
to hot standby improved or degraded the system? By how much?

3.47 Suppose that a system consists of two subsystems in active parallel. The reliability of each
subsystem is given by the Rayleigh distribution

R t = e− t θ 2

Assuming that common-mode failures may be neglected, determine the system MTTF.
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3.48 Repeat Exercise 3.46 assuming that the failure rate of the unit in standby is only 20% of the
active unit.

3.49 The design criterion for the ac power system for a reactor is that its failure probability be less
than 2 × 10−5/year. Off-site power failures may be expected to occur about once in five years.
If the on-site ac power system consists of two independent diesel generators, each of which is
capable of meeting the ac power requirements, what is the maximum failure probability per
year that each diesel generator can have if the design criterion is to be met? If three inde-
pendent diesel generators are used in active parallel, what is the value of the maximum fail-
ure probability? (Neglect common-mode failures.)

3.50 Consider a 1/3 system in active parallel, each unit of which has a constant failure rate λ.
a) Plot the system failure rate λ(t) in units of λ versus λt from λt = 0, to large enough λt to

approach an asymptotic system failure rate.
b) What is the asymptotic value λ(∞)?
c) At what interval should the system be shut down and failed components replaced if there

is a criterion that λ(t) should not exceed 1/3 of the asymptotic value?

3.51 An engineer designs a system consisting of two subsystems in series. The reliabilities are R1

= 0.98 and R2= 0.94. The cost of the two subsystems is about equal. The engineer decides to
add two redundant components. Which of the following would it be better to do?
a) Duplicate subsystems 1 and 2 in high-level redundancy.
b) Duplicate subsystems 1 and 2 in low-level redundancy.
c) Replace the second subsystem with 1/3 redundancy.
d) Justify your answer.

3.52 For a 2/3 system:
a) Express R(t) in terms of the constant failure rates.
b) Find the system MTTF.
c) Calculate the reliability y when λt = 1.0 and compare the result to a single unit and to a

1/2 system with the same unit failure rate.

3.53 Suppose that a system consists of two components, each with a failure rate A, placed in
series. λ redundant system is built consisting of four components. Derive expressions for
the system failure rates
a) for high-level redundancy,
b) for low-level redundancy.
c) Plot the results of a and b along with the failure rate of the nonredundant system for 0 ≤

t ≤ 2/λ.

3.54 Suppose that in Exercise 9.21 one-fourth of the diesel generator failures are caused by
common-mode effects and therefore incapacitate all the active-parallel systems. Under
these conditions what is the maximum failure probability (i.e. random and common-
mode) that is allowable if two diesel generators are used? If three diesel generators
are used?
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3.55 The failure rate on a jet engine is λ = 10−3/hour. What is the probability that more than two
engines on a four-engine aircraft will fail during a two-hour flight? Assume that the failures
are independent.

3.56 The shutdown system on a nuclear reactor consists of four independent subsystems, each
consisting of a control rod bank and its associated drives and actuators. Insertion of any
three banks will shut down the reactor. The probability that a subsystem will fail is 0.2 ×
10–4 per demand. What is the probability per demand that the shutdown system will fail,
assuming that common-mode failures can be neglected?

3.57 Two identical components, each with a constant failure rate, are in series. To improve the
reliability two configurations are considered:
a) for high-level redundancy,
b) for low-level redundancy.
Calculate the system MTTF in terms of MTTF of the system mean time to failure without

redundancy.

3.58 Consider two components with the same MTTF. One has an exponential distribution, the
other a Rayleigh distribution (see Exercise 9.19). If they are placed in active parallel, find the
system MTTF in terms of the component MTTF.

3.59 A radiation-monitoring system consists of a detector, an amplifier, and an annunciator.
Their lifetime reliabilities and costs are, respectively, 0.83 ($1200), 0.58 ($2400), and
0.69 ($1600).
a) How would you allocate active redundancy to achieve a system lifetime reliability

of 0.995?
b) What is the cost of the system?

3.60 For constant failure rates, evaluate RHL and RLL for high- and low-level redundancy in the
rare-event approximation beginning with Eqs. (3.165) and (3.166).

3.61 A system consists of three components in series, each with a reliability of 0.96. A second set
of three components is purchased and a redundant system is built. What is the reliability of
the redundant system (a) with high-level redundancy and (b) with low-level redundancy?

3.62 The identical components of the system below have fail-to-danger probabilities of pd = 10−2

and fail-safe probabilities of ps – 10−1.
a) What is the system fail-to-danger probability?
b) What is the system fail-safe probability?
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3.63 Calculate the reliabilities of the following systems:

0.95 0.90

0.95 0.90

0.98 0.99 0.96

0.95

0.80

0.80

0.95

0.85

(a) (b)

3.64 A device consists of two components in series with a (1/2) standby system as shown. Each
component has the same constant failure rate.
a) What is R(t)?
b) What is the rare-event approximation for R(t)?
c) What is the MTTF?

λ λ

λ

λ

3.65 Calculate the reliability for the following system, assuming that all the component failure
rates are equal. Then, use the rare-event approximation to simplify your result.

3.66 Calculate the reliability, R(t), for the following systems, assuming that all the components
have failure rate λ. Then, use the rare-event approximation to simplify the result.

(a)

(b)
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3.67 Given the following component reliabilities, calculate the reliability of the two systems.

(a) (b)

0.90

0.90

0.99

0.95 0.95

0.950.95

0.90
0.80

0.80

0.80

0.90

0.99

3.68 Calculate the reliabilities of the following two systems, assuming that all the component reli-
abilities are equal. Then, determine which system has the higher reliability.

(a) (b)

3.69 The PDF of the lifetime of an appliance is given by

f t = 0 25te− 0 5t, t ≥ 0

where t is in years, (a) What is the probability of failure during the first year? (b) What is the
probability of the appliances lasting at least five years? (c) If no more than 5% of the appli-
ances are to require warranty services, what is the maximum number of months for which
the appliance can be warranted?
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4

Continuous Distributions – Part 1 Normal and Related
Continuous Distributions

“All business proceeds on beliefs or judgments of probabilities and not just on certainties.”
Source: Charles Eliot

4.1 Introduction

In Chapter 2, probabilities of discrete events, most frequently failures, were discussed. The discrete
random variables associated with such events are used to estimate the number of events that are
likely to take place. In order to proceed further with reliability analysis, however, it is necessary to
consider how the probability of failure depends on a variety of other variables that are continuous:
the duration of operation time, the strength of the system, the magnitudes of stresses, and so on. If
the repeated measurement of such variables is carried out, however, the same value will not be
obtained with each test. These values are referred to as continuous random variables for they can-
not be described with certainty but only with the probability that they will take on values within
some range. In Section 4.2, we first introduce the mathematical apparatus required to describe ran-
dom variables. In Section 4.3, the Empirical cumulative distribution function (Empirical CDF) is
introduced. The Empirical CDF assumes no distribution (sometimes referred to statistical texts as
“nonparametric”). Section 4.4 introduces the simplest “parametric” distribution, the uniform dis-
tribution. The exponential distribution was introduced in Chapter 3, since it was used for most reli-
ability calculations until computers became more generally available in the 1970s. Section 4.5
brings you back to the distribution family most used outside of reliability – the normal distribution
and its associate, the lognormal distribution. The lognormal distribution does have its uses in reli-
ability as well, but only in limited cases, as will be discussed.
In Chapter 5, the Weibull and extreme-value distributions are described in detail.

4.2 Properties of Continuous Random Variables

In this section, we examine some of the important properties of continuous random variables. We
first define the quantities that determine the behavior of a single random variable.We then examine
how these properties are transformed when the variable is changed.
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Probability Distribution Functions

We denote a continuous random variable with bold-faced type as x, and the values that xmay take
on are specified by x, that is in normal type. The properties of a random variable are specified in
terms of probabilities. For example, P{x < x} is used to designate the probability that x has a value
less than x. Similarly, P{a < x < b} is the probability that x has a value between a and b. Two par-
ticular probabilities are most often used to describe a random variable. The first one,

F x = P x ≤ x 4 1

the probability that x has a value less than or equal to x, is referred to as the cumulative distribution
function or CDF for short. The second, the probability that x lies between x and x +Δx as Δx
becomes infinitesimally small, is denoted by

f x Δx = P x ≤ x ≤ x + Δx 4 2

where f(x) is the probability density function, referred to hereafter as the PDF. Since both f(x) and F
(x) are probabilities, they must be greater than or equal to zero for all values of x.
These two functions of x are related. Suppose that we allow x to take on any values−∞ ≤ x≤ ∞.

Then, the CDF is just the integral of the PDF over all x≤ x:

F x =
x

− ∞
f x dx 4 3

We also may invert this relationship by differentiating to obtain

f x =
d
dx

F x 4 4

The probability distributions f(x) and F(x) are normalized as follows: We first note that the prob-
ability that x lies between a and b may be obtained by integration

b

a
f x dx = P a ≤ x ≤ b 4 5

Now, x must have some value between −∞ and +∞. Thus,

P − ∞ ≤ x ≤ ∞ = 1 4 6

The combination of this relationship with Eq. (4.5) with a =−∞ and b =+∞ then yields the
normalization condition

∞

− ∞
f x dx = 1 4 7

Then, setting x = ∞ in Eq. (4.3), we find the corresponding condition on the CDF to be

F ∞ = 1 4 8
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One more function that is often used is the complementary cumulative distribution function or
CCDF, which is defined as

F x = P x > x 4 9

where we use the tilde to designate the complementary distribution, since x> x is the same as x not

≤x. The definition of f(x) and Eq. (4.7) allows us to write F x as

F x =
∞

x
f x dx = 1−

x

− ∞
f x dx 4 10

or combining this expression with Eq. (4.3) yields

F x = 1−F x 4 11

Thus far, we have assumed that x can take on any value −∞≤ x≤+∞. In many situations, we
must deal with variables that are restricted to a smaller domain. For example, time is most often
restricted to 0≤ t≤∞. In such cases, the foregoing relationships may be modified quite simply. For
example, in considering only positive values of time, we have

F t = 0, t < 0 4 12

and therefore for time, Eq. (4.3) becomes

F t =
t

0
f t dt 4 13

Similarly, the condition of Eq. (4.7) becomes

∞

0
f t dt = 1 4 14

In Figure 4.1, the relation between f(t) and F(t) is illustrated for a typical random variable with the
restriction that 0≤ t≤∞. In what follows we retain the ±∞ limits on the random variables, with
the understanding that these are to be appropriately reduced in situations in which the domain of
the variable is restricted.

0.20 1.0

0.8

0.6

0.4

0.2

0.0

0.15

0.10

0.05

0.00

f(
t)

F
(t

)

0 2 4 6 8 10 12 14 16 18
t

0 2 4 6 8 10 12 14 16 18
t

(a) (b)

Figure 4.1 Continuous probability distribution: (a) probability density function (PDF) and (b) the
corresponding cumulative distribution function (CDF).
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Characteristics of a Probability Distribution

Sometimes it is not necessary, or possible, to know the details of the probability density function of a
random variable. In many instances, it suffices to know certain integral properties. The two most
important of these are the mean and the variance.
The mean or expectation value of x is defined by

μ =
∞

− ∞
xf x dx 4 15

The variance is given by

σ2 =
∞

− ∞
x− μ 2f x dx 4 16

The variance is a measure of the dispersion of values about the mean. Note that since the inte-
grand on the right-hand side of Eq. (4.16) is always nonnegative, the variance is always nonnega-
tive. In Figure 4.2, examples are shown of probability density functions with different mean values
and with different values of the variance, respectively.
More general functions of a random variable can be defined. Any function, say g(x), that is to be

averaged over the values of a random variable we write as

E g x =
∞

− ∞
g x f x dx 4 17

The quantity E{g(x)} is referred to as the expected value of g(x). It may be interpreted more pre-
cisely as follows. If we sampled an infinitely large number of values of x from f(x) and calculated g(x)
for each one of them, the average of these values would be E{g}. In particular, the nthmoment of f(x)
is defined to be

E xn =
∞

− ∞
xnf x dx 4 18

With these definitions, we note that E{x0} = 1, and the mean is just the first moment:

μ = E x 4 19

f1(x) f2(x)
f1(x)

f2(x)

(a) (b)

Figure 4.2 Probability density functions. (a) μ1 < μ2, σ1 = σ2. (b) μ1 = μ2, σ1 < σ2.
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Similarly, the variance may be expressed in terms of the first and second moments. To do this,
we write

σ2 = E x− μ 2 = E x2 − 2xμ + μ2 4 20

But since μ is independent of x, it can be brought outside of the integral to yield

σ2 = E x2 − 2E x μ + μ2 4 21

Finally, using Eq. (4.19), we have

σ2 = E x2 −E x 2 4 22

In addition to the mean and variance, two additional properties are sometimes used to charac-
terize the PDF of a random variable, which are the skewness and the kurtosis. The skewness is
defined by

skewness sk =
1
σ3

∞

− ∞
x− μ 3f x dx 4 23

It is a measure of the asymmetry of a PDF about themean. In Figure 4.3 are shown two PDFs with
identical values of μ and σ2, but with values of the skewness that are opposite in sign but of the same
magnitude. The kurtosis, similar to the variance, is ameasure of the spread of f(x) about themean. It
is given by

kurtosis ku =
1
σ4

∞

− ∞
x− μ 4f x dx 4 24

Example 4.1 A lifetime distribution has the form

f t = α e− αt, t ≥ 0 and α > 0

where t is in hours. Find μ and σ2 in terms of α.

Solution:

E t =

∞

− ∞

tf t dt

f1(x) f2(x)

µ1 = µ2, σ1 = σ2 x

Figure 4.3 Probability density functions with skewness
of opposite signs.
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By definition, in this case

E t =

∞

0

t αe− αtdt = t
αe-αt

− α

∞

0
−

∞

0

1
αe-αt

− α
dt

= 0 +

∞

0

e-αtdt =
e-αt

− α

∞

0
=

1
α

Since σ2 = E{t2}− E{t}2:

E t2 =

∞

0

t2αe− αtdt = t2
αe− αt

− α

∞

0
−

∞

0

2t
αe− αt

− α
dt

= 0 +
2
α

∞

0

tαe− αtdt =
2
α
E x =

2
α

1
α

=
2
α2

and therefore,

σ2 = E t2 −E t 2 =
2
α2

−
1
α

2

=
1
α2

and σ = 1/α.

Sample Statistics

The sample statistics treated here are estimates of random variable properties that do not require
the form of the underlying probability distribution to be known. We reconsider estimates for the
mean, variance, skewness, and kurtosis defined above. Suppose that we have a sample of sizeN of a
random variable x. Then, the mean can be estimated with

μ =
1
N

N

i = 1

xi 4 25

and the variance with

σ2 =
1
N

N

i = 1

xi − μ 2 4 26

if the mean is known. If the mean is not known, but must be estimated from Eq. (4.25), then the
variance is increased to

σ2 =
1

N − 1

N

i = 1

xi − μ 2 4 27

The same technique which is applied to Eq. (4.20) may be employed to rewrite the variance as

σ2 =
N

N − 1
1
N

N

i = 1

x2i −
1
N i

xi

2

4 28
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The estimators for the skewness and kurtosis are, respectively:

sk =

1
N

N

i = 1
xi − μ 3

1
N

N

i = 1
xi − μ 2

3 2
, ku =

1
N

N

i = 1
xi − μ 4

1
N

N

i = 1
xi − μ 2

2 4 29

These sample statistics are said to be point estimators because they yield a single number, with no
specification as to howmuch in error that number is likely to be. They are unbiased in the following
sense. If the same statistic is applied over and over to successive sets ofN data points drawn from the
same population, the grand average of the resulting values will converge to the true value as the
number of data sets goes to infinity. In Section 4.6, the precision of point estimators is characterized
by confidence intervals. Unfortunately, with the exception of the mean, given by Eq. (4.25), con-
fidence intervals can only be obtained after the form of the distribution has been specified.

Transformations of Variables

Frequently, in reliability considerations, the random variable for which data are available is not the
one that can be used directly in the reliability estimates. Suppose, for example that the distribution
of speeds of impact f(v) is known for a mechanical snubber. If the wear on the snubber, however, is
proportional to the kinetic energy, e = 1

2 mv2, the energy is also a random variable, and it is the
distribution of energies fe(e) that is needed. Such problems are ubiquitous, for much of the engi-
neering analysis is concerned with functional relationships that allow us to predict the value of
one variable (the dependent variable) in terms of another (the independent variable).
To deal with situations such as the change from speed to energy in the foregoing example, we

need a means for transforming one random variable to another. The problem may be stated more
generally as follows. Given a distribution fx(x) or Fx(x) of the random variable x, find the distribu-
tion fy(y) of the random variable y that is defined by

y = y x 4 30

We then refer to fy(y) as the derived distribution. Hereafter, we use subscripts x and y to distin-
guish between the distributions whenever there is a possibility of confusion. First, consider the case
where the relation between y and x has the characteristics shown in Figure 4.4; that is, if x1 < x2,
then y(x1) < y(x2). Then, y(x) is a monotonically increasing function of x; that is, dy/dx > 0. To carry
out the transformation, we first observe that

P x ≤ x = P y ≤ y 4 31

y(
x)

x

Figure 4.4 Function of a random variable x.
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or simply

Fx x = Fy y 4 32

To obtain the PDF fy(y) in terms of fx(x), we first write the preceding equation as

x

− ∞
f x x dx =

y x

− ∞
f y y dy 4 33

Differentiating with respect to x, we obtain

f x x = f y y
dy
dx

4 34

or

f y y = f x x
dx
dy

4 35

Here, we have placed an absolute value about the derivative. With the absolute value, the result
can be shown to be valid for either monotonically increasing or monotonically decreasing
functions.
The most common transforms are of the linear form

y = ax + b 4 36

and the foregoing equation becomes simply

f y y =
1
a

f x
y− b
a

4 37

Note that once a transformation has been made, new values of the mean and variance must be
calculated, since in general

g x f x x g y f y y 4 38

Example 4.2 Consider the distribution fx(x) = αe–αx, 0 ≤ x≤∞, α > 1.

a) Transform to the distribution fy(y), where y = ex.
b) Calculate μx and μy

Solution:

a) dy/dx = ex; therefore, Eq. (4.35) becomes fy(y)= e–x fx(x). We also have x = ln y. Therefore,

f y y = e− ln yαe− α ln y =
α

yα + 1
, 1 ≤ y ≤ ∞

b) μx =
∞
0 xαe− αxdx = 1

α ,

μy =
∞
1 yαy− α + 1 dy = α

α− 1
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4.3 Empirical Cumulative Distribution Function (Empirical CDF)

Suppose that we have five lab-accelerated life failures (time in minutes): 90, 96, 30, 49, 82.
We can plot these five failures as probability vs time if we do the following: Rank all the failures

by ordering the times from smallest to largest and then estimate the probability of failure:

F t = ri N , where ri is the rank of the failure, e g 1, 2, 3, andN

For our data sample, we then have (Table 4.1):
Plotting probability of failure vs failure time, we have a “step function,” which is represented in

Figure 4.5. The mean and standard deviation/variance are calculated as

μ = 1
N

i = N

i = 1
Xi, sample variance, s2 = 1

N − 1

i = N

i = 1
Xi − μ 2, and sample standard deviation,

s =
1

N − 1

i = N

i = 1

Xi − μ 2

100
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60

40

20

0

30 40 50 60 70 80 90 100
Failure time (MIN)

P
er

ce
nt

Empirical CDF of Failure time (MIN)

Figure 4.5 Empirical CDF of lab data.

Table 4.1 Five lab-accelerated life failures plotted.

Failure number Rank Probability of failure Failure time (min)

1 1 0.2 30

2 2 0.4 49

3 3 0.6 82

4 4 0.8 90

5 5 1 96

4.3 Empirical Cumulative Distribution Function (Empirical CDF) 117



Example 4.3 We have a sample of data frommanufacturing, 16 times to failure (TTF) in terms of
holes drilled by a drill bit (Table 4.2).
The 16 failures, along with the rank and calculated probability of failure, are listed in the table.
The empirical CDF is in Figure 4.6:

Table 4.2 Manufacturing data.

Rank Time to failure Prob = 1/N

1 450 0.0625

2 450 0.125

3 700 0.1875

4 700 0.25

5 900 0.3125

6 900 0.375

7 900 0.4375

8 1100 0.5

9 1400 0.5625

10 1400 0.625

11 1400 0.6875

12 1800 0.75

13 1800 0.8125

14 2050 0.875

15 2200 0.9375

16 2700 1
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20
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TTF

P
er

ce
nt

Empirical CDF of TTF

Figure 4.6 Manufacturing drill bit failures.
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With sample statistics:

Variable N Mean St. Dev

TTF 16 1303 661

Example 4.4 The empirical CDF and the histogram of failures are shown in Figure 4.7.
The empirical CDF shows that failures increase until about 600 hours and then level off until

about 1000 hours and then increase again (Table 4.3). The histogram of failures shows that same
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Figure 4.7 Empirical CDF and the histogram of part failures.
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“valley” between 600 and 1000 hours. These two plots should give the engineering team some ideas
of where to look for the cause of the leveling off. Some ideas: two different usages, two different
locations, two different failure modes?

4.4 Uniform Distribution

The next step in “complexity” is the uniform distribution.
A uniform distribution is used to model events that have equal probability over all possible

responses.
If X has a uniform distribution on the interval (a, b), then X has the pdf (probability density func-

tion) (Figure 4.8):

f x =
1

b− a
for a < x < b

= 0 elsewhere
4 39

The CDF of the uniform distribution is:

F x =

0 for 0 < x < a
x− a
b− a

for a < x < b

0 for b < x

4 40

The mean of the uniform distribution is equal to:

μ =
a + b
2

4 41

and

Table 4.3 31 failures of a compressor part have been reported from the field.

107.3 192.9 319.8 394.5 708.8 1154.7 1276.6 1381.4

147.2 197.7 328 459.2 952.8 1162.7 1280.5 1478.1

179.1 247.5 359.7 492.1 1067.4 1163.2 1305.1 1527.6

184.5 294.8 361.5 533.8 1126.1 1199 1361.3

a b

Figure 4.8 Uniform distribution.
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Variance σ2 =
b− a 2

12
4 42

StandardDeviation =
b− a 2

12
4 43

And the probability of an observation falling if any interval (x, y) is equal to:

P a ≤ x ≤ b =
y− x
b− a

4 44

Example 4.5 The hardness of a certain alloy (measured on the Rockwell scale) is a random
variable X with a uniform distribution from 55 to 80.
A. What is the probability density function for X?
Ans: f(x) = 1/(b − a) = 1/(80–55) = 1/25
B. Calculate μ and σ2

Ans: μ =
a + b
2

=
55 + 80

2
= 67 5, σ2 =

b− a 2

12
=

80− 55 2

12
=

25

2 3
or 7 22

C. What is the probability X is between 65 and 75?

Ans: P 65 ≤ x ≤ 75 =
75− 65
80− 55

=
10
25

= 0 4

D. What is the median hardness?
XMed

55

1
25

dx = 0 50
X
25

XMed

55
= 0 5

XMed

25
−

55
25

= 0 5 XMed = 25 0 5 + 55 = 67 5

Ans:
The median and mean of this symmetric distribution are equal

Example 4.6 The daily use of jet fuel at a fighter base varies between 35,000 and 150,000 gallons.
What is the probability the base will use more than 100,000 gallons on any day?

Ans: P 100, 000 ≤ x ≤ 150, 000 =
150, 000− 100, 000
150, 000− 35, 000

= 0 435

Example 4.7 We need to do a worst case study of the effect of the four parameters (Figure 4.9):

Nominal max bending stress =
6WL

BH2 = 96 ksi

L = 8.0 in

B = 0.5 in

W = 10 Ib

H = 0.1 in

Figure 4.9 A cantilever beam supports an 10-lb load.
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Material yield stress = 140 ksi

Margin = 1−
96
140

× 100 = 31

Since 171.2 ksi exceeds the material yield stress, a redesign is in order.
Ans: See Figure 4.10.

Another very important use of the uniform distribution is in the generation of random numbers,
which we will cover in the Section 5.4 (Risk Analysis) and Chapter 11 (Safety Analysis) when we
give examples of using Monte Carlo simulation.

4.5 Normal and Related Distributions

Continuous random variables find extensive use in reliability analysis for the description of survival
times, system loads and capacities, repair rates, and a variety of other phenomena. Moreover, a sub-
stantial number of standardized probability distributions are employed to model the behavior of
these variables. For the most part we introduce these distributions as they are needed for model
reliability phenomena in the following chapters. We introduce here the normal distribution and
the related lognormal and Dirac delta distributions, for they appear in a variety of different contexts
throughout the book.
As will be mentioned in Chapter 5, while the Weibull distribution can fit approximately 95% (the

author’s experience over 45 years of reliability analysis) of failure data well, the lognormal is a reli-
ability distribution that will sometimes fit a set of failure data better than the Weibull. The lognor-
mal distribution can be derived from the “proportional-effect theory.” The proportional effect
theory of failure states that the crack growth between any two stages Xi− Xi− 1 of a sequence of
crack sizes X1 < X2 < Xn is proportional to the crack size Xi− 1 of the preceding stage for all stages.
From this proportional effect theory, the lognormal distribution can be developed.
The normal distribution will, on the other hand, fit very few instances of failure data because it

has a time scale that can go below zero, and hence when fitting life data a negative life is
nonsensical.

•  The Four inputs are known to be uniformly distributed,
    with standard deviations of:

- 0.58 lb for W
- 0.06 inches for L
- 0.012 inches for B
- 0.012 inches for H

Worst case Max Bending Stress = (6*11*8.1)/(0.48*0.82) = 174 KSI 

Nominal = 96 ksi

W = 10 lb L = 8 in

B = 0.5 in H = 0.1 in

0.48 0.120.52 0.08

8.17.9119

Figure 4.10 Illustration of calculation for max bending stress using uniform distribution assumption
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The Normal Distribution

Unquestionably, the normal distribution is the most widely applied in statistics (nonfailure) data. It
is frequently referred to as the Gaussian distribution. To introduce the normal distribution, we first
consider the following function of the random variable x:

f x =
1

2πb
e−

1
2

x− a
b

2

for x, − ∞ ≤ x ≤ ∞ 4 45

where a and b are parameters that we have yet to specify. It may be shown that f(x) meets the con-
ditions for a probability density function. First, it is clear that f(x)≥ 0 for all x. Second, by perform-
ing the integral

∞

− ∞

1

2πb
e−

1
2

x− a
b

2

dx = 1 4 46

it may be shown that the condition on the PDF given by Eq. (4.7) is met. The evaluation of Eq. (4.46)
cannot be carried out by rudimentary means. Rather, the method of residues from the theory of
complex variables must be employed. For convenience, some of the more common integrals invol-
ving the normal distribution are included in Appendix A.
A unique feature of the normal distribution is that the mean and variance appear explicitly as the

two parameters a and b. To demonstrate this, we insert Eq. (4.45) into the definitions of the mean
and variance, Eqs. (4.15) and (4.16). Using the evaluated integrals in Appendix A, we find

μ = x f x dx =
∞

− ∞
x

1

2πb
e−

1
2

x− a
b

2

dx = a 4 47

σ2 = x2 f x dx =
∞

− ∞
x2

1

2πb
e−

1
2

x− a
b

2

dx = b2 4 48

Consequently, we may write the normal PDF directly in terms of the mean and variance as

f x =
1

2πσ
e−

1
2

x− μ
σ

2

− ∞ ≤ x ≤ ∞ 4 49

Similarly, the CDF corresponding to Eq. (4.34) is

F x =
∞

− ∞

1

2πσ
e−

1
2

x − μ
σ

2

dx 4 50

When we use the normal distribution, it is often beneficial to make a change of variables first in
order to express F(x) in a standardized form. To this end, we define the random variable z in terms
of x by

z =
x− μ

σ
4 51

Recalling that PDFs transform according to Eq. (4.35), we have

f z z = f x
dx
dz

=
1

2πσ
e−

1
2

x− μ
σ

2

σ 4 52

which for x = μ+ σz
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f z z
1

2π
exp −

1
2
z2 4 53

This implies that for the reduced variate z, μz = 0 and σ0z = 1

The PDF is plotted in Figure 4.11. Its appearance causes it to be referred to frequently as the bell-
shaped curve. The standardized form of the CDF may also be found by applying Eq. (4.51) to F(x),

F z Φ
x− μ

σ
4 54

where the standardized error function on the right is defined as

Φ z =
1

2π

x

− ∞
e−

1
2ζ

2
dζ 4 55

The integrand of this expression is just the standardized normal PDF. A graph of Φ(z) is given in
Figure 4.12; note that each unit on the horizontal axis corresponds to one standard deviation σ, and
that the mean value is now at the origin. A tabulation of Φ(z) is included in Appendix C. Although
values for z < 0 are included in Appendix C, this is only for convenience, since for the normal dis-
tribution we may use the property f(−z) = f(z) to obtain Φ(−z) from

Φ − z = 1−Φ z 4 56
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–3 –2 –1 –0.67 0.670 1 2 3
x – µ
σ50% of area

68.3% of area

95.6% of area

99.7% of area

0.
39

9

0.
24

2

f(z)

z =

Figure 4.11 Probability density function for a standardized normal distribution.
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Example 4.8 The time to wear out of a cutting tool edge is distributed normally with μ= 2.8 hours
and σ = 0.6 hours.

a) What is the probability that the tool will wear out in less than 1.5 hours?
b) How often should the cutting edges be replaced to keep the failure rate less than 10% of the tools?

Solution: a) P{t< 1.5} = Ft(1.5) = Φ(z), where

z =
t− μ

σ
, z =

1 5− 2 8
0 6

= − 2 1667

From Appendix C: Φ(−2.1667) = 0.0151.
b) P{t < t} = 0.10; Φ(z) = 0.10. −t+ μ = 1.28σ, t = μ− 1.28σ. Then, from Appendix C, z≈−1.28.

Therefore, we have

− t + μ = 1 28σ, t = μ− 1 28σ = 2 8− 1 28 × 0 6 = 2 03 hours

The normal distribution arises in many contexts. It may be expected to occur whenever the ran-
dom variable x arises from the sum of a number of random effects, no one of which dominates the
total. It is widely used to represent measurement errors, dimensional variability in manufactured
goods, material properties, and a host of other phenomena.
A specific illustration might be as follows. Suppose that an elevator cable consists of strands of

wire. The strength of the cable is then

x = x1 + x2 + x3 + … + xN 4 57

where xl is the strength of the ith strand. Even though the PDF of the individual strands xl is not a
normal distribution, the strength of the cable will be given by a normal distribution, provided that
N, the number of strands, is sufficiently large.

–3 –2 –1 –0.67 0.670 1 2 3
x – µ
σ

0.5

0.6

0.7

0.8

0.9

1

0.4

0.3

0.2

0.1

Φ(z)

z =

Figure 4.12 Cumulative distribution function for a standardized normal distribution.
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The normal distribution also has the following property. If x and y are independent random
variables that are normally distributed, then

u = ax + by 4 58

where a and b are constants, is also distributed normally. Moreover, it may be shown that the mean
and variance of u are related to those of x and y by

μu = aμx + bμy 4 59

and

σu
2 = a2σx

2 + b2σy
2 4 60

The same relationships may be extended to linear combinations of three or more random
variables.

Normal Distribution…… Cautions and Warnings!!

Often, the normal distribution is adopted as a convenient approximation, even though there may be
no sound physical basis for assuming that the previously stated conditions are met. In some situa-
tions this may be justified on the basis that it is the limiting form of several other distributions, the
binomial and the Poisson, to name two. More important, if one is concerned only with very general
characteristics and not the details of the shape, the normal distribution may sometimes serve as a
widely tabulated, if rough, approximation to empirical data. One must take care, however, not to
pursue too far the idea that the normal distribution is generally a reasonable representation for
empirical data. If the data exhibit a significant skewness, the normal distribution is not likely to
be a good choice. Moreover, if one is interested in the “tails” of the distribution, where |(x
− μ)/σ| > > 1, improper use of the normal distribution is likely to lead to large errors. Extreme
values of distribution must often be considered when determining safety factors and related phe-
nomena. Distributions appropriate to such extreme-value problems (most notably the Weibull dis-
tribution) are taken up in Chapter 5.

Example 4.9 The Manufacturing floor has given you the following (Table 4.4):
Assuming the data is from a Normal distribution, what is the 0.01(1/100) probability of failure in

terms of holes drilled?
Hint: Do a probability plot of the data

Table 4.4 Drill bit lifetimes for drilling holes through a superalloy,
in terms of number of holes drilled:

54 134 199

55 141 224

60 167 239

99 172 24

127 199
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Solution: Using MINITAB® (Figure 4.13):
OOPS, the 1/100 probability of failure in terms of holes drilled is <0 holes????
This is an illustration of a warning not to assume that the normal distribution will fit failure data.

It seldom does.

Central Limit Theorem

Next, we address a concept that allows us to identify bounds on our reliability parameters and in
general make inferences concerning the populations we are studying.

Statement of the Theorem:

If all possible simple random samples, each of size n, are taken from any population with a mean
μ and a standard deviation σ, the sampling distribution of the sample means (averages) will:

1 Have mean μX = μ

2 Have standard deviation σX =
σ

n
Standard deviation of themean

3 Be approximately normally distributed regardless of the shape

of the parent population normality improves with larger n

How large is large enough? Generally speaking, a sample size of 30 or more is considered to be
large enough for the central limit theorem to take effect. The closer the population distribution is to
a normal distribution, the fewer samples needed to demonstrate the theorem.

Probability plot of holes drilled before failure
Normal

Mean
StDev
N
AD
P-Value

135.3
68.85

14
0.280
0.589

300250200150100500

Holes drilled before failure

99

95

90

80

70
60
50
40
30

10

20

5

1

P
er

ce
nt

Figure 4.13 Normal probability plot of drill bit lifetimes.
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Populations that are heavily skewed or have several modes may require larger sample sizes.
The statement of the central limit theorem can seem quite technical but can be understood if we

think through the following steps.We begin with a simple random sample with n individuals from a
population of interest. From this sample, we can easily form a sample mean that corresponds to the
mean of what measurement we are curious about in our population.
A sampling distribution for the sample mean is produced by repeatedly selecting simple random

samples from the same population and of the same size and then computing the sample mean for
each of these samples. These samples are to be thought of as being independent of one another.
The central limit theorem concerns the sampling distribution of the sample means. We may ask

about the overall shape of the sampling distribution. The central limit theorem says that this sam-
pling distribution is approximately normal. This approximation improves as we increase the size of
the simple random samples that are used to produce the sampling distribution.
The surprising fact is that this theorem says that a normal distribution arises regardless of the

initial distribution. Even if our population has a skewed distribution, which occurs when we exam-
ine things such as manufacturing data, incomes, or people’s weights, a sampling distribution for a
sample mean with a sufficiently large sample size will be normal.
That fact can be illustrated as follows:

Start with a histogram of 1000 samples from a uniform distribution on [0,1], then successively
take 1000 averages of 2 samples from the Uniform sample, then 1000 averages of 5 samples,
1000 averages of 25 samples, and 1000 averages of 100 samples from this same distribution. The
result of drawing histograms of this simulation data is illustrated in Figure 4.14a. Note that as
the number of samples in a mean of 2, then 5, then 25, and then 100 are approaching the mean
of the original distribution, 0.5 (Figure 4.14a). In addition, the more samples that are averaged
are giving a smaller variation around the mean. This simulation exercise illustrates the CLT.
In considering the above uniform distribution of 1000 averages of 100, redrawing the histogram

and marking off 1σ, 2σ, and 3σ areas illustrates the standard deviation of the mean (Figures 4.14b
and Figure 4.14c):

Using CLT, σ100 =
σorig

100
=

0 29
10

= 0 029

Central Limit Theorem in Practice

Just a little work with some real-world data shows that outliers, skewness, multiple peaks, and
asymmetry show up quite routinely. The use of an appropriate sample size and the central limit
theorem help us to get around the problem of data from populations that are not normal.
Thus, even though we might not know the shape of the distribution where our data comes from,

the central limit theorem says that we can treat the sampling distribution as if it were normal. Of
course, in order for the conclusions of the theorem to hold, we do need a sample size that is large
enough. We use the central limit theorem in later chapters to explain confidence intervals on var-
ious reliability parameters as well as on comparing population parameters for differences.

The Lognormal Distribution

As indicated earlier, if a random variable x can be expressed as a sum of the random variables, xi, i=
1, 2,…,Nwhere no one of them is dominant, then x can be described as a normal distribution, even
though the xl are described by normal distributions that may not even be the same for different
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Figure 4.14a Demonstration of the central limit theorem using the uniform distribution.



values of i. A second frequently arising situation consists of a random variable y that is a product of
the random variables yl:

y = y1y2…yn 4 61

For example, the wear on a system may be proportional to the product of the magnitudes of the
demands that have been made on it. Suppose that we take the natural logarithm of Eq. (4.61):

ln y = ln y1 + ln y2 + … + ln yn 4 62
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Figure 4.14b Demonstration of the mean and standard deviation of the original to 1000 averages of 100.
Where original Uniform distribution μ = 0.477, σ = 0.29, and 1000 averages of 100 from the Uniform Distribution
μ = 0.500, σ = 0.029.
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The analogy to the normal distribution is clear. If no one of the terms on the right-hand side has a
dominant effect, then In y should be distributed normally. Thus, if we define

x ln y 4 63

then x is distributed normally, and y is said to be distributed lognormally.
To obtain the lognormal distribution for y, we first write the normal distribution for x,

f x x =
1

2πσx
e−

1
2

x− μx
σx

2

− ∞ ≤ x ≤ ∞ 4 64

where μx is the mean value of x, and σ2x is the variance of the distribution in x. Now suppose that we
let x be the natural logarithm of the variable y. In order to find the PDF in y,we must transform the
distribution according to Eq. (4.35):

f y y = f x x
dx
dy

4 65

Noting that

dx
dy

=
d
dy

ln y =
1
y

4 66

and using x = ln y to eliminate x from Eqs. (4.64) and (4.65), we obtain the PDF:

f y y =
1

2πωy
e
− 1

2ω2
ln y

y0

2

4 67

where we have made the replacements

μx = ln y0; σx = ω 4 68
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Figure 4.14c Demonstration of the standard deviation of 1000 averages of 100 from −3σ to +3σ.
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The corresponding CDF is obtained by integrating over y with a lower limit of y = 0. The results
can be expressed in terms of the standardized normal integral as

Fy y = Φ
1
ω

ln
y
y0

4 69

The PDF and the CDF for the lognormal distribution are plotted as a function of y in Figure 4.15.
Note that for small values of ω, the lognormal and normal distributions have very similar
appearances.
The mean of the lognormal distribution may be obtained by applying Eq. (4.15) to Eqs. (4.67)

and (4.68):

μy = y0e
ω2
2 = eμx e

σx2

2 = eμx +
σx 2

2 4 70

Note that it is not equal to the parameter y0 for which the distribution is a maximum. On the
contrary, y0 may be shown to be the median value of y. Similarly, the variance in y is not equal to
ω but rather is

σy
2 = y0

2eω
2
eω

2
− 1 = e2μx + σ2x eσ

2
x − 1 4 71

Lognormal distributions are widely applied in reliability engineering to describe failures caused
by fatigue, uncertainties in failure rates, and a variety of other phenomena. It has the property that
if variables x and y have lognormal distributions, the product random variable z = xy is also log-
normally distributed.
The lognormal distribution also finds use in the followingmanner. Suppose that the best estimate

of a variable is y0, and there is a 90% certainty that y0 is known within a factor of n. That is, there is a
probability of 0.9 that it lies between y0/n and y0n, where n > 1. We then have

0 05 =
− 1

ω ln n

− ∞

1

2πωy
e
− 1

2ω2
ln y

y0

2

dy 4 72
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Figure 4.15 The lognormal distribution: (a) probability density function (PDF) and (b) cumulative distribution
function (CDF).
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With the change of variables ζ = (1/ω) ln (y/y0), Eq. (4.72) may be written as

0 05 =
− 1

ω ln n

− ∞

1

2π
e−

1
2ω2

ζ2dζ 4 73

This integral is the CDF for the standardized normal distribution, given by Eq. (4.55). Thus,
we have

0 05 = Φ −
1
ω

lnn 4 74

where Φ is the standardized normal CDF. Similarly, it may be shown that

0 95 = Φ +
1
ω

lnn 4 75

From the table in Appendix C it is seen that the argument for which Φ = 0.05 or 0.95 is 1.645.
Thus, we have

1
ω

ln n = 1 645 4 76

Therefore, the parameter ω is given by

ω =
lnn
1 645

4 77

With y0 and ω determined, the μy can be determined from Eq. (4.70).

Example 4.10 Fatigue life data for an industrial rocker arm is fit to a lognormal distribution. The
following parameters are obtained: y0 = 2 × 107 cycles, ω= 2.4. (a) To what value should the design
life be set if the probability of failure is not to exceed 1.0%? (b) If the design life is set to 1.0 × 106

cycles, what will the failure probability be?
Solution: (a) Let y be the number of cycles for which the failure probability is 1%. Then, from

Eq. (4.69), we have

0 01 = Fy y = Φ
1
2 3

ln
y

2 × 107

From Appendix C, we find

Φ − 2 32 ≈ 0 01

Thus,

− 2 32 =
1
2 3

In
y

2 × 107
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and
y = 2 × 107 exp − 2 32 × 2 3

= 9 63 × 104 cycles

(b) In Eq. (4.69), we have

z
1
ω

ln
y
y0

=
1
2 3

ln
106

2 0 × 107

= − 1 302

From Appendix C, Φ(−1.302) ≈ 0.096 so that
Fy(y) = 0.096 probability of failure.

Log Normal Distribution from a Physics of Failure Perspective

The log normal models a process where the time to failure results from a multiplication of effects.
Progressive deterioration will be log normal. For example, a crack grows rapidly with high stress
because the stress grows progressively as the crack grows (in other words, if the crack growth rate
increases with the size of the crack, that failure phenomenon can be modeled by the lognormal
distribution). See also Ireson (1966), pp. 2–8.
On the other hand, if the crack growth is linear with time as it may be in a low stress area, the

Weibull distribution (Chapter 5) will be more appropriate.

Example 4.11 Jet engine turbine cover plate cracking. After a cover plate cracking failure mode
appeared in the field, the physics of failure suggested a redesign of the cover plate. This redesign was
lab tested on 20 redesigned cover plates (cycles to failure in the table) (Table 4.5):
The 1800 cycle probability of failure is desired.
Solution: Using MINITAB and producing a log-normal probability plot (Figure 4.16).

Example 4.12 M60 torsion bar test data (Table 4.6)
Torsion bar life has been shown to be lognormally distributed. Using data in the table to the right:

Find the median and 1/1000 life.
Find median life and 1/1000 life of this data.
Note: Example taken from AMMRCTR85-18, “Reliability and Life Prediction Methodology –

M60 Torsion Bars.” AD-A159 197, June 1985.
Solution: See Figure 4.17.

Table 4.5 Cover plate cracking lab data.

1989 2979 3853 5716

2160 3016 3916 5984

2569 3283 4294 6378

2758 3294 4462 6556

2813 3503 5178 7000

Source: Data from USAF Weibull Analysis Handbook, AFWAL-TR-83-2079, pp. 135–137.
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4.6 Confidence Intervals

Point and Interval Estimates

The mean, variance, and other sample statistics introduced in Section 4.2 are often referred to as
nonparametric point estimators. They are nonparametric because they may be evaluated without
knowing the population distribution from which the sample was drawn, and they are point esti-
mators because they yield a single number. Point estimates can also be made for the parameters
of specific distributions, for example the shape and scale parameters of a Weibull distribution (dis-
cussed in Chapter 6). The corresponding interval estimates, which provide some level of confidence
that a parameter’s true value lies within a specified range of the point estimate, occupy a pivotal
place in statistical analysis.
We begin our examination of interval estimates by expressing the sample static properties in

terms of the probability concepts developed above. Suppose that we want to estimate a property
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Figure 4.16 The probability of failure by ~1760 cycles is 0.02 (i.e. 2% of the cover plate population are
predicted to be cracked by 1800 cycles). Source: Adapted from Abernethy et al. (1983).

Table 4.6 M60 torsion bar life data(cycles).

362,016 195,863 201,169 142,939 125,955

207,889 147,773 331,606 131,890 183,740

186,849 270,778 123,325 137,765

181,344 239,396 219,715 221,500

310,785 271,990 156,315 248,754
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θ, where θ might be the mean, variance, or skewness, or a parameter associated with a specific dis-

tribution. The estimator θ is itself a random variable with the sampling variability characterized by

a PDF, referred to as a sampling distribution. Let the sampling distribution be denoted by f θ θ If

we repeatedly form θ from samples of size N, and make a histogram of the values of θ, after many

trials the sampling distribution f θ θ will emerge. A sketch of a typical sampling distribution is

provided in Figure 4.18a. If the estimator is unbiased, then E θ = θ, which is to say that the mean

value of the sampling distribution is the true value of θ:

∞

− ∞
θ f θ θ dθ = θ 4 78
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Figure 4.17 The median life is exp(12.2) = 198,789 cycles and 1/1000 life ~74,300 cycles (reading off the
plot). Source: Adapted from Barsoum et al. (1985).
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Figure 4.18 Sampling distribution.
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Along with the value of the point estimate θwe would like to gain some idea of its precision. For

this, we calculate a confidence interval as follows. Suppose that we pick a value θ +A on the θaxis in

Figure 4.18b such that the probability that θ ≤ θ + A is 1− α/2, where α is typically a small number
such as 1% or 5%. This condition may be written in terms of the sampling distribution as

P θ ≤ θ + A =
θ + A

− ∞
f θ θ dθ = 1− α 2 4 79

As shown in Figure 4.18b, the area under the sampling distribution to the right of θ + A is α/2.
Rearranging the inequality on the left, we have

P θ−A ≤ θ =
θ + A

− ∞
f θ θ dθ = 1− α 2 4 80

Likewise, if we choose a value B such that the probability that θ ≥ θ−B is 1 – α/2, we obtain

P θ ≥ θ−B =
∞

θ−B
f θ θ dθ = 1− α 2, 4 81

and as indicated in Figure 4.18b, the area under the sampling distribution to the left θ − B is also
α/2. Rearranging the inequality on the left, we have

P θ ≤ θ + B =
∞

θ−B
f θ θ dθ = 1− α 2 4 82

The probability that θ−B ≤ θand θ ≤ θ + A is just the area 1− α under the central section of the
sampling distribution, or

P θ−A < θ ≤ θ + B =
θ + A

θ−B
f θ θ dθ = 1− α 4 83

The lower and upper confidence limits for estimates based on a sample size N are defined as

Lα 2,N = θ−A 4 84

and

Uα 2,N = θ + B 4 85

respectively. Hence, the 100(1 − α)% two-sided confidence interval is

P Lα 2,N ≤ θ ≤ Uα 2,N = 1− α 4 86

We must be specific about the preceding probability statements, for they define the meaning of
confidence intervals. Equation (4.87) may be understood with the aid of Figure 4.19 as follows. Sup-

pose that a large number of samples each of sizeN are taken, and θ, Lα/2,N, andUα/2,N are calculated
for each sample. These three quantities are random variables and in general will be different for
each sample. In Figure 4.19, we have plotted them for 10 such samples. If Lα/2,N and Uα/2,N define
the 90% confidence interval, then for 90% of the samples of size N the true value of θ will lie within
the intervals indicated by the solid vertical lines. Conversely, there is an α = 0.1 risk that the true
value will lie outside of the confidence interval. For brevity, we frequently suppress the subscripts
in Eqs. (4.84) and (4.85) and denote the lower and upper confidence limits by θ−≡ Lα/2, N and
θ+≡Uα/2,N.
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For the foregoing methodology to be applied to the computation of the confidence interval for a

particular parameter, the properties of the corresponding sampling distribution, f θ θ , must be

sufficiently well understood. In this respect, the situation is quite different for the mean, variance,
skewness, and kurtosis, which may be defined for any distribution, and the specific parameters
appearing in the normal, lognormal, Weibull, or other distribution. If the parent distribution is
not designated, then a confidence interval can be determined only for the mean, μ, and then only
if the sample size is sufficiently large, say N > 30. In this situation, the sampling distribution
becomes normal, and as shown in the following subsection, the confidence interval can be
estimated.
As was mentioned in Chapter 2, Section 2.3.4 on binomial confidence intervals, forNp ≥ 5 orN(1

− p) ≥ 5, the normal distribution (Eq. 4.86) can be used to approximate binomial confidence
intervals.
If the parent distribution is known, then the point and interval estimates of the distribution para-

meters become the center of attention. Here, the situation differs markedly depending on whether
N, the sample size, is large. For small or intermediate sample sizes taken from a normal distribution,
the Student’s t and the Chi-squared sampling distributions can be used to estimate the confidence
interval for the mean and variance, respectively. The procedures are covered in elementary statis-
tical texts. The more sophisticated procedures required for other parent distributions are found in
the more advanced statistical literature but are increasingly accessible though statistical software
packages. Large sample sizes, point estimates, and confidence intervals for distribution parameters
may be expressed in more elementary terms; then, the sampling distributions approach the normal
form, enabling the confidence intervals to be expressed in terms of the standard normal CDF. In
subsequent subsections, the results compiled byNelson (1982) are presented for point estimates and
confidence intervals of the normal, lognormal, Weibull, and extreme-value parameters.
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Figure 4.19 Confidence limits for repeated
estimates of a parameter.
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Estimate of the Mean

The sample mean given by Eq. 4.25, in addition to being the most ubiquitous statistic, has a unique
property. An interval estimate is associated with the mean that is independent of the distribution
from which the sample is drawn. Provided the sample size is sufficiently large, say N > 30, the cen-
tral limit theorem provides a powerful result; the sampling distribution f μ μ for μ becomes normal

with a mean of μ and variance σ2/N. Thus,

f μ μ =
N

2πσ
exp −

N
2σ2

μ− μ 2 4 87

Replacing θ with μ in Eq. (4.83), we have

μ + A

μ−B

N

2πσ
exp −

N
2σ2

μ− μ 2 dμ = 1− α 4 88

or with the substitution ξ = N μ− μ σ,

NA σ

− NB σ

1

2π
exp − 1 2ξ

2 dξ = 1− α 4 89

Comparing this integral with the normal CDF given in standard form by Eq. (4.55), we see that

Φ NA σ −Φ − NB σ = 1− α 4 90

The standardized normal distribution is plotted in Figure 4.20. Recall that A is chosen so that the
area under the sampling curve to the right is α/2. We designate z /2 to be the value of the reduced
variate for which this condition holds. Thus, the area to the left of z /2 is given by

Φ zα 2 = 1− α 2 4 91

The symmetry of the normal distribution results in the condition given by Eq. (4.56). Conse-
quently, we also have

Φ − zα 2 = α 2 4 92

Thus, Eq. (4.90) is satisfied if we take

A = B = zα 2σ N 4 93

(1 – α)

α /2α /2

–zα /2 zα /2
0 z

Figure 4.20 Standard normal distribution.
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If we combine these conditions with Eqs. (4.84) and (4.85), and estimate σ from the sample var-
iance given by Eq. (4.28), the 100(1 – α)% two-sided confidence interval for μ is given by

Lα 2,N = μ− zα 2
σ

N
4 94

and

Uα 2,N = μ + zα 2
σ

N
4 95

Some of the more commonly used confidence intervals are 80%, 90%, 95%, and 99%. These cor-
respond to risks of α = 20%, 10%, 5%, and 1%, respectively. The corresponding values of zα/2 may be
found from the CDF for the normal distribution tabulated in Appendix C. They are, respectively:

z0 1 = 1 28, z0 05 = 1 648, z0 025 = 1 96 z0 005 = 2 58

Example 4.13 Find the 90% and the 95% confidence interval for the mean of the failures in
Example 4.3.

Solution: The sample mean and variance obtained in Example 4.3 are μ = 1303 and σ = 661 For

two-sided 90% confidence, Zα/2 = 1.645. Thus, zα 2σ N = 1 645 × 661 4 = 271 8, and thus, from

Eqs. (4.94) and (4.95), μ = 1303 ± 271 8 with 90% confidence. Likewise, for 95% confidence, Zα/

2 = 1.960 and zα 2σ N = 1 960 × 661 4 = 323 9.. Thus, μ = 1303 ± 323 9 with 95% confidence.

To recapitulate, the interval estimate for the mean, μ, is nonparametric in that the distribution
from which the sample of N derives need not be normal. The two-sided confidence limits can be
used for any distribution so long as the variance exists, and N is sufficiently large, usually greater
than N = 30. No distribution-free confidence intervals exist for the variance, skewness, or other
properties.

4.7 Normal and Lognormal Parameters

Since the two parameters appearing in the normal distribution are just the mean and the standard
deviation (i.e. the square root of the variance), the unbiased point estimators are given by Eqs. (4.25)
and (4.27). For N > 30, the central limit theorem is applicable to the mean, and therefore, the con-
fidence interval is given by Eqs. (4.94) and (4.95). The 100(1− α)% two-sided confidence limits
are thus

μ ± = μ ± zα 2
σ

N
4 96

The confidence interval for the standard deviation for N> 30 may be estimated as

σ ± = σ ± zα 2
σ

2 N − 1
4 97
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Example 4.14 Find the point estimate and the 90% confidence interval for the mean and the
standard deviation for the population of resistors coming from supplier 1 in Table 4.7.

Solution: Using MINITAB, we obtain:

Statistics:

Variable

Total

Count Mean St. Dev Variance Minimum Maximum Range

Resistor value 30 49.772 0.756 0.572 48.470 51.870 3.400

Since there are 30 data points, wemay use the expressions for large sample size. For the mean, we
use Eq. (4.96) to obtain

μ = 49 77 ± 1 645 × 0 756 30 = 49 77 ± 0 227

For the standard deviation, we use Eq. (4.97) to obtain

σ = 0 756 ± 1 645 × 0 756 2 × 29 = 0 756 ± 0 163

The CDF of a random variable y that is lognormally distributed is directly related to the standard
normal distribution through the relationship x = ln (y) yielding the CDF

F y = Φ
1
ω

ln y y0 4 98

Here, ln y0, the log mean, is estimated by

ln y0 =
1
N i

ln yi 4 99

or solving for y0 and simplifying

y0 =
i

yi

1 N

4 100

Likewise, we may write

ω2 =
N

N − 1
1
N i

ln yi
2
−

1
N t

ln yi

2

4 101

The 100(1− α)% two-sided confidence limits are similarly obtained by transforming Eqs. (4.96)
and (4.97)

Table 4.7 Resistor data.

48.47 48.84 49.29 49.39 49.52 49.75 49.96 50.44 50.77

48.49 49.14 49.30 49.43 49.54 49.78 50.03 50.57 50.87

48.66 49.27 49.32 49.49 49.69 49.93 50.06 50.70 51.87
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y ±
0 = y0 exp ± zα 2ωN

− 1 2 4 102

and

ω ± = ω ± zα 2
ω

2 N − 1
4 103
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Exercises

4.1 For the PDF

f x =
bx 1− x , 0 ≤ x ≤ 1,

0, otherwise

determine b, μ, and σ.

4.2 Consider the following PDF:

f x = 1 2 0 < x < 2,

= 0 otherwise

Determine the mean and variance.

4.3 A motor is known to have an operating life (in hours) that fits the distribution

f t =
a

t + b 3 , t ≥ 0

The mean life of the motor has been estimated to be 3000 hours.

a) Find a and b.
b) What is the probability that the motor will fail in less than 2000 hours?
c) If the manufacturer wants no more than 5% of the motors returned for warranty service,

how long should the warranty be?

4.4 For a random variable for which the PDF is

f x =

0, x < − 1

A, − 1 < x < 1

0, x > 1

determine (a) A, (b) μ, (c) σ2, (d) sk, and (e) ku.

4.5 Suppose that

F x = 1− e− 0 2x − 0 2xe− 0 2x , 0 ≤ x ≤ ∞

a) Find f(x).
b) Determine μ and σ2.
c) Find the expected value of e–x.

4.6 Repeat Exercise 4.4 for f(x) = A exp (−|x|), − ∞ ≤ x≤ ∞ .

4.7 Suppose that the maximum flaw size in steel bars is given by

f x = 4 xe− 2x , 0 ≤ x ≤ ∞

where x is in microns.

a) What is the mean value of the maximum flaw size?
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b) If flaws of lengths greater than 1.5 μmare detected and the bars rejected, what fraction of
the bars will be accepted?

c) What is the mean value of the maximum flaw size for the bars that are accepted?

4.8 The following PDF has been proposed for the distribution of pit depths in a tailpipe of thick-
ness x0:

f x = A sin h α x0 − x , 0 ≤ x ≤ x0

a) Determine A in terms of α.
b) Determine F(x): the CDF.
c) Determine the mean pit depth. What is the probability that there will be a pit of more than
twice the mean depth?

4.9 The PDF for the maximum depths of undetected cracks in steel piping is

f x =
1
γ

e− x γ

1− e− τ γ
,

where τ is the pipe thickness, and γ = 6.25 mm.

a) What is the CDF?
b) For a 20-mm-thick pipe, what is the probability that a crack will penetrate more than half

of the pipe thickness?

4.10 For a random variable for which the PDF is f(x),−∞≤ x≤∞, find the following in terms of the

moments xn + ∞
− ∞ xn f x dx

a) μ, (b) σ2, (c) sk, and (d) ku.

4.11 Under design pressure, the minimum unflawed thickness of a pipe required to prevent fail-
ure is τ0.

a) Using the maximum crack depth PDF from Exercise 4.9, show that if the probability of
failure is to be less than ε, the total pipe thickness must be at least

τ = γ In 1−
1
ε

eτ0 γ − 1

b) For γ = 6.25 mm and a minimum unflawed thickness of τ0 = 4 cm, what must the total
thickness be if the probability of failure is 0.1%?

c) Repeat part b for a probability of failure of 0.01%.
d) Show that for τ0 γ and ε 1, τ is approximately τ0 + γ In (1/ε).

4.12 Suppose that

f x x =

0, x < 0

1, 0 < x < 1

0, x > 1

a) If y = x2, find fy(y). (b) If z = 3x, find fz(z).
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4.13 Express the skewness in terms of the moments E{xn}.

4.14 The beta distribution is defined by

f x =
1
B
xr− 1 1− x t− r− 1, 0 ≤ x ≤ 1

show

a) that if t and r are integers,

B =
r− 1 t− r− 1

t− 1
,

b) that μ = r/t,
c) that

σ2 =
μ 1− μ

t + 1
=

r t− r
t2 t + 1

d) that if t and rare integers, f(x) may be written in terms of the binomial distribution:

f x = t− 1 Ct− 2
r− 1x

r− 1 1− x t− r− 1

4.15 Transform the beta distribution given in the Exercise 4.14 by

y = a + b− a x, a ≤ y ≤ b

a) Find fy(y) and (b) Find μy.

4.16 A PDF of impact velocities is given by e- υ. Find the PDF for impact kinetic energies E,

where E = 1
2 mυ2

4.17 The tensile strength of a group of shock absorbers is normally distributed with a mean value
of 1000 lb. and a standard deviation of 40 lb. The shock absorbers are proof tested at 950 lb.

a) What fraction will survive the proof test?
b) If it is decided to increase the strength of the shock absorbers (i.e. to increase the mean

strength while leaving the standard deviation unchanged) so that 99% pass the test,
what must the new value of the mean strength be?

c) If it is decided to improve quality control (i.e. to decrease the variance while leaving the
mean strength unchanged) so that 99% pass the test, what must the new value of the
standard deviation be?

4.18 An elastic bar is subjected to a force l. The resulting strain energy is given by

ε = cl2

where c is d/2AE, with d the length of the bar, A the area, and E the modulus of elasticity.
Suppose that the PDF of the force can be represented by standardized normal form fl(l). Find
the PDF f(ε) for the strain energy.
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4.19 The life of a tool bit is normally distributed with

mean: t = 10 hours variance: σ2 = 4 housr2.
What is the L10 of the tool?
(L10 = time at which 10% of the tools have failed.)

4.20 Suppose that

f x x =

0, x < 1

1, 1 < x < 2

0, x > 2

a) if y = ln(x), find the PDF for y. (b) if z = exp(x), find the PDF for z.

4.21 The total load on a building may often be represented as the sum of three contributions: the
dead load d, from the weight of the structure; the live load 1, from human beings, furniture,
and other movable weights; and the wind load w. Suppose that the loads from each of the
sources on a support column are represented as normal distributions with the following
properties:

μd = 6 0 kips

μ1 = 9 2 kips

μw = 4 6 kips

σd = 0 4 kips

σ1 = 1 2 kips

σw = 1 1 kips

Determine the mean and standard deviation of the total load.

4.22 If the strength of a structural member is known with 90% confidence to a factor of 3, to what
factor is it known with (a) 99% confidence? (b) with 50% confidence? Assume a lognormal
distribution.

4.23 Verify Eqs. (4.70) through (4.71).

4.24 The time to fly via a commercial airliner from one airport to another, say from Charlotte,
North Carolina, to Burlington, Vermont, is uniformly distributed. This time may range from
120 minutes to 160 minutes. What is the probability of being on time, i.e. 140 minutes or
sooner?

4.25 Consider the following response time data measured in seconds:

1.48 1.46 1.49 1.42 1.35
1.34 1.42 1.70 1.56 1.58
1.59 1.59 1.61 1.25 1.31
1.66 1.58 1.43 1.80 1.32
1.55 1.60 1.29 1.51 1.48
1.61 1.67 1.36 1.50 1.47
1.52 1.37 1.66 1.44 1.29
1.80 1.55 1.46 1.62 1.48
1.64 1.55 1.65 1.54 1.53
1.46 1.57 1.65 1.59 1.47
1.38 1.66 1.59 1.46 1.61
1.56 1.38 1.57 1.48 1.39
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1.62 1.49 1.26 1.53 1.43
1.30 1.58 1.43 1.33 1.39
1.56 1.48 1.53 1.59 1.40
1.27 1.30 1.72 1.48 1.66
1.37 1.68 1.77 1.62 1.33

Source: Data from Green and Bourne (1972).

Make a normal probability plot of the data. What is the mean and standard deviation?
Does the data seem to follow a normal distribution? Why?

4.26 Fifty measurements of the ultimate tensile strength of wire are given in the accompany-
ing table.

a) Using MINITAB plot the data on a normal probability plot.
b) Repeat (a) as a three-parameter lognormal plot
c) Which seems better? Why? Engineering reasons make you change your mind?

Ultimate tensile strength
103,779 102,325 102,325 103,799
102,906 101,651 105,377 100,145
104,796 105,087 104,796 103,799
103,197 106,395 106,831 103,488
100,872 100,872 105,087 102,906
97,383 104,360 103,633 101,017
101,162 101,453 107,848 104,651
98,110 103,779 99,563 103,197
104,651 101,162 105,813 105,337
102,906 102,470 108,430 101,744
103,633 105,232 106,540 106,104
102,616 106,831 101,744 100,726
103,924 101598

Source: Data from Haugen (1980).

4.27 The following are 16 measurements of circuit delay times in microseconds: 2.1, 0.8, 2.8, 2.5,
3.1, 2.7, 4.5, 5.0, 4.2, 2.6, 4.8, 1.6, 3.5, 1.9, 4.6, and 2.1.
Make a normal probability plot of the data. What is mean and standard deviation and cor-
relation coefficient?

4.28 The following failure times (in days) have been recorded in a proof test of 20 units of a new
product: 2.6, 3.2, 3.4, 3.9, 5.6, 7.1, 8.4, 8.8, 8.9, 9.5, 9.8, 11.3, 11.8, 11.9, 12.3, 12.7, 16.0, 21.9,
22.4, and 24.2.

a) Make a lognormal plot
b) Calculate the sample mean, variance, skewness, and kurtosis for the proof test data

4.29 The times to failure in hours on four compressors are 240, 420, 630, and 1080.

a) Make a lognormal probability plot.
b) Estimate the median time to failure.
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4.30 Use Eqs. (4.94) and (4.95) to estimate the 90% and the 95% confidence intervals for the
mean and for the variance obtained in Exercise 4.27.

4.31 The following times to failure (in days) result from a fatigue test of 10 flanges:
1.66, 83.36, 25.76, 24.36, 334.68, 29.62, 296.82, 13.92, 107.04, and 6.26.

a) Make a lognormal probability plot.

Estimate the factor to which the time to failure is known with 90% confidence.
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5

Continuous Distributions – Part 2 Weibull and Extreme Value
Distributions

The “One Horse Shay”
Now in building of chaises, I tell you what,
There is always somewhere a weakest spot, —

In hub, tire, felloe, in spring or thill,
In panel, or crossbar, or floor, or sill,

In screw, bolt, thoroughbrace, — lurking still,
Find it somewhere you must and will, —
Above or below, or within or without, —
And that’s the reason, beyond a doubt,

A chaise breaks down, but doesn’t wear out.
Source: Oliver Wendell Holmes, Sr, The Deacon’s Masterpiece, 1858. Public Domain.

5.1 Introduction

TheWeibull distribution is used in reliability analysis and reliability engineering to describe failure
modes of “parts.” These parts can be systems, subsystems, modules, down to the piece part level.
While the Weibull distribution is not the only failure distribution available, it has proven to be the
most useful in approximately 95% of the failure studies. Other extreme value distributions will be
discussed later in this chapter for the particular instances where they represent the “physics of fail-
ure” better than the Weibull.

The “Weakest Link” Theory from a Physics-of-Failure Point of View

The “weakest link” theory was originally developed byWaloddiWeibull to describe the tensile frac-
ture of brittle materials. Specifically, due to the randomly distributed material defects (nonhomo-
geneities, inclusions, precipitates, and greater than-grain-size voids) in a material per volume unit,
the theory states that fatigue crack initiates where the most dangerous defect or the weakest link
exists (Weibull 1951). Therefore, a statistical distribution of defects within specimens/components
leads to scatter in the fatigue behavior of the material. When those defects become the fracture ori-
gin, the fatigue failure is triggered by the largest defect. Other necessary assumptions are: (i) the
largest flaw or the weakest link of material provides the crack initiation site, (ii) the size of defects
is small compared with the distance between them (no interaction), and (iii) failure is defined as the
first failure of any element, i.e. a series system (Wormsen and Härkegård 2004; Zhu et al. 2017).
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Waloddi Weibull was a Swedish engineer and scientist who delivered his hallmark paper on this
subject in 1951 (Weibull 1951). He claimed that his distribution, or more specifically his family of
distributions, applied to a wide range of problems. He illustrated this point with seven examples
ranging from the yield strength of steel to the size of adult males born in the British Isles. He
claimed that the (Weibull) function " ... may sometimes render good service." He did not claim that
it always worked or even that it was always the best choice (Weibull 1951).
A few real examples that Weibull analysis can help you solve:

1) A project engineer reports three failures of a component in service during a three-month period.
The Program Manager asks, "How many failures will we have in the next quarter, six months,
and year?" What will it cost? What is the best corrective action to reduce the risk and losses?

2) To order spare parts and schedule maintenance labor, howmany units will be returned to depot
for overhaul for each failure mode month by month next year? The program manager wants to
be 95% confident that he will have enough spare parts and labor available to support the overall
program.

3) A state Air Resources Board requires an automobile fleet recall when any part in the emissions
system exceeds a 4% failure rate during the warranty period. Based on the warranty data, which
parts will exceed the 4% rate and on what date?

4) After an engineering change, howmany units must be tested for how long, without any failures,
to verify that the old failure mode is eliminated or significantly improved with 90% confidence?

5) An electric utility is plagued with outages from superheater tube failures. Based on the inspec-
tion data forecast, the life of the boiler is based on plugging failed tubes. The boiler is replaced
when 10% of the tubes have been plugged due to failure. The cost of an unplanned failure for a
component, subject to a wear-out failure mode, is 20 times the cost of a planned replacement.
What is the optimal replacement interval?

Uses of Weibull and Extreme Value Distributions

•Weibull analysis provides a simple graphical solution (a “plot”). The process consists of plotting a
curve and analyzing it (Figure 5.1). Figure 5.1 illustrates a Weibull plot generated by MINITAB®.
Here, we will be using MINITAB for our probability plotting and reliability analysis and graphics.
Other software packages also can generate a Weibull plot (Reliasoft's Weibull++, Supersmith(R)
and JMP™, to name a few). In most Weibull plots, the horizontal scale is some measure of life,
perhaps start/stop cycles, operating time, or cycles. The vertical scale is the probability of occur-
rence of the event (often represented as percent failed). In the case of the Weibull, the slope of
the line (called the Greek letter β) is significant and may provide a clue to the physics of the
failure in question.

Much more to follow in Section 5.1 on how to generate and interpret a Weibull plot.

•Weibull analysis may be used even with inadequacies in the data, as will be indicated later in the
section. For example, the technique works with small samples. Methods will be described for
identifying mixtures of failures, classes or modes, problems with the origin being at other than
zero time, investigations of alternative scales other than time, nonserialized parts and compo-
nents where the time on the part cannot be clearly identified, and even the construction of a Wei-
bull curve when there are no failures at all, only success data!

• In addition, when the failure data differs markedly from a straight line fit on a Weibull plot, it is
not difficult to make graphic comparisons with other distributions (e.g. lognormal and other
extreme value distributions) to determine which distribution best fits the data. Of course, if there
is engineering evidence supporting another distribution, this should be considered as well.
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Other Considerations

Age Parameters and Sample Sizes

Most applications of Weibull analysis are based on a single failure class or mode from a single part
or component. An ideal application would consist of a sample of 20–30 failures. Except for material
characterization laboratory tests, ideal data are rare; usually, the analysis is started with a few fail-
ures embedded in a large number of successful, also called “unfailed” or “censored” or “sus-
pended” units.
The age of each part is usually required. The units of age depend on the part usage and the failure

mode. For example, low and high cycle fatigue may produce cracks leading to rupture. The age
units would be fatigue cycles. The age unit of an auto engine starter may be the number of engine
starts. Jet engine turbine parts may fail as a function of the number of excursions from low tem-
perature to high temperature and back to low temperature.
In most cases, the knowledge of the “Physics-of-Failure”1 will provide the age scale. When the

units of age are unknown, several age scales must be tried to determine the best fit.
Predeclared sample sizes at a (say) 90% confidence level can be calculated in the design phase of a

product in order to better detect failure modes at the part, then module, subsystem before the sys-
tem is tested. These predeclared test calculations use information on the historical failure modes
that need to be designed out, in conjunction with the life of a system, or the time between a sched-
uled maintenance event.
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Figure 5.1 Typical Weibull plot.

1 Physics of failure tries to understand how physical, chemical, mechanical, thermal, or electrical stresses can degrade
or cause the failure of an item.

5.1 Introduction 151



Engineering Changes, Maintenance Plan Evaluation, and Risk Prediction

Weibull analysis is used to evaluate engineering changes as to their effect on the entire fleet of a
product, modules, control systems, engines, and other systems.
Risk predictions and maintenance schedules and plans are also evaluated usingWeibull analysis.

In each case the baseline Weibull analysis and risk analysis are conducted without the engineering
change or maintenance change or what is sometimes referred to as “no fixes assumed” risk. The
study is then repeated with the estimated effect of the change in risk with the engineering change
or maintenance change.
This can be done by modifying the Weibull distribution of the failure mode or modes. However,

most problems and interactions of maintenance or engineering change go beyond the Weibull plot
alone and involve integrating the Weibull distribution(s) into a Monte Carlo simulation (or other
stochastic model) of the process. Thus, the difference between the before and after gives the effect of
the changes that are being proposed to reduce risk or maintenance.
The risk parameters may be the predicted number of reliability failures, safety incidents, life cycle

cost, depot loading, spare parts usage, hazard rate, or aircraft availability.

Weibulls with Cusps or Curves

After aWeibull plot is generated, it should be inspected to see (visually) how well the failure data fit
the straight line. The scatter should be evenly distributed about the line. You will find and learn
through examples that many “Goodness-of-Fit” (GOF) tests for the Weibull fit fail the “fat pencil
test”where a fat pencil can be placed on aWeibull line and the eyeball can visually check that a fit is
good or not, often disagreeing with the GOF test!!
However, sometimes, the failure points will not fall on a straight line on the Weibull plot, and

modification of the initial Weibull plot will be required. The bad fit may relate to the physics of
the failure or to the quality of the data.
There are at least two reasons why a bad fit may occur. The first (and easiest thing to check) is to

see if the points fall on a gentle curve. It may be that the origin of the age scale is not located at zero,
as required by Weibull analysis (see Figure 5.2). There may be physical reasons why this will
be true.
For example, the first nearly 25 hours of operation of a systemmay be to check out all subsystems

and controls at a lower temperature or pressure. When the product is delivered to the field the

(Concave downward)
(Concave upward)

Negative t0
(smooth curve)

or
batch problems
(sharp corner)

Batch problems/
multiple failure modes

(sharp corner)
or positive t0

(smooth curve)

Probability
CDF (%)

Probability
CDF (%)

Time-to-failure Time-to-failure

Figure 5.2 Weibull plot needing a third parameter (the location parameter) or investigating two or more
failure modes.
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customer treats the product as if it started at “0” time and uses it without restriction. That means the
first ~25 hours were runmore “gently” than the customer would be running the product in the field.
So later, when field failures occur, a Weibull like that in Figure 5.2 will appear concave downward.
The nearly 25-hour origin correction can then be calculated.
However, the origin correction may be either positive or negative (i.e. the curved Weibull could

also be concave upward. A concave upward indicates that part life was “used up” before it was
installed. A classical example of using up life before a part is installed is bearing corrosion; when
a bearing is not properly desiccated in storage. A procedure for determining the origin correction
will be illustrated in the section titled Shifting Weibull Procedure “Weibull Plots and Their
Estimates of β and η.”
Second, a mixture of failure modes – sometimes the plot of the failure points –will show cusps in

sharp corners (sometimes referred to as a “dogleg bend”). This is an indication that there is more
than one failure mode represented in the data (see Figure 5.3).
In this case it is necessary to conduct a laboratory failure analysis of each failure to determine if

separate failure modes are present. If this is found to be the case, then separate Weibull plots are
made for each set of data for each failure mode. If the laboratory analysis successfully categorizes
the failures into separate “failuremodes,” the separateWeibull plots should show good fits. On each
plot, the failure data points from the other failure mode(s) are treated as successful (also called “cen-
sored” or nonfailed) units.

System Weibulls

AWeibull plot is used for data from a SINGLE failure mode. As noted above, you can detect two or
more failure modes often just by looking at the curves and bends of the plot. However, the analyst
should always wind upwith aWeibull plot of each individual failuremode. If you plotted all failures
of a system, you would (probably) disguise batch problems and you would have no information on
the individual failure modes. You need individual failure mode Weibulls when predicting (and
ranking) the failure modes to be worked on first, second, etc.
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Figure 5.3 Mixture of failure modes.
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No Failure Weibulls

Often, warranty data or field inspection will point to a part that “almost” failed. We will discuss the
approach to this analysis in the section titled “Weibayes Analysis.”

Small Sample Weibulls

No one wants a lot of failures, especially if a failure could become a safety incident. So, often you
may have 1, 2, or 3 failures and have to do the analysis with those failures and the remaining pop-
ulation of unfailed units. As you can imagine from elementary statistics, the confidence bounds on
the Weibull parameters β and η are very wide with so few failure points. The best advice here is to
use theWeibull generated with the small number of failures and generate the reliability/safety anal-
ysis to predict the expected future incidents. You will find that the Weibull analysis technique is
robust to small samples of failures. More about this when we go over risk analysis.

Summary

•Weibull analysis refers to the process of fitting a Weibull distribution to a set of (usually) time-
oriented data andmuch like a normal (bell-shaped) fit to manufacturing thicknesses with amean
and standard deviation. A Weibull fit to time-oriented failure data has a slope (β) and scale
parameter (η) that describes the time-to-failure distribution of the part in question.

• This fitted Weibull distribution can be used to answer RELIABILITY questions:
– If the data is from one population of failures:

○What is the 1/1000 probability of failure?
○How many of the population will fail by time (t) in the future?
○How many items and how long do I have to test each item to assure a level of reliability in a
new design?

– If the data is from two suppliers of fatigue sample populations:
Are the supplier’s distributions of part fatigue significantly different? Does the extrapolation

to (say) 1/100 probability meet the requirement?

• As in the normal distribution case, the engineer can extrapolate the fitted line tomake predictions
outside the bounds of the data.

5.2 Statistics of the Weibull Distribution

The Weibull distribution is widely employed for reliability-related problems. The Weibull distribu-
tion’s relationship to extreme value distributions is analogous to that between the lognormal and
the normal distribution. The Weibull distribution, like the log normal, ranges 0 < x<∞, while
extreme value distributions, like the normal distribution, have the range −∞< x<∞. Moreover,
the distributions are related through a logarithmic transformation. We now concentrate on the
Weibull distribution and then discuss the extreme value distributions in Section 5.3.

Weibull “Mathematics”

The usefulness of the Weibull distribution was described in Section 5.1. Now we answer the ques-
tion of what does the Weibull statistical distribution look like mathematically that will allow us to
utilize it in solving problems.
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Fundamentally, the Weibull distribution depends on the “weakest link” theory. The analogy to
a chain is often used to explain the weakest link theory. That is, every system, subsystem,
and module has a part that will be first to fail during its lifetime (if the system is not retired
first).
For example:

1) A V-8 automobile engine with eight pistons when run long enough will often see the failure of
one piston or one spark plug, or one valve,… that part will be the “weakest” piston, or spark plug
or valve,… in the engine. The environment the engine was used in, in terms of stresses, is
assumed to be approximately equal for each of the pistons, spark plugs, and valves; so, that first
failure is the “weakest link” in the “CHAIN” that is the family of 8 pistons or 16 (or more) valves,
or 8 spark plugs. The Weibull distribution will model all of these mechanical failures
individually.

2) Suppose that you have a turbine disk in a modern commercial jet engine consisting of 68 blades.
The disk is turning at 4,000–12,000 rpm during operation. All 68 blades are subjected to heat,
pressure, and possibly foreign objects in the airstream. One of these blades (under normal oper-
ating conditions) will be the first blade to fail (unless the blades are removed at a predetermined
time to prevent the first failure (and any others).
Given that you may have 100s (or 1000s) of engines with these blades, you can model the fail-

ure distribution of each failure mode of the turbine blades with the Weibull distribution. Then,
do a “risk analysis” to project how many future failures you could expect. Here, “risk analysis”
simply means a prediction of how many future failures will occur due to the same failure mode
that has been observed.

3) A human being has many body parts, much like amechanical system. Depending on the stresses
and strengths in the human system, one part of the system will be the first to “fail.” Now, to
extend this, if a new drug is being developed and given to (say) 20 patients in the first drug trial
where each patient is very close to the same stage of the disease, the “weakest link” also applies,
and often, the Weibull distribution can be used.

The Weibull two-parameter CDF (cumulative distribution function):

F t = Prob life ≤ t = 1 − e−
t
η

β

5 1

where t is the cumulative time to failure, β is the slope of the Weibull distribution, η is the char-
acteristic life (the time at which 63.2% of the population is predicted to fail), and e is the Naperian
logarithmic base. The CDF, denoted F(t), “sums up” or integrates the probabilities of all values less
than t. And using the calculus, you can derive the PDF of the Weibull by differentiating the Weibull
CDF with respect to t to obtain:
The Weibull PDF (probability density function):

f t =
β

η

t
η

β− 1

e−
t
η

β

5 2

The Weibull PDF describes the shape of the distribution with “slope” β and “characteristic life” η.
Thinking of it in reverse, the PDF, denoted f(t), is the mathematical function that is integrated in

order to calculate the CDF probabilities. The PDF is referred to as the “density” function because it
tells the user how “dense” the data is at any point t (frequency of occurrence per unit of t). See
Figures 5.4 and 5.5.
The relationship between PDF and CDF is illustrated in Figure 5.6.
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The mean and the variance of the distribution are obtained from Eqs. (4.15) and (4.16), respec-
tively. They are rather the complicated functions of the scale and shape parameters:

μ = η Γ 1 + 1 β 5 3

and

σ2 = η2 Γ 1 + 2 β −Γ2 1 + 1 β 5 4
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In these expressions, the complete gamma function Γ(v) defined by the integral

Γ v =
∞

0
ζv− 1e− ζdζ 5 5

is used. Figure 5.7 shows the dependence of 1/Γ(v) for the values 0 < v < 1, and when v > 1, can be
obtained from the identity:

Γ v = v− 1 Γ v− 1 5 6
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Figure 5.6 The relationship between the Weibull PDF and CDF.
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For nonrepairable populations, the failure rate is defined as the (instantaneous) rate of failure for
the survivors to time t during the next instant of time.
The Hazard rate is given by

h t =
f t

1−F t 5 7

For the Weibull distribution, this becomes

h t =
f t

1−F t
=

β

η

t
η

β− 1

1− e −
η
η

β

1− 1− e −
η
η

β
=

β

η

t
η

β− 1

5 8

η is defined as the age by which 63.2% of the units will fail.
This is true of all Weibulls since:

F η = 1− e −
η
η

β

= 1− e − 1 β

= 1−
1
e

0 632 5 9

For the details of how theWeibull distribution as a “weakest link” phenomena can be derived, see
Supplement 1 – “Weibull derived from weakest link theory”.
A special case of the Weibull distribution was introduced in Chapter 3, the “Exponential Distri-

bution.” Letting β = 1 in the Weibull PDF and CDF results in the single-parameter “exponential
distribution”:

F t = 1− e−
t
η 5 10

and the PDF:

f t =
1
η
e−

t
η 5 11

Examples of the Weibull “family” where a Weibull distribution with different slopes can
look like:

• β = 1.0: identical to the exponential distribution

• β = 2.0: often referred to as the Rayleigh distribution

• β = 2.5: approximates the lognormal distribution

• β = 3.4–3.6: approximates the normal distribution

• β = 5.0: approximates the peaked normal distribution.

The Weibull Probability Plot

The first use of theWeibull plot will be to determine the parameter (β), which is known as the slope
or shape parameter. What is so important about knowing β? Knowing the β will tell you not only
where you are on the “Bathtub” curve but also some information on possible failure mode as shown
in Figure 5.8. This information can often be used in conjunction with the previous experience with
failure modes of this type on previous models or products to help confirm the failure mode type.
The Weibull plot is also used to determine the onset of the failure. For example, it may be of

interest to determine the time at which 1% (or probability 1/100) of the population will have failed.
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This is called the Bl life. Alternatively, it may be of interest in determining the time at which one-
tenth of 1% (or probability 1/1000) of the population will have failed, which is called B.l life. These
values can be read from the Weibull plot by inspection. Note: It is thought that “B” lives nomen-
clature had its origin in the bearing industry where the design point for a bearing started out at 10%
(or B10 life).
We begin our statistical assessment by finding values of β and η that best fit our data. These are

estimates of the population values of β and η. We use two methods:

1) Rank regression – uses linear regression of x on y
2) Maximum likelihood – purely mathematical (details to follow).

First, the “Weibull plot method” (rank regression) usingWeibull paper to estimate β and η, where
software programs use regression analysis (line fitting) to calculate theWeibull parameters β and η.
What makes theWeibull plot method work is a bit of algebraic manipulation of theWeibull CDF:
Starting with the CDF

F t = 1− e− t η β

5 12

1−F t = e− t η β

5 13

ln 1−F t = − t η β 5 14
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Figure 5.8 The bathtub curve and further interpretation of results of the analysis.
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ln
1

1−F t
= t η β 5 15

ln ln
1

1−F t

Y

= β ln t
mx

− β ln η

+ b

5 16

That is, if the cumulative probability F(t) is converted to “Y,” and failure times are converted as
“X,” then β is the slope of the Weibull line, and once you know β, it is straightforward to solve for η,
since the intercept (“b” above) = −β ln η.
So, the Y-axis of the Weibull is a “double natural log” scale in probability, and the x-axis is a

natural log scale in the time parameter.
A typical Weibull plot is illustrated in Figure 5.9. This plot is generated using MINITAB;

however, the definitions apply to all Weibull plots with the same information.

Probability Plotting Points – Median Ranks

Failure probability is calculated by its rank, i.e. its place in the ascending order of the data. If 10 data
points were available and sorted in ascending order, the rank of the first data would be 1 and that of
the tenth data would be 10, given no “nonfailed”/suspended/censored datapoints. The y plotting
positions for the Weibull distribution are based on the median ranks (MRs) of each of the (ordered)
failure points.
MRs may be obtained by

N

k = 1

CN
k MR k 1−MR N − k = 0 5

and can be approximated using EXCEL by the Excel function “BETAINV(0.5,i,n-i+1)” as well as
using the F distribution as discussed in Chapter 2 under “Binomial Confidence Bounds.”
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Figure 5.9 Typical Weibull plot with definitions of items on the plot.
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However, the MR estimation formula due to Bernard is used by most statistical programs when
plotting the Weibull distribution. Bernard MR formula:

F t =
i− 0 3
n + 0 4

See Appendix D (“Rank Statistics”) for a discussion of Mean Ranks and other MR formulae, with
examples.
The “ranked regression” (or sometimes referred to as “LSXY” for least squares X on Y) estimation

and subsequent probability plot will useMRs estimated by Bernard’s formula and will be illustrated
in the following sections.
NOTE: The Weibull probability scale is defined so that if data are from a Weibull distribution,

they will follow an approximate straight line. Note that only made-up data will all lie exactly
on the line; hence, this plot also illustrates the look of a “typical” Weibull plot. Variation about
the fitted line is due to the effects of stress (temperature, pressure, part interaction, etc.) and mate-
rial strength on the part, human, or process failure mode.
We can now say that the β = 3.7 in Figure 5.9 indicates a wear-out mode, and since we do not see

any concave upward or downward in the plot as a whole, with the data scattered uniformly around
the line, we have a reasonable Weibull estimate based on the 10 failures. Since this type of wear out
is <4, in conversations with whoever may have provided the data could include a discussion of
fatigue, pitting, spalling, corrosion, erosion, and normal wear excessive (thermal or pressure)
cycles.

How to Do a “Weibull Analysis”

AWeibull analysis is to be used for the analysis of ONE failure mode. However, very often, the first
failures that occur have not been segregated into failure modes, and you will see the data on a Wei-
bull plot as a curved line or “dogleg bend” as mentioned in the Weibull introduction.
You may receive the failure data from a variety of sources:

• Laboratory failures

• Nonlaboratory failure such as failure of a product during design testing

• Field failure (warranty or product support engineering)

• You may have been investigating a failure mode or two and have discovered failure data from
historical files of one sort or another.

So, when fitting aWeibull distribution to data, often you have incomplete data (particularly if it is
warranty data or a field safety problem); therefore, you are only finding estimates of β and η. You
may have most of the failure points, but not all; you may have most of the unfailed points, but not
all. Therefore, your Weibull plot is an estimate of the failure mode based on a SAMPLE.
So, you are ready to fit a Weibull in order to make inferences about the population, including

• Parameter estimates

• Predictions of future events

• Decisions (maintenance plans and retrofits).

Failure time data, or life data, present unique challenges not encountered with dimensional data.
Nonfailed units or units that fail by a different failure mode are "censored" or "suspended" units.
These data cannot be ignored even though the suspensions are never plotted. Times on suspended
units must be included in the analysis.
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In short, ALWAYS include your suspended or unfailed data. If you use failure-only data, your
Weibull will give risk values that are unrealistically high. If you want the most accurate answer,
use ALL your data… failure times AND unfailed times!
How failure data is plotted (with and without unfailed units) in the case of ranked regres-

sion (LSXY) to produce a “Weibull plot” as described in Appendix D – Nonparametric
Methods and Probability Plotting. Computer software (MINITAB, JMP, Weibull++, etc.)
uses the same approach for producing a Weibull plot (or any other probability plot for that
matter).

Example 5.1 Weibull Analysis of Inlet Airseal Rivets
Let us start with a lab data example that includes suspensions – inlet airseal rivets tested to failure in
order to replicate the field failures (Abernethy et al. 1983).
You have eight datapoints, but only five of these have failed (i.e. three suspensions or unfailed

points):

• Failures at 30, 49, 82, 90, and 96 seconds.

• Unfailed units at 10 seconds (due to fixture failure), 45 seconds (failed due to a different failure
mode), and 100 seconds (test terminated without failure).

As an illustration of what would happen if we did not use all the data, suppose that we only used
the five failures, and ignored the three suspensions/unfailed units?
Figure 5.10b shows both the Weibull plots, the one we illustrated in Figure 5.10a, and the solid

line of the “failure-only” Weibull.
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Figure 5.10a Using “least squares (LSXY)” best fit of Inlet Airseal rivet Lab failures.
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Two things to notice:

1) The slopes are very close in value.
2) The failure-only Weibull produces higher probability of failure for each time. Hence, when pre-

dicting the future risk, the total number of failures over any future time will be overpredicted.
With only eight points in a data set like this lab data, the difference may not be very significant;
when there are thousands of unfailed units in a fleet, the results can be VERY significant, and
unneeded fleet action would be the result. As will be discussed in the Risk Analysis section, the
objective is to predict the expected number of future failures.

Example 5.2 Flashlight Bulb Failures
Based on lab testing of flash bulbs, the following failures were recorded (Table 5.1, Figure 5.11).

Weibull Plots and Their Estimates of β, η

The “job” of an LSXY (ranked regression or sometimes termed a least squares regression) Weibull
plot is to provide a good, simple graphic for seeing if your data fit a Weibull distribution (plot as a
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Figure 5.10b Inlet air seal Weibulls side by side showing why you should use ALL unfailed data. Putting this
data into MINITAB and asking for two plots of the data on top of each other (one with failures only, the other
with failures and suspended items).

Table 5.1 Flashlight bulb failures

72 82 97 103 113

117 126 127 127 139

154 159 199 207
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straight line on Weibull paper). The LSXY Weibull plot is
used by your eyes plot to see if there are any anomalies in
the data.
As mentioned in the Introduction, there are several anoma-

lies that can appear in the first Weibull plot you produce with
your data. We cover the main items and show you what they
mean and, when applicable, how to fix the data.

1) The data has a gradual convex (or concave) bend on Wei-
bull paper.

Solution: The data needs a t0 correction (positive or negative) or
a different distribution.
Graphically, you have two possibilities (Figures 5.12a

and 5.12b).
The three-parameter Weibull adds a t0 or starting point to

the distribution. In all of our discussions to this point t0 was
assumed to be 0. Now, we use this Weibull fitting technique
to explain the third parameter. First, the three-parameter Wei-
bull has the following CDF:

F t = Prob life ≤ t = 1− e−
t− t0
η

β

5 17

where β and η are the slope and characteristic life, and t0 is the
correction for the time axis (t) axis not beginning at 0.

2) Suppose that we have failure data that when plotted looks
like Figure 5.13.
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Shape
Scale
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Failure
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AD*
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3.88103
143.227
129.600
37.3644
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51.9052
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0.978

Figure 5.11 Flash bulb Weibull illustrates wear out β = 3.88 and characteristic life of 143 “flashes” before
failure.

Figure 5.12a Positive t0 is needed.

Figure 5.12b Negative t0 is needed.
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The data can appear with a concave downward curve for several reasons:

• Time does not start at zero, early “burn in”/“run in” time not accounted for

• Early failures are impossible

• Early failure data not reported.

Before you use software that automatically replots the data with the optimal t0, use your eyeball to
estimate where the t0 is as shown in Figure 5.14.
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Figure 5.13 Raw field failure data illustrating a gradual curve.
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Figure 5.14 t0 estimate is about 18 hours.
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Now, after inputting the data into MINITAB, you find Figure 5.15.
You must remember, however, that when using a Weibull with a t0, add back the t0 to what you

read off the three-parameter Weibull, as illustrated in Figure 5.16.
For example, see Figure 5.16.
Suppose that you have already determined you have curvature (not a “dogleg” bend), so be aware

of the following three-parameter caveats:

• Three-parameter Weibulls occur, but not frequently in some industries or processes. In addition,
positive t0s occur more often than negative t0s in the authors experience.

• There should be a physical explanation of why failures:

– Cannot occur before – positive t0 (e.g. bearing spalling, and part not run to full power for the
first (say) 500 miles)

– Or, age on the shelf before entering service – negative t0 (while this does not occur that
often, improperly desiccated bearings are an example of a phenomenon that gives a
negative t0)

• A significant increase in the correlation coefficient (r) should be observed in going from two- to
three-parameter Weibull (using LSXY regression in MINITAB). If the correlation coefficient
increases from 0.98 to 0.999, that is at least an order of magnitude increase, the look of the
three-parameter Weibull should match that increase, i.e. the data should be noticeably straigh-
tened. If, on the other hand, you have curvature, but your three-parameter least-squares plot does
not look very much, or any, better than the two-parameter, then you need to consider a different
distribution for your data.
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life

Figure 5.15 MINITAB-calculated t0 agrees closely with the eyeball estimate.
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The Three-Parameter Weibull Did Not Work, What Are My Choices?

First, you need to look at the parts if at all possible to make sure you have only one failure mode. If
the data was obtained from a supplier or some other part of your organization, ask them for any
details they have on the part failure mode to assure you that the failuremodewas the same; after all,
it was a smooth curve on a Weibull plot, not a straight line.
Given each part failed due to the same failure mode, and you still have curvature after you tried a

three-parameterWeibull, you can useMINITAB “Distribution ID plot.” Pay particular attention to
the lognormal: two- and three-parameter fit and how the data looks. The lognormal is usually the
best choice after a Weibull. After that you might try a Gamma distribution (although the Gamma is
not a frequent solution).
See Figures 5.17a and 5.17b to see the progression from plotting some failure data on a Weibull

plot that turns out to be lognormal.

The Data has a “Dogleg” Bend or Cusp When Plotted on Weibull Paper

Solution: Break the data apart into two (or more) failure modes (use the parts to tell you where the
break should be).
The Weibull plot can look like either of the two examples, Figure 5.18a or 5.18b.
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Example: 1/100

Figure 5.16 t0 Example 2: Add back t0 when calculating life.
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Probability plot for lognormal data as 3-parameter Weibull 

Complete data – LSXY estimates
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Shape  0.559378
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Mean  9.91402
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Median  3.10777
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Figure 5.17a Known lognormal failure data plotted as a three-parameter Weibull (correlation = 0.979).

Probability plot of lognormal data as lognormal
Complete data – LSXY estimates
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Figure 5.17b Known lognormal failure data plotted on lognormal plot (correlation = 0.993).
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Good engineering investigation of the parts that failed is essential in either of the “dogleg” bend
situations illustrated above.
An example, see Figure 5.19a.

Figure 5.18a Early quality
failure mode followed by later
wear-out mode (this is the
usual case).

Figure 5.18b Wear-out mode
followed by perpetual survivors
or the wear-out mode may be a
batch problem.

Weibull distribution
β = 1.122 
η = 63601.62
Sample size = 2256
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Figure 5.19a An infant mortality problem (β < 1.0) causing the compressor start bleed to fail. Then a wear-out
mode (β>>1) affecting the compressor start bleed after about 700
(1983). Public Domain.
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But wait, the only good engineering way to find out where the infant mortality problem stops so
you can separate the two failure modes and do individual Weibulls is to inspect each failure and
categorize by failure mode. After a thorough engineering investigation of the compressor start bleed
is done by location (i.e. Air Force Base), it was discovered that only one base was responsible for the
rapid wear-out portion – an AFB on an island β = 5.2 (see Figure 5.19c)! The rest of the failures
followed an infant mortality failure mode β = 0.84 (see Figure 5.19b).
What was causing the difference? The salt air on the island base was causing corrosion to build

up on the start bleed causing the start bleed to hang. The infant mortality mode was caused by
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Figure 5.19b Infant mortality mode appears on non-Island base. Source: Based on Abernethy et al. (1983).
Public Domain.
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misassembly in production. Two different failure modes – wear-out(corrosion) and infant
mortality(Misassembly); the good news is both were identified and fixed!

Steep Weibull Slopes (βs) May Hide Problems

It has been the author’s personal experience that a failure Weibull very seldom has a β > 12. In fact,
the author has only seen one with that high a β in 40+ years of working with field and lab data.
However, the Weibull distribution can fit many different failure phenomena. So, if you receive

data that when first plotted on aWeibull plot gives an extremely high β, consider a three-parameter
Weibull.

Weibull distribution
β = 5.22
η = 2006.5
Sample size = 202
Failures = 10
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Figure 5.19c Rapid wear-out mode is in the rest of the fleet. Source: Based on Abernethy et al. (1983). Public
Domain.
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Example 5.3 (Table 5.2)

The initial Weibull looked like Figures 5.20a and 5.20b.

Low-Time Failures and Close Serial numbers – Batch Problems

The two major sources of problems identifying a failure cause are Weibull data with low-time fail-
ures only and serial numbers that are close to each other (e.g. within 50 or 100 of each other). Some-
times, the low times can be after a rework at a depot, where the total time could disguise the
problem, so Time Since Overhaul (TSO) as the time parameter would reveal the batch. Similarly,
if low-time units have no failures, mid-time units have failures, and high-time units have no fail-
ures, a batch problem is strongly suggested. Something may have changed in the manufacturing
process for a short period and then changed back.
If possible, find the records of the serial number of each part that failed. If not serialized,

keep the manufacturing date or lot number. This can often allow you to track down a batch
problem.
Figure 5.21 is an example of low-time part failures onmain oil pumps. Since there were over 1000

engines in the field with these pumps, most of the pumps with many more hours than these three,
what was going wrong? Upon examination of the failed parts, it was determined that they contained
oversized parts; i.e. something had changed in the manufacturing process at the supplier. The over-
sized parts caused an interference with the gears in the pump which resulted in failure. Again, low-
time failures provide a clue to a quality problem (e.g. production or assembly process change), espe-
cially true when there are many successful high-time units in the field.

Example 5.4 Main oil pump failures in a large fleet (taken from Abernethy et al.
1983, p. 36)
Quality? Assembly? Manufacturing design change?
(Note: Turns out to have been a manufacturing change by the supplier.)

Maximum-Likelihood Estimates of β and η

We have covered fitting data to a Weibull and producing a Weibull plot. Why do we need “Max-
imum-Likelihood Estimates (MLEs)”? First, we explain what MLEs are and then why we need
them (hint: especially when we are projecting the risk due to a failure mode that is fit by a Ranked
Regression Weibull).
The maximum-likelihood Weibull analysis method consists of finding the values β and η

which maximize the "likelihood," of obtaining β and η (the greatest probability), given the
observed data.

Table 5.2 Results of materials lab testing 26 specimens in a Pull test to failure.

22.007 21.970 21.864 21.731 21.841 22.086

22.032 21.987 22.070 22.255 21.995

21.834 22.068 22.202 21.794 22.567

22.280 22.422 22.147 22.130 22.236

22.096 22.254 21.753 22.466 21.985
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Probability plot for pull (Ibs)
3-Parameter Weibull

Complete data – LSXY estimates
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Figure 5.20b Three-parameter Weibull shows a t0 = 21.625 lbs, indicating that failures will start after this t0.
Also, the β = 2.3 is more realistic. Note that the correlation coefficient is considerably better, which you would
expect just by “eyeballing” the difference in the fit between Figures 5.18a and 5.18b.
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Figure 5.20a Weibull of Pull data shows curvature AND β is unrealistically high, solution. Try a three-
parameter Weibull or a lognormal (think about the Pull phenomenon from an engineering phenomenon).
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The likelihood is expressed inWeibull probability density form. It is a function of the data and the
parameters β and η. Maximum-likelihood finds the values of β and η which maximize this math-
ematical likelihood function.
Maximum-likelihood solution for samples with right-censored data and exact failure times:

Likelihood Equation L = f x1 f x2 f xr

One“f x ”term for

each of the“r”failures
f xi = PDF evaluated

at failure time xi

1−F xr + 1 1−F xr + 2 1−F xn

One“1− f x ”term for

each of the“n− r”suspensions
F xi = CDF evaluated

at suspension time xi

5 18

For a given sample of failures and suspensions, L is a function only of the unknown values of β, η.

L =
r

i = 1

β

η

xi
η

β− 1

e−
xi
η

β k

j = 1

e−
x j
η

β

5 19

where = product over all failures and k = n − r (# suspensions).
We need to find the values of β, η that maximize L. Usually, we do that by finding β, η that satisfy

∂ log L
∂β

= 0 and
∂ log L

∂η
= 0 which reduces to:

n

i = 1
xβML
i ln xi

n

i = 1
xβML
i

−
1
r

r

i = 1

ln xi −
1

βML
= 0, solve this for βML 5 20

then,

ηML =

n

i = 1
xβML
i

r

1
βML

5 21

βML, ηML are the maximum likelihood estimates of β, η.
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Figure 5.21 Main oil pump failures: three failures so early and none after indicate a batch problem. Source:
Based on Abernethy et al. (1983).
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Example 5.5 Calculating the maximum likelihood estimates, given the data in Table 5.3
(Figure 5.22).

Table 5.3 Field test results.

Cycles Status

1500 Failure

1750 Suspension

2250 Failure

4000 Failure

4300 Failure
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Figure 5.22 Using MINITAB to produce a Weibull plot of the data
plot; since the β MLE and β LSXY are close, you probably do not

5.2 Statistics of the Weibull Distribution 175



So, why use maximum likelihood estimates?When are they better, and when are ranked regression
estimates better?
This comparison in Table 5.4 is based on the research published in the USAFWeibull Handbook

by Abernethy et al. (1983).
While very obviously maximum-likelihood estimation is a purely mathematical technique, a

Weibull plot is necessary. Hence, the MRs and plotting positions of the failures are the same as
ranked regression, BUT the Weibull line is based on the MLE β & η. You can see this in the par-
ticular case given in Figure 5.22.

Weibayes Analysis

Often, a Weibull plot cannot be made because of lack of data:

1) There are few (1 or 2) or no failures.
2) The age of the units is unknown, and only the number of failures is known.
3) A test plan for a new design is needed (Chapter 6).

