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Preface

It has been over 50 years since the classic monographs of Eddy Currents by Jiří
Lammeraner and Milos̆ S̆tafl and The Analysis of Eddy Currents by R. L. Stoll.
Since that time there have been great advances both in eddy current computation
and eddy current applications. Modern numerical methods are now common-
place in the analysis of eddy currents. We can now solve three-dimensional eddy
current problems with complicated boundaries, non-linear, and anisotropic mate-
rials. Further, the continued importance of high efficiency electrical devices has
made the study of eddy currents and the need for accuracy in loss evaluation more
important.

While these former works are excellent in their treatment of many important
eddy current problems and are well referenced in this book, they are written for
an audience that is already well-versed with electromagnetic phenomena and
low-frequency applications.

We hope this book will be accessible to people looking for a place to start in the
study and applications of eddy currents. We begin with a very basic introduction
to the principles on which eddy current analysis is based (Faraday’s law, Ampere’s
law, and Kirchhoff’s laws), and refer back to these ideas throughout the book. We
have included a lot of tutorial information as well as dozens of worked out numer-
ical examples. Each problem is followed by a discussion of the results and how the
basic principles of eddy currents can be seen in the solution.

We also hope that this work will be useful as a reference for experienced engi-
neers working in the field. We include many examples of closed form and analyti-
cal solutions as well as numerical methods and approximation methods for many
practical applications. The basic ideas of the numerical modeling are presented
along with examples of their use and methods of interpreting and checking the
results. Numerical methods are used as well in the applications section, in which
we attempt to analyze problems that have both analytical and numerical solutions.

We would like to acknowledge Philippe Wendling for his invaluable help. All
of the authors also want to express their gratitude to family and friends for their
patience, understanding, encouragement, and support during the writing process.

Sheppard J. SalonSchenectady, NY
April 2023
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3

1

Basic Principles of Eddy Currents

1.1 Introduction

The discovery of eddy currents is usually attributed to French physicist Leon
Foucault. In 1855, Foucault measured the force on a rotating conducting disk.
He found that it took a greater force to rotate the disk when the disk was in a
magnetic field produced by an electromagnet. He also noticed that the disk was
heated when spun through a magnetic field. These observations, that eddy cur-
rents can produce force and torque and also heating, are still major applications
of eddy currents. The production of force or torque by eddy currents is key to the
operation of induction motors and induction generators, eddy current brakes,
eddy current magnetic bearings, liquid metal stirring, and electromagnetic metal
forming, to name a few applications. The forces produced by eddy currents may be
a hindrance. In such cases, methods of eddy current mitigation will be necessary.
Eddy current heating also has many applications such as induction heating for
metal treatment and induction cooktops. There are also many applications in
which eddy currents result in unwanted losses, limiting the efficiency of devices
and requiring more thermal management.

We will use a very broad definition of eddy currents in this treatment. We
include all electric currents induced by time-varying magnetic fields and/or
relative motion between conductors and magnetic fields. This also includes the
redistribution of currents due to the self-field of conductors excited with external
sources.

All currents induced by a time-varying magnetic field can be thought of as
eddy currents, but in this book, we are mainly dealing with applications in which
the current density is nonuniform in the conductor. Whether we speak of eddy
currents, skin effect, or proximity effect, we are speaking of the same physical
phenomenon and this is described by the same set of equations.

In this chapter, we will develop the ideas necessary to understand the eddy cur-
rent phenomenon. We will begin with a very basic introduction to Faraday’s law

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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4 1 Basic Principles of Eddy Currents

and Lenz’s law. This will give us a qualitative understanding of some of the impor-
tant concepts of eddy current analysis such as skin effect and proximity effect.
We then discuss the concept of resistance and reactance limited eddy currents
in Section 1.4. We then give a more formal introduction to Faraday’s law, emf,
and potential difference and discuss the different ways voltage can be produced
in a conductor. In eddy current analysis, we will be solving the diffusion equation.
From electromagnetic theory, this means that we are making a quasi-static approx-
imation. The full set of Maxwell’s equations will result in the wave equation for
time-varying phenomena. In Section 1.6, we will justify this approximation and
study its implications.

Eddy currents can sometimes be rather difficult to visualize. There are other
physical phenomena such as particle diffusion and heat transfer, that are described
by the same mathematics, the diffusion equation. We will derive the expressions
for eddy currents formally from Maxwell’s equations in Section 2.2, but making
the analogy to these other areas can help clarify some of the physics. We will first
look at particle diffusion by means of random walks in Section 1.9. This will intro-
duce the diffusion equation and some of its classic solutions. In Section 1.10 we
discuss the electromagnetic diffusion problem in the time domain and the anal-
ogy is made to the particle diffusion results. We then look at the concept of skin
depth or depth of penetration in electromagnetic applications for steady-state sinu-
soidal excitation. This concept is one of the key results of eddy current analysis and
will be derived formally from Maxwell’s equations in Section 2.2. As an example
of skin depth and sinusoidal excitation, we turn to another branch of physics,
heat transfer. Heat conduction and heat storage are described by the same set of
equations as electromagnetic diffusion. We use an example of heat conduction to
illustrate the concepts introduced about skin depth. Another method of under-
standing and computing eddy currents that we will find useful is the use of mag-
netically coupled circuits to model the eddy currents. This idea is introduced in
Section 1.11.

With this introduction, we then present a number of applications and tech-
niques for eddy current analysis as well as several eddy current applications
of interest today. Chapters 2 and 3 present the analysis of several eddy current
applications of practical interest, mainly in closed form, for rectangular con-
ductors and for conductors with circular cross-sections, respectively. In Part II
of the book, we focus on modern numerical techniques to study eddy currents.
First, we introduce the most common mathematical formulations for eddy
currents and the different variables used for these models. We then present the
formulations for finite difference, finite element, and integral equations, with
several examples that refer back to the results found in Chapters 2 and 3. In Part
III of the book, we consider a number of practical applications such as electric
machines, transformers, induction heating, and liquid metal stirring.
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1.2 Faraday’s Law and Lenz’s Law

We will present a more formal introduction of Faraday’s law below in Section 1.5.
In this section, we will introduce Faraday’s law and Lenz’s law in non-mathematics
terms to introduce some of basic ideas of eddy currents. Faraday’s law is one of
Maxwell’s equations. It states that there is a voltage induced in a circuit equal to the
negative time rate-of-change of the flux linking the circuit. We refer to this induced
voltage as the emf (electromotive force). The “negative” sign is referred to as Lenz’s
law but is really part of Faraday’s law. Lenz’s law tells us the voltage induced in
the circuit will be in a direction to circulate current that will produce flux which
will oppose the change in flux linking the circuit. For example, if the flux linkage
is increasing, the voltage will circulate current in a direction to decrease the flux
linkage.

Consider the case illustrated in Figure 1.1. The figure shows a loop with an exter-
nal source of magnetic flux that is varying in time in such a way as to increase the
flux linking the loop. According to Lenz’s law, we expect induced current in the
sense shown in the figure to oppose the increase of flux linkage. Note that it is not
the direction of the flux that is important but the time rate of change of the flux
linking the circuit. With flux in the same direction as shown in the figure, if the
flux were decreasing, the current direction would reverse.

In another example, consider the two coplanar loops in Figure 1.2. One of
the loops contains a dc source. When the switch is closed, a current will flow
counter-clockwise in the powered loop. This will cause flux from the first circuit
to enter the plane of circuit 2 in the direction shown. We expect current in circuit
2 to circulate in the counter-clockwise direction to counter this flux; that is, this
current will oppose the change of flux linkage from the powered circuit.

After some time, the system has reached steady state with dc current in loop 1
and no current in loop 2. If we now open the switch, interrupting the current in
loop 1, current will be induced in loop 2 to maintain the steady-state flux linkage.
Current will be induced in the clockwise direction in this case.

Figure 1.1 Loop with flux linkage increasing
and induced current direction.

E, J

B
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(a)

V
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Loop 1
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(b)

V

i
1

Loop 1

B
i
2

Induced
current

Loop 2

Figure 1.2 Two circuits with mutual coupling. (a) Switch closes. (b) After steady state is
reached, open switch in loop 1.

We can now apply these ideas to the case of induced current in a circular
wire. Referring to Figure 1.3, we have a conductor of circular cross section
with time varying magnetic flux produced by an external source, in the axial
direction.

Let us assume that the source flux density is uniform over the cross section
and is varying sinusoidally with time. By symmetry, in this cylindrical geometry,
we expect the eddy currents to follow circular trajectories and the eddy currents
circulating to oppose the change in source flux. If we divide the conductor into
concentric layers as shown in the figure, we can make the following argument.
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i
1

Loop 1

i
2

Loop 2

Loop N

B =    2B
0 
sin(ωt)√ 

Figure 1.3 Conducting cylinder with axial magnetic flux field applied.

The induced voltage from the source in each circuit will be

emfi = −j𝜔B0Si (1.1)

where B0 is the root-mean-square (RMS) value of the flux density, Si is the
cross-sectional area enclosed by each of the loops, and 𝜔 is the angular frequency
of the source. This tells us that the emf in the outer circuits is greater than the emf
of the inner circuits due to the increased surface area and therefore the increased
flux linking the current path. The current circulating in the outer circuit, loop 1,
now produces a reaction flux which, by Lenz’s law, opposes the change in source
flux. This reduces the total flux in the interior of the cylinder, which is the sum of
the source and reaction flux. Circuit 2, with a smaller emf, will also have current
circulating in a direction to oppose the change in source flux. This will cause a
further reduction in the net flux inside circuit 2. Note that the reaction field from
circuit 2 does not pass through the conductor area of loop one, but only inside
the path of loop 2. This continues for loops 3 to N. As we move inward, therefore,
the source emf is smaller and the effects of the reaction field are greater. The
problem is complicated by the fact that each loop has a resistance and inductance,
and therefore there will be a phase shift in the currents. We will deal with this
issue in Section 1.7. For our purposes here, it is enough to note that we will have
higher current and flux in the outer rings and lower current and flux in the inner
loops. There is a characteristic length called the depth of penetration or skin depth,
which we will treat more formally in Chapter 2, that describes a distance from
the surface in which “most” of the current and flux is contained. We will see that
this characteristic depth depends on the material properties (conductivity and
permeability) and the frequency of excitation.
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1.3 Proximity Effect

In the previous example, we considered the nonuniform current distribution in a
circular conductor due to the self-field of the conductor. The term proximity effect is
often used to describe the situation in which the emf produced by near-by sources
influences the current distribution in the conductor. Referring to Figure 1.4, we
can apply Faraday’s law and Lenz’s law to illustrate this effect. The figure depicts
two parallel conductors with opposing currents, a go-and-return circuit.

Considering the current on the left, in the +z direction, we see that the field pro-
duced by conductor 1 in conductor 2, is increasing in the +y direction assuming
that the current in conductor 1 is increasing. By the application of Lenz’s law, the
emf will tend to circulate current in conductor 2 such that the current on the left
side of conductor 2 is in the −z direction, while the current on the right side is
in the +z direction. This is a circulating current, going down one side of the con-
ductor and returning on the other side. Integrating this circulating current density
over the surface of the conductor will result in zero total current. This circulating
current will subtract from the load current (−z) on the right side and add on the
left side. By applying this argument to conductor 1 and considering the field pro-
duced by conductor 2, we find the currents add on the right side of conductor 1
and subtract on the left side. The conclusion is that the currents crowd to the inside
surfaces when the load currents are in the opposite direction.

If the load currents were in the same direction, we will find the currents crowd
to the outside surfaces. In practice, if we are dealing with ac currents, the addition
and subtraction of the circulating current is not a direct arithmetic addition or
subtraction. Depending on the impedance of the circulating current path, there
will be a phase shift that must be included. Figures 1.5 and 1.6 show the results
of a finite element analysis of the two conductor problem for the case of opposing

x

y

z

Conductor 1 Conductor 2

Load current

Eddy current Eddy current

B

Figure 1.4 Parallel conductors with opposing currents.
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Figure 1.5 Real part of flux density with opposing currents.

Figure 1.6 Current density with
opposing currents.

current direction. Figures 1.7 and 1.8 show the results of a finite element analysis
of the two conductor problem for the case of load currents in the same direction.
We can see that the results conform to our expectations on the nonuniformity of
the current produced by the external fields.

We will discuss the losses in conductors in detail in Chapters 2 and 3, but it is
not too early to start developing an intuition about the interaction of the fields
and current in this simple circular conductor example. Let us ask the question,
can we compute the losses in one conductor ignoring the effects of the other con-
ductor, then in a separate calculation, find the losses in that same conductor only
due to the fields produced by neighboring conductors and simply add the two
results to find the loss in the conductor under consideration. The answer is, gen-
erally speaking, we can not. If the conductors have linear material properties, for
example copper or aluminum, the electromagnetic equations are linear, and we
can indeed solve for the fields separately and add the results to find the net fields.
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10 1 Basic Principles of Eddy Currents

Figure 1.7 Real part of flux density with currents in the same direction.

Figure 1.8 Current density
with currents in the same
direction.

The losses, however, are found from the square of the current density and therefore
we must take care. Let us again consider Figure 1.4. There are losses in conductor 2
produced by current density J22, which we will define as the current density that
would appear in conductor 2 without the influence of any external sources. There
is also current density in conductor 2 produced by the fields due to conductor 1,
which we will call J12. Recall from the discussion above, the current J12 is a circu-
lating current that sums to zero over the conductor. We can compute the total loss
in the conductor, per unit depth, by integrating the loss density over the surface of
the conductor.

P2 = 1
𝜎 ∫S

(
J22 + J12

)2 dS (1.2)
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where 𝜎 is the electrical conductivity of the conductor. Expanding the terms in
parenthesis, we get three terms.

P2 = 1
𝜎 ∫S

(
J2

22 + J2
12 + 2J22J12

)
dS (1.3)

The first term is clearly the loss produced by the current that would have been
generated in the conductor without the influence of external sources. The second
term is the loss produced only by the external fields, without the influence of the
current in conductor 2. Since both of these terms involve the square of the current
density, the values being integrated are never negative. We now consider the third
term

2
𝜎 ∫S

J22J12 dS (1.4)

The question we must answer is whether this integral vanishes. If it does,
then we can simply add the two components. We know that J12 alone integrates
to zero, but this is not sufficient. Let us consider the symmetry of the current.
This is relatively easy with the regular circular geometry. The self term, J22,
will be symmetric around the vertical line bisecting the circular conductor.
In other words, the current density on the right should be the same as the
current density on the left. We call this even symmetry. So the result depends on
whether the current density distribution J12 has odd symmetry. If conductor 1 is
relatively far away compared to the radius of conductor 2, then this requirement
is approximately satisfied, since the field produced by conductor 1 is relatively
uniform over conductor 2. If conductor 1 is quite close to conductor 2, the term
in Equation (1.4) will not vanish and there will be some error if we neglect it.

1.4 Resistance and Reactance Limited Eddy Currents

The concept of resistance limited and reactance limited eddy currents can be
explained by considering the circuit of Figure 1.9.

Let us assume, we are concerned with the losses in the load resistor Rl.
To increase or decrease the losses in the load, should we increase or decrease the
load resistance? The answer to this question is that it depends on whether the
losses are resistance limited or reactance limited. For a fixed system voltage and
system impedance, we can plot the losses in the load as a function of the load
resistance. This is illustrated in Figure 1.10.

If the load resistance were zero, then of course there would be no losses. Also if
the resistance were infinite, again we have no losses. This means that there must be
a maximum at some value of the load resistance. We will find this maximum below,
but first notice that on the left side of the maximum on Figure 1.10 losses, the losses
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Figure 1.10 Losses in load vs. load resistance.

rise with increasing load resistance. For small values of the load resistance (small
compared to the system impedance), the load sees an ideal voltage source in series
with a large impedance. This is approximately a constant current source and the
losses are given by I2Rl. The slope in Figure 1.10 for small values of the resistive
load has a relatively constant slope indicating the losses are proportional to Rl. The
value of the load resistance has little effect on the system current. On the right side
of the peak, the load resistance is greater than the system impedance (|Rl| ≫ |Xs|).
In this case, the voltage across the load is approximately constant and independent
of the load resistance. The power to the load is then approximately Pl ≈ V 2∕Rl. The
trajectory in the region Rl ≫ Xs is 1∕Rl.

To find the maximum power, consider the problem of an ideal sinusoidal voltage
source, Vs, a transmission line that is a pure reactance, jXs, and a variable resistance
load, Rl. The objective is to find the optimum resistance of the load for maximum
power transfer. The current magnitude is given by

I =
Vs√

R2
l + X2

s

(1.5)
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The power to the load is then

Pl = I2R =
V 2

s

R2
l + X2

s
R (1.6)

Multiplying through and rearranging we have

PlR2
l − V 2

s Rl = −PlX2
s (1.7)

We now “complete the square” by adding V 4
s ∕4P2

l to each side.

