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IV. 

DYNAMICS AND SCATTERING-POWER OF BORN'S ELECTRON. 

(From the Dublin Institute for Advanced Studies.) 

By ERWIN SCHRODINGER. 

[Read 22 JUNE. Published 30 NOVEMBER, 1942.] 
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THIS paper is the continuation of another one,1 to be quoted here as N.O. 

Yet I try to resume the subject in a way so as not to make the knowledge, 

at any rate not the thorough study, of the previous paper indispensable. 

The complex presentation of Born's theory is not required here.-Towards 
the end of N.O. (sect. 11) it became clear that even the scattering by a 

Born-singularity fixed i'n space is a very difficult mathematical problem, 
because it includes the solution of the differential equations (1, 5) and 

(1, 7) below. Additional complications are introduced when you drop the 

fiction of fixation of the singularity and allow it to yield to the field the 

way it has to for safeguarding the conservation laws. 

Pending the solution of those two ordinary linear homogeneous 
differential equations of the second order, I have tried to get ahead by 

approximation methods, less in the idea of producing already by them 

very valuable results-for they cannot possibly carry you into the truly 

interesting region of very short light waves-than with the scope of getting 

better acquainted with the problem and facilitating its true solution by 

knowing precisely what about the mathematical solution is physically 
required. A fascinating aspect of the equation of motion has been 

encountered on the way (sect. 5). 

As long as the wave-length of the light is large compared with 

ro( = 2,28 10-13 cm.), Born's theory appears to differ from Lorentz's only 

1 
Nonlinear Optics, Proc. R.I.A., 47, 77, 1942. 

PROC. R.I.A., VOL. XLVIII, SECT. A. [10] 
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92 Proceedings of the Royad Irish Academy. 

by terms containing some positive power of r0/X as a factor. To many 

a reader it may seem lunatic to bother about corrections of that small 

order by classical methods, whilst the Compton-effect shows us that 

everything goes wrong already with a wave-length of the order 

h/27rmc oc 110 ro, unless wave-mechanics, including quantisation of the 

electro-magnetic field) is introduced.-But, first of all, as has often been 

observed, the cross-ratio of the two ratios in question is not so huge, that 

one could declare a theory which is apparently connected with one .of them 

to be unfit ever to account for such features of observation as are 

apparently controlled by the other one (see e.g. the remark on the 

reciprocal fine-structure-constant at the end of N.O.). Secondly, though 
quite convinced that something like field quantisation is unavoidable, I 
have as yet come across no case where it allowed us to skip the classical 

treatment altogether-if the case had a classical analogue, which it mostly 
has. The Coompton-effect is no exception. For Dirac's equation, employed 
in deducing the Klein-Nishina formula, is but an ingeilious translation 
into wave-mechanics of Lorentz 's classical Hamiltonian. Many cases 
could be quoted where a detailed knowledge of the elassical aspect led to 
the discovery of a phenomenon, and served as a reliable guide in its 

quantum-mechanical description, after which that phenomenon was then 

declared-and perhaps with due right-to be entirely ununderstandable 

along classical lines of thought. Therefore I believe, if Born's electro 

dynamics has any bearing on facts at all, its classical understanding will 

have to precede its quantum-mechanical understanding. 

1. THE PROPER VIBRATIONS OF THE PERTURBATION FIELD. 

In Part II, sect. 8 of N.O., it was proved, that in Born's nonlinear 

electrodynamics the following holds. Whenever an electromagnetic field 
can be regarded as the sum of a weak field E, B, D, H and a purely electric 

field EO, D0, which is allowed to be strong,-is supposed to be known, andl 

has to be an exact solution of the nonlinear field equations, then the weak 
field is, in first approximation as regards its weakness,2 controlled by 

M1axwell's equations for an inhomogeneous, anisotropic magnetizable 
dielectric 

curl tf + B 0 - div B = 0 

curl H - D 0 div D =0 

with (1, 1) 

DI1= A-3 Ell Bil =-A-1 EF 

Dj_= A-1E 1 BL - AH 

A1 = Ji -Am02 

2 This point of view of approxiniation is not extended in the present paper. 
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ScHrDiNGcRn-Dynmtics and Scattering-power of Born's Electron. 93 

The notation 11 and I refers to the direction of 
- 
E?, which, by the way, 

equals ADO. The weak field is, properly speaking, a perturbation field, 

the equations (1, 1) are perturbational field equations. But we shall 
occasionally drop the term perturbatibon(al). To E?, DI we refer as 

main field, or occasionally as the field of reference, whereas the sum of 

the two is called total or trite field. In this paper the field of reference is 

always going to be that of a Born-electron at rest, even though the 

contemplated Born-electron may not be permanently at rest. Thus 
-r2 

A 4 ____ (1,1)' 

where r is the distance from the singularity of DO. 

The idea of perturbational field equations is entirely different from the perturbation 
theories (p.th.) I began to employ in 1920, though they also were p.th. of a field 

equation, viz. eitlher of the eigenvalue problem engendered by a certain linear homo 

geneous partial differential equation (1st method) or of the initial-value-problem of 

that equation (2hd method). There the perturbation consisted in an additional linekr 
and homogeneous term of the equation, causing a definite modification of any eigen 

solution (lst method) or of the unrollnient of any initial state (2nd method). Here 

the perturbation consists -in the quadratic terms of the original equations and creates 

linear and lhomogeneous field laws for any modification or modulation superposed on a 

definite exact solution of the original equations. The perturbational field laws, though 

subjected to the suzerainty of the original equations and even of a definite solution 

thereof, engender an eigenvalue problem of their own. Or rather, it is only they that 

create one, the only kind to which the original field laws give rise. In their non-linear 

form they have none, at any rate not in the familiar sense of the word. 

For the fictitious case, when the electron is supposed to be permnently 

at rest in the origin (immovable singularity), the complete formal solution 

of (1, 1) was communicated in nuce in sect. 11 of N.O. The proper 

vibrations resemble the corresponding Maxwellian ones for empty space: 

standing spherical waves of all possible electric (1) and magnetic 

(II) multipole types, which are conveniently described by vector-potentials, 

of which the time-component is always zero. We call the components 

'k in case I and 4//k in case II, whereby the subscripts 1, 2, 3 shall refer 

to the polar coordinates r, 0, ,, in this order. The choice of different 

letters, p and q, just avoids cumbersome subscripts "I" and "II," other 

wise it is the same physical quantity, from which the field, notably the 

field E. B, not D, II, is derived in the famniliar way. Writing for the 

moment x1, X2, x3, x for r, 0, , t and putting 

aq)1 3#kC 4_ a# 
kl= - - , - - (1, 2) 

axk Vx1 4/u ax,' 

the following six equations give the field in case I, 

Lr ts Ed,, ! 4 + s r r 
sinO (1,3) 

Br B B3 
031 

#12 
Br sin 0 r sinO r 

[10*] 
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whereas in case II the letter p has to be replaced by V. The Br, etc., are 

field components in the ordinary experimentalist's sense, all of the same 
physical dimensions, and so are the components of D, H, to be obtained 
from the "material equations" out of (1, 1).-The components Ok and tk 
themselves are, by the way, defined in the sense of generalized metrics, 

which greatly simplified my calculations and slightly simplifies the 
formulae (1, 2), (1, 4) and (1, 6). 

The electric muLltipole vi6ration associated with the " associated LIegendre 
function" P"m(0), n- 1, 2, 3,. , is obtained by putting 

n- nQ + 1) A F (r) p,4m (b) B mf etw 

#2 = A dP,(r) dPnm (0) sii eit( 
dr dO Cosm 

d )pm(9) dr (sin 
4's A dIrJ doj cos 

04 - 0 

where Fn has to satisfy 

FU2 d _+ 1)i< -Fn 0. (1, 5) 
dr" + r(l + r') r + nQn + 4) F 

The magnetic multipole vibration, associated with the same P." (but, of 
course, wholly -independent of the aforestanding electric one), is obtained 
by putting 

4'i = 0 

#2 CG (r) (sin 0)' pP (0) d( Sinos et 

d sin (1, 6) 
a = - G.(r) sin 0O dPm (0) MO et(,6 cos 

#4 = 0, 

where G,. has to satisfy 

__ Gndo 
+ 

(, (nlr\ 
d2 2 

+ 
dOn 

+ 
- ,,a 

= 0 
(1,7) 

dr" r (I + r1) di' \ i+ ' 
It is a matter of straightforward calculation to show that in both cases 

equ. (1, 1) are fulfilled. The substitution, paying attention to the well 

known differential equations for mo and Pm, leads you to demand 

(1, 5) and (1, 7) for F,, and Gn respectively, and nothing more. 

But it turns out that with F., and Gn arbitrary soltutions of their 

respective equations the dielectric displacement D would have a singularity 
r-3 in the origin, and that in consequence of this fact the perturbation 
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equations (1, 1), though they are satisfied all right, are no longer competent, 

the perturbation being, near the origin, stronger than the main field 

(actually the total field would violate Born's equations there). 

