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Preface

When I meet God, I am going to ask him two questions: why
relativity? And why turbulence? I really believe he will have an
answer for the first.

—Werner Heisenberg

The scope of this book is to provide readers having a knowledge of calculus and
Physics at the college level with an introduction to physics of fluids.

That of fluid is one of the various states of matter, the most common in nature
both on the Earth and in the astronomical context.

Fluids, which include liquids, gases and plasmas, are essential for life: the air we
breathe is a gas, the atmosphere which shields us from harmful radiations is a gas
mixture, the water we drink and feeds plants is a liquid, and the salted water of seas
and oceans is a liquid. So, a basic knowledge of the behavior of gases and liquids
should actually constitute a natural value for everyone’s culture. Such a knowledge
might be helpful, for instance, in distinguishing better what is true and what is false
among the many assessments that are commonly stated about things like global
warming, greenhouse effect, ice retreat and so on.

I wrote this book with the aim of coupling rigor in mathematical developments to
a clear and intuitive representation of the various phenomena characterizing the often
very complicated behavior of fluids in nature, in terrestrial as well as in astronomical
environments. I tried to do this in a short volume which can be easily understood
and handled. I proposed also a few developed exercises which should be helpful in
a better understanding of the topics.
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viii Preface

The book is mainly thought for an audience of undergraduate and graduate
students in Physics, Mathematics, Geology, Engineering as well as in Astronomy
and Astrophysics. Anyway, it should be appreciated by any reader with a knowledge
of mathematics and physics at the college level.

Rome, Italy
March 2023
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Symbols

M, L, T They indicate the fundamental mass, length and time physical
dimensions.

amu Atomic mass unit, defined as 1/12 the mass of a Carbon 12 atom,
1 amu = 1.66054 × 10−27 kg.

mH Hydrogen mass, mH = 1.00784 amu.
K It indicates kelvin, primary unit of temperature in the international

system of units.
M� Value of the Sun mass, M� = 1.989 × 1030 kg.
k Boltzmann constant, k = 1.380649 × 10−16 erg/K.
G Newtonian constant of gravitation, G = 6.67430 × 10−11 N kg−2

m2.
c It indicates the speed of light in vacuum, c = 2.99792×105 km s−1

AU Astronomical Unit, i.e. the average Sun–Earth distance 1 AU =
1.49598 × 108 km.

R,Z,Z± With these symbols we refer, respectively, to the set of real, integer
and positive (+) or negative (−) integer numbers.

v, |v|, ||v|| With the symbols v, |v| or ||v|| we intend the Euclidean norm of a

vector v, i.e., in Rn , v ≡ |v| ≡ ‖v‖ ≡
(

n∑
i=1

v2i

)1/ 2
.

ei This symbol refers to the unit vector in the ith coordinate direction
in Rn .

r It represents the position vector in R
n , i.e. r =

n∑
i=1

xiei .

ev Unit vector in the direction of v, ev ≡ v/v.
n This symbol indicates the outward unit vector in a point of a surface.
∇ With this symbol we intend, in Rn , the formal vector operator ∇ ≡

n∑
i=1

ei ∂
∂xi

.

· The dot over a function represents its total time derivative, i.e. it
stands for d

dt .

xi



xii Symbols

·, ∧ These symbols represent, respectively, scalar (·) and vector (∧)
product between vectors.

det(A) Determinant of matrix A.
r, θ, ϕ These symbols represent spherical polar coordinates in R3.
R, θ, z These symbols represent cylindrical coordinates in R

3.
SR(r) With this symbol we indicate, in R

n , the spherical hypersurface of
radius R and center in r.

xivi We adopt Einstein’s summation convention that implies summation

over repeated indexes, i.e., in Rn , xi vi ≡
n∑

i=1
xi vi .(

n
k

)
For integers n and k, 0 ≤ k ≤ n, it gives the usual binomial
coefficient n!

k!(n−k)! .
ex It indicates the exponential of x (e is Euler’s number, e � 2.71828).
ln It represents the natural logarithm (in base e).
log, Log Both represent decimal logarithm (in base 10).
sinh x, cosh x They represent the hyperbolic sine and cosine functions.
∞k It indicates that there are k independent arbitrary choices for a

parameter.
F |ba It indicates the difference F(b) − F(a), where F(x) is the primitive

function of another function f (x).
lhs, rhs They denote the left- and right-hand sides of an equation.
=⇒ Logical implication: a =⇒ b means a implies b, i.e. that if

proposition a is true then proposition b is also true.
⇐= Inverse logical implication: a ⇐= b means b implies a, i.e. that if

proposition b is true then proposition a is also true.
⇐⇒ Double implication, which means identity.



Chapter 1
Fluids and Their Fundamental Aspects

This book gives an introduction to the physics of fluids, with special attention to fluid
dynamics.

Everyone knows that a large part of the physical matter is not in the solid state but,
rather, in a fluid state. Actually, about two-thirds of the Earth’s surface is covered
by oceans, and so by water, which is a liquid, one of the ways a fluid can appear in
nature. Moreover, the Earth is embedded in its gaseous atmosphere.

A fluid is a state ofmatter which corresponds to aweak resistance to a deformation
force (a shear stress) so that the constituent molecules are almost free to move
relative to each other. On the other hand, a solid is robust to external solicitations so
that the mutual distances among its elementary components keep unchanged until,
eventually, there is a sudden breaking (when the solid is at all effects broken). Given
the above, rough, definition of fluid, it is clear that the fluid category includes an
internal subdivision into liquids and gases and, to be even more specific, plasmas.

In more sophisticated terms, physicists speak of four different classical states of
matter: (1) solid, (2) liquid, (3) gaseous and (4) plasma (see Fig. 1.1). In a more
modern vision, several other (non-classical) states of matter have been taken into
consideration, like that of the man-made so-called Bose–Einstein condensate. We
just briefly refer to this in the last chapter of this book.

In this book, we deal with the states (2), (3) and (4) as different ways of appearance
of a fluid, so the title of this book as Physics of Fluids refers to the classical physics
of these 3 states of matter, reserving the sixth chapter to a succinct outline of the
special relativistic approach and the exotic state of superfluid and of Bose–Einstein
condensate.

Although roughand, onmanyaspects, unsatisfactory, the distinction among solids,
liquids and gases usually provided in the preparatory schools as, for solids—‘a sub-
stance which has both a definite volume and shape’ while for liquids— ‘a substance
which has a definite volume but not a definite shape because it assumes that of its
container’ and, finally, for gases—‘a substance which has neither a definite volume
nor a definite shape’, gives an acceptable and practical idea. Of course, these defini-
tions of the two types of fluids can be criticized in that it seems to require the actual

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. A. Capuzzo Dolcetta, Physics of Fluids, UNITEXT for Physics,
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2 1 Fluids and Their Fundamental Aspects

existence of a physical container for a liquid (like a glass for water, the ocean basin
for ocean water, etc.), and so it is not self-consistent and does not apply to liquids
in a more general situation than in the physics on the Earth’s ground. Moreover, the
above rough definition does not account for the fourth state of matter, i.e. the substate
of fluids called plasma.

A plasma is a gas whose atoms have been partially or even fully ionized, i.e.
some or all electrons have been stripped away from their parent atomic nuclei. At
first sight, a plasma looks like a gas, but its behavior is very different from that
of a normal gas. The main difference is because a plasma contains a significant
fraction of free electrons that make the gas electrically conductive so that long-
range electromagnetic forcemay become dominant in its behavior. Although plasmas
are not particularly common in earth’s physics, because their existence requires
ionization of a preexistent gas (a thing that happens, for example, in nature due to
lightnings, or via man-made ionization as that produced on neon and xenon in the
TV plasma screen), they are extremely common in the astrophysical context. As a
matter of fact, stars (including Sun) are self-contained (by gravity) enormous masses
of plasmas. Moreover, in a cosmic environment, many other objects are constituted
by partially or fully ionized gas. It is estimated that more than 99% of the matter in
the Universe is comprised of plasma.

It is relevant noting that the distinction between the various states of matter is not
invariable. A certain element of matter can show a solid behavior under some exter-
nal physical conditions to transform into a fluid behavior when conditions vary, and,
when behaving as a fluid, show, indeed, specific liquid, gas or plasma characteristics
at different stages. Everyone knows that the heating of a piece of lead conduces it
to melt and pass from a solid to a liquid state. Giving much more heat (energy), it
is also possible to set the lead into vapor (gaseous) state. Additional injection of
energy would lead to ionization and consequent plasma behavior. As indicated in
Fig. 1.1, these subsequent phases are reached by the processes of melting, vapor-
ization, ionization and their inverse, i.e. deionization (recombination), condensation
and freezing (solidification). The progression from state 1 (solid) to state 4 (plasma)

Fig. 1.1 States of matter



1.1 Newtonian and Non-Newtonian Fluids 3

is a sequence of what in physics are called phase transitions, and are characterized
by the increasing quantity of energy given to the system to make the transition. Prac-
tically speaking, this corresponds to the fact that the energy injected in the system
goes into kinetic energy of its constituent elements, tending to overcome the mutual
bounding links. At a certain threshold, these links are broken and the phase transition
occurs in a quite discontinuous fashion.

Another usual characteristic attributed to a fluid is its volatility which relates to
the spontaneous tendency of a liquid to turn into a gas or vapor phase at normal
temperature. This occurs usually at the free surface of a liquid, and liquid parfums
are typical examples of high volatility.

1.1 Newtonian and Non-Newtonian Fluids

Another fundamental difference among types of fluids is their different reaction to
deformation stress. The main role in this is played by the fluid viscosity.

The viscosity of a fluid is a measure of its internal resistance to flow. Viscosity
is a global characteristic of a fluid which expresses the internal friction among the
elementary constituents of a fluid: strong intermolecular forces imply high viscosity.
As examples, honey is highly viscous, olive oil is less viscous than honey but more
viscous than water that, in its turn, is more viscous than ethyl alcohol. Here, we
do not deepen this topic (which will be more extensively studied in Chap. 2) but
just say that fluid viscosity is a function of state variables, like pressure, p, matter
density, ρ, and temperature, T . This is because viscosity depends on the strength of
the intermolecular forces within the fluid, and these clearly depend on the number
of molecules per unit volume (density) and their kinetic energy (proportional to
temperature). So, it is intuitive that a dilute and hot liquid is less viscous than a
denser and colder one. Everyone knows that honey tends to solidify when put into a
fridge and gets liquid again when heated.

Every real fluid shows some viscosity, and the limit of zero viscosity is that of the
so-called perfect or ideal fluid (and of the superfluids; see Chap. 6).

The behavior of internal friction, and so of viscosity, defines a fluid as Newtonian
or non-Newtonian.

The study of viscosity characteristics of fluids was pioneered by Newton. A New-
tonian fluid is one for which the Newton–Stokes law (independently obtained by
the two scientists in different ways) of viscosity holds. The Newton–Stokes viscosity
law states that the shear stress between adjacent fluid layers is proportional to the
velocity gradients between the two layers. In its original form, valid for laminar flows
at low Reynolds numbers (non-turbulent flows),1 the Newton–Stokes law states a
linear relation between the stress acting on a fluid layer and its resulting deformation.
The shear stress is the value of the force (per unit area) acting parallel to a given

1 Precise definitions of laminar and turbulent flows as well as the Reynolds number will be given
in Chap. 2. In brief, a fluid flow is laminar when its particle trajectories are rectilinear and parallel.
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Fig. 1.2 Stress behavior in various regimes of strain. From https://www.sciencedirect.com/topics/
engineering/stress-strain-curve

surface cross section in a fluid. It is represented as a tensor2 of order 2, τi j . The
velocity gradients between the two flowing layers give the shear rate (or strain rate)
tensor that has the dimensions of the inverse of a time. A more accurate definition
for the rate of shear (strain) tensor is

γ̇i j = ∂vi
∂x j

+ ∂v j
∂xi

, (1.1)

where xk and vk indicate the kth component of the position vector, r, and velocity,
v, respectively, and the dot indicates time derivative. The Newtonian second law of
dynamics implies that the shear rate is the motion reaction (speed of deformation)
of a fluid under a certain shear stress, which for isotropic fluids is written simply as

ηγ̇ = τ, (1.2)

where η is the dynamic shear viscosity. The equation above can also be considered
as a definition of viscosity in the form of the ratio between the shear stress and the
shear (strain) rate. A fluid is called Newtonian if its viscosity η is constant (in the
sense it depends on the type of fluid and on its density and temperature but not on the
quantity of stress), and so the rate of shear is linearly proportional to the shear stress:
the larger the shear stress acting on a portion of fluid the faster its shear deformation,
in a linear way (see left part of Fig. 1.2).

Conversely, non-Newtonian fluids are those for which the viscosity is not con-
stant (and so the response of the fluid to the stress solicitation is non-linear) but
rather depends upon the quantity of shear stress the fluid is submitted to. On earth,

2 For the definition of tensors, see Appendix A.5.

https://www.sciencedirect.com/topics/engineering/stress-strain-curve
https://www.sciencedirect.com/topics/engineering/stress-strain-curve


1.2 Plasma as Peculiar Fluid 5

Fig. 1.3 Viscosity versus
shear stress for a Newtonian
fluid (a), a shear-thickening
one (dotted curve b) and a
shear-thinning fluid (dashed
curve c)

Newtonian fluids are by far more common: water is a Newtonian fluid (liquid) so is
mineral oil, for example.

The viscosity variation under increasing shear stress (see Fig. 1.3) may consist in
both its increase (shear- thickening or dilatant or rheopectic fluid) or decrease (shear
thinning or pseudoplastic or thixotropic fluid). As a matter of fact, the variation of
viscosity is easily tested: shaking rapidly a viscosity thickening fluid its viscosity
increases abruptly, to reduce as soon as the external solicitation (shear stress) decays.

Simple examples of shear-thickening fluids are given by various solutions like
water and amide (for instance maizena) water and potato starch, etc. Examples of
shear thinning fluids are ketchup and mayonnaise sauce, paint and blood.

While the shear thinning phenomenon is still out of complete physical compre-
hension, for shear thickening a convincing explanation bases on that such a fluid is
composed by a sort of suspension of closely packed solid particles in a smoother
liquid phase. In situations of moderate shear stress and shear rate, the liquid fills ade-
quately the interparticle distance so that the global fluid movement is dominated by
the liquid phase, but when the shear stress is high the liquid phase is moved quickly
away and so it is no more able to fill the space between solid particles which collide
against each other giving to the surface of the fluid subjected to this high stress a
temporary behavior similar to a solid surface.

1.2 Plasma as Peculiar Fluid

On earth, liquids and gases are usually neutral, i.e. non-ionized. The elementary
constituents are neutral particles (atoms and/or molecules) which express their inter-
actions in different ways, as better specified by the equation of state,3 but this interac-
tion is limited to closest neighbors (short- range interaction). Actually, the interaction
between neutral particles is not long range if systems are not self-gravitating, as it
happens in fluids on earth, but it just occurs when two or more particles approach

3 The equation of state is an algebraic relation among state variables characterizing the fluid.
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each other at molecular size distance. This is however unlikely in a gas which, by its
definition, is a state of fluid where the constituents’ mean free path is much larger
than the average distance between neighbors.

Another is the case of an ionized gas, which is commonly called plasma and,
as we anticipated in Sect. 1.1, is indeed a very particular case of fluid. Ionization
of a gas means that some (partial ionization) or all (full ionization) the electrons
have been stripped from the gas atoms. Consequently, the gas is composed of a
mixture of positively charged ions and electrons. Globally, the gas is neutral, but
locally the interaction among ions and electrons as well as among ions and electrons
with themselves is relevant and, due to the Colombian interaction between charged
particles, it is long range. This is in common with gravity, whose intensity scales
with the same inverse square of the distance between particles as the Colombian
interaction,with the crucial difference that gravity is always attractivewhileCoulomb
force is either attractive or repulsive. The presence of free electrons in plasma makes
it electrically conductive.

The identification of this peculiar state ofmatter was done, first, by SirW. Crookes
in 1879, while its denomination as ‘plasma’ was given by I. Langmuir in 1928.
Crookes was able to transform a normal gas into a partially ionized one by a device
(called after him Crookes tube) consisting of a partially evacuated glass bulb where
a cathode and an anode are placed on the two opposite sides of the bulb. When a high
potential difference (voltage) is applied between them, an electronic current starts
flowing from the cathode to the anode. Along their way from one electrode to the
other, electrons happen to hit atoms of the gas contained in the tube and ionize them
(strip one or more electrons), producing, so, a plasma.

Being an electrically charged gas, a plasma is submitted to collective effects
because it naturally produces a global electromagnetic field, and it is highly sensitive
to external fields. This response of plasma to applied electrical fields is at the base,
for instance, of the TV plasma displays or of the plasma etching technique used to
fabricate integrated circuits.

The presence of plasmas on earth is rare, being produced in nature just during
strong electric exchange due to lightning, and in northern lights (aurora borealis,
as named by Galileo Galilei in 1619), these latter being regions of the atmosphere
partially ionized by incoming charged particles from theSun. Plasma can be produced
by human intervention, via electron beam production by cathodic tubes of the kind
once used for television sets, or in neon signs, where tenuous light is produced by
long gas-discharge tubes containing a rarefied gas, like neon. On the contrary, in
the astronomical context, plasma constitutes about 99% of ordinary matter. Stars are
made of plasma because their density and temperature are high, although decreasing
from the center (where the gas is fully ionized) to the surface (where the gas is only
partially ionized). Also, many astronomical nebulae are fully or partially ionized
tenuous agglomerates (gas clouds) of basic elements like hydrogen or carbon, usually
mixed with dust.
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1.3 The Continuum Hypothesis

The quantitative study of fluids implies various simplifying hypotheses and frame-
works. The first fundamental hypothesis is the continuum hypothesis.

What is it and what is it based on?
In principle, a full description of the dynamics of a piece of fluid would consist in
the solution of the equations of motion of all its elementary constituents.

This problem requires, first, a clear definition of what the elementary constituents
of a fluid are. Because we deal with macroscopic portions of a fluid subjected to
internal and external stresses to which the fluid reacts with a global motion and
an internal motion, we can reasonably consider fluid molecules as the elementary
components, because it is theirmutual force interactionon the intermolecular distance
scale which determines the fluid response to an external solicitation, and not the
smaller scale of interactions among electrons and nuclei in the atoms. Of course,
for ionized fluids (plasmas) the situation is a bit different and for them collective
phenomena (interaction at a large scale) can become very important.

A piece of fluid is composed of an enormous number of ‘elements’. In a liter
of water, the number, N , of H2O molecules is N = M/mH2O ∼ 3.34 × 1025, where
M is the mass of a liter of water, and mH2O = 18.02 amu � 2.99 × 10−23 g is the
H2O molecule mass. This is an exceedingly large number if we aim at studying
the collective motion of a liter of water as a combination of the motion of all its
individual molecules. A fully mechanical, particle-by-particle view of a fluid motion
will require, indeed, writing and solving an extremely large and complicated system
of dynamical equations composed of 3N , second order, differential equations strictly
coupled by the interaction forces among the molecules. This task is out of any
practical possibility, so a different scheme must be adopted.

The basic scheme to adopt is that of the continuum assumption. Qualitatively
speaking, this corresponds to assuming that the number of elements constituting the
fluid is so large (N → ∞) that there is practically no empty space between them,
so that any individual characteristics of the fluid components is actually lost. The
adoption of such an assumption implies the adoption of a statistical treatment of
fluids. This means that every part of fluid under study, which in principle we would
like to be small in size in order to have information about its local state, cannot
be too small because the average values we want to measure should not be too
uncertain to be unreliable, as it happens when the sampling is so poor that its number
of elements, that we keep calling as N , is so small to make the (statistical) local
properties of the fluid too fluctuating to give them physical reliability. Quantitatively
speaking, the condition for a piece of fluid to be treated in the continuum assumption
is to be comprised of a sufficiently large number of ‘particles’ such that the relative
uncertainty, measured by δN ≡ √

N/N = 1/
√
N is much less than 1. This condition

guarantees that fluctuations are small.
Actually, if we consider a piece of fluid with N such that δN � 1, we can say

that, given a physical boundary enclosing this piece of fluid, the distribution of the



8 1 Fluids and Their Fundamental Aspects

impulses released by the fluid particles to the boundary is almost constant in time,
because the Poissonian fluctuations over the mean are extremely small.

In the above-discussed example of a liter of water δN � 1.73 × 10−13, a so small
number to guarantee that fluctuations are totally negligible and that the continuum
hypothesis is at all valid. Another way to evaluate the validity of the continuum
hypothesis is via considering the collisional mean free path, λ, as compared to the
macroscopic size of the piece of fluid, L . Obviously, if λ � L the piece of fluid can
be considered as fully relaxed andmixed, to be well represented under the continuum
hypothesis provided that sufficient time has passed to have actually allowed collisions
among runaway molecules in the fluid to happen. Given n and σ as the fluid particle
number density and collisional cross section (whose physical dimensions are L−3

and L2, respectively), we have

λ = 1

nσ
. (1.3)

In the case of water, n = ρ/mH2O � 3.34 × 1022 cm−3, ρ being the water mass
density (ρ = 1 g cm−3) and mH2O the H2O molecule mass. The collisional cross
section is estimated as σ = 4πR2

H2O � 1.26 × 10−15 cm2, having assumed RH2O �
1.375 × 10−8cm as the value of the H2O molecule radius.

These values lead to λ � 1.26 × 10−8 cm, which is much smaller than any inter-
esting macroscopic piece of fluid size L (L of the order of 10 cm for a liter of water,
so that λ/L � 1.26 × 10−9). To be rigorous, this effectiveness of collisions is guar-
anteed only if the fluid is ‘old’ enoughwith respect to the average inter-collision time,
τc, which can be measured as τc = λ/vrms , where vrms is the root mean square veloc-
ity of the fluid particles. Referring, again, to water at room temperature (T = 295
K), we have

τc = 1

nσvrms
=

√
μmH

3kT
nσ

� 1.97 × 10−13s, (1.4)

with μ the fluid average molecular weight (μ = 〈m〉/mH , where 〈m〉 is the mean
mass of the fluid ‘particles’). The above value of τc is very small, so we have the
confirmation thatwater at room temperature is actually a collision-dominated system.
The characteristic to be collision-dominated can be actually considered in itself as a
definition of a fluid.

1.4 The Lagrangian and Eulerian Descriptions of Fluids

There are two ways to approach the study of the motion of a fluid: Eulerian and
Lagrangian.

The Eulerian description (or specification) corresponds to a field view, and the
relevant fields are vector or scalar functions of position and time characterizing the
fluid velocity, density, pressure and internal energy. It is like choosing arbitrary
positions in space and, as time runs, pointing the attention to the evolution of the
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Fig. 1.4 A set of three fluid particles (indexed by i , j , k) and their path from position at time t0 to
that at time t

above-mentioned physical properties of the fluid thought as functions of the position
and time, let’s say, for example, ρ(r; t) for the mass density.

On the other hand, the Lagrangian description consists in looking at fluid motion
where the hypothetical ‘observer’ follows an individual fluid parcel (a representa-
tive, and small, piece of fluid) as it moves through space and time. The Lagrangian
specification in its ‘rigorous’ version, which is the one in which every individual fluid
component over a total of N is followed along its motion (see Fig. 1.4), is, a priori,
the best to adopt to describe fluid motion. Indeed, a full Lagrangian description of a
fluidmotionwould correspond to the knowledge of the N position vectors of the fluid
particles, ri (ri0; t), which exploit the path in time of the i th particle (i = 1, ..., N )
that at time t0 = 0 was at position ri0. This corresponds to labeling all the fluid
particles and follow all their paths. Such a tracking yields also the velocity of all
particles, given by vi (ri0; t)) = ṙi (ri0; t). This complete specification is practically
impossible to adopt, because of the enormous number of fluid particles, as seen in
the previous section.

From a dynamical point of view, a Lagrangian approach would mathematically
consist in writing the classical Newtonian equations of motion of an ensemble of N
particles

mi r̈i = Fi , (i = 1, 2, . . . , N ), (1.5)

where Fi , is the resultant force acting on the i th particle of mass mi , subjected to
proper initial conditions in position and velocity, ri0 and ṙi0. In principle, the force
acting on every fluid particle depends upon the coordinates of all the other fluid
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particles and, possibly, also explicitly on time, so that Fi = Fi (r1, r2, ..., rN ; t). This
would involve an overwhelming evaluation of O(N 2) pair interactions.4

Let us think about a one-liter bottle of water as constituted by H2O molecules
considered as fluid elementary particles. As we said above, the number of water
molecules in a liter of water is N � 3.34 × 1025, so that the number of force interac-
tions to compute is N (N − 1)/2 ∼ 5.56 × 1050. This means that a perfectly deter-
ministic particle-by-particle motion calculation is absolutely unviable. Of course, if
the particle–particle interaction is sufficiently short-range, the dependence of Fi is
just only upon the coordinates of particles which are in a proper spherical neighbor
around the i th particle, whose radius (radius of influence) is defined as that within
which the interaction strength is quantitatively relevant with respect to the rest of
the fluid and to the contribution of the external force. The contribution of all the
other particles, as that of any other external contribution, would come by a proper
averaging procedure. This would reduce, but surely not eliminate, the overwhelming
computational complexity5 of the problem due to the exceedingly large values of N
in all practical situations. For this reason, practical use of a Lagrangian approach to
fluid dynamics requires the adoption of a hypothetical subdivision of the fluid in a
set of Ñ � N parcels considered as representative (through a proper averaging) of
the characteristics of the fluid, thus reducing a lot the dimensionality of the problem.
This is the approach, for example, of the so-called smoothed particle hydrodynam-
ics (SPH) method, widely used when the fluid is characterized by the presence of
a significant, non-constant, body force (for a precise definition of body force, see
Sect. 2.2).

1.4.1 From the Lagrangian to the Eulerian Description and
Vice Versa

As we said, the Lagrangian description corresponds to the knowledge, at any time
t , of the functions ri (ri0; t) where ri0 indicates the position of the generic, i th, fluid
particle at t = t0 (hereafter, we omit for brevity the generic particle index i). This
corresponds to the knowledge, for every particle, of the 3 scalar functions

⎧⎪⎨
⎪⎩
x = x(x0, y0, z0; t),
y = y(x0, y0, z0; t),
z = z(x0, y0, z0; t),

(1.6)

which are supposed continuous for every t .

4 The number of distinct pairs of particles is
(N
2

) = N (N−1)
2 .

5 For computational complexity of a problem, it is intended the amount of computational resources
needed to solve the problem.
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The time derivatives of the functions in Eq. 1.6

⎧⎪⎨
⎪⎩
ẋ = ẋ(x0, y0, z0; t),
ẏ = ẏ(x0, y0, z0; t),
ż = ż(x0, y0, z0; t)

(1.7)

give the velocity of every particle at any time as a function of its initial position.
The mathematical procedure of elimination of x0, y0, z0 in the rhs of Eqs. 1.7 – done
(if possible) by inversion in Eqs. 1.6 – so to express ẋ, ẏ, ż as functions of x, y, z
and t , allows passing from Lagrangian to Eulerian specification, and corresponds
to obtaining the velocity field (fluid velocity flow) v(r; t) = vx i + vyj + vzk at any
time t and in any point x, y, z of the 3D space, where

vx = ẋ = ẋ(x, y, z; t), vy = ẏ = ẏ(x, y, z; t), vz = ż = ż(x, y, z; t).
(1.8)

The inverse procedure, i.e. from Eulerian to Lagrangian specification, consists in
obtaining the Lagrangian particle paths r(r0; t) by integration of the velocity field.
See Exercises 1.1 and 1.2 for practical application examples.

An important formal step as a connection between the Lagrangian and Eulerian
view is the Lagrangian derivative.

Consider the usual total time derivative of a scalar function φ(r; t), or a vector
function A(r; t). Applying the chain rule

φ̇ ≡ dφ(r; t)
dt

= ∂φ

∂t
+ ṙ · ∇φ = ∂φ

∂t
+ (ṙ · ∇)φ, (1.9)

and

Ȧ ≡ dA(r; t)
dt

= ∂A
∂t

+ ṙ · ∇A = ∂A
∂t

+ (ṙ · ∇)A, (1.10)

where ∇ (nabla) is the usual formal operator ∇ ≡ i ∂
∂x + j ∂

∂y + k ∂
∂z in Cartesian

coordinates, so as ∇φ is simply the gradient of the scalar function φ, while ∇A is
a matrix whose 3 rows are the 3 partial space derivatives of the x, y, z components
of A, respectively (see Appendix A.1). In other words, this matrix has rows which
are the 3 vectors ∇Ax , ∇Ay and ∇Az . As clarified by the identity between ṙ · ∇A
and (ṙ · ∇)A, the dot (scalar) product of the vector ṙ and the matrix A is a vector
whose components are the dot product of ṙ with the 3 rows of the matrix A. This is
the usual ‘line by column’ product of a matrix with a vector.

Of course, ∂A/∂t is a vector whose components are the time derivatives of the
components of A.

The Lagrangian (also called material, substantial, convective, etc.) derivative is
obtained when letting ṙ = v in Eqs. 1.9 and 1.10, where v is the actual flow velocity.
This means derivatives of the functions φ and A done following the fluid motion.
Formally, Eqs. 1.9 and 1.10 transform into the Lagrangian derivatives
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Dφ(r; t)
Dt

= ∂φ

∂t
+ v · ∇φ = ∂φ

∂t
+ (v · ∇)φ, (1.11)

DA(r; t)
Dt

= ∂A
∂t

+ v · ∇A = ∂A
∂t

+ (v · ∇)A. (1.12)

In Eqs. 1.11 and 1.12, the spatial terms v · ∇ are called convection terms (more
precisely: when applied to a scalar function they are called advection terms).

The Lagrangian derivative constitutes a bridge between Lagrangian and Eulerian
descriptions of fluid motion. Given a scalar φ quantity characterizing a fluid (for
example temperature) or a vector quantity A:

• the Dφ/Dt and DA/Dt derivatives are the Lagrangian derivatives;
• the ∂φ/∂t , ∂A/∂t and ∂φ/∂xi , ∂A/∂xi partial derivatives are Eulerian derivatives;
• v in Eqs. 1.11 and 1.12 is the velocity field as measured by the Eulerian observer.

1.5 Stream Lines and Flux Tubes

Given a velocity field v(r; t), the stream lines are defined as those curves having as
a tangent in every point the direction of v in that point. This geometrical condition
the flow lines must satisfy translates into the differential condition

dr
ds

= cv, (1.13)

where s is a curvilinear abscissa in the parametric expression r(s) of the unknown
stream line, and c �= 0 an arbitrary constant. The above ∞1 vector conditions corre-
spond to these scalar conditions

dx

vx (x, y, z; t) = dy

vy(x, y, z; t) = dz

vz(x, y, z; t) . (1.14)

Integration of the above system of equations at every time t leads to the∞1 stream
lines. Clearly, if the velocity field is time-dependent (unsteady flow), the flow lines do
not correspond to fluid particle trajectories, while they do in case of time-independent
velocity field (steady flow). In the latter case, indeed, flow lines don’t change shape
in time and correspond to fluid motion trajectories.