Especially for those instances where the customer support engineers have observed parts from
the field (either directly or warranty claims) that show parts that were not performing according
to design. None of the parts were “broken,” and no safety incidents were observed due to these parts
(yet). However, the customer support engineers in conjunction with the design engineers believe
that a failure is “imminent.”
So, no failures have been observed, but because of the seriousness of the potential failure, which is

judged to be “imminent,” an estimate of the problem seriousness must be done.
Weibayes analysis has been developed to solve problems such as this when Weibull analysis can-

not be used. Weibayes is never preferred over Weibull analysis but is often required because of
weaknesses in the data. Weibayes is defined as Weibull analysis with an assumed β parameter,
where a failure is imminent. Since the assumptions requires judgment, this analysis is regarded
as an informal Bayesian procedure.
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Weibayes Background (You Do Not Necessarily Have Any Failure Times)

The assumptions in Weibayes are:

1) You know the Weibull β (or range in which the β occurs) for the failure mode.
That knowledge comes from “a priori” information (aka previous experience) with a similar

failure mode to the one you are now observing. For example, many companies have “Weibull”
failure mode libraries, or at least extensive design files for previous designs, or at least warranty
records that might include a similar failure mode in a previous product. Any of these sources will
give some idea of the failure mechanism and therefore the ~β or range of βs. For example:

• 1 < β < 2.5 covers most bearing failure modes

• 2.5 < β < 5.5 covers most low cycle fatigue cracking modes

• β = 1.0 for random shock, unrelated to part age

• β = 2.0 for linearly increasing hazard rate

• If you have material specimen data, you can approximate the β using the data in Table 5.5.

2) You have at least a histogram of population times
3) You will assume that one failure is “imminent.”

Given these assumptions, the Weibayes calculation of η, based on the maximum-likelihood for-
mulation (Eq. (5.21)), is

η =

n

i = 1
tiβ

NF

1
β

5 22

where β is the Weibull slope, ti is the individual time on each of n units, and NF is the number of
failures.

Example 5.6 The design system-predicted 1/1000 life for the compressor disk is 1000 cycles. Does
the field data substantiate it?
Five disks have accumulated 1500 cycles, and five have 2000 cycles without any failures. If most

disk LCF failures have a β of 3.0, is this success data sufficient to increase the predicted design life?
Taken from Abernethy et al. (1983), p. 87.

Table 5.4 Comparison of maximum-likelihood and ranked regression (Weibull plot) methods.

Characteristics Ranked regression (Weibull plot) Maximum likelihood

1. Supporting graphics Yes Limiteda

2. Applicable to censored data All but interval-censored data Yes

3. Bias About equal About equal

4. Precision Worse Better

5. Able to assess uncertainty in estimates No Yes

6. Bias, precision in predictions of future failures Poor Much better

7. Estimates of β, η with only one failure No Yes

8. Can detect batch problem Yes No

aUses median ranks for the Weibull plot and MLE β, η estimates for fit.
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Table 5.5 Design analysis of the typical to min life ratio provides the values to bemultiplied by η to determine
the mean, standard deviation, mode, and median of the Weibull distribution, for several values of β.

Beta Mean
Median
(B50)

1/10
(B10)

1/100
(B1)

1/1000
(B.1) Mode

B50 to
B.1 ratio

Std.
dev. Variance

0.5 2.00000 0.48045 0.01110 0.00010 0.00000 No mode 479972.60 4.47214 20.00000

1 1.00000 0.69315 0.10536 0.01005 0.00100 0.00000 692.80 1.00000 1.00000

1.5 0.90275 0.78322 0.22308 0.04657 0.01000 0.48075 78.30 0.61294 0.37569

2 0.88623 0.83255 0.32459 0.10025 0.03163 0.70711 26.32 0.46325 0.21460

2.5 0.88726 0.86363 0.40651 0.15881 0.06311 0.81519 13.68 0.37967 0.14415

3 0.89298 0.88500 0.47231 0.21580 0.10002 0.87358 8.85 0.32455 0.10533

3.5 0.89975 0.90058 0.52573 0.26865 0.13897 0.90834 6.48 0.28473 0.08107

4 0.90640 0.91244 0.56973 0.31662 0.17785 0.93060 5.13 0.25429 0.06466

4.5 0.91257 0.92178 0.60648 0.35978 0.21547 0.94568 4.28 0.23009 0.05294

5 0.91817 0.92932 0.63758 0.39851 0.25121 0.95635 3.70 0.21031 0.04423

5.5 0.92320 0.93553 0.66421 0.43327 0.28483 0.96417 3.28 0.19379 0.03756

6 0.92772 0.94074 0.68725 0.46455 0.31625 0.97007 2.97 0.17977 0.03232

6.5 0.93178 0.94517 0.70736 0.49277 0.34554 0.97463 2.74 0.16769 0.02812

7 0.93544 0.94899 0.72507 0.51832 0.37279 0.97822 2.55 0.15717 0.02470

7.5 0.93874 0.95231 0.74078 0.54153 0.39813 0.98110 2.39 0.14793 0.02188

8 0.94174 0.95522 0.75480 0.56269 0.42172 0.98345 2.27 0.13973 0.01952

8.5 0.94447 0.95780 0.76740 0.58205 0.44369 0.98538 2.16 0.13240 0.01753

9 0.94697 0.96009 0.77877 0.59982 0.46418 0.98700 2.07 0.12582 0.01583

9.5 0.94925 0.96215 0.78909 0.61617 0.48332 0.98836 1.99 0.11986 0.01437

10 0.95135 0.96401 0.79849 0.63127 0.50121 0.98952 1.92 0.11446 0.01310

It also gives the ratio of the B50 to B.1 lives, for several values of β. Sometimes, we are given a value of this ratio (“typical
to min life ratio”) and work backward to get an estimate of β. This table uses η = 1 in the calculations.

Table 5.6 Using compressor disk data to calculate if a B.1 of 1000 cycles
has been demonstrated.

Test time (cycles) Test time (3)

1500 3,375,000,000

1500 3,375,000,000

1500 3,375,000,000

1500 3,375,000,000

1500 3,375,000,000

2000 8,000,000,000

2000 8,000,000,000

2000 8,000,000,000

2000 8,000,000,000

2000 8,000,000,000

Sum= 56,875,000,000

Source: Based on Abernethy et al. (1983).



Solution: Using Eq. (5.22) and the test data in Table 5.6.
So,

η =

n

i = 1
timesi

β

NF

1
β

=
56, 875, 000, 000

1

1
3

= 3846 cycles

Using β = 3, with η = 3846, and solving for the 1/1000 life (prob of failure = 0.001) = 385 cycles.
So, you have not demonstrated a 1000 cycle B.1 life.
We use theWeibayes assumption when setting up reliability tests based on theWeibull discussed

in Chapter 6.
Example 5.7 Fifteen jet engine compressor vane and case failures have been experienced in a
large fleet of engines. A test plan was set up to substantiate a new design
Weibull analysis provides a β of 4.4 (see Figure 5.23) from field data. Three redesigned compressor

cases have been tested in engines to 4000, 5800, and 6200 hours without failure. Is this enough test-
ing to substantiate that the redesign is at least 2× better?
Using the MLE formula for calculating η, assuming the same β as the old design:

η =
4000 4 4 + 5800 4 4 + 6200 4 4

1

1
4 4

= 7166 hours

Conclusion: The new design is ~2.5× better than the current design as shown in Figure 5.24.
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Figure 5.23 Vane and case Weibull β = 4.4.
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Weibull Analysis with Failures Only and Unknown Times on the Unfailed Population

Here you have the failure times from the field, but the part is not serialized, so you have no idea of
the times on the unfailed parts. This happens in many products. Serializing parts and tracking their
times is expensive for customers. Therefore, usually only safety issues with known part causes are
serialized. BUT a new product can be used in a different way and create a failure mode that has not
been seen before. So how do you construct a Weibull so you can make an estimate of future failures
when this scenario happens?

Shifting Weibull Procedure

1) Plot the failure data on Weibull probability paper and estimate β and η.
2) Calculate the mean time to failure (MTTF):

MTTF =
#failures
i = 1 failure agei

# failures
5 23

3) Draw a vertical line on the Weibull plot of failures only at the MTTF.
4) Calculate the proportion failed in the population:

Proportion failed =
# failures

# failures + # suspensions
5 24

Then, %failed point = (1− e−Proportion failed)) × 100. Draw a horizontal line from the % failed point.

5) At the intersection of the vertical and horizontal lines draw a line parallel to the “failure only”
Weibull.
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Figure 5.24 New design vane and case has demonstrated 2.5 × better life.

180 5 Continuous Distributions – Part 2 Weibull and Extreme Value Distributions



6) This line is an estimate of the Weibull of failures “corrected” for the suspensions.

Example 5.8 Five failures, no time on the other 4995 gears
Suppose that you have five gear failures with the following mileages: 3165, 3579, 4098, 5134, and
5402 miles in a population of 5000; however, the mileage on the unfailed units is unknown. Gen-
erate your best estimate of the gear population Weibull (Figure 5.25).
Two assumptions have been made in using this shifting technique:

1) You do not have a batch problem.
2) The unfailed times are distributed relatively uniformly around the failures, i.e. some before,

some among, and some after the last failure.

Confidence Bounds and the Weibull Distribution

Confidence intervals are measurements of precision in estimating a parameter. A confidence inter-
val around an unknown parameter is an interval of numbers derived from sample data that almost
surely contains the parameter. The confidence level, usually 90% or higher, is the frequency with
which the interval calculation method could be expected to contain the parameter if there were
repeated applications of the method.
One easy way to look at confidence is confidence = 1-risk. So, if you have 90% bounds around a

Weibull β, there is only a 10% risk the next samples will have a β outside those limits.
In terms of reliability and in particular the Weibull distribution, the confidence intervals give:

• A plausible range of values for a population parameter
– (e.g. β, η, Bx life, R(t), FailureRate(t)).
– MINITAB can generate all of these confidence bounds and more.

• The precision of an estimate. (When sampling variability is high, the confidence interval will be
wide to reflect the uncertainty of the observation.)
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3. Cumulative%failed = (1-e–proportion)*100% = 0.1%

4. Estimated distribution: β = 4.656. η = 18850

Figure 5.25 Shifting Weibull example.
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However, confidence bounds are more useful in comparing two data sets:

1) New design vs old design
2) Different geographic sources
3) Different fleets or customers
4) Different product usage
5) Different production lots
6) Different vendors
7) Different alloys (e.g. material life comparison).

This is where we concentrate our attention. For comparing two data sets:
Methods:

1) 90% confidence bounds do not overlap at B10 life. This will be give you 90% confidence that they
are different if the bounds do not overlap.

• (MINITAB can be used here)

2) Maximum-likelihood (β, η) contours do not overlap.

• (need Supersmith™ or ReliaSoft’s Weibull++ ™ or JMP/SAS™ to produce these)

Example 5.9 Using Method 1: Comparing two Weibull distributions
Suppose that we have asked two possible suppliers for a particular component to test eight each of
their production of the same component and test each of the eight to failure (Table 5.7).

• The Weibull analysis for each sample results in the following:
– Weibull distribution for supplier A: β=2.90, η = 825.8 hours
– Weibull distribution for supplier B: β=3.15, η = 2004 hours

• Should we conclude that there is a real (statistically significant) difference in the reliability per-
formance of the two suppliers?

Using two-sided 80% CIs on B10 for each sample, declare a difference if their CIs do not overlap.

• For A: B10 = 380, 2S-80%CI = (235, 614)

• For B: B10 = 981, 2S-80%CI = (635, 1515)

Note: The confidence bounds can be read off the MINITAB plots; in this case you know the
bounds do not overlap, but a graphical explanation is better for presentation (Figure 5.26).

Table 5.7 Hours to failure.

Supplier A Supplier B

220 805

520 1200

550 1400

730 1600

780 1800

890 2200

1050 2500

1150 2800
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Figure 5.26 Weibull plot illustration of difference between two suppliers (90% confidence bounds on the
median line).
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Figure 5.27 An excerpted portion of the information on parameter confidence bounds from the analysis of the
supplier A and B data.
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Other confidence bounds (β, η, MTTF (mean time to failure),…) are readily available in the MINI-
TAB analysis portion when a Weibull plot is produced (Figure 5.27).

Example 5.10 Life testing flashlight bulbs
Life testing was undertaken to examine the effect of the operating time and the number of on–off
cycles on incandescent bulb life. Six volt flashlight bulbs were operated at 12.6 V in order to increase
the failure rates. The wall-clock failure times, in minutes, for 26 bulbs operated continually and
27 bulbs operated on a 30-seconds on–30-seconds off cycle are given in Table 5.8. Use probability
plotting to fit the two sets of data toWeibull distributions, and determine the effect of on–off cycling
on the life of the bulb.
Using MINITAB with 90% confidence bounds on each Weibull line (Figure 5.28).
When the clock time is converted to operating time, steady-state times are not changed, but cyclic

times are ½ . So, adjusting all cyclic times to operating times produces (Figure 5.29).
Thus, since the confidence bounds on each of theWeibull lines overlap at the 10% failure line, the

two sets of data give indistinguishable results when cast in terms of operating time. Therefore, the
effects of the on–off cycling on bulb lifetime are negligible.

Arbitrary Censored Data – Left-Censored, Right-Censored, and Interval Data

What do we do if we have inspection data? Inspection data or any data from field-scheduled visits
could be “interval” data.
This data can either be left, right, or interval censored (Figure 5.30).

Table 5.8 Wall clock failure times in minutes.

Steady state Cyclic

72 125 161 258

82 126 177 262

87 127 186 266

97 127 186 271

103 128 196 272

111 139 208 280

113 140 219 284

117 148 224 292

117 754 224 300

118 159 232 317

121 177 247 332

121 199 243 342

124 207 243 355

376
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Figure 5.29 After adjusting the cyclic times to operating times, there is no significant difference.
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Figure 5.28 Weibull plot of steady state and cyclic testing of wall clocks.
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MINITAB uses amaximum-likelihood estimation technique for finding theWeibull distribution
that has the highest probability of explaining the interval data.

Example 5.11 Given the following nine interval failure points in Table 5.92, generate a Weibull
using MINITAB’s “arbitrary censoring” (Figure 5.31).

Left censored: time before which
the failure occurred 

Right censored: time after last inspection
with no failure

Unit has not failed
since last inspection

0 0

Interval censored: time at the end of the interval during which the failure occurred 

Inspection
Discovered failure 

Uniti

Uniti

Uniti
X1

Not failed

Time Time

X1

X2

X3

0 Inspection
Discovered failure 

Time

Figure 5.30 Graphic illustration of the left, right, and interval-censored data.

2 Source: Data from Nelson (1982), p. 415.

Table 5.9 Interval data.

Start (h) End (h)

∗ 6.12

6.12 19.92

19.92 29.64

29.64 35.4

35.4 39.72

39.72 45.24

45.24 52.32

52.32 63.48

63.48 ∗
Source: Data from Nelson (1982).
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Example 5.12 Given the inspection data in Table 5.10, generate a Weibull (Figure 5.32).

Note: The data on the Weibull plots illustrated for interval data are plotted using MRs, while
the best fit line and confidence bounds on the best fit line are based on the MLE estimates of β
and η. Hence, the “eyeball” fit does not always look good. A Weibull plot is necessary for
explanation and presentation but can cause questions when MLE-based lines are on a plot
of MR-placed points.

Probability plot for start (hrs)
Weibull – 95% CI

Arbitrary censoring – ML estimates
99

90
80
70
60
50
40
30

20

10

5

3

2

1
1
0.1 10 100

Start (hours)

P
er

ce
n

t

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
AD*

1.60147
42.0023
37.6550
24.0754
33.4103
32.2120

2.699

Figure 5.31 Slow wear-out failure mode indicated.

Table 5.10 “Mixed” interval data.

Discovered Censor

Start Failed Freq Type

∗ 1,000 5 Left

1,000 2,000 3 Interval

2,000 3,000 1 Interval

4,000 5,000 1 Interval

7,000 8,000 1 Interval

10,000 11,000 1 Interval

11,000 12,000 1 Interval

12,000 13,000 1 Interval

13,500 13,500 1 Exact

16,000 17,000 1 Interval
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The Weibull Distribution in a System of Independent Failure Modes

Consider a system with a failure rate that results from the contributions of independent modes.
Suppose that somemodes are associated with failure rates that decrease with time, while the failure
rates of others are either constant or increase with time. Weibull distributions are particularly use-
ful for modeling such modes. If we write

t

0
λ t dt =

t
ηa

βa

+
t
ηb

βb

+
t
ηc

βc

5 25

and take 0 < βa < 1, βb = 1, and βc > 1, the three terms correspond, respectively, to contribu-
tions to the failure-rate contributions that decrease, remain flat, and increase with time. These
are associated with early failures, random failures, and wear failures, respectively. Thus, the
shape of the bathtub curve can be expressed as a superposition of Weibull failure rates. It is
not valid to think of these individual terms as arising from Eqs. (3.57) through (3.63) unless
each of them results from independent failure modes or the failures of different components.
When they arise as the result of a single cause, the contributions from infant mortality, ran-
dom, and aging effects are strongly interactive. In these cases, Eq. (5.25) may be a useful
empirical representation of the failure rate curve so long as the individual terms are not iden-
tified uniquely with infant mortality, random, or aging failures. We consider the interactions
that give rise to the bathtub curve in more detail in Chapter 8, where they are related to load-
ing and capacity.
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Figure 5.32 Infant mortality (quality or maintenance) failure mode indicated.
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5.3 Extreme Value Distributions

Extreme value distributions or, more precisely, asymptotic extreme value distributions frequently
rise in situations where the number of variables – flaws, acceleration, etc. – from which the data is
gathered is very large. Both largest and smallest extreme value distributions are applied in reliability
engineering.
There are a number of different types of extreme value distributions. We confine our attention

here to the type I or Gumbel distributions, the CDF and PDF, andmean and variance for the largest
extreme value distribution3:
The PDF of the largest extreme value distribution is

f x =
1
θ
e− x− μ θ exp − e− x− μ θ − ∞ < x < ∞ 5 26

The CDF of the largest extreme value distribution is

F x = exp − e− x− μ θ − ∞ < x < ∞ 5 27

Continuing, the mean and variance are:

Mean of the Largest Extreme Distribution = μ + γθ = μ + 0 57722θ 5 28

where γ is Euler’s constant = 0.57722.

Variance of the Largest Extreme Distribution =
1
6
π2θ2 5 29

The PDF for the largest and smallest extreme distributions are plotted in Figure 5.33. Note that
they have long tails on the right and left, respectively.
Similar to the normal and lognormal distribution, a reduced variant can be defined, which sim-

plifies the CDF. If we let w = (x− μ)/θ, then the CDF becomes

Fw w = e− e−w
5 30

This explains why type I extreme value distributions are frequently referred to as “double expo-
nential” distributions.
The largest extreme value distribution often works well in combining loads on a systemwhen it is

the maximum load that determines whether the system will fail. Suppose that x1, x2, x3,…, xN are the
magnitudes of the individual loads, and let y denote the maximum of these loads. To determine the
probability that Y will not exceed some specified value y, we may write

P Y ≤ y = P x1 ≤ y x2 ≤ y x3 ≤ y xN ≤ y

If the magnitudes of the successive loads are independent of one another, this expression simpli-
fies to

P{Y≤ y} = P{x1≤ y}P{x2≤ y}P{x3≤ y} P{xN≤ y}

3 Largest extreme value mathematics (Gumbel 1958).
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We also note that each of these probabilities is a CDF. Thus, if the loads are identically distrib-
uted, we may rewrite this equation as

FY y = Fx y N 5 31

Now, assume that the CDF for each loading is the largest extreme value distribution. We
then have

FY y = exp − e− y− μ θ
N
= exp −Ne− y− μ θ 5 32
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Figure 5.33 Extreme value probability density functions (E.J. Gumbel op. cit.). (a) Largest extreme value PDF.
(b) Smallest extreme value PDF.
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The CDF for y can be written as a single extreme value distribution:

FY y = exp − e− y− μ θ 5 33

where the displacement parameter has been increased to a value of

u' = u + θ ln N 5 34

and θ remains unchanged.
See Appendix D –Nonparametric Methods and Probability Plotting – Extreme value distribution

(smallest and largest) for details of how extreme value distribution probability plots are generated.
We are often interested in extreme values of a parameter (maximum strength, maximum imping-

ing force, maximum change in a stock price, andmaximumpit depth due to corrosion) because they
are the values that determine whether a system will potentially fail: for example wind strengths
impinging on a building – it must be designed to sustain the maximum wind with smallest damage
within the bounds of the finances available to build it; maximumwave height for designing offshore
platforms, breakwaters, and dikes; pollution emissions for a factory to ensure that, at its maximum,
it will fall below the legal limit; determining the strength of a chain, since it is equal to the strength
of its weakest link; and modeling the extremes of meteorological events since these cause the great-
est impact.

Example 5.13 Modeling pit depths in steel tanks
The maximum pit depth values (in mm) of steel tanks exposed to cyclic dry/wet conditions were
measured after 4, 6, and 12 years of service to determine the corrosion life of the tanks before they
failed (data from Kowaka et al. 1995)4. See Table 5.11 (Figure 5.34).
Using this plot the probability of having a pit depth > 2.65 mm is ~0.01 (or 1/100) (Figure 5.35).
A summary of results is in Table 5.12.

Table 5.11 Maximum pit depths (mm) of steel tanks.

4 Years 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8

0.8 0.8 0.9 0.9 0.9 0.9 1 1 1 1

1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.3

1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.5

1.5 1.6 1.6 1.6 1.6 1.6 2 2.1 2.3 2.5

6 Years 1 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.3 1.3

1.4 1.4 1.5 1.5 1.5 1.6 1.7 1.7 1.9 1.9

1.9 2 2.3 2.3 2.7

12 Years 0.8 0.8 0.8 1 1 1 1 1.1 1.4 1.5

1.5 1.6 1.8 1.9 2.1 2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.8 3.8 3.9 4.4 5 5

Source: Data from Kowaka et al. (1995).

4 Kowaka et al. (1995). Creative commons.
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Figure 5.35 Comparing 4-, 6-, and 12-year data together to see the changes in maximum predicted pit depth.
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Figure 5.34 Using the 4-year data, generating a largest extreme value plot in MINITAB.
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With this information, the materials engineers can calculate the probability of a leak and/or fail-
ure of the storage tanks.

Example 5.14 Modeling extreme earthquake magnitudes worldwide 1900–2014
Data is from USGS database of deaths caused directly by earthquakes magnitude 6.8 and higher
from 1900 to 2014 earthquake (deaths from factors such as mudslides took deaths over 1000).
Using the largest extreme value distribution, see Figure 5.36.
Interestingly enough, if you use the data of all recorded Tsunami-causing earthquakes (227 BC to

2013 AD), aWeibull distribution fits best. This was after trying the largest extreme value distribution
first (see Figure 5.37).

Table 5.12 Summary of expected and upper 95% bound of pit depths vs years.

Probability = 0.001 of a pit depth

Expected (mm) Upper 95% bound (mm)

After 4 years 3.5 4

After 6 years 3.5 4.3

After 12 years 8.4 10.6
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Figure 5.36 Magnitude >6.8 earthquakes since 1900 show probability = 0.008 of earthquake as large as 9.5.
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Figure 5.37 Obviously, the largest extreme value does not fit the data well. Using a three-parameter Weibull,
one would expect less than 1 in 10,000 to surpass magnitude 7.5. The lower tail (from magnitude 3 on down)
could be due to not having all the data; quite possible for magnitudes <3. So, this is a case of the largest
extreme value distribution not fitting the data aswell as the three-parameterWeibull. The lesson learned: try to
fit with the distribution that “might” be best and then go back to the Weibull (or use the “Distribution ID” in
Appendix D).
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The largest extreme value distribution models a Gumbel distribution for the largest extreme. The
Smallest extreme distribution, for a variable that has an exponential family lower tail, is given by
the complementary smallest extreme value distribution.
The extreme value distributions are asymptotic results, meaning that the probability distribution

of the maximum of a set of independent values drawn from some distribution approaches the
extreme value distributions only as sample size (n) approaches infinity.
The smallest extreme value distribution is sometimes used as an alternative to the Weibull in

describing strength distributions and related phenomena (particularly when the Weibull does
not seem to fit the data). The CDF and PDF for the corresponding smallest extreme value distri-
bution are5

The PDF of the smallest extreme value distribution is

f x =
1
θ
e x− μ θ exp − e x− μ θ − ∞ < x < ∞ 5 35

The CDF of the smallest extreme value distribution is

F x = 1− exp − e x− μ θ − ∞ < x < ∞ 5 36

Continuing, the mean and variance are:

Mean of the Smallest Extreme Distribution = μ− γθ = μ− 0 57722θ 5 37

where γ is Euler’s constant = 0.57722.

Variance of the Smallest Extreme Distribution =
1
6
π2θ2 5 38

The smallest extreme value PDF is plotted in Figure 5.33b.
It is noteworthy that the smallest extreme value distribution is closely related to the Weibull dis-

tribution, and as a result, it is often used for similar distributions such as representing distributions
of times to failure. If we let

x = ln y 5 39

then the foregoing equations in x for the smallest extreme value distribution reduce to a Weibull
distribution in y; the Weibull parameters are given in terms of those for the extreme value distri-
bution by

η = eμ 5 40

and

β = 1 θ 5 41

Thus, the Weibull distribution has the same relationship to the smallest extreme value distribu-
tion as the lognormal has to the normal: In both cases they are related by x = ln(y), and in the first,
the domain of the random variable is −∞< x <∞, while in the second it is 0 < y <∞.

5 Smallest Extreme Value Mathematics (Gumbel 1958).

5.3 Extreme Value Distributions 195



Example 5.15 In a study of the minimum annual temperature at Ft Collins, CO, to help in deter-
mining electrical output requirements for local power stations, the following data were obtained
(see Table 5.13).
(data from Western Regional Climate Center of the Desert Research Institute, https://wrcc.dri.

edu/)
Plotting this data as a smallest extreme value distribution gave Figure 5.38. Over this 125-year

period the minimum temperature was −41 F. Looking at the “break” in the data at ~−30 F
and extrapolating the fit to follow the trend downward temperature data “tail” suggests that the
probability of −50 F is <1/1000. One can postulate many reasons for the dogleg bend in this data,
one of which is failure to report colder temps than −30 deg F because of limited instrumentation.

Table 5.13 Annual minimum temperature by year at Ft Collins, CO, 1895–2019.

Year
Annual
min temp Year

Annual
min temp Year

Annual
min temp Year

Annual
min temp Year

Annual
min temp

1895 −28 1920 −12 1945 −21 1970 −9 1995 −10

1896 −11 1921 −12 1946 −13 1971 −20 1996 −18

1897 −26 1922 −27 1947 −17 1972 −18 1997 −10

1898 −22 1923 −21 1948 −32 1973 −5 1998 −13

1899 −38 1924 −30 1949 −28 1974 −11 1999 5

1900 −23 1925 −15 1950 −19 1975 −7 2000 0

1901 −31 1926 −18 1951 −41 1976 −8 2001 −3

1902 −31 1927 −16 1952 −14 1977 −9 2002 −6

1903 −28 1928 −16 1953 −10 1978 −16 2003 −3

1904 −7 1929 −22 1954 −17 1979 −15 2004 −8

1905 −27 1930 −38 1955 −19 1980 −14 2005 −10

1906 −25 1931 −3 1956 −23 1981 −14 2006 −11

1907 −5 1932 −30 1957 −13 1982 −17 2007 −8

1908 −15 1933 −31 1958 −12 1983 −16 2008 −11

1909 −19 1934 −2 1959 −25 1984 −28 2009 −15

1910 −21 1935 −25 1960 −20 1985 −15 2010 −10

1911 −18 1936 −31 1961 −22 1986 −6 2011 −13

1912 −16 1937 −26 1962 −32 1987 −8 2012 −1

1913 −30 1938 −11 1963 −25 1988 −8 2013 −8

1914 −18 1939 −10 1964 −15 1989 −22 2014 −16

1915 −14 1940 −21 1965 −10 1990 −24 2015 −3

1916 −24 1941 −14 1966 −14 1991 −2 2016 −9

1917 −18 1942 −30 1967 −9 1992 −2 2017 −16

1918 −21 1943 −31 1968 −10 1993 −7 2018 −3

1919 −35 1944 −13 1969 −4 1994 −6 2019 −9

Source: Data from Western Regional Climate Center of the Desert Research Institute.
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5.4 Introduction to Risk Analysis

One of the major uses of Weibull analysis is to predict the number of occurrences of a failure mode
as a function of time. This projection is important because it gives the management a clear view of
the potential magnitude of a problem. In addition, if this prediction is made for different failure
modes, the management is able to set the priority for the solution of each problem.
In this section, the use of the Weibull and largest/smallest extreme value probability distribution

functions in predicting the occurrences of a failure mode is explained.
The additional input needed for risk analysis will be covered, and several examples are presented

to explain further the techniques involved. It should be emphasized that the forecast analysis is only
as good as the failure data. The data should be examined closely to ensure that they are from a single
failure mode and will fit a Weibull distribution or extreme value distribution.
A risk analysis calculates the number of incidents projected to occur over some future period.
The observed failures and the population of units that have not failed are used to obtain the fail-

ure distribution, as discussed in Sections 5.1–5.3. The following additional input is needed for fore-
casting: (i) usage rate per unit permonth (or year, day, etc.) and (ii) introduction rate of new units (if
they are subject to this same failure mode).
With this information, a risk analysis can be produced. The techniques used to produce the risk

analysis can vary from simple calculations to those involving Monte Carlo simulation. Monte Carlo
simulation is required when complications arise in the risk analysis. These will be explained further
in Chapter 11.

Risk Analysis “Mathematics”

Calculating risk is a simple application of conditional probability:
Let X = random variable, representing the number of failures observed in some risk period, in n

engines (X is a discrete random variable, taking on values 0,
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Figure 5.38 Extreme value plot of minimum yearly temperature data.
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Assuming no replacement of failed parts with similar parts with the same life distribution F:

X =
n

i = 1

Xi where Xi =
1 if engine i fails during risk period

0 if it does not
5 42

Now, by definition, risk = E(X) and

E X =
n

1

E Xi

=
n

1

1 P Xi = 1 + 0 P Xi = 0

=
n

1

P Xi = 1

=
n

1

P engine i fails in nextΔi cycles, given it has reached age ci

which, by the definition of Conditional Probability,

=
n

1

P engine i fails in nextΔi cycles P engine i has reached age ci P engine i has reached age ci

=
n

1

F ci + Δi −F ci
1−F ci

5 43

where F(t) is the CDF of the failure distribution, e.g. F t = 1− e−
t
η

β

for the Weibull.

Example 5.16 Risk analysis using Weibull distributions, no remedial action
A simple risk analysis, using the following input:
A Weibull failure mode whose β = 3.0 and η = 10,000 hours,
A population of 50 units, 10 each with times 1000, 2000, 3000, 4000, and 5000 hours.
Three failures have occurred to date.
25 hours/month are placed on each unit
What is the risk after 6 months?

Setting this up in EXCEL yields Table 5.14.

Table 5.14 Simple risk analysis in EXCEL.

No.
engines Time = Now

F
(now time) F(t + 150)

(F(t + 150) −
F(t))/(1 − F(t))

Expected
failures
now

Expected
failures in
6 months

Expected
cumulative
failure
in 6 months

10 1000 0.0009995 0.0015197 0.000521 0.009995 0.005207 0.015202

10 2000 0.00796809 0.0098892 0.001936 0.079681 0.019365 0.099046

10 3000 0.02663876 0.0307725 0.004247 0.266388 0.042468 0.308856

10 4000 0.061995 0.0689789 0.007446 0.619950 0.074455 0.694405

10 5000 0.1175031 0.127673 0.011524 1.175031 0.115240 1.290271

Sum= 2.151044 0.256735 2.407780
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You had three failures to date; based on the calculation, the risk analysis predicted that you
should have had 2.15 failures to date and an additional 0.26 failures in the next 6 months. If
you redid this risk for 12, 18, 24, 30, 36, 42, and 48 months, you would have Figure 5.39.
Now, suppose that the project manager asked for a 6-month projection ONLY.
Based on Table 5.14, the expected number of additional failure is 0.26.
The project manager looks at that number and asks, “ Well, is that 0 or 1 failure?”
A better way to explain the expected risk when it is <1.0 is to convert that expected risk to the

probability of 1 or more future failures. This can be accomplished using a Thorndike chart [devel-
oped by Frances Thorndike at Bell Labs in 1926 (Thorndike 1926)]. See Chapter 2 – Poisson Dis-
tribution – for more details.
The risk analysis predicted 0.26 additional failures after 6 month of fleet activity. However, the

chance of having one or more failure in that 6-month period = 0.23 or approximately 1 chance in 4.
In cases like this, the Thorndike chart (Figure 5.40) is a “visual” that goes over well in presenting the
results to the management.

Example 5.17 Weibull risk analysis example with fleet inspections6

Bearing cage fracture times of 230, 334, 423, 990, 1009, and 1510 hours were observed. The popu-
lation of bearings within which the failures occurred is shown in Figure 5.41.
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Figure 5.39 Risk analysis 4 years in the future. Risk projection is based on the given Weibull and assumes that
no fixes are introduced into the fleet. In looking at this risk plot, the program or project manager would
probably choose 18 months to have a fix in the operating fleet. Why? The expected number of failure is less
than 1 up to approximately 18 months.

6 Abernethy et al. (1983).
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Figure 5.40 Thorndike chart (see Chapter 2) explanation of risk analysis results for customer presentation. Source: Thorndike (1926). Reused with permission of
Nokia Corporation and AT&T Archives.



a) AWeibull plot using the six failures and the histogram of the population by assuming the time of
each histogram bar is at the midpoint was completed.

b) The Weibull plot will show that the B10 life (time at which 10% of the population will have
failed) is approximately 2670 hours (see Figure 5.42).
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Figure 5.42 Weibull plot of bearing cage fracture.
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Figure 5.41 Histogram of bearing cage population. Sample size = 1703, including six failures.
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This is much less than the B10 design life of 8000 hours, so a redesign was undertaken.
Additionally, the management wanted to know howmany failures would be observed before this

redesign entered the field, based on inspecting the bearings at various intervals.
The histogram represents the times on the entire population. The center of each histogram bar

along with its count of bearing cages is put in the table. Note that each histogram bar is ±50 around
the center value of the bar. The number of failures are subtracted from the freq (e.g. failure at
230 hours is in the 200 ± 50 bar, so the original 148 is reduced to 147, and the failure point at
230 is added below). Note that the censor is changed to “1” for 230 to indicate a failure at that time.
This same process is followed for the other five failures. Thus, the population of suspensions/
unfailed units is 1697, and the number of failures is 6 for a total population of 1703.
Table 5.15 can then be copied intoMINITAB, and aWeibull plot of the failure mode is produced

(Figure 5.42).

Table 5.15 Tabular form of bearing cage population histogram.

Time Censor Freq

100 0 288

200 0 147

230 1 1

300 0 124

334 1 1

400 0 111

423 1 1

500 0 107

600 0 99

700 0 110

800 0 114

900 0 119

990 1 1

1000 0 126

1009 1 1

1100 0 124

1200 0 93

1300 0 47

1400 0 41

1500 0 26

1510 1 1

1600 0 12

1700 0 6

1800 0 0

1900 0 1

2000 0 2
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Risk questions and solutions:

1) How many failures could be expected by the time units had reached 1000 hours?
Solution: Assuming failed units are not replaced, go into theWeibull x-axis at 1000 hours up to

theWeibull fit line and across to the Y-axis… and find that ~1.3% of the population is expected to
fail by 1000 hours. So, after all 1703 of the population have gone through 1000 hours, 0.013 ×
1703 = 22 bearings would be expected to have failed.

2) Howmany failures could be expected when 4000 hours had been accumulated on each bearing if
we instituted a 1000-hour inspection? A 2000-hour inspection?
Solution: From the above, the probability of a bearing failure by 1000 hours is 0.013.

Therefore, assuming that a 1000-hour inspection makes a bearing “good as new” in terms
of cage fracture, there is a total expectation of failure for each bearing by 4000 hours of 0.013
+ 0.013 + 0.013 + 0.013 = 0.052. For 1703 bearings who have an inspection every 1000 hours
and run to 4000 hours that would mean 0.052 × 1703 = 89 failed bearings.
For a 2000-hour inspection, the probability by 2000 hours is 0.06. Therefore, by 4000 hours

with an inspection every 2000 hours, every bearing would have the expectation of 0.058 +
0.058 = 0.116 of failing. So, the number of failures in the bearing population with a 2000-hour
inspection is 0.116 × 1703 = 198.
Going one step further, suppose that no inspections were made and the bearings were

retired at 4000 hours. The probability of failure at 4000 hours is 0.25. So, by not inspecting
but retiring the bearings at 4000 hours, the expected number of bearing failures is 0.24 ×
1703 = 409.

These answers would give the project management sufficient information to make a decision on
inspecting and at what interval or possibly not doing inspections. Of course, the customer impact
has to be considered in these decisions.
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Exercises

5.1 An engine bearing has a Weibull failure mode of β = 2.0 and η = 1000 hours.
a) What is the probability of failure in the first 500 hours?
b) What is the probability of failure in the second 500 hours?

5.2 Fatigue specimens were put on test. They were all tested to failure, and the failure times were
150, 85, 250, 240, 135, 200, 240, 150, 200, and 190 hours.
a) Construct a Weibull plot and determine its slope β and characteristic life η.
b) If you were quoting the B10 life, what would the value be?

5.3 There were live failures of a part in service. The information on these parts is

Serial number comm Time (hours) F/S

831 9 F

832 6 F

833 14.6 S

834 1.1 F

835 20 F

836 7 S

837 65 F

838 8 S

F, failure; S, suspension.

a) Construct a Weibull with suspensions included and determine its slope, β and character-
istic life, η

b) What is the failure mode?
c) Are there other clues which may lead to an answer to the problem?

5.4 The following set of failure points will result in curved Weibull: 90, 130, 65, 220, 275, 370,
525, and 1200 hours. Plot on Weibull paper, or use your favorite software.
a) Is this Weibull good as is? Why not?
b) What value is needed to straighten the Weibull? Now, "Eyeball" a curve through the data

and read an approximate to where it intersects the bottom scale. Is your “Eyeball close” to
what the software calculated for t0?

c) Is the t0 found in "b" to be added or subtracted from the failure values?

5.5 Source: Data from Lieblen and Zelen (1956).
a) Generate a Weibull plot. Is the fit to the data good?
b) Does the Weibull β seem to justify “fatigue” ?
(Note: Through experience, bearings have Weibull βs from ~1.2 to ~2.8, depending on the

application.)
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Ball bearing endurance life (× 106 revolutions) Censor

17.88 F

28.82 F

33 F

41.52 F

42.12 F

45.6 F

48.48 F

51.84 F

51.96 F

54.12 F

55.56 F

67.8 F

68.64 F

68.64 F

68.88 S

84.12 F

93.12 F

98.64 F

105.12 F

105.84 F

125.04 F

127.82 F

173.4 S

5.6 Source: Data from The Weibull Distribution, ReliaWiki.
19 “Widgets” were put on test, but due to production needs, some were withdrawn from

the test before the last one failed; hence, those withdrawn had not failed and are
“suspensions.”
a) Generate a least squares Weibull plot, noting the β and η.
b) Generate a maximum-likelihood Weibull plot, also noting the βMLE and ηMLE.
c) Compare the two Weibulls. What conclusions can you draw?

Data point State (F/S) Time to failure

1 F 2

2 S 3

3 F 5

4 S 7

5 F 11

6 S 13
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Data point State (F/S) Time to failure

7 S 17

8 S 19

9 F 23

10 F 29

11 S 31

12 F 37

13 S 41

14 F 43

15 S 47

16 S 53

17 F 59

18 S 61

19 S 67

5.7 (Source: Data fromNelson (1982), p. 317) 70 diesel engine fans accumulated 344,440 hours in
service and 12 of them failed. A table of their life data is shown next (+ denotes nonfailed
units or suspensions, using Dr. Nelson’s nomenclature). Evaluate the parameters with their
two-sided 95% confidence bounds, using MLE for the two-parameter Weibull distribution.

Status
Failure
time (h) Status

Failure
time (h) Status

Failure
time (h) Status

Failure
time (h) Status

Failure
time (h)

F 450 S 2030 S 4150 S 5000 S 8100

S 460 F 2070 S 4150 S 5000 S 8200

F 1150 F 2070 S 4150 S 6100 S 8500

F 1150 F 2080 S 4150 F 6100 S 8500

S 1560 S 2200 S 4300 S 6100 S 8500

F 1600 S 3000 S 4300 S 6100 S 8750

S 1660 S 3000 S 4300 S 6300 F 8750

S 1850 S 3000 S 4300 S 6450 S 8750

S 1850 S 3000 F 4600 S 6450 S 9400

S 1850 F 3100 S 4850 S 6700 S 9900

S 1850 S 3200 S 4850 S 7450 S 10100

S 1850 F 3450 S 4850 S 7800 S 10100

S 2030 S 3750 S 4850 S 7800 S 10100

S 2030 S 3750 S 5000 S 8100 S 11500
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5.8 (Source: Data from Quinn and Quinn 2010)
Dental Porcelain 1 and Porcelain 2 are being stress tested.
Porcelain 1 and Porcelain 2 both had cross sections of 3 mm× 4mm, and both were tested

in 1/4-point, 4-point flexure. The Porcelain 2 test specimens were shorter than the Porcelain
1 test specimens, however, and were tested using shorter spans. Porcelain 2 was tested with a
20-mm outer span and 10-mm inner span.
The longer Porcelain 1 test specimens were tested with the same fixture design but with a

40-mm outer span and 20-mm inner span. The test results are in the table to the right. Each
result is stress at fracture in MPa.
a) Do a side-by-side Weibull analysis of the Porcelain 1 and Porcelain 2 data, without con-

fidence bands.
b) What are your conclusions looking at the Weibull plots?
c) Now repeat the side-by-side Weibulls but add 90% confidence bands, what are your con-

clusions now?

Porcelain 1 Porcelain 2

75 90.5

76 95

77.5 102

78 104

79 105.5

82 106

82.5 107

83 107.5

83.5 110

83.7 111

84 112

85 112.5

85.5 114

86 114.5

87 115

88 115

88.3 116

88.5 118

89.5 119

89.7 119.5

90 119.5

90.2 119.5

91 120

92 120.5

93 123
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5.9 Coil failure consists of failures of twin coils in motors. If a motor has a failure, the coil data
consists of the failure time of one coil followed by an equal running time for the other coil as
a suspension.
a) Produce a ranked regression Weibull.
b) What is the slope of the Weibull line?
c) What type of failure mode is indicated?

Times F/S Times F/S

1175 F 1665 F

1175 S 1665 S

1521 F 1713 F

1521 S 1713 S

1569 F 1761 F

1569 S 1761 S

1617 F 1881 F

1617 S 1881 S

1665 F 1953 F

1665 S 1953 S

5.10 Looking at theWeibull plot from Problem 5.9, the lowest set of coils was determined to be an
outlier. Redo theWeibull analysis and then determine if any further analysis should be done.

5.11 The data below, from Pike (1966), give the times from insult with the carcinogen DMBA to
mortality from vaginal cancer in rats. Two groups were distinguished by a pretreatment
regime. (The times are in days);
Group 1:
143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265, 304, 216+,

244 +
Group 2:
142, 156, 163, 198, 205, 232, 232, 233, 233, 233, 233, 239, 240, 261, 280, 280, 296, 296, 323.

204+, 344 +
+Censored
Compare the result of the treatment on Group 1 to the treatment on Group 2. (Use 90%

confidence and MLE estimation for your Weibulls.)

5.12 Leukemia remission data, Source: Data from Paik et al. (2004):

Group 1 Censor 1 Group 2 Censor 2

6 F 1 F

6 F 1 F

6 F 2 F

7 F 2 F

(Continued)
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Group 1 Censor 1 Group 2 Censor 2

10 F 3 F

13 F 4 F

16 F 4 F

22 F 5 F

23 F 5 F

6 S 8 F

9 S 8 F

10 S 8 F

11 S 8 F

17 S 11 F

19 S 11 F

20 S 12 F

25 S 12 F

32 S 15 F

32 S 17 F

35 S 22 F

35 S 23 F

Analyze whether there is a significant difference between Group 1 and Group 2
treatments.

5.13 Ten failures are noted in the field out of a population of 2000. The 10 failures times are: 51,
79, 116, 164, 197, 230, 232, 327, 414, and 451 hours. Generate aWeibull distribution that best
represents the total population.

5.14 The remission times of 42 patients (21 given an experimental chemo, and 21 given a placebo)
in a randomized clinical trial7. Analyze this data assuming that a Weibull distribution fits
both the distributions. Is there a significant difference between the chemo group and the
placebo group? (In this data, 0 = censored, 1 = failure)

Remission times for chemo patients

Chemo Censor 1 Placebo Censor 2

6 1 1 1

6 1 1 1

6 1 2 1

7 1 2 1

10 1 3 1

13 1 4 1

7 Source: Data from Lee (1992).
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Remission times for chemo patients

Chemo Censor 1 Placebo Censor 2

16 1 4 1

22 1 5 1

23 1 5 1

6 0 8 1

9 0 8 1

10 0 8 1

11 0 8 1

17 0 11 1

19 0 11 1

20 0 12 1

25 0 12 1

32 0 15 1

32 0 17 1

34 0 22 1

35 0 23 1

5.15 A component has the following failures: 30, 49, 82, 90, and 96 hours and suspensions at 10,
45, and100 hours.
a) Generate an MLE Weibull of this data
b) 10 units have entered the field in the past two months with times: What is the expected

number of units predicted over the next 5 months?

Unit Hours

1 25

2 33

3 40

4 45

5 50

6 60

7 64

8 75

9 80

10 99

5.16 Using Eqs. (4.15) and (4.16) to verify that (a) the mean of the Weibull is Eq. (5.3) and (b) the
variance of the Weibull is Eq. (5.4).

Hint Use Γ a =

∞

0

xa− 1e− xdx
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5.17 What fractions of items tested are expected to last more than 1 MTTF if the distribution of
times to failure is
a) exponential,
b) normal,
c) lognormal with ω = 2,
d) Weibull with β = 2.

5.18 The reliability for the Rayleigh distribution (a Weibull distribution with β = 2) is

R t = e− t η 2

Find the MTTF in terms of η.

5.19 A failure PDF for an appliance is assumed to be a Weibull distribution with β = 4.622 and
η = 5.44 years. What is the design life at:
a) a reliability of 90%,
b) a reliability of 99%.

5.20 A designer assumes a 90% probability that a new piece of machinery will fail at some time
between 2 years and 10 years.
a) Fit a Weibull distribution to this belief.
b) What is the MTTF?

5.21 The life of a rocker arm is assumed to be 4 million cycles. This is known to a factor of 2 with
0.90 probability. If the reliability is to be 0.95, how many cycles should the design life be?
(assume lognormal distributed).

5.22 Two components have the sameMTTF; the first has a constant failure rate λ0, and the second
follows a Rayleigh distribution (a Weibull distribution with β = 2), for which

t

0

λ t dt =
t
η

2

a) Find η in terms of λ0.
b) If for each component the design-life reliability must be 0.9, how much longer (in per-

centage) is the design life of the second (Rayleigh) component?

5.23 Consider the two components in Exercise 5.22.
a) For what design-life reliability are the design lives of the two components equal?
b) On the same graph, plot reliability versus time for the two components.

5.24 The two-parameter Weibull distribution with β = 2 is known as the Rayleigh distribution.
For a nonredundant system made of N components, each described by the same Rayleigh
distribution, find the system MTTF in terms of N and the component η.
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5.25 Suppose that the reliability of a single unit is given by a Weibull distribution with β = 2. Use
Eq. (3.103) to show that a standby system consisting of two such units has a reliability of

Rs t = e− t η 2

+ 2π t η erf 1 2t η e−
1
2 t η 2

where the error function is defined by

erf y =
1
π

y

0
e− x2dx

5.26 Suppose that two identical units are placed in active parallel. Each has aWeibull distribution
with known η and β > 1.
a) Determine the system reliability.
b) Find a rare-event approximation for a.

5.27 Suppose that the units in Exercise 5.26 each have a Weibull distribution with β = 2. By how
much is the MTTF increased by putting them in parallel?

5.28 The B10 life (sometimes called L10) of a bearing is the life of the bearing at which 10% fail-
ures may be expected. A new bearing design follows a Weibull distribution with β = 2, and
an L10 of one year. (a) What fraction of the bearings would you expect to fail in six months?
(b) If you had to guarantee no more than 1% failures, to what length of time would you limit
the design life?

5.29 One-inch-long ceramic fibers are known to have a strength given by a Weibull distribution
with a scale parameter of 8 lb and a shape parameter of 7.0. Assume the weakest link theory.
a) What will the scale and shape parameters be for fibers that are 2-in. long?
b) If 1.0% of the 1-in. fiber breaks under the stress of a particular application, what fraction

of the 2-in. fibers would you expect to break under the same stress?

5.30 The distribution of detectable flaw sizes in tubing is given by

F x = 1− e− x η, 0 ≤ x ≤ ∞

with η= 1/17 cm. There are an average of three detectable flaws per centimeter of tubing.
a) What fraction of the flaws will have a size larger than 0.8 cm?
b) What is the probability of finding a flaw larger than 0.8 cm in a 100-m length of tubing?
c) In 1000 m of tubing?

5.31 Suppose that a system contains 12 of the bearings from Exercise 5.28 and the system fails
with the failure of the first bearing failure. Estimate the system L10.

5.32 The following failure time data were collected: 5.2, 6.8, 11.2, 16.8, 17.8, 19.6, 23.4, 25.4, 32.0,
and 44.8 minutes. Make a probability plot and estimate β and η. Does it appear to be
exponential?

5.33 The Mechanical Design Chief has just stopped at your desk and asked: “What would be the
Weibull slope of a material that had a B50 to B.1 ratio of ~6.5?” What would you tell him?
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5.34 Electronic module failures have occurred in the field:

1,100 13,489 33,180 50,545 98,674

6,697 16,818 35,367 60,280 101,702

8,238 23,885 39,703 67,084 102,829

9,766 24,323 49,412 70,740 158,880

10,455 27,987 49,729 76,039 206,640

What type of failure mode is this? And what is the MTTF?

5.35 Grouped suspension MLE example
Source: Data from Wingo (1973).
Wingo uses the following times to failure: 37, 55, 64, 72, 74, 87, 88, 89, 91, 92, 94, 95, 97, 98,

100, 101, 102, 102, 105, 105, 107, 113, 117, 120, 120, 120, 122, 124, 126, 130, 135, 138, and 182.
In addition, the following suspensions are used: 4 at 70, 5 at 80, 4 at 99, 3 at 121, and 1

at 150.
What can you say about this data?

5.36 Suppose that we want to model a left-censored, right-censored, interval, and complete data
set, consisting of 274 units under test of which 185 units fail. The following table contains
the data.

Data
pt

Number in
state (freq)

Last
inspection

End
time (SorF)

1 2 5 5 F

2 23 5 5 S

3 28 0 7 F

4 4 10 10 F

5 7 15 15 F

6 8 20 20 F

7 29 20 20 S

8 32 0 22 F

9 6 25 25 F

10 4 27 30 F

11 8 30 35 F

12 5 30 40 F

13 9 27 45 F

14 7 25 50 F

15 5 20 55 F

16 3 15 60 F

17 6 10 65 F

18 3 5 70 F

19 37 100 100 S

20 48 0 102 F
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a) Produce a Weibull plot of this data.
b) What type of data do you suppose this is?
c) Where on the bathtub curve is this failure mode? And why?

5.37 Microcircuits undergo accelerated life testing. The analysis is to be carried out usingWeibull
analysis for ungrouped data.
a) The first test series on six prototype microcircuits results in the following times to failure

(in hours): 1.6, 2.6, 5.7, 9.3, 16.2, and 39.6. Fit a Weibull distribution to this data.
b) The second test series of six prototype microcircuits results in the following times to fail-

ure (in hours): 2.5, 2.8, 3.5, 5.7, 10.3, and 23.5. Fit a Weibull distribution to this data.
c) Plot both sets of data on the same plot, use MLE and ask for 90% confidence bounds. Are

the two sets of data significantly different? If the data sets are not significantly different,
plot them as one data set and compare to dual plots.

5.38 Twenty units of a catalytic converter are tested to failure without censoring. The times to
failure (in days) are the following:

2.6 3.2 3.4 3.9 5.6

7.1 6.4 6.8 6.9 9.5

9.8 11.3 11.8 11.9 12.7

12.3 16.0 21.9 22.4 24.2

Determine whether the failure mode is increasing or decreasing or staying constant (i.e.
exponential).

5.39 The data that follow are obtained for the time to failure of 128 appliance motors
a) Do a distribution ID plot of the interval data.
b) Make a Weibull probability plot and a normal probability plot of the grouped data.

Extend the cumulative probability axis to start at 0.1 on both probability plots. What
is the predicted 0.1 life on each plot? See something strange?

Hours # Failures Hours # Failures

0–10 4 50–60 31

10–20 8 60–70 22

20–30 11 70–80 10

30–40 16 80–90 2

40–50 23 90–100 1

5.40 Awear test is run on 20 specimens, and the following failure times in hours are obtained: 81,
91, 95+ , 97, 100+ , 106, 109, 110+, 112, 114+, 117+, 120, 126, 128, 130, 132+, 139, 144, 154,
and 163. (Note: + indicates a censored value.)
Do a Weibull plot and a three-parameter Weibull plot. Which seems better? Use your eye-

ball, look at the correlation/AD values, and pay attention to the values of β.
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5.41 Of a group of 180 transformers, 20 of them fail within the first 4000 hours of operation.
The times to failure in hours are as follows:8

10 1046 2096 3200

314 1570 2110 3360

730 1870 2177 3444

740 2020 2306 3508

990 2040 2690 3770

a) Produce a Weibull probability plot of the data.
b) Estimate how many transformers will fail between 4000 and 8000 hours. Needs a

negative t0.

5.42 Fifteen components undergo a 100-hour life test. Failures occur at 31.4, 45.9, 50.2, 56.4, 70.7,
73.2, 86.6, and 96.3 hours. From the previous experience the data is expected to obey a log-
normal distribution. Make a probability plot using MINITAB and indicate the lognormal
parameters, including MTTF. How can you tell this is a good fit-to-the-failure data?

5.43 The test started in Exercise 5.42 is run to completion. The remaining samples fail at 100.6,
117.9, 124.8, 146.7, 159.5, 205.2, and 232.5 hours. Redo the analysis and compare the lognor-
mal parameters and the MTTF to the values obtained in Exercise 5.42.

5.44 Repeat Exercise 5.43 but fit the data to a two-parameter Weibull distribution.

5.45 Data for the failure times of 318 radio transmitter receivers are given in the following table.9

Time interval (h) Failures Time interval (h) Failures

0–50 41 300–350 18

50–100 44 350–400 16

100–150 50 400–450 15

150–200 48 450–500 11

200–250 28 500–550 7

250–300 29 550–600 11

At 600 hours, 51 of the receiver–transmitters remained in operation. Use the arbitrary cen-
soring option in MINITAB and assume a Weibull failure distribution.
(Note: Wayne Nelson used the midpoint of the interval to generate a Weibull of this data.

You might do that to compare it to the arbitrary censoring output.)

8 Source: Data from Nelson (1982).
9 Source: Data from Mendenhall and Hader (1958).
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5.46 The following uncensored grouped data were collected on the failure time of feedwater
pumps, in units of 6 hours:

Interval Number of failures

0 < t < 6 5

6 < t < 12 19

12 < t < 18 61

18 < t < 24 27

24 < t < 30 20

30 < t < 36 17

Produce a Weibull probability plot as well as a plot of reliability (called a survival plot in
MINITAB) and hazard (failure) rate plot. Use MINITAB with arbitrary censoring.

5.47 The annual snowfall from 1900 to 2019:

Year
Annual
snowfall Year

Annual
snowfall Year

Annual
snowfall Year

Annual
snowfall Year

Annual
snowfall Year

Annual
snowfall

1900 29.2 1920 31.7 1940 33.5 1960 47 1980 37.3 2000 56

1901 25.7 1921 37.7 1941 61.5 1961 53.9 1981 17.3 2001 44.1

1902 48.4 1922 66.3 1942 56.3 1962 42.2 1982 67.8 2002 72.1

1903 10.5 1923 48.8 1943 60.6 1963 44.7 1983 83.9 2003 29.1

1904 27.6 1924 21.2 1944 65.6 1964 48.9 1984 47.6 2004 54.6

1905 38.8 1925 45 1945 8.5 1965 26 1985 73.5 2005 26.9

1906 75.1 1926 38.8 1946 68.4 1966 34.8 1986 67.3 2006 56.5

1907 21.8 1927 36.9 1947 63.2 1967 55.5 1987 89.5 2007 38.1

1908 64.5 1928 45.8 1948 61.8 1968 32.3 1988 59.3 2008 39.1

1909 25.3 1929 32.6 1949 25.7 1969 54.3 1989 77.2 2009 88.7

1910 38.9 1930 31.3 1950 33.7 1970 54.3 1990 41.8 2010 23.7

1911 55.2 1931 31.7 1951 44.1 1971 53.8 1991 50.3 2011 49.9

1912 38 1932 35.8 1952 48.6 1972 45.3 1992 63.5 2012 79.2

1913 49.5 1933 15.4 1953 22.9 1973 57.3 1993 61.6 2013 49.9

1914 27.5 1934 11.7 1954 49.9 1974 44.4 1994 41.5 2014 42

1915 23.6 1935 25.1 1955 62.2 1975 61.6 1995 54.1 2015 72.8

1916 87.3 1936 43.6 1956 57.3 1976 26.3 1996 58.4 2016 36.1

1917 51.6 1937 41 1957 32.3 1977 63.6 1997 55.3 2017 35.3

1918 30.2 1938 38.8 1958 66.6 1978 75.2 1998 40 2018 48.6

1919 65.7 1939 35.7 1959 42.6 1979 114.1 1999 39.4 2019 48

a) Find the best distributional fit for this data.
b) What is the projected amounts of snowfall with probability 0.01 and probability 0.99?

Exercises 217



5.48 The following numbers of bends to failure were recorded for 20 paper clips: 11, 29, 15, 20, 19,
11, 12, 9, 9, 8, 13, 20, 11, 22, 20, 9, 25, 19, 11, and 10.
a) Make a distribution ID plot in MINITAB and identify the best fit distribution.
b) Fit the data with the distribution chosen.
c) Briefly discuss your results.

5.49 Consider the followingmultiply censored data10 for the field windings for 16 generators. The
times to failure and removal times (in months) are 31.7, 39.2, 57.5, 65.0+, 65.8, 70.0, 75.0+,
75.0+, 87.5+, 86.3+, 94.2+, 101.7+, 105.8, 109.2+, 110.0, and 130.0+. Make a probability
plot of the data. What type of phenomenon are we seeing for field windings failures?
(NOTE: + indicated a censored value in Nelson’s book.)

5.50 A producer of consumer products offers a three-year double-your-money back guarantee
over a limited marketing area and collects the failure data tabulated below.
a) Fit the data to a Weibull distribution and estimate the parameters.
b) Fit the data to a lognormal distribution and estimate the parameters.
c) Does the Weibull or the lognormal distribution yield the better fit?
d) What % of population will fail by 24 months? 36 months?

Quarter

sold:

W92 S92 S92 F92 W93 S93 S93 F93 W94 S94 S94 F94

Number

sold:

842 972 1061 1293 939 1014 1036 1185 979 1125 1205 1300

Number failed:

W92 18

S92 42 22

S92 33 42 21

F92 32 39 45 26

W93 32 37 43 54 19

S93 27 35 38 51 38 22

S93 34 31 42 50 39 43 20

F93 42 35 37 46 34 39 43 23

W94 27 32 35 46 37 39 40 50 19

S94 26 26 29 40 32 36 38 48 44 26

S94 21 31 36 43 33 37 41 42 41 44 28

F94 25 27 31 41 29 33 35 45 35 46 49 24

5.51 The following multiply-censored times-to-failure (in hours) have been obtained from a bat-
tery-powered motor used in inexpensive consumer products: 22, 37, 41, 43, 56, 57+, 58, 61,
62+, 63+, 64, 64, 65+, 69, 69, 69+, 70, 76+, 78, 87, 88+, 89, 94, 100, and 119 (Note + indicates
right-censored data).
a) Fit the data to a Weibull distribution and estimate the parameters.
b) Plot the reliability (survival) and hazard plot for this data.

10 From Nelson (1982).
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5.52 A nonreplacement test with type I censoring is run for 50 hours on 30 microprocessors. Five
failures occur at 12, 19, 28, 39, and 47 hours. Estimate the value of the constant failure rate.

5.53 Ten units are on test. The units are not replaced when they fail (nonreplacement).
One unit fails at t1 = 685 hours, and a second unit fails at t2 = 1690 hours.
The test is ended at t = 2500 hours with no additional failures.

a) What is the total accumulated test time?
b) What is the MTTF?

Supplement 1: Weibull Derived from Weakest Link Theory

A wide-spread use of the Weibull distribution is in describing the weakest link phenomena. This
may be illustrated by considering a proverbial chain, where the strengths of theN link are described
by the random variables x1, x2, x3… xN. The strength of the chain is then also a random variable, say
y, which takes on the value of the weakest link. Thus,

P y > y = P x1 > y x2 > y x3 > y xN > y 5S1 1

If the link strengths are independent,

P y > y = P x1 > y P x2 > y P x3 > y P xN > y 5S1 2

If all of the links are governed by identical strength distributions, express the probabilities on the
right in terms of a single CDF, Fx(x):

P xl > y = 1−P xl ≤ y = 1−Fx y 5S1 3

Likewise, since the CDF for y may be written as Fy (y) = 1− P{y > y}, Eq. (5S1.2) becomes

Fy y = 1− 1−Fx y N 5S1 4

Now, suppose that the link strengths are governed by a Weibull distribution,

Fx x = 1− exp − x η β 5S1 5

then combining these two equations, we have

Fy y = 1− e− y η β N
= 1− e−N y η β

5S1 6

Thus, the chain strength may also be expressed as a Weibull distribution

Fy y = 1− exp − y η β 5S1 7

with the same shape parameter, and a scale parameter of

η = N − 1 β η 5S1 8

Even in situations where the underlying distribution is not explicitly known, but the failure
mechanism arises from many competing flaws, the Weibull distribution often provides a good
empirical fit to the data.
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Example 5S1.1 A chain is made of links whose strengths are Weibull distributed with β = 5 and
η= 1000 lbs. (a) What is the mean strength of one link? (b) What is the mean strength of a chain of
100 links? (c) At what load is there a 5% probability that the 100 link chain will fail?

Solution:

a) Using Eq. (5.3): μx = ηΓ(1 + 1/β) = 1000 Γ(1.20) = 1000 0.918 = 918 lbs.
b) From Eq. (5S1.8): η = 100−1/5 1000 = 398 lbs. Thus, μy = 398 Γ(1.20) = 398 0.918 = 365 lbs.
c) 0.05 = 1− exp[−(y/η )β] or y = θ [ln(l/0.95)]1/5 = 398 0.552 = 220 lbs.
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6

Reliability Testing

“Reliability cannot be achieved by adhering to detailed specifications. Reliability cannot be
achieved by formula and analysis. Some of these may help to some extent, but there is only
one road to reliability.
Build it, test it, and fix the things that go wrong. Repeat the process until the desired relia-
bility is achieved. It is a feedback process and there is no other way …”

Source: David Packard, the late cofounder of Hewlett-Packard
Company, November 1982, in Quality Magazine

6.1 Introduction

Reliability tests employ a number of the statistical tools introduced in previous chapters. Here, we
examine more closely how the gathering of data and its analysis is used for reliability prediction and
verification through the various stages of design, manufacturing, and operation. In reality, the sta-
tistical methods that may be employed are often severely restricted by the costs of performing tests
with significant sample sizes and by restrictions on the time available to complete tests.
Reliability testing is constrained by cost, since often the achievement of a statistical sample which

is large enough to obtain reasonable confidence intervals may be prohibitively expensive, particu-
larly if each one of the products tested to failure is expensive. Accordingly, as much information as
possible must be gleaned from small statistical samples or in some cases from even a single failure.
The use of failure mode analysis to isolate and eliminate the mechanism leading to failure may
result in design enhancement long before sufficient data is gathered to perform formal statistical
studies.
Testing is also constrained by the time available before a decision must be made in order to pro-

ceed to the next phase of the product development cycle. Frequently, one cannot wait the life of the
product for it to fail. On specified dates, designs must be frozen, manufacturing commenced, and
the product delivered. Even where larger sample sizes are available for testing, the severe con-
straints on testing time lead to the prevalence of censoring and acceleration. In censoring, a reli-
ability test is terminated before all of the units have failed. In acceleration, the stress cycle frequency
or stress intensity is increased to obtain the needed failure data over a shorter time period.
These cost and time restrictions force careful consideration of the purpose for which the data is

being obtained, the timing as to when the results must be available, and the required precision.
These considerations frequently lead to the employment of different methods of data analysis at
different points in the product cycle. One must carefully consider what reliability characteristics
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are important for determining the adequacy of the product. For example, time to failure may be
measured in at least three ways:

1) operating time
2) number of on–off cycles
3) calendar time.

If the first two are of primary interest, the test time can be shortened by applying compressed time
accelerations, whereas if the last is of concern, then intensified stress testing must be used. These
techniques are discussed in detail in Section 6.5.
The third constraint on testing is the customer requirements. Initial requirements are set by the

customer, then preliminary design begins, and initial testing starts. At this point, the customer will
often change his requirements (e.g. larger electrical load requiring a larger transformer of generator
and a larger weapon load requiring a larger engine because the vehicle has to meet the speed and
range requirements).
Figure 6.1 is a synopsis of the testing that will be presented along with a pictorial reminder of the

cost, time, and customer requirement challenges.
During the conceptual and detailed design stages, before the first prototype is built, reliability

data plays a crucial role. Reliability objectives and the determination of the associated component
reliability requirements enter the earliest conceptual design and system definition. The parts count
method, treated in Chapter 3, and similar techniques may be used to estimate reliability from the
known failure rate characteristics of standard components. Comparisons to similar existing systems
and a good deal of judgment also must be used during the course of the detailed design phase.
Tests may be performed by suppliers early in the design phase on critical components even before

system prototypes are built. Thus, aircraft, automotive, and other engines undergo extensive

Time

Customer requirements

Cost

Attribute testing
Constant failure rate testing
Weibull testing
Sudden death testing
Sequential testing
Normal/Lognormal testing
Accelerated life testing
Test to failure
Linear model stress testing
Physics of failure stress testing

•  Arrhenius
•  Inverse power law
•  Other

Reliability growth testing
Environmental stress screening
HALT/HASS

Figure 6.1 The reliability testing “balloon” and its overall challenges.
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reliability testing before incorporation into a vehicle. On a smaller scale, one might decide which of
a number of electric motor suppliers to utilize in the design of a small appliance by running reli-
ability tests on the motors. Depending on the design requirement and the impact of failure, such
tests may range from quite simple binomial tests, in which one or more of the motors is run con-
tinuously for the anticipated life of the machine, to more exhaustive statistical analysis of life-
testing procedure.
Completion of the first product prototypes allows operating data to be gained, which in turn may

be used to enhance reliability. At this stage, the test–fix–test–fix cycle is commonly applied to
improve design reliability before more formal measures of reliability are applied. As more proto-
types become available, environmental stress testing may also be employed in conjunction with
failure mode analysis to refine the design for enhanced reliability. These reliability enhancement
procedures are discussed in Section 6.5. It should be noted that some of these enhancement pro-
cedures can be used throughout the design–development–production–field operation cycles.
As the design is finalized, more extensive use of the life-testing procedures discussed in Sections

6.2–6.5 may be required for design verification. During the manufacturing phase, qualification and
acceptance testing become important to ensure that the delivered product meets the reliability stan-
dards to which it was designed. Through aggressive quality improvement, defects in the manufac-
turing process must be eliminated to insure that manufacturing variability does not give rise to
unacceptable numbers of infant-mortality failures. Finally, the collection of reliability data
throughout the operational life of a system is an important task, not only for the correction of
defects that may become apparent only with extensive field service but also for the setting and opti-
mization of maintenance schedules, parts replacement, and warranty policies.
Data is likely to be collected under widely differing circumstances ranging from carefully con-

trolled laboratory experiments to data resulting from field failures. Both have their uses. Laboratory
data are likely to provide more information per sample unit, both in the precise time to failure and
in the mechanism by which the failures occur. Conversely, the sample size for field data is likely to
be much larger, allowing more precise statistical estimates to be made. Equally important, labora-
tory testing may not adequately represent the environmental condition of the field, even though
attempts are made to do so. The exposures to dirt, temperature, humidity, and other environmental
loading encountered in practicemay be difficult to predict and simulate in the laboratory. Similarly,
the care in operation and quality of maintenance provided by consumers and field crews is unlikely
to match that performed by laboratory personnel.
Collecting data in many instances has its own challenges. If a product is sold in the commercial

arena, warranty returns (if warranties are given) may be the only data available. Products sold to the
military or other government agencies where safety and reliability are of utmost importance will
have more complete failure and nonfailure data. If a product or system is owned by a leasing firm
(e.g. commercial aircraft), the data is often only available after the lease has run out (3–5 years)!

6.2 Attribute Testing (Binomial Testing)

A unit either meets or fails to meet a test requirement. When there are no failures in n tests, we say
there is a success run of length n. For example, a set of 27 bearings does not exhibit brinnelling1

under a specified loading condition; a sample of 10 metal strips may each meet a tensile and elon-
gation requirement; or a sample of 100 firings of an upper stage rocket engine at simulated deep

1 Brinelling is the permanent indentation of a hard surface. True brinelling indicates that the load on the bearing is
greater than the elastic limit of the ring or bearing material.
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space conditions was successful. In these examples we would say that we have a success run of 27,
10, and 100, respectively. The purpose of a success run test is usually to demonstrate compliance to a
requirement or to demonstrate some degree of reliability. The term qualification testing is also
found in this context, and such testing is often used to “qualify”materials, electromechanical com-
ponents and subassemblies, or entire products.
A very common measure of reliability when using success runs is to state the “lower confidence

bound”, −R0, on the unknown reliability. Using this technique one may claim that R> R0 with a
degree of confidence, say C. R0 is derived from a probability argument about the occurrence of no
failures in n tests.
In the present discussion there is no consideration for the underlying distribution of failure times,

and so the method is referred to as nonparametric.

The Classical Success Run

Suppose that a series of n tests is performed without failure. The test conditions remain constant
from test to test, and the n tests are independent. With a given confidence level, say C, what reli-
ability is demonstrated by a success run of length n?
We know from our discussion of the binomial distribution (Chapter 2) that the binomial

describes pass/fail phenomenon; hence, in general, for n trials, the probability of s successes is

P success = Cn
s p

sqn− s

or, in Reliability terms; let R(reliability) = probability of success p, and Q(unreliability) =
(1− R) = probability of failure q

Then, P success = Cn
s R

s 1−R n− s

If there are s successes in n Bernoulli trials, the point estimates of R and Q are:

Q = 1−R =
n− s
n

and R =
s
n

From Eq. (2.63) we can find the lower one-sided confidence interval 100(1− α)% (CL) for the
Reliability R where r = n− s failures in a sample of size n:

r

k = 0

Cn
k 1−RL

k RL
n− k = α = 1−CL 6 1

where CL is the confidence level, r is the number of failures among n tests, and RL is the lower
bound confidence level on reliability. Note that if no failures occurred during the test, Eq. (6.1)
becomes

1−CL = Rn 6 2

Zero-Failure Attribute Tests

We can now use Eq. (6.2) to solve the following examples:

Example 6.1 What reliability can be demonstrated with 90% confidence if your device is pass/fail
and you test it 100 times successfully?
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Using 1−CL = Rn

with n = 100 and CL = 0 90,

1− 0 90 = R100

R = 0 1
1
100 = 0 977

So, you can be 90% confident that your reliability is AT LEAST 0.977.

Example 6.2 How many tests do you need to run on a pass/fail device to assure 0.99 reliability
with 90% confidence?

Using 1−CL = Rn

with R = 0 99 and CL = 0 90,

1− 0 90 = 0 99n

0 1 = 0 99n

ln 0 1 = n∗ ln 0 99

n =
ln 0 1
ln 0 99

= 230 note always round up

Example 6.3 An engineer just ran 50 compressor start tests with no failures, he needs to pass the
customer’s requirement of 80% confidence of 0.90 reliability. Has he done that?

Using 1−CL = Rn

with n = 50 and CL = 0 80,

1− 0 80 = R50

0 2 = R50

R = 0 2
1
50 = 0 968

Since 0.968 > 0.90, the engineer has met the customer requirements.

Often, a table of representative values can quickly answer a zero-failure test question and can give
you trade-offs if needed. See Table 6.1.

Non-Zero-Failure Attribute Tests

Often, zero-failure attribute testing is not possible. So, when tests are complete, the question
becomes: What reliability has been demonstrated at a given confidence level?
From Eqs. 2.76 and 2.79 we can find the two-sided confidence interval 100(1− α)% for the

Reliability R, where r = n− s failures in a sample of size n:

1) for the lower two-sided Confidence limit (CL) on R (RL) solve the equation:

r

k = 0

Cn
k 1−RL

k RL
n− k =

α

2
=

1−CL
2

6 3

2) for the upper two-sided Confidence limit (CL) for R (RU), solve the equation:

n

k = r

Cn
k 1−RU

k RU
n− k =

α

2
=

1−CL
2

6 4
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Using Eqs. 2.76 and 2.79 we can also find the one-sided confidence intervals for Reliability R

3) for the lower one-sided Confidence limit (CL) for R:

r

k = 0

Cn
k 1−RL

k RL
n− k = α = 1−CL 6 5

4) for the upper one-sided Confidence limit (CL) for R:

n

k = r

Cn
k 1−RU

k RU
n− k = α = 1−CL 6 6

Table 6.1 Number of tests without failure to demonstrate various reliability/confidence levels.

Confidence level

90 95 97.5 99 99.5 99.9

Reliability 0.99999 230,258 299,572 368,887 460,515 529,830 690,773

0.9999 23,025 29,956 36,887 46,050 52,981 69,075

0.999 2302 2995 3688 4603 5296 6905

0.998 1151 1497 1843 2301 2647 3451

0.997 767 998 1228 1533 1764 2300

0.996 575 748 921 1149 1322 1724

0.995 460 598 736 919 1058 1379

0.994 383 498 613 766 881 1148

0.993 328 427 526 656 755 984

0.992 287 373 460 574 660 861

0.991 255 332 409 510 587 765

0.99 230 299 368 459 528 688

0.98 114 149 183 228 263 342

0.97 76 99 122 152 174 227

0.96 57 74 91 113 130 170

0.95 45 59 72 90 104 135

0.94 38 49 60 75 86 112

0.93 32 42 51 64 74 96

0.92 28 36 45 56 64 83

0.91 25 32 40 49 57 74

0.9 22 29 36 44 51 66

0.8 11 14 17 21 24 31

0.7 7 9 11 13 15 20

0.6 5 6 8 10 11 14

0.5 4 5 6 7 8 10
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These equations can be used in EXCEL’s SOLVER to find RL and RU; however, that becomes a
tedious exercise.
Instead, based on Kapur and Lamberson (1977), these equations can be transformed into ones

based on the F distribution.
In each of the following equations and F-distribution look-up is required. The F-distribution is of

the form:

Fα,ν1,ν2

where

v1 = numerator degrees of freedom and
v2 = denomintor degrees of freedom

While the F-distribution is used in elementary statistics to compare two population variances, it is
also used to transform Binomial and Beta distribution equations to make them more tractable.
Using EXCEL’s function F.inv(1− α, v1, v2) saves us time from looking up and interpolating in a

printed F-table.
Using the F-distribution transformation described above, we can now use Eqs. (6.7) and (6.8) to

calculate the two-sided confidence bounds for reliability and Eqs. (6.9) and (6.10) to calculate the
lower one-sided and upper one-sided confidence bounds on reliability

1) for the lower two-sided Confidence limit (CL) RL:

RL =
1

1 +
n− s + 1

s
F1− α 2; 2 n− s + 2; 2s

6 7

2) for the upper two-sided Confidence limit (CL) RU:

RU =
1

1 +
n− s
s + 1

Fα 2; 2 n− s ; 2s + 2

6 8

3) for the lower one-sided Confidence limit (CL) RL:

RL =
1

1 +
n− s + 1

s
F1− α; 2 n− s + 2; 2s

6 9

4) for the upper one-sided Confidence limit (CL) RU:

RU =
1

1 +
n− s
s + 1

Fα; 2 n− s ; 2s + 2

6 10

Example 6.4 After information on 500 augmentor (sometimes referred to afterburners) lights on
a fighter aircraft, it was noted that there had been 14 failures to light on the first attempt. The cus-
tomer asked what the 90% lower confidence bound was for this data.
Using Eq. (6.9):
Here n = 500, s = 486, 1− α = 0.90
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RL =
1

1 +
n− s + 1

s
F1− α; 2 n− s + 2; 2 s

=
1

1 +
500− 486 + 1

486
F0 90; 2 500− 486 + 2; 2 486

Using EXCEL’s F.inv function: "F.inv(0.9,2∗(500-4860=2,2∗486)=1.35

=
1

1 +
15
486

1 35
= 0 96

So, you can be 90% confident that the augmentor will light at least 96 times in 100 attempts.

6.3 Constant Failure Rate Estimates

In this section, we examine in more detail the testing procedures for determining the MTTF when
the data are exponentially distributed. This is justified both because the exponential distribution
(i.e. the constant failure rate model) is the most widely applied in reliability engineering, and
because it provides insight into the problems of parameter estimation that are indicative of those
encountered with other distributions.
We must, of course, determine whether the constant failure rate model is applicable to the test at

hand. At least four approaches to this problem may be taken. The exponential distribution may be
assumed, based on the experience with the equipment of similar design. It may be identified using
one of the standard statistical goodness-of-fit criteria or by probability plotting and examining the
results visually for the required straight-line behavior. Finally, it may be argued from the failure
mode whether the failures are random, as opposed to early or aging failures. If defective products
or aging effects are identified as causing some of the failures, the data must be censored
appropriately.
The exponential distribution has only a single parameter to be estimated, the failure rate λ. Rather

than estimate the failure rate directly, most sampling schemes are cast in terms of the MTTF,
denoted by MTTF≡ μ = 1/λ. For uncensored data, the value of μ may be estimated from

μ =
1
N

N

i = 1

ti 6 11

Moreover, when N, the number of test specimens, is sufficiently large, the central limit theorem,
which was discussed in Chapter 4, may be used to estimate a confidence interval. In particular, the

69% confidence interval is given by μ ± σ N , where σ2 is the variance of the distribution. Since for

the exponential distribution σ = μ, we may estimate the 69% confidence interval from μ ± μ N

Censoring on the Right

It is clear from the foregoing expressions that for a precise estimate a large sampling size is required.
Using many test specimens is expensive, but, more important, a very long time is required to com-
plete the test. As N becomes large, the last failure is likely to occur only after several MTTFs have
elapsed. Moreover, the analysis of the failures that occur after long periods of time is problematic for
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two reasons. First, a design life is normally less than theMTTF, and secondly, it is often not possible
to hold up the final design, production, or operation while tests are carried out over many design
lives. Equally important, many of the last failures are likely to be caused by other failure modes.
Thus, they must be removed from the data by censoring if a true picture of the random failures
is to be gained.
Type I and type II censoring from the right are attractive alternatives to uncensored sampling. By

limiting the period of the test while increasing the number of units tested, we can eliminate most of
the aging failures and estimate more precisely the time-independent failure rate. Within this frame-
work, four different test plans may be used. With the assumption that the test is begun with N test
units, these plans may be distinguished as follows:

• If the test is terminated at some specified time, say t∗, then type I censoring is said to take place.

• If the test is terminated immediately after a particular number of failures, say n, then type II cen-
soring is said to take place.

With either type I or type II censoring, we may run the test in either of two ways. In the non-
replacement method, each unit is removed from the test at the time of failure. In the replacement
method, each unit is immediately repaired or replaced following failure so that there are always N
units operating until the test is terminated.
The choice between type I and type II censoring involves the following trade-off:
Type I censoring is more convenient because the duration of the test t∗ can be specified when the

test is planned. The time tn of the nth failure, at which a test with type II censoring is terminated,
however, cannot be predicted with precision at the time the test is planned, for tn is a random var-
iable. Conversely, the precision of the measurement of the MTTF for the exponential distribution is
a stronger function of the number of failures rather than of the test time. Therefore, it is often con-
sidered advisable to wait until some specified number of failures have occurred before concluding
the test.
A number of factors also come into play in determining whether nonreplacement or replacement

tests are to be used. In laboratory tests, the cost of the test units compared with the cost of the appa-
ratus required to perform the test may be the most significant factor. Consider two extreme exam-
ples. First, if jet engines are being tested, nonreplacement is the likely choice. When a specified
number of engines are available, more will fail within a given length of time if they are all started
at the same time than if some of them are held in reserve to replace those that fail. The same is true
of any other expensive piece of equipment that is to be tested as a whole.
Conversely, suppose that we are testing fuel injectors for large internal-combustion engines. The

supply of fuel injectors may be much larger than the number of engines upon which to test them.
Therefore, it would make sense to keep all the engines running for the entire length of the test by
immediately replacing each fuel injector following failure, provided that the replacement can be
carried out swiftly and at minimum cost. Minimizing cost is an important provision, for generally
the personnel costs are larger with replacement tests; in nonreplacement tests, personnel or instru-
mentation is required only to record the failure times. In replacement tests, personnel and equip-
ment must be available for carrying out the repairs or replacements within a short period of time.
The situation is likely to be quite different when the data are to be accumulated from actual field

experience with breakdowns. Here, in the normal course of events, equipment is likely to be
repaired or replaced over a time span that is short compared to the MTTF. Conversely, records
may indicate only the number of breakdowns, not when they occurred. The number of breakdowns
might be inferred, for example from spare parts orders or from numbers of service calls. In these
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circumstances, replacement testing describes the situation. Moreover, unlike nonreplacement test-
ing, the MTTF estimation does not require that the times of failures be recorded.
One last class of test remains to bementioned. Sometimes referred to as percentage survival, it is a

simple count of the fraction (or percentage) of failed units. From the properties of the exponential
distribution, we infer the MTTF. This test procedure requires no surveillance, for failed equipment
does not need to be replaced or times of failure recorded. Not surprisingly, the estimate obtained is
less precise. The method is normally not recommended, unless failures are not apparent at the time
they take place and can only be determined by destructive testing or other invasive techniques fol-
lowing the conclusion of the test.

MTTF Estimates

Except for the percentage survival technique, the same estimator may be shown to be valid for all
the test procedures described (Bazovsky 1961):

μ =
T
n

6 12

T = total operational time of all test units,
n = number of failures.

For each class of test, however, the total operating time T is calculated differently.
Consider first the nonreplacement testing with type I censoring (i.e. the test is terminated at some

predetermined time t∗). If t1, t2, …, tn are the times of the n failures, the total operational time T for
the N units tested is

T =
n

i = 1

ti + N − n t∗ 6 13

since N− n units operate for the full-time t∗.

Example 6.5 A 30-day nonreplacement test is carried out on 20 rate gyroscopes. During this
period of time, 9 units fail; examination of the failed units indicates that none of the failures is
due to defective manufacture or to wear mechanisms. The failure times (in days) are 27.4, 13.5,
10.5, 20.0, 23.6, 29.1, 27.7, 5.1, and 14.4. Estimate the MTTF.

Solution: From Eq. (6.13), with N= 20 and n = 9.

T =
9

i = 1

tl + 20− 9 × 30

= 171 3 + 11 × 30 = 501 3

μ =
T
n

=
501 3
9

= 55 7 days

For type II censoring, the test is stopped at tn, the time of the nth failure. Thus, if there is no
replacement of test units, the total operating time is calculated from

T =
n

i = 1

ti + N − n tn 6 14

since the nonfailed (N− n) units are taken out of service at the time of the nth failure. Note that in
the event that some of the units, say k of them, are removed from the test because they fail from
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another mechanism, such as aging, then T is still calculated by Eq. (6.13) or (6.14). Now, however,
the estimate is obtained by dividing only by the number n− k of random failures:

μ =
T

n− k
6 15

Example 6.6 The engineer in charge of the test in the preceding problem decides to continue to
test until 10 of the 20 rate gyroscopes have failed. The tenth failure occurs at 41.2 days, at which time
the test is terminated. Estimate the MTTF.

Solution: From Eq. (6.14), with N= 20 and n = 10,

T =
10

i = 1

tn + 20− 10 41 2

T = 171 3 + 41 2 + 10 × 41 2 = 624 5

μ =
T
n

=
624 5
10

= 62 4 days

In replacement testing, all N units are operated for the entire length of the test. Thus, for type
I censoring, we have T = Nt∗, where t∗ is the specified test time. Hence,

μ =
Nt∗

n
6 16

For type II censoring, we have T = Ntn, where tn is the time at which the nth unit fails. Thus,
T = Ntn or

μ =
Ntn
n

6 17

Example 6.7 A chemical plant has 24 process control circuits. During 5000 hour of plant oper-
ation, the circuits experience 14 failures. After each failure, the unit is immediately replaced. What
is the MTTF for the control circuits?

Solution: From Eq. (6.16)

T = Nt∗ = 24 × 5000 = 120, 000

μ =
T
n

=
120, 000

14
= 8571 hours

Example 6.8 Six units of a new high-precision pressure monitor are placed on an industrial fur-
nace. After each failure, the monitor is immediately replaced. However, the eighth failure occurs
after only 840 hours of service. It is decided that the high-temperature environment is too severe for
the instruments to function reliably, and the furnace is shut down to replace the pressure monitors
with a more reliable, and expensive, design. Assuming that the failures are random, estimate the
MTTF of the monitors.

Solution: From Eq. (6.17)

T = Nt8 = 6 × 840 = 5040 hours

μ =
T
n

=
5040
8

= 630 hours
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As alluded to earlier, the MTTF may also be estimated from the percentage survival method. We
begin by first estimating the reliability at the end of the test, time t0 as R(t0) = 1− n/N. With an
exponential distribution, however, the reliability is given by

R t0 = exp − t0 μ 6 18

Thus, combining these equations, we estimate MTTF from

μ =
t0

ln 1 1− n N
6 19

Example 6.9 A National Guard unit is supplied with 20,000 rounds of ammunition for a new
model rifle. After 5 years, 18,200 rounds remain unused. From these, 200 rounds are chosen ran-
domly and test fired. Twelve of themmisfire. Assuming that the misfires are random failures of the
ammunition caused by storage conditions, estimate the MTTF.
Solution: In Eq. (6.19), take n = 12, N= 200, and t0 = 5 years. We have

μ =
5

ln 1 1− 12 200
= 81 years

Confidence Intervals

We next consider the precision of the MTTF estimates made with Eq. (6.12). The confidence limits
for the both replacement and nonreplacement tests may be expressed in terms of μand the number
of failures using the χ2 distribution. We consider type II censoring first.
Let Uα/2,n and Lα/2,n be the upper and lower limits for the 100 × (1− α)% confidence interval for

type II censoring.

In order to use the χ² table, let Lα 2,2n =
2T

χ2α 2,2n

andUα 2,2n =
2T

χ21− α
2,2n

, so (1− α) × 100%

confidence bounds on an MTTF are:

2T
χ2α 2,2n

≤ MTTF ≤
2T

χ21− α
2,2n

The two-sided confidence interval states that if the test is stopped after the nth failure, there is a
1− α probability that the true value of MTTF lies between

P
2T

χ2α 2,2n

≤ MTTF ≤
2T

χ21− α
2,2n

= 1− α 6 20

Example 6.10 What is the 90% confidence interval for the rate gyroscopes tested in Example 6.6
taking the failure at 41.2 days into account?

Solution: For a 90% confidence interval, we have 100(1− α) = 90 or α = 0.1 and α/2 = 0.05. For n=
10 failures, we find from Eq. (6.20) that

2 624 5
χ20 1 2 ,2 10

≤ MTTF ≤
2 624 5

χ21− 0 1 2 ,2 10

then, from the χ² table at the end of the chapter:

1249
30 14

≤ MTTF ≤
1249
10 12

41.4≤MTTF≤ 123.4 with 90% confidence.
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With slight modifications the results of Eq. (6.20) may also be applied to type I censoring, where
the test is ended at some time t∗. Using the properties of the χ2 distribution, it may be shown that the
upper confidence limit and μ remain the same. The lower confidence limit, in general, decreases.
The two-sided (1− α) 100% confidence interval for Type I censoring is

2T
χ2α

2,2 n + 1

≤ MTTF ≤
2T

χ21− α
2,2n

6 21

Again, the confidence limits are applicable to both the nonreplacement and replacement testing.

Example 6.11 During the first year of operation, a demineralizer suffers seven shutdowns.
Estimate the MTBF and the 95% confidence interval.

Solution: From Eq. (6.12)

μ = MTBF =
T
n

=
12months

7
= 1 71 months

For a 95% confidence interval, α = 0.05 and α/2 = 0.025. Using Eq. (6.21),

2T
χ20 025,2 7 + 1

≤ MTTF ≤
2T

χ21− 0 025,2 7

=
2 12
27 49

≤ MTTF ≤
2 12
5 01

so, 0.87 months ≤MTTF ≤ 4.79 months with 95% confidence.

Example 6.12 A computer specification calls for an MTBF of at least 100 hours with 90%
confidence. If a prototype fails for the first time at 210 hours, can these test data be used to
demonstrate that the specification has been met?

Solution: μ = T n = 210 1 = 210 hour For the 90% one-sided confidence interval, α/2 = 0.1.
From Eq. (6.21),

2T
χ20 1,2 1

≤ MTTF

or
2 210
4 605

= 90 3 hours

The test is inadequate, since the specified value of 100 hours. is less than the lower (i.e. outside)
confidence.
A word is in order concerning the percentage survival test discussed earlier. It is a form of bino-

mial sampling, with the ratio n/N being the estimate of the failure probability of failure. Conse-
quently, the method discussed in Chapter 2 can be used to estimate the confidence interval of
the failure probability, and from this the confidence interval on the MTTF can be estimated.
The uncertainty is greater than that obtained from testing in which the actual failure times are
recorded.

Example 6.13 Estimate the 90% confidence interval for the National Guard ammunition prob-
lem, Example 6.9.

Solution: Since, in 5 years, 12 of 200 rounds fail, the 5-year failure probability may be calculated
from Eqs. (2.1a) and (2.1b) to be
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p =
n
N

=
12
200

= 0 06

since Np > 5, we can use the Normal approximation to calculate the confidence interval on a
proportion:
If p is the proportion of failures in a random sample of size n, and q = 1− p, an approximate

(1− α)100% confidence interval for the binomial parameter p is given by

p− zα
2

pq
n

< p < p + zα
2

pq
n

where zα
2
is the z-value leaving an area of α/2 to the right.

Hence,

0 06− 1 645
0 06 0 94

200
< p < 0 06 + 1 645

0 06 0 94
200

0 06− 0 028 < p < 0 06 + 0 028 or 0 032 < p < 0 088

(see, e.g. Montgomery and Runger 2011).
For a constant failure rate, we have

p = 1− e− t μ or μ = − t ln 1− p

Therefore, with t = 25 years,

− 25
ln 1− 0 088

< μ <
− 25

ln 1− 0 032
271 years < μ < 769 years

with 90% confidence.

6.4 Weibull Substantiation and Reliability Testing

In Chapter 5, we used the Weibull distribution to analyze failure data. We now use the Weibull
distribution as the underlying distribution to establish statistical requirements for substantiation
and reliability testing.
Substantiation testing demonstrates that a redesigned part, subsystem, or system has eliminated

or significantly improved the life of a known failure mode. In substantiation testing, the Weibull β
and η are known.
Reliability testing demonstrates that a reliability requirement has beenmet. Further, in reliability

testing, in this chapter, it is assumed that the Weibull slope (β) is known. This is true in most
instances because most businesses that make parts, modules, subsystems, or systems have been
in business for some length of time and have failure mode experience from previous parts or sys-
tems that were produced. They have kept track of that experience (sometimes in a “Weibull
Library”) and can use that previous experience to then use thoseWeibull failure analyses to indicate
an experiential β and adjust the characteristic life based on engineering principles and experience.
However, if the failure mode is known to be Weibull (say from literature searches), but the actual
value of a historical Weibull is unavailable, you can bracket the Weibull β based on engineering or
metallurgical evidence. For example, a part cracked beyond limits in the field, the crack is deemed
to be an LCF (low cycle fatigue)-caused crack. Typical LCF βs range from 2 to 4. So, using the range
of 2–4 will give you the conservative amount of reliability testing needed tomeet the reliability goal.
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If you have absolutely no guess at theWeibull β, but do know that the failure mode follows aWeibull
distribution, you can consult test plans published by Fertig and Mann (1980).
Both substantiation testing and reliability testing require a test plan. A test plan gives the required

number of units and the amount of time to be accumulated on each to either substantiate a fix or
meet a reliability goal. It also gives a success criterion, where the test is passed if the success cri-
terion is met. In a zero-failure test plan, the success criterion is no failure: the test is passed if every
unit runs the prescribed amount of time, and no unit fails while on test.
Test plans can also be generated with a one-failure success criterion, zero- or one-failure criterion,

a two-failure success criterion, etc. But all of these plans require more testing than the zero-failure
plan.
A measure of statistical confidence is usually built into statistically designed test plans, guaran-

teeing that if the failure mode in question has not been fixed or the reliability requirement has not
been achieved, there is a low probability that the test will be passed. For example, the zero-failure
test plans in this chapter guarantee with 90% confidence that the test will be failed if the required
goal has not been achieved. Thus, a part or system will have at most a 10% chance of being accepted
as satisfactory when in fact it is not.

Zero-Failure Test Plans for Substantiation Testing

A ball and roller bearing system has a Weibull failure mode, unbalance, with β = 2, and
η = 500 hours. The system is redesigned, and three redesigned systems are available for testing.
How many hours should each system be tested to demonstrate that this mode of unbalances
has been eliminated or significantly improved?
The Weibull plot in Figure 6.2 illustrates the time-to-unbalance distribution.
Table 6.2 is used to answer this type of question. It is entered with the value of β and the number

of units to be tested. The corresponding table entry is multiplied by the characteristic life to be
demonstrated to find the test time required of each unit.
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Figure 6.2 Ball and roller bearing unbalance distribution.
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Table 6.2 Substantiation testing: characteristic life multipliers for zero-failure test at 90% confidence.

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
Infant
mortality Random Early wear out Old age rapid wear out

2 1.3255 1.1513 1.0985 1.0730 1.0580 1.0481 1.0411 1.0358 1.0318 1.0286

3 0.5891 0.7675 0.8383 0.8761 0.8996 0.9156 0.9272 0.9360 0.9429 0.9485

4 0.3314 0.5756 0.6920 0.7587 0.8018 0.8319 0.8540 0.8710 0.8845 0.8954

5 0.2121 0.4605 0.5963 0.6786 0.7333 0.7722 0.8013 0.8238 0.8417 0.8563

6 0.1473 0.3838 0.5281 0.6195 0.6818 0.7267 0.7606 0.7871 0.8083 0.8257

7 0.1082 0.3289 0.4765 0.5735 0.6410 0.6903 0.7278 0.7573 0.7811 0.8006

8 0.0828 0.2878 0.4359 0.5365 0.6076 0.6603 0.7006 0.7325 0.7582 0.7795

9 0.0655 0.2558 0.4030 0.5058 0.5797 0.6348 0.6774 0.7112 0.7386 0.7614

10 0.0530 0.2303 0.3757 0.4799 0.5558 0.6129 0.6573 0.6927 0.7216 0.7455

11 0.0438 0.2093 0.3525 0.4575 0.5350 0.5938 0.6397 0.6764 0.7064 0.7314

12 0.0368 0.1919 0.3327 0.4380 0.5167 0.5768 0.6240 0.6618 0.6929 0.7188

13 0.0314 0.1771 0.3154 0.4209 0.5004 0.5616 0.6098 0.6487 0.6807 0.7074

14 0.0271 0.1645 0.3002 0.4055 0.4858 0.5479 0.5971 0.6368 0.6696 0.6970

15 0.0236 0.1535 0.2867 0.3918 0.4726 0.5354 0.5854 0.6259 0.6594 0.6874

16 0.0207 0.1439 0.2746 0.3794 0.4605 0.5240 0.5747 0.6159 0.6500 0.6786

17 0.0183 0.1354 0.2637 0.3680 0.4495 0.5136 0.5649 0.6067 0.6413 0.6704

18 0.0164 0.1279 0.2539 0.3577 0.4393 0.5039 0.5557 0.5980 0.6332 0.6628

19 0.0147 0.1212 0.2449 0.3481 0.4299 0.4949 0.5472 0.5900 0.6256 0.6557

20 0.0133 0.1151 0.2367 0.3393 0.4212 0.4865 0.5392 0.5825 0.6185 0.6490

21 0.0120 0.1096 0.2291 0.3311 0.4130 0.4786 0.5318 0.5754 0.6119 0.6427

22 0.0110 0.1047 0.2221 0.3235 0.4054 0.4713 0.5247 0.5688 0.6056 0.6367

23 0.0100 0.1001 0.2156 0.3164 0.3983 0.4643 0.5181 0.5625 0.5996 0.6311

24 0.0092 0.0959 0.2096 0.3097 0.3916 0.4578 0.5119 0.5565 0.5940 0.6258

25 0.0085 0.0921 0.2039 0.3035 0.3852 0.4516 0.5059 0.5509 0.5886 0.6207

26 0.0078 0.0886 0.1987 0.2976 0.3792 0.4457 0.5003 0.5455 0.5835 0.6158

27 0.0073 0.0853 0.1937 0.2920 0.3735 0.4402 0.4949 0.5404 0.5786 0.6112

28 0.0068 0.0822 0.1891 0.2868 0.3681 0.4349 0.4898 0.5355 0.5740 0.6068

29 0.0063 0.0794 0.1847 0.2818 0.3630 0.4298 0.4849 0.5308 0.5695 0.6025

30 0.0059 0.0768 0.1806 0.2770 0.3581 0.4250 0.4802 0.5263 0.5653 0.5984

40 0.0033 0.0576 0.1491 0.2399 0.3192 0.3861 0.4423 0.4898 0.5302 0.5650

50 0.0021 0.0461 0.1285 0.2146 0.2919 0.3584 0.4150 0.4632 0.5046 0.5403
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In the ball and roller bearing example, Table 6.2 is entered with β = 2, and a sample size of three.
The corresponding table entry is 0.876. The characteristic life to be demonstrated is 500 hours. The
number of hours that each system should be tested is 0.876 × 500 hours = 438 hours.
Thus, the zero-failure test plan to substantiate the ball and roller bearing system fix is to test three

systems for 438 hours each. If all three systems are in balance at the end of the test, then the unbal-
ance mode was either eliminated or significantly improved (with 90% confidence).
Table 6.2 may be recalculated at any confidence level by employing the following relationship:

1−Confidence = RN , where R = e− t η β

Let k = t η, then

1−Confidence = e− k β N

ln 1−Confidence = N − k β = −N k β

So, k = − 1 N ln 1−Confidence 1 β

6 22

Statistically, Eq. (6.22) is based on the null hypothesis that the new design is no better than the
old. Given that the null hypothesis is true, the probability of passing the test is set equal to one
minus the confidence level.
Thus, the zero-failure test plan to substantiate the ball and roller bearing system is to test three

ball and roller bearing systems for 438 hours eachwithout failure to show you have significantly
improved the unbalance mode (with 90% confidence in this case).
We will cover the further problem when the Boss would ask “How significantly has it been

improved” in the section titled “Reexpression of a Reliability Goal to Determine η.”
Likewise, Eq. (6.22) can be also be rearranged:

N = −
η

t

β ∗ ln 1−Confidence 6 23

which will allow the k value (η/t) to be calculated at any confidence level. Table 6.3 gives the result
for k values at a confidence level of 90%.
Supplements 1 and 2 contain Tables 6.2 and 6.3 for 80%, 90%, 95%, and 99% confidence since these

are the most commonly used confidence levels.

Weibull Zero-Failure Test Plans for Reliability Testing

We now turn our attention to zero-failure test plans for demonstrating a reliability goal when the
underlying failure distribution is Weibull with known slope parameter β.
For our example we set up a reliability test for a turbine engine combustor’s reliability goal of 99%

reliability at 1800 cycles under service-like conditions. In this case, success was defined as a com-
bustor having no circumferential cracks longer than 20 inches (out of a possible 53 inches). The
number of cycles required to reach a 20-inch crack was known to follow aWeibull distribution with
β = 3. Howmany combustors must be tested, and howmany cycles must each accumulate, to dem-
onstrate this goal with a high level of confidence?
First, the reliability goal is reexpressed as a characteristic life goal, and then the test plan is

designed.
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Table 6.3 Substantiation testing table for zero-failure test at 90% confidence.