Equ. (1. 5) has at r = 0 the exponents - 1 and 0. Only the fundamental 

solution with exponent 0 reduoes the singularity of D to r2, and thereby 

avoids the deficiency just mentioned. 
Equ. (1, 7) has at r = 0 the exponents 0 and + 3. Only the fundamental 

solution with exponent 3 (by removing the singularity of D altogether) 
avoids the deficiency.-These two remarks complete the definition of the 
proper vibrations. 

For future use we put down the components of E and B, obtained by 

inserting (1, 4) or (1, 6) in (1, 2) and the result in (1, 3), whereby 

considerable simplifications take place in virtue of the differential equations 
for Pgn, F,,, G.. Indicating, for shortness, the derivatives with respect 

to r, 9 (not cos 9) and 4, occurring on the right hand sides, by sutbscripts, 

we get in the electric case (i.e. with 4k): 

= iw @n(n + 1) A' sin -Er r~~2 f'f PUti o in,.l6 

(F.)r (pCOn) B MO eit 

B6E - iw'iA (Fjjn)r (P,,'(inMO6w 

E 4- r siuO (Fn)r p,,n(c wfli) 6t.i 

(1,8) 
Br = 0 

rsinU 
F 

p,m in\os 2 4' sin 
B 

_ @ 2 Fn 
(Pnm),1 'fitnlj eXwt. 

r Cos 

In the magnetic case (i.e. with ?): 

Er = 0 

14 iw a, Pn (sin m3s \ X r sin 9 kCos 

E On G (Pn"m) 
si 

m6 

(1, 9) 

Br _ n(n,+) aPG,,03"& sinm eiot 

Bo (GC) (pJ,m)@ MO e6t r Cos e 6 

1 (sin 
B4, =rs-in a (nt)lr Pit", yCo8 MO) ei4t 
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A stands for the function (1, 1). An individual factor, a power of A, 

evident from (1, 1), is to be added to every component of E, B, if the 

corresponding component of D, I is desired. Behold the relatively 
complete symmetry between the two cases, but also that it is broken not 

only by F,, and G,, being entirely different functions, but also by entirely 

different powers of A entering. The statements made above about the 
nature of the singularities in the origin are now easy to check. 

With A = 1 and with F,, or G,, replaced by r J,,.i (wr) the potentials (1, 4) with the 

field-components (1, 8) or the potentials (1, 6) with the field-components (1, 9) describe an 

ordinary Maxwellian vibration of empty space, without an electron at the origin. This 

vibration is the sdperposition of an ingoing spherical wave and an outgoing spherical wave, 

corresponding to the splitting of Jr J,,,i (cwr) into Jr H('),+ (wr) and jr HI(2)n (wr). 

The latter products, in which H means the Hankel-function, approach, apart from numerical 

factors, to eiwr and e-iwr, when r becomes large. Hence, if at large distance from the origin, 

where A -->- 1 an 'how, one of these exponentials appears in lieu of F,. or G,. (or forms part of 

that 1,, or G4, that does appear there), then that means an ingoing or outgoing spherical 

wave, according to the sign of the exponent. We shall use that in special cases. 

On the otlher hand, slight and pretty obvious generalisations, needed in Section 5, are 

obtained by replacing everywhere in (1, 4)-(i, 9) the product F,, (r) eiwt by 4,, (r, t) and 

the product G,, (r) eiwt by G. (r, t) anzd iw by so that (1, 5) and (1; 7) turn into 

partial differential equations, controlling the functions of two argunments F,, (r, t) and 

G. (r, t) respectively. It is easy to check directly, that this procedure yields solutions of 

(1, 1), mor e general as regards their time-dependence. But a moment's refleetion on Fourier 

analysis, or rather Fourier-synthesis with respect to t, is sufficient to. render an actual check 

superfluous. 

2. SCATTERING BY AN IMMOVABLE SINGULARITY. 

Although the point of genuine interest is, naturally, the total response 
of the electron to an external field, including its being set in motion, we 

shall first deal in full with the fictitious case, which consists in replacing 

the electron by an immovable singularity at the origin. That is useful for 

various reasons. First of all, we thus get the effect of non-linearity, so 

to speak, in pure breed: for a Lorentz electron would under these 

circumstances not scatter at all. Secondly, the greatest part of the 

calculus -can be taken over without any change to the actual dynamical 

case. Yet the latter offers, as we shall see later on, oine peculiar difficulty, 

which it is very agreeable to have well separated from the mere 

technicalities, always involved in a scattering-calculation.-In sects. 9 

and 10 of N.O. we dealt with the fictitious ease only, and only in first 

approximation. The results we, rather frivolously, compounided with the 

known results about the electronic motion, a procedure which, to my 

amazement, seems to introduce a wrong factor 2 in the Born-correction 

(see sect. 7, below). So we now remove, one hy one, the two deficiencies 

of the N.O. treatment, viz., (i) the restriction to long waves, (ii) the taking 

the dynamics for granted. 
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Supposing the relevant solutions of (1, 5) and (1, 7), viz., the Ft, with 

exponent zero at r 0 O and the Gn with exponent three at r- 0, to be 

known-which they are not-the tackling of the fictitious case is straight 

forward. Like any solution of either equation, ours must approach for 

r >> 1 to Bessel functions, index n + j, argument wr, multiplied by \/r, 
which we express thus: 

Fn * A,, Jwvr .*J+4 (wr) + A-, Jwr J ,, i (cor) 

CG, * B,n Jwr tJn+r (wr) + ]B Jwr. J,n (wr). (, 1) 

Natural]y, the equations' only determine the ratios X -,/AA and- B IB,,. 
lWe assume them to be known for every n and o. 

Let uis now assume a plane, linearly polarized incident wave, consisting 

-if the electron were not there-solely of the one component of vector 

potential 

A= a (2, 2) 

and having thus in the origin-if the electron were not there-the electric 

vector 
Sin ciden t - it(22) Eytlie2= aet" (2, 2)t 

It would, in this case, be exactly represented by the following 0k's and 

4/'s, where now, of course, only the sums #Ak + 4k have a physical meaning: 

a a erre I il "(2n + 1) P,sn (or t Jw,r J+ ((or) 

#t2 - a&'3 eiat 72 2n ? 1 (Pn,)6 sin 4 (J.9 J,,f (wr))r 

i t f7r eiwt 2nit1 COS ($U+ J (tr4 

(2, 3) 

4)2 - aa-c e%wt 7W z jf+ ( 1) (sin 0)j P2, sin tNJO J,,+j (wr) 

4', - al,A eiwt 4? jfl+l 2nIt 1l) sin ( (P2)6 cos w Jwr J +(WV). 2n (n + 1) 

Let me skip re-stating this well-known expansion, though it may appear 
here in a slightly simpler form than usual. 

This expansion could be imitated exactly, though only asymptotically 

for r -> c , by inserting (2, 1) in (1, 4) and (1, 6), then combining the 

single multipole waves with the coefficients A, and B, demanided by (2, 3) 

if the coefficients A,, and B,, were all zero. Thus, except for thent, 
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the presence of the electron would remain unnoticed at large distance. 
The non-vanishing ratios A,1/An and B ,/B, alone are responsible for the 

scattering. 
To render mathematically the assumption, that the incident wave 

consist precisely of (2, 2), it would be nearly correct, but not quite correct 
to choose, e.g. for A, the value 

12n + ]1 

indicated by comparing (2, 3) with (1, 4). It is perhaps quite interesting 
to mention that this rough procedure, when applied to the ordinary Rayleigh 
scattering, just obliterates the effect of radiation damping. The correct 
procedure is well known to be as follows. With r large 

+ 
2~1 / 7 Itl~ *tt+ 1 

J@?' Jn+^ (WV) +|- cos (wr - +2 = eiwr + 

(2,4) 
$Z> J n * (WV1 ) + -* COs (W?' + 7) = eiwr + e r 

The parts with the." positive"' exponentials, when combined with eiwt 

are obviously ingoing waves, the others outgoing waves. The former halve 
to be matched. The supernwmerary p,arts of the latter are the scattered 
radiation. Hence our constants have to satisfy the relations 

A,-,n - X +, " - a& 17,. 2n + 1jZf-l 
J27r A 27r it (n + A) 2w 

(2, 5) 

>12tr Bn + :2- B ,, = a 7r 
it" n N1 

whereas the potentials of the scattered waves for large r are obtained by 
putting A = l and in = 1 in (1, 4) and (1, 6) and inserting there for 
F,, and Gfn the exponential eri.r, multiplied by two other constants, which 
we call an and bn respectively, and which are determined by 

jfnltl1 ,-n 1r 2n + 1 i 

+ 
- 

- 
aw. 72- A,, + 1 A-n- 42 n(n + 1)2 = a 

(2, 6) jit 

+r 2 2n + I 

Bn + IL,, - aar-' ---' 