Another useful concept is that of flux tube (Fig.1.5).
The original description of a flux tube is due to J. C.Maxwell (“On Physical Lines

of Force”, Philosophical Magazine and Journal of Science, 4, 1861) who described
flux tubes this way: “If upon any surface which cuts the lines of fluid motion we
draw a closed curve, and if from every point of this curve we draw lines of motion,
these lines of motion will generate a tubular surface which we may call a tube of
fluid motion.” Although lacking mathematical rigor, this can be indeed considered
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Fig. 1.5 Schematization of a
flux tube with cross sections
S1 and S2 with outward
normal unit vectors n. L
indicates the tube lateral
side, surface that, by
definition, is never crossed
by the vector field

a good operational definition of a flow tube. We do not go here into deeper details
on the concepts of stream lines and flux tubes, which will appear in their importance
in the next chapter of this book where the fundamental equations of fluid mechanics
are derived and discussed.

1.6 Solved Exercises

Exercise 1.1 A 2D flow is described in the Eulerian view as

v(x, y; t) = (x + y + 2t)i + (2y + t)j. (1.15)

Determine the Lagrangian coordinates as functions of the initial positions r0 =
(x0, y0) and time t .

Solution
Velocity components can be expressed in the form of linear differential equations

vx = dx

dt
= x + y + 2t, vy = dy

dt
= 2y + t. (1.16)

The two differential equations above are subjected to the initial conditions x(0) =
x0 and y(0) = y0, and may be solved with usual techniques valid for first order
ordinary, linear and non-homogeneous differential equations. The solution for y(t)
of the second equation in 1.16 above is obtained via the formula

y(t) = e

t∫
0
2dt

⎛
⎝y0 +

t∫
0

te−2tdt

⎞
⎠

that leads to

y(t) =
(
y0 + 1

4

)
e2t − 1

4
(2t + 1)
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that, inserted in the first and adopting the same resolution procedure, leads to the
solution for x

x(t) =
[
(x0 − y0 + 1)et + (y0 + 1

4
)e2t − 1

4
(6t + 5)

]
.

Finally, the searched Lagrangian expression for the flow is

r(r0; t) = [
(x0 − y0 + 1)et + (y0 +1

4
)e2t − 1

4
(6t + 5)

]
i+

+
[
(y0 + 1

4
)e2t − 1

4
(2t + 1)

]
j.

(1.17)

Exercise 1.2 A fluid flow has the Lagrangian representation

r(r0; t) = x0e
t i + y0e

−t j + z0k. (1.18)

Convert it into Eulerian representation.

Solution
By elimination of time in x and y, the trajectory of motion is found in Cartesian form

y = x0y0
x

, z = z0,

which represent hyperbolas on the z = z0 plane, in the first and third quadrant if
x0y0 > 0 or in the second and fourth if x0y0 < 0. The velocity field (Eulerian repre-
sentation) is simply

v(r; t) = ẋ i + ẏj + żk = x i − yj, (1.19)

and is 2D and stationary. The stream lines are obtained (see Sect. 1.5) by integration
of

dx

vx
= dy

vy
=⇒ dx

x
= −dy

y
,

whose solution is ln |y| = − ln |x | + c or, equivalently, |y||x | = ec > 0 which are
indeed hyperbolas. This is not a surprise because the velocity field Eq. 1.19 is sta-
tionary and so stream lines and trajectories coincide.

Exercise 1.3 Determine the expression of the stream lines for the 2D flow

v = ex cosh yi − ex sinh yj. (1.20)
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Solution
The equations of the stream lines are

dx

ex cosh y
= − dy

ex sinh y
,

or
dx + coth dy = 0,

whose integration gives
x + ln sinh y = ln c,

where c > 0 is an integration constant. The above expression can be also written as

sinh y = ce−x . (1.21)

Historical Note

Euler and Lagrange, both eminent mathematicians, are undoubtedly two of the
founders of modern fluid mechanics.

Leonhard Euler (b. 1707 in Basel, Switzerland, d. 1783 in St. Petersburg,
Russia) has given enormous contributions in many fields of mathematics and
mathematics applied to physics. His father Paul was a protestant minister who
had been living at JacobBernoulli’s home and attended his lectureswhile study-
ing in Basel. Jacob Bernoulli (b. 1655, d. 1705) was a great mathematician, the
first to introduce the term ‘integral’ in calculus, and a member of the Bernoulli
family, which also mathematicians and physicists Johann Bernoulli (b. 1667,
d. 1748) and Daniel Bernoulli (b. 1700, d. 1802) belonged to. As we will see in
Chap. 2 of this book, the very important inverse relation between pressure and
speed of a moving fluid has been named after Daniel Bernoulli who proposed
it first in 1738 in his book Hydrodynamica. It was Euler, indeed, who derived
Bernoulli’s equation in its commonly used form.

The formation of L. Euler was profoundly influenced by Johann Bernoulli
with whom he had several discussions and talks when he was very young, so to
lead him toward mathematics and physics rather than to theology as his father
would prefer. Leonhard Euler completed his studies in Basel at the age of 19
and published a paper on isochronous curves in a resisting medium. Part of
his life and career was spent in St. Petersburg where for years he cohabited
with Daniel Bernoulli whose senior chair in mathematics he herited when D.
Bernoulli returned toBasel in 1733. Euler, on his side, left St. Petersburg in 1741
to Berlin, keeping strict contacts with Russia where he made a return in 1766.
In the last part of his life, he was almost completely blind but in spite of this his
scientific productionwas huge.He died in St. Petersburg in 1783.Apart from the
overwhelming contributions to mathematics and theoretical mechanics, Euler’s
contribution to fluid dynamics dated mainly around the 1750s when he settled
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up the main mathematical features of fluid mechanics, from the continuity
equation to the equation of motion for an inviscid, incompressible fluid, which
was named after him (see Chap. 2 of this book). In this regard, in 1752 hewrote:
However sublimeare the researches onfluidswhichweowe toMessrsBernoulli,
Clairaut and Le Ronde d’Alembert, they flow so naturally from my two gen-
eral formulae that one cannot sufficiently admire this accord of their profound
meditations with the simplicity of the principles from which I have drawn my
two equations ....

Joseph-Louis Lagrange (b. 1736 in Turin, Italy, d. in 1813 in Paris, France)
was born in Italy and baptized with the name Giuseppe Lodovico Lagrangia.
At that time, Turin was the capital of the kingdom of Sardinia. He started
his studies at the College of Turin, and, initially, he was not oriented toward
scientific subjects. The financial difficulties of his family pushed him from law
studies, as his father preferred for him, to an engagement inmathematics.Hehad
not the chance to have particularly relevant teachers, and initially his scientific
work was not particularly brilliant. However, he got in touch with Euler (who
was in Berlin at that time) to discuss results which constituted basis of what
Euler called “calculus of variations” in 1766. Thanks to Euler and Pierre Louis
Moreau de Maupertuis (b. in 1698 in Saint Malo, France, d. in 1759 in Basel,
Switzerland) who was the president of the Berlin academy, he was offered
a position which he politely refused to remain in Turin until 1766 when he
finally succeeded Euler as Director of Mathematics at the Berlin Academy.
Before leaving Turin, he was one of the founders of the Royal Academy of
Sciences of Turin.

A significant part of Lagrange’s contribution to mathematics and physics
appeared in the new journal Mélanges de Turin published by the Turin Royal
Academy of Sciences. In the 3rd volume of the Mélanges de Turin, he applied
some of his own results on the theory of differential equations to topics of fluid
dynamics. In 1787, he left Berlin to enter the Académie des sciences in Paris
city where he lived until his death. It was in Paris that his masterpiece, the book
Mécanique analytique, was published, although it was written while Lagrange
worked in Berlin. This book formalized mechanics in a full way, by adopting
a description based on differential equations, whose theory has been widely
developed by himself. He was the first professor of analysis in the newborn
(1794) École Polytechnique. In Paris, he passed through the experience of the
resolution and the following Napoleon empire. Napoleon named him to the
Legion of Honour and Count of the Empire in 1808, and in 1813, a few weeks
before his death, he was awarded the Grand Croix of the Ordre Impérial de la
Réunion.

1.7 Further Readings

Good reference books for fluid dynamics generalities are [1–3].



Chapter 2
The Basic Equations for Fluid Motion

Fluid dynamics bases on a set of equations that, upon different hypotheses and
approximations, ‘govern’ the evolution of the fluid system under study. They are
also called constitutive equations.

Their explicit and specific mathematical form depends on the framework adopted
(Eulerian or Lagrangian), and they derive essentially by simple requirements of
conservation of some characteristic quantities that depend on the unknown quantities
(density, pressure, velocity, internal energy, etc.) we look for.

The conservations laws which the basic fluid dynamics equations are based upon
are

• mass conservation;
• momentum conservation (Newton’s second law);
• energy conservation.

Being conservation laws, they express that mass, momentum and energy remain
constant along the flow: their rates of variation along the fluid motion is zero. The
rate of variation means time derivative, and so the conservation equations are ordi-
nary differential equations (ODEs) in the Lagrangian view and partial differential
equations (PDEs) in the Eulerian one. As we will see, mass conservation gives a
link between the (scalar) mass density ρ and velocity v (vector) along time t , while
momentum conservation gives a link among ρ, v and pressure p along time. Finally,
energy conservation gives a link among ρ, v, p and internal energy density e. So, the
number of unknown functions is six, because v is a vector quantity. This means that
the resulting (after some needed considerations) system of five ordinary or partial
differential equations expressing conservation laws does not suffice to determine,
once explicitly or numerically solved under proper boundary and initial conditions,
the whole fluid characteristics because it is undetermined: the number of equations,
5, is less than the number, 6, of unknowns. This indeterminacy is solved, and the
system is closed, by the further assumption of a mathematical link among some of
the unknown quantities, usually called equation of state (EOS). We shall discuss
this later in this chapter.
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2.1 The Continuity Equation

The first constitutive equation is the one which mathematically represents the con-
servation of mass of a fluid along its flow. As we said, this means a relation between
the mass density, ρ(x, y, z; t), and velocity, v(x, y, z; t).

By definition, the fluid mass density at a given time is a point function defined as

ρ(x, y, z; t) = lim
�V →0

�M

�V
, (2.1)

where �V is a sampling volume around (x, y, z) and �M its mass. At time t , under
regularity hypotheses, the limit in the above expression is the derivative of mass with
respect to volume, ρ(x, y, z; t) = d M/dV , evaluated at time t in the given point in
space. According to the above definition of mass density, the mass that at time t is
contained in an arbitrary volume�V around (x, y, z) is given by the volume integral

�M =
∫

�V

ρ dV =
∫∫∫

�V

ρ d3r. (2.2)

The principle of mass conservation states that if mass is neither locally created
nor destroyed (neither sources nor sinks are present), the mass contained in the
arbitrary volume may vary just due to the fluid flow across the boundary of �V , the
latter represented by the symbol ∂�V . In the unit of time, the mass flow across this
boundary is given by the surface integral

∫

∂�V

ρv · n dσ, (2.3)

where n is the unit vector orthogonal to ∂�V in the outward direction. Of course, if
v · n > 0 the mass is locally flowing out of the sampling volume, while if v · n < 0
the mass is flowing in the sampling volume. Consequently, with the expression

dM

dt
≡ d

dt

∫

�V

ρ dV = −
∫

∂�V

ρv · n dσ, (2.4)

we represent the global rate of change of themass in the volume element. Equation2.4
is an integral form of the continuity equation.

We can get a differential form with a few passages.
Actually, because the volume �V is fixed in time, we have

dM

dt
≡ d

dt

∫

�V

ρ dV =
∫

�V

∂ρ

∂t
dV, (2.5)
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which, in the hypothesis of validity of the divergence theorem (see AppendixA.4),
turns Eq.2.4 into ∫

�V

∂ρ

∂t
dV = −

∫

�V

∇ · ρv dV . (2.6)

The equality above constitutes another integral form of the continuity equation
that is also written as ∫

�V

(
∂ρ

∂t
+ ∇ · ρv

)
dV = 0. (2.7)

Given the arbitrarity of the choice for�V , satisfaction of Eq.2.7 requires the inte-
grand to vanish identically, i.e. ρ and v must satisfy the partial differential equation

∂ρ

∂t
+ ∇ · ρv = 0. (2.8)

Equation2.8 says that for a steady flow, ∂ρ

∂t = 0, it is ∇ · ρv = 0. Mathematically,
this corresponds to solenoidality of the vector field ρv, whose physical dimensions
are ML−2T−1 and which physically represents the density of momentum transported
by the fluid at time t at position r.

If there are sources or sinks of fluid matter, Eq.2.8 would carry an extra term in
the rhs,� ≡ S − s, where S ≥ 0 and s ≥ 0 account for source and sink, respectively,
so that it generalizes to

∂ρ

∂t
+ ∇ · ρv = �, (2.9)

where � represents the net rate of mass injected and ejected, per unit volume, into
the fluid.

Byusing the property of the divergence of the product between a scalar and a vector
function (see Exercise2.1 and AppendixA.3.2), we have ∇ · ρv = ρ∇ · v + v · ∇ρ

so that Eq.2.8 turns into

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0. (2.10)

Recalling the expression for theLagrangian derivative, the above equation is found
equivalent to

Dρ

Dt
+ ρ∇ · v = 0. (2.11)

By simple manipulation of Eq.2.11, the further expression,

1

ρ

Dρ

Dt
= D ln ρ

Dt
= −∇ · v, (2.12)
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Fig. 2.1 The example of an increasing car density due to a bottleneck. In the vicinity of the
bottleneck, cars slow down their motion to avoid accidents and this means ∇ · v < 0 and so the car
density grows locally

is obtained. The above expression states that the velocity field of an incompressible
fluid (Dρ

Dt = 0) is necessarily solenoidal, i.e. ∇ · v = 0. On the other hand, it says
also that an expansion of the fluid (∇ · v > 0) implies a density reduction (Dρ

Dt < 0)
while a compression (∇ · v < 0) leads to an increasing density (Dρ

Dt > 0). A good
representative example of a continuity equation at work is the development of a traffic
jam on a freeway (Fig. 2.1).

A relevant result obtainable by a straight application of the continuity equation
and the divergence theorem to an incompressible flow is the following.

In the fluid flow, let us consider a flux tube T whose orthogonal cross sections
are indicated by S1 and S2 (see Fig. 1.5). If in that region the flow is incompressible,
by applying the divergence theorem (see Appendix A.4) it is

∫

T

∇ · v dV = 0 =
∫

∂T

v · n dσ =
∫

S1∪S2

v · n dσ +
∫

L

v · n dσ, (2.13)

where ∂T is the surface of the whole flux tube, given by the union of S1, S2 and the
lateral, L , side. By definition of flux tube, the rightmost integral vanishes because
v · n = 0 identically over L , so that the above equation reduces to

0 =
∫

S1∪S2

v · n dσ =
∫

S1

v · n dσ +
∫

S2

v · n dσ, (2.14)

or equivalently ∫

S1

v · n dσ = −
∫

S2

v · n dσ. (2.15)

Taking into account that v · n is negative in the entrance cross-sectional side
(assumed as S1) and positive on the exit side (S2), a straightforward application of
the integral mean value theorem leads to

〈v1〉area(S1) = 〈v2〉area(S2), (2.16)
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where 〈v1〉 and 〈v2〉 are average values of the modulus of the normal components of
v over the two cross-sectional surfaces. The relation Eq.2.16 indicates to a higher
fluid speed across the smaller cross section with respect to the larger one in ameasure
which scales with the ratio of the two cross-sectional areas.

2.1.1 Lagrangian Form of Continuity Equation

Consider Fig. 1.4 and denote by C0 the volume domain occupied by a set of fluid
particles at time t0 and by Ct the volume domain occupied by the same particles at
time t . The conservation of mass states that the mass contained in Ct is equal to that
in C0

M0 ≡
∫∫∫

C0

ρ(r0; t0) d
3r0 = Mt =

∫∫∫

Ct

ρ(r; t) d3r. (2.17)

The differential relation satisfied by the coordinate transformation r0 → r is

d3r = J(r0, r)d3r0, (2.18)

where

J(r0, r) = det

(
∂(x, y, z)

∂(x0, y0, z0)

)
=

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂x0

∂x

∂y0

∂x

∂z0
∂y

∂x0

∂y

∂y0

∂y

∂z0
∂z

∂x0

∂z

∂y0

∂z

∂z0

∣∣∣∣∣∣∣∣∣∣∣
, (2.19)

is the determinant of the Jacobian matrix of the r0 to r transformation. Substituting
by Eq.2.18 in the second integral in Eq.2.17, we have

∫∫∫
C0

ρ(r0; t0)d
3r0 =

∫∫∫
C0

ρ(r; t)J(r0, r)d3r0, (2.20)

which, due to the arbitrary choice of C0, to be satisfied requires

ρ(r0; t0) = ρ(r; t)J(r0, r). (2.21)

Equation2.21 is known as the equation of continuity in Lagrangian form. In the
following Exercise2.2, it will be shown how the two forms (Eulerian, Eq.2.10 and
Lagrangian, Eq.2.21) are actually equivalent.
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2.2 The Motion Equation for Fluids

We now work out the formal expressions for the equations describing the motion of
a fluid in a classic, Newtonian, non-relativistic, scheme.

Basically, one should adapt to fluids the Newton’s second law of dynamics origi-
nally apt to describe the motion of solid bodies.

As is well known, Newton’s second law of dynamics is written as

dq
dt

= F, (2.22)

where q = mv is the momentum of the particle of mass m (either point like or
extended rigid body) and F is the resultant net force acting on it. In the case of
an extended rigid body, the above differential equation describes the motion of the
body’s center of mass (c.o.m.) and cannot account for possible rotations of the body
around it. In the case of constant mass, Eq. 2.22 is equivalent to three scalar, second
order, ordinary differential equations for the coordinates x, y, z of the point-like
particle or the c.o.m. of the extended rigid object.

The adaptation of the above Eq.2.22 to a fluid requires, first, a full understanding
of the concept of the total force acting on a fluid.

For a fluid, the acting forces are usually distinguished into two categories:

• body forces;
• surface forces.

The body (or volume) forces are those that act throughout the whole volume of the
fluid, at least over a certain range of lengths, so they are usually long-range forces.
Typical examples are gravity and electromagnetic forces. Due to its pervasive nature
and, usually, the slow decrease of intensity with distance, the total body force acting
on a sufficiently small fluid parcel is, quite intuitively, proportional to its volume,
because it is about the same on every element of the parcel. On the other hand, a
surface force is thought of as one acting on the (ideal) surface of the separation of
two portions of fluid. They are, indeed, a type of contact forces that are those, in
the realm of solids, acting on the surface of contact between two bodies. A typical
example is the friction force. Due to the need for contact to occur, it is clear that the
origin of these forces is microscopic, so that they are short-range forces. In other
words, their decay with distance is extremely rapid so to practically vanish over a
distance of a few average intermolecule separations.

It is usual to decompose the vector representing the surface force acting on a point
of a surface into the normal and tangential (to the surface) components. They are
called, respectively, normal and shear forces. The intensity of the normal force per
unit area is, by definition, the pressure, p. On the other hand, the tangential (shear)
force per unit area is called shear stress, usually referred to as τ . Clearly, the shear
stress is what causes a deformation (strain) of a material in a direction parallel to that
of the acting stress (see Sect. 1.1 of Chap. 1).
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Given these definitions, we can progress in stating the form of the fluid motion
equation as a generalization of Eq.2.22. Assuming now as Q the local momentum
density per unit volume of the fluid, we have Q = ρv. Adopting a Lagrangian view
and integrating Q over an arbitrary control parcel of fluid of volume V (which
conserves its mass along the motion) to have the total parcel momentum, and making
its Lagrangian time derivative

D

Dt

∫

V

Q dV =
∫

V

(FS + FB) dV, (2.23)

where FS and FB are the surface and body (volume) forces per unit volume acting on
the moving ‘fluid particle’, we have that, due to the conservation of mass of the fluid
parcel along its motion and due to the arbitrariness of the control parcel of fluid, the
rate of change of the density of momentum is

D

Dt

∫

V

Q dV = ρ
Dv
Dt

= FS + FB . (2.24)

The above equation can be turned into its Eulerian expression by means of
Eq. 1.12, giving

∂v
∂t

+ (v · ∇) v = 1

ρ
FS + 1

ρ
FB . (2.25)

2.2.1 For Ideal Fluids

In the hypothesis that the fluid is ideal,1 due to zero viscosity there is no resistance
to shear force in the fluid and so the acceleration is due just to the body force and to
the normal part of the surface force (pressure contribution).

To obtain a proper expression of the equation of motion for such a fluid, we have
to specify the rhs of Eq.2.25 by considering a ‘representative’, arbitrary, element of
fluid C and make some kind of integration, as we now explain.

In the absence of active shear, the total surface force acting on the fluid element
C as due to the rest of the fluid is given by

FS,C = −
∫

∂C

p n dσ, (2.26)

where the pressure p is, in general, a function of the position vector r and of time, and
n is the normal outward unit vector to the surface ∂C , contour of the fluid parcel C .

1 An ideal fluid is an incompressible and fully adiabatic fluid, i.e. a fluid where there is no heat
exchange between different parts of it. This means non-conductive and inviscid.
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The minus sign is because we must consider the force acting on the C boundary due
to the external fluid. The above surface integral may be transformed into a volume
integral by the application of the divergence theorem (see TheoremA.1 andCorollary
A.1 in Appendix A.4) leading to

FS,C = −
∫

C

∇ p dV . (2.27)

The choice of C being arbitrary, the above implies that in any point of the fluid
the local surface force per unit volume FS is equal to −∇ p, so that the fluid motion
equation is

∂v
∂t

+ (v · ∇) v = − 1

ρ
∇ p + 1

ρ
FB . (2.28)

The above equation, in the case of null body force, is the classic Euler’s equa-
tion for an ideal (inviscid) fluid, first obtained by L. Euler in 1755. Of course, the
Lagrangian form of the equation of motion is

Dv
Dt

= − 1

ρ
∇ p + 1

ρ
FB . (2.29)

Note that the hypothesis of incompressibility has not been used in the deduction
of Eqs. 2.28 and 2.29, so they can be considered valid also for compressible, fully
adiabatic (inviscid) fluids. Actually, as we will see in Sect. 2.2.2 of this chapter,
viscosity acts also in pure compression and dilation of a fluid and not only along
local shear, so that incompressibility and zero shear viscosity assume the same role
of zero bulk viscosity and zero shear viscosity to lead to the same Eq.2.28 equation
of motion.

The role of the volume force is, in terrestrial fluids, often easy to handle. For a
flowing liquid, like a water river, the volume force per unit mass, FB/ρ, is simply
the constant gravitational acceleration on the Earth’s surface, g. In an astrophysical
context, the situation is usually much more complicated, because the gravitational
force field cannot be considered as a constant vector along the fluid size, because both
the intensity and direction are position-dependent and so it must be self-consistently
deduced by a proper field equation (Poisson’s equation, in the case of gravity (see
Sect. 3.2)).

Equations2.28 and 2.29 are submitted to the proper boundary and initial condi-
tions. If the fluid is physically contained (there is a boundary which separates the
fluid from an external environment), the condition v · n = 0 holds on the whole sur-
face S of the boundary (as usual n is the outward normal unit vector). This means
that the flow does not cross the boundary. Note that, in the case of a viscous fluid, the
boundary condition v · et = 0 with et local unit vector tangent to S must be assumed,
too, and it is referred to as no-slip condition.
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2.2.1.1 Euler’s Equation in Terms of Velocity only

The first principle of thermodynamics, with specific (per unit mass) variables (inten-
sive quantities), is written in infinitesimal form as

dq∗ = de + pdV ∗, (2.30)

where q∗ and e are,2 respectively, the quantity of heat and internal energy per unit
mass, and V ∗ (specific volume) is the volume occupied by the unit mass, i.e. V ∗ =
1/ρ.

Upon definition of a further thermodynamic intensive quantity,3 the enthalpy
w = e + pV ∗, by its differentiation and taking into account that in the adiabatic
case dq∗ = 0, we have

dw = de + pdV ∗ + V ∗dp = V ∗dp = dp

ρ
. (2.31)

The above relation, due to that dw = ∇w · r and dp = ∇ p · r, is equivalent to
∇w = ∇ p/ρ, so that Euler’s Eq.2.28 in the assumption of conservative body force,
FB/ρ = ∇U where U is the potential function, turns into

∂v
∂t

+ (v · ∇) v = −∇w + ∇U. (2.32)

In the above equation, the term (v · ∇) v can be eliminated by the vector identity
(see AppendixA.3.2)

1

2
∇v2 = v ∧ (∇ ∧ v) + (v · ∇) v, (2.33)

to obtain
∂v
∂t

+ 1

2
∇v2 − v ∧ (∇ ∧ v) = −∇w + ∇U, (2.34)

which, in its turn, can be written as

∂v
∂t

− v ∧ (∇ ∧ v) = −∇
(
1

2
v2 + w − U

)
. (2.35)

Taking the curl of both sides of the above equation and then swapping the curl
with partial derivative with respect to t in the lhs,

2 Symbols e for specific internal energy and for Euler’s number should not be confused.
3 An intensive quantity has a value that does not depend on the mass of the system it refers to. Mass
density, pressure, specific internal energy and viscosity are examples of intensive quantities.
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∂

∂t
(∇ ∧ v) − ∇ ∧ [v ∧ (∇ ∧ v)] = −∇ ∧ ∇

(
1

2
v2 + w − U

)
= 0, (2.36)

the rightmost equality due to ∇ ∧ ∇ f = 0 for any scalar function f (r; t) (see also
AppendixA.3.2). Consequently Euler’s equation can be written in the simple form

∂

∂t
(∇ ∧ v) = ∇ ∧ [v ∧ (∇ ∧ v)] , (2.37)

which involves the velocity flow, only.
Additionally, if the flow is irrotational, i.e. its vorticityωωω ≡ ∇ ∧ v = 0, it admits a

velocity potential, so that v = ∇�where�(r; t) is a scalar function (called velocity
potential); consequently Eq.2.34 can be written as

∂

∂t
∇� + 1

2
∇v2 = −∇w + ∇U, (2.38)

which, swapping ∂/∂t with ∇, leads to

∇
(

∂�

∂t
+ 1

2
v2 + w − U

)
= 0, (2.39)

implying
∂�

∂t
+ 1

2
v2 + w − U = f (t), (2.40)

where f (t) is an arbitrary function of time,which can be assumed zero, as it comes out

by the transformation 	 = � −
t∫

t0

f (t)dt , which keeps unaltered the flow velocity

because v = ∇� = ∇	.

If, additionally, the flow is stationary,
∂�

∂t
= 0,4 and f (t) = const., and Eq.2.40

leads to the standard form of Bernoulli’s equation

1

2
v2 + w − U = const., (2.41)

which finds several practical applications, among which the most known is to the
hydrodynamic and aerodynamic lift (see Fig. 2.2).

4 If the flow is stationary, also v and w don’t depend on time.
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Fig. 2.2 Cross-sectional view of an air wing

2.2.2 For Non-ideal Fluids

The continuity Eq.2.8 can be written in component form as

∂ρ

∂t
+ ∂ρvk

∂xk
= 0, (2.42)

where the Einstein convention of summation over the repeated index k is adopted.
Also Euler’s (motion) Eq.2.28 can be written in component form

∂vi

∂t
+ vk

∂vi

∂xk
= − 1

ρ

∂p

∂xi
, (2.43)

where we dropped, for simplicity, the body force in Eq.2.28 rhs.
Now, in the expression by components of the partial time derivative of the density

of momentum
∂ρvi

∂t
= ρ

∂vi

∂t
+ vi

∂ρ

∂t
, (2.44)

we can express the first addend in the rhs by Euler’s Eq.2.43 and the second by the
continuity Eq.2.42, obtaining

∂ρvi

∂t
= ρ

(
−vk

∂vi

∂xk
− 1

ρ

∂p

∂xi

)
+ vi

(
−∂ρvk

∂xk

)
= −ρvk

∂vi

∂xk
− ∂p

∂xi
− vi

∂ρvk

∂xk
=

= − ∂p

∂xi
− ∂ρvi vk

∂xk
.

(2.45)

By the use of the unitary (diagonal) tensor, called also Kronecker’s delta,

δik =
{
0, if i �= k,

1, if i = k,
(2.46)
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we can write
∂p

∂xi
= δik

∂p

∂xk
and substitute it into Eq.2.45, to have

∂ρvi

∂t
= − ∂

∂xk
(δik p + ρvi vk) ≡ −∂�ik

∂xk
, (2.47)

having defined the (symmetric) tensor

�ik ≡ δik p + ρvi vk, (2.48)

which is called Reynolds tensor or stress tensor or momentum flux tensor. In vector
notation, the above equation is written as

∂ρv
∂t

= −∇ · �, (2.49)

where � represents the �ik tensor in vector notation (see AppendixA.5).
The denomination of momentum flux tensor is explained by integrating over a

given, fixed, volume of fluid the leftmost and rightmost sides of Eq.2.47,

∫

V

∂ρvi

∂t
dV = ∂

∂t

∫

V

ρvidV = −
∫

V

∂�ik

∂xk
dV = −

∫

∂V

�iknkdσ, (2.50)

where the last equality derives from the application of the divergence theorem.
Clearly, the second integral in the above equations is the rate of variation of the
i th component of the density of momentum within V , so that the surface integral
at the rightmost side is the flux of momentum that, per unit time, flows across the
surface ∂V bounding the volume V . Note the analogy between the rate of change of
mass (lhs of Eq.2.4) as due to the surface integral (rhs of Eq.2.4) of the momentum
density vector (first order tensor) and the rate of change of the momentum density
vector (lhs of Eq.2.50) as due to the surface integral (rhs of Eq. 2.50) of the second
order Reynolds stress tensor.

So far, we neglected viscosity and every other dissipative phenomenon. Conse-
quently, the above-given stress tensor represents a reversible situation, describing
just the mechanical transport of momentum from a point to another and the contribu-
tion of pressure. Aiming at the description of a viscous fluid, it is needed to modify
accordingly the stress tensor to account for the addition of an irreversible process.

To get a proper expression of the stress tensor accounting for viscosity in Newto-
nian fluids, we will follow a heuristic procedure. Recalling the dissipative action of
friction on a solid body motion as representable with the addition to the conserva-
tive acceleration on the moving body of a deceleration term opposite to the velocity
direction and linear in v (−λ2v), schematization valid also for a solid body moving
in a fluid (Stokes law; see Sect. 2.5), we assume that irreversible processes can be
accounted by adding them to the reversible tensor �ik and another tensor σik

�̃ik = �ik − σik, (2.51)
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where σik would represent the viscosity stress tensor.
Theway to determine the actual expression of σik is not unique, but passes through

some hypotheses and approximations. First of all, viscosity is simply a conceptual
generalization to a fluid of the friction acting on the surface of contact of bodies
(see Sect. 1.1). Viscous dissipation, thus, exists only when there is a relative motion
within the fluid (a layer of fluidmoveswith respect to the adjacent). So, viscositymust
depend upon spatial derivatives of the internal fluid velocity field. In the hypothesis
of small velocity variations, it is natural that the momentum transfer by viscosity
depends only linearly upon the first partial spatial derivatives of the velocity and that
the dependence on velocity space derivatives of order higher than one is negligible,
σik ∝ ∂vi/∂xk . Of course, the condition σik = 0 when v = const. is imposed (no
velocity means obviously no internal shear): this means that σik cannot contain terms
independent of ∂vi/∂xk .