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/η
infant
mortality Random Early wear out Old age rapid wear out

0.01 24 231 2303 23,026 230,259 ––– ––– ––– ––– –––
0.02 17 116 815 5757 40,705 ––– ––– ––– ––– –––
0.03 14 77 444 2559 14,772 85,281 492,370 ––– –––
0.04 12 58 288 1440 7,196 35,978 179,890 899,448 ––– –––
0.05 11 47 206 922 4,119 18,421 82,380 368,414 ––– –––
0.06 10 39 157 640 2,612 10,661 43,520 177,669 725,330 –––
0.07 9 33 125 470 1,777 6,714 25,374 95,902 362,473 –––
0.08 9 29 102 360 1,273 4,498 15,901 56,216 198,752 –––
0.09 8 26 86 285 948 3,159 10,529 35,096 116,984 –––
0.10 8 24 73 231 729 2,303 7,282 23,026 72,815 –––
0.12 7 20 56 160 462 1,333 3,847 11,105 32,056 –––
0.14 7 17 44 118 314 840 2,243 5,994 16,020 –––
0.16 6 15 36 90 225 563 1,406 3,514 8,784 21,960

0.18 6 13 31 72 168 395 931 2,194 5,170 12,186

0.20 6 12 26 58 129 288 644 1,440 3,218 7,196

0.22 5 11 23 48 102 217 462 983 2,096 4,468

0.24 5 10 20 40 82 167 340 695 1,417 2,892

0.26 5 9 18 35 67 132 257 504 989 1,938

0.28 5 9 16 30 56 105 199 375 708 1,338

0.30 5 8 15 26 47 86 156 285 520 948

0.32 5 8 13 23 40 71 125 220 389 687

0.34 4 7 12 20 35 59 101 173 296 507

0.36 4 7 11 18 30 50 83 138 229 381

0.38 4 7 10 16 26 42 69 111 180 291

0.40 4 6 10 15 23 36 57 90 143 225

0.42 4 6 9 14 21 32 48 74 115 177

0.44 4 6 8 12 18 28 41 62 93 140

0.46 4 6 8 11 17 24 35 52 76 112

0.48 4 5 7 10 15 21 31 44 63 91

0.50 4 5 7 10 14 19 27 37 53 74

0.55 4 5 6 8 11 14 19 26 34 46

0.60 3 4 5 7 9 11 14 18 23 30

0.65 3 4 5 6 7 9 11 13 16 20

0.70 3 4 4 5 6 7 9 10 12 14

0.75 3 4 4 5 5 6 7 8 9 10

0.80 3 3 4 4 5 5 6 6 7 8

0.85 3 3 3 4 4 4 5 5 5 6

0.90 3 3 3 3 3 4 4 4 4 4

0.95 3 3 3 3 3 3 3 3 3 3

1.00 3 3 3 3 3 3 3 3 3 3



Reexpression of a Reliability Goal to Determine η

Reliability requirements generally assume one of the following forms (β is known in all forms):
Form 1: The requirement is stated as a reliability. The reliability of the unit is required to be at

least X hours or cycles (or whatever the time unit is being used).
Form 2: The requirement is stated as a B life. The B10 life (or B1 life, or B.1 life, etc.) is required to

be at least X hours or cycles. By definition, the unit has a 10% chance of failing before reaching its
B10 life, a 1% chance of failing before reaching its B1 life, a 0.1% chance of failing before reaching its
B1 life, etc.
Form 3: The requirement is stated as an MTTF. Using the known β, convert the MTTF into an

equivalent η using

η =
MTTF

Γ 1 +
1
β

6 24

Reliability requirements in any of these three forms are transformed into an equivalent
characteristic life requirement. Given that the time-to-failure distribution is Weibull, with a known
β, reliability at time t is a function of η. The equation for Weibull reliability,

R t = e−
t
η

β

6 25

and solving for η:

η =
t

− lnR t
1
β

6 26

Example 6.14 A turbine engine combustor reliability goal is a B1(1/100 probability) life of 1800
cycles or longer under service-like conditions. Success is defined as a combustor having no
circumferential cracks longer than 20 inches (out of a possible 53 inches). The number of cycles
required to reach a 20-inch crack was known to follow a Weibull distribution with β = 3.0. How
many combustors must be tested, and howmany cycles must each accumulate, to demonstrate this
goal with 90% confidence?
Equation (6.26) can be used to express either Form 1 or 2 above into equivalent values of η. If the

requirement is, for example that the reliability of the turbine engine combustor must be at least 0.99
at 1800 cycles (β = 3), then substituting t = 1800 and R(t) = 0.99 into Eq. (6.4) gives

η =
t

− lnR t
1
β

=
1800

− ln 0 99
1
3
= 8341 6 27

The 0.99 reliability requirement is equivalent to the requirement that η be at least 8340.9 cycles
(see Figure 6.3). This is derived from “not more than 1% failures occur before 1800 cycles.”
Figure 6.4 illustrates an example based on a B10 life requirement.

Designing the Test Plan

Once theminimum characteristic life (η) requirement has been calculated, Tables 6.2 and 6.3 can be
used to design the zero-failure test plan. In the combustor reliability example, the 99% reliability
goal at 1800 cycles was reexpressed as an 8341-cycle characteristic life goal. Ten combustors were
available for this reliability demonstration test. To find the test cycles required of each combustor,
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enter Table 6.2 with β = 3.0 and a sample size of 10. The corresponding table entry is 0.613. Multiply
the table entry by the characteristic life requirement to find the test time required of each unit. In
the combustor example, multiplying the Table 6.2 entry of 0.613 by the characteristic life require-
ment of 8341 cycles gives a test time of 0.613 × 8341 cycles= 5113.0 cycles. Thus, the 90% confi-
dence zero-failure test plan to demonstrate 99% reliability at 1800 cycles requires testing
10 combustors for 5113 cycles each. If no combustor develops a circumferential crack longer than
20 inches, then the test is passed.
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Figure 6.3 99% Reliability at 1800 cycles or B1 life of 1800 are equivalent when β = 3.
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Howmany combustors are required if each can accumulate 7500 test cycles? To answer this, enter
Table 6.3 with the assumed value of β, the Weibull slope parameter, and the ratio of the test time to
the calculated characteristic life requirement. In the combustor example, β = 3.0, and the ratio of
the test time to the calculated characteristic life requirement is

7500 test cycles per combustor
8341 cycles

= 0 9 6 28

The corresponding entry in Table 6.3 is 4. The resulting test plan requires testing four combustors
for 7500 cycles each. If no combustor develops a circumferential crack longer than 20 inches, then
the test is passed.

Test Units with Censored Times (due to Julius Wang, Fiat-Chrysler)

R td = exp
ln 1−C

m

i = 1

Ti

td

β

+
n

j = 1

T j

td

β 6 29

where

R(t) = reliability at time “td”
td = design life or life at a reliability to be demonstrated
N = total sample size, =n + m
Ti = total test time of each part where Ti represents the specific censored time of each of the m cen-

sored parts
Tj = total test time of each part where Tj represents the specific uncensored time of the individual

part, and n is the total number of uncensored part times
β =Weibull shape or slope parameter
C = statistical confidence level specified as probability (e.g. 90% confidence is represented 0.90).

This equation suggests that each part can be stopped at different times. The usefulness of this
equation is for trading off on number of parts and test times when certain parts are no longer avail-
able during the testing. This may be due to the fact that certain testing fixtures are broken, and those
parts may be required for other purposes and be pulled out of testing. Note that the basic test plan is
not modified.

Example 6.15 The plan is to test each of the budgeted parts without failure to demonstrate 95%
reliability at 1000 hours (design life in lab testing) at 90% statistical confidence level. The Weibull
slope is assumed to be 3.0. The budget will allow 14 parts to be tested.
First, using the equation for reliability for a Weibull failure mode:

R = e− t η β

So, in this case, 0 95 = e− 1000 η 3
, or η = 2691 hours (see Figure 6.5).

Using the 0 failure table for 90% confidence (Table 6Sup1.2), entering at the budgeted number of
parts = 14, the characteristic multiplier is 0.548.
Then, 0.548 × 2691 = 1475 hours on each of the 14 parts.
Right in the middle of the testing, two parts were stopped at 450 hours due to a broken test stand

connector. At this time, another department requires these two parts for other use, so you lose these
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two parts! How long should the other 12 parts be tested to maintain the reliability demonstration
requirement?
In this case, substituting in Eq. (6.29)

R td = 0 95 = exp
ln 1− 0 90

2
450
1000

3

+ 12
T

1000

3 6 30

Solving, T = 1550 hours. Hence, the remaining 12 parts will each be tested to 1550 hours, rather
than 1475 hours as originally planned.
This technique can be generally applied for each suspension/censored time (i.e. not all censored

parts need have the same time).

Total Test Time

Under Designing Test Plans two reliability test plans were constructed to demonstrate a charac-
teristic life of 8340.9 cycles, with 90% confidence.
So, now let us discuss the next steps that would be taken to complete the combustor testing and

reliability demonstration.
Ten combustors for a modern-day fighter engine would be too expensive tomanufacture. In addi-

tion, the combustor testing cost of running even one combustor for 5113 cycles on a rig duplicating a
typical 2 hour mission would take 400+ days to run. So, testing 10 combustors is unrealistic, and
testing 4 combustors is probably unrealistic as well. So what is the answer???
The answer is accelerated life testing. By putting four combustors on test in the same test rig and

running an acceleratedmission profile, you could run the equivalent of 0.832∗8341= 5774 cycles in
8–10 days of continuous running.!!
More about this in the section titled “Accelerated Life Testing”.
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Figure 6.5 Demonstrated design life of 0.95 implies that η = 2691 hours.
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Why Not Simply Test to Failure?

Recall the ball and roller bearing unbalance test from the earlier discussion. It was determined that
three ball and roller bearings could be tested for 438 hours each, and if none of the ball/roller bear-
ings were unbalanced after that time, you could be 90% confident that your new design had a life
greater than 500 hours.
Why not test all three to failure?

1) Testing each part of the three ball/roller bearings to failure (unbalance) would take much
longer on the average. Suppose that the redesigned parts had twice the characteristic life; then,
each of the redesigned parts would run two times as long, costing two times as much for the
test time.

2) Also, when constructing your three failure Weibull with a lower 90% confidence bound on the
Weibull line, you have only a ~20% chance of a 500-hour life at 0.9 reliability.

3) Finally, what will happen if your “test to failure” does not prove that your new design
is significantly better than 500 hours? Redesign? Or maybe test three more of the new
design?

To assess your chances of passing a zero-failure test ahead of time, let us analyze what the trade-
offs are.

Example 6.16 So, to find the probability of successfully completing a zero-failure test for field-
bearing failure mode β = 2.0, η= 1200 hours where the units TRUE characteristics life is
2400 hours is

r =
True η

η Demonstrated
=

2400
1200

= 2 6 31

In Table 6.4, at a β = 2 and r = 2, read that 0.562. or the probability of passing the zero-failure test
is ~0.56.
You can also read this off of Figure 6.6 (well maybe not to two decimal places).
Table 6.4 and the curves were generated using the following equation:

Probability of Passing = RN = e−
k
r

β N

6 32

where

t = kηGoal = test time per unit
k = Table 6.2 coefficient
r =Ratio of ηNew/ηGoal
N =Number of units tested

6.5 How to Reduce Test Time

Leonard G. Johnson (General Motors Research) in his book The Statistical Treatment of Fatigue
Experiments suggested three ways to reduce test time.

Run (Simultaneously) More Test Samples Than You Intend to Fail

Suppose that you have funding for testing 20 samples, put them all on test at the same time and stop
after 10 have failed (saving test time on the remaining 10). This allows you to produce a 10-point
Weibull with 10 right censored (unfailed) points.

6.5 How to Reduce Test Time 243



Table 6.4 Probability of passing zero-failure test.

(k/r) β = 0.5 β = 1.0 β = 1.5 β = 2.0 β = 2.5 β = 3 β = 3.5 β = 4.0 β = 4.5 β = 5

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

1.1 0.111 0.123 0.136 0.149 0.163 0.177 0.192 0.207 0.223 0.239

1.2 0.122 0.147 0.173 0.202 0.232 0.264 0.296 0.329 0.363 0.396

1.3 0.133 0.170 0.212 0.256 0.303 0.351 0.399 0.447 0.493 0.538

1.4 0.143 0.193 0.249 0.309 0.371 0.432 0.492 0.549 0.603 0.652

1.5 0.153 0.215 0.286 0.359 0.434 0.505 0.573 0.635 0.690 0.738

1.6 0.162 0.237 0.321 0.407 0.491 0.570 0.641 0.704 0.757 0.803

1.7 0.171 0.258 0.354 0.451 0.543 0.626 0.698 0.759 0.809 0.850

1.8 0.180 0.278 0.385 0.491 0.589 0.674 0.745 0.803 0.849 0.885

1.9 0.188 0.298 0.415 0.528 0.630 0.715 0.784 0.838 0.880 0.911

2 0.196 0.316 0.443 0.562 0.666 0.750 0.816 0.866 0.903 0.931

2.1 0.204 0.334 0.469 0.593 0.697 0.780 0.842 0.888 0.922 0.945

2.2 0.212 0.351 0.494 0.621 0.726 0.806 0.864 0.906 0.936 0.956

2.3 0.219 0.367 0.517 0.647 0.751 0.828 0.883 0.921 0.947 0.965

2.4 0.226 0.383 0.538 0.670 0.773 0.847 0.898 0.933 0.956 0.971

2.5 0.233 0.398 0.558 0.692 0.792 0.863 0.911 0.943 0.963 0.977

2.6 0.240 0.412 0.577 0.711 0.810 0.877 0.922 0.951 0.969 0.981

2.7 0.246 0.426 0.595 0.729 0.825 0.890 0.931 0.958 0.974 0.984

2.8 0.253 0.439 0.612 0.746 0.839 0.900 0.939 0.963 0.978 0.987

2.9 0.259 0.452 0.627 0.760 0.851 0.910 0.946 0.968 0.981 0.989

3 0.265 0.464 0.642 0.774 0.863 0.918 0.952 0.972 0.984 0.991

3.1 0.270 0.476 0.656 0.787 0.873 0.926 0.957 0.975 0.986 0.992

3.2 0.276 0.487 0.669 0.799 0.882 0.932 0.961 0.978 0.988 0.993

3.3 0.282 0.498 0.681 0.809 0.890 0.938 0.965 0.981 0.989 0.994

3.4 0.287 0.508 0.693 0.819 0.898 0.943 0.969 0.983 0.991 0.995

3.5 0.292 0.518 0.704 0.829 0.904 0.948 0.972 0.985 0.992 0.996

3.6 0.297 0.527 0.714 0.837 0.911 0.952 0.974 0.986 0.993 0.996

3.7 0.302 0.537 0.724 0.845 0.916 0.956 0.977 0.988 0.994 0.997

3.8 0.307 0.546 0.733 0.853 0.921 0.959 0.979 0.989 0.994 0.997

3.9 0.312 0.554 0.742 0.860 0.926 0.962 0.981 0.990 0.995 0.997

4 0.316 0.562 0.750 0.866 0.931 0.965 0.982 0.991 0.996 0.998

4.1 0.321 0.570 0.758 0.872 0.935 0.967 0.984 0.992 0.996 0.998

4.2 0.325 0.578 0.765 0.878 0.938 0.969 0.985 0.993 0.996 0.998

4.3 0.329 0.585 0.772 0.883 0.942 0.971 0.986 0.993 0.997 0.998

4.4 0.334 0.593 0.779 0.888 0.945 0.973 0.987 0.994 0.997 0.999

4.5 0.338 0.599 0.786 0.893 0.948 0.975 0.988 0.994 0.997 0.999

4.6 0.342 0.606 0.792 0.897 0.951 0.977 0.989 0.995 0.998 0.999

4.7 0.346 0.613 0.798 0.901 0.953 0.978 0.990 0.995 0.998 0.999

4.8 0.350 0.619 0.803 0.905 0.955 0.979 0.991 0.996 0.998 0.999

4.9 0.353 0.625 0.809 0.909 0.958 0.981 0.991 0.996 0.998 0.999

5 0.357 0.631 0.814 0.912 0.960 0.982 0.992 0.996 0.998 0.999



For a β = 1, themedian time required for failing 10 out of 20 is 24% of the median time required to
fail 10 out of 10.
For a β = 3, themedian time required for failing 10 out of 20 is 62% of the median time required to

fail 10 out of 10.

Sudden Death Testing

In sudden death testing, the total sample to be tested (from a recommended as few as nine units to
more than 15 units, depending on the cost) is divided into groups of three or more, all groups being
of equal size. All units in each group are (preferably) tested simultaneously. When the first unit in a
group fails, the group has failed (weakest link), and testing is stopped on the remaining units in the
group. Hence, the name “sudden death” testing. Sudden death testing has reduced bearing test
times by 60–75%; saving experimental test time, and just as important, has saved calendar time.
In short, if the cost of test to failure and the cost of a unit to put on test are reasonable, “sudden
death” testing can be a good alternative.
Suppose that you have 40 bearings and divide them into 5 groups of 8 bearings each.
The median rank of the first failure in each group of 8 is as we saw in Chapter 5 on the Weibull

distribution, where

Median Rank =
i− 0 3
N + 0 4

so, for the 1st failure in 8, MR1 =
1− 0 3
8 + 0 4

= 0 083.

Therefore, the failure time each of the first failures in the 5 groups will be on the Sudden death
8.3% line. From this we can extrapolate to the Weibull for the entire population of 40 bearings (the
remaining bearings in each group are censored at the time of the first failure in the group).
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Figure 6.6 Probability of passing a zero-failure test.
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Example 6.17 Suppose that the first failure of 8 in each of the six groups failed at 711, 456, 1341,
1214, 1137, and 619 hours.
A Weibull plot can be produced with the 6 failures and 42 censored times (Figure 6.7).
The MINITAB data input would look like Table 6.5.

Probability plot for 6 groups of 8 sudden death and 6 failures only

Weibull

Variable
1st failure
Failure only

Table of statistics
Shape Scale Corr F C

2.55165
2.51415

2303.31
1034.65 0.973

0.972 6
6 0

42

Sudden death
Weibull

Six failure
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1,000100

1

2

3

5

10,000

10

20

30
40
50
60
70
80
90

99

P
er

ce
nt

LSXY estimates

Figure 6.7 Sudden death 6 failure Weibull has approximately the same slope as the Weibull of 6 failures with
42 suspensions.

Table 6.5 Combined 6 failures with 42 censored times.

1st Failure Freq Censor

Grp1 711 1 1

Grp2 456 1 1

Grp3 1341 1 1

Grp4 1214 1 1

Grp5 1137 1 1

Grp6 619 1 1

711 7 0

456 7 0

1341 7 0

1214 7 0

1137 7 0

619 7 0

Here, Censor = 1 indicates failed time, and Censor = 0 indicates a
censored time. Freq indicates the number of points at the time.
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You could also solve this problem starting with the 6 point Weibull and “shifting” it based on the
of the population:
Where characteristic life of 6 failures (η6) = 1034 hours.
Then,

1
8

= 1− exp −
1034
ηSD

2 5

ηSD = 2315 hours, which is almost the same as actual ηSD

Example 6.18 (data type analysis based on ideas from Abernethy 2006).
A company tests 16 bearings to failure out of every batch of 100,000 bearings. To compare the

efficiency of sudden death testing relative to testing all 16 to failure, the 16 bearings were divided
into 4 sets of 4 each. Each set of 4 was tested until the first failure occurred, but then the remaining
three were all tested to failure as well. This same procedure was followed for the other three sets of 4
bearings. At the end, they had results of a sudden death test AND results of having tested all bear-
ings in order to compare the results. The data are in Table 6.6.
Analyzing this as a sudden death test, the first failure in each set, along with that failure time 3X

as a censored time, will produce a Weibull (Figure 6.8).
Analyzing the complete 16 failure data produces this Weibull (Figure 6.9).
Conclusion: In this case, sudden death testing produced a slightly smaller B10 life. However, the

difference in potential test time savings is significant:
Sudden death: 608,389 total test cycles.
Testing all to failure test time= 1,407,407 cycles.
A test time saving of ~800,000 cycles.
Sudden death testing is not ALWAYS this good; in this case it was. A small number of bearings

tested overall and hence in each set gives a wider confidence bound. So, the more items overall, and
hence in each group will result in smaller confidence interval and the closer the sudden death test-
ing will be (and still save considerable test time). However, for expensive test articles, and hence
smaller numbers of articles available (~15 or fewer), sudden death testing is not an optimal choice.

Sequential Testing

Sequential testing is a method of experimental testing (and statistical analysis) whose characteristic
feature is that the number of observations required by the procedure is not determined in advance of
the experiment. Essentially, this approach lets one design a large-scale experiment in successive

Table 6.6 Sudden death vs “total life test.”

Set 1 Set 2 Set 3 Set 4

18,993 107,470 97,783 114,862

52,196 105,354 93,105 69,910

73,178 88,331 180,174 97,604

27,520 182,614 25,562 72,751

16 bearings tested to failure as 4 groups of 4 where we can analyze the
differences and advantages of one approach to the other.
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Figure 6.8 Analyzing the data as sudden death testing gives B10 life of 27,546 cycles.
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Figure 6.9 Testing all 16 bearings to failure gives B10 life of 29,041cycles.
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stages, where the next stage depends on what occurred in the previous stage. Specifically, the deci-
sion to terminate or continue the experiment depends, at each stage, on the results of the observa-
tions previously made. A merit of the sequential method, as applied to reliability testing, is that test
procedures can be constructed which require, on the average, a substantially smaller number of
observations than equally reliable test procedures based on a predetermined number of
observations.
The sequential probability ratio test (SPRT) was devised byWald in 1943 mainly for the purpose of

testing statistical hypotheses. A comparison of this particular sequential test procedure with any
other (sequential or nonsequential) was shown by Wald to give the greatest possible saving in
the average number of observations, when used for testing a simple hypothesis against a single
alternative. The sequential probability ratio test frequently results in a saving of about 50% in
the number of observations over the most efficient test procedure based on a fixed number of
observations.
L.G. Johnson took Wald’s idea and developed the methodology for sequential testing. The pur-

pose of sequential testing is to establish in the shortest possible test time and at a minimum cost
whether reliability is equal to or better than a specified minimum.
The method produces one of three decisions at any point of the sequence of tests:

• Accept the hypothesis that the higher (MTBF) has been demonstrated (terminate test)

• Reject the hypothesis that the higher (MTBF) has been demonstrated (terminate test)

• Continue testing.

Figure 6.10 is the graphic used to illustrate what decisions have to be made as a product is tested,
until the product either is “accepted” as having demonstrated higher reliability than the product it
was replacing or “rejected” as not having shown a desired reliability.
Key parameters to define for sequential reliability test:

• Minimum acceptable reliability (m1)
– Mean time between failure =m1

(minimum reliability requirement)

• Upper reliability value (m0)
– Mean time between failure =m0

(value based on producer input, the estimated reliability)

Reject

Accept

Continue
Failures

Time

4

3

2

1

Figure 6.10 Graphical outline of a sequential test (open ended).
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Threshold probabilities

• Consumer risk (β)
– Probability of accepting as good when bad (worse than m1)

(probability of rejecting as bad when bad = 1− β)

• Producer risk (α)

– Probability of rejecting as bad when good (better than m0)
(probability of accepting good = 1− α)

Accepted risks are defined by the threshold probability ratios:

A =
1− β

α
=

Probability of correctly rejecting
Probability of rejecting when should have accepted

6 33

B =
β

1− α
=

Probability of accepting when should have rejected
Probability of correctly accepting

6 34

The Poisson distribution is used to calculate the likelihood of a number of failures within a spe-
cific time period as follows:

P1 = probability of r failures givenm1

P0 = probability of r failures givenm0

Calculating P r = probability of r failures givenm =
t
m

r e− t m

r
6 35

where

t = test time
m =mean time between failure (MTBF)
r = number of failures

The Sequential Probability Ratio Test (SPRT) determines the status during testing:

Rule 1
P1

P0
< B ACCEPT 6 36

Rule 2
P1

P0
> A REJECT 6 37

Rule 3 B <
P1

P0
< A CONTINUE TESTING 6 38

Minimum test time equations:
In order to produce a graph similar to that illustrated in Figure 6.10, the following equations need

to be solved (easily put into EXCEL™):

For Accept Tmin =
Ln B + rLn m1

m0

m1 −m0 m1m0
6 39

For Reject Tmin =
Ln A + rLn m1

m0

m1 −m0 m1m0
6 40
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Example 6.19 Suppose that we have the following input to a sequential test:

• Consumer risk= β = 0.1 or 10% chance that bad part is accepted

• Producer risk= α= 0.1 or 10% chance that good part is rejected

• Minimum MTBF required=m1= 100 hours

• Upper MTBF value assumed to be 2m1=m0= 200 hours

Then, A =
1− β

α
=

1− 0 1
0 1

= 9 0 and B =
β

1− α
=

0 1
0 9

= 0 111

And calculating Table 6.7 (using EXCEL), where the cells C12 and D12 are, for example:

Cell D12=(LN($E$8)+$C12*LN($F$4/$F$5))/(($F$4-$F$5)/($F$5*$F$4))

Cell E12=(LN($E$7)+$C12*LN($F$4/$F$5))/(($F$4-$F$5)/($F$5*$F$4))

Plotting this as a sequential testing plot (Figure 6.11).
To illustrate a test case, using the same ground rules as in Example 6.9.

Example 6.20 Input to the test:

• Consumer risk= β = 0.1 or 10% chance that bad part is accepted

• Producer risk= α= 0.1 or 10% chance that good part is

• Minimum MTBF required=m1= 100 hours

• Upper MTBF value assumed to be 2m1=m0= 200 hours

Table 6.7 Calculating plot points for a sequential testing plot.

A B C D E F

1

2

3

4 α = 0.1 m1 = 100

5 β = 0.1 m0 = 200

6

7 A = 9.000

8 B = 0.111

9

10 Tmin

11 r Accept Reject

12 0 439.4 −439.4

13 1 578.1 −300.8

14 2 716.7 −162.2

15 3 855.3 −23.6

16 4 994.0 115.1

17 5 1132.6 253.7

18 10 1825.7 946.8
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A =
1− β

α
=

1− 0 1
0 1

= 9 0 and B =
β

1− α
=

0 1
0 9

= 0 111

First test results: No failures for first 50 hours (Figure 6.12).
Calculating the P1/P0 ratio gives the same result:

P1 0 =
t
m1

r e− t m1

r
=

50
100

0 e− 50 100

0
= 0 61

P0 0 =
t
m0

r e− t m0

r
=

50
200

0 e− 50 200

0
= 0 78

Then,

P1

P0
= 0 78 CONTINUE TEST Rule 3

Second test result: First failure occurs at 210 hours (Figure 6.13).
Again, using the P1/P0 ratio gives the same result:

P1 1 =
t
m1

r e− t m1

r
=

210
100

1 e− 210 100

1
= 0 26

P0 1 =
t
m0

r e− t m0

r
=

210
200

1 e− 210 200

1
= 0 37

Then,

P1

P0
= 0 70 CONTINUE TEST Rule 3
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Figure 6.11 Example 6.9. Sequential test plan.
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Figure 6.12 Plotting 0 failures at 50 hours shows “continue test.”
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Figure 6.13 Plotting 1 failure at 210 hours shows “continue test.”
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Third test result: First failure occurs at 210 hours, and no failure for another 370 hours
(Figure 6.14).
Again, using the P1/P0 ratio gives the same result:

P1 1 =
t
m1

r e− t m1

r
=

580
100

1 e− 580 100

1
= 0 02

P0 1 =
t
m0

r e− t m0

r
=

580
200

1 e− 580 200

1
= 0 16

Then,

P1

P0
= 0 11 ACCEPT Rule 1 Terminate Test

The graphic in Figure 6.14 is recommended for explaining the fact that it took only 580 hours of
testing to show you had two times the current MTBF.

Example 6.21 Input to the test:

• Consumer risk= β = 0.1 or 10% chance that bad part is accepted

• Producer risk= α= 0.1 or 10% chance that good part is rejected

• Minimum MTBF required=m1= 100 hours

• Upper MTBF value assumed to be 10m1=m0= 1000 hours

A =
1− β

α
=

1− 0 1
0 1

= 9 0 and B =
β

1− α
=

0 1
0 9

= 0 111
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Figure 6.14 Plotting 1 failure at 580 hours shows “ACCEPT.”
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Sequence:

1) No failure for first 50 hours P1/P0= 0.64 Continue Test

2) First failure occurs at 210 hours P1/P0= 1.52 Continue Test

3) No failures for 290 additional hours P1/P0= 0.11 ACCEPTH0UpperMTBF= 1000 hours
(Figure 6.15)

Impact of choices of α, β, and m0

• Smaller consumer (b) or producer (a) risk values result in longer tests
– a = 0.10, b = 0.10 => A= 0.9/0.1 = 9.00, B = 0.1/0.9 = 0.111
– a = 0.10, b = 0.05 => A= 0.95/0.1 = 9.50, B = 0.05/0.9 = 0.056
– a = 0.01, b = 0.01 => A= 0.99/0.01 = 99.0, B = 0.01/0.99 = 0.010

• Increasing the upper MTBF value, m0, decreases test time.

– A greaterm0 value increases likelihood that test will reject when true and MTBF is worse than
m0 but better than m1

– Risk of rejecting equipment better than m0 based on a.

6.6 Normal and Lognormal Reliability Testing

As mentioned in Chapter 4, while the Weibull distribution can fit approximately 95% (author’s
experience over 45 years of reliability analysis) of failure data well, the normal and lognormal will
sometimes fit failure data better than a Weibull (note that the normal distribution is “bell shaped,”
and a Weibull with β = 3.4 will be approximately normal); hence, a normal distribution can
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Figure 6.15 Plotting all failures and final conclusion: ACCEPT H0.
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sometimes fit a wear-out mode as long as the time scale is significantly large. The lognormal, of
course, has a log time scale and hence can fit any failure mode that fits the “proportional effect
theory” as discussed in Chapter 4.
We now discuss life test plans for the normal and lognormal distributions. These test plans are

developed to assure a certain mean life (and hence any other quantile) when the life test is stopped
at a time t and when the observed failures does not exceed a prescribed number “c.”
Someof the background statistical theory for this section is explained in the paper byGupta (1962).
Recall from Chapter 4 the lognormal as a two-parameter distribution:

PDF f y y =
1

ωy 2π
e
− 1

2ω2
ln y

y0

2

6 41

substituting ω = σx and y0 = eμx

f y; μx , σx =
1

σxy 2π
e
− − 1

σx 2
ln y− ln y0

2

6 42

also from Chapter 4:

Mean of the lognormal = eμx +
σx 2

2 6 43

Variance of the lognormal = e2μx + σ2x eσ
2
x − 1 6 44

Mode of the lognormal = eμx − σ2x 6 45

Mathematically, given a confidence level P (0 < P< 100) as a fraction, a time t to test each item, a
value μ0 (the mean or median life, or a quantile point, e.g. 0.1, 0.2, 0.01, …) which is the time we are
interested in “proving” in the tests (where μ≥ μ0), and an acceptable number of failures for the test
(r), we want to find the smallest number of tests n so if the observed number of failures does not
exceed r, we can say with confidence level P that μ≥ μ0.
The required n is the smallest positive integer which satisfies the inequality:

r

i = 0

Cn
i p

i 1− p n− i ≤ 1− P 6 46

where p = z
− ∞

e− x2 2

2π
dx is the probability of failure in time if the true parameter is μ0 and

z =
t− μ0
σ

or z =
ln t− μ0

σ
if using the lognormal .

The following approximation formula can be used to find n:

n
0 5χ22r + 2,P

Φ
t− μ0
σ

6 47

where

χ22r + 2,P is the Chi-squared value with 2r + 2 degrees of freedom and probability P.

Φ
t− μ0
σ

is the Normal (or Lognormal) distribution z-table value for t− μ0/σ (or (ln t− ln μ0)/σ).
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Example 6.22 Assume that the life distribution is lognormal with σ = 2.0, suppose you want to
establish that your part/module/subsystem has a median life of 5000 hours. You want to find the
trade-off between testing and the number of samples for r = 0, 1, or 2 failures at a 90% confi-
dence level.
Using t = 500, 1000, 2000, and 3000 hours for each series of tests, howmany parts should be tested

to establish a 5000-hour median life?
Using Eq. (6.47)

n
0 5χ22r + 2,P

Φ
t− μ0
σ

First calculate for t = 2000 hours, r = 0 using Chi-square table in Supplement 5.
0.5∗Chisq(0.90,2∗0+2) = 0.5∗Chisq(0.90,2) = 0.5∗4.605 = 2.302
Calculating the z-value with median life μ0= ln(5000) and t = ln(2000) with assumed σ = 2.

Z
ln 2000 − ln 5000

2
= Z − 0 4581

Using the normal table in Appendix C this translates to a probability of 0.3234.
n ~ (2.302/0.3234)= 7 (round up to a whole number).
So, you have to test 7 units to 2000 hours, each with r = 0 (i.e. NO failures), and you can then be

90% confident that your median life is 5000 hours or more (Figure 6.16).
While the more accurate way to calculate the above entails using some mathematics beyond the

scope of this book, Figures 6.17a, 6.17b, 6.17c, and 6.17d gives the tests required to give the min-
imum sample size n to be tested for a time t in order to assert with probability P (0.80, 0.90, 0.95,
0.99) that μ≥ μ0. The parameters μ and σ, where σ is assumed to be known, characterize the under-
lying normal(log normal) distribution of lifetimes. For the above confidence statement, the number
of failures in time t should be ≤r.
Mathematically, for a given P and r, Figures 6.17a, 6.17b, 6.17c, and 6.17d gives the smallest pos-

itive integer n for which

r

i = 0
nCi p

i 1− p n− i ≤ 1−P 6 48

where p = Φ
t− μ0
σ

=
1

σ 2π

t

− ∞

e−
x− μ0

2

2σ2 dx 6 49

Example 6.23 Choosing a sample size using Figure 6.17c
Given that r = 0 or 1, P = 0.95, the life distribution is assumed to be lognormal with σ = 2. Suppose
that we want to establish that the median life

eμ ≥ eμ0 = 1000 hours

The program manager wants to see the trade-off between test time t and the number of units
tested to determine the lowest total cost to the program, picking test times: 450 hours, 1000 hours,
and 2225 hours
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Using EXCEL with Eq (6.47), you can do a trade study in terms of testing hours:

500 hours:

Conf Level =

Conf Level =

Medain =

Medain =

Std Dev =

Std Dev =

test time(t) =

test time(t) =

r

r

Formula

Formula

0 2
4
6

2
4
6

1
2

0
1
2

5000

5000

2

2

500

1000

0.9

0.9

DF(v)

DF(v)

2c + 2

2c + 2

(X
2
(CL, 2c + 2))

(X
2
(CL, 2c + 2))

Chisq value/2

Chisq value/2

Zp = (In(t)-In(Median))/sigma n

n

= (CHISQ.INV($B$1,B_))

= (CHISQ.INV($B$1,B_))

C_/2

C_/2

NORM.DIST(LN($B$2),
LN($D$1),2,TRUE)

‘ = Round(D
_/E_),0)

‘ = Round(D
_/E_),0)

4.605170186

4.605170186

7.77944034

7.77944034

10.64464068

10.64464068

2.302585093
3.88972017

5.322320338

2.302585093
3.88972017

5.322320338

0.124805951
0.124805951
0.124805951

Zp = (In(t)-In(Median))/sigma

NORM.DIST(LN($B$2),
LN($D$1),2,TRUE)

0.210490939

0.210490939
0.210490939

18

25
18

11

Conf Level = Medain =

Std Dev =test time(t) =

r

Formula

2
4
6

0
1
2

5000

21000

0.9

DF(v)

2c+2

(X
2
(CL, 2c + 2)) Chisq value/2 n

= (CHISQ.INV($B$1,B_)) C_/2
‘ = Round(D

_/E_),0)

4.605170186
7.77944034

10.64464068

2.302585093
3.88972017

5.322320338

Zp = (In(t)-In(Median))/sigma

NORM.DIST(LN($B$2),
LN($D$1),2,TRUE)

0.323424004

0.323424004
0.323424004 16

12

7

31
43

1000 hours:

2000 hours:

3000 hours:

Conf Level = Medain =

Std Dev =test time(t) =

r

Formula
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4
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2
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0.9

DF(v)

2c + 2

(X
2
(CL, 2c + 2)) Chisq value/2 n

= (CHISQ.INV($B$1,B_)) C_/2
‘ = Round(D

_/E_),0)

4.605170186
7.77944034

10.64464068

2.302585093
3.88972017

5.322320338

Zp = (In(t)-In(Median))/sigma

NORM.DIST(LN($B$2),
LN($D$1),2,TRUE)

0.399202138

0.399202138
0.399202138 13

10

6

Figure 6.16 EXCEL calculation tables for Example 6.22; 90% confidence.
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Figure 6.17a Theminimum sample size to be tested for a time t in order to assert with probability P = 0.80 that
μ > μ0.
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Figure 6.17b Theminimum sample size to be tested for a time t in order to assert with probability P = 0.90 that
μ > μ0.
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Figure 6.17d Theminimum sample size to be tested for a time t in order to assert with probability P = 0.99 that
μ > μ0.
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Figure 6.17c Theminimum sample size to be tested for a time t in order to assert with probability P = 0.95 that
μ > μ0.
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For hours = 450, z =
ln 450 1000

2
= − 0 4

For hours = 1000, z =
ln 1000 1000

2
= 0 0

For hours = 2225, z =
ln 2225 1000

2
= 0 4

Looking in Figure 1.16c, under z =−0.4, n = 8 for r = 0, or n = 12 for r = 1; for z = 0, n = 5 for r =
0, or n = 8 for r = 1; and for z = 0.4, n = 3 for r = 0, or n = 6 for r = 1.
Summarizing in Table 6.8 to the right, the finance person for the program can now decide (based

on the cost of test hours and the cost of units) which test plan is best.

Example 6.24 Choosing a sample size using Figure 6.16a–d when you want to prove a
lower quantile (not the median)
Assuming a lognormal distribution with σ = 2.0, we want to establish that the 1/10 life is at least
equal to 1000 hours with 90% confidence. Let r = 0 and let the test time= 13,000 hours.
We have to replace z in Figure 6.16b with

z =
ln t ξ 01

σ
+ Φ− 1 p =

ln 13000 1000
2

+ Φ− 1 0 1 = 1 28− 1 28 = 0

Reading Figure 6.17b at r = 0, Z = 0.0, n = 4.
Testing 4 units to 13,000 hours equivalent each without failure and you can be 90% confident that

your 1/10 life is 1000 hours.

One last note in using Figures 6.17a, 6.17b, 6.17c, and 6.17d. Unless you have an EXTREMELY
expensive experiment, always use more than one experiment, even if the r and Zp “allow” one
experiment. From a real life engineering point of view, the variation in the experimental or produc-
tion item is not being testedwith one experiment. Bottom line: Always use two ormore experiments
unless budget is very limited, or one experiment is extremely expensive.
You will note in theWeibull testing section that we did not include the possibility of n = 1, exactly

for the reason above.

Table 6.8 Example 6.23. Summary results.

For P = 0.95, σ = 2

Test time Units on test

450 h

r = 0 8

r = 1 12

1000 h

r = 0 5

r = 1 8

2225 h

r = 0 3

r = 1 6
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6.7 Accelerated Life Testing

Inadequate time to complete life testing is an ubiquitous problem in making reliability estimates.
The censoring from the right discussed in the preceding sections is a solution only if data from a
sufficiently short time span is needed, or if that data can be confidently extrapolated to longer times.
Fortunately, a number of acceleration methods may be used to counter the difficulties in perform-
ing life testing with time deadlines. Although none are without shortcomings, these procedures
nevertheless contribute substantially to the timeliness with which reliability data are obtained.
Accelerated tests can be divided roughly into two categories: compressed-time tests and
advanced-stress tests.

Compressed-Time Testing

Unless the product is one that is expected to operate continuously, such as a wrist watch and an
electric utility transformer, one can condense the component’s lifetime by running it continuously
to failure. Hence, many engines, motors, and other mechanical and electrical devices can be tested
for durability in a small fraction of the calendar design life. Likewise, on–off cycles for many pro-
ducts can be accumulated over a condensed period of time compared to the calendar design life. An
example of this is any wearout mode in a jet engine (low cycle fatigue, stress corrosion, bearing
failure modes, etc.).
Reliability tests are frequently performed in which appliance doors are opened and closed, con-

sumer electronics is turned on and off, or pumps ormotors are started and stopped to reach a design
life target over a relatively short period of time. These are referred to as compressed-time tests, for
the product is used more steadily or frequently in the test than in normal use, but the loads and
environmental stresses are maintained at the level expected in normal use.
Precautionmust be exercised in amassing data from compressed-time tests. In field use, the appli-

ance door may only be cycled (opened and closed) several times per day. But a compressed-time test
can easily be performed in which the open–close cycle is performed a few times per minute. If the
cycle is accelerated too much, however, the conditions of operation may change, increasing stress
levels and thus artificially increasing failure rates. If the latch is worked several times per second,
for example the heat of friction may not have time to dissipate. This, in turn, would cause the latch
to overheat, increasing the failure rate and perhaps activating failure mechanisms that would not
plague ordinary operation. Conversely, tests in which engines, motors, or other systems, which nor-
mally operate for intermittent periods of time, are operated continually until failure occurs will not
pick up the cyclical failure modes caused by starting and stopping. To detect these, a separate
cycling test is required, or the continuous operation must be interrupted by intervals long enough
for ambient temperatures to be achieved. Compressed-time tests under the field conditions that a
product will face may be more difficult to achieve. Nevertheless, some acceleration is possible. The
field life of automobiles may be compressed by leasing them as taxicabs, and that of home kitchen
appliances by testing them in restaurants. Differences, of course, will remain, but the data may be
adequate for the design verification or other use for which it is needed.

Example 6.25 Accelerated Mission testing
A Case Study: A Fighter aircraft jet engine Compressed-Time Test (Sammons 1981).
During the development phases of a typical military jet engine, the statistical base is small, and

there are uncertainties as to how the engine will be used in service.When engine production begins,
a statistical database also begins to flesh out. As squadrons become operational, usage evolves and
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failure modes begin to rear their ugly heads. Maintenance and interface characteristics join themix,
with improvement in tooling and manuals. The overhaul cycle brings in new failure modes of worn
parts interactions with newer parts. Lower failure rate problems now start to occur.
Each of the above phases of an engine’s life drives specific types of durability and reliability

problems:

• Early in the development phase – High cycle fatigue and stress rupture failure modes (low char-
acteristic lives, Weibull βs from 1 to 5 – mission oriented caused failure modes).

• Engines approaching the first depot visit – Low cycle fatigue and variable geometry wear in some
engines, Weibull βs between 2 and 4.

• Steady-state usage – Low cycle fatigue, wear problems, and statistically “remote” problems, some
maintenance caused (Weibull βs >1 and some characteristic lives 2–5× the depot visit time).

The ingredients of a good accelerated mission test depend on the details of how the engines have
been operating up to that point. For example:

• what failure modes have occurred in the field?

• how has the hardware looked when an engine came into
depot for refurbishment?

• what feedback do we have from the base maintenance
shops and from pilots?

A typical average sortie for a fighter engine in terms of
power lever is illustrated in Figure 6.18a along with the cor-
responding AMT cycle in Figure 6.18b.
You can readily see that the “nonactive” times in the

average sortie have been shrunk to give 30 seconds before
and after each incursion from idle to military or above
power to produce the AMT cycle. In this particular illustra-
tion, the acceleration factor is 4 : 1.
Since low cycle fatigue is driven by the idle to intermedi-

ate and above cycles, in 30 minutes of a test engine you can
simulate 8 cycles, in 24 hours you can simulate 192 cycles,
and you can simulate an 8000-cycle turbine disk life in
~42 days, as opposed to 8 calendar years for an engine in
the field to accumulate 8000 cycles.

Max

Military

Cruise

Idle

Time (minutes)
0 20 40 60 80 100 120 140

Figure 6.18a Average sorties provided by current data.

Max

Military

Cruise

Idle

Time (minutes)

0 20 40

Figure 6.18b Accelerated mission test
derived from Figure 6.17.
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Another use of compressed-time testing is correlating test times in lab that reproduce a failure
mode in the field. The following is an example.

Example 6.26 Turbopump Failures Excerpted from the book by Abernethy et al. (1983),
pp 70ff.
Thirty eight turbopump failures occurred in service on jet engines. See Figure 6.19. Failure analysis
indicated low lubricity of the hydraulic fluid as the cause of the failures. An accelerated bench test
was designed using extremely low lubricity fluid. Two more turbopumps failed in a much shorter
time, 95 and 155 hours, respectively. See Figure 6.20. The almost identical slopes of 2.7 in the lab
versus 2.6 in field confirmed the capability of the bench test to duplicate the failure mode observed
in service. This is an excellent check on the validity of an accelerated test. In addition, engineering
compared the failed parts from the bench test to the failed parts from the field to assure that the
failure mode was duplicated from an engineering standpoint.
(Lesson learned: The accelerated failure mode in the lab should physically look like the field fail-

ure mode. There is always a concern that an accelerated test will produce the wrong failure mode.)
The ratio of the Bill of Material (BoM) field failures to the BoM bench lab test failures is

Test Acceleration Rate =
ηField
ηLab

=
2255
143

= 15 8

The turbo pump was redesigned to fix the problem, and two units were tested in the lab to
500 hours without failure under the same accelerated conditions. Is the redesign successful? What
service experience should be expected? Using the equation forMLE η (Eq. (5.14)) and the slope from
the Weibull in Figure 6.19, the Weibayes characteristic life is

η =
500 2 59 + 500 2 59

1

1 2 59

= 653 4 6 50

This Weibayes line is plotted in Figure 6.20. The new design Weibayes field Weibull has η=
15.8∗653.5~10,326 hours, also plotted in Figure 6.20.
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Figure 6.19 38 Turbopump failures in the field. Source: Based on Abernethy et al. (1983).
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Advanced-Stress Testing – Linear and Acceleration Models

Systems that are normally in continuous operation or in which failures are caused by deterioration
occurring, even though a unit is inactive, present some of the most difficult problems in accelerated
testing. Failure mechanisms cannot be accelerated using the foregoing time compression techni-
ques. Advanced-stress testing, however, may be employed to accelerate failures, since as increased
loads or harsher environments are applied to a device, an increased failure rate may be observed. If
a decrease in reliability can be quantitatively related to an increase in stress level, the life tests can
be performed at high stress levels, and the reliability at normal levels inferred.
Both random failures and aging effects may be the subject of advanced-stress tests. In the elec-

tronics industry, components are tested at elevated temperatures to increase the incidence of ran-
dom failure. In the nuclear industry, pressure vessel steels are exposed to extreme levels of neutron
irradiation to increase the rate of embrittlement. Similarly, placing equipment under a high-stress
level for a short period of time in a proof test may be considered accelerated testing to reveal the
early failures from defective manufacture.
Accelerated test conditions are usually testing units at higher (lower) temperatures, vibratory

levels, higher (lower) humidity, salt/no salt environments, pressure variations, wattages, voltages,
cycle rates, amplitudes, loads, and (at a lower or higher level) of any other variable that a unit may
see in customer use.
General outline for accelerated-stress testing:

• Understand the stress-life relationship
– Understand the possible failure mechanism(s)
– Pick at least three levels of “stressor” that will not immediately fail the product but will enable

you to extrapolate to “use” stress

BoM lab failures New design lab failures BoM field failures Projected new design in field

Variable
Time lab

Time field
New design lab

New design Field
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Figure 6.20 Comparison of Bill of Material (BoM)-accelerated test in lab to field failures and new design-
accelerated test in lab compared to project new design in the field. Source: Based on Abernethy et al. (1983).
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• Extrapolate to reliability of interest at the stress levels
– Use background knowledge to pick the true failure distribution
– Need to ensure unrealistic failure modes not introduced

Linear Model Stress Testing

Themost elementary form of advance-stress test is to estimate theMTTF. Suppose that theMTTF is
obtained at the number of different elevated-stress levels. The MTTF is then plotted versus some
function of the stress level. Knowledge of either the stress effects or trial and error may be used to
choose the function that will result in a linear graph. A curve is fitted to the data, and the MTTF is
estimated at the stress level that the device is expected to experience during normal operation. This
process is illustrated in the following example:

Example 6.27 Accelerated life tests are run on four sets of 12 flashlight bulbs, and the failure
times in minutes are tabulated in Table 6.9. We want to estimate the MTTF at each voltage and
extrapolate the results to the normal operating voltage of 6.0 V.
Fitting each of the distributions to an exponential distribution in Figure 6.21,
Plotting mean(MTTF) vs voltage on log–log scale and fitting the data (Figure 6.22).

But the foregoing has a serious drawback: it presumes an exponential distribution to calculate the
MTTF. Therefore, one has no indication whether the shape, as well as the time scale of the distri-
bution, is changing. Since changes in distribution shape are usually indications that a new failure
mechanism is being activated by the higher stress levels, there is a danger that the simple exponen-
tial estimate will be inappropriately extrapolated.
We should analyze the data more in order to find the distribution that fits this type of data best.

We can then apply this to advanced-stress data as follows. As stress is increased above that encoun-
tered at normal operating levels, failures should occur at earlier times, and therefore, the CDF for

Table 6.9 Light bulb failure times in minutes.

Failure # 9.4 V 12.6 V 14.3 V 16 V

1 63 (outlier) 87 9 7

2 3542 111 13 9

3 3782 117 23 9

4 4172 118 25 9

5 4412 121 28 9

6 4647 121 30 9

7 5610 124 32 10

8 5670 125 34 11

9 5902 128 37 12

10 6159 140 37 12

11 6202 148 39 13

12 6764 177 41 14
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Probability plot of 9.4, 12.6, 14.3, 16
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Figure 6.21 Each voltage set of data fit to an exponential (after deleting outlier in 9.4-V data).
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Scatterplot of MTTF vs voltage
log10(MTTF) = 15.20 – 11.85 log10(Voltage)
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Figure 6.22 The log–log fit to the data predicts an MTTF of 952,594 hours at 6 V.
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failure should rise more rapidly. Let Fa(t) be the failure CDF under accelerated-stress conditions,
and F(t) be that obtained under ordinary operating conditions. Then, we would expect that at any
time, Fa(t) > F(t). True acceleration is said to take place if Fa(t) and F(t) are the same distribution
and differ only by a scale factor in time. We then have

Fa t = F κ t 6 51

where κ > 1 is referred to as the acceleration factor.
TheWeibull and lognormal distributions are particularly well suited for the analysis of advanced-

stress tests, for in each case there is a scale parameter that is inversely proportional to the acceler-
ation factor and a shape parameter that should be unaffected by acceleration. Thus, if the shape
parameter remains relatively constant, some assurance is provided that no new failure mode
has appeared.
The CDF for the Weibull distribution is given by Eq. (5.10). Thus, at an advanced stress it will be

given by

Fa t = 1− e− t η β

6 52

where to satisfy Eq. (6.51), the scale parameter must be given by

η = η κ 6 53

A special case of the Weibull distribution, of course, is the exponential distribution, where β = 1,
is also used for accelerated testing. Likewise, the CDF for the lognormal distribution is given by
Eq. (4.69). At corresponding advanced stress, the distribution will be

Fa t = Φ
1
ω

ln
t
t0

6 54

where to satisfy Eq. (6.51), we must have

t'0 =
t0
κ

6 55

The procedure for applying advanced-stress testing to determine the life of a device requires a
good deal of care. One must be satisfied that the shape parameter is not changing before making
a statistical estimate of the scale parameter. This is often difficult, for at any one stress level the
number of failures is not likely to be large enough to determine the shape parameter within a
narrow confidence interval, and moreover the estimates of these parameters will vary randomly
from one stress level to the next. Thus, one must rely on other means to establish the shape
parameter. Historical evidence from larger databases may be used, or more advanced maxi-
mum-likelihood methods may be used to combine the data under the assumption that there
is a common shape parameter (a method usually used by software packages). Finally, additional
data may be acquired at one or more of the stress levels to establish the parameter within a
narrower bound. Some of these considerations are best illustrated by carrying through the anal-
ysis on a set of laboratory data. For this purpose, we return to the light bulb data used in
Example 6.27.

Example 6.28 MakeWeibull plots of the accelerated-life test data in Table 6.9. In addition to the 1
point that was an outlier in the 9.4-V data, the two early failures in the 14.3-V data are suspensions.
Estimate the shape parameter and determine the acceleration factor as a function of voltage.

Solution: See Figure 6.23.
Once again, we can simply analyze the data as if it were linear (Figure 6.24).
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Figure 6.23 Analyzing the data in Table 6.9 using the Weibull distribution.
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Figure 6.24 The MTTF at 6 V varied only a bit, but the fit of the data was better presented using a Weibull
distribution.
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Other distributions, such as the normal and extreme value, may also be used in advanced-stress
testing. In these cases, however, the analysis is more complex since both distribution parameters
change if Eq. (6.51) remains valid. For example, in the normal distribution, we have μ = μ/κ and
σ’ = σ/κ. Thus, lines drawn on probability plots at different stress levels will no longer be parallel
with the time scaling. The normal distribution is more useful in modeling phenomena in which
stress levels have additive instead of multiplicative effects on the times to failure, since μ is a dis-
placement rather than a scale parameter, and thus in such situations only μ and not σ will be
effected. A similar behavior is observed if the extreme value distribution is employed.

Advanced-Stress Testing – Acceleration Models

Physical accelerationmeans that operating a unit at high stress (i.e. higher temperature or humidity
or voltage) should produce the same failures that would occur at a use stress, except that they hap-
pen much quicker.
A failure may be due to mechanical fatigue, corrosion, chemical reaction, or any number of phys-

ical phenomena. The failure modes may be known failure modes from earlier similar products or
from finite element studies or lab tests that reveal the possibility of a particular failure mode.
In all of thesemodes, an acceleration factor (AF) is a constant multiplier between two stress levels.

Engineering and previous customer experience must be used to identify the usage “stressors.”
For example, if temperature (and indeed most chemical reactions) is determined to be the var-

iable that most affects a unit’s life, the Arrhenius model is typically used, n1 units will be tested to
failure at “Mean use temp +Δtemp1,” n2 units at “Mean use temp +Δtemp2”, and so on for three or
more levels of increasing temperature. Or, in like manner for chemical reactions.
The inverse power model is used for nonthermal accelerated stresses. For example, solid rocket

engine thrust chambers may be tested at nominal pressures +5%, +10%, +20%, up to the highest
pressure allowed by the design. In general, the inverse power model is used for many common
mechanical failure modes and cycling.
We concentrate on these twomodels since they are used most frequently. A number of additional

models exist, and references will be provided to these for your further use. Realize that the Weibull
(exponential) or lognormal distribution can be used within these two “physics of failure” models.

The Arrhenius Model

The Arrhenius Model is:

R T = Ae−
EA
KT 6 56

where

R(T) = speed of the reaction at Temperature T
T = temperature in degrees Kelvin ( K = 273.15 + C) or temperature in degrees Rankin

( R = 459.67 + F)
A = a non-thermal constant factor
EA =Activation energy in electron volts
K = Boltzman’s constant (8.61733326 × 10−5 eV/K)

The Arrhenius life-stress model assumes that life is proportional to the inverse reaction rate of the
process.
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Then the Arrhenius life-stress model can be written:

L S = Ce
EA
KT 6 57

where

L = a measure of life (e.g. mean life, Median life, B.1 life, characteristic life)
S = the stress level at temperature in degrees Kelvin or Rankin
C = a model parameter
EA =Activation energy in electron volts
K = Boltzman’s constant (8.61733326 × 10−5 eV/K)

We can now write the life at use temperature:

LUse S = Ce
EA

KTUse 6 58

and Life at Accelerated temperature

LAccel S = Ce
EA

KTAccel 6 59

Then the ratio of use life to accelerated life is:

LUse S
LAccel S

= e
EA
K

1
TUse

− 1
TAccel 6 60

Since failure rate is directly proportional to rate of process failure: Eq. (6.58) becomes,

λ = De−
EA
KT 6 61

where D is a constant
As above, the Use temperature failure rate is:

λUse = De−
EA

KTUse 6 62

And the Accelerated temperature failure rate is:

λAccel = De−
EA

KTAccel 6 63

Dividing Eq. (6.62) by (6.63):

λUse = λAccele
−

EA
K

1
TUse

− 1
TAccel 6 64

The Acceleration Factor, AF is:

AF =
LUse S
LAccel S

=
λAccel
λUse

= e
EA
K

1
TUse

− 1
TAccel 6 65

For the Weibull distribution, the Arrhenius–Weibull model can be derived:
First, recall from Chapter 5 the pdf of the two-parameter Weibull distribution:

f t =
β

η

t
η

β− 1

e−
t
η

β

6 66
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letting η = L S = Ce
EA
KT and substituting in Eq. (6.66):

f t, S =
β

Ce
EA
KT

t

Ce
EA
KT

β− 1

e
− t

Ce
EA
KT

β

6 67

substituting any of the temperatures for Twill produce the pdf for that stressor, keeping theWeibull
parameters constant.
EA is usually determined experimentally by observing the times to failure of different batches of

components at different temperatures. Also, many electronic component manufacturers have listed
their component EAs. Most semiconductor devices have an EA very close to 1.

Example 6.29 Class-H insulation life2

We have hours to failure of 40 motorettes with a Class-H insulation run at 190, 220, 240, and 260 C
(Table 6.10). The purpose is to estimate the median life and 95% confidence bounds at 180 C
(453.15 K).
The insulation stressor is the temperature, and previous experience suggests that a lognormal life

distribution is appropriate.
Using MINITAB with these assumptions:

1) Generate individual lognormal plots of hours to failure for each temperature.
2) Generate a fitted Arrhenius plot of hours to failure using all data.
3) Generate a fitted relation plot across all data from which we can read the 95% confidence bound

at 180 C (Figures 6.25, 6.26, 6.27, 6.28, and 6.29).

Note that the lower the temperature, the more spread the failure distribution (same lognormal
location parameter for each temperature level).

Table 6.10 Motorette data.

C 190 220 240 260

K 463.15 493.15 513.15 533.15

7,228 1764 1175 600

7,228 2436 1175 744

7,228 2436 1521 744

8,448 2436 1569 744

9,167 2436 1617 912

9,167 2436 1665 1128

9,167 3108 1665 1320

9,167 3108 1713 1464

10,511 3108 1761 1608

10,511 3108 1953 1896

2 Source: Based on Nelson (1990), p. 115.
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Figure 6.25 Individual log normal plots of each temperature’s hours to failure. Source: Based on
Nelson (1990).
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Figure 6.26 Comparison of accelerated testing at high temperatures to use temperature. Source: Based on
Nelson (1990).
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Figure 6.27 Curve fit of accelerated data 10, 50, and 90 percentiles projected to the use temperature 453.15
K (180 C). Source: Based on Nelson (1990).

Percentiles = 50

Deg Kelvin
Hours to
Failure Lower Bound Upper Bound

95% CI

453.15
457.361
461.571
465.782
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486.834
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499.466
503.676
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528.939
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1335.58
1508.37
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2486.74
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4009.50
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2690.45
2371.57
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1654.82
1475.43
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1180.10

Figure 6.28 Screen grab of 50 percentiles with confidence bound by temperature. The median design life is
11,082 hours, with 95% confidence bounds (9357, 13126). Source: Based on Nelson (1990).
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The Inverse Power Law Model

When the life of a system has a nonthermal stressor, the inverse power law is used tomodel the life=
f(Stress), given by:

L S =
1

KSn
6 68

where

L represents life (e.g. mean life, characteristic life, BX life)
S is the stress level
K and n are the two model parameters to be determined.

The inverse power law is a straight line when plotted on a log–log paper.
The equation of the line based on Eq. (6.68) is given by:

ln L = − ln K − n ln S 6 69

We can find the values of n and K by fitting the data to this straight line.
The characteristic life at any accelerated stress SA, is

ηA =
1

K SA
n 6 70

Likewise, the characteristic life at the use stress SU, is

ηU =
1

K SU
n 6 71
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Figure 6.29 Arrhenius-lognormal PDFs of temperature levels. Source: Based on Nelson (1990).
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The Acceleration Factor (AF) is defined as

AF =
ηU
ηA

=

1
K SU

n

1
K SA

n

=
K SA

n

K SU
n =

SA
SU

n

6 72

Example 6.30 Life data from an accelerated test on roller bearings: 40 roller bearing were tested,
10 at each of four loads. Data is in Table 6.113. (The 0.012 data point at 1.09 load is an outlier or more
likely a mistype.)
The model assumed here is Weibull life with an inverse power relationship.
We will generate Weibull plots for each load and accelerated testing plot for estimating the 10%

life (reliability= 1-0.1= 0.9 or 90% reliability) at a load of 0.75. 10% life is the usual bearing design
point (Figures 6.30, 6.31, and 6.32).

Table 6.11 ALT results for 40 roller bearings.

Load Life (106 revolutions)

0.87 1.67 2.2 2.51 3 3.9 4.7 7.53 14.7 27.8 37.4

0.99 0.8 1 1.37 2.25 2.95 3.7 6.07 6.65 7.05 7.37

1.09 0.012∗ 0.18 0.2 0.24 0.26 0.32 0.32 0.42 0.44 0.88

1.18 0.073 0.098 0.117 0.135 0.175 0.262 0.27 0.35 0.386 0.456

Outlier

Source: Nelson (1990).
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Figure 6.30 Individual fits for life by load. Note that the characteristic life goes down as each load setting
goes up.

3 Nelson (1990), p. 157.
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Load = 0.75

Life (106

revs)Percent Lower Bound Upper Bound

1
2
3
4
5
6
7
8
9

10
20
30

12.4260
22.5296
32.6788

40
50
60
70

43.4475
55.3440
69.0527
85.7452

80
90
91
92
93

107.936
143.384
148.562
154.296
160.729

94
95
96
97
98

168.074
176.654
187.009
200.144
218.285

99 248.427

1.92815 0.553557 6.71611
3.35414
4.64483
5.85884
7.02174

8.14771
9.24572

11.3809
10.3220

1.07690
1.58867
2.09349
2.59370
3.09076
3.58569

4.57202
4.07924

10.0434
5.06450

15.2723
20.9353
27.2509
34.5475
43.4080
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73.4566
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Figure 6.32 Lower 95% bound at reliability =0.9 at 5.06 × 106 rev.
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Figure 6.31 Accelerated testing extrapolating to 0.75 load.



Example 6.31 An electric motor was run in life test at four speeds at a constant load.
The results are in Table 6.12. Using the IPL model, What is the model for stress versus life? What

is the acceleration factor?4

Solution: See Table 6.12 and Figure 6.33.

Example 6.32 15 units were tested at each of 36 and 20 V. Testing at 20 Vwas terminated after the
fourth failure. Assuming an inverse power relationship, determine the B10 life of a unit like this
at 5 V,

Solution: Using the data in Table 6.13 at right.5

The first plot illustrates aWeibull of the failures at 20 and 36 V (Figures 6.34, 6.35, 6.36, and 6.37).
The acceleration factor here is

Table 6.12 Test data.

RPM Time to fail (h)

3200 150

2800 790

2400 2410

2000 7340

Source: Data from Nelson (1990), p.115.

Scatterplot of failure time vs. RPM

log10(failure time) = 30.63 – 8.082 log10(RPM)
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(log10 scale)

From the model we see that n = 8.08
And
–ln(K) = 30.63, or K = 5 × 10–14 
So,

= = = 44.6
8.08

3200
2000

nSAAF
SU

Figure 6.33 Fitting the electric motor data to model in Eq. (6.69).

4 Source: Data from Accelerated Life Testing Presentation, Jim McLinn.
5 Taken from Kececioglu and Jacks (1984), with permission.
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Figure 6.35 The extrapolation to the use voltage (5 V).
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Figure 6.34 The Weibull distribution explains the failures.
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AF =
ηA
ηU

=
1417
8 3

= 171

Other Acceleration Models

If you see that the Weibull or lognormal distributions at the differ-
ent stress levels are very different, and hence, the life vs stress plot is
nonlinear, you may need one of these models. For more details on
each, see either Reliasoft (2007) or Kececioglu (1993) for details.
The following descriptions will give you some insight into the

possible situations where the models may be useful.

1) The temperature–humidity relationship model is a variation of
the Eyring model for predicting life at use conditions when tem-
perature and humidity are both stressors.

L S1, S2 = Ae
B
S1

+ C
S2 6 73

for two stressors, where

S1 is temperature in absolute units as above
S2 is relative humidity (decimal or percentage)
A and B are model parameters to be calculated
C is the activation energy for humidity
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Figure 6.36 Lives at 0.9
reliability at discrete voltages,
e.g. the 0.9 reliability (B10 life)
at 5 V is 570.7 cycles.
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Figure 6.37 The details of the two combined accelerated Weibull β and the 5 V use Weibull with 95%
confidence bands.
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2) The Arrhenius–IPL combined model can be used when a thermal AND a nonthermal stress are
stressors:

L S1, S2 =
C

Sn2e
− B

S1

6 74

where

S1 is the temperature in absolute units as above
S2 is the non-therma1 stress (e.g. voltage, bends, vibration level)
B and C are to be calculated

3) The Eyring model
The Eyring model (sometimes called the Eyring–Polyani model) may be used for modeling the

failure of chemical systems due to temperature; in addition, it is also used when humidity is a
stressor. The Eyring model can be extended to consider the effects of two stressors – one thermal
and one nonthermal.

The model is

L S =
1
S
e− A− B

S 6 75

for one stressor, where

L represents a life measure
S represents a temperature in absolute units – deg Kelvin ( K = 273.15 + C) or deg Rankine

( R = 459.67 + F)

Table 6.13 Accelerated life at 20 and 36 V to predict life at 5 V.

36 V 20 V

2.3 11.7

3.2 16.2

3.7 18.3

4.7 23.8

4.9 Test stopped

5.7 After fourth failure 10 censored at 23.8 h

6

6.8

7.5

8.6

9

10.2

10.9

12

14

Source: Data from Kececioglu and Jacks (1984).
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A and B are model parameters to be calculated

and

L S1, S2 =
1
S1

e
A + B

S1
+ CS2 + DS2

S1 6 76

for two stressors, where

S is the temperature in absolute units as above
S2 is non-thermal (e.g. voltage)
A, B, C, and D are model parameters to be calculated

6.8 Reliability-Enhancement Procedures

Reliability studies during design and development are extremely valuable, for they are available at a
timewhen designmodifications or other corrections can bemade at much less expense than later in
the product life cycle. With the building of the first prototypes hands-on operational experience is
gained. And as the limitations and shortcomings of the analytical models used for design optimi-
zation are revealed, reliability is enhanced through experimentally based efforts to eliminate failure
modes. The number of prototypemodels is not likely to be large enough to apply standard statistical
techniques to evaluate the reliability, failure rate, or related quantities as a function of time. Even if
a sample of sufficient size could be obtained, life testing would not in general be appropriate before
the design is finalized. If one ran life tests on the initial design, the results would likely underes-
timate the reliability of the improved model that finally emerged from the prototype testing phase.
The two techniques discussed in this section are often employed as an integral part of the design

process, with the failures being analyzed and the design improved during the course of the testing
procedure. In contrast, the life-testing methods discussed in Sections 6.3 and 6.4 may be used to
improve the next model of the product, change the recommended operation procedures, revise
the warrantee life, or for any number of other purposes. They are not appropriate, however, while
changes are being made to the design.

Reliability Growth Modeling and Testing

Newly constructed prototypes tend to fail frequently. Then, as the causes of the failures are diag-
nosed and actions taken to correct the design deficiencies, the failures become less frequent. This
behavior is pervasive over a variety of products and has given rise to the concept of reliability growth.
A formal definition of reliability growth: the positive improvement in a reliability parameter over a
period of time due to changes in product design or the manufacturing process.
Reliability growth is the result of an iterative design process:

1) Detection of failure sources.
2) Feedback of problems identified.
3) Redesign effort based on problems identified.
4) Fabrication of hardware.
5) Verification of redesign effect.
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Sometimes referred to “Test, Analyze, Fix” or TAF.
(Note: the following is excerpted from MIL-HDBK-189C 2011.)
Timing of fixes during a development program is of utmost importance, especially if an accurate

idea of reliability growth is to be reported. To reach the goal reliability, the development testing
program will usually consist of several major test phases. Within each test phase, the fixes can
be incorporated in any one of the three ways:

1) Test–Fix–Test
In a pure test–fix–test program, when a failure is observed, testing stops until a corrective

action is implemented on the system under test. When the testing resumes, it is with a system
that has incrementally better reliability. The graph of reliability for this testing strategy is a series
of small increasing steps, with each step stretching out longer to represent a longer time between
failures; hence, the graph can be approximated by a smooth curve. In most cases, this is imprac-
tical because of the cost of test time, particularly for large systems (e.g. aircraft and rocket
engines, aircraft, and the like). But for smaller subsystems or modules, this can be done.

2) Test–Find–Test
During a test–find–test program, the system is tested to determine failure modes. However,

unlike the test–fix–test program, fixes are not incorporated into the system during the test.
Rather, the fixes are all inserted into the system at the end of the test phase and before the next
testing period. Since a large number of fixes will generally be incorporated into the system at the
same time, there is usually a significant jump in system reliability at the end of the test phase.
The fixes incorporated into the system between test phases are called “delayed” fixes.

3) Combination of Test–Fix–Test and Test–Find–Test
The test program most commonly used in development testing employs a combination of the

previous two types of fix insertions. That is, some fixes are incorporated into the system during
the test, while other fixes are delayed until the end of the test phase. Consequently, the system
reliability will generally be seen as a smooth process during the test phase and then jump due to
the insertion of the delayed fixes (Figure 6.38).

Row 1 shows Phase 1 as having all fixes delayed until the end of the testing phase.
Row 2 shows Phase 1 as having some fixes inserted during test and some delayed.
Row 3 shows Phase 1 as having all fixes inserted during test, with none delayed.
Column 1 shows Phase 2 as having all fixes delayed until the end of the testing phase.
Column 2 shows Phase 2 as having some fixes inserted during test and some delayed.
Column 3 shows Phase 2 as having all fixes inserted during test, with none delayed.
Figure 6.38a and i represent the two extremes in possible growth test patterns.
How to model the reliability growth phenomenon?
Suppose that we define the following:

T = total operation time accumulated on the prototype
N(T) = number of failures from the beginning of operation through time T.

Duane (1964) observed that ifN(T/T) is plotted versus T on log–log paper, the result tends to be a
straight line. From such empirical relationships, referred to as a Duane plots, we may make rough
estimates of the growth of the time between failures and therefore also extrapolate a measure of
how much reliability is likely to be gained from further cycles of test and fix.
Since Duane plots are straight lines, we may write
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ln
n T
T

= − α ln T + b 6 77

or solving of n(T)

n T = KT1− α 6 78

where K = eb. Note that if α= 0, there is no improvement in reliability, for the number of failures
expected is proportional to the testing time. For α greater than zero, the expected failures become
further and further apart as the cumulative test time T increases. An upper theoretical limit is α= 1,
since with this value, Eq. (6.78) indicates that the number of failures is independent of the length of
the test.
Suppose that we define the rate at which failures occur as just the time derivative of the number of

failures, N(T), with respect to the total testing time:

Λ T =
d
dT

n T 6 79

Note that Λ is not the same as the failure rate λ discussed at length earlier, since now each time a
failure occurs, a design modification is made. Understating this difference, we may combine
Eqs. (6.78) and (6.79) to obtain

Λ T = 1− α KT − α 6 80

indicating the decreasing behavior of Λ(T) with time.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

The delayed fixes

Figure 6.38 The nine possible general growth patterns for two test phases. Source: Based onMIL-HDBK-189C
(2011). Public Domain.
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However, the Duane postulate is deterministic in the sense that it gives the expected pattern for
reliability growth but does not address the associated variability of the data.
The next step to address the variability shortfall of the Duane model, Duane (1964) was taken by

Dr. L.H. Crow, Crow (1975). Dr. Crow considered Duane’s power law reliability growth pattern and
formulated the underlying probabilistic model for failures as a nonhomogeneous Poisson process
(NHPP6), [N(T), T> 0], with
Expected number of failures at time T: E[N(T)] = λTβ

Where the derivative of E[N(T)], call the “Intensity” function z(T):

Z T =
d
dT

λTβ = λβTβ− 1 6 81

The Crow NHPP power law model has the same look and feel as the Duane model, e.g. λTβ is the
expected number of failures by time T in both. However, the NHPP model gives the Poisson prob-
ability that N(T) will assume a particular value:

P N T = n =
λTβ n

eλT
β

n
, for n = 0, 1, 2,… 6 82

Also, under the Crow model:

E λTβ
j = j, for j = 1, 2,…

where Tj is the accumulated time to the jth failure.
Then we have the approximation for the expected time to the jth failure:

E T j =
j
λ

t
β

, where j = 1, 2,… 6 83

When the “shape” parameter β = 1, z(T) = λ, and the successive failures follow an exponential
distribution with mean 1/λ (an HPP-Homogeneous Poisson Process), indicating no reliability
growth. The intensity function Z(T) is decreasing for β < 1 (positive growth), and increasing for
β > 1 (negative growth).
The NHPP power law reliability growth model is a probabilistic interpretation of the Duane pos-

tulate and therefore allows for the development and use of rigorous statistical procedures for reli-
ability growth assessments. Figure 6.39 shows how a number of different devices’ cumulative
failures versus time follow this power model. Along those lines, the NHPP power law model
was extended by Crow in 1981 whenMil-Hbk-189 was published.Mil-Hbk-189 was the culmination
of a DOD and Industry team led by Dr Larry Crow taking Duane’s original idea and formalizing it
from a statistical standpoint (maximum-likelihood estimation of the model parameters and system
reliability, confidence interval procedures and objective goodness-of-fit tests, reliability projec-
tions, etc.).
Taking J.T. Duane’s original observations and studying other possible models for reliability

growth, the Mil-HBK-189 team decided that Duane’s original observation was the most useful,
and hence, the Larry Crow AMSAA/Duane model was born. Mil-Hbk-189 later was updated by
an IEC (International Electrotechnical Commission) Committee as ANSI/IEC/ASQ D61164-1997

6 An NHPP is a Poisson process with a nonconstant recurrence rate with respect to time t. A Homogeneous Poisson
Process (HPP) is a Poisson process such that the rate of occurrence of events is a constant with respect to time t.
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and became an international standard, formalizing further the Mil-Hbk-189 statistical accomplish-
ments. The current version of Mil-Hbk-189 is Mil-Hbk-189C (2011).
The statistical procedures for the power law reliability growth model use the original relevant

failure and time data from a test or series of field observations. Except for projecting failure rate
for the future, the model is applied to the complete set of relevant failures as a whole (i.e. without
subdivision into categories of failures).
Duane-AMSAA plots are very useful for predicting future failures based on your data. The tech-

nique provides a methodology, the equations are simple, the failure forecast is based on your data,
and you can make reasonable forecast of future events.

Example 6.33 A first prototype for a novel laser-powered sausage slicer is built. Failures occur at
the following numbers of minutes: 1.1, 3.9, 6.2, 17.8, 79.7, 113.1, 206.4, and 239.1. After each failure
the design is refined to avert further failures from the same mechanism. Determine the reliability-
grown coefficient β (and hence Duane’s α= 1− β) for the slicer.

Solution:
Using least squares for this problem and using MINITAB “fitted line” (Figure 6.40).
Here, β = 0.34 and λ= 10∗∗0.095= 1.244 or N(T)= 1.244T0.34.
While the AMSAA-Duane model is N(t)= λtβ, the model can be rearranged in a number of ways

to satisfy a customer’s demands for reporting:

Cumulative Events N t = λtβ 6 84

Cumulative Rate C t =
N t
t

= λtβ− 1 6 85

Instantaneous Rate c t =
dN t
dt

= λβtβ− 1 6 86
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Culinary equipment Beta = 0.34
Electronic controls, Beta = 0.75
Oil field system, Beta = 0.78
Jet engine system, Beta = 0.28
Engine mechanical failures, Beta = 0.25

Figure 6.39 Various system cumulative failures vs time, plot as straight lines on log–log scales.
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Cumulative MTBF M t =
1

C t
=

1
λ

t1− β 6 87

Instantaneous MTBF m t =
1

c t
=

1
λβ

t1− β 6 88

Calculation of Reliability Growth Parameters

Maximum likelihood is most commonly used to define growth parameters. The MLE formulas for
the Crow-AMSAA β & λ will be slightly different, based on the type of data.

• Time-terminated testing:

β =
N

N ln T −
i
ln xi

6 89a

λ =
N

Tβ
6 89b

where

N =Number of failures at time T
T =Cumulative test time
xi =Cumulative time at each failure

• Failure-terminated testing:

β =
N

N − 1 ln xN −
i
ln xi

6 90a

Scatterplot of n vs. T
log10(n) = 0.09499 + 0.3396 log10(T), R-Sq = 94.7%

10

1

1 10 100 1000
T

n

Figure 6.40 Log–log plot of cumulative events vs. cumulative time with power model fit.
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λ =
N

Tβ
6 90b

where

N =Number of failures at time T
xi =Cumulative time at each failure

• Grouped data (usually from the field or warranty databases)

Itmay happen that a system has a “failure” in a unit that does not shut down the system. Thatmay
be due to redundancy or standby units being available. Those events are often only discovered at a
scheduled inspection,which could beweekly,monthly, or longer. In those cases, the exact timeof the
failure is unknown; however, one can presume that it happened in the interval since the last inspec-
tion. The total number of failures in the interval between inspections is therefore the number of fail-
ures during the inspection. Such totals for each interval can be used to estimate reliability growth in
accordance using the “grouped” reliability growth model if there are at least three intervals.

Grouped data: (solving for β first)

k

i = 1

Ni
tβi ln ti − tβi− 1 ln ti− 1

tβi − tβi− 1

− ln tk = 0 6 91

then, λ =

k

i = 1
Ni

tβk
6 92

where

k = number of groups/intervals
tk = the end of the last interval
Ni = the number of failures in each interval

Goodness-of-Fit Tests for Reliability Growth Models

For Time-Terminated Testing

The null hypothesis that a nonhomogeneous Poisson process with an intensity function of the form

λβtβ− 1 6 93

properly describes the reliability growth of a particular system is tested by the use of a Cramer von
Mises statistic. An unbiased estimate of the shape parameter is used to calculate that statistic. This
estimate of β is

β =
N − 1
N

β 6 94

for a time-terminated test with N failure occurrences. The goodness-of-fit statistic is

C2
M =

1
12N

+
N

i = 1

xi
T

β
−

2i− 1
2N

2

6 95

in which the failure times must be ordered so that 0≤ x1≤ x2≤ ≤ xN.
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The null hypothesis is rejected if the statistic C2
M exceeds the critical value for the level of signif-

icance selected by the analyst. Critical values of C for the 0.20, 0.15, 0.10, 0.05, and 0.01 levels of

significance (α) are in Supplement 3. The Cramer von Mises (C2
M) table is indexed by a parameter

labeledM. For time-terminated testing,M is equal toN, the number of failures. If the test rejects the
reliability growth model, an examination of the data may reveal the reason for the lack of fit. Pos-
sible causes of rejection include the occurrence of more than one failure at the same time or the
occurrence of a discontinuity in the intensity function. In the first case, an appropriate procedure
may be to group the data. If a discontinuity is in the data, or the fit does appear right to the “eyeball,”
another reliability growth model may be called for (this is unusual). Supplement 4 reviews some of
the other reliability growth models available in the literature.

For Failure-Terminated Testing

As before, the hypothesis that the AMSAA-Duane model is appropriate can be tested using a Cra-
mer–von Mises statistic. It is important to note the difference in the calculations from those for
time-terminated testing. An unbiased estimate of the shape parameter given by

β =
N − 2
N

β 6 96

is used in the calculation of the goodness-of-fit statistic. The parameter for indexing that statistic is
M = N− 1, where N is the number of failures. The Cramer–von Mises statistic is then

C2
M =

1
12M

+
M

i = 1

xi
XN

β

−
2i− 1
2M

2

6 97

Supplement 3 critical values for use in the test. The model is deemed inappropriate if the statistic
C2
M exceeds the critical value for some specified level of significance (α).

For Grouped Data

A Chi-squared goodness-of-fit test can also be used to test the hypothesis that an AMSAA-Duane
model adequately represents a set of grouped data. The expected number of failures predicted by the
model, using (ti), is

ei = λ tβi − tβi− 1 6 98

Adjacent intervals may have to be combined so that the expected number of failures in any inter-
val is at least 5. Let the number of intervals after this combination be called K, and let the number of
failures in the ith interval be called Ni. The expected number of failures will be ei as before. Cal-
culating the statistic:

χ2 =
K

i = 1

Ni − ei
2

ei
6 99

is approximately distributed as a χ2 random variable with K-2 degrees of freedom. The critical value
of the Chi-square can be found at the end of the chapter in a Chi-sq table (Supplement 5).
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Example 6.34 Based on the hardware failure data in Table 6.14 where the test was terminated at
300 hours.
Using formulae (6.89a) and (6.89b):

β =
N

N ln T −
i
ln xi

=
27

27 ln 300 − ln 2 6 + ln 6 5 + + ln 286 1
= 0 716

λ =
N

Tβ
=

27
3000 716 = 0 454

Therefore, for this data: N(t) = 0.454t0.716 (Figure 6.41)
In addition, see Figures 6.42 and 6.43.

Goodness-of-Fit Test:
While looking at the plots tells our “eyeball” the fits to the data are good, the goodness-of-fit test

tells us that using Eqs. (6.94) and (6.95)

β =
N − 1
N

β =
27− 1
27

0 716 = 0 689

C2
M =

1
12N

+
N

i = 1

xi
T

β
−

2i− 1
2N

2

= 0 110 < 0 172

(Cramer Von Mises Critical value for N = 27 at α = 0.10) and our “eyeball”was pretty good! There-
fore with 90% confidence we can say we have a good fit to the data.

Table 6.14 Hardware failures – time-terminated test at 300 hours.

No. 1 No. 2 Cumulative No. 1 No. 2 Cumulative

Hours Hours Hours Hours Hours Hours

1 2.6a 0 2.6 15 60.5 37.6a 98.1

2 16.5a 0 16.5 16 61.9a 39.1 101.1

3 16.5a 0 16.5 17 76.6a 55.4 132

4 17.0a 0 17 18 81.1 61.1a 142.2

5 20.5 0.9a 21.4 19 84.1a 63.6 147.7

6 25.3 3.8a 29.1 20 84.7a 64.3 149

7 28.7 4.6a 33.3 21 94.6a 72.6 167.2

8 41.8a 14.7 56.5 22 104.8 85.9a 190.7

9 45.5a 17.6 63.1 23 105.9 87.1a 193

10 48.6 22.0a 70.6 24 108.8a 89.9 198.7

11 49.6 23.4a 73 25 132.4 119.5a 251.9

12 51.4a 26.3 77.7 26 132.4 150.1a 282.5

13 58.2a 35.7 93.9 27 132.4 153.7a 286.1

14 59 36.5a 95.5 END 132.4 167.6 300

aDenotes a failure.
Source: MIL-HDBK-189C (2011). Public Domain.
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Figure 6.41 Reliability growth plot of time-terminated testing example. Source: Based on MIL-HDBK-189C
(2011). Public Domain.
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1
Cumulative failure rate =
c(t) = λtβ–1

Instantaneous failure rate =
ρ(t) = λβtβ–1

At test completion

C(t) = (0.454)(300)(0.716–1.0)

= 9/100 hours

ρ(t) = (0.716)(0.09)
= 6.4/100 hours

Figure 6.42 Plotting by failure rate displays an improving trend ∗indicates the test termination point.
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Example 6.35 System failure occurs repeatedly, and the test is terminated after the 26th failure.
Failures occurred at 1, 57, 187, 252,310,485,693,720,727,779, 1028, 1561, 1766, 1793, 1938, 2030,

2065, 2289, 2423, 2560, 2879, 3086, 3458, 3626, 4252, and 4582 hours.
Using Failure-terminated testing, Eqs. (6.90a) and (6.90b):

β =
N

N − 1 ln xN −
N − 1

i = 1
ln xi

and λ =
N

Tβ

β =
N

N − 1 ln xN −
N − 1

i = 1
ln xi

=
26

26− 1 ln 4582 − ln 1 + ln 57 + + ln 4252
= 0 626

λ =
N

Tβ
=

26

4582 0 626 = 0 1328

Therefore, N(t) = 0.1328 t0.626 (Figure 6.44).

Goodness-of-Fit Test:
Again, the goodness of fit is tested at the .10 level of significance. The critical value forM equal to

26 is determined to be 0.172 by interpolation in Cramer–von Mises table in Supplement 3.
The Cramer–von Mises statistic is 0.058 < 0.172, which indicates that the model represents the

data quite well, despite the fact that the first failure is most likely an outlier (this should be checked
by engineering but will not change the β or λ significantly).
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1/(instantaneous failure rate)

At test completion
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=

=
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Figure 6.43 Plotting by mean time between failure (MTBF).
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Example 6.36 7

An aircraft has scheduled inspections at intervals of 20 flight hours. All failures that have occurred
between consecutive inspections are combined with those discovered during the inspection at the
end of the interval to give the total for the interval. For the first 100 hours of flight testing, the results
are shown in Table 6.15:

Using Eqs. (6.91) and (6.92) for Grouped data (solving for β first):

k

i = 1

Ni
tβi ln ti − tβi− 1 ln ti− 1

tβi − tβi− 1

− ln tk = 0
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Failure terminated test example

β = 0.626
λ = 0.1328

Figure 6.44 System failure-terminated testing. Source: Based on MIL-HDBK-189C (2011). Public Domain.

Table 6.15 Aircraft incidents during the first 100 hours of flight
testing.

Start time (i − 1) End time (i) Incidents

0 20 13

20 40 16

40 60 5

60 80 8

80 100 7

Source: MIL-HDBK-189C (2011). Public Domain.

7 Mil-Hbk-189, p. 140.
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then, λ =

k

i = 1
Ni

tβk

where

k = number of groups/intervals
tk = the end of the last interval
Ni = the number of failures in each interval

And setting these equations in EXCEL™ (Tables 6.16a, 6.16b, and graphically Figure 6.45):

Goodness-of-Fit Test:
Using Eq. (6.43), with the results appearing in Table 6.17.
See Supplement 5 for a χ2 table.

Table 6.16a Executing interval formulas iteratively in EXCEL.

i
Time interval
(i − 1)

Time
interval (i) Incidents β= 0.752850896

1 0 20 13 =((C2^$F$1)∗LN(C2)) =C2^$F$1 =D2∗((E2/F2)-
LN(100))

2 20 40 16 =((C3^$F$1)∗LN(C3))-((B3^
$F$1)∗LN(B3))

=C3^$F$1-
B3^$F$1

=D3∗((E3/F3)-
LN(100))

3 40 60 5 =((C4^$F$1)∗LN(C4))-((B4^
$F$1)∗LN(B4))

=C4^$F$1-
B4^$F$1

=D4∗((E4/F4)-
LN(100))

4 60 80 8 =((C5^$F$1)∗LN(C5))-((B5^
$F$1)∗LN(B5))

=C5^$F$1-
B5^$F$1

=D5∗((E5/F5)-
LN(100))

5 80 100 7 =((C6^$F$1)∗LN(C6))-((B6^
$F$1)∗LN(B6))

=C6^$F$1-
B6^$F$1

=D6∗((E6/F6)-
LN(100))

Sum= 49 Sum= −5.87312E-07

λ= 1.529305631

Table 6.16b Spreadsheet with formulas executed – using SOLVER™.

i Time interval (i − 1) Time interval (i) Incidents β= 0.7528509

1 0 20 13 28.574892 9.5385333 −20.922693

2 20 40 16 30.718564 6.5350351 1.5268237

3 40 60 5 30.009771 5.7377925 3.1251214

4 60 80 8 29.387835 5.2745224 7.7319028

5 80 100 7 28.861745 4.9548017 8.5388444

Sum= 49 Sum= −5.873E−07

λ= 1.5293056

294 6 Reliability Testing



The critical value for a χ2 statistic with k = 5− 2= 3 degrees of freedom at α= 0.05 significance
level is 7.8. Since GoF statistic= 5.45 < χ2 table value= 7.8, the model is accepted.
Suppose that you are now asked: How many failures will occur in the next 100 hours?
Using the AMSAA-Duane model with

β = 0 753 and λ = 1 53

N 200 = 1 53∗2000 753 = 83

So, over the next 100 hours, 83− 49 = 34 additional failures can be expected.

Example 6.37 Suppose that you are developing a new product. To effectively market this product
the failure rate of your product must be 2/1000 hours or less. In testing to date, you have experi-
enced failures at 800 hours, 1000 hours, 2500 hours, 3500 hours, 4000 hours, and 7000 hours. How
much more testing (and fixing) is required to achieve your goal? See Figure 6.46 for solution.

Table 6.17 The calculation of goodness-of-fit statistic is 5.45.

β= 0.752850896

λ= 1.529305631
i Time interval (i − 1) Time interval (i) Incidents ei = λ tβi − t

β
i −1 χ2(k)

1 0 20 13 14.58733262 0.172726907

2 20 40 16 9.994065906 3.609266207

3 40 60 5 8.77483841 1.623893724

4 60 80 8 8.066356846 0.000545876

5 80 100 7 7.577406216 0.043998953

Sum= 5.450431667
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β = 0.753 λ = 1.53

Figure 6.45 Plot of aircraft testing grouped data with growth model. Source: Based on MIL-HDBK-189C
(2011). Public Domain.
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Example 6.388

Suppose that we had a system that failed every 60 days for a total of 5 failures. Each corrective main-
tenance action was a repair (replacement components have the same length of life). Following the
fifth failure, we added a fix (replacement with a longer life component) with a life of 300 days/fail-
ure. Subsequent failures will also be replaced with longer life components. The data are shown in
Table 6.18.
The data and curve fit are in Figure 6.46. According to the equation, N(t)= λtβ, which in this case

is N(t)= 0.1645t0.548.
Where β is the indicator of reliability improvements (β < 1), and the next failure (number 11 in

this case) will occur at t = (11/0.1645)(1/0.548)= 2141.28 cumulative time. The forecast of the next
failure 2141.28− 1800= 341 days compared to the 300 days expected from the discrete data in
Table 6.18.
But in looking at the data more closely you can see there are two trends, see Figure 6.47. The first

five failures have a different growth slope – steeper than the next five failures, indicating that the fix
is working (Figure 6.48). So, how much has the fix helped?
By separating the data into the two “processes,” the first five before the improvement and the last

five after the improvement, we now can compute howmany failures were prevented by the process
improvement. See Table 6.19.

β = 0.72
λ = 0.0253

N(t) = (0.0253)t0.72

Cumulative rate
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at 8630 hours
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8630–7000 = 1630 hours
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Figure 6.46 Procedure for calculating the time remaining in development testing.

8 Source: Barringer (2003).
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Table 6.18 System that will show two failure trends.

Cum time Cum failures

60 1

120 2

180 3

240 4

300 5

600 6

900 7

1200 8

1500 9

1800 10

Source: Barringer (2003).
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Figure 6.48 A process improvement was instituted after the fifth failure, which changed the slope of the
AMSAA Duane model in the second group.
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Figure 6.47 Reliability growth model fit to all data. Source: Barringer (2003).



From Figure 6.49, for first five failures:

N(2000) = (0.0167)∗2000 = 34− 5 = 29 additional without the process improvement.

For second five failures (after process improvement):

N(2000) = (0.0033)∗2000 = 7− 5 = two additional failures.

Process improvement saved 29− 2= 27 failures.

Example 6.39 Predicting Future Failures from Your Maintenance Records9

Actual pump maintenance “interventions” were reported from a Brazilian chemical plant. The
maintenance records are shown in Table 6.20.

Table 6.19 Data separated by before and after process
improvement.

Before process improvement After process improvement

Cum time Cum failures Cum time Cum failures

60 1 300 1

120 2 600 2

180 3 900 3

240 4 1200 4

300 5 1500 5

Source: Barringer (2003).

N(t) = 0.0033t1
N(t) = 0.0167t1
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Figure 6.49 Separate models for before and after process improvement (bothmodels used least-squares log–
log regression in EXCEL™).

9 Source: Barringer (2003).
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The grouped data algorithm (Eqs. (6.91) and (6.92)) was used to solve for βs and λs and is on the
combined reliability growth plots in Figure 6.52.
The cumulative failures versus cumulative time produces two straight lines. The trend line before

starting a total preventive maintenance (TPM) program shows slight improvement (reliability
growth slope β = 0.947).
After introducing the TPM program, operators were taught fundamental things they could do to

reduce failures, and the TPM failure trend line shows a distinct change of reliability growth slope
for the better because of this (a slope β = 0.529).
Using Figure 6.50 the savings from the TPM program at time t = 36months is an avoidance of 516

“interventions” in 29 months. Assume that each “intervention” has an average cost of US$1000, the
savings from the TPM program is $516,000 in just 29 months. Of course, the net savings for the TPM
program will be the amount saved less the amount spent for introducing the TPM effort. Reliability
growth plots quantify the savings and provide forecast of future failures.

Environmental Stress Screening

Environmental stress testing is based on the premise that increasing the stress levels of temperature,
vibration, humidity, orothervariablesbeyond those encounteredundernormaloperational conditions
will cause the same failure modes to appear, but at a more rapid rate. The combination of increased
stress levels with failure modes analysis often provides a powerful tool for design enhancement. Typ-
ically, the procedure is initiated by identifying the key environmental factors that stress the product.
Several of the prototypeunits are then tested for a specified periodof timeat the stress limits for normal
operation. As a next step, voltage, vibration, temperature, or other identified factors are increased in
steps beyond the specification limits until failures occur. Each failure is analyzed, and action is taken
to correct it. At some level, small increases in stress will cause a dramatic increase in the number of
failures. This indicates that fundamental design limits of the system have been exceeded, and further
increases in stress are not indicative of the robustness of the design.

Table 6.20 Maintenance “interventions,” data from 1995 to 1997, forecasts 1998 to 1999.

Month 1995 1996 1997 1998 (forecast) 1999 (forecast)

January 35 12 8 8 7

February 32 13 3 7 7

March 28 12 15 7 6

April 30 11 5 7 6

May 41 11 10 7 6

June 30 11 9 7 6

July 16 15 8 7 6

August 18 9 7 7 6

September 21 8 7 7 6

October 14 8 9 7 6

November 12 10 7 7 6

December 11 10 8 7 6

Total = 288 130 96 85 74
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After the design phase, stress tests also may be applied to products taken off the production line
during early parts of a run. At this point, however, the changes are typically made to the fabrication
or assembly process and with the component suppliers rather than with product design. In contrast
to the stress testing discussed thus far, whose purpose is to improve the product design or manu-
facturing process, environmental stress screening (ESS) is a form of proof or acceptance test. To per-
form such screening, all units are operated at elevated stress levels for some specified period of time,
and the failed units are removed. This is comparable to accelerating the burn-in procedure dis-
cussed in Chapter 3, for it tends to eliminate substandard units subject to infant mortality failures
over a shorter period of time than simply burning them under nominal conditions. ESS and burn-in
are sometimes confused in the literature due to the fact that they both have the same goal: reducing
the occurrence of early field failures. The major difference is that burn-in is usually conducted
under ambient conditions, whereas ESS is conducted under accelerated environmental conditions.
The environmental stresses are more severe than the normal operating conditions and in some
cases different than the operational conditions. ESS offers an economic advantage over burn-in
in that it is capable of precipitating defects in a much shorter time period.
The objective in environmental stress screening is to reach the flat portion of the bathtub curve in

a minimum time and at minimum expense before a product is shipped. This is illustrated in
Figure 6.51 based on a simulation of a system with 100 components, 4 of which have a small %
of latent defects caused by shipping or assembly errors or other causes that cannot be detected
by usual quality control and inspection. An exponential distribution was assumed for all
components.
The simulation illustrated in Figure 6.51 assumed that all 100 components assumed exponential

failure distributions with η of 107–108 and 4 (infant mortality) failure distributions to simulate
latent failures not caught by usual quality system inspections.
Hence, you see a bimodal effect at the lower end of the plot. The bend in the curve as described in

the previous paragraph indicates about a 2.6% failure rate due to the latent failures, which will

Figure 6.50 Reliability growth models show reduction in maintenance actions due to TPM. Source:
Barringer (2003).
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occur after the customer receives the systems. Hence, a potential 2.6% warranty return rate ($$) and
customer dissatisfaction.
In constructing programs for either environmental stress testing or screening, the selection of the

stress levels and the choice of exposure times is a challenging task. While theoretical models, such
as the Weibull and lognormal are helpful, the empirical knowledge gained from previous experi-
ence or industrial standards most often plays a larger role. Thermal cycling beyond the normal

Figure 6.52 Typical thermal profile used in environmental stress testing. Source: Horner (1989). Public
Domain.
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temperature limits is a frequent testing form. The test planner must decide on both a cycling rate
and the number of cycles before proceeding to the next cycle magnitude. If too few cycles are used,
the failures may not be precipitated; if too many are used, there is a diminishing return on the
expenditure of time and equipment use. Often, an important factor is that of using the same test
for successive products to insure that reliability is being evaluated with a common standard.
Figure 6.52 illustrates one such thermal cycling prescription. Note that power on or off must be
specified along with the temperature stress profile.
Take note of the following:

• ESS is not a test, it is a screening process

• ESS is not burn-in, it stresses a product to operational extremes

• ESS is used in manufacturing/production to catch latent failures

• All items in a product line are exposed to ESS.

ESS can be expensive, so a return-on-investment analysis should be done before incorporating
any ESS in production. However, ESS has been shown to be a cost-effective strategy when properly
implemented.

What “Screens” are used for ESS?

There are many screens that can be used at the assembly level to precipitate and detect latent
defects. These screens include:

• Thermal cycling

• Random vibration

• Immersion

• Overpressure

• Voltage variation.

For electronic systems, thermal cycling and random vibration have been found to be the most
effective screens available and are the most widely used. They are excellent for uncovering the
microscopic defects that are present in electronic equipment. Figure 6.53 shows the types of defects
precipitated by thermal cycling and random vibration. There is a lot of overlap in the defect types
precipitated by these two screens. The most effective ESS program for electronic equipment should
use both screens.

Thermal Cycling

Thermal cycling is the most widely used stress screen. It is an effective screen for precipitating
defects at all levels of assembly, from piece part level to complete end assembly.
Thermal cycling is a relatively inexpensive screen, especially when performed at the assembly

level, if units can be tested simultaneously in one chamber. This can be accomplished relatively
easily for electronic systems, circuit boards, etc. BUT, it can also be accomplished for items as large
as rooftop air-conditioning units or mechanical parts such as fans or air conditioner compressors.
Thermal cycling consists of changing the temperature of the equipment at a fairly high rate of

change in order to induce stresses on the parts and connections. Working with the design team,
the reliability engineer should finalize the temperature range, the thermal rate of change, and
the number of cycles.
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Thermal cycling causes stress in the test items through the expansion and contraction of materi-
als due to temperature change. The repeated cycling will cause different materials to expand and
contract at different rates, resulting in stress at mating points, such as solder joints and connections.

Random Vibration

Random vibration has replaced sine and swept-sine vibration as a stress screen because it has been
shown to be more effective in precipitating latent defects. Sine vibration applies energy at only one
frequency and does not exercise all resonances of the equipment. In addition, the danger of fatigue
failure is increased since all the energy goes into the one frequency. Swept-sine vibration applies
energy at different frequencies sequentially. The dwell time at each frequency is not long enough
to cause fatigue problems. Random vibration applies relatively constant energy in all frequencies.
The energy applied at any one frequency is much smaller than that provided by sine vibration, so
there is less danger of fatigue damage. Since the vibration occurs at all frequencies during the entire
screen, the equipment also has time to reach a steady-state response to the input. Random vibration
is also the closest approximation to the actual vibration seen by the equipment in the field. These
factors all combine to make random vibration a more effective, less-damaging screen when applied
correctly. However, upfront experimental surveys are essential to ensure that the equipment is not
damaged by the vibratory stress levels imposed for screening.

Other Screens

The industry experience has been that thermal cycling and random vibration are the most used and
most effective screens. However, for mechanical systems containing pressurized assemblies (fuel
supply and pneumatics), these thermal and/or vibration stresses may not precipitate as many
defects as overpressure or pressure cycling.

Defect type Thermal Vibration
detected

Defective part X X 

Broken part X X 

Improperly installed part X X 

Solder connection X X 

PCB etch, shorts, and opens X X 

Loose contact X

Wire insulation X 

Loose wire termination X X 

Improper crimp or mating X 

Contamination X X

Debris X

Loose hardware X

Chafed, pinched wires X

Parameter drift X 

Hermetic seal failure X 

Adjacent boards/parts shorting  X

screen screen

Figure 6.53 Assembly-level defect types precipitated by thermal and vibration screens.
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Immersion is a stressor used when humidity or seaborne equipment or other specialized equip-
ment is being manufactured for a customer.
Likewise with voltage variation, anything electrical or electronic may be susceptible to being

damaged by variations in voltage; hence, this stressor needs to be applied in those cases.
In electronics, when other stresses are used for screening (i.e., overpressure, immersion, etc.) they

should be performed after thermal cycling and random vibration (if they are applied). Thermal
cycling and random vibration will serve to initially stress the connections and interfaces that will
then be screened through applications of other stresses.
REMINDER: The engineering and manufacturing team need to use their earlier studies and

experience to point out the potential failure modes and their causes possibly using the results of
a PFMEA (Process Failure Modes and Effects Analysis) and fault tree analysis to help in identifying
the ESS that manufacturing will employ (see Chapter 7 for a description of FMEA and PFMEA and
Chapter 11 for fault tree analysis).

Highly Accelerated Life Tests10

“Highly Accelerated Life Testing (HALT) is a form of accelerated testing in which the sole purpose
of the test is to determine if the product can withstand the stresses to which it is being subjected. If
the test unit survives, it passes the test, otherwise corrective actions will be taken to improve the
product’s design in order to eliminate the cause(s) of failure. In general, HALT will not quantify the
life (or reliability) characteristics of the product under normal use conditions; instead, these tests
will provide valuable information as to the types and levels of stresses that could be employed to
design an accelerated test to assess life characteristics. A good HALT profile would quickly reveal
failure modes that will occur during the life of the product under normal operating conditions.
HALT supports a robust design approach.”
However, one must be very cautious in using stresses (vibration, temperature cycling, etc.)

beyond the design limits of the product. Failure modes may be generated by those extreme stresses
but will not occur in the field because the unit will never be asked to operate at those extremes. How
realistic a failure is in a HALT test should be judged by engineering.
The essence of HALT is in Figure 6.54. While historical ESS would go to the lower and upper

operating limit, HALT explores the upper and lower destruct limits of a product with temperature
and vibration stress. By exploring and finding the destruct limits, information on possible failure
modes that may not be known to the designers has been revealed. In addition, while the customer
may have asked that a product has operating margins (i.e. outside of the product specs) for “occa-
sional” use, by exploring beyond those limits will reveal the information the customer should be
aware of.
By finding the failure modes outside the spec limits, the product design team can decide if that

failure mode is a shortcoming in the design and fix it if it needs to be. By repeating that process, a
design will be “customer ready” when it comes out of production, meaning fewer warranty claims
and higher customer satisfaction.
HALT has had a great deal of success in a number of industries, most notable of which is the

electronics industry.