R2
l − V 2

s
Rl

Pl
+

V 4
s

4P2
l

=
V 4

s

4P2
l

− X2
s (1.8)

(
Rl −

V 2
s

2Pl

)2

=
V 4

s

4P2
l

− X2
s (1.9)

This gives

Rl =
V 2

s

2Pl
+

√
V 4

s

4P2
l

− X2
s (1.10)

We see from Equation (1.10) that as Pl increases, the square root term decreases.
The maximum value that Pl can attain is that which makes the square root equal
to zero. This term can never be negative since this would give an imaginary part
to the resistance. We conclude that, at maximum power

V 4
s

4P2
l

= X2
s (1.11)

and

Rl =
V 2

s

2Pl
(1.12)

This means that

Pl =
V 2

s

2Rl
(1.13)

but we also have

Pl =
V 2

s Rl

R2
l + X2

s
(1.14)

This means that for maximum power, Rl = Xs. This is actually a demonstration of
the Maximum Power Transfer Theorem, which states that the maximum power to
a load is achieved when the load and system impedances are matched.

This example illustrates a very important point regarding losses in a conductor.
It is not just the load that is important but the source as well. Another qualitative
example will illustrate this point. Consider the two magnetic circuits in Figure 1.11
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Plate Plate

Figure 1.11 Two magnetic circuits with identical conducting plates.

with identical conducting plates. We can adjust the ac winding currents in the two
magnetic circuits so the air-gap flux is the same. In this case, an observer on each
plate would experience the same field at the same frequency.

In this example, the plate in the large air gap will have higher losses than the
plate in the smaller air gap. The induced voltage in the two plates is the same
since the impinging field is the same. The plate in the small air gap has a higher
inductance than the one in the large air gap. This means the current will be limited
by its higher impedance. Another way to see this is to consider the magnetic cir-
cuit as a transformer with a shorted secondary (the plate). To get the same air-gap
flux density in the two cases, the ampere-turns on the primary of the large air-gap
device must be greater. In a transformer, the primary and secondary ampere-turns
are more or less balanced. So the large air-gap plate will have more current than
the small air-gap plate to balance the primary currents. We also note that the L∕R
ratio of the conductor is important. In cases where the resistance dominates, the
induced current is relatively in-phase with the emf. In highly inductive circuits,
the current will lag the emf with an angle approaching 90∘.

1.5 Electromotive Force (emf) and Potential Difference

Currents in conductors are produced by an electric field which is a measure of the
force on electric charges. There are two sources of the electric field. One is due to
a distribution of electric charges. This field can be described by a scalar potential.
The other component of the electric field is produced by a change in magnetic flux
linkage [1]. It is this second component that produces eddy currents. The induced
voltage from this component is often referred to as emf or electromotive force.
This component can not be described by a scalar potential. It is necessary to keep
these two components separated in our analysis as they play different roles in the
production of current. This is often a confusing point since a measurement, such as
a voltmeter reading, cannot tell the difference and any measurement may include
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both of these effects. This point has been well-discussed in the literature and given
rise to a number of papers which explore this issue [2–10]. We define the potential
difference in terms of energy. A potential difference of one volt will impart one
joule of energy per coulomb of charge that passes through it.

This component of electric field, which we will call Ec and is produced by a
charge distribution, is a conservative field and the integral of this electric field com-
ponent around a closed path is zero.

∮c
Ec ⋅ d𝓁 = 0 (1.15)

The physical interpretation of Equation (1.15) is that it takes no work to move
an electric charge around any closed path in the presence of a conservative electric
field. The differential representation of Equation (1.15) is

∇ × Ec = 0 (1.16)

Since the curl of the gradient of any function is zero, we deduce that this compo-
nent of the electric field can be represented as the gradient of a scalar.

The second component of the electric field is described by Faraday’s law. Fara-
day’s law states that the line integral of the electric field around a closed contour
is equal to the negative of the time rate of change of the magnetic flux linkage. We
write this as

∮c
E𝜓 ⋅ d𝓁 = − d

dt∮S
B ⋅ dS = −d𝜓

dt
(1.17)

In Equation (1.17), the surface integral through which the flux crosses is the sur-
face defined by the boundary of the line integral in the first term. To see this,
consider the coil shown in Figure 1.12.

We imagine a helical surface defined by the coil as its boundary. In the figure,
we see that some of the magnetic flux passes through or links all of the turns, or
in other words, it passes through the surface more times than other tubes of flux.
This flux “counts” more in the integral as it penetrates the surface multiple times.
Some of the flux shown only links part of the coil and its role in emf production is
therefore less. In differential form Equation (1.17) is written as

∇ × E𝜓 = −dB
dt

(1.18)

While Faraday’s law describes the electric field integral around a closed
boundary, we are interested in open circuits as well. Consider the open circuit
of Figure 1.13. If the flux linking the coil is increasing in the direction shown in
the figure, then current, if allowed to flow in the circuit, would circulate in the
clockwise direction. Since there is a small gap in the circuit, positive charges will
build up at point a and negative charges at point b. Since this is a field produced
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Figure 1.12 Circuit with flux linkage.
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Figure 1.13 Loop with open circuit.

by static charges, it can be described by a scalar potential. The integral from a to
b of the conservative component of the electric field is

Va − Vb = ∫
b

a
Ec ⋅ d𝓁 (1.19)

This integral is independent of the path taken from a to b. Since it is not possible
for current to flow due to the gap, when equilibrium occurs the net electric field
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Figure 1.14 Circuit closed
through load resistor.
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L

J

b
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in the conductor body must be zero. If not, charges will continue to flow and we
are not yet at equilibrium. Therefore

Ec + E𝜓 = 0 (1.20)

Vab = ∫
b

a
Ec ⋅ d𝓁 = −∫

b

a
E𝜓 ⋅ d𝓁 (1.21)

If we consider the voltmeter readings in the figure and assume all of the flux is
passing through the circuit, we might expect that the two readings would be the
same as the meters are both measuring between points a and b. However, volt-
meter V1 will read the negative time rate of change of the flux linking the loop
while voltmeter V2 will read 0 since there is no flux linking the closed contour
made by the loop and the wires connected to the voltmeter.

Let us now allow current to flow through a load resistance RL as shown in
Figure 1.14.

Integrating around the closed loop and using points a and b as start and end
points for the line integral, we have

∫
b

a
E𝜓 ⋅ d𝓁 + ∫

b

a
Ec ⋅ d𝓁 = ∫

b

a

J
𝜎
⋅ d𝓁 (1.22)

Using our previous definitions

−d𝜓
dt

+ Vab = −IR (1.23)

This definition is consistent with the equivalent circuit of Figure 1.15.
We should note here that the source in the circuit is not localized as shown on

the diagram. Also, in much IEEE literature, there are so-called source and load
sign conventions. A source convention, used for generators, would result in the
sign of the emf being reversed.
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Figure 1.15 Equivalent circuit of
Equation (1.23).
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Figure 1.16 Conductor moving in a magnetic field.

An electric field can also be induced by relative motion. The force on an electric
charge is described by the Lorentz equation

F = qU × B (1.24)

where U is the velocity.1
Consider the conductor in Figure 1.16 in which the conductor is moving to the

right with velocity U. In the figure the conductor, magnetic field and velocity are
all orthogonal.

E = F
q
= U × B (1.25)

Since the electric field is the force on a unit charge, the electric field due to the
charge separation is

E = −U × B (1.26)

The induced voltage is then

V = ∫
b

a
E ⋅ d𝓁 = U𝓁B (1.27)

1 The reader may note the similarity to Ampere’s force law, F = i𝓁 × B which can be related to
Equation (1.24) by recognizing that the current is defined as the number of charges per second
crossing a surface.
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If we now consider a circuit that is stationary in a coordinate system, then by
Faraday’s law

∮ E ⋅ d𝓁 = −∮
𝜕B
𝜕t

dS (1.28)

If the circuit is moving in the coordinate system, we will be interested in the force
being experienced by a free charge. The force observed by a stationary observer is

F = q(E + U × B) (1.29)

This force must be the same when observed on the moving charge. We deduce
then that the force on a unit charge in the moving system, E′ is

E′ = E + U × B (1.30)

So,

∮ E′ ⋅ d𝓁 = −∫
𝜕B
𝜕t

dS + ∮ (U × B) ⋅ d𝓁 (1.31)

The first term on the right is sometimes referred to as the transformer voltage,
and the second term as the motional or generator voltage. Equation (1.31) is equiv-
alent to

∮ E ⋅ d𝓁 = −d𝜓
dt

(1.32)

as will be demonstrated in the example below. It is sometimes convenient to sepa-
rate these two components due to ease of computation and the different roles these
may play in electro-mechanical energy conversion.

Consider the rectangular coil shown in Figure 1.17. The coil is moving to the
right at velocity U. The magnetic field is in the z direction and has both space and
time variation.

Bz(x, t) = B0 sin(𝜔t) sin
(
𝜋x
𝜏

)
(1.33)

The coil has width (in the x direction) of 𝜏 and height (in the y direction) of 𝓁.
The flux linkage is

𝜓 = ∫ B ⋅ dS = ∫
𝜏

0 ∫
x1+𝜏

0
B0 sin(𝜔t) sin

(
𝜋x
𝜏

)
dx dy (1.34)

𝜓 =
2𝓁𝜏B0

𝜋
sin(𝜔t) cos

(𝜋x1

𝜏

)
(1.35)

The emf is the negative time rate of change of the flux linkage, so

e = −d𝜓
dt

= −𝜕𝜓

𝜕x
dx1

dt
− 𝜕𝜓

𝜕t
(1.36)

Evaluating the derivatives we find

e = 2𝓁B0 sin(𝜔t) sin
(𝜋x1

𝜏

) dx1

dt
−

2𝜔B0𝜏𝓁

𝜋
cos

(𝜋x1

𝜏

)
cos(𝜔t) (1.37)
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Figure 1.17 Rectangular loop moving through time and space varying field.

Now let us apply Equation (1.31). The transformer voltage is

−∫
𝜕B
𝜕t

⋅ dS = −d𝜓
dt

= −
2𝜏𝓁B0𝜔

𝜋
cos

(𝜋x1

𝜏

)
cos(𝜔t) (1.38)

To obtain the motional component, we integrate around the path (ABCDA).

∮ (U × B) ⋅ d𝓁 = ∫
B

A
(U × B) ⋅ d𝓁 + ∫

C

B
(U × B) ⋅ d𝓁 + ∫

D

C
(U × B) ⋅ d𝓁

+ ∫
A

D
(U × B) ⋅ d𝓁 (1.39)

There is no contribution from the second and fourth terms of this equation since
U × B is in the y direction and the dot product with d𝓁 is zero. The first term on
the right becomes

∫
B

A
(U × B) ⋅ d𝓁 = B(x1, t)

dx1

dt ∫
y+𝓁

y
dy = B(x1, t)𝓁

dx1

dt
(1.40)

In the same way, we obtain for the third term

∫
D

C
(U × B) ⋅ d𝓁 = −B(x1 + 𝜏, t)

dx1

dt ∫
y

y+𝓁
dy = B(x1 + 𝜏, t)𝓁

dx1

dt
(1.41)

The result for the motional term is

∮ (U × B) ⋅ d𝓁 = 2𝓁B0 sin(𝜔t) sin
(𝜋x1

𝜏

) dx1

dt
(1.42)

The emf is then the sum of the two components and this gives the same result as
Equation (1.37).
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Figure 1.18 Moving surface in a
time-varying field.
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A more general approach is given by Panofsky and Philips [11]. Referring to
Figure 1.18, we have a magnetic flux crossing surface S.

d𝜓
dt

= d
dt ∫ B ⋅ dS (1.43)

The surface is in location 1 at time t and position 2 at time t + Δt. The surface
may also change shape during the motion. We then have

d𝜓
dt

= 1
Δt ∫

(
Bt+Δt ⋅ dS2 − Bt ⋅ dS1

)
(1.44)

We now apply Gauss’ law for the magnetic field and find the magnetic flux leav-
ing the closed surface formed by S1 and S2 and the sides connecting them.

∫ ∇ ⋅ B dV = ∫
(

Bt ⋅ dS2 − Bt ⋅ dS1
)
− ∫ Bt ⋅ (U dt × d𝓁) (1.45)

The last term describes the magnetic flux through the sides.
The value of B at time t + Δt on surface S2 can be expanded in terms of its value

at time t.

Bt+Δt = Bt +
𝜕B
𝜕t

dt + · · · (1.46)

Substituting we have

d
dt ∫ B ⋅ dS = ∫

𝜕B
𝜕t

⋅ dS + ∫ B × U ⋅ d𝓁 + ∫
∇ ⋅ B

dt
dV (1.47)

The second term on the right represents the change of flux through the sides of
the figure and the third term describes any “sources” of magnetic flux. We now
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apply Stoke’s theorem and recognize that dV = U ⋅ dS dt

d
dt ∫ B ⋅ dS = ∫

dB
dt

⋅ dS + ∫ ∇ × (B × U) ⋅ dS (1.48)

Defining E′ as the electric field measured in the moving reference frame, we
have

∫ E′ ⋅ d𝓁 = −d𝜙
dt

= −∫
(

dB
dt

+ ∇ × (B × U)
)
⋅ dS (1.49)

Again using Stoke’s theorem

∇ × E′ = −𝜕B
𝜕t

+ ∫ ∇ × (B × U) (1.50)

or

∇ ×
(

E′ − U × B
)
= −𝜕B

𝜕t
(1.51)

However we have seen that E′ − U × B is the electric field measured by a sta-
tionary observer. We conclude then that the stationary observer finds

∇ × E = −𝜕B
𝜕t

(1.52)

1.6 Waves, Diffusion, and the Magneto-Quasi-static
Approximation

If we take the complete set of Maxwell’s equations in their time-harmonic form,
we have Ampere’s law

∇ × H = J + j𝜔𝜖E = 𝜎E + j𝜔𝜖E (1.53)

and for Faraday’s law

∇ × E = −j𝜔𝜇H (1.54)

In Equation (1.53), the first term on the right, 𝜎E, is called the conduction current.
This current physically involves the movement of charge, the ampere being
defined as one coulomb of charge crossing a surface per second. The second
term, j𝜔𝜖E, is called the displacement current. There is no charge flow involved
in displacement current. It is the time variation of the electric flux density. This
current produces a magnetic field just as conduction current does.

We substitute (1.54) into (1.53), take the curl of both sides, and use the vector
identity

∇ × ∇ × H = ∇∇ ⋅ H − ∇2H (1.55)
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and the fact that ∇ ⋅ H = 0 to obtain the homogeneous wave equation

∇2H + 𝜇𝜖

(
1 −

j𝜎
𝜔𝜖

)
𝜔2H = 0 (1.56)

Often, the term in parenthesis is combined with the permittivity to create an effec-
tive complex permittivity

𝜖eff = 𝜖

(
1 −

j𝜎
𝜔𝜖

)
(1.57)

Defining the propagation constant, k, as

k2 = 𝜔2𝜇𝜖eff (1.58)

The wave equation becomes

∇2H + k2H = 0 (1.59)

We will break the wave number, k, into real and imaginary parts so that

k = k′ − jk′′ (1.60)

The real part of the wave number is

k′ = 𝜔2𝜇𝜖 (1.61)

The imaginary part is

k′′ = 𝜔𝜇𝜎 (1.62)

If we had ignored the displacement current term and applied the same proce-
dure, we would get the diffusion equation.

∇2H − j𝜇𝜎𝜔H = 0 (1.63)

We see here that it is the relative importance of k′ and k′′ that will determine
if the wave equation can be approximated by the diffusion equation. In fact, the
magnitude of the term

𝜎

𝜔𝜖
,

the so called loss tangent, is the determining factor.2
The wave equation is of course the more general description of the phenomena.

The diffusion equation, which we will use throughout this work to describe the
eddy current behavior, is therefore an approximation, and we must study what
conditions are necessary for this approximation to be valid.

2 This quantity is called the loss tangent since the arc-tangent of this quantity gives the angle
between the displacement current density and the total current density. The angle is zero for a
perfect insulator and 90∘ for a perfect conductor.



�

� �

�

24 1 Basic Principles of Eddy Currents

O

H
0

e–αx

λ

δ

x

H

Figure 1.19 Attenuation of wave in conducting material.