The viscosity tensor is constrained also by the condition it should vanish for a
fluid in uniform (rigid) rotation, because even if the velocity field is not constant in
a rotation being v = ωωω ∧ r, when the rotation is uniform (ωωω = const.) there is no
relative motion within the fluid and so viscosity cannot act. This condition translates
into a series of conditions on the space partial derivatives of the velocity field, which

can be resumed by
∂vi

∂xk
+ ∂vk

∂xi
= 0, for i, k = 1, 2, 3.

The demonstration is easy. If the fluid is uniformly rotating (rigid rotation), the
velocity field is

v = ωωω ∧ r =
∣∣∣∣∣∣
i j k
ωx ωy ωz

x y z

∣∣∣∣∣∣ = (ωyz − ωz y)i − (ωx z − ωz x)j + (ωx y − ωy x)k,

(2.52)
which implies

∂vx

∂x
= 0,

∂vx

∂y
= −ωz,

∂vx

∂z
= ωy,

∂vy

∂x
= ωz,

∂vy

∂y
= 0,

∂vy

∂z
= −ωx ,

∂vz

∂x
= −ωy,

∂vz

∂y
= ωx ,

∂vz

∂z
= 0,

(2.53)

which summarizes in the general relations

∂vi

∂xk
+ ∂vk

∂xi
= 0, (2.54)

with theusual convention x1 = x , x2 = y, x3 = z; v1 = vx , v2 = vy, v3 = vz . Eq. 2.53
show that in rigid rotation ∇ · v is identically null.

Given that by the above considerations the heuristic expression of σik would

contain only linear terms in
∂vi

∂xk
, it is worth writing
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∂vi

∂xk
= 1

2

∂vi

∂xk
+ 1

2

∂vi

∂xk
+ 1

2

∂vk

∂xi
− 1

2

∂vk

∂xi
+ 1

3
δik

∂v j

∂x j
− 1

3
δik

∂v j

∂x j
=

= 1

3
δik

∂v j

∂x j
+ 1

2

(
∂vi

∂xk
− ∂vk

∂xi

)
+ 1

2

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂v j

∂x j

)
=

≡ Aik + Bik + Cik .

(2.55)

The first addend, Aik = 1

3
δik

∂v j

∂x j
, in the last equality is a symmetric tensor

(Aik = Aki ) identically null in rigid rotation and having trace5 equal to ∇ · v.
The second one, Bik = 1

2

(
∂vi

∂xk
− ∂vk

∂xi

)
, is an antisymmetric tensor (Bik = −Bik)

that does not vanish in rigid rotation and with trace equal to zero. The last one,

Cik = 1

2

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂v j

∂x j

)
, is, a symmetric tensor with trace equal to zero

and identically null in rigid rotation. Because the tensor Bik does not vanish in rigid
rotation, as required by the concept of viscosity, the linear combinations of the first
order space partial derivatives the viscosity tensor may depend upon are of the type
αAik + βBik + γ Cik , with β = 0.

In the following, we indicate by ζ ≡ α/3 and η ≡ γ /2 the so-called bulk and
shear viscosity, respectively. The name bulk viscosity is because ζ is the coeffi-
cient of the tensor Aik whose trace is ∇ · v which, by the equation of continuity,
is a measure of the fluid compressibility. Analogously, the name shear viscosity
is associated with trace(Cik) = 0. Note that the physical dimensions of ζ and η

are [ζ ] = [η]=ML−1T−1, which include M, justifying the adjectivation of dynamic
viscosity coefficients. To the dynamic viscosities correspond kinematic viscosities
ζ̃ = ζ/ρ and η̃ = η/ρ whose dimensions do not include M. It can be said that
dynamic viscosity gives information on the force needed to make the fluid flow at
a certain rate, while kinematic viscosity tells how fast the fluid is moving when a
certain force is applied.

As a consequence of what was said above, the heuristic form of the viscosity
stress tensor is

σik = ζ δik
∂v j

∂x j
+ η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂v j

∂x j

)
. (2.56)

In Table2.1, some values of shear kinematic viscosities of some liquids and gases
are reported at various temperatures in the 0◦ ÷ 100◦ C range. Note how for liquids
and the saturated water vapor, viscosity decreases at higher temperatures while the
opposite occurs for methane and air, which are two gases. This different behavior
of viscosity for liquids and gases is interpreted in terms of the efficiency of internal
collisions: in a gas a higher temperature implies larger thermal motion of particles
and so a stronger interaction, while in a liquid the intermolecule interaction force

5 The trace of a square matrix is the sum of the elements on its diagonal.
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Table 2.1 Values of shear kinematic viscosities, η/ρ, for various fluids at selected temperatures
(in degrees Celsius). Viscosity values in 10−7 m2/s (from https://www.engineerplant.it/dtec/)

Fluid 0◦ C 10◦ C 20◦ C 50◦ C 100◦ C

Mercury 1.3 1.2 1.2 1.1 –

Ammonia 3.1 2.9 2.7 2.0 –

Gasoline 8.0 7.0 6.0 4.5 –

Water 19.0 14.0 11.0 5.5 3.0

Salt water 25.0 18.0 12.0 8.0 4.5

Kerosene 42.0 28.0 24.0 13.0 9.0

Gear oil (SAE
30)

2 × 104 6 × 103 2.8 × 103 550 120

Methane 120 140 150 180 220

Air 120 21 23 26 35

Saturated H2O
vapor

1.8 × 104 104 5.1 × 103 1.1 × 103 210

Fig. 2.3 Dependence on temperature of honey density (in black) and dynamic viscosity (in red)
(from https://wiki.anton-paar.com/en/flower-honey-blended/)

weakens with increasing temperature. Note that a priori η and ζ could be� 0, but the
dissipative nature of viscosity implies they are both ≥ 0 (see Sect. 2.3.2). Figure2.3
shows the dependence of both density and dynamic shear viscosity η of a mixed
flower honey.

Given the expressions in Eq.2.51 and 2.56, the equation of motion is written as

https://www.engineerplant.it/dtec/
https://wiki.anton-paar.com/en/flower-honey-blended/
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∂ρvi

∂t
= −∂�̃ik

∂xk
= − ∂

∂xk
(�ik − σik) =

= − ∂

∂xk

[
δik p + ρvi vk − ζ δik

∂v j

∂x j
− η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂v j

∂x j

)]
,

(2.57)
which is the general expression for the equation of motion of a viscous fluid under
the above-described approximations.

In principle, both η and ζ are functions of the state variables ρ and T , which vary
across the fluid. Anyway, in a limited range of ρ and T , η and ζ may be assumed
constant (Newtonian fluid), and Eq.2.57 simplifies to

∂ρvi

∂t
= − ∂

∂xk
(δik p + ρvi vk) + ζ

∂

∂xk

(
δik

∂v j

∂x j

)
+

+ η
∂

∂xk

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂v j

∂x j

)
.

(2.58)

In vector form, the above equation is

∂ρv
∂t

+ v∇ · ρv + (ρv · ∇) v = −∇ p + η∇2v +
(η

3
+ ζ

)
∇∇ · v, (2.59)

which is the extended expression for

∂ρv
∂t

= −∇ · �̃, (2.60)

where �̃ = � − σσσ is the vector representation of the tensor given in Eq.2.51.
Using the equation of continuity to simplify the lhs of Eq.2.59, it reduces to the

form
∂v
∂t

+ (v · ∇) v = − 1

ρ
∇ p + η

ρ
∇2v +

(
1

3

η

ρ
+ ζ

ρ

)
∇∇ · v, (2.61)

called Navier–Stokes (N-S) equation. It is formally identical to Euler’s equation (to
which it reduces when η = ζ = 0) but for the addition of the viscosity terms in the
rhs. These terms describe, actually, the role played by viscosity on the diffusion6

of momentum along the fluid motion, in some opposition to the ordered role of the
convection term at the lhs.

For an incompressible fluid,∇ · v = 0, and so Eq.2.61 assumes themost common
form of the Navier–Stokes equation

∂v
∂t

+ (v · ∇) v = − 1

ρ
∇ p + η

ρ
∇2v. (2.62)

6 Diffusion is the physical phenomenon of spreading out a quantity around a point.
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The possible presence of an external force, i.e. a body force (per unit mass), can
be accounted for by adding it at the rhs side of the above equation.

For the sake of completeness, we give also the equivalent of Eq.2.61 written in
component form

∂vi

∂t
+ vk

∂vi

∂xk
= − 1

ρ

∂p

∂xi
+ η

ρ

∂

∂xk

∂vi

∂xk
+

(
1

3

η

ρ
+ ζ

ρ

)
∂

∂xi

∂vk

∂xk
. (2.63)

2.2.2.1 The Navier–Stokes Equation for Incompressible Fluids

As was said, the Navier–Stokes equation for incompressible fluids assumes the
expression in Eq.2.62. Recalling the vector identity 2.33 to substitute for (v · ∇)v
in Eq.2.62, taking the curl of both sides of the obtained equation, and assuming
constant the kinematic shear viscosity η̃ ≡ η/ρ, Eq. 2.62 transforms into

∂ωωω

∂t
+ ∇ ∧

(
1

2
∇v2 − v ∧ ωωω

)
= −∇ ∧ ∇ p

ρ
+ η̃ ∇2ωωω. (2.64)

In the equation above, ∇ ∧ 1

2
∇v2 is identically zero. Moreover, we may use the

vector identity (see AppendixA.3.2)

∇ ∧ (v ∧ ωωω) = (ωωω · ∇)v − (v · ∇)ωωω + v∇ · ωωω − ωωω∇ · v, (2.65)

where the two rightmost terms are zero because ∇ · ωωω = 0 being the divergence of
a curl and ∇ · v = 0 for incompressibility; given all this, and by the development of
∇ ∧ (∇ p/ρ), Eq. 2.64 is written as

∂ωωω

∂t
− (ωωω · ∇)v + (v · ∇)ωωω = 1

ρ2
∇ρ ∧ ∇ p + η̃ ∇2ωωω. (2.66)

In terms of Lagrangian derivative, the above equation (vorticity equation) is

Dωωω

Dt
= (ωωω · ∇)v + 1

ρ2
∇ρ ∧ ∇ p + η̃ ∇2ωωω. (2.67)

In the latter equation, the first term in the rhs is called vortex stretching because
it increases vorticity according to the corresponding increase of the component of
vorticity in the stretching direction. In a 2D flow, vortex stretching is zero, because
v is confined on a plane and ωωω is orthogonal to that plane. The second term in the
rhs of Eq.2.67 is the baroclinic term, which goes to modify vorticity as much as
directions of density and pressure variations are inclined each other (the term is null
when ∇ρ ‖ ∇ p). The baroclinic term is identically null when the EOS is barotropic,
p = p(ρ), because in this case
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∇ p = dp

dρ
∇ρ, (2.68)

so to give ∇ρ ∧ ∇ p = 0. While the vortex stretching term is connected with the
development of turbulence in fluids, the baroclinic term is concerned mainly with
atmospheric physics. Baroclinic instabilities are indeed primary causes of the for-
mation and development of cyclones, typhoons and tornadoes.

The last contribution to vorticity rate of change, η̃ ∇2ωωω, corresponds to molecular
diffusion of vorticity, governed by kinematic shear viscosity, being zero only for
inviscid fluids.

2.2.2.2 An Exact Solution of Navier–Stokes Equation
for Incompressible Fluids

Due to their strong non-linearity, no general solutions of neither Euler’s nor N-S
equation are known.

Actually, some solutions to the full non-linear N-S equation do exist (Jeffery–
Hamel flow, von Kármán swirling flow, stagnation point flow, Landau–Squire jet,
and Taylor–Green vortex) whose stability is anyway hard to be stated, being likely
subjected to turbulence development at high Reynolds numbers.7

Anyway, under strong simplifying assumptions, whichmainly correspond to eras-
ing non-linear terms, other, simpler, exact solutions of the N-S equation are found
(Hagen–Poiseuille flow, , Couette flow and oscillatory Stokes boundary layer).

For sake of an example, we deal here with the so-called Hagen–Poiseuille flow.
The physical scheme is that of a viscous and incompressible fluid flowing steadily

in a cylindrical pipe of circular section of radius Rp significantly smaller than the
pipe length L p. As it will be shown later in this chapter, the condition for the flow
to be laminar and not turbulent is that the fluid speed and the pipe cross section are
not too large for a given fluid kinematic viscosity.

The clear symmetry of the problem suggests the use of cylindrical coordinates,
(R, θ, z), where z is taken along the pipe axis and pointed in the flow direction and
R and θ are the usual radial and azimuthal coordinates on the equatorial plane.

Mathematically, the assumptions are as follows:

• the fluid is incompressible: ∇ · v = 0;
• steady fluid: all partial derivatives with respect to time are null;
• laminar flow: vθ = vR = 0, vz > 0;
• axisymmetric flow: all partial derivatives with respect to θ are null;
• fully developed flow: ∂vz

∂z = 0;
• the pipe is horizontal and the external force is terrestrial gravity alone:

(FB/ρ)z = 0).

Upon above conditions, the equation of continuity in cylindrical coordinates (see
AppendixA.2.2) reduces to

7 The concept of turbulence and its relation with the Reynolds number is developed in Sect. 2.5.
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∂ρvz

∂z
= vz

∂ρ

∂z
= 0, (2.69)

implying ∂ρ

∂z = 0.
The radial N-S equation in cylindrical coordinates (see again AppendixA.2.2)

reduces to ∂p
∂ R = 0, meaning that p depends on z, only. The azimuthal N-S equation is

identically satisfied, so the only non-trivial equation left is the axial equation which
here reduces to

− 1

ρ

∂p

∂z
+ η

ρ

1

R

∂

∂ R

(
R

∂vz

∂ R

)
= 0. (2.70)

Because p = p(z) and vz = vz(R), in order for a function of z alone and one of
R alone to be equal they must be equal to the same constant, which we call A.

dp

dz
= η

R

d

dR

(
R
dvz

dR

)
= A. (2.71)

The equation dp/dz = A is integrated giving p(z) = Az + c0, with c0 integration
constant. The pressure difference on two generic orthogonal sides of the pipe is
�p ≡ p(z1) − p(z2) = A(z1 − z2), so that �p > 0 if the fluid flows from face 1
(identified by a z1 where the flow is already fully developed) to face 2. Consequently

A = −�p

L p
< 0. (2.72)

By two successive integrations with respect to R, the solution for vz of Eq.2.71 is

vz(R) = A

4η
R2 + c1 log R + c2. (2.73)

Non-singularity of the solution for R = 0 requires c1 = 0, while c2 is determined
by the no-slip boundary condition, vz(Rp) = 0, which gives c2 = −(AR2

p)/(4η).
The final parabolic velocity profile (see Fig. 2.4) is so

vz(R) = A

4η
(R2 − R2

p). (2.74)

As intuitively expected, the maximum speed is along the z-axis, R = 0, and is
vz,max = −AR2

p/(4η).
A practical way to measure the pressure drop due to viscosity in the Hagen–

Poiseuille pipe is by a measure of the average volumetric flow rate Q = π R2
p〈vz〉

(whose dimensions are L3T−1 and represents an average measure of the volume of
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Fig. 2.4 Flow development within a cylindrical pipe. The dot-dashed line is along the z axis
(Figure taken from https://skill-lync.com/student-projects/week-11-simulation-of-flow-through-
a-pipe-in-openfoam-232)

fluid flowing through the pipe in the unit of time) where the average speed 〈vz〉 is
obtained as

〈vz〉 = 1

π R2
p

Rp∫

0

vz(R)2π RdR = − AR2
p

8η
= 1

2
vz,max , (2.75)

which leads to Q = −(π AR4
p)/(8η), and so A = −(8ηQ)/(π R4

p) that inserted into
Eq.2.72 leads to the pressure drop

�p = −8ηQL p

π R4
p

, (2.76)

usually referred to as the Hagen–Poiseuille equation or law, determined experimen-
tally by both Gotthilf Heinrich Ludwig Hagen and Jean Leonard Marie Poiseuille
in 1838 and theoretically justified later by George Stokes in 1845. It is interesting
noting that this law successfully applies to the flow of blood in the vascular system,
as well as to the airflow in lung alveoli and liquid flow along a drinking straw or
liquid flow along a hypodermic needle.

2.2.3 The Stream Function

If the velocity field can be written as v = ∇ ∧ ψ , where ψ is a vector potential, 8

it results in the incompressibility condition ∇ · v = 0 being automatically satisfied

8 A vector potential is a vector field whose curl is another, given, vector field, while a scalar potential
is a scalar field whose gradient is another, given, vector field.

https://skill-lync.com/student-projects/week-11-simulation-of-flow-through-a-pipe-in-openfoam-232
https://skill-lync.com/student-projects/week-11-simulation-of-flow-through-a-pipe-in-openfoam-232
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as a divergence of a curl. In addition, if the flow is in 2D (on the (x, y) plane), it is
vz = 0 and

v =
(

∂ψz

∂y
− ∂ψy

∂z

)
i −

(
∂ψz

∂x
− ∂ψx

∂z

)
j. (2.77)

If ψ is a 1D field, ψ = ψzk ≡ ψk, the above expression of v simplifies to

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
. (2.78)

The function ψ is, a priori, also dependent on t and is called stream function. It
can be defined in 2D flows, and, in 3D, just for axisymmetric flows.

An important characteristic of ψ is being constant along stream lines. Recalling
that a stream line is a curve such that dr/ds = cv (Sect. 1.5), we have that along a
stream line it results in

dψ

ds
= ∂ψ

∂x

dx

ds
+ ∂ψ

∂y

dy

ds
= c

(
∂ψ

∂x
vx + ∂ψ

∂y
vy

)
= c

(
∂ψ

∂x

∂ψ

∂y
− ∂ψ

∂y

∂ψ

∂x

)
= 0.

(2.79)
Now, note that the vorticity of a 2D flow v admitting a vector potential ψ is

ωωω = ∇ ∧ v =
(

∂vy

∂x
− ∂vx

∂y

)
k =

(
−∂2ψ

∂x2
− ∂2ψ

∂y2

)
k = −∇2ψ k. (2.80)

This expression says that in an irrotational flow, the stream function is harmonic,9

∇2ψ = 0. If the flow is irrotational, v admits a scalar potential φ, v = ∇φ, and,
if incompressible, the condition ∇ · v = 0 implies that also the velocity potential is
harmonic, ∇2φ = 0. In the general ωωω �= 0 case, using Eq.2.80 we can write the
vorticity evolution Eq.2.67 for a barotropic fluid in the form

Dωωω

Dt
+ k η̃ ∇2∇2ψ = 0, (2.81)

which, by developing the Lagrangian derivative, transforms into

∂∇2ψ

∂t
+ ∂ψ

∂y

∂∇2ψ

∂x
− ∂ψ

∂x

∂∇2ψ

∂y
− η̃ ∇2∇2ψ = 0, (2.82)

where∇2∇2 ≡ ∇4 is the square of the Laplacian operator, i.e. the fourth power of the
nabla operator, that in Cartesian coordinates in n dimensions, is (assuming Einstein
convention)

∇4 = ∂

∂xk

∂

∂xk

∂

∂x j

∂

∂x j
. (2.83)

9 A harmonic function is a twice continuously differentiable function f (x1, . . . , xn)which satisfies
Laplace’s equation, ∇2 f = 0.
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Equation2.82 has the advantage of being a single scalar equation in the unknown
function ψ , with difficult to determine boundary conditions.

If viscous forces dominate over inertia forces (Stokes flow, lowReynolds numbers;
see Sect. 2.5), Dωωω/Dt � 0 so satisfaction of Eq.2.81 requires ψ to be a biharmonic
function, ∇2∇2ψ ≡ ∇4ψ = 0.

Finally: (i) 2D irrotational flows are characterized by a velocity fieldwhich derives
from a harmonic stream function; (ii) 2D rotational, high viscosity, flows, instead,
are characterized by a biharmonic stream function.

2.3 The Energy Equation

In the continuum view, a fluid is characterized by both an ‘ordered’ (kinetic) energy
and a ‘disordered’ (internal) energy. This essentially means two equations to be
satisfied by two scalar quantities (the kinetic and the internal energies). In an ideal
fluid, which by definition is fully adiabatic, there are no dissipative processes of any
kind (viscosity, heat conduction, convection, acoustic dissipation, irradiation, etc.),
so its entropy, S, is constant everywhere: d S/T = 0. If we denote by s the entropy
per unit mass (intensive quantity), its conservation is expressed by

Ds

Dt
= ∂s

∂t
+ v · ∇s = 0, (2.84)

which, together with the continuity equation in the form of Eq.2.8, transforms (see
Exercise2.4) into

∂ρs

∂t
+ ∇ · ρsv = 0, (2.85)

which has indeed the same form of the conservation of mass (continuity) Eq.2.8
with the substitution of ρ with ρs, and corresponds to conservation of the whole fluid
entropy

∫
V

ρsdV instead of the fluid mass
∫
V

ρdV . The vector quantity ρsv is called

‘entropy flux’. Equation2.85 can be considered as an Eulerian form of the energy
equation for an ideal fluid.

Let us obtain another, Lagrangian, expression for the energy equation of an
ideal fluid. To do this, we use the intensive quantities e, V ∗ and q∗ introduced
in Sect. 2.2.1.1 that are specific internal energy,10 specific volume and heat, all per
unit mass. By its definition, V ∗ = 1/ρ, and so the first principle of thermodynamics
implies that dq∗ = de + pdV ∗ = de + pd(1/ρ) = de − (p/ρ2)dρ, which trans-
lates into the differential Lagrangian form

Dq∗

Dt
= De

Dt
− p

ρ2

Dρ

Dt
. (2.86)

10 Given the context where it is used, e cannot be confused with Euler’s number represented with
the same letter.



2.3 The Energy Equation 39

Of course, if heat is injected in the fluid Dq∗/Dt > 0, while the opposite,
Dq∗/Dt < 0, holds if heat flows out of the fluid. These situations are caused by
phenomena like

• chemical endo/exo-thermic chemical reactions;
• nuclear reactions;
• energy transport and deposition by conduction, convection and/or by radiation;
• viscosity dissipation;
• sound absorption.

Coupling Eq.2.86 to mass continuity equation yields

ρ
De

Dt
= −p∇ · v + ρ

Dq∗

Dt
, (2.87)

which quantitatively expresses the rate of change of the internal energy due to the
contemporary action of the pressure work in unit time (p∇ · v) and of the chemo-
physical processes identified above (ρDq∗/Dt). In astrophysics, for instance, radia-
tive processes are very relevant. Their role in the energy balance is mediated by the
characteristics of the matter–radiation interaction. When radiative energy is trans-
ferred to matter Dq∗/Dt > 0, the opposite happens when part of the matter energy
is transformed into radiative energy. In the particle view of light, these two cases
correspond, respectively, to photons absorbed by matter (going to increase its tem-
perature, i.e. a heating process) or to photons emitted bymatter (leading to lowering
its temperature, i.e. a cooling process). Usually, heating and cooling are accounted for
in Eq.2.87 by two non-negative heating and cooling functions, � and� respectively,
such that

ρ

(
Dq∗

Dt

)
rad

≡ ρ (� − �) (2.88)

gives the non-adiabatic radiation contribution to the internal energy evolution of the
fluid. The exact dependence of � and � upon state variables is extremely complex
because they relate to both the chemical composition of matter and its excitation and
ionization state. Under various simplifications, including that of matter–radiation
equilibrium such that kinetic and radiation temperatures are the same, these depen-
dences might be resumed into a dependence on ρ and T , only, so that � = �(ρ, T )

and � = �(ρ, T ), often expressed in tabular form.
Finally, an often used form of the Lagrangian energy equation is

ρ
De

Dt
= −p∇ · v + ρ(� − �) + ρ

(
Dq∗

Dt

)
non−rad

, (2.89)

where both the radiative and non-radiative contributions are considered as known
(although approximated) functions of ρ and T . Of course, if the fluid is ideal (fully
adiabatic) the above equation reduces to
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ρ
De

Dt
= −p∇ · v, (2.90)

where only the work (per unit time) done by pressure goes into either increasing
internal energy (compression, i.e.∇ · v < 0) or decreasing it (rarefaction, i.e.∇ · v >

0) in perfect agreement with the standard adiabatic form of the first principle of
thermodynamics.

2.3.1 Kinetic Energy of the Fluid

The fluid total energy accounts for both the internal energy discussed above (that on
microscopic space scales) and the kinetic energy, the one pertaining to the global
movement of the fluid, i.e. that on the large, translational, space scale. The time
evolution of the fluid kinetic energy can be thus obtained, in the simplest case of an
ideal fluid, by the Euler’s equation. A scalar multiplication of both sides of Eq.2.29
by the fluid velocity v gives

ρv · Dv
Dt

= −v · ∇ p + v · FB, (2.91)

which is equivalent to

ρ
D

Dt

1

2
v2 = −v · ∇ p + v · FB . (2.92)

The above equation represents kinetic energy evolution, stating that kinetic energy
per unit mass varies due to work done in the unit time by the pressure (surface) forces
(first term in the rhs) and by the external, body, forces (second term in the rhs).

A straight side-by-side summation of Eqs. 2.90 and 2.92 leads to the equation

ρ
D

Dt

(
1

2
v2 + e

)
= −v · ∇ p − p∇ · v + v · FB = −∇ · pv + v · FB, (2.93)

which defines the rate of change of the total (internal+kinetic) energy per unit mass
along the fluid motion, in Lagrangian form.

The Eulerian form of the energy equation is obtained by recalling (see again
Exercise2.4) that for a sufficiently regular scalar function φ(r, v; t), under validity
of continuity equation, it results in

ρ
Dφ

Dt
= ∂ρφ

∂t
+ ∇ · ρφv, (2.94)

so that, letting φ ≡ v2/2 + e, Eq. 2.93 converts into Eulerian form
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∂

∂t

[
ρ

(
1

2
v2 + e

)]
+ ∇ · ρ

(
1

2
v2 + e

)
v = −∇ · pv + v · FB, (2.95)

which may be rewritten as

∂

∂t

[
ρ

(
1

2
v2 + e

)]
+ ∇ · ρ

(
1

2
v2 + e + p

ρ

)
v = v · FB, (2.96)

which we definitely consider as the Eulerian energy equation.
Note that the second addend in the lhs can be written as∇ · ρ

(
v2/2 + w

)
v, where

w ≡ e + p/ρ is the specific (per unit mass) enthalpy of the fluid.11

Integrating both sides of Eq.2.96 over a generic portion of volume, V , of the fluid,
swapping the derivative with respect to t with the integral on the lhs and moving the
integral of the divergence to the rhs

∂

∂t

∫

V

ρ

(
1

2
v2 + e

)
dV = −

∫

V

∇ · ρ

(
1

2
v2 + w

)
v dV +

∫

V

v · FBdV, (2.97)

which, by applying the divergence theorem to the first integral in the rhs, transforms
into

∂

∂t

∫

V

ρ

(
1

2
v2 + e

)
dV = −

∫

∂V

ρ

(
1

2
v2 + w

)
v · n dσ +

∫

V

v · FBdV . (2.98)

In Eq.2.98 the lhs is the rate of change of the fluid energy of the given volume V
while at rhs the integral over the surface surrounding V represents, with its negative
sign, the inward flux of energy, hence the name of energy flux density vector
for the quantity ρ

(
v2/2 + w

)
v. Note that the net change of energy of the fluid is

contributed by the body force work (rightmost term in the rhs above) and by both
the flux of kinetic + internal energy and by the work done by pressure force on the
fluid within the surface surrounding V . This explains why in the energy flux density
vector appears the enthalpy w = e + p/ρ.

2.3.2 The Energy Equation for a Dissipative Fluid

In the case of a dissipative fluid, we have obtained the equation of motion in the
Navier–Stokes form (Eq.2.61). Operating in the same way followed above for the
Euler’s equation, the Eulerian energy equation in the N-S case is

11 Note that for an ideal gas, enthalpy depends only upon temperature and not on pressure and
density.
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∂

∂t
ρ

(
1

2
v2 + e

)
+ ∇ · ρ

(
1

2
v2 + e + p

ρ

)
v =

[
η∇2v +

(
1

3
η + ζ

)
∇∇ · v

]
· v+

+ ρ
Dq∗
Dt

+ v · FB . (2.99)

The above equation shows that the work per unit time of viscosity acts, if both η

and ζ are non-negative, in such a way as to reduce (dissipate to smaller scales) the
kinetic energy of the fluid. We can see it easily in the case of an incompressible fluid
(∇ · v = 0).

Actually, it is simple to follow the same procedure adopted to obtain the Eulerian
form of the kinetic energy per unit mass evolution of an ideal fluid, to obtain, in the
incompressible N-S case and neglecting ρDq∗/Dt and v · FB ,

∂

∂t
ρ

v2

2
+ ∇ · ρ

(
1

2
v2 + p

ρ

)
v = η∇2v · v, (2.100)

which, as expected, is identical to Eq.2.99 where we let e = 0. Now, an integration
of both sides of the above equation over the whole volume V occupied by the fluid
gives the rate of change of the fluid kinetic energy

Ėkin = ∂

∂t

∫

V

1

2
ρv2dV = −

∫

V

∇ · ρ

(
1

2
v2 + p

ρ

)
vdV + η

∫

V

∇2v · vdV .

(2.101)
Substituting for ∇2v · v in the rhs of the above relation by means of the vector

identity ∇ · (v∇v) = v · ∇2v + ∇v · ∇v, 12 we get

Ėkin = ∂

∂t

∫

V

1

2
ρv2dV = −

∫

V

∇ · ρ

(
1

2
v2 + p

ρ

)
vdV +

+ η

∫

V

∇ · (v∇v) dV − η

∫

V

∇v · ∇vdV .

(2.102)

The divergence theorem can now be used to transform the first two volume inte-
grals in the rhs of the above relation into surface integrals which vanish (due to
boundary conditions), so that Eq.2.102 reduces to

Ėkin = −η

∫

V

∇v · ∇vdV ≤ 0, (2.103)

12 This identity can be also obtained by the formal substitution f → v and v → ∇v in the 10th of
the identities A.45 of Appendix A.3.
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whenever η ≥ 0, because ∇v · ∇v is, obviously, always non-negative. The above
result can be also considered as a demonstration that the shear viscosity coefficient
must be non-negative due to the intrinsic dissipational nature of fluid viscosity.

2.4 Thermodynamics of Fluids and Equations of State

As we said, in the Eulerian specification of a fluid the relevant quantities are the
velocity vector field, v, and the (scalar) mass density, pressure, and internal energy
fields, ρ, p and e. This means there are six unknown quantities, leading to an unde-
termined situation because the governing equations (continuity, motion, energy) are
just five (two scalar and one vectorial).