10 Taken from DOD GUIDE FOR ACHIEVING RELIABILITY, AVAILABILITY, ANDMAINTAINABILITY, June 2005.
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Highly Accelerated-Stress Screening

HALT is used in the design phase of a product, and now we introduce HASS (Highly Accelerated-
Stress Screening) which will take the knowledge gained in HALT in terms of operating and destruct
limits and apply them in production. Using higher temperatures and vibration than are in the specs,
but identified by HALT, every product being delivered will pass a HASS test moving beyond the
spec limits to the operating margins. This will produce a product that will detect latent failure
modes due to production or supplier shortcomings.
Fundamentally, you must do HALT in the design phase to accomplish HASS in the produc-

tion phase.
Once again, the return on investment for the extra equipment, manpower, and time involved in

HALT and HASS needs to be calculated to make sure that the management buys into the HALT/
HASS approach.
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Exercises

6.1 Suppose that “bugs” are detected and corrected in developmental software at 1.4, 6.9, 24.3,
66.1, 117.2, and 229.3 hours.
a) Estimate the reliability growth coefficient, β.
b) Calculate the expected number of failures by 1000 hours.Why is there such a low number

of failures predicted over such a large time?
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6.2 The wearout times of 10 emergency flares in minutes are 17.0, 20.6, 21.3, 21.4, 22.7, 25.6,
26.5, 27.0, 27.7, and 29.7. Determine which parametric failure distribution best fits this data,
then using that information, determine howmany tests have to be run for how long to prove
that the new design emergency flare will have two times the wearout time, with 90%
confidence.

6.3 A new robot system undergoes test–fix–test–fix development testing. The number of failures
during each 100-hour interval in the first 700 hours of operation are recorded. They are 14, 7,
6, 4, 3, 1, and 1.
Plot the reliability growth plot in EXCEL, and what can you say about the growth trend

(looking at β)?

6.4 Suppose that a device undergoing accelerated testing can be described by a Weibull distri-
bution with a shape factor of β = 2.0. Under accelerated test conditions, with an acceleration
factor (AF)= 5.0, 50% of the devices are found to fail during the first month. Under normal
operating conditions, estimate how long the device will last before the failure probability
reaches 10%. (This is referred to as the B10 life of the device.)

6.5 At rated voltage a microcircuit has been estimated to have an MTTF of 20,000 hours. An
accelerated life test is to be carried out to verify this number. It is known that themicrocircuit
life is inversely proportional to the cube of the voltage. At least 10% of the test circuits must
fail before the test is terminated if we are to have confidence in the result. If the test must be
completed in 30 days, at what percentage of the rated voltage should the circuits be tested?

6.6 A life test with type II censoring is performed on 50 servomechanisms that are thought to
have a constant failure rate. The test is terminated after the twentieth failure. The times to
failure (in months) are as follows:

0.10 0.29 0.49 0.51 0.55
0.63 0.68 1.16 1.40 2.24
2.25 2.64 2.99 3.01 3.06
3.15 3.51 3.53 3.99 4.05

The failed servomechanisms are not replaced.
1) Find the most appropriate distribution to explain the data.
2) Does the data follow an exponential distribution?
3) Make a point estimate of the MTTF using the appropriate equation.

Calculate the 90% confidence interval on the MTTF.
How does your calculation agree with the MINITAB plot?

6.7 Suppose that in Exercise 6.6 the life test had to be stopped at 3 months because of a produc-
tion deadline. Based on a 3-month test, estimate the MTTF and the corresponding 90% con-
fidence interval.

6.8 Sets of electronic components are tested at 100 and 120 F, and the MTTFs are found to be
80 and 35 hours, respectively. Assuming that the Arrhenius equation is applicable, estimate
the MTTF at 70 F.
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6.9 Anonreplacement reliability test is carried out on 20 high-speed pumps to estimate the value
of the failure rate. In order to eliminate wear failures, it is decided to terminate the test after
half of the pumps have failed. The times of the first 10 failures (in hours) are 33.7, 36.9, 46.8,
56.6, 62.1, 63.6, 76.4, 79.0, 101.5, and 110.2.
a) Estimate the MTTF.
b) Determine the 90% confidence interval for the MTTF.

6.10 A replacement test is run for 30 days using 18 test setups. During the test there are 16 failures.
Assuming an exponential distribution, estimate the MTTF.

6.11 A control bearing was failing prematurely due to fatigue. The bearing failures followed a
Weibull distribution with β equal to 1.5 (a common value for bearing fatigue) and η equal
to 3000 hours. The bearing was redesigned, and the environment in which it operated was
improved to give the bearing a higher expected life. Twenty redesigned bearings were avail-
able for testing.
How long should each be tested to demonstrate, with 90% confidence, that the fatigue

mode was tripled?

6.12 Assuming 1400 tests without failure, what is the demonstrated reliability at 90% confidence
(assume binomial testing)?

6.13 Your company makes a product that is either good or bad, and your boss has told you that he
will allow you to test 300 pieces – he wants to be at least 90% confident in the results and yet
get the highest reliability. He wishes to have a trade-off study done so he can have his senior
designers give him a consensus opinion of which test he should approve.

6.14 You have just completed 1000 tests at altitude with four failures of augmentor to light on the
first try. Your customer comes in and asks for your progress in reliability demonstration and
informs you that the chief engineer of his company wants to have at least a reliability = 0.95
that the augmentor will light on first try. What can you tell him?

6.15 An electronic device that normally operates at a temperature of 50 C is subjected to a stress
temperature of 100 C. The activation energy for the failure mode is 0.8 eV.What is the accel-
eration factor using the Arrhenius equation?

6.16 A device that normally operates with 5 V applied is tested at two increased stress levels,
V1 = 15 V and V2 = 30 V.
Analysis of the data from the tests indicates that 5% of the population failed at 150 hours

when the high stress voltage of 30 V was used. When the stress voltage of 15 V was applied,
5% of the population failed at 750 hours.
At what time t would 5% of the population be expected to fail under the normal stress

of 5 V?

6.17 What is the acceleration factor for a temperature-based test given an activation energy (A.E.)
of 0.7 eV, test temperature (Tt) of 90 C, and use temperature (Tu) of 25 C?
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6.18 Cumulative tests on an USAF engine prototype reveal that 15 test incidents occurred with
~3600 cycles of testing. It is estimated that the initial value of the cumulative MTBF at t = 1
cumulative cycles of testing is 300 cycles. Using the AMSAA/Duane reliability growth
model, estimate the cumulative MTBF at t = 10,000 cycles of testing.

6.19 Suppose that T0 = 288 K (15 C) and T = 303 K (30 C) and activation energy E = 0.35 V.
Show that the failure rate doubles for an increase of 15 C (i.e. λ = 2λ0).

6.20 One hundred integrated circuits (ICs) are cycled in an environmental test chamber for a test
that is equivalent to 1000 hours of operation. At the completion of the test it is found that two
of the units failed during the test.
The binomial distribution can be used for the estimate of reliability, and the F distribution

is used to calculate the confidence limit. Estimate the reliability of the IC for a mission time
of 1000 hours.

6.21 An accelerated nonreplacement life test that is equivalent to 1000 hours of operation is con-
ducted on 10 units in order to estimate the MTBF and set a lower 90% confidence limit. One
unit failed at 450 hours, and a second unit failed at 800 hours. Eight units did not fail during
the test. The test was time censored at 1000 hours. Assume an exponential distribution to
estimate the MTBF, and the χ2 distribution to find the lower 90% confidence limit on
the MTTF.

6.22 In success testing, how many samples need to operate for one lifetime without failure to
demonstrate 95% confidence of 99% reliability?

6.23 In success testing, how many samples need to operate for one lifetime without failure to
demonstrate 60% confidence of 90% reliability?

6.24 Battery life has been measured as normally distributed with mean equal to 150 hours and
variance of 400 hours.
Find the B10 life.

6.25 Temperature has been identified as a key stress that will affect the lifetime of a new com-
ponent design. The Arrhenius model is found to be an effective accelerated life testing model
for the component. Testing was completed on two samples at T1 = 463 K and T2 = 478 Kwith
Weibull characteristic lives of 880 hours and 795 hours, respectively. Find the acceleration
factor for a normal use temperature of 283 K given an applied stress of 478 K.

6.26 Anew fanmotor is available out of the design department. The customer wants a 10-year life
where his application uses the fan motor ~8 hours a day (30,000 hour life) with 90% confi-
dence. The reliability goal to minimize warranty is 0.93. Experience has shown that earlier
designs have a Weibull failure distribution with a β = 2. How many fan motors should be
tested and for how long?

6.27 Electronic circuit board switches are tested at 50 and 60 C with lifetime in number of cycles
as shown in the table below. What is the B10 life of the circuit board switch at its normal
operating temperature of 30 C?
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50 C 60 C Note:
21,045 16,551 50 C = 323 K, 60 C = 333 K
25,077 18,935 30 C = 303 K
31,407 20,996
33,812 24,363

Cycles to failure

6.28 Design system calibration: The design system-predicted Bl life for the compressor disk is
1000 cycles. Five disks have accumulated 1500 cycles, and five have 2000 cycles without fail-
ures. If most disk low cycle fatigue failures have a β of 3.0, is this success data sufficient to
increase the predicted design life?

6.29 Test substantiation: A new component has been designed. The design requirement is a Wei-
bull with β = 4.0 and η= 600 hours. This is twice as good as the existing design which has an
η = 300 hours. How many and how long should either 4 units or 8 units be tested without
failure to demonstrate with 90% confidence that the new design has two times the life?

6.30 In Exercise 6.29, the program manager changed his mind after discussing the test further.
Instead of 2X life, he wanted a reliability = 0.99 at 600 hours (at 90% confidence) for the new
designed component. How many and how long should the new units be tested without fail-
ure to demonstrate this reliability requirement at 90% confidence ?

6.31 Suppose that you have tested 40 components in groups of 10 in an accelerated test lab. This
test is a sudden death test, and you recorded the first failure in each group of 10:

Group TTF

1 602.3
2 506.4
3 243.5
4 497.3

What is the Weibull distribution that describes the failure mode?

6.32 In Exercise 6.31, instead of testing 40 components in groups of 10, they tested 5 components
in groups of 8:

Group TTF

1 466.23
2 729.31
3 443.44
4 584.6
5 415.8
6 590.93
7 157.01
8 491.05
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Compare the Weibull in Exercise 6.31 with the Weibull produced here. Are the two Wei-
bulls significantly different at 90% confidence?

6.33 High-pressure turbine vanes were eroding beyond allowable limits. A significant percentage
of the engines in service were being removed for vane repair or replacement prior to their
scheduled turbine maintenance. The time to failure – determined by the worst vane in the
set – followed a Weibull distribution with β = 3 and η = 1300 cycles. Through redesign and
material changes the vane’s durability was improved. Design a test to demonstrate the new
vane’s goal: no more than 5% of the engines should be removed by 2300 cycles for vane ero-
sion (with 90% confidence). During this test, assume that the turbines are limited to running
at most 5000 cycles each. Also, assume that the time to engine removal for excessive vane
erosion would still follow a Weibull distribution with β = 3.

6.34 A turbine engine exhaust nozzle control bearing was failing prematurely due to fatigue.
Bearing failures followed a Weibull distribution with β = 1.5 and η = 3000 hours. The bear-
ing was redesigned, and the environment in which it operated was improved to give the
bearing a higher expected life. Twenty redesigned bearings were available for testing.
How long should each be tested to demonstrate, with 90% confidence, that the fatigue mode
was significantly improved?

6.35 Suppose that if 50 units are put on life test (without replacement) and that the test is to be
truncated, r= 10 of them have failed. We shall suppose, furthermore, that the first 10 failure
times are 65, 110, 380, 420, 505, 580, 650, 840, 910, and 950 hours.

• Estimate the Weibull distribution from this test data.

• Can you say that this data follows the exponential distribution (Hint: look at the confi-
dence bounds on β)?

6.36 The experiment in Exercise 6.35. was rerun as a sudden death again, but with 8 groups of 5
with the following results:

Low of 8 groups

52.28734464
48.70439991
43.16654463
39.31593549
64.82848045
79.79845537
73.44525838
55.05663793

Generate aWeibull from this data, again, realizing that each of the 8 failures were the first
failure in a group of five. As such the remaining 4 in each group are censored at the fail-
ure time.
How does this Weibull compare with the Weibull generated in Exercise 6.35?
Did this Weibull need a t0 correction?

6.37 In a continuation of a study to determine which sudden death setup would give the best
answers at the minimum cost, a third set of 40 experiments were done on the same product
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of bulbs. This time, the experiment in Exercise 6.35. was rerun as a sudden death with 5
groups of 8 with the following results, the first failure in each of the 5 groups was:

Low of 5 groups

48.70439991
43.16654463
39.31593549
73.44525838
55.05663793

Analyze this data and compare it to Exercises 6.35 and 6.36.

6.38 Step-stress test
An avionics subsystem has a requirement of 0.99 reliability at 24 hours of continuous use.
10 Subsystems are put on test, starting. Stresses used were voltage and temperature.
First 24 hours at use conditions (at 110 V and 50 C temperature), and then voltage and

temperature were increased every hour and test continued until all 10 subsystems had failed.

TTF (h) Freq Censor Conditions

30 2 1 145 V, 65 C
32.5 3 1 160 V,70 C
33 5 1 165 V,75 C

Table of subsystem step-stress test results.
Has the requirement been met?
Weibull plot of step-stress results shows that 0.99 reliability requirement at 24 hours has

been met, with 95% confidence!

6.39 Braking systems were tested at an accelerated rate of 800 cycles per hour.
The normal cycle’s rate is 200 cycles per hour. Data from the accelerated life test fit a Wei-

bull distribution with β = 1.7 and ηstress = 2500 hours. What is the expected reliability of the
braking systems at 1000 hours of use under normal conditions?

6.40 Given the test results at 25 and 120 C that provide an acceleration factor of 4, calculate the
activation energy.
Hint: Use ARRHENIUS temperature acceleration model.

6.41 Consider the failure data, in hours, obtained from accelerated life testing a sample of 10 units
to failure11:

TTF (h)

2750 3100 3400 3800 4100
4400 4700 5100 5700 6400

11 Source: Kececioglu and Jacks (1984).

312 6 Reliability Testing



Assume that the accelerated life test was conducted at 150 C(423 K), and the expected
use operating temperature is 85 C (358 K). Use the Arrhenius model to find the B10 life at
use temperature. Use EA = 0.5 eV.

6.42 Using the data in the following table12:

Temp ( K) Hours Censor Freq

313.15 1298 1 1
313.15 1390 1 1
313.15 3187 1 1
313.15 3241 1 1
313.15 3261 1 1
313.15 3313 1 1
313.15 4501 1 1
313.15 4568 1 1
313.15 4841 1 1
313.15 4982 1 1
313.15 5000 2 90
333.15 581 1 1
333.15 925 1 1
333.15 1432 1 1
333.15 1586 1 1
333.15 2452 1 1
333.15 2734 1 1
333.15 2772 1 1
333.15 4106 1 1
333.15 4674 1 1
333.15 5000 2 11
353.15 283 1 1
353.15 361 1 1
353.15 515 1 1
353.15 638 1 1
353.15 854 1 1
353.15 1024 1 1
353.15 1030 1 1
353.15 1045 1 1
353.15 1767 1 1
353.15 1777 1 1
353.15 1856 1 1
353.15 1951 1 1
353.15 1964 1 1
353.15 2884 1 1
353.15 5000 2 1

Using the data in the table to the left, assuming an Arrhenius relation with temperature as
the stressor on hours to failure, find the 90% confidence bounds on 10% life at the operating
temperature of 10 C (283.15 K).
Using MINITAB:
Stat-Reliability/Survival > Accelerated Life Testing. Then, putting data in proper blanks,

including Freq and Censor (where 2 = censored, 1 = failure), under estimate, new predictor
value set = 283.15, .OK several times.

12 Source: Data from Hooper and Amster (1990).
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6.43 Using the following condenser ALT data from Hur et al. (2008).
The stressor is temperature ( K); use Arrhenius–Weibull to project the failure time to the

use temperature (323 K).

Stress ( K) Failure time (h)

358 950
358 988
358 912
358 922
378 266
378 257
378 251

6.44 Using the following condenser ALT data from Matias, Trevedi and Maciel (2010). This ALT
uses failure to mean degradation in ability for a server to run based on the page size of the
information, where 200 KB is usual running and above that the Server slows down.

TTF Stress loading-page size

84 400
86 400
88 400
93 400
95 400
95 400
97 400
34 600
36 600
37 600
38 600
38 600
39 600
40 600
20 800
21 800
22 800
23 800
23 800
23 800
24 800

Since the IPL model has been shown to be useful in computer stress testing, use the Wei-
bull inverse power law mode in MINITAB to predict the distribution of TTF for a 200-page
size.
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Supplement 1: Tables for Weibull Zero-failure Substantiation testing

Substantiation Testing: Characteristic Life Multipliers for Zero Failure Test at 80% Confidence
Table 6 Sup1.1

Confidence level= 0.8

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
Infant
mortality Random Early wearout Old age rapid wearout

2 0.6476 0.8047 0.8652 0.8971 0.9168 0.9301 0.9398 0.9471 0.9529 0.9575
3 0.2878 0.5365 0.6602 0.7324 0.7795 0.8126 0.8370 0.8558 0.8708 0.8829
4 0.1619 0.4024 0.5450 0.6343 0.6948 0.7383 0.7710 0.7964 0.8168 0.8335
5 0.1036 0.3219 0.4697 0.5674 0.6355 0.6853 0.7233 0.7532 0.7773 0.7972
6 0.0720 0.2682 0.4159 0.5179 0.5908 0.6449 0.6866 0.7197 0.7465 0.7686
7 0.0529 0.2299 0.3753 0.4795 0.5554 0.6126 0.6570 0.6925 0.7213 0.7453
8 0.0405 0.2012 0.3433 0.4485 0.5265 0.5860 0.6324 0.6697 0.7002 0.7256
9 0.0320 0.1788 0.3174 0.4229 0.5023 0.5634 0.6115 0.6503 0.6821 0.7087
10 0.0259 0.1609 0.2959 0.4012 0.4816 0.5439 0.5934 0.6334 0.6664 0.6940
11 0.0214 0.1463 0.2777 0.3825 0.4636 0.5269 0.5774 0.6185 0.6524 0.6809
12 0.0180 0.1341 0.2620 0.3662 0.4477 0.5119 0.5633 0.6052 0.6399 0.6691
13 0.0153 0.1238 0.2484 0.3519 0.4336 0.4984 0.5505 0.5932 0.6286 0.6585
14 0.0132 0.1150 0.2364 0.3391 0.4209 0.4862 0.5390 0.5823 0.6183 0.6488
15 0.0115 0.1073 0.2258 0.3276 0.4095 0.4752 0.5285 0.5723 0.6089 0.6399
16 0.0101 0.1006 0.2163 0.3172 0.3990 0.4651 0.5188 0.5632 0.6003 0.6317
17 0.0090 0.0947 0.2077 0.3077 0.3895 0.4558 0.5099 0.5547 0.5922 0.6241
18 0.0080 0.0894 0.2000 0.2990 0.3807 0.4472 0.5016 0.5468 0.5848 0.6170
19 0.0072 0.0847 0.1929 0.2910 0.3725 0.4392 0.4940 0.5395 0.5778 0.6104
20 0.0065 0.0805 0.1864 0.2837 0.3650 0.4317 0.4868 0.5326 0.5712 0.6041
21 0.0059 0.0766 0.1804 0.2768 0.3579 0.4248 0.4800 0.5262 0.5651 0.5983
22 0.0054 0.0732 0.1749 0.2705 0.3513 0.4182 0.4737 0.5201 0.5593 0.5927
23 0.0049 0.0700 0.1698 0.2645 0.3451 0.4121 0.4677 0.5143 0.5538 0.5875
24 0.0045 0.0671 0.1651 0.2590 0.3393 0.4063 0.4621 0.5089 0.5485 0.5825
25 0.0041 0.0644 0.1606 0.2537 0.3338 0.4008 0.4567 0.5037 0.5436 0.5778
26 0.0038 0.0619 0.1565 0.2488 0.3286 0.3956 0.4516 0.4988 0.5389 0.5732
27 0.0036 0.0596 0.1526 0.2441 0.3237 0.3906 0.4468 0.4941 0.5344 0.5689
28 0.0033 0.0575 0.1489 0.2397 0.3190 0.3859 0.4422 0.4896 0.5301 0.5648
29 0.0031 0.0555 0.1455 0.2356 0.3146 0.3814 0.4377 0.4854 0.5260 0.5609
30 0.0029 0.0536 0.1422 0.2316 0.3103 0.3772 0.4335 0.4813 0.5220 0.5571
40 0.0016 0.0402 0.1174 0.2006 0.2766 0.3427 0.3993 0.4479 0.4897 0.5259
50 0.0010 0.0322 0.1012 0.1794 0.2530 0.3181 0.3747 0.4236 0.4660 0.5030
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Substantiation Testing: Characteristic Life Multipliers for Zero Failure Test at 90% Confidence
Table 6 Sup1.2

Confidence level= 0.9

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
Infant
mortality Random Early wearout Old age rapid wearout

2 1.3255 1.1513 1.0985 1.0730 1.0580 1.0481 1.0411 1.0358 1.0318 1.0286
3 0.5891 0.7675 0.8383 0.8761 0.8996 0.9156 0.9272 0.9360 0.9429 0.9485
4 0.3314 0.5756 0.6920 0.7587 0.8018 0.8319 0.8540 0.8710 0.8845 0.8954
5 0.2121 0.4605 0.5963 0.6786 0.7333 0.7722 0.8013 0.8238 0.8417 0.8563
6 0.1473 0.3838 0.5281 0.6195 0.6818 0.7267 0.7606 0.7871 0.8083 0.8257
7 0.1082 0.3289 0.4765 0.5735 0.6410 0.6903 0.7278 0.7573 0.7811 0.8006
8 0.0828 0.2878 0.4359 0.5365 0.6076 0.6603 0.7006 0.7325 0.7582 0.7795
9 0.0655 0.2558 0.4030 0.5058 0.5797 0.6348 0.6774 0.7112 0.7386 0.7614
10 0.0530 0.2303 0.3757 0.4799 0.5558 0.6129 0.6573 0.6927 0.7216 0.7455
11 0.0438 0.2093 0.3525 0.4575 0.5350 0.5938 0.6397 0.6764 0.7064 0.7314
12 0.0368 0.1919 0.3327 0.4380 0.5167 0.5768 0.6240 0.6618 0.6929 0.7188
13 0.0314 0.1771 0.3154 0.4209 0.5004 0.5616 0.6098 0.6487 0.6807 0.7074
14 0.0271 0.1645 0.3002 0.4055 0.4858 0.5479 0.5971 0.6368 0.6696 0.6970
15 0.0236 0.1535 0.2867 0.3918 0.4726 0.5354 0.5854 0.6259 0.6594 0.6874
16 0.0207 0.1439 0.2746 0.3794 0.4605 0.5240 0.5747 0.6159 0.6500 0.6786
17 0.0183 0.1354 0.2637 0.3680 0.4495 0.5136 0.5649 0.6067 0.6413 0.6704
18 0.0164 0.1279 0.2539 0.3577 0.4393 0.5039 0.5557 0.5980 0.6332 0.6628
19 0.0147 0.1212 0.2449 0.3481 0.4299 0.4949 0.5472 0.5900 0.6256 0.6557
20 0.0133 0.1151 0.2367 0.3393 0.4212 0.4865 0.5392 0.5825 0.6185 0.6490
21 0.0120 0.1096 0.2291 0.3311 0.4130 0.4786 0.5318 0.5754 0.6119 0.6427
22 0.0110 0.1047 0.2221 0.3235 0.4054 0.4713 0.5247 0.5688 0.6056 0.6367
23 0.0100 0.1001 0.2156 0.3164 0.3983 0.4643 0.5181 0.5625 0.5996 0.6311
24 0.0092 0.0959 0.2096 0.3097 0.3916 0.4578 0.5119 0.5565 0.5940 0.6258
25 0.0085 0.0921 0.2039 0.3035 0.3852 0.4516 0.5059 0.5509 0.5886 0.6207
26 0.0078 0.0886 0.1987 0.2976 0.3792 0.4457 0.5003 0.5455 0.5835 0.6158
27 0.0073 0.0853 0.1937 0.2920 0.3735 0.4402 0.4949 0.5404 0.5786 0.6112
28 0.0068 0.0822 0.1891 0.2868 0.3681 0.4349 0.4898 0.5355 0.5740 0.6068
29 0.0063 0.0794 0.1847 0.2818 0.3630 0.4298 0.4849 0.5308 0.5695 0.6025
30 0.0059 0.0768 0.1806 0.2770 0.3581 0.4250 0.4802 0.5263 0.5653 0.5984
40 0.0033 0.0576 0.1491 0.2399 0.3192 0.3861 0.4423 0.4898 0.5302 0.5650
50 0.0021 0.0461 0.1285 0.2146 0.2919 0.3584 0.4150 0.4632 0.5046 0.5403
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Table 6 Sup1.3

Confidence level= 0.95

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N Infant mortality Random Early wearout Old age rapid wearout

2 2.243603 1.497866 1.309128 1.223873 1.17541 1.144171 1.122368 1.106288 1.093941 1.084163
3 0.997157 0.998577 0.999051 0.999288 0.999431 0.999526 0.999593 0.999644 0.999684 0.999715
4 0.560901 0.748933 0.824699 0.865409 0.890794 0.908129 0.920718 0.930274 0.937775 0.943819
5 0.358976 0.599146 0.710704 0.774046 0.814729 0.843033 0.863849 0.879799 0.892407 0.902623
6 0.249289 0.499289 0.629363 0.706604 0.757427 0.793324 0.820002 0.840597 0.856973 0.870303
7 0.183151 0.427962 0.567898 0.654188 0.712134 0.75359 0.78467 0.808819 0.828114 0.843881
8 0.140225 0.374467 0.519528 0.611937 0.675095 0.720783 0.755297 0.782264 0.803902 0.821642
9 0.110795 0.332859 0.480294 0.576939 0.644027 0.693032 0.730303 0.759565 0.783133 0.802513
10 0.089744 0.299573 0.447715 0.547333 0.617449 0.669115 0.708646 0.739819 0.76501 0.785779
11 0.074169 0.272339 0.420152 0.521861 0.594353 0.648192 0.689609 0.7224 0.748978 0.770943
12 0.062322 0.249644 0.396474 0.499644 0.574022 0.629662 0.672676 0.706855 0.734635 0.757643
13 0.053103 0.230441 0.375872 0.480043 0.555935 0.613084 0.657467 0.692851 0.721683 0.74561
14 0.045788 0.213981 0.357753 0.462581 0.539697 0.598125 0.643693 0.680133 0.709896 0.734641
15 0.039886 0.199715 0.341671 0.446895 0.525007 0.584526 0.631128 0.668502 0.699095 0.724573
16 0.035056 0.187233 0.327282 0.432705 0.511627 0.572086 0.619597 0.657803 0.68914 0.715281
17 0.031053 0.17622 0.314318 0.419785 0.499369 0.560641 0.608957 0.647908 0.679918 0.70666
18 0.027699 0.16643 0.302566 0.407958 0.488081 0.55006 0.599093 0.638716 0.671336 0.698628
19 0.02486 0.15767 0.291854 0.397077 0.477639 0.540236 0.58991 0.63014 0.663318 0.691114
20 0.022436 0.149787 0.282043 0.387023 0.467939 0.531077 0.581327 0.622112 0.655801 0.684061
21 0.02035 0.142654 0.273017 0.377696 0.458895 0.52251 0.57328 0.614569 0.648729 0.677418
22 0.018542 0.13617 0.264679 0.369012 0.450435 0.51447 0.565711 0.607463 0.642057 0.671145
23 0.016965 0.130249 0.256951 0.360901 0.442497 0.506903 0.558571 0.60075 0.635746 0.665204
24 0.015581 0.124822 0.249763 0.353302 0.435027 0.499763 0.55182 0.594392 0.629761 0.659566
25 0.014359 0.119829 0.243057 0.346164 0.427982 0.493008 0.545422 0.588357 0.624074 0.654203
26 0.013276 0.11522 0.236784 0.339441 0.42132 0.486605 0.539344 0.582616 0.618659 0.649092
27 0.012311 0.110953 0.230901 0.333096 0.415007 0.480522 0.533559 0.577145 0.613492 0.644211
28 0.011447 0.10699 0.22537 0.327094 0.409014 0.474732 0.528044 0.571921 0.608554 0.639542
29 0.010671 0.103301 0.220159 0.321405 0.403313 0.469211 0.522776 0.566926 0.603827 0.635069
30 0.009972 0.099858 0.215239 0.316003 0.397881 0.463939 0.517737 0.562141 0.599295 0.630778
40 0.005609 0.074893 0.177676 0.273666 0.354631 0.421516 0.476883 0.523131 0.562181 0.595509
50 0.00359 0.059915 0.153117 0.244775 0.324349 0.391301 0.447429 0.494747 0.534984 0.569517



Substantiation Testing: Characteristic Life Multipliers for Zero Failure Test at 99% Confidence
Table 6 sub1.4

Confidence level= 0.99

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N Infant mortality Random Early wearout Old age rapid wearout

2 5.301898 2.302585 1.743722 1.517427 1.396003 1.3205 1.269083 1.231839 1.203628 1.181526
3 2.356399 1.535057 1.330709 1.238974 1.186997 1.153563 1.13026 1.113092 1.09992 1.089494
4 1.325475 1.151293 1.098476 1.072983 1.057972 1.048082 1.041074 1.035849 1.031803 1.028578
5 0.848304 0.921034 0.946638 0.959705 0.967632 0.972953 0.976772 0.979645 0.981886 0.983683
6 0.5891 0.767528 0.838294 0.876087 0.899576 0.915584 0.927192 0.935995 0.9429 0.94846
7 0.432808 0.657881 0.756424 0.811099 0.845783 0.869726 0.887242 0.90061 0.911147 0.919665
8 0.331369 0.575646 0.691996 0.758714 0.801793 0.831863 0.85403 0.871042 0.884507 0.895429
9 0.261822 0.511686 0.639738 0.715322 0.764894 0.799836 0.825768 0.845767 0.861656 0.874582
10 0.212076 0.460517 0.596344 0.678614 0.733328 0.772233 0.80128 0.82378 0.841716 0.856346
11 0.175269 0.418652 0.559631 0.647033 0.705897 0.748085 0.779755 0.804384 0.824076 0.840177
12 0.147275 0.383764 0.528092 0.619487 0.681751 0.726699 0.760609 0.787075 0.808295 0.825682
13 0.125489 0.354244 0.500651 0.595184 0.660269 0.707567 0.743411 0.771482 0.794045 0.812569
14 0.108202 0.328941 0.476517 0.573534 0.640984 0.690302 0.727836 0.75732 0.781075 0.800615
15 0.094256 0.307011 0.455096 0.554086 0.623536 0.674608 0.713629 0.74437 0.769191 0.789643
16 0.082842 0.287823 0.43593 0.536492 0.607645 0.66025 0.700591 0.732456 0.758238 0.779516
17 0.073383 0.270892 0.41866 3 0.520473 0.593087 0.647042 0.68856 0.721438 0.748092 0.770122
18 0.065456 0.255843 0.40301 0.505809 0.579681 0.63483 0.677407 0.711203 0.73865 0.761368
19 0.058747 0.242377 0.388742 0.492318 0.567279 0.623492 0.667023 0.701654 0.729828 0.753179
20 0.053019 0.230259 0.375673 0.479853 0.555759 0.612922 0.657319 0.692714 0.721556 0.745492
21 0.04809 0.219294 0.363651 0.468288 0.545018 0.603034 0.648219 0.684316 0.713775 0.738253
22 0.043817 0.209326 0.352546 0.457521 0.53497 0.593756 0.63966 0.676403 0.706434 0.731416
23 0.04009 0.200225 0.342251 0.447465 0.525542 0.585023 0.631588 0.668928 0.69949 0.724943
24 0.036819 0.191882 0.332677 0.438043 0.516671 0.576782 0.623954 0.661849 0.692906 0.718798
25 0.033932 0.184207 0.323746 0.429193 0.508303 0.568986 0.616719 0.655128 0.686649 0.712953
26 0.031372 0.177122 0.31539 0.420859 0.50039 0.561596 0.609847 0.648736 0.68069 0.707383
27 0.029091 0.170562 0.307554 0.412991 0.492893 0.554575 0.603306 0.642644 0.675005 0.702063
28 0.027051 0.16447 0.300187 0.405549 0.485775 0.547893 0.59707 0.636828 0.669572 0.696976
29 0.025217 0.158799 0.293246 0.398496 0.479004 0.541522 0.591113 0.631265 0.664371 0.692101
30 0.023564 0.153506 0.28669 2 0.391798 0.472552 0.535437 0.585415 0.625938 0.659385 0.687424
40 0.013255 0.115129 0.236659 0.339307 0.421186 0.486477 0.539222 0.582501 0.61855 0.648989
50 0.008483 0.092103 0.203947 0.303485 0.385221 0.451605 0.505916 0.550895 0.588625 0.620662



Supplement 2: Tables For Weibull Zer-failure Substantiation testing
using (t/Eta)

Substantiation Testing Tables for Zero Failure Test at 80% Confidence

Table 6 Sup 2.1

Confidence level = 0.8

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/η
Infant
mortality Random Early wearout Old age rapid wearout

0.01 17 161 1610 16,095 160,944 ___ ___ ___ ___ ___
0.02 12 81 570 4024 28,452 ___ ___ ___ ___ ___
0.03 10 54 310 1789 10,325 59,609 344,152 ___ ___ ___
0.04 9 41 202 1006 5030 25,148 125,738 628,687 ___ ___
0.05 8 33 1 44 644 2880 12,876 57,582 257,511 ___ ___
0.06 7 27 1 10 448 1826 7452 30,419 124,186 506,984 ___
0.07 7 23 87 329 1242 4693 17,735 67,032 253,358 ___
0.08 6 21 72 252 890 3144 11,114 39,293 138,922 ___
0.09 6 18 60 199 663 2208 7360 24,531 81,768 ___
0.10 6 17 51 161 509 1610 5090 16,095 5 0895 160,944
0.12 5 14 39 112 323 932 2689 7762 22,406 64,680
0.14 5 12 31 83 220 587 1568 4190 1 1197 29,925
0.16 5 1 1 26 63 158 393 983 2456 6140 15,349
0.18 4 9 22 50 118 276 651 1534 3614 8518
0.20 4 9 18 41 90 202 450 1006 2250 5030
0.22 4 8 16 34 71 152 323 688 1465 3123
0.24 4 7 14 28 58 117 238 486 991 2022
0.26 4 7 13 24 47 92 180 353 691 1355
0.28 4 6 11 21 39 74 139 262 495 936
0.30 3 6 10 18 33 60 109 199 363 663
0.32 3 6 9 16 28 50 87 154 272 480
0.34 3 5 9 14 24 41 71 121 207 355
0.36 3 5 8 13 21 35 58 96 160 267
0.38 3 5 7 12 19 30 48 78 126 204
0.40 3 5 7 11 16 26 40 63 100 158
0.42 3 4 6 10 15 22 34 52 80 124
0.44 3 4 6 9 13 19 29 43 65 98
0.46 3 4 6 8 12 17 25 36 53 79
0.48 3 4 5 7 1 1 15 22 31 44 64
0.50 3 4 5 7 10 13 19 26 37 52
0.55 3 3 4 6 8 10 14 18 24 32
0.60 3 3 4 5 6 8 10 13 17 21
0.65 2 3 4 4 5 6 8 10 12 14
0.70 2 3 3 4 4 5 6 7 9 10
0.75 2 3 3 3 4 4 5 6 6 7
0.80 2 3 3 3 3 4 4 4 5 5
0.85 2 2 3 3 3 3 3 4 4 4
0.90 2 2 2 2 3 3 3 3 3 3
0.95 2 2 2 2 2 2 2 2 3 3
1.00 2 2 2 2 2 2 2 2 2 2
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Substantiation Testing Tables for Zero Failure Test at 90% Confidence

Table 6 Sup 2.2

Confidence level = 0.9

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/η
Infant
mortality Random Early wearout Old age rapid wearout

0.01 24 231 2303 23,026 230,259 ––– ––– ––– ––– –––
0.02 17 116 815 5757 40,705 ––– ––– ––– ––– –––
0.03 14 77 444 2559 14,772 85,281 492,370 ––– ––– –––
0.04 12 58 288 1440 7196 35,978 179,890 899,448 ––– –––
0.05 11 47 206 922 4119 18,421 82,380 368,414 ––– –––
0.06 10 39 157 640 2612 10,661 43,520 177,669 725,330 –––
0.07 9 33 125 470 1777 6714 25,374 95,902 362,473 –––
0.08 9 29 102 360 1273 4498 15,901 56,216 198,752 –––
0.09 8 26 86 285 948 3159 10,529 35,096 116,984 –––
0.10 8 24 73 231 729 2303 7282 23,026 72,815 –––
0.12 7 20 56 160 462 1333 3847 11,105 32,056 –––
0.14 7 17 44 118 314 840 2243 5994 16,020 –––
0.16 6 15 36 90 225 563 1406 3514 8784 21,960
0.18 6 13 31 72 168 395 931 2194 5170 12,186
0.20 6 12 26 58 129 288 644 1440 3218 7196
0.22 5 11 23 48 102 217 462 983 2096 4468
0.24 5 10 20 40 82 167 340 695 1417 2892
0.26 5 9 18 35 67 132 257 504 989 1938
0.28 5 9 16 30 56 105 199 375 708 1338
0.30 5 8 15 26 47 86 156 285 520 948
0.32 5 8 13 23 40 71 125 220 389 687
0.34 4 7 12 20 35 59 101 173 296 507
0.36 4 7 11 18 30 50 83 138 229 381
0.38 4 7 10 16 26 42 69 111 180 291
0.40 4 6 10 15 23 36 57 90 143 225
0.42 4 6 9 14 21 32 48 74 115 177
0.44 4 6 8 12 18 28 41 62 93 140
0.46 4 6 8 11 17 24 35 52 76 112
0.48 4 5 7 10 15 21 31 44 63 91
0.50 4 5 7 10 14 19 27 37 53 74
0.55 4 5 6 8 11 14 19 26 34 46
0.60 3 4 5 7 9 11 14 18 23 30
0.65 3 4 5 6 7 9 11 13 16 20
0.70 3 4 4 5 6 7 9 10 12 14
0.75 3 4 4 5 5 6 7 8 9 10
0.80 3 3 4 4 5 5 6 6 7 8
0.85 3 3 3 4 4 4 5 5 5 6
0.90 3 3 3 3 3 4 4 4 4 4
0.95 3 3 3 3 3 3 3 3 3 3
1.00 3 3 3 3 3 3 3 3 3 3
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Substantiation Testing Tables for Zero Failure Test at 95% Confidence

Table 6 Sup 2.3

Confidence level = 0.95

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/η
Infant
mortality Random Early wearout Old age rapid wearout

0.01 30 300 2996 29,958 299,574 ––– ––– ––– ––– –––
0.02 22 150 1060 7490 52,958 ––– ––– ––– ––– –––
0.03 18 100 577 3329 19,218 110,954 640,588 ––– ––– –––
0.04 15 75 375 1873 9362 46,809 234,042 117,0208 ––– –––
0.05 14 60 268 1199 5359 23,966 107,179 479,318 ––– –––
0.06 13 50 204 833 3398 13,870 56,621 231,153 943,675 –––
0.07 12 43 162 612 2311 8734 33,012 124,771 471,587 –––
0.08 11 38 133 469 1655 5852 20,687 73,138 258,582 –––
0.09 10 34 111 370 1233 4110 13,698 45,660 152,199 –––
0.10 10 30 95 300 948 2996 9474 29,958 947,34 –––
0.12 9 25 73 209 601 1734 5005 14,448 417,05 –––
0.14 9 22 58 153 409 1092 2918 7799 20,842 –––
0.16 8 19 47 118 293 732 1829 4572 11,428 28,570
0.18 8 17 40 93 218 514 1211 2854 6727 15,855
0.20 7 15 34 75 168 375 838 1873 4187 9362
0.22 7 14 30 62 132 282 600 1279 2727 5813
0.24 7 13 26 53 107 217 443 903 1844 3763
0.26 6 12 23 45 87 171 335 656 1286 2522
0.28 6 11 21 39 73 137 258 488 922 1741
0.30 6 10 19 34 61 111 203 370 676 1233
0.32 6 10 17 30 52 92 162 286 506 893
0.34 6 9 16 26 45 77 131 225 385 660
0.36 5 9 14 24 39 65 108 179 298 496
0.38 5 8 13 21 34 55 89 144 234 379
0.40 5 8 12 19 30 47 75 118 186 293
0.42 5 8 12 17 27 41 63 97 149 230
0.44 5 7 11 16 24 36 54 80 121 182
0.46 5 7 10 15 21 31 46 67 99 146
0.48 5 7 10 14 19 28 40 57 82 118
0.50 5 6 9 12 17 24 34 48 68 96
0.55 5 6 8 10 14 19 25 33 45 60
0.60 4 5 7 9 11 14 18 24 30 39
0.65 4 5 6 8 9 11 14 17 21 26
0.70 4 5 6 7 8 9 11 13 15 18
0.75 4 4 5 6 7 8 9 10 11 13
0.80 4 4 5 5 6 6 7 8 9 10
0.85 4 4 4 5 5 5 6 6 7 7
0.90 4 4 4 4 4 5 5 5 5 6
0.95 4 4 4 4 4 4 4 4 4 4
1.00 3 3 3 3 3 3 3 3 3 3
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Substantiation Testing Tables for Zero Failure Test at 99% Confidence

Table 6 Sup 2.4

Confidence level = 0.99

β

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/η
Infant
mortality Random Early wearout Old age rapid wearout

0.01 47 461 4606 46,052 ____ ____ ____ ____ ____ ____
0.02 33 231 1629 11,513 81,409 ____ ____ ____ ____ ____
0.03 27 154 887 5117 29,543 170,562 ____ ____ ____ ____
0.04 24 116 576 2879 14,392 71,956 ____ ____ ____ ____
0.05 21 93 412 1843 8238 36,842 164,760 ____ ____ ____
0.06 19 77 314 1280 5223 21,321 87,040 ____ ____ ____
0.07 18 66 249 940 3553 13,427 50,747 191,803 ____ ____
0.08 17 58 204 720 2545 8995 31,801 112,431 ____ ____
0.09 16 52 171 569 1896 6318 21,058 70,191 ____ ____
0.10 15 47 146 461 1457 4606 14,563 46,052 145,629 ____
0.12 14 39 111 320 924 2666 7694 22,209 64,111 ____
0.14 13 33 88 235 628 1679 4486 11,988 320 39 ____
0.16 12 29 72 180 450 1125 2811 7027 17,568 43,919
0.18 11 26 61 143 336 790 1862 4387 10,340 24,372
0.20 11 24 52 116 258 576 1288 2879 6436 14,392
0.22 10 21 45 96 203 433 923 1966 4192 8936
0.24 10 20 40 80 164 334 680 1389 2834 5784
0.26 10 18 35 69 134 263 514 1008 1977 3876
0.28 9 17 32 59 112 210 397 750 1416 2676
0.30 9 16 29 52 94 171 312 569 1039 1896
0.32 9 15 26 45 80 141 249 440 777 1373
0.34 8 14 24 40 69 118 201 345 592 1014
0.36 8 13 22 36 60 99 165 275 457 762
0.38 8 13 20 32 52 84 137 221 359 582
0.40 8 12 19 29 46 72 114 180 285 450
0.42 8 11 17 27 41 63 96 148 229 353
0.44 7 11 16 24 36 55 82 123 186 280
0.46 7 11 15 22 33 48 70 103 152 224
0.48 7 10 14 20 29 42 61 87 126 181
0.50 7 10 14 19 27 37 53 74 105 148
0.55 7 9 12 16 21 28 38 51 68 92
0.60 6 8 10 13 17 22 28 36 46 60
0.65 6 8 9 11 14 17 21 26 32 40
0.70 6 7 8 10 12 14 17 20 23 28
0.75 6 7 8 9 10 11 13 15 17 20
0.80 6 6 7 8 9 9 11 12 13 15
0.85 5 6 6 7 7 8 9 9 10 11
0.90 5 6 6 6 6 7 7 8 8 8
0.95 5 5 5 6 6 6 6 6 6 6
1.00 5 5 5 5 5 5 5 5 5 5
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Supplement 3: Critical Values for Cramer–Von Mises
Goodness-of-Fit Test

Table 6 Sup 3.1 Critical values for Cramer–Von Mises goodness-of-fit test’ for individual failure
time data.

α

F 0.20 0.15 0.10 0.05 0.01

2 0.138 0.149 0.162 0.175 0.19
3 0.121 0.135 0.154 0.184 0.23
4 0.121 0.134 0.155 0.191 0.28
5 0.121 0.137 0.160 0.199 0.30
6 0.123 0.139 0.162 0.204 0.31
7 0.124 0.140 0.165 0.208 0.32
8 0.124 0.141 0.165 0.210 0.32
9 0.125 0.142 0.167 0.212 0.32
10 0.125 0.142 0.167 0.212 0.32
11 0.126 0.143 0.169 0.214 0.32
12 0.126 0.144 0.169 0.214 0.32
13 0.126 0.144 0.169 0.214 0.33
14 0.126 0.144 0.169 0.214 0.33
15 0.126 0.144 0.169 0.215 0.33
16 0.127 0.145 0.171 0.216 0.33
17 0.127 0.145 0.171 0.217 0.33
18 0.127 0.146 0.171 0.217 0.33
19 0.127 0.146 0.171 0.217 0.33
20 0.128 0.146 0.172 0.217 0.33
30 0.128 0.146 0.172 0.218 0.33
60 0.128 0.147 0.173 0.220 0.33
100 0.129 0.147 0.173 0.220 0.34

Source: AMSAA Reliability Growth Guide, Technical Report No.TR-652, ADA381985, U.S. Army Materiel Systems
Analysis Activity, Aberdeen Proving Ground, Maryland, 2000, P.64. Public Domain.

Supplement 4: Other Reliability Growth Models that have been
Proposed and Studied (see AFWAL-TR-84-2024 for details)

The major models studied by the task force included (note that Bayesian models were not
represented):

(a) Deterministic Models

The form of deterministic models (models that contain no random elements) is assumed to be
known. That is, it is known that reliability grows via the deterministic model. The parameters
are estimated, and reliability is then calculated from the model. Examples of deterministic models
reviewed are as follows:

1) The Duane model:

Cumulative MTBF = γ Cumulative Time α
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2) The Endless-Burn-In model:

Instantaneous Failure Rate = K Average Age − α + λR

3) The Gompertz model:

Cumulative Failure Rate = K∗AB∗ Cumulative Time

4) The Grumman model:

Instantaneous Failure Rate = A e−K Cumulative Time + B

(b) Poisson Process Models

This class of models does not assume that the form of the reliability-growth function is known, but
only that it can be approximated statistically. Since the model form is only an approximation, the
quality-of-fit tests are necessary to determine if the approximation is reasonable. The Poisson proc-
ess model assumes that events occur based on a Poisson type of distribution. That is, the probability
of realizing K events (failures) by some test time t is as follows:

P x = k =
M t ke−M t

k

Here,M(t) is the mean value function. IfM(t) = λt, the process is a homogeneous Poisson process
(HPP), and the time between failures follows an exponential distribution (the probability of failure
by time t = 1− e−kt).
The Poisson process also assumes independent increments. Renewal theory generalizes the HPP

by allowing time between failures to have other distributions other than the exponential. A renewal
process is a sequence of random variables [Y1, Y2, …] of the form Yi = X1 + X2 + +Xi, where each
Xi comes from a common distribution F(X). Therefore, the renewal model assumes that each repair
returns the system to good-as-new state. If the Poisson process has amore generalmean value func-
tion thanM(t) = λt, it is said to be a nonhomogeneous Poisson process (NHPP). The intensity func-
tion, p(t), of a Poisson process is the rate at which failures are occurring and is related to the mean
value function as follows:

M t =

t

0

ρ x dx

The NHPP model is the most popular since it can model a system that is wearing out. Several
intensity functions have been used with the NHPP model. The following are examples:

1) The AMSAA-Duane model (presented in the section titled “Reliability Growth Modeling and
Testing”) and the model chosen by the task force that studied all models available at the time:

ρ t = λβ Cumulative time β− 1

324 6 Reliability Testing



2) The modified Duane model:

ρ t = λβ Cumulative time β− 1 + θ

3) The Cox-Lewis model:

ρ t = eα + γ Cumulative time

(c) Markov Processes/Time Series Models

It has been shown that Markovian processes and the autoregressive moving average process were
related. A Markov process is a process that moves from state i to state j with some probability Pij.
This probability is independent of all past states and is dependent only on the present state. The
time spent in each state is an exponentially distributed random variable. If the time in residence
is not exponential, the process is said to be a semi-Markov process. Markov processes usually
require more data to estimate the probabilities than is generally available.
A number of noted statisticians suggested that time series methods developed by Box and Jenkins

be used to model reliability growth. The Box–Jenkins Autoregressive Integrated Moving Average
(ARIMA) modeling approach is attractive in that no specific model needs to be selected in advance.
The models are flexible in that they can be applied to a wide range of data, and the methodology has
a built-in theory of forecasting. For example, an ARIMA first difference model could be written as
follows:

λc,T = λc,T − 1 + εT

where λc, T is the cumulative failure rate at time T and εT is the random (normal(0, σ)) error at
time T.
After studies using various types of data from various industries, it was decided that the AMSAA-

Duane mode was the recommended model for reliability growth.
It should be noted that the time series modeling approach, while it does a slightly better job of

modeling, is very mathematical and is hard to explain to an audience of general or industry man-
agers. The author has had direct experience in trying to explain a time series model on numerous
occasions and has fallen back on the AAMSAA-Duane model instead.
Source: AFWAL-TR-84-2024, RELIABILITY-GROWTH ASSESSMENT, PREDICTION, AND

CONTROL FOR ELECTRONIC CONTROL(GAPCEEC), ADA163070, Aero Propulsion Lab,
WPAFB, April 1984. Public Domain.
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Supplement 5: Chi-Square Table

Table 6 Sup5.1 Chi-Square Table (Generated in EXCEL™, using CHIINV(α,ν).

ChiSq Alpha level

0.995 0.99 0.98 0.975 0.95 0.9 0.1 0.05 0.025 0.02 0.01 0.005
1 0.000 0.000 0.001 0.001 0.004 0.016 2.706 3.841 5.024 5.412 6.635 7.879

D 2 0.010 0.020 0.040 0.051 0.103 0.211 4.605 5.991 7.378 7.824 9.210 10.597
e 3 0.072 0.115 0.185 0.216 0.352 0.584 6.251 7.815 9.348 9.837 11.345 12.838
g 4 0.207 0.297 0.429 0.484 0.711 1.064 7.779 9.488 11.143 11.668 13.277 14.860
r 5 0.412 0.554 0.752 0.831 1.145 1.610 9.236 11.070 12.833 13.388 15.086 16.750
e 6 0.676 0.872 1.134 1.237 1.635 2.204 10.645 12.592 14.449 15.033 16.812 18.548
e 7 0.989 1.239 1.564 1.690 2.167 2.833 12.017 14.067 16.013 16.622 18.475 20.278
s 8 1.344 1.646 2.032 2.180 2.733 3.490 13.362 15.507 17.535 18.168 20.090 21.955

9 1.735 2.088 2.532 2.700 3.325 4.168 14.684 16.919 19.023 19.679 21.666 23.589
of 10 2.156 2.558 3.059 3.247 3.940 4.865 15.987 18.307 20.483 21.161 23.209 25.188

11 2.603 3.053 3.609 3.816 4.575 5.578 17.275 19.675 21.920 22.618 24.725 26.757
F 12 3.074 3.571 4.178 4.404 5.226 6.304 18.549 21.026 23.337 24.054 26.217 28.300
r 13 3.565 4.107 4.765 5.009 5.892 7.042 19.812 22.362 24.736 25.472 27.688 29.819
e 14 4.075 4.660 5.368 5.629 6.571 7.790 21.064 23.685 26.119 26.873 29.141 31.319
e 15 4.601 5.229 5.985 6.262 7.261 8.547 22.307 24.996 27.488 28.259 30.578 32.801
d 16 5.142 5.812 6.614 6.908 7.962 9.312 23.542 26.296 28.845 29.633 32.000 34.267
0 17 5.697 6.408 7.255 7.564 8.672 10.085 24.769 27.587 30.191 30.995 33.409 35.718
m 18 6.265 7.015 7.906 8.231 9.390 10.865 25.989 28.869 31.526 32.346 34.805 37.156

19 6.844 7.633 8.567 8.907 10.117 11.651 27.204 30.144 32.852 33.687 36.191 38.582
20 7.434 8.260 9.237 9.591 10.851 12.443 28.412 31.410 34.170 35.020 37.566 39.997

(v = n− 1) 21 8.034 8.897 9.915 10.283 11.591 13.240 29.615 32.671 35.479 36.343 38.932 41.401
22 8.643 9.542 10.600 10.982 12.338 14.041 30.813 33.924 36.781 37.659 40.289 42.796
23 9.260 10.196 11.293 11.689 13.091 14.848 32.007 35.172 38.076 38.968 41.638 44.181
24 9.886 10.856 11.992 12.401 13.848 15.659 33.196 36.415 39.364 40.270 42.980 45.559
25 10.520 11.524 12.697 13.120 14.611 16.473 34.382 37.652 40.646 41.566 44.314 46.928
26 11.160 12.198 13.409 13.844 15.379 17.292 35.563 38.885 41.923 42.856 45.642 48.290
27 11.808 12.879 14.125 14.573 16.151 18.114 36.741 40.113 43.195 44.140 46.963 49.645
28 12.461 13.565 14.847 15.308 16.928 18.939 37.916 41.337 44.461 -5.419 48.278 50.993
29 13.121 14.256 15.574 16.047 17.708 19.768 39.087 42.557 45.722 46.693 49.588 52.336
30 13.787 14.953 16.306 16.791 18.493 20.599 40.256 43.773 46.979 47.962 50.892 53.672
31 14.458 15.655 17.042 17.539 19.281 21.434 41.422 44.985 48.232 49.226 52.191 55.003
32 15.134 16.362 17.783 18.291 20.072 22.271 42.585 46.194 49.480 50.487 53.486 56.328
33 15.815 17.074 18.527 19.047 20.867 23.110 43.745 47.400 50.725 51.743 54.776 57.648
34 16.501 17.789 19.275 19.806 21.664 23.952 44.903 48.602 51.966 52.995 56.061 58.964
35 17.192 18.509 20.027 20.569 22.465 24.797 46.059 49.802 53.203 54.244 57.342 60.275
36 17.887 19.233 20.783 21.336 23.269 25.643 47.212 50.998 54.437 55.489 58.619 61.581
37 18.586 19.960 21.542 22.106 24.075 26.492 48.363 52.192 55.668 56.730 59.893 62.883
38 19.289 20.691 22.304 22.878 24.884 27.343 49.513 53.384 56.896 57.969 61.162 64.181
39 19.996 21.426 23.069 23.654 25.695 28.196 50.660 54.572 58.120 59.204 62.428 65.476
40 20.707 22.164 23.838 24.433 26.509 29.051 51.805 55.758 59.342 60.436 63.691 66.766
41 21.421 22.906 24.609 25.215 27.326 29.907 52.949 56.942 60.561 61.665 64.950 68.053
42 22.138 23.650 25.383 25.999 28.144 30.765 54.090 58.124 61.777 62.892 66.206 69.336
43 22.859 24.398 26.159 26.785 28.965 31.625 55.230 59.304 62.990 64.116 67.459 70.616
44 23.584 25.148 26.939 27.575 29.787 32.487 56.369 60.481 64.201 65.337 68.710 71.893
45 24.311 25.901 27.720 28.366 30.612 33.350 57.505 61.656 65.410 66.555 69.957 73.166
46 25.041 26.657 28.505 29.160 31.439 34.215 58.641 62.830 66.617 67.771 71.201 74.437
47 25.775 27.416 29.291 29.956 32.268 35.081 59.774 64.001 67.821 68.985 72.443 75.704
48 26.511 28.177 30.080 30.755 33.098 35.949 60.907 65.171 69.023 70.197 73.683 76.969
49 27.249 28.941 30.871 31.555 33.930 36.818 62.038 66.339 70.222 71.406 74.919 78.231
50 27.991 29.707 31.664 32.357 34.764 37.689 63.167 67.505 71.420 72.613 76.154 79.490

Note: As in all χ2 tables, ν = n− 1. For ν> 50, use approximation Q p ≈ ν 1−
2
9ν

+ Q .

326 6 Reliability Testing



7

Failure Modes and Effects Analysis – Design and Process

“You want a valve that doesn’t leak and you try everything possible to develop one, but the
real world provides you with a leaky valve. You have to determine how much leaking you
can tolerate.”

Source: Arthur Rudolph, Saturn 5 Rocket Scientist

7.1 Introduction

Failure modes and effects analysis, usually referred to by the acronym FMEA, is one of the most
widely employed techniques for enumerating the possible modes by which components may fail
and for tracing through the characteristics and consequences of each mode of failure on the system
as a whole. The method is primarily qualitative in nature, although in Chapter 11 (Systems Safety
Analysis) we introduce an extension of FMEA called FMECA (failure modes, effects and criticality
analysis) which includes estimates of failure probabilities.
What is FMEA and why should this analysis be done? It is a tool for preventing problems and

reducing risk as well as a procedure for developing and implementing new or revised designs, pro-
cesses, or services. Finally, FMEA serves as a diary of the design, process, or service, valuable for
future reviews of performance and dependability.
In this chapter, we distinguish between three major types of FMEA: Functional FMEA addresses

what happens if one ormore of a product’s functions fail to be performed, and how can such failures
be prevented. Design FMEA deals with what happens if a design shortcoming causes a product to
fail, and how that failure can be prevented. Process FMEA examines what happens if a process step
fails to accomplish its assigned task, and what can be done to prevent such a failure. Process FMEA
(PFMEA) is most often applied to manufacturing processes. However, it is also applicable to pro-
cesses in service industries, software development, analysis processes, and in fact, ANY process.
The general characteristics of all three of these FMEA types follow the same path:

Failure Mode Effect Cause

FMEA is most straightforward to start applying in the development cycle of a product. Figure 7.1
illustrates this phenomenon. The failure modes of the system FMEA generate all the essential infor-
mation for the design and PFMEA. Although the effect stays the same, the causes in the functional
FMEA become the failure modes in the design, which in turn generate their own causes, which
ultimately become the failure modes in the PFMEA. It is imperative that the failure modes in
the manufacturing processes not be listed in the design FMEA (see Figure 7.1).
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7.2 Functional FMEA

• The functional FMEA focuses on the functions of a product or process rather than on the specific
hardware “piece parts.” It is a high-level “top-down” approach – especially useful for complex
systems. A functional FMEA is the most practical approach during the conceptual design phase
– before specific hardware information is available. The functional FMEA usually begins with a
functional block diagram analysis. A functional block diagram illustrates the physical and func-
tional relationships and interfaces in a system and provides a map of energy flowwithin a system.
The functional block diagram can also include schematics, drawings, and layouts to help in the
understanding.

Example 7.1 Refrigerator functional block diagram shown in Figure 7.2a, with accompanying
diagram of common household refrigerator operation in Figure 7.2b.
For the main function of a refrigerator, the functional FMEA will look as shown in Table 7.1.

System FMEA

Design FMEA

Process FMEA

Failure
mode Effect Cause

Failure
mode Effect Cause

The problem

The causes of
the problem
from the system
FMEA

The effect from the
system FMEA with
perhaps a better
definition

Failure
mode Effect Cause

The causes of
the problem
from the design
FMEA

The same effect as
the design FMEA

New root causes
for the design
failure modes

Specific root
causes for the
process failure
modes

The ramifications
of the problem

The cause(s) of
the problem

Figure 7.1 Relationship of system, design, and process FMEA. Note: System FMEA is often called “functional
FMEA.”. Source: Stamatis (1995). Figure 5.1 Relationship of system, design, and process FMEA, p. 108 with
permission.
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Example 7.2 Major components of Space Shuttle Main Engine (see Figure 7.3)
The functional FMEA for the hot gas manifold and heat exchanger is in Table 7.2.
In the left-hand column, the major components or subsystems are listed, and in the next column

the physical modes by which each of the components may fail are given. This is followed, in the
third column, by the possible causes of each of the failure modes. The fourth column lists the effects
of the failure. The method becomes more quantitative if an estimate of the probability of each
failure mode is made.
“Criticality” of the failure’s importance may be included in order to separate the failure modes

that are catastrophic from those that merely cause inconvenience ormoderate economic loss.When

A I B

2

1 3

4

Figure 7.2b Household refrigerator flow to
accompany functional flow diagram for clarity: Vapor
compression cycle – A, hot compartment (kitchen); B,
cold compartment (refrigerator box); I, insulation; 1,
Condenser; 2, Expansion valve; 3, Evaporator unit; 4,
Compressor. Source: Ilmari Karonen, Diagram of the
vapor compression cycle used in refrigerator,
Wikimedia Commons, 26 June 2010. Public Domain.

Compressor
compresses
refrigerant

gas

External pipe
dissipates

heat to form
liquid

Valve
expands liquid

from
high to low
pressure

Internal pipe
liquid evaporates
(absorbs heat)

Figure 7.2a Refrigerator functional block diagram.

Table 7.1 Functional FMEA for refrigerator cooling.

Function Functional failure mode Cause of failure
Possible
effects

Maintain food or beverages at desired
temperatures

Does not maintain
desired level

a) Compressor motor fails
to operate

b) Refrigerant
coolant leaks

c) Refrigerator door does
not seal

Food
spoilage
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“Criticality” is included, the analysis becomes a FMECA or a safety analysis, which will be dis-
cussed in more detail in Chapter 11. The final column in some FMEA charts is a listing of possible
remedies. In a more extensive design FMECA, the information shown in Figures 7.2a and 7.2b may
be expanded as we will see in Chapter 11 when we add the probability of an event along with the
criticality as described above.
In general, the emphasis in a functional FMEA is on the basic physical phenomena that can cause

a device or component to fail. Therefore, it often serves as a suitable starting point for enumerating
and understanding the failure mechanisms in the early design/development phase of a project.
A functional FMEA has many benefits: it helps select the optimum concept alternatives or deter-
mine changes to System Design Specifications; increases the likelihood that all potential effects of a
proposed concept’s failure modes are considered; identifies the system-level testing requirements;
and most importantly helps determine if hardware system redundancy may be required within a
design proposal.

Fuel
bleed
valve

Gimbal
bearing

Dome/
Injector

Main
oxidizer
valve

Oxidizer
preburner
oxidizer
valve

Pneumatic
control assembly

HP LOX
duct

High-pressure
Oxidizer
turbopump

High-pressure
fuel turbopumpLow-pressure

fuel duct

Low-pressure
oxidizer turbopump

Low-pressure
fuel turbopump

LPFTP turbine
discharge duct

LPFTP 
turbine drive
duct

AHM
controller

Main fuel
valve

HP
fuel
Duct

Oxidizer
preburner

Fuel preburner
oxidizer value

Low-pressure
oxidizer duct

Fuel
preburner

Hot-gas
manifold

OPB LOX
supply
duct

HGM
coolant duct

LOX
bleed
valve FPB LOX

supply duct

Chamber
coolant
valve

Nozzle

LPOTP turbine
drive duct

Main
combustion
chamber

Figure 7.3 Major components of SSME with hot gas manifold/heat exchanger indicated. Source: “Booster
System Briefs”(JSC-19041), Systems Division, Guidance and Propulsion Systems Branch, NASA Johnson Space
Flight Center, Houston, Texas, October 1992. Public Domain.

330 7 Failure Modes and Effects Analysis – Design and Process



Table 7.2 Functional FMEA of SSME Hot Gas Manifold and Heat Exchanger.

Functional failure modes and effects analysis

1. Subsystem__________ 2. Dwg Nr._________ 3. Prepared by_________________ 4. Date________________
Item Failure modes Cause of failure mode Possible effects

Hot Gas Manifold Cracks, rupture a. Vibration and thermal Engine fire

b. No heat treatment

c. Defective welds

Loose stud fasteners a. Wrong torque Hot gas leak/engine fire

b. Repeated stretching

c. Load

G-5 Seal and Main Combustion Chamber

a. Ignition joint leaks Installation problems Engine fire

Contamination Fabrication Performance degradation operation

Heat Exchanger Dings, cracks, leaks a. Mishandling Turbopump destruction

b. Wrong material Engine destruction

c. Wear, thermal fatigue

d. Bad weld

Clearance problems, inclusions a. Thermal cycling Coil wear, leaks, turbopump destruction

b. Fabrication errors

Source: Based on STUDIES AND ANALYSES OF THE SPACE SHUTTLEMAIN ENGINE,”NAS 1.26:178993, NASA-CR-178993, BCD-SSME-TR-86-1, Battelle Columbus labs,
December 15, 1986.



7.3 Design FMEA

A design FMEA is the most common FMEA application. It is a “bottom-up” process that tries to
define all the failure modes of a part. It can break down a system to its subsystems, then to its mod-
ules, and finally, individual parts to attempt to find any failure mode that affects reliability (and
hence possibly safety).
We begin with an everyday illustration of the difference between a functional and design FMEA:

Let us consider first an automobile tire. The fundamental function of an automobile tire is to “keep
the rim off the road.” Figure 7.4 illustrates the functional FMEA with failure mode “loss of air” and
the three causes for that in the functional FMEA that would be carried out in the up-front devel-
opment of a tire, i.e. before “Design Go-ahead.” After “Design Go-ahead,” a design FMEA will be
started. Then, as illustrated, the design FMEA will take each of the causes from the functional
FMEA and expand it to individual failure modes with more detailed causes that can be considered
in the detailed design of the tire.

Design FMEA Procedure

Design FMEAs are performed using a Design Template such as that shown in Figure 7.5. The first
step in the process is to take each of the causes from the functional FMEA and enumerate the pos-
sible failure modes associated with it. Thus, the first two columns in Figure 7.5 are filled in. For
simpler products, the analysis may be performed by an individual, while for more complex systems
an interdisciplinary group may hold a brainstorming session in order to assure that all significant
failure modes are recognized. Depending on the nature of the system, engineers familiar with fail-
ure modes of materials, structures, mechanical or electrical systems, software, human factors, and/
or manufacturing processes may be called upon. It is imperative that the analysists understand the
physics of failure of the particular item under scrutiny.

Function – Keep the rim off the road

Functional FME(C)A Design FME(C)A

Item Failure mode Cause

Tire

Failure mode: loss of air

Rupture Wear, foreign object damage,
material defect

Corrosion, load, materialFatigueRim

Valve Leak Contamination, material, load

Effect – Rim sitting on the road

Cause: Tire
Rim
Valve

Figure 7.4 Illustration of how a functional FMEA is used by the next tier in the design of a product.
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Referring to the bathtub curve, introduced in Figures 3.1–3.3, may offer a valuable perspective in
identifying failure modes. For example, does a system fail because it is overstressed in some way,
such as being exposed to conditions or an environment for which it was not designed? Is its main-
tenance faulty, or is it being used incorrectly? Such failure modes contribute to the flat part of the
bathtub curve: they are essentially independent of how old the system is. Is the system susceptible to
errors or other shortcomings in manufacture or construction which will aggravate infant mortality
failure on the left of the bathtub curve? And finally are wear, aging, or fatigue phenomena or lack of
attention to preventive maintenance likely to give rise to failure modes that aggravate the increas-
ing failure rate on the right of the bathtub curve?
The next step in a design FMEA is to examine the overall importance of each failure mode on the

same relative scale. This scale is called the “Risk Priority Number” or RPN. It is calculated as the
product of Severity × Occurrence × Detection. Figure 7.6 details how each of the three factors is
calculated.
The scales for each of Severity, Occurrence, and Detection were chosen so that the RPN of an

Extremely Hazardous Effect (10 severity) that occurs almost certainly (10 occurrence) and was

Part/Prod
uct Name

FMEA Date (Orig) ______________           _____________

 Product
part

function 

Potential
failure
mode 

Potential
failure
effects 

S
E
V

Potential
causes 

O
C
C

Current 
controls

D
E
T

R
P
N

Recommended
actions Resp.

Actions
taken 

S
E
V

O
C
C

D
E
T

R
P
N

0

0

0
0
0
0
0
0
0
0
0

Failure Modes and Effects Analysis (DFMEA)
Design

(Rev)

Figure 7.5 Design FMEA template.

RPN = Severity × Occurrence × Detection

10 – Almost certain (>1/2) 
9 – Very high (1 in 3) 
8 – High (1 in 8) 
7 – Moderately high (1 in 20) 
6 – Medium (1 in 80) 
5 – Low (1 in 400) 
4 – Slight (1 in 2000) 
3 – Very slight (1 in 15,000) 
2 – Remote (1 in 150,000) 
1 – Almost never (<1 in
1,500,000)  

10 – Almost impossible  
9 – Remote (unreliable) 
8 – Very slight 
7 – Slight 
6 – Low 
5 – Medium 
4 – Moderately high 
3 – High 
2 – Very high 
1 – Almost certain 

10 – Hazardous effect  
9 – Serious effect 
8 – Extreme effect 
7 – Major effect 
6 – Significant effect 
5 – Moderate effect 
4 – Minor effect 
3 – Slight effect 
2 – Very slight effect 
1 – No effect 

Figure 7.6 RPN (Risk Priority Number) calculation.
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almost impossible to be detected (10 detection) would be 1000. At the same time, a failure mode that
had no effect on the product (1 severity), extremely remote chance of happening (1 occurrence), and
almost certainly could be detected (1 detection) would have an RPN = 1 as illustrated in Figure 7.6.
In identifying the potential causes for the effects, keep in mind that the relationship may be more

complicated than simply one-to-one, as indicated in Figure 7.7.
To illustrate the construction and use of a design FMEA, we use the example of a simple product:

the design of a coffee cup.

Example 7.3 Design of a Coffee Cup
We have been asked to participate on a design team for the design of a new paper coffee cup for a
major coffee shop (the CUSTOMER). A team of five engineers, design, fabrication, general man-
ufacturing, materials, and reliability/safety, has been selected for their expertise in producing this
new coffee cup that will satisfy the needs of the CUSTOMER (determined by a QFD or Quality
Function Deployment analysis1).
The CUSTOMER wishes to have a coffee cup in three sizes 8 oz, 9 oz, and 16 oz. Each of these

sizes must be able to accomplish the following:

1) Hold coffee
2) Hold liquid
3) Be safe for the customer to handle
4) Look good
5) Must be stackable
6) Resist spills when driving.

Solution: Since the first three requirements depend on the insulation capability that must be
built into the coffee cup, it was decided to do Function 3 – “insulate” – and combine the issues
that will meet customer requirements 1 and 2. Thus, from the design FMEA template, we obtain
Figure 7.8a.

Cause 1

Cause 2

Effect 1

Effect 2

Cause 1

Cause 2
Effect 1

Cause 1

Effect 1

Effect 2

One to one:

One to many:

Many to one:

Figure 7.7 Relationships between causes and effects.

1 2004
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Next, what are the potential failure modes for each function?

Function Failure mode

Must keep coffee hot Coffee is cold
Must keep hand cool Burns hand

Now, we determine the effect of each of the failure modes:
So, we ask the questions:

• In the worst case scenario, does this failure mode impact the safe operation of the system?

•What is the impact of the failure mode on the surrounding hardware and the system?

In this case, the answers are:

Function Failure mode Failure effects

Must keep coffee hot Coffee is cold Taste bad
Must keep hand cool Burns hand First degree burn

Next, we determine where each failure mode is on the “Severity” scale. We use the generic sever-
ity in Table 7.3: How bad are the consequences (measured on a scale from 1 to 10)?
To assign this rating, you must assume that the failure mode has occurred. Based on the effects,

we choose 3 for “coffee is cold” and 9 “burns hand.”
So far, we have the following:

Function Failure mode Failure effects Severity

Must keep coffee hot Coffee is cold Taste bad 3
Must keep hand cool Burns hand First degree burn 9

Part/
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C
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T
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N

0

0

0
0
0
0
0

Failure Modes and Effects Analysis (DFMEA)
Design

(Rev)Product
Name

Must keep
the coffee

hot

Must keep
the hand

cool

Note: identify all functions
and describe each precisely
in direct language

More precisely Must keep the coffee hot
Must keep the hand cool

Team discussion:
1. Hold coffee
2. Hold liquid
3. Insulate
4. Looks good
5. Stackable
6. Resistant to spills when driving

What is this design or
process supposed to do to

satisfy the customer?

Figure 7.8a Function identification.
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We next assign a cause and with it an occurrence estimate determined from Figure 7.6, repeated
in Table 7.4. Our estimate of cause and occurrence likelihood allows us to fill in the next two col-
umns; in this case, the occurrence for both causes is 2-Remote, unlikely.
NOTE: Any number of Quality and Statistical tools are available to help in this effort (e.g. Delphi

Technique, Design Review Teams, Design of Experiments, and “5 Whys,” to name a few.).

Function Failure mode Failure effects Severity Cause Occurrence

Must keep coffee hot Coffee is cold Taste bad 3 Wrong material 2
Must keep hand cool Burns hand First degree burn 9 Material too thin 2

Table 7.3 Generic severity scale.

Generic severity scale

10 – Hazardous effect

9 – Serious effect First degree burn

8 – Extreme effect

7 – Major effect

6 – Significant effect

5 – Moderate effect

4 – Minor effect

3 – Slight effect Taste bad

2 – Very slight effect

1 – No effect

Table 7.4 Generic occurrence table.

Generic occurrence scale Probability of occurrence

10 – Almost certain (>1/2)

9 – Very high (1 in 3)

8 – High (1 in 8)

7 – Moderately high, frequent (1 in 20)

6 – Medium (1 in 80)

5 – Low, occasional failures expected (1 in 400)

4 – Slight, small number of occurrences (1 in 2,000)

3 – Very slight (1 in 15,000)

2 – Remote, unlikely
(1 in 150,000)

1 – Almost never, extremely remote (<1 in 1,500,000)
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Continuing, we examine the current design controls for detection; i.e. What are the chances of
catching the failure modes before they are delivered to the customer? Engineering analysis is the
only way to detect these two failure modes, and using Table 7.5 (repeated from Figure 7.8a), we
postulate that engineering analysis has very high chances of detecting both failure modes, and thus
we assign them each a 2 “Detection Value”. Since we now have an estimate of each of the three
factors, we can calculate the RPN. We thus have Figure 7.8b.

Table 7.5 Generic detection scale.

Generic detection scale

10 –Almost impossible

9 – Remote
(unreliable)

8 – Very slight

7 – Slight

6 – Low

5 – Medium

4 – Moderately high

3 – High

2 – Very high

1 – Almost certain
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0
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Coffee
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12
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36
Burns
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Figure 7.8b RPN (Risk Priority Number) calculation.
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Note that for a specific failure mode, the controls may be good related to one effect but not good
for another effect of the same failure mode. Do NOT take into account severity or occurrence rat-
ings when doing the detection rating.
Since the RPN on the first function is so low, we work on the second function first. To complete

the design FMEA, actions must be recommended and completed as indicated in the template. For
the coffee cup, the design team recommends that the cup insulation be increased to withstand
220 F without causing a burn, responsibility for the action assigned, and the actions taken and
RPN obtained documents. These are included in the remaining blocks of the design FMEA tem-
plate as indicated in Figure 7.8c.
Discussion of Example 3: Several comments are in order regarding the foregoing example. The

FMEA responsibility for the action and a date for resolution are essential to the use of an FMEA in
resolving design issues. The design team redesigned the cup/material, and the FMEA team deter-
mined that the new severity would be 2, and occurrence and detection remaining the same for an
RPN = 8. The final FMEA is illustrated in Figure 7.8c. Note that the characteristics of the product
identified by the design team as key to keeping the severity lower need to be documented as a Key
Product Characteristic (KPC) and noted in the final FMEA. In any FMEA, a KPC should also be
identified for any RPN that is called out as important and has the design team input for its lowering
that RPN’s occurrence or detection as well as severity.
The paper cup example was chosen for its simplicity. For more complex systems, dozens of failure

modes are likely to be identified. The criteria will vary somewhat between industries. But generally,
at least the top 10% of the RPNs as well as ANYmodewhose severity is >7will be chosen to undergo
detailed scrutiny. Also, review the design FMEA after initial design and final design (usually those
reviews are included in a design roadmap) for any changes.
The design FMEA is passed to the manufacturing and assembly departments and goes into their

control plans for the product. It allows the manufacturing process to “control” any item; in the
paper cup example, making sure the cup material specifications are met. In general terms for
mechanical systems such as airplanes, cars, engines, and the like, any part dimension, process
(e.g. chemical, etching, milling, drilling, and dimensions) that is “critical” to the reliability of
the part, subsystem, or system needs to be controlled in the manufacturing process.
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Figure 7.8c Final design FMEA for coffee cup – first two functions.
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7.4 Process FMEA (PFMEA)

Historically, the PFMEA is based on manufacturing or assembly processes used to make the prod-
uct. It begins with process flow diagrams that illustrate the flows of the parts fabrication and assem-
bly processes, the inspection points, and the processes for handling nonconforming material. In the
case of a manufacturing process or assembly process, the PFMEA assumes that the product, as
designed, will meet the design intent.
The PFMEA can be used to examine processes other than in manufacturing. Some examples of

other processes that have used this tool are optimizing processing of patients in a hospital, custo-
mers in a restaurant or grocery store, or passengers in a Transportation Security Administration
(TSA) security inspection line. Likewise, FMEA may also be applied to engineering development
process flows and for error checking in software development. A PFMEA can be used to lay out a
process in a block diagram flow so that a team of knowledgeable people can examine every stage of
the process for errors in input and output and “standard work” used to process the “work” through
that stage.
Example of a manufacturing process flow:
Figure 7.9 is an example of a manufacturing block diagram. It illustrates the overall flow of a

low-pressure turbine manufacturing line. This is the starting point for a PFMEA of that

Low pressure turbine

Incoming part inspections

Low turbine shaft
assembly

Low turbine disk
 and airfoils

Low turbine disk
case

Low turbine disk
assembly

Exhaust case
assembly

Test Final assembly

Outgoing
inspection

END

Module-assembly and externals

Configuration check

Figure 7.9 Process block diagram for low-pressure turbine manufacturing processes.
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manufacturing line. Note that the low-pressure turbine is only one part of a larger manufacturing
line for a two-spool turbofan engine.
Two-spool Commercial Turbofan Engine. Source: Drawing courtesy of NASA.GOV. Public

Domain.

Low-pressure turbine

Low-pressure
compressor

High-pressure
compressor High-pressure turbine

Primary
exhaust

Combustor
Fan exhaust

Fan

Inlet air

Whether applied to low-pressure turbines or the manufacture of any other product or system,
PFMEA eliminates risks that may not be identified if only functional and design FMEAs are per-
formed. It takes failure modes identified in design FMEA and assures that if they relate to defects in
manufacturing processes they will be found and eliminated or ameliorated through changes both in
process steps and statistical process controls. It feeds information on design changes required to
accommodate manufacturing feasibility back to the design community. It identifies operator safety
concerns, not only for manufacturing but also for field maintenance. Finally, even when applied to
processes outside of manufacturing, PFMEA identifies the effects of process failure on customers
and clients; it is invaluable in identifying and eliminating failure modes whenever considerations
are given to introducing a new or modified part, product, or process.
To summarize: PFMEA is a tool to focus manufacturing, assembly, business processes, and engi-

neering processes on high-risk and/or critical process steps. PFMEA also uses occurrence, detec-
tion, and severity values to determine RPN for prioritization. PFMEA develops corrective action
planning or statistical process control measures for more critical process steps. PFMEA methodol-
ogy is summarized in Figure 7.10.

1. Characterize/map current process
a. Identify candidate sub-processes
b. Breakdown entire process into steps/functions

2. Identify potential failure modes, causes and effects
3. Identify current controls
4. Assign values to occurrence, detection and severity to calculate RPN
5. Formulate corrective actions for RPN’s that are highest on Pareto chart of RPNs:  

a. design change
b. process change
c. process control measures

6. Recalculate RPN with benefit of additional corrective actions

Figure 7.10 Process FMEA methodology.
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We employ the form in Figure 7.11 to construct PFMEAs. This form should look familiar since it
is nearly identical to the design FMEA template; it differs primarily in that heading for the first
column has been changed from Item/Function to Process Step. The PFMEA also parallels the
design FMEA as indicated in Figure 7.10.
A significant difference between design and PFMEA is in the construction of the numerical scales

for severity, occurrence, and detection tables for PFMEA. Because of the wide variety of processes
that may be considered, the construction of the scales may vary; see Table 7.6 (Severity), Table 7.7
(Occurrence), and Table 7.8 (Detection), which show generic classifications.

FMEA Date (Orig)
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Potential
failure
mode 

Potential
failure
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Potential
causes 

Current 
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Recom
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actions
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Actions
taken 
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N

Failure Modes and Effects Analysis (PFMEA)

Process

(Rev)
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SEV SEVOCC DET RPN OCC DET

0

0

0
0
0
0
0
0
0

0
0

0

0

0

0
0
0
0
0
0
0

0
0

0

Figure 7.11 PFMEA template.

Table 7.6 Severity ranking.

SEVERITY of effects of failure mode

Effect Criteria Ranking

Hazardous
without warning

• May endanger machine or operator

• Affects safe operation of product/production and/or involves
noncompliance with government regulation

• Failure will occur without warning

10

Hazardous with
warning

• May endanger machine or operator

• Affects safe operation of product/production and/or involves
noncompliance with government regulation

• Failure will occur with warning

9

Very high • Major disruption to production

• 100% of production may have to be scrapped

• Product/equipment inoperable – loss of primary function

• Customer very dissatisfied

8

High • Minor disruption to production

• Production may have to be sorted and a portion (<100%) scrapped

• Product/equipment operable, but at significantly reduced level of
performance, i.e. only primary function(s)

• Customer dissatisfied

7

(Continued)
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Table 7.6 (Continued)

SEVERITY of effects of failure mode

Moderate • Minor disruption to production

• A portion of production may have to be scrapped (<100%) – no sorting

• Product/equipment operable, but at reduced level of performance
(some secondary functions inoperable)

• Customer dissatisfied

6

Low • Minor disruption to production

• 100% of production may have to be reworked

• Product/equipment operable, but at slightly reduced level of
performance

• Some customers dissatisfied

5

Very low • Minor disruption to production

• Production may have to be sorted and a portion (<100%) reworked

• Minor nonconformance to production specification

• Defect noticed by average customer

4

Minor • Minor disruption to production

• A portion of production may have to be reworked (<100%) – on-line
(not in station)

• Minor nonconformance to production specification

• Defect noticed by average customer

3

Very minor • Minor disruption to production

• A portion of production may have to be reworked (<100%) – on-line (in
station)

• Minor nonconformance to production specification

• Defect noticed by discriminating customer

2

None • No effect 1

Table 7.7 Occurrence ranking.

OCCURRENCE of failure mode

Probability of failure
Possible
failure rates CpK Ranking

Very high: Failure is almost inevitable ≥1 in 2 <0.33 10

1 in 3 ≥0.33 9

High: Generally associated with processes similar to previous processes
that have often failed

1 in 8 ≥0.51 8

1 in 20 ≥0.67 7

Moderate: Generally associated with processes similar to previous
processes that have experienced occasional failures, but not in major
proportions

1 in 80 ≥0.83 6

1 in 400 ≥1.00 5

1 in 2,000 ≥1.17 4

Low: Isolated failures associated with similar processes 1 in 15,000 ≥1.33 3

Very low: Only isolated failures associated with almost identical
processes

1 in 150,000 ≥1.50 2

Remote: Failure is unlikely. No failures ever associated with almost
identical processes

≤1 in
1,500,000

≥1.67 1
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Think about severity in the process environment using a parachute as an example:

• If the chute does not open, you probably die, and therefore, the severity is a 10 (failure occurs
without warning).

• If you have a “smart chute” that has built-in diagnostics that emit a loud audible alarm telling me
it is not going to open.

– It still does not open but warns me I am about to die, therefore making it a Severity 9 – (not
much good).

– If an added smaller chute deploys, then I can land without dying, and the Severity is a 7 (item
operable, but at a reduced level of performance. Customer dissatisfied).

Example 7.4 “Making Coffee” Process FMEA

Suppose that in this exercise we have a coffee maker, and we wish to
analyze the failure modes in each step of making a pot of coffee. The
first thing that we need is a flow chart. How about a simple one first
(Figure 7.12).
That was not too difficult, but if you look at this flow chart and think

about the process a bit more, you soon realize there are a lot of “sub-
processes” involved. This initial flow chart does not have enough detail.
So, if you put a bit more thought into it, working with your team, you
may come up with a more detailed flowchart (Figure 7.13).
But OOPS, no ground coffee, so we have a slight diversion from our

main flow chart (Figures 7.14a and 7.14b).
Now let us use our flow chart/block diagram to fill in the PFMEA

template.

Table 7.8 Detection ranking.

Likelihood of DETECTION of the failure mode

Detection Criteria Ranking

Almost
impossible

No known control(s) available to detect failure mode 10

Very remote Very remote likelihood current control(s) will detect failure mode 9

Remote Remote likelihood current control(s) will detect failure mode 8

Very low Very low likelihood current control(s) will detect failure mode 7

Low Low likelihood current control(s) will detect failure mode 6

Moderate Moderate likelihood current control(s) will detect failure mode 5

Moderately
high

Moderately high likelihood current control(s) will detect failure mode 4

High High likelihood current control(s) will detect failure mode 3

Very high Very high likelihood current control(s) will detect failure mode 2

Almost
certain

Current control(s) almost certain to detect the failure mode. Reliable detection
controls are known with similar processes

1

Start

Put coffee in boiling
water

Stop

Boil water

Figure 7.12 Initial flow
chart for making coffee.
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START

Go to cupboard and get coffee maker

Check cleanliness of carafe,
clean if necessary

Fill carafe with water to metal rim

Remove plastic coffee holder and find
Paper filter to fit

Place filter in holder, get ground coffee
and teaspoon

Figure 7.13 Expanded flow chart for making coffee.

Proceed to next step

Place coffee grinder and un-ground coffee

Grind 4 heaping teaspoons of beans

Figure 7.14a Coffee grinding flowchart.

344 7 Failure Modes and Effects Analysis – Design and Process



First, a few reminders:

• RPN has no physical meaning – it is used for relative comparison

• Qualitative judgments must be consistently applied

• Should always drive actions to reduce risk

– Severity reduction ideas might include redundancy, redesign, and new material
– Occurrence reduction might include higher reliability components
– Higher detection might include improved ability to detect prior to serious effect.

Using our process flow for making coffee and the PFMEA template, following each process step
and thinking about what things can fail during that process step, the team completed the initial
analysis of the coffee making process (see Figure 7.15).
Now generate a bar chart of the RPNs (this one was done in MINITAB, but you can use any num-

ber of programs to do a bar chart). The team decided to work on the high severity and the failure
modes in the oval, as indicated in Figure 7.16.
Recommended actions for PFMEAs include:

• Corrective action should be directed first at the highest concerns as rank ordered by RPN.

• The intent of any recommended action is to reduce the occurrence, severity, and/or detection
rankings.

• If NO actions are recommended for a specific cause, then this should be indicated.

• Only a design revision can bring about a reduction in the severity ranking.

Add 3.5 tsp of coffee to filter

Slide coffee holder completely into slot

Pour carafe of water through top screen
of coffee maker

Plug coffee maker into outlet

Turn on coffee maker and wait until no steam
is coming from top of coffee maker

Pour coffee into cup of choosing
and enjoy!

Figure 7.14b Expanded flowchart for making coffee continues.
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FMEA Date (Orig)_March 15, 2009.
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Figure 7.15 PFMEA coffee making complete, before process changes.
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Figure 7.16 Bar chart of coffee PFMEA RPNs.
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• To reduce the probability of occurrence, process and/or specification revisions are required.
– Remove or control the causes.
– Mistake proofing brings the frequency of occurrence to essentially zero.

• To increase the probability of detection, process control and/or inspection changes are required.
– Improving detection controls is (typically) costly.

• Emphasis should be placed on preventing, rather than detecting, defects.

• The easy to remember mantra is “Design it out” – Improve controls or have controls earlier in
the process and make sure lessons learned are passed back to design and are incorporated in the
design process.

• “Test it out” – things such as environmental stress screening, running each product for xx min-
utes or hours, and test flights or runs.

• “Inspect it out” – if you cannot do the first two, you have no choice, but remember, inspection
adds cost without adding value.

Bottom line: Emphasis should be placed on preventing, rather than detecting, defects.
After the coffee making team considered all these recommendations, the completed PFMEA is as

shown in Figure 7.17.
PFMEA is a tool for preventing and fixing process problems and is a direct link to the control

plans that make the improvements permanent. The design of a part is assumed to be correct; hence,
the severity portion of amanufacturing PFMEA cannot be changed. In sum, PFMEA is ESSENTIAL
for manufacturing and assembly processes and can be extremely useful for business and engineer-
ing processes.
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FMEA Date (Orig)_March 15, 2009_________(Rev)________

 Process step
Potential failure

mode 
Potential failure

effects 
Potential
causes 

Current
controls

Failure Modes and Effects Analysis (PFMEA)

Process

Process or Product Name: Making Coffee

S
E
V

O
C
C

O
C
C

S
E
V

D
E
T

D
E
T

R
P
N

R
P
N

Go to cupboard and get
coffee maker

Coffee maker broken

Too much water added

Too much water add

Too little water added

Too little coffee added
Coffee holder not completely in
slot

Water spillage on top/side of
coffee maker

No filters available

Coffee holder cracked

Filter placed crooked in holder

Filter torn

Fill carfe with water to metal
rim

Remove plastic coffee holder
and find Paper filter to fit

Place filter in holder, get 
ground coffee and teaspoon

Add 3.5 tsp of coffee to filter
Slide coffee holder completely
into slot

Pour carafe of water through
top screen of coffee maker

Plug coffee maker into outlet

Turn on coffee maker and
wait until no steam is coming
from top of coffee maker

Pour coffee into cup of
choosing

No power to coffee maker

No electricity

Coffee maker switch does not
work
Coffe spillage

No coffee

No coffee

No coffee

No coffee

Burnt hand or coffee on
counter

Coffee drips outside
carafe
Coffee drips outside
carafe

Grounds in coffee
Weak coffee

Coffee/water spills

Mess to clean up

Coffee is weak

Coffee is strong

Coffee maker overflow

Coffee maker does not
work

10

8

7

6

10

8

4

9

6

6

6

10

10

9

4

1

3

2

2

1

1

1

1
1

1

1

1

1

1

3

Broke during/after last
use

Inattention

Inattention

Inattention

Inattention

Inattention

Inattention

Inattention

Inattention

Failure to purchase at
regular interval

Plastic coffee holder
has age hardened

Manufacturing defect
Spilled before adding

Circuit breaker tripped

Worn switch

10

10

6

6

10

10

6

4
2

1

5

1

1

1

1

100

240

84

72

100

80

24

36
12

6

50

27

0

4

6

10

None

None

None

None

Eyeball on rim

Eyeball on rim

Notice as coffee is
placed in holder

Inspection as user

Inspection as user

Inspection as user

Noticeable spillage

Mind on job

Reset breaker

Previous use worked

Focus on task at hand

Recommended
actions

Resp.
Actions
taken 

Make note at end of coffee
maker use it coffee is brewed
Use coffee cup to measure
exactly 4 cups

Use coffee cup to measure
exactly 4 cups

Use coffee cup to measure
exactly 4 cups

Purchase 2 box supply and
put note on top of last box

Purchase new coffee maker
every 5 years

None

None

None

None

None

Make sure power is on and
circuit breaker is engaged.
Toaster working?)

Look at filer before use

pay attention to previous use

Have wife pour coffee
(morning person)

JB

JB

JB

JB

JB

JB

JB

JB

JB

JB

Complete

Complete

Complete

Complete

Complete

Complete

Complete

Complete

Complete

Complete

10 10

8 8

7

6

10

8

0

9
0

0

10

9

0

0

10

1

1

1

1

1

1

0

1
0

0

1

1

0

0

1

7

6

10

8

0

9

0

0

10

9

0

0

0

10

1

1

1

1

1

1

0

1
0

0

1

1

0

0

1

Figure 7.17 Final FMEA of the “coffee making team.”



7.5 FMEA Summary

FMEA outputs

• Functional FMEA Outputs
– A list of potential concept failure modes.
– A list of design actions to eliminate the causes of failure modes or reduce their rate of

occurrence.
– Recommended changes to system design specs.
– Specific operating parameters as key specifications in the design.
– Changes to global manufacturing standards or procedures.

• Design FMEA Outputs
– A list of potential product failure modes.
– A list of potential reliability critical/significant characteristics.
– A list of design actions to eliminate the causes of product failure modes, or reduce their rate of

occurrence, or improve detection.
– Confirmation of the Design Verification Plan (DVP).
– Feedback of design changes.

• Process FMEA Outputs

– A list of potential process failure modes.
– A list of confirmed critical characteristics and/or significant characteristics.
– A list of operator safety and high-impact characteristics.
– A list of recommended special controls for designated product; special characteristics to be

entered on a control plan.
– A list of processes or process actions to eliminate the causes of product failure modes, or reduce

their rate of occurrence, and to improve product defect detection if process capability cannot be
achieved.

Changes to process sheets and assembly drawings.
FMEA pitfalls that can be prevented!

• During development
– Not understanding the fundamentals of FMEA
– Inadequate representation on team from subject matter experts
– Failure to identify the right inputs to FMEA
– Poor planning by team lead before assembling for brainstorming and failure ranking.

• During implementation
– Breaking session into too long a time frame, thus losing continuity
– Using severity, occurrence, and detection scales not representative of the industry, product, or

process group
– Following too closely the “rigor” of the FMEA tool
– Wasting time on rating debates
– Failure to follow through on recommended actions
– Failure to drive systemic actions
– Failure to link design and PFMEA learning to control plans, CTQs, and CTP parameters.
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• During field operation

– Not incorporating the identified, mitigated risks into “standard work”
– Failure to keep FMEA alive.

And, finally, remember:

FMEA is a tool for preventing problems, developing and implementing designs, processes, or
services.

Functional FMEAs feed design FMEAs, which in turn feed PFMEAs, which sets in place the con-
trol plans.

FMEA helps balance risk with other design requirements.
Pitfalls to be avoided during an FMEA are numerous but surmountable.
Skills needed by FMEA team members include both “soft” and “hard” skills.
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Exercises

7.1 Given the welding FMEA created by six members of the welding department, you have been
asked to help them choose the most important failure modes to work on. You have to report
back to the team in one day.
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Failure Modes and Effects Analysis
(Process FMEA)

Welding shop
___ Subsystems FMEA Number:
___ Component: Design Responsivity: Big John Prepared by:

Model: Key Date:
FMEA
Date (Orig.):

Core Team: Welding

Process step
Potential

failure modes
Potential

failure effects

Severity

Potential causes

O
ccurrence

Current controls

D
etect

R
.P
.M Recommended

actions

Working with saws Throwing sparks Fire 6 Working adjacent to flammable
materials

9 Fire extinguisher
nearby

9

Argon welding Exposure to fumes
and toxic gas

Occupational
disease

9 Fail to use appropriate protective
masks

8 Exhaust hoods 5

Electric welding Throwing sparks Burning 5 Nature of the process 6 None 4
Fall from height Injuries 9 Working at height 7 Safety training 5

Cutting metals Explosion of gas
cylinder

Fire and
injuries

7 Lack of training and poor
maintenance

3 Safety training 8

CO2 welding Flashback flame Explosion 6 Equipment failure 5 Safety training 5
Welding Fire Fire 5 Fail to separate full and empty

cylinders
3 Safety training 8

Collision with
obstacles

Injuries 6 Improper layout 3 Safety training 4

Collision with
forklift

Injuries 6 No warning device 7 Safety training 4

Hearing loss Deafness 6 High noise levels at work place 8 Wear proper gear 3



7.2 In reviewing the welding FMEA in Exercise 7.1, can you fill in some of the recommended
actions? Also, notice that “safety training” is a very common current control. Safety training
(and retraining) is not a positive cure for failure modes. For each of the failure modes with
that current control, you need to propose a REAL control not just “safety training.”

7.3 Supermarket self-checkout process checkout. The self-checkout machine (example to
the right).
You have seen the self-service checkout kiosks at your local supermarket. An alternative to

checkout lanes staffed by cashiers is that they are introduced to offer customers more control,
convenience, and a speedier checkout option. While retailers claim to install them to improve
customer service, we also know these machines can help them redeploy their cashiers.
Key user needs
The self-checkout option is meant for shoppers who want a quick exit and prefer using the

machines to dealing with store personnel. In a 2004 survey by research company IDC, respon-
dents saw the following key benefits of self-checkout kiosk:
(1) Shorter lines, (2) Faster checkout, (3) Control, (4) Privacy, (5) Greater accuracy than

checkout operator, and (6) choice of checkout

1

6

5

2

4

3

Self-checkout process pieces:
1. Lane light/store attendant call
2. Touch screen monitor
3. Basket stand
4. Barcode scanner cum weighing scale
5. Payment module
6. ATM PIN pad

Create a process flow chart of the self-checkout process for a machine like the one
illustrated.
For background, see: http://web.mit.edu/2.744/www/Project/Assignments/humanUse/

lynette/2-About%20the%20machine.html
Source: By Ben Schumin – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/

index.php?curid=17057288

7.4 (3–4 person exercise) The Romans and others until ~1200 AD used catapults in warfare.
Today, a model catapult is often used to teach design of experiments. One such catapult is
illustrated here:
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The four variables are:

1

1

2

2

3

3

4

4

5

5

Cocking angle

Stop
position

1

1

2

2

3

3

4

4

5
6

Launch arm

Launch platform
Rubber
band

Band tension
positon

Projectile

Floor or table

The four variables are:
1. Cocking angle (90–180°) - measured with a protractor
2. Launch position (1–5)
3. Band tension position (1–4)
4. Stop position (1–6)

Foam balls are used as the projectiles (for safety). A single rubber band is used for propul-
sive power.
ConstructaprocessFMEAfor this catapult, realizing that itmustbeusedonacarpeted floor,will

launch a foam ball no more than 20’, and a tape measure must be used for the distance measure-
ment as well as a sheet of paper to record (a typical 16 run experiment that varies each of the vari-
ablesaccording toa24 factorial experimentand isbelow) (If youknowastatisticianorSixSigmaBB
or MBB or equivalent in your organization, contact them for the loan of a STATAPULT™).

RunOrder CenterPt Blocks Hook pos. Stop pos. Angle Launch Distance

1 1 1 3 5 180 1
2 1 1 1 5 130 1
3 1 1 1 3 180 1
4 1 1 1 3 130 3
5 1 1 1 5 180 1
6 1 1 1 3 180 3
7 1 1 1 5 130 3
8 1 1 3 3 130 1
9 1 1 1 5 180 3
10 1 1 3 5 130 1
11 1 1 3 5 130 3
12 1 1 3 5 180 3
13 1 1 3 3 130 3
14 1 1 3 3 180 3
15 1 1 1 3 130 1
16 1 1 3 3 180 1
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16 run experiment for STATAPULT. The follow-on to this exercise is to model the distance
as a function of all factors and then pick a random distance and using MINITAB find the
settings that are based on your data. Tke six “launches” and see how tight your standard
deviation is.

7.5 (3–4 person team exercise) Bicycle FMEA. Items to include:

• Body [excluding accessories (mudguard, bell, reflectors, etc.)]

• Power transmission (gears, pedals, chain, etc.) excluding tires

• Brakes (cable, levers, pads)
You and your team pick the bicycle type, brand, etc.
See https://wiki.ece.cmu.edu/ddl/index.php/Bicycle_drivetrain for parts list

7.6 Late to work Process FMEA. Flow chart your activities from waking up in the morning to get-
ting to your workstation. Then, take each item of the flow chart and use it to complete a proc-
ess FMEA to find your highest RPN and how hence to accomplish “getting to work” easier/
more efficiently.

7.7 SAE Formula cars usually use a chain, sprocket, differential for the transfer of power to
engine to the axles. Components for this application vary but generally look like:

1 2 4 5 3 6 1 73

Roller chain and Differential (creative commons)

Source: EBERT/CC BY-SA 3.0.
An SAE formula team FMEA contained the following portion with these items. Using this

as a beginning, complete the FMEA through recommended actions.
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Item Function
Potential
failure mode

Potential effects of
failure

SEV Potential cause of
failure

O
C
C

Current
design
controls

D
ET

R
P
N Recommended

actions
Actions
taken

SEV

O
C
C

D
ET

R
P
N

Chain Transfers torque
from engine to
differential
sprocket

Insufficient
torque

Nonuniform torque
transfer

4 Wear due to insufficient
lubrication, improper
material selection

5 Inspection 5

Link
breakage

Insufficient torque
jerking

4 Misassembly improper
siding, link stretch

4 Inspection 5

Fatigue Variation in torque
transfer

4 Cyclic tensile load on
the tight side of the
chain due to applied
torque and centrifugal
force

4 Inspection 4

Sprocket Transfers torque
from chain to
differential

Nonuniform
torque transfer

Differential will not
receive the uniform
torque

5 Wear 4 Inspection 4

Jerking noises Uneven torque
transfer

5 Tooth crack tooth
breakage

4 Inspection 4

Uneven torque Differential
receives varying
torque

4 Improper installation
leading to improper
engagement, i.e.
slipping between
sprocket tooth and
chain shoe

4 Inspection 4

Differential Transfers torque
from sprocket to
each axle

Uneven torque
transfer

Axles will receive
uneven torques,
one more and other
less

4 Wear misassembly
loosening of carrier
bolts

4 Inspection
assembly
procedures

4

No drive transfer
to the axles

Vehicle does not
move

6 Gearbox bearing seize 3 Prerace
inspection

3

Insufficient drive
transfer

Axles does not get
sufficient drive

5 Gear teeth stripped 4 Prerace
inspection

4

Lack of drive
transfer

No sufficient drive
from gear box

5 Improper lubrication
low oil level

4 Prerace
inspection

4



7.8 FMEA of windshield wiper during cold weather conditions.
Using the three items, wiper blades, wiper arm, and wiper motor, to complete an FMEA considering cold weather operation only. To include RPN,
corrective actions, modified severity, detection and occurrence, and modified RPN.