If we consider a plane wave propagating in the +x direction, the solution to the
wave equation has the form

e−jkx = e−jk′x−k′′x (1.64)

which can be verified by substitution into (1.59). Recall that the time variation is
implied in the phasor representation of the field quantities. Figure 1.19 shows the
progress of the wave into the material.

Let us now explore the loss tangent. This term is the ratio of the magnitude of the
conduction current, 𝜎E, and the displacement current, j𝜔𝜖E. If we take copper for
example, the conductivity is 𝜎 = 5.8 × 107 Sm−1. The permittivity is approximately
𝜖0 = 1

36𝜋
× 10−9 Fm−1. For frequencies in the same order of magnitude as power

frequency, say 100 Hz, the ratio of conduction to displacement current is on the
order of 1018. For a higher frequency, say radio frequency, in the range of 100 MHz,
we get a ratio on the order of 1010. In fact, for the displacement current to equal
the conduction current, we must have a frequency in the order of 10 × 1018 Hz.
It seems that for good-conducting metals, the approximation is an excellent one
over a very large range of frequencies, and we can safely ignore the displacement
currents. Let us look a bit deeper into the wave behavior of lossy materials. For
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poor conductors (𝜎 ≪ 𝜔𝜖), we have3

k = 𝜔
√
𝜇𝜖

√
1 −

j𝜎
𝜔𝜖

≈ 𝜔
√
𝜇𝜎

(
1 −

j𝜎
2𝜔𝜖

)
(1.65)

In this case, k′ ≈ 𝜔
√
𝜇𝜖, which is the free-space (no conductivity) result. The

imaginary part is k′′ ≈ 𝜎

2

√
𝜇

𝜖
. For low conductivity, this can be a large number. If

the conductivity is large and 𝜎 ≫ 𝜔𝜖, then

k = 𝜔
√
𝜇𝜖

√
1 −

j𝜎
𝜔𝜖

≈ 𝜔
√
𝜇𝜖

√
−j𝜎
𝜔𝜖

=
√
−j𝜔𝜎𝜇 (1.66)

We use
√
−j = 1−j√

2
and find that

k ≈ (1 − j)
√

𝜔𝜇𝜎

2
(1.67)

Note here that the real and imaginary parts of the wave number are numerically
equal. The skin depth for a good conductor is (see Section 1.7)

𝛿 = 1
k′′ =

√
2

𝜔𝜇𝜎
(1.68)

In a good conductor, the wavelength is approximately λ ≈ 2𝜋𝛿 ≈ 2𝜋∕k′′.
Another quantity coming from wave theory is the complex wave impedance. The

wave impedance is defined as the ratio of the electric field and magnetic field. In
this case

𝜂 =
√

𝜇

𝜖eff
=
√

𝜇

𝜖 − j𝜎∕(𝜔𝜖)
(1.69)

For a good conductor

𝜂 ≈ (1 + j)
√

𝜔𝜇

2𝜎
(1.70)

We will see in Section 2.2 that, using the diffusion equation for good conductors,
the real and imaginary parts of the impedance will be equal for linear materials.

The wave impedance is also useful in the evaluation of the Poynting vector,
which we will use to evaluate real and reactive power. We define the Poynting
vector for steady-state sinusoidal fields as

S = E × H∗ (1.71)

which can be written in terms of the wave impedance as

S = |E|2
𝜂∗

(1.72)

3 We have used the Taylor expansion for the square root,
√

1 + 𝜉 ≈ 1 + 𝜉∕2 for small values of 𝜉.
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Let us look at the problem of an electromagnetic wave normally incident on
a copper plate. The electric and magnetic field components are then parallel to
the surface of the copper plate. For this example, the frequency is 100 kHz. The
propagation constant is

k =
√

j𝜔𝜇(𝜎 + j𝜔𝜖) = 𝛼 + j𝛽 = 4785.1 + j4785.1 (1.73)

The wavelength is

λ = 2𝜋
𝛽

= 4.15 × 10−4 m (1.74)

Compare this to the wavelength in free space which is λ = c∕f = 3000 m. There
is a significant compression of the wavelength as the wave travels through the con-
ductor. The phase velocity is

u = 𝜔

𝛽
= 131.31 m s−1 (1.75)

The wave impedance is

𝜂 =

√
j𝜔𝜇

𝜎 + j𝜔𝜖
= 8.2502 × 10−5 + j8.2502 × 10−5 Ω (1.76)

The real part of the wave impedance can be considered the effective surface resis-
tance. Using the good conductor approximation as will be introduced in Chapter 2,
the effective resistance is

R = 1
𝜎𝛿

= 8.2502 × 10−5 Ω (1.77)

This is equivalent to the dc resistance if the current is confined to a skin depth, 𝛿.
We will also discuss shielding by eddy currents in Section 3.5. We can use the

attenuation constant to understand the decay of the wave as it travels through the
conductor. For example, how far must a wave travel in our present example, to
attenuate to 1% (40 dB) of its value at the surface? Evaluating the magnitude of the
wave we find

e−𝛼d = 0.01 (1.78)

which gives

d = 9.624 × 10−4 m (1.79)

So we see that for a wide range of problems involving waves and good conduc-
tors, we can ignore the displacement currents and in this case, we will be describ-
ing the phenomena with the diffusion equation rather than the more general wave
equation. There are certain nonphysical implications of this approximation, but
they will rarely play an important role in our analysis. For example, if we were
to apply a step-function of excitation to a conductor, there will be a finite instan-
taneous response even at infinity. This is not physically possible since it would
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involve the wave traveling faster than the speed of light. The wave equation would
have resulted in a delay which the diffusion equation does not. With these crite-
rion, the reader can make the determination if the approximation is valid for their
particular application.

1.7 Skin Depth or Depth of Penetration

In Chapter 2, we will derive the concept of skin depth directly from Maxwell’s
equations. This short introduction to this important parameter begins with the
diffusion equation written for steady-state sinusoidal conditions. In this case, the
variables are phasors. Phasors are complex quantities that give us information on
the magnitude and phase angle of the variable. It is assumed that all variables in
the problem are sinusoidally time-varying at the same frequency. In principle, we
can only use phasor analysis for linear problems. If the material properties are
a function of the variables in the problem, phasors are no longer valid. We will
consider problems in which we have nonlinear material behavior in Section 2.6.
For now, consider the one-dimensional diffusion equation written for the current
density.

𝜕2J
𝜕x2 = −j𝜔𝜇𝜎J (1.80)

The solution to (1.80) is

J = C1e𝛼x + C2e−𝛼x (1.81)

where

𝛼 =
√
−j𝜔𝜇𝜎 (1.82)

For the case of a conductor with infinite extent (the finite conductor case will be
treated in Section 2.2), the constant C1 must be zero to prevent the solution from
blowing up at infinity. We now replace

√
−j = e−j𝜋∕4 with 1−j√

2
. The solution is then

J(x) = J0e−𝛼x = J0
(

e−x∕𝛿ejx∕𝛿) (1.83)

where

𝛿 =
√

2
𝜔𝜇𝜎

(1.84)

The parameter 𝛿 has units of meters. For copper (𝜇 = 𝜇0 H m−1, 𝜎 = 5.8 ×
107 S m−1), we can write

𝛿 = 0.066085√
f

(1.85)



�

� �

�

28 1 Basic Principles of Eddy Currents

The frequency, in hertz, has units of inverse seconds, and writing the skin depth
in this way reveals the

√
t factor that will be introduced in Section 1.9 as part of

the solution to the diffusion equation. The first exponential term in (1.83) describes
the magnitude of the current density decaying with x. At one skin depth, the mag-
nitude decreases to 1∕e ≈ 0.37 of its value at the surface, and after 3–5 skin depths,
the current density is extremely small compared to the surface value. While this
first term describes the magnitude of the current density phasor, the second expo-
nential term describes the phase shift. The term ej𝜃 has magnitude 1.0 for any value
of the angle 𝜃. We have a linear phase shift with respect to distance of one radian
per skin depth. This is shown in Figure 1.20 where Equation (1.83) is plotted for
copper at 60 Hz.

Knoepfel [12] has introduced a skin depth calculator which we have recreated
and included as Figure 1.21. By using this diagram, one can select the frequency
and conductivity, and for magnetic materials, one can select different permeabili-
ties and find the skin depth. Note that the scale is logarithmic. As an illustration,
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Figure 1.20 Magnitude and phase of current density as a function of depth.
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Figure 1.21 Skin depth calculator after Knoepfel.
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consider copper at 60 Hz. We construct a straight line from the bottom left on the
figure at 60 Hz and connect it to the scale on the right which has copper listed at
𝜎𝜇r = 5.8 × 107 S m−1. The line intersects the center scale at the skin depth. The
skin depth in this case is 𝛿 = 0.00853 m.

1.8 Diffusion, Heat Transfer, and Eddy Currents

Heat transfer is also described by the diffusion equation. Heat transfer problems
are often easier to visualize than electromagnetic diffusion and serve as a good
introduction to some of the principles. There are differences of course. Tempera-
ture is a scalar while the magnetic field and the eddy current density are vectors.
However, for a large class of problems, a direct analogy can be made and the basic
ideas can be applied to both domains.

Fourier’s law states that the flow of heat is proportional to the negative of the
gradient of temperature. The direction of the transfer of thermal energy is from
higher to lower temperature. This is, of course, the same as Fick’s law of diffusion.

Consider a long column of material at a uniform temperature. When a constant
temperature boundary condition is applied at the surface, some heat conducts
through the material, and some heat is stored in the material. The heat conduc-
tion depends on the thermal conductivity (or thermal resistivity), while the heat
storage depends on the specific heat and density of the material. The diffusion
equation becomes [13]

∇2T = dT
dt

(1.86)

where  is the thermal diffusivity. This is the ratio of thermal conductivity to the
volumetric specific heat. In solving complicated heat transfer problems involving
conduction and storage, one of the most popular methods is the use of an
equivalent circuit in which the resistors are proportional to the thermal resistivity
and capacitors are proportional to the volumetric specific heat. In Section 5.1,
we will use the same equivalent circuit to represent eddy currents in solid
conductors.

To see the connection to eddy currents, let us consider the temperature distri-
bution near the surface of the earth over time (see Figure 1.22). These data are
simulated using information in [13] which have been verified by measurements.
If we take one cycle per year as the fundamental frequency, we can model the
seasonal temperature change using Equation (1.86). The solution to the diffusion
equation is

T(y, t) = Tamb + A0e−
y
𝛿 sin

(2𝜋(t − t0)
365

−
y
𝛿
− 𝜋

2

)
(1.87)
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Here the parameter 𝛿 is given by 4

𝛿 =
√

2
𝜔

(1.88)

We will see equations of the same form in eddy current applications. In this
simulated example, a randomness is artificially added to the amplitude to make it
more realistic. We will also consider the daily variation of the temperature, with
highs and lows occurring daily. This is included by again using Equation (1.87)
with the some modifications. We can then superimpose the two solutions. The
changes are that the ambient temperature term, Ta is omitted since it has already
been included in the yearly variation calculation. We also change the frequency to
365 cycles per year, which changes 𝛿. A new amplitude is also used to account for
the daily temperature cycles. The result at different depths is shown in Figure 1.22.
There are a number of extremely important observations to be made here. The first
is concerned with the exponential term in Equation (1.87). This term gives a solu-
tion that decreases exponentially with depth. If, for the fundamental frequency, we
compare the temperature amplitude at the surface to the temperature amplitude
at a depth y = 𝛿 the amplitudes will have a ratio of 1∕e ≈ 0.37. In fact, for any two
points, separated by vertical distance 𝛿, the amplitudes will have the same ratio.
The parameter 𝛿, as we have seen, is the skin depth, or depth of penetration. After
3–5 skin depths, the fluctuation is usually considered negligible. In the current
example, the thermal diffusivity, , is 0.3 × 10−6 m2 s−1 which gives a skin depth
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Figure 1.22 Temperature at various depths over a few years.

4 If we replace the parameter  with 1
𝜇𝜎

, we obtain from Equation (1.88) the result 𝛿 =
√

2
𝜔𝜇𝜎

which is the electromagnetic skin depth.
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for the fundamental (one cycle per year) of 𝛿year = 1.735 m. The skin depth for the
365th harmonic (one cycle per day) is 𝛿day = 0.091 m. The ratio of the two expo-
nential constants is equal to the square root of the frequency ratio ≈ 19.1. This
explains why the fundamental is still very noticeable at 1 m depth but the daily
fluctuation has mostly disappeared after 0.4 m. We will note the same behavior in
the study of eddy currents.

The second essential point that is illustrated by this heat transfer example is the
phase shift of the temperature fluctuation. Considering the argument of the sine
function in Equation (1.87), we see that the phase of the function changes linearly
with depth. When we move one skin depth in the y direction, the phase shifts one
radian. This phase shift is evident in Figure 1.22. In observing the peaks in the
temperature profile, we see that the peaks are delayed as we move down into the
soil. This explains why underground pipes can freeze several days or even weeks
after a cold front. This phase shift will also be an important result in the eddy
current analysis and can result in a reversal in the direction of the eddy currents.
These two results, the exponential decay of the amplitude and the linear varia-
tion of the phase angle with depth will exactly coincide with our findings on eddy
currents.

1.9 The Diffusion Equation and Random Walks

We will see in Section 1.10 that eddy current solutions often result in Gaussian or
Normal distributions. Also, we will find factors of

√
t and diffusion time constants

resulting from transient eddy current problems.
To see the connection to particle diffusion, we can take a probabilistic approach

to the diffusion process. There is a vast literature on how particles diffuse through
a medium, going from regions of high concentration to regions of lower concen-
tration [14]. If we release particles into a medium, initially there will be a high
concentration near the location of origin. Although the motion of individual parti-
cles is random, over time and with large numbers of particles, we eventually reach
a steady state in which, from a macroscopic point of view, the concentration is
uniform. The process can be described by the diffusion equation.

Consider a one-dimensional random walk, as illustrated in Figure 1.23. Let us
say that an individual particle is located at x = 0 on the one-dimensional axis of
Figure 1.23. In an unbiased random walk, the individual can move Δx in the pos-
itive direction or Δx in the negative direction. Each of these possibilities has a
probability of p = 0.5. We will assume that each move takes place in a time interval
Δt. The probability of finding our individual at a particular location at a particu-
lar time is p(x, t). What is the probability of finding the individual at location x at
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1 2 3

∆x ∆x

–3 –2 –1 0

Figure 1.23 One-dimensional random walk.

time t + Δt? There are only two possibilities. Either they were at location x − Δx
or x + Δx at time t. The total probability is then

p(x, t + Δt) = 1
2
(p(x − Δx, t) + p(x + Δx, t)) (1.89)

We now subtract p(x, t) from each side and divide each side by Δt. Then we multi-
ply and divide the right-hand side by (Δx)2. This gives

p(x, t + Δt) − p(x, t)
Δt

= 1
2
(Δx)2 (p(x − Δx, t) − 2p(x, t) + p(x + Δx, t))

(Δx)2Δt
(1.90)

In the limit, as Δt approaches zero, the left-hand side becomes 𝜕p
𝜕t

. For the
right-hand side, we define the diffusion constant as D = (Δx)2∕(2Δt). The
remaining term, as Δx approaches zero, is the difference equation for the second
derivative of p with respect to x. This result will be derived in Section 5.1. This
gives the one-dimensional diffusion equation

𝜕p
𝜕t

= D
𝜕2p
𝜕x2 (1.91)

With a large number of trials, we will obtain the probability distribution with a
maximum value at x = 0. The solution of Equation (1.91) is

p(x, t) = 1√
4𝜋tD

e−
x2

4Dt (1.92)

This is the well-known normal distribution. Note that the solution is symmetric
around x = 0 and has a decay rate including a 1∕

√
t term. This solution is rela-

tively intuitive for particle distribution. We expect the initial concentration to be
highest at x = 0 and eventually decay to a uniform distribution over a long time
period. When we are dealing with thermal or electromagnetic diffusion, where it
is heat or flux or current that is being redistributed, it is perhaps more difficult to
picture although we will find exactly the same result. In Section 1.10, we will cover
magnetic problems that are described by the diffusion time constants and exhibit
the

√
t behavior.

Figure 1.24 shows the normal distribution at various times. In this plot, D = 1.0.
We can see that the distribution is very concentrated around zero at the beginning
of the process and tends to a uniform distribution as time progresses.
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Figure 1.24 Normal distribution at various times.

1.10 Transient Magnetic Diffusion

We will now look at the problem of transient magnetic diffusion into a conducting
material. This process allows us to analyze problems with arbitrary inputs, such
as a step-function of magnetic field. We will see later in the book that the diffusion
equation applied to eddy current analysis can be written in terms of the magnetic
field, H, the current density, J, and the magnetic vector potential, A. The choice
can depend on the application and the method of solution. Consider the diffusion
equation in one-dimension for the magnetic vector potential.