As a matter of fact, the (intensive) state variables (density, pressure, temperature
and internal energy) are, indeed, scalar because their spatial resolution, in the sense
of assigning to each of them a vector, is unrealistic. They refer to the small scale
structure of the fluid and can be related to each other by thermodynamical concepts.
The most relevant is the link among small scale variables provided by the equation of
state, adopting, indeed, the terminology of state variables for ρ, p, T , e. The equation
of state is thought of as a functional connection among the state variables which, in
the most general form, can be expressed as f (ρ, p, e) = 0. Apart frommathematical
complications related to the actual explicit expression, one can in principle obtain one
variable once the others are known. Note that the EOS is not a differential equation
but rather an algebraic connection among the state variables, needed to ‘close’ the
system of differential equations governing the time evolution of the fluid.

There is a variety of EOSs, each describing a particular situation of a fluid, valid
in different ranges of density, pressure and internal energy.

The simplest is the classical EOS of ideal gases,13 p = nkT , where n is the fluid
number density, n = ρ/〈m〉, and k is Boltzmann’s constant. Another often used form
of the EOS is the polytropic form,which is a particular, power law, form of barotropic
EOS, which is one of the type p = p(ρ).
A polytropic EOS is expressed as

p = cγ ρ1+1/n, (2.104)

where cγ > 0 is a constant dependent on the parameter γ = 1 + 1/n, where n is the
polytropic index which in principle can be either positive or negative.14 Between the
polytropic index and the specific heat c, the relation γ = (cp − c)/(cV − c) holds,
where cp and cV are the specific heats at constant pressure and volume, respectively.

13 In this book, we refer to an ideal gas as that obeying the p = nkT EOS.We also refer to a perfect
gas as an ideal gas whose heat capacity is independent of T .
14 In an ideal gas γ is related to the number of degrees of freedom per molecule, n f , according to
γ = (n f + 2)/n f . A monoatomic gas has n f = 3, a diatomic n f = 5 and a polyatomic n f = 6.
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A polytropic EOS is apt to describe the link between ρ and p in a polytropic
process of expansion and/or compression of a fluid. By its definition, an isothermal
gas is represented by n → ∞ (γ → 1). Indeed, the ideal gas EOS, p = ρkT/〈m〉,
with T = const. (isothermality condition), gives p ∝ ρ and this is indeed obtained
in the limit n → ∞ in the polytropic EOS.

As we know, if the fluid is ideal, and so characterized by its full adiabaticity
(no internal and external exchange of heat), we can write the first principle of
thermodynamics in the specific form dq∗ = de + pdV ∗ = 0, where V ∗ = 1/ρ.
Consequently,

de = p

ρ2
dρ, (2.105)

which, in the case of a polytropic EOS, by integration leads to

e = cγ

∫
ργ−2dρ = cγ

γ − 1
ργ−1 + a, (2.106)

where a is an integration constant. Letting the constant a to zero, the EOS assumes
the equivalent form (link between pressure, internal energy and density)

p = (γ − 1)ρe. (2.107)

2.5 Turbulence

When a fluid flows in a way such that its layers move parallel to each other with-
out disturbances of the velocity field, the flow is called laminar. On the other
hand, there are situations where the fluid motion appears irregular, with local abrupt
changes in fluid characteristic variables (pressure, density, velocity, etc.). Everyday
experience suggests that laminar flows correspond to fluids calmly flowing, at low
enough velocity, while turbulent flows are associated with high fluid speed.

Actually, examples of turbulence in fluids are the wave breaking of water near
a beach in conditions of strong wind, the rapid flow of water in a mountain river,
storming clouds, etc. This connection of the rise of turbulence with the flow rapidity
leads to the intuition that turbulence should derive from insufficient efficiency of
viscosity diffusion to dissipate (i.e. diffuse) a large amount of kinetic energy of the
fluid.

Historically, already in the sixteenth century Leonardo da Vinci worried about
some strange configurations assumed by fluids passing through obstacles. The first
significant experiments about the different ways for fluids (in particular, liquids) to
move are due to Osborn Reynolds (Belfast, 1842–Watchet, 1912) who was the first
to note that the motion of a liquid in a pipe transits from a laminar (regular, almost
rectilinear stream lines) to a chaotic behavior by varying some of the characteristic
parameters of the flow. Essentially, the relevant parameters he studied regarded both
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the liquid, characterized by its density ρ, speed U and dynamic viscosity η, and
the diameter D of the cylindrical pipe where the liquid was made to move in. The
length, L , of the cylinder was checked by Reynolds to be irrelevant regarding the
study of laminarity breaking as long as D � L . Assuming U , ρ and η as constant
in the moving liquid, he noted, by looking at the shape of a dyed substance injected
in the pipe acting as tracer of the liquid movement, that the fluid motion remained
laminar until the dimensionless quantity,

Re = ρ U D

η
, (2.108)

(called after himReynolds number) stayed at low values, while for large values of Re,
obtained simply by increasing the liquid speed U at given η and D, a clear chaotic
behavior of the liquid stream lines was observed. He noted that the transition from
the laminar to the chaotic (turbulent) regime occurred for values of Re around 2300,
the liquid becoming fully turbulent at Re � 2900.

Note that the Reynolds number quantifies the relative role of inertia forces and
viscous forces in a fluid, in what ρU is the density of momentum transported by the
fluid (inertia) and η/D is the density of momentum ‘damped’ by viscosity. If inertia
is too large, there is no chance for viscosity to damp local irregularities in the fluid
motion and so turbulence appears.

It is easily seen that, once given the set of dimensional quantities ρ, U , η and
D, the only way to combine them to get a dimensionless parameter is the one in
Eq.2.108, in the sense that any other dimensionless parameter built with ρ, U, η and
D can be written as a function of Re.

For the sake of exercise, we give here the constructive method to produce the
Reynolds number. Given that the physical dimensions of ρ, U , η and D are

[ρ] = ML−3, [U ] = LT−1, [η] = ML−1T−1, [D] = L, (2.109)

a dimensionless quantity, Re, can be obtained as a combination of the type

ραUβηγ Dδ, (2.110)

where α, β, γ, δ must satisfy the dimensional equation

Mα+γL−3α+β−γ+δ T−β−γ = M0L0T0, (2.111)

which gives an underdetermined linear system of 3 equations for 4 unknowns

⎧⎪⎨
⎪⎩

α + γ = 0

−3α + β − γ + δ = 0

−β − γ = 0,

(2.112)
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which admits ∞1 solutions. Assuming δ as a parameter, the solution is α = β =
−γ = δ, so that the Reynolds number is obtained by assuming δ = 1.

The role of the Reynolds number for turbulence becomes clear when dealing
with the Navier–Stokes equation, which is the equation of motion in the presence
of viscosity. First, we note that Euler’s equation for ideal fluids in the absence of
body forces does not contain any physical constant, a thing that, together with the
assumption of barotropic EOS, implies its scale invariance. We don’t give a straight
demonstration of this but just rely on the intuition that in the absence of physical
constants involving pressure, density and velocity flow there is no reason to believe
that there is any preferred length or time scale, and so there is no reason to believe
that scale invariance is broken along the fluid motion.

On the contrary, in the N-S equation, even in absence of external body forces,
viscosity implies the existence of one or more specific physical parameters (the shear
and bulk viscosity coefficients) in the governing of fluid motion. And this breaks the
scale invariance. This corresponds to an intrinsic big difference between the motion
of ideal fluids and viscous fluids, in which the Reynolds number plays a relevant
role.

We can see it by writing the N-S Eq.2.61 in non-dimensional form. To do this,
we assume new non-dimensional variables

r′ = r
D

, v′ = v
U

, t ′ = t

T
, ρ ′ = ρ

ρ
, p′ = p

P
, (2.113)

where D,U , T , ρ and P are arbitrary dimensional constants. Choosing for D andU a
typical length and speed, respectively, the time constant T is naturally adopted as T =
D/U . Similarly, the choice of the typical fluid density ρ leads to the natural choice
of P = ρU 2. Considering that, upon the above time and space transformations,
derivatives transform as

∂

∂t
= 1

D/U

∂

∂t ′ , ∇i ≡ ∂

∂xi
= 1

D

∂

∂x ′
i

≡ 1

D
∇′

i (2.114)

so that ∇2 = ∇′2/D2, the N-S equation, where we account at its rhs for a possible
body force per unit volume FB , is written in dimensionless form as

∂v′

∂t ′
+ (

v′ · ∇′) v′ = − 1

ρ′ ∇′ p′ + η

ρDU

1

ρ′ ∇′2v′ + 1

ρDU

1

ρ′
(η

3
+ ζ

)
∇′∇′ · v′ + D

ρU2

1

ρ′ FB .

(2.115)

The coefficients of the diffusion terms in the above equation can be written in
terms of Re, and, finally, the non-dimensional N-S equation is

∂v′

∂t ′ + (
v′ · ∇′) v′ = − 1

ρ ′ ∇′ p′ + 1

Re

1

ρ ′ ∇′2v′ + 1

Re

1

ρ ′

(
1

3
+ ζ

η

)
∇′∇′ · v′ + 1

ρ ′F
′
B,

(2.116)
where F′

B = [
D/(ρU 2)

]
FB is the dimensionless body force per unit volume.
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If we consider a stationary flow, the ratio (in norm) between the convection term
and the diffusion terms in the equation above is

‖(v′ · ∇′) v′‖∥∥∥∥ 1

Re

1

ρ′ ∇′2v′ + 1

Re

1

ρ′
(
1
3 + ζ

η

)
∇′∇′ · v′

∥∥∥∥
= Re

‖(v′ · ∇′) v′‖∥∥∥∥ 1

ρ′ ∇′2v′ + 1

ρ′
(
1
3 + ζ

η

)
∇′∇′ · v′

∥∥∥∥
, (2.117)

which is of the order of Re whenever ζ/η is not far from 1 because, for the proper
choice of non-dimensionalization constants, the ratio of the norms in the rhs of the
equation above is of the order of 1. This corresponds to thatwhenRe is large, diffusion
is unable to spread out the fluid momentum ‘carried’ by the convection term and so it
is impossible to damp local perturbation to a laminar flowwhich, consequently, turns
out into a turbulent flow. Of course, if the fluid is incompressible, the convection-to-
diffusion term ratio is of order Re independently of ζ/η.

Note that the way to write the N-S equation in dimensionless form is not unique.
If, for instance, the pressure scale P is taken as P = (ηU )/D, the dimensionless
N-S equation would be written as

∂v′

∂t ′
+ (

v′ · ∇′) v′ = − 1

Re

1

ρ′ ∇′ p′ + 1

Re

1

ρ′ ∇′2v′ + 1

Re

1

ρ′

(
1

3
+ ζ

η

)
∇′∇′ · v′ + 1

ρ′ F
′
B , (2.118)

where Re is the same as Eq.2.108 and, again, F′
B = [

D/(ρU 2)
]
FB . The above

equation can be also written as

Re

(
∂v′

∂t ′
+ (

v′ · ∇′) v′
)

= − 1

ρ′ ∇′ p′ + 1

ρ′ ∇′2v′ + 1

ρ′

(
1

3
+ ζ

η

)
∇′∇′ · v′ + 1

ρ′ F
′′
B , (2.119)

where F′′
B = ReF′

B = [
D2/(ηU )

]
FB .

It is evident from the above equation that, in the limit Re � 1, its lhs, representing
the fluid inertia acceleration, is negligible and so this equation together with the
incompressibility condition approximates to

{
∇′2v′ − ∇′ p′ + F′′

B = 0

∇′ · v′ = 0,
(2.120)

or, in the original dimensional variables

{
η∇2v − ∇ p + FB = 0

∇ · v = 0,
(2.121)



48 2 The Basic Equations for Fluid Motion

which represent the Stokes flows, also named creeping flows. This situation is not
uncommon in applicationswhen dealingwith very small velocities in the fluid or very
large viscosity or very small fluid length scales. Equations2.120 and 2.121 constitute
a relevant simplification of the N-S equation, because they are both time-independent
(the dependence on time being limited to possible time-dependent boundary condi-
tions) and linear (having neglected the non-linear inertial acceleration). The existence
and uniqueness of solutions for such equations may be proven, and many solution
techniques suited for linear partial differential equations can be used. An important
consequence of the steadiness and linearity of Stokes flows is their time-reversibility.

2.6 Stokes Law and Falling Sphere Viscometer

There are several ways to measure viscosity of a fluid, the oldest of which is based
on the application of Stokes law to a creeping flow. Stokes law was deduced in 1851
by G. G. Stokes as an expression of the resistive (drag) force exerted on a spherical
object by the highly viscous fluid it moves in. This law constitutes a generalization to
fluids of the common frictional force acting on the contact surface of the separation
of two solid bodies in relative motion. The expression, obtained by use of the linear
N-S equation valid for creeping (Stokes) flows, gives the drag force,Fd , on the sphere
as

Fd = −6πηRv, (2.122)

where η is the fluid dynamic shear viscosity, R the sphere radius and v its velocity
relative to the fluid. The total force acting on a spherical object falling in the fluid by
its own gravity is the vectorial sum of the gravity downward force, Fg , the buoyant,
Fb depending on the fluid density ρ f and the drag, Fd , forces, these latter both
upward (see Fig. 2.5). Because the intensity of the drag force increases with falling
sphere speed, if the path of the sphere in the fluid is long enough it can reach a
velocity (called terminal velocity, vt ) such that the resultant force vanishes, F =
Fg + Fb + Fd = 0. The following motion is rectilinear and uniform. Taking into
account that Fg = ρs(4π/3)R3g, where ρs is the density of the falling sphere, and
that Fb = −ρ f (4π/3)R3g it easily results in

vt = 2

9

gR2

η

(
ρs − ρ f

)
. (2.123)

Provided that the spherical surface of the falling ball is very smooth, a device such
as to permit to estimate with good precision the terminal velocity of the ball would
allow the determination of η by Eq.2.123 above.
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Fig. 2.5 Ball falling down
in a fluid, subjected to
gravity (Fg), buoyancy (Fb)
and drag (Fd)

Note

The Navier–Stokes equation is a generalization to viscous fluids of the equa-
tion introduced by Euler who obtained the vector, partial differential equation
describing the motion of frictionless fluids. The N-S equation is a non-linear
parabolic equation for which it has not been proven so far whether smooth
solutions always exist in three dimensions. It is a problem of existence and
smoothness.

This mathematical complexity makes the N-S equation (even in the simpler
version for incompressible fluids) one of the most relevant issues of mathemat-
ical physics, such to merit to be included by the Clay Mathematics Institute in
the list of the seven most important open problems in mathematics. The Clay
Institute offered a 1 million US dollar prize for the first correct solution to each
problem. At present, only one prize has been awarded for the solution of the
Poincaré conjecture.

The dimensionless Navier-Stokes equation contains a numerical parameter
(theReynolds number)whosemagnitude is an indication of the transition froma
laminar flow to a turbulent one. Unfortunately, due to the intrinsic complication
of the Navier-Stokes equation, a detailed description of turbulence is far to be
known.Actually, althoughparticular solutions to theN-S equation canbe found,
they are unstable to finite perturbations when the Reynolds number is large.
Due to this instability, the fluid flow becomes irregular both in space and time
forcing to some statistical (average) treatment.
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2.7 Solved Exercises

Exercise 2.1 Given a scalar field f and a vector field v defined and continuous in
R

n , demonstrate the validity of the vector identity

∇ · f v = f ∇ · v + v · ∇ f, (2.124)

used to transform the equation of continuity from its expression Eq.2.8 into Eq.2.11.

Solution Assuming coordinates x1, x2, . . . , xn , for which v = viei , it is

∇ · f v = ∂ f vi

∂xi
= f

∂vi

∂xi
+ vi

∂ f

∂xi
,

and the rightmost side above is clearly equal to f ∇ · v + v · ∇ f , as required to show.

Exercise 2.2 Show that the Eulerian form of continuity equation in Eq.2.8 and the
Lagrangian form in Eq.2.21 are equivalent.

Solution
The proof of equivalence requires that Eq. 2.8 implies Eq.2.21 and vice versa. Here
we limit to show that Eq.2.21 implies Eq.2.8.

By differentiation with respect to time of Eq.2.21 (for brevity, we use here the
dot above a quantity to represent its Lagrangian derivative D

Dt ),

ρ̇J + ρ J̇ = 0, (2.125)

where

J̇ =

∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
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∂t∂y0
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∣∣∣∣∣∣∣∣∣∣∣∣∣
is the time derivative of the Jacobian determinant in Eq.2.19. In the hypothesis of
continuity of both first and second partial derivatives in the above expression, the
order of derivation with respect to t and x0, y0, z0 can be interchanged and, because
ẋ = vx , ẏ = vy and ż = vz , the above time derivative of the Jacobian can bewritten as
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J̇ =
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,

or

J̇ =
∣∣∣∣
(

∂(vx , y, z)

∂(x0, y0, z0)

)∣∣∣∣ +
∣∣∣∣
(

∂(x, vy, z)

∂(x0, y0, z0)

)∣∣∣∣ +
∣∣∣∣
(

∂(x, y, vz)

∂(x0, y0, z0)

)∣∣∣∣ . (2.126)

Now, it is
∂vx

∂x0
= ∂vx

∂x

∂x

∂x0
+ ∂vx

∂y

∂y

∂x0
+ ∂vx

∂z

∂z

∂x0
,

∂vx

∂y0
= ∂vx

∂x

∂x

∂y0
+ ∂vx

∂y

∂y

∂y0
+ ∂vx

∂z

∂z

∂y0
,

∂vx

∂z0
= ∂vx

∂x

∂x

∂z0
+ ∂vx

∂y

∂y

∂z0
+ ∂vx

∂z

∂z

∂z0
,

whose solutions for ∂vx/∂x , ∂vy/∂y and ∂vz/∂z are

∂vx

∂x
J =

∣∣∣∣
(

∂(vx , y, z)

∂(x0, y0, z0)

)∣∣∣∣ ,
∂vy

∂y
J =

∣∣∣∣
(

∂(x, vy, z)

∂(x0, y0, z0)

)∣∣∣∣ ,
∂vz

∂z
J =

∣∣∣∣
(

∂(x, y, vz)

∂(x0, y0, z0)

)∣∣∣∣ .

These latter relations inserted into Eq. 2.126 lead to

J̇ = J

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
= J∇ · v,

which, once inserted into Eq.2.125, gives

ρ̇J + ρJ∇ · v = 0,

which implies
ρ̇ + ρ∇ · v = 0,

as we wanted to show.
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Exercise 2.3 A protostar is considered as a point-like massive object with mass
M = 1 M� (M� is the mass of the Sun, M� � 1.989 × 1030 kg). It is embedded
in a diffuse spherical cloud of homogeneous gas of density ρ0 = 10−18 g cm−3

which accretes radially onto the protostar at constant speed. Assume the cloud radius
r0 = 1AU (AU = astronomical unit represents the average Earth–Sun distance and
is an astronomical unit of distance; 1 AU = 1.49598 × 108 km).

What is the radial profile of the accreting gas mass density?
What is the distance to the protostar where the accreting gas density reaches the

water density value?

Solution The results come from the direct application of the continuity equation
in spherical polar coordinates (see Appendix A.2.2) in the case of steady state and
radial symmetry

1

r2
∂

∂r
(r2ρvr ) = 0,

which implies r2ρvr = const. = r20ρ0vr0, where vr = vr0 (constant accretion speed).
The density profile is so independent of vr and is ρ(r) = ρ0(r0/r)2, i.e. an inverse
parabolic law. For the given values of r0 and ρ0, the distance r̄ where the density
reaches the value ρ(r̄) = 1 g cm−3 is r̄ = r0

√
ρ0/ρ(r̄) = 1.5 × 104 cm = 0.15 km.

Exercise 2.4 Given a continuous scalar field ϕ and a fluid of density ρ flowing with
velocity field v respecting the equation of continuity, show that

ρ
Dϕ

Dt
= ∂ρϕ

∂t
+ ∇ · ρϕv. (2.127)

Solution
A quick way to obtain the above relation is by writing

ρ
Dϕ

Dt
= Dρϕ

Dt
− ϕ

Dρ

Dt
. (2.128)

The rightmost term, in virtue of continuity equation Eq.2.11, is

−ϕ
Dρ

Dt
= ϕρ∇ · v,

which inserted in Eq.2.128 yields

ρ
Dϕ

Dt
= Dρϕ

Dt
+ ρϕ∇ · v = ∂ρϕ

∂t
+ v · ∇(ρϕ) + ρϕ∇ · v = ∂ρϕ

∂t
+ ∇ · ρϕv,

as we wanted to show.
Another way to obtain the expression Eq.2.127 is by developing its rhs by group-

ing ϕv in the divergence and making use of both the 10th identity in Eq.A.45 of
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Appendix A.3.2 and the Eulerian equation of continuity Eq.2.8 with no sources or
sinks

∂ρϕ

∂t
+ ∇ · ρϕv = ρ

∂ϕ

∂t
+ ϕ

∂ρ

∂t
+ ρ∇ · ϕv. + ϕv · ∇ρ =

= ρ
∂ϕ

∂t
+ ϕ

∂ρ

∂t
+ ρ(ϕ∇ · v + v · ∇ϕ) + ϕv · ∇ρ =

= ϕ

(
∂ρ

∂t
+ ρ∇ · v + v · ∇ρ

)
+ ρ

(
∂ϕ

∂t
+ v · ∇ϕ

)
=

= ϕ

(
∂ρ

∂t
+ ∇ · ρv

)
+ ρ

Dϕ

Dt
= ρ

Dϕ

Dt
.

Exercise 2.5 Find the pressure field p(x, y, z) such that the stationary velocity field
of a homogeneous fluid

v = A cos
πx

2a
cos

π z

2a
i + A sin

πx

2a
sin

π z

2a
k, (2.129)

where A �= 0 and a �= 0 are constants, satisfies Euler’s equation in the absence of
body force in an infinite rigid tube −a ≤ x ≤ a, 0 ≤ z ≤ 2a.

Solution Euler’s equation of motion Eq.2.28 withFB = 0 and accounting for vy = 0
when projected on the axes gives

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vx
∂vx

∂x
+ vz

∂vx

∂z
= − 1

ρ

∂p

∂x
,

0 = − 1

ρ

∂p

∂y
,

vx
∂vz

∂x
+ vz

∂vz

∂z
= − 1

ρ

∂p

∂z
.

The second equation above implies p = p(x, z). While the other two equations,
given the data of the problem, are specified as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
A cos

πx

2a
cos

π z

2a

) (
−π A

2a
sin

πx

2a
cos

π z

2a

)
+

+
(

A sin
πx

2a
sin

π z

2a

)(
−π A

2a
cos

πx

2a
sin

π z

2a

)
= − 1

ρ

∂p

∂x
,

(
A cos

πx

2a
cos

π z

2a

) (
π A

2a
cos

πx

2a
sin

π z

2a

)
+

+
(

A sin
πx

2a
sin

π z

2a

)(
π A

2a
sin

πx

2a
cos

π z

2a

)
= − 1

ρ

∂p

∂z
.

Thanks to the trigonometric identities cos2 πx
2a + sin2 πx

2a = cos2 π z
2a + sin2 π z

2a =
1, the above equations simplify into
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π A2

2a
cos

πx

2a
sin

πx

2a
= − 1

ρ

∂p

∂x
,

π A2

2a
cos

π z

2a
sin

π z

2a
= − 1

ρ

∂p

∂z
.

By successive integrations with respect to x and z, the pressure field is found as

p(x, z) = 1

2
ρ A2

(
cos2

π z

2a
− cos2

πx

2a

)
+ c, (2.130)

where c is an integration constant.

Exercise 2.6 Water flows from left to right in the horizontal pipe as schematized in
Fig. 2.6, where the area of the entrance cross section S1 is A1 and that of the exit
cross section S2 is A2. Pressure and speed of the liquid through S1 are p1 and v1 and
through S2 they are p2 and v2. Assuming p1 = 105 Pa, v1 = 4 ms−1 and measuring
p2 = 0.2 × 105 Pa, it is asked to determine v2 and A2/A1.

Solution Bernoulli’s equation 2.41 gives

1

2
v21 + e1 + p1

ρ1
+ gh1 = 1

2
v22 + e2 + p2

ρ2
+ gh2,

in which ρ1 = ρ2 (water is incompressible), h1 = h2 (the pipe is horizontal) and it
is reasonable to assume e1 = e2 (water temperature varies very little along the flow).
Consequently

v2 =
√

v21 + 2

ρ
(p1 − p2),

which, with the data values of the problem and given the density of water ρ = 1
gcm−3, leads to v2 = 4

√
11 ms−1 � 13.28 ms−1.

On the other hand, beingwater incompressible, it is A1v1 = A2v2 and so A2/A1 =
v1/v2 = 1/

√
11 � 0.3015.

Fig. 2.6 Water crosses the
plane surface S1 at speed v1
and exits the pipe at S2 at
speed v2
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Fig. 2.7 Fluid (blue lines) is
pressed by two approaching
parallel disks of radius L at
slowly varying distance h

z

h L

Exercise 2.7 Two material plane and circular disks of radius L are superposed at
a small initial distance h. The disks are parallel among themselves and the ground.
The space between the disks is filled by a viscous, incompressible fluid. The disks
approach each other at a constant velocity u, displacing the fluid (see Fig. 2.7).

Questions
Determine the resistant force to the disk motion.

Solution Due to the clear axisymmetry of the problem around the line perpendicular
to the disks andpassing through their centers (the disks are non-rotating), the choice of
cylindrical (R, θ, z) coordinateswith origin in the center of the bottomdisk in Fig. 2.7
is natural. The fluid layer being thin (h � L), its flow is mostly radial vz � vR , while
vθ = 0 for the axisymmetry. Again, due to axisymmetry, ∂vR

∂θ
= ∂vθ

∂θ
= 0.

Taking into account the symmetry conditions and the characteristics of the prob-
lem, the N-S equation for the incompressible fluids, in stationary conditions (the disk
approaching velocity is assumed constant), keeps, in cylindrical coordinates, just the
radial, R, and vertical, z part15

⎧⎪⎨
⎪⎩
0 = − ∂p

∂ R
+ η

∂2vR

∂z2

0 = − 1

ρ

∂p

∂z
− g,

(2.131)

where η is the shear dynamic viscosity and g is the earth gravity acceleration, while
the continuity equation is written as

1

R

∂(RvR)

∂ R
+ ∂vz

∂z
= 0. (2.132)

15 In the R part of N-S equation, we eliminated vR/R2 because

vR

R2 = 1

R

[
1

R

∂(RvR)

∂ R
− ∂vR

∂ R

]
≈ 1

R2

∂(RvR)

∂ R
= − 1

R

∂vz

∂z
� 0,

havingmade use of the continuity equation, and of that the flow is fully developed and the thickness,
h, of the fluid is very small.
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The equations above are subjected to the no-slip and impermeability boundary
conditions for velocity and to the pressure equilibrium condition at the boundary

⎧⎪⎨
⎪⎩

vR(z = 0) = vz(z = 0) = 0,

vR(z = h) = 0, vz(z = h) = −u,

p(R = L) = pext ,

(2.133)

where pext is the value of the external atmospheric pressure. A double integration
in z of the first equation in Eq.2.131 accounting for the above boundary conditions
gives (in the hypothesis that neither η nor ∂p/∂ R depend on z)

vR = 1

2η

∂p

∂ R
z(z − h).

Inserting the above expression for vr in the continuity Eq.2.132 and integrating
over z, we get

vz = − 1

2ηR

[
∂

∂ R

(
R

∂p

∂ R

)] (
z3

3
− h

z2

2

)
+ a,

where the integration constant a must be zero to satisfy vz(z = 0) = 0. Because
vz(z = h) = −u, the above relation gives

u = − h3

12ηR

∂

∂ R

(
R

∂p

∂ R

)
,

which, by a double integration over R and noting that the first integration constant
must be zero to avoid singularity in pressure derivative for R → 0 and the second
must respect the last boundary condition in Eq.2.133, leads to

p = 3ηu

h3

(
L2 − R2

) + pext .

The global force acting over the lower disk surface S defined by 0 ≤ R ≤ L , θ ≤
θ ≤ 2π, z = 0, is found by integration of the above expression of p to get

Fg =
∫

S

pdσ = 3ηuπ L4

2h3
+ π L2 pext ,

where the last contribution is due to the atmospheric pressure, so that the resistance
force is simply

Fr = Fg − π L2 pext = 3ηuπ L4

2h3
. (2.134)
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2.8 Further Readings

There are plenty of books on basic fluid dynamics that introduce fundamental gov-
erning equations. We suggest the classic textbooks [1, 2]. Whoever wants to deepen
the topic of Navier–Stokes equations can read [4]. Energy and heat transfer is well
treated in [5]. Turbulence is well described in [6, 7].



Chapter 3
Fluid Flows in Different Environments

As we said, fluids present themselves in various forms in dependence on their micro-
scopic structure which, in its turn, depends also on the environment. A liquid is such
whenever its temperature is below the vaporization temperature abovewhich itmoves
from the liquid to the gaseous state. For example, a certain quantity of water, which
is a collection of H2Omolecules, when put in a hot environment undergoes transition
into water vapor, still consisting of H2O molecules interacting much more weakly.
A further increment of temperature of the environment would lead to a dissociation
of H2O into H and O atoms with a reduction in the number of degrees of freedom
of the elementary constituent to just the 3 translational ones, at least if we neglect
the role of the bound electrons. A further temperature increase leads to ionization of
one or both the atomic species to the plasma state which has the same, 3, number of
degrees of freedom.

In these transformations also the environment plays a role, even if significantly
less important.

3.1 Fluids in Terrestrial and Astrophysical Contexts

The main difference between fluids in terrestrial and astrophysical contexts is given
by (i) the range of variation of density, pressure and temperature involved and (ii)
the role played by the body forces.

Regarding (i), on Earth the densities, pressures and temperatures are limited to a
relatively narrow range around the characteristic environment values although, for
example, air density reduces a lot at high altitudes, by a factor ten when going from
ground up to 17 km of altitude, as well as the temperature of lava in volcanoes
exceeds 1000 ◦C, against the ∼20 ◦C of environmental air. As another example, the
pressure in water depends of course on the depth of water where we measure it. In
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the deepest regions of oceans (depth around 11, 000 meters under the sea surface),
pressure reaches 1100 kg cm−2 and temperature drops to just little above 0 ◦C.

On the other hand, in astrophysical fluids the range of variation of the state vari-
ables is very huge, with densities going from almost nuclear values,∼1014 g cm−3 in
the center of collapsed, dead, stars like neutron stars to values below 10−21 g cm−3

(i.e.∼103 particles per cubic centimeter) in the giant molecular clouds (GMCs), sites
of star formation. Temperatures vary from a few Kelvins in the GMC to the ∼108 K
in the nuclei of helium burning stars. Analogously, pressures span more than eight
orders of magnitude.

There are also other characteristics of fluids which are very different in the terres-
trial and astrophysical cases. The liquid state is the prominent one in the terrestrial
case, while the gaseous (and plasma) state dominates astrophysical fluids. Com-
pressibility is usually much more important in astrophysical fluids and plasmas than
in terrestrial context. The role of viscosity is more difficult to determine in what
viscosity itself is a concept that in astrophysical frame is hard to define.