J2 72 12 n (nt + 1) 2 b= 

It is convenient to introduce by 

Ai" = tan a,,; In = tai it (2, 7) 
B,, 
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the real constants an and 8,', which we call the phase-shifts. They are 

of course, functions of w, determined unequivocally, but in a very com 

plicated way by the equations (1, 5) and (1, 7) alone. By working out 

(2, 5) and (2, 6) we get 

ac&3 tan a,, 2n + 1 
a,, a,, 

=]. 
+ (- 1)M i tan 

an n (it 
+ 

1) 

'(2, 8) 

-ia,b-2 
tan 8,,' 2n + 1 

1 + i tan a,,' n(n+ 1) 

The computation of the total energy flow includes nothing worth 

speaking of, since 'the field components (1, 8) and (1, 9) asymptotically 

coincide with the familiar ones. The scattered energy per unit time, 

integrated over the sphere, is given by the expressions 

e 24+1 a Sill= 2 aa2 sin2 4', ('2, 9) 

where n is the order of the multipole and the prime indicates the magnetic 

case. The total scattering i's 
ao 

etotal = E (en + e,,'). (2, 10) 
1 

There is, of course, an interference effect, because all the multipole 
radiations are coherent. But it cancels out on integrating over all angles. 
The peculiar angular distribution it produces was discussed in N.O., 
sect. lOb, for long waves, when the two kinds of dipole-scattering (n = 1) 
prevail and are, in the case of the fixed electron contemplated here, of 
the same order of magnitude. 

The factor 87r/a2, being the reciprocal of the energy flow in the incident 
wave, has to be added in (2, 9), in order to obtain the individual scattering 
cross-sections. 

Though we have thus completed the formal theory of scattering of light 

of arbitrary wave length by a fixed Born-singularity, yet already the 

complete identity of the two expressions (2, 9) can tell us that they do 

not yet contain anything characteristic of our particular problem, and 
would, indeed, be the same, whatever "mechanism" near the origin 

produced the phase-shifts. The only non-trivial statement is, that and 

precisely in what way the two sets of equations (1, 5) and (1, 7) represent 

this mechanism in our case. To find from them the two inifinite sets of 

functions of a) which they thus determine, that is truly our scattering 

problem. The next section explains a method of obtaining at least their 

exponents at w = 0 and, at the expense of much labour, the early parts of 

their power series. 
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3. DETERMINATION OF THE PHASE-SHIFTS. 

(a) General method. 

To fix the ideas, we concentrate in the first thre-e subsections on the 

electric case, equ. (1, 5). Yet everything applies, with slight but relevant 

changes, also to the other equation, which has only one sign different. 

The changes are occasionally mentioned forthwith, but dealt with in full 

in subsect. (d). If you wish to save turning leaves whilst reading the 

following paragraph, keep your eye on (3, 2) below, which is the form of 

(1, 5) obtained l?y the transformation (3, 1). But, for the moment, the 

exact wording still refers to (1, 5). 

Out of many attempts I made, the only one to meet with any success 

at all was the obvious and well-known one of expanding the solution itself 

into a series of ascending powers of W2. It is a method of iterated 

integrations. The absolute term in the series is a solution of the equation 
with 02 = 0 (let us always call that the homogeneous one, for shortness), 
notably that solution which itself satisfies the requirement at r = 0; the 

coefficient of 02k is always a solution of the corresponding inhomogeneous 

equation with second member: minus the coefficient of Z2k- 2; notably 
that solution thereof which does not impair the requirement; the require 

ment, it may be remembered, is: exponent zero at r = 0 (exponent three 

in the magnetic case). 

But that is not all. The second, and indeed the most de]icate, part of 

our investigation will consist in examining the solution thus obtained, 

with regard to the proportion in which it "contains" the two Bessel 

functions-see the statement (2, 1). We come hack to that point very 

soon, but must first give details about the iteration process. 

The simple transformation 

z = rt y(z) = F,,(r) (3,1) 

by turning (1, I) into 

5" 5+3z n(n +1)? 
2 

, (3 
4z(1 + z) Y 6z ( I + z) Y + 16z Y( 

greatly facilitates both parts of our enterprise, because the "homogeneous" 

equation is now of hypergeometric type. Its two fundamental solutioins 

at r 0 O are 

n+ 1 5. 
y, 

= F ( - ; 
- - ;: 

(3, 03) 
=n-l n 2 3; 

y2 t -i s r e th n n t 

where FY means the G+aussian series, this notation not to be confounded 
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SCHR6DINGER-IDynamics and Scattering-power of Born's Electron. 101 

with Fn. On the other hand, I beg the reader to remember that y, y1, y2 

carry a "silent" subscript n which, particularly when you have to specify 

it, is actually easier to remember, than to disentangle from the other one. 

The function from which to start our development in powers of a? is 

obviously y11. Let us put 

y =y ()2W,o 4 (1 w + ... + 2kWk + * (3, 4) 

The reciprocal of the Jacobian of y1 and y2 is easily found to be 

Y, ?/1r 
_ I 

xl / = - 4 z(1I 
+ 

-2,. ,Y 2 Y2t 

Hence from the well-known expression for a solution of the inhomogeneous 
equation we get 

t1 - { | - yif z3 (1 )z yy y2 dz + Y2J zi(1?zft& y, 

(3, 6J 

U2 4 i: y~ Jz-1 (I + z)-i w y2dz *y, z-i (1 + z)-i w,y,dz4 

The lower limits of the integrals are, to begin with, all arbitrary. For 

the second integral in every line the limit zero is uniquely imposed by the 

singularity z-A of y2, which would otherwise infect the w in question. 

In the case of the first integral in every line the choice is actually free 

again and againi, but adds nothing to generality, because to change one 

of these limits amounts to nothing, more than to adding a constant 

nultiplier to the total solution (3, 4). The value zero, always permissible 

with regard to convergence, is recommended by simplicity. 

Before embarking on actual computations it is necessary to scrutinize 
further what I called the more delicate part of our task, which consists in 

finding out from ani expansion like (3, 4) the ratio AII/An which the 

function, represented by (3, 4), will exhibit, when decomposed according 
to (2, 1), this decomposition holding only asymptotically for r >> 1. The 

trouble is that, naturally, only a few initial terms of (3, 4) can be actually 

computed, by far too few for comparing them directly with the asymptotic 

behaviour (2, 4) the Besselfunctions exhibit for or >> 1. Hence, as far 

as I can see, only the permanently convergent power series are available 

for the latter. Since a power series, though permanently convergent, is 

unfit for practical use with large values of its argument, the salvation lies 

only in the simple fact, that with X small you will find a region where wr 

is still smalL or at least moderate, so that the power series are of avail, 

yet r itself is already large enough, to justify the asymptotic decomposition 

into Besselfunctions, and also, as we shall see, to oUtain manageable 

expressions for the coefficient-functions Wk in (3, 4). 
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Assume first 0 to be arbitrarily small, so that, from (3, 4), (3, 3) and 

(3, 1), the function 

y =1 = F (-) - 

4- 5 

- (3, 7) 

4' 4 '4 ? 

is a sufficient approximation for F.(r). In the point z- = 0, that is to 

say at infinity, y1 is a certain well-known mixture (see equ. (3, 9) below) 
of the two fundamental solutions there, which axe represented by two 

power series in z-1, valid for z > 1 and having the leading powers zA and 
n+1 

zr (or r-" and r+1) respectively. Now these are precisely the leading 

powers of the two permanently converging power series&that represent the 
two r-functions in the decomposition (2, 1), one of which-let that be 

noted-is always an even function, the other an odd one. Hence, in virtue 

of the existence of the intermediate range of r described above, there is no 

doubt that in this case the desired ratio A-n/An can be read off by equating 

to unity the cross-ratio of the two couples of leading coefficients. 

(b) First approximation. 

Let us carry out this first approximation at once, to see how it works. 

The relevant transition relation for the hypergeometric function, written 
with - z, to serve our purpose, reads3 

[' ( a ) _ _ _ _ _ _ _ __a ) a 

F?(st)kr F(a P3; y; - z) F(n, -y 
+ a; 

a+ 
a; 

+ IL(1A3)((;;P) z- F(f3, 1 - y?; I -a+j3; a -r). (3,8) 

Using this for (3, 7) we get 

p( 2n+ 1) F5) 

r(2n;l P ) r;T F( n( 4 Z + 

r.(n 6) r() n+i(-_ 4' 4; 4 

On the other hand, from the well-known power series for the Bessel 

See Whittaker and Watson, Modern Analysis, 4th edition, p. 289, where, by the 

way, a slight flaw in some of the r-functions has to be emended.?That our argument 
is not z, but -z is vital, otherwise the third singular point would block the transition 

on the real positive axis, where we need it. 
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functions (x is a neutral variable, used only for this moment) 

JXJ,,+k(x) = (1 + QQr$) 

2-n +3 3o 

Jr J-n-j 06) =2-"-& (_ 2n-1)~ + o D)n(3,10) 
-v K n- 

I 0x2 

Hence from (2, 1) 

Fl 2 & A j2n 3) (1 + 0 (W2r2)) + 

+ 2--1 - (2 -1) K1 +0(wrV 3,11) 

Remembering zi = r and equating, according to plan, the ratios of the 

leading coefficients in (3, 9) and (3, 11) we get 

2 I 2n + 1\~ rn?6>rn\ 
( )2^ll 

~r ( -2)r ( - 4)r (4) r(4 
A- At - 2tv + ( 2 4 I)( ) 4 

(3, 12) 

You observe that the ratio is never infinite. If n is odd and > 1, either 

n - 5 or n + 1 is a non-negative integral multiple of 4, hence in this case 

tan Thn is zero-in our present approximation, not necessarily in the higher 
ones, which proceed. of course, always in odd powers of w. So we can only 

say 
tan &k+1 0(w4k+5); k 1, 2, 3, 4 ..., (3,13) 

where 0 (X$) means: of order ar, or smaller. 