𝜕2A
𝜕x2 = 𝜇𝜎

𝜕A
𝜕t

(1.93)

Letting k = 𝜇𝜎, we have

𝜕2A
𝜕x2 = k𝜕A

𝜕t
(1.94)

Insight into the problem can be found by using dimensional analysis. In this
problem, we have five parameters:

1. B0: Wb m−2

2. A: Wb m−1

3. k: s m−2

4. x: m
5. t: s
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With five parameters and three different units, we can form two dimensionless
groups. Let

D1 = A
B0
√

t∕k
(1.95)

D2 = x√
t∕k

(1.96)

In dimensional analysis, we take one non-dimensional group to be a function of
the other, so that

D1 = f (D2) (1.97)

and in this case

A(x, t) =
B0√
t∕k

f

(
x√
t∕k

)
(1.98)

Now we make a change of variables that will transform the equation from a
partial differential equation (PDE) to an ordinary differential equation (ODE). Let

𝜂 = x√
4t∕k

(1.99)

This gives

𝜕A
𝜕x

= dA
d𝜂

𝜕𝜂

𝜕x
= 1√

4t∕k
dA
d𝜂

𝜕2A
𝜕x2 = d

d𝜂

[
𝜕A
𝜕x

]
𝜕𝜂

𝜕x
= k

4t
d2A
d𝜂2 (1.100)

For the derivative with respect to time, we have

𝜕A
𝜕t

= dA
d𝜂

𝜕𝜂

𝜕t
= −x

2t
√

4t∕k
dA
d𝜂

(1.101)

Substituting, we find

d2A
d𝜂2 = −2𝜂 dA

d𝜂
(1.102)

We have transformed the equation into an ODE. No matter what the values of
x or t, we can express the result exclusively as a function of the variable 𝜂.

Also note, from our definition of 𝜂 in Equation (1.99), that for x = 0 we have
𝜂 = 0 and for x = ∞ we have 𝜂 = ∞.

Now we can separate the terms.

d
(

dA
d𝜂

)
dA
d𝜂

= −2𝜂d𝜂 (1.103)
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We integrate once to find

ln
(

dA
d𝜂

)
= −𝜂2 + C1 (1.104)

Integrating again, we get

A = C1 ∫
𝜂

0
e−u2 du + C2 (1.105)

We now apply boundary conditions to evaluate the constants. Assume the initial
value of the potential before the source is applied is Ai. We call the potential at the
surface A0. Then, from the condition A = A0 at 𝜂 = 0, we conclude that C2 = A0.
Using the condition that at infinity we have A = Ai, we evaluate

Ai = C1 ∫
∞

0
e−u2 du + A0 (1.106)

This integral has been evaluated [14] and we find

C1 = 2
Ai − A0√

𝜋
(1.107)

The general solution is

A − A0

Ai − A0
= 2√

𝜋 ∫
𝜂

0
e−u2 du = erf(𝜂) (1.108)

Note that the error function approaches 1 as 𝜂 approaches infinity. (For infor-
mation on the error function, see Appendix C.)

In this case, the initial value of potential is Ai = 0 and we also know the deriva-
tive at x = 0,

B0 = −𝜕A
𝜕x

|x=0 = A0
d (erf(𝜂))

d𝜂

= A0

2√
𝜋

e−𝜂2

√
4t∕k

|𝜂=0 =
A0√
𝜋t∕k

(1.109)

Then the final solution is

A(x, t) = 2B0

√
t
𝜋k

e
−x2k

4t − B0x erfc

(
x

2
√

t∕k

)
(1.110)

where erfc is the complementary error function defined as erfc = 1 − erf.
To introduce an alternate approach, not using dimensional analysis, consider

Figure 1.25. We will solve the PDE

𝜕J
𝜕t

= 1
𝜇𝜎

𝜕2J
𝜕y2 (1.111)
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Figure 1.25 Infinite conductor with applied
current sheet.
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by means of the Fourier transform.5 We transform the function of y to a function
of k by means of

J(y, t) = ∫
∞

−∞

dk
2𝜋

ejky × F(k, t) (1.112)

where

F(k, t) = ∫
∞

−∞
ejky × J(y, t) dy = ∫

∞

0

(
ejky + e−jky) × J(y, t) dy (1.113)

The derivative of F(k, t) is then simply multiplication by jk, so
𝜕F
𝜕t

= − k2

𝜇𝜎
F(k, t) (1.114)

For every value of k, we have a first-order differential equation, the solution of
which is

F(k, t) = F(k, 0)e−k2t∕(𝜇𝜎) (1.115)

If we consider the case of a current sheet that is turned on at t = 0+, in other
words a step function, we can evaluate the surface condition. Just near the surface
of the conductor, say at a distance y = −𝜖, the current sheet can be represented by
the application of H0. This is illustrated in Figure 1.25. The current density is the
derivative of H with respect to y or

J(y, 0) = −𝜕H
𝜕y

= H0𝛿(y − 𝜖) (1.116)

The Fourier transform of the current sheet is then

F(k, 0) = ∫
∞

0

(
ejky + e−jky)H0𝛿(y − 𝜖) dy = 2H0 cos(k𝜖) ≈ 2H0 (1.117)

For t > 0 the solution is then

F(k, t) = 2H0e−
k2

𝜇𝜎
t (1.118)

We now take the inverse transform to transform a function of k to a function
of y.

J(y0, t) = ∫
1

2𝜋
ejky0 × 2H0e−

k2

𝜇𝜎
t dk (1.119)

5 Crank [14] uses a similar approach to solve the analogous problem of heat conduction using
Laplace transforms.
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Equation (1.119) is the well-known Gaussian, or normal, distribution which was
introduced in Section 1.9. Since we are only interested in the positive values of y
we have just half of the distribution as the solution.

J(y0, t) =
2H0√
4𝜋Dt

e−
y2
0

4Dt (1.120)

If we define a new function that has the time variation in it

g(t) =
√

4Dt (1.121)

The width of the distribution increases with time following the function g(t).
We can use Ampere’s law to find the magnetic field by integrating J(x, t).

H(y, t) = ∫
t

y
J dy

=
2H0√
𝜋 ∫

∞

y
e−

𝜉2

g(t)2 d𝜉

= H0

(
1 − erf

(
y

g(t)

))
= H0 erfc

(
y

g(t)

)
(1.122)

As an example, consider a copper block, 𝜎 = 5.8 × 107 S m−1 and 𝜇0 =
4𝜋 × 10−7 H m−1. We apply a step function of H0 = 1.0 A m−1 at t = 0 s. Figure 1.26
shows the current density distribution, from Equation (1.120), as a function of
depth for three different times, t = 0.1, 0.5, 1.0 s. Note the similarity to Figure 1.24,
which we found while discussing particle diffusion. For short times, the current
is crowded near the surface. As time progresses, the maximum value decreases
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Figure 1.26 Current density vs. depth for different times.
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and the distribution becomes more uniform. Although this is also a normal distri-
bution solution, in our particular electromagnetic example, we have the solution
only in the positive y region, which is only the positive half of the distribution.

1.11 Coupled Circuit Models for Eddy Currents

Using the magneto-quasi-static assumptions, it is legitimate to model eddy cur-
rent phenomena by a set of coupled circuits with resistance and self and mutual
inductances. Unfortunately, it is often very difficult to compute the self and mutual
inductances for general geometries and doing so often involves a field solution by
numerical techniques. There is however a fairly large class of problems in which
the inductances are relatively easy to find and standard electrical network tech-
niques can be used. These solutions are often easier to interpret than direct field
solutions. We will use these coupled circuit methods in the study of slots in elec-
tric machines in Section 11.1. We have already introduced the concepts of skin
depth and proximity effect and will now consider a coupled circuit model which
illustrates these points. Consider the long go-and-return flat bus bars illustrated in
Figure 1.27. All current is in the z direction and the magnetic field is in the x − y
plane.

As indicated in the figure, we divide the conductor into small segments in the
x direction. These form a set of mutually coupled conductors that are parallel to
each other. We will assume that the thickness of the conductor is small compared
to the skin depth. This however is not a necessary assumption, and we could
divide the plate into segments in the vertical direction as well. The closed form
solution for a number of long parallel conductors is well known and a summary
is given in Appendix E. If the number of segments is N, then we will have an
N × N system of coupled circuit equations. The resistance per unit depth of each
segment i is found as

Ri =
1

𝜎ΔxΔy
(1.123)

We form a resistance matrix, which is a diagonal matrix. Each element of the
diagonal has the value found from Equation (1.123). The inductance matrix will

I I

∆x ∆y

Figure 1.27 Parallel flat copper bus bars.
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be a full matrix. In finding the flux linkage of a conductor in the presence of a
number of long parallel conductors, we find for conductor 1

λ1 =
𝜇0

2𝜋

(
I1 ln

(
1
r′1

)
+ I2 ln

(
1

d12

)
… In ln

(
1

d1N

))
(1.124)

where r′ is the geometric mean radius of the conductor, and dij is the distance
between conductors i and j. This process is repeated for all N conductors. We now
have an N × N system of simultaneous equations of the form

(V) = (R + j𝜔L) (I) (1.125)

In this example, we consider two parallel copper plates. The plates are 0.00125 m
thick and 0.1 m wide. There is a 0.01 m space between the conductors. The conduc-
tors are divided into 160 small segments. The distances are taken as the distance
from center to center of the segments. A voltage of (1.0 + j0.0) V at 60 Hz is applied
to the conductor on the left and (−1.0 + j0.0) V to the conductor on the right. The
system of 160 simultaneous equations is solved for the current in the segments.
Figures 1.28 and 1.29 show the real and imaginary components of the current
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Figure 1.28 Real and imaginary components of current density.
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Figure 1.29 Magnitude of the current density.

density and the magnitude of the current density, respectively. For reference, a
representation of the two plates is superimposed on each figure.

We note that the current crowds to the center and is anti-symmetric around the
center line. This is the behavior that we expect from our discussion of the proximity
effect. If the currents are in opposite directions, the currents crowd to the inner
surfaces. Figure 1.30 shows the finite element solution for this example. We can
see from the flux plot that the currents are crowding toward the center.

There are also other important parameters of this configuration that are
now available to us. Adding up the currents in one of the bars, we find
I = (4616.7 − j3235.0)A. We can divide this by the applied voltage to find the
impedance, which is Z = (2.905 + j2.036 × 10−4) Ω. To compare, we can easily
find the dc resistance as Rdc = 2∕(𝜎 × area) = 2.76 × 10−4 Ω. As expected, this is
smaller than the ac resistance due to the nonuniformity of the current density.

If we had applied voltages in the same direction, we would have found currents
crowding to the outside. This example is illustrated in Figure 1.31 for the finite
element solution.
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Figure 1.30 Finite element solution to the go and return example.

Figure 1.31 Finite element solution for currents in the same direction.

The equivalent circuit method uses relatively few equations compared to the
finite element method. However, there is a lot of information in the terms of the
equivalent circuit equations. They include the closed form solutions for the self
and mutual flux linkages. As we will see in Section 6.1, the individual finite ele-
ment equations include very little information about the field and its variations,
but only about how the elements are connected and an assumed variation of poten-
tial. It is only when all of the element equations are assembled and a minimization
technique is applied, that we get a valid solution.

Figure 1.32 shows a comparison of the magnitude of the current density in one
plate from the equivalent circuit method and the finite element method.
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Figure 1.32 Comparison of current density magnitude in one plate.

1.12 Summary

In this brief introduction, we have introduced the basic principles that will be used
in eddy current analysis. The fundamental equations are Faraday’s law, Ampere’s
law, and Lenz’s law. We saw how current is induced in conductors and circuits.
We discussed the assumptions made in magneto-quasi-static analysis, showed the
connection to wave phenomena, and discussed the difference between the wave
equation and diffusion equation. We also introduced the idea of skin depth or
depth of penetration in steady-state sinusoidal analysis. Diffusion is also preva-
lent in other fields, and we compared the results of our electromagnetic analysis
to a heat transfer example and saw that the fundamental results were the same.
We have considered the solutions to the diffusion equation in the time domain
for an important example, a step function of current. This introduced the nor-
mal distribution solutions and transient skin depth. This was then contrasted with
particle diffusion beginning with an entirely random process. We found that the
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results were analogous to our electromagnetic diffusion example. This introduc-
tion ended with an example using coupled magnetic circuits to model eddy current
phenomena. The use of equivalent circuits is quite popular in eddy current analy-
sis and often offers a more intuitive approach than the direct solution of differential
equation.
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2

Conductors with Rectangular Cross Sections

In Chapter 1, we have laid the foundation for the study of eddy currents. We
have discussed the diffusion equation and its solution for transient and
steady-state sinusoidal conditions and introduced the concepts of resistance
and reactance-limited eddy current phenomena as well as the proximity effect
and the skin effect. In this chapter, we discuss some practical examples that are
described in Cartesian or rectangular coordinates. These examples include lam-
inations, bus bars, plates, and solid conductors with rectangular cross sections.
We also include solutions for eddy currents in materials that have nonlinear
material properties (magnetic saturation) including approximations for including
the effects of magnetic hysteresis. These solutions are found in closed form and
are based on the theory presented in Chapter 1. There are of course many other
examples of conductors with rectangular cross sections, such as those used in
electric machines and transformers. We present some of these examples in Part 3
of this book as applications, where we discuss conductors in slots of electric
machines and transformer windings.

2.1 Finite Plate: Resistance Limited

The first problem we will consider is the determination of resistance-limited eddy
current loss in conductors of rectangular cross section. While this problem has a
relatively simple solution, the result is of extreme importance in practical appli-
cations. Many electrical devices such a motors, generators, transformers, electro-
magnets, inductors, and actuators make use of magnetic cores, which are made of
thin laminations, which are insulated from each other and then stacked in various
shapes to form a magnetic circuit. As seen in Figure 2.1, the currents are circulat-
ing so that the sum of the current crossing the area perpendicular to the current
is zero.

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics



�

� �

�

46 2 Conductors with Rectangular Cross Sections

b

l

Eddy current

B
0

sin(ωt)

Figure 2.1 Side view of lamination
with path of eddy current.

The formulas we will develop in this section are still used in the design of these
magnetic components. We will also see that these devices often have windings,
usually made of copper or aluminum, which use conductors with rectangular cross
sections. These include motors and generators with formed coils, many power
transformers, and transformers and inductors with sheet or foil windings.

To develop expressions for resistance-limited eddy currents and losses in plates,
we will follow the approach of Carter [15]. Consider a non-ferromagnetic conduct-
ing plate of length 𝓁, width b, and depth D as shown in Figure 2.2. An alternating
magnetic flux density B(t) = B0 cos(𝜔t) impinges perpendicularly on the surface

x

y

z

dx

x

b/2

D

B(t) = B
0
 cos(ωt)

�

Figure 2.2 Sides of eddy current loop in non-ferromagnetic conducting plate with
perpendicularly impinging magnetic flux density.
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of the plate. Eddy currents arise in the plate so as to produce flux that opposes the
change in B(t). A section of the eddy current path, of track width dx, is indicated
in the figure.

It will be assumed that the flux density produced by the eddy current is small
relative to the externally-imposed flux density B(t). As we discussed, since b is
small compared to the skin depth, the reaction field produced by the eddy currents
may be neglected. It is further assumed that the width b of the plate is small relative
to the length 𝓁 so that the ends of the current path can be neglected.