Failure mode and effect analysis (FMEA) for automotive windshield wiper/washer system during cold weather conditions

Windshield wiper

No Item Function/purpose Failure mode
Subsystem
effects(s) of failure

System effects(s) of
failure

Severity

Detection Cause(s)

O
C
C

D
ET

SEV

R
P
M

Corrective
actions(s)/
status

O
C
C

D
ET

SEV

R
P
M

1 Wiper
blades

Maintain
visibility by
wiping away rain,
snow, and dirt off
windshield

Rubber
material rips/
tares

Loss of visibility,
streaks on
windshield

Difficulty driving,
cannot see road

4 Visible by eye Worn out, bad
material

5 1 5

Rubber
material
degrades due
to sun

Loss of visibility,
streaks on
windshield

Difficulty driving,
cannot see road

4 Visible by eye Worn out, bad
material

4 1 5

Blade frame
ices/freezes

Loss of visibility,
blade does not
clean windshield

Difficulty driving,
cannot see road

2 Visible by eye Moisture, snow,
sleet, build up
during snowy or
cold conditions

6 1 7

Dirty blades Loss of visibility,
dirt residue smear

Difficulty driving,
cannot see road

4 Visible by eye Dirt, sand, and salt
build up

9 1 3

2 Wiper
arm

Hold wiper blades Corrosion Loss of strength to
arm

Appearance,
difficult to remove
wipers

4 Visible by eye Bad paint, lack of
washing area

1 1 2

Loss of tension Loss of visibility,
streaks on
windshield

Difficulty driving,
cannot see road

4 Blades not
touching properly

Fatigue to spring 3 1 3

3 wiper
motor

Operate the
wipers

Bums out Loss of visibility,
cannot move arm

Difficulty driving,
cannot see road

2 Do not hear motor Worn out, bad
material

2 1 8

Blown fuse Loss of visibility,
cannot move arm

Difficulty driving,
cannot see road

2 No operation after
flip switch

Operate wipers
when frozen to
windshield

6 1 3



7.9 Complete the following partial design FMEA and select the first next step.

Line
reference Function

Potential
failure mode

Potential
effect of
failure SEV

Potential
causes OCC

Current design
controls DET RPX

1 Power switch
providing on/
off function to
a power tool

Switch
unable to
turn on unit

No
power

7 Worn
parts

6 Select part
rated for
expected use;
power cycling
life test

3

2 Switch
intermittent
behavior

Notable
to power
off tool

9 Corroded
contacts

4 Select part
rated for
expected
environment;
power
cycling life
test

2

3 Switch
unable to
turn unit off

Notable
to power
off tool

9 Switch
hard to
reach
when
operating

2 Switch has
high contract
color; power
cycling life test

3

• Provide an alternate means to power on the unit to lower the detection score of line 1

• Provide an alternate means to power down the unit to lower the occurrence score of line 2

• Provide an alternate location of the switch to lower the occurrence score of line 3

• Provide a safety switch that bypasses the power switch to reduce the severity score of lines 2
and 3

7.10 Baking cookies is a favorite FUN pastime for an FMEA. You can use your favorite recipe or
use this one:

Do a process flow of the baking process, noting possible failure modes in each stage,
and then
do an FMEA of the process.

Exercises 357



7.11 Pick out the best answer in each of these multiple choice questions (put your ENGINEER-
ING hat on):
a) When prioritizing actions to be taken in an FMEA, which of the following priority rank-

ings should be considered first?

• Overall RPN (Risk Priority Number)

• Highest severity ranking

• Highest occurrence ranking

• Highest severity times occurrence ranking.

b) An FMEA is being constructed for the manufacture of a syringe cartridge. The team has
developed risk ranking scale criteria for calculating the Risk Priority Number (RPN). The
team has assigned 5 values for ranking likelihood of occurrence (O), 10 values for ranking
the risk associated with severity (S), and 5 values for ranking the risk associated with
detection (D). Using this method will most likely:

• Ensure all values for O, S, and D are equally represented in RPN

• Give severity a disproportionate representation in RPN

• Give occurrence and severity an equal representation in RPN

• Ensure RPN reflects the priority for addressing failure modes

c) Which of following is NOT a part of Risk Priority Number for FMEA?

• Severity.

• Catastrophic.

• Occurrence.

• Detection.

d) All of the following are examples of design FMEA detection controls EXCEPT for:

•Whole system testing

• Finite Element Analysis (FEA)

• Lab testing

• Adding extra thickness to a part’s notched area

e) The intent of a recommended action in an FMEA is to reduce rankings in which of the
following orders of priority?

• Severity, Occurrence, Detection

• Occurrence, Severity, Detection

• Severity, Detection, Occurrence

• Occurrence, Detection, Severity

f) A potential infant mortality failure has been identified as the failure mode with the high-
est RPN in a design FMEA. What should you do next?

• Take no action until the failure modes actually occur.

• Tell the boss that reliability targets will not be achieved.

• Start a team to identify possible factors that can cause poor product quality duringman-
ufacturing in order to identify corrective action for this failure mode.

• Institute a burn-in test for each product to find infant mortality failure modes before
delivery to the customer.

g) A potential failure mode for an electronics device is the complete inability of the power
switch to activate (or power on) the device. In an FMEA, this failure mode would be con-
sidered in which category?
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• No function

• Partial degraded function

• Intermittent function

• Unintended function

h) Which of the following is a good design control to reduce severity or occurrence that is
identified in a design FMEA?

• Change the system requirements to reduce system function

• Add additional inspection(s) in production

• Enhance design validation testing

• Modify the design to reduce stress on a component.

Supplement 1: Shortcut Tables for Stalled FMEA Teams

One additional thought on severity, occurrence, and detection.
If a 1–10 scale is causing “analysis paralysis” (i.e. continuousarguingoverwhether it is “6”or “7”, etc.)
Use 1–4–7–10 only for each of severity, occurrence, and detection. Remember, an FMEA is a qual-

itative upfront tool to help prevent failure modes from occurring. … NOT an exact science!
The modified severity, occurrence, and detection tables for a 1–4–7–10 approach.
Figure 7 Sup1.1 Modified ranking severity, occurrence, and detection tables.

Effect Criteria Ranking
•  May endanger machine,

or operator 
•  Affects safe operation of

product / production and / or
involves non-compliance with

government regulation
•  Failure will occur without

warning 

•  Minor disruption to
production 

•  Production may have to
be sorted and a portion

(<100%) scrapped 

•  Product / equipment
operable, but at significantly

reduced level of performance,
ie. only primary function(s) 

•  Customer dissatisfied

•  Minor disruption to
production 

•  Production may have to
be sorted and a portion

(<100%) re-worked  
•  Minor non-conformance to

production specification 
•  Defect noticed by average

customer 
None •  No effect 1

SEVERITY of effects of failure mode 

Hazardous-
without warning

10

High 7

Very low 4

Probability of
failure 

Possible failure
rates 

CpK Ranking

Very high: Failure
is almost

inevitable 
≥ 1 in 2 < 0.33 10

High: Generally
associated with

processes similar
to previous

processes that
have often failed 

1 in 20 ≥ 0.67 7

Moderate:
Generally

associated with
processes similar

to previous
processes which
have experienced

occasional
failures, but not in
major proportions

1 in 2,000 ≥ 1.17 4

Remote: Failure
is unlikely. No
failures ever

associated with
almost identical

processes

≤ 1 in 1,500,000 ≥ 1.67 1

OCCURRENCE of failure mode

Detection Criteria Ranking

Almost impossible
No known control(s) available to

detect failure mode 
10

Very low
Very low likelihood

current control(s) will
detect failure mode

7

Moderately high
Moderately high likelihood

current control(s) will
detect failure mode

4

Almost certain

Current control(s) almost certain
to detect the failure mode.

Reliable detection controls are
known with similar processes

1

Likelihood of DETECTION of the failure mode

Supplement 1 359



Supplement 2: Future Changes in FMEA Approaches

Changes are being made to FMEAs (Failure Mode and Effects Analysis) by the AIAG (Automotive
IndustriesAdvisoryGroup. ThenewAIAG-VDAFMEAHandbook comes out periodically as changes
are made in FMEA thinking since the AIAG FMEA Handbook is used by most of the auto industry.
Agreatdealof theAIAGHandbook isbasedonthe cooperativeworkofFiatChrysler,GM,andFordon
SAE J1739, “Potential FailureMode andEffects Analysis inDesign (designFMEA) andPotential Fail-
ureMode andEffects Analysis inManufacturing andAssembly Processes (process FMEA) andEffects
Analysis for Machinery (Machinery FMEA)”, first published in 2002, with updates since.
Other industries have their own homegrown FMEA templates that will have minor changes in

format. An example is Department of Defense.
TheDFMEAandPFMEAtemplatesherearegeneric, as are the severity–occurrence–detection tables.

Supplement 3: DFMEA and PFMEA Forms

Figure 7 Sup3.1 Design FMEA template.

Part/
Product
Name   

FMEA Date (Orig) ______________  (Rev) _____________

Product/
part

function 

Potential
failure
mode 

Potential
failure
effects 

SEV
Potential
causes OCC

Current 
controls

DET RPN

Recom
mended
actions

Resp.
Actions
taken SEV OCC DET

R
P
N

0 0

0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Design

Failure Modes and Effects Analysis (DFMEA)

Figure 7 Sup3.2 Process FMEA template.

Process
Name 

FMEA Date (Orig) ______________  (Rev) _____________

Process
step

function 

Potential
failure
mode 

Potential
failure
effects

SEV
Potential
causes OCC

Current 
controls DET RPN

Recom
mended
actions

Resp.
Actions
taken SEV OCC DET

R
P
N

0 0

0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Process

Failure Modes and Effects Analysis (PFMEA)
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8

Loads, Capacity, and Reliability

“Adopt a self-reliant attitude to “own your work.”
Invest the time necessary to be sure of yourself and your designs.”

Source: Stan R. Caldwell; SEC 20: 5 Tips for Structural Engineers:
Become the Best Version of Yourself. Retrieved from:

https://engineeringmanagementinstitute.org/tsec-20-top-5-tips-structural-engineers/

8.1 Introduction

In the preceding chapters, failure rates were used to emphasize the strong dependence of reliability
on time. Empirically, these failure rates are found to increase with system complexity and also with
loading. In this chapter, we explore the concepts of loads and capacity and examine their relation-
ship to reliability. This examination allows us both to relate reliability to traditional design
approaches using safety factors and to gain additional insight into the relations between failure
rates, infant mortality, random failures, and aging.
Safety factors and margins are defined in the following way: Suppose that we definelas the load

on a system, structure, or piece of equipment and c as the corresponding capacity. The safety
factor is then defined as

v =
c
l

8 1

Alternately, the safety margin may be used. It is defined by

m = c− l 8 2

Failure then occurs if the safety factor falls to a value less than 1, or if the safety margin becomes
negative.
The concepts of load and capacity are employedmost widely in structural engineering and related

fields, where the load is usually referred to as stress, and the capacity as strength. However, they
have much wider applicability. For example, if a piece of electric equipment is under consideration,
wemay speak of electric load and capacity. A telecommunications system load and capacity may be
measured in terms of telephone calls per unit time, and for an energy conversion system thermal
units for load and capacity may be used. The point is that a wide variety of applications can be
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formulated in terms of load and capacity. For a given application, however, l and c must have the
same units.
In the traditional approach to design, the safety factor or margin is made large enough to more

than compensate for uncertainties in the values of both the load and the capacity of the system
under consideration. Thus, although these uncertainties cause the load and the capacity to be
viewed as random variables, the calculations are deterministic, using for the most part the best esti-
mates of load and capacity. The probabilistic analysis of loads and capacities necessary for estimat-
ing reliability clarifies and rationalizes the determination and use of safety factors and margins.
This analysis is particularly useful for situations in which no fixed bound can be put on the loading,
for example, with earthquakes, floods, and other natural phenomena, or for situations in which
flaws or other shortcomings may result in systems with unusually small capacities. Similarly, when
economics rather than safety is the primary criteria for setting design margins, the trade-off of per-
formance versus reliability can best be studied by examining the increase in the probability of fail-
ure as load and capacity approach one another.
The expression for reliability in terms of the random variables l and c comes from the notion that

there is always some small probability of failure that decreases as the safety factor is increased. We
may define the failure probability as

p = P l ≥ c 8 3

In this context, the reliability is defined as the nonfailure probability or

r = 1− p 8 4

which may also expressed as

r = P l < c 8 5

In treating loads and capacities probabilistically, we must exercise a great deal of care in expres-
sing the types of loads and the behavior of the capacity. If this is done, we may use the resulting
formalism not only to provide a probabilistic relation between safety factors and reliability but also
to gain a better understanding of the relations between loading, capacities, and the time depend-
ence of failure rates as exhibited, for example in the bathtub curve.
In Section 8.2, we develop reliability expressions for a single loading, and then, in Section 8.3,

relate the results to the probabilistic interpretation of safety factors. In Section 8.4, we take up repet-
itive loading to demonstrate how the time dependence of failure rate curves stems from the inter-
actions of variable loading with capacity variability and deterioration. In Section 8.5, a failure rate
model for the bathtub curve is synthesized in which variable capacity, variable loading, and capac-
ity deterioration, respectively, are related to infant mortality, random failures, and aging.

8.2 Reliability with a Single Loading

In this section, we derive the relations between load, capacity, and reliability for systems that are
loaded only once. The resulting reliability does not depend on time, for the reliability is just the
probability that the system survives the application of the load. Nevertheless, before the expressions
for the reliability can be derived, the restrictions on the nature of the loads and capacity must be
clearly understood.
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Load Application

In referring to the load on a system, we are in fact referring to the maximum load from the begin-
ning of application until the load is removed. Figure 8.1 indicates the time dependence of several
loading patterns that may be treated as single on loading l, provided that appropriate restrictions
are met.
Figure 8.1a represents a single loading of finite duration. Missiles during launch, flashbulbs, and

any number of other devices that are used only once have such loadings. Such one-time-only loads
are also a ubiquitous feature of manufacturing processes, occurring, for instance when torque is
applied to a bolt, or pressure is applied to a rivet. Loading often is not applied in a smooth manner,
but rather as a series of shocks, as shown in Figure 8.1b. This behavior would be typical of the vibra-
tional loading on a structure during an earthquake and of the impact loading on an aircraft
during landing. In many situations, the extreme value of many short-time loadings may be treated
as a single loading, provided that there is a definite beginning and end to the disturbance giving
rise to it.
The duration of the load in Figure 8.1a and b is short enough that no weakening of the system

capacity takes place. If no decrease in system capacity is possible, the situations shown in
Figure 8.1c and dmay also be viewed as single loadings, even though they are not of finite duration.
The loading shown in Figure 8.1c is typical of the dead loads from the weight of structures; these
increase during construction and then remain at a constant value. This formulation of the loading
is widely used in structural analysis when the load-bearing capacity not only may remain constant
but may in some instances increase somewhat with time because of the curing of concrete or the
work-hardening of metals.

(a) (b)

(c) (d)

l(t
)

l(t
)

l(t
)

l(t
)

t t

t t

Figure 8.1 Time-dependent loading patterns.
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Subject to the same restrictions, the patterns shown in Figure 8.1d may be viewed as a single
loading. Provided the peaks are of the same magnitude, the system will either fail the first time
the load is applied or will not fail at all. Under such cyclic loading, however, the assumption that
the system capacity will not decrease with time should be suspected. Metal fatigue and other wear
effects are likely to weaken the capacity of the system gradually. Similarly, if the values of peak
magnitudes vary from cycle to cycle, we must consider the time dependence of reliability explicitly,
as in Section 8.4.
Thus far, we have assumed that a system is subjected to only one load and that reliability is deter-

mined by the capacity of the system as a whole to resist this load. In reality, a system is invariably
subjected to a variety of different loads; if it does not have the capacity to sustain any one of these, it
will fail. An obvious example is a piece of machinery or other equipment, each of whose compo-
nents are subjected to different loads; failure of any one component will make the system fail.
A more monolithic structure, such as a dam, is subject to static loads from its own weight, dynamic
loads from earthquakes, flood loadings, and so on. Nevertheless, the considerations that follow
remain applicable, provided that the loads are considered in terms of the probability of a particular
failure mode or of the loading of a particular component. If the failure modes can be assumed to be
approximately independent of one another, the reliability of the overall system can be calculated as
the product of the failure mode reliabilities, as discussed in Chapter 3.

Definitions

To derive an expression for the reliability, we must first define independent PDFs for the load, 1,
and for the capacity, c. Let

f l l dl = P l ≤ l ≤ l + dl 8 6

be the probability that the load is between l and l + dl. Similarly, let

f c c dc = P c ≤ c < c + dc 8 7

be the probability that the capacity has a value between c and c + dc. Thus, fll(l) and fc(c) are the
necessary PDFs; we include the subscripts to avoid any possible confusion between the two. The
corresponding CDFs may also be defined. They are

Fc c =
c

0
f c c dc 8 8

Fl l =
l

0
f l l dl 8 9

We first consider a system with a known capacity c and a distribution of possible loads, as shown
in Figure 8.2a. For fixed c, the reliability of the system is just the probability that 1 < c, which is the
shaded area in the figure. Thus,

r c =
c

0
f l l dl 8 10

The reliability, therefore, is just F1(c), the CDF of the load evaluated at c. Clearly, for a system of
known capacity, the reliability is equal to one as c ∞, and to zero as c 0.
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Now suppose that the capacity also involves uncertainty; it is described by the PDF fc(c). The
expected value of the reliability is then obtained from averaging over the distribution of capacities:

r =
∞

0
r c f c c dc 8 11

Substituting in Eq. (8.10), we have

r =
∞

0

c

0
f l l dl f c c dc 8 12

The failure probability may then be determined from Eq. (8.4) to be

p = 1−
∞

0

c

0
f l l dl f c c dc 8 13

Alternately, we may substitute the condition on the load PDF,

c

0
f l l dl = 1−

∞

c
f l l dl 8 14

into Eq. (8.12). Then, using the condition

∞

0
f c c dc = 1 8 15

we obtain for the failure probability

p =
∞

0

∞

c
f l l dl f c c dc 8 16

As shown in Figure 8.3, the probability of failure is loosely associatedwith the overlap of the PDFs
for load and capacity in the sense that if there is no overlap, the failure probability is zero, and r= 1.

Example 8.1 The bending moment on amatch stick during striking is estimated to be distributed
exponentially. It is found that match sticks of a given strength break 20% of the time. Therefore, the
manufacturer increases the strength of the matches by 50%. What fraction of the strengthened
matches are expected to break as they are struck?

f l(
l)

f c
(c

)

r(c)
r(l)

c0

(a) (b)

c
0

l
l

Figure 8.2 Area interpretation of reliability: (a) variable load, fixed capacity and (b) variable capacity,
fixed load.
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Solution:
Assume that the strength (capacity) is known; then, for the standard matches, we have

0 8 = r =
c

0
f l l dl =

c

0
λe− λl dl = 1− e− λc

Therefore, e−λc = 0.2 or λc=−ln(0.2), where λ is the unknown parameter of the exponential load-
ing distribution. For the strengthened matches

r =
1 5c

0
f l l dl =

1 5c

0
λe− λldl = 1− e− 1 5λc

p 1− r = exp + 1 5 × ln 0 2 = 0 21 5 = 0 089

Thus, about 9% of the strengthened matches are expected to break.
Another derivation of r and p is possible. Although the derivation may be shown to yield results

that are identical to Eqs. (8.12) and (8.13), the intermediate results are useful for different sets of
circumstances. To illustrate, let us consider a systemwith known load but uncertain capacity repre-
sented by the distribution fc(c). The reliability for this system with known load is then given by the
shaded area in Figure 8.2b.

r l =
∞

l
f c c dc 8 17

or equivalently,

r l = 1−
l

0
f c c dc 8 18

For a system in which the load is also represented by a distribution, the expected value of the
reliability is obtained by averaging over the load distribution,

r =
∞

0
f l l r l dl 8 19

fl (l) fc(c)

l, c
0

Figure 8.3 Graphical reliability interpretation with variable load and capacity.
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or more explicitly,

r =
∞

0
f l l

∞

l
f c c dc dl 8 20

Similarly, we may consider the variation of the capacity first in deriving an expression for the
failure probability. For a system with a fixed load, the failure probability will be the unshaded area
under the curve in Figure 8.2b:

p l =
l

0
f c c dc 8 21

Then, averaging over the distribution of loads, we have

p =
∞

0
f l l

l

0
f c c dc dl 8 22

It is easily shown that Eqs. (8.12) and (8.20) are the same. First, write Eq. (8.12) as the double
integral

r =
∞

0

c

0
f c c f l l dl dc 8 23

where the shaded domain of integration appears in Figure 8.4. If we reverse the order of integration,
taking the c integration first, we have

r =
∞

0

∞

1
f c c f l l dc dl 8 24

Putting f [l(l) outside the integral over c, we obtain Eq. (8.20).

l = c

l
0

cFigure 8.4 Domain of integration for
reliability calculation.
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To recapitulate, Eqs. (8.12) and (8.20) may be shown to be identical, as may Eqs. (8.16) and (8.22).
However, the intermediate results for r(c), p(c), r(l), and p(l) are useful when considering systems
whose capacity varies little compared to their load or vice versa.

8.3 Reliability and Safety Factors

In the preceding section, reliability for a single loading is defined in terms of the independent PDFs
for load and capacity. Similarly, it is possible to define safety factors in terms of these distributions.
Two of the most widely accepted definitions are as follows. In the central safety factor, the values of
load and capacity in Eq. (8.1) are taken to be the mean values

l =
∞

− ∞
lf l l dl 8 25

c =
∞

− ∞
cf c c dc 8 26

Thus, the safety factor is

v = c l 8 27

There is a second alternative if we express the safety factor in terms of the most probable values lo
and c0 at the load and capacity distributions. The safety factor in Eq. (8.1) is then

v = c0 l0 8 28

These definitions are naturally associated with loads and capacities represented in terms of nor-
mal or lognormal distributions, respectively. Then, the reliability can be expressed in terms of the
safety factor along with measures of the uncertainty in load and capacity. Other distributions may
also be used in relating reliability to safety factors. Such is the case with the extreme-value distri-
bution. With such analysis, the effects of design changes and quality control can be evaluated.
Design determines the mean, c, or most probable value, c0, of the capacity, whereas the degree
of quality control in manufacture or construction influences primarily the variance of fc(c) about
the mean. Similarly, the conditions under which operations take place determine the load distri-

bution f1(l) as well as the mean value l.

Normal Distributions

The normal distribution is widely used for relating safety factors to reliability, particularly when
small variations in materials and dimensional tolerances and the inability to determine loading
precisely make capacity and load uncertain. The normal distribution is appropriate when variabil-
ity in loads, capacity, or both is caused by the sum of many effects, no one of which is dominant. An
appropriate example is the load and capacity of an elevator large enough to carry several people.
Since the load is the sum of the weights of the people, the variability of the weight is likely to be very
close to a normal distribution for the reasons discussed in Chapter 4. The variability in the weight of
any one person is unlikely to have an overriding effect on the total load. Similarly, if the elevator
cable is made up of many independent strands of wire, its capacity will be the sum of the strengths
of the individual strands. Since the variability in strength of any one strand will not have much
effect on the cable capacity, the normal distribution may be used to model the cable capacity.
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Suppose that the load and capacity are represented by normal distributions,

f l l =
1

2π σl
exp −

1
2

l− l
2

σ2l
8 29

and

f c c =
1

2π σc
exp −

1
2

c− c 2

σ2c
8 30

where the mean values of the load and capacity are denoted by land c, and the corresponding stand-
ard deviations are σl and σc. Substituting these expressions into Eq. (8.12), we obtain for the
reliability

r =
∞

− ∞

1

2π σc
exp −

1
2

c− c 2

σ2c
×

c

− ∞

1

2π σl
exp −

1
2

l− l
2

σ2l
dl dc 8 31

This expression1 for the reliability may be reduced to amuch simpler form involving only a single
normal integral. To accomplish this, however, involves a significant amount of algebraic manipu-
lation. We begin by transforming variables to the dimensionless quantities

x = c− c σc 8 32

y = l− l σl 8 33

Eq. (8.31) may then be rewritten as

r =
1
2π

∞

− ∞

σcx + c− l σl

− ∞
exp −

1
2

x2 + y2 dy dx 8 34

This double integral may be viewed geometrically as an integral over the shaded part of the x− y
plane shown in Figure 8.5. The line demarking the edge of the region of integration is determined
by the upper limit of the y integration in Eq. (8.34):

y =
1
σl

σcx + c− l 8 35

By rotating the coordinates through the angle θ, we may rewrite the reliability as a single stan-
dardized normal function. To this end, we take

x = x cos θ + y sin θ 8 36

and

y = − x sin θ + y cos θ 8 37

It may then be shown that

x2 + y2 = x 2 + y 2 8 38

1 Note that we have extended the lower limits on the integrals to −∞ in order to accommodate the use of normal
distributions. The effect on the result is negligible for c σc and l σi
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and

dx dy = dx dy 8 39

allowing us to write the reliability as

r =
1
2π

∞

− ∞

β

− ∞
exp −

1
2

x 2 + y 2 dy dx 8 40

The upper limit on the y integration is just the distance βR shown in Figure 8.5. With elementary
trigonometry, βR may be shown to be a constant given by

βR =
c − l

σ2c + σ2l
1 2

8 41

The quantity βR is referred to as the safety or reliability index.2 Since βR is a constant, the order of
integration may be reversed. Then, since

1

2π

∞

− ∞
e−

1
2x

2
dx = Φ ∞ = 1 8 42

the remaining integral, in y ,may be written as a standardized normal CDF to yield the reliability in
terms of the safety index βR:

r = Φ βR 8 43

The results of this equationmay be put in a more graphic form by expressing them in terms of the
safety factor, Eq. (8.27). A standard measure of the dispersion about the mean is the coefficient of
variation, defined as the standard deviation divided by the mean:

ρ = σ μ 8 44

x

x´

σc

β

c – l

l

c – l

θθ

y´

y

σ

Figure 8.5 Domain of integration for normal load and capacity.

2 βR is used in this text so that there is no confusion with the Weibull slope β.
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Thus, we may write

ρc = σc c 8 45

and

ρl = σl l 8 46

With these definitions wemay express the safety index in terms of the central safety factor and the
coefficients of variation:

βR =
v− 1

ρ2c v
2 + ρ2l

1 2
8 47

In Figure 8.6, the standardized normal distribution is plotted. The area under the curve to the left
of βR is the reliability r; the area to the right is the failure probability p. In Figure 8.6b, the CDF for
the normal distribution is plotted. Thus, given a value of βR, we can calculate r and p. Conversely, if
the reliability is specified, and the coefficients of variation are known, we may determine the value
of the safety factor. In Figures 8.7a and 8.7b, the relation between safety factor and probability of
failure is indicated for some representative values of the coefficients of variation. Figure 8.7a has
ρc = 0.1, and Figure 8.7b has ρc = 0.2.

Example 8.2 Suppose that the coefficients of variation are ρc = 0.1 and ρl = 0.15. If we assume
normal distributions, what safety factor is required to obtain a failure probability of no more than
0.005?

Solution:
p = 0.005; r = 0.995; r =Φ(βR)= 0.995. Therefore, from Appendix C, βR = 2.575. We must solve
Eq. (8.47) for ν. We have

βR
2 ρ2c v

2 + ρ2l = v− 1 2 or 1− βR
2ρ2c v2 − 2v + 1− βR

2ρ2l = 0

Solving this quadratic equation in v, we have

v =
2 ± 4− 4 1− β2ρ2l 1− β2ρ2c

1 2

2 1− β2ρ2c
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z z
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(a) (b)ϕ(z) ϕ(z)

1.0
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0
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rr

β

Figure 8.6 Standard normal distribution: (a) probability density function (PDF) and (b) cumulative distribution
function (CDF).
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Figure 8.7b Probability of failure for normal load and capacity (ρl = 0.2).
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or

v =
2 ± 2 1− 0 8508 × 0 9337 1 2

2 × 0 9336
=

1 ± 0 4534
0 9337

= 1 56

since the second solution, 0.5853, will not satisfy Eq. (8.47).
In using Eqs. (8.43) and (8.47) to estimate reliability, we assume that the load and capacity are

normally distributed and that the means and variances can be estimated. In practice, the paucity of
data often does not allow us to say with any certainty what the distributions of load and capacity are.
In these situations, however, the sample mean and variance can often be obtained. They can then
be used to calculate the reliability index defined by Eq. (8.47); often, the reliability can be estimated
from Eq. (8.43). Such approaches are referred to as second-moment methods, since only the zero
and second moments of the load and capacity distributions need to be estimated.
Second-moment methods (Cornell 1969; Ang and Tang 1984) have been widely employed, for

they represent the logical next step beyond the simple use of safety factors in that they also account
for the variance of the distributions. Such methods must be employed with care, however, for when
the distributions deviate greatly from normal distributions, the resulting formulas may be in serious
error. This may be seen from the different expressions for reliability when lognormal or extreme-
value distributions are employed.

Lognormal Distributions

The lognormal distribution is useful when the uncertainty about the load, or capacity, or both is
relatively large. Often, it is expressed as having 90% confidence that the load or the capacity lies
within some factor, say 2, of the best estimates l0 or c0. In Chapter 4, the properties of the lognormal
distribution were presented. As indicated there, the lognormal distribution is most appropriate
when the value of the variable is determined by the product of several different factors. For load
and capacity, we rewrite Eq. (4.67) for the PDFs as

f l l =
1

2π ωll
exp −

1
2ω2

l

ln
l
l0

2

, 0 < l ≤ ∞ 8 48

and

f c c =
1

2π ωcc
exp −

1
2ω2

c
ln

c
c0

2

, 0 < c ≤ ∞ 8 49

If Eqs. (8.48) and (8.49) are substituted into Eq. (8.12), the resulting expression for the reliability is

r =
∞

0

1

2πωcc
exp −

1
2ω2

c
ln

c
c0

2

×
c

0

1

2π ωll
exp −

1
2ω2

l

ln
l
l0

2

dl dc

8 50
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Note, however, that with the substitution

y =
1
ωl

ln
l
l0

8 51

and

x =
1
ωl

ln
c
c0

8 52

We obtain

r =
1
2π

∞

− ∞

1 ωl ωc x + ln c0 l0

− ∞
exp −

1
2

x2 + y2 dy dx 8 53

The forms of the reliability in Eq. (8.34) and in this equation are identical if in the upper limit of

the y integration we substitute ωl and ωc for σl and σs, respectively, and replace c − lwith ln(c0/l0).
Thus, the reliability still has the form of a standardized normal distribution given by Eq. (8.43).
Now, however, the argument βR is given by

βR =
ln c0 l0

ω2
c + ω2

l
1 2

8 54

Example 8.3 Suppose that both the load and the capacity on a device are knownwithin a factor of
2 with 90% confidence. What value of the safety factor, c0/l0,must be used if the failure probability is
to be no more than 1.0%?

Solution:
For Φ(βR)= r = 1 – p = 0.99, we find from Appendix C that βR = 2.33. From Eq. (4.77) for 90%
confidence with a factor of n = 2 uncertainty, we have for both load and capacity ωc = ωl = ω =
(1/1.645) ln(n) = (1/1.645) ln(2) = 0.4214. Solve Eq. (8.54) for c0/l0:

c0
l0

= exp β ω2
c + ω2

l
1 2

= exp β 2ω

= exp 2 33 × 1 414 × 0 4214 = 4 01

Combined Distributions

In general, it is difficult to evaluate analytically the expressions given for reliability when the load
and capacity are given by different distributions. However, when the load or capacity is given by an
extreme-value distribution and the other by a normal distribution, both analytical results and some
insight can be obtained Equations (8.12) and (8.20) may be used to numerically estimate the reli-
ability if the probability density function of the load and capacity were known, or if load and capac-
ity distribution data were empirically known. In the latter case, using Monte Carlo simulation.
Consider first a system whose capacity is approximated by the smallest extreme-value distribu-

tion introduced in Chapter 5, but about whose loading there is only a small amount of uncertainty.

This situation is depicted in Figure 8.8a. We assume that l, the mean value of the load, is much
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smaller than the mean, c u−Θγ, of the smallest extreme-value distribution that represents the

capacity: l c . For known loading, the reliability is given by Eq. (8.18). Thus, using CDF from
Eq. (5.34), we have

r l = exp − e l− u Θ 8 55

which for small enough values of l (i.e. l u) becomes

r l ≈ 1− exp
l− u
Θ

8 56

Now suppose that we want to take into account some natural variation in the loading on the sys-
tem. If this is represented by a distribution with small variance of the load about the mean,
Eq. (8.19) may be employed to express the reliability as

r = 1−
∞

0
f l l exp

l−u
Θ

dl 8 57a

Again, it must be assumed that the variance of the load is not large, σl c − l, so that the expan-
sion, Eq. (8.56), is valid over the entire range of l, where f1(l) is significantly greater than zero. We
obtain for the reliability

r = 1− exp
1
2

σl
θ

2
exp

l− u
Θ

8 57b

where u c + Θγ l , and γ is Euler’s constant.
In the converse situation the capacity has only a small degree of uncertainty, whereas the loading

is represented by a maximum extreme-value distribution, again with the stipulation that c l .

(a) (b)

fI(l)

fc(c)

fc(c)

fI(l)

l, cl, c 00

Figure 8.8 Graphical representations of reliability: (a) smallest extreme-value distribution for capacity and
(b) largest extreme-value distribution for loading.
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This situation is depicted in Figure 8.8b. The reliability at known capacity is first obtained by sub-
stituting the maximum extreme-value distribution from Eq. (5.19) into Eq. (8.10),

r c = Fl c = exp − e− c− u Θ 8 58

or for large c,

r c ≈ 1− e− c− u Θ 8 59

Thus, from Eq. (8.11), we have

r =
∞

0
f c c 1− exp

u− c
Θ

dc 8 60

provided that the variance in fc(c) is small enough that Eq. (8.59) is valid. The resulting reliability is

r = 1− exp −
1
2

σc
Θ

2
1− exp

u− c
Θ

8 61

where u l −Θγ c, and γ is Euler’s constant.

8.4 Repetitive Loading

We have considered time only implicitly, or not at all, in conjunction with load–capacity inter-
ference theory. Load has been represented as the maximum load over the life of the device or
system. Therefore, with longer lives, the load distribution in Figure 8.3 would shift to the right,
causing the reliability to decrease. Likewise, aging effects have been taken into account only in
the conservatism in which the capacity distribution is chosen; it should take weakening with age
into account.
Time, however, is arguably the most important variable in many reliability considerations. The

bathtub curve representation of failure rate curve pictured in Figure 3.1 is ubiquitous in character-
izing the reliability losses that cause infant mortality, random failures, and aging. In this and the
following section, we demonstrate how load and capacity interact under repetitive loading and
result in these three failure mechanisms. Specifically, infant mortality is closely associated with
capacity variability, random failures with loading variability, and aging with capacity deterioration.
These associations provide a rational for the bathtub shapes of failure rate curves and clarify the
relationship between the three failure classes and the corresponding causes of quality loss enum-
erated by Taguchi: product noise, outer noise, and inner noise.

Loading Variability

Consider a system subject to repetitive loading, and assume that the magnitude of each load is
determined by a random variable 1, described by a probability density fl(l). Suppose, for now, that
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we specify a system with a known capacity c(t) at time t. The probability that a load occurring at
time t will cause system failure is then just the probability that l > c(t), or

p =
∞

c t
f l l dl 8 62

Repetitive loading may occur at either equal or random time intervals, as pictured in Figures 8.9a
or b, respectively. The model that follows is based on random intervals, although when the mean
time between loads becomes small, the two models yield nearly identical results. We model the
random times at which the loads occur by specifying that during a vanishingly small time incre-
ment, Δt, the probability of load occurrence is γ Δt, where Δt is so small that γ Δt 1. The prob-
ability of a load occurring at any time is then independent of the time at which the last loading
occurred; the loading is then said to be Poisson distributed in time with a frequency γ. The prob-
ability of a load that is large enough to cause failure occurring between t and t +Δt is thus pγ Δt or,
using Eq. (8.62),

γ
∞

c t
f l l dlΔt 8 63

The system, however, can fail only once. Thus, it will fail between t and t+Δt only if it has sur-
vived to time t and the failing load occurs during Δt.
But R(t), the reliability, is just the probability that the system has survived to t. Thus, the failure

probability during Δt is R(t) pγ Δt. Likewise, the reliability at t +Δt is just the probability that the
system survived to t and that no failure load occurred during Δt. Since we take the and to represent
independent events, we may write

R t + Δt = 1− γ
∞

c t
f l l dlΔt R t 8 64

Lo
ad

Lo
ad

Time

(a) (b)

Time

Periodic loading Loading at random intervals

Figure 8.9 Repetitive loads of random magnitudes: (a) periodic loading and (b) loading at random intervals.
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Rearranging terms yields

R t + Δt −R t
Δt

= − γ
∞

c t
f l l dl R t 8 65

Taking the limit as Δt 0 then yields the same form as Eq. (3.15),

λ t = −
1

R t
d
dt

R t 8 66

where the failure rate is given in terms of the load distribution as

λ t = γ
∞

c t
f l l dl 8 67

This equation clearly indicates that if the capacity of the system is time independent, so that
c(t) c0, then time also disappears from the failure rate, yielding the constant failure rate model

λ = γ
∞

c t
f l l dl 8 68

and the common exponential distribution R(t) = exp(−λt) results.

Example 8.4 Amicrowave transmission tower is to be constructed at a location where an average
of 15 lightning strikes per year are expected. The mean value of the peak current is estimated to be
20,000 amperes, and the peak currents are modeled by an exponential distribution. The MTTF is to
be no less than 10 years.

a) What value of the failure rate is acceptable?
b) For what peak amperage must the protection system be designed?

Solution:

a) For a constant failure rate phenomenon, we have

λ = 1 MTTF = 1 10 = 0 1 year− 1

b) From Eq. (3.24), we may write the exponential load distribution as Fl l = 1− e− l l, where the

mean load l = = 20, 000, and γ = 15/year. Using the relationship between fl(l) and Fl(l), we may
write Eq. (8.68) as

λ = γ
∞

c0

f l l dl = γ 1−Fl c0 = γ exp − c0 l

Since MTTF= 1/λ, we have

MTTF =
1
γ

exp − c0 l

or inverting,

c0 l = ln γMTTF = ln 15 10 = 5 0
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or

c0 = 20, 000 × 5 0 = 100, 000 Amperes

Aging is present if the capacity decreases with time. We represent this deterioration as

c t = c0 − g t 8 69

where c0 is the initial capacity, at t = 0, and g(t) is a monotonically increasing function of time, with
g(0)= 0. Clearly, if the capacity decreases as time elapses, the failure rate will grow, since the lower
limit on the integral in Eq. (8.67) then moves toward zero. The rate at which the failure rate
increases, however, will be sensitive to the loading distribution as well as to c(t).
Once the failure rate is known, the reliability can be obtained from Eq. (3.18). Thus,

R t c0 = exp −
t

0
dt γ

∞

c t
f l l dl 8 70

where c(t) is given by Eq. (8.69).

Example 8.5 Assume that the capacity of the microwave tower in Example 8.4 deteriorates at a
constant rate of 1% per year.

a) What is the 10 year % decrease in capacity?
b) What is the 10 year % increase in failure rate?
c) What is the probability that a damaging lightning strike will take place in the first 10 years with-

out deterioration and
d) with deterioration?

Solution:

a) Let c(t)= c0(1− αt),where α= 0.01/year. After 10 years, the capacity decrease is 0.01 × 10= 10%.
b) Replacing c0 by c(t) in Example 8.4, we have

λ t = γ exp − c0 1− αt l = λ 0 exp αtc0 l

Since αt = 0.1 and c0 l = 5 0, we have

λ(10)= λ(0)e0.1×5.0= 1.65 λ(0).

Thus, the increase is 65%.
c) 1− R(10)= 1− e−λ(0) t = 1− e0.1×10= 0.632

t

0
λ t dt = λ 0

t

0
eαt c0 ldt = λ 0 αc0 l

− 1
eαtc0 l − 1

10

0
λ t dt = 0 1 0 01 × 5 0 − 1 e0 1 × 50 − 1 = 1 3

1−R 10 = 1− exp −
10

0
λ t dt = 1− e− 1 3 = 0 727
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Variable Capacity3

We next consider situations where not every unit of a system or device has exactly the same initial
capacity. In reality, they would not, since variability in manufacturing processes inevitably leads to
some variability in capacity. Wemodel this variability by letting c0 become a random variable which
is described by the probability density function fc(c0). We next consider the ensemble of such units,
each with its own capacity. The system reliability is then an ensemble average over c0:

R t =
∞

0
dc0 f c c0 R t c0 8 71

Inserting Eq. (8.70) then yields

R t =
∞

0
dc0 f c c0 exp −

t

0
dt γ

∞

c t
f l l dl 8 72

To focus on the effect of variable capacity on failure rates, we ignore deterioration for themoment
by setting c(t)= c0 and assume that some fraction, say pd, of the systems under consideration are
flawed in a serious way. This situation may be modeled by writing the PDF of capacities in terms of
the Dirac delta functions as

f c c0 = 1− pd δ c0 − cτ + pdδ c0 − cd 8 73

The first term on the right-hand side corresponds to the probability that the systemwill be a prop-
erly built system with target design capacity of cτ. Using the Dirac delta function, we are assuming
that the capacity variability of the properly built systems can be ignored. The second term corre-
sponds to the probability that the system will be defective and have a reduced capacity cd < cτ. Such
a situation might arise, for example if a critical component were to be left out of a small fraction of
the systems in assembly, or if, in construction, members were not properly assembled with some
probability pd.
The reliability is obtained by first substituting Eq. (8.73) into (8.72) and using the Dirac delta dis-

tribution property given in Eq. (8Sup1.7) to evaluate the integrals,

R t = 1− pd exp − λτt + pd exp − λdt 8 74

where for brevity, we have defined the failure rates

λτ = γ
∞

cτ

f l l dl 8 75

and

λd = γ
∞

cd

f l l dl 8 76

Since the failure rate must increase with decreased capacity, λτ < λd. We now use the definition of
the time-dependent failure rate given in Eq. (8.66) to obtain, after evaluating the derivative,

λ t = λτ

1 +
pd

1− pd

λd
λτ

exp − λd − λτ t

1 +
pd

1− pd
exp − λd − λτ t

8 77

3 This section uses Supplement 1 – The Dirac Delta Distribution.
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The decreasing failure rate associated with infant mortality may be seen to appear as a result of
the presence of the units with substandard capacities. For clarity, we consider the extreme example
of a system for which the probability of defective construction is small, pd 1, but for which the
defect greatly increases the failure rate, λd λτ. In this case, Eq. (8.77) reduces to

λ t = λτ 1 + pd
λd
λτ

e− λdt 8 78

Thus, the failure rate decreases from a value of ≈λτ+ pdλd at zero time to the value of λτ for the
unflawed systems that remain after all defective units have failed.

Example 8.6 A servomechanism is designed to have a constant failure rate and a design-life reli-
ability of 0.99 in the absence of defects. A common manufacturing defect, however, is known to
cause the failure rate to increase by a factor of 100. The purchaser requires the design-life reliability
to be at least 0.975.

a) What fraction of the delivered servomechanisms may contain the defect if the reliability crite-
rion is to be met?

b) If 10% of the servomechanisms contain the defect, how long must they be worn in before deliv-
ery to the purchaser?

Solution:

a) Without the defect, the failure rate λτ ≡ λ(cτ) may be found in terms of the design life T by
R0 T = e− λτT ; then,

λτT = ln
1

R T
= ln

1
0 99

= 0 01005

To determine p, the acceptable fraction of units with defects, solve Eq. (8.74); with t = T for pd:

pd =
1−R T exp + λτT
1− exp − λd − λτ T

With λd≡ λ (cd)= 100 λτ, R(T)= 0.975, and λτT = 0.01005,

pd =
1− 0 975e + 0 01005

1− e− 99 × 0 01005
= 0 024

b) Recall the definition for reliability with wear-in from Eq. (3.51). Combining Eq. (8.74) with this
expression, we have, for a wear-in period Tw,

R T Tω =
1− pd exp − λτ T Tω + pd exp − λd T + Tω

1− pd exp − λτTω + pd exp − λdTω

Solve for Tω:

Tω =
1

λd − λτ
ln

pd
1− pd

R T Tω exp − λdT
exp − λτt −R T Tω
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With R(T|Tω)= 0.975, pd = 0.1, λτT = 0.01005, and λdT = 1.005,

Tω =
T
99

ln
0 1

1− 0 1
0 975− e− 100 × 0 01005

e− 0 01005 − 0 975

= 0 015 T or 1 1
2 of the design life.

8.5 The Bathtub Curve – Reconsidered

The preceding examples illustrate the constant failure rate that results from loading variability, the
increasing failure rates resulting from the combined effects of loading variability and product dete-
rioration, and the decreasing failure rates from loading and initial capacity variability. We next look
at the three classes of failure individually and in combination to show how the bathtub curve arises.
Table 8.1 lists the eight combinations that may be considered. We next write a general expression
for the failure rate that includes all three modes. Since the failure rate is defined in terms of the
reliability by Eq. (8.66), we may insert Eq. (8.72) for the reliability and perform the derivative
to yield

λ t =
γ

∞
0 dc0 f c c0

∞
c t f l l dl exp − γ

t
0dt

∞
c t f l l dl

∞
0 dc0 f c c0 exp − γ

t
0dt

∞
c t f l l dl

8 79

Equations (8.69), (8.72), and (8.79) constitute a reliability model in which infant mortality, ran-
dom failures, and aging are represented explicitly in terms of capacity variability, loading variabil-
ity, and capacity degradation.
The relationships are summarized in the first two columns of Table 8.2. Any phenomenonmay be

eliminated from consideration as indicated in the third column. The fourth column exhibits the
particular load and capacity distributions used in the numerical examples that follow. These are
normal distributions of load and capacity; in these, we use v = 1.5 for the safety factor, with ρl
= 0.15 and ρc = 0.10 for the load and capacity coefficients of variation. We examine the failure
modes and their interactions by considering individually each of the eight combinations enumer-
ated in Table 8.1. For each case, load and capacity are plotted versus time in Figure 8.10 for sche-
matic realizations of the stochastic loading process. The normal distribution plotted on the vertical
axis is used to denote cases with variable capacity; the vertical lines denote loading magnitudes at
random time intervals.

Table 8.1 Failure modes and their interactions.

Case 1 2 3 4 5 6 7 8

I. Infant mortality No No No Yes No Yes Yes Yes

II. Random failures No No Yes No Yes No Yes Yes

III. Aging No Yes No No Yes Yes No Yes
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Single Failure Modes

Of the eight cases, the first is trivial since, as indicated in Figure 8.10, the absence of both variability
and aging leads to a vanishing failure rate and a reliability equal to one. In cases two and three,
there is no capacity variability, and therefore Eqs. (8.72) and (8.79) reduce to Eqs. (8.70) and
(8.67). In case two, only mode III, aging, is present. Thus, the loading is represented by the Dirac
delta function, and we may further reduce Eqs. (8.67) and (8.70) to

λ t =
0, t < t f
γ, t > t f

8 80

where t f = g− 1 c0 − l Thus,

R t =
1, t < t f

e− γ t− t f , t > t f
8 81

This system does not fail before time tf, but at the first loading thereafter, causing the rapid expo-
nential decay in the reliability. In case three, where only mode II, random failure, due to load var-
iability is present, we replace c(t) by c0 in Eq. (8.70) to obtain a constant failure rate and the
characteristic exponential decay of the reliability.
In case four, where only mode I, infant mortality, caused by variable capacity, is present, the sit-

uation is somewhat more complex. Setting c(t) equal to c0 and using the Dirac delta function for
loading in Eqs. (8.72) and (8.79), we obtain

R t = 1− 1− e− γt
l

0
f c c0 dc0 8 82

and a corresponding failure rate of

λ t =
γe− γt l

0 f c c0 dc0

1− 1− e− γt l
0 f c c0 dc0

8 83

In this situation, the fraction of the system population for which c0 < l fails at the first loading,
causing the reliability to drop sharply and then stabilize; the failure rate decreases exponentially at a
very rapid rate.

Table 8.2 Failure mode characterization.

Failure mode Governing property Mode absent Modea present

I. Infant Mortality
(variable capacity)

fc(c0) f c c0 = δ c0 − c0 f c c0 = ϕ c0 − c0 σc

II. Random Failures
(variable load)

fl(l) f l l = δ l− l f l l = ϕ l− l σl

III. Aging (deteriorating
capacity)

g(t) g(t)= 0 g(t)= αc0(t/t0)
β

a ϕ μ 2π − 1 2 exp − 1
2 u

2 .
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In each of the preceding three cases, only one failure mode is present. The modes are compared
through the schematic diagrams of reliability and failure rate given in Figure 8.11a and b. The fail-
ure rate curves, in particular, are instructive since they show that the cases of pure infant mortality,
random failures, and aging failures to some extent resemble the bathtub curve. The differences,
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Figure 8.10 Load and capacity realizations vs. time for failure mode combinations (I – infant mortality,
II – random, and III – aging).
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however, are striking. The infant mortality contribution drops quickly to zero, since if the system
does not fail at the first loading it does not fail at all. Unlike bathtub curves, the failure rate from
aging is zero until tf, at which time it jumps to a value of γ, causing the reliability to drop sharply to
zero. Thus, it is clear that simple superposition of the failure rates depicted in Figure 8.11 do not
accurately represent the bathtub curve. To obtain realistic results we must also examine the inter-
actions between failure modes.

Combined Failure Modes

Next, we consider combinations of two failure modes. Equations (8.70) and (8.67) describe case five,
which combines random failures and aging, modes II and III. Aging is modeled by a power law

g t = 0 1c0 t t0
β 8 84

where we take γt0 = 100. In Figure 8.12, the failure rate is shown to be increasing with time with a
behavior which is closely correlated to exponent m in the aging model.
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Figure 8.11 Effects of single failure modes: (a) reliability and (b) failure rate.
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Figure 8.12 Combined random and aging failure rates (modes II and III) vs. time for several values of m.
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In case six, infant mortality and aging modes I and III occur together in the absence of random
failures. The reliability and failure rate are obtained by replacing the load PDF in Eqs. (8.72) and
(8.79) by a Dirac delta function. The reduced expressions are

R t = 1− 1− e− γt
l

0
f c c0 dc0 −

l + g t

l
1− e− γ t− g− 1 c0 − l f c c0 dc0 8 85

for the reliability and

λ t =
γe− γt l

0 f c c0 dc0 +
l + g t

l
eγg

− 1 c0 − l f c c0 dc0

1− 1− e− γt l
0 f c c0 dc0 −

l + g t

l
1− e− γ t− g− 1 c0 − l f c c0 dc0

8 86

for the failure rate. The failure rate is plotted in Figure 8.13. This situation resembles that encoun-
tered frequently in fatigue testing, where the loading magnitude is carefully controlled. After that
fraction of the population for which the initial capacity is less than the load is removed at the first
loading, the failure rate is vanishingly small until the effects of aging become significant.
In case seven, infant mortality and random failures, modes I and II, are present in the absence of

aging. Results obtained by setting c(t)= c0 in Eqs. (8.72) and (8.79) are shown in Figure 8.14. The
interaction of infant mortality and random failure modes causes the characteristic decreasing fail-
ure rate frequently observed in electronic equipment.
Finally, we consider the eighth case where all three failure modes are present, using Eqs. (8.72)

and (8.79) for reliability and failure rate. The bathtub curve characteristics are shown in Figure 8.15
where we have also included curves for various combinations of two failure modes. These are
obtained by removing one failure mode, but keeping the remaining parameters fixed. These results
illuminate the origins of the three failure modes: infant mortality with capacity variability, random
failures with loading variability, and aging with capacity deterioration. Moreover, while changes in
load or capacity distribution often have large effects on the quantitative behavior of the failure rate
cures, the qualitative behavior remains essentially the same. Themodel indicates, however, that the
interactions between the three modes are very important in determining the failure rate cure. Thus,
only if the three failure modes arise from independent failure mechanisms or in different compo-
nents is it legitimate simply to sum the failure rate contributions.
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Figure 8.13 Combined infant mortality and aging failure rates (modes I and III) vs. time.
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Exercises

8.1 A design engineer knows that one-half of the lightning loads on a surge protection system
are greater than 500 V. Based on previous experience, such loads are known to follow
the PDF:

f v = γe− γv, 0 ≤ v < ∞

a) Estimate γ per volt.
b) What is the mean load?
c) For what voltage should the system be designed if the failure probability is not to

exceed 5%?

8.2 Given the following distributions of capacity and load, determine the failure probability:

f c c = 5c4; 0 < c < 1

= 0; otherwise

f l l = 2; 0 < l < 1 2

= 0; otherwise

8.3 Suppose that the PDFs for load and capacities are

f 1 l = γe− λl, 0 ≤ l ≤ ∞

f c c =

0, 0 ≤ c < a

1 a, a ≤ c ≤ 2a

0, 2a < c ≤ ∞

Determine the reliability; evaluate all integrals.

8.4 The impact loading on a railroad coupling is expressed as an exponential distribution:

f 1 l = βe− βl

The coupling is designed to have a capacity c= cm. However, because ofmaterial flaws, the
PDF for the capacity is more accurately expressed as
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f c c =
αeαc

exp αcm − 1
, 0 ≤ c ≤ cm

0, c > cm

a) Determine the reliability for a single loading, assuming that the flaws can be neglected.
b) Recalculate a using the capacity distribution with the flaws included.
c) Show that the result of b reduces to that of a as α ∞.
d) Show that for α= 0, the reliability is

r = 1−
1

βcm
1− e− βcm

8.5 It is estimated that the capacity of a newly designed structure is c = 10, 000 kips, σc = 6000

kips, normally distributed. The anticipated load on the structure will be l = 5000 kips, with
an uncertainty of σl = 1500 kips, also normally distributed. Find the unreliability of the
structure.

8.6 A structural code requires that the reliability index of a cable must have a value of at least
βR = 5.0. If the load and capacity may be considered to be normally distributed with coeffi-
cients of variation of ρl = 0.2 and ρc = 0.1, respectively, what safety factor must be used?

8.7 Steel cable strands have a normally distributed strength with a mean of 5000 lb and a stand-
ard deviation of 150 lb. The strands are incorporated into a crane cable that is proof tested at
50,000 lb. It is specified that no more than 2% of the cables may fail the proof test. Howmany
strands should be incorporated into the cable, assuming that the cable strength is the sum of
the strand strengths?

8.8 Substitute the normal distributions for load and capacity, Eqs. (8.29) and (8.30), into the
reliability expression, Eq. (8.20). Show that the resulting integral reduces to Eqs. (8.41)
and (8.43).

8.9 The twist strength of a standard bolt is 23 Nm with a standard deviation of 1.3 Nm. The
wrenches used to tighten such bolts have an uncertainty of σ = 2.0 Nm in their torsion set-
tings. If no more than 1 bolt in 1000 may fail from excessive tightening, what should the
setting be on the wrenches? (Assume normal distributions.)

8.10 Suppose that a car hits potholes spaced at random distances at a rate of 20/hour. The loading
on the wheel bolts caused by these potholes is exponentially distributed.

f l l = 0 6 exp − 0 6l , 0 ≤ l ≤ ∞

What will the failure rate be if the bolt capacity is designed to be exactly eight times the
mean value of the pothole loading?

8.11 Suppose that both load and capacity are known to a factor of 2 with 90% confidence. Assum-
ing lognormal distributions, determine the safety factor c0/l0 necessary to obtain a reliability
of 0.995.
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8.12 Show in detail that Eq. (8.61) follows from Eqs. (8.30) and (8.60).

8.13 The loading on industrial fasteners of fixed capacity is known to follow an exponential dis-
tribution. Thirty percent of the fasteners fail. If the fasteners are redesigned to double their
capacity, what fraction will be expected to fail?

8.14 Consider a pressure vessel for which the capacity is defined as p, themaximum internal pres-
sure that the vessel can withstand without bursting. This pressure is given by p = τ0σm/2R,
where τ0 is the unflawed thickness, σm is the stress at which failure occurs, and R is
the radius. Suppose that the vessel thickness is τ (≥τ0), but the PDF for the maximum
depths of undetected crack in steel piping is distribution of crack depths is

f x =
1
γ

e− x γ

1− e− τ γ
where τ is the pipe thickness, and γ = 6.25 mm.

Show that the PDF for capacity is

f p p

2R
γσm

1
eτ γ − 1

exp
2R
γσm

p , 0 ≤ p ≤
τσm
2R

0, p >
τσm
2R

a) Normalize to τσm/2R = 1 and then plot fp(p) for γ = τ, 0.5 τ, and 0.1 τ.
b) Physically interpret the results of your plots.

8.15 In Exercise 8.14, suppose that the vessel is proof tested at a pressure of p = τσm/4R. What is
the probability of failure if
a) γ = 0.5 τ?
b) γ = 0.1 τ?

8.16 A system under a constant load, l, has a known capacity that varies with time as c(t)= c0(l−
0.02 t). The safety factor at t = 0 is 2.
a) Sketch R(t).
b) What is the MTTF?
c) What is the variance of the time to failure?

8.17 Suppose that steel wire has a mean tensile strength of 1200 lb. A cable is to be constructed
with a capacity of 10,000 lb. How many wires are required for a reliability of 0.999
a) if the wires have a 2% coefficient of variation?
b) if the wires have a 5% coefficient of variation?
(Note: Assume that the strengths are normally distributed and that the cable strength is the
sum of the wire strengths.)

8.18 Consider a chain consisting of N links that is subjected to M loads. The capacity of a single
link is described by the PDF fc(c). The PDF for any one of the loads is described by f1(l).
Derive an expression in terms of fc(c) and f1(l) for the probability that the chain will fail from
the M loadings.

390 8 Loads, Capacity, and Reliability



8.19 Suppose that the CDF for loading on a cable is

F1 l = 1− exp −
l

500

3

where l is in pounds. To what capacity should the cable be designed if the probability of
failure is to be no more than 0.5%?

8.20 Suppose that the design criteria for a structure is that the probability of an earthquake severe
enough to do structural damage must be no more than 1.0% over the 40-year design life of
the building.
a) What is the probability of one ormore earthquakes of this magnitude or greater occurring

during any one year?
b) What is the probability of the structure being subjected to more than one damaging

earthquake over its design life?

8.21 The total load on a building may often be represented as the sum of three contributions: the
dead load d, from the weight of the structure; the live load l, from human beings, furniture,
and other movable weights; and the wind load w. Suppose that the loads from each of the
sources on a support column are represented as normal distributions with the following
properties:

μd = 6 0 kips, σd = 0 4 kips

μl = 9 2 kips, σl = 1 2 kips

μw = 4 6 kips, σw = 1 1 kips

a) Determine the mean and standard deviation of the total load.
b) Assume that the column is to be built with a safety factor of 1.6. If the strength of the

column is normally distributed with a 20% coefficient of variation, what is the probability
of failure?

8.22 Prove that Eqs. (8.72) and (8.79) reduce to Eqs. (8.82) and (8.83) under the assumptions of
constant loading and no capacity deterioration.

8.23 The impact load on a landing gear is known to follow an extreme-value distribution with a
mean value of 2500 and a variance of 25 × 104. The capacity is approximated by a normal
distribution with a mean value of 15,000 and a coefficient of variation of 0.05. Find the prob-
ability of failure per landing.

8.24 Prove that Eqs. (8.72) and (8.79) reduce to Eqs. (8.85) and (8.86) under the assumption of
constant loading.

8.25 A dam is built with a capacity to withstand a flood with a return period (i.e. mean time
between floods) of 100 years. What is the probability that the capacity of the dam will be
exceeded during its 40-year design life?
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8.26 Suppose that the capacity of a system is given by

f c c =
1

2πσc
exp −

1
2σ2c

c− c t 2

where

c t = c0 1− αt

If the system is placed under a constant load l,
a) Find f(t), the PDF for time to failure.
b) Put f(t) into a standard normal form and find σt and the MTTF.

8.27 A manufacturer of telephone switchboards was using switching circuits from a single sup-
plier. The circuits were known to have a failure rate of 0.06/year. In its new board, however,
40% of the switching circuits came from a new supplier. Reliability testing indicates that the
switchboards have a composite failure rate that is initially 80% higher than it was with cir-
cuits from the single supplier. The failure rate, however, appears to be decreasing with time.
a) Estimate the failure rate of the circuits from the new supplier.
b) What will the failure rate per circuit be for long periods of time?
c) How long should the switchboards be worn in if the average failure rate of circuits should

be no more than 0.1/year?
Note: See Example 8.6.

8.28 Suppose that a system has a time-independent failure rate that is a linear function of the
system capacity c,

λ c = λ0 1 + b cm − c , b > 0

where cm is the design capacity of the system. Suppose that the presence of flaws causes the
PDF or capacity of the system to be given by fc(c) in Exercise 8.4.
a) Find the system failure rate.
b) Show that it decreases with time.

8.29 The most probable strength of a steel beam is given by 24N−0.05 kips, where N is the number
of cycles. This value is known to be within 25% with 90% confidence.
a) How many cycles will elapse before the beam loses 20% of its strength?
b) Suppose that the cyclic load on the beam is 10 kips. How many cycles can be applied

before the probability of failure reaches 10%?
Note: Assume a lognormal distribution.

Supplement 1: The Dirac Delta Distribution

If the normal distribution is used to describe a random variable x, the mean μ is the measure of the
average value of x, and the standard deviation σ is a measure of the dispersion of x about μ. Suppose
that we consider a series of measurements of a quantity μ with increasing precision. The PDF for
the measurements might look like Figure 8Sup.1. As the precision is increased – decreasing the
uncertainty – the value of σ decreases. In the limit where there is no uncertainty σ 0, x is no
longer a random variable, for we know that x= μ.
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The Dirac delta function is used to treat this situation. It may be defined as

δ x− μ = lim
σ 0

1

2πσ
e−

1
2

x− μ
σ

2

8Sup1 1

Figure 8Sup.1 Normal distributions with different values of the variance.
Two extremely important properties immediately follow from this definition:

δ x− μ =
∞ x = μ

0 x = 0
8Sup1 2

and

μ + ε

μ− ε
δ x− μ dx = 1 8Sup1 3

Specifically, even though δ(0) is infinite, the area under the curve is equal to one.
The primary use of the Dirac delta function in this book is to simplify integrals in which one of the

variables has a fixed value. This appears, for example in the treatment of expected values.
Suppose that we want to calculate the expected value of g(x), as given by Eq. (4.17) when f(x)=

δ(x – x0); then,

E g x =
∞

− ∞
g x δ x− x0 dx 8Sup1 4

may be written as

E g x =
x0 + ε

x0 − ε
g x δ x− x0 dx ε > 0 8Sup1 5

since δ(x− x0)= 0 away from x = x0. If g(x) is continuous, wemay pull it outside the integral for very
small ε to yield

E g x = g x0
x0 + ε

x0 − ε
δ x− x0 dx 8Sup1 6

Therefore, for arbitrarily small ε, we obtain

E g x
x0 + ε

x0 − ε
g x δ x− x0 dx = g x0 8Sup1 7

A more rigorous proof may be provided using Eq. (8Sup1.1) in Eq. (8Sup1.4) and expanding g(x)
in a power series about x0.
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9

Maintained Systems

“A little neglect may breed great mischief…
for want of a nail the shoe was lost;
for want of a shoe the horse was lost;
and for want of a horse the rider was lost.”

Source: Benjamin Franklin; Poor Richard’s Almanac (1758). Public Domain

9.1 Introduction

Relatively few systems are designed to operate without maintenance of any kind, and for the most
part they must operate in environments where access is very difficult, in outer space or high-
radiation fields, for example or where replacement is more economical thanmaintenance. Formost
systems there are two classes of maintenance, one or both of which may be applied. In preventive
maintenance, parts are replaced, lubricants changed, or adjustments made before failure occurs.
The objective is to increase the reliability of the system over the long term by staving off the aging
effects of wear, corrosion, fatigue, and related phenomena. In contrast, repair or corrective main-
tenance is performed after failure has occurred in order to return the system to service as soon as
possible. Although the primary criteria for judging preventive-maintenance procedures is the
resulting increase in reliability, a different criterion is needed for judging the effectiveness of cor-
rective maintenance. The criterion most often used is the system availability, which is defined
roughly as the probability that the system will be operational when needed.
The amount and type of maintenance that is applied depends strongly on its costs as well as the

cost and safety implications of system failure. Thus, for example in determining the maintenance
for an electric motor used in a manufacturing plant, we would weigh the costs of preventive main-
tenance against the money saved from the decreased number of failures. The failure costs would
need to include, of course, both those incurred in repairing or replacing the motor and those from
the loss of production during the unscheduled downtime for repair. For an aircraft engine the trade-
off would be much different: the potentially disastrous consequences of engine failure would elim-
inate repair maintenance as a primary consideration. Concern would be with howmuch preventive
maintenance can be afforded and with the possibility of failures induced by faculty maintenance.
In both preventive and correctivemaintenance, human factors play a very strong role. It is for this

reason that laboratory data are often not representative of field data. In field service, the quality of
preventive maintenance is not likely to be as high. Moreover, repairs carried out in the field are
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likely to take longer and to be less than perfect. The measurement of maintenance quantities thus
depends strongly on human reliability so that there is great difficulty in obtaining reproducible
data. The numbers depend not only on the physical state of the hardware but also on the training,
vigilance, and judgment of the maintenance personnel. These quantities in turn depend on many
social and psychological factors that vary to such an extent that the probabilities of maintenance
failures and repair times are generally more variable than the failure rates of the hardware.
In this chapter, we first examine preventive maintenance. Then, we define and discuss availabil-

ity and other quantities needed to treat corrective maintenance. Subsequently, we examine the
repair of two types of failure: those that are revealed (i.e. immediately obvious) and those that
are unrevealed (i.e. are unknown until tests are run to detect them). Finally, we examine the rela-
tion of a system to its components from the point of view of corrective maintenance.

9.2 Preventive Maintenance

In this section, we examine the effects of preventive maintenance on the reliability of a system or
component. We first consider ideal maintenance in which the system is restored to an as-good-as-
new condition each time maintenance is applied. We then examine more realistic situations in
which the improvement in reliability brought about by maintenance must be weighed against
the possibility that faulty maintenance will lead to system failure. Finally, the effects of preventive
maintenance on redundant systems are examined.

Idealized Maintenance

Suppose that we denote the reliability of a system without maintenance as R(t),where t is the oper-
ation time of the system; it includes only the intervals when the system is actually operating and not
the time intervals during which it is shut down. If we perform maintenance on the system at time
intervals T, then, as indicated in Figure 9.1, for t < Tmaintenance will have no effect on reliability.
That is, if RM(t) is the reliability of the maintained system,

RM t = R t , 0 ≤ t < T 9 1

Now suppose that we perform maintenance at T, restoring the system to an as-good-as-new con-
dition. This implies that the maintained system at t > T has nomemory of accumulated wear effects
for times before T. Thus, in the interval T < t≤ 2T, the reliability is the product of the probability R

In
 R

(t
)

RM(t)

R(t)

0 T 2T 3T
t

Figure 9.1 The effect of preventive maintenance on reliability.
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(T) that the system survived to T, and the probability R(t − T) that a system as good as new at Twill
survive for a time t − T without failure:

RM t = R T R t−T , T ≤ t < 2T 9 2

Similarly, the probability that the system will survive to time t, 2T ≤ t < 3T, is just the reliability
RM(2T) multiplied by the probability that the newly restored system will survive for a time t − 2T:

RM t = R T 2R t− 2T , 2T ≤ t < 3T 9 3

The same argument may be used repeatedly to obtain the general expression

RM t = R T NR t−NT , NT ≤ t < N + 1 T, N = 0, 1, 2, … 9 4

Themean time to failure (MTTF) for a systemwith preventive maintenance can be determined by
replacing R(t) by RM(t) in Eq. (3.22):

MTTF =
∞

0
RM t dt 9 5

To evaluate this expression, we first divide the integral into time intervals of length T:

MTTF =
∞

N = 0

N + 1 T

NT
RM t dt 9 6

Then, inserting Eq. (9.4), we have

MTTF =
∞

N = 0

N + 1 T

NT
R T NR t−NT dt 9 7

Setting t = t−NT then yields

MTTF =
∞

N = 0

R T N
T

0
R t dt 9 8

Then, evaluating the infinite series,

∞

n = 0

R T N =
1

1−R T
9 9

we have

MTTF =
T
0 R t dt

1−R T
9 10

We would now like to estimate how much improvement, if any, in reliability we derive from the
preventive maintenance. The first point to be made is that in random or chance failures (i.e. those
represented by a constant failure rate λ), idealized maintenance has no effect. This is easily proved
by putting R(t) = e−λt on the right-hand side of Eq. (9.4). We obtain

RM t = e− λt N
e− λ t−NT = e−Nλte− λ t−NT = e− λt 9 11

or simply

RM t = R t , 0 ≤ t ≤ ∞ 9 12
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Preventive maintenance has a quite definite effect, however, when aging or wear causes the fail-
ure rate to become time dependent. To illustrate this effect, suppose that the reliability can be repre-
sented by the two-parameter Weibull distribution described in Chapter 5. For the system without
maintenance, we have

R t = exp −
t
η

β

9 13

Equation (9.4) then yields for the maintained system

RM t = exp −N
T
η

β

exp −
t−NT

η

β

, NT ≤ t < N + 1 T, N = 0, 1, 2, …

9 14

To examine the effect of maintenance, we calculate the ratio RM(t)/R(t). The relationship is sim-
plified if we calculate this ratio at the time of maintenance t =NT:

RM NT
R NT

= exp −N
T
η

β

+
NT
η

β

9 15

Thus, there will be a gain in reliability frommaintenance only if the argument of the exponential
is positive, that is if (NT/η)β >N(T/η)β. This reduces to the condition

Nβ− 1 − 1 > 0 9 16

This states simply that β must be greater than 1 for maintenance to have a positive effect on reli-
ability; it corresponds to a failure rate that is increasing with time through aging. Conversely, for
β < 1, preventive maintenance decreases reliability. This corresponds to a failure rate that is
decreasing with time through early failure. Specifically, if new defective parts are introduced into
a system that has already been “worn in,” increased rates of failure may be expected. These effects
on reliability are illustrated in Figure 9.2, where Eq. (9.14) is plotted for both increasing (β > 1) and
decreasing (β < 1) failure rates, along with random failures (β = 1).

In
 R

(t
)

0 T 2T 3T
t

With maintenanceNo maintenance

β > 1

β = 1

β < 1

Figure 9.2 The effect of preventive maintenance on reliability: β > 1, increasing failure rate; β < 1, decreasing
failure rate; β = 1, constant failure rate.
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Naturally, a system may have several modes of failure corresponding to increasing and decreas-
ing failure rates. For example, in Chapter 3 we note that the bathtub curve for a device may be
expressed as the sum of Weibull distributions:

t

0
λ t dt =

t
η1

β1

+
t
η2

β2

+
t
η3

β3

9 17

For this system, we must choose the maintenance interval for which the positive effect on wear-
out time is greater than the negative effect on wearin time. In practice, the terms in Eq. (9.17) may
be due to different components of the system. Thus, we would perform preventive maintenance
only on the components for which the wearout effect dominates. For example, we may replace
worn spark plugs in an engine without even considering replacing a fuel injection system with
a new one, which might itself be defective.

Example 9.1 A compressor is designed for five years of operation. There are two significant con-
tributions to the failure rate. The first is due to wear of the thrust bearing and is described by a
Weibull distribution with η = 7.5 year and β = 2.5. The second, which includes all other causes,
is a constant failure rate of λ0 = 0.013/year.

a) What is the reliability if no preventive maintenance is performed over the five-year design life?
b) If the reliability of the five-year design life is to be increased to at least 0.9 by periodically repla-

cing the thrust bearing, how frequently must it be replaced?

Solution:
Let Td = 5 be the design life.
(a) The system reliability may be written as

R Td = R0 Td RM Td

where

R0 Td = e− λ0Td = e− 0 013 × 5 = 0 9371

is the reliability if only the constant failure rate is considered. Similarly,

RM Td = e− Td η β

= e− 5 7 5 2 5

= 0 6957

is the reliability if only the thrust bearing wear is considered. Thus,

R Td = 0 9371 × 0 6957 = 0 6519

(b) Suppose that we divide the design life intoN equal intervals; the time interval, T, at which main-
tenance is carried out is then T = Td/N. Correspondingly, Td = NT. For bearing replacement at
time interval T, we have from Eq. (9.14),

RM Td = exp −N
Td

Nη

β

= exp −N1− β Td

η

β

For the criterion to be met, we must have

RM Td =
R Td

R0 Td
≥

0 9
0 9371

= 0 9604
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With (Td/η)
β = (5/7.5)2.5 = 0.36289, we calculate

RM(Td) = exp(−0.36289−1.5)

N 1 2 3 4 5

RM(Td) 0.696 0.880 0.933 0.956 0.968

Thus, the criterion is met for N = 5, and the time interval for bearing replacement is

T = Td N =
5
5
= 1 year.

In Chapter 3, we state that even when wear is present, a constant failure rate model may be a
reasonable approximation, provided that preventive maintenance is carried out, with timely
replacement of wearing parts. Although this may be intuitively clear, it is worthwhile to demon-
strate it with our present model. Suppose that we have a system for which wearin effects can be
neglected, allowing us to ignore the first term in Eq. (9.17) and write

R t = exp −
t
η2

−
t
η3

β3

9 18

The corresponding expression for the maintained system given by Eq. (9.4) becomes

RM t = exp −N
T
η3

β3

exp −
t
η2

−
t−NT
η3

β3

, NT ≤ t ≤ N + 1 T 9 19

For a maintained system, the failure rate may be calculated by replacing R by RM in Eq. (3.15):

λM t = −
1

RM t
d
dt

RM t 9 20

Thus, taking the derivative, we obtain

λM t =
1
η2

+
β3
η3

t−NT
η3

β3 − 1

, NT ≤ t < N + 1 T 9 21

Provided that the second term, the wear term, is never allowed to become substantial compared
to the first, the random-failure term, the overall failure rate may be approximated as a constant by
averaging over the interval T. This is illustrated for a typical set of parameters in Figure 9.3.

T 2T 3T

λ(
t)

t

Figure 9.3 Failure rate for a system with preventive maintenance.
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Imperfect Maintenance

Next, consider the effect of a less-than-perfect human reliability on the overall reliability of a main-
tained system. This enters through a finite probability p that the maintenance is carried out unsat-
isfactorily in such away that the faultymaintenance causes a system failure immediately thereafter.
To take this into account in a simple way, wemultiply the reliability by the maintenance nonfailure
probability, 1− p, each time that maintenance is performed. Thus, Eq. (9.4) is replaced by

RM t = R T N 1− p NR t−NT , NT < t < N + 1 T, N = 0, 1, 2, … 9 22

The trade-off between the improved reliability from the replacement of wearing parts and the
degradation that can come about because of maintenance error may now be considered. Since ran-
dom failures are not affected by preventive maintenance, we consider the system in which only
aging is present using Eq. (9.13) with β > 1. Once again, the ratio RM/R after the Nth preventive
maintenance is a useful indication of performance. Note that for p 1, we may approximate

1− p N ≈ e−Np 9 23

to obtain

RM NT
R NT

= exp −N
T
η

β

−Np +
NT
η

β

9 24

For there to be an improvement from the imperfect maintenance, the argument of the exponen-
tial in this expression must be positive. This reduces to the condition

p < Nβ− 1 − 1
T
η

β

9 25

Consequently, the benefits from imperfect maintenance are not seen until a long time, when
either N or T is large. This is plausible because after a long time wear effects degrade the reliability
enough that the positive effect of maintenance compensates for the probability of maintenance fail-
ure. This is illustrated in Figure 9.4.

T0 2T 3T

In
 R

(t
)

t

Key:

Imperfect maintenance

No maintenance

.

.

Figure 9.4 The effect of imperfect preventive maintenance on reliability.
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Example 9.2 Suppose that in Example 9.1 the probability of faulty bearing replacement causing
failure of the compressor is p= 0.02. What will the design-life reliability be with the annual replace-
ment program?

Solution:
At the end of the design life (Td = 5 years) maintenance will have been performed four times. From
the preceding problem we take the perfect maintenance result to be

R Td = R0RM = 0 907 × 0 968 = 0 907

With imperfect maintenance,

R(Td) = R0RM(1− p)4 = 0.907 × 0.984 = 0.907 × 0.922 = 0.836

In evaluating the trade-off between maintenance and aging, we must examine the failure mode
very closely. Suppose, for example that we consider the maintenance of an engine. If after main-
tenance the engine fails to start, but no damage is done, the failure may be corrected by redoing the
maintenance. In this case, pmay be set equal to zero in the model just given, with the understand-
ing that preventive maintenance includes a checkout and a repair of maintenance errors.
The situation is potentially more serious if the maintenance failure damages the system or is

delayed because it is an induced early failure. We consider each of these problems separately. Sup-
pose first that after maintenance the engine is started and is irreparably damaged by the mainte-
nance error. Whether maintenance is desirable in these circumstances strongly depends on the
failure mode that the maintenance is meant to prevent. If the engine’s normal mode of failure
is simply to stop running because a component is worn, with no damage to the remainder of
the engine, it is unlikely that even the increased reliability provided by the preventive maintenance
is economically worthwhile. Provided that there are no safety issues at stake, it may be more expe-
dient to wait for failure, and then repair, rather than to chance damage to the system through faulty
maintenance. If we are concerned about servicing an aircraft engine, however, the situation is
entirely different. Damaging or destroying an occasional engine on the ground following faulty
maintenance may be entirely justified in order to decrease the probability that wear will cause
an engine to fail in flight.
Consider, finally, the situation in which the maintenance does not cause immediate failure but

adds a wearin failure rate. This may be due to the replacement of worn components with defective
new ones. However, it is equally likely to be due to improper installation or reassembly of the sys-
tem, thereby placing excessive stress on one or more of the components. After the first repair, we
then have a failure rate described by a bathtub curve, as in Eq. (9.17), with the first term stemming
at least in part from imperfect maintenance. The reliability is then determined by inserting
Eq. (9.17) into Eq. (9.4). If we assume that the early failure term is due to faulty maintenance, it
may be shown by again calculating RM(NT)/R(NT) that the reliability is improved only if

1−Nβ1 − 1 T
η1

β1

< Nβ3 − 1 − 1
T
η3

β3

, β1 < 1, β3 > 1 9 26

Whether or not an increase in overall reliability is the only criterion to be used once again
depends on whether the failure modes are comparable in the system damage that is done. If no
safety questions are involved, it is primarily a question of weighing the costs of repairing the failures
caused by aging against those induced by maintenance errors. This might be the case, for example
with an automobile engine.With an aircraft engine, however, prevention of failure in flight must be
the overriding criterion; the cost of repairing the engine following failure, of course, is not relevant
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if the plane crashes. In this, and similar situations, the more important consideration is often the
effect of maintenance errors on redundant systems because maintenance is one of the primary
causes of common-mode failures. We examine these next.

Redundant Components

The foregoing expressions for RM(t) may be used in calculating the reliability of redundant systems
as in Chapter 3, but only if the maintenance failures on different components are independent of
one another. This stipulation is frequently difficult to justify. Although some maintenance failures
are independent, such as the random neglect to tighten a bolt, they are more likely to be systematic;
if the wrong lubricant is put in one engine, it is likely to be put in a second one also.
The common-mode failure model introduced in Chapter 3 may be applied with some modifica-

tion to treat such dependent maintenance failures. As an example we consider a parallel system
consisting of two identical components. If the maintenance is imperfect but independent, we
may insert Eq. (9.22) into Eq. (9.5) to obtain

RI t = 2R T N 1− p NR t−NT −R T 2N 1− p 2NR t−NT 2, NT ≤ t < N + 1 T

N = 0, 1, 2, …
9 27

Suppose that a maintenance failure on one component implies that the same failure occurs
simultaneously in the other. We account for this by separating out the maintenance failures into
a series component, much as we did with the common-mode failure rate λc in Chapter 3. Thus, the
system failure is modeled by taking the reliability for perfect maintenance (i.e. p = 0) and multi-
plying by 1− p for each time that maintenance is performed. Thus, for dependent maintenance
failures,

RD t = 2R T NR t−NT −R T 2NR t−NT 2 1− p N , NT ≤ t < N + 1 T,

N = 0, 1, 2, …
9 28

The degradation from maintenance-induced common-mode failures is indicated by the ratio of
Eqs. (9.28) to (9.27). We find

RD NT
RI NT

=
1− 1

2R T N

1− 1
2 1− p NR T N 9 29

The value of this ratio is less than 1, and it decreases each time imperfect preventive maintenance
is performed.

9.3 Corrective Maintenance

With or without preventive maintenance, the definition of reliability has been central to all our
deliberations. This is no longer the case, however, when we consider the many classes of systems
in which corrective maintenance plays a substantial role. Now, we are interested not only in the
probability of failure but also in the number of failures and, in particular, in the times required
to make repairs. For such considerations, two new reliability parameters become the focus of atten-
tion. Availability is the probability that a system is available for use at a given time. Roughly, it may
be viewed as a fraction of time that a system is in an operational state. Maintainability is a measure
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of how fast a system may be repaired following failure. Both availability and maintainability, how-
ever, require more formal definitions if they are to serve as a quantitative basis for the analysis of
repairable systems.

Availability

For repairable systems a fundamental quantity of interest is the availability. It is defined as follows:

A t = probability that a system is performing satisfactory at time t 9 30

This is referred to as the point availability. Often, it is necessary to determine the interval or mis-
sion availability. The interval availability is defined by

A∗ T =
1
T

T

0
A t dt 9 31

It is just the value of the point availability averaged over some interval of time, T. This interval
may be the design life of the system or the time to accomplish some particular mission. Finally, it is
often found that after some initial transient effects the point availability assumes a time-
independent value. In these cases, the steady-state or asymptotic availability is defined as

A∗ ∞ = lim
T ∞

1
T

T

0
A t dt 9 32

If a system or its components cannot be repaired, the point availability is just equal to the reli-
ability. The probability that it is available at t is just equal to the probability that it has not failed
between 0 and t:

A t = R t 9 33

Combining Eqs. (9.31) and (9.33), we obtain

A∗ T =
1
T

T

0
R t dt 9 34

Thus, as T goes to infinity, the numerator, according to Eq. (3.22), becomes the MTTF, a finite
quantity. The denominator, T, however, becomes infinite. Thus, the steady-state availability of a
nonrepairable system is

A∗ ∞ = 0 9 35

Since all systems eventually fail, and there is no repair, the availability averaged over an infinitely
long time span is zero.

Example 9.3 A nonrepairable system has a knownMTTF and is characterized by a constant fail-
ure rate. The system mission availability must be 0.95. Find the maximum design life that can be
tolerated in terms of the MTTF.

Solution:
For a constant failure rate, the reliability is R = e−λt. Insert this into Eq. (9.34) to obtain

A∗ T =
1
λT

1− e− λT

Expanding the exponential then yields
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A T =
1
λT

1− 1 + λT −
1
2

λT 2 +

Thus, A T ≈ 1− 1
2 λT, for λT 1 or 0 95 = 1− 1

2 λT Then, λT = 0.1, but MTTF = 1/λ. Therefore,

T = 0.1 ×MTTF.

Maintainability

Wemay now proceed to the quantitative description of repair processes and the definition of main-
tainability. Suppose that we let t be the time required to repair a system, measured from the time of
failure. If all repairs take the same length of time, t is just a number, say t = τ. In reality, repairs
require different lengths of time, and even the time to perform a given repair is uncertain because
circumstances, skill level, and a host of other factors vary. Therefore, t is normally not a constant
but rather a random variable. This variable can be considered in terms of distribution functions as
follows.
Suppose that we define the probability density function (PDF) for repair as

m t Δt = P t ≤ t ≤ t + Δt 9 36

That is, m(t) Δt is the probability that repair will require a time between t and t+Δt. The CDF
corresponding to Eq. (9.36) is defined as the maintainability

M t =
t

0
m t dt 9 37

and the mean time to repair or MTTR is then

MTTR =
∞

0
tm t dt 9 38

Analogous to the derivations of the failure rate given in Chapter 3, we may define the instanta-
neous repair rate as

v t Δt =
P t ≤ t ≤ t + Δt

p t > t
9 39

ν(t) Δt is the conditional probability that the system will be repaired between t and t +Δt, given
that it is failed at t. Noting that

M t = P t ≤ t = 1− P t ≥ t 9 40

we then have

v t =
m t

1−M t
9 41

Equations (9.37) and (9.41) may be used to express the maintainability and the PDF in terms of
the repair rate. To do this, we differentiate Eq. (9.37) to obtain

m t =
d
dt

M t 9 42
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and combine this result with Eq. (9.41) to yield

v t = 1−M t − 1 d
dt

M t 9 43

Moving dt to the left and integrating between 0 and t, we obtain

1

0
v t dt =

M t

0

dM
1−M

9 44

Evaluating the integral on the right-hand side and solving for the maintainability, we have

M t = 1− exp −
t

0
v t dt 9 45

Finally, we may use Eq. (9.42) to express the PDF for repair times as

m t = v t exp −
t

0
v t dt 9 46

A great many factors go into determining both the mean time to repair and the PDF, m(t), by
which the uncertainties in repair time are characterized. These factors range from the ability to
diagnose the cause of failure, on the one hand, to the availability of equipment and skilled person-
nel to carry out the repair procedures on the other. The determining factors in estimating repair
time vary greatly with the type of system that is under consideration. This may be illustrated with
the following comparison.
In many mechanical systems the causes of the failure are likely to be quite obvious. If a pipe rup-

tures, a valve fails to open, or a pump stops running, the diagnoses of the component in which the
mechanical failure have occurredmay be straightforward. The primary time entailed in the repair is
then determined by how much time is required to extract the component from the system and
install the new component, for each of these processes may involve a good deal of metal cutting,
welding, or other time-consuming procedures.
In contrast, if a computer fails, maintenance personnel may spend most of the repair procedure

time in diagnosing the problem, for it may take considerable effort to understand the nature of the
failure well enough to be able to locate the circuit board, chip, or other component that is the cause.
Conversely, it may be a rather straightforward procedure to replace the faulty component once it
has been located.
In both of these examples we have assumed that the necessary repair parts are available at the

time they are needed and that it is obvious howmuch of the system should be replaced to eliminate
the fault. In fact, both the availability of parts and the level of repair involve subtle economic trade-
offs between the cost of inventory, personnel, and system downtime.
For example, suppose that the pump fails because bearings have burned out. We must decide

whether it is faster to remove the pump from the line and replace it with a new unit or to tear
it down and replace only the bearings. If the entire pump is to be replaced, on-site inventories
of spare pumps will probably be necessary, but the level of skill needed by repair personnel to install
the new unit may not be great. Conversely, if most of the pump failures are caused by bearing fail-
ures, it may make sense to stock only bearings on site and to repack the bearings. In such a case,
repair personnel will need different and perhaps greater training and skill. Such trade-offs are typ-
ical of the many factors that must be considered in maintainability engineering, the discipline that
optimizes M(t) at a high level with as low a cost as possible.
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9.4 Repair: Revealed Failures

In this section, we examine systems for which the failures are revealed, so that repairs can be imme-
diately initiated. In these situations, two quantities are of primary interest, the number of failures
over a given span of time and the system availability. The number of failures is needed in order to
calculate a variety of quantities including the cost of repair and the necessary repair parts inventory.
Provided that the MTTR is much smaller than the MTTF, reasonable estimates for the number of
failures can be obtained using the Poisson distribution as in Chapter 2, and neglecting the system
downtime for repair. For availability calculations, repair time must be considered or else we would
obtain simply A(t)= 1. Ordinarily, this is not an acceptable approximation, for even small values of

the unavailability A t are frequently important, whether they be due to the risk incurred through
the unavailability of a critical safety system or to the production loss during the downtimes of an
assembly line.
In what follows, two models for repair are developed to estimate the availability of a system, con-

stant repair rate and constant repair time. It will be clear from comparing these that most of the
more important results depend primarily on theMTTR, not on the details of the repair distribution.

Constant Repair Rates

To calculate availability, we must take the repair rate into account, even though it may be large
compared to the failure rate. We assume that the distribution of times to repair can be characterized
by a constant repair rate

v t = v 9 47

The PDF of times to repair is then exponential,

m t = ve− vt 9 48

and the mean time to repair is simply

MTTR = 1 v 9 49

Although the exponential distribution may not reflect the details of the distribution very accu-
rately, it provides a reasonable approximation for predicting availabilities, for these tend to depend
more on the MTTR than on the details of the distribution. As we illustrate, even when the PDF of
the repair is bunched about the MTTR rather than being exponentially distributed, the constant
repair rate model correctly predicts the asymptotic availability.
Suppose that we consider a two-state system; it is either operational, state 1, or it is failed, state 2.

Then, A(t) and A t , the availability and unavailability, are the probabilities that the state is oper-
ational or failed, respectively, at time t, where t is measured from the time at which the system

operation commences. We therefore have the initial conditions A(0) = 1 and A 0 = 0, and of
course,

A t + A t = 1 9 50

A differential equation for the availability may be derived in a manner similar to that used for the
Poisson distribution in Chapter 2. We consider the change in A(t) between t and t+Δt. There are
two contributions. Since λ Δt is the conditional probability of failure during Δt, given that the sys-
tem is available at t, the loss of availability duringΔt is λΔt A(t). Similarly, the gain in availability is
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equal to v Δt A t , where νΔt is the conditional probability that the system is repaired duringΔt,
given that it is unavailable at t. Hence, it follows that

A t + Δt = A t − λ Δt A t + vΔt A t 9 51

Rearranging terms and eliminating A t with Eq. (9.50), we obtain

A t + Δt −A t
Δt

= − λ + v A t + v 9 52

Since the expression on the left-hand side is just the derivative with respect to time, Eq. (9.52) may
be written as the differential equation,

d
dt

A t = − λ + v A t + v 9 53

We now may use an integrating factor of eλ+ν, along with the initial condition A(0) = 1 to obtain

A t =
v

λ + v
+

λ

λ + v
e− λ + v t 9 54

Note that the availability begins at A(0) = 1 and decreases monotonically to an asymptotic value
1/(1 + λ/ν), which depends only on the ratio of failure to repair rate. The interval availability may be
obtained by inserting Eq. (9.54) into Eq (9.31) to yield

A∗ T =
v

λ + v
+

λ

λ + v 2T
1− e− λ + v T 9 55

and the asymptotic availability is obtained by letting T go to infinity. Thus,

A∗ ∞ =
v

λ + v
9 56

Finally, note from Eqs. (9.54) and (9.56) that for constant repair rates

A∗ ∞ = A ∞ 9 57

Since, in most instances, repair rates are much larger than failure rates, a frequently used approx-
imation comes from expanding Eq. (9.56) and deleting higher terms in λ/ν. We obtain after some
algebra

A∗ ∞ ≈ 1− λ ν 9 58

The ratio in Eq. (9.56) may be expressed in terms of the mean time between failures and the mean
time to repair. Since MTTF = 1/λ and MTTR = 1/ν, we have

A ∞ =
MTTF

MTTF + MTTR
9 59

This expression is sometimes used for the availability even though neither failure or repair is
characterized well by the exponential distribution. This is often quite adequate, for, in general,
when availability is averaged over a reasonable period T of time, it is insensitive to the details of
the failure or repair distributions. This is indicated for constant repair times in the following
section.
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Example 9.4 In the following table are times (in days) over a six-month period at which failure of
a production line occurred (tf) and times (tr) at which the plant was brought back on line following
repair.

i tfi trι i tfι trι

1 12.8 13.0 6 56.4 57.3
2 14.2 14.8 7 62.7 62.8
3 25.4 25.8 8 131.2 134.9
4 31.4 33.3 9 146.7 150.0
5 35.3 35.6 10 177.0 177.1

a) Calculate the six-month-interval availability from the plant data.
b) Estimate MTTF and MTTR from the data.
c) Estimate the interval availability using the results of b and Eq. (9.59), and compare this result to

that of a.

Solution:
During the six months (182.5 days) there are 10 failures and repairs.

a) From the data we find that A T is just the fraction of that time for which the system is inop-
erable. Thus, we find that

A T =
1
T

10

i = 1

tri − tf ι

=
1

182 5
0 2 + 0 6 + 0 4 + 1 9 + 0 3 + 0 9 + 0 1 + 3 7 + 3 3 + 0 1

A T = 0 0630

A T = 1− 0 063 = 0 937

b) Taking tr0 = 0, we first estimate the MTTF and MTTR from the data:

MTTF =
1
N

10

i = 1

tf ι − trι− 1

=
1
10

12 8 + 1 2 + 10 6 + 5 6 + 2 0 + 20 8 + 5 4 + 68 4 11 8 + 27 0

MTTF =
1
10

165 6 = 16 56

MTTR =
1
N

10

i = 1

tri − tf ι =
T
10

1
T

10

i = 1

tfi − tri =
18205
10

A T

= 1 15 days

c) A T =
v

v + λ
=

1

1 +
MTTR
MTTF

=
1

1 +
0 85
16 5

= 0 935
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Constant Repair Times

In the foregoing availability model we have used a constant repair rate, as we will also do through-
out much of the remainder of this chapter. Before proceeding, however, we repeat the calculation of
the system availability using a repair model that is quite different; all the repairs are assumed to
require exactly the same time, τ. Thus, the PDF for time to repair has the form

m t = δ t− τ 9 60

where δ is the Dirac delta function discussed in Chapter 8, Supplement 1. Although the availability
is more difficult to calculate with this model, the result is instructive. It will be seen that while the
details of the time dependence of A(t) differ, the general trends are the same, and the asymptotic
value is still given by Eq. (9.59).
A differential equation may be obtained for the availability, with the initial condition A(0) = 1.

Since all repairs require a time T, there are no repairs for t< τ. Thus, instead of Eq. (9.51), we have
only the failure term on the right-hand side,

A t + Δt = A t − λΔt A t , 0 ≤ t ≤ τ 9 61

which corresponds to the differential equation

d
dt

A t = − λA t , 0 ≤ t ≤ τ 9 62

For times greater than τ, repairs are alsomade; the number of repairs made duringΔt is just equal
to the number of failures during Δt at a time τ earlier: λ Δt A(t− τ). Thus, the change in availability
during Δt is

A t + Δt = A t − λΔt A t + λΔt A t− τ , t > τ 9 63

which corresponds to the differential equation

d
dt

A t = − λA t + λA t− τ , t > τ 9 64

Equations (9.63) and (9.64) are more difficult to solve than those for the constant repair rate. Dur-
ing the first interval, 0 ≤ t ≤ τ, we have simply

A t = e− λt, 0 ≤ t ≤ τ 9 65

For t > τ, the solution in successive intervals depends on that of the preceding interval. To illus-
trate, consider the intervalNτ ≤ t≤ (N+ 1) τ. Applying an integrating factor eλt to Eq. (9.64), wemay
solve for A(t) in terms of A(t − τ):

A t = A Nτ e− λ t−Nτ +
t

NT
dt λe− λ t− t A t − τ , Nτ ≤ t ≤ N + 1 τ 9 66

For N = 1, we may insert Eq. (9.65) on the right-hand side to obtain

A t = e− λt + λ t− τ e− λ t− τ , τ ≤ t ≤ 2τ 9 67

For N = 2, there will be three terms on the right-hand side, and so on. The general solution for
arbitrary N appears quite similar to the Poisson distribution:

A t =
N

n = 0

λ t−nτ n

n
e− λ t-nτ , Nτ ≤ t ≤ N + 1 τ 9 68
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The solutions for the constant repair rate and the constant repair time models are plotted for the
point availability A(t) in Figure 9.5 for τ = 1/ν. Note that the discrete repair time leads to breaks in
the slope of the availability curve, whereas this is not the case with the constant failure rate model.
However, both curves follow the same general trend downward and converge to the same asymp-
totic value. Thus, if we are interested only in the general characteristics of availability curves, which
ordinarily is the case, the constant repair rate model is quite adequate, even though some of the
structure carried by a more precise evaluation of the repair time PDF may be lost. Moreover, to
an even greater extent than with failure rates, not enough data are available in most cases to
say much about the spread of repair times about the MTTR. Therefore, the single-parameter expo-
nential distribution may be all that can be justified, and Eq. (9.59) provides a reasonable estimate of
the availability.

9.5 Testing and Repair: Unrevealed Failures

As long as system failures are revealed immediately, the time to repair is the primary factor in deter-
mining the system availability. When a system is not in continuous operation, however, failures
may occur but remain undiscovered. This problem is most pronounced in backup or other emer-
gency equipment that is operated only rarely, or in stockpiles of repair parts or other materials that
may deteriorate with time. The primary loss of availability then may be due to failures in the
standby mode that are not detected until an attempt is made to use the system.
A primary weapon against these classes of failures is periodic testing. As we will see, the more

frequently testing is carried out, the more failures will be detected and repaired soon after they
occur. However, this must be weighed against the expense of frequent testing, the loss of availability
through downtime for testing, and the possibility of excessive component wear from too-frequent
testing.

Idealized Periodic Tests

Suppose that we first consider the effect of a simple periodic test on a systemwhose reliability can be
characterized by a constant failure rate:

R t = e− λt 9 69

The first thing that should be clear is that system testing has no positive effect on reliability. For
unlike preventive maintenance the test will only catch failures after they occur.

τ 2τ 3τ 4τ 5τ t

Constant repair rate

Constant repair time

1

A
(t

)

Figure 9.5 Availability for different repair models.
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Testing, however, has a very definite positive effect on availability. To see this in the simplest case,
suppose that we perform a system test at time interval T0. In addition, we make the following three
assumptions: (i) The time required to perform the test is negligible, (ii) the time to perform repairs is
negligible, and (iii) the repairs are carried out perfectly and restore the system to an as-good-as-new
condition. Later, we examine the effects of relaxing these assumptions.
Suppose that we test a system with reliability given by Eq. (9.69) at time interval T0. As indicated,

if there is no repair, the availability is equal to the reliability. Thus, before the first test,

A t = R t , 0 ≤ t ≤ T0 9 70

Since the system is repaired perfectly and restored to an as-good-as-new state at t = T0, we have
R(T0) = 1. Then, since there is no repair between T0 and 2T0, the availability will again be equal to
the reliability, but now the reliability is evaluated at t − T0:

A t = R t−T0 , T0 ≤ t ≤ 2T0 9 71

This pattern repeats itself as indicated in Figure (9.16). The general expression is

A t = R t−NT0 , NT0 ≤ T < N + 1 T0 9 72

For the situation indicated in Figure 9.6, the interval and the asymptotic availability have the
same value, provided that the integral in Eq. (9.31) is taken over a multiple of T0, saymT0. We have

A∗ mT0 =
1

mT0

mT0

0
A t dt =

1
T0

T0

0
A t dt 9 73

Since the interval availability is independent of the number of intervals over which A∗(T) is cal-
culated, so will the asymptotic availability A∗(∞):

A∗ ∞ = lim
m ∞

1
mT0

mT0

0
A t dt =

1
T0

T0

0
A t dt 9 74

The effect of the testing interval on availability may be seen by combining Eqs. (9.69) and (9.74).
We obtain

T0 2T0 3T0
t

0

A
(t

)

1 Figure 9.6 Availability with idealized periodic
testing for unrevealed failures.
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A∗ ∞ =
1

λT0
1− e− λT0 9 75

Ordinarily, the test interval would be small compared to the MTTF: λT0 1. Therefore, the
exponential may be expanded, and only the leading terms are retained to make the
approximation

A∗ ∞ ≈ 1−
1
2
λT0 9 76

Example 9.5 Annual inspection and repair are carried out on a large group of smoke detectors of
the same design in public buildings. It is found that 15% of the smoke detectors are not functional. If
it is assumed that the failure rate is constant,

a) In what fraction of fires will the detectors offer protection?
b) If the smoke detectors are required to offer protection for at least 99% of fires, how frequently

must inspection and repair be carried out?