The case n = 1 is exceptional, and we take it in advance, in order to 

have done with all odd n. (The magnetic dipole, by the way, will prove 

to be not exceptional, because it will turn out that in the magnetic case 

it is the even n's for which the first approximation gives nothing.) 

Withn = 1 

tana1 = ()' ! L (P9744) (3,14) 

An easy reduction gives you 

tan a1 = - ,3 (4)2 

6 r 
(3,15) 

= W3 - Ob)' 

This content downloaded from 185.2.32.90 on Wed, 18 Jun 2014 19:46:28 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


104 Proceedings of th,e Royal Irish Academy. 

Here we have re-introduced Born's cdnstant y,-that it is a namesake of 

the customary third argument in'Gauss' series is an accident. Originally 

defined by the complete elliptic integral 

J: dr 
'V = JI 

- r_ 

it can be transformed, by r04 z, thus 

OD 
~~~~~F(1)2 

7 = 4j (2z-(1z + i- dz = 4J (3, 16) 

where we have used 

zp- (1 a z)-p-q d: Ftp) F (q) 
Jo F (?g) 

By the way: I(1), more especially just y, is the only transcendental 

number, besides r, that I have met with hitherto in developing Born's 
theory. 

To check (3, 15) with previous findings we calculate e1 from (2, 9) and 

multiply it by 87r/a2, to get the corresponding cross-section. We obtain 
for it 87ry2W4/3, which corresponds exactly to the polarizability y found 

in N.O. by a different method (for checking, use (10, 3) l.c. and consider 

that w = 2r/X, in our units). 

If n is even, the r-quotient in (3, 12) is reduced by first eliminating 

those rFs in which n occurs with a minus-sign, with the help of 

r(p)r(1 - p) = r/sin p7r, then using the formula4 

r (p) rp+ )r ) . . . r p + 1 = (2<)#- s1-' (Sp) 

for s = 4 and p = . After some obvious reductions you get 

tani 2 ~ ~ ~+3 (n = even). (3, 17) 
4 2i 

(n - 1) 
3 

(2?)2 (2n 
- 

1) 

The coefficient can be expressed by y alone, which this time is in the 

denominator. E.g. 
4 

tan2 = 
- co (3, 18) 

The negative sign of all these 8 's must mean something similar to what 

for n = 1 we express by saying the polarizability is positive. To interpret 

the meaning for n > 1 precisely, one would have to return to the con 

siderations which led up to (2, 5) and (2, 6); but it is not interesting. 

* 
Whittaker and Watson, Modern Analysis, 4th ed., p. 240. 
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The order of magnitude of the scattering decreases rapidly for the 

higher. multipoles, even more rapidly than the power w)"+' seems to 

indicate. For even the next term in tan 81, which is expected to be, and 

actually is, of order wl, the same as tan 82, still makes a larger contribution 

to the total scattering than the whole quadrupole effect. For, in 
co-operation with 4', it produces in (2, 9) the power 06, whereas the unaided 

L5 of tan 82 only produces ut.-This situation is still more marked in the 

case of the yielding electron; for the yielding, as we shall see, produces 
in tan 81 a term with the first power of w, preceding the one with )', while 

all the other phase-shifts remain the same, up to all orders in . 

(c) Htgher approxinations. 

The general procedure will be illustrated by the second approximation 
for the dipole, n = 1. The solutions of what we called the "homogeneous 

equation," whieh were given in (3, 3) for arbitrary n, are for n = 1 the 

following: 

=l 541(4t + a + jaiz-; with I(z) zJa-(1 + z)-i dz Yi 3 0 0 ~~~~~~~~~~~~~(3, 19) 
Y2 z S i . 

The second is obvious, because the second Gauss-series in (3, 3) equals 
I for n = 1. From y2 y1 is easily made out directly. From (3, 16) it 

will be seen that 

I( o) = 4y. (3,20) 

To obtain w1 we insert (3, 19) in the first of the recurrent formulae (3, 6), 

giving 

WI = +6 t (41 + z + iZ-kI4 zaik(1 + z)-i(1 + z + iz-il)dz + 

4 z-i z-ia(1 + z)-( + Iz_tI dIs| (3,21) 

The fite integrals with which we are faced here have to be treated, more or 

less each separately, by partial integrations-the first scope being to express 

them as simple integrals, which brings them in direct reach of tables; the 

second scope, to transform those of the simple integrals which diverge at 

z-= 0, where the behaviour of w1 interests us, into convergent ones. The 

result of this reduction is 

1 _ _ _ _ _ 

W= {- (41 + s + j X ,F( + 162 + 

4( 8 1 
+ z-iK1 0z-I(l + )-1dz - 5azi(1 + z)-& + 

ba*(1 
+ a)& + (3 22) 

1 1 
X 3) + + 
4f87 
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This is now easy to expand at infinity; for instance 

I (z) 4 4y - 4z- i + 24 _ *6 + - 

(3, 23) 
*r 4 6 7 5x J zI + z)->dz ,, - 3- + - a +2 

whilst everything else is still more obvious. Let us imagine this expansion 
to be performed, and indicate it, for shortness, by (w, expand.* We minust 
insert it in (3, 4), where we also have to insert for y, th6 expansion (3, 9), 
already used before, to be specialized now for n= 1, when it reads 

2y~~~~~ yl= . -i-z + jziF(- ~, _ ; j; _ zl). (3,24) 

Hence the second approximation to the required solution of (1, 5) or (3, 2), 
for n = 1, reads 

y (z) = F1 (r) - 2 * z& [1 + 0r(Z1)] + w' (Wi expand. (3,25) 

On the other hand, (3, 11) gives in this case 

F1 (r*) - L &r' 4 [2 + 0(,Oo32)j + 

+ A1 w'r' ij [i + O@u2rj. (3, 26) 

From the confrontation of the last two expansions we must extract 

second order information about the ratio AMI/An, the ultimate scope ofl 
all our striving.-One feels tempted again just to compa.re the leading 
terms as before, which have remained the same in (3, 26), but have received 

a small correction, coming from {1}expand in (3, 25). It so happens that, 
proceeding thus thoughtlessly, we should commit no fault in the present 

example, but we would in general and in principle, if the case is to stand 

as a paradigm of the general nmethod of expanding the phase-shifts in 

powers of o2. . The mere fact that (3, 25), needed emendation by the 

w_-term, must make us suspect that (3, 26) wants overhauling as well. 

Indeed, as it stands, it is asymptotic only. This circumstance might, 
and indeed does, falsify its leading coefficients in the proportion of 

[1 + Oo(3)J 1. We shall find s -- 4, innocuous in the present case. 

Let me expose the method very succinctly. It consists in solving our 

equation (1, 5) by another-iteration process, very similar to the one carried 

out above in the variable z = r4. This time we have to use the variables 

x = oW f (x) = Fn (r) (3, 27) 

and have to regard as the main part of the operator of the equation 
that part which, standing by itself, would produce the Besselsolutions 
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S tJn+b SJflI *X whereas everything that from this point of view is 
superabundant is treated as "perturbation" or "second member." 

Throwing it actually to the right, the equ. (1, 5) reads 

+ 
(1 

- n 
(n + 1))f c _,2xf <-t (it +1) (8, 28) 

x2~ ~ ~~x (4)' + t4) 

= - o4' 6 (2xf' + a(n +1)f)[1+0 (w)]. 

The underlying idea in the last line is, that x be >> ? (that is r >> 1), 

though x itself may, be fairly small. If you put, considering (2, 1), 

= =4h+(), / <xjn (X) fl j J++ (x) f 2= J (x 
fo = A ??f2 + A,,f, (3,29) 

f =fo ? + W8u4 + .U.. 

you easily get 

tb,= (- 1) ni1 f, x Itx f2 (2xf' + ni (n + 1)f ) dx + 
-2R x (3, 30) 

+ /2 ft-vf(2xf' + n(n + 1)f)dx;, 

and so on-but if one actually intended to continue the iterations, a 

sufficient amount of the 0 (W4)-terms out of (3, 28) would have to be 

included even already in the formula we have just written down.-The 

constant limits of the integrals are this time dictated by the necessity of 

annihilating the uk's for x -s> o, since ft is to be the asymptotic solution. 

We need not continue. It is clear that (3, 30) would have to be worked 
out and taken into account only at the next step, the step that would 

include w2 in (3, 4). 

Returning after this sort of digression to the actual comparison of 
the characteristic coefficients in (3, 25) and (3, 26), we need the terms with 
z-1 and zi out of the expansion abbreviated by (iJt1expaad' From (3, 22) 
they work out thus 

tWJjexpand. . . . a Z& + + * . + z ( 
5 3 

+ 46g) + . * . (:3,31) 

Hence the characteristic terms in (3, 25) read 

y(z) = F,(r) = ... - _'SW) + . . + 

Jr z- i rs 9 _ A, 3t rr-) + *** (3, 32) L_ /5 
' 

a 

Equating their ratio with the one in (3, 26) you get 

t 
Al 273 (4 5 27 ya) 

- 1'2361 {t 3 - 0-3867 5 + . . . (3, 33) 

PROC. R.I.A., VOL. XLVIUI, SECT. A. [11] 
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(d) Magnetic multipole waves. 

The magnetic case can now be explained in comparative shortness, 

because from its electric counterpart, dealt with sub (a), (b), (c), it differs 

only by the fact that the hypergeometric equation which serves as an 

approximation, for w 0 0, to the now competent equation 

+4z + ___) Y n(i +n? ) Y + y6z Y = 0 (3, 34) 

-obtained from the now competent (1, 7) by the substitution 

Z r' 4, y (z) (r) (3, 35) 

-I say, the difference lies only in the fact, that the approximating 

hypergeometric equation has the third argument of its standard solution 
i instead of ; and in the further fact, that of its two fundamental 
solutions at z = 0, viz., 

Y' 4 ' 4 , 4' 
(3, 36) 

1/ = p(4 +; i; ) 

the physical problem selects y1 to be the approximation function, because 
the physical problem demands of Gt the exponent 3, not 0, as it did of 

Fn. Apart from these two changes our present investigation runs 