The flux enclosed by the differential current loop in Figure 2.2 is

𝜓(t) = B(t) ⋅ Area = 2x𝓁B0 cos(𝜔t) (2.1)

The induced voltage (emf) that drives current around the loop is the negative of
the derivative of 𝜓 with respect to time

(t) = −d𝜓
dt

= 2x𝓁𝜔B0 sin(𝜔t) (2.2)

and the RMS induced voltage is

rms =
√

2x𝓁𝜔B0 (2.3)

The resistance of the current track, neglecting the ends, is

dR =
𝜌 × path length

path cross-sectional area
= 2𝜌𝓁

D dx
(2.4)

where 𝜌 is the resistivity.
Now the eddy current loss in the track can be found by combining (2.3) and (2.4)

dW =
2

rms

dR
=

(x𝜔B0)2D𝓁

𝜌
dx (2.5)

and integrating to obtain the total loss in the plate yields

W = ∫
x=b∕2

x=0
dW = ∫

b∕2

0

(x𝜔B0)2D𝓁

𝜌
dx =

b3(𝜔B0)2D𝓁

24𝜌
(2.6)

or when frequency is expressed in terms of f = 𝜔∕2𝜋

W =
b3(𝜋f B0)2D𝓁

6𝜌
(2.7)

Finally, the loss per unit volume is

loss
volume

= W
D𝓁b

=
(𝜔B0b)2

24𝜌
=

(𝜋f B0b)2

6𝜌
(2.8)

The current density is found as the electric field divided by the resistivity. The
electric field is found by dividing the induced voltage, from (2.3), by the path
length, 2𝓁:

Jrms(x) =
1
𝜌

rms

2𝓁
=

√
2x𝜔B0

2𝜌
(2.9)
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The strong dependence of the loss on width, b, as shown in Equation (2.6), sug-
gests that an effective way to reduce the loss is to subdivide or laminate the plate
into N-insulated sections of width b∕N. The total loss is found from (2.6), replacing
b with b∕N and multiplying by N:

W = N
(b∕N)3(𝜔B0)2D𝓁

24𝜌
=

b3(𝜔B0)2D𝓁

24N2𝜌
(2.10)

Comparison of (2.6) and (2.10) shows that laminating the plate into N sections
reduces the total loss by a factor of N2. Next, we will turn our attention to the case
in which the reaction field plays a role in eddy current distribution.

2.2 Infinite Plate: Reactance Limited

In Section 2.1, we analyzed the problem of a rectangular plate in a sinusoidally
time-varying field using the resistance-limited assumption. The more general
problem is the reactance-limited case that we will now look into. There are two
variations of this case, one being the semi-infinite conducting region and the
other being the rectangular plate of finite width. Both can be represented by
considering the large solenoid with sinusoidal current schematically shown in
Figure 2.3. The coils extend infinitely in the y and z directions. Between the coils,
we have a linear conducting region. This region also extends infinitely in the y
and z directions. The magnetic field has only a y, or vertical, component. There is
no variation of the field in the y and z directions. The ac field will induce currents

x

y

z

Source currents

Induced currents

Figure 2.3 Infinite
conducting slab with source
and induced currents.
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in the conducting slab and, due to Lenz’s law, the currents will be in a direction
to oppose the change of magnetic field produced by the coils.

Carter [15] provides a first-principles approach to this problem. The induced
currents in the conducting region have only a z component. The induced electric
field is, therefore, in the z direction as well. We will first let the width of the slab
grow to infinity to treat the semi-infinite domain geometry and then analyze the
finite plate. In the first case, the distance between the source currents is infinite,
and we can consider only the infinite half-plane (left side). The solid conductor is
shown in Figure 2.4.

The material occupies the half-space x > 0. There is a magnetic field, H0, applied
in the y direction. The problem is infinitely deep in the z direction, i.e. into the
page, which implies there is no variation in the z direction. Since the problem is
infinite in the y direction as well and an infinitely long solenoid is applying the
field, there is no variation of any field quantity in the y direction. The field varies
sinusoidally with time at angular frequency 𝜔. The material has constant homo-
geneous and isotropic properties of permeability 𝜇 and conductivity 𝜎. In this
one-dimensional case, B and H have only a y component, E and J have only a
z component and these four quantities vary in the x direction.

Ampere’s law states that the line integral of the magnetic field around a closed
path is equal to the current (Ampere-turns) enclosed. In evaluating Ampere’s law,

Figure 2.4 Half-space with applied sinusoidal
magnetic fields.

x

y

z

J
z
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H
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it is only the component of H in the direction of the integration path which is
included and thus the dot product.

∮ H ⋅ d𝓁 = Iencl (2.11)

We apply this integral around the rectangular contour abcda which lies in the
(x, y) plane. Note that for this one-dimensional example, there is only a y com-
ponent of the magnetic field and a z component of the electric field and current.
Since there is no magnetic field in the x direction, there is no contribution to the
line integral along ab and cd due to the dot product. In this case, the line integral is

∮abcda
H ⋅ d𝓁 =

(
Hy +

𝜕Hy

𝜕x
Δx
2

)
Δy −

(
Hy −

𝜕Hy

𝜕x
Δx
2

)
Δy

=
𝜕Hy

𝜕x
ΔxΔy (2.12)

Setting this result equal to the total current enclosed, JzΔxΔy, yields
𝜕Hy

𝜕x
= Jz (2.13)

Faraday’s law states that the line integral of the electric field around a closed
path is equal to the negative of the time rate of change of the magnetic flux linking
the path:

∮ E ⋅ d𝓁 = −𝜕𝜓

𝜕t
(2.14)

We apply this integral to path efghe. Referring to the figure, ef and gh are in the x
direction while fg and he are in the z direction. There is no component of the elec-
tric field in the x direction so the line integrals along ef and gh have no contribution
due to the dot product.

∮efghe
E ⋅ d𝓁 = −

(
Ez +

𝜕Ez

𝜕x
Δx
2

)
Δz +

(
Ez −

𝜕Ez

𝜕x
Δx
2

)
Δz

= −
𝜕Ez

𝜕x
ΔxΔz (2.15)

In this case, with sinusoidal time variation, we can replace 𝜕∕𝜕t by j𝜔 in (2.14). We
also use the relationship between flux and flux density, 𝜓m = ByΔxΔz. With these
substitutions in Equations (2.14) and (2.15),

𝜕Ez

𝜕x
= j𝜔By (2.16)

Note that the two equations we found, (2.13) and (2.16), can be obtained directly
from the point, or differential, forms of Ampere’s law and Faraday’s law:

∇ × H = J

∇ × E = −𝜕B
𝜕t
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Using the fact that H has only a y component and E only a z component and there is
no variation of any quantity in the y or z directions, the same result is easily found.
However, the integral form-based derivations above give more physical informa-
tion and are consistent with future derivations.

The magnetic field quantities B and H are related by the constitutive equation

B = 𝜇H (2.17)

and J and E are related by the constitutive equation

J = 𝜎E (2.18)

Then (2.13) can be written as
𝜕By

𝜕x
= 𝜇𝜎Ez

Differentiating again with respect to x, and using the result of (2.16), we obtain

𝜕2By

𝜕x2 = 𝜇𝜎
𝜕Ez

𝜕x
= j𝜔𝜇𝜎By (2.19)

This second-order homogeneous differential equation with constant coefficients
is the diffusion equation written for sinusoidal time variation. Defining

k =
√

j𝜔𝜇𝜎 (2.20)

we find the general solution to (2.19) is

By(x) = a1ekx + a2e−kx (2.21)

This may be checked by substitution back into (2.19).
The

√
j term is a bit inconvenient. We can replace it using the Euler relationship

ej𝜃 = cos 𝜃 + j sin 𝜃

From this we see that

j = ej𝜋∕2

and therefore√
j = ej𝜋∕4 =

1 + j√
2

Substituting this result into (2.20) yields

k = (1 + j)
√

𝜔𝜇𝜎

2
(2.22)

or if we define a new parameter 𝛿 such that

𝛿 =
√

2
𝜔𝜇𝜎

(2.23)
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then

k =
1 + j
𝛿

(2.24)

and (2.21) can be written as

By(x) = a1e(1+j)x∕𝛿 + a2e−(1+j)x∕𝛿 (2.25)

or

By(x) = a1ex∕𝛿ejx∕𝛿 + a2e−x∕𝛿e−jx∕𝛿 (2.26)

In our present case of the semi-infinite plate, we may eliminate the first term
because as x increases without bounds, this term will go to infinity. We therefore
set a1 = 0. When x = 0, i.e. at the surface of the plate, the flux density should be
the source flux density B0; therefore a2 = B0, and the expression for By becomes

By(x) = B0e−x∕𝛿e−jx∕𝛿 (2.27)

The first exponential of (2.27) indicates that the magnitude of the flux density is
decreasing exponentially with x. The second exponential has a magnitude of unity
and describes the phase shift of the flux density.

The quantity 𝛿 given in (2.23) is the depth of penetration or skin depth and is one
of the most important parameters in the study of eddy currents. The skin depth has
the units of length. At x = 𝛿, the value of the flux density (and as we will see, the
current density as well) is 1∕e ≈ 0.37 of its value at the surface. In 3 − 4 skin depths,
the flux density is practically zero. From the second exponential of (2.27), we see
that at a depth x = 𝛿 the flux density lags the surface flux density B0 by one radian.

The current density can be found from the flux density. Combining (2.13)
and (2.17), we obtain

Jz =
1
𝜇

𝜕By

𝜕x
(2.28)

Using the solution for By from (2.27), this gives

J = −
B0

𝜇

1 + j
𝛿

e−(1+j)x∕𝛿

= −J0e−(1+j)x∕𝛿 (2.29)

The total loss to infinity is found by integrating the loss density into the
conductor where J is the RMS current density.

W = ∫
∞

0

1
𝜎
|J|2 dx

= 1
𝜎
|J0|2 ∫ ∞

0
e−2x∕𝛿 dx

= 𝛿

2𝜎
|J0|2 (2.30)
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This is the loss per square meter of surface. The loss is the same as if the current
density at the surface is constant to a depth 𝛿∕2. The skin depth is, therefore, very
useful in obtaining the equivalent resistance or power in a solid conductor.

2.3 Finite Plate: Reactance Limited

Now let us generalize this to the problem of a finite width plate as shown in
Figure 2.5. We start by recalling the general solution that we obtained for By.
In this case, we retain both terms:

By(x) = a1e(1+j)x∕𝛿 + a2e−(1+j)x∕𝛿

Since we have a symmetric problem, the constraints are that the resultant flux
density is equal to the source flux density B0 at x = ±d. These conditions are sat-
isfied by setting

a2 = a2 =
B0

e(1+j)d∕𝛿 + e−(1+j)d∕𝛿

and then

By(x) = B0
e(1+j)x∕𝛿 + e−(1+j)x∕𝛿

e(1+j)d∕𝛿 + e−(1+j)d∕𝛿

= B0
cosh

[
(1 + j) x∕𝛿

]
cosh

[
(1 + j) d∕𝛿

] (2.31)

Due to the eddy currents, the effective flux-carrying cross-sectional area of the
plate is reduced. The total flux passing through the plate per meter depth is found

Figure 2.5 Resultant fields
and currents in a finite-width
plate.
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by integrating the flux density from x = −d to x = +d:

𝜓m =
B0

cosh
[
(1+j)d

𝛿

] ∫ d

−d
cosh

[
(1 + j) x

𝛿

]
dx

=
2B0𝛿

1 + j

sinh
[
(1+j)d

𝛿

]
cosh

[
(1+j)d

𝛿

] (2.32)

We will now define dimensionless parameters 𝛼 and 𝛽 such that

𝛼 = d
𝛿
= 𝛽

and employ the following identities

sinh (𝛼 + j𝛽) = sinh 𝛼 cos 𝛽 + j cosh 𝛼 sin 𝛽

cosh (𝛼 + j𝛽) = cosh 𝛼 cos 𝛽 + j sinh 𝛼 sin 𝛽

2cos2𝛼 = 1 + cos 2𝛼

2sin2
𝛼 = 1 − cos 2𝛼

2cosh2
𝛼 = cosh 2𝛼 + 1

2sinh2
𝛼 = cosh 2𝛼 − 1

with (2.32) to write the amplitude of the flux per unit depth as

|𝜓m| =√2B0𝛿

√
cosh 2𝛼 − cos 2𝛼
cosh 2𝛼 + cos 2𝛼

(2.33)

If there were no eddy currents, the flux would be

𝜓0 = 2B0d (2.34)

Therefore, we can say that the eddy currents have resulted in an effective reduction
in the area of the laminations by a factor of||||𝜓m

𝜓0

|||| = 1
𝛼
√

2

√
cosh 2𝛼 − cos 2𝛼
cosh 2𝛼 + cos 2𝛼

(2.35)

This factor is plotted in Figure 2.6.
The current density is found from the flux density using

J =
𝜕Hy

𝜕x
= 1

𝜇

𝜕By

𝜕x
(2.36)

Using the expression for By(x) from (2.31), this becomes

Jz =
B0

𝜇

(
1 + j
𝛿

) sinh
[
(1 + j) x∕𝛿

]
cosh

[
(1 + j) d∕𝛿

] (2.37)
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Figure 2.6 Reduction of effective area with thickness.

which can be written as

Jz =
B0

𝜇

(
1 + j
𝛿

){
sinh(x∕𝛿) cos(x∕𝛿) + j cosh(x∕𝛿) sin(x∕𝛿)

cosh 𝛼 cos 𝛼 + j sinh 𝛼 sin 𝛼

}
(2.38)

where 𝛼 = d∕𝛿. Using the same identities above, the magnitude is found as

|Jz| =
√

2B0

𝜇𝛿

√
cosh(2x∕𝛿) − cos(2x∕𝛿)

cosh 2𝛼 + cos 2𝛼
(2.39)

To find the losses in the plate, we integrate the loss density

W = ∫
d

−d

|J2|
𝜎

dx (2.40)

W =
2B2

0

𝜎𝜇2𝛿

( sinh 2𝛼 − sin 2𝛼
cosh 2𝛼 + cos 2𝛼

)
(2.41)

We have seen in (2.8) that in the case of a thin lamination with uniform flux den-
sity applied normal to the “small” dimension, we can use the resistance-limited
formula for the eddy current losses. Substituting b = 2d into (2.8) yields

W =
(
𝜔B0d

)2
𝜎

6
resistance-limited case (2.42)

Making the substitution

𝛿4𝜔2𝜎 = 4
𝜇2𝜎

(2.43)
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into (2.42), it can be shown that the effect of eddy currents on the losses in the
reactance-limited case may be determined by applying the following correction
factor to the losses for the resistance-limited case.

K = 6𝛿3

d3

[
sinh (d∕𝛿) − sin (d∕𝛿)
cosh (d∕𝛿) + cos (d∕𝛿)

]
(2.44)

The correction factor, K, plotted against d∕2𝛿 is shown in Figure 2.7.
For cases in which the skin depth is greater than the plate half-width, the correc-

tion factor is approximately 1.0 which means that the resistance-limited formula is
a good approximation. When the plate half-width gets to be several times the skin
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Figure 2.7 Correction factor in Equation (2.44).
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depth, the loss is much lower than the resistance-limited formula would predict.
This is due to the cancelation of the flux due to the eddy current field. We can also
comment that the resistance-limited formula will always over-predict the losses in
the plate. It is often used in design due to its simplicity and the knowledge that the
results will be conservative. The loss formula is then

W ′′ = K
2𝜎
(
𝜔B0d

)2

3
(2.45)

We have found the power dissipated in a plate is

P =
H2

0

𝜎𝛿

(
sinh (2d∕𝛿) − sin (2d∕𝛿)
cosh (2d∕𝛿) + cos (2d∕𝛿)

)
(2.46)

Another way of writing this is

P =
H2

0

𝜎𝛿

( e𝛼 − e−𝛼 − 2 sin 𝛼

e𝛼 + e−𝛼 + 2 cos 𝛼

)
(2.47)

where we define 𝛼 = 2d∕𝛿.
As we can see from Equation (2.47), if 𝛼 is very large, or the plate width is much

larger than 𝛿 this simplifies to

P =
H2

0

𝜎𝛿
(2.48)

This is just two times the result that we obtained for the semi-infinite plate since
we now consider both sides of the plate. We can also analyze the equation in the
limit in which the plate thickness is much smaller that the skin depth. Replacing
the exponential and trigonometric functions by series expansions we have

P =
H2

0

𝜎𝛿

⎡⎢⎢⎢⎣
(

1 + 𝛼 + 𝛼2

2!
+ 𝛼3

3!
· · ·
)
−
(

1 − 𝛼 + 𝛼2

2!
− 𝛼3

3!
· · ·
)
− 2
(
𝛼 − 𝛼3

3!
· · ·
)

(
1 + 𝛼 + 𝛼2

2!
+ 𝛼3

3!
· · ·
)
+
(

1 − 𝛼 + 𝛼2

2!
− 𝛼3

3!
· · ·
)
+ 2
(
𝛼
𝛼3

3!
· · ·
) ⎤⎥⎥⎥⎦

(2.49)

This simplifies to

P =
H2

0

𝜎𝛿

⎡⎢⎢⎣
4 𝛼3

3!
+ · · ·

4 + 4 𝛼4

4!
+ · · ·

⎤⎥⎥⎦ (2.50)

Ignoring terms higher than third order we get

P =
H2

0

𝜎𝛿

𝛼3

6
= 1

3
(
𝜇H0

)2
𝜎𝜔2d3 (2.51)

We can find the loss per unit volume is then

P =
𝜔2B2

0𝜎d2

3
(2.52)
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If we express the loss in terms of the lamination thickness, b = 2d, then
Equation (2.52) becomes

P =
𝜔2B2

0𝜎b2

12
(2.53)

This result agrees with that found in Equation (2.10).