3.2 Self-gravitating Fluids

A natural question arises:

—Why such huge differences between terrestrial and extraterrestrial fluids?
An immediate answer is impossible, but it is clear that on earthflows are essentially

determined by the combined roles of local, small scale, forces and the large scale due
to gravity and Coulomb forces. On earth, gravity is at every practical effect a body
force of constant radial direction and intensity. We can say that liquids like lakes
and rivers are gravitating in an external fixed field. The flow of a river is caused by
its (approximate) free fall (out of equilibrium) from the source to the mouth, while
lakes have just localmovements around an equilibrium between the terrestrial gravity
and the binding reaction of the ground. Astrophysical fluids, instead, are such that
the body forces may vary significantly within their body. Even considering gravity,
only, it is different from one point to another. Astrophysical fluids are essentially
self-gravitating fluids while terrestrial are not. We can clarify this better.

As we know, in a fluid all the constituent particles exert forces on each other,
and the distinction between short-range forces and long-range forces leads to the
distinction between surface and body forces. Newtonian gravity is long-range and so
every i th fluid particle interacts with any other j th via a force scaling as r−2

i j where
ri j is the distance between the objects in the pair. Thus, the generic i th fluid particle is
subjected to an ‘internal’ gravity acceleration due to the presence/interaction of/with
the other N − 1 particles summed to an ‘external’ gravity acceleration due to the
presence of external massive bodies. In formulas
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r̈i = G
N∑

j=1
j �=i

m j

r3i j
(r j − ri ) + r̈ext,i . (3.1)

Clearly, if for every particle i the acceleration induced by the other particles
of the system is large with respect to the external acceleration, the fluid is said
to be self-gravitating, and vice versa. The self-gravity condition can be tested by
checking an energetic condition. The energetic condition consists in an approximated
evaluation of the dimensionless parameter α = |�int |/|�ext | where �int and �ext

stand, respectively, for the values of gravitational internal and external energy. The
limit α � 1 would be one of non-self-gravitating fluids.

The precise evaluation of �int is practically impossible because it involves a
double summation over all the particles of the fluids

�int = −1

2

N∑

(i, j)=1
i �= j

G
mim j

ri j
, (3.2)

so for practical use it is necessary to resort to an approximate evaluation, which we
give here as an example.

Consider a lake like the big Lake Victoria crossing Kenia, Uganda and Tanzania
in Africa (see Fig. 3.1). Its basin has a volume of 2760 km3 = 2.760 × 1018 cm3.
This means a mass of water of M = 2.760 × 1018 g. A rough, but valid, evaluation
of the energy of self-gravitation of the lake can be obtained by calculating the
gravitational energy of the same mass of water enclosed in a sphere whose radius is,
obviously, R = [3M/(4πρ)]1/3 � 8.7018 km, where ρ = 1 g cm−3 is the density of
water. A straightforward calculation of the integral giving the gravitational energy
of a homogeneous sphere of mass M and radius R gives

�int = −3

5

GM2

R
� −3.50 × 1023erg = −3.50 × 1016J, (3.3)

while the external (due to Earth) gravitational energy is

�ext = −GMME

RE
� −1.73 × 1030erg = −1.73 × 1023J, (3.4)

where ME and RE are the mass and equatorial radius of the Earth. Consequently,

α = 3

5

M

ME

RE

R
, (3.5)

which, assuming ME = 5.972 × 1024 kg and RE = 6371 km, gives α � 2.0302 ×
10−7 which is � 1. So, fluids on Earth are actually non-self-gravitating. On the
contrary, astrophysical objects like stars are self-gravitating because they are all
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composed of fluid (essentially plasma, in a star like the Sun) which is ‘contained’ by
its own internal gravity while the external gravity is negligible. The real difference
is, indeed, that in stars there is not a solid/rigid container of a fluid that, for terrestrial
gases, is necessary to confine the gas against its pressure gradient, but, instead, this
confinement role is played by the strong self-gravitational force.

Self-gravity represents a relevant complication in the study of fluids because in
the governing equations, it gives a body force field which is not a constant vector
but depends on the position and, in non-stationary cases, on time also. This vector
field, to be determined, needs the solution of the proper field equation which links
the source of field (the matter density ρ) with the potential it generates, U (r). In the
case of gravity, this is the Poisson’s equation

∇2U = −4πGρ, (3.6)

which must be added to the whole system of constitutive equations. Consequently,
the full system of constitutive equations for an astrophysical fluid—when neglecting
dynamical electromagnetic effects—is written, in Eulerian form, as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∇ · ρv = 0

∂v
∂t

+ (v · ∇) v = − 1

ρ
∇ p + η

ρ
∇2v +

(
1

3

η

ρ
+ ζ

ρ

)
∇∇ · v + ∇U

∂

∂t
ρ

(
1

2
v2 + e

)
+ ∇ · ρ

(
1

2
v2 + e + p

ρ

)
v =

=
[
η∇2v +

(
1

3
η + ζ

)
∇∇ · v

]
· v + ρ

Dq∗

Dt

∇2U = −4πGρ

f (ρ, p, e) = 0,

(3.7)

which are six PDEs and a functional relation for seven unknowns (the four scalar
fields ρ, p, e,U and the vector v field) subjected to proper initial and boundary
conditions (Fig. 3.1).

The presence of self-gravity is not the unique difference in the treatment of astro-
physical fluids and flows with respect to earth (two examples of self-gravitating
systems are shown in Fig. 3.2). Another relevant difference is the energy generation
and transport in the fluid.

In stars, energy is generated by nuclear reactions in their innermost region which
is characterized by high pressure and temperature. This energy is released slowly in
time but in huge and long-lasting quantity. The energy output of nuclear reactions
is in the form of radiation and kinetic energy of resulting particles and neutrinos.
The energy transport, crucially depending on the interaction with the surrounding
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Fig. 3.1 A typical non-self-gravitating fluid (Lake Victoria in Uganda on the left) and a typical
self-gravitating one (the Sun, on the right)

Fig. 3.2 The M13 globular cluster (left) and a bright galaxy cluster (right)

matter, determines the internal structure of the star. So, both in stars and in other
astrophysical environments, the energy transport should be properly accounted for
in the energy equation of the fluid, as outlined in Sect. 2.3.

As amatter of fact,while the fundamental equations of fluid dynamics are common
on the Earth and in astrophysical (non-relativistic) environments, in the astrophysical
context fluid dynamics involves a series of specificities that characterize what is com-
monly known as Astrophysical fluid dynamics. We give below important examples
of such peculiarities.
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3.2.1 Equilibrium of Self-gravitating Fluids

The inclusion of Poisson’s equation as coupled toEuler’s equation ofmotion, together
with the assumption of spherical symmetry, leads to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dvr
Dt

= − 1

ρ

dp

dr
+ dU

dr

dU

dr
= −G

M(r)

r2

(3.8)

where vr is the radial component of the velocity field (here vθ = vφ = 0) and M(r)
is the mass enclosed in the sphere of radius r , namely

M(r) = 4π

r∫

0

ρr2 dr. (3.9)

.
At equilibrium, Dvr/Dt = 0 and, Eq. 3.8 reduce to the single integro-differential

equation
1

ρ

dp

dr
= −G

M(r)

r2
. (3.10)

This equation can be transformed into a second order differential equation by
multiplying both sides by r2 followed by a differentiation with respect to r , to obtain

d

dr

(
r2

ρ

dp

dr

)
= −4πGρr2, (3.11)

which is still in two unknowns (ρ and p). As usual, the reduction to just one unknown
is done by using an EOS, provided it is barotropic, i.e. in the form p = p(ρ).

Under such assumption, Eq. 3.11 becomes

d

dr

(
r2

ρ

dp

dρ

dρ

dr

)
= −4πGρr2. (3.12)

Let us examine two particular cases of EOS: the isothermal case (T = const. =
T0) and the polytropic case p ∝ ργ , which indeed contains, for γ = 1, the isothermal
case (see also Sect. 2.4). The EOS of an astrophysical gas, whenever pressure is not
too high and for sufficiently high temperature, can be acceptably represented with
its ideal gas expression p = nkT = ρkT/(μmH ).
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In the (spatial) isothermality assumption, the ideal gas EOS becomes linear in ρ

because μ shows a much weaker dependence on ρ and the specific abundances of
various chemical species than on T , so that μ can be considered constant once T0 is
fixed, and the equilibrium equation 3.12 is written as

kT0
μ0mH

d

dr

(
r2

ρ

dρ

dr

)
= −4πGρr2, (3.13)

which can be also expressed in logarithmic form as

kT0
μ0mH

d

dr

(
r
d ln ρ

d ln r

)
= −4πGρr2. (3.14)

An explicit solution of the above equation can be found in power law form, ρ =
a2rα , where a andα have to be determined (to have equilibrium,αmust be negative1).
Substituting for ρ = a2rα in Eq. 3.13 (or equivalently ln ρ = ln a2 + α ln r in Eq.
3.14), it becomes

kT0
μ0mH

α = −4πGa2rα+2, (3.15)

which requires α = −2. The constant a2 is consequently determined by the same
Eq. 3.15 as

a2 = kT0
2πGμ0mH

. (3.16)

Theobtained solution,ρ(r) = a2r−2, is called singular isothermal sphere, because
it is not defined at the center, being lim

r→0
ρ(r) = ∞. In spite of the central density

singularity, the mass contained in any spherical neighborhood of the center is finite

M(ε) = 4πa2
ε∫

0

r−2r2 dr = 4πa2ε, ∀ε > 0, (3.17)

so that the real physical problemwith this solution is not in the origin but on the large
scale, because if the sphere has no finite boundary its mass diverges linearly with r .

The solution for an isothermal spherewith a finite central density (ρ(0) = ρ0 > 0)
can, as for any other polytropic spheres of arbitrary value of the exponent γ in the
EOS, be obtained numerically, according to the following procedure.

Assuming p = cγ ργ with cγ a positive constant, the equilibrium equation 3.10
becomes

1 If α > 0,
dp

dr
= kT0

μ0mH
a2αρα−1 > 0,

contrary to the necessary condition for equilibrium, dp/dr < 0.
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cγ γργ−2 dρ

dr
= −G

M(r)

r2
, (3.18)

which, to allow an easy numerical treatment, should not be transformed into a second
order differential equation, as done to obtain Eq.3.11 with a further development that
would lead to the so-called Lane–Emden equation,2 but rather transformed into a set
of two first order ODEs by the introduction of the auxiliary variable u = GM(r)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cγ γργ−2 dρ

dr
= − u

r2

du

dr
= 4πGρr2

(3.19)

whose initial conditions are ρ(0) = ρ0 > 0 and u(0) = 0. The condition of centrally
vanishing u(r) is naturally implied by the finiteness of the supposedly spatially
continuous density, because

M(0) = lim
r→0

4π

r∫

0

ρ(t)t2 dt = 4π lim
r→0

ρ(ξr )
r3

3
= 4π

3
ρ0 lim

r→0
r3 = 0, (3.20)

where we applied the Lagrange mean value theorem to the integral, with 0 ≤ ξr ≤ r .
Once the equilibrium condition is set in the form of the first order ODE system

Eq. 3.19, every standard method of numerical integration of first order ODEs and
systems of ODEs can be applied.

Finally, we note that the previously studied case of isothermal, finite density,
sphere previously studied is obtained letting γ = 1 and c1 = kT0/(μ0mH ) in the
system Eq. 3.19.

3.2.2 Gravitating Systems Out of Equilibrium

Consider a gas in a spherically symmetric configuration of radius R and whose
pressure is spatially uniform (p = const.). Suppose also that at the center there is a
point-like object of mass M � Mg where Mg is the total gas mass.

Under such conditions, the Euler’s equation is written as

∂vr
∂t

+ vr
∂vr
∂r

= ∇U, (3.21)

2 J. H. Lane and R. Emden in the second half of nineteenth century developed the theory of poly-
tropic spheres at equilibrium, which join the equilibrium condition and Poisson’s equation for the
gravitational potential of a polytropic gas into a single second order dimensionless equation called,
after them, Lane–Emden equation.
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where, in our case, ∇U = −(GM/r2)er because the gas is not self-gravitating
(Mg � M). If the flow is stationary, the above equation can be integrated for the
velocity of the generic gas particle that initially was at distance r0 from the attraction
center with initial velocity vr0, giving

vr (r) = ±
√

v2r0 + 2
GM

r0

(r0
r

− 1
)
. (3.22)

If vr0 = 0, the minus sign in the above equation is taken, because of the attractive
nature of the point mass gravity.3

By means of Eq. 3.22, the time needed to reach the origin (free-fall time) is
obtained as

t f f (r0) =
0∫

r0

dr

vr
= r3/20√

2GM

1∫

0

dx
√
1

x
− 1

, (3.23)

having set x = r/r0. The rightmost integral in Eq. 3.23 which we denote by I , by
letting x = sin2 θ , transforms into

I = 2

π/2∫

0

sin2 θdθ, (3.24)

which is solved by parts, giving I = π/2 so that eventually

t f f (r0) =
√
2

4
π

r3/20√
GM

. (3.25)

Note that t f f is an increasing function of r0 so to justify as a definition of free-fall
time of the whole gas cloud its maximum value t f f (R).

In a similarway, it is possible to evaluate the free-fall time in the somehowopposite
case when the spherical gas cloud, supposed uniform in density, ρ = const., does
not carry a compact point-like mass M at its center or, similarly, when the gas mass
Mg is overabundant with respect to a possible central point-like mass. In such a case,
the gas is self-gravitating and undergoes collapse due to its own gravitation.

The way to obtain the free-fall time in this case is the same as before but with

∇U = −GMg

R3
r er , (3.26)

so to obtain (vr0 = 0, and letting again x = r/r0)

3 Note that vr is diverging for r → 0.
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t f f (r0) = R3/2

√
GMg

1∫

0

dx√
1 − x2

= R3/2

√
GMg

π

2
. (3.27)

The time to reach the origin in this case of uniform density cloud is independent
of r0 and is so assumed as global free-fall time. In the assumption that the gas mass
is equal to what was assumed to be the central point-like mass, Mg = M , we see that
the free-fall time of Eq. 3.27 is

√
2 longer than that of Eq. 3.25 where r0 = R is set.

3.3 Jeans Theory of Gravitational Instability

How are the stars born is, in astrophysics, a question still partially unanswered.
That stars originated from a diffuse gaseous medium is certain and this constitutes

a sort of phase transition, but the actual modes that lead from a dilute medium to
a compact state are not deeply known. As every phase transition, it depends on the
onset of some kind of instability which, over a certain time scale, leads the system
from one equilibrium to another. A local portion of a dilute gas undergoes a collapse
instability until a sort of equilibrium is reached in an almost spherical, compact,
configuration. The specific mechanism which triggers the instability is not uniquely
determined and is likely different from case to case.

Surely the formation of a new star would involve processes different than those
characterizing the formation of a planet. Observations indeed show that stars are
formed in the so-called cores of giant tenuous and cold nebulae mainly composed
of molecular hydrogen (the Large Molecular Clouds, LMCs), which are irregular in
shape,while planets are found around stars on almost coplanar orbits, suggesting their
origin from some accretion mechanism of gas left from the parent star formation and
essentially confined in the star equatorial plane. The role of gravity is undoubtedly
important in both such example cases, but surely in a different way.

Let us concentrate on the case of a diffuse, large and cold extension of H2 gas
(LMC). The estimated kinetic temperature of these clouds is around 10 K, and the
matter density is very low (∼100 molecules per cubic centimeter). In spite of the
low density, these clouds are so spatially extended that their mass overcomes 105

M� and so, being very cold, their gravitational energy is large enough to make
them intrinsically unstable against gravity. For such kinds of systems, it is so worth
studying the so-called gravitational instability mechanism proposed by J. H. Jeans
in 1902.

Let’s consider the, idealized, case of a spatially infinite extension of an ideal fluid,
homogeneous in density and at rest. The fluid is, so, characterized by ρ = ρ0 >

0, p = p0 > 0, v = v0 = 0. It is straightforward to verify that this set of constant
values satisfies the governing equations (continuity, Euler’s equation and isentropic
equation) if body forces are absent.
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Now, let us consider a perturbation of the global equilibrium state of the fluid
by additive quantities δρ(r; t), δp(r; t), δv(r; t) such that ρ = ρ0 + δρ, p = p0 +
δp, v = δv. In order to linearize the governing equations, it is required that pertur-
bations are ‘small’, that is, |δρ/ρ0| � 1 and |δp/p0| � 1. Also δv must be small
with respect to some typical velocity characterizing the fluid (not with respect to v0
which is zero). To quantify this in the given context, the request is ‖δv‖ � cs , where
cs is the fluid sound speed

cs =
√(

∂p

∂ρ

)

ad

, (3.28)

which, evaluated at time zero, gives

cs0 =
√

γ
p0
ρ0

, (3.29)

upon the adoption of the p ∝ ργ EOS with constant γ .
Inserting ρ = ρ0 + δρ, p = p0 + δp, v = δv in the continuity and Euler’s equa-

tions, in the absence of body forces, and keeping only linear terms we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂δρ

∂t
+ ρ0∇ · δv = 0,

∂δv
∂t

= − 1

ρ0
∇δp.

(3.30)

Moreover, at first order,

δp = p(ρ0 + δρ) − p(ρ0) =
(
dp

dρ

)

0

δρ, (3.31)

and so c2s = δp/δρ. Taking the partial derivative with respect to t of both sides of
the first equation in Eq. 3.30 and taking the divergence of the second equation after
the substitution δp = c2s0δρ in its right-hand side, and, finally, making a side-by-side
subtraction of the obtained second equation from the first equation, we get eventually
the single scalar PDE (for simplicity, we indicate cs0 as cs)

1

c2s

∂2

∂t2
δρ

ρ0
− ∇2 δρ

ρ0
= 0, (3.32)

which is the classical linear hyperbolic equation ofwave propagation in the unknown
quantity δρ/ρ0.

A solution of Eq. 3.32 is
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(
δρ

ρ0

)

k

= Ake
i(k·r±ωt), (3.33)

where Ak is the amplitude of the k-wave component (|Ak | < 1 in the linear regime),
i is the imaginary unit, k is the wave vector and ω = 2πν is the angular frequency,
ν = cs/λ being the ordinary frequency. The vectork, whosemagnitude is k = 2π/λ,
points in the direction of phase velocity, which is usually normal to the propagating
wavefront.

It is easily seen by substitution of Eq. 3.33 in Eq. 3.32 that satisfaction of Eq. 3.32
is subjected to satisfaction of the dispersion relation

ω2

c2s
− k · k = 0, (3.34)

that is, ω2 = c2s k
2.

Due to the linearity of thewave equation, any superposition of k-wave components
is still a solution. Note that in the solution Eq. 3.33 if ω is imaginary the choice of
+ in the argument of the exponential gives a damping solution (it tends to zero for
t going to infinite) while the choice of − gives a growing in time solution which, in
our linearization, would lose sense when δρ/ρ0 overcomes 1. Anyway, in the present
case of the absence of body forces the dispersion relation is ω2 = c2s k

2 > 0, so that
the angular frequency ω is real. As a consequence, all the possible wave components
of the general solution are bound in time and, indeed, the general solution is a
superposition of sinusoidal oscillations. This situation corresponds to the actual
stability of the fluid upon small perturbations.

The situation changes when considering a body force in Euler’s equation. In this
case, the evolutive equation 3.32 of density perturbations becomes

1

c2s

∂2

∂t2
δρ

ρ0
− ∇2 δρ

ρ0
+ 1

c2s
∇ · δFB

ρ0
= 0, (3.35)

where δFB is a perturbative body force (per unit volume). Let us assume a linear
dependence on δρ/ρ0 of the body force contribution in the above equation, i.e.

∇ · δFB

ρ0
= a

δρ

ρ0
, (3.36)

where a �= 0 is a constant.
Upon this assumption, the plane wave function of Eq. 3.33 still satisfies the wave

equation Eq. 3.35 provided that the new dispersion relation

ω2

c2s
− k · k − a

c2s
= 0 (3.37)
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is satisfied. Clearly, if a ≥ 0, ω2 = c2s k
2 + a ≥ 0 for every k. When a < 0, it results

in ω2 being less, equal or greater than zero when k2 < −a/c2s , k
2 = −a/c2s and

k2 > −a/c2s , respectively. Denoting as k2c ≡ −a/c2s > 0 the critical (separation)
value,we have thatω is imaginary for k2 < k2c and real for k

2 ≥ k2c . As a consequence,
in the general solution of Eq. 3.35 all thewave components with k < kc are ‘unstable’
in that they correspond to one exponentially diverging in time and one exponentially
vanishing in time solution, in pair. On the other hand, all the large wave numbers
(k ≥ kc) correspond to limited oscillations, as it happens in the absence of body
force.

Now the question is: how is a determined in the case of the hypothetical infinite,
homogeneous medium initially at rest studied by Jeans?

To answer this, we have to assume that the local body perturbation is of gravita-
tional origin. In a uniform density, infinitely extended medium, gravity is balanced
everywhere, so every point in the medium is an equilibrium point. But a local per-
turbation of density causes an unbalance: intuitively, a local δρ > 0 (overdensity)
in a point makes it an ‘attraction’ point while the opposite happens when δρ < 0
(underdensity).

Due to that, letting as reasonable a spherical symmetry in a neighborhood of
the considered point, the resulting perturbing force δF is radially oriented, naturally
inward if δρ > 0 and outward if δρ < 0. This can be expressed by δF = ±A2er (er
is the unit vector pointing radially outward from the considered point), taking −
(attraction) in overdensity and + (repulsion) in underdensity.

Consequently

∇ · δF
ρ0

= a
δρ

ρ0
= ±A2∇ · er = ±A2 2

r
, (3.38)

the first equality above standing for the given assumption on body force divergence-
density perturbation linearity (Eq. 3.36). Equation 3.38 can be satisfied only if a < 0:
in such a case, indeed, a positive δρ gives the right ‘−’ sign in the body force
perturbation divergence and a negative δρ gives the right ‘+’ sign.

As a matter of fact, not only the sign of a is determined but also its absolute
value, which simply derives from the assumed validity of Poisson’s equation that
links matter density and the resulting gravitational potential. As we said above, in
the case of an infinite and homogeneous fluid, ρ = ρ0 = const., the gravitational
force F0 is zero in every point, so that if F0 admits a potential function U it would
be F0 = ∇U0 = 0, implying (∇ · ∇U )0 = (∇2U )0 = 0 (satisfying Laplace’s equa-
tion) while Poisson’s equation would require instead (∇2U )0 = −4πGρ0 �= 0. This
consideration rules out the validity of Poisson’s equation in the original unperturbed
situation. If, anyway, we force the assumption of its validity (Jeans’ swindle), we can
fruit of linearity of Poisson’s equation to obtain in the perturbed case

∇ · (F0 + δF) = −4πG(ρ0 + δρ) ⇒ ∇ · δF = −4πGδρ, (3.39)

leading to a = −4πGρ0 as the value of the quantity a in Eq. 3.36 that we have
previously obtained as necessarily negative on a heuristic base.
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Now, basing on the dispersion relation in Eq. 3.37, we have two exponential
solutions in time provided k2 < k2c (and so ω imaginary), because in this case ω =
i |ω|, and so the solutions Eq. 3.33 are written as

(
δρ

ρ0

)

±
=

{
Akeik·re−|ω|t ,
Akeik·re|ω|t ,

(3.40)

taking in the exponential of Eq. 3.33 the plus and minus signs.
Of course, also the sum (δρ/ρ0)+ + (δρ/ρ0)− still solves the wave equation.
The condition k2 < k2c reflects into λ2 > 4π2/k2c , that is, λ2 > πγ kT0/(Gρ0)

because c2s = γ p/ρ0 and because of the assumption of the ideal gas EOS, p =
kρT/(μmH ). In conclusion, the instability condition translates into a critical wave-
length

λc =
√

πγ kT0
μ0mHGρ0

, (3.41)

which naturally corresponds to a critical mass scale

Mc = 4π

3
ρ0

(
λc

4

)3

, (3.42)

as the one contained in the compression (rarefaction) region and so undergoing
gravitational instability (other authors use λc/2 instead of λc/4 in Eq.3.42). The
above expression puts in evidence the dependence of Mc on ρ

−1/2
0 T03/2, marking the

opposite role of gravity against thermal pressure in the instability.
In its limitations, Jeans’ theory robustly supports a scenario where large, almost

uniform clouds of gas are indeed prone to gravitational instability even if their mass
density is low whenever they are cold enough. The process of local collapse likely
involves different zones of the extended low-temperature region leading to a sort
of cascade of further ‘fragmentations’ of the dilute medium. It is worth reminding,
however, that Jeans’ is a linear theory and so it loses predictive validity when the
amplitude of the absolute value of the density contrast δρ/ρ0 approaches unity from
lower values. A full study of the collapse of gaseous clouds requires thus a complete
hydrodynamical and energetic treatment.

To give an astrophysical example, in the disk of the Milky Way there are several
LargeMolecular Clouds composedmainly ofmolecular hydrogen (H2)with themass
of thousands of solar masses over a spatial size in the range 5–200 pc with a mass
density up to 1000 particles per cubic centimeter (the average density in the solar
neighborhood is about 1 particle per cubic centimeter). The typical temperature is 10
K. If we take, as an example, T = 10 K, ρ0 = 10−22 g cm−3 and γ = 7/5, the critical
mass is Mc ≈ 8.80 M�, which means that almost all LMCs with this temperature
and density are unstable against density perturbations.
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3.4 The Role of Viscosity in Astrophysical Environments

Whenever there is a shear (gradient in velocity) in a fluid, there are collisions among
neighboring particles giving rise to a net transport of momentum which drives the
system toward equilibrium. This means a reduction of velocity gradients, toward a
no-shear situation. ‘Viscosity’ in fluids operates this resistance to shear by means
of the effectiveness of collisions. Viscosity is a sort of global view of this particle-
by-particle interaction, which is difficult to describe precisely on a small scale.
Together with the efficiency of collisions in reducing the shear by net transport of
momentum, there is also another approach to equilibrium given by the transport of
energy induced by collisions. In this case, the global quantity which measures the
efficiency of the process is the thermal conductivity. So, both viscosity and thermal
conduction are parameters tuning the transport efficiency, and so they are also called
transport coefficients.

The consistent deduction of these coefficients is hard to exploit.
A good formal approach which leads to their expression in terms of collisional

cross section, σ , fluid temperature, T , and particle mass, m, derives from the
Chapman–Enskog expansion. It is complicated and out of the purposes of this
introductory book, but the interested reader can find it in textbooks like Statistical
Mechanics by H. Kuang or The Mathematical Theory of Non-Uniform Gases by S.
Chapman and T. Cowling. The Chapman–Enskog expansion for a pure monoatomic
gas leads to

η = a

σ 2

√
μT

�(T )
, κ = 5

2
ηcV , (3.43)

where a is a numerical constant characteristic of the fluid,μ the gasmolecularweight,
σ the collisional cross section, �(T ) a weak function of T approximable to 1, κ

the thermal conductivity and cV the specific (per unit mass) heat. For a given gas (a
and σ are fixed), η and κ are at all practical aspects functions of T as square roots.
This is partially true for multicomponent gas mixture, but surely not true for liquids
for which, at least in a range of temperatures, viscosity decreases with increasing
T . But, as we said, for gases it is a good approximation, and so it can be used in an
astrophysical context. In environments like molecular clouds, where the temperature
is of the order of 10 K, viscosity is expected to play a minor role, indeed. This means
that MCs are strongly unstable systems because of almost zero shear viscosity in the
gas. The almost zero viscosity permits to neglect it in both the motion and the energy
equations, leading to some simplification which, in numerical hydrodynamics, is
overcome by the onset of local instabilities caused by the finite resolution of any
numerical scheme. This problem is often cured by introducing an artificial viscosity
which helps in smoothing out the instabilities rising on the scale of the spatial grid.
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3.5 Peculiarities of Astrophysical Equations of State

The equation of state is crucial for the closure of the system of equations describing
fluids. Astrophysical gases are often well described by the ideal gas law. Even for a
fully ionized gas, the interparticle forces (Coulomb force) can typically be neglected
(i.e. the potential energies involved are typically < 10% of the kinetic energies).
Ideal gas law breaks down for dense and cool gases, such as those present in gaseous
planets. Also in the very dense environments of dead stars (those where nuclear
burning is over) like white dwarves and neutron stars, the EOS is very different from
that of perfect gases. This is indeed one of the crucial aspects of astrophysical fluid
dynamics: understanding what the proper EOS to use is, because of the vast range
of variations of the state variables involved. A further complication is that in time-
dependent situations, like those of an approach to a possible equilibrium, the gas
can undergo internal changes of dissociation and ionization, out of equilibrium. This
means a dynamical evolution of the EOS with the need to evaluate the molecular and
atomic abundances and their ionization state ‘along the way’ by means of the time
integration of the rate equations which are needed to determine the proper values
of the abundances of the various elements and the free electrons. This procedure
implies a significant complication in numerical modelization, because the changes
in the element abundances occur on time scales which are very short with respect
to the global dynamical time scales. So, to follow the abundance evolution, implicit
schemes are required.

3.6 Solved Exercises

Exercise 1 Astone is left to fall freely (thismeans that the air resistance is negligible)
in a well 8 meter deep.

How long does it take to hear the sound of the stone hitting the bottom of the well?
(note: assume air as an ideal γ = 7/5 gas at temperature T = 20 ◦C, and assume its
mean molecular weight as μ = 29).

Solution
The requested time, τ , is the sum of the time, t f f , needed by the stone to fall freely
to hit the well bottom plus the time for the sound of the hit to reach the top of
the well, ts . The stone fall is governed by the equation of the uniformly accelerated
motion z(t) = z(0) + ż(0)t + 1

2gt
2 where a vertical, downward pointing, z-axis with

origin at the open mouth of the well is adopted. For the stone, z(0) = ż(0) = 0 and,
consequently, t f f = √

2h/g, where h = 8 m is the depth of the well and g = 9.81
ms−2 is the Earth’s gravitational acceleration. It results in t f f = 1.277 s.
After hitting the soil, the sound propagates at speed cs = √

γ p/ρ =√
(7/5)k(T + 273)/(μmH ) � 343 ms−1, so that it reaches the well mouth after

ts = h/cs = 0.023 s. Finally, the searched time is τ = 1.277 + 0.023 = 1.300 s.
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Exercise 2 Show that the equilibriumequation 3.10 for amonoatomic gas embedded
in a medium exerting on its boundary a pressure pext admits as first integral4 the
quantity 2Ei − pext4πR3 + � = 0, where Ei is the total internal energy of the self-
gravitating fluid and � its gravitational energy (R is the radius of the equilibrium
spherical configuration, assumed as finite, as finite is its mass M).