completely parallel to the previous one. To emphasize the parallelism, 

I have used the same letters y, y1, y2 as before, and so will I do with 

W-1, W2, W3 * '.. I hope that will not be confusing. Each of these symbols 

stood for an infinite family of functions anyhow, and now it stands for a 

second one-viz., for the magnetic counterpart of the first. 
This notation agreed upon, the expansion (3, 4) reads alike and we 

waive copying it. But the reciprocal Jacobian of (3, 36) is 

4= - i-(1 + z)i, (3,37) 

. y2 Y2' 

different from before, but again independent of n. That alone causes a 

difference in the iteration formulae, corresponding to (3, 6), which read 

WI= 2 V y, fZ(l + Z)4iy,y2 dz + /2 z-Vl + z 
(3, 38) 

12 = ylz (1 + Z)-4 Vy2d z + ?Z- (I + 
z)-j vc y, dz 
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Applying the general transition-relation (3, 8) to our present y1 of (3, 36) 

we get 

r(2 +1) r() n n + 3 n 2n f 5 1 

ri (-o)rF _ i 4 ;-z + 

& 4) u( 2' A: 4' 4 I> 
(3, 39) 

4 K41 1 n-2 n+l 2n-3 1 
~~(m-t) ~(n3) z!p-n2 - ___ - .2) 

corresponding to (3, 9). The exponents at z- = 0 are seen to be - and 

- fl 1, the same as before. Equating the ratio of the coefficients of these 
4' 

powers again to the one in (3, 11)-which need not be re-written, just 

think GUn Bn,, B-n instead of Fn, An, At,-you obtain as the first 
approxim-ation, corresponding to (3, 12), 

,a B ,, (w,)2l+1 r (- 2n-1) (r - 2n+1 ) r (' n 5) r (n 
n 3) 

(3, 40) 
Again, the ratio is never infinite. With n even ( 2, 4, 6, . . .) either 
n - 4 or n - 2 is a non-negative multiple of 4, hence the ratio vanishes 

this time for even n. That means 

taui2k - O (w4kt) ; k = 12,3,.. 3 (3, 41) 

The case n = 1 is this time not exceptional, it can be treated along with 

n odd. The reduction of the r-quotient gives in this case 

tan 4' = K) riF(n?+ 2) tail,8 ' = (tt)n (2n+1)2 ( 5)2 ; (n = odd). (3, 42) 

These are the magnetic phase-shifts for odd n in first approximation. 
For n = 1 you get, paying attention to (3, 16): 

4y tan &' = 
97 w (3,43) 

To show the agreement with the magnetic polarizability pm, obtained in 

N.O. by a different method, we observe that the complete elliptic integral 

occurring in (9, 22) l.c., when transformed by the same substitution as 

used above, in (3, 16), for Born's integral, gives 

37r = (3, 44) 

[iP] 
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The simple ratio -2/37r between the two polarizabilities had escaped my 

notice, until N.O. was under press. It is the same as that of tan 51' and 

tan 8, by (3, 43) and (3, 15) above. That proves the agreement with N.O. 

for the former, because for the latter it has already been checked. The 

positive sign of tan 8,' indicates diamagnetism. 

Since the magnetic dipole scattering is of the same order of magnitude 

as the electric one, I have, here too, computed the next approximation, 

which proves even more laborious than in the other case. Skipping the 

details, let me only mention that for n 1 the fundamental solutions 

(3, 36) read 

=l i4l +z }z J -+(1 + z-3 dz 

(3, 46) 

3/2 = Jl+z 

The integral, by the way, is the same that occurred in (3, 22) and (3, 23) 

and also the same as the elliptic integral mentioned in the last paragraph. 

The result of a computation, cramming five pages in a fu?ll-size quarto 

note-book, is that the next term in tan 81' has the coefficient 7r/18y. Thus 

tan -9r 18y+ {, 

(3, 47) 
- 0,26230 &J3 + 0,09413 w5 + 

I wonder whether this result could be obtained in a few lines, once the 

theory of the equation (1, 7) were worked out. 

Both results, (3, 33) and (3, 47), are in the direction, that with 

decreasing wave-length the scattering increases at first more rapidly than 

the fourth power of X = 
2wr0,/X.--Actually, of course, all this was only a 

preparation for the "real" case, when the singularity is not fixed, but is 

allowed to follow the impulse of the incident wave. Let us now turn to 

this problem. 

4. TmE KINETIC CONDITIONS. 

As Born and his collaborators, mainly Pryee,5 recognized, the field 

equations alone do not yet determine any dynamics of the electron, any 

definite connection, that is, between the motion of a point-singularity and 
the field around it. This fact is corroborated by the existence of solutions, 

already indicated in sect. 9 of N.O., which had a point singularity 

permanently at rest at the origin, yet went over at a moderate distance 

into a homogeneous electrostatic field of arbitrary, only not too great, 

3Pryce, Proc. Roy. Soc, A, 155, p. 597, 1936. 
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strength, thus a field which we would expect to be compatible only with 
an accelerated singularity. We feel naively it "ought to set the electron 
in motion. " 

Ihence, some condition has to be added to the field-equations, something 
they do not yet contain. It must be a condition the solution just alluded 
to and the more general one investigated on the preceding pages of the 
present paper do not comply with. Moreover, it must obviously be a 
condition that refers to a mathematically infinitesimal neighbourhood of 
the singularity. For surely it would not do in a field theory like this to 
have the shape of the world line of the singularity determined by actio in 
distans. 

There can be little doubt as to the nature of the additional demand. 
The divergence of Born's energy-momentum-tensor vanishes everywhere 
where it is at all defined. From this, by Gauss' theorem, follow the 

conservation laws. But if the volume to which the partial integration is 

to be applied contains a singularity, the latter has to be excluded by a small 

closed surface, which afterwards has to be contracted to infinitesimal 

smallness towards the singularity. If and only if the residual surface 

integrals vanish in this limit, do the conservation laws hold for any closed 

surface. That we wish them to hold, furnishes the condition: 

The surface integrals of stress and of energy flow have to vawish in the 

lmiit for any closed surfacce contracted to infinitesimal snallness towards 

the singularity.-For shortness let us eall these four limiting values or 
residues, since the condition of their vanishing determines the motion, the 
kinetic integrals. 

This postulate is not only materially identical with that of Born and Pryce, also 

the present formulation was known to them. But they stressed other formulations, 

as the vanishing of the variation of a certain fourdimensional integral; or, alternatively, 

the volume integral of a certain density of force, essentially the Lorentz one, to vanish. 

That comes dangerously near to, the condition used with Lorentz' electron, where it 

was admittedly but an asyt ignorantiae anid clearly involved actio in distans inas 

nmuch as the body of the electron was supposed to be rigid or quasi-rigid and its motion 

as a whole was supposed to be determined by the simultaneous values of the field in 

tho whole region wvhiclh the body of the electron occupied. It was this cquasi-rigidity 

which gave rise to all the trouble, violation of the energy principle, factor 4/3 in the 

nass energy relation, etc., difficulties which are probably the reason, why the Lore-ntz 

electron, to say the truth, has disappeared from modern theory and is replaced by a 

somnanbulistic tamlpering with the mathematical-point-clectron.-I have no objection 

to, the Born-Pryce formulations, tlhouigh I lhave no use for themr, myself. But it must 

be clearly understood, that they do not detract frolm the fact, that the motion of 

the singularity is exclusively determined by a condition imposed on the field in its 

immediate neighbourhood; just as the Hamiltonian principle in classical mechanics does 

rnot detract from the fact that the depencd-ent variables there are determined by 

differentwal equations. 

After adopting this new principle-new inasmuch as it is not yet 

contained in the ficld-equations-I examined the four kinetic integrals for 
the solution developed in sects. 2 and 3. Since the integrals obviously 

vanish for the main field and since the square of the perturbation field is 
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neglected in principle, only the bilinear terms deserve attention. Hence 

every multipole produces, in bilinear co-operation with the main field, its 

own set of four kinetic integrals, which can be calculated each separately, 

without referring to the manner in which the multipoles combine to build 

up this or that particular solution, be it the one we have investigated or 

a different one. It need hardly be said that the two quasistatic cases dealt 

with in N.O. are included in the multipole-solutions-viz., for n - 1 and 
(C -> 0. 

A detailed calculus shows that in the magnetic case (z) all the kinetic 

integrals vanish already in virtue of the comparatively weak singularity, 

viz. of order r-1, which the bilinear parts of the components of stress and 

energy-flow display as r approaches zero. As regards the energy-flow, the 
same is true in the electric case. But the bilinear part of the stress 

reaches in this case the order r2, just enough to produce a finite residue. 

Yet all but one of these 3 times k+ residues vanish by symmetry on 

integrating over the angles 0, +, a sphere being taken as the surface of 

integration, for convenience. The non-vanishing residue is that of the 