2.4 Superposition of Eddy Losses in a Conductor

We have seen that the current distribution in a conductor is modified by the
self-field of the applied current and also by any external fields produced by outside
sources. We can say that the load current distribution depends on the material
properties and geometry of the conductor as well as the frequency of the applied
source. The eddy currents produced by external fields will also result in a
redistribution of the current in the conductor. Let us assume that this external
field is constant over the conductor and can be resolved into two perpendicular
components which we will call Bx and By as shown in Figure 2.8. We will call the
eddy current density produced by these two components Jx and Jy, respectively.
The subscripts here refer to the flux that is producing the eddy currents. All
currents are in the z direction. We also recall from previous discussions that these
eddy currents are circulating currents and therefore sum to zero over the surface
of the conductor. Calling the current distribution produced by the self field J0, we
have

J(x, y) = J0(x, y) + Jx(x, y) + Jy(x, y) (2.54)
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Figure 2.8 Superposition of eddy losses
in a rectangular conductor.
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The eddy loss is

W = 𝜌∫
a

0 ∫
b

0
J2dxdy (2.55)

Multiplying out the terms, we find

W = 𝜌∫
a

0 ∫
b

0

(
J2

0 + J2
x + J2

y + 2J0Jx + 2J0Jy + 2JxJy
)

dx dy (2.56)

Combining terms

W = 𝜌∫
a

0 ∫
b

0
J2

0 dx dy + 𝜌b∫
a

0
J2

x dx + 𝜌a∫
b

0
J2

y dy

+ 2𝜌b∫
a

0
J0Jx dx + 2𝜌a∫

b

0
J0Jy dy + 2𝜌∫

a

0
Jx dx ∫

b

0
Jy dy

(2.57)

The first three terms on the right are the self-loss, the loss due to the x compo-
nent of the flux density and the loss due to the y component of the flux density
respectively. Since Jx and Jy are circulating currents, their integrals over the cross
section of the conductor vanish. This means that the last term is zero. It remains
to consider the fourth and fifth terms which have the product of the load current
density and eddy current density. These generally will not be zero as we saw in
the discussion of proximity effect. Let us consider the symmetry involved in this
problem. Referring to Figure 2.8 again, we have a line of symmetry along the ver-
tical center and horizontal center. For a homogeneous conductor, we, therefore,
expect that the load current distribution will have the same symmetries. There
may be exceptions to this. For example, if the conductor is near a magnetic body,
the symmetry may be modified. In this example, we are assuming a conductor in
empty space. With the external fields Bx and By assumed constant, we also will
have that the eddy current density, Jx will be symmetric around the horizontal
axis of symmetry (symmetric top to bottom), and the eddy current density, Jy will
be symmetric around the vertical symmetry axis (symmetric right to left). If these
conditions are met, then the integrals of the products do indeed vanish over the
conductor surface. This leaves

W = 𝜌∫
a

0 ∫
b

0
J2

0 dx dy + 𝜌b∫
a

0
J2

x dx + 𝜌a∫
b

0
J2

y dy (2.58)

We therefore conclude that, under these circumstances, the losses due to each
component can be separately computed and the results added together.

2.5 Discussion of Losses in Rectangular Plates

With the theory we have developed, we are in a position to better understand the
variation of losses in plates and can consider the one-dimensional solution in a
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Figure 2.9 Plate with tangential excitation.

number of practical applications [30, 47]. The geometry under consideration is
illustrated in Figure 2.9. We begin with the one-dimensional diffusion equation
written for the magnetic field. The magnetic field has only a y component and the
current density has only a z component.

𝜕2Hy

𝜕x2 = j𝜔𝜎𝜇Hy (2.59)

With

𝛽 =
√

j𝜔𝜎𝜇 (2.60)

The solution is

Hy = Ce𝛽x + De−𝛽x (2.61)

The constants are found by applying boundary conditions. If the surface field is
H1 at x = b and H2 at x = −b, we can solve for the constants.

C =
H1e𝛽b − H2e−𝛽b

e2𝛽b − e−2𝛽b
(2.62)

D = −
H1e−𝛽b − H2e𝛽b

e2𝛽b − e−2𝛽b
(2.63)

By taking the curl of Equation (2.61), we find the electric field as

Ez =
𝛽

𝜎

(
Ce𝛽x + De−𝛽x) (2.64)

In comparing the examples below, it will be useful to find the loss per unit sur-
face area (yz). It is convenient to use the Poynting vector, which gives the real and
reactive power transferred across a surface. Since the directions of the magnetic
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Figure 2.10 Case 1: plate
with current parallel.
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y
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field and electric field are perpendicular, we can evaluate the Poynting vector at
the surface of the plate as

S = P + jQ = 1
2
(

EzH∗
y |x=b − EzH∗

y |x=−b
)

(2.65)

The factor of 1∕2 comes from the fact that we are using peak values of the field
vectors and are looking for the time average. Using this result, we can analyze sev-
eral different situations by applying the appropriate values of H1 and H2. We will
consider three practical examples that illustrate some of the physics of eddy cur-
rent loss in plates. The first is a current-carrying conductor or current sheet parallel
to the surface of the plate as shown in Figure 2.10.

The flux inside the plate is parallel to the surface, in the y direction. If we set
the tangential field on the side opposite the current source to zero, we are impos-
ing the condition that no flux fully penetrates the plate and the current in the
plate is the reflection of the current source. Applying the boundary conditions
H1 = 1.0 and H2 = 0.0 A m−1, we find the constants and evaluate the magnetic
field and the electric field at the surface. Then we evaluate the Poynting vector
to find the power. As an example, consider a copper plate, (𝜎 = 5.8 × 107 S m−1,
𝜇0 = 4𝜋 × 10−7 H m−1) with 60 Hz excitation. To make the results more general, we
plot the normalized surface loss density, i.e. dividing the loss by P0 = H2

1∕(2𝜎𝛿) vs.
the normalized depth (b∕𝛿). The results for this example are shown in Figure 2.11.

We notice that initially, as the plate gets thicker, the losses go down. This is
because our boundary conditions force a certain current to flow in the plate, and
with a thicker plate, there is more area for the current to pass through. As the plate
gets thicker than around two skin depths, the results asymptotically approach
unity. This is consistent with the results that we found for finite plates with thick-
ness much greater than the skin depth. The loss is the same as if all of the current
were uniformly distributed in one skin depth. Increasing the thickness of the plate
has no effect on the total losses in this case.

For the second example, we consider a conductor penetrating a conducting
plate, such as would be the case for a bushing. In this example, the magnetic field
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Figure 2.11 Normalized loss
density vs. normalized depth
for parallel conductor case.
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Figure 2.12 Case 2:
current perpendicular to
and through the surface.

on both sides of the plate are equal. This is illustrated in Figure 2.12. We then
evaluate the constants and the Poynting vector as before. The results for this case
are displayed in Figure 2.13.

We see that the trend is different compared to Figure 2.11. In the this case, the
losses initially go up as the plate thickness grows. This is because, with the field
excitation constant, more eddy currents will flow in the plate as it gets thicker.
We are in the resistance-limited regime. Decreasing the resistance increases the
loss. As the plate continues to get thicker, however, the loss density peaks and
approaches a normalized value of 2 (since both sides of the plate are involved),
and there is relatively little current in the center of the plate.

In the third example, we have current flowing along a plate as in a bus bar. The
tangential magnetic field in this case is equal and opposite on the two sides of the
plate. This is illustrated in Figure 2.14.
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Figure 2.13 Normalized loss
density vs. normalized depth
for perpendicular conductor.
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Figure 2.14 Case 3: current
flowing along plate.

x

yH
2

H
1

Using Equation (2.65), we find the result shown in Figure 2.15. The normal-
ized losses are very high for a thin plate since we are forcing a constant current
through the area. As the plate increases in thickness, the loss comes down quickly
and approaches a value of 2 as the skin depth becomes much smaller than the
thickness. We have the same asymptote as in the second example since both sides
of the plate are involved.

These examples, although idealized, are of practical importance and the analysis
here is useful in the design of electric machines and transformers as well as other
application in which conductors pass near or through conducting structures. The
application of the theory that we developed aids in the understanding of how these
losses vary as the geometry changes.

In order to emphasize the usefulness of the formulations we have discussed, let
us apply these results to other practical problems. We have analyzed the case of



�

� �

�

64 2 Conductors with Rectangular Cross Sections

0.5 1 1.5 2

0

5

10

15

20

25

30

Normalized depth

N
o
rm

al
iz

ed
 l

o
ss

Case 3: H
1 
= 1.0, H

2 
= –1.0

Figure 2.15 Loss density for
a current-carrying plate vs.
normalized thickness.

rectangular bus bar conductors with go and return currents in Chapter 1 using
a coupled circuit model. The problem there was two-dimensional due to the
geometry in which the conductors were narrow and were in the same plane. We,
therefore, had both x and y components of the field. There are practical geome-
tries for these bus bars in which the fields and eddy currents are approximately
one-dimensional, and we can use our solutions to the diffusion equation to
calculate current distribution and losses in these cases. Referring to Figure 2.16,
we consider two parallel conducting plates separated by a distance 2d. Each plate
has thickness 2b and height 2a.

x

y

I I
H

2b

2a

2d 2b Figure 2.16 Parallel conducting plates carrying
go-and-return current.



�

� �

�

2.5 Discussion of Losses in Rectangular Plates 65

In this example, current is only in the z direction and we assume the conductors
extend to infinity in this direction. We will also assume that the height, 2a, is much
greater than the thickness, 2b, of the conductors. In this case, the field is solenoidal
and the field is negligible outside the two plates and uniform in the y direction
between the plates with a value of

Hy =
I

2a
(2.66)

We have already seen this problem and can write the general solution as

Hy = Ce𝛽x + De−𝛽x (2.67)

where

𝛽 =
√

j𝜔𝜇𝜎 (2.68)

Applying the boundary conditions, we see that

Ce𝛽d + De−𝛽d = I
2a

(2.69)

We also have

Ce𝛽(d+2b) + De−𝛽(d+2b) = 0 (2.70)

Solving Equations (2.69) and (2.70) for C and D, we obtain

Hy =
I

2a
sinh 𝛽(x − d − 2b)

sinh 2𝛽b
(2.71)

Using

∇ × H = J = 𝜎E (2.72)

we obtain

J = 𝛽I
2a

cosh 𝛽(x − d − 2b)
sinh 2𝛽b

(2.73)

Integrating the square of Equation (2.73) over the conductor, we obtain the
losses in one of the conductors [18].

P = I2

2𝛿𝜎a
sinh(4b∕𝛿) + sin(4b∕𝛿)
cosh(4b∕𝛿) − cos(4b∕𝛿)

(2.74)

We note here that this problem, for each conductor separately, is the case that we
treated earlier as example 1, with magnetic field applied tangential to one surface
of the conductor and no magnetic field on the opposite side. This is the situation
that will occur in the long solenoid. In that case, we were able to find and plot
the normalized loss as a function of the normalized width of the plate. We can
compare this to the result that we get by evaluating Equation (2.74) and let the
width (2b) of the plate vary. The result of (2.74) is divided by the coefficient I2

2𝛿𝜎a
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Figure 2.17 Normalized loss
vs. normalized width for
parallel rectangular
conductors.

to get the normalized loss. The result is plotted in Figure 2.17. The results are the
same as the results of Figure 2.11.

As another example, let us reconsider the lamination problem in which a plate
is placed in a uniform field. This problem was solved in Section 2.3. In this case, we
applied a field parallel to the surface of the conductor, and the field was the same
on both sided of the conductor. This is the same situation as our Case 2 as shown
in Figure 2.12. We have plotted the results of normalized loss vs. normalized width
in Figure 2.13. In that Section 2.3, we found the loss in the plate as

P =
2H2

0

𝛿𝜎

sinh(4b∕𝛿) − sin(4b∕𝛿)
cosh(4b∕𝛿) + cos(4b∕𝛿)

(2.75)

We can now find the normalized loss by dividing Equation (2.75) by the coef-
ficient H2

0
𝜎𝛿
. If we plot this formula against the normalized width of the plate, we

obtain the graph in Figure 2.18. As we can see, the results are the same.
As a third example, let us consider the problem of an isolated plate carrying cur-

rent I as shown in Figure 2.19. Since all currents must form closed paths, we can
look at this isolated conductor as the superposition of the two problems as shown
in the figure. If the conductors are tall compared to the width and conductor spac-
ing, we can continue to use the one-dimensional analysis. We see that each of the
problems with go-and-return currents equal to I∕2 are the parallel plate conduc-
tor problem that we discussed above. Recall, in this case, there is no magnetic field
outside the conducting sheet, so the two problems are decoupled.

We now can look at the normalized loss in the plate vs. the normalized depth.
To find this, we can use Equation (2.74) and make adjustments to account for the
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Figure 2.18 Normalized loss
in a finite plate with uniform
field applied vs. normalized
width.
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Figure 2.19 Single conductor as the superposition of two sets of parallel conductors.
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Figure 2.20 Normalized loss
in an isolated current-carrying
conductor vs. normalized
width.

fact that we have two identical problems, each with current I∕2. Then we adjust
the normalized thickness to 2d∕𝛿. This is plotted in Figure 2.20.

There are two curves plotted in Figure 2.20, but as they are identical they lie on
top of each other. One is the evaluation of Equation (2.74), modified as discussed
above and the other is the Poynting vector solution.

While this discussion was limited to one-dimensional analysis, the results illus-
trate some of the practical implications of conductors in configurations that are
commonly found in design.

2.6 Eddy Currents in a Nonlinear Plate

We have seen in the one-dimensional case [2, 42, 62] that

𝜕2Bx

𝜕z2 = 𝜇𝜎
𝜕Bx

𝜕t
(2.76)

and the flux density at any depth can be found as

Bx = ℜ
{

B0e(j𝜔t−z
√

j𝜔𝜇𝜎)
}

(2.77)

where B0 is the flux density at the surface. The total flux is then

𝜓m(t) = ∫
∞

0
Bx dz =

B0√
j𝜔𝜇𝜎

ej𝜔t (2.78)
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Figure 2.21 Limiting B − H curve of steel.
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In terms of the total flux, the flux density can be written

Bx = ℜe
{√

j𝜔𝜇𝜎𝜓m maxe(j𝜔t−z
√

j𝜔𝜇𝜎)
}

(2.79)

Now let us consider a nonlinear material characteristic as shown in Figure 2.21.
The flux density has only two states ±Bs, the saturation flux density. The mate-

rial can switch only when H = 0. A sinusoidal flux, 𝜓m(t) = ℜ
{
𝜓mej𝜔t}, can be

supported in a material like this by a series of square or rectangular waves.
Since𝜓m(t) is periodic, we can construct it from square waves of the same period.

This is illustrated in Figure 2.22. This leaves two possibilities for the magnetized

Figure 2.22 Making a sinusoidal wave from square waves.
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iron. It is magnetized ±Bs periodically at a frequency 𝜔, or it is constant at ±Bs
being left at that state from a previous excitation.

At some instant of time, the material above a certain level, z1, is magnetized to
−Bs, while below this level it is +Bs. At some later time, this layer of separation
has moved to z2. The movement of the surface took place in a time Δt. The phase
shift between the rectangular waves at z1 and z2 is 𝜔Δt radians. The surface of
separation will move to a certain depth and no further. At this depth, the total flux
above the surface of separation is −𝜓m max . If we call this depth 𝛿, then

𝛿 =
𝜓m max

Bs
(2.80)

We note several things. First, the depth of penetration, 𝛿, is interpreted differently
than in the linear case. In the linear case, the depth of penetration is the depth
at which the flux density is 1∕e of its value at the surface. The depth of penetra-
tion depends only on the frequency and the material properties (conductivity and
permeability). In the nonlinear limiting case, the depth of penetration is the maxi-
mum distance at which the material switches from +Bs to −Bs and vice versa. This
distance depends on the total flux and the saturation flux density Bs.

The surface of separation has moved from z = 0 to z = 𝛿 in one half-cycle since
the flux has changed from 𝜓m max to −𝜓m max in that time. This means that the
phase shift between the rectangular waves at z = 0 and z = 𝛿 is 𝜋 radians.