Solution
Let us write Eq. 3.10 in the form

dp = Gρ
dU

dr
dr,

and multiply both its sides by 4πr3 and integrate over the whole spherical configu-
ration, to obtain

R∫

0

4πr3dp =
R∫

0

dU

dr
r4πρr2dr. (3.44)

The lhs integral above may be integrated by parts5 letting u(r) = r3 and dv = dp

R∫

0

4πr3dp = 4π

⎡

⎣r3 p
∣∣∣
R

0
− 3

R∫

0

pr2dr

⎤

⎦ ,

that is,

R∫

0

4πr3dp = 4π

⎡

⎣R3 p(R) − lim
r→0+

r3 p(r) − 3

R∫

0

pr2dr

⎤

⎦ . (3.45)

The equilibriumcondition requires that at the border p(R) = pext where pext is the
pressure exerted by the external medium, so that Eq. 3.45, assuming lim

r→0+
r3 p(r) = 0

and accounting for the EOS p = (γ − 1)ρe, becomes

R∫

0

4πr3dp = pext4πR3 − 3(γ − 1)Ei , (3.46)

where

Ei =
R∫

0

ρe4πr2dr =
∫

M

e dm

4 A first integral is a function independent of t which remains constant along the fluid evolution.

5 Integration by parts bases on
b∫
a
udv = uv

∣∣∣
b

a
−

b∫
a
vdu.
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is the total internal energy.
Inserting the above expression Eq. 3.46 into Eq. 3.44 results in

pext4πR3 − 3(γ − 1)Ei = G
∫

M

dU

dr
rdm,

and the integral in the rhs is clearly the gravitational energy, �,6 finally leading to

3(γ − 1)Ei − pext4πR3 + � = 0. (3.47)

For an equilibrium monoatomic gas (γ = 5/3), the above relation reduces to
2Ei − pext4πR3 + � = 0. If the sphere is in vacuum (pext = 0) or extends to infin-
ity, the relation simplifies to 2Ei + � = 0.

Historical Note

The developer of the theory of gravitational instability was James Jeans (b.
1877 in Ormskirk, UK, d. 1946 in Dorking, UK). Initially, Jeans took interest
in classic studies but later, also thanks to a very good mathematics teacher, he
turned his attention to mathematics. He was particularly fascinated by numbers
and their theory. At the age of 19, he went to the Trinity College in Cambridge
(the same where Isaac Newton worked some 250 years before) with a math-
ematics scholarship. Among his teachers, there were A. N. Whitehead and E.
T. Whittaker. Jeans was awarded an Isaac Newton Studentship in astronomy
and optics, then in 1901 he was elected a Fellow of Trinity. During those times,
he turned his attention from number theory to physics, in both its theoretical
and experimental aspects. In 1904, he published The Dynamical Theory of
Gases, his first important contribution to gas and fluid dynamics. That same
year, Jeans was appointed a Lecturer in Mathematics at Cambridge. In 1905,
he started lectures as a professor of Applied Mathematics at Princeton (USA)
until 1909. After writing another book, Theoretical Mechanics, and after devel-
oping (together with J. W. S. Rayleigh, b. 1842 at Langford Grove, UK, d. in
1919 at Witham, UK) a theory of black-body radiation, he pointed his sci-
entific interest toward cosmology and astrophysics. In these fields, he gave
fundamental theoretical insights, although he was wrong when he conjectured
a steady state cosmology, i.e. a universe where matter is continuously created.
Another failure occurred when in a controversy with the other British scientist
A. Eddington (b. 1882 in Kendal, UK, d. 1944 in Cambridge, UK) he defended
his own idea that the origin of the energy released by the Sun was gravitational
contraction, while Eddington was right in saying that the energy source is slow
nuclear fusion in the inner solar region. In spite of these two failures, Jeans
achieved many important and original results, the most relevant being probably

6 The integrand is indeed the work per unit mass done against gravitational (radial) force.
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the theory of gravitational instability as explaining the primary reason for the
contraction of interstellar dilute nebulae toward the process of star formation.
Another, less known and acknowledged, great result was the deduction of the
set of partial differential equations describing in a compact way the motion of
stars in a gravitational field using a method deriving by gas dynamics. This set
of equations has been called ‘Jeans equations’ after him.

3.7 Further Readings

Fundamentals of astrophysical fluid dynamics are found in [8–10]. A useful intro-
duction to self-gravitating fluids is in [11]. A detailed analysis of Jeans’ instability
is found in [12]. The physics of dilute astrophysical medium is studied in [13].



Chapter 4
Discontinuities in Fluid Flows

As we saw in the previous chapters, the motion of fluids is governed by a set of
differential equations, both in the Lagrangian and Eulerian views. This implicitly
requires that the unknown variables to determine are regular enough. Anyway, dis-
continuities in some (or all) of the variables which describe the flow should not be
excluded a priori, as the experience suggests with special reference to gases. Given
this, to account for possible discontinuities arising in fluid flows a special treatment
is indeed needed.

4.1 Jump Conditions

The concept of jump across a surface S in a point r0 of this surface is crucial to deal
properly with flow discontinuities.

We define as jump of a characteristic variable X (for example, the density ρ or
the pressure p) the quantity

[X (r0)] ≡ X1 − X2, (4.1)

where X1 and X2 are the values of the limit of X approaching the point from one
side and the other of the given surface. If the quantity X is spatially continuous,
obviously [X ] = 0 in the given point. On the other hand, if [X (r0)] �= 0 there is a
local discontinuity. If [X ] �= 0 in every point of the surface S, this is called a surface
of discontinuity for the variable X .

Now let us apply this concept to fluid flows.
We will deal with stationary flows; when the flow is not stationary, the possible

surface of discontinuity moves along the flow. If we point our attention to a local
discontinuity involving a neighborhood of r0, we can define the normal unit vector

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. A. Capuzzo Dolcetta, Physics of Fluids, UNITEXT for Physics,
https://doi.org/10.1007/978-3-031-30750-8_4
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n in that point by a choice of its direction and approximating locally the surface with
its osculating plane (obviously perpendicular to n in r0). At this point, we can write
the fluid fundamental equations (for an inviscid fluid) at stationarity

⎧
⎪⎪⎨

⎪⎪⎩

∇ · ρv = 0,

∇ · � = 0,

∇ · ρ

(
1

2
v2 + w

)

v = 0,

(4.2)

where we remind that � is Reynold stress tensor whose components are

�ik = δik p + ρvi vk, (4.3)

and w = e + p/ρ is the enthalpy.
The set of equations4.2 represents conservation laws: in our 1D vision, we assume

an x-axis along the normal to the surface (and to the osculating plane) with origin
in the given point (and so comoving with the surface) and x > 0 in the n direction,
so that we would contain in the divergence only partial derivatives with respect to
x ≡ x1. Naming x ≡ x1, y ≡ x2 and z ≡ x3 and v ≡ (v1, v2, v3), the system Eq.4.2
reduces to ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂x1
ρv1 = 0,

∂

∂x1
�i1 = 0, i = 1, 2, 3,

∂

∂x1
ρ

(
1

2
v2 + w

)

v1 = 0.

(4.4)

Indicating with 1 the region of space where the unit vector n points to and with
2 the other, indexing accordingly ρ, v1, v2, v3, w (in the velocity components, the
second index will refer to semispace 1 or 2), and using Eq.4.3, in terms of ‘jumps’,
the above Eq.4.4 corresponds to four continuity conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ρv1] = ρ1v11 − ρ2v12 = 0,
[
p + ρv21

] = p1 + ρv211 − p2 − ρv212 = 0,

[ρv1v2] = ρ1v11v21 − ρ2v12v22 = 0,

[ρv1v3] = ρ1v11v31 − ρ2v12v32 = 0,
[

ρ

(
1

2
v2 + w

)

v1

]

= ρ1

(
1

2
(v211 + v221 + v231) + w1

)

v11+

−ρ2

(
1

2
(v212 + v222 + v232) + w2

)

v12 = 0.

(4.5)

The above conditions involve combinations of the fluid variables ρ, p,w, v such
that, individually, some of them can be discontinuous (non-zero jump) and other con-
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tinuous (zero jump). An additional specification that allows to better define possible
discontinuities involves the distinction between flows such that

(i) matter does not flow across the surface,
or

(ii) matter flows across the surface.

In the first case, discontinuities are called tangential, in the second they are called
shocks.

4.2 Tangential Discontinuities

By the definition above, tangential discontinuities are those for which matter does
not flow across the surface. This means that the first jump condition [ρv1] = 0
implies (being ρ1 and ρ2 both> 0) v11 = v12 = 0. This leads automatically to satisfy
the third, fourth and fifth jump conditions in Eq.4.5 [ρv1v2] = 0, [ρv1v3] = 0 and[

ρ

(
1

2
v2 + w

)

v1

]

= 0. This means that v2, v3, ρ and w may be discontinuous.

On the other hand, the second jump condition of Eq.4.5,
[
p + ρv21

] = 0, reduces
to [p] = 0, which means that pressure is continuous.

When the tangential velocity components (v2, v3) are continuous (and ρ is dis-
continuous), we refer to it as contact discontinuity. For an ideal fluid, it can be
shown that when, instead, v2 and/or v3 are discontinuous, the flow is unstable around
the surface of discontinuity (Kelvin–Helmholtz (K-H) instability, Figs. 4.1 and 4.2).
This instability results in a turbulent flow.

When, instead, the tangential discontinuity concerns a density discontinuity, as
it happens when in the earth gravitational field a liquid like water is suspended over
a less dense liquid, like oil, the Rayleigh–Taylor (R–T) instability appears (Fig. 4.3).
Such instability is characteristic, also, of mushroom clouds like those on top of
volcanoes or coming from a nuclear explosion.

Fig. 4.1 Kelvin–Helmholtz instability development (from https://www.brockmann-consult.de/
CloudStructures/images/kelvin-helmholtz-instab/k-w-system.gif)

https://www.brockmann-consult.de/CloudStructures/images/kelvin-helmholtz-instab/k-w-system.gif
https://www.brockmann-consult.de/CloudStructures/images/kelvin-helmholtz-instab/k-w-system.gif
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Fig. 4.2 Kelvin–Helmholtz clouds

4.3 Shock Waves

The Mach number is defined as the ratio of the average speed of a fluid to the local
sound velocity, so in the case of a perturbed and a still unperturbed region, two
values of the Mach number are computed, Mi = vi/csi , i = 1, 2.

The introduction of the Mach number is of enormous importance in technical
applications (especially in aeronautics and aerodynamics) because the flow of a gas
is completely different in nature when it is subsonic (M < 1) or supersonic (M > 1).
Flows characterized by M > 5 are considered hypersonic.

The sonic threshold is important because when the velocity of a moving fluid
becomes comparable or greater than that of sound, the compressibility of the fluid
starts to play a significant role. Practically speaking, these situations can occur in
gases and not in liquids, so the proper context is that of gas dynamics.

In gas dynamics, the Reynolds number is always very large. This because the
kinematic shear viscosity of a gas, η̃, is (from the kinetic theory of gases) of the
order of the mean free path, λ, of the gas molecules times the average velocity
of their thermal motion. This velocity is of the same order as the sound velocity,
cs , and consequently η̃ ∼ λcs . If the characteristic velocity of the gas dynamical
problem in consideration, U , is also of the order of cs , the Reynolds number results
in Re= UD/η̃ ∼ D/λ � 1. So, Re being very large, the actual role of viscosity
is negligible so that, at all effects, the gas can be considered, as we will do in the
following unless explicitly contrary stated, as an ideal fluid.

After these preliminary considerations, let us now analyze some aspects of shock
waves in a gas.

When the matter flux through the surface is not zero, also v11 and v12 are not zero.
Consequently the jump condition [ρv1v2] = 0 corresponds to [v2] = 0, meaning that
v2 is continuous through the surface. By the same token, also v3 is continuous.
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Fig. 4.3 Hydrodynamics simulation of a single ‘finger’ of the Rayleigh–Taylor instability. Note
the formation of Kelvin–Helmholtz instabilities, in the second (from left) and later snapshots shown
(starting initially around the level y = 0, aswell as the formation of a ‘mushroom cap’ at a later stage
in the third and fourth frame in the sequence (this information has been authored by an employee
or employees of the Triad National Security, LLC, operator of the Los Alamos National Laboratory
with the U.S. Department of Energy. The U.S. Government has the rights to use, reproduce, and
distribute this information. The public may copy and use this information without charge, provided
that this Notice and any statement of authorship are reproduced on all copies. Neither the Govern-
ment nor Triad makes any warranty, express or implied, or assumes any liability or responsibility
for the use of this information)

Because of the continuity of v2 and v3, the jump condition for the energy flux in the
present case reduces to

[
v21/2 + e + p/ρ

] = 0. At the same time, v1, e, p, ρ can be
discontinuous. Such a discontinuity is usually called a shock wave, and we now go
to deepen this topic here and in the following chapter.

When talking of shock waves, the jump conditions, named Rankine–Hugoniot
conditions after the two scientists of the nineteenth century Pierre-Henry Hugoniot
and William Rankine, are
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[ρv1] = 0 ⇐⇒ ρ1v11 = ρ2v12 ≡ j �= 0,
[
p + ρv21

] = p1 + ρ1v211 − p2 − ρ2v212 = 0,

[v2] = v21 − v22 = 0,

[v3] = v31 − v32 = 0,
[
1

2
v21 + e + p

ρ

]

= 1

2
v211 + e1 + p1

ρ1
− 1

2
v212 − e2 − p2

ρ2
= 0.

(4.6)

In this book, we call shock front the advancing edge of the shock wave behind it.
When the front is perpendicular to the shock’s medium flow, the shock wave is

named normal, otherwise is named oblique.
For simplicity, let us assume that matter travels through the front from region 2

(behind the shock, named also post-shock region) to region 1 (unperturbed region in
front of the shock, named also pre-shock region) so as j > 0 in the first of Eq.4.6,
and choose coordinates such that the transversal velocity components (v2 and v3) are
zero on both sides of the front (this is not a limitation because v2 and v3 are continuous
across the front). Consequently, we can omit for simplicity the coordinate index in
the velocity (i.e. put v1 = v11 and v2 = v12) to have, from the first of Eq.4.6

v1 = jV ∗
1 and v2 = jV ∗

2 , (4.7)

where V ∗
1 = 1/ρ1 and V ∗

2 = 1/ρ2 are the specific volumes.
The above relations inserted in the second jump condition of Eq.4.6 give

p1 + j2V ∗
1 = p2 + j2V ∗

2 , (4.8)

equivalent to

j2 = p2 − p1
V ∗
1 − V ∗

2

. (4.9)

Due to j2 > 0, the above relation is satisfied when p2 > p1 and V ∗
1 > V ∗

2 (that is,
ρ1 < ρ2) or when p2 < p1 and V ∗

1 < V ∗
2 (that is, ρ1 > ρ2). Calling �p = p2 − p1

and �ρ = ρ2 − ρ1 means that �p and �ρ must have the same sign.
The question is: can both cases (�p and �ρ both positive or both negative) be

realized in a shock wave or just one (positive or negative) and which of the two?
We will answer this question later (Sect. 4.3.3) as a corollary of what we will see

in the following. Now, using Eq.4.7 in the fifth jump condition of Eq.4.6 results in

1

2
j2V ∗

1
2 + w1 = 1

2
j2V ∗

2
2 + w2, (4.10)

which, by means of Eq.4.9, translates into
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1

2

p2 − p1
V ∗
1 − V 2∗

(
V ∗
1
2 − V ∗

2
2
)

+ w1 − w2 =

= 1

2
(p2 − p1)

(
V ∗
1 + V ∗

2

) + w1 − w2 = 0.

(4.11)

The above equation can be rewritten accounting for the polytropic EOS, p =
(γ − 1)ρe, leading to

w = e + p

ρ
= 1

γ − 1

p

ρ
+ p

ρ
= γ

γ − 1

p

ρ
, (4.12)

which (with proper indexing) transforms Eq.4.11 into

V ∗
2

V ∗
1

= ρ1

ρ2
=

γ + 1 + (γ − 1)
p2
p1

γ − 1 + (γ + 1)
p2
p1

. (4.13)

It is easy to see that

lim
(p2/p1)→∞

V ∗
2

V ∗
1

= lim
(p2/p1)→∞

ρ1

ρ2
= γ − 1

γ + 1
, (4.14)

so that (γ − 1)/(γ + 1) < V ∗
2 /V ∗

1 = ρ1/ρ2 ≤ (γ + 1)/(γ − 1), because V ∗
2 /V ∗

1 is
a decreasing function of p2/p1, as seen by its negative derivative

d

d(p2/p1)

V ∗
2

V ∗
1

= − 4γ
[

γ − 1 + (γ + 1)
p2
p1

]2 < 0, (4.15)

so that its maximum is taken for p2/p1 = 0 and is equal to (γ + 1)/(γ − 1).
Figure4.4 shows the behavior of V ∗

2 /V ∗
1 vs p2/p1 for various values of γ ≥ 1.

Assuming the equation of the state of ideal gases, the temperature ratio across the
front is

T2
T1

= p2
p1

V ∗
2

V ∗
1

μ2

μ1
= μ2

μ1

p2
p1

γ + 1 + (γ − 1)
p2
p1

γ − 1 + (γ + 1)
p2
p1

, (4.16)

immediately showing that its asymptotic (for p2/p2 � 1) behavior is

T2
T1

∼ μ2

μ1

γ − 1

γ + 1

p2
p1

, (4.17)
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Fig. 4.4 Behavior of Log (V ∗
2 /V ∗

1 ) versus p2/p1 for various values of γ as labeled. The horizontal
line corresponds to V ∗

2 = V ∗
1 (ρ1 = ρ2)

so that lim
(p2/p1)→∞

(T2/T1) = +∞. This means that contrary to the density ratio, which

we showed above to be limited, the temperature ratio is unbound (from this the term
‘fire ball’ for the region contained within the shock front).

4.3.1 Jumps in Terms of Mach Numbers

The expression of the various quantities as a function of the Mach number has high
relevance for aerodynamic applications, because in aerodynamics the Mach number
is used as a unit of measure for the object (an aircraft) in motion in the surrounding
medium,1 whose sound velocity can vary significantly due to temperature variation
with the altitude.

Eliminating V ∗
2 into the denominator of Eq.4.9 by means of Eq.4.13, we get

1 Of course, in this case the fluid velocity to compare to the sound velocity is that of the aircraft
with respect to the fluid.
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j2 = p1 − p2

V ∗
1

[
(γ + 1)p1 + (γ − 1)p2
(γ + 1)p2 + (γ − 1)p1

− 1

] = (γ + 1)p2 + (γ − 1)p1
2V ∗

1

. (4.18)

Remembering that c2s1 = γ p1/ρ1, the above expression allows the expression of
v21 in terms of c2s1 and p2/p1 as

v21 = j2V ∗
1
2 = V ∗

1

2

[
(γ + 1)p2 + (γ − 1)p1

] = 1

2

c2s1
γ

[

(γ + 1)
p2
p1

+ γ − 1

]

.

(4.19)
Analogous procedure, and assuming γ = const. through the shock front, leads

to

v22 = 1

2

c2s2
γ

[

(γ + 1)
p1
p2

+ γ − 1

]

. (4.20)

Recalling the definition of the Mach numbers in the shocked, 2, and unshocked,
1, regions, and using the two above relations results in

M2
1 = 1

2γ

[

(γ + 1)
p2
p1

+ γ − 1

]

,

M2
2 = 1

2γ

[

(γ + 1)
p1
p2

+ γ − 1

]

.

(4.21)

It is so possible writing M2 in terms of M1 and, by a simple exchange of indexes,
the vice versa

M2
2 = 2 + (γ − 1)M2

1

2γ M2
1 − (γ − 1)

,

M2
1 = 2 + (γ − 1)M2

2

2γ M2
2 − (γ − 1)

.

(4.22)

The above expressions and the assumptionμ2/μ1 = 1 allowwritingρ2/ρ1, p2/p1
and T2/T1 as functions of M2

1

ρ2

ρ1
= v1

v2
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

,

p2
p1

= 2γ M2
1

γ + 1
− γ − 1

γ + 1
,

T2
T1

=
[
2γ M2

1 − (γ − 1)
] [

(γ − 1)M2
1 + 2

]

(γ + 1)2M2
1

,

(4.23)

which in the limit of strong shock, M2
1 � 1, become
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ρ2

ρ1
= v1

v2
∼ γ + 1

γ − 1
,

p2
p1

∼ 2γ M2
1

γ + 1
→ ∞,

T2
T1

∼ 2γ (γ − 1)M2
1

(γ + 1)2
→ ∞.

(4.24)

So, as we knew, in the shocked zone both p and T are unbound for every γ while
the density contrast is limited.

4.3.2 Weak Shocks

In the limit of weak shock, the pressure ratio across the front is slightly greater than
1, so that defining z ≡ (p2 − p1)/p1 = p2/p1 − 1 it is z � 1, and so, expressing
M2

1 in terms of p2/p1 by means of the first relation in Eq.4.21 and eliminating p2/p1
by means of z

M2
1 = γ + 1

2γ
(z + 1) + γ − 1

2γ
= 1 + γ + 1

2γ
z, (4.25)

which, at first order in z, gives

M1 � 1 + γ + 1

4γ
z. (4.26)

A substitution of the above expression ofM2
1 in the density ratio in Eq.4.23 yields,

at second order in z,

ρ2

ρ1
= v1

v2
=

(γ + 1)

(

1 + γ + 1

2γ
z

)

(γ − 1)

(

1 + γ + 1

2γ
z

)

+ 2
� 1 + z

γ
− γ − 1

2γ
z2. (4.27)

4.3.3 Physical Meaning of Shock Waves

Equation4.23 says that when M1 = 1 it results in ρ2 = ρ1, v1 = v2, p2 = p1 and
T2 = T1, so there are no discontinuities at all. Now, because

d

dM1

(
v2
v1

)

= 2M1
d

dM2
1

(
v2
v1

)

= − 4(γ + 1)M1
[
(γ + 1)M2

1

]2 < 0, (4.28)
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Fig. 4.5 The ratios v2/v1 and T2/T1 (as labeled) versusM2
1 for γ = 7/5. The vertical line separates

the subsonic (M1 < 1) from the supersonic (M1 > 1) region. The horizontal line corresponds to
v2 = v1 and T2 = T1

the velocity ratio v2/v1 is a decreasing function of the Mach number M1 (Fig. 4.5);
consequently, being v2/v1 = 1 for M1 = 1, it results in v2/v1 > 1 for M1 < 1 and
v2/v1 < 1 for M1 > 1.

On the other hand,

d

dM1

(
T2
T1

)

= 4(γ − 1)
(
γ M4

1 + 1
)

(γ + 1)2 M3
1

, (4.29)

which is always > 0 because γ > 1. Being, again, T2 = T1 for M1 = 1, the mono-
tonically increasing dependence of T2/T1 on M1 implies that T2/T1 < 1 for M1 < 1
and T2/T1 > 1 for M1 > 1 (Fig. 4.5).

Given all this, the case M1 < 1 cannot give rise to a shock wave because it would
imply that through the hypothetical shock surface unordered ‘thermal’ energy (mea-
sured by temperature) is transformed into ‘ordered’ kinetic energy (measured by
velocity squared) violating the second principle of thermodynamics. This means
that a physical shock can occur only in the supersonic, M1 > 1, case.

The above considerations allows the answer to the question raised before in
Sect. 4.3 about �p/�ρ across the front: due to �ρ > 0, also �p is necessarily
> 0.
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4.4 Solved Exercises

Exercise 4.1 TheRankine–Hugoniot conditions (Eq. 4.6) can be synthesized as con-
servations across the shock boundary of mass, momentum and energy

⎧
⎪⎪⎨

⎪⎪⎩

ρv = j �= 0,

p + ρv2 = α �= 0,
1

2
v2 + e + p

ρ
= β �= 0.

(4.30)

Questions
Assuming a polytropic EOS, upon definition of a proper reference velocity v̄, and by
using a dimensionless variable λ = v/v̄:

1. derive as functions of λ the expressions for β, for the internal energy (per unit
mass), e, and for the Mach number;

2. show that the quantity

σ = jγ−1

v̄γ+1

p

ργ
(4.31)

is a dimensionless,monotonic (invertible) function of the specific entropy s, which
can be put in the form σ = λγ (1 − λ).

Solution
1. The sound speed squared is c2s = γ p/ρ, so that themomentum conservation yields
the quadratic equation for v

c2s
γ

+ v2 − α

ρ
= 0. (4.32)

Now, the mass conservation implies ρ = j/v, so that α/ρ = v(α/j); conse-
quently, the quantity v̄ = α/j appears to be the proper reference velocity, implying
that Eq.4.32 can be written as

v2 + c2s
γ

− vv̄ = 0,

whose two roots represent the velocity on either side of the shock front. The above
equation gives

c2s = γ v(v̄ − v)

by which we eliminate c2s in the third jump condition of Eq.4.30 and write

β = v

[

v

(
1

2
− γ

γ − 1

)

+ γ

γ − 1
v̄

]

,
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having expressed the specific internal energy as

e = c2s
γ (γ − 1)

= 1

γ − 1
v(v̄ − v).

The two expressions above are written in terms of the dimensionless velocity
λ = v/v̄

β = v̄2λ

[

λ

(
1

2
− γ

γ − 1

)

+ γ

γ − 1

]

,

and

e = v̄2
1

γ − 1
λ(1 − λ).

Finally, the Mach number squared, M2 = v2/c2s , is

M2 = λ

γ (λ − 1)
. (4.33)

2. The specific entropy of an ideal gas is given by

s = a ln
p

ργ
+ b,

where a and b are constants. The above relation implies

p

ργ
= e(s−b)/a,

which is a monotonic (increasing) function of s that we call s ′ and whose variations
can be considered instead of those of s.

A dimensionless quantity keeping characteristics of specific entropy can be
obtained. Actually, using the polytropic E.O.S.

s ′ = 1

ργ−1

p

ρ
= 1

ργ−1
(γ − 1)e,

which may be written in terms of λ as

s ′ = 1

ργ−1
v̄2λ(1 − λ).

As a consequence, the quantity

ργ−1 s
′

v̄2
=

(
j

v

)γ−1 s ′

v̄2
= λ(1 − λ),



92 4 Discontinuities in Fluid Flows

where we used mass conservation from Eq.4.30 to eliminate ρ, is clearly non-
dimensional and by simple multiplication of the rightmost two sides of the above
relation by (v/v̄)γ−1 = λγ−1 we get σ as a non-dimensional and monotonic function
of the original specific entropy s through s ′

σ =
(
j

v̄

)γ−1 s ′

v̄2
= λγ (1 − λ). (4.34)

4.5 Further Readings

A good general reference book for discontinuities in fluid flows is [2]. More specif-
ically devoted to gas dynamics discontinuities is [14].



Chapter 5
Blast Waves

In this chapter we study the properties of strong supersonic explosions leading to
a blast wave propagation. The so-called Sedov–Taylor–von Neumann (S–T–vN)
approach is followed, which consists in finding a formal or numerical approximation
in a self-similar schematization of the problem. Once the spherical propagation front
time dependence has been found via a dimensional reasoning, the values of the
internal quantities are determined by the solution of a system of ODEs. Application
to the determination of the unknown amount of energy released by a bomb or a
Supernova (SN) follows.

5.1 Propagation of a Blast Wave

Asudden release of energy,�E , in a small volume over a small time,�t , corresponds
to an explosion. We can call it explosion whenever �E/�t , which is a power,
is very large. The explosion often produces a quick and strong compression front
which propagates in the environment at supersonic speed. This compression front
is called blast wave and its moving surface, which is expected to be spherical if
the environment is homogenous, actually constitutes a discontinuity surface across
which some of the fluid variables experience jumps across it. The Rankine–Hugoniot
jump conditions discussed in the previous chapter define the characteristics of the
discontinuities of the fluid variables across the shock front.

Thephysical sources of explosions are of different types. Talkingof explosions on
earth, it is useful to distinguish between deflagration and detonation. A deflagration
is an explosion which causes a fireball to move at subsonic speed, while a detonation
induces a supersonic fireball and, so, an actual shock wave. Deflagrations are sort of
non-destructive, controlled, explosions where the fire release occurs on a time scale

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. A. Capuzzo Dolcetta, Physics of Fluids, UNITEXT for Physics,
https://doi.org/10.1007/978-3-031-30750-8_5
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which is not too short, causing a modest overpressure (� 0.5 bar). Typical examples
of deflagrations are those obtained by fossil fuel combustion in an engine like those
used to power vehicles. This control of deflagrations makes them useful tools to
convert multiple explosions into ordered work.

On the other hand, detonations (from Latin detonare = ‘to thunder down’) are
stronger explosions, able to produce a flame front at supersonic speed. A detona-
tion, so, corresponds to a (�E/�t)det � (�E/�t)de f , where the subscript refers
to detonation and deflagration. A detonation can be obtained by a chemical reaction
in which usually a decomposition reaction is followed by recombination: unsta-
ble molecules dissociate, and the resulting constituents form rapidly new molecules
releasing a high quantity of energy. Dynamite is a typical example of detonating
chemical product. The practical use of detonations is, on a civic side, that of destroy-
ing rapidly things that would, otherwise, require a lot of human work and resources.
For example, the construction of a road in a rocky environment is highly facilitated
by controlled explosions to destroy big rocks. Detonations are also used to cause
the collapse of old buildings, often via a set of combined explosions. Due to their
destructive power, unfortunately, detonations have found heavymilitary applications,
from classic grenades up to nuclear bombs. In the astronomical context, the most
common example is the explosion of a Supernova. A Supernova is a massive star that
at the end of its life as a nuclear burner has an inner core of 56Fe, which is the most
stable nuclide in nature, defining the minimum of the binding energy per nucleon
curve. At that time nuclear reactions stop, so that gravity overwhelms the reduced
pressure gradient, causing a sudden instability with the catastrophic consequence
of a gigantic explosion involving energies up to 1053 erg emitted in various forms
(kinetic, neutrinos, radiation) and different fractions.

Let us now approach quantitatively the problem of the blast wave caused by a
detonation. Suppose that an amount of energy E is suddenly released at time t = 0 in
a generic point of an adiabatic environment with adiabatic index γ and characterized
by uniform values of density and pressure, referred to as ρ1 and p1, respectively. In
the further hypothesis that the environment temperature is very low, T1 � 0, we have
from the ideal gas EOS that the sound speed

cs1 =
√

γ
p1
ρ1

=
√

γ
kT1

μ1mH
(5.1)

is very small, too, and this guarantees that the flow perturbation caused by the explo-
sion is supersonic (M1 > 1) or even hypersonic (M1 � 1). In the latter case, the
shock is in the strong regime; the hypothesis of strong shock will be used heavily in
the following.

Now, following the way proposed in the middle of the twentieth century by
L. I. Sedov, G. I. Taylor and J. von Neumann (see the historical note), we make
use of dimensional considerations to deduce an expression for the time dependence
of the spherical blast wave front radius, RS(t); the assumption of a spherical front
is a straight consequence of the localized point-like explosion in a uniform environ-
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ment. The front expansion either than on time should depend also upon E , p1, ρ1

and γ as parameters, where p1 and ρ1 are linked by the adiabatic EOS so as to be
interdependent. A quantity with the requested dimensions of a length can be built in
the form of powers of t , E and ρ1 as characterizing dimensional parameters, letting

RS = kγ E
αρ

β

1 t
δ, (5.2)

where kγ is a dimensionless quantity dependent on γ whose determination will be
discussed later, and α, β and δ are exponents to determine by the condition that the
resulting power law product has the dimension of length.