Solution:
With inspection and repair at interval T0 the fraction of detectors that are operational at the time of
inspection will be

R = e− λT0 = 0 85

Then, λT0 = −ln(0.85) = 0.162. Since T0 = 1 year, λ = 0.162/year.
a) If we assume that the fires are uniformly distributed in time, the fractional protection is just

equal to the interval availability; from Eq. (9.75)

A∗ ∞ =
1

λT0
1− e− λT0 =

1
0 162

1− 0 85 = 0 926

b) For this high availability, the rare-event approximation, Eq. (9.76), may be used:

0 99 = A∗ ∞ ≈ 1−
1
2
λT0

Thus, from Eq. (9.76),

T0 =
2 1−A∗ ∞

λ
=

2 1− 0 99
0 162

= 0 123 year

= 0 123 × 12 months≈ 1
1
2
months

Real Periodic Tests

Equation (9.76) indicates that we may achieve availabilities as close to one as desired merely by
decreasing the test interval T0. This is not the case, however, for as the test interval becomes smaller,
a number of other factors – test time, repair time, and imperfect repairs – becomemore important in
estimating availability.
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When we examine these effects, it is useful to visualize them as modifications in the curve shown
in Figure 9.6. The interval or asymptotic availability may be pictured as proportional to the area
under the curve within one test interval, divided by T. Thus, we may view each of the factors listed
earlier in terms of the increase or decrease that it causes in the area under the curve. In particular,
with reasonable assumptions about the ratios of the various parameters involved, we may derive
approximate expressions similar to Eq. (9.76) that are quite simple but at the same time are not
greatly in error.
Consider first the effect of a nonnegligible test time, tt. During the test we assume that the system

must be taken off line, and the system has an availability of zero during the test. The point avail-
ability will then appear as the solid line in Figure 9.7. Provided that we again assume that λT0 1,
so that Eq. (9.76) holds, and that tt To, the test time, is small compared to the test interval, wemay
approximate the contribution of the test to system downtime as tt/T0. The availability indicated in
Eq. (9.76) is therefore decreased to

A∗ ∞ ≈ 1−
1
2
λtT0 −

t1
T0

9 77

We next consider the effect of a nonzero time to repair on the availability. The probability of find-
ing a failed system at the time of testing is just one minus the point availability at the time the test is
carried out. For small T0 this probability may be shown to be approximately λ T0. Since 1/ν is the
mean time to repair, the contribution to be unavailability over the period T0 is λT0/ν, or dividing by
the interval T0, we find, as in Eq. (9.58), the loss of availability to be approximately λ/ν. We may
therefore modify our availability by subtracting this term to yield

A∗ ∞ ≈ 1−
1
2
λT0 −

t1
T0

−
λ

v
9 78

The effect of this contribution to the system unavailability is indicated by the dotted line in
Figure 9.7.
Examination of Eq. (9.78) is instructive. Clearly, decreases in failure rate and in test time tt

increase the availability, as do increases in the repair rate ν. It may also be shown that the more
perfect the repair, the higher the availability. Decreasing the test interval, however, may either

A
(t

)

1

T0

T0

2T0 3T0

tt

0

tt

Figure 9.7 Availability with realistic periodic testing for unrevealed failures.
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increase or decrease the availability, depending on the value of the other parameters. For, as indi-
cated in Eq. (9.78), it appears in both the numerator and the denominator of terms.
Suppose that we differentiate Eq. (9.78) with respect to T0 and set the result equal to zero in order

to determine the maximum availability:

d
dt

A∗ ∞ = −
1
2
λ +

tt
T2
0

= 0 9 79

The optimal test interval is then

T0 =
2tt
λ

1 2

9 80

Substitution of this expression back into Eq. (9.78) yields a maximum availability of

A∗ ∞ = 1− 2λtt
1 2

−
λ

v
9 81

If the test interval is longer than Eq. (9.80), undetected failures will lower availability. However, if
a shorter test interval is employed, the loss of availability during testing will not be fully compen-
sated for by earlier detection of failures. The test interval should increase as the failure rate
decreases and decrease as the testing time can be decreased. Other trade-offs may need to be con-
sidered as well. For example, will hurrying to decrease the test time increase the probability that
failures will be missed?

Example 9.6 A sulfur dioxide scrubber is known to have a MTBF of 137 days. Testing the scrub-
ber requires half a day, and themean time to repair is 4 days. (a) Choose the test period to maximize
the availability. (b) What is the maximum availability?

Solution:

a) From Eq. (9.80), with MTBF = 1/λ,

T0 = 2tt MTBF 1 2 = 2 × 0 5 × 137 1 2 = 11 7 days

b) From Eq. (9.81),

A∗ ∞ = 1−
2tt

MTBF

1 2

−
MTTR
MTBF

A∗ ∞ = 1−
2 × 0 5
137

1 2

−
4
137

= 0 885

9.6 System Availability

Thus far, we have examined only the effects on the availability of the failure and repair of a system
as a whole. But just as for reliability, it is often instructive to examine the availability of a system in
terms of the component availabilities. Not only are data more likely to be available at the compo-
nent level, but the analysis can provide insight into the gains made through redundant configura-
tions and through different testing and repair strategies.
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Since availability, like reliability, is a probability, system availabilities can be determined from
parallel and series combinations of component availabilities. In fact, the techniques developed
in Chapter 3 for combining reliabilities are also applicable to point availabilities, but only provided
that both the failure and repair rates for the components are independent of one another. If this is
not the case, either the ξ-factor method described in Chapter 3 or the Markov methods discussed
in the following chapter may be required tomodel the component dependencies. In this chapter, we
consider situations in which the component properties are independent of one another, deferring
analysis of component dependencies (using Markov Chains) to the following chapter.
In what follows we estimate point availabilities of systems in terms of components. The appro-

priate integral is then taken to obtain interval and asymptotic availabilities. When the component
availabilities become time independent after a long period of operation, steady-state availabilities
may be calculated simply by letting t ∞ in the point availabilities. In testing or other situations in
which there is a periodicity in the point availability, the point availability must be averaged over a
test period, even though the system has been in operation for a substantial length of time. Very
often, when repair rates are much higher than failure rates, simplifying approximations, in which
λ/ν is assumed to be very small, are of sufficient accuracy and lead to additional physical insight in
comparing systems.
For systems without redundancy the availability obeys the product law introduced in Chapter 8.

Suppose that we let X represent the failed state of the system, and X the unfailed or operational state

of the system. Similarly, let Xi represent the failed state of component i, and Xi, the unfailed state of
the same component. In a nonredundant system, all the components must be available for the sys-
tem to be available:

X = X1 X2 … XM 9 82

Since the availability is defined as just the probability that the system is available, we have

A t =
i

Ai t 9 83

where the Ai(t) are the independent component availabilities.
For redundant (i.e. parallel) systems, all the components must be unavailable if the system is to be

unavailable. Thus, if X signifies a failed system, and Xi the failed state of component i, we have

X = X1 X2 X3 XM 9 84

Since the unavailability is one minus the availability, we have

1−A t = 1−A1 t 1−A2 t 1−AM t 9 85

or more compactly,

A t = 1−
i

1−Aι t 9 86

Comparing Eqs. (9.83) and (9.86) with Eqs. (9.1) and (9.38) indicates that the same relationships
hold for point availabilities as for reliabilities. The other relationships derived in Chapter 3 also hold
when the assumption that the components are mutually independent is made throughout.

Revealed Failures

Suppose that we now apply the constant repair rate model to each component. According to
Eq. (9.54), the component availabilities are then
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Aι t =
vι

vι + λι
+

λι
vι + λι

e− λι + vι t 9 87

This relationship may be applied in the foregoing equations to estimate system availability.
If we are interested only in asymptotic availability, we may delete the second term of Eq. (9.87) to

obtain

Aι ∞ =
vι

vι + λi
9 88

Combining this expression with Eq. (9.83), we have for a nonredundant system

A ∞ =
ι

vι
vι + λι

9 89

If we further make the reasonable assumption that repair rates are large compared to failure
rates, vi λi, then

Ai ∞ ≈ 1−
λi
vi

9 90

With this expression substituted into Eq. (9.83) to estimate the availability of a nonredundant
system, we obtain

A ∞ ≈ 1−
λi
vi

9 91

But since we have already deleted higher order terms in the ratios λi/νi, for consistency we also
should eliminate them from this equation. This yields

A ∞ ≈ 1−
i

λi
vi

9 92

Thus, the rapid deterioration of the availability with an increased number of components is seen.
If we further assume that all the repair rates can be replaced by an average value νi = ν, Eq. (9.92)
becomes

A ∞ ≈ 1− λ v 9 93

where

λ =
i

λι 9 94

Therefore, we obtain the same result as given for the system as a whole, provided that we sum the
component failure rates as in Chapter 3.
The effect of redundancy may be seen by inserting Eq. (9.88) into Eq. (9.86), the availability of a

parallel system. For N identical units with λι = λ and νι= ν, we have

A ∞ = 1−
λ

λ + v

N

9 95

If we consider the case where ν λ, then

A ∞ ≈ 1−
λ

v

N

9 96
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or correspondingly for the unavailability,

A ∞ ≈
λ

v

N

9 97

The analogy to the reliability of parallel systems is clear; both unreliability and unavailability are
proportional to the Nth power of the failure rate. The foregoing relationships assume that there are
no common-mode failures. If there are, the ξ-factor method of Chapter 3 may be adapted, putting a
fictitious component in series with a failure and a repair rate for the common-mode failure. Once
again, the presence of common-mode failure limits the gains that can be made through the use of
parallel configurations, although not as severely as for systems that cannot be repaired. Suppose
that we consider as an example N units in parallel, each having a failure rate λ divided into inde-
pendent and common-mode failures as in Eqs. (9.24) through (9.30). We have

A ∞ = 1− 1−AI ∞ N Ac ∞ , 9 98

whereAI are the availabilities with only the independent failure rate λI taken into account, andAc

is the common-mode availability with failure rate λc. We assume that both common and independ-
ent failure modes have the same repair rate. Thus,

A ∞ = 1−
λI

λI + v

N v
λc + v

9 99

This may also be written in terms of ξ factors by recalling that λI≡ (1− ξ) λ and λc≡ ξλ.

Example 9.7 A system has a ratio of ν/λ= 100. What will the asymptotic availability be (a) for the
system, (b) for two of the systems in parallel with no common-mode failures, and (c) for two systems
in parallel with ξ = 0.2?

Solution:

a) A ∞ =
100

1 + 100
= 0 990

b) A ∞ = 1−
1

1 + 100

2

= 0 99990

c)
λI
v

= 1− ξ
λ

v
= 1− 0 2

1
100

= 0 8 × 10− 2

λc
v

= ξ
λ

v
= 2 × 10− 3

Therefore, from Eq. (9.99),

A ∞ = 1−
0 8 × 10− 2

1 + 0 8 × 10− 2

2 1
2 × 10− 3 + 1

= 0 9979

Unrevealed Failures

In the derivations just given it is assumed that component failures are detected immediately and
that repair is initiated at once. Situations are also encountered in which the component failures go
undetected until periodic testing takes place. The evaluation of availability then becomes more
complex, for several testing strategies may be considered. Not only is the test interval T0 subject
to change, but the testingmay be carried out on all the components simultaneously or in a staggered
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sequence. In either event, the calculation of the system availability is nowmore subtle, for the point
availabilities will have periodic structures, and they must be averaged over a test period in order to
estimate the asymptotic availability.
To illustrate, consider the effects of simultaneous and staggered testing patterns on two simple

component configurations: the nonredundant configuration consisting of two identical compo-
nents in series and the completely redundant configuration consisting of two identical components
in parallel. For clarity, we consider the idealized situation in which the testing time and the time to
repair can be ignored. The failure rates are assumed to be constant.
We begin by letting A1(t) and A2(t) be the component point availabilities. Since the testing is car-

ried out at intervals of T0, we need only to determine the system point availabilityA(t) between t = 0
and t = T0, for the asymptotic mission availability is then obtained by averaging A(t) over the test
period:

A∗ ∞ = A∗ T0 =
1
T0

T0

0
A t dt 9 100

Simultaneous Testing

When both components are tested at the same time, t = 0, T0, 2 T0, …, the point availabilities are
given by

A1 t = e− λt, 0 ≤ t < T0 9 101

and

A2 t = e− λt, 0 ≤ t < T0 9 102

For the series system, we have

A t = A1 t A2 t 9 103

or

A t = e− 2λt, 0 ≤ t < T0 9 104

For the parallel system, we obtain

A t = A1 t + A2 t −A1 t A2 t 9 105

or

A t = 2e− λt − e− 2λt, 0 ≤ t < T0 9 106

The availabilities are plotted as solid lines in Figure 9.8a and b, respectively. The asymptotic avail-
ability obtained from Eq. (9.100) for the series system is

A∗
s T0 =

1
2λT0

1− e− 2λT0 9 107

whereas that of the parallel system is

A∗
p T0 =

1
2λT0

3− 4e− λT0 + e− 2λT0 9 108
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Staggered Testing

We now consider the testing of components at staggered intervals of T0/2. We assume that
component 1 is tested at 0, T0, 2T0, …, whereas component 2 is tested at the half-intervals T0/2,
3T0/2, …. The point availabilities within any interval after the first one are given by

A1 t = e− λt , 0 ≤ t < T0 9 109

and

A2 t =
exp − λ t +

T0

2
0 ≤ t <

T0

2

exp − λ t−
T0

2
T0

2
≤ t < T0

9 110

To determine the point system availability, we combine these two equations with Eqs. (9.103) and
(9.105), respectively, for the series and parallel configurations. The results are plotted as dotted lines
in Figures 9.8a and b.
To calculate the asymptotic availabilities for staggered testing, we first note from Figure 9.8 that

the system point availabilities for both series and parallel situations have a periodicity over the half-
intervals T0/2. Therefore, instead of averaging A(t) over an entire interval as in Eq. (9.100), we need
to average it over only the half-interval. Hence,

A∗ T0 =
2
T0

T0 2

0
A t dt 9 111

For the series configuration we calculate A1(t)A2(t) from Eqs. (9.109) and (9.110), substitute the
result into Eq. (9.111), and carry out the integral to obtain

A∗
s T0 =

1
2λT0

e− λT0 2 − e− 3λT0 2 9 112

T0 2T0 3T0

t

0 T0 2T0 3T0

t

0

(a) (b)

A
(t

)

1

A
(t

)

1

Series Parallel

Key:

Simultaneous testing

Staggered testing

Key:

Simultaneous testing

Staggered testing

.

.
.
.

Figure 9.8 Availability for a two-component system with unrevealed failures.
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Similarly, for the parallel configuration we form A(t) by substituting Eqs. (9.109) and (9.110) into
Eq. (9.105), combine the result with Eq. (9.111), and perform the integral to obtain

A∗
p T0 =

1
λT0

2− 2e− λT0 − e− λT0 2 + e− 3λT0 2 9 113

Although the point availabilities plotted as dotted lines in Figure 9.8 are interesting in under-
standing the effects of staggering on the availability, the asymptotic values are often more useful,
for they allow us to compare the strategies with a single number. Evaluation of the appropriate
expressions indicates that in the nonredundant (series) configuration higher availability is obtained
from simultaneous testing, whereas staggered testing yields the higher availability for redundant
(parallel) configurations.
This behavior can be understood explicitly if the expressions for the asymptotic availability are

expanded in powers of λT0, since for small failure rates the lowest order terms in λT0 will dominate
the expressions. The results of such expansions are presented in Table 9.1.
The effects of staggered testing become more pronounced when repair time, testing time, or both

are not negligible. We can see, for example that even for a zero failure rate, the testing time tt will
decrease the availability of the series system by tt/T0 if the systems are tested simultaneously. If the
tests are staggered in the series system, the availability will decrease by 2tt/T0. Conversely, in
the parallel system simultaneous testing with no failures will decrease the availability by tt/T0,
but if the tests are staggered so that they do not take both components out at the same time,
the availability does not decrease.

Example 9.8 A voltagemonitor achieves an average availability of 0.84 when it is testedmonthly;
the repair time is negligible. Since the 0.84 availability is unacceptably low, twomonitors are placed
in parallel. What will the availability of this twin system be (a) if the monitors are tested monthly at
the same time and (b) if they are tested monthly at staggered intervals?

Solution:
First, we must find λT0. Try Eq. (9.76), the rare-event approximation:

0 84 = 1−
1
2
λT0; λT0 ≈ 0 32

This is too large for the exponential expansion to be used. Therefore, we use Eq. (9.75) instead.We
obtain a transcendental equation

0 84 =
1

λT0
1− e− λT0

Solving iteratively, we find that

Table 9.1 Availability A∗(T0) for unrevealed failures.

Testing Series system Parallel system

Simultaneous 1− λT0 +
2
3

λT0
2 1−

1
3

λT0
2

Staggered
1− λT0 +

13
24

λT0
2 1−

5
24

λT0
2
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λT0 0.320 0.340 0.360 0.380
1 0 84 1− e− λT0 0.326 0.343 0.3599 0.376

Therefore,

λT0 ≈ 0 36

a) From Eq. (9.108), we find for simultaneous testing

A∗
p T0 =

1
2 × 0 36

3− 4e− 0 36 + e− 2 × 0 36 = 0 967

b) From Eq. (9.113), we find for staggered testing

A∗
p T0 =

1
0 36

2− 2e− 0 36 − e− 0 36 2 + e− 3 × 0 36 2 = 0 978

These results can be generalized to combinations of series and parallel configurations. However,
the evaluation of the integral in Eq. (9.100) over the test period may become tedious. Moreover, the
evaluation of maintenance, testing, and repair policies becomes more complex in real systems that
contain combinations of revealed and unrevealed failures, large numbers of components, and
dependencies between components. Some of the more common types of dependencies are included
in the following chapter.
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Exercises

9.1 Without preventive maintenance the reliability of a condensate demineralizer is character-
ized by

t

0
λ t dt = 1 2 × 10− 2t + 1 1 × 10− 9t2

where t is in hours. The design life is 10,000 hours.
(a) What is the design-life reliability?
(b) Suppose that by overhaul the demineralizer is returned to as-good-as-new condition.
How frequently should such overhauls be performed to achieve a design-life reliability of
at least 0.95?
(c) Repeat b for a target reliability of at least 0.975.
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9.2 Discuss under what conditions preventative maintenance can increase the reliability of a
simple active parallel system, even though the component failure rates are time independ-
ent. Justify your results.

9.3 Repeat b of Exercise 9.1 assuming that there is a 1% probability that faulty overhaul will
cause the demineralizer to fail destructively immediately following start-up. Is it possible
to achieve the 0.95 reliability? If so, how many overhauls are required?

9.4 Derive an equation analogous to Eqs. (9.27) and (9.28) that includes a probability pI of inde-
pendent maintenance failure and a probability pc of common-mode maintenance failure.

9.5 Suppose that a device has a failure rate of

λ t = 0 015 + 0 02t year

where t is in years.
a) Calculate the reliability for a five-year design life assuming that no maintenance is

performed.
b) Calculate the reliability for a five-year design life assuming that annual preventive main-

tenance restores the system to an as-good-as-new condition.
c) Repeat b assuming that there is a 5% chance that the preventive maintenance will cause

immediate failure.

9.6 A machine has a failure rate given by λ(t) = at. Without maintenance the reliability at the
end of one year is R(1) = 0.86.
a) Determine the value of “a.”
b) If as-good-as-new preventive maintenance is performed at two-month intervals, what

will the one-year reliability be?
c) If in b there is a 2% probability that each maintenance will cause system failure, what will

be the value of the reliability at the end of one year?

9.7 Suppose that the times to failure of an unmaintained component may be given by a Weibull
distribution with β = 2. Perfect preventive maintenance is performed at intervals T = 0.25η.
a) Find the MTTF of the maintained system in terms of η.
b) Determine the percentage increase in the MTTF over that of the unmaintained system.

9.8 Solve Exercise 9.7 approximately for the situation in which T η.

9.9 The reliability of a device is given by the Rayleigh distribution

R t = e− t η 2

The MTTF is considered to be unacceptably short. The design engineer has two alterna-
tives: a second identical system may be set in parallel or (perfect) preventive maintenance
may be performed at some interval T. At what interval T must the preventive maintenance
be performed to obtain an increase in theMTTF equal to what would result from the parallel
configuration without preventive maintenance? (Note: See the solution for Exercise 9.19.)

9.10 Show that preventive maintenance has no effect on the MTTF for a system with a constant
failure rate.
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9.11 The following table gives a series of times to repair (man-hours) obtained for a diesel engine.

11.6 7.9 27.7 17.8 8.9 22.5
3.3 33.3 75.3 9.4 28.5 5.4
9.13 1.1 7.8 41.9 13.3 5.3

a) Estimate the MTTR.
b) Estimate the repair rate and its 90% confidence interval assuming that the data is expo-

nentially distributed.

9.12 Find the asymptotic availability for the systems shown in Exercise 9.38, assuming that all the
components are subject only to revealed failures and that the repair rate is ν. Then, approx-
imate your result for the case ν/λ 1.

9.13 A computer has an MTTF = 34 hours and an MTTR = 2.5 hours.
a) What is the availability?
b) If the MTTR is reduced to 1.5 hours, what MTTF can be tolerated without decreasing the

availability of the computer?

9.14 A generator has a long-term availability of 72%. Through a management reorganization the
MTTR (mean time to repair) is reduced to one half of its former value. What is the generator
availability following the reorganization?

9.15 A system consists of two subsystems in series, each with ν/λ= 102 as its ratio of repair rate to
failure rate. Assuming revealed failures, what is the availability of the system after an
extended period of operation?

9.16 A robot has a failure rate of 0.05 hour−1. What repair rate must be achieved if an asymptotic
availability of 95% is to be maintained?

9.17 Reliability testing has indicated that without repair a voltage inverter has a six-month reli-
ability of 0.87; make a rough estimate of the MTTR that must be achieved if the inverter is to
operate with an availability of 0.95. (Assume revealed failures and a constant failure rate.)

9.18 The control unit on a fire sprinkler system has anMTTF for unrevealed failures of 30months.
How frequently must the unit be tested/repaired if an average availability of 99% is to be
maintained.

9.19 A device has a constant failure rate, and the failures are unrevealed. It is found that with a
test interval of six months the interval availability is 0.98. Use the “rare-event” approxima-
tion to estimate the failure rate. (Neglect test and repair times.)

9.20 Starting with Eqs. (9.107) and (9.112), derive the results for series systems with simultaneous
and staggered testing given in Table 9.1.

9.21 The following table gives the times at which a system failed (tf) and the times at which the
subsequent repairs were completed (tr) over a 2000-hours period.
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tf tr tf tr

51 52 1127 1134
90 92 1236 1265
405 412 1297 1303
507 529 1372 1375
535 539 1424 1439
615 616 1531 1552
751 752 1639 1667
760 766 1789 1795
835 839 1796 1808
881 884 1859 1860
933 941 1975 1976
1072 1091

a) Calculate the average availability over the time interval 0≤ t≤ tmax directly from the data.
b) Assuming constant failure and repair rates, estimate λ and μ from the data.
c) Use the values of λ and μ obtained in b to estimate A(t) and the time-averaged availability

for the interval 0 ≤ t ≤ tmax. Compare your results to a.

9.22 Starting with Eqs. (9.108) and (9.113), derive the results for parallel systems with simulta-
neous and staggered testing given in Table 9.1.

9.23 An auxiliary feedwater pump has an availability of 0.960 under the following conditions:
The failures are unrevealed; periodic testing is carried out on a monthly (30-day) basis;
and testing and repair require that the system be shut down for eight hours.
a) What will the availability be if the shutdown time can be reduced to two hours?
b) What will the availability be if the tests are performed once per week, with the eight-

hours shutdown time?
c) Given the eight-hours shutdown time, what is the optimal test interval?

9.24 A pressure relief system consists of two valves in parallel. The system achieves an availability
of 0.995 when the valves are tested on a staggered basis, each valve being tested once every
three months.
a) Estimate the failure rate of the valves.
b) If the test procedures were relaxed so that each valve is tested once in six months, what

would the availability be?

9.25 In annual test and replacement procedures 8% of the emergency respirators at a chemical
plant are found to be inoperable.
a) What is the availability of the respirators?
b) How frequently must the test and replacement be carried out if an availability of 0.99 is to

be reached? (Assume constant failure rates.)

9.26 Consider three units in parallel, each tested at equally staggered intervals of T0. Assume
constant failure rates.
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a) What is A(t)?
b) Plot A(t).
c) What is A∗(T0)?
d) Find the rare-event approximate for A∗(T0).

9.27 Unrevealed bearing failures follow aWeibull distribution with β = 2 and η = 5000 operating
hours. How frequentlymust testing and repair take place if bearing availability is to bemain-
tained at least 95%?

9.28 The reliability of a system is represented by the Rayleigh distribution

R t = e− t η 2

Suppose that all failures are unrevealed. The system is tested and repaired to an as-good-
as-new condition at intervals of T0. Neglecting the times required for test and repair, and
assuming perfect maintenance:
a) Derive an expression for the asymptotic availability A∗(∞).
b) Find an approximation for A∗(∞) when T0 η.
c) Evaluate A∗(∞) for T0/η = 0.1, 0.5, 1.0, and 2.0.
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10

Failure Interactions

“If anything can go wrong, it will.”
Source: Murphy’s law

10.1 Introduction

In reliability analysis, perhaps the most pervasive technique is that of estimating the reliability of a
system in terms of the reliability of its components. In such analysis, it is frequently assumed that
the component failure and repair properties are mutually independent. In reality, this is often not
the case. Therefore, it is necessary to replace the simple products of probabilities with more sophis-
ticated models that take into account the interactions of component failures and repairs.
Many component failure interactions – as well as systems with independent failures – may be

modeled effectively as Markov processes, provided that the failure and repair rates can be approxi-
mated as time independent. Indeed, we have already examined a particular example of a Markov
process, the derivation of the Poisson process contained in Chapter 3. In this chapter, we first for-
mulate the modeling of failures as Markov processes and then apply them to simple systems in
which the failures are independent. This allows us both to verify that the same results are obtained
as in Chapter 3 and to familiarize ourselves with Markov processes. We then use Markov methods
to examine failure interactions of two particular types, shared-load systems and standby systems,
and follow with demonstrations of how to incorporate such failure dependencies into the analysis
of larger systems. Finally, the analysis is generalized to take into account operational dependencies
such as those created by shared repair crews.

10.2 Markov Analysis

We begin with the Markov formulation by designating all the possible states of a system. A state is
defined to be a particular combination of operating and failed components. Thus, for example if we
have a system consisting of three components, we may easily show that there are eight different
combinations of operating and failed components and therefore eight states. These are enumerated
in Table 10.1, whereO indicates an operational component, and X a failed component. In general, a
system with N components will have 2N states so that the number of states increases much faster
than the number of components.
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For the analysis that follows wemust knowwhich of the states correspond to system failure. This,
in turn, depends on the configuration in which the components are used. For example, three com-
ponents might be arranged in any of the three configurations shown in Figure 10.1. If all the com-
ponents are in series, as in Figure 10.1a, any combination of one or more component failures will
cause system failure. Thus, states 2 through 8 in Table 10.1 are failed-system states. Conversely, if
the three components are in parallel as in Figure 10.1b, all three components must fail for the sys-
tem to fail. Thus, only state 8 is a system failure state. Finally, for the configuration shown in
Figure 10.1c, both components 1 and 2 or component 3 must fail for the system to fail. Thus, states
4 through 8 correspond to system failure.
The object of Markov analysis is to calculate Pi (t), the probability that the system is in state i at

time t. Once this is known, the system reliability can be calculated as a function of time from

R t =
ιє 0

Pι t 10 1

where the sum is taken over all the operating states (i.e. over those states for which the system is not
failed). Alternately, the reliability may be calculated from

R t = 1−
ιє X

Pι t 10 2

where the sum is over the states for which the system is failed.
In what follows, we designate state 1 as the state for which all the components are operating, and

we assume that at t = 0, the system is in state 1.
Therefore,

P1 0 = 1 10 3

Table 10.1 Markov states of three-component systems.

State #

Component 1 2 3 4 5 6 7 8

a O X O O X X O X

b O O X O X O X X

c O O O X O X X X

Note: O= operating; X= failed.

a b

a

b

c

(a) (b) (c)

c

a

b

c

Figure 10.1 Reliability block diagrams for three-component systems.
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and

Pι 0 = 0, i 1 10 4

Since at any time the system can only be in one state, we have

ι

Pι t = 1 10 5

where the sum is over all possible states.
To determine the Pι(t), we derive a set of differential equations, one for each state of the system.

These are sometimes referred to as state transition equations because they allow the Pi(t) to be
determined in terms of the rates at which transitions are made from one state to another. The tran-
sition rates consist of superpositions of component failure rates, repair rates, or both. We illustrate
these concepts first with a very simple system, one consisting of only two independent components,
a and b.

Two Independent Components

A two-component system has only four possible states, those enumerated in Table 10.2. The logic of
the changes of states is best illustrated by a state transition diagram shown in Figure 10.2. The fail-
ure rates λa and λb for components a and b indicate the rates at which the transitions are made
between states. Since λa Δt is the probability that a component will fail between times t and

Table 10.2 Markov states of three-component systems.

State #

Component 1 2 3 4

a O X O X

b O O X X

λa

λaλb

λb

1

4

2 3

Figure 10.2 State transition diagram with independent
failures.
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t +Δt, given that it is operating at t (and similarly for λb), we may write the net change in the prob-
ability that the system will be in state 1 as

P1 t + Δt − P1 t = − λaΔtP1 t − λbΔtP1 t 10 6

or in differential form

d
dt

P1 t = − λap1 t − λbP1 t 10 7

To derive equations for state 2, we first observe that for every transition out of state 1 by failure of
component a, there must be an arrival in state 2. Thus, the number of arrivals during Δt is λa Δt
P1(t). Transitions can also be made out of state 2 during Δt; these will be due to failures of compo-
nent b, and they will make a contribution of −λb Δt P2(t). Thus, the net increase in the probability
that the system will be in state 2 is given by

P2 t + Δt − P2 t = λaΔtP1 t − λbΔtP2 t 10 8

or dividing by Δt and taking the derivative, we have

d
dt

P2 t = λaP1 t − λbP2 t 10 9

Identical arguments can be used to derive the equation for P3(t). The result is

d
dt

P3 t = λbP1 t − λaP3 t 10 10

Wemay derive onemore differential equation, which is for state 4.We note from the diagram that
the transitions into state 4 may come either as a failure of component b from state 2 or as a failure of
component a from state 3; the transitions during Δt are λb Δt P2(t) and λa Δt P3(t), respectively.
Consequently, we have

P4 t + Δt − P4 t = λbΔtP2 t + λaΔtP3 t 10 11

or, correspondingly,

d
dt

P4 t = λbP2 t + λaP3 t 10 12

State 4 is called an absorbing state, since there is no way to get out of it. The other states are
referred to as nonabsorbing states.
From the foregoing derivation we see that we must solve four coupled ordinary differential equa-

tions in time in order to determine the Pi(t). We begin with Eq. (10.7) for P1(t), since it does not
depend on the other Pi(t). By substitution, it is clear that the solution to Eq. (10.7) that meets
the initial condition, Eq. (10.3), is

P1 t = e− λa + λb t 10 13

To find P2(t), we first insert Eq. (10.13) into Eq. (10.9),

d
dt

P2 t = λae
− λa + λb t − λbP2 t 10 14

yielding an equation in which only P2(t) appears. Moving the last term to the left-hand side, and
multiplying by an integrating factor eλat , we obtain
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d
dt

eλbtP2 t = λae
− λat 10 15

Multiplying by dt, and integrating the resulting equation from time equals zero to t, we have

eλbtP2 t
t

0 = λa
t

0
e− λat dt 10 16

Carrying out the integral on the right-hand side, utilizing Eq. (10.4) on the left-hand side, and
solving for P2(t), we obtain

P2 t = e− λbt − e− λa + λb t 10 17

Completely analogous arguments can be applied to the solution of Eq. (10.10). The result is

P3 t = e− λat − e− λa + λb t 10 18

We may now solve Eq. (10.11) for P4(t). However, it is more expedient to note that it follows from
Eq. (10.5) that

P4 t = 1−
3

i = 1

Pi t 10 19

Therefore, inserting Eqs. (10.13), (10.17), and (10.18) into this expression yields the desired
solution

P4 t = 1− e− λat − e− λbt − e− λa + λb t 10 20

With the Pi(t) known, we may now calculate the reliability. This, of course, depends on the con-
figuration of the two components, and there are only two possibilities, series and parallel. In the
series configuration, any failure causes system failure. Hence

Rs t = P1 t 10 21

or

Rs t = e− λa + λb t 10 22

Since for the active parallel configuration both components a and b must fail to have system
failure,

Rp t = P1 t + P2 t + P3 t 10 23

or, using Eq. (10.19), we have

Rp t = 1−P4 t 10 24

Therefore,

Rp t = e− λat + e− λbt − e− λa + λb t 10 25

This analysis assumes that the failure rate of each component is independent of the state of the
other component. As can be seen from Figure 10.2, the transitions 1 2 and 3 4, which involve
the failure of component a, have the same failure rate, even though one takes place with component
b in operating order and the other with failed component b. The same argument applies in compar-
ing the transitions 1 3 and 2 4. Since the failure rates – and therefore the failure probabil-
ities – are independent of the system state, they are mutually independent. Therefore, the
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expressions derived in Chapter 3 should still be valid. That this is the case may be seen from the
following. For constant failure rates, the component reliabilities derived in Chapter 3 are

Ri t = e− λlt , l = a, b 10 26

Thus, the series expression, Eq. (10.22), reduces to

RS t = Ra t Rb t 10 27

and the parallel expression, Eq. (10.25), is

Rp t = Ra t + Rb t −Ra t Rb t 10 28

These are just the expressions derived earlier for independent components, without the use of
Markov methods.

Load-Sharing Systems

The primary value of Markov methods appears in situations in which component failure rates can
no longer be assumed to be independent of the system state. One of the common cases of depend-
ence is in load-sharing components, whether they be structural members, electric generators, or
mechanical pumps or valves. Suppose, for example that two electric generators share an electric
load that either generator has enough capacity to meet. It is nevertheless true that if one generator
fails, the additional load on the second generator is likely to increase its failure rate.
To model load-sharing failures, consider once again two components, a and b, in parallel. We

again have a four-state system, but now the transition diagram appears as in Figure 10.3. Here,
λ∗a and λ∗b denote the increased failure rates brought about by the higher loading after one failure
has taken place.
The Markov equations can be derived as for independent failures if the changes in failure rates

are included. Comparing Figures 10.2 with 10.3, we see that the resulting generalizations of
Eqs. (10.7), (10.9), (10.10), and (10.12) are

d
dt

P1 t = − λa + λb P1 t 10 29

d
dt

P2 t = λaP1 t − λ∗bP2 t 10 30

λa*

λa

λb*

λb

1

4

2 3

Figure 10.3 State transition diagram with load sharing.
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d
dt

P3 t = λbP1 t − λ∗aP3 t 10 31

and

d
dt

P4 t = λ∗bP2 t + λ∗aP3 t 10 32

The solution procedure is also completely analogous. The results are

P1 t = e− λa + λb t 10 33

P2 t =
λa

λa + λb − λb
∗ e− λb

∗t − e− λa + λb t 10 34

P3 t =
λb

λa + λb − λa
∗ e− λa

∗t − e− λa + λb t 10 35

and

P4 t = 1−P1 t −P2 t −P3 t 10 36

Finally, since both components must fail for the system to fail, the reliability is equal to P1(t) +
P2(t) + P3(t) . Thus, setting λc = λa+ λb, we have

Rp t =
λb

λc − λa
∗ e

− λa
∗t +

λa
λc − λb

∗ e
− λb

∗t −
λaλb

∗ + λbλa
∗ − λa

∗λb∗

λc − λb
∗ λc − λb

∗ e− λct 10 37

It is easily seen that if λ∗a = λa and λ∗b = λb, there is no dependence between failure rates, and
Eq. (10.37) reduces to Eq. (10.25). The effects of increased loading on a load-sharing redundant sys-
tem can be seen graphically by considering the situation in which the two components are identical:
λa = λb = λ and λ∗a = λ∗b = λ∗. Equation (10.37) then reduces to

R t = 2λ− λ∗ − 1 2λe− λ∗t − λ∗e− 2λt 10 38

In Figure 10.4 we have plotted R(t) for the two-component parallel system, while varying the
increase in failure rate caused by increased loading (i.e. the ratio λ∗/λ). The two extremes are

1

0 1 2 3
λt

λ* = ∞

λ* = 4λ

λ* = 2λ

λ* = λ

e–λt

R
(t

)

Figure 10.4 Reliability of load-sharing systems.
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the system in which the two components are independent, λ∗= λ, and the totally dependent system
in which the failure of one component brings on the immediate failure of the other, λ∗=∞. Notice
that these two extremes correspond to Eqs. (10.25) and (10.22), for independent failures of parallel
and series configurations, respectively.

Example 10.1 Two diesel generators of known MTTF are hooked in parallel. Because the failure
of one of the generators will cause a large additional load on the other, the design engineer esti-
mates that the failure rate will double for the remaining generator. For how many MTTF can
the generator system be run without the reliability dropping below 0.95?

Solution:
Placing λ∗ = 2λ in Eq. (11.38) will yield 0/0. Instead, we take λ∗ = 2λ− ε, and then from Eq. (10.38):

lim
ε 0

R t = lim
ε 0

ε− 1 2λeεt − 2λ + ε e− 2λt = 1 + 2λt e− 2λt

or

0 95 = 1 + 2λt e− 2λt

where t is the time at which R(t) = 0.95. Solving graphically for λt yields λt = 0.178. Therefore, since
λ= 1/MTTF for the diesel generators, the maximum time of operation is t= 0.178/λ = 0.178 MTTF.
Note that if only a single generator had been used, it could have operated only t = ln(1/R)/
λ = 0.0513 MTTF without violating the criterion.

10.3 Reliability With Standby Systems

Standby or backup systems are a widely applied type of redundancy in fault-tolerant systems,
whether they be in the form of extra logic chips, navigation components, or emergency power gen-
erators. They differ, however, from active parallel systems in that one of the units is held in reserve
and only brought into operation in the event that the first unit fails. For this reason they are often
referred to as passive parallel systems. By their nature, standby systems involve dependency
between components; they are nicely analyzed by Markov methods.

Idealized System

We first consider an idealized standby system consisting of a primary unit a and a backup unit b. If
the states are numbered according to Table 10.2, the system operation is described by the transition
diagram, Figure 10.5. When the primary unit fails, there is a transition 1 2, and then when the
backup unit fails, there is a transition 2 4, with state 4 corresponding to system failure. Note that
there is no possibility of the system’s being in state 3, since we have assumed that the backup unit
does not fail while in the standby state. Hence, P3(t)= 0. Later, we consider the possibility of failure
in this standby state as well as the possibility of failures during the switching from primary to
backup unit.
From the transition diagram we may construct the Markov equations for the three states quite

easily. For state 1, there is only a loss term from the transition 1 2. Thus,
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d
dt

P1 t = − λaP1 t 10 39

For state 2, we have one source term, from the 1 2 transition, and one loss term from the 2 4
transition. Thus,

d
dt

P2 t = λaP1 t − λbP1 t 10 40

Since state 4 results only from the transition 2 4, we have

d
dt

P4 t = λbP2 t 10 41

The foregoing equations may be solved sequentially in the samemanner as those of the preceding
sections. We obtain

P1 t = e− λat 10 42

P2 t =
λa

λb − λa
e− λat − e− λbt 10 43

P3 t = 0 10 44

and

P4 t = 1−
1

λb − λa
λb e

− λat − λa e
− λbt 10 45

where we have again used the initial conditions, Eqs. (10.3) and (10.4). Since state 4 is the only state
corresponding to system failure, the reliability is just

R t = P1 t + P2 t 10 46

1

4

2 3

λa

λb

Figure 10.5 State transition diagram for a standby
configuration.
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or

R t = e− λat +
λa

λb − λa
e− λat − e− λbt 10 47

This, in turn, may be simplified to

R t =
1

λb − λa
λb e

− λat − λa e
− λbt 10 48

The properties of standby systems are nicely illustrated by comparing their reliability versus time
with that of an active parallel system. For brevity, we consider the situation λa = λb = λ. In this sit-
uation, we must be careful in evaluating the reliability, for both Eqs. (10.47) and (10.48) contain
λb − λa in the denominator. We begin with Eq. (10.47) and rewrite the last term as

R t = e− λat +
λa

λb − λa
e− λat 1− e− λb − λa t 10 49

Then, going to the limit as λb approaches λa, we have (λb − λa) t 1, and we can expand

e− λb − λa t = 1− λb − λa t +
1
2

λb − λa
2
t2 − 10 50

Combining Eqs. (10.49) and (10.50), we have

R t = e− λat + λa e
− λat t−

1
2

λa − λb t2 + 10 51

Thus, as λb and λa become equal, only the first two terms remain, and we have for λb = λa = λ:

R t = 1 + λt e− λt 10 52

In Figure 10.6 are compared the reliabilities of active and standby parallel systems whose two
components have identical failure rates. Note that the standby parallel system is more reliable than
the active parallel system because the backup unit cannot fail before the primary unit, even though
the reliability of the primary unit is not affected by the presence of the backup unit.

0 1 2 3
λt

1

R
(t

)

Active
parallel

Standby
parallel

Figure 10.6 Reliability comparison for standby and active parallel systems.
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The gain in reliability is further indicated by the increase in the system MTTF for the standby
configuration, relative to that for the active configuration. Substituting Eq. (10.52) into
Eq. (3.22), we have for the standby parallel system

MTTF = 2 λ 10 53

compared to a value of

MTTF = 3 2λ 10 54

for the active parallel system.

Failures in the Standby State

We next model the possibility that the backup unit fails before it is required. We generalize the state
transition diagram as shown in Figure 10.7. The failure rate λ +

b represents failure of the backup
unit while it is inactive; state 3 represents the situation in which the primary unit is operating,
but there is an undetected failure in the backup unit.
There are now two paths for transition out of state 1. Thus, for P1 (t), we have

d
dt

P1 t = − λa P1 t − λ +
b P1 t 10 55

The equation for state 2 is unaffected by the additional failure path; as in Eq. (10.40), we have

d
dt

P2 t = − λa P1 t − λb P2 t 10 56

We must now set up an equation to determine P3(t). This state is entered through the 1 3 tran-
sition with rate λ +

b and is exited through the 3 4 transition with rate λa. Thus,

d
dt

P3 t = − λ +
b P1 t − λa P3 t 10 57

Finally, state 4 is entered from either states 2 or 3;

d
dt

P4 t = − λb P2 t − λa P3 t 10 58

1

4

2 3

λa

λaλb

λb
+

Figure 10.7 State transition diagram with failure in the
backup mode.

10.3 Reliability With Standby Systems 437



The Markov equations may be solved in the same manner as before. We obtain, with the initial
conditions Eqs. (10.3) and (10.4),

P1 t = e− λa + λ +
b t 10 59

P2 t =
λa

λa + λ +
b − λb

e− λbt − e− λa + λ +
b t 10 60

and

P3 t = e− λat − e− λa + λ +
b t 10 61

There is no need to solve for P4(t), since once again it is the only state for which there is system
failure, and therefore,

R t = P1 t + P2 t + P3 t 10 62

yielding

R t = e− λat +
λa

λa + λ +
b − λb

e− λbt − e− λa + λ +
b t 10 63

Once again, it is instructive to examine the case λa = λb = λ and λ +
b = λ+ in which Eq. (10.63)

reduces to

R t = 1 +
λ

λ + e− λt −
λ

λ + e− λ + λ + t 10 64

In Figure 10.8, the results are shown, having values of λ+ ranging from zero to λ. The deterioration
of the reliability is seen with increasing λ+. The system MTTF may be found easily by inserting
Eq. (10.64) into Eq. (3.22). We have

MTTF =
1
λ
+

1
λ + −

λ

λ +
1

λ + λ + 10 65

λ+ = 0.75λ

λ+ = λ

λ+ = 0.25λ

λ+ = 0.5λ

λ+ = 0

R
(t

)

λt
0 1

1

2 3

Figure 10.8 Reliability of a standby system with different rates of failure in the backup mode.
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When λ+= λ, the foregoing results reduce to those of an active parallel system. This is sometimes
referred to as a “hot-standby system,” since both units are then running, and only a switch from one
to the other is necessary. Fault-tolerant control systems, which can use only the output of one
device at a time but which cannot tolerate the time required to start up the backup unit, operate
in this manner. Unlike active parallel systems, however, they must switch from primary unit to
backup unit. We consider switching failures next.

Example 10.2 A fuel pump with an MTTF of 3000 hour is to operate continuously on a 500-hour
mission.

a) What is the mission reliability?
b) Two such pumps are put in a standby parallel configuration. If there are no failures of the

backup pump while in the standby mode, what is the system MTTF and the mission reliability?
c) If the standby failure rate is 15% of the operational failure rate, what is the systemMTTF and the

mission reliability?

Solution:

a) The component failure rate is λ= 1/3000= 0.333 × 10−0/hour. Therefore, the mission reliabil-
ity is

R T = exp −
1

3000
× 500 = 0 846

b) In the absence of standby failures, the system MTTF is found from Eq. (10.53) to be

MTTF
2
λ
= 2 × 3000 = 6000 hour

The system reliability is found from Eq. (10.52) to be

R 500 = 1 +
1

3000
× 500 × exp −

1
3000

× 500 = 0 988

c) We find the system MTTF from Eq. (10.65) with λ+= 0.15/3000= 0.5 × 10−4/hour:

MTTF =
1

0 333 × 10− 3 +
1

0 5 × 10− 4

−
0 333 × 10− 3

0 5 × 10− 4

1
0 333 × 10− 3 + 0 5 × 10− 4

MTTT = 5609 hour

From Eq. (10.64) the system reliability for the mission is R(500)= 0.986.

Switching Failures

A second difficulty in using standby systems stems from the switch from the primary unit to the
backup. This switch may take action by electric relays, hydraulic valves, electronic control circuits,
or other devices. There is always the possibility that the switching device will have a demand failure
probability p large enough that switching failures must be considered. For brevity, we do not con-
sider backup unit failure while it is in the standby mode.
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The state transition diagram with these assumptions is shown in Figure 10.9. Note that the tran-
sition out of state 1 in Figure 10.5 has been divided into two paths. The primary failure rate is multi-
plied by 1− p to get the successful transition into state 2 in which the backup system is operating.
The second path with rate pλa indicates a transition directly to the failed-system state that results
when there is a demand failure on the switching mechanism.
For the situation depicted in Figure 10.9, state 1 is still described by Eq. (10.39). Now, however,

the 1 2 transition is decreased by a factor 1 –p, and so, instead of Eq. (10.40), state 2 is described by

d
dt

P2 t = 1− p λa P1 t − λbP2 t 10 66

and state 4 is described by

d
dt

P4 t = λb P2 t + pλa P1 t 10 67

Since P1(t) is again given by Eq. (10.42), we need to solve only Eq. (10.66) to obtain

P2 t = 1− p
λa

λb − λa
e− λat − e− λbt 10 68

Accordingly, since state 4 is the only failed state and P3(t)= 0, we may write

R t = P1 t + P2 t 10 69

or inserting Eqs. (10.42) and (10.68), we obtain for the reliability

R t = e− λat +
1− p λa
λb − λa

e− λat − e− λbt 10 70

Once again it is instructive to consider the case λa = λb = λ for which we obtain

R t = 1 + 1− p λt e− λt 10 71

Clearly, as p increases, the value of the backup system becomes less and less, until finally if p is
one (i.e. certain failure of the switching system), the backup system has no effect on the system
reliability.

1

4

2 3

(1–p)λa

pλa

λb

Figure 10.9 State transition diagram with standby switching
failures.
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Example 10.3 An annunciator system has a mission reliability of 0.9. Because reliability is con-
sidered too low, a redundant annunciator of the same design is to be installed. The design engineer
must decide between an active parallel and a standby parallel configuration. The engineer knows
that failures in standby have a negligible effect, but there is a significant probability of a switching
failure.

a) How small must the probability of a switching failure be if the standby configuration is to be
more reliable than the active configuration?

b) Discuss the switching failure requirement of a for very short mission times.

Solution:

a) Assuming a constant failure rate, we know that for the mission time T,

λT = ln
1

R T
= ln

1
0 9

= 0 1054

To find the failure probability, we equate Eq. (10.71) with Eq. (3.104) for the active parallel
system:

1 + 1− p λ T e− λT = 2e− λT − e− 2λT

Thus,

p = 1−
1
λT

1− e− λT

= 1−
1

0 1054
1− e− 0 1054 = 0 05

(b) For active parallel system, Eq. (3.112), the exponential gives the short mission time
approximation:

Ra 1− λt 2

For standby parallel system, we expand (10.71) for small λt:

Rsb = 1 + 1− p λt e− λt = 1 + 1− p λt 1− λt +
1
2

λt 2…

1− pλt−
1
2
− p λt2

Then, we calculate p for Ra− Rsb = 0:

1− λt 2
− 1 + pλt +

1
2
− p λt 2 = 0

or

p =
1
2 λt

1− λt
1
2
λt

The shorter the mission, the smaller p must be, or else switching failures will be more probable
than the failures of the second annunciator in the active parallel configuration.
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The combined effects of failures in the standby mode and switching failures may be included in
the foregoing analysis. For two identical units, the reliability may be shown to be

R t = 1 + 1− p
λ

λ + e− λt − 1− p
λ

λ + e− λ + λ + t 10 72

which reduces to Eq. (10.71) as λ+ 0. For a hot-standby system in which identical primary and
backup systems are both running so that λ+= λ, we obtain from Eq. (10.72)

R t = 2− p e− λt − 1− p e− 2λt 10 73

Thus, the reliability is less than that of an active parallel system because there is a probability of
switching failure. As stated earlier, in hot-standby systems, such as for control devices, the output of
only one unit can be used at a time. If the probability of switching failure is too great, an alternative
is to add a third unit and use a 2/3 voting system, as discussed in Chapter 3.

Primary System Repair

Two considerable benefits are to be gained using redundant system components. The first is that
more than one failure must occur in order for the system to fail. A second is that components can be
repaired while the system is on line. Much higher reliabilities are possible if the failed component
has a high probability of being repaired before a second one fails.
Component repair increases the reliability of either active parallel or standby parallel systems.

Moreover, either system may be analyzed using Markov methods. In what follows, we derive
the reliability for a system consisting of a primary and a backup unit. We assume that the primary
unit can be repaired on line. For clarity, we assume that failure of the backup unit in standby mode
and switching failures can be neglected.
The state transition diagram shown in Figure 10.10 differs from Figure 10.5 only in that the repair

transition has been added. This creates an additional source term of vP2(t) in Eq. (10.39),

d
dt

P1 t = − λa P1 t + vP2 t 10 74

λa

λb

1

4

2 3

ν

Figure 10.10 State transition diagram with primary
system repair.
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and the corresponding loss term is subtracted from Eq. (10.40),

d
dt

P2 t = − λa P1 t + λb + v P2 t 10 75

The reliability, once again, is calculated from Eq. (10.46).
The equations can no longer be solved one at a time, sequentially, as in the previous examples, for

now P1(t) depends on P2(t). Laplace transforms may be used to solve Eqs. (10.74) and (10.75), but to
avoid introducing additional nomenclature we use the following technique instead. Suppose that
we look for solutions of the form

P1 t = Ce− αt; P2 t = C e− αt 10 76

where C, C , and α are constants. Substituting these expressions into Eqs. (10.74) and (10.75), we
obtain

− αC = − λaC + vC ; − αC = λaC− λb + v C 10 77

The constants C and C’ may be eliminated between these expressions to yield the form

α2 − λa + λb + v α + λaλb = 0 10 78

Solving this quadratic equation, we find that there are two solutions for α:

α ± =
v + λa + λb

2
±

1
2

v + λa + λb
2
− 4λaλb

1 2 10 79

Thus, our solutions have the form

P1 t = C + e− α + t + C− e
− α− t 10 80

P2 t = C + e− α + t + C− e
− α− t 10 81

We must use the initial conditions along with Eq. (10.79) to evaluate C± and C ±. Combining
Eqs. (10.80) and (10.81) with the initial conditions P1(0)= 1 and P2(0)= 0, we have

C + + C− = 1; C + + C− = 0 10 82

Furthermore, adding Eq. (10.77), we may write, for α+ and α−,

α ± C ± = λb − α ± C ± 10 83

These four equations can be solved for C± and C’±. Then, after some algebra, we may add
Eqs. (10.80) and (10.81) to obtain from Eq. (10.46)

R t =
α +

α + − α−

e− α− t −
α−

α + − α−

e− α + t 10 84

The improvement in reliability with standby systems is indicated in Figure 10.11, where the two
units are assumed to be identical, λa = λb = λ, and plots are shown for different ratios of ν/λ. In the
usual case, where v λ, it is easily shown that α+ α−, so that the second term in Eq. (10.84) can
be neglected, and that α−≈−λaλb/v. Hence, we may write, approximately,

R t ≈ exp −
λa λb
v

t 10 85
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In the situation in which ν λa, λb, the deterioration of reliability is likely to be governed not by
the possibility that the backup system will fail before the primary system is repaired but rather by
one of the two other possibilities: (i) that switching to the backup system will fail or (ii) that the
backup system has failed. These failures are dealt with either by improving the switching and
standby mode reliabilities or by utilizing an active parallel system with repairable components.
Then, the switching is obviated, and the configuration is more likely to be designed so that failures
in either component are revealed immediately.

10.4 Multicomponent Systems

The models described in the two preceding sections concern the dependencies between only two
components. In order to make use of Markov methods in realistic situations, however, it is often
necessary to consider dependencies between more than two components or to build the depend-
ency models into many-component systems. In this section, we first undertake to generalize Mar-
kov methods for the consideration of dependencies between more than two components. We then
examine how to build dependency models into larger systems in which some of the component
failures are independent of the others.

Multicomponent Markov Formulations

The treatment of larger sets of components by Markov methods is streamlined by expressing the
coupled set of state transition equations in matrix form. Moreover, the resulting coefficient matrix
can be used to check on the formulation’s consistency and to gain some insight into the physical
processes at play. To illustrate, we first put one of the two-component, four-state systems discussed
earlier into matrix form. The generalization to larger systems is then obvious.
Consider the backup configuration shown in Figure 10.7 in which we allow for the failure of the

unit in the standby mode. The four equations for the Pi(t) are given by Eqs. (10.55) through (10.58).
If we define a vector P(t), whose components are P1(t) through P4(t), we may write the set of simul-
taneous differential equations as

50
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1

λt
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2 3
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 = 0ν
λ

Figure 10.11 The effect of primary system repair rate on the reliability of a standby system.
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d
dt

P1 t

P2 t

P3 t

P4 t

=

− λa − λ +
b 0 0 0

λa − λb 0 0

λ +
b 0 − λa 0

0 λb λa 0

P1 t

P2 t

P3 t

P4 t

10 86

Consider next a systemwith three components in parallel, as shown in Figure 10.1b. Suppose that
this is a load-sharing system in which the component failure rate increases with each component
failure:
λ1= component failure rate with no component failures,
λ2= component failure rate with one component failure,
λ3= component failure rate with two component failures.
If we again enumerate the possible system states in Table 10.1, the state transition diagram will

appear as in Figure 10.12. From this diagram, wemay construct the equations for the Pi(t). Inmatrix
form, they are

d
dt

P1 t

P2 t

P3 t

P4 t

P5 t

P6 t

P7 t

P8 t

=

− 3λ1 0 0 0 0 0 0 0

λ1 − 2λ2 0 0 0 0 0 0

λ1 0 − 2λ2 0 0 0 0 0

λ1 0 0 − 2λ2 0 0 0 0

0 λ2 λ2 0 − λ3 0 0 0

0 λ2 0 λ2 0 − λ3 0 0

0 0 λ2 λ2 0 0 − λ3 0

0 0 0 0 λ3 λ3 λ3 0

P1 t

P2 t

P3 t

P4 t

P5 t

P6 t

P7 t

P8 t

10 87
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λ1

λ1
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λ2

λ2

λ3
λ3

λ3

λ2

λ2 λ2λ2

Figure 10.12 Slate transition diagram for a three-
component parallel system.
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where there are now 23= 8 states in all. The generalization to more components is straightfor-
ward, provided that the logical structure of the dependencies is understood.
Equations (10.86) and (10.87) may be used to illustrate an important property of the coefficient

matrix, one which serves as an aid in constructing the set of equations from the state transition
diagram. Each transition out of a state must terminate in another state. Thus, for each negative
entry in the coefficient matrix, there must be a positive entry in the same column, and the sum
of the elements in each column must be zero. Thus, the matrix may be constructed systematically
by considering the transitions one at a time. If the transition originates from the ith state, the failure
rate is subtracted from the ith diagonal element. If the transition is to the jth state, the failure rate is
then added to the jth row of the same column.
A second feature of the coefficient matrix involves the distinction between operational and failed

states. In reliability calculations we do not allow a system to be repaired once it fails. Hence, there
can be no way to leave a failed state. In the coefficient matrix this is indicated by the zero in the
diagonal element of each failed state. This is not the case, however, when availability rather than
reliability is being calculated. Availability calculations are discussed in the following section.
For larger systems of equations it is often more convenient to write Markov equations in the

matrix form

d
dt

P t = MP t 10 88

where P is a column vector with components P1(t), P2(t) ,..., and M is referred to as the Markov
transition matrix. Instead of repeating the entire set of equations, as in Eqs. (10.86) and (10.87),
we need to write out only the matrix. Thus, for example the matrix for Eq. (10.86) is

M =

− λa − λ +
b 0 0 0

λa − λb 0 0

λ +
b 0 − λa 0

0 λb λa 0

10 89

The dimension of the matrix increases as 2N, where N is the number of components. For larger
systems, particularly those whose components are repaired, the simple solution algorithms dis-
cussed earlier become intractable. Instead, more general Laplace transform techniques may be
required. If there are added complications, such as time-dependent failure rates, the equations
may require solution by numerical integration or by Monte Carlo simulation.

Example 10.4 A 2/3 system is constructed as follows. After the failure of either component a or c,
whichever comes first, component b is switched on. The system fails after any two of the compo-
nents fail. The components are identical with the failure rate λ.

a) Draw a state transition diagram for the system.
b) Write the corresponding Markov transition matrix.
c) Find the system reliability R(t).
d) Determine the reliability when time is set equal to the MTTF one component.

Solution:
For this three-component system, there are eight states. We define these according to Table 10.1.

a) The state transition diagram is shown in Figure 10.13. Note that states 3 and 8 are not reachable.
b) The Markov transition matrix is
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M =

− 2λ 0 0 0 0 0 0 0

λ − 2λ 0 0 0 0 0 0

0 0 0 0 0 0 0 0

λ 0 0 − 2λ 0 0 0 0

0 λ 0 0 0 0 0 0

0 λ 0 λ 0 0 0 0

0 0 0 λ 0 0 0 0

0 0 0 0 0 0 0 0

c) The reliability is given by R(t)= P1(t) + P2(t) + P4(t); thus, only three of the eight equations need
be solved. First, dP1 / dt =−2λP1, with P1(0)= 1 yields P1(t)= e−2λt. The equations for P2+ P4 are
the same:

dPn

dt
= λP1 − 2λPn, Pn 0 = 0; n = 2, 4

Therefore,

dPn

dt
= λe− 2λt − 2λPn

We use the integrating factor e2λt to obtain

d
dt

Pne
− 2λt = λ

Then, integrating between 0 and t, we obtain

Pn t e2λt −Pn 0 = λt

1

3 4

75

2

6

λ

λ λ λ λ

λ

1
Figure 10.13 State transition diagram for
Example 10.4.
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Thus,

Pn t = λte− 2λt , n = 2, 4

Substituting into R(t)= P1 + P2 + P4 yields

R t = 1 + 2λt e− 2λt

d) t =MTTF ≡ 1/λ. Then,

R MTTF = 1 + 2 × 1 e− 2 × 1 = 0 406

Combinations of Subsystems

In principle, we can treat systems of many components using Markov methods. However, with 2N

equations the solutions soon become unmanageable. A more efficient approach is to define one or
more subsystems containing the components with dependencies between them. These subsystems
can then
be treated as single blocks in a reliability block diagram, and the system reliability can be calcu-

lated using the techniques of Chapter 3, since the failures in the subsystem defined in this way are
independent of one another.
To understand this procedure, consider the system configurations shown in Figure 10.14. In

Figure 10.14a is shown the convention for drawing a two-component standby system of the type
discussed in the preceding section as a reliability block diagram. In Figure 10.14b, the standby par-
allel subsystem, consisting of components a and b, is in series with two other components. The reli-
ability of the standby subsystem (with no switching errors) is given by Eq. (10.63). Therefore, we
define the reliability of the standby subsystem as

Rsb t = e− λat +
λa

λa + λ +
b − λb

e− λbt − e− λa + λ +
b t 10 90

Then, if the failures in components c and d are independent of those in the standby subsystem,
the system reliability can be calculated using the product rule

R t = Rsb t Rc t Rd t 10 91

Generalization of this technique to more complex configurations is straightforward.

a

b

a

b

c d

a

b

c

d

(a) (b) (c)

Figure 10.14 Standby configurations.
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The configuration in Figure 10.14c illustrates a somewhat different situation. Here, the primary
and standby subsystems themselves each consist of two components, a and c, and b and d, respec-
tively. Here, we may simplify the Markov analysis by first combining the four components into two
subsystems, each having a composite failure rate. Thus, we define

λac = λa + λc 10 92

λbd = λb + λd 10 93

and

λ +
bd = λ +

b + λ +
d 10 94

Wemay again apply Eq. (10.90) to calculate the system reliability if we replace λa, λb, and λ
+
b with

λac, λbd, and λ +
bd , respectively.

10.5 Availability

In availability, as well as in reliability, there are situations in which the component failures cannot
be considered independent of one another. These include shared-load and backup systems in which
all the components are repairable. They may also include a variety of other situations in which the
dependency is introduced by the limited number of repair personnel or by replacement parts that
may be called on to put components into working order. Thus, for example the repair of two redun-
dant components cannot be considered independent if only one crew is on station to carry out the
repairs.
The dependencies between component failure and repair rates may be approached once more

with Markov methods, provided that the failures are revealed, and that the failure and repair rates
are time independent. Although we have already treated the repair of components in reliability
calculations, there is a fundamental difference in the analysis that follows. In reliability calcula-
tions, components can be repaired only as long as the system has not failed; the analysis terminates
with the first system failure. In availability calculations, we continue to repair components after a
system failure in order to bring the system back on line, that is to make it available once again.
The differences between Markov reliability and availability calculations for systems with repair-

able components can be illustrated best in terms of the matrix notion developed in the preceding
section. For this reason, we first illustrate an availability calculation with a system for which the
reliability was calculated in the preceding section, standby redundance. We then illustrate the lim-
itation placed on the availability of an active parallel configuration by the availability of only one
repair crew.

Standby Redundancy

Suppose that we consider the reliability of a two-component system, consisting of a primary and a
backup unit. We assume that switching failures and failure in the standby mode can be neglected.
In the preceding section, the analysis of such a system is carried out assuming that the primary unit
can be repaired with a rate v. Since there are only three states with nonzero probabilities the state
transition diagram may be drawn as in Figure 10.15a, where state 3 is the
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failed state. The transition matrix for Eq. (10.88) is then given by

M =

− λa v 0

λa − λb − v 0

0 λb 0

10 95

The estimate of the availability of this system involves one additional state transition. In order for
the system to go back into operation after both units have failed, we must be able to repair the
backup unit. This requires an added repair transition from state 3 to state 2, as indicated in
Figure 10.15b. This repair transition is represented by two additional terms in theMarkov transition
matrix. We have

M =

− λa v 0

λa − λb − v v

0 λb − v

10 96

Here, we assume that when both units have failed, the backup unit will be repaired first; we also
assume that the repair rates are equal. More general cases may also be considered.
An important difference can be seen in the structures of Eqs. (10.95) and (10.96). In Eq. (10.96), all

the diagonal elements are nonzero. This is a fundamental difference from reliability calculations. In
availability calculations, the system must always be able to recover from any failed state. Thus,
there can be no zero diagonal elements, for these would represent an absorbing or inescapable
failed state; transitions can always be made out of operating states through the failure of additional
components.
The availability of the system is given by

A t =
i 0

Pι t 10 97

where the sum is over the operational states. The Markov equations, Eq. (10.88), may be solved
using Laplace transforms or other methods to determine the P(t), and Eq. (10.97) may be evaluated
for the detailed time dependence of the point availability.

1 1

22

3

λa λa

λb λb

(a) (b)

3

ν ν

ν

Figure 10.15 State transition diagrams for a standby system: (a) for reliability and (b) for availability.
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We are usually interested in the asymptotic or steady-state availability, A(∞), rather than in the
time dependence. This quantity may be calculated more simply. We note that as t ∞, the deriv-
ative on the right-hand side of Eq. (10.88) vanishes, and we have the time-independent relationship

MP ∞ = 0 10 98

In our problem, this represents the three simultaneous equations

− λa P1 ∞ + v P2 ∞ = 0 10 99

λa P1 ∞ − λb + v P2 ∞ + vP3 ∞ = 0 10 100

and
λb P2 ∞ − vP3 ∞ = 0 10 101

This set of three equations is not sufficient to solve for the Pι(∞). For all Markov transition matri-
ces are singular; that is, the equations are linearly dependent, yielding only N − 1 (in our case two)
independent relationships. This is easily seen, since adding Eqs. (10.99) and (10.101) yields
Eq. (10.100). The needed piece of additional information is the condition that all of the probabilities
must sum to 1:

i

Pi ∞ = 1 10 102

In the situation inwhichwe take λa = λb = λ, our problem is easily solved. Combining Eqs. (10.99),
(10.101), and (10.102), we obtain

P1 ∞ = 1 +
λ

v
+

λ

v

2 − 1

10 103

P2 ∞ = 1 +
λ

v
+

λ

v

2 − 1
λ

v
10 104

and

P3 ∞ = 1 +
λ

v
+

λ

v

2 − 1
λ

v

2

10 105

The steady-state availability may be found by setting t =∞ in Eq. (10.97):

A ∞ = 1− 1 +
λ

v
+

λ

v

2 − 1
λ

v

2

10 106

If we further assume that λ/ v 1, we may write

A ∞ ≈ 1−
λ

v

2

10 107

Example 10.5 Suppose that the system availability for standby systems must be 0.9. What is the
maximum acceptable value of the failure to repair rate ratio λ/v?

Solution:
Let x = λ/v in Eq. (10.106). Then,

A ∞ = 1− 1 + x + x2
− 1

x 2

Converting to a quadratic equation, we have x2− γ x− γ = 0, where
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γ =
1−A
A

=
1− 0 9
0 9

=
1
9

and

λ

v
x =

+ γ + γ 1 + 4 γ

2
= 0 393

If instead the rare-event approximation is used,

λ

v
≈ 1−A ∞ = 1− 0 9 = 0 316

Other configurations are also possible. If two repair crews are available, repairs may be carried
out on the primary and backup units simultaneously; the result is the four-state system of
Table 10.2. As indicated in Figure 10.16a, it is possible to get the primary unit running before
the backup unit is repaired. In this situation, states 1, 2, and 3 are the operating states and must
be included in the sum in Eq. (10.97). The Markov matrix now becomes

M =

− λa v v 0

λa − v− λb 0 v

0 0 − v− λa v

0 λb λa − 2v

10 108

Other possibilities may also be added. For example, if switching failures and failures of the
backup unit while in standby are not negligible, the state transition diagram is modified as shown
in Figure 10.16b, where p represents the probability of failure in switching from the primary to the
backup, and λ +

b the standby failure rate of the backup unit. The Markov transition matrix corre-
sponding to Figure 10.16b is

M =

− λa − λ +
b v v 0

1− p λa − λb − v 0 v

λ +
b 0 − λa − v v

pλa λb λa − 2v

10 109

1 1

4 4

2 23 3

λa

λb
λb

λb
+

λa
λa

(1–p)λa

pλa

ν

νν

ν

(a) (b)

ν

νν

ν

Figure 10.16 State transition diagrams for repairable standby systems.
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To recapitulate, steady-state availability problems are solved by the same procedure. AnyN− 1 of
the N equations represented by Eq. (10.98) are combined with the condition, Eq. (10.102), that the
probabilities must add to 1, to solve for the components of P (∞). These are then substituted into
Eq. (10.97) with the sum taken over all operating states to obtain the availability.

Shared Repair Crews

We conclude with the analysis of an active parallel system consisting of two identical units. We
assume that the failure rates are identical and that they are independent of the state of the other
unit. We also assume that the repair rates for the two units are the same. In this situation the fail-
ures and repairs of the two units are independent, provided that each unit has its own repair crew.
The availability is then given by Eq. (10.95). The dependency is introduced not by a hardware fail-
ure, as in the case of standby redundance, but by an operational decision to provide a single repair
crew that can handle only one unit at a time.
The state transition diagram for the system using two repair crews is shown in Figure 10.17a.

Since the availability can be calculated from the component availabilities, as in Eq. (10.95), we will
not pursue the Markov solution further. Our attention is directed to the system using one repair
crew, indicated by the state transition diagram given in Figure 10.17b.
The transition matrix corresponding to Figure 10.17b is

M =

− 2λ v v 0

λ − λ− v 0 v

λ 0 − λ− v 0

0 λ λ − v

10 110

λ λ λ

λ λ

λ

λλ

ν

ν ν

ν ν

ν

ν

1 1

3 322

4 4

(a) (b)

Figure 10.17 State transition diagrams for an active parallel system: (a) two repair crews and (b) one
repair crew.
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We solve the equations obtained from this matrix along with Eq. (10.102) to yield, after some
algebra,

P1 ∞ = 1 + 2
λ

v
+ 2

λ

v

2 − 1

10 111

P2 ∞ + P3 ∞ = 1 + 2
λ

v
+ 2

λ

v

2 − 1
2λ
v

10 112

and

P4 ∞ = 1 + 2
λ

v
+ 2

λ

v

2 − 1
2λ2

v2
10 113

Substitution of the results into Eq. (10.97) then yields for the steady-state availability

A ∞ = 1− 1 + 2
λ

v
+ 2

λ

v

2 − 1
2λ2

v2
10 114

For the usual case where λ/v 1, this may be approximated by

A ∞ 1− 2
λ

v

2

10 115

The loss in availability because a second repair crew is not on hand can be determined by com-
paring these expressions to those obtained for system availability when there are two repair crews.
From Eq. (10.95), with N = 2, we have

A ∞ = 1− 1 + 2
λ

v
+ 2

λ

v

2 − 1
λ

v

2

10 116

or for the case where λ/v 1,

A ∞ 1−
λ

v

2

10 117

Thus, the unavailability is roughly doubled if only one repair crew is present.

Example 10.6 A system has an availability of 0.90. Two such systems, each with its own repair
crew, are placed in parallel. What is the availability

a) for a standby parallel configuration with perfect switching and no failure of the unit in standby?
b) for an active parallel configuration?
c) What is the availability if only one repair crew is assigned to the active parallel configuration?

Solution:
The system availability is given by A(∞)= v/(v + λ). Therefore, v/λ = A(∞)/[1−A(∞)]= 0.9/
(l − 0.9)= 9; λ/v = 0.1110.

a) From Eq. (10.106),

A ∞ = 1−
0 1111 2

1 + 0 1111 + 0 1111 2 = 0 989
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b) From Eq. (10.116),

A ∞ = 1−
0 1111 2

1 + 2 × 0 1111 + 0 1111 2 = 0 990

c) From Eq. (10.114),

A ∞ = 1−
2 × 0 1111 2

1 + 2 × 0 1111 + 2 × 0 1111 2 = 0 980

Example 10.7 Aircraft at Airfield XX each have probability 0.95 of being available on any given
day, and therefore a (1− 0.95=) 0.05 probability of not being available. If it is not available, there is a
0.4 probability of being available in 1 day. What is the probability the aircraft will be available
in 4 days?
First, using the Probability Tree approach in Figure 10.18, and summing the P(Oper) in each

branch:

Therefore, P Available after 4 days =
i

P Availablei = 0 899

Recall that the one-step transition matrix for a Markov chain with states S = {0, 1, 2} is

P =

p00 p01 p02
p10 p11 p12
p20 p21 p22

10 118

where pij = Pr{ X1= j |X0= i } are the transition probabilities. This means that the future behavior of
the system depends only on the current state i and not on any of the previous states.
Then, using Eq. (10.88), in its form as the N-step transition probability matrix of Chapman–Kol-

mogorov, since the n-step transition probabilities Pij
(n) = P(Xn = j | X0 = i) obey the following law

(for arbitrary m< n:)

P n
ij =

k

P n−m
kj Pm

ik 10 119

So, the transition data in this example is

Next day status

Available Not available

Current Available 0.95 0.05
Aircraft status Not available 0.4 0.6

and the transition matrix:

P =
p00 p01
p10 p11

=
0 95 0 05

0 4 0 6

So, if we want operating probability at 4 days:

P × P × P × P = P4 =
0 95 0 05

0 4 0 6

4

=
0 889056 0 100944

0 80755 0 19245

10.5 Availability 455



where

Steady state P20 =
0 8888896 0 111110398

0 88888319 0 111116814

That is, in the long run, availability will be 0.89, and conversely, unavailability will be 0.11.

P(Oper) = 0.8145

P(Non) = 0.04287

P(Non) = 0.027075

P(Non) = 0.00095

P(Non) = 0.0171

P(Non) = 0.00095

P(Non) = 0.0006

P(Non) = 0.0006

P(Non) = 0.0108

P(Oper) = 0.01805

P(Oper) = 0.0114

P(Oper) = 0.01805

P(Oper) = 0.0004

P(Oper) = 0.0072

P(Oper) = 0.0114

P(Oper) = 0.01805

P(O
per) 

= 0.95

P(O
per) =

 0.95

P(O
per) 

= 0.95

P(Non) = 0.05

P(Non) = 0.6

P(Non) = 0.6

P(Non) = 0.6

P(Non) = 0.05

P(Non) = 0.05

P(Oper) =
 0.4

P(Oper) =
 0.95

P(Oper) = 0.4

P(Oper) = 0.4
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per) =

 0.95
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 0.95
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P(Oper) =
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Figure 10.18 Probability tree for aircraft availability.
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Markov Availability – Advantages and Disadvantages

The Advantages of Markov Availability Analysis

1) The Markov analysis is preferred by most maintenance specialists to test the performance of
small running systems with components that show a great level of dependency on each other.
With a small and updatedMarkov diagram, it is possible to analyze the transition between states
and the degree with which this transition is happening. The other advantage that you will find
with using this analysis is that reliance on past state results is not all that important in deter-
mining how the future states will behave.

2) The Markovian process being integrated into computer software allows for easy and quick typ-
ing of commands to generate fast solutions where large and complicated Markov diagrams are
in use.

The Disadvantages of Markov Availability Analysis

1) The downside of the Markovian process is that it only fits small models, and the diagrams get
complex when trying to analyze dependency in larger systems. It becomes completely imprac-
tical to evaluate the diagrams manually, which is why it prompts the use of computer software.

2) The Markovian analysis is ideal for weighing dependency in situations such as evaluating com-
ponents in warm or cold standby, or analyzing spares with short on-site stocks. When analyzing
bigger models, these difficulties can be alleviated through combining more quantitative models.
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Exercises

10.1 Two stamping machines operate in parallel positions on an assembly line, each with the
same MTTF at the rated speed. If one fails, the other takes up the load by doubling its oper-
ating speed. When this happens, however, the failure rate also doubles. Assuming no repair,
how many MTTF for a machine at the rated speed will elapse before the system reliability
drops below (a) 0.99, (b) 0.95, and (c) 0.90?

10.2 Enumerate the 16 possible states of a four-component system by writing a table similar to
Table 10.1. For the following configurations, which are the failed states?
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1 2

3

1

34

2

2

4

4

(a) (b) (c)

31

10.3 Consider a system consisting of two identical units in an active parallel configuration. The
units cannot be repaired. Moreover, because they share loads, the failure rate λ∗ of the
remaining unit is substantially larger than the unit failure rates when both are operating.
a) Find an approximation for the system reliability for a short period of time (i.e. λt 1 and

λ∗t 1).
b) How large must the ratio of λ∗/λ become before the MTTF of the system is no greater

than that for a single unit with failure rate λ?

10.4 Repeat Exercise 10.1 for the standby configurations shown in Figure 10.14.

10.5 For the idealized standby system for which the reliability is given by Eq. (10.52),
a) Calculate the MTTF in terms of λ.
b) Plot the time-dependent failure rate λ(t), and compare your results to the active parallel

system depicted in Figure 9.2b.

10.6 Verify Eqs. (10.42) through (10.45).

10.7 Calculate the variance for the time-to-failure for two identical units, each with a failure rate
λ, placed in standby parallel configuration, and compare your results to the variance of the
same two units placed in active parallel configuration. (Ignore switching failures and fail-
ures in the standby mode.)

10.8 Derive Eq. (10.52) assuming that λb = λa from the beginning.

10.9 Under a specified load, the failure rate of a turbogenerator is decreased by 30% if the load is
shared by two such generators. A designer must decide whether to put two such generators
in active or standby parallel configuration. Assuming that there are no switching failures or
failures in the standby mode,
a) Which system will yield the larger MTTF?
b) What is the ratio of MTTF for the two systems?

10.10 Show that Eq. (10.64) reduces to Eq. (10.52) as λ+ 0.

10.11 Consider the following configuration consisting of four identical units with failure rate λ
and with negligible switching and standby failure rates. There is no repair.
a) Show that the reliability can be expressed in terms of the Poisson distribution discussed

in Chapter 3.
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b) Evaluate the reliability in the rare-event approximation for small λt.
c) Compare the result from b to the rare-event approximation for four identical units in

active parallel configuration, as developed in Chapter 3, and evaluate the reliabilities
for λt = 0.1.

10.12 Verify Eq. (10.68).

10.13 For the following system, assume unit failure rates λ, no repair, and no switching or
standby failures.

a) Calculate the reliability.
b) Approximate the result by the rare-event approximation for small λt, and compare your

result to that for four units in an active parallel configuration.
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10.14 Consider a standby system in which there is a switching failure probability p and a failure
rate in the standby mode of λ +

b .

a) Draw the transition diagram.
b) Write the Markov equations.
c) Solve for the system reliability.
d) Reduce the reliability to the situation in which the units are identical,

λa = λb = λ, λ +
b = λ

10.15 A design team is attempting to optimize the reliability of a navigation device. The choices
for the rate gyroscopes are (a) a hot-standby system consisting of two gyroscopes and (b) a
2/3 voting system consisting of three gyroscopes. Themission time is 20 hour, and the gyro-
scope failure rate is 3 × 10−5/hour. What is the greatest probability of switching failure in
the hot-standby system for which mission reliability is greater than that of the 2

3 system?

Assume that failures in logic on the 2/3 system can be neglected. (Hint: Assume rare-event
approximations for the gyroscope failures.)

10.16 Derive Eq. (10.72).

10.17 (a) Find the asymptotic availability for a standby system with two repair crews; the Markov
matrix is given by Eq. (10.108). Assume that λa = λb = 0.01/hour and v = 0.5/hour.
(b) Evaluate the asymptotic availability for a standby system for the same data, except

that there is only one repair crew. The Markov matrix is given by Eq. (10.96).

10.18 Derive Eqs. (10.82) and (10.83).

10.19 A system has an asymptotic availability of 0.93. A second redundant system is added, but
only the original repair crew is retained. Assuming that all failures are revealed, estimate
the asymptotic availability.

10.20 Derive Eqs. (10.103) through (10.105).

10.21 Assume that the units in Exercise 10.11 all have failure and repair rates λ and v. A single
crew repairs the most recently failed unit first.
a) Determine the asymptotic availability in terms of v and λ.
b) Approximate your result for the case λ/v 1.
c) Compare your result to that for the same units in active parallel configuration when λ/v

= 0.02.

10.22 Consider the 2/3 standby configuration shown on the following page. It consists of three
identical units; two units are required for operation. If either unit a or c fails, unit b is
switched on. Ignore switching failures and repair, but assume failure rate λ and λ∗ in
the operating and standby modes.
a) Enumerate the possible system states and draw a transition diagram.
b) Write the Markov equations for the system.
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10.23 Two ventilation units are in active parallel configuration. Each has an MTTF of 120 hour.
Each is attended by a repair crew, and the MTTR is known to be 8 hour.
a) Calculate the availability, assuming that either unit can provide adequate ventilation.
b) The units are replaced by new models with an MTTF of 200hour. Can the staff be

reduced to one repair crew without a net loss of availability? (Assume that the MTTR
remains the same.)

a

b

c

10.24 Assume that the units in Exercise 10.22 have identical repair rates v.
a) Enumerate the system states and draw a transition diagram.
b) Write the transition matrix, M, for the Markov equations.
c) Determine the asymptotic value of the system availability.
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11

System Safety Analysis

“Human error, lad of imagination, and blind ignorance, The practice of engineering is in
large measure a continuing struggle to avoid making mistakes for these reasons.”

Source: Samuel C. Horman; The Existential Pleasures of Engineering, (1976)

11.1 Introduction

The discussion of system safety analysis in this chapter presents a different emphasis from themore
general reliability considerations considered thus far. While all failures are included in the deter-
mination of reliability, our attention now is turned specifically to those that may create safety
hazards. The analysis of such hazards is often difficult, for with proper precautions taken in design,
manufacture, and operation, failures causing safety problems should occur infrequently. Thus, the
small probabilities encountered complicate the collection of data needed for analysis and making
improvements. As a result, increased importance is assumed bymore qualitative methods as well as
by the engineer’s understanding of the hazards that may arise. These difficulties notwithstanding
the potentially life-threatening nature of the hazards under consideration make safety analysis an
indispensable component of reliability engineering.
Safety systems analysis has derived much of its importance from its association with industrial

activities that may engender accidents of grave consequences. If we examine, in detail, historic acci-
dents such as the disastrous chemical leak at Bhopal, India, in 1984, and the 1986 destruction of the
nuclear reactor at Chernobyl, some of the difficulties in the safety assessment of such systems begin
to become apparent. First, the system is likely to have very small probabilities of a catastrophic fail-
ure, because it has redundant configurations of critical components. It then follows that the events
to be avoided have either never occurred or if they have, only rarely. There are few, if any, statistics
on the probabilities of failures of the system as a whole, and reliability testing on the system level is
likely to be impossible. Secondly, whatever accidents have occurred have rarely been the result of
component failures of a type that would be easy to predict through reliability testing. Rather, the
web of events leading to the accident is usually a complex of equipment failures, faulty mainte-
nance, instrumentation and control problems, and human errors.
Safety analysis is essential for the full range of products and systems, from the large technological

systems just discussed to small consumer items, for even though the latter may not pose the threat
of single catastrophic accidents, their production in large quantities leads to the possibility of many
individual incidents, each capable of causing injury or death. Here again, the limitations of
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standard reliability testing and evaluation procedures are apparent. The primary challenge to the
product development personnel is to understand the wide variety of environments and circum-
stances under which the product will be used and to try to anticipate and protect against faulty
installation or maintenance, misuse, inappropriate environments, and other hazards that may
not be revealed through standard reliability tests. An additional imperative is to examine not only
how the product may fail in a hazardous manner but also how the user may be harmed during
normal operation. Adequate protection must be afforded from the rotating blades, electrical fila-
ments, flammable liquids, heated surfaces, and other potential hazardous features that are neces-
sary constituents of many industrial and consumer products.
Even though hazard creationmost often involves the intertwined effects of equipment failure and

human behavior, analysis is expedited by examining them separately. Thus, in the following sec-
tion, we build on the discussion in the preceding chapters to focus on those particular aspects of
equipment failure most closely related to safety hazards. In Section 11.3, the importance of the
human element is emphasized. In that discussion, the primary focus is on the operations of indus-
trial facilities where efforts may be much more effective in reducing human error than they are
likely to be in modifying consumer psychology. With the background gained in examining the haz-
ardous aspects of equipment and of human causes, we are prepared in Section 11.4 for an overview
of those analytical methods that have been developed to rationalize the discussion of safety analysis.
Sections 11.5 then focuses on fault trees. The Chapter end with Section 11.6 - Reliability/Safety Risk
Analysis, continuing the introduction to Risk analysis from Chapter 5.

11.2 Product and Equipment Hazards

In examining equipment with safety repercussions, it is useful once again to frame the analysis in
terms of the bathtub curve and consider infant mortality, random events, and aging as hazard
causes. Most of the materials discussed in earlier chapters regarding these causes remain relevant.
Now, however, we must extend the level of analysis to even less probable and therefore possibly
more bizarre sets of causes. We also must consider not only product or equipment failures but also
potential hazards created in the course of product usage.
Design shortcomings, or variability in the production process, are the most likely causes of early

or infant mortality failures. Changes in details late in the design process to facilitate manufacture or
construction, which are not thoroughly checked to ensure that a new hazard has not been intro-
duced, may be particularly dangerous. Such a change was implicated, for example in the 1981 col-
lapse of the Kansas City Hyatt Regency walkways that resulted in 114 fatalities. Failure to meet
materials specification, improvisation in construction procedures, and unsafe economic choices
made in manufacturing processes may all defeat the integrity of the original design and result
in weakened systems that are then prone to infant mortality hazards. Faulty installations of hot
water heaters, stoves, or other consumer products are also prone to create infant mortality hazards.
Random failures or hazards are characterized by chance occurrences that are independent of

product age. In general, they are caused by an environment that is unanticipated or for which
the product does not have the strength to withstand. They tend to be brought about because the
product is used – or misused – under conditions that were not contemplated in the design or were
thought to be so improbable that they were lost in the cost-performance trade-offs. The largest dan-
ger in creating a new product is arguably not that there is an inadequate safety margin against a
known hazard, but that a potential hazard completely escapes the attention of the design team.
Even if a thorough study reveals all significant hazards, however, many decisions must be faced
with safety implications.
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Governmental bodies, professional organizations, and insurance underwriters’ codes of stan-
dards provide a basis for assessing the level of potential hazards for many products. Often, such
standards must be promulgated by specialized bodies cognizant of unique hazard combinations
of particular industries. The safety of food processing equipment, for example is complicated by
the conflicting requirements that machinery be readily accessible for cleaning to prevent unsani-
tary conditions from arising and the need for extensive guard equipment to protect workers from
hot surfaces, cutting blades, and other mechanical hazards. While standards and codes of good
practice provide a point of departure for the analysis of hazards, new designs and novel applications
may be expected to present potentially hazardous conditions that have not been contemplated in
the standards. Thus, to make informed safety decisions it is incumbent upon the product develop-
ment personnel to gain a thorough understanding of the product and its required use.
To understand the difficult trade-offs that must be faced, consider a television monitor. Ventila-

tion slits are required to prevent overheating and to allow the electronics to operate at a reasonable
temperature. More and larger ventilation paths will likely improve reliability and prolong the life of
the set. However, the designer must also consider unusual locations where ventilation is curtailed,
where debris is piled on top or stacked against themonitor, or where other cooling impediments are
encountered. Safety analysis then requires not only the determination of the effects of these situa-
tions on set life but also whether there is an unacceptable risk of fire. Conversely, if the ventilation
slits are made larger to add an extra margin of cooling capacity, then the increased danger that a
child will succeed in inserting a kitchen knife or other object through a slit and come into contact
with high voltage must be addressed. Thirdly, the magnitude of the hazard created if fluid is spilled
or the monitor immersed must be considered to determine whether fluid entering through the ven-
tilation slits will result in a benign failure or an unacceptable risk of electrical shock.
The engineering for safety must go beyond the contemplation of unusual accidents and inadvert-

ent misuse to consider situations where the user behavior compounds potential hazards. From the
nineteenth-century captains of Mississippi river boats, who blocked safety valves in order to get
more pressure and more performance from their boilers, to present-day motorists, who negate
the effects of antilock brakes by driving more aggressively on wet pavements, product users fre-
quently overcome safety features in order to enhance performance at the cost of increased risk.
Operational limits exceeded to increase performance, safety guards removed to facilitate mainte-
nance, and warnings ignored as a result of past false alarms are among the plethora of causes of
increased risk induced by unintended usage. Such behavior further complicates the already difficult
legal and ethical issues raised in determining the extent to which users must be protected from their
deliberate unsafe practices.
Product modifications or modernizations likewise may introduce new and unanticipated

hazards. Motors modified for racing, aircraft converted from civilian to military or from passenger
to cargo use, and robots or machinery devoted to new and novel manufacturing tasks all require
careful scrutiny to ensure that the safety integrity of the original design is not compromised. But
often, modifications take place years into the product life, when knowledge of the original design
calculations has faded, components suppliers have changed, and technology has evolved. An exam-
ple of particularly ill-conceived design modifications was those made to the steamship Birkenhead.
In converting this warship to a troop carrier, large passageways were cut through the water-tight
bulkheads to provide more light, air, and spaciousness for the troops. But the penetrations not only
destroyed the water-tight compartmentalization of the ship but also greatly weakened the bulk-
heads. Thus, when the ship struck a rock in 1852, it both flooded very rapidly and broke into
two, resulting in over 400 fatalities. While engineering safety practices have matured a great deal
since that time, it, similar to other historical disasters, serves as a reminder of the potential conse-
quences of ignorance in making ad hoc modifications to the existing systems.
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Even after provisions have been made to minimize the dangers of infant mortality or random
hazards, there remains the problem of dealing with the aging failures that may be expected to
become increasingly pronounced as the product approaches the end of its useful life. Normally,
a target life is stipulated as a part of the design process. Assuming that adequate maintenance is
provided to replace those components with shorter lives – such as spark plugs, brake linings,
and tires on automobiles, for example – failures attributable to aging should not create significant
risk within the design life. In relatively few situations, however, can it be guaranteed that a product
or system will not continue to be used well beyond its design life. To be sure, in some areas of rapid
technological development, such as in microprocessor development, products may become obso-
lescent and be replaced long before aging effects become important. Likewise, safety-critical sys-
tems may be licensed or controlled for removal from service after the number of operating
hours for which previous analysis and/or life tests have verified their capability. Military aircraft
and nuclear reactor pressure vessels, for example may fall into this category. More often than
not, however, the increasing cost of maintenance and recovery from breakdown is weighed against
replacement cost in determining at what point a product is retired.
Even where there are strong safety implications, a system can be allowed to operate well beyond its

targetdesign life,provideddependable inspectionandrepairprotocolsareemployed.Theknowledgeof
the aging process that has been gained through the years of operation, however, must provide inspec-
tionmethods capableofdetecting theagingphenomenaearly enoughto repair or take thesystemoutof
service before the deterioration reaches a hazardous threshold.Many commercial aircraft, for example
have been allowed to operate under such scrutiny beyond the design life originally targeted.
With consumer products, the situation is likely to be quite different, for unless there is a clear and

obvious danger, the user is prone to run the product until it fails and then decide whether to replace
or repair it. The critical design consideration here is to ensure that the wearout modes are benign.
The challenge is simply illustrated with a hot plate, coffee maker, or other appliance with a heating
element. Suppose that the design includes a fuse to prevent fire in the event that the heater fails in a
dangerous mode. Then, the heater failure better occur before the fuse deterioration becomes a prob-
lem. One complicated situation, in fact, was recently in the courts, where a consumer product
design was “improved” by incorporating a heater with a longer design life. However, after the
new design resulted in a number of fires it was discovered that the melting temperature of the fuse
gradually increased with time to the point where by the time the heater finally failed, the fuse was
no longer operable.
The foregoing discussion provides only the beginnings for the level of sophistication needed to

ferret out the potential hazards that may be brought about by infant mortality, random and aging
phenomena, and their interactions. The analytical methods introduced in Section 11.4 provide
techniques for more structured analysis. Use of these should reduce the possibility of potentially
significant hazards that escape consideration altogether. In addition, the reading of case histories
in newspapers and the professional literature over a period of years is invaluable in enhancing one’s
ability to identify and eliminate potential hazards before they become safety problems.

11.3 Human Error

All engineering is a human endeavor, and in the broadest sense most failures are due to human
causes, whether they be ignorance, negligence, or limitations of vigilance, strength, and manual
dexterity. Designers may fail to fully understand system characteristics or to anticipate properly
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the nature and magnitudes of the loading to which a systemmay be subjected or the environmental
conditions under which it must operate. Indeed, much of engineering education is devoted to
understanding these and the related phenomena. Similarly, errors committed during manufacture
or construction are attributable either to the personnel involved or to the engineers responsible for
the setup of the manufacturing process. Quality assurance programs have a central role in detecting
and eliminating such errors in manufacture and construction.
We consider here only human errors that are committed after design andmanufacture, those that

are committed in the operation and maintenance of a system. This is a convenient separation, since
design and manufacturing errors, whether they are considered human or not, appear in the as-built
system as shortcomings in the reliability of the hardware.
Even with our attention confined to human errors appearing in the operation and maintenance

of a system, we find that the uncertainties involved are generally much greater than in the analysis
of hardware reliability. There are three categories of uncertainty. First, the natural variability of
human performance is considerable. Not only do the capabilities of people differ, but the day-
to-day and hour-to-hour performance of any one individual also varies. Second, there is a great deal
of uncertainty about how tomodel probabilistically the variability of human performance, since the
interactions with the environment, with stress, and with fellow workers are extremely complex and
to a large extent psychological. Third, even when tractable models for limited aspects of human
performance can be formulated, the numerical probabilities or model parameters that must be esti-
mated in order to apply them are usually only very approximate, and the range of situations to
which they apply is relatively narrow.
It is, nevertheless, necessary to include the effects of human error in the safety analysis of any

complex system, for as the consequences of accidents become more serious, and more emphasis
is put on reliable hardware and highly redundant configurations, an increasing proportion of
the risk is likely to come from human error or more accurately from complex interactions of human
shortcomings and equipment problems. Even though accurate predictions of failure probabilities
are problematical, a great deal may be gained from studying the characteristics of human reliability
and contrasting them with those of hardware. From such study comes an insight into how systems
may be designed and operated in order to minimize and mitigate accidents in which the operating
and maintenance staff may play an important role.
It has been pointed out (Rasmussen 1982) that increasingly there is a centralization of systems,

whether they be larger capacity power and chemical plants, aircraft carrying greater number of
passengers, or structures with larger capacities. Since human error in the operation of many such
centralized systems may lead to accidents of major consequence to life and property, there has been
an increased emphasis on plant automation. There are certainly limitations on such automation,
particularly when the uncertainty of how an operator may react to a situation is overridden by the
need for human adaptability in dealing with conditions that have not or could not be incorporated
into the automated control system. Moreover, automated operation does not tend to eliminate
humans from consideration but rather to remove them to tasks of two quite dissimilar varieties,
routine tasks of maintaining, testing, and calibrating equipment and protective tasks of watching
for plant malfunctions and preventing their accident propagation. These two classes of tasks tend to
enter system safety considerations in different ways. When humans err in routine testing, mainte-
nance, and repair work, they may introduce latently risky conditions into the plant. Any errors that
they make in taking protective actions under emergency conditions may increase the severity of an
accident.
The problems inherent in maximizing human reliability for the two classes of tasks may be

viewed graphically in Figure 11.1. Generally, there is an optimum level of psychological stress
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for human performance. When the level is too low, humans are bored andmake careless errors; too
high a level may cause them to make a number of inappropriate, near-panic responses to a situa-
tion. To illustrate, consider the example of flying a commercial airliner. The pilot’s monitoring of
controls during level, uneventful flight in a highly automated aircraft would fall on the low level of
the curve. The principal danger here is carelessness or lack of attention. Normal take-offs and land-
ings are likely to be closer to the optimum stress level for attentive behavior. At the other extreme,
pilot reaction to major inflight emergencies, such as onboard fires or power failures, is likely to be
degraded by the high stress level present. Because of the quite different factors that come into play,
we now consider human reliability and its degradation under the two limiting situations of very
routine tasks and tasks performed in emergency situations.

Routine Operations

For purposes of analysis it is useful to classify human errors as random, systematic, or sporadic.
These classes may be illustrated by considering the simple example, shown in Figure 11.2, of
the ability to hit a target (H.R. Guttmann, unpublished lecture notes, Northwestern University,
1982). Random errors are dispersed about the desired value without bias; that is, they have the true
mean value (in x and y), but the variance may be too large. These errors may be corrected if they are
attributable to an inappropriate tool or man–machine interface. For example, if it is not possible to
read instruments finely enough or to adjust setting precisely enough, such improvements are in
order. Similarly, training in the particular task may reduce the dispersion of random errors.
Figure 11.2b illustrates systematic errors whose dispersion is sufficiently small, but with a bias
departing from the mean value. Such bias may be caused by tools or instruments that are out of
calibration, or it may come from incorrect performance of a procedure. In either case, corrective
measures may be taken. More subtle psychological factors – such as the desire of an inspector
not to miss any faulty parts, and thus declaring a good many faulty even though they are not –may
also cause bias errors.
Perhaps sporadic errors, pictured in Figure 11.2c, are the most difficult to deal with, for they

rarely show observable patterns. They are committed when the person acts in an extreme or care-
less way: forgetting to do something altogether, performing an action that was not called for, or
reversing the order in which things are done. For example, a meter reader might, in taking a series
of meter readings, read a wrong meter. Again, careful design of the man–machine interface can
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Figure 11.1 The effect of stress level on human performance.
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minimize the number of sporadic errors. Color, shape, and other means can be used to differentiate
instruments and control and to minimize confusion. Sporadic errors, in particular, are amplified by
the carelessness inherent in low-stress situations as well as by the confusion of high-stress
situations.
Let us first examine sporadic errors made in routine situations. Certainly, under any circum-

stances, errors are minimized by a well-designed work environment. Such design would take into
account all the standard considerations or human factors engineering: comfortable seating, ade-
quate light, temperature and humidity control, and well-designed control and instrument panels
to minimize the possibilities for confusion. The attention span that can be expected for routine tasks
is still limited. As indicated in Figure 11.3, attention spans for detailed monitoring tend to deteri-
orate rapidly after about half an hour, indicating the need for frequent rotation of such duties for
optimal performance. The same deteriorationmay be expected for very repetitive tasks, unless there
is careful checking or other intervention to ensure that such deterioration does not take place.
Probably, one of the most important ways in which system reliability is degraded is through the

dependencies introduced between redundant components during the course of routine
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maintenance, testing, and repair. An example is the turning off of both the redundant auxiliary
feedwater systems at the Three Mile Island reactor. The point is that if technicians perform a task
incorrectly on one piece of equipment, they are likely to do it incorrectly on all like pieces of equip-
ment. This problemmay be countered, at least in part, by a variety of techniques. Diversity of equip-
ment is one, for just as the hardware will not be subjected to the same failure modes, the
maintenance procedures will also be different. Staggering the times or the personnel doing main-
tenance on redundant equipment also tends to reduce dependencies, although some smaller degree
of dependency may remain through the use of common tools or incorrect training procedures.
Independent checking of procedures also decreases both the probability of failure and the degree

of dependency. Even here, however, psychological factors limit effectiveness. When the inspector
and the person performing the maintenance have worked with each other for an extended period of
time, the inspector may tend to become less careful as he or she grows more confident of the col-
league’s abilities. Similarly, if two independent checks are to be performed, they are unlikely to be
truly independent, for often the very knowledge that a procedure is being checked twice will tend to
decrease the care with which it is done.
Reliability is also degraded when operating and maintenance personnel inappropriately modify

or make shortcuts in operating and maintenance procedures. Often, operating and maintenance
personnel gain an understanding of the system that was not available at the time of design and
modify procedures to make them more efficient and safer. The danger is that, without a thorough
design review, new loadings and environment degradation may be introduced, and component
dependencies may increase inadvertently. For example, in the 1979 crash of the DC-10 in Chicago,
it is thought that a modified procedure for removing the engines for inspection and preventive
maintenance led to excessive fatigue stresses on the engine support pylon, causing the engine to
break off during takeoff.
Although the methodology is not straightforward, data are available on the errors committed in

the course of routine tasks. Extensive efforts have been made to develop task analysis and simula-
tion methods (Swain and Guttmann 1980). Failure probabilities are first estimated for rudimentary
functions. Then, by combining these factors, we can estimate probabilities that more extensive pro-
cedures will engender errors.

Emergency Operations

At the high-stress end of the spectrum shown in Figure 11.1 are the protective tasks that must be
performed by operations personnel under emergency conditions to prevent potentially dangerous
situations from getting completely out of hand. Here, a well-designed, man–machine interface,
clear-cut procedures, and thorough training are critical, for in such situations actions that are
not familiar from routine use must be taken quickly, with the knowledge that mistakes may be
disastrous. Moreover, since such situations are likely to be caused by subtle combinations of mal-
functions, they may be confusing and call for diagnostic and problem-solving ability, not just the
skill and rule-based actions exercised for routine tasks.
Under emergency conditions, conflicting information may well confuse operators who then act

in ways that further propagate the accident. With proper training and the ability to function under
psychological stress, however, theymay be able to solve the problem and save the day. For example,
the confusion of the operators at the Three Mile Island reactor caused them to turn off the emer-
gency core-cooling system, thus worsening the accident. In contrast, the pilot of a Boeing 767 man-
aged to make use of his earlier experience as an amateur glider pilot and safely land his aircraft after

470 11 System Safety Analysis



a series of equipment failures and maintenance errors had caused the plane to run out of fuel while
in flight over Canada.
There are a number of common responses to emergency situations that must be taken into con-

sideration when designing systems and establishing operating procedures. Perhaps, the most
important is the incredulity response. In the rare event of a major accident, it is common for an
operator not to believe that an accident is taking place. The operator is more likely to think that
there is a problem with the instruments or alarms, causing them to produce spurious signals. At
installations that have been subjected to substantial numbers of false alarms, a real one may very
well be disbelieved. Systems should be carefully designed to keep spurious alarms to a minimum,
and straightforward checks to distinguish accidents from faulty instrument performance should be
provided. In some situations it is desirable to mandate that safety actions be taken, even though the
operator may feel that faulty instruments are the cause of the problem.
A second common reaction to emergencies is reverting to stereotype. The operator reverts to the

stereotypical response of the population of which he or she is a part, even thoughmore recent train-
ing has been to the contrary. For example, in the United States, turning a light or other switch “up”
means that it is “on.” In Europe, however, “down” is “on.” Thus, although Americans may be
trained to put a particular switch down to turn it on, under the time pressure of an emergency they
are likely to revert to the population stereotype and try to put the switch up. The obvious solution to
this problem is to take great care in human factors engineering not to violate population stereotypes
in the design of instrumentation and control systems. This problem may be aggravated if operators
from one culture are transferred to another, or if care is not taken in the use of imported equipment.
Finally, once a mistake is made, such as placing a switch in the wrong position, in a panic an

operator is likely to repeat the mistake rather than think through the problem. This reaction, as
well as other inappropriate emergency responses, must be considered when deciding the extent
to which emergency actions should or can be automated. On the one hand, when there is extreme
time pressure, automated protection systems may eliminate the errors discussed. At the same time,
such systems do not have the flexibility and problem-solving ability of human operators, and these
advantages may be of overwhelming importance, assuming that there is time for the situation to be
properly assessed.
In summary, to ensure a high degree of human reliability in emergency situations, control rooms,

whether they be aircraft cockpits or chemical plant control installations, must be carefully designed
according to good human factors practice. It is also important that the procedures for all anticipated
situations are readily understandable, and finally, that operators are drilled at frequent intervals on
emergency procedures, preferably with simulators that model the real conditions.
Even though we may characterize human behavior under emergency conditions and suggest

actions thatwill improve human reliability, it is difficult indeed to obtain quantitative data on failure
probabilities. Aswehave indicated, such situations happen only infrequently, and often, they are not
well documented. Moreover, it is difficult to obtain a realistic response from simulator experiments
when the subjects know that they are in an experiment and not a life-threatening situation.