y-component of stress for n = 1. y is the direction of the electric field 

at large distance.-Naturally and trivially, the other two electric-dipole* 
solutions, which do not turn up in the plane-wave-solution, also have 
non-vanishing stress-residues, but they need not interest us here. 

This result is of great importance to us. An arbitrary field, prescribed 
at moderate distance from the singularity, can be resolved into plane waves. 
In trying to resolve these further into the eigensolutions of the singularity 

we find among the latter, as determined in the preceding sections, only 

just one type that needs emendation, viz., the electric-dipole-type. All 
the other eigensolutions are available, and the resolution with respect to 
them is to be carried out exactly in the same way as in the "fictitious case." 

The actual value of the non-vanishing residue is not of interest. It 

has nothing to do with the "pull exerted on the electron by this solution." 

Indeed, the phrase in inverted commas is meaningless, because the solution 
of which it speaks is, from our revised point of view, physically 

inadmissible and wrong, we have to cast it away and rep] ace it by a good 

one. The condition for the latter is obvious. Since the angle-integration 

does not annihilate the residue, the stress components must have a weaker 

singularity than r-2, very probably of the order r-1 only. One easily finds 

that this means the perturbational field components must not reach the 

order r2 but very probably the order r-' only. 

At first sight that seems embarrassing. For, as we know, all but one 

of the solutions of equ. (1, 5) engender field-components of order ct. We 

could not do better than always choose that onte which produces but r-2. 

But we have just found that for n = 1 not even that suffices, and that 

we have to cast away our precious solution in this case. A further 

reduction of the degree of singularity is required, which seems a rather 

exacting demand! Yet it can be fulfilled. 
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5. ACCELERATING ELEICTRON AT REST. 

For the linear perturbation equations (1, 1) to hold, the perturbation 
field has to mean the deviation from a purely electric field of reference, 

which has to satisfy Born's non-linear field equations. Not only would 

the perturbation theory of a more general kind of main field be much more 

complicated and, as a rule, not amenable to a general solution, but we 

have none to which the generalized theory could be applied, the motion of 
the electron being unknown being the very object of our investigation. 
So there is no point in contemplating such a generalization One might 
think of using as the field of reference at least a Loxentz-transformed of 

Born's static, spherically symmetric solution, instead of that solution 
itself. But it will soon become clear that this would have no advantage, 

only entail quite unnecessary complication. 
On the other hand, of course, the actual field-variation that occurs, 

when the singularity moves on to a different point in space, cannot possibly 

be regarded as a small perturbation. Hence the perturbation theory is 

now certainly not applicable to a finite interval of time, only just to onte 

moment, giving but a snapshot of the situation. Or perhaps one ought 

not to say just to one moment, but to two infinitesimally adjacent moments. 
The infinitesimal interval begins with the singularity at rest in the origin 
and extends to a moment when the singularity is still in the origin, but 

no longer at rest-it has acquired an infinitesimal velocity. We shall see 

that this snapshot is sufficient to deduce at least the law of quasistationary 

motion, including, the effect usually referred to as radiation damping. 

What we are contemplating may be called an accelerating electron at 

rest (in German I would say "beschleunigt ruhendes Elektron"). We are 
using for the moment in question and that can be any moment during 

the motion-that Lorentz frame in which the electron is in the situation 

of a tennis ball. thrown vertically up into the air and just beginning to 

fall again. The task is to find a solution of equations (1, 1) to depict this 

situation. 
Using for a moment the customary notion of a moving point-charge, 

let me recall that its field, when transformed to the rest-frame, is not 

even in its immediate neighbourhood the same as that of a point-charge 

permanently at rest, though both fields are there purely electric. The 

deviation is not in itself infinitesimal, not vanishingly small, but small only 

inasmuch as the acceleration is regarded as a small quantity. That can be 

seen from the following consideration, in which we concentrate attention 

to the closest vicinity of the charge. 

A moment earlier the charge was still in motion in some direction, 

though this motion was already infinitely slow. It was surrounded by 

infinitesimally weak circular magnetic field lines. A moment later the 

charge will be moving in the opposite direction, the maguetic circles 

re-appearing, but arrowed the other way round. In the moment of actual 
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rest which we are contemplating, the magnetic field is zero, but its time 
der-ivative is not zero and is also not infinitesimal. It is obviously 

proportional to the acceleration. That entails a finite value of the electric 

curl, and thus a well defined finite addition to the electric field, over and 

above the static field of the same point charge, when permanently at rest. 

We must determine this additional field for Born's electron. For it will 
give us the clue to the solution. 

By transforming the Born solution to a moving frame you find that for 
a velocity of the electron 

v =tanh a (5,1) 

in the direction6 of z, the field components in any point P of the plane 
x 0 are the following, if 0 be the angle between OP and the z-axis: 

IEX?O D0 _X O 

sin O cosh a Dy 0 sin 0 cosh a 

Ey /o 
I9 

-- 
Dy? r2 

cEosO _D cos0 
v /1 

? 
r' 4r 

sini 0 siuh a ssll sinh .i (52) 

VI + r' r 

By ? H8O H?= 

]BzO=0 Hz0=0. 

From the value of BO we infer that an electron at rest with quasistationary 

acceleration v in the direction of the z-axis would have the following value 

of - k4 for which we prefer to write 
B0;': 

o0 t sin 0 

and the corresponding curl of EO, whence the i-term of EO itself could 

easily be deduced, but we shall not need it. 

Regarding these additions, due to and proportional to the acceleration, 

as a perturbation field-in which we are largely justified, because only 
tremendously large accelerations would not be very small in our units7 

we can now indicate a solution of (1, 5), for n = 1, a solution which' 

engenders a field that in a given moment of time has precisely these 

features. But since the present investigation has nothing to do with a 

periodic phenomenon, we prefer to use (1, 5) in the slightly generalized 

It is a trifle more convenient to use the z-direction now.-This z and x will not 

be confounded with the variables z = re and x = wr, used elsewhere. 

7c = 
1, r = 1. 
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form, pointed out on p. 96, small print, second paragraph, viz. in the 

form 

a 1, a 0Pi 9' 
1F,a=0 art + r r a2Fia= (5, 4) 

ar" 
+ rt ar, 

I 
? r', at' 

The additional subscript a in F shall remind us of the notion 

"accelerating. "-The field components are to be read off (1, 8), with n = 1 

and with the changes indicated in the paragraph just referred to. With 

the further specification m 0 
r ysinr a0,b a 

B, = - 4 t 

thus 

Ar sino0 a3~F,a (, 71 t '4 
at3' 

(ba 

To match with (5, 3) we must put 

a 3 a (5, 6) 
at' 

for the moment in question, call it t = 0. An exact solution of (5, 4), 
complying with this demand and introducing, as we shall see, no spurious 
field-perturbations. is obtained by putting 

FI,a = w (r)t t3 (5, 7) 

with w(r4) a function still to be determined.8 You readily test, if youL do 

not remember it from (3, 19), that r-1 is itself a solution of (5, 4). Hence 

%t3/6r only gives the contribution vt/r. The demand on w(r4) is therefore 

d2w + 2 dw 2r' 5,8 
dr' r (I + r') vw - + r.4 9 

Introducing here again z = r4, we obtain, for pretty perspicuous reasons, 

exactly that inhomogeneous equation that controlled the iteration process 

(3, 6) for n - 1, for which case the solutions of the corresponding homo 

geneous equation are indicated in (3, 19). Formally the solution runs 

completely parallel to the first line in (3, 6), but intrinsically there is the 

big difference, first that this time it is not Yi, but precisely the singular 

Z-= - r' which constitutes the "second member"; secondly, that 

the lower limits of the integrals are, this time, prescribed by the demand, 

that the field components, engendered by (5, 7) must, for t = 0 at r -> 0, 

niot exceed the order r-. The result is rapidly worked out. I give it 

8Calling it w (r4), not just w (r), is a little pedantry, intended to emphasize the intimate, 

but not quite simple family-relation of this one function to the (n =l)-branch of the 

Wk (z)-family in (3, 4). 
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both in the variable r and z., the first of which is more suitable for physical 

reflexions, the second for mathematical use: 9 

F1,I = I I. + r d - {(sji?r' + t - 

= I(- {1J1 + z - i zk)t - iztl (59) 