Given that [E] = ML2T−2, [ρ1] = ML−3, [t] = T, the dimensional equation
deriving from Eq.5.2 is

L = Mα+βL2α−3βT−2α+δ, (5.3)

equivalent to the system ⎧⎨
⎩

α + β = 0,
2α − 3β = 1,
−2α + δ = 0,

(5.4)

whose unique solution isα = −β = 1/5, δ = 2α = 2/5. Consequently, we canwrite

RS(t) = kγ E
1/5ρ

−1/5
1 t2/5 = kγ

(
Et2

ρ1

)1/5

, (5.5)

whose time derivative

vS ≡ ṘS = 2

5
kγ

(
E

ρ1

)1/5

t−3/5 = 2

5

RS

t
, (5.6)

can be taken as the shock front speed, which diverges as t−3/5 for t → 0 and goes to
zero for t → ∞. Figure5.1 gives an idea of the scaling with the time of the shock
front size expansion, while Fig. 5.2 shows snapshots of the Trinity bomb exploded
on July 16, 1945 as a test in the frame of the Manhattan project. Figure5.3 indicates
how good is Eq.5.5 in representing the Trinity bomb blast front expansion.

Anyway, there are two notes about the validity of the obtained front expansion
in Eqs. 5.5 and 5.6. First, Eq. 5.6 leads to an intrinsic lower limiting time, tmin =
[2kγ /(5c)]5/3(E/ρ1)

1/3 where c is the speed of light in vacuum, such that for t < tmin

the shock front expansion would be superluminal (ṘS > c). The second point to note
is that the front expansion Eq.5.5 is decelerated, being

R̈S(t) = − 6

25
kγ

(
E

ρ1

)1/5

t−8/5 < 0, (5.7)
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Fig. 5.1 Radii (on scale) of the shock fronts at times t0 and t1 = 100t0

that does not fitting the expected free expansion shortly after the explosion.
As we know fromChap.4, the, likely, assumption of strong shock (M1 � 1) leads

to the density jump across the discontinuity surface (with the usual convention of
labeling with 1 the pre-shock and with 2 the post-shock regions, respectively)

ρ2 = γ + 1

γ − 1
ρ1. (5.8)

The jump condition [ρv] = 0 in the case of mass transfer across the discontinu-
ity surface corresponds to v2/v1 = ρ1/ρ2 in a reference frame fixed on the shock
front, and so, calling v̄1 and v̄2 the velocities with respect to a fixed frame (absolute
velocities) where the front moves at speed vS

v̄2 − vS = γ − 1

γ + 1
(v̄1 − vS). (5.9)

For simplicity of notation, hereafter we will omit the bar over the v symbol to
refer to the absolute velocity. Over a wide time interval, it is v1 � vS so that Eq.5.9
approximates to

v2 � 2

γ + 1
vS, (5.10)
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Fig. 5.2 Snapshots of the Trinity bomb explosion taken at different times (as labeled)

showing that in the case of strong shock the flow speed behind the front (v2) depends
only on the front speed (and on γ ) but not on v1. Equation5.10 implies the limitation
v2/vS ≤ 1, because γ ≥ 1. For pressure, the second relation in Eq. 4.23 gives in the
hypersonic regime

p2 � 2γ

γ + 1
M2

1 p1, (5.11)

which, becauseM2
1 = (v1/cs1)2 and eliminating c2s1 by Eq.5.1 in the regime v1 � vS ,

approximates to

p2 � 2ρ1v2S
γ + 1

, (5.12)

which states a dependence, in the shocked region, of pressure on the scale pressure
ρ1v2S , without dependence on the actual pressure, p1, of the unperturbed fluid. Being
γ ≥ 1, the obtained limitation is 0 < p2 ≤ ρ1v2S .
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Fig. 5.3 This plot (from
Taylor, Proc. of the Roy. Soc.
of London, Ser. A, Math. and
Phys. Sciences, vol. 201,
issue 1065, 1950) shows the
excellent agreement of data
of the Trinity blast front
expansion (crosses) with the
theoretical expression of
RS(t) of Eq.5.5

5.2 A Similarity Solution

In some cases it is possible, and worth, looking for families of solutions of a physical
problem which have the property to be similar.

Of course, the concept of similarity is not as uniquely defined as that of equality,
and it must be adapted to the category of cases under study.

For example, in Euclidean geometry two figures are similar if one can be obtained
by the other by simple size scaling together with, if needed, additional translation,
rotation and/or reflection. Given this definition, all circles are similar to each other,
so they are self-similar figures. On the other hand, neither ellipses nor rectangles nor
isosceles triangles are self-similar. In the case of differential equations, like those of
fluid dynamics, similar or self-similar solutions could be considered those solutions
which can be obtained one from the other by a simple scaling given by a factor.

The procedure to get these solutions usually passes through the introduction of a
proper dimensionless variable which resumes both the space and time dependence.
The introduction of such a variable allows, usually, the transformation of the original
set of partial differential equations into a set of ordinary differential equations, much
easier to solve numerically.

In our specific case, the idea behind the whole procedure is to seek the dependence
of the fluid variables ρ, v, p behind the shock front, called ρ2(r; t), v2(r; t), p2(r; t)
for r ≤ Rs(t), via scaling of the discontinuities with dimensionless functions R(r; t),
P(r; t) and V (r; t):
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ρ2(r; t) = γ + 1

γ − 1
ρ1R(r; t),

v2(r; t) = 2vS
γ + 1

V (r; t),

p2(r; t) = 2ρ1v2S
γ + 1

P(r; t),

(5.13)

having taken into account Eqs. 5.8, 5.10 and 5.12.
The sought dimensionless abscissa variable to use for seeking self-similar solu-

tions can be constructed in the usual dimensional way using the four parameters
available, ρ1, E , t and r , looking for exponents α, β, δ and ε such that the combina-
tion

ξ = Eαρ
β

1 t
δr ε (5.14)

is dimensionless. The resulting system of three equations in the four unknowns has,
of course, ∞1 solutions, which (taking ε as parameter) are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α = −ε

5
,

β = ε

5
,

δ = −2

5
ε,

(5.15)

which, with the choice ε = 1, leads to ξ = 
γ E−1/5ρ
1/5
1 t−2/5r as non-dimensional

variable, with 
γ a numerical constant depending on γ . This expression is indeed
equivalent to ξ = r/RS(t) when letting, without loss of generality, 
γ = 1/kγ . This
dimensionless variable ξ(r; t) allows rewriting the Eq.5.13 in the form

ρ2(r; t) = γ + 1

γ − 1
ρ1R(ξ),

v2(r; t) = 2vS
γ + 1

V (ξ),

p2(r; t) = 2ρ1v2S
γ + 1

P(ξ),

(5.16)

where the unknown dimensionless functions R, V and P must satisfy the boundary
conditions R(1) = V (1) = P(1) = 1.

The system of fluid dynamical equations which R, V and P must satisfy is, in the
ideal case and exploiting spherical symmetry (v = vr ),



100 5 Blast Waves

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 1

r2
∂

∂r
(r2ρvr ) = 0

∂vr
∂t

+ vr
∂vr
∂r

= − 1

ρ

∂p

∂r
∂s

∂t
+ vr

∂s

∂r
= 0.

(5.17)

Taking into account that for a reversible polytropic transformation (i.e. isoentropic),
the specific entropy can be written as

s = a ln
p

ργ

, (5.18)

where a is a constant, the entropy conservation (last of Eq.5.17) is written as

a

(
∂

∂t
+ vr

∂

∂r

)
ln

p

ργ
= 0. (5.19)

After substitution of the above equation and of relations Eq.5.16 into the set
Eq.5.17, it turns into a system of first order ODEs

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
2

γ + 1
V − ξ

)
R′ + 2

γ + 1
RV ′ = − 4

γ + 1

RV

ξ(
4

γ + 1
V − 2ξ

)
V ′ + 2

γ − 1

γ + 1

P ′

R
= 3V

γ

(
ξ − 2

γ + 1
V

)
R′

R
+

(
2

γ + 1
V − ξ

)
P ′

P
= 3,

(5.20)

where the apex, ′, denotes differentiation with respect to ξ .
Although the systemEq.5.20 subjected to the conditions R(1) = V (1) = P(1) =

1 admits solutions in closed form, a numerical approach provides a more general
treatment.

The first step in the direction of finding a numerical solution is the transformation
of the system Eq.5.20 in normal form, which means a form where all the first order
derivatives of the unknown, R′(ξ), V ′(ξ), and P ′(ξ), are explicated in terms of the
independent variable ξ and of the (non-differentiated) unknowns R, V and P . This
can be done by solving the linear system

Ax′ = b, (5.21)

where x′ is the column vector of the unknown derivatives having components

x ′
1 = R′,
x ′
2 = V ′,
x ′
3 = P ′,

(5.22)

while b is the column vector whose components are
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b1 = − 4

γ + 1

RV

ξ
,

b2 = 3V,

b3 = 3,

(5.23)

and A is the 3 × 3 matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

2V

γ + 1
− ξ

2R

γ + 1
0

0
4V

γ + 1
− 2ξ

γ − 1

γ + 1

2

R(
ξ − 2V

γ + 1

)
γ

R
0

(
2

γ + 1
V − ξ

)
1

P

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.24)

Applying the rule of Sarrus, the determinant of A is

det(A) = 2

(
2V

γ + 1
− ξ

) [(
2V

γ + 1
− ξ

)(
2

γ + 1
V − ξ

)
1

P
− γ

γ − 1

(γ + 1)2
2

R

]
.

(5.25)

The Rouché–Capelli theorem guarantees a solution which can be found, for instance,
applying Cramer’s rule, that is

x ′
i = det(Ai )

det(A)
, i = 1, 2, 3 (5.26)

where Ai is the matrix formed by replacing the ith column of A by the column
vector b.

As a result, we find the normal form for our system of first order ODEs

x′ = F(x; ξ), (5.27)

where F is a vector function depending upon x and ξ .
Another way to put the system Eq.5.20 of ODEs in normal form is via successive

substitutions. We follow this way in Exercise 5.1.
The system Eq.5.27 subjected to initial (at ξ = 1) conditions x1(1) ≡ R(1) =

1, x2(1) ≡ V (1) = 1, x3(1) ≡ P(1) = 1 may be now numerically backward inte-
grated with a standard numerical algorithm for systems of first order ODEs.

Figure5.4 shows solutions for γ = 7/5.
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Fig. 5.4 Behaviors of R, P , V (see left ordinate scale). In this plot T is the ratio of the internal
temperature and the one at boundary (right ordinate scale). Plot adapted from
commons:wikimedia.org/wiki/File:TNS_blast_wave.pdf

5.2.1 Determination of the Dimensionless Constant kγ

Once the self-similar solutions of the fluid-dynamical equations in the shocked gas
have been found, it remains to determine the dimensionless constant kγ in Eq.5.5
which eventually solves completely the problem, allowing also to calculate the
released energy E once γ is known.

The way to get kγ is via imposing energy conservation. This is done by letting E
equal to the integral which gives, at every time t , the total energy from the kinetic +
internal energy density

E =
∫ RS

0
ρ

(
1

2
v2 + e

)
4πr2 dr. (5.28)

Given the adiabatic EOS, p = (γ − 1)ρe, and the relations Eqs. 5.13, 5.28 trans-
forms into

E = 8πv2Sρ1R3
S

(γ + 1)(γ − 1)

∫ 1

0

[
R(ξ)V 2(ξ) + P(ξ)

]
ξ 2 dξ, (5.29)

which, by elimination of vS with Eq.5.6, leads to

E = 32π

25(γ 2 − 1)

ρ1R5
S

t2

∫ 1

0

[
R(ξ)V 2(ξ) + P(ξ)

]
ξ 2 dξ. (5.30)

Letting Iγ the integral in the above relation and imposing E = (RS/kγ )5(ρ1/t2),
as given by Eq.5.5, the constant kγ is finally given by



5.3 Supernova Explosions 103

Table 5.1 Values of kγ for a
selected set of γ

γ kγ

5/3� 1.6667 1.15167

3/2 = 1.5000 1.08231

7/5 = 1.4000 1.03278

4/3� 1.3333 0.99467

9/7� 1.2857 0.96392

5/4 = 1.2500 0.93827

11/9 � 1.2222 0.91634

6/5 = 1.2 0.89723

13/11 � 1.1818 0.88035

7/6 � 1.1667 0.86524

15/13 � 1.1538 0.85160

152/150 � 1.0133 0.52434

202/200 � 1.01 0.49512

kγ =
[
25(γ 2 − 1)

32π Iγ

]1/5

. (5.31)

The coefficient kγ depends upon γ both explicitly (numerator) and implicitly
(denominator) via the integral Iγ and can be obtained once the solutions R(ξ), V (ξ)

and P(ξ), which all depend on γ , have been obtained. As expected on the elementary
basis, the values of kγ are around 1 for reasonable values of γ , as shown in Table5.1,
which shows an increasing trend of kγ with γ . The expansion of the shock front is
favored by larger values of the exponent of the polytropic EOS. Moreover, kγ → 0
for γ → 1 as suggested by Eq.5.30 since Iγ is strictly positive and limited due to
the flat behavior of P(ξ) in the neighborhood of ξ = 0 (see Fig. 5.4). This means
that the explosion front remains frozen in the place of the explosion in an isothermal
(γ = 1) environment. Numerically, it is found that the decrease to zero of kγ is quite
steep being (see Table5.1) kγ < 0.5 only for γ � 1.01.

On the other hand, for γ � 1 it is kγ ∼ γ 2/5, because Iγ is limited for every γ .

5.3 Supernova Explosions

The Sedov–Taylor–von Neumann solution finds an interesting application in a par-
ticular phase following the Supernova blast wave caused by the explosion occurring
in the central region of some types of stars.

Stars are self-gravitating gaseous structures deriving by gravitational instability
of a diffuse cloud which starts a collapse until an almost stationary core forms that
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Fig. 5.5 The internal
structure of a massive
(M > 8 M�) pre-SN star
(from Ursus & Hall, CC BY
2.5, https://commons.
wikimedia.org/w/index.php?
curid=2565862)

continues to accrete its mass by infalling matter so that its inner part becomes so
dense and hot that nuclear fusions begin and produce sufficient energy to support the
structure against its self-gravitation, reaching hydrostatic equilibrium. This equilib-
rium slowly evolves through successive types of nuclear burnings, from lighter to
heavier elements formed in the inner star region. The speed of these nuclear burning
phases depends mostly on the star mass: the larger the mass of the star, the quicker
the various burning phases and the higher the rate of energy (luminosity) emitted by
the star.

The so-called core collapse SN are those stars whose mass is so large that the
sequence of nuclear burnings continues until an inner region composed by Iron 56
(Fe56) is produced (see Fig. 5.5).

Considering the (negative) energy of a given nucleus composed of a certain num-
ber of components (nucleons),1 it is seen that its relation with the number of nucleons
in the nucleus has indeed its minimum for Fe56. This means that lighter elements
than Fe56, when they merge, give a fusion product with lower energy than the sum of
reactants, corresponding to an emission of the energy excess: these are exothermic
fusion reactions. On the contrary, on the right side of the energy-number of nucleons
curve, the energy increases, meaning that only fission nuclear reactions are exother-
mic while fusions are endothermic. As a consequence, the Fe56 stellar core steadily
grows in mass until it reaches a value of mass (called Chandrasekhar mass, � 1.4
M�) when equilibrium is broken and a sudden collapse occurs which can give rise
to the SN explosion and subsequent blast wave.

The blast wave corresponds to a shock front which expands supersonically in the
surrounding, tenuous, interstellar medium; its expansion and internal characteristics
can be represented over a limited amount of time by the previously discussed S–T–vN
solution. This phase (S–T–vN or adiabatic, energy-conserving, phase) starts about

1 Note that the binding energy usually referred to in the literature as the amount of energy to give to
a specific nucleus to disperse all its elements (nucleons) is the absolute value of the nucleus energy
at rest.

https://commons.wikimedia.org/w/index.php?curid=2565862
https://commons.wikimedia.org/w/index.php?curid=2565862
https://commons.wikimedia.org/w/index.php?curid=2565862
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200 yr after the explosion and is characterized by the expansion of the radius of the
shock according to the S–T–vN law RS ∝ t2/5, which follows the first phase of free
(no deceleration) RS ∝ t expansion. The S–T–vN phase ends about 3 × 104 yr after
the explosion, when energy dissipation of the expanding remnant, essentially due
to radiative processes, begins. In this case, there is a very dense and thin shell which
radiates efficiently the energy of the shock in the surrounding medium. This third
phase, lasting about 2 × 105 yr, is called snowplough phase and RS ∝ t1/4. Physically
speaking, while the S–T–vN phase corresponds to a constant energy phase, this third
phase corresponds to an almost constant momentum stage. The fourth, and final,
phase is that of remnant dilution into the interstellar medium, i.e. RS ∝ t0 = const..

5.4 Solved Exercises

Exercise 5.1 Reduce the system of ODEs (5.20) in the normal form via successive
substitutions.

Solution
The system (5.20) can be easily converted into the semi-explicit form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R′

R
= − 2

γ + 1

V ′

V
+ 2

ξ

2

γ + 1
− ξ

V

V ′

V
=

3 − 2
γ − 1

γ + 1

P ′

RV
4

γ + 1
V − 2ξ

P ′

P
= 3

2

γ + 1
V − ξ

+ γ
R′

R
.

(5.32)

It is now possible, for instance, to express V ′/V (second equation in the system
Eq.5.32) eliminating P ′ with the third relation where, in its turn, the first has been
used to express R′/R in terms of V, V ′ and ξ . Finally, we have

V ′

V
=

3

(
2

γ + 1
V − ξ

)
+ 2

γ − 1

γ + 1

(
−3 + 4

γ

γ + 1

V

ξ

)
P

RV

2

(
2

γ + 1
V − ξ

)2

− 4γ
γ − 1

(γ + 1)2
P

R

≡ fγ (R, P, V ; ξ).

(5.33)
The above expression, inserted into the first in Eq.5.32, leads to
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R′

R
= − 2

γ + 1

fγ + 2

ξ

2

γ + 1
− ξ

V

≡ gγ (R, P, V ; ξ), (5.34)

and its final insertion in the third of Eq.5.32 leads to the last searched equation

P ′

P
= 3

2

γ + 1
V − ξ

+ γ gγ ,≡ hγ (R, P, V ; ξ). (5.35)

Exercise 5.2 The Crab nebula is the remnant of a Supernova whose explosion is
dated 1054 as from ancient Chinese observations.

Assuming as observational data its present radius ∼ 5.5 ly (∼ 1.7 pc) and density
of the interstellar medium, ρ1 ∼ 10−24 g cm−3, give an estimate of the energy, E ,
released by the SN explosion.

Solution
From what is said in Sect. 5.3 of this chapter, the Crab nebula is likely, at present, in
the S–T–vN phase after 968 yr from the SN explosion. Adopting the RS versus time
relation in Eq.5.5, where for simplicity we put kγ = 1, and using for the present
radius and environmental density the input data above, a rough estimate of E is
E � 4.09 × 1046 erg, which is an energy about 9.45 × 1025 times that released by
the Trinity atomic bomb! (see the following historical note).

Taking into account that the maximum energy that can be extracted by a mass
m = α M� is the rest mass energy Em = mc2 = α1.788 × 1054 erg where c is the
speed of light in vacuum, and α ≥ 1.4 (the Chandrasekhar mass is ∼ 1.4 M�), the
previous evaluation of E corresponds to a rest mass energy conversion efficiency
E/Em = (2.29 × 10−8)/α ≤ 1.64 × 10−8.

Historical Note

The story behind thework independently done by J. vonNeumann in theU.S.A.,
G. I. Taylor in the UK and L. I. Sedov in the U.S.S.R. about the so-called ‘point
source model’ (as it was termed by J. von Neumann) for a strong explosion is
intriguing. It seems that all three of them were almost contemporarily (1941)
asked by their governments to investigate the likely effects of a powerful bomb
whose energy release is caused by a sudden process of nuclear fission. Note that
in 1941 all these countries were deeply fighting in World War 2, and that J. von
Neumann was involved in the Manhattan Project, directed by R. Oppenheimer
and that lead to the construction of the first atomic bomb in 1945. Neither Taylor
nor Sedov, for what is known, were directly involved in nuclear projects.
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The three scientists approached the problem in almost the same way, i.e.
searching for an interpretation of the development of a spherical shock front
(as expected from a point-like explosion in a homogeneous environment) in
terms of a function of time deduced by a mere dimensional analysis which
necessarily left as undetermined a numerical constant (kγ in this book) naturally
dependent on the environment characteristics, essentially the exponent γ of
the EOS, supposedly polytropic. It appeared clear to all of them that the real
feedback between the energy released by the strong explosion and the shock
front advancement could be determined only upon the determination of such a
constant. While von Neumann and Sedov, on their sides, independently arrived
at complicated, somewhat implicit, exact solutions to the problem of the shape
of radial velocity, density and pressure within the spherical shock front, Taylor
proposed just approximations.

Taylor and von Neumann both submitted their reports to their military struc-
tures at the end of June 1941. Their work remained likely secreted until 1950
when two papers by Taylor were published in the Proceedings of the Royal
Society, titled “The formation of a blast wave by a very intense explosion: I
Theoretical discussion and II The atomic explosion of 1945”. It was only in
1963 that, seven years after his death, the paper “The point source solution” by
von Neumann was published in a volume of his collected works. On the other
hand, Sedov was able to publish earlier his results in the Russian language in
1946.

In 1947, two years after the end ofWorldWar 2, images of the Trinity test of
the atomic bomb explosion in New Mexico were declassified and released by
the U.S. Atomic Energy Commission and freely circulated (even published in
Life magazine). Basing on a sufficiently detailed set of frames accompanied by
the time of the shots and the length scale, Taylor, in his second paper of 1950,
was able to check the validity of the dimensionally derived RS ∝ t2/5 and,
by means of a determination of kγ based upon energy conservation constraint
under the assumption γ = 7/5 and with a reasonable choice of the air density
at the test location, to obtain E = 16.8 kiloton as the energy released by the
Trinity test explosion. Actually, due to that the real physical situation after the
phase of energy conserving expansion is that of a phase of energy dissipation by
radiation, the estimate of the bomb released energy in the S–T–vN framework
is intrinsically an underestimate of the real bomb energy.

The exact value of the energy actually released in that experiment is not
known but an official report dated two days after the experiment by General L.
Groves, military commander of theManhattan Project, speaks of a conservative
estimate of a release of energy between 15 and 20 kiloton, in good agreement
with Taylor’s estimate.
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5.5 Further Readings

This chapter presented the dimensional-similarity method originally developed inde-
pendently by von Neumann, Sedov and Taylor to investigate blast wave propagation.
The book [15] by Sedov is surely an important reference. Among many other text-
books on the subject, I cite [16, 17].



Chapter 6
Peculiar Fluid Dynamics

6.1 Relativistic Fluid Dynamics

As is well known, classical physics goes in trouble when dealing with submicro-
scopic scales (atomic and subatomic scales) where quantum mechanics provides the
necessary tools of investigation, and, also, when dealing with velocities comparable
with that of light in vacuum, i.e. out of the classical regime v/c � 1, or when in the
presence of strong gravitational fields. In the latter two cases, the special and general
relativistic regime is entered, respectively. Of course, these situations of very large
velocities and very strong gravitational fields are not likely to occur on the Earth, but
may happen in some astrophysical environments.

For the purposes of this book, we will say something just about the special rela-
tivistic regime for fluid dynamics. It is preliminarily worth noting that the presence
of relativistic effects is expected not only when the macroscopic velocity of the flow
is large but also when the microscopic velocities of the fluid particles are large.

6.1.1 The Energy–Momentum Tensor

To obtain the equations governing a fluid in the special relativistic regime, it is, first of
all, necessary to introduce the energy–momentum tensor (also called stress–energy or
stress–energy–momentum tensor), T ik (in contravariant form) for the fluid.1 The rel-
ativistic T ik tensor generalizes the Newtonian stress tensor and describes the density
and flux of energy and momentum in the 4D space–time.

1 Here, we adopt the notation of The classical theory of fields by Landau and Lifshits [2], that is,
Latin suffices like i and k assume the values 0, 1, 2, 3 referring to the whole space–time, while
Greek suffices (e.g. α and β) refer to the space indexes 1, 2, 3. Special relativity corresponds to a
diagonal metric tensor, gik , such that g00 = 1, g11 = g22 = g33 = −1 (Galilean metric).
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The energy–momentum tensor is of order 2, so it can be represented as a 4 × 4
matrix

T ik =

⎛
⎜⎜⎜⎜⎜⎜⎝

T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6.1)

The energy–momentum tensor of a perfect fluid in the proper (rest) frame is
written as

T ik =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6.2)

where ε = ρe is the internal energy per unit volume (including the rest mass energy)
and p is the pressure.

Starting from the above expression Eq.6.2 of the T ik tensor in the rest frame, its
expression in a generic frame of reference is

T ik = wuiuk − pgik, (6.3)

where ui is the fluid 4-velocity,2 w = ρw is the enthalpy per unit volume and gik is
the contravariant metric tensor. Given the expression of the 4-velocity in terms of
the usual 3-velocity, the T ik tensor has time components

T 00 = w

1 − v2/c2
− p = ε + pv2/c2

1 − v2/c2
, T 0α = wvα

c(1 − v2/c2)
, (6.4)

and space components

T αβ = wvαvβ

c2(1 − v2/c2)
+ δαβ p. (6.5)

After passing T ik to covariant form (i.e. ‘lowering’ indexes), it is easy to see
that in the limit of both small fluid velocity (v � c) and small microscopic motion
of the fluid particles, the usual (non-relativistic) expression of the Reynolds tensor
Tαβ = ρvαvβ + δαβ p is recovered.

2 Given the 4 space time coordinates xi as functions of the proper time τ , the 4-velocity is the 4D
vector ui = dxi/dτ .
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On the other hand, when passing to the non-relativistic regime, one must bear in
mind that the relativistic internal energy includes the rest energy per unit volume
ρc2, so that the limiting value of T 00 is ρc2 + 1

2ρv
2 + ε.

6.1.2 Relativistic Equations of Fluid Motion

The equations of fluid motion are compactly expressed by the mass, energy and
momentum conservation laws

{
∇k J k = 0,

∇kT ik = 0,
(6.6)

where∇k stands for the formal vector representing covariant derivative, i.e. a deriva-
tive along tangent vectors of amanifold, and J k = ρuk is the restmass baryon density
current.

In the perfect fluid case, the above equations are written as

{
∇k J k = ρ∇kuk + uk∇kρ = 0,

∇kT ik = ∇k
[
(ε + p)ukui + gki p

] = 0.
(6.7)

Equation6.7 are 5 PDEs of hyperbolic type in the 6 unknown quantities that
are the 3 components of the 4-velocity (the time component one is determined by
the normalization condition ‖u‖2 = c2), the rest mass density, the pressure and the
internal energy density. Of course to close the system another constraint is needed,
provided by an equation of state in the form p = p(ρ, ε).

Assuming small values of macroscopic and microscopic velocities, as well as a
pressure small with respect to volumetric energy density (the latter assumed domi-
nated by the rest mass energy density), Eq. 6.7 lead to the classical continuity and
Euler’s equations. In a way partly similar to that followed in Chap.2, it is possible
also in the relativistic case to modify the momentum–energy tensor to account for
dissipative processes (viscosity, thermal conduction, etc.), writing (in contravariant
form)

T
ik = T ik − τ ik, (6.8)

where τ ik accounts for the non-ideal (dissipative) fluid contribution and

J̄ k = J k + J k
ni (6.9)

is the modification of the rest mass density current to account for non-ideal (ni)
fluid structure. There are several ways to obtain explicit forms for both τ ik and J k

ni ,
procedures that are out of the scope of this introductory book, and for which we point
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the attention of the reader to the suggested further readings. Formally, the motion
equations keep the conservation form

{
∇k J̄ k = 0,

∇kT
ik = 0.

(6.10)

6.2 Superfluids

When temperature is reduced drastically, most of the liquids solidify. There is the
notable exception of helium-4 (4He) which can keep its liquid characteristics even at
so low temperatures that quantum effects appear. In such situations, the helium fluid
behaves in a peculiar way, which is called superfluidity. Superfluidity is an extreme
state of matter in which viscosity is totally absent as well as entropy and thermal
capacity are infinite, which means that a superfluid moves without any dissipation
of kinetic energy and it is impossible to increase its temperature.

Superfluidity was discovered as a characteristic of 4He at cryogenic temperatures
in 1937 by P. Kapitsa (1978 Nobel prize for his studies on the behavior of matter at
very low temperatures) and, independently, by J. F.Allen andD.Misener. They noted
that below a certain threshold of temperature (T � 2.172 K in standard conditions),
liquid 4He undergoes a particular phase transition which leaves 4He in its liquid
state but at vanishing viscosity.

Another Nobel prize was awarded in 1996 to D. M. Lee, D. D. Osheroff and
R. C. Richardson for the discovery of superfluidity in the helium-3 isotope (3He)
at much lower temperature (T � 0.002 K) than for 4He

A theoretical interpretation of superfluidity was attempted, first, by F. London in
1938 basing on considerations about Bose–Einstein condensates (BEC). But neither
all superfluids are Bose–Einstein condensates nor all Bose–Einstein condensates
are superfluids, so a better theory of superfluidity should not base on BEC. Such a
theory was developed by L. D. Landau which earned him a Nobel prize in Physics
in 1962.

Another fundamental aspect of superfluids is that quantum effects are present.
When quantum effects are considered, the superfluid continuity and momentum
conservation equations are written as

∂n

∂t
+ ∇ · nv = 0

∂v
∂t

+ (v · ∇) v = ∇U + ∇μc

(6.11)

where n is the number density and μc is the chemical potential which is in this case
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μc(n) = gn − �
2

2m2

∇2√n√
n

, (6.12)

where � = h/(2π) is the reduced Planck constant and

g = 4π�
2as

m
(6.13)

is a coupling constant (m is the mass of the boson and as the s-wave scattering length
of two interacting bosons).

6.3 Further Readings

I suggest [2, 18] for deeper insight into relativistic fluid dynamics. Reference [19]
provides an insight into the topic of superfluidity.



Appendix A
Basic Vector Analysis and Calculus

On the physical side, a prerequirement to understand properly this book is the knowl-
edge of classical mechanics and thermodynamics, at the level of undergraduate
classes. On the mathematical side, in this book we use some concepts of differ-
ential and integral calculus as well as vector analysis and fundamentals of analytic
geometry. For the sake of a better comprehension of the text, in this Appendix we
make a short summary of vector analysis and calculus in the formalism adopted
throughout the book.