Consider now that the surface of separation is at location z′. As the surface
moves from z′ to z′ + Δz′, the change in flux is

Δ𝜓m = −2BsΔz′ (2.81)

In differential form, we have
dz′

d𝜓m
= − 1

2Bs
(2.82)

We can integrate this equation starting from 𝜓m max and z = 0

z′ = 1
2Bs ∫

𝜓m

𝜓m max

−1 d𝜓 (2.83)

So that

z′ =
𝜓m max − 𝜓m(t)

2Bs
(2.84)

With this model, we can find the eddy current distribution as

J = 𝜎E (2.85)

where the electric field is found as

∇ × E = −𝜕B
𝜕t

(2.86)
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Figure 2.23 Separation surface and
coordinate system.
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In integral form, this becomes

∮
C

E ⋅ d𝓁 = − 𝜕

𝜕t∫ ∫
S

B ⋅ dS (2.87)

where the curve C bounds the surface S. If the curve C encloses a region which
does not contain the surface of separation between +Bs and −Bs, then the integral
will be zero. That is to say, the flux density in the region is constant. If, however, the
contour intersects the surface of separation, then there will be an induced electric
field which will depend on the velocity at this surface. For this one-dimensional
case, we can evaluate the integral directly (Figure 2.23).

The flux density has only an x component. We choose the integration path to
be a closed contour in the yz plane. At some instant, the surface of separation is
at a depth z′ and is moving in the z direction. The intersection of the line integral
and the surface of separation is a line segment of length Δy. The electric field, E,
has only a y component. It is constant above the surface of separation and below
the surface of separation, with a discontinuity at the surface. At some time, t, the
velocity of the surface is 𝜕z′

𝜕t
and the area with −Bs is S2, where S1 + S2 = S. At

some later time t + Δt, the surface has moved a distance 𝜕z′

𝜕t
Δt and an area with

−Bs is S1 +
𝜕z′

𝜕t
ΔtΔy and the area with +Bs is S2 −

𝜕z′

𝜕t
ΔtΔy. The integral can then

be written as

Ey|z′−Δz′Δy − Ey|z′+Δz′Δy =
2Bs

𝜕z′

𝜕t
ΔtΔy

Δt
(2.88)

so that

Ey|z′−Δz′Δy − Ey|z′+Δz′Δy = 2Bs
𝜕z′
𝜕t

(2.89)

which describes the discontinuity in the electric field at the surface of separation.
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From a physical standpoint, the electric field below the surface of separation
must be zero. If this were not true, uniform current would flow from the surface
to infinity which would require an infinite amount of energy. Therefore,

Ey = 2Bs
𝜕z′
𝜕t

, (0 ≤ z ≤ z′) (2.90)

and

Ey = 0, (z > z′) (2.91)

During the next half-cycle, the sign of E will be reversed since the flux density will
be changing from −Bs to +Bs, but the velocity remains positive. In this model then,
at any instant of time, the eddy current per unit depth is then

J = 2Bs𝜎z′ 𝜕z′
𝜕t

(2.92)

In terms of the applied sinusoidal flux,

J = −2Bs𝜎

(
𝜓m max − 𝜓m(t)

2Bs

)(
− 1

2Bs

𝜕𝜓m

𝜕t

)
(2.93)

or

J = 𝜎

2Bs

(
𝜓m max − 𝜓m(t)

) 𝜕𝜓m

𝜕t
(2.94)

Using 𝜓m(t) = 𝜓m max cos(𝜔t),

J = 𝜔𝜎

2Bs
𝜓2

m max (1 − cos(𝜔t)) sin(𝜔t) (2.95)

As an example of the use of this model, consider the current-carrying steel
cylinder shown in Figure 2.24. We will assume that the radius is larger than

J

R

r'

B
s

B
s

Figure 2.24 Steel cylinder with axial
current and skin depth.
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the skin depth. The separation boundary between the material magnetized +Bs
and −Bs is located at r = r′. As the boundary moves it causes a change in flux
linkage in the region r < r′. There is no change in the region r′< r < R. The flux
linkage of a small element in webers per unit length at time, t, is

λ(t) = −Bs
(

r′ − rs
)
+ Bs

(
R − r′

)
(2.96)

At time t + Δt, the surface of separation has moved to r′ + Δr′ and the flux link-
age has changed to

λ(t + Δt) = −Bs
(

r′ + Δr′ − rs
)
+ Bs

(
R − r′ − Δr′

)
(2.97)

The rate of change of flux linkage is therefore

dλ
dt

= −2Bs
dr′
dt

(2.98)

This expression is independent of rs so that everywhere in the region 0 < r < r′

has the same induced electric field,

Es = −2Bs
dr′
dt

(2.99)

The current density in the conducting annulus is

J = −2Bs𝜎
dr′
dt

(2.100)

and the total current in the conductor is

I = 𝜋
(

R2 − r′2
)

J (2.101)

or

I = −2Bs𝜋𝜎
(

R2 − r′2
) dr′

dt
(2.102)

For the case in which I is sinusoidal, using the geometry in the figure, the flux
is increasing, and the current I is positive. Integrating

−∫
r′

R
2𝜋Bs𝜎

(
R2 − r′2

)
dr′ = ∫

t

0
I dt (2.103)

2
3
𝜋Bs𝜎

[
r′3 − R2r′ + 2R3] = Ipeak

𝜔
(1 − cos (𝜔t)) (2.104)

If the current is not sufficient to cause the surface of separation to reach the center,
i.e. 𝛿 < R, we define the depth of penetration, 𝛿, as

𝛿 = R − r′min (2.105)
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This gives

2
3
𝜋Bs𝜎𝛿

2 (3R − 𝛿) =
2Ipeak

𝜔
(2.106)

If the depth of penetration is very small compared to the cylinder, (𝛿 ≪ R), then,

𝛿 =

√
Ipeak

𝜓mRBs𝜔𝜎
(2.107)

In terms of the peak surface current density

Jpeak =
Ipeak

2𝜋R
(2.108)

𝛿 =

√
2Jpeak

𝜔𝜎Bs
(2.109)

If the current is such that the surface of separation just reaches the center of the
cylinder at the end of each half-cycle, then r′ = 0 and

Ipeak = 2
3
𝜋𝜔𝜎BsR2 (2.110)

If the current is great enough that it reaches the center of the cylinder before the
end of the half-cycle, then for the rest of the cycle the conductor looks like a dc
conductor with uniform current density throughout.

We can now use these concepts to find the losses in a nonlinear conductor and
with this, find the effective impedance. For the case of a small depth of penetration,
(𝛿 ≪ R), the loss density (per unit volume) can be found as

P(t) = J2

𝜎
= i(t)2

𝜋2
(

R2 − r′2
)2 (2.111)

and the loss per unit length is then

P(t) = i(t)2

𝜋𝜎
(

R2 − r′2
) (2.112)

The radius of the surface of separation, r′, is a function of time and for small 𝛿 we
have

P(t) =
√

Bs

2𝜋R𝜎
(

i(t)2)(∫ t

0
i(t)dt

)−1∕2

(2.113)

Assuming that the current is sinusoidal,

P(t) = I
3
2

peak

√
Bs𝜔

2𝜋R𝜎

(
sin2(𝜔t)√
1 − cos(𝜔t)

)
(2.114)
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The average power over a half-cycle is

Pavg = I
3
2

peak

√
Bs𝜔

2𝜋R𝜎 ∫
𝜋

0

sin2
𝜃√

1 − cos 𝜃
d𝜃 (2.115)

Pavg = I
3
2

peak

√
Bs𝜔

2𝜋R𝜎
4
√

2
3𝜋

(2.116)

In terms of the depth of penetration, 𝛿, the loss in watts/unit length is

Pavg = I2
peak

8
3𝜋

1
2𝜋R𝛿𝜎

(2.117)

If we now define the effective resistance of the cylinder as

Reff =
Pavg

I2
rms

(2.118)

then

Reff = 16
3𝜋

( 1
2𝜋R𝛿𝜎

)
(2.119)

Assume now that the applied field is sinusoidal. In this case,

2Bs𝜎z′ 𝜕z′
𝜕t

= Jspeak
sin(𝜔t) (2.120)

The surface of separation is located at

z′ =

√
1

Bs𝜎 ∫
t

0
Jspeak

sin(𝜔t) (2.121)

for each half-cycle and the depth of penetration is

𝛿 = zmax =

√
2Jspeak

Bs𝜔𝜎
(2.122)

In the conducting layer, the current density is

J =
Js

z′
=
√

Bs𝜔𝜎Jspeak

sin(𝜔t)√
1 − cos(𝜔t)

(2.123)

and the loss dissipated per unit of surface area is

P = z′ J2

𝜎
= J

3
2

speak

√
Bs𝜔

𝜎

sin2(𝜔t)√
1 − cos(𝜔t)

(2.124)

The average power is

Pavg =
4
√

2
3𝜋

Jspeak

√
Bs𝜔

𝜎
(2.125)
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We can now find the real and reactive components of the electric field due to the
eddy currents. This will be useful in determining the power factor of the load. The
electric field due to the flux in the magnetic material is

E =

√
Bs𝜔Jspeak

𝜎

(
sin(𝜔t)√

1 − cos(𝜔t)

)
(2.126)

in each half-cycle. This can be written as

E =

√
Bs𝜔Jspeak

𝜎
cos
(
𝜔t
2

)
(2.127)

The fundamental component of the electric field is

E =

√
Bs𝜔Jspeak

𝜎

( 8
3𝜋

sin(𝜔t) + 4
3𝜋

cos(𝜔t)
)

(2.128)

The phase angle between the electric field and the exciting current is

𝜃 = tan−1(0.5) = 26.6∘ (2.129)

and the power factor is

cos 𝜃 = 0.895 (2.130)

We note that the phase angle of the impedance is different than in the case of the
linear conductor where we found that the angle is 45∘. In the linear case, the real
power and reactive power are the same and the resistance is equal to the reactance,
while in the limiting nonlinear case, the resistance is just twice the reactance. We
also note that the losses in a linear material are proportional to the current squared,
while in the limiting nonlinear case, the losses are proportional to the current to
the 3∕2 power.

2.6.1 Numerical Example

As an example, we will consider the case of a current sheet at the surface of a non-
linear steel conductor. In Section 6.1, we will introduce the finite element method,
which is a numerical technique that can be used to solve eddy current problems.
As an illustration of the eddy currents in nonlinear steel, we created a finite ele-
ment model for a deep steel plate. The problem is therefore one-dimensional. The
magnetization characteristic used in the model is shown in Figure 2.25.

The saturation flux density is 2.0T. The curve is not exactly the square wave non-
linear characteristic of Figure 2.21. This would be numerically unstable, with an
infinite slope at the beginning and a discontinuous slope at the saturation point.
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Figure 2.25 B − H curve for finite element example.

The curve is a fairly good approximation of the idealized characteristic of the non-
linear theory. The conductivity used is 𝜎 = 1.0 × 107 S m−1. This model was solved
in the time domain and run over a number of cycles until steady state was reached.

The theory above tells us that the current density above the surface of separa-
tion is the same at all locations, while the current density below the surface is zero.
In the finite element problem, we do not have the ideal square-wave B − H char-
acteristic, but if we look at the current density over a cycle at various depths from
the finite element analysis, we obtain the results of Figure 2.26.

In analyzing Figure 2.26, we see that at a particular depth, the current density is
essentially zero, until a certain point in the cycle, at which it jumps to a value very
close to the current density at all points above it. The further down in the material
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Figure 2.26 Finite element results of current density at different depths.
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we go, the longer the time at zero current. It is also the case that the total current
in the steel is sinusoidal in time. In other words, these distorted current densities,
when integrated over the conductor, produce a sine wave.

In Figure 2.26, we see that as we go further into the material, the current stays at
zero longer into the cycle. The peak of the applied current sheet was approximately
0.833 × 106 A m−1. From Equation (2.107), we can find the penetration depth. This
is the furthest point at which we will have current.

Using the values in this example, we obtain
𝛿 = 0.015 m (2.131)

This agrees quite well with the finite element results. So our conclusion is that
while the square wave saturation curve is an idealized characteristic that does not
exist in nature, the approximation is well-justified and the results for a smoother
curve, show the same behavior as in the limiting nonlinear case. We note that there
are some irregularities in the current waveform found with the finite element anal-
ysis. This is numerical noise and not physical. These occur at the points where the
current is discontinuous and the flux density switches. In these regions, the flux
density is changing very quickly and the numerical methods used have difficulty
converging. In these regions, we have relaxed the convergence requirements and
this gives rise to the numerical noise.

2.6.2 Effective Permeability

Many problems involving losses in nonlinear steel can be solved using a complex
phasor formulation with a degree of approximation. In phasor analysis, we
assume that all quantities are sinusoidally time varying and all are at the same
frequency. As pointed out above, the current and flux density are not sinusoidal
in the nonlinear steel. By considering the B − H loop in Figure 2.27, we can see
that if B varies sinusoidally, then H will have harmonics included. Similarly, if
H is sinusoidal, then B will have harmonics. In practice, for periodic problems in
nonlinear steel, both B and H will normally include harmonics. In a transformer,
for example, we may excite the primary with a sinusoidal voltage. This means,
by Faraday’s law, that the total flux is sinusoidal. But, if we look at the local flux
density in the steel, we find it is non-sinusoidal. An approximation that is often
used and has been verified by test results [13, 66, 67] involves finding an effective
permeability over a cycle.

There are many computational advantages in treating the problem using
steady-state sinusoidal (complex) mathematics. In this case, the problem is
formulated in terms of algebraic rather than differential equations. The problem
can be solved once without having to time-step through several cycles to get to a
periodic result. Further, quantities such as loss, resistance, and reactance come
directly from the phasor solution. These are more difficult to find from the time
domain solution. We do lose some information however, especially the effect of
the harmonics.
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Figure 2.27 Determination of
effective permeability.

H

B, μ
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The question is, how can we find an effective permeability? One method that has
been used and is well-verified by measurements, is to create an artificial saturation
curve, each point of which corresponds to the value of permeability that gives the
same stored energy as the normal B − H curve.

The process is illustrated in Figure 2.27. Let us assume a sinusoidal H as shown.
We do this for each peak value of H. We then use the normal magnetization curve
and find the energy stored in a cycle. (In practice, we need only consider 1/4 cycle.)

We evaluate

Wm = 1
T ∫

T

0

1
2

B ⋅ H dt (2.132)

where T is the period. If the material were linear we could use

Wm = 1
T ∫

T

0

𝜇

2
H2 dt (2.133)

We can now evaluate the effective permeability as

𝜇eff =
∫ T

0 B ⋅ H dt

∫ T
0 H2 dt

(2.134)

This process is done for a number of peak values of H and an artificial curve
of permeability vs. H or B vs. H is created. Then a standard iteration process is
used as if this curve was the normal magnetization curve. There are a number of
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variations on the method described above. For example, we can assume that B is
sinusoidal instead of H. This will give a slightly different curve. We may also use
both sinusoidal B and H and take different weighted averages to produce the final
curve. The results, although approximate, have been found to match experience
and measurements quite well. The skin depth will be a function of the current as
we found in the limiting nonlinear theory. The effective permeability model gives
losses that vary between the 1.5 power and the square of the current. As we have
seen, the losses in the limiting nonlinear model vary as the 1.5 power of the current
and in linear materials we get the second power.

The numerical example above was repeated using the effective permeability
method. A modified saturation curve was created using the data of Figure 2.25
by assuming a sinusoidal variation of the magnetic field, H. The problem was
then solved using phasor analysis. This involved an iterative process since the per-
meability of the nonlinear material changes depending on the local value of the
field. Comparing the results, we find the loss for a 1.0 cm slice of the deep plate as
39.2 W. The limiting nonlinear theory given by Equation (2.116) gives P = 39.3 W.
The phase angle of the current should be 26.5∘ in the limiting nonlinear theory
and from the effective permeability calculation we find 34.2∘. In the linear case,
we would expect 45 ∘. So we see that the effective permeability method produces
results between the linear and the limiting nonlinear theory.

2.7 Plate with Hysteresis and Complex Permeability

O’Kelly [25] has introduced the idea of a complex permeability as a convenient way
to account for hysteresis loss. In this analysis, we ignore the harmonics so that both
the flux density and magnetic field are sinusoidal. The hysteresis is represented by
introducing a phase shift between the complex B and H. The magnetization curve
is then an ellipse. The angle of the major axis of the ellipse depends on the phase
shift introduced by the complex permeability and is illustrated in Figure 2.28.

We define the permeability as

𝜇 = B
H

= |𝜇|e−j𝜃 (2.135)

We have seen that the one-dimensional partial differential equation for the mag-
netic field is

𝜕2H
𝜕x2 = 𝛼2H (2.136)

We will change the notation and write

𝜕2H
𝜕x2 = K2H (2.137)
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B

H

Figure 2.28 Elliptical B − H curve.