I is the integral explained in (3, 19). 

We said that no spurious fields were introduced. To test that poinlt, 
using (1, 8) in the manner described in the second small-print-paragraph 

on p. 96, we state that for t = 0 there is, indeed, no magnetic field. In 

this moment the frightening tP-term in (5, 9) is altogether innocuous. The 
electric field comes from the t-term alone and is bound to include the 

"curly" part connected with B. But it contains something much more 

important. The term 

v _ [r dr X 
- Ji jl+ rJ 1 91)1 + z, (5, 10) 

which for r >> I (meaning r >> r) reads, by (3, 20), 

_?vzI = _ svrs (5, 11) 

gives, by (1, 8), a homogeneous field 2y7/3 in the direction of the 

acceleration i7 which we had imparted to the singularity. 

This way of obtaining the equation of motion is rather interesting. 

The usual way in such cases is, to assume a homogeneous field at r >> r? 

and to show that it entails acceleration. Here we have, inversely, assumed 

acceleration and have revealed the necessity of its being supported by a 

homogeneous field. The mass 2y/3 agrees with Born's value. Since we 

have used the rest-frame, which we could now change, the relativistic 

variation of mass and the magnetic part of the force are, of course, 

included. In addition, we shall later on get indirect evidence that* our 

solution also takes proper care of what is usually called radiation damrping. 

That radiation damping be included is, at first sight, amazing, because the second 

derivative, ii, which is usually regarded to be responsible for it, has not entered the 

considerations by which our superpotential function (5, 9) has been derived. What happens 

is, that the equation of motion which we have read off this solution does not correspond with 

the elementary Lorentz-equation-of-motion, but with equ. (22) 

mi'b = e v, f (22) (Dirac, l.c.) 

9 It is well known that in dealing with the functions of the lemniscate, which are the 

Jacobian elliptic function for modul lj\/2, yon can draw still on a second large mathematical 

theory, viz., the theory of the r- and the hypergeometric function. See Whittaker and Watson, 

Modern Analysis, p. 524, where Bora's constant y is quoted to eight decimal places. 
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in a much discussed paper of Dirac's on the classical theory of radiating electrons,'0 to which 

the same author has quite recently given an extremely abstract and extremely fascinating 

continuation." Our homiiogeneous 'field 2yiyS3, supporting the acceleration, is not, as in the 

elementary Lorentz-equation-of-motion, the difference between thje actual field and the 

electron's own retarded field; ourl homogeneous field 2-y/3 is to be regarded, just like 

Dirac's fv, as the difference between the actual field and the arithmetical nmean of the electron's 

retarded and advanced fields. Indeed, the t3-term in (5, 9), could be shown to indicate this 

mean value rather than the retarded field. (It is true that this t3 term plays no roll here, but 

it will in the next section, to wit, in (6, 1)). 

It would be lunatic to try and pretend that our solutioni were the 

only one compatible with the assumed acceleration v It is only right 
that it is nlot. Indeed, powerful radiations might have been let loose on 
our electron and might have penetrated towards the singularity even to a 
distance that were only a fraction of ro. Yet before they have actually 
reached it, they must not influence the motion of the sitngularity-not 
according to the point of view taken here. 

What is the meaning of the term with t3 in (5, 9)? Though we are 

to use this (super-)potential orLly for t 0 O, when the t3-term contributes 
nothing to the field, it is bewildering to see a thing turning up which 
for any t >j 0 would engender field-singularities of the entirely forbidden 
order r', to see it turning up as a necessary consequence of our 

obligation to reduce the actual singularities of the perturbation field from 
r2 to r1. 

But the term in question is the most natural thing in the world! We 

must not forget that our field of reference is, and always remains, the 

spherically symmetric Born field at rest. The fact that the singularity 

has only just come to rest and is just beginning to shift again, must 

therefore be expressed in the perturbation. It is not difficult to show 

that the term in question describes (for t > 0) precisely the first 

re-commencement of this shift. In other words the field this term 

engenders is exactly' 

- (centrally symsmetric Born field), 

where z is not r4, but the Cartesian coordinate in the direction of the shift. 

6. OSCILLATING-DIPOLE-POTENTIAL FOR THE YIELDING ELECTRON. 

From the results of the preceding section we must get a substitute for 

the proper vibrations belonging to n = 1, that is to say, for the electric 

dipole-superpotential F1, ruled out for violating one of the kinetic 

conditions. Naturally, the substitute must not hold for one moment only, 

but have the time factor eiw? like the rest. 

We must once and for all abandon the idea that the thing we are 

out for be a solution of the perturbational field equations (1, 1). For, 

i? P. A. M. Dirac, Proc. Roy. Soc, A, vol. 167, p. 148, 1938. 

" P. A. M. Dirac, Proc. Boy. Soc, A, vol. 180, p. 1, 1942. 
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except in the snapshot-meaning of the last section, there are no pertur 

bation equations in the region where the strong field shifts appreciably. 
The solution of a non-existing equation is no object of investigation. 

From the periodic nature of the whole phenomenon and from the 

equation of motion deduced above, it is a safe trial to impart to the 

singularity a harmonic motion in the direction of the electric field of the 
incident wave, without prejudice as to the, possibly complex, amplitude 
of the former, except that it must obviously vanish together with the 

amplitude of the latter. The next suggestion is to take the snapshot 
solution (5, 9) in every moment of time and to transform the lot of them 

to a eommon origin and to a common Lorentz-frame. But we soon 

discover that the familiar part of these transformations can be waived, 

because we are neglecting by principle the square of the amplitude of 

the incident wave and both the snapshot-perturbation anid the amplitude 

of the vibration of the singularity are proportional to the first power 
thereof. The only relevant part in the reduction of all the snapshots to 

a common aspect is not that the frames of reference but that the fields of 

reference are different. For the field of reference is in every moment 
the spherically symmetric Born-field in the momentary rest system of the 
singularity and centred on its momentary position. Now for this field 
the latter two circumstances are not negligible, because its own strength 

is independent of the amplitude of the incident wave. Hence this field 
is appreciably different for the different snapshots and has therefore to 

be added to the snapshot fields. It is convenient to subtract from them 

at the same time the Born field centered on, and at rest with respect to, 

the mean position of the singularity, which we adopt as the common origin. 

Proceeding carefully along these lines, starting from the snapshot 
solution (5, 9), using the formulae (5, 2) for the Lorentz-transformed of 

the Born-field, we find that the field circumstantially described in the 

preceding paragraph is derived from the following superpotential: 

F,)e 8 O 3) 
wb 

etwt 
- 1 

+ z _ 1 + 1zi + -Z . (6, 1) 4 IVI + z+ +16a2 

The understanding is, that be-wt be the elongation of the singularity, thus 

b = amplitude of eleetrons vibration. (6, 2) 

The variable z = r0. The subscript s in F1, s is to remind us of 

"substitute." From the considerations which led to (6, 1) it follows that 
this function has a physical meaning only outside a certain region around 
the origin and must certainly never be used at z :- 0. Hence its 

singularity there, otherwise appalling, does not embarrass us. Again from 
those considerations (not from the nature of the singularity, which is 
physically meaningless) the excluded region tends to zero, as b tends to 
zero. Since on the other hand b is only a constant multiplier in Fi,,, it 

is not very astonishing to find that, as a matter of fact, our function 

fulfils, just like Fl, which it supersedes, the equation (1, 5) or (3, 2) tor 
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n = 1; not exactly, but about in the way some initial trunk of the series 

(3, 4) does. In fact, where it is at all defined, that is, outside the excluded 

region, our field again deserves the name of perturbation field full well. 

Yet without the preceding considerations we would have had no guide 
for adopting, nor could we have had the boldness of admitting that 

particular function. For it belongs, of course, to the lot which engender 
a field of the order r-3 at the origin, inadmissible not only according to 

the more exacting demands (r-') of sect. 4, but already on those (r2) of 

sect. 1. The actual fulfilment of the exacting demands cannot be read 
off the function, because the latter ceases to be competent, before the point 
to which the demands refer is reached; the fulfilment is warranted by 
the considerations that gave us the function for using it at a little greater 