We consider real vector spaces in n dimensions., i.e. subsets ofRn whose elements
are n real numbers which are usually considered as the n coordinates of a vector in
an assumed coordinate system. In this book, a generic vector in Rn is represented as
a boldfaced letter

v =
n∑

i=1

viei ≡ viei , (A.1)

where ei , i = 1, . . . , n, are the unitary vectors (versors) of the basis over which
vi , i = 1, . . . , n, are the components of the vector v. The rightmost expression in the
above relationEq.A.1 represents the Einstein summation convention1 which assumes
implicit summation over the values referring to a repeated index in a formula (i in
this case).

In this book,wewill generally refer to fluidsmoving in time in a three-dimensional
(3D) space, so that the position of the generic fluid particle is identified by its 3D
position vector r (called also radius vector). In the commonly adopted Cartesian
reference frame, whose basis vectors are identified by i, j,k, it is

1 This convention, also known as Einstein notation, was introduced by A. Einstein in his 1916 paper
“The Foundation of the General Theory of Relativity”.
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r = x i + yj + zk, (A.2)

where x, y, z are the Cartesian coordinates of the point.
Assuming the fluid particle is moving in a collective flow, its radius vector varies

with time t , so that r(t) represents the first example of 3D vector field function of
the variable t .

Being (i, j,k) an orthonormal basis, it results in

‖i‖ = ‖j‖ = ‖k‖ = 1, (A.3)

where the symbol ‖v‖ represents the norm of a vector v, which we shortly indicate
by v and that is the ‘length’ of the vector. Throughout this book, we adopt as a norm
of an n-dimensional vector its Euclidean norm

‖v‖ ≡ v =
√√√√

n∑

i=1

v2i = √
vi vi . (A.4)

The scalar (or dot) product between two vectors is defined as

v · w = viwi = w · v, (A.5)

where we employed Einstein’s convention, so that it clearly results in

‖v‖ = √
v · v. (A.6)

When using Cartesian coordinates, the definition Eq. A.5 above is equivalent to
v · w = vw cos v̂w, where 0 ≤ v̂w ≤ π is the angle between v and w.

An important application of the scalar product is to find the component of a vector
along a given direction, represented by a unit vector in that direction. For example,
the component of v along the direction of w is

v · ew = v cos v̂w, (A.7)

where ew = w/w is the unit vector in the direction of w.
From what we said above, clearly two orthogonal vectors give null scalar product

(cos v̂w = 0 in this case), so the orthogonality condition for the Cartesian basis
corresponds to

i · j = i · k = j · k = 0. (A.8)

Another product between vectors is the vector product (sometimes called cross
product). While the result of a scalar product is a scalar, the result of a vector product
is a vector of the same dimension as the two vector factors. In this book, the vector
product is represented with the symbol∧ instead of the often-used× symbol to avoid
ambiguity with some notations where × is used instead for the scalar product.
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Contrary to the scalar product, which is defined for arbitrary n dimension vectors,
the vector product is defined in 3D space only. Its definition is

v ∧ w = vw sin v̂wevw = −w ∧ v, (A.9)

where evw is a unit vector perpendicular to the plane identified by v andw and oriented
such that the set (v,w, evw) identifies a frame of reference where the superposition
of v overw upon rotation according to the smaller of the 2 angles formed by v andw
corresponds to a counterclockwise rotation around evw. This definition corresponds
to the often referred to as right-hand rule. Note that the norm of the vector product
geometrically represents the area of the parallelogram with sides v and w.

In a Cartesian 3D reference systemwith basis (i, j,k), the vector product between
v = vx i + vyj + vzk andw = wx i + wyj + wzk can bewritten as the following deter-
minant:

v ∧ w =

∣∣∣∣∣∣∣∣

i j k

vx vy vz

wx wy wz

∣∣∣∣∣∣∣∣
= (vywz − vzwy)i − (vxwz − vzwx )j + (vywy − vywx )k.

(A.10)
Note that

i ∧ j = k, i ∧ k = −j, j ∧ k = i, (A.11)

and
i ∧ i = j ∧ j = k ∧ k = 0. (A.12)

While the scalar product between two vectors gives the components of one vector
along the other (parallel projection), the vector product gives the orthogonal compo-
nents (orthogonal projection). This reflects the condition of parallelism as v ∧ w = 0,
counterpart of the condition of orthogonality v · w = 0.

A.1 The Formal Vector Operator ∇

In this book, we have made extensive use of the operator nabla, ∇, which is defined
as a (formal) differential vector. In n dimensions and Cartesian coordinates, it is
written as

∇ ≡ ei
∂

∂xi
, (A.13)

(Einstein convention is used) that in 3D specifies to

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (A.14)
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This formal vector ∇ can be operated as a real vector so that by adopting the
available operations of products with a scalar function f (x1, . . . , xn), we have

∇ f = ei
∂ f

∂xi
= grad f, (A.15)

which is the usual gradient of the function f, while making the scalar product with
a vector v

∇ · v = ∂vi
∂xi

= div v, (A.16)

which is the usual divergence of the nD vector field v. Finally, the vector product of
∇ with v leads to (here we are in 3D)

∇ ∧ v =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

vx vy vz

∣∣∣∣∣∣∣∣∣

= curl v, (A.17)

which is the usual curl of the vector field v.
The operator ∇ acts also on vector fields. The gradient of a vector, ∇v, is defined

as the matrix whose rows are the spatial derivatives of the vector components. In
Cartesian 3D coordinates,

∇v =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

⎞

⎟⎟⎟⎟⎟⎟⎠
. (A.18)

In general, given a vector field v : Rm → R
n , its gradient is an n × n matrix with

elements

(∇v)i j = ∂vi
∂x j

, (i = 1, . . . , n; j = 1, . . . ,m). (A.19)

Note that the matrix representing the gradient of a vector field is the Jacobian
matrix of the (x, y, z) → (vx , vy, vz) transformation, which we have introduced in
Sect. 2.1.1.

As a consequence of the above definition, theLaplacian of a vector (which appears,
for instance, in the rhs of the Navier–Stokes equation), ∇2v = ∇ · ∇v = (∇ · ∇)v,
is the vector whose components are the Laplacians of the components of v. In
Cartesian 3D,

∇2v = ∇2vx i + ∇2vyj + ∇2vzk. (A.20)
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A.2 Coordinate Systems

In 3D, it is usual to adopt Cartesian, spherical polar and cylindrical coordinates. In
fluid dynamics, like in other fields of Physics, the choice of one or another system
of coordinates is a matter of convenience, which commonly depends upon possible
symmetries, for instance radial or axial symmetry, in the system under study.

We give here the laws of transformation between these three coordinate systems.
The transformation from spherical polar (r, θ, ϕ) to Cartesian coordinates (x, y, z)

is2

⎧
⎨

⎩

x = r sin ϕ cos θ,

y = r sin ϕ sin θ,

z = r cosϕ,

with r ≥ 0, 0 ≤ ϕ ≤ π and 0 ≤ θ < 2π, (A.21)

which has the inverse transformation

r =
√
x2 + y2 + z2, θ = 2 arctan

y√
x2 + y2 + x

, ϕ = arccos
z√

x2 + y2 + z2
.

(A.22)
A vector in a spherical polar frame is written as

v = vrer + vθ eθ + vϕ eϕ, (A.23)

where vr = v · er , vθ = v · eθ , vϕ = v · eϕ are the components of v on the spherical
polar basis, whose unit vectors are

⎧
⎪⎨

⎪⎩

er = r
r

= sin ϕ cos θ i + sin ϕ sin θ j + cosϕ k,

eθ = − sin θ i + cos θ j,
eϕ = cos θ cosϕ i + cosϕ sin θ j − sin ϕ k.

(A.24)

The transformation between Cartesian and cylindrical coordinates (R, θ, z) is
expressed by ⎧

⎨

⎩

x = R cos θ,

y = R sin θ,

z = z.
with 0 ≤ θ < 2π, (A.25)

which has the inverse transformation

R =
√
x2 + y2, θ = arctan

y

x
, z = z. (A.26)

The basis unit vectors are

2 Note that in this book we use symbol θ for the angle in the equatorial, x − y, plane and ϕ for the
colatitude, i.e. the angle between r and the positive z-axis, differently from other textbooks (see
Fig. A.1).
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Fig. A.1 Sketch of
Cartesian (x, y, z), spherical
polar (r, θ, ϕ) and cylindrical
(R, θ, z) coordinates of a
point with position vector r

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eR = cos θ i + sin θ j,

eθ = ∂r
∂θ

1
ds

dθ

= − sin θ i + cos θ j,

ez = k.

(A.27)

In such a basis, a generic vector v is written as

v = vR eR + vθ eθ + vz ez, (A.28)

where vR = v · eR, vθ = v · eθ , vz = v · ez are the components of v on the cylindrical
coordinate basis.

A.2.1 Gradient, Divergence, Laplacian and Curl in Different
Coordinate Systems

Taking into account the above-described coordinate transformations, the formal
vector ∇ is written as

∇ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, Cartesian coordinates,

er
∂

∂r
+ eθ

1

r sin ϕ

∂

∂θ
+ eϕ

1

r

∂

∂ϕ
, spherical polar coordinates,

eR
∂

∂R
+ eθ

1

R

∂

∂θ
+ ez

∂

∂z
, cylindrical coordinates.

(A.29)
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From the above relations, it results after some simple calculations that the diver-
gence of a vector field F is written as

∇ · F =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
, Cartesian,

1

r2
∂

∂r

(
r2Fr

) + 1

r sin ϕ

∂Fθ

∂θ
+ 1

r sin ϕ

∂

∂ϕ

(
sin ϕ Fϕ

)
spherical polar,

1

R

∂

∂R
(RFR) + 1

R

∂Fθ

∂θ
+ +∂Fz

∂z
, cylindrical.

(A.30)
Assuming F = ∇ f , a substitution in relations Eqs. A.29 and A.30 gives the

Laplacian, ∇2 f = ∇ · F, of the scalar function f

∇2 f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
, Cartesian,

1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin2 ϕ

∂2 f

∂θ2
+

+ 1

r2 sin ϕ

∂

∂ϕ

(
sin ϕ

∂ f

∂ϕ

)
, spherical polar,

1

R

∂

∂R

(
R

∂ f

∂R

)
+ 1

R2

∂2 f

∂θ2
+ ∂2 f

∂z2
, cylindrical.

(A.31)

The curl of v is calculated as curlv = ∇ ∧ v, to obtain

curlv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂vz
∂y

− ∂vy
∂z

)
i +

(
∂vx
∂z

− ∂vz
∂x

)
j +

(
∂vy
∂x

− ∂vx
∂y

)
k, Cartesian,

1

r sin ϕ

(
∂

∂ϕ
(vθ sin ϕ) − ∂vϕ

∂θ

)
er+

+1

r

(
∂

∂r
(rvϕ) − ∂vr

∂ϕ

)
eθ + 1

r

(
1

sin ϕ

∂vr
∂θ

− ∂

∂r
(rvθ )

)
eϕ, spherical polar,

(
1

R

∂vz
∂θ

− ∂vθ

∂z

)
eR +

(
∂vR
∂z

− ∂vz
∂R

)
eθ + 1

R

(
∂Rvθ

∂R
− ∂vR

∂θ

)
ez, cylindrical.

(A.32)

Accounting for Eq.A.30, the Lagrangian derivative of the components of a generic
vector F = Fkek in the three coordinate systems is written as

DFi
Dt

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Fi
∂t

+ vx
∂Fi
∂x

+ vy
∂Fi
∂y

+ vz
∂Fi
∂z

, Cartesian,

∂Fi
∂t

+ vr
∂Fi
∂r

+ vθ

r sin ϕ

∂Fi
∂θ

+ vϕ

r

∂Fi
∂ϕ

, spherical polar,

∂Fi
∂t

+ vR
∂Fi
∂R

+ vθ

R

∂Fi
∂θ

+ vz
∂Fi
∂z

, cylindrical.

(A.33)
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In the Lagrangian derivative of a vector, it appears the convection operator v · ∇
(see Eq. 1.13) that is written as

v · ∇ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
, Cartesian,

vr
∂

∂r
+ vθ

r sin ϕ

∂

∂θ
+ vr

r

∂

∂ϕ
, spherical polar,

vR
∂

∂R
+ vθ

R

∂

∂θ
+ vz

∂

∂z
, cylindrical.

(A.34)

Applying the above operator to v, in Cartesian coordinates the result is simply3

(v · ∇)v =vx
∂v
∂x

+ vy
∂v
∂y

+ vz
∂v
∂z

=
(
vx

∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
i+

+
(
vx

∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
j +

(
vx

∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

)
k.

(A.35)
In spherical polar and cylindrical coordinates, considering the expressions Eqs.

A.23 and A.28 for the velocity and Eqs. A.24 and A.27 for the basis vectors (whose
derivatives have to be made), the result (after some calculation) is in spherical polar
coordinates:

(v · ∇)v =
(
vr

∂vr
∂r

+ vθ

r sin ϕ

∂vr
∂θ

+ vϕ

r

∂vr
∂ϕ

− v2θ + v2ϕ
r

)
er+

+
(
vr

∂vθ

∂r
+ vθ

r sin ϕ

∂vθ

∂θ
+ vϕ

r

∂vθ

∂ϕ
+ vr vθ

r
+ vθvϕ

r
cot ϕ

)
eθ+

+
(
vr

∂vϕ

∂r
+ vθ

r sin ϕ

∂vϕ

∂θ
+ vϕ

r

∂vϕ

∂ϕ
+ vr vϕ

r
− v2θ

r
cot ϕ

)
eϕ,

(A.36)
and in cylindrical coordinates:

(v · ∇)v =
(
vR

∂vR
∂R

+ vθ

R

∂vR
∂θ

+ vz
∂vR
∂z

− v2θ
R

)
eR+

+
(
vR

∂vθ

∂R
+ vθ

R

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vRvθ

R

)
eθ+

+
(
vR

∂vz
∂R

+ vθ

R

∂vz
∂θ

+ vz
∂vz
∂z

)
ez .

(A.37)

3 We use here the convention

∂v
∂x

= i
∂vx
∂x

+ j
∂vy
∂x

+ k
∂vz
∂x

,

and similarly for derivatives with respect to y and z.
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A.2.2 Continuity and Motion Equation in Spherical Polar
and Cylindrical Coordinates

Thanks to the relations above and to the proper expression of velocity in spherical
polar and cylindrical coordinates, it is easy to obtain the expression of both continuity
and Euler’s equations in these coordinate systems.

Spherical Polar Coordinates
In spherical polars (r, θ, ϕ), the equation of continuity Eq. 2.8 is written as

∂ρ

∂t
+ 1

r2
∂(r2ρvr )

∂r
+ 1

r sin ϕ

∂(ρvθ )

∂θ
+ 1

r sin ϕ

∂(sin ϕρvϕ)

∂ϕ
= 0, (A.38)

and Euler’s equation 2.29 is written as the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dvr
Dt

− v2θ + v2ϕ
r

= − 1

ρ

∂p

∂r
+ 1

ρ
FBr ,

Dvθ

Dt
+ vθvr

r
+ vϕvθ cot ϕ

r
= − 1

ρ

1

r sin ϕ

∂p

∂θ
+ 1

ρ
FBθ ,

Dvϕ

Dt
+ vϕvr

r
− v2θ cot ϕ

r
= − 1

ρ

∂p

∂ϕ
+ 1

ρ
FBϕ.

(A.39)

Cylindrical coordinates
In cylindrical coordinates (R, θ, z), the equation of continuity Eq. 2.8 is written as

∂ρ

∂t
+ 1

R

∂(RρvR)

∂R
+ 1

R

∂(ρvθ )

∂θ
+ ∂(ρvz)

∂z
= 0, (A.40)

and Euler’s equation 2.29 is written as the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DvR
Dt

− v2θ
R

= − 1

ρ

∂p

∂R
+ 1

ρ
FBR,

Dvθ

Dt
+ vθvR

R
= − 1

ρ

1

R

∂p

∂θ
+ 1

ρ
FBθ ,

Dvz
Dt

= − 1

ρ

∂p

∂z
+ 1

ρ
FBz .

(A.41)

Note that by eliminating in Eqs. A.39 and A.41 the Lagrangian derivatives with
respect to t by means of Eq. A.33 leads to Eulerian expressions of Euler’s equation.

As shown in Chap. 2, the N-S equation in the incompressible case is simply
obtained by adding the term (η/ρ)∇2v in the rhs of the Euler’s equation. Taking into
account that ∇2 = ∇ · ∇, the N-S equation for incompressible fluids is obtained in
spherical polar and cylindrical coordinates by simply adding in the rhs of Eqs. A.39
and A.41 the following N-S terms:
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Spherical Polar Coordinates

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

ρ
FNSr = η

ρ

(
∇2vr − 2

vr
r2

− 2

r2
∂vϕ

∂ϕ
− 2

vϕ cot ϕ

r2
− 2

r2 sin ϕ

∂vθ

∂θ

)
,

1

ρ
FNSθ = η

ρ

(
∇2vθ + 2

r2 sin ϕ

∂vr
∂θ

− vθ

r2 sin2 ϕ
+ 2

cot ϕ

r2 sin ϕ

∂vϕ

∂θ

)
,

1

ρ
FNSϕ = η

ρ

(
∇2vϕ + 2

r2
∂vr
∂ϕ

− vϕ

r2 sin2 ϕ
− 2

cot ϕ

r2 sin ϕ

∂vθ

∂θ

)
.

(A.42)

Cylindrical Coordinates

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

ρ
FNSR = η

ρ

(
∇2vR − vR

R2
− 2

R2

∂vθ

∂θ

)
,

1

ρ
FNSθ = η

ρ

(
∇2vθ − vθ

R2
+ 2

R2

∂vR
∂θ

)
,

1

ρ
FNSz = η

ρ
∇2vz .

(A.43)

A.3 Some Useful Vector Formulas

A.3.1 Identities of Vector Algebra

For given sufficiently regular vector fields A,B,C in R3, these relations hold 4

A · B = B · A,

A ∧ B = −B ∧ A,

A · (B ∧ C) = B · (C ∧ A) = C · (A ∧ B) = det(ABC),

A ∧ (B ∧ C) = (A · C)B − (A · B)C,

(A ∧ B) ∧ (C ∧ D) = det(ABD)C − det(ABC)D = det(ACD)B − det(BCD)A,

A ∧ (B ∧ C) + C ∧ (A ∧ B) + B ∧ (C ∧ A) = 0,

(A ∧ B) · (C ∧ D) = (A · C)(B · D) − (B · C)(A · D),

‖A ∧ B‖2 = (A · A)(B · B) − (A · B)2.

(A.44)

4 det(ABC) is the determinant of the 3 × 3matrixwhose 1st, 2nd and 3rd columns are (Ax , Ay, Az),
(Bx , By, Bz) and (Cx ,Cy,Cz), respectively.
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A.3.2 Identities Involving ∇

Given the scalar fields f and g and the vector fields v andw, the following identities
hold:

∇( f + g) = ∇ f + ∇g,

∇( f g) = f ∇g + g∇ f,

∇
(

f

g

)
= g∇ f − f ∇g

g2
,

∇2( f g) = f ∇2g + 2∇ f · ∇g + g∇2 f,

∇2

(
f

g

)
=

g∇2 f − 2g∇
(

f

g

)
− f ∇2g

g2
,

∇ ∧ ∇ f = 0,

∇(v + w) = ∇v + ∇w,

∇(v · w) = (v · ∇)w + (w · ∇)v + v ∧ (∇ ∧ w) + w ∧ (∇ ∧ v),

∇ · (v + w) = ∇ · v + ∇ · w,

∇ · f v = f ∇ · v + v · ∇ f,

∇ · (v∇v) = v · ∇2v + ∇v · ∇v,

∇ ∧ (v + w) = ∇ ∧ v + ∇ ∧ w,

∇ ∧ f v = f ∇ ∧ v − v ∧ ∇ f,

∇ ∧ (v ∧ w) = (w · ∇)v − (v · ∇)w + v∇ · w − w∇ · v
∇ ∧ (∇ ∧ v) = ∇∇ · v − ∇2v,

∇ 1

2
v2 = v ∧ (∇ ∧ v) + (v · ∇)v.

(A.45)

Let us demonstrate the last one in the above sequence due to its importance in
giving an alternative way of writing the Euler’s equation (see Sect. 2.2.1.1). It comes
from the identity

∇(v · w) = (v · ∇)w + (w · ∇)v + v ∧ (∇ ∧ w) + w ∧ (∇ ∧ v), (A.46)

where v and w are continuously differentiable vector fields, in which we will spe-
cialize w = v. The above identity is verified as follows.

First, we write the lhs as
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∇(v · w) = i
∂

∂x
(v · w) + j

∂

∂y
(v · w) + k

∂

∂z
(v · w) =

= i
(
v · ∂w

∂x
+ w · ∂v

∂x

)
+ j

(
v · ∂w

∂y
+ w · ∂v

∂y

)
+ k

(
v · ∂w

∂z
+ w · ∂v

∂z

)
.

(A.47)
Given the second identity in the set Eq. A.36 in which we put A = v, B = i and

C = ∂w
∂x

, we obtain

(
v · ∂w

∂x

)
i = v ∧

(
i ∧ ∂w

∂x

)
+ (v · i) ∂w

∂x
. (A.48)

Analogously, letting once B = j and C = ∂w
∂y

, and once B = k and C = ∂w
∂z

, we

obtain, respectively,

(
v · ∂w

∂y

)
j = v ∧

(
j ∧ ∂w

∂y

)
+ (v · j) ∂w

∂y
, (A.49)

and (
v · ∂w

∂z

)
k = v ∧

(
k ∧ ∂w

∂z

)
+ (v · k)

∂w
∂z

. (A.50)

Adding side by side Eqs. A.48, A.49 and A.50 and considering that v · i = vx ,
v · j = vy and v · k = vz , we get

(
v · ∂w

∂x

)
i +

(
v · ∂w

∂y

)
j +

(
v · ∂w

∂z

)
k =

= v ∧
(
i ∧ ∂w

∂x
+ j ∧ ∂w

∂y
+ k ∧ ∂w

∂z

)
+ vx

∂w
∂x

+ vy
∂w
∂y

+ vz
∂w
∂z

,

(A.51)

which can be written in the more compact form as

(
v · ∂w

∂x

)
i +

(
v · ∂w

∂y

)
j +

(
v · ∂w

∂z

)
k = v ∧ (∇ ∧ w) + (v · ∇)w. (A.52)

Similarly, interchanging v and w,

(
w · ∂v

∂x

)
i +

(
w · ∂v

∂y

)
j +

(
w · ∂v

∂z

)
k = w ∧ (∇ ∧ v) + (w · ∇) v. (A.53)

Finally, substituting via Eqs. A.52 and A.53 in the rightmost side of Eq. A.47, we
obtain

∇ (v · w) = (v · ∇)w + (w · ∇) v + v ∧ (∇ ∧ w) + w ∧ (∇ ∧ v) , (A.54)
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which is exactly Eq. A.46 that, letting w = v, gives the sought last relation in the set
Eq. A.45.

Some other useful vector analysis results:

• the divergence of the gradient of a scalar function f is the Laplacian of f :
∇ · ∇ f = ∇2 f = � f ;

• the divergence of the curl is zero for every continuously differentiable vector field:
∇ · ∇ ∧ v = 0;

• the curl of gradient of every scalar function continuously twice-differentiable is
zero: ∇ ∧ ∇ f = 0;

• the curl of every vector function continuously twice-differentiable is (see Eq.A.45)
∇ ∧ (∇ ∧ v) = ∇∇ · v − ∇2v.

A.4 Basic Concepts and Theorems of Vector Calculus

Theorem A.1, divergence theorem (also known as Gauss’s or Ostrogradsky’s the-
orem), Theorem A.2, gradient theorem, and Theorem A.3, Stokes theorem, are all
relevant to fluid dynamics and in this book we have used them. Another relevant
theorem is Green’s theorem, which is actually a corollary of the divergence theorem
in 2D.

They are stated as follows:

Theorem A.1 (Divergence theorem) Let’s give C as a subset of R
3 which is com-

pact and delimited by a piecewise smooth boundary S ≡ ∂C. If A is a continuously
differentiable vector field in a set N ⊃ C, then

∫

C

∇ · AdV =
∫

S

A · n dσ, (A.55)

where n is the outward unit vector in each point of S.

Because every scalar field can be written as a divergence of a vector field, a
consequence of Theorem A.1 is the statement in the next corollary.

Corollary A.1 Givena continuously differentiable scalar fieldφ defined in a domain
containing C, it results in ∫

S

φn dσ =
∫

C

∇φ dV . (A.56)

Proof Put A = φa, where a is an arbitrary constant non-zero vector. By the thesis
of the divergence theorem and in virtue of the tenth relation in the set Eq. A.45,
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∫

S

φa · n dσ =
∫

C

∇ · φa dV =
∫

C

(φ∇ · a + a · ∇φ) dV . (A.57)

In the rightmost side of the above equation, ∇ · a = 0 because a is a constant
vector; consequently the equality in Eq. A.57 reduces to

a ·
⎛

⎝
∫

S

φndσ −
∫

S

∇φdV

⎞

⎠ = 0. (A.58)

Given the arbitrarity of a, the above equation implies what we wanted to prove,
i.e. Eq. A.56. ��
Theorem A.2 (Gradient theorem) If F is a differentiable vector field defined in a
set C such that F = ∇�, where � is a continuously differentiable scalar function
defined in C (i.e. F is conservative), then, given any regular curve γ connecting two
generic points r1 = (x1, y1, z1) and r1 = (x2, , y2, z2) belonging to C and oriented
from r1 to r2, it results in

∫

γ

F · dr =
∫

γ

∇� · dr = �(x2, , y2, z2) − �(x1, y1, z1). (A.59)

Theorem A.3 (Stokes’ theorem) Let us consider a simple, closed curve γ in R
3 and

a generic smooth oriented surface, S, having γ as boundary. If A is a continuously
differentiable vector field in a region containing S, then

∫

S

∇ ∧ F · n dσ =
∫

γ

F · dr. (A.60)

The link between Stokes’ and the gradient theorem is evident.

A.5 Tensors

As we said, a vector in an n-dimensional space is represented as a 1D array (column
or line array) composed by n elements with respect to a given basis.

Tensors are a generalization of vectors from 1D to multi-dimensional arrays. The
total number of indices of a tensor is the order of the tensor (called also rank or
degree). For example, a second order tensor can be denoted, in component form, by
a pair of indices, like we did for the Reynolds tensor 
i j , with i and j both running
from 1 to n. We can think of a second order tensor as a n × n matrix Ai j where i
identifies the line and j the column. Examples of order two tensors met in this book
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are, other than the Reynolds tensor, the viscosity tensor σi j , the stress tensor τi j and
the rate of strain tensor γ̇i j .

Tensors can be represented with indices in different positions, like T i j or T j
i ,

according to different laws of transformation upon change of basis. When the index
is low we talk of covariant tensor and of contravariant when index is up. In this
book, we have met covariant and contravariant tensors only in the short chapter 6,
when dealing with relativistic fluid dynamics. It is so not worth deepening here these
concepts, while it is instead important mentioning that in many books a vectorial
notation is used for tensors instead of the component one, in similarity with what
is done for vectors (1D tensors). This means that the Reynolds tensor, for instance,
can be represented both as 
i j and �.

Note that if the divergence of a vector (1D tensor) is a scalar, the divergence of a
2D tensor is a vector (in general, the results of the divergence operation reduces the
tensor order by one):

∇ · � = ∂
ik

∂xk
, (A.61)

where, as usual, Einstein’s summation convention is adopted.

A.6 Further Readings

There are plenty of textbooks on vector analysis, and calculus. I limit to cite a book
of myself, [11], which is quite specific to the content of this introductory book on
fluid dynamics. Deeper insight on the topics is given in the classic [20] book.
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Hagen–Poiseuille flow, 34
Heat

capacity, 43
conduction, 38
exchange, 23, 44
specific, 43
transfer, 57

Heating
processes, 39

radiative, 39
Helium

isotope, 112
liquid, 112
superfluid properties of, 112

Hypersonic flow, 82, 94

I
Ideal flow, 23
Incompressible flow

of non-ideal fluids, 33
Instability

baroclinic, 34
gravitational, 68–72
turbulent, 49

Irrotational flow, 26
Isentropic flow, 38

for a blast wave, 100

J
Jeans

historical note, 76
instability, 72, 77
swindle, 71

K
Kapitsa, P., 112

L
Lagrange, J-L.

hystorical note, 15–16
Laminar flow, 3, 34, 44, 45

in a pipe, 44
Landau, L.D., 112
Landau–Squire jet, 34
Lane–Emden equation, 66
Langmuir, I., 6
Lee, D.M., 112
Le Ronde d’Alembert, J.B.

hystorical note, 15–16
London, F., 112

M
Mach

number, 82–89
Maxwell, J.C., 12
Millennium prize, 49
Misener, D., 112
Momentum flux tensor

in an ideal fluid, 28
in an non-ideal fluid, 28–33

N
Navier–Stokes equation, 32–36

in spherical polar and cyllindrical coor-
dinates, 123–124

Newton–Stokes law, 3

O
Oscillations

in an ideal infinite homogeneous fluid, 70
Oscillatory Stokes boundary layer, 34
Osheroff, D.D., 112

P
Phase transition, 3
Pipes
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laminar flow in, 34
viscous flow in, 34

Poisson’s equation, 62
Polytropic

equation of state, 43
Potential flow, 26

R
Rankine–Hugoniot conditions, 83
Rate of shear, 4
Rayleigh, J.W.S.

hystorical note, 76–77
Relativistic fluid dynamics, 109–112
Resistance force, 55
Reynolds tensor, 28, 129

relativistic, 109–110
Reynolds, O., 44
Richardson, R.C., 112
Rotational flow:governed by N-S equation,

33

S
Scalar potential, 36
Sedov, L.I.

hystorical note, 106–107
Sedov–Taylor–von Neumann

point-source model, 98–103
Self-gravitating fluids, 60–68

in equilibrium, 64
out of equilibrium, 66

Shear stress, 1, 3
of Newtonian and non-Newtonian fluids,
3

Shock waves, 82–89
supersonic, 59

Similarity
of non-viscous flows, 98

Sound
absorption, 39
speed, 69, 94
velocity, 82

Speed of, 74
Stagnation point flow, 34
Stokes flow, 38, 48
Stokes law, 48
Stokes theorem, 127

Superfluids, 1, 112
Supersonic flow, 82
Suspension

of particles in a fluid, 5
Symbols, list of, xi

T
Taylor, G.I.

hystorical note, 106–107
Taylor–Green vortex, 34
Turbulence, 44–48
Two-dimensional flow, 37

V
Vector potential, 36, 37
Velocity

field, 11, 12, 20, 29, 36, 44, 64
potential, 26

Velocity potential, 37
Viscometer, 48
Viscosity, 3

artificial, 73
as particle-by-particle interaction, 73
bulk, 30
dynamic, 30
in astrophysical context, 60, 73
in superfluids, 112
kinematic, 30
shear, 30

Von Kármán swirling flow, 34
Von Neumann, J.

hystorical note, 106–107
Vorticity equation, 33

W
Wave

component, 70
equation, 69
propagation, 69
vector, 70

Whitehead, A.N.
Hystorical note, 76–77

Whittaker, E.T.
Hystorical note, 76–77
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