11.4 Methods of Analysis

Probably, the most important task in eliminating or reducing the probability of accidents is to iden-
tify the mechanisms by which they may take place. The ability to make such identifications in turn
requires that the analysts have a comprehensive understanding of the system under consideration,
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both in how it operates and in the limitations of its components. Even the most knowledgeable
analysts are in danger of missing critical failure modes, however, unless the analysis is carried
out in a very systematic manner. For this reason, a substantial number of formal approaches have
been developed for safety analysis. In this section, we introduce three of the most widely used: fail-
ure modes and effects analysis, event trees, and fault trees. In later sections, the use of fault trees is
developed in more detail.

Failure Modes, Effects, and Criticality Analysis (FMECA)

In Chapter 7, we introduced FMEA, a very valuable qualitative tool in the process of product devel-
opment. We also alluded to the FMECA which we introduce here as a safety-oriented extension of
the FMEA.
To quickly recap, failure mode and effects analysis (FMEA) is a logical, structured analysis of a

system, subsystem, piece part, or function. Identified in the analysis are potential failure modes,
their causes, and the effects associated with the failure mode’s occurrence at the piece part, sub-
system, and system levels.
Failure mode, effects, and criticality analysis (FMECA) is an extension of the FMEA task, where

each failure mode is evaluated for its “criticality,” i.e. an assessment of the severity of the event at
the system level, and the probability of its occurrence – based on DATA and EXPERIENCE.
The FMECA tool was initially utilized starting in the late 1960s where it was used primarily to

assess the safety and reliability of system components in the aerospace industry. In the 1980s,
FMECA was applied to manufacturing and assembly processes in the automotive industry. And
today, FMECAs are being used for the design of products and processes as well as for the design
of software and services in virtually all industries.
An FMECA provides a basis for the recognition of failure modes developed from historical “les-

sons learned” databases of similar equipment and the unacceptable effects that limit the achieve-
ment of design requirements. FMECA is performed as early as possible in the design process in
order to verify the adequacy of the design, change the design if not adequate, or incorporate appro-
priate controls. As has been mentioned before, problems discovered during the design phase are
much easier and less costly to correct than if they are identified in service.
In addition, FMECA provides:

1) A communication tool between product designers, manufacturing engineers, test engineers, and
R&M engineers.

2) A tool for identifying potential single point failure modes of a “critical” nature.
3) A tool for identifying the types of test and testing environments needed to certify whether a

design or process is suitable.
4) How changes in design, process, or materials are to be evaluated/certified.

In short, a roadmap of the design.

Criticality

Criticality is a relative measure of the consequences of a failure mode and its frequency of occur-
rence. Criticality can be based on qualitative judgment or on failure rate data (quantitative). Qual-
itative analysis is used when specific part or item failure rates are not available. Quantitative
analysis is used when sufficient failure rate data is available to calculate criticality numbers. In
either case, Criticality Analysis (CA) is a procedure by which each potential failure mode is ranked
according to the combined influence of severity and probability of occurrence.
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Qualitative FMECA

1) One very easy CA is to use the FMEA that has already been completed, and for each fail-
ure mode:

Criticalityfailure mode i = Severityfailure mode i × Occurrencefailure mode i 11 1

This ignores the probability of detection and hence is a conservative estimate of criticality.

2) The next uses a bit more definition from the FMEA (see Chapter 7) and sets up a “criticality
matrix.” The criticality matrix provides a means of identifying and comparing each failure mode
to all other failure modes with respect to severity (notice again that the criticality matrix depends
on the completed FMEA with no other data). The matrix can be used as a potential safety sum-
mary of the FMEA for a subsystem or system. This information is then passed to the safety group
for their use (Figure 11.4).

Quantitative FMECA

A quantitative FMECA uses the following formula (with definitions):
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Figure 11.4 Criticality matrix setup for qualitative FMECA. Source: Adapted from FAA-H-8083-2 (2009) and
NAVAIR 00-25-403 (2016).

11.4 Methods of Analysis 473



A lot more work in terms of data gathering goes into the quantitative FMECA, but a lot better
information is the outcome.
Generally speaking, product lines such as automobiles, aircraft, engines, elevators, air condi-

tioners, and most other systems that have been designed and manufactured by a company over
many years have the “Lessons Learned” and design experience and data to put together a quanti-
tative FMECA for a new product, at the beginning stages of design/development and continue to
refine it throughout the process.
Now let us go through an example of an FMEA and add the criticality component to amplify what

we discussed in the opening paragraphs of this section.

Example 11.1 To illustrate the application of FMECA, we use the failure data from 93 power
transformers. This system has three components: winding, bushing, and on-load-tap-changer
(OLTC, each with potential failure modes. The failure probabilities of winding, bushing, and OLTC
are 68.48%, 18.47%, and 13.04%, respectively.
As background:
A fault in windings can occur due to mechanical damage or in insulation material. Windings are

arranged as cylindrical shell around the core, and each strand is wrapped with insulation paper.
Based on the research investigation, the major causes of winding failures are due to mechanical
damage.
The function of bushings is to isolate the electrical contact between tanks and windings and to

connect the windings to the power system outside the transformer. The main failure of bushings in
a power transformer is short circuit. The major cause of a short circuit is due to mechanical damage
or due to material faults in the insulation.
The tap changer is a voltage-regulating device. It changes the ratio of a transformer by adding or

subtracting to and from either the primary or the secondary winding. OLTC generally consists of
two switches: the diverter switch and the tap selector. The diverter switch does the entire load mak-
ing and breaking of currents, while the tap selector preselects the tap to which the diverter switch
will transfer the load current.
Source: Data taken from Saraswati et al. (2014).

The FMEA of the power transformer system is shown in Figure 11.5.
First, doing a qualitative FMECA using Eq. (11.1), Figure 11.6.
From this, the design team could look at criticalities = 42, 56, and 35 as design priorities.
Analyzing the same FMEA using the criticality matrix approach in Figure 11.7.
In this case, the addition of the definitions of “High,” “Medium,” “Low,” and “Very Low” has

given further importance to working on “short circuit”/”bushing damage” failure mode and “cop-
per sulfide generation”/“fault in isolation material” failure mode.
This criticality matrix is used by safety groups in the same way. An example of how reliability and

safety are working together to produce not only a reliable product but a safe one as well producing
“customer satisfaction.” !!
Taking this example one step forward, suppose that we have the following power transformer

data in Table 11.1.
Using the interval MLE approach from Chapter 5, we produce the following Weibull

(Figure 11.8):
Now, you have a customer who is demanding a 15-year warranty. Based on this data and the

FMEA, using the probabilities of occurrence from Chapter 5 for FMEA and calculating the failure
rate at 15 years:
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Figure 11.5 FMEA of power transformer system.
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λ t =
β

η

t
η

β− 1

5 8

So,

λ 15 years =
1 2
15 25

15
15 25

1 2− 1

= 0 0784 failures per year

Converting to failures per 1,000,000 hours:
or

λ t =
0 0784
365∗24

= 8 95 × 10− 6

Using this rate in the FMECA in Figure 11.9, where we multiplied the criticality by time in hours
in 15 years = 15∗365∗24.

Table 11.1 Power transformer failure by year interval data.

Start time (years) End time (years) Number of failures

* 1 5

1 4 13

4 8 18

8 12 6

12 16 19

16 20 8

20 24 4

24 28 5

28 32 10

32 * 5

* Indicates unknown start (or end) time. This dataset was set up for MINITAB.
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Figure 11.7 FMECA using second qualitative FMECA (criticality matrix) approach. Source: Adapted from FAA-
H-8083-2 (2009) and NAVAIR 00-25-403 (2016).
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Here, the short circuit caused by fault in isolation material caused by copper sulfide generation is
by far the most safety critical (40,279 criticality). The additional information of the failure distri-
bution and the breakdown of the % failures by group allowed for more insights for the design team.
These approaches to an FMECA will vary from industry to industry, indeed often from company

to company within an industry. So, use the information here as a guideline and consult your com-
pany’s approach not only to FMEA but also FMECA.
If there are no guidelines, consider some of the documents in the Bibliography under “FMEA/

FMECA” for a starting point.

Event Trees

In many accident scenarios the initiating event – say, the failure of a component –may have a wide
spectrum of results, ranging from inconsequential to catastrophic. The consequences may be deter-
mined by how the accident progression is affected by subsequent failure or operation of other com-
ponents or subsystems, particularly safety or protection devices, and by human errors made in
responding to the initiating event. In such situations, an inductive method may be very useful.
We begin by asking “what if” the initiating event occurs and then follow each of the possible
sequences of events that result from assuming failure or success of the components and humans
affected as the accident propagates. After such sequences are defined, we may attempt to attach
probabilities to them if such a quantitative estimate is needed.
The event tree is a quantitative technique for such inductive analysis. It begins with a specific

initiating event, a particular cause of an accident, and then follows the possible progressions of
the accident according to the success or failure of other components or pieces of equipment. Event
trees are a particular adaptation of the more general decision-tree formalism that is widely
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Figure 11.8 Weibull failure distribution of power transformer data.
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employed for business and economic analysis. They are quite useful in analyzing the effects of the
functioning or failure of safety systems in response to an accident, particularly when events follow
with a particular time progression. The following is a very simple application of event-tree analysis.
Suppose that we want to examine the effects of the power failure in a hospital in order to deter-

mine the probability of a blackout, along with other likely consequences. For simplicity, we assume
that the situations may be analyzed in terms of just three components: (i) the off-site local utility
power system that supplies electricity to the hospital; (ii) a diesel generator that supplies emergency
power, and (iii) a voltage-monitoring system that monitors the off-site power supply and, in the
event of a failure, transmits a signal that starts the diesel generator.
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Figure 11.9 Quantitative FMECA of the power transformer.
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We are concerned with a sequence of three events. The initiating event is the loss of off-site
power. The second event is detection of the loss and subsequent functioning of the voltage-
monitoring system; and the third event is the start-up and operation of the diesel generator. This
sequence is shown in the event tree in Figure 11.10. Note that at each event there is a branch cor-
responding to whether a system operates or fails. By convention, the upward branches signify suc-
cessful operation, and the lower branches failure.
Note that for a sequence of N events, there will be 2N branches of the tree. The number may be

reduced, however, by eliminating impossible branches. For example, the generator cannot start
unless the voltage monitor functions. Thus, the path is impossible (has a zero probability) and
can be pruned from the tree, as in Figure 11.11.
Wemay follow an event tree from left to right to find the probabilities and consequences of differ-

ing sequences of events. The probabilities of the various outcomes are determined by attaching a
probability to each event on the tree. In our tree, the probabilities are Pi for the initial event, Pv for
the failure of the voltage-monitoring system, and Pg for the failure of the diesel generator.
With the assumption that the failures are independent, the probability of a blackout is therefore
Pi Pv + Pi(1− Pv)Pg.

11.5 Fault Trees

Fault-tree analysis is a deductive methodology for determining the potential causes of accidents, or
for system failures more generally, and for estimating the failure probabilities. In its narrowest
sense, fault-tree analysis may be looked on as an alternative to the use of reliability block diagrams
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Figure 11.10 Event tree for power failure.
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Figure 11.11 Reduced event tree for power failure.
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in determining system reliability in terms of the corresponding components. However, fault-tree
analysis differs both in the approach to the problem and in the scope of the analysis.
Fault-tree analysis is centered about determining the causes of an undesired event, referred to as

the top event, since fault trees are drawn with it at the top of the tree. We then work downward,
dissecting the system in increasing detail to determine the root causes or combinations of causes of
the top event. Top events are usually failures of major consequence, engendering serious safety
hazards or the potential for significant economic loss.
The analysis yields both qualitative and quantitative information about the system at hand. The

construction of the fault tree in itself provides the analyst with a better understanding of the poten-
tial sources of failure and thereby a means to rethink the design and operation of a system in order
to eliminate many potential hazards. Once completed, the fault tree can be analyzed to determine
what combinations of component failures, operational errors, or other faults may cause the top
event. Finally, the fault tree may be used to calculate the demand failure probability, unreliability,
or unavailability of the system in question. This task of quantitative evaluation is often of primary
importance in determining whether a final design is considered to be acceptably safe.
The rudiments of fault-tree analysis may be illustrated with a very simple example. We use the

same problem of a hospital power failure treated inductively by event-tree analysis earlier to dem-
onstrate the deductive logic of fault-tree analysis. We begin with blackout as the top event and look
for the causes, or combination of causes, that may lead to it. To do this, we construct a fault tree as
shown in Figure 11.12. In examining its causes, we see that both the off-site power system and the
emergency power supply must fail. This is represented by a gate in the fault tree, as shown. Mov-
ing down to the second level, we see that the emergency power supply fails if the voltage monitor or
the diesel generator fails. This is represented by a gate in the fault tree as shown.
We see that the fault tree consists of a structure of OR and gates, with boxes to describe interme-

diate events. Using the same probabilities as in the event tree, we can determine the probability of a

Blackout
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system failure
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generator

failure

Figure 11.12 Fault tree for blackout.
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blackout in terms of Pi, Pv, and Pg, the failure probabilities for off-site power, voltage monitor, and
diesel generator.
The most straightforward fault trees to draw are those, such as in the preceding example, in

which all the significant primary failures are component failures. If a reliability block diagram
can be drawn, a fault tree can also be drawn. This can be seen in an additional example.
Consider the system shown in Figure 3.17. We may look at the system as consisting of an upper

subsystem (a1, a2, and b1) and a lower subsystem (a3, a4, and b2), in addition to component c. For a
system to fail, either component cmust fail or the upper and lower subsystemsmust fail. Proceeding
downward, for the upper subsystem to fail, either component b1 must fail or both a1 and a2 must
fail. Treating the lower subsystem analogously, we obtain the tree shown in Figure 11.13.

Example 11.2 Construct a reliability block diagram corresponding to the fault tree in
Figure 11.12.

Solution:
The reliability block diagram having the same logic and failure probability as the fault tree of
Figure 11.12 is depicted in Figure 11.14.

Fault-Tree Construction

Of the methods discussed in the preceding section, fault-tree analysis has been the most thoroughly
developed and is finding increased use for system safety analysis in a wide variety of applications. It
is particularly well suited to situations in which tracing a failure to its root causes requires

b1

a1 a2 a3 a4

b2

c

T

∩ ∩

Figure 11.13 Fault tree.
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dissecting the system into subsystems, components, and parts to get at the level where failure data
are available. For example, in the afore-treated hospital blackout, wemay not have the test data that
is required to determine Pv for the voltage monitor or Pg for the diesel generator. We must then
delve more deeply and examine the components of these devices; we may need to construct the
probability that the voltage monitor will fail from the failure rates of its components.
It may be argued that such dissection can also be done by subdividing the blocks appearing in

reliability block diagrams. Although this is true, there are some important differences. Reliability
block diagrams are success oriented; that is, all failures are lumped together to obtain the proba-
bility that a system will fail. In most reliability studies, we are interested only in knowing the reli-
ability (i.e. the probability that the system does not fail). Conversely, in fault-tree analysis we are
often interested only in a particular undesirable event (i.e. a failure that leads to a safety hazard) and
in calculating the probability that it will happen. Hence, failures that do not cause the safety hazard
defined by the top event are excluded from consideration.
The difference between reliability analysis and safety analysis may be illustrated by the example

of a hot-water heater. In reliability analysis – carried out with a reliability block diagram – failure of
any kind will cause failure of the system to supply hot water. Most of these failures have no safety
implications: The heater unit fails to turn on, the tank develops a leak, and so on. In safety anal-
ysis – using a fault tree – we would be interested in a particular safety hazard such as the explosion
of the tank. The other failures listed would not be included in the fault-tree construction.
Because of the increasing importance of fault-tree analysis, the remainder of this chapter is

devoted to it. In this section, we discuss the construction of fault trees by first giving the standar-
dized nomenclature. Then, following a brief discussion of fault classifications, we supply several
illustrative examples. In Sections 11.6 and 11.7, fault trees are evaluated. In qualitative evaluation,
the fault tree is reduced to a logical expression, giving the top event in terms of combinations of
primary-failure events. In quantitative evaluation, the probability of the top event is expressed
in terms of the probabilities of the primary-failure events.

Nomenclature

As we have seen, the fault tree is made up of events, expressed as boxes, and gates. Two types of
gates appear, the OR and the AND gate. The OR gate as indicated in Figure 11.15a is used to show
that the output event occurs only if one or more of the input events occur. There may be any num-
ber of input events of an OR gate. The AND gate as indicated in Figure 11.15b is used to show that
the output fault occurs only if all the input faults occur. There may be any number of input faults to
an AND gate.
Generally, OR and gates are distinguished by their shape. In free-hand drawings, however, it may

be desirable to put the and A symbols on the gates. Or the so-called engineering notation, in
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Figure 11.14 Reliability block diagram for electrical power.
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which OR is represented by a “+” and by “ ,” may be used. Obviously, if these notations are
included, the care with which the shape of the gate is drawn becomes of secondary importance.
In addition to the ANDOR gates, the INHIBIT gate shown in Figure 11.16a is also widely used. It

is a special case of the AND gate. The output is caused by a single input, but some qualifying con-
dition must be satisfied before the input can produce the output. The condition that must exist is
indicated conventionally by an ellipse, which is located to the right of the gate. In other words, the
output happens only if the input occurs under the conditions specified within the ellipse. The ellipse
may also be used to indicate conditions on OR AND gates. This is shown in Figure 11.16b and c.
The rectangular boxes in the foregoing figures indicate top or intermediate events; they appear as

outputs of gates. Shape also distinguishes different types of primary or input events appearing at the
bottom of the fault tree. The primary events of a fault tree are events that, for one of a number of
reasons, are not developed further. They are events for which probabilities must be provided if the
fault tree is to be evaluated quantitatively (i.e. if the probability of the top event is to be calculated).
In general, four different types of primary events are distinguished. These make up part of the list

of symbols in Table 11.2. The circle describes a basic event. This is a basic initiating fault event that
requires no further development. The circle indicates that the appropriate resolution of the fault
tree has been reached.
The undeveloped event is indicated by a diamond. It refers to a specific fault event, although it is

not further developed, either because the event is of insufficient consequence or because informa-
tion relevant to the event is unavailable. In contrast, the external event, signified by a house-shaped

a ∪ b ∪ c a ∩ b ∩ c

a b c a b c

(a) (b)

Figure 11.15 Fault-tree gates: (a) OR and (b) AND.
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Figure 11.16 Fault-tree conditional gates.
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figure, indicates an event that is normally expected to occur. Thus, house symbol displays are not of
themselves faults.
The last symbols in Table 11.2 are the triangles indicating transfers into and out of the fault tree.

These are used when more than one page is required to draw a fault tree. A transfer-in triangle

Table 11.2 Fault-tree symbols commonly used.

Symbol Name Description

Rectangle Fault event; it is usually the result of the logical combination of other
events

Circle Independent primary fault event

Diamond Fault event not fully developed, for its causes are not known; it is only
an assumed primary fault event

House Normally occurring basic event; it is not a fault event

OR gate The union operation of events, i.e. the output event occurs if one or
more of the inputs occur

AND gate The intersection operation of events, i.e. the output event occurs if and
only if all the inputs occur

A

X

INHIBIT
gate

Output exists when X exists, and condition A is present; this gate
functions somewhat like an AND gate and is used for a secondary fault
event X

A

Triangle-
in

Triangle symbols provide a tool to avoid repeating sections of a fault
tree or to transfer the tree construction from one sheet to the next. The
triangle-in appears at the bottom of a tree and represents the branch of
the tree (in this caseA) shown at another location in the Fault Tree. The
triangle-out appears at the top of a tree and denotes that the tree A is a
subtree to one shown someplace elseA

Triangle-
out

Source: Adapted from Roberts et al. (1981).
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indicates that the input to a gate is developed on another page. A transfer-out triangle at the top of a
tree indicates that it is the input to a gate appearing on another page.
In fault-tree construction, a distinction is made between a fault and a failure. The word failure is

reserved for basic events such as a burned-out bearing in a pump or a short circuit in an amplifier.
The word fault is more all-encompassing. Thus, if a valve closes when it should not, this may be
considered a valve fault. However, if the valve fault is due to a spurious signal from the shorted
amplifier, it is not a valve failure. Thus, all failures are faults, but not all faults are failures.

Fault Classification

The dissection of a system to determine what combinations of primary failures may lead to the top
event is central to the construction of a fault tree. This dissection is likely to proceed most smoothly
when the system can be divided into subsystems, components, or parts in order to associate the
faults with discrete pieces of the system. Even then, a great deal of attention must be given to
the component interactions, particularly common-mode failures. Beyond decomposing the system
into components, however, we must also examine which components are more likely to fail and
study with care the various modes by which component failure may occur.
In the material already covered, we have examined several ways of classifying failures that are

very useful for fault-tree construction. Distinguishing between hardware faults and human error is
essential, as is the classification of hardware failures into early, random, and aging, each with its
own characteristics and causes. In what follows, we discuss briefly two additional classifications.
The division of failures into primary, secondary, and command faults is particularly useful in deter-
mining the logical structure of a fault tree. The classification of components as passive or active is
important in determining which ones are likely to make larger contributions to system failure.

Primary, Secondary, and Command Faults

Failures may be usefully classified as primary, secondary, and command faults (Roberts et al. 1981).
A primary fault by definition occurs in an environment and under a loading for which the compo-
nent is qualified. Thus, a pressure vessel’s bursting at less than the design pressure is classified as a
primary fault. Primary faults are most often caused by defective design, manufacture, or construc-
tion and are therefore most closely correlated to wear-in failures. Primary faults may also be caused
by excessive or unanticipated wear, or they may occur when the system is not properly maintained
and parts are not replaced on time.
Secondary faults occur in an environment or under loading for which the component is not qual-

ified. For example, if a pressure vessel fails through excessive pressure for which it was not
designed, it has a secondary fault. As indicated by the name, the basic failure is not of the vessel
but in the excessive loading or adverse environment. Such failures often occur randomly and are
characterized by constant failure rates.
Although a component fails when it has primary and secondary faults, it operates correctly when

it has a command fault, but at the wrong time or place. Thus, our pressure vessel might lose pres-
sure through the unwanted opening of a relief valve, even though there is no excessive pressure. If
the valve opens through an erroneous signal, it has a command fault. For command failures, we
must look beyond the component failure to find the source of the erroneous command.

Passive and Active Faults

Components may be designated as either passive or active. Passive components include things such
as pipes, cables, bearings, welds, and bolts. They function in a more or less static manner, often
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acting as transmitters of energy, such as a buss bar or cable, or of fluids such as piping. Transmitters
of mechanical loads, such as structural members, beams, and columns, and connectors, such as
welds, bolts, and other fasteners, are also passive components. A passive component may usually
be thought of as a mechanism for transmitting the output of one active component to the input of
another. In the broadest sense, the quantity transmitted may be an electric signal, a fluid, mechan-
ical loading, or any number of other quantities.
Active components contribute to the system function in a dynamic manner, altering in some way

the system’s behavior. For example, pumps and valves modify fluid flow; relays, switches, ampli-
fiers, rectifiers, and computer chips modify electric signals; and motors, clutches, and other
machinery modify the transmission of mechanical loading.
Our primary reason for distinguishing between active and passive components is that failure

rates are normally much higher for active components than for passive components, often by
two or three orders of magnitude. The terms active and passive refer to the primary function of
the component. Indeed, an active componentmay havemany passive parts that are prone to failure.
For example, a pump and its function are active, but the pump housing is considered passive, even
though a housing rupture is one mode by which the pump may fail. In fact, one of the reasons that
active components have higher failure rates than passive ones is that they tend to be made up of
many nonredundant parts, both active and passive.

Fault Tree Examples

We present here four examples of rather simple systems and ones that are, moreover, readily under-
standable without specialized knowledge. This is consistent with the philosophy that one should
not attempt to construct a fault tree until the design and function of the system is thoroughly under-
stood. The first example is a demand failure, the failure of a motor to start, and the second is the
failure of a continuously operating system. The third involves both start-up and operation; in the
fourth, the top event is a catastrophic failure, and its causes involve faulty procedures and operator
actions as well as equipment failures.

Examples 11.3 Draw a fault tree for the motor circuit shown in Figure 11.16. The top event for
the fault-tree analysis is simply failure of the motor to operate (Figure 11.17).

Solution:
The fault tree is shown in Figure 11.18. Note that failures are distinguished as primary and second-
ary. For primary failures, wewould expect data to be available to determine the failure probabilities.

Switch Fuse

Power
supply

Wire

Motor

Figure 11.17 Electric motor circuit. Source: Fussel (1976).
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If not, further dissection of the component into its parts might be necessary. The secondary faults
are either command faults, such as no current to the motor, or excessive loading, such as an over-
load in the circuits. For these, we must delve deeper to locate the causes of the faults.
Source: Adapted from Fussel (1976).

Motor does
not operate

Primary
motor
failure

Primary
switch
failure

Primary
wire

failure
(shorted)

Primary
power
failure
(surge)

Primary
wire

failure
(open)

Primary
power
supply
failure

No current to
motor

Switch
open Fuse fails

open

Switch
opened

Secondary
fuse failure

Primary
fuse

failure
(open)

Fuse fails
open

Overload in
circuit

Figure 11.18 Fault tree for electric motor circuit. Source: Fussel (1976), reprinted by permission.
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Examples 11.4 Draw a fault tree for the coolant supply system pictured in Figure 11.19. Here, the
top event is loss of minimum flow to a heat exchanger.

Solution:
The fault tree is shown in Figure 11.20. Not all of the faults at the bottom of the tree are primary
failures. Thus, it may be desirable to develop some of the faults, such as loss of the pump inlet sup-
ply, further. Conversely, the faults may be considered too insignificant to be traced further, or data
may be available even though they are not primary failures.
Source: Adapted from Burgess (1970).

Example 11.5 Consider the sump pump system shown in Figure 11.21. Redundance is provided
by a battery-driven backup system that is activated when the utility power supply fails. Draw a fault
tree for the flooding of a basement protected by this system.

Solution:
The fault tree is shown in Figure 11.22. The tree accounts for the fact that flooding can occur if the
rate of inflow from the storm exceeds the pump capacity. Moreover, flooding can occur from storms
within the system’s capacity if there are malfunctions of both pumps and the inflow is large enough
to fill the sump. Primary pump failures may be caused either by the failure of the pump itself or by
loss of ac power. Similarly, the second pump may malfunction or it may be lost through failure of
the battery. The battery fails only if all three events at the bottom of the tree take place.
Source: Adapted from Ang and Tang (1984).

Prime
equipment

Heat
exchanger

Primary
coolant
line

Constant
speed
pump

Control valve

Bypass line

Return line

Reservoir

Figure 11.19 Coolant supply system. Source: Reprinted from Machine Design, © 1984, by Penton/IPC,
Cleveland, OH.
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Figure 11.20 Fault tree for coolant supply system. Source: Reprinted from Machine Design, © 1984, by Penton/IPC, Cleveland, OH.
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Figure 11.21 Sump pump system. Source: Ang and Tang (1984). Copyright © 1984, by JohnWiley & Sons, New
York. Reprinted by permission.
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Figure 11.22 Fault tree for basement flooding. Source: Ang and Tang (1984). Copyright © 1984, by John
Wiley & Sons, New York. Reprinted by permission.
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Example 11.6 The final example that we consider is the hot gas manifold and heat exchanger on
the SSME shown with other modules/subsystems of the SSME in Figure 11.23. The top event in
both subsystems is “engine fire.” This situation has the added complication that operator errors
(mishandling, installation errors, and welding errors) as well as equipment failures may lead to
the top event. Before a fault tree can be drawn, the procedure by which the system is operated must
be specified. The SSME is started 6.6 seconds before the solid rocket boosters (SRBs) are ignited; this
assures that all three SSMEs are working before the SRBs are ignited (being solid rockets they can-
not be turned off after being ignited – think “controlled burn fire cracker.”). The flight is off! Now
the possible top event that must be studied is “engine fire.”

Solution:
In thinking through a fault tree for both of these subsystems you can refer to the FMEA (if one is
completed – see Table 7.2), or, as is often the case early in a design, the safety and reliability group
representatives form a team to produce a fault tree. See Figures 11.24a and 11.24b for the fault trees
the team produced. Notice in the hot gas manifold that the second tier is “duct rupture” and “joint
leaks.”Under “duct rupture,” the engineering team had experiencewith “cracks” being the cause of
“duct rupture” and breaking down “cracks” further into five possible causes (again based on engi-
neering experience). In the case of “joint leaks,” there were two possible causes: “loose bolts” and
“seal damage. Notice that “installation error” could have caused either of these, whereas “contam-
ination” could have caused “seal damage” by itself. After some experience is obtained through test-
ing, the actual data can be used to attach a probability of occurrence to the bottom events.
Source: Adapted from Henley and Kumamoto (1981a).
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Figure 11.23 Major components of SSME with hot gas manifold/heat exchanger indicated. Source: Booster
System Briefs (JSC-19041) (1992). Public domain.
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Figure 11.24a Hot gas manifold fault tree. Source: Booster System Briefs (JSC-19041) (1992). Public domain.
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Figure 11.24b Heat exchanger fault tree. Source: Booster System Briefs (JSC-19041) (1992). Public domain.
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Looking at the heat exchanger fault tree you find immediately that “coil leak” is the cause and
notice that “defective welds” is a possible cause of both the “coil leak” and the “cracks, wear” side of
the “coil leak.” It is obvious from looking at both fault trees that human error was given utmost
attention in the fabrication of these two subsystems.
The foregoing examples give some idea of the problems inherent in drawing fault trees. The

reader should consult more advanced literature for fault-tree constructions for more complex con-
figurations, keeping in mind that the construction of a valid fault tree for any real system (as
opposed to textbook examples) is necessarily a learning experience for the analyst. As the tree is
drawn, more and more knowledge must be gained about the details of the system’s components,
its failure modes, the operating and maintenance procedures, and the environment in which the
system is to be located.

Direct Evaluation of Fault Trees

The evaluation of a fault tree proceeds in two steps. First, a logical expression is constructed for the
top event in terms of combinations (i.e. unions and intersections) of the basic events. This is referred
to as qualitative analysis. Second, this expression is used to give the probability of the top event in
terms of the probabilities of the primary events. This is referred to as quantitative analysis. Thus,
knowing the probabilities of the primary events, we can calculate the probability of the top event. In
these steps the rules of Boolean algebra contained in Table 11.3 are very useful. They allow us to
simplify the logical expression for the fault tree and thus also to streamline the formula, giving the
probability of the top event in terms of the primary-failure probabilities.
In this section, we first illustrate the two most straightforward methods for obtaining a logical

expression for the top event, top-down, and bottom-up evaluation. We then demonstrate how
the resulting expression can be reduced in a way that greatly simplifies the relation between the
probabilities of top and basic events. Finally, we discuss briefly the most common forms that
the primary-failure probabilities take and demonstrate the quantitative evaluation of a fault tree.
The so-named direct methods discussed in this section become unwieldy for very large fault trees

with many components. For large trees, the evaluation procedure must usually be cast in the form
of a computer algorithm. These algorithms make extensive use of an alternative evaluation proce-
dure in which the problem is recast in the form of so-called minimum cut sets, both because the
technique is well suited to computer use and because additional insights are gained concerning the
failure modes of the system. We define cut sets and discuss their use in the following section.

Qualitative Evaluation

Suppose that we are to evaluate the fault tree shown in Figure 11.25. In this tree we have signified
the primary failures by uppercase lettersA throughC. Note that the same primary failure may occur

Table 11.3 Boolean logic.

A B A ∩ B A ∪ B

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 1
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in more than one branch of the tree. This is typical of systems with m/N redundancy of the type
discussed in Chapter 3. The intermediate events are indicated by Ei, and the top event by T.

Top Down

To evaluate the tree from the top down, we begin at the top event and work our way downward
through the levels of the tree, replacing the gates with the corresponding OR AND symbol. Thus,
we have

T = E1 E2 11 3

at the highest level of the tree, and

E1 = A E3; E2 = C E4 11 4

at the intermediate level. Substituting Eq. (11.4) into Eq. (11.3), we then obtain

T = A E3 C E4 11 5

Proceeding downward to the lowest level, we have

E3 = B C; E4 = A B 11 6

Substituting these expressions into Eq. (11.5), we obtain as our final result

T = A s B C C A B 11 7

Bottom Up

Conversely, to evaluate this same tree from the bottom up, we first write the expressions for the
gates at the bottom of the fault tree as

T

E1

E3 E4

E2

A C

CB BA

Figure 11.25 Example of a fault tree.
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E3 = B C; E4 = A B 11 8

Then, proceeding upward to the intermediate level, we have

E1 = A E3; E2 = C E4 11 9

Hence, we may substitute Eq. (11.8) into Eq. (11.9) to obtain

E1 = A B C 11 10

and

E2 = C A sB 11 11

We now move to the highest level of the fault tree and express the AND gate appearing there as

T = E1 E2 11 12

Then, substituting Eqs. (11.10) and (11.11) into Eq. (11.12), we obtain the final form:

T = A B C C A B 11 13

The two results, Eqs. (11.7) and (11.13), which we have obtained with the two evaluation proce-
dures, are not surprisingly the same.

Logical Reduction

For most fault trees, particularly those with one or more primary failures occurring in more than
one branch of the tree, the rules of Boolean algebra contained in Table 2.4 may be used to simplify
the logical expression for T, the top event. In our example, Eq. (11.13) can be simplified by first
applying the associative and then the commutative law to write A (B C) = (A B) C = C
(A B). Then, we have

T = C A B C A B 11 14

We then apply the distributive law with X≡ C, Y≡A B, and Z ≡A B to obtain

T = C A B A B 11 15

From the associative law, we can eliminate the parenthesis on the right. Then, since A B = B
A, we have

T = C A B B A 11 16

Now, from the absorption law (A B) B = B. Hence,

T = C B A 11 17

This expression tells us that for the fault tree under consideration the failure of the top system is
caused by the failure of C or by the failure of both A and B. We then refer toM1=C andM2 =A B
as the two failure modes leading to the top event. The reduced fault tree can be drawn to represent
the system as shown in Figure 11.26.

Quantitative Evaluation

Having obtained, in its simplest form, the logical expression for the top event in terms of the pri-
mary failures, we are prepared to evaluate the probability that the top event will occur. The eval-
uation may be divided into two tasks. First, we must use the logical expression and the rules
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developed in Chapter 2 for combining probabilities to express the probability of the top event in
terms of the probabilities of the primary failures. Second, we must evaluate the primary-failure
probabilities in terms of the data available for component unavailabilities, component unavailabil-
ity, and demand-failure probabilities.

Probability Relationships

To illustrate the quantitative evaluation, we again use the fault tree that reduces to Eq. (11.17).
Since the top event is the union of C with B A, we use Eq. (2.6) to obtain

P T = P C + P B A −P A B C 11 18

thus expressing the top events in terms of the intersections of the basic events. If the basic events
are known to be independent, the intersections may be replaced by the products of basic-event
probabilities. Thus, in our example,

P T = P C + P A P B −P A P B P C 11 19

If there are known dependencies between events, however, we must determine expression for P
{A B}, P{A B C}, or both through more sophisticated treatments such as the Markov models
discussed in Chapter 10. Alternatively, we may be able to apply the ξ-factor treatment of Chapter 3
for common-mode failures (see Eq. (3.117) and (3.118) for definitions).
Even where independent failures can be assumed, a problem arises when larger trees with many

different component failures are considered. Instead of three terms as in Eq. (11.19), there may be
hundreds of terms of vastly different magnitudes. A systematic way is needed for making reason-
able approximations without evaluating all the terms. Since the failure probabilities are rarely
known to more than two or three places of accuracy, often only a few of the terms are of signifi-
cance. For example, suppose that in Eq. (11.19) the probabilities of A, B, and C are ~ 10−2, 10−4, and
~ 10−6, respectively. Then, the first two terms in Eq. (11.19) are each of the order of 10−6; in com-
parison, the last term is of the order of 10−12 and may therefore be neglected.
One approach that is used in rough calculations for larger trees is to approximate the basic equa-

tion for P{X Y} by assuming that both events are improbable. Then, instead of using Eq. (2.6), we
may approximate

T

C

A B

A∩B

Figure 11.26 Fault-tree equivalent to Figure 11.25.
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P X Y ≈ P X + P Y 11 20

which leads to a conservative (i.e. pessimistic) approximation for the system failure. For our sim-
ple example, we have, instead of Eq. (11.19), the approximation

P T ≈P C + P A P B 11 21

The combination of this form of the rare-event approximation and the assumption of
independence,

P X Y = P X P Y 11 22

often allows a very rough estimate of the top-event probability. We simply perform a bottom-up
evaluation, multiplying probabilities at AND gates and adding them at OR gates. Care must be exer-
cised in using this technique, for it is applicable only to trees in which basic events are not
repeated – since repeated events are not independent – or to trees that have been logically reduced
to a form in that primary failures appear only once. Thus, we may not evaluate the tree as it appears
in Figure 11.25 in this way, but we may evaluate the reduced form in Figure 11.26. More systematic
techniques for truncating the prohibitively long probability expressions that arise from large fault
trees are an integral part of the minimum cut-set formulation considered in the following section.

Primary-Failure Data

In our discussions we have described fault trees in terms of failure probabilities without specifying
the particular types of failure represented either by the top event or by the primary-failure data. In
fact, there are three types of top events and, correspondingly, three types of basic events frequently
used in conjunction with fault trees. They are (i) the failure on demand, (ii) the unreliability for
some fixed period of time t, and (iii) the unavailability at some time.
When failures on demand are the basic events, a value of p is needed. For the unreliability or

unavailability, it is often possible to use the following approximations to simplify the form of
the data, since the probabilities of failure are expected to be quite small. If we assume a constant
failure rate, the unreliability is

R λ t 11 23

Similarly, the most common unavailability is the asymptotic value for a system with constant
failure and repair rates λ and ν. From Eq. (9.56), we have

A ∞ = 1−
v

v + λ
11 24

But, since in the usual case ν λ, we may approximate this by

A ∞ ≈ λ v 11 25

Often, demand failures, unreliabilities, and unavailabilities will be mixed in a single fault tree.
Consider, for example a very simple fault tree for the failure of a light to go on when the switch
is flipped. We assume that the top event, T, is the failure on demand for the light to go on, which
is due to
X = bulb burned out,
Y = switch fails to make contact,
Z = power failure to house.
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Therefore, T= X Y Z. In this case, Xmight be considered an unreliability of the bulb, with the
time being that since it was originally installed; Y would be a demand failure, assuming that the
cause was a random failure of the switch to make contact; and Z would be the unavailability of
power to the circuit. Of course, the tree can be drawn in more depth. Is the random demand failure
the only significant reason (a demand failure) for the switch not to make contact, or is there a sig-
nificant probability that the switch is corroded open (an unreliability)?

Fault-Tree Evaluation by Cut Sets

The direct evaluation procedures just discussed allow us to assess fault trees with relatively few
branches and basic events. When larger trees are considered, both evaluation and interpretation
of the results become more difficult, and digital computer codes are invariably employed. Such
codes are usually formulated in terms of the minimum cut-set methodology discussed in this sec-
tion. There are at least two reasons for this. First, the techniques lend themselves well to the com-
puter algorithms, and second, from them a good deal of intermediate information can be obtained
concerning the combination of component failures that are pertinent to improvements in system
design and operations.
The discussion that follows is conveniently divided into qualitative and quantitative analysis. In

qualitative analysis, information about the logical structure of the tree is used to locate weak points
and evaluate and improve system design. In quantitative analysis, the same objectives are taken
further by studying the probabilities of component failures in relation to system design.

Qualitative Analysis

In these subsections, we first introduce the idea of minimum cut sets and relate it to the qualitative
evaluation of fault trees. We then discuss briefly how theminimum cut sets are determined for large
fault trees. Finally, we discuss their use in locating system weak points, particularly possibilities for
common-mode failures.

Minimum Cut-Set Formulation

A minimum cut set is defined as the smallest combination of primary failures which, if they all
occur, will cause the top event to occur. It is, therefore, a combination (i.e. intersection) of primary
failures sufficient to cause the top event. It is the smallest combination in that all the failures must
take place for the top event to occur. If even one of the failures in the minimum cut set does not
happen, the top event will not take place.
The terms minimum cut set and failure mode are sometimes used interchangeably. However,

there is a subtle difference that we observe hereafter. In reliability calculations, a failure mode
is a combination of component or other failures that cause a system to fail, regardless of the con-
sequences of the failure. A minimum cut set is usually more restrictive, for it is the minimum com-
bination of failures that causes the top event as defined for a particular fault tree. If the top event is
defined broadly as system failure, the two are indeed interchangeable. Usually, however, the top
event encompasses only the particular subset of system failures that bring about a particular safety
hazard.
The origin for using the term cut set may be illustrated graphically using the reduced fault tree in

Figure 11.26. The reliability block diagram corresponding to the tree is shown in Figure 11.27. The
idea of a cut set comes originally from the use of such diagrams for electric apparatus, where the
signal enters at the left and leaves at the right. Thus, a minimum cut set is the minimum number of
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components that must be cut to prevent the signal flow. There are two minimum cut sets,M1, con-
sisting of components A and B, and M2, consisting of component C.
For a slightly more complicated example, consider the redundant system of Figure 3.16, for which

the equivalent fault tree appears in Figure 11.13. In this system, there are five cut sets, as indicated
in the reliability block diagram of Figure 11.28.
For larger systems, particularly those in which the primary failures appear more than once in the

fault tree, the simple geometrical interpretation becomes problematical. However, the primary
characteristics of the concept remain valid. It permits the logical structure of the fault tree to be
represented in a systematic way that is amenable to interpretation in terms of the behavior of
the minimum cut sets.
Suppose that the minimum cut sets of a system can be found. The top event, system failure, may

then be expressed as the union of these sets. Thus, if there are N minimum cut sets,

T = M1 M2 MN 11 26

Each minimum cut set then consists of the intersection of the minimum number of primary fail-
ures required to cause the top event. For example, the minimum cut sets for the system shown in
Figures 11.13 and 11.28 are

A

B

C

Figure 11.27 Minimum cut sets on a reliability block diagram.
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M1
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Figure 11.28 Minimum cut sets on a reliability block diagram of a seven-component system.
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M1 = C M3 = a1 a2 b2

M2 = b1 b2 M4 = a3 a4 b1
M5 = a1 a2 a3 a4

11 27

Before proceeding, it should be pointed out that there are other cut sets that will cause the top
event, but they are not minimum cut sets. These need not be considered, however, because they do
not enter the logic of the fault tree. By the rules of Boolean algebra contained in Table 2.4, they are
absorbed into the minimum cut sets. This can be illustrated using the configuration of Figure 11.28
again. Suppose that we examine the cut set M0 = b1 c, which will certainly cause system failure,
but it is not a minimum cut set. If we include it in the expression for the top event, we have

T = M0 M1 M2 MN 11 28

Now, suppose that we consider M0 M1. From the absorption law of Table 2.4, however, we
see that

M0 M1 = b1 c c = c 11 29

Thus, the nonminimum cut set is eliminated from the expression for the top event. Because of this
property, minimum cut sets are often referred to simply as cut sets, with the minimum implied.
Since we are able to write the top event in terms of minimum cut sets as in Eq. (11.26), we may

express the fault tree in the standardized form shown in Figure 11.29. In this, Xmn is the nth element
of the mth minimum cut set. Note from our example that the same primary failures may often be
expected to occur in more than one of the minimum cut sets. Thus, the minimum cut sets are not
generally independent of one another.

Cut-Set Determination

In order to utilize the cut-set formulations, we must express the top event as the union of minimum
cut sets, as in Eq. (11.26). For small fault trees this can be done by hand, using the rules of Table 2.4,
just as we reduced the top-event expression for T given by Eq. (11.13) to the two-cut-set expression
given by Eq. (11.17). For larger trees, containing perhaps 20 or more primary failures, this

T

M1

X11 X21 X41 X51

M2 M3 M4 M5 M6

X61X31

Figure 11.29 Generalized minimum cut-set representation of a fault tree.
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procedure becomes intractable, and we must resort to digital computer evaluation. Even then, the
taskmay be prodigious, for a larger tree with a great deal of redundancy may have amillion or more
minimum cut sets.
The computer codes for determining the cut sets (McCormick 1981) do not typically apply the

rules of Boolean algebra to reduce the expression for the top set to the form of Eq. (11.26). Rather,
a search is performed for the minimum cut sets; in this, a failure is represented by 1, and a success
by 0. Then, each expression for the top event is evaluated using the outcome shown in Table 11.3 for
the union and intersection of the events. A number of different procedures may be used to find the
cut sets. In exhaustive searches, all single failures are first examined, and then all combinations of
two primary failures, and so on. In general, there are 2N, where N is the number of primary failures
that must be examined. Other methods involve the use of random number generators in Monte
Carlo simulation to locate the minimum cut sets.
When millions of minimum cut sets are possible, the search procedures are often truncated, for

cut sets requiring many primary failures to take place are so improbable that they will not signif-
icantly affect the overall probability of the top event. Moreover, simulation methods must be ter-
minated after a finite number of trials.

Cut-Set Interpretations

Knowing the minimum cut sets for a particular fault tree can provide valuable insight concerning
potential weak points of complex systems, even when it is not possible to calculate the probability
that either a particular cut set or the top event will occur. Three qualitative considerations, in par-
ticular, may be very useful: the ranking of the minimal cut sets by the number of primary failures
required, the importance of particular component failures to the occurrence of the minimum cut
sets, and the susceptibility of particular cut sets to common-mode failures.
Minimum cut sets are normally categorized as singlets, doublets, triplets, and so on, according to

the number of primary failures in the cut set. Emphasis is then put on eliminating cut sets corre-
sponding to small numbers of failures, for ordinarily these may be expected to make the largest
contributions to system failure. In fact, the common design criterion that no single component fail-
ure should cause system failure is equivalent to saying that all singlets must be removed from the
fault tree for which the top event is system failure. Indeed, if component failure probabilities are
small and independent, then provided that they are of the same order of magnitude, doublets will
occur much less frequently than singlets, triplets much less frequently than doublets, and so on.
A second application of cut-set information is in assessing qualitatively the importance of a par-

ticular component. Suppose that we wish to evaluate the effect on the system of improving the reli-
ability of a particular component, or conversely, to ask whether, if a particular component fails, the
system-wide effect will be considerable. If the component appears in one or more of the low-order
cut sets, say singlets or doublets, its reliability is likely to have a pronounced effect. On the other
hand, if it appears only in minimum cut sets requiring several independent failures, its importance
to system failure is likely to be small.
These arguments can rank minimum cut-set and component importance, assuming that the pri-

mary failures are independent. If they are not, that is if they are susceptible to common-mode fail-
ure, the ranking of cut-set importance may be changed. If five of the failures in a minimum cut set
with six failures, for example can occur as the result of a common cause, the probability of the cut
sets occurring is more comparable to that of a doublet.
Extensive analysis is often carried out to determine the susceptibility of minimum cut sets to com-

mon-cause failures. In an industrial plant one cause might be fire. If the plant is divided into several
fire-resistant compartments, the analysis might proceed as follows. All the primary failures of
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equipment located in one of the compartments that could be caused by fire are listed. Then, these
components would be eliminated from the minimum cut sets (i.e. they would be assumed to fail).
The resulting cut sets would then indicate how many failures – if any – in addition to those caused
by the fire would be required for the top event to happen. Such analysis is critical for determining
the layout of the plant that will best protect it from a variety of sources of damage: fire, flooding,
collision, earthquake, and so on.

Quantitative Analysis

With the minimum cut sets determined, we may use probability data for the primary failures and
proceed with quantitative analysis. This normally includes both an estimate of the probability of the
top events occurring and quantitativemeasures of the importance of components and cut sets to the
top event. Finally, studies of uncertainty about the top events happening, because the probability
data for the primary failures are uncertain, are often needed to assess the precision of the results.

Top-Event Probability

To determine the probability of the top event, we must calculate

P T = P M1 M2 MN 11 30

As indicated in Section 2.26, the union can always be eliminated from a probability expression by
writing it as a sum of terms, each one of which is the probability of an intersection of events. Here,
the intersections are the minimum cut sets. Probability theory provides the expansion of Eq. (11.30)
in the following form:

P T =
N

i = 1

P Mi −
N

i = 2

i− 1

j = 1

P Mi M j

+
N

i = 3

i− 1

j = 2

j− 1

k = 1

P Mi M j Mk −

+ − 1 N − 1P M1 M2 MN

11 31

This is sometimes referred to as the inclusion–exclusion principle.
The first task in evaluating this expression is to evaluate the probabilities of the individual min-

imum cut sets. Suppose that we let Xim represent the mth basic event in minimum cut set i. Then,

P Mi = P Xi1 Xi2 Xi3 P XiM 11 32

If it may be proved that the primary failures in a given cut set are independent, we may write

P Mi = P Xi1 P Xi2 P XiM 11 33

If they are not, a Markov model or some other procedure must be used to relate P{Mi} to the prop-
erties of the primary failures.
The second task is to evaluate the intersections of the cut-set probabilities. If the cut sets are inde-

pendent of one another, we have simply

P Mi M j = P Mi P M j 11 34

P Mi M j MK = P Mi P M j P Mk 11 35

and so on. More often than not, however, these conditions are not valid, for in a system with
redundant components, a given component is likely to appear in more than one minimum cut
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set: If the same primary failure appears in two minimum cut sets, they cannot be independent of
one another. Thus, an important point is to be made. Even if the primary events are independent of
one another, theminimum cut sets are unlikely to be. For example, in the fault trees of Figures 11.13
and 11.28 the minimum cut setsM1 = c andM2 = b1 b2 will be independent of one another if the
primary failures of components b1 and b2 are independent of c. In this system, however,M2 andM3

will be dependent even if all the primary failures are independent because they contain the failure
of component b2.
Although minimum cut sets may be dependent, calculation of their intersections is greatly sim-

plified if the primary failures are all independent of one another, for then the dependencies are due
only to the primary failures that appear in more than one minimum cut set. To evaluate the inter-
section of minimum cut sets, simply take the product of probabilities that appear in one or more of
the minimal cut sets:

P Mi M j = P X1ij P X2ij P XNij 11 36

where Xlij, X2ij, ..., XNij is the list of the failures that appear in Mi, Mj, or both.
That the foregoing procedure is correct is illustrated by a simple example. Suppose that we have

two minimal cut setsM1 =A B andM2 = B C, where the primary failures are independent. We
then have

M1 M2 = A B B C = A B B C 11 37

but B B = B. Thus,

P M1 M2 = P A B C = P A P B P C 11 38

In the general notation of Eq. (11.36), we would have

X112 = A, X212 = B, X312 = C 11 39

With the assumption of independent primary failures, the series in Eq. (11.31) may in principle be
evaluated exactly. When there are thousands or even millions of minimum cut sets to be consid-
ered, however, the task may be both prohibitive and unwarranted, for many of the terms in the
series are likely to be completely negligible compared to the leading one or two terms.
The true answer may be bracketed by taking successive terms, and it is rarely necessary to eval-

uate more than the first two or three terms. If P{T} is the exact value, it may be shown that
(Vesely 1970)

P1 T
N

i = 1

P Mi > P T 11 40

P2 T P1 T −
N

i = 2

i− 1

j = 1

P Mi M j < P T 11 41

P3 T P2 T +
N

i = 3

i− 1

j = 2

j− 1

k = 1

P Mi M j Mk > P T 11 42

and so on, with P4{T} < P{T}.
Often, the first-order approximation P1{T} gives a result that is both reasonable and pessimistic.

The second-order approximation might be evaluated to check the accuracy of the first. And rarely
would more than the third-order approximation be used.
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Even taking only a few terms in Eq. (11.40) may be difficult, and wasteful, if a million or more
minimum cut sets are present. Thus, as mentioned in the preceding subsection, we often truncate
the number of minimum cut sets to include only those that contain fewer than some specified num-
ber of primary failures. If all the failure probabilities are small, say <0.1, the cut-set probabilities
should go down by more than an order of magnitude as we go from singlets to doublets, doublets to
triplets, and so on.

Importance

As in qualitative analysis, it is not only the probability of the top event that normally concerns the
analyst. The relative importance of single components and of particular minimum cut sets must be
known if designs are to be optimized and operating procedures revised.
Twomeasures of importance ((Henley and Kumamoto 1981a, Chapter 10) are particularly simple

but useful in system analysis. In order to know which cut sets are the most likely to cause the top
event, the cut-set importance is defined as

IMi =
P Mi

P T
11 43

for the minimum cut set i. Generally, we would also like to determine the relative importance of
different primary failures in contributing to the top event. To accomplish this, the simplest measure
is to add the probabilities of all the minimum cut sets to which the primary failure contributes.
Thus, the importance of component Xi is

IXi =
1

P T Xi Ml

P Ml 11 44

Other more sophisticated measures of importance have also found applications.

Uncertainty

What we have obtained thus far are point or best estimates of the top event’s probability. However,
there are likely to be substantial uncertainties in the basic parameters – the component failure rates,
demand failures, and other data – that are input to the probability estimates. Given these consid-
erable uncertainties, it would be very questionable to accept point estimates without an accompa-
nying interval estimate by which to judge the precision of the results. To this end, the component
failure rates and other data may themselves be represented as random variables with a mean or
best-estimate value and a variance to represent the uncertainty. The lognormal distribution has
been very popular for representing failure data in this manner. For small fault trees, a number
of analytical techniques may be applied to determine the sensitivity of the results to the data uncer-
tainty. For larger trees, the Monte Carlo method has found extensive use (Henley and Kumamoto
1981a, Chapter 11).

11.6 Reliability/Safety Risk Analysis

In Section 5.4 of Chapter 5, we discussed Weibull Risk analysis and illustrated risk analysis with
several rather simple examples. Those examples were based on one failure distribution and predict-
ing how many of that failure mode would fail over a future time. We now move on to two addi-
tional items:
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1) Calculating the safety “incident” from the predicted reliability failures for a single failure
distribution.

2) Predicting the safety impact on a system of various independent variables and their effect on a
design limit. We cover examples of the calculation of failures and safety incidents for such phe-
nomenon as maximum bending stress, low cycle fatigue (LCF) life, etc.

Example 11.7 Calculating safety “incidents” from a reliability failure.
A safety incident is often simply a “factor” (or probability) of the predicted failures of a reliability
failure mode. Using Example 5.18 Bearing Cage Fractures on a twin engine fighter aircraft. A 1000-
hour inspection was chosen by the project management. The reason in this case was due to the 0.05
probability of a Bearing Cage fracture causing an unbalance in the engine turbine rotor, which
when combined with the probability of that causing a turbine part to penetrate the other engine
with probability 0.25 would give a predicted number of safety incidents > 1.
Recall the 1000-hour inspection projection of Bearing Cage Fracture incidents:
“Therefore, assuming a 1000-hour inspection makes a bearing “good as new” in terms of cage

fracture, there is a total expectation of failure for each bearing by 4000 hours of 0.013 + 0.013 +
0.013 + 0.013 = 0.052. For 1703 bearings that have an inspection every 1000 hours and run to
4000 hours that would mean 0.052 × 1703 = 89 failed bearings.”
The projected safety incidents:

Projected safety incidents with 1000 hour inspection

= Projected number of bearing cage fractures

× Probability of high rotor unbalance

× Probability of turbine disk parts exiting the nacelle and impacting the other engine

= 89 × 0 05 × 0 25 = 1 1 safety incidents

The safety incident in this case might be the loss of an aircraft.
The factors referred to in the above calculation are the result of the engine design and test engi-

neers using previous test experience and the safety engineers analyzing all safety information to see
how the design and test factors are corroborated by other data available outside the experience of
the engine manufacturer (e.g. government aircraft safety information).

Example 11.8 Calculating a safety incident – simple beam example.
Suppose that we have a beam anchored as illustrated in Figure 11.30.
The parameters for the study are shown in Table 11.4.
The maximum bending stress is the dependent variable of interest, with a yield stress = 2000 psi.
In this study,

Max bending =
6∗F∗L
B∗H2 11 45

Calculating the mean or nominal max bending = 1638.4 psi.
That gives a

Margin = 1−
Performance
Requirement

=
1638 4
2000

= 18 > 10 ……good design 11 46

Source: Shigley and Mitchell (1983).
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Now, suppose that we take into consideration the possible variation in each of the parameters
(Table 11.5):
(And assume that each parameter follows a normal distribution.)
Assume that a normal distribution makes the calculation of the overall variation easier from an

analytical perspective.
Let us first go back to what we know about probability and the normal distribution:

• Most values in a normal distribution will fall within ±three standard deviations (±3σ) of the
mean. If we assume that the “worst-case” is 3σ away from the mean value:
F+ 3 � σF = 13
L + 3 � σL = 40.6
B− 3� σB =3.3
H− 3 �σH=0.595

Table 11.4 Parameter means.

L 40 in

B 3.75 in

H 0.625 in

F 10 lbs

Table 11.5 Max bending parameter means and std deviation.

Parameter Mean Std dev

L 40 0.2

B 3.75 0.015

H 0.625 0.01

F 10 1

L B

H

F

Figure 11.30 Beam with length (L), width (B), height(H), and force (F).
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• The probability of this happening for any single one of these – (see normal table at 3σ)= 0.00135.

• The probability of this happening for ALL of these –
= (0.00135)4 = 3.3 × 10−12

But this is “worst case,” a more reasonable (and accurate) answer can be calculated analytically
since we have assumed normality for each of the parameters using the Taylor series expansion. We
are also assuming no correlation between parameters.

Mean of the max bending stress =
6∗FMean

∗LMean

BMean
∗HMean

2 =
6∗10∗40

3 75∗0 6252
= 1638 4 ksi

σ2Max =
∂Max
∂F

2

σ2F +
∂Max
∂L

2

σ2L +
∂Max
∂B

2

σ2B +
∂Max
∂H

2

σ2H

=
6∗LMean

BMean
∗HMean

2

2

σ2F +
6∗FMean

BMean
∗HMean

2

2

σ2L + −
6∗FMean

∗LMean

BMean
2∗HMean

2

2

σ2B + − 2∗
6∗FMean

∗LMean

BMean
∗HMean

3

2

σ2H

=
6∗40

3 75∗0 6252

2

1 +
6∗10

3 75∗0 6252

2

0 04 + −
6∗10∗40

3 752∗0 6252

2

0 0152 + − 2∗
6∗10∗40

3 75∗0 6253

2

0 012

= 26772 10 + 67 11 + 42 95 + 2748 78 = 29, 630 94

σMax = 29, 630 94 = 172 psi

11 47

In addition, using the above summarized in a table, we can easily calculate the contribution of
each parameter to max bending:
With a mean = 1638.4 psi, standard deviation = 172 psi, the probability of exceeding the 2000 psi

yield stress :

Probability of > 2000 psi = 1−P
2000− μMax bend

σMax bend
= 1−P

2000− 1638 4
172

= 1−Z 2 1 = 1− 0 982 = 0 018

Therefore, when considering the variability in parameters that calculate max bending, the yield
stress of 2000 psi will be exceeded ~2% of the time.
This contrasts with the assumption of “worst case” being a probability = 3.3 × 10-12.

Conclusion: Assuming Worst Case can be Misleading

Another Approach: Monte Carlo Simulation

Using Eq. (11.45) along with the definitions of the normally distributed parameter means and
standard deviations in Table 11.6, a Monte Carlo simulation can be completed using any number
of software packages (e.g. EXCEL™, MATLAB™, MINITAB®, Oracle Crystal Ball, and @Risk). See
Rubenstein and Kroese (2016) or Sobol (1994) for background on Monte Carlo simulation.
Using EXCEL™ to do this Monte Carlo simulation (assuming 10,000 iterations), we obtain the his-

togram of max bending in Figure 11.31 The histogram shows 216 instances of max bending > yield
stress as opposed to 180 predicted by statistical solution above.However, we only did 10,000 iterations,
and increasing it to 100,000 or 1 million would get the Monte Carlo estimate closer to the analytical.
Using a tool such as a crystal ball for 1,000,000 iterations (takes <30 seconds on a desktop PC)

gives the same answer as analytical with 1% error.
So, why bother with a Monte Carlo simulation? Well, in truth very few dimensions in the “real

world” of manufacturing are normally distributed. In addition, there are interactions of parameters
that often have to be considered in an engineering model.
To emphasize that point,
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Example 11.9 Modeling variation in LCF life
Low cycle fatigue life of a turbine rotor part depends on stress and metal temperature. The relation-
ship is shown in Figure 11.32. It goes without saying that turbine engine rotor parts are critical parts
in a turbofan/turbojet engine, and a failure of a rotor part is a safety concern.
Continuing, stress and metal temperature again depend on various other parameters. Stress

depends on spacer thickness, load, and speed, while metal temperature depends on chamber tem-
perature, cooling temperature, and inlet temperature.
This particular rotor part has a nominal stress = 50 ksi and a nominal metal

temperature = 1242 F.
The overall engineering models for the study:

Mean life = f stress, metal temperature + Std error of materials curve 11 48
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N 10,000

Histogram of max bend (psi)
Normal 

 

Figure 11.31 Histogram of max bending using EXEL with 10,000 iterations.

Table 11.6 Calculation details of total variance in max bending with breakdown of % of total variance.

Parameter X σ σ2 ∂Y/∂X (∂Y/∂X)2 (∂Y/∂X)2�σ2 % of Total variance

F 10 1 1.00000 163.6218 26,772.10 26772.10 90.4

L 40 0.2 0.04000 40.9603 1677.75 67.11 0.2

B 3.75 0.015 0.000225 436.9083 190,888.89 42.95 0.1

H 0.625 0.01 0.00010 5242.8809 27,487,800.00 2748.78 9.3

Total variance= 29,630.94
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Stress = f thickness, load, speed all acting independently on stress 11 49

Metal temperature = f inlet temperature, chamber temperature, cooling temperature

all acting independently on metal temparature

11 50

The variables affecting stress: spacer thickness, load on the rotor, and speed of rotor.
The variables affecting metal temperature: cooling temperature of rotor, chamber temperature,

and inlet temperature.
Distributions of primary parameters in Table 11.7.
The relationships of these variables to stress and metal temperature follow:
Engineering relationships affecting stress (Figures 11.33–11.35):
where Δ stress = random stress adder-50 ksi in all cases because the parameters are independent

of each other.
Therefore,

Total stress = 50 +
3

i = 1

Delta stress i 11 51

Likewise, for engineering relationships affecting metal temperature (Figure 11.36):
Where ΔMetal Temp = random temperature adder-1242 F in all cases because the parameters

are independent of each other.
Therefore,

Total Metal Temp = 1242 +
3

i = 1

Delta Metal Temp i 11 52

S
tress

Life cycles

Temperature

Figure 11.32 Overall view of LCF fatigue life
calculation of a turbine rotor part.

Table 11.7 Distributions of primary parameters affecting stress and metal temperature.

Spacer thickness Uniform Min = 0.9 in Max = 1.1 in

Load Normal Mean = 10,800 lbs Std dev = 1200

Speed Normal Mean = 9905 rpm Std dev = 42

Cooling temp Triangular Lower = 700 F Midpt = 750 F Upper = 900 F

Chamber temp Normal Mean = 1038 F Std dev = 23 F

Inlet temp Triangular Lower = 1816 F Midpt = 1975 F Upper = 2040 F
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Figure 11.33 Relationship of stress to spacer thickness
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Figure 11.34 Relationship of stress to rotor speed.
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Figure 11.35 Relationship of stress to load.
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One remaining item is needed. The materials equation for Waspaloy:

Ln Life cycles = 5 0184753− 9 729248∗ ln Stress

+ 18 052402∗ ln Temp − 3 947019∗ ln Temp 2

− 2 256088∗ ln Temp− 2 79896 ∗ ln Stress− 1 98977

11 53

The standard error of estimate or root mean square error is 0.3249 ln cycles.
Simulation outline:
For each iteration (10,000 or more):

1) Pick a random spacer thickness: uniform (0.9, 1.1)
Use the equation in Figure 11.33 and choose aΔstress thickness = (stress from equation)− 50

2) Pick a random rotor speed: normal (9905, 42)
Use the equation in Figure 11.34 and choose a Δstress speed = (stress from equation)− 50

3) Pick a random load: normal (10, 800, 1200)
Use the equation in Figure 11.35 and choose a Δstress load = (stress from equation) – 50

4) Pick a random chamber temp: normal (1038, 23)
Use the equation in Figure 11.36 and choose a Δmetal temp = (metal temp from

equation) – 1242
5) Pick a random cooling temp: triangular (700, 750, 800)

Use the equation in Figure 11.37 and choose a Δmetal temp = (metal temp from
equation) – 1242

Note: Triangular distribution is used when there are no data on the actual parameter, but the
design and thermo engineers believe they know the min, mean, and max values, so the distribution
in this case would look like (Figure 11.39):

6) Pick a random inlet temp: triangular (1816, 1975, 2040)
Use the equation in Figure 11.38 and choose a Δmetal temp = (metal temp from equa-

tion) – 1242
Then, using Eq. (11.3), expanded with Eq. (11.51) and Eq. (11.52):

Log LCF lifeiteration = f total stress, total metal temperature + normal 0, 0 3249

Continue this for the number of iterations chosen, saving the LCF life for each iteration.
Figures are the histogram of an average life for 100 averages of 1000 (Figure 11.40) and a Weibull

fit to the data (Figure 11.41).
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Figure 11.36 Relationship of metal temperature to chamber temperature.
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y = 0.0296x + 12183

Metal temp vs cooling temp
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Figure 11.37 Relationship of metal temperature to cooling temperature ( F).
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Figure 11.38 Relationship of metal temperature to inlet temperature ( F).
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Figure 11.39 Triangular distribution.
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Figure 11.41 Probability plot of sample Monte Carlo run of 100 averages of 1000.
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Figure 11.40 Histogram of sample Monte Carlo run of 100 averages of 1000.
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Exercises

11.1 Classify each of the failures in Figure 11.15 as (a) passive, (b) active, or (c) either.

11.2 Make a list of six population stereotypical responses.

11.3 Suppose that a system consists of two subsystems in parallel. Each has a mission reliability
of 0.9.
a) Draw a fault tree for mission failure, and calculate the probability of the top event.
b) Assume that there are common-mode failures described by the ξ-factor method

(Chapter 3) with ξ = 0.1. Redraw the fault tree to take this into account, and recalculate
the top event.

11.4 Find the fault tree for system failure for the following configurations.

a1

d1

a2 a3

a1

a2

a3

a4

b1 b2

d2

b3

e1

e2

(a) (b)

d f

b1 c1

b2 c2

gec

11.5 Find the minimum cut sets of the following fault tree.
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T

E1

E3 E4

E2

A C

CB BA

11.6 Draw a fault tree corresponding to the reliability block diagram in Exercise 3.68.

11.7 The following system is designed to deliver emergency cooling to a nuclear reactor.

In the event of an accident, the protection system delivers an actuation signal to the two
identical pumps and the four identical valves. The pumps then start up, the valves open, and
the liquid coolant is delivered to the reactor. The following failure probabilities are found to
be significant:
pps = 10−5 the probability that the protection system will not deliver a signal to the pump

and valve actuators.
pp = 2 × 10−2 the probability that a pump will fail to start when the actuation signal is

received.
pv= 10−1 the probability that a valve will fail to open when the actuation signal is received.
pr = 0.5 × 10−5 the probability that the reservoir will be empty at the time of the accident.

a) Draw a fault tree for the failure of the system to deliver any coolant to the primary system
in the event of an accident.

b) Evaluate the probability that such a failure will take place in the event of an accident.
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11.8 Construct a fault tree for which the top event is your failure to arrive on time for the final
exam of a reliability engineering course. Include only the primary failures that you think
have probabilities large enough to significantly affect the result.

11.9 Suppose that a fault tree has three minimum cut sets. The basic failures are independent
and do not appear in more than one cut set. Assume that P{M1} = 0.03, P{M2} = 0.12, and P
{M3} = 0.005. Estimate P{T} by the three successive estimates given in Eqs. (11.38), (11.39),
and (11.40).

11.10 Develop a logical expression for the fault trees in Figure 11.13 in terms of the nine root
causes. Find the minimum cut sets.

11.11 Suppose that for the fault tree given in Figure 11.21 P{A} = 0.15, P{B} = 0.20, and
P{C} = 0.05.
a) Calculate the cut-set importances.
b) Calculate the component importances.
(Assume independent failures.)

11.12 The logical expression for a fault tree is given by

T = A B C D E F G

a) Construct the corresponding fault tree.
b) Find the minimum cut sets.
c) Construct an equivalent reliability block diagram.

11.13 From the reliability block diagram shown in Figure 11.23, draw a fault tree for system fail-
ure in minimum cut-set form. Assume that the failure probabilities for component types a,
b, and c are, respectively, 0.1, 0.02, and 0.005. Assuming independent failures, calculate
a) P{T}, the probability of the top event;
b) the importance of components a1, b1, and c;
c) the importance of each of the five minimum cut sets.

11.14 Construct the fault trees for system failure for the low- and high-level redundant systems
shown in Figure 3.15. Then, find the minimum cut sets.

11.15 In an FMECA, the item is a critical electrical component with mission time of 72 hours, an
item failure rate λp of 10 per 106 hours. The failure mode of the component is due to an
overstress voltage condition. The failure mode ratio, α, is 0.50, and the failure effect prob-
ability, ε, is 1.00. Calculate an estimate of criticality of this failure mode.

11.16 Fault tree provides graphical representation of all known events and/or combination of
events which can lead to the undesired event being evaluated. A fault tree can support
a failure mode effect and criticality analysis (FMECA) in identification of potential failure
modes. Check off all those items that a fault tree can detect and those an FMECA can
detect/calculate:
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FTA FMECA

Multiple failure description
Analyzing single point failures
Avoiding analysis of noncritical failures
Identifying external influences
Identifying critical characteristics
Providing a format for validation plans

11.17 Below is a “late to work” FMEA. Calculate a qualitative criticality for each failure mode:
any surprises?

Item Sever Potential Occur Detec

Function Potential
Failure
Modes

Potential
Effect(s)
of Failure

Cause(s)
Mechanisms
of Failure

Current
Controls

R.
P.
N.

Criticality

Wake-up Alarm Late to
work

6 Wrong time
set

4 more
than one
alarm

5 120

Getting
dressed

No clean
clothes/
wrinkled

Delayed 7 Forgot to
check clothes

4 Check
the night
before

1 28

Getting
ready

Kids Late to
work

6 They are
kids

10 Time-
outs

5 300

Breakfast Nothing
available

Hungry/
delayed/
angry

8 No time to
make it/no
groceries

3 Cafeteria
fast food

1 24

Drive Weather Late to
work

6 God 5 N/A 10 300

Drive Traffic/
lights

Late to
work

5 DMV 4 N/A 10 200

Drive Accident Late to
work

10 Sleepy, cell
phone,
inattentive

3 Coffee 4 120

Drive No gas Late to
work

8 Forgot to
check or to
expense

4 Check
the night
before

1 32

Drive No ID
badge

Late to
work

6 Misplaced 4 One
location

1 24

Drive Flat tire Late to
work

8 Wear 2 Check
pressure/
daily

1 16

Drive No keys Late to
work

8 Misplaced 1 One
location

1 8
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Appendix A

Useful Mathematical Relationships

A.1 Integrals

Definite Integrals

∞

0
e− axdx =

1
a
, a > 0

∞

0
xne− axdx =

n
an + 1

, n = integer ≥ 0, a > 0

∞

0
e− a2x2dx =

π

2a
, a > 0

∞

0
xe− x2dx =

1
2

∞

0
x2e− x2dx =

π

4
∞

0
x2ne− ax2dx =

1 3 5 2n− 1
2n + 1an

π a, n = integer > 0, a > 0

Integration by Parts

b

a
f x

d
dx

g x dx = f b g b − f a g a −
b

a
g x

d
dx

f x dx

Derivative of an Integral

d
dc

q

p
f x, c dx =

q

p

∂

∂c
f x, c dx + f q, c

dq
dc

− f p, c
dp
dc
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A.2 Expansions

Integer Series

1 + 2 + 3 + + n =
n
2

n + 1

12 + 22 + 32 + + n2 =
n
6

2n2 + 3n + 1

13 + 23 + 33 + + n3 =
n2

4
n + 1 2

1 + 3 + 5 + + 2n− 1 = n2

Binomial Expansion

p + q N =
N

n = 0

CN
n p

nqN − n

N
Cn = CN

n =
N

N − n n

Geometric Progression

1− pn

1− p
= 1 + p + p2 + p3 + + pn− 1

Infinite Series

ex = 1 +
x
1

+
x2

2
+

x3

3
+ , x2 < ∞

log 1 + x = x−
x2

2
+

x3

3
−

x4

4
+ , x2 < 1

1
1− x

= 1 + x + x2 + x3 + x4 + , x2 < 1

1
1− x2

= 1 + 2x + 3x2 + 4x3 + , x2 < 1

1 + x

1− x2 3 = 1 + 22x + 32x2 + 42x3 + , x2 < 1
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A.3 Solution of First-order Linear Differential Equation

d
dx

y x + α x y x = S x

Note that

d
dx

y x exp
x

x0

α x dx' =
d
dx

y x + α x y x exp
x

x0

α x dx'

Thus, multiplying by the integrating factor exp x
x0
α x dx' , we have

d
dx

y x exp
x

x0

α x dx' = S x exp
x

x0

α x dx'

Integrating between x0 and x, we have

y x = y x0 exp −
x

x0

α x dx' +
x

x0

dx'S x exp −
x

x'
α x dx

If α is constant, then

y x = y x0 exp − α x− x0 +
x

x0

dx'S x' exp − α x− x'
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Appendix B

Binomial Failure Probability Charts
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Figure B.1 An 80% confidence interval for binomial failure probability. Source:W.J. Dixon and F.J. Massey, Jr.,
Introduction to Statistical Analysis, 2nd ed., © 1957, with permission from McGraw-Hill Book Company,
New York.
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Figure B.2 A 90% confidence interval for binomial failure probability. Source: W.J. Dixon and F.J. Massey, Jr.,
Introduction to Statistical Analysis, 2nd ed., © 1957, with permission from McGraw-Hill Book Company,
New York.
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Figure B.3 A 95% confidence interval for binomial failure probability. Source: E. S. Pearson and C. J. Clopper,
“The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika, 26, 404 (1934).
With permission of Biometrika.
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Figure B.4 A 99% confidence interval for binomial failure probability. Source: E. S. Pearson and C. J. Clopper,
“The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika, 26, 404 (1934).
With permission of Biometrika.
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Appendix C

Ф(z): Standard Normal CDF
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

− .0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
− .1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
− .2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
− .3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
− .4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
− .5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2343 0.2810 0.2776
− .6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
− .7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148
− .8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
− .9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.2 0.1131 0.1131 0.1113 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.09853
−1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226
−1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
−1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
−1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
−1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
−1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
−1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
−2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
−2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
−2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
−2.3 0.01072 0.01044 0.01017 0.029903 0.029642 0.029387 0.029137 0.028894 0.028656 0.028424
−2.4 0.028198 0.027976 0.027760 0.027549 0.027344 0.027143 0.026947 0.026756 0.026569 0.026387
−2.5 0.026210 0.026037 0.025868 0.025703 0.025543 0.025386 0.025234 0.025085 0.024940 0.024799
−2.6 0.024661 0.024527 0.024396 0.024269 0.024145 0.024025 0.023907 0.023793 0.023681 0.023573
−2.7 0.023467 0.023364 0.023264 0.023167 0.023072 0.022980 0.022890 0.022803 0.022718 0.022635
−2.8 0.022555 0.022477 0.022401 0.022327 0.022256 0.022186 0.022118 0.022052 0.021988 0.021926
−2.9 0.021866 0.021807 0.021750 0.021695 0.021641 0.021589 0.021538 0.021489 0.021441 0.021395
−3.0 0.021350 0.021306 0.021264 0.021223 0.021183 0.021144 0.021107 0.021070 0.021035 0.021001
−3.1 0.039676 0.039354 0.039043 0.038740 0.038447 0.038164 0.037888 0.037622 0.037364 0.037114
−3.2 0.036871 0.036637 0.036410 0.036190 0.035976 0.035770 0.035571 0.035377 0.035190 0.035009
−3.3 0.034834 0.034663 0.034501 0.034342 0.034189 0.034041 0.033897 0.033758 0.033624 0.033495
−3.4 0.033369 0.033248 0.033131 0.033018 0.032909 0.032803 0.032701 0.032602 0.032507 0.032415
−3.5 0.032326 0.032241 0.032158 0.032078 0.032001 0.031926 0.031854 0.031785 0.031718 0.031653



−3.6 0.031591 0.031531 0.031473 0.031417 0.031363 0.031311 0.031261 0.031213 0.031166 0.031121
−3.7 0.031078 0.031036 0.049961 0.049574 0.049201 0.048842 0.048496 0.048162 0.047841 0.047532
−3.8 0.047235 0.046948 0.046673 0.046407 0.046152 0.045906 0.045669 0.045442 0.045223 0.045012
−3.9 0.044810 0.044615 0.044427 0.044247 0.044074 0.043908 0.043747 0.043594 0.043446 0.043304
−4.0 0.043167 0.043036 0.042910 0.042789 0.042673 0.042561 0.042454 0.042351 0.042242 0.042157
−4.1 0.042066 0.041978 0.041894 0.041814 0.041737 0.041662 0.041591 0.041523 0.041458 0.041395
−4.2 0.041335 0.041277 0.041222 0.041168 0.041118 0.041069 0.041022 0.059774 0.059345 0.058934
−4.3 0.058540 0.058163 0.057801 0.057455 0.057124 0.056807 0.056503 0.056212 0.055934 0.055668
−4.4 0.055413 0.055169 0.054935 0.054712 0.054498 0.054294 0.054098 0.053911 0.053732 0.053561
−4.5 0.053398 0.053241 0.053092 0.052949 0.052813 0.052682 0.052558 0.052439 0.052325 0.052216
−4.6 0.052112 0.052013 0.051919 0.051828 0.051742 0.051660 0.051581 0.051506 0.051434 0.051366
−4.7 0.051301 0.051239 0.051179 0.051123 0.051069 0.051017 0.069680 0.069211 0.068765 0.068339
−4.8 0.067933 0.067547 0.067178 0.066827 0.066492 0.066173 0.065869 0.065580 0.065304 0.065042
−4.9 0.064792 0.064554 0.064327 0.064111 0.063906 0.063711 0.063525 0.063348 0.063179 0.063019
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7359 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

(Continued)



z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.920097 0.920358 0.920613 0.920863 0.921106 0.921344 0.921576
2.4 0.921802 0.922024 0.922240 0.922451 0.922656 0.922857 0.923053 0.923244 0.923431 0.923613
2.5 0.923790 0.923963 0.924132 0.924297 0.924457 0.924614 0.924766 0.924915 0.025060 0.025201
2.6 0.925339 0.925473 0.925604 0.925731 0.925855 0.925975 0.926093 0.926207 0.026319 0.026427
2.7 0.926533 0.926636 0.926736 0.926833 0.926928 0.927020 0.927110 0.927197 0.027282 0.027365
2.8 0.927445 0.927523 0.927599 0.927673 0.927744 0.927814 0.927882 0.927948 0.028012 0.028074
2.9 0.928134 0.928193 0.928250 0.928305 0.928359 0.928411 0.928462 0.028511 0.028559 0.028605
30 0.928650 0.928694 0.928736 0.928777 0.928817 0.928856 0.928893 0.928930 0.928965 0.928999
3.1 0.930324 0.930646 0.930957 0.931260 0.931553 0.931836 0.932112 0.932378 0.932636 0.932886
3.2 0.933129 0.933363 0.933590 0.933810 0.934024 0.934230 0.934429 0.934623 0.934810 0.934991
3.3 0.935166 0.935335 0.935499 0.935658 0.935811 0.935959 0.936103 0.936242 0.936376 0.936505
3.4 0.936631 0.936752 0.936869 0.936982 0.937091 0.937197 0.937299 0.937398 0.937493 0.937585
3.5 0.937674 0.937759 0.937842 0.937922 0.937999 0.938074 0.938146 0.938215 0.938282 0.938347
3.6 0.938409 0.938469 0.938527 0.938583 0.938637 0.938689 0.938739 0.938787 0.938834 0.938879
3.7 0.938922 0.938964 0.940039 0.940426 0.940799 0.941158 0.941504 0.941838 0.942159 0.942468
3.8 0.942765 0.943052 0.943327 0.943593 0.943848 0.944094 0.944331 0.944558 0.944777 0.944988
3.9 0.945190 0.945385 0.945573 0.945753 0.945926 0.946092 0.946253 0.946406 0.946554 0.946696
4.0 0.946833 0.946964 0.947090 0.947211 0.947327 0.947439 0.947546 0.947649 0.947748 0.947843
4.1 0.947934 0.948022 0.948106 0.948186 0.948263 0.948338 0.948409 0.948477 0.948542 0.948605
4.2 0.948665 0.948723 0.948778 0.948832 0.948882 0.948931 0.948978 0.950226 0.950655 0.951066
4.3 0.951460 0.951837 0.952199 0.952545 0.952876 0.953193 0.953497 0.953788 0.954066 0.954332
4.4 0.954587 0.954831 0.955065 0.955288 0.955502 0.955706 0.955902 0.956089 0.956268 0.956439
4.5 0.956602 0.956759 0.956908 0.957051 0.957187 0.957318 0.957442 0.957561 0.957675 0.957784
4.6 0.957888 0.957987 0.958081 0.958172 0.958258 0.958340 0.958419 0.958494 0.958566 0.958634
4.7 0.958699 0.958761 0.958821 0.958877 0.958931 0.958983 0.950320 0.960789 0.961235 0.961661
4.8 0.962067 0.962453 0.962822 0.963173 0.963508 0.963827 0.964131 0.964420 0.964696 0.964958
4.9 0.955208 0.955446 0.955673 0.955889 0.956094 0.956289 0.956475 0.956652 0.956821 0.956981

Source: A. Hald, Statistical Tables and Formulas, Wiley, New York, 1952. Table II. Reproduced by permission.



Appendix D

Nonparametric Methods and Probability Plotting

D.1 Introduction

Reliability engineering relies on explaining and predicting results based on a set of data. A set of
reliability data will almost always be a sample (in the case of failures) of varying sizes, along with a
usually larger set of unfailed units, whose times must be included if available.
As we remember from elementary statistics, if we are told that data are from a normal distribution

(see Chapter 4 for a refresher), the distribution is described with the mean (μ) and standard devi-
ation (σ).
Probability plotting has the advantage of providing both parameter estimates and a visual rep-

resentation of how well the distribution describes the data.
Another example of “A picture is worth a thousand words.”
In the usual case, however, we will be presented with the actual data. If the data is failure data,

e.g. lab test, test stand tests, field failures, we need to first decide what distribution will fit the data. Is
it normally distributed, Weibull, lognormal, or something else?
If you have no previous history with regard to the failure mode on previous systems, or if this is a

new failure mode you have not seen before, you need to use “nonparametric methods” to look at the
data first.

D.2 Nonparametric Methods for Probability Plotting

Nonparametric methods allow us to gain perspective as to the nature of the distribution fromwhich
data has been drawn without selecting one particular distribution. When there is a sufficient num-
ber of data points, the representation of the distribution by a histogram or with sample statistics can
be quite helpful. In many situations, however, the amount of data is insufficient to construct a real-
istic histogram. It is then useful to approximate the cumulative distribution function (CDF) by the
technique plotting the median rank – a term that is defined below.

Boxplots and Histograms

Boxplot

Looking at a set of (new) data as in Table D.1, one of the first things to do might be a boxplot. A box-
plot (sometimes called a “box and whisker” plot), will give you an overall view of the data and point
out any unusually high or low datapoints (see Figure D.1a).
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The boxplot of this data shows that the distributions of these 70 cycles to failure are approximately
symmetrical around the median. The maximum = third quartile + 1.5 × IQR, and the minimum =
first quartile− 1.5 × IQR. Since no points lie above or below those, there are no unusual points
in the dataset (some books use the word “outlier” for points that are above the third quartile
+ 1.5 × IQR, and less than the first quartile− 1.5 × IQR). In short, the boxplot gives you a “5000-foot”
view of your data.

Table D.1 Data are the cycles to failure of aluminum test coupons.

A B C D E F G

1115 865 1015 885 1594 1000 1416

1310 2130 845 1223 2023 1820 1560

1540 1421 1674 375 1315 1940 1055

1502 1109 1016 2265 1269 1120 1764

1258 1481 1102 1910 1260 910 1330

1315 1567 1605 1018 1888 1730 1608

1085 1883 706 1452 1782 1102 1535

798 1203 2215 1890 1522 1578 1781

1020 1270 785 2100 1792 758 1750

1501 1238 990 1468 1512 1750 1642

Source: Data from Montgomery & Runger (2011).
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Figure D.1a Boxplot of cycles to failure of aluminum test coupons.
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Histogram

Histograms have been used in data analysis since Pearson (1895) first described them.
The purpose of a histogram is to assess the probability distribution of a given set of data by depict-

ing the frequencies of occurrence in a certain range or interval of values by breaking down the data
in a “bars” of data between the smallest and largest values in the data.
MINITAB® histograms in Figure D.1b illustrate what the Aluminum cycles to failure data may

look like if you choose several different intervals between the smallest and the largest.
The MINITAB plots in Figure D.2 illustrate the cycles to failure data from Table D.1 data using

the statistically best interval size as well as fitting a normal “bell shape” to the histogram in
Figure D.2. Most statistical software will use the “best” number of intervals when producing a
histogram.
The normal “bell-shaped “ curve does not seem to fit well. As mentioned in Chapters 4 and 5, the

Weibull and lognormal are the 1–2 choices for failure distributions. More about this will be dis-
cussed later.

Example D.1 Calculate the mean, variance, range, skewness, and kurtosis of the Aluminum test
coupon data given in Table D.1

Solution:
These four quantities are commonly included as spread-sheet formulae. The data in Table D.1 are
already in spread-sheet format. Using Excel™, we simply calculate the four sample quantities with
the standard formulae as follows:

Mean μ = AVERAGE A1 G10 = 1403 7

Variance σ2 = VAR A1 G10 = 161913 9

Skewness sk = SKEW A1 G10 = − 0 03

Kurtosis ku = KURT A1 G10 = − 0 44

14

12

10

8

6

4

2
1

0
0

400 600 800 12001000 16001400 1800

Cycles to failure

Cycles to failure Cycles to failure

2000 2200

7

9

12

9

14

11

3

4

30

25

20

15

10

5

2

0

23

28

16

F
re

q
u

en
cy

F
re

q
u

en
cy

1

1
1

1

4

3 3

2 2 2

1 1 1

5

777

8

9

6

0 0

5

6

7

8

9

3

4

2

0

F
re

q
u

en
cy

400 800 1200 1600 2000 500 1000 1500 2000 2500

About right Too few

Too many

Figure D.1b Effect of the number of intervals chosen on the shape of data.
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Note that in applying the formulae to data in Table D.1, all the data in the rectangle with column
A row 1 on the upper left and column G row 10 on the lower right are included.

Rank Statistics

Often, the number of data points is too small to construct a histogram with enough resolution to be
helpful. Such situations occur frequently in reliability engineering, particularly when an expensive
piece of equipment must be tested to failure for each data point. Under such circumstances, rank
statistics provide a powerful graphical technique for viewing the cumulative distribution function
(i.e. the CDF). They also serve as a basis for the probability plotting taken up in the following
section.
To employ this technique, we first take the samplings of the random variable and rank them; that

is, list them in ascending order. We then approximate the CDF at each value of xi. With a large
number N of data points, the CDF could reasonably be approximated by

F xi =
i
N
, i = 1, 2, 3,…,N D 1

where F(0) = 0 if the variable is defined only for x > 0.
If N is not a large number, say less than 15 or 20, there are some shortcomings in using Eq. (D.1).

In particular, we find that F(x) = 1 for values of x greater than xN. If a much larger set of data were
obtained, say 10N values, it is highly likely that several of the samples would have larger values than
xN. Therefore, Eq. (D.1) may seriously overestimate F(x). The estimate is improved by arguing that if
a very large sample were to be obtained, roughly equal numbers of events would occur in each of the
intervals between the xi, and the number of samples larger than xN would probably be about equal
to the number within one interval. From this argument, we may estimate the CDF as
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F xi =
i

N + 1
, i = 1, 2, 3,…,N D 2

This quantity can be derived from more rigorously statistical arguments; it is known in the sta-
tistical literature as the mean rank. Other statistical arguments may be used to obtain slightly dif-
ferent approximations for F(x). One of the more widely used is the median rank or

F xi =
i− 0 3
N + 0 4

, i = 1, 2, 3,…,N D 3

In practice, the randomness and limited amounts of data introduce more uncertainty than the
particular form that is used to estimate F. For large values of N, they yield nearly identical results
for F(x) after the first few samples. For the most part, using Eq. (D.3) is a reasonable compromise
between computational ease and accuracy.

Example D.2 The following are the times to failure for 14, 6-volt flashlight bulbs operated at 12.6
volts to accelerate the rate the failure: 72, 82, 97, 103, 113, 117, 126, 127, 127, 139, 154, 159, 199, and
207 minutes. Make a plot of F(t), where t is the time to failure.

Solution:
Table D.2 contains the necessary calculations. Each of the aforementioned ranking equations (D.1,
D.2, and D.3) are used in order to compare the results.
The combined scatterplot of F(t) for each of the ranks (Figure D.3) shows what was noted earlier

that the differences in ranking equation are not significant when compared to each other.

D.3 Parametric Methods

If we know what distribution best describes the data:

1) We can describe the data based on two (or three) parameters; e.g. normal (μ, σ), Weibull (β, η) or
(β, η, t0), lognormal.

2) We can then extrapolate to find the (say 1/1000) probability of failure of a part or the chances of a
remote event such as an earthquake over 7.0 on the Richter scale.

3) We can then find confidence bounds on the parameters and compare the current set of data to
another (Base A vs Base B, or Vendor A vs Vendor B, Airplane A vs Airplane B, etc.)

4) In terms of reliability/safety, we can better predict the future occurrences of the failure mode
and put it in terms of safety implications.

5) The distributional parameters can lead to the knowledge of the type of failure mode we are
observing.

So, with relatively small sample sizes it yields estimates of the distribution parameters and pro-
vides both a graphical picture and a quantitative estimate of how well the distribution fits the data.
It can be used with success whether the sample sizes are small or large, particularly in this age of
computer speed and large memory sizes.
Basically, the method consists of transforming the equation for the CDF to a form that can be

plotted as

y = ax + b D 4
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Table D.2 Spreadsheet for Weibull probability plot of flashlight bulb data in Example D.2.

Row A B (t) C (i/N) D (i/(N + 1)) E (i − 0.3)/(N + 0.4) F LN (t) G using C H using D I using E

2 1 72 0.07142857 0.066666667 0.048611111 4.2767 −2.602232166 −2.673752092 −2.999090431

3 2 82 0.14285714 0.133333333 0.118055556 4.4067 −1.869824714 −1.944205697 −2.074444344

4 3 97 0.21428571 0.2 0.1875 4.5747 −1.422286137 −1.499939987 −1.571952527

5 4 103 0.28571429 0.266666667 0.256944444 4.6347 −1.08923964 −1.170683338 −1.214075448

6 5 113 0.35714286 0.333333333 0.326388889 4.7274 −0.816823857 −0.902720456 −0.928610507

7 6 117 0.42857143 0.4 0.395833333 4.7622 −0.580504824 −0.671726992 −0.685367162

8 7 126 0.5 0.466666667 0.465277778 4.8363 −0.366512921 −0.464246379 −0.468392324

9 8 127 0.57142857 0.533333333 0.534722222 4.8442 −0.165702981 −0.271624945 −0.267721706

10 9 127 0.64285714 0.6 0.604166667 4.8442 0.029189236 −0.087421572 −0.076058454

11 10 139 0.71428571 0.666666667 0.673611111 4.9345 0.225351487 0.094047828 0.113030157

12 11 154 0.78571429 0.733333333 0.743055556 5.037 0.432071362 0.278961034 0.306672154

13 12 159 0.85714286 0.8 0.8125 5.0689 0.665729811 0.475884995 0.515201894

14 13 199 0.92857143 0.866666667 0.881944444 5.2933 0.970421781 0.700571065 0.75921576

15 14 207 1 0.933333333 0.951388889 5.3327 (Division by 0) so set = 1 0.996228893 1.106548431



The “median rank” is used to estimate the CDF at each data point in the resulting nonlinear plot.
A straight line is then constructed through the data, and the distribution parameters are determined
in terms of the slope and intercept.

F ti =
i− 0 3
N + 0 4

, i = 1, 2, 3,…,N datapoints D 5

Example D.3 Exponential Distribution
The procedure is best illustrated with a simple example. PROSCHAN (1963) reported on the times
between failures of the air-conditioning equipment in 10 Boeing 720 aircraft. Suppose that we want
to fit the exponential distribution to Aircraft 7 of these times between air-conditioning failure ti:

F t = 1− e− λt , 0 ≤ t ≤ ∞

We can rearrange this equation by first solving for 1/(1− F) and then taking the natural loga-
rithm to obtain

Ln
1

1−F t
= λ t D 6

We can approximate F(xi) using the Median rank equation (D.2) and plot the resulting on semi-
log paper versus the corresponding xi.
The data should fall roughly along a straight line if they were obtained by sampling an exponen-

tial distribution. Comparing Eqs. (D.4) and (D.6), we see that λ = a can be estimated from the slope
of the line. More simply, we note that the left side of Eq. (D.6) is equal to 1 when 1/(1 − F) = e =
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Figure D.3 Comparison of the three ranking methods.
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2.72, and thus at that point λ = t. Since the exponential is a one-parameter distribution, b, the y
intercept is not utilized.
The plot in Figure D.4 is difficult to use since the y-axis is not in cumulative probability. The same

data can be used to produce a true probability plot in MINITAB, again assuming that the exponen-
tial distribution fits the times (t) in Table D.3.The y-axis of the plot in Figure D.5 is cumulative prob-
ability, which can be read directly.

Weibull Distribution Plotting

Weibull plots based on ranked regression use the methodology described in this section. Weibull
plots based onmaximum likelihood estimated β and η use the same plotting positions as the ranked
regression Weibull, but the best fit line is based on the MLE β and η.
“The Weibull plot method” (rank regression) uses Weibull paper to illustrate how well the esti-

mated β and η fits the data. This method uses regression analysis (line fitting) to calculate the Wei-
bull parameters β and η.
What makes theWeibull plot method work is a bit of algebraic manipulation of theWeibull CDF:
The CDF with respect to time is given by

F t = 1− exp − t η β , 0 ≤ t ≤ ∞ D 7

The distribution is put in a form for probability plotting by first solving for 1/(1− F),

1
1−F t

= exp t η β D 8
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Figure D.4 Graphical estimate of the failure time cumulative distribution.

540 Appendix D Nonparametric Methods and Probability Plotting



and then taking the logarithm twice to obtain

lnln
1

1−F t
= β ln t− β ln η D 9

This can be cast into the form of Eq. (D.1) if we define

y = ln ln
1

1−F t
D 10

and

x = ln t D 11

Table D.3 Spreadsheet for exponential probability plot of air-conditioning data.

A B C D

i t (time in hours) F(t) = (i − 0.3)/(N + 0.4) 1/(1 − F(t))

1 3 0.0287 1.029535865

2 5 0.0697 1.074889868

3 5 0.1107 1.124423963

4 13 0.1516 1.178743961

5 14 0.1926 1.23857868

6 15 0.2336 1.304812834

7 22 0.2746 1.378531073

8 22 0.3156 1.461077844

9 23 0.3566 1.554140127

10 30 0.3975 1.659863946

11 36 0.4385 1.781021898

12 39 0.4795 1.921259843

13 44 0.5205 2.085470085

14 46 0.5615 2.280373832

15 50 0.6025 2.515463918

16 72 0.6434 2.804597701

17 79 0.6844 3.168831169

18 88 0.7254 3.641791045

19 97 0.7664 4.280701754

20 102 0.8074 5.191489362

21 139 0.8484 6.594594595

22 188 0.8893 9.037037037

23 197 0.9303 14.35294118

24 210 0.9713 34.85714286
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We find that the shape parameter is equal to the slope

β = a D 12

whereas the scale parameter is estimated in terms of the slope and the intercept by

η = exp − b a D 13

The procedure is best illustrated by providing a detailed solution of an example problem

Example D.4 Use probability plotting to fit the flashlight bulb failure times given in Table D.4 to
a two-parameter Weibull distribution. What are the shape and scale parameters?

Solution:
The ranks of the failures, the failure times, and the estimates of F(ti) are already given in columns A,
B, and C of Table D.5.
In columnD, we tabulate ln(ti), and in column E, ln(ln(l/(1− F))). Then, we plot column E versus

column D and calculate a, b, and r2. The results are shown in Figure D.6. Since a = 3.71 and b =
−18.46, we have from Eqs. (D.12) and (D.13): β = 3.71 and η = exp (+18.46/3.71) = 145 minutes.
A MINITAB Weibull probability plot is presented in Figure D.7. Once again, the plot can be read
directly since the scales are transformed.
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Figure D.5 MINITAB exponential probability plot of air-conditioner failure data.

Table D.4 Flash bulb lab failures in flashes.

72 82 97 103 113

117 126 127 127 139

154 159 199 207
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Extreme-Value Distribution Plotting

The procedure for treating extreme-value distributions is quite similar to that employed for Weibull
distributions. For example, with the smallest extreme-value distribution, the CDF is given by

F x = 1− exp − e x− μ Θ , − ∞ < x < ∞ D 14
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Figure D.6 Weibull scatterplot of flash bulb failure data.

Table D.5 Spreadsheet for Weibull probability plot of flashlight bulb data.

A B C D E

i t F(t) = (i − 0.3)/(N + 0.4) x = LN(t) y = LN(LN(1/(1 − F)))

1 72 0.0486 4.2767 −2.999090431

2 82 0.1181 4.4067 −2.074444344

3 97 0.1875 4.5747 −1.571952527

4 103 0.2569 4.6347 −1.214075448

5 113 0.3264 4.7274 −0.928610507

6 117 0.3958 4.7622 −0.685367162

7 126 0.4653 4.8363 −0.468392324

8 127 0.5347 4.8442 −0.267721706

9 127 0.6042 4.8442 −0.076058454

10 139 0.6736 4.9345 0.113030157

11 154 0.7431 5.037 0.306672154

12 159 0.8125 5.0689 0.515201894

13 199 0.8819 5.2933 0.75921576

14 207 0.9514 5.3327 1.106548431
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If we solve for 1/(1− F), and take the natural logarithm twice, we obtain

ln ln
1

1−F x
=

1
Θ

x−
μ

Θ
D 15

Thus, we can make a linear plot with

y = ln ln
1

1−F x
D 16

The scale parameter is estimated in terms of the slope as

Θ = 1 a D 17

and the location parameter as

μ = − b a D 18

respectively. Likewise, for the largest extreme-value CDF, given by

F x = exp − e x− μ Θ , − ∞ < x < ∞ D 19

an analogous procedure can be used to determine the rectified equation

ln ln
1

F x
= −

1
Θ

x +
μ

Θ
D 20
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Figure D.7 Weibull probability plot of flash bulb failure data.

544 Appendix D Nonparametric Methods and Probability Plotting



where the distribution parameters may be estimated in terms of the slope and intercept to be

Θ = − 1 a D 21

and
μ = − b a D 22

Example D.5 Determine whether the failure data in Example D.4 can be fitted more accurately
with a minimum extreme-value distribution than with a Weibull distribution. Estimate the para-
meters in each case. Employ spread-sheet slope, intercept, and R-squared formulae.

Solution:
The necessary values of yi and xi, respectively, are already tabulated in Table D.5, columns E and B,
for the minimum extreme-value distribution, and in columns E and D for the Weibull distribution.
Thus, for the extreme-value distribution, using Excel™, we obtain

r2 = RSQ E2 E15, B2 B15 = 0 87

a = SLOPE E2 E15, B2 B15 = 0 027

b = INTERCEPT E2 E15, B2 B15 = − 4 07

Thus, from Eqs. (D.17) and (D.18), the extreme-value parameters are

Θ = 1 a = 1 a = 36 8minutes, and μ = − b a = 4 07 0 027 = 149 8 minutes

For the Weibull distribution

r2 = RSQ E2 E15, D2 D15 = 0 96

b = INTERCEPT E2 E15, D2 D15 = − 18 46
a = SLOPE E2 E15,D5 D15 = 3 71

Not surprisingly, these are the same values exhibited in Figure D.3. From Eqs. (D.12) and (D.13),
the Weibull parameters are β = a = 3.71; η = exp(−b/a) = exp (18.46/3.71) = 144 minutes. The
resulting value of r2= 0.87 for the extreme-value distribution is substantially smaller than that
of 0.96 obtained with the Weibull distribution. Therefore, the extreme-value fit is poorer.
Note that in comparing the smallest extreme-value probability plot (Figure D.8) with theWeibull

plot (Figure D.7), the Weibull plot “looks” better! That is, your “eyeball” is a good discerner of fit.