distance. 

7. SCATTERING BY THE YELDING ELECTRON. 

From sect. 4 it follows that the phase-shifts and therefore the intensities 
of all the scattered multipole waves are the same as in the case of the 

immovable singularity, discussed in sect. 3, with the only exception of 
the electric dipole, whose superpotential F1 is superseded by Fj,, ; other 

wise the analytic procedure remains the same also in this case. 

Obviously the expression (6, 1) which we found for this substituting 

superpotential is only an approximation, in which higher powers of w are 

to follow, just as they do in (3, 4). The question of improving it will be 

discussed later. The function to which it approximates will outside the 
excluded region near the origin-of which the size is insignificant, because 
it vanishes with vanishing amplitude of the incident wave-necessarily be 
an exact solution of (1, 5) or (3, 2), because the conditions for our pertur 

bation method (1, 1) are there fulfilled. Hence we are justified in copying 

the asymptotic decomposition (3, 26) for it, just adding the subscript s 
(for "substitute") in the proper places: 

It,(r) - - - A isw1rU2Jr[l + 0(w2r2)) + 

+ A1 s 2 2' i| 1 + 0 (W2.1.2)1 7 + is22J[ + O(1,k2)]r (7, 1) 

In drawing the expansion in descending powers of z, which we need, from 

(6, 1), the first line of (3, 23) is useful. Again, as in (3, 32), we write 

out only the characteristic terms : 

.Fb,(r) = + z - 'y2Zi + *. - yz + ...}. (7,2) 

Equating the ratios of the coefficients of these terms in (7, 1) and in 

(7, 2) we obtain 

a) 'Y B tan 
, = - - 3 (7,3) 

(Compare with (3, 15) and behold the missing factor 2. See below.) 
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We defer the discussion of this result. For, this time, since b has the 
palpable meaning of the electrons amplitude, we are interested in the 
coefficients themselves, not only in their ratio. Equating those of z9 in 
(7, 2) and r2 in (7, 1) we get 

b Al,,Xl2 
(7,4) ly 4' 

Remember on the other hand the equations (2, 5), which resulted from 
matching by proper-vibrations the ingoing wavelets contained in the 
incident wave. The first of these equations, taken for n 1, must now 
be satisfied by our substitute amplitudes Al, and A1,,. It can be 
written 

A,,(I- i tanr81,8) = 2 (7,5) 

Thus 

6b= - Q 2 (y - itan 8S,, . (7,6) 

If we insert here at first only the rough approximation wy for tan 8k,, 
we get 

b= a 
2 y2 _ 2i3 (7, 7) 
3 3 

That is precisely the phase- and amplitude-relation between the field 
amplitude a and the complex electronic amplitude b of a Lorentz electron 
with mass 2y/3 and charge unity. In ordinary units the well-known 
relation reads 

b a 

it2 - 
3 el 

By giving the imaginary part of the denominator correct, already our, 
roughest approximation includes the ordinary radiation damping. 

We now turn to the full discussion of (7, 3). The term with oA is 

already peculiar to Born's electron. Being negative, it slightly reduces 
the small phase-lag of a behind - b, ascribed to radiation damping. So 

one would say the Born-term counteracts radiation damping. This 

correction is only of the relative order (o2, meaning (2rro/X)2. 
But looking upon things in another way, the Born-term re-inforces the 

effect of radiation damping. Notably it reduces the amount of scattered 

radiation still further, and this reduction is of the same order of magnitude 
as the well-known reduction ascribed to radiation damping. I shall prove 
and discuss this statement immediately. But let me say before, that in 

wording these phrases I have adopted the customary abbreviated expression 

which compares the actual result about the scattered radiation with the 
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result of a truncated theory, which gives no phase-lag at all. There is 
nLot much point in this comparison, because the second result must be 
faked. For in a consistent general theory-regardless of what causes the 
scattering-there is no scattering without phase-shift, as can be seen 
from equations (2, 9), which embody that general theory. 

To prove the statement made above, we observe that what is called the 
effect of radiation damping on the amount of scattered radiation is repre 
sented by the simple fact, that in the formulae (2, 9) stands sin28, and 
not just tan28. Now in sufficient approximation for our present purpose 
sin S =tan2S -tan4S. Hence from (7, 3), omitting at first the Born-term, 

w2 w4 
sin2,8 = - (7, 8) 

but including it 
2 4 9 

sin1, -2 x- - _ '4. (7 9) 
-y l4 -3w(79 

That proves the statement. By the way, be not astonished to find Born's 

constant y appearing in the customary terms, but absent in the Born-term. 

It stands for both the electrical poitarizability (which is one half of it) 

and the mass (which is two-thirds of it). 

I just said, anticipating what is to follow now, that the polarizability 

is only one half of y. In N.O. we found y for it, and this result has 

been confirmed in sect. 3b here. Let us calculate the cross-section for 

electric-dipole-scattering from (7, 9) and (2, 9), where n = 1, 1 replaces 

81 and the multiplier 8r/a2 is to be added. We get 

_8w /2,y F2 2 \,(10 
Sel. dipole = - ( 1 + .. (7, 10) 

In N.O. we obtained for the same physical quantity, under the preliminary 

assumption that Rayleigh-scattering and structural scattering can be just 

superposed (interfering, of course, but without mutually disturbing their 

mechanisms), the equ. (10, 10) l.c., which in our simplifying units and 

with omission of the c4-terms reads 

87r -2 {2 
4 2 2 1 

0, IO) N. s= 1m 1 7-KY + y') c ...j (1,0)NO 

The only discrepancy is that the Born-correction is doubled, which we 

have to declare as an error, caused by the illegitimacy of that preliminary 

assumption. Since the correction-term in question is a bilinear Rayleigh 

Born one, the correct Born-polarizability is to be halved, thus y/2, not y. 

The "destruction" of half of the Born-correction occurs in the most 

essential step, viz., on solving the inhomogeneous equation (5, 8); it can 

so to speak be watched. From there on I can see no possibility for one 

of those stupid little mistakes which so often let you drop a factor, usually 

2 or 1/2. 
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I think one does best to describe the thing the way I did, viz., that 

the yielding electron displays only half the electric polarizability of a 

fixed singularity. But probably it is logically impossible to distinguish 
between the influence of the motion on the polarization and that of the 

polarization on the motion. At any rate there is nothing contradictory 
in the different behaviour of the yielding and the fixed electron. The two 

cases cannot be reduced to each other by a change of frame, because it is 

a question of acceleration. And, after all, the second case is only fictitious. 

Owing to the presence of the comparatively large Rayleigh-term w/y 

in the electrical-dipole-scattering-constant tan A1, , the expansion of this 

constant in powers of wt2 would have to be driven two steps further, to 

include the power Ct)7, in order to get for the. scattering cross-section the 

same precision, viz., inclusive of Xo6, as was reached for the fictitious case 
in sect. 3c with comparative ease. 

It is obvious that the progressive refinement of the formula (6, 1) for 
our potential F, . would have to proceed by the " hypergeometric " 

iteration process (3, 6), the terms. without d in the curved bracket 

constituting the "second member" for the next step. Since that step 
already deals with the relative order 04, the other iteration process, (3, 29) 

and (3, 30), which might be called the "Bessel" iteration, would now have 

to be consulted as well. The only question of principle that arises is the 

fixation of the lower limits of the couple of integrals in the " hyper 

geometric" iteration. For it seems a bit daring to impose a physical 

condition (viz., field not to exceed order r1 at r = 0) in a point where 

admittedly the mathematical function in question never represents the 

physical quantity in question; moreover, to impose it on the correction 

terms, whilst the principal term (viZ., 3Z-4/02) is excused from it for that 

very reason.-Yet I think the demand is correct. 

It is well to remember that these iterations, however far you carry 

them out, have nothing to do with the restriction to linear terms only of 

the perturbation field, a restriction that would not be removed, even if 

the approximation were superseded by an exact solution of (1, 5) and 

(1, 7). If the classical treatment were intended to give the ultimate 

description, the omission of all quadratic terms would be a grave 

deficiency; for among them there must be such as ought really never to 

be neglected, because they demand an ever increasing velocity of the 

electron in the direction of propagation of the incident wave, the well 

known classical analogue of the Compton effect. 

To work it out from Born's theory, beyond the re-statement of trivial 

classical results, would not only be extremely difficult, but would almost 

certainly fail to provide us with any useful information. 

Again I wish to thank Dr. H. H. Peng, Scholar of the Institute, for 

interesting discussion and valuable suggestions. 
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