Lognormal Distribution Plotting

Probability plotting with the normal and lognormal distributions is very similar. From Eq. (4.69),
we may write the CDF for the lognormal distribution as

F t = Φ
1
ω

ln t t0 D 23

We invert the standard normal distribution to obtain

Φ− 1 F =
1
ω

ln t−
1
ω

ln t0 D 24
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The required linear equation is obtained by once again taking

y = Φ− 1 F D 25

but with x = ln t. The estimates for the lognormal parameters are

ω = 1 a D 26

and

t0 = exp − b a D 27

Example D.7 The fatigue lives of 20 specimens, measured in thousands of stress cycles, are found
in Table D.6.
Use probability plotting to fit a lognormal distribution to the data and estimate the parameters

and the goodness of fit.

Solution:
The calculations are made in Table D.6.

The data rank and the failure times are tabulated in columns A and B, and the natural logarithms of
the failure times are tabulated in column C. In column D, the estimates of F(xi) = i/(N + 1) are
tabulated. In column E, we tabulate yi =Φ−1(Fi) from Eq. (D.27). In Figure D.9, we have plotted
column E versus column C and used least-squares fit to obtain the best straight line through
the data. From Eqs. (D.26) and (D.27), we find the parameters to be ω = 1 a = 1 1 01 = 0 99

and t0 = exp − b a = exp 3 22 1 01 = 24 2thousand cycles.(Note that this is the median of
the distribution – Using Eq. (4.59), the mean of the lognormal data is 39.7 KSI.)
The corresponding MINITAB Lognormal Probability is in Figure D.10. The fit is quite good with

r2= (0.966)2 = 0.933.
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Figure D.8 Smallest extreme probability plot of flash bulb data.
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D.4 Goodness of Fit

The forgoing examples illustrate some of the uses of probability plotting in the analysis of quality
and reliability data. They also serve as a basis for the extensive use of these methods made in
Chapter 8 for the analysis of failure data. With the computations carried out quite simply on a

Table D.6 Spreadsheet for normal probability plot of resistor data in Example D.6.

A B C D E

i xi (#1) xi (#2) F(xi) yi

1 48.47 47.67 0.0323 −1.85

2 48.49 47.7 0.0645 −1.52

3 48.66 48 0.0968 −1.3

4 48.84 48.41 0.129 −1.13

5 49.14 48.42 0.1613 −0.99

6 49.27 48.44 0.1935 −0.86

7 49.29 48.64 0.2258 −0.75

8 49.3 48.65 0.2581 −0.65

9 49.32 48.68 0.2903 −0.55

10 49.39 48.85 0.3226 −0.46

11 49.43 49.17 0.3548 −0.37

12 49.49 49.72 0.3871 −0.29

13 49.52 49.85 0.4194 −0.2

14 49.54 49.87 0.4516 −0.12

15 49.69 50.07 0.4839 −0.04

16 49.75 50.75 0.5161 0.04

17 49.78 50.6 0.5484 0.12

18 49.93 50.63 0.5806 0.2

19 49.96 50.9 0.6129 0.29

20 50.03 51.02 0.6452 0.37

21 50.06 51.05 0.6774 0.46

22 50.07 51.28 0.7097 0.55

23 50.09 51.33 0.7419 0.65

24 50.42 51.38 0.7742 0.75

25 50.44 51.43 0.8065 0.86

26 50.57 51.6 0.8387 0.99

27 50.7 51.7 0.871 1.13

28 50.77 51.74 0.9032 1.3

29 50.87 52.06 0.9355 1.52

30 51.87 52.33 0.9677 1.85
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spread sheet or other software, one is not limited to a single analysis. Frequently, it may be advis-
able to try to fit more than one distribution to the data to determine the best fit. Comparison of the
values of r2 is the most objective criterion for this purpose. Other valuable information is obtained
from visual inspection of the graph. Outliers may be eliminated, and if the data tends to fall along a
curve instead of a straight line it may provide a clue as to what other distribution should be tried.
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Figure D.9 Lognormal scatterplot of failure times.
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Figure D.10 MINITAB lognormal probability plot of failure times.
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For example, if normally distributed data is used to make an exponential probability plot, the
data will fall along a curve that is concave upward. With some experience, such visual
patterns become recognizable, allowing one to estimate which other distribution may be more
appropriate.
More formal methods for assessing the goodness of fit exist. These establish a quantitative meas-

ure of confidence that the data may be fit to a particular distribution. The most accessible of these
are the chi-squared test, which is applicable when enough data is available to construct a histogram,
and the Kolmogorov–Smirnov (or K-S) test, which is applicable to ungrouped data. These tests are
presented in elementary statistics texts but are not directly applicable to the analysis of much reli-
ability data. In their standard form they assume not only that a distribution has been chosen, but
that the parameters are known; they establish only the level of confidence to which a specific dis-
tribution with known parameters fits a given set of data. In contrast, in probability plotting, we are
attempting both to estimate distribution parameters and establish howwell the data fit the resulting
distribution.
Aside from the simple comparison of r2 values obtained from probability plotting, establishing

goodness of fit from estimated parameters requires the use of more advanced maximum likelihood,
moment, or other techniques and often involves a significant amount of computation. Such tech-
niques are treated in advanced statistical texts and increasingly incorporated into statistical soft-
ware packages. The use of these techniques is often justified to maximize the utility of the
reliability data. They are, however, beyond the scope of what can be included in an introductory
reliability text of reasonable length. Instead, we focus next on an elementary treatment of confi-
dence levels of estimated parameters.

Example D.8 Picking the right distribution for your data
The following data were obtained from a test of 11 motors with some suspended tests (Table D.7)

A) Analyze the data parametrically (using lognormal, exponential, and Weibull distribution) with
MINITAB (Figures D.11–D.13).

B) Which distribution fits the data best?

Table D.7 Spreadsheet for probability plots of data in Example D.8.

Failure # Failure time C(ensor)/F(ailure) Reverse rank Adjusted rank� P(F) R = 1 − F

1 31.7 F 11 1 0.061 0.939

2 42.1 F 10 2 0.149 0.851

3 61.9 F 9 2.1 0.158 0.842

4 69.1 C 8

5 81.2 F 7 3.338 0.266 0.734

6 89.1 F 6 4.575 0.375 0.625

7 92.1 C 5

8 101 F 4 6.06 0.505 0.495

9 103 F 3 7.545 0.636 0.364

10 108 F 2 9.03 0.766 0.234

11 125 C 1
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Figure D.11 Using MINITAB to plot the data as an exponential distribution.
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Figure D.12 Using MINITAB to plot the data as a lognormal distribution.
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Example D.9 Continuing Example D.8, using the above three distributions, none fit the data very
well; however, using knowledge gained in Chapter 5, you can plot the data as a three-parameter
Weibull with the following results (Figure D.14):
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Figure D.13 Using MINITAB to plot the data as a Weibull distribution.
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Figure D.14 Using MINITAB to plot the data as a three-parameter Weibull distribution.
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This is a more reasonable fit to the data, but let’s go one step further and use aMINITAB shortcut
to find the best distribution for this data; thus checking on our result above.
Using the “distribution ID plot” option under “distributional analysis” to compare 11 different

distributions available in MINITAB (Figures D.15–D.17).
The smallest Anderson–Darling is given by the smallest extreme-value distribution.
Comparing the three-parameter Weibull to the smallest extreme value (Table D.8).
When comparing distributional fits the lowest AD or the highest Correlation (if an LSXY fit is

being done) indicates the better distributional fit. However, always look at the plot of the data
on the recommended distribution for your “eyeball” decision as well as to make sure that the dis-
tribution makes engineering sense – as in this case).So, let’s make sure we’ve chosen the correct
distribution. Doing a smallest extreme-value plot (Figure D.18).
So, the smallest extreme-value distribution is not suitable since it projects TTF’s < 0.
Hence, three-parameter Weibull is the best fit.
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Figure D.15 Using MINITAB to plot the data on the first sheet of distributional plots.
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Figure D.17 Using MINITAB to plot the data on the third sheet of distributional plots.
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Figure D.16 Using MINITAB to plot the data on the second sheet of distributional plots.
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Table D.8 Goodness-of-Fit for 11 distributions available

Distribution Anderson–Darling(adj) Correlation coefficient

Weibull 8.991 0.975

Lognormal 9.072 0.947

Exponential 9.987 ∗
Loglogistic 9.063 0.954

Three-parameter Weibull 8.941 0.981

Three-parameter lognormal 8.983 0.970

Two-parameter exponential 10.054 ∗
Three-parameter loglogistic 8.983 0.972

Smallest extreme value 8.940 0.981

Normal 8.983 0.971

Logistic 8.983 0.972
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Figure D.18 Using MINITAB to plot the data on more detailed smallest extreme-value plot.
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3rd Ed Answers to Odd – Numbered Exercises

Chapter 2 Probability and Discrete Distributions

2.1 (a) P(X Y) = 0.18 0; therefore, not mutually exclusive.
(b) P{X|Y} = 0.409 P{X}; therefore, X and Y not independent
(c) 0.409
(d) 0.5625

2.3 (a) 0.5, (b) 0.25, (c) 0.625, (d) 0.5.
2.5 (a) 0.7225, (b) 0.0225.
2.7 P (no damage in 10 K landings) = 0.9048.
2.9 (a) P{X} = 0.04, (b) P{X1/X2} = 0.25.

2.11 (a) C = 1/14, (b) F(l) = 1/14, F(2) = 5/14, F(3) = 1, (c) μ ≈ 2.57, σ = 0.623.
2.13 μ ≈ 55/36, σ2 ≈ 1.97.
2.15 (a) 10, (b) 36, (c) 792, (d) 20.
2.17 0.0702.
2.19 PNEW = 0.0036.
2.21 (a) 0.058, (b) 6.6 × 10−5, (c) 0.058.
2.23 (a) 0.594, (b) 0.0166.
2.25 (a) 0.353, (b) 3.0.
2.27 0.0803.
2.29 (a) 1− 1.2 × 10−6, (b) 0.851.
2.31 230 consecutive starts.
2.33 (Binomial: 0.009476) (Poisson: 0.0142).
2.35 90% bounds (on μ = Np = 14) approx. (8.8, 20) or (pL, pU) = (0.088, 0.20).

95% bounds (on μ = Np = 14) approx. (7.7, 22) or (pL, pU) = (0.07, 0.22).

2.37 P TSL = 0 21

P W TSL = 0 064

P W TSL =
P W TSL

P TSL
=

0 064
0 21

≈ 0 3 0 4

2.39 (a) 0.61, (b) 0.54.
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Chapter 3 Exponential Distribution and Reliability Basics

3.1 (a) R t =
16

t + 4 2 , (b) λ t =
2

t + 4
, (c) Four years.

3.3 (a) 129.9 hours, (b) 256.5 hours, (c) 154.6 hours.
3.5 (a) 0.9656, (b) 0.9802, (c) 0.9729, (d) 0.99.
3.7 (a) 0.5034, (b) 0.6202.

3.9 (a) R t = e− 0 001 t− e− 2t + 40e
t
40 − 39 ,

(b)

5 10 15 20 25 30 35 40

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

3.11 λ = 0.1054/year.
3.13

(a) f t =
2at, t <

1
a

0 t >
1
a

(b) λ t =
−

dR t
dt

R t
f t =

2at
1− at2

t <
1
a

0 t >
1
a

(c) MTTF =
1
a

0
1− at2 dt = t− a

t3

3

1
a

0
=

1
a
− a

1

3a
3
2

=
2

3 a

3.15 (a) P failure in month 2 = 2
1

1
2 e

− 1
2t = − e−

1
2t

2

1 = e−
1
2 − e− 1 = 0 2387, (b) 0.3935, and

(c) 3.22 months.
3.17 (a) 0.328, (b) 0.7427.
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3.19 λ = p0 + pc c t + 1− c λc + cλ0
3.21 λ = 5.76 × 10-4 per day.
3.23 (a) P(parts exhaustion) = 0.5777, (b) P(parts exhaustion) = 0.3528.

3.25 (a) f t =
1
9

e−
t
3 + e−

t
6 , (b) λ t =

1 + e
t
6

3 + 6e
t
6
, (c) λ(0) = 2/9 per month, (d) decreases,

(e) λ(∞) = 1/6 per month.

3.27 (a) Reliability design life = e−
1
TT . (b) 0.9098, (c) λ = 1

2T

3.29 (a) R(t) = 0.905, (b) R(t) = 0.9275.
3.31 (a) μ = NF = 1.813.
3.33 (a) 0.0513 per year, (b) 0.9975, (c) 0.9923.
3.35 ζ = 1/3.
3.37 Design life = 1.066 months.
3.39 (a) 0.99, (b) 0.9728.
3.41 RS(t) = 0.6288.
3.43 (a) Rs = R3 = e−3λt

(b) Ra = 3e−λt− 3e−2λt+ e−3λt

(c) Rc = 2e−2λt− e−3λt

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

0.9

0.8

0.7
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0.4

0.3

0.2

0.1

0

SERIES

Active parallel

Case (c)

3.45 (a) 30 days, (b) 27.32 days, (c) 27.27 days.
3.47 MTTFsys = 1.293.
3.49 (a) For N = 2, Max failure probability = 0.02241, (b) for N = 3, Max failure

probability = 0.1376.
3.51 (a) RHL = 0.9938, (b) RLL = 0.996, (c) R = 0.9798.

3.53 a λHL t = −
1

RHL

d
dt

RHL = 4λ
e− 2λt − e− 4λt

2e− 2λt − e− 4λt
= 4λ

1− e− 2λt

2− e− 2λt

b λLL t = −
1
RLL

d
dt

RLL = 4λ
2− 3e− λt + e− 2λt

4− 4e− λt + e− 2λt
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(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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High level
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λ 
(t

)/
λ

λt

3.55 R = 3.195 × 10−8.

3.57 (a)
MTTFHL

MTTF0
=

3
4λ
1
2λ

=
3
2
, (b)

MTTFLL

MTTF0
=

11
12λ
1
2λ

=
11
6

3.59

A B C R(SYS) Cost($)

7

6

6

5

6

5

4

6

5

4

4

5

1

2

3

4

5

6

7

1

2

3

4

5

6

7

6

7

6

7

7

7

7

7

7

7

8

8

1

2

3

4

5

6

7

6

6

7

6

5

5

6

4

4

5

5

4

0.332166

0.722937

0.893915

0.959133

0.983966

0.993604

0.997416

0.993624

0.996785

0.994213

0.996668

0.994814

0.994697

0.995977

0.988457

0.988340

0.994007

0.995340

0.989665

5200

10400

15600

20800

26000

31200

36400

32400

33600

32800

32400

32000

30800

31200

30400

29200

29600

32000

31600

Arrows indicate choices other factors could enter in the decision (e.g. part supplies).

3.61 (a) RHL = 0.9867, (b) RLL = 0.9952.

560 3rd Ed Answers to Odd – Numbered Exercises



3.63 Calculate the reliabilities of the following systems:

0.95 0.90

0.95 0.90

0.98 0.99 0.96

0.95

0.80

0.80

0.95

0.85

(a) (b)

0.95 × 0.90 = 0.855

0.95 × 0.90 = 0.855

1–(1–.855)(1–.85)
(1–.855) = 0.9968

0.98 × 0.9968
= 0.9769

0.98 0.980.85

(a)

0.99 0.96

0.95

0.80

0.80

0.95

0.99 0.96 2 × 0.8 – 0.82

= 0.96

0.95

0.95

(b)

0.99 × 0.96 × 0.96
= 0.9124

1–(1–0.95)(1–0.9124)(1–0.9)
= 0.9998

0.95

0.95
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3.65 System reliability + = R5− R4− 3R2 + 4R2

R = 1− λt System Reliability = 1− λt 2
− 3 λt 3 + 4 λt 4 + λt 5 ≈ 1− λt 2

3.67 (a) R+= 0.99025, R = 0.81225, R = 0.97245,

(b) 1−RX = 1− 0 8 = 0 2, RX = 0 8

R− = 0 99 2x0 72 − 0 722 0 99 = 0 90326

R + = 0 99 2x0 9− 0 92 0 99 = 0 970299

R = R− 1−RX + R + RX = 0 9569

3.69 (a) F(1) = 0.09, (b) F(5) = 0.7127, so R(5) = 0.2873, (c) Nine months.

Chapter 4 Continuous Distributions – Part 1 Normal and Related
Distributions

4.1 (a) b = 6, (b) μ = 0.5, (c) σ2 = 0.05, and σ = 0.2236.
4.3 (a) a= 2b2, b= 3000; therefore, a= 18 × 106, (b) F(2000) = 0.64, (c) warranty should be 77.94

or ~78 hours.
4.5 (a) f(x) = 0.04 × e−0.2x, (b) μ = 10, σ2 = 50, (c) expected value (e−x) = 0.0278.
4.7 (a) μ = 1 μm, (b) P{x> 1.5 μm} = 0.8009, (c) Mean value of accepted flaw size = 0.7202 μm.

4.9 (a) x =
1− e−

x
γ

1− e−
τ
γ
, (b) P x >

τ

2
= 0 168

4.11 If τ0 is required to keep the pipe from failing, Success≡ τ0 < τ − x, Failure = τ0 > τ − x, or
x > τ− τ0 i.e. the random variable must be less than, or equal to, the total length minus
the minimum holding length the pipe to hold
(a)

1− ε =
τ− τ0

0
f x dx or ε =

τ

τ− τ0

1
γ

e− x γ

1− e− τ γ
dx =

1
1− e− τ γ

e− τ0 − τ γ − e− τ γ

=
e− τ γ

1− e− τ γ
e + τ0 γ − 1 =

1
e + τ0 γ − 1

e + τ0 γ − 1

1
ε

e + τ0 γ − 1 + 1 = e + τ γ

γ ln 1 +
1
ε

e + τ0 γ − 1 = τ

γ = 6 25 mm, τ0 = 4 cm = 40 mm, ε = 0 1 or 10− 3

(b) τ = γ ln 1 +
1
ε

e + τ0 γ − 1 = 6 25 ln 1 +
1

10− 3 e + 40 6 25 − 1 = 83 2 mm

(c) For γ = 6.25 mm, τ0 = 4 cm = 40 mm, ε = 0.01 % or 10−4

τ = 97 6 mm

(d) For τ0 >> γ, τ0/γ >> 1, ε<< 1 and 1/ε>>1

4.13 sk = 1

x2 − x1
2 3 2 x3 − 3x2x1 + 2x1

3
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4.15 (a) fy y = 1
B b− a

y− a
b− a

r− 1 b− y
b− a

t− r− 1

(b) μy = a + b− a r
t

4.17 (a) 0.8943, (b) 1043.1 lb, (c) 21.5 lb.
4.19 7.44 hours.
4.21 μd = 6 kips, σd = 0 4 kips, μi = 9 2 kips, σl = 1 2 kips; μw = 4 6 kips, σw = 1 1 kips

μtotal = μd + μl + μw = 6 + 9 2 + 4 6 = 19 8 kips

σd = σd2 + σl2 + σw2 = 0 42 + 1 22 + 1 12 = 1 676 kips

4.23 f(t)− 0.5.
4.25 (a) (MINITAB)

Mean
StDev
N
AD
P-Value

1.506
0.1301
85
0.391
0.374

Probability plot of time(s)
Normal - 95% CI

P
ro

ba
bi

lit
y

0.999

0.99

0.95
0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
0.05

0.01

0.001
1.0 1.2 1.4 1.6 1.8 2.0

Time (s)

(b) Low AD value accompanied by a p value bigger than the significance level (assumed as
0.05) indicated that the deviation from normal distribution is insignificant.

4.27

Mean
StDev
N
AD
P-Value

3.05
1.262

16
0.362
0.399

Probability plot of delay time
Normal - 95% CI

876543210–1

Delay, time

P
ro

ba
bi

lit
y

0.99

0.95

0.9

0.8

0.7

0.6
0.5
0.4

0.3

0.2

0.1

0.05

0.01
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4.29 (a)
P

D
F

0.0016

0.0012

0.0006

0.0004

0.0000

0 500 1000 1500 2000

500 1000 1500 2000

Probability density function

Compressor failure Compressor failure

Compressor failure

0 500 1000 1500 2000

Compressor failure

P
ro

ba
bi

lit
y

0.99

0.9

0.5

0.1

0.01
100 1000

Lognormal Table of statistics

Loc

Scale

Mean

StDev

Median

IQR

Failure

Censor

AD*

6.23783

0.550779

595.566

354.549

511.748

389.030

4

0

4.387

R
at

e

P
er

ce
nt

0.003

0.002

0.001

0.000

100

75

50

25

0

Survival function Hazard function

Distribution overview plot for compressor failure
ML Estimates - complete data

0

(b) Estimate the median time to failure…. 511.
4.31 (a)

Probability plot for C1
Lognormal

Complete data - LSXY estimates

Table of statistics
Loc
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

3.54072
1.79338
172.230
842.582
34.4918
105.334

10
0

1.363
0.984

1 10 100 1000
Failure in days

99

95

90

80
70
60
50
40
30
20

10

5

1

P
er

ce
nt

Last column is mean percentile/lower bound
Factor goes from 4.87 at 1% and 99% percentile to 2.27 at 50%.
An illustration of how confidence bounds spread at the extremes (see plot after table).

564 3rd Ed Answers to Odd – Numbered Exercises



(b) Table of percentiles

Percent Percentile Standard error 90.0% Normal CI Factor

Lower Upper

1 0.869712 0.837597 0.178403 4.23983 4.874985
2 1.33865 1.18082 0.313718 5.71208 4.267049
3 1.75994 1.46503 0.447560 6.92062 3.932305
4 2.16217 1.72135 0.583684 8.00943 3.704359
5 2.55625 1.96157 0.723498 9.03167 3.533182
6 2.94777 2.19163 0.867722 10.0139 3.397136
7 3.34010 2.41511 1.01680 10.9719 3.284913
8 3.73549 2.63432 1.17105 11.9157 3.189864
9 4.13558 2.85094 1.33072 12.8525 3.107776
10 4.54164 3.06620 1.49601 13.7877 3.035835
20 9.10902 5.30295 3.49624 23.7324 2.605376
30 15.0460 8.02799 6.25562 36.1886 2.405197
40 23.1021 11.7414 10.0136 53.2983 2.307072
50 34.4918 17.2554 15.1476 78.5396 2.277047
60 51.4968 26.1728 22.3212 118.807 2.30708
70 79.0697 42.1887 32.8745 190.178 2.405199
80 130.605 76.0336 50.1291 340.275 2.605373
90 261.950 176.850 86.2856 795.240 3.035848
91 287.670 198.311 92.5644 894.016 3.107782
92 318.481 224.598 99.8419 1015.91 3.189853
93 356.182 257.543 108.430 1170.02 3.284903
94 403.588 300.063 118.803 1371.04 3.39712
95 465.402 357.132 131.723 1644.35 3.533187
96 550.227 438.049 148.535 2038.23 3.704359
97 675.979 562.705 171.904 2658.16 3.932305
98 888.718 783.936 208.275 3792.20 4.267041
99 1367.91 1317.39 280.597 6668.51 4.874999

As plotted, with confidence bounds:

Probability plot for failure in days
Lognormal - 90% CI

Complete data - ML estimates

Table of statistics
Loc
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*

3.54072
1.58201
120.555
403.747
34.4918
88.3947

10
0

1.439

10.1 10 100 1000 10000

Failure in days

99

95

90

80
70
60
50
40
30

20

10

5

1

P
er

ce
nt
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Chapter 5 Continuous Distributions – Part 2 Weibull and Extreme
Value Distributions

5.1 (a) F(500) = 0.221, (b) P(failure in the second 500 hours|successfully finished the first
500 hours) = 0.528.

5.3 (a)

Probability plot for time (hours)
Weibull

Censoring column in F/S - LSXY estimates

Table of statistics
Loc
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*

0.776942
28.7010
33.2291
43.2390
17.9070
37.9259

5
3

4.553
Correlation 0.987

10.1 10 100

Time (hours)

99

90
80
70
60
50
40
30
20

10

5

3
2

1

β = 0.777

η = 28.7

Using MINITAB:

P
er

ce
nt

(b) Infant mortality, (c) low time failures.

5.5 (a)
Probability plot for ball bearing endurance life (×1

Weibull - 95% CI
Censoring column in censor - ML estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*

1.98458
84.4450
74.8486
39.3987
70.2050
54.4785

21
2

3.622

10 100

Ball bearing endurance life (×106)

99

90
80
70
60
50
40

30

20

10

5

3

2

1

P
er

ce
nt

(b) β = 1.98 seems about right for bearing fatigue.
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5.7

Probability plot for  failure time (hrs)
Weibull - 95% CI

Censoring column in status - ML estimates

Table of statistics

Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*

1.05845
26296.8
25715.6
24306.6
18600.2
27699.6

12
58

163.105

1 10 100 1000 10000 100000 1000000

Failure time (hrs)

99

90
80
70
60
50
40
30
20

10

5

3
2

1

0.1

P
er

ce
nt

Parameter estimates

Table of cumulative failure probabilitiesStandard 95.0% Normal CI

Parameter Estimate Error

Shape  1.05845 0.268251 0.644082 1.73939
Scale 26296.8 12251.4   10552.1 65534.4

Lower Upper
95.0% Normal CI

Time
8000 0.247067 0.145906 0.399873

Probability Lower Upper

5.9 (a)
Probability plot for times

Weibull
Censoring column in censorx - LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

8.26900
1898.26
1790.52
257.565
1815.96
341.992

10
10

17.749

99

90

80
70
60
50
40

30

20

10

5

3

2

1

P
er

ce
n

t

0.959

24002200200018001600140012001000

Times

(b) β = 8.269
(c) Since β = 8.269, this is a (rapid) wearout mode.
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5.11

Probability plot for Group1, Group2
Weibull - 90% CI

Censoring column in Censor-1, Censor-2 - ML estimates

Table of statistics
Shape Scale AD*

6.08315
5.02571

234.319
264.427

1.860
3.669

17
19

2
2

99

90

80
70
60
50
40
30

20

10

5

3

2

1

P
er

ce
nt

80 90 10
0

15
0

20
0

30
0

40
0

Days

Group1
Group2

Variable

F C

The overlap of the 90% confidence bounds and the 0.10 probalility level indicates No significant difference in the Treatments.

5.13

Generate Weibull with 10 failures: β = 1.59, η = 358.3 hrs:

Probability plot for Shift-1
Weibull

Complete data – LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

1.58902
258.323
231.755
149.238
205.112
199.338

10
0

1.306
0.994

226 6318

63.2

1/200 = 0.5

1 10 100 1000 10000

Hours

99.99

95

80

50

20

5

2

1

P
er

ce
n

t

Then, MTTF = Σ failure times/10 =2261/10 = 226 hours
Calculating η(shifted):

0.005 =1− e−
226
η

1 59

η = 6318 hours,
5.15 (a, b) 7.44 events over the next five months
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Probability plot for failure time (Hours)
Weibull

Censoring column in status - ML estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*

3.01702
87.9563
78.5628
28.4089
77.8947
39.8135

5
3

9.876

Failure time (Hours)

99

90
80
70

50
40
30
20

10

5
3
2

1

P
er

ce
nt

20 30 40 50 60 70 80 90 10
0

15
0

60

5.17 (a) 0.3679, (b) 0.5, (c) 0.1587, (d) 0.456.
5.19 (a) Design life for reliability of (0.9) = 3.36 years.

(b) Design life for reliability of (0.99) = 2.01 years.
5.21 8 × 106 cycles
5.23 (a) exp − λ0tDL = exp −

t2DL
η2

where DL = design life

Then, − λ0tDL = −
t2DL
η2

, so η2λ0 = tDL and from Exercise 5.22 η =
2

λ0 π

So,
4

λ0
2π

λ0 = tDL
4
λ0π

= tDL

(b)

Scatterplot of R(t)-Exp, Rayleigh vs t

Variable
R(t)-Exp
Rayleigh

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Y-
D

at
a

t
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5.25
R t = e− t η 2

−
dR
dt

=
2t
η2

e− t η 2

Rs t = R t −
t

0
R t− t

d
dt

R t dt

Rs t = R t +
t

0
e−

t− t
2

η2
2t
η2

e− t η 2

dt

= Rs t = R t +
2
η2

t

0
t exp − t2 + 2tt − 2t 2

η2 dt − t2 + 2tt − 2t 2

= − 2 t 2 − tt +
1
2
t2 = − 2 t 2

− tt +
1
4
t2 +

1
4
t2

= − 2 t −
1
2
t

2

−
1
2
t2

Let

x =
2
η

t − t 2 then dx =
2
η

dt and t =
η

2
x +

t
2

Then

2
η2

t

0
t e− 2 t − 1 2t 2 η2dt =

t 2
2η

− t 2
2η

x +
2t
2η

e− x2dx

= 0 +
2t
η

t 2
2η

0
e− x2dx =

2πt
η

erf
2t
2η

Therefore,

Rs t = 1 +
2πt
η

erf
t

2η
e− t η 2

5.27 1.293 MTTF.
5.29 (a) β1 = 7, β2 = 7, η1 = 8 lbs

N = flaws in 1 , 2N = flaws in 2

η' = N − 1
βη, η1 = N − 1

βη, η2 = 2N − 1
βη

So, η2 = 2− 1
βN − 1

βη = 2− 1
βη1

η2 = 2− 1
β8 = 7 25 lbs

(b) 0 01 = F x = 1− e−
x
8 7

So, for 1 e−
x
8 7 = 0 99 x = 4 15 lbs

for 2 F 4 15 = 1− e−
4 15
7 25 7 = 0 0199 2 fail
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5.31 F t = 1− e−
t
η

2

B10 at one year: F 1 = 0 1 = 1− e−
1
η

2

e−
1
η

2

= 0 9 η = 3 08 years

R t = e−
t
η

2

, assume independent bearings

Then, Rsys t = R t 12 = e− 12 1
η

2

For system B10: Rsys t = 0 90 = e− 12 1
η

2

− ln 0 9 = 12
t

3 08

2

t = 0 289 years

5.33 Using Table 5.5 of Chapter 5, the β for this ratio is =3.5.
5.35

Probability plot for TTF
Three parameter Weibull

Censoring column in censor - LSXY estimates

Table of statistics
Shape
Scale

Mean
Thres

StDev
Median
IQR
Failure
Censor
AD*

256.336
13.7566

–138.715
108.122
21.9313
110.882
28.3546

30
58

6.119
Correlation 0.990

Three - Threshold

99

90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

P
er

ce
n

t

150 175 200 225 250 275 300
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5.37 Ans:

Test 1 (hrs)

P
er

ce
n

t

100.010.01.00.1

99

90
80
70
60
50
40
30

20

10

5

3

2

1

Table of statistics

Median 8.58400
IQR 13.7738
Failure 6
Censor 0
AD* 2.115

Shape 0.988936
Scale 12.4350
Mean 12.4944
StDev 12.6345

Probability plot for test 1 (hrs)

Complete data - ML estimates

Weibull 

Test 2 (hrs)

P
er

ce
n

t

10.01.00.1

99

90
80
70
60
50
40
30

20

10

5

3

2

1

Table of statistics

Median 6.39046
IQR 8.24569
Failure 6
Censor 0
AD* 2.269

Shape 1.20958
Scale 8.65220
Mean 8.12227
StDev 6.74610

Probability plot for test 2 (hrs)

Complete data - ML estimates

Weibull 

(a)

(b)

Note: both sets of data need a t0 correction:
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Test1 (hrs) – Threshold

P
er

ce
n

t

1000.00100.0010.001.000.100.01

99

90

80
70
60
50
40

30

20

10

5

3

2

1

Table of statistics

StDev 22.2029
Median 5.69800
IQR 12.6505
Failure 6
Censor 0

Shape

AD* 2.157

0.581261
Scale 7.72871
Thres 1.584
Mean 13.7192

Probability plot for test1 (hrs)

Complete data - ML estimates
Three–Parameter Weibull – 90% CI

Test2 (hrs) – Threshold

P
er

ce
n

t

1000.00100.0010.001.000.100.01

99

90

80
70
60
50
40

30

20

10

5

3

2

1

Table of statistics

StDev 11.0903
Median 4.37484
IQR 6.03710
Failure 6
Censor 0

Shape

AD* 2.083

0.567744
Scale 3.62310
Thres 2.475
Mean 8.35685

Probability plot for test2 (hrs)

Complete data - ML estimates
Three–parameter Weibull - 90% CI

(a)

(b)
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Since Confidence bounds at p = 0.9 overlap, there is no statistically significant difference in the
two sets of data.

Plotting data as one dataset:

Data - Threshold

P
er

ce
n

t

1000.00100.0010.001.000.100.01

99

90
80
70 
60
50
40
30

20

10

5

3

2

1

Table of statistics

1.584 2.157 6 0
0.567744 3.62310 2.475 2.083 6 0

Shape Scale Thres AD* F C
0.581261 7.72871

Variable
Test 1 (hrs)
Test 2 (hrs)

Probability plot for test1 (hrs), Test2 (hrs)

Complete data - ML estimates
Three–parameter Weibull – 90% CI

Test (hrs) combined

P
er

ce
n

t

100.0010.001.000.100.01

99

90
80
70
60
50
40
30

20

10

5

3

2

1

Table of statistics

Median 7.39269
IQR 11.1412

Failure 12
Censor 0
AD* 1.410

Shape 1.04695
Scale 10.4915
Mean 10.3012
StDev 9.84220

Probability plot for test (hrs) combined

Complete data - ML estimates
Weibull – 90% CI

(c)

(d)

Again, the combined data needs a t0 correction:
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Test (hrs) combined – threshold

P
er

ce
n

t

100.0010.001.000.100.01

99

90
80
70
60
50
40
30

20

10

5

3

2

1

Table of statistics

StDev 12.9060
Median 5.73698
IQR 9.97007
Failure 12
Censor 0

Shape

AD* 1.238

0.701482
Scale 7.00279
Thres 1.584
Mean 10.4305

Probability plot for test (hrs) combined

Complete data - ML estimates
Three–parameter Weibull – 90% CI
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5.39 Ans. Input table for MINITAB:

Start End Failures

* 10 4

10 20 8

20 30 11

30 40 16

40 50 23

50 60 31

60 70 22

70 80 10

80 90 2

90 100 1

Start-Threshold

P
er

ce
n

t

10050

99.9

90

50

10

1

Start - Threshold

P
er

ce
n

t

145014001350

99.9

99

90

50
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Probability plot for start
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Exponential Loglogistic

(a)

576 3rd Ed Answers to Odd – Numbered Exercises



Start – threshold
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Table of statistics

StDev 18.9129
Median 49.5855
IQR 25.3781
AD* 0.488

Shape 6.95231
Scale 119.612
Thres –63.8842
Mean 47.9657

Probability plot for start

Arbitrary censoring – ML estimates
Three - parameter Weibull
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Table of statistics

AD* 0.810
Correlation 0.996

Mean 46.6830
StDev 18.2846
Median 46.6830
IQR 24.6656

Probability plot for start

Arbitrary censoring – LSXY estimates
Normal
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5.41

Probability plot for TTF
Weibull

Censoring column in censor - ML estimates
Table of statistics
Shape
Scale
Mean
StDev
Median
IQR

AD*
Censor
Failure

1.02290
30633.4
30349.7
29672.4
21408.4
33095.5

419.397
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TTF
10 100 1000 10000 100000

Probability plot for TTF_1
Weibull

Censoring column in censor - ML estimates
Table of statistics
Shape
Scale
Mean
StDev
Median
IQR

AD*
Censor
Failure

1.37873
18400.4
16812.1
12342.5
14105.2
15865.6

403.019
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TTF
100 1000 10000 100000

Needs a negative t0?? No.. circled datapoint is an outlier! 
Without outlier-- Weibull:

First failure is an outlier,
eliminate and redo plot

# failures between 4000 and
8000 = 0.567*(160) = 91

Conditional Risk = (F(8000)–

F(4000)/(1–F(4000)) = (0.272–

0.115)/(1–0.115) = 0.567

5.43

Probability plot for TTF
Lognormal

Censoring column in censor - LSXY estimates
Table of statistics
Loc
Scale
Mean
StDev
Median
IQR

AD*
Censor
Failure

4.52288
0.607902

110.792
74.0794
92.1003
77.6608

0.894
Correlation

Loc
Scale
Mean

AD
Correlation

0.996
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nt

TTF
10 100 1000

Ans.
Input table:

TTF Freq Censor

31.4 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

45.9
50.2
56.4
70.7
73.2
86.6
96.3

100.6
117.9

124.8
146.7
159.5
205.2
232.5

Comparing the two lognormals:

Exer 6.29 (7 censored) Exer 6.40 all failed

4.54
0.644

83.3
0.993

51.3

4.52
0.608
110.8
0.996
0.894
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5.45

Probability plot for start
Weibull

Arbitrary censoring - ML estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
AD*

1.10204
309.814
298.761
271.446
222.160
316.672
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10 100 1000

Probability plot for time (midpt)
Weibull

Censoring column in censor - LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR

AD*
Correlation

Failure
Censor

1.73696
302.316
269.367
159.940
244.805
217.311

159.826
0.942

318
51
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Time (midpt)
10 100 1000

Ans:Data table:

Start End
Time
interval,
hr

Time (midpt) Freq

*

*

50
100
150
200
250
300
350
400
450
500
550
600

50 0–50
50–100
100–150
150–200
200–250
250–300
300–350
350–400
400–450
450–500
500–550
550–600

100
150
200
250
300
350
400
450
500
550
600

41
44
50
48
28
29
18
16
15
11
7
11
51

25
75
125
175
225
275
325
375
425
475
525
575
600

Weibull plot:

Using the Midpt vaues:AD here is >>AD using Arbitrary censoring.
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5.47 (a) ID plots
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Annual snowfall

Annual snowfall Annual snowfall

0 40 80 120

0 40 80 120

Logistic

Small extreme value Normal

Probability plot for annual snowfall
LSXY estimates-complete data

Probability plot for annual snowfall
LSXY estimates-complete data

Probability plot for annual snowfall
LSXY estimates-complete data

Comstation coefficient
smallest extreme value

0.941
Normal
0.990

Logistic
0.990

Correlation coefficient

Correlation coefficient

3-Parameter Weibull
0.996

3-Parameter Lognormal
0.998

3-Parameter Loglogistic
0.997

2-Parameter Exponential
*

100

100100.00

10010010

10010

1001010010

50 200150

300

500–50

Annual snowfall-ThresholdAnnual snowfall-Threshold

Annual snowfall-Threshold Annual snowfall-Threshold

Annual snowfall

Annual snowfall

0.01 0.10 1.00 10.00

99.9
90
50

10

1

0.1

99.9

(a)

90
50

10

1

0.1

100.00
Annual snowfall

Annual snowfall

0.01 0.10 1.00 10.00

3-Parameter Loglogistic

3-Parameter Lognormal

Lognormal

3-Parameter Exponential

LoglogisticExponential

3-Parameter Weibull

Weibull
Weibull
0.996

Lognormal
0.974

Exponential
*

Loglogistic
0.978

Looking at the three-parameter
lognormal:

Probability of 161” OR LESS will
occur with probability 0.99; OR
the probability of 74” OR MORE
will occur with probability 0.99.

Based on correlation coefficient,
three-parameter lognormal is best
fit. Doing a two-parameter
lognormal plot so we read off
0.01 and 0.99 levels of snowfall:
Reading this plot: snowfall of 74”
or < will occur with Probability =
0.01: OR the probability of 74” OR
MORE will occur with probability
0.99
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Probability plot for annual snowfall
3-Parameter Lognormal

Complete data - LSXY estimates

Table of statistics
Loc
Scale

Mean
Thres

StDev
Median
IQR

AD*
Censor
Failure

Correlation

4.69471
0.166606

47.2763
–63.6197

18.6049
45.7479
24.6319

0.227
0

120

0.998

99
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100 125 150 2001757550
Annual snowfall - Threshold

(b)

5.49 Consider the following multiply censored data∗ for the field windings for 16 generators. The
times to failure and removal times (in months) are 31.7, 39.2, 57.5, 65.0+, 65.8, 70.0, 75.0+,
75.0+, 87.5+, 86.3+, 94.2 +, 101.7+, 105.8,109.2+ , 110.0, and 130.0+.Make a probability plot
of the data. What type of phenomena are we seeing for field windings failures? (NOTE: +
indicated a censored value in Nelson’s book).

TTF

P
er

ce
n

t

10010

99

90
80
70
60
50
40
30
20

10

5

3
2

1

Table of statistics

Median 99.6047
IQR 66.8256
Failure 7
Censor 9
AD* 24.005

Shape

Correlation 0.982

2.29498
Scale 116.852
Mean 103.519
StDev 47.8244

Probability plot for TTF

Censoring column in censor - LSXY estimates
Weibull 

 

Ans.
β = 2.2 is indicative of a slow wearout mode.

∗From Nelson, Applied Life Data Analysis, Wiley, New York, 1982.
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5.51 The followingmultiply-censored times-to-failure (in hours) have been obtained from a battery-
poweredmotor used in inexpensive consumer products: 22, 37, 41, 43, 56, 57+, 58, 61, 62+, 63+,
64, 64, 65+ , 69, 69, 69+ , 70, 76+, 78, 87, 88+, 89, 94, 100, and 119. (Note + indicates right-
censored data.)
(a) Fit the data to a Weibull distribution and estimate the parameters.
(b) Plot the reliability (survival) and hazard plot for this data

Ans:

TTF

P
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ce
n

t

15
0

10
09080706050403020

99

90
80
70
60
50
40
30

20

10

5

3

2

1

Table of statistics

Median 74.3628
IQR 38.1134
Failure 18
Censor 7

AD* 1.862

Shape

Correlation 0.987

3.00862
Scale 83.9966
Mean 75.0167
StDev 27.1945

Probability plot for TTF

Censoring column in censor – LSXY estimates
Weibull 

TTF

R
at

e

14012010080604020

0.10

0.08

0.06

0.04

0.02

0.00

74.3628
38.1134

18
7

1.862

0.987

3.00862
83.9966
75.0167

27.1945

Parametric hazard plot for TTF

Censoring column in censor – LSXY estimates
Weibull

 

  Parametric survival plot for TTF
Weibull

Censoring column in censor – LSXY estimates
Table of statistics

Shape
Scale
Mean
StDev
Median
IQR

AD*
Censor
Failure

Correlation

3.00862
83.9966
75.0167
27.1945
74.3628
38.1134

1.862
7

18

0.987

20 40 60 80 100

20
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40
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100

120 140
TTF
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Median
IQR
Failure
Censor

AD*

Shape

Correlation

Scale
Mean
StDev

Table of statistics

(a)

(b)
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5.53 Ten units are on test. The units are not replaced when they fail (nonreplacement).
One unit fails at t1 = 685 hours, and a second unit fails at t2 = 1690 hours.
The test is ended at t = 2500 hours with no additional failures.

(a) What is the total accumulated test time?
(b) What is the MTTF?

Ans:
(a) T = 685 + 1690 + (8)(2500) = 22,375 hours
(b) MTTF = 22375/2 = 11187.5 hours

And, creating a Weibull plot to check on the (tacit) assumption of exponential:

Probability plot for time
Weibull

Censoring column in censor – LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR

AD*
Censor
Failure

Correlation

1.04154
8839.76
8696.44
8351.54
6217.48
9423.29

36.856
8
2
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1

1000 10000100 100000
Time
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Data input to MINITAB:time Freq Censor

685 1 1
1690 1 1
2500 8 0

β = 1.04 obviously exponential assumption was valid!.
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Chapter 6 Reliability Testing

6.1 (a)

1

10

100

1 10 100 1000

y = 0.9158x0.353

R2 = 0.997

(a) β = 0.353
(b) Cumulative failures (1000) = 0.8158 × (1000)0.353 = 10.5

Growth slope is <<1.0, hence decreasing failure rate.
6.3 Data table

T Cumulative failures N

100 14 14
200 21 7
300 27 6
400 31 4
500 34 3
600 35 1
700 36 1

Reliability Growth plot with fit:

 

y = 1.4802x0.4988

R2 = 0.9768

1

10

100

1 10 100 1000

Cum time

C
um

 fa
ilu

re
s

While this plot answered the growth model question, for illustration purposes (talking to the
boss), show the instantaneous MTTF plot.
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1

10

100

1 10 100 1000

In
st

 M
T

B
F

MTTF

y = 5E–06x2 + 0.0162x + 5.7299
R2 = 0.9973

Illustrating that the instantaneousMTBF (newest itemwith all known fixes) is going up from
7 to ~20 hours. Tell the boss that the test–analyze–fix is working!

6.5

R = e− λt t =
1
λ

ln
1
R

= MTTF ln
1
R

= 20, 000 ln
1
0 9

= 2107 hours

Then,

t
tAcel

=
VAccel

V

3

VAccel = V
t

tAcel

1
3

= V
2107
30 24

1
3

= V 1 43

6.7 Ans.

Probability plot for TTF (months)
Exponential - 90% CI

Censoring column in censor-1 - ML estimates

Table of statistics
Mean
StDev
Median
IQR

AD*
Censor
Failure

9.76385
9.76385
6.76778
10.7267

190.315
37
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0.1 1.0 10.0 100.0

TTF (months)
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Table in 6.20 becomes

TTF (months) Freq Censor-1

0.1 1 1
0.29 1 1
0.49 1 1
0.51 1 1
0.55 1 1
0.63 1 1
0.68 1 1
1.16 1 1
1.4 1 1
2.24 1 1
2.25 1 1
2.64 1 1
2.99 1 1
3 37 0

Mean (MTTF) = 9.76.
Table from MINITAB:
Characteristics of distribution

Standard 90.0% Normal CI

Estimate Error Lower Upper

Mean (MTTF) 9.76385 2.70800 6.18722 15.4080
Standard deviation 9.76385 2.70800 6.18722 15.4080
Median 6.76778 1.87705 4.28865 10.6800

6.9 Ans:

Test failure (hours)

P
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ce
n

t

1000100101
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2

1

Table of statistics

Failure 10
Censor 10
AD* 70.920

Mean 188.289
StDev 188.289
Median 130.512
IQR 206.857

Probability plot for test failure (hours)

Exponential – 90% CI

Censoring column in censor – LSXY estimates
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The data are NOT exponential!!
Try Weibull:

:

Test failure (hours)
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t
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Table of statistics

Median 97.5655
IQR 62.2070
Failure 10
Censor 10
AD* 70.783

Shape

Correlation 0.960

2.41522
Scale 113.554
Mean 100.675
StDev 44.4311

Probability plot for test failure (hours)
Weibull – 90% CI

Censoring column in censor – LSXY estimates 

MTTF = 100.68 BUT, the data needs a t0!!
Parameter estimates

Standard 90.0% Normal CI

Parameter Estimate Error Lower Upper
Shape 2.41522 0.599575 1.60554 3.63323
Scale 113.554 13.2048 93.7845 137.490

The t0 makes the data look like a good fit (note that the correlation went from 0.96 to 0.991).

MTTF = 171.7 + 30.8 = 202.5 hours

Test failure (hours) – Threshold
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Table of statistics

StDev 161.991
Median 117.281
IQR 159.837
Failure 10
Censor 10

Shape

AD* 70.717
Correlation 0.991

0.872769
Scale 131.662
Thres 30.7680
Mean 171.734

Probability plot for test failure (hours)
Three-parameter Weibull – 90% CI

Censoring column in censor – LSXY estimates
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Confidence bounds on parameters and MTTF:
Parameter estimates

Standard 90.0% Normal CI
Parameter Estimate Error Lower Upper
Shape 0.872769 0.303679 0.492427 1.54688
Scale 131.662 59.7014 62.4510 277.574
Threshold 30.76800 0 30.7680 30.7680

Characteristics of distribution

Standard 90.0% Normal CI
Estimate Error Lower Upper

Mean (MTTF) 171.734 83.9002 76.8888 383.576
Standard deviation 161.991 147.156 36.3547 721.810
Median 117.281 33.5726 73.2382 187.809

6.11 Entering Table 6.1 with β = 1.5 and n = 20, factor = 0.2367.
So, factor∗3∗3000 = 0.2367∗9000 = 2130 hours. Testing all 20 bearings for 2130 hours with-
out a failure will assure you of 9000-hour η at 90% confidence.

6.13 Using Table 6.1, note that at 90% confidence you can test 287 pieces, and if they do not fail
you have demonstrated 0.992 reliability. Going through Table 6.1 at 90% confidence or more
but limiting to 0.9 reliability or more; some of the possibilities from Table 6.1 are highlighted:

Reliability Confidence level

90 95 97.5 99 99.5 99.9
0.99999 230258 299572 368887 460515 529830 690773
0.9999 23025 29956 36887 46050 52981 69075
0.999 2302 2995 3688 4603 5296 6905
0.998 1151 1497 1843 2301 2647 3451
0.997 767 998 1228 1533 1764 2300
0.996 575 748 921 1149 1322 1724
0.995 460 598 736 919 1058 1379
0.994 383 498 613 766 881 1148
0.993 328 427 526 656 755 984
0.992 287 373 460 574 660 861
0.991 255 332 409 510 587 765
0.99 230 299 368 459 528 688
0.98 114 149 183 228 263 342
0.97 76 99 122 152 174 227
0.96 57 74 91 113 130 170
0.95 45 59 72 90 104 135

6.15 AF = exp [EA/K(1/Tu – 1/Ts)]
AF = exp [(0.8/8.617 × 10–5)(1/323 – 1/373)] = 47

Assuming that the increased temperature did not cause new failure modes, two days of
testing at 100 C is equivalent to about three months of use.
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6.17
AF =

tuse
ttest

= exp
Ea

kT
1

TUse
−

1
Ttest

AF = exp
0 7 eV

0 00008617eV
1
298

−
1
363

= exp 4 8813 = 131 8

6.19
λ

λ0
= exp

0 35E
8 63 × 10− 5

1
288

−
1
303

exp
0 35E

8 63 × 10− 5 1 7189 × 10− 4 = 2 0

• Typically, failure rates change by a factor of 1.2–2.0 for a change in temperature of 15 C,
the higher factor being applied to transistors, and some capacitors and the lower factor
being appropriate for resistors.

• In general, failure rates increase exponentially as temperature increases.
6.21 The total unit test time:

T = 450 + 800 + 8 × 1000 = 9250 hours

The estimate of MTBF:

Θ = T r = 9150 2 = 4625 hours

From the χ2 distribution:

χ2 0 10 6 = 10 645

The lower 90% confidence limit:

Θα = 0 10 = 2 × 9250 10 645 = 1740 hours

6.23 1 – C = RN (since this is testing with 0 failures)
where C is the confidence level (e.g. 90% confidence = 0.90), R is the reliability, and N is the
number of tests without failure.
In this case, C = 0.60, R = 0.90

1− 0.60 = 90N

0.40 = 0.90N

N =
ln 0 40
ln 0 90

= 8 7≈ 9

6.25 AF = 8.68.
6.27 Using MINITAB’s accelerated life testing, assuming an Arrhenius relationship:

MINITAB input:

Temp Cycles to Failure

323 21,045
323 25,077
323 31,407
323 33,812
333 16,551
333 18,935
333 20,996
333 24,363
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Plotting both input temperature data together:

Probability plot (individual fit) for cycles to failure
Weibull

Complete data - ML estimates

Table of statistics
ScaleShape AD* F C
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6.59143
7.74486

Temp
323
333

15000 20000 30000 40000

Temp = 303

Percent
Cycles to

Failure Lower Bound Upper Bound
1
2
3
4
5
6
7
8
9

10
20
30
40
50
60
70
80
90
91
92
93
94
95

32491.5
35823.3
37939.9
39525.4
40807.6
41891.9
42836.3
43676.1
44434.7
45128.4
50120.6
53517.3
56273.7
58727.0
61063.9
63440.1
66067.6
69460.1
69896.0
70364.2
70872.9
71433.5
72063.4

18809.9
21302.8
22891.3
24080.9
25041.5
25852.3
26556.9
27182.1
27745.7
28259.7
31918.7
34358.2
36302.6
38004.6
39599.5
41194.1
42925.0
45109.3
45385.8
45681.8
46002.2
46353.7
46746.9

56124.6
60241.3
62881.3
64875.6
66500.2
67883.2
69094.9
70178.4
71162.2
72066.1
78702.2
83360.2
87231.4
90748.6
94162.9
97699.6
101687
106956
107643
108383
109190
110083
111090

96 72063.4 46746.9 111090

Touching the dashed line (303 °K)
will produce:
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Using MINITAB’s “Accelerated Life Testing” subsection:

Probability plot (fitted Arrhenius) for cycles to failure
Weibull – 90% CI

Complete data – ML estimates

Table of statistics
Scale AD* F C

0
0

4
4

3.005
2.920

30101.0
21382.5

7.15237
Shape

Scale
61814.87.15237

Shape

7.15237
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P
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ce
nt

Cycles of failure

Temp

Temp

323
333

303

10000 100000

Table of statistics at design value

So, the expected cycle to failure at B10 and 303 oK is 45,128, with 28,260 lower 90% confi-
dence bound.
6.29 Using the top portion of Table 6.2 (through n = 14):

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
Infant 

Mortality Random
2 1.3255 1.1513 1.0985 1.0730 1.0580 1.0481 1.0411 1.0358 1.0318 1.0286
3 0.5891 0.7675 0.8383 0.8761 0.8996 0.9156 0.9272 0.9360 0.9429 0.9485
4 0.3314 0.5756 0.6920 0.7587 0.8018 0.8319 0.8540 0.8710 0.8845 0.8954
5 0.2121 0.4605 0.5963 0.6786 0.7333 0.7722 0.8013 0.8238 0.8417 0.8563
6 0.1473 0.3838 0.5281 0.6195 0.6818 0.7267 0.7606 0.7871 0.8083 0.8257
7 0.1082 0.3289 0.4765 0.5735 0.6410 0.6903 0.7278 0.7573 0.7811 0.8006
8 0.0828 0.2878 0.4359 0.5365 0.6076 0.6603 0.7006 0.7325 0.7582 0.7795
9 0.0655 0.2558 0.4030 0.5058 0.5797 0.6348 0.6774 0.7112 0.7386 0.7614

10 0.0530 0.2303 0.3757 0.4799 0.5558 0.6129 0.6573 0.6927 0.7216 0.7455
11 0.0438 0.2093 0.3525 0.4575 0.5350 0.5938 0.6397 0.6764 0.7064 0.7314
12 0.0368 0.1919 0.3327 0.4380 0.5167 0.5768 0.6240 0.6618 0.6929 0.7188
13 0.0314 0.1771 0.3154 0.4209 0.5004 0.5616 0.6098 0.6487 0.6807 0.7074
14 0.0271 0.1645 0.3002 0.4055 0.4858 0.5479 0.5971 0.6368 0.6696 0.6970

Early Wearout Old Age Rapid Wearout

Beta

Current η = 300 600

Sample
size

(units) η multiplier
Test time
per unit 

Total
time on

test 

4 0.871 522.6 2090.4

8 0.7325 439.5 3516

Notice that 4 units and less total test time will suffice to show 2× lifesaving.
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6.31

Probability plot for sudden death time
Weibull

Censoring column in censor – LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

2.76575
1181.49
1051.57
411.067
1034.85
576.602

4
36

71.117
0.929
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Sudden death time

6.33 The reliability goal may be stated mathematically as R(2300) = 0.95, which means that the
reliability of the vane system is 0.95 (95% succeeding, 5% failing) at 2300 cycles. First, convert
this reliability goal to a characteristic life goal: substitute t = 2300 cycles; R(t) = 0.95, and
β = 3 into:

η =
t

− ln R t
1
β

=
2300 cycles

− ln 0 95
1
3

= 6190 2 cycles

The number of test cycles per turbine was not fixed. The only constraint was that it should
not exceed 5000 cycles. The table below shows the number of turbines required, assuming
3000, 4000, and 5000 test cycles accumulated on each as well as the total test cycles required:

Test cycles per turbine Ratio of test cycles to η
Number of turbines
required – Table 6.3 Total test cycles

3000 0.484 22 66,000
4000 0.646 9 36,000
5000 0.808 5 25,000

Therefore, the test plan that satisfies the test requirements and that requires the fewest total test
cycles is to test 5 turbines for 5000 cycles each. If all turbines complete the test, with vane erosion
within the allowable limits, then no more than 5% of the turbines will be rejected for excessive ero-
sion prior to 2300 cycles, with 90% confidence.
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6.35 MINITAB input table:

Hours to failure Censor Freq

65 1 1
110 1 1
380 1 1
420 1 1
505 1 1
580 1 1
650 1 1
840 1 1
910 1 1
950 1 1
950 0 40

Probability plot for hours to failure
Weibull – 95% CI

Censoring column in censor – LSXY estimates

Table of statistics
Shape
Scale
Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

0.970422
5208.24
5277.36
5438.93
3569.98
5849.91

10
40

171.336
0.978
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Hours to failure
10 100 1000 10000 100000 10000001

6.36 MINITAB INPUT TABLE:

Low of 8 Grps Censor 8 GRP Freq 8 Grp

52.28734464 1 1
48.70439991 1 1
43.16654463 1 1
39.31593549 1 1
64.82848045 1 1
79.79845537 1 1
73.44525838 1 1

(Continued)
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Low of 8 Grps Censor 8 GRP Freq 8 Grp

55.05663793 1 1
52.28734464 0 4
48.70439991 0 4
43.16654463 0 4
39.31593549 0 4
64.82848045 0 4
79.79845537 0 4
73.44525838 0 4
55.05663793 0 4

Resulting initial two-parameter Weibull plot:

Probability plot for low of 8 Grps
Three-parameter Weibull – 95% CI

Censoring column in censor8GRP – LSXY estimates

Table of statistics
Shape
Scale

Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

1.41072
78.3532

106.183
Thres 34.8540

51.2593
95.2801
66.3701

8
32

74.117
0.996
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Low of 8 Grps – Threshold
10 100 1000

Very good fit. Notice that the slope is close to the same as that in Exercise 6.35.

6.37 MINITAB INPUT TABLE:

Low of 5 grps Censor 5 Grp Freq 5 Grp

48.70439991 1 1
43.16654463 1 1
39.31593549 1 1
73.44525838 1 1
55.05663793 1 1
48.70439991 0 7
43.16654463 0 7
39.31593549 0 7
73.44525838 0 7
55.05663793 0 7
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Resulting initial three-parameter Weibull plot:

Probability plot for low of 5 grps
3-parameter Weibull - 95% CI

Censoring column in censor5Grp - LSXY estimates

Table of statistics
Shape
Scale

Mean
StDev
Median
IQR
Failure
Censor
AD*
Correlation

0.948183
139.418

180.187
Thres 37.3738

150.681
132.095
159.287

5
35

76.384
0.999
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Low of 5 grps – Threshold

100.1 1 100 1000 10000 100000

A Weibull of all three (Exercises 6.35, 6.36, and 6.37) shows that there is no significant
difference in results (notice how the confidence bounds and fits are on top of each other).

Probability plot for low of 10 Grps, low of 8 Grps, low of 5 grps
3-parameter Weibull

Censoring column in censor10GRP, censor8GRP censor5Grp - LSXY estimates

Table of statistics
Shape Scale F C

30
32
35

0.998
0.996
0.999

35.6756
34.8540
37.3738

92.212
78.353
139.418

1.25465
1.41072
0.94818

10
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CorrThres

P
er

ce
nt

99

90

80
70
60
50
40

30

20

10

5

3

2

1

Data – Threshold

101 100 1000

Variable
Low of 10Grps
Low of 8Grps
Low of 5Grps

6.39 Acceleration is 4×, so =2500 hours at 4× cyclic rate in accelerated time is 10,000 hours at
normal cycles.
Hence,

R 1000 = e−
1000
10000 1 7 = 0 98

6.41 From Eq. (6.60), the ratio of use life to accelerated life is

LUse S
LAccel S

= e
EA
K

1
TUse

− 1
TAccel
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So,

LUse S = LAccel S e

EA

K
1

TUse
−

1
TAccel = 2750 e

0 5
8 63 × 10− 5

1
358

−
1
423

= 2750 12 02 = 33, 064 hours

And, by Eq. (6.65), AF = 12.02
Since, Median Rank(2750) = 0.067, if you wanted to put the use distribution on the same plot as

the accelerated plot, you could do that, assuming the same slope.
6.43

Probability plot (fitted arrhenius) for failure time in Hrs
Weibull - 90% CI

Complete data - ML estimates

Stress

Stress

(deg
K)

(deg
K)

358

323

378

Table of statistics
Shape Scale AD* F C

36.8140
36.8140

959.601
260.548

3.048
3.644

4 0
03

100001000100
Failure time in Hrs

Table of statistics at design value
Shape Scale

36.8140 11597.14
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99

The steep slope shows up as very tight confidence bounds.
At 0.9 reliability, the bounds 9950–11962 with a median value = 10,910 hours

Stress (deg K) = 323

Percent Failure time in hours Lower bound Upper bound

1 10235.1 9172.56 11420.7
2 10431.0 9402.99 11571.5
3 10548.0 9539.03 11663.8
4 10632.3 9636.17 11731.3
5 10698.4 9711.92 11785.1
6 10753.1 9774.11 11830.1
7 10799.7 9826.94 11868.8
8 10840.5 9872.91 11903.0
9 10876.9 9913.64 11933.7
10 10909.7 9950.24 11961.6
20 11134.3 10196.8 12158.1
30 11277.1 10349.1 12288.3
40 11387.7 10464.5 12392.2
50 11482.5 10561.7 12483.5
60 11569.8 10649.6 12569.6
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Stress (deg K) = 323

Percent Failure time in hours Lower bound Upper bound

70 11656.0 10734.7 12656.3
80 11748.2 10824.1 12751.3
90 11863.1 10932.9 12872.4
91 11877.5 10946.4 12887.9
92 11892.9 10960.7 12904.5
93 11909.6 10976.1 12922.4
94 11927.8 10993.0 12942.2
95 11948.2 11011.7 12964.4
96 11971.5 11033.0 12989.9
97 11999.4 11058.3 13020.6
98 12035.1 11090.5 13060.2
99 12088.6 11138.1 13120.1

Chapter 7 Failure Modes and Effects Analysis (FMEA) – Design and
Process

7.1

 

Welding shop

___   Subsystems  FMEA Number :

          Component : Design Responsibility : Big John Prepared by :
Model  :  Key Date : FMEA Date (Orig.) :

Core Team : Welding

Working with
Saws Throwing sparks Fire 6

Working adjacent to
flammable materials 9

Fire 
extinguisher 

nearby
9 486

Argon welding

Exposure to
fumes and Toxix

gas 
Occupational disease 9

Fail to use
appropriate

protective masks  
8

Exhaust 
hoods

5 360

Electric welding Throwing sparks Burning 5 Nature of the process 6 None 4 120

Fall from Height Injuries 9 Working at height 7
Safety 

Training 5 315

Cutting metals
explosion of gas

cylinder Fire & injuries 7
Lack of training &
poor maintenance 3

Safety 
Training 8 168

CO2 welding Flashback flame Explosion 6 Equipment failure 5
Safety 

Training 5 150

Welding Fire Fire 5
Fail to separate full

and empty cyclinders 3
Safety 

Training 8 120

Collision with
obstacles Injuries 6 Improper layout 3

Safety 
Training 4 72

Collision with
forklift Injuries 6 No warning device 7

Safety 
Training 4 168

Hearing loss Deafness 6
High noise levels at

workplace 8
Wear proper

gear 3 144

Process step
Potential failure

modes 
Potential failure

effects 

S
everity

Potential causes

O
ccu

rren
ce

Current
controls

D
etect

R
.P

.N
.

Recommended
actions 
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7.3

Simple answer:

Better answer:

Scan Bag Pay

Touch the “Start”
on Monitor screen

Scan all items with UPC
Code facing the bottom

of back glass
And place in bag or

Bagging area

Any items with no UPC code? Yes

No

Use scanner specific
Program to choose the product

(e.g. vegetable, fruit)
Entering store product number

No store product number or
No scanner specific program

Ask for help from store attendant

Done with all items? No

Yes
Touch “Finish” or “Pay”
And select Pay option

(Cash, CC, etc.)

Take receipt and
Groceries and leave
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7.5 (“answer”… will vary according to bicycle studied)

Item and function
Failure
mode Effects of failure S Causes of failure O

Design
controls D RPN Recommended actions

Toe Strap Clip:
attachment for foot
straps

Fracture
(snapped)

Foot slips out/ distraction 2 Material not strong
enough

7 Shorter than
ground
clearance to
pedal

3 42 Stronger material or method of
keeping pedal upright

Crank bearing
set allows for pedal
rotation

Dirty/
seized

Pedal rotation feels rough
or is too hard for user

3 Contamination from
dust/dirt, lack of
lubrication, not properly
preloaded

2 dust caps 4 24 Use better sealed bearing set

Pedal bearing set Dirty/
seized

Pedal refuses to rotate
independently from
crank arms/bearings feel
rough

3 Contamination from
dust/dirt, lack of
lubrication, not properly
preloaded

2 End caps for
pedal
housing

4 24 Sealed end caps

Foot grips: provide
level and tractive
surface to push

Abrasion,
yielding

Pedal deforms 1 Impact with ground
during operation

1 N/A 1 1 N/A

Crank arm: transfer
pedal rotation to crank/
add mechanical
advantage

Fracture
(casting
failure)

Make bike unstable /
rapid user weight transfer

8 Unexpected loading 1 N/A 8 64 Inspect at the factory

Chain Oxidation/
fracture

Cause chain to skip/
rapid user weight
transfer/unsatisfactory
appearance

8 Damage to chain, rust,
lack of lubrication,
incorrect tension

8 N/A 4 256 Clear instructions on proper
maintenance and easier chain
tensioning

Rear hub bearing set Dirty/
seized

Wheel rotates with
resistance/seizes/
bearings feel rough

3 Contamination from
dust/dirt, lack of
lubrication, not properly
preloaded

2 N/A 4 24 Better sealed bearings

Rear axle Loosening/
yielding

Wheel wobbles/detaches
from bike

7 Lack of proper tension/
torque on retaining lock
nuts

3 N/A 6 126 Make system more solidly
mounted/separate tensioning
from wheel fixture

(Continued)



Item and function
Failure
mode Effects of failure S Causes of failure O

Design
controls D RPN Recommended actions

Rear hub Fracture Wheel fails 8 Manufacturing defects/
unexpected loading
(potholes)

1 N/A 9 72 Make system more solidly
mounted/separate tensioning
from wheel fixture

Rear sprocket Wear/
fatigue

Teeth wear and allow
chain slip

6 Wear from excessive use/
lack of lubrication/lack
of proper tension

4 N/A 3 72 Strengthen sprocket material/
clear instructions on proper
maintenance and easier chain
tensioning

7.7

Item Function
Potential
failure mode

Potential
effects of
failure SEV

Potential cause of
failure OCC

Current
design DET RPN

Recommended
actions Actions taken SEV OCC DET RPN

Chain Transfers
torque
from
engine to
differential
sprocket

Insufficient
torque

Nonuniform
torque
transfer

4 Wear due to
insufficient
lubrication,
improper
material
selection

5 Inspection 5 100 Proper
lubrication

Sufficient
lubrication
with proper
use of
materials

4 3 3 36

Link
breakage

Insufficient
torque
jerking

4 Misassembly
improper siding,
link stretch

4 Inspection 5 80 Proper
installation

Proper
installation
proper siding
with strong
linkage

4 3 3 36

Fatigue Variation in
torque
transfer

4 Cyclic tensile
load on the tight
side of the chain
due to applied
torque and
centrifugal force

4 Inspection 4 64 Test the chain
performance
at an ultimate
tensile load for
an appropriate
amount of
time

An
appropriate
factor of
safety for the
projected
load to be

4 3 3 36



Item Function
Potential
failure mode

Potential
effects of
failure SEV

Potential cause of
failure OCC

Current
design DET RPN

Recommended
actions Actions taken SEV OCC DET RPN

considered
in design

Sprocket Transfers
torque
from chain
to
differential

Nonuniform
torque
transfer

Differential
will not
receive the
uniform
torque

5 Wear 4 Inspection 4 80 Light weight
sprocket with
proper
material that
can resist wear

Light weight
sprocket
with ferrous
sintered
alloy

5 3 2 30

Jerking
noises

Uneven
torque
transfer

5 Tooth crack
Tooth

breakage

4 Inspection 4 80 Proper
assembly

Light weight
sprocket
with ferrous
sintered
alloy

5 3 2 30

Proper
material
selection

Uneven
torque

Differential
receives
varying
torque

4 Improper
installation
leading to
improper
engagement, i.e.
slipping
between
sprocket tooth
and chain shoe

4 Inspection 4 64 Proper
assembly

Proper chain
sprocket
assembly

4 3 2 24

Proper
installation

Differential Transfers
torque
from
sprocket to
each axle

Uneven
torque
transfer

Axles will
receive
uneven
torques, one
more and
other less

4 Wear
misassembly
loosening of
carrier bolts

4 Inspection
assembly
procedures

4 64 Proper
assembly
redesign of
fasteners

Proper
assembly
redesign of
fasteners,
used longer
bolts with
long nuts

4 3 2 24

No drive
transfer to
the axes

Vehicle does
not move

6 Gearbox bearing
seize

3 Prerace
inspection

3 54 Check
bearings for
vibrations

Vibration
test on
bearings
check oil
level
periodically

6 2 2 24

(Continued)



Item Function
Potential
failure mode

Potential
effects of
failure SEV

Potential cause of
failure OCC

Current
design DET RPN

Recommended
actions Actions taken SEV OCC DET RPN

Insufficient
drive transfer

Axles do not
get sufficient
drive

5 Gear teeth
stripped

4 Prerace
inspection

4 80 Check gear
teeth for wear

Wear test on
gear redesign
of gears

5 2 2 30

Lack of dive
transfer

No sufficient
drive from
gear box

5 Improper
lubrication low
oil level

4 Prerace
inspection

4 80 Proper
lubrication
check oil level
periodically

Oil level
indicator
placed on
front board,
proper
lubrication
and oil level
checked
periodically

5 3 2 30

7.9

Line
reference Function

Potential
failure mode

Potential
effect of
failure SEV Potential causes OCC Current design controls DET RPN

1 Power switch providing on/off
function to a power tool

Switch unable
to turn on unit

No power 7 Worn parts 2 Select part rated for expected use;
power cycling life test

3 42

2 Switch
intermittent
behavior

Notable to
power off tool

9 Corroded contacts 4 Select part rated for expected
environment, power cycling life test

3 108

3 Switch unable
to turn unit off

Notable to
power off tool

9 Switch hard to
reach when
operating

2 Switch has high contract color;
power cycling life test

3 54

• Provide an alternate means to power on the unit to lower the detection score of line 1.

• Provide an alternate means to power down the unit to lower the occurrence score of line 2.

• Provide an alternate location of the switch to lower the occurrence score of line 3.
Provide a safety switch that bypasses the power switch to reduce the severity score of line 2 and 3.



7.11 Pick out the best answer in each of these multiple choice questions:
(a) When prioritizing actions to be taken in an FMEA, which of the following priority rank-

ings should be considered first?

• Overall RPN (risk priority number)

• Highest severity ranking

• Highest occurrence ranking

• Highest severity times occurrence ranking
(b) An FMEA is being constructed for the manufacture of a syringe cartridge. The team has

developed risk ranking scale criteria for calculating the risk priority number (rpn). The
team has assigned 5 values for ranking likelihood of occurrence (O), 10 values for ranking
the risk associated with severity (S), and 5 values for ranking the risk associated with
detection (D). Using this method will most likely:

• Ensure that all values for O, S, and D are equally represented in rpn

• Give severity a disproportionate representation in rpn

• Give occurrence and severity an equal representation in rpn

• Ensure rpn reflects the priority for addressing failure modes
(c) Which of following is NOT a part of risk priority number for FMEA ?

• Severity

• Catastrophic

• Occurrence

• Detection
(d) All of the following are examples of design FMEA detection controls, EXCEPT for:

•Whole system testing

• Finite element analysis (FEA)

• Lab testing

• Adding extra thickness to a part’s notched area
(e) The intent of a recommended action in an FMEA is to reduce rankings in which of the

following orders of priority?

• Severity, Occurrence, Detection

• Occurrence, Severity, Detection

• Severity, Detection, Occurrence

• Occurrence, Detection, Severity
(f ) A potential infant mortality failure has been identified as the failure mode with the high-

est RPN in a design FMEA. What should you do next?

• Take no action until the failure modes actually occur

• Update the reliability growth plan to indicate that reliability targets will not be
achieved

• Start a team to identify the possible factors that can cause poor product
quality during manufacturing in order to identify corrective action for this
failure mode.

• Institute a burn-in test for each product to find infant mortality failure modes before
delivery to the customer.

(g) A potential failure mode for an electronics device is the complete inability of the power
switch to activate (or power on) the device. In an FMEA this failure mode would be con-
sidered in which
category?

• No function

• Partial degraded function
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• Intermittent function

• Unintended function
(h) Which of the following is a good design control to reduce severity or occurrence that is iden-

tified in a design FMEA?

• Change the system requirements to reduce system function

• Add additional inspection(s) in production

• Enhance design validation testing

•Modify the design to reduce stress on a component

Chapter 8 Loads, Capacity, and Reliability

8.1 (a) 1.39 × 10−3, (b) 721 V, (c) 2161 V.

8.3 r = 1 +
1
aγ

e− 2aγ − e− aγ

8.5 R = 0 2090.
8.7 >10 strands.
8.9 15.7 Nm.

8.11 c0/l0 = 4.64.
8.13 9%.
8.15 (a) 0.269, (b) 0.00669.
8.17 (a) Nine cables, (b) nine cables.
8.19 85.6 lbs.
8.21 0.0436.
8.23 10−15

8.25 0.670.
8.27 (a) 0.18, (b) 0.06, (c) 2.40 years.
8.29 (a) 87 cycles, (b) 1.25 × 106 cycles.

Chapter 9 Maintained Systems

9.1 (a) 0.885, (b) every 6300 hours, (c) every 4275 hours.
9.3 No, maximum value is 0.934.
9.5 (a) 0.7225, (b) 0.8825, (c) 0.7188.
9.7 (a) 4.04θ, (b) 455%.
9.9 1.044θ.
9.11 (a) 18.4 hours, (b) 12.9 hours, 29.5 hours.
9.13 (a) 0.9315, (b) 20.4 hours.
9.15 0.980.
9.17 65.5 days.
9.19 2.2 × 10−4/day.
9.21 (a) 0.897, (b) λ = 0.013/hour, μ = 0.111/hour, (c) 2% difference.
9.23 (a) 0.968, (b) 0.946, (c) every 18.6 days.
9.25 (a) 0.9594, (b) every 87.5 days.
9.27 Every 1980 hours.
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Chapter 10 Failure Interactions

10.1 (a) 0.058 MTTF, (b) 0.129 MTTF, (c) 0.182 MTTF.
10.3 (a) 1 – λ (2λ∗− λ)t2, (b) 1.56.
10.5 (a) 2/λ, (b) λ2t/(l + λt).
10.7 Standby: 2/λ2, active parallel: 5/4λ2.
10.9 (a) Shared-load system, (b) 1.063.
10.11 (a) Proof, (b) ≈1 – 3/8 (λt)4, (b) active: 0.99990, standby: 0.99996.
10.13 (a) 2(1 + λt)e−λt− (1 + λt)2e−2λt , (b) 1 – 1/4λ4t4, active parallel: 1 − λ4t4.
10.15 1.2 × 10−3.
10.17 (a) 0.9998, (b) 0.9996.
10.19 0.09902.

10.21 With ε ≡ λ/v, (a)
1 + ε + ε2 + ε3

1 + ε + ε2 + ε3 + ε4
, (b) ≈1 – ε4, (c) identical, ≈1 – 1.6 × 10–7.

10.23 (a) 0.9961, (b) yes.

Chapter 11 System Safety Analysis

11.1 Passive-inlet line rupture, either valve closed when stop fails, active-all other failures.
11.3 (a) 0.01, (b) 0.0185.
11.5 A B, A C, B C.
11.7 (a) Graph, (b) 9.15 × 10−4.
11.9 0.12800, 0.12385, 0.12387.
11.11 (a) M1: 0.382, M2: 0.637, (b) A: 0.382, B: 0.382, C: 0.637.
11.13 (a) 5.9 × 10−3, (b) 0.0508, 0.1016, 0.847 (c) 0.847, 0.0678, 0.0339, 0.0339, 0.0169.

11.15

λP α ε t

Item Failure Probability

Failure × Mode × of Worst Case × Time = CRITICALITY

Rate Ratio Failure EffectsTherefore,

Criticality = 10 × 10− 6 0 50 1 0 72 = 3 6 × 10− 4
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11.17

Item Severity Potential Occur Detect RPN

Function

Potential Potential Cause(s) Current Criticality
Failure
modes

Effect(s)
of failure

Mechanisms
of failure Controls

Wake-up Alarm Late to
work

6 Wrong time
set

4 More
than one
alarm

5 120 24

Getting
dressed

No clean
clothes/
wrinkled

Delayed 7 Forgot to
check
clothes

4 Check
the night
before

1 28 28

Getting
ready

Kids Late to
work

6 They
are kids

10 Time-
outs

5 300 60

Breakfast Nothing
available

Hungry/
delayed/
angry

8 No time to
make it/no
groceries

3 Cafeteria
fast food

1 24 24

Drive Weather Late to
work

6 God 5 N/A 10 300 30

Drive Traffic/
lights

Late to
work

5 DMV 4 N/A 10 200 20

Drive Accident Late to
work

10 Sleepy, cell
phone,
inattentive

3 Coffee 4 120 30

Drive No gas Late to
work

8 Forgot to
check or to
expense

4 Check
the night
before

1 32 32

Drive No ID
badge

Late to
work

6 Misplaced 4 One
location

1 24 24

Drive Flat tire Late to
work

8 Wear 2 Check
pressure/
Daily

1 16 16

Drive No keys Late to
work

8 Misplaced 1 One
location

1 8 8

IF you have kids, they will (usually) be the highest criticality for being late to work!
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Index

a
absorbing state 430
absorption law 496, 501
accelerated testing 262, 264, 265, 268, 273, 276,

277, 304
acceleration factor 263, 268, 270, 271, 276, 278
acceptance

criteria 4
testing 223, 300

accident 6, 51, 463, 465, 467, 470, 471, 478,
479, 480

activation energy 270, 271
adjustment parameter 395
advanced stress test 265–266, 268, 270
aging 4, 5, 47, 52, 53, 61, 62, 188, 228, 229, 231,

265, 333, 376, 379, 382, 383, 385, 386, 395, 398,
401, 402, 464, 466, 486

aircraft 2, 3, 5, 14, 78, 82, 93, 222, 227, 262, 283,
293, 295, 363, 395, 402, 466, 467, 468, 470, 471,
474, 539

alarms 90
alarms, spurious 471
analysis of mean 26, 114, 116, 123, 189, 195, 373
analysis of variance 26, 112, 113, 114, 116, 117,

121, 123, 126, 189, 195, 373
AND gate 483
ANOM. see analysis of mean
ANOVA. see analysis of variance
Arrhenius equation 270
as-good-as-new 68, 396, 412, 422
assembly line 407
associate law 19
asymptotic extreme value distribution 189
attribute data 223–228

automated protection 471
availability

asymptotic 404
interval 404, 408, 412, 413
point 404, 411, 414, 416, 419, 450
steady state 404, 451, 453, 454

average range 150
axioms, probability 11–12, 16, 23

b
backup systems and units 434
bar graph 24
batch size 39, 51, 169–170
bathtub curve 7, 47, 50–53, 158, 159, 188, 300,

333, 362, 376, 382–387, 399, 402, 464
battery 20, 78, 489, 491
bell-shaped curve. see normal distribution
Bernoulli trials 26, 27, 224
beta distribution 145, 227
beta factor model. see common mode failure
Bhopal 463
bias 468
binomial distribution

coefficients 27, 82
expansion 82, 522
sampling 38, 233
sampling charts 525
test 223–228
trials 26

biomedical community 50
B Life 239
Boeing 767, 470
Boolean Algebra 17, 18, 494, 496, 501, 502
bugs, computer software 53
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burnin 51, 165, 300, 302
buyer’s risk 250

c
cable 125, 368, 391, 487
calculator, pocket 5
calendar time 2, 57, 58
calibration 310, 468
capability index 10, 264
capacity
factor 58, 59
variability and deterioration 362, 376, 380,

382, 383, 386
carelessness 468, 469
case histories 466
CCDF. see complementary cumulative distribution

function
CDF. see cumulative distribution function
censored data
arbitrary 184–188
left 184–188
right 184–188
single and multiple 218

central limit theorem 127–129, 139, 140, 228
central tendency 24
chain 155, 219, 220
change of variables 123, 133
chemical reactions 270
Chernobyl 463
Chi-squared distribution and test 138, 289, 549
circuits 15, 53, 65, 71, 78, 88, 89, 93, 102, 231, 302,

392, 474, 478, 486, 487, 488, 499
classical sampling 37
clock time 184
coefficient
of determination 57–58
matrix 444, 446
of variation 370

combinations of events 17, 18
combined distributions 374–376
common mode failure 71, 76–77, 79, 82,

83, 89, 90, 91, 403, 418, 486, 497,
499, 502

communicative law 17
competing flaws 219
complementary cumulative distribution

function 24, 111

complexity, system 2, 47, 67, 71, 361
component

active and passive 486–487
count method 65, 66, 222
importance 502, 503, 505
interactions 427, 486
replacement 296

composite model 54
compressed-time test 262
computers 1, 2, 23, 62, 63, 64, 81, 88, 93, 94, 109,

406, 494, 499, 502
conditional gate 484
confidence

bound 35, 39, 181–182
intervals 33–39
level 181
limits 35, 137, 138, 140, 141

congenital defects 51
consumer products and psychology 3, 464, 466
continuous operation 262, 265, 411
continuous random variables 109–116
contour plots 182

mechanism 79
corrosion 52, 53, 153, 169, 191, 270, 395
costs 2–3, 68, 84, 86, 87, 221, 222, 229, 245, 395,

402, 406, 407, 465, 466
CpK, 342, 359
CPU, 63
cracks 5, 14, 15, 122, 134, 144, 149, 151, 234, 237,

239, 390, 492, 494
cross-linked redundant systerm 96
cumulative distribution function 24, 47, 110, 125,

132, 155, 371, 533, 536
cumulative effects 52, 53
cumulative hazard function 158, 464,

465, 481
curve fitting 274, 296
customer desires & needs 4
cut set

determination 501–502
importance 505
interpretation 502–503
minimum 499–501
qualitative analysis 499–503
quantitative analysis 503–505
ranking 502
uncertainty 505
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cyclical failure 262
cyclic operation 2, 184, 185
cycling, thermal 58, 301–303

d
data

censored 184–188
complete 214
field 169, 177, 179
grouped 288–290
ungrouped 214, 549

DC-10, 470
debugging 53
decision tree 478
demand failures 55–57
deMorgan’s theorem, dependencies, component

and operational 18
derating 52
derived distribution 115
design

alterations 90
characteristics 6
conceptual 4
criteria 4, 84
defects 486
detailed 4, 222, 332
life 5, 52, 75, 77, 82, 83, 90, 98, 229, 466
robust 6, 86, 304
specifications & parameters 6, 330
trade-offs 86
verification 223, 262

design of experiments 336
deterioration 1–5, 7, 52, 62, 134, 265, 379
differential equation, solution 523
Dirac delta distribution 122, 380, 392–393
disasters 465
discrete random variables 23–41, 197
disease, infectious 51
dispersion 24, 112, 370, 392, 468
distribution

109-142, 149-203
discrete 9–41
parameters 138, 256, 270, 539, 540, 545, 549

distribution-free properties 140
distributive law 17, 496
diversity 470
DOD, 285, 473

double exponential distribution 189
double sampling 189
doublet 502
downtime 58, 59, 407, 411, 414
drift 2
Duane plots 283

e
early failure. see infant mortality
earthquake 51, 193, 362–364
economic loss 329, 481
electronics 52, 53, 60, 61, 91, 93, 94, 272, 302,

304, 465
embrittlement 52, 265
emergency power 86, 434, 479, 481
empirical CDF, 117–120
engine 1, 2, 4–6, 53, 55, 58, 76, 78, 82, 151,

155, 179, 197, 222, 223, 229, 237, 239, 242, 262,
263, 264, 270, 340, 395, 402, 506, 509

Engineering changes 152
environment

operating 52
stress screening 299–302
work 469

environmental conditions 2, 4, 5, 44, 223,
300, 467

equipment
failures 7, 463, 464, 471, 487, 492
hazards 464–466
imported 471
redundant 470

error. See also human error
error bounds 492
error function 124, 212
estimate 33, 34, 37, 38, 39, 59, 64, 65, 68, 77,

80, 82, 99, 100, 101, 103, 109, 114, 115,
117, 132, 135–140, 161, 163–167,
171–175, 228–234, 288, 498, 505, 545, 546, 549

estimator 34, 35, 36, 115, 135, 136, 140, 230
ethics 465
Euler’s constant 189, 195, 375, 376
event 9–14, 16–21, 286, 484, 494, 496, 497, 499,

501, 502, 517
event tree 478–480
Excel spread sheet 535
expansions 31, 75, 82, 84, 97, 303, 375, 421, 503,

508, 522
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expected value 24, 26, 29, 33, 34, 43, 44, 57, 112,
143, 365, 366, 393

experiments
full and partial-factorial 353
two and three level 265

explosion 14, 483
exponential distribution
graph paper 63
power series expansion 31
probability plot 61

extrapolation 154, 279
extreme value distribution 149–203, 374–376,

543–545
extreme value probability plot 545

f
factor, adjustment 395
factorial 27
fail-safe 84, 90–92
fail to danger 90–92
failure
classification 483, 486–487
interactions 427–457
mechanisms 47, 49, 53, 58, 76, 177, 219, 262,

265, 266, 330, 376
mode interactions 62–64, 153, 327, 355, 358,

383, 384, 518
modes 62–64, 153, 327, 355, 358, 383,

384, 518
mode, single 153, 383–385

failure(s). see also infant mortality
active and passive 486–487
benign 465
catastrophic 3, 463, 487
command 486, 488
common mode (see common mode failure)
critical 472
defined 2, 149
demand 55–57
equipment 464, 471, 487
hard 94
independent 27, 62, 64, 77, 91, 188, 386, 418,

432, 434, 497
maintenance 188, 396, 401–403
marginal 473, 477
power 91, 468, 479

primary 53, 73, 440, 482, 486, 489, 494, 496,
497, 498, 501–505

random and aging failures 51, 52, 53, 55, 112,
188, 229, 231, 232, 265, 401, 464

revealed 407–411
secondary 486, 488
sources 169, 481
standby 79–80
switching 79–80, 439–442
times 147, 160, 162, 174, 177–180, 195, 229,
233, 546, 548

unrevealed 411–415, 418–419, 422
failure modes and effects analysis(FMEA)

cause of failure mode 327–328
design (DFMEA) 328, 332–338
failure modes 327–347
functional 328–331
outputs 347–349
pitfalls 349
possible effects 329, 331
process (PFMEA) 327, 328, 339–347

failure modes and effects criticality
analysis(FMECA)

criricality analysis 472
criticality 472
qualitative 473
quanitative 473

failure probability 21, 29, 33, 35, 37, 39, 43, 44, 45,
48, 53, 59, 75, 76, 80, 86, 93, 94, 101,
103, 104, 105, 133, 160, 233, 307, 362, 365,
367, 371, 374, 377, 388, 401, 439, 441, 460,
481, 482

failure rate
composite 58, 101, 392, 449
constant 51, 53–61, 66, 68, 70, 73–76,
80, 82, 83, 84, 95, 228–234, 411,
432, 441

defined 49
estimates 64, 80, 228–234
in Markov models 497, 503
mode 62–64
redundant systems 50
time-dependent 51, 52, 54, 61–62, 70, 73, 380,
446, 458

false alarms 14, 90, 465, 471
fatigue 53, 132, 133, 149, 151, 270, 303
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fault
classification 486–487
command 486
defined 486
primary and secondary 486
transient 94

fault handling 94
fault tolerant system 434, 439
fault tree

construction 482–483
cut sets 499
direct evaluation 494
event classification 503–505
examples 487–494
logical reduction 496
nomenclature 483–486
qualitative analysis 499–503
quantitative analysis 496–499, 503–505
top event 481, 503–505

field
data 177, 179, 223, 395
failures 153, 161, 162, 165, 264
life 262
studies 325

financial loss 51
finite element analysis 358
fire 492, 503
flash light bulb data 184, 538
flaw size 143, 144, 213
flood 362, 364, 391, 465, 489, 491
FMEA. see failure modes and effects analysis
fractional factorial experiment 353
frequency diagram 119, 129, 130, 131, 201, 509,

514, 535, 536
functional characteristic 328–331
functional principles 504
fuses 466

g
gamma function 157
geometric distribution 44, 45
goal-post loss function 235, 237
goodness-of-fit 152, 228, 285,

288–299
graph papers, probability 249
Gumbel distributions 189, 193

h
half factorial experiment 33
hardware 52, 53, 263, 290, 328, 330, 396, 453, 467,

470, 486
hazard

function 5
plot 218
rate (see failure rate)

hazards analysis 463, 465
heating elements 466
Herd-:Johnson method 249
histogram 119, 128, 129, 199, 201, 202, 509, 514,

535–536
house symbol 485
human

adaptability 467
behavior 464, 471
error 7, 464, 466–469, 494
reliability 396, 401, 467, 468, 471

hypothesis-testing 289

i
idempotent law 18
impact, mechanical 51
importance

component 502, 518
cut set 505

inclusion-exclusion principie 503
incredulity response 471
independent events 19, 72, 377
infantmortality 51, 169–171, 188, 381–387, 464, 466
INHIBIT gate 484, 485
inspection 52, 199, 288, 339, 413, 466, 506
installation, faulty 464
instrument panels 469
integrals, definite 521
interactions, statistical 152, 161, 263, 362, 382,

385, 386
intersection of events 19, 485, 502, 503
interval estimate 135–140
inverse operators 270

k
Kansas City Hyatt Regency 464
Kolmogorov-Smirnov test 549
kurtosis 113–115, 138, 535
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l
lamps 101
Laplace transform 443, 446, 450
learning experience 3, 494
least squares fit 60, 161–162, 546
life data and tests 122, 133, 135, 161, 276
limits, operational 305, 465
linear equation 546
linear graph 266
linear transformation 116
load-capacity interference theory 376
loading, cyclic 67, 364
load sharing 78–79, 432–434
location index 289
location parameter 152, 272, 376, 544
logarithmic transformation 154
logic
deductive 481
errors 53
expression 408

log mean 141
lognormal distribution
graph paper 129–131
parameters 132
probability plot 132–133

log variance 132, 139, 189, 195, 256
long-term multiplier 67
long-term variation 304
loss function, Taguchi 51

m
maintainability 405–406
maintainability engineering 406
maintained system 395–422
maintenance
corrective 403–406
idealized 396–400
imperfect 401–403
interval 399
personnel 406
preventive 396–403
redundant system 403

man-machine interface 468, 470
manufacture 4, 30, 51, 53, 66, 467
manufacturing processes 4, 223, 300, 327, 332,

338, 339, 464

Markov
analysis 78, 325, 427–434
availability 457
equation 429–435, 437, 438
methods 427, 432, 444
processes 325, 427
states 428, 429
transition matrix 450

maximum extreme value distribution, graph
paper 376

maximum likelihood 171–177, 287
mean

continuous random variable 109–116, 122
discrete random variable 23–26
drift 303
estimate 114, 139–140
process 324
rank 161
shift 247
shift, equivalent 239

mean time between failures 68
mean time to failure

defined 49
in maintained systems 397
in Markov models 370
in redundant systems 74
in reliability testing 249

mean time to repair 405–408
median rank 160–161, 245, 537, 539
median value 24, 132
memorylessness 54
military procurement 66, 67
minimum extreme value distribution, graph

paper 545
MINITAB, 60
mistake, repetition 347
moment, bending 365
Monte Carlo method 152, 197, 446, 502
mortality, human 50
mortality rate. see also failure rate
most probable value 24, 368
Motorola Corporation 16
motors 58, 143
moving averages 325
MTBF. see mean time between failures
MTTF. see mean time to failure
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MTTR. see mean time to repair
multiple sampling 81
mutually exclusive events 42
mutually independent events 56

n
noise

array 67
background 256
factors 67
inner, outer and product 51, 52

nonlinear plot 539
nonparametric methods 191, 533–537
nonredundant system. see series system
nonreplacement method 219, 229, 230
normal distribution

in data analysis 123
in load-capacity theory 369
plotting and paper 540
in quality 368

normalization condition 24, 31
null event 19
number of components 71, 89, 92, 417, 446
number of failures 2, 10, 23, 29, 33, 47, 68, 70,

284, 285, 288, 289, 407
number of repairs 410, 449

o
on-off cycle 184, 262
operation

continuous 54, 55, 80, 262, 265, 411, 487
emergency 470–471
environment 52, 86
fully loaded 80
life 223
routine 468–470
spurious 91, 92
state 403, 407, 416, 450

operators 299, 470, 471
optimization 4, 223, 282
OR gate 481, 483, 484, 485, 498
outliers 128, 268, 534
out-of-tolerance 2
overheating 89, 465

p
parallel, m/N, 84, 85, 90, 91, 92
parallel system. see also redundancy

active 72, 73, 436
standby or passive 73

parameters, design 6
parameters part 53, 121, 123, 133, 151, 507
parametric methods 537, 539–540
parent distribution 138
parts

commercial 67
replacement 54, 68, 296
spare 101
stress 66

parts count method 65, 66
parts per million 502
part-to-part variation 128, 161, 261
Pascal’s triangle 28
pass/fail test 224
PDF. see probability density function
percentage survival 230, 232, 233
performance 2–3
performance characteristics

larger-is-better 221
smaller-is-better 407
target 4
variability 4–6

periodic testing 411–415
permutation 21
physical isolation 89
physics of failure 134
pilot error 93
plant layout and automation 503
PMF. see probability mass function
point estimates 33, 135, 137, 138, 141
Poisson distribution

cumulative sums 39–41
Poisson process 57, 285, 288, 324–325
population

distribution 127, 135
human 51, 52
stereotype 471

power series, exponential 31, 57,
75, 393

power supply
emergency 86, 481
surges 51

pressure monitor 231
pressure vessel 86, 265, 390, 466, 486
primary system or unit 79, 80, 442–444
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probability
Addition law 12
axioms 11–12
classical 10
complement 12
concepts 9
conditional 12, 49, 55, 61, 197, 405, 407, 408
density function 47, 110, 111, 112, 113, 120,

121, 123, 124, 132, 155, 190, 371, 374,
380, 405

distribution 9–25, 29, 110, 111, 112, 122
event 9, 10
independent 19
intersection 12
Law of complement 12
mass function 24, 25, 34, 57, 70
mutually exclusive 12
outcome 13
plotting 117, 150, 160–162, 533–554
product rule 19, 71, 448
relative frequency 9
sample space 10
subjective 10
tree 14
union 17, 19

problem-solving ability 470, 471
procedures
emergency 470–471
faulty 487
maintenance 395, 470, 494
operating 471, 505

process
capability 349
control 338, 340
design 282, 464, 466, 472
mean 139–140, 368–373
mean shift 247
parameter 133, 140–142, 151, 166, 173,

287–288
target 4, 5

process variability
consumer 3
development cycle 4
industrial 463
life 467
life cycle 467

modifications 508
product 51, 464

producer’s risk 250, 251, 254
production line 300, 409
production process. see alsomanufacturing process
product limit method 305
product rule 19, 71, 448
proof test 45, 51, 145, 147, 265, 300
protective actions 467
prototype 4, 53, 215, 222, 223, 282
psychological factors 396, 470

q
quality

assurance 467
control 6, 16, 51, 53, 67, 86, 368
control, off-line 414
loss 51, 376
loss function (see loss function)
multiplier 67

r
random failures (Useful life) 47, 51, 52, 53, 55,

231, 232, 265, 387, 398, 401
random variable 23–41, 68, 109–116
random vibration 303
rank 117, 118, 160–161, 245, 502, 536–537
Rank regression 159
rare event approximation 75, 77, 82, 84, 86, 92,

93, 94, 95, 97, 413, 421, 452, 498
rational subgroup 362
Rayleigh distribution 104, 212
rectified equation 544
reduced system 97
reduced variate 124, 139
redundancy

allocation 86–94
cross-linked 96
high and low level 88–90
limitations 76–81
multiple 72
standby 72, 83–84, 449–453

reliability
block diagram 63, 85, 95, 96
component 63, 71, 85, 86, 89, 222
defined 1–2
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design life 77, 82, 83, 90
enhancement and growth 223, 282–305
human 396, 401, 467, 468, 471
index 370, 373
mission 439, 441
system 63, 64, 71, 73, 77, 81, 83, 85, 90, 94, 95,

96, 97, 380, 399, 428, 439, 448
testing 221–305

repair
crew 452
crew, shared and single 453–456
parts 68, 406, 407, 411
PDF, 405–407, 410
policy 422
rate 405, 407–409
time 406, 407, 410–411
unrevealed failures 411–415

repairable systems 404
replacement 68–71
resistors 141, 547
return period 391
risk analysis

Monte Carlo simulation 122
reliability/safety 122

risk, prediction 152
Risk Priority Number (RPN)

detection 333
detection table 343
occurrence 333
occurrence table 342
severity 333
severity table 341–342

robust design 6, 86, 304
root cause 481, 482
rotation of coordinates 469
rule-based actions 470
runin 51, 165

s
safe operation 92
safety

analysis 463–514
factors 361, 362, 368
guards 465
index (see reliability index)
margin 6, 361, 464
systems 463–514

sample statistics
kurtosis 114–115
mean 114
size 114
skewness 114
variance 114

sampling distribution 35, 128, 136–139, 36127
scale parameter 135, 219, 268, 542, 544
second-moment methods 373
semilog paper 539
sequential sampling 247–255
series-parallel system 94–96
series system 63, 71, 88, 149, 419, 421
service records 150, 205, 327
shape parameter 156, 158, 219, 268, 285, 288,

289, 542
shared load 78, 427, 449
shock, electrical 465
shocks 55, 56
short-term variation 128
shutdown, unscheduled 395
signal-to-noise ratio 51
single-parameter at a time design 54
singlet 502, 505
Six sigma criteria and methodology 353
skewness 113, 115, 535
soft failures. see transient faults
software, computer 53, 162, 457
spare parts 152, 229
spares, exhaustion 94
SPC. see statistical process control
specifications 233, 464
spread sheet 294, 535, 538, 541, 543, 545, 547,

548, 549
spurious signals 91
square deviation 46
standard deviation 117, 121, 127, 128, 130, 131,

140, 141, 369, 370, 508
standard error 512
standardized probability distribution 122
standard normal CDF table 530–532
standard normal distribution 139, 141, 371
standards 183
standby system

hot and cold and warm 80–81
mode 58, 79, 411, 439, 442

start-stop cycle 58, 150
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state
absorbing 430
failed 450
nonabsorbing 430
transition diagram 429

statistical analysis 135, 223, 525
statistical inference 127
statistical process control 340
stereotypical response 471
straight line approximation 161
strength. see also capacity
stress. see also loading
cycles 221, 546
electrical 66
environmental 299–302
fatigue 470
high and low 134, 265
level 72, 78, 265, 266, 270, 280, 299
psychological 467, 470
screening, environmental 299–302
testing, environmental 223,

299, 301
transient 80

stress-strength interference theory 376
structures 361, 363, 364
Student’s t distribution 138
subsystem 95–97, 448–449
supplement 219–220
suppliers 182, 183
survivability 50
survival times 122
suspended 151
switching failure. see failure, switching
system
centralization 467
decomposition 95, 97
maintained 395–422
redundant (see parallel and redundancy)
safety-critical 466
standby (see parallel state)
voting 92–94

t
Taguchi
loss function 376
methodology 51, 52

target life 262, 466
target value 4, 5
tasks

repetitive 469
routine 467

technology, advance 3
television monitor 465
temperature elevation 265
temperature stress profile 302
test-fix 53
testing

accelerated 242, 262–282
binomial /attribute 223–228
compressed time 262
environmental 299–302
exponential 228
failure-terminated 287, 289
group 289–290
HALT, 304–305
HASS, 305
interval 413–415
normal/lognormal 255–261
periodic 411–413
procedures 230, 249
reliability growth 282–287
sequential 247–255
simultaneous and staggered 419–422
stress, Arrhenius 270–275
stress, Inverse Power Law 275–279
stress, other acceleration models 280–282
substantiation 235–237
sudden death 245–247
time 6, 178, 222, 231, 241, 242
time-terminated 287–289
for unrevealed failures 411–415
zero failure 237–238

thermal cycling 302–303
Three Mile Island 470
three sigma criteria 258
time scaling laws 270
time sequence 480
time-to-failure. see also mean time to failure
tires 102
tolerances 2, 4, 5
total probability law 20
training procedures 470
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transfer-in and out triangle 485, 486
transformation of variables 115–116
transition probability 69, 455
trial and error 30, 33, 39, 224, 266
triplet 502, 505
turbine disk data 155
type I

censoring 219, 229, 231, 233
distribution 189
errors 229

type II
censoring 229, 230, 232
errors 229

u
unavailability 407, 414, 416, 418, 454, 456, 481
unbiased estimator 34
un-failed 151
uniform distribution 120–122
union of events 17
universal event 19
unreliability 48, 91, 389, 498
USAF, 175
user behavior 465

v
variability

part-to-part 128, 161, 261
short- and long-term 128, 304

variance
binomial and Poisson distributions 28
continuous random variable 109
reduction 496

sampling distribution 35, 136, 137
short-term 429

Venn diagram 16–20
voting systems 92–94

w
warrantee 282
weakest link 149–150
wear 99, 115, 130, 364, 399, 400
wearin 51, 53, 62, 381
wearout 101, 125, 150, 161, 164, 169, 186,

187, 256
Weibull distribution

beta 150
curves 152–153
cusps 152–153
graph paper 150
No failure 154
probability plot 158–160
shifting 153
small sample 154
system 153
t0, 164
three-parameter 166, 167
two-parameter 155, 271, 398, 542

wind damage 191

y
yield 31, 86, 88, 90, 113, 122, 382, 393, 406, 408,
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