We see that 𝛼 has been replaced by K, where

K = 𝛼e−j𝜃∕2 = kr + jki (2.138)

and

kr =
√

2
𝛿

cos𝜙

ki =
√

2
𝛿

sin𝜙 (2.139)

𝜙 = 𝜋

4
− 𝜃

2
The mathematics is the same as in Section 2.3 of losses in a plate. We consider

a plate of width 2b and with conductivity 𝜎. We replace the parameter 𝛼 with the
new parameter K. We find that the current density is given as

J = KHs
sinh Kx
cosh Kx

(2.140)

The magnitude of the current density is

|J| = √2Hs

𝛿

⎛⎜⎜⎝
cosh 2kr x

𝛿
− cos 2kix

𝛿

cosh 2kr b
𝛿

+ cos 2kix
𝛿

⎞⎟⎟⎠
1∕2

(2.141)

The eddy current loss per unit total surface area is then

Pe =
H2

s√
2𝜎𝛿

( sinh 2krb∕ cos𝜙 − sin 2kib∕ sin𝜙

cosh 2krb + cos 2kib

)
(2.142)

We note that for the case of 𝜃 = 0 or no hysteresis, Equation (2.142) reverts to
the result we found in Section 2.3.
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To add the hysteresis component of the loss, we use the Poynting vector. We have
seen that the complex power flow crossing the surface can be found as

P = 1
2
ℜe
[
EH∗]

x=b −
1
2
ℜe
[
EH∗]

x=−b = ℜe
[ 1
𝜎

Jy=bHs

]
(2.143)

Substituting for J we have

P =
H2

s

𝜎

(
K sinh Kb

cosh Kb

)
(2.144)

or

P =

√
2H2

s

𝜎𝛿

(
cos𝜙 sinh 2krb − sin𝜙 sin 2krb

cosh 2krb + cos 2krb

)
(2.145)

Stoll [26] presents the results as loss per unit surface area divided by the coeffi-
cient H2

s ∕𝜎𝛿, which results in a per unit loss, vs. the thickness of the plate divided
by the skin depth. Following this example, we see Equation (2.145) evaluated for
𝜃 = 10∘ and 𝜃 = 0∘ in Figure 2.29.

While this process does not accurately represent the physical process, in which
the flux density and magnetic fields are non-sinusoidal, it does allow us to
approximate the hysteresis loss in the material.
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Figure 2.29 Loss at different angles including hysteresis.
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2.8 Conducting Plates with Sinusoidal Space Variation
of Field

First, we consider the problem of a conducting plate with a sinusoidally time vary-
ing applied flux density that is sinusoidally distributed in space. Such a situation is
encountered when computing eddy currents in electric machines. To begin, con-
sider the plate in Figure 2.30, with a standing wave of magnetic flux density in the
z direction given by

Bz(x) = B0 cos
(
𝜋x
𝜏

)
ej𝜔t (2.146)

Here B0 is the peak flux density and 𝜏 is the pole pitch or one-half the wavelength of
the standing wave. The plate has dimensions 𝛽𝜏 in the x direction (corresponding
to the peripheral direction in the machine), 𝓁 in the y direction (corresponding to
the radial direction in the machine), and depth d in the z direction (axial direction
in the machine). The fraction of a pole pitch that the plate spans is denoted as 𝛽.
The assumption is that there is only one component of the magnetic field (z) and
two components of the induced current (x, y), as shown.

x

y

τ

βτ

d

J
x

B
z
 = B

0 
cos( ) ejωtπx

τ�

B
z

J
y

Figure 2.30 Portion of electric machine end plate subject to axial flux density that
varies sinusoidally in time and in space.
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We begin with the low-frequency Maxwell equations

∇ × E = −𝜕B
𝜕t

(2.147)

J = 𝜎E. (2.148)

Substituting, we get for the current density

∇ × J = −𝜎 𝜕B
𝜕t

(2.149)

In our case, the magnetic field has only a z component and the current has only
x and y components. This gives

𝜕Jy

𝜕x
−

𝜕Jx

𝜕y
= −𝜎

𝜕Bz

𝜕t
(2.150)

We now differentiate with respect to x and y to get

𝜕2Jy

𝜕x2 −
𝜕2Jx

𝜕y 𝜕x
= −𝜎

𝜕2Bz

𝜕x 𝜕t
(2.151)

and
𝜕2Jy

𝜕x 𝜕y
−

𝜕2Jx

𝜕y2 = −𝜎
𝜕2Bz

𝜕y 𝜕t
(2.152)

From the current continuity equation

∇ ⋅ J = 0 (2.153)

we can differentiate to find
𝜕2Jx

𝜕x2 +
𝜕2Jy

𝜕x 𝜕y
= 0 (2.154)

𝜕2Jx

𝜕x 𝜕y
+

𝜕2Jy

𝜕y2 = 0 (2.155)

Now substituting

𝜕2Jx

𝜕x2 +
𝜕2Jx

𝜕y2 = 𝜎
𝜕2Bz

𝜕y 𝜕t
(2.156)

𝜕2Jy

𝜕x2 +
𝜕2Jy

𝜕y2 = −𝜎
𝜕2Bz

𝜕x 𝜕t
(2.157)

Since the magnetic flux density is independent of y, we have
𝜕2Jx

𝜕x2 +
𝜕2Jx

𝜕y2 = 0 (2.158)

𝜕2Jy

𝜕x2 +
𝜕2Jy

𝜕y2 = −𝜎
𝜕2Bz

𝜕x 𝜕t
(2.159)
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The first differential equation is the homogeneous equation

∇2Jx = 0 (2.160)

which can be solved using separation of variables. We first assume a solution of
the form

Jx(x, y) = Jx(x) ⋅ Jx(y) (2.161)

Then we have, by substitution

Jx(y)
𝜕2Jx(x)
𝜕x2 + Jx(x)

𝜕2Jx(y)
𝜕y2 = 0 (2.162)

Dividing (2.161) and (2.162), we get

1
Jx(x)

𝜕2Jx(x)
𝜕x2 = − 1

Jx(y)
𝜕2Jx(y)
𝜕y2 (2.163)

Since the left hand side of the equation is a function only of x and the right hand
side only a function of y, the equality implies that each side is a constant.

𝜕2Jx(x)
𝜕x2 + 𝛼2Jx(x) = 0 (2.164)

𝜕2Jx(y)
𝜕y2 − 𝛼2Jx(y) = 0 (2.165)

The solution is

Jx(x) = C1e−j𝛼x + C2ej𝛼x (2.166)

Jx(y) = C3e−𝛼y + C4e𝛼y (2.167)

or

Jx(x) = D1 cos (𝛼x) + D2 sin (𝛼x) (2.168)

Jx(y) = D3 cosh (𝛼y) + D4 sinh (𝛼y) (2.169)

Now that we have the homogeneous solution, we focus next on the particular
solution. The magnetic field has the form

Bz = B0 cos
(
𝜋x
𝜏

)
ej𝜔t (2.170)

Recalling (2.159):

𝜕2Jy

𝜕x2 +
𝜕2Jy

𝜕y2 = −𝜎
𝜕2Bz

𝜕x 𝜕t
it can be shown by substitution that the particular solution is

Jy(x) = −
j𝜔𝜎𝜏
𝜋

B0 sin
(
𝜋x
𝜏

)
ej𝜔t (2.171)
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Since Jy is not a function of y,

𝜕2Jy

𝜕y2 = 0 (2.172)

and we only consider the differentiation with respect to x:

𝜕2Jy

𝜕x2 =
j𝜔𝜎𝜋
𝜏

sin
(
𝜋x
𝜏

)
ej𝜔t (2.173)

Therefore

−𝜎
𝜕2Bz

𝜕x 𝜕t
= −𝜎B0

(−𝜋
𝜏

)
sin
(
𝜋x
𝜏

)
jej𝜔t =

j𝜔𝜎𝜋B0

𝜏
(2.174)

The expressions for the components of J are now written as

Jx =
∑

n

(
Ax1n cosh

(
𝛼ny
)
+ Ax2n sinh

(
𝛼ny
))

×
(

Ax3n cos
(
𝛼nx
)
+ Ax4n sin

(
𝛼nx
))

(2.175)

Jy =
∑

n

(
Ay1n cosh

(
𝛼ny
)
+ Ay2n sinh

(
𝛼ny
))

×
(

Ay3n cos
(
𝛼nx
)
+ Ay4n sin

(
𝛼nx
)
−

j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
ej𝜔t
)

(2.176)

As shown in Figure 2.31, along the plane y = 0, we must have Jx = 0 and
along the plane x = 0 we must have Jy = 0. From these boundary conditions, we
conclude that

Ax1n = 0 (2.177)

Ay3n = 0 (2.178)

Since we must have
𝜕Jx

𝜕x
= −

𝜕Jy

𝜕y
(2.179)

This continuity condition requires that
𝜕Jx

𝜕x
=
∑

n
𝛼nAx2n sinh

(
𝛼ny
) (

−Ax3n sin
(
𝛼x
)
+ Ax4n cos

(
𝛼nx
))

(2.180)

𝜕Jy

𝜕y
=
∑

n
𝛼nAy4n sin

(
𝛼nx
) (

Ay1n sinh
(
𝛼ny
)
+ Ay2n cosh

(
𝛼ny
))

(2.181)

This is satisfied if

Ax4n = 0 (2.182)

Ay2n = 0 (2.183)

The current densities now become

Jx =
∑

n
Ax2nAx3n sinh

(
𝛼ny
)

cos
(
𝛼nx
)
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Figure 2.31 Eddy
current contours at edges
of end plate.

x

y

y =
2

x =
βτ
2

J
y

�

J
x

Boundary conditions:

(i) x = 0, Jy = 0
(ii) y = 0, Jx = 0

(iii) x = ±βτ

2
, Jx = 0

(iv) y = ± �

2
, Jy = 0

Jy =
∑

n
Ay1nAy4n cosh

(
𝛼ny
)

sin
(
𝛼nx
)
−

j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
ej𝜔t (2.185)

From the condition that the x component of current vanishes on the right and
left edges of the plate (x = ±𝛽𝜏∕2), we have∑

n
Ax2nAx3n sinh

(
𝛼ny
)

cos
(
𝛼n

𝛽𝜏

2

)
= 0 (2.186)

which is satisfied if

𝛼n
𝛽𝜏

2
= 𝜋

2
,

3𝜋
2
,

5𝜋
2
,… ,

(2n − 1)𝜋
2

for n = 1,2, 3,… (2.187)

This means that

𝛼1 = 𝜋

𝛽𝜏
(2.188)

𝛼2 = 3𝜋
2

⋅
2
𝛽𝜏

= 3𝜋
𝛽𝜏

(2.189)

𝛼3 = 5𝜋
2

⋅
2
𝛽𝜏

= 5𝜋
𝛽𝜏

, etc.
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From the condition that the y component of the current vanishes at the top and
bottom edges of the plate (y = ±𝓁∕2), we require that∑

n
Ay1nAy4n cosh

(
𝛼n

𝓁
2

)
sin
(
𝛼nx
)
−

j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
ej𝜔t = 0 (2.191)

or ∑
n

Ay1nAy4n cosh
(
𝛼n

𝓁
2

)
sin
(
𝛼nx
)
=

j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
ej𝜔t (2.192)

Since the sine is an odd function, the Fourier decomposition is

Ay1nAy4n cosh
(
𝛼n

𝓁
2

)
= 2

𝛽𝜏∕2 ∫
𝛽𝜏∕2

0

j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
sin
(

anx
)

ej𝜔t dx

=
j4𝜔𝜎B0

𝛽𝜋 ∫
𝛽𝜏∕2

0
sin
(
𝜋x
𝜏

)
sin
(

anx
)

ej𝜔t dx (2.193)

We integrate to find the first four coefficients. The result is

Ay11Ay41 = Ax21Ax31 =
2j𝜔𝜎B0𝜏e j𝜔t

𝜋2 cosh
(

𝜋𝓁
2𝛽𝜏

) (2.194)

Ay12Ay42 = Ax22Ax32 =
2j𝜔𝜎B0𝜏e j𝜔t

𝜋2 cosh
(

3𝜋𝓁
2𝛽𝜏

) (2.195)

Ay13Ay43 = Ax23Ax33 =
2j𝜔𝜎B0𝜏e j𝜔t

𝜋2 cosh
(

5𝜋𝓁
2𝛽𝜏

) (2.196)

Ay14Ay44 = Ax24Ax34 =
2j𝜔𝜎B0𝜏e j𝜔t

𝜋2 cosh
(

7𝜋𝓁
2𝛽𝜏

) (2.197)

The current densities can now be found by using these coefficients in (2.184)
and (2.185). For example, the fundamental components are

Jx1 = A1 sinh(𝛼1y) cos(𝛼1x) (2.198)

Jy1 = A1 cosh(𝛼1y) sin(𝛼1x) −
j𝜔𝜎𝜏B0

𝜋
sin
(
𝜋x
𝜏

)
ej𝜔t (2.199)

where A1 is found from (2.194)

A1 = Ay11Ay41 = Ax21Ax31 =
2j𝜔𝜎B0𝜏e j𝜔t

𝜋2 cosh
(

𝜋𝓁
2𝛽𝜏

) (2.200)

and 𝛼1 is as given in (2.188)

𝛼1 = 𝜋

𝛽𝜏
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The Joule losses in the plate are given by

W = ∫V

1
𝜎

J2 dV (2.201)

Since we have assumed no variation in the z direction, we can integrate over the
surface to find the loss per meter depth into the plate.

W ′ = ∫S

1
𝜎

J2 dx dy (2.202)

We now use

J2 = J2
x + J2

y (2.203)

and therefore

W ′ = ∫S

1
𝜎

(
J2

x + J2
y
)

dx dy (2.204)

We will compute the x and y components separately.

W ′
x = ∫S

1
𝜎

J2
x dx dy (2.205)

W ′
y = ∫S

1
𝜎

J2
y dx dy (2.206)

Substituting (2.198) into (2.205) and taking advantage of the symmetry of the prob-
lem to integrate over a quarter of the plate, we obtain1

W ′
x =

A2
1

𝜎 ∫
𝛽𝜏∕2

0
cos2 (𝛼1x

)
dx ∫

𝓁∕2

0
sinh2 (

𝛼1y
)

dy

=
A2

1

𝜎 ∫
𝛽𝜏∕2

0
cos2

(
𝜋x
𝛽𝜏

)
dx ∫

𝓁∕2

0
sinh2

(
𝜋y
𝛽𝜏

)
dy

=
A2

1

𝜎

{
𝛽𝜏

4

}{
𝛽𝜏

4

[
1
𝜋

sinh
(
𝜋𝓁
𝛽𝜏

)
− 𝓁

𝛽𝜏

]}

=
(

A1𝛽𝜏
)2

16𝜎

[
1
𝜋

sinh
(
𝜋𝓁
𝛽𝜏

)
− 𝓁

𝛽𝜏

]
(2.207)

Similarly, Jy1 is used to obtain W ′
y . However, since the expression for Jy1 in (2.199)

contains two terms, its square contains three terms and solving for W ′
y involves

three integrations:

W ′
y =

A2
1

𝜎 ∫
𝛽𝜏∕2

0
sin2 (

𝛼1x
)

dx ∫
𝓁∕2

0
cosh2 (

𝛼1y
)

dy

−
2j𝜔𝜏B0

𝜋

(
A1ej𝜔t

𝜎

)
∫

𝛽𝜏∕2

0
sin
(
𝜋x
𝛽𝜏

)

1 The integrations are carried out with the aid of the identities cos2x = 1 + cos (2x)
2

and

sinh2x = cosh (2x) − 1
2

.
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× sin
(
𝜋x
𝜏

)
ej𝜔tdx ∫

𝓁∕2

0
cosh

(
𝜋y
𝛽𝜏

)
dy

−
(
𝜔𝜏B0

𝜋

)2 (
𝜎e2j𝜔t)∫ 𝛽𝜏∕2

0
sin2

(
𝜋x
𝜏

)
dx ∫

𝓁∕2

0
dy

Carrying out the integrations yields

W ′
y =

(A1𝛽𝜏)2

16𝜎

[
1
𝜋

sinh
(
𝜋𝓁
𝛽𝜏

)
+ 𝓁

𝛽𝜏

]

−
A2

1

𝜎

[
𝛽𝜏

2
cosh

(
𝜋𝓁
2𝛽𝜏

)][
𝛽𝜏

𝜋
sinh

(
𝜋𝓁
2𝛽𝜏

)]

−
(
𝜔𝜏B0

𝜋

)2 (
𝜎e2j𝜔t) 𝓁

2

[
−𝛽𝜏2

16𝜋
sin (𝛽𝜏)

]
(2.208)

Finally the total power is found by combining (2.207) and (2.208)

W ′ = W ′
x + W ′

y

=
(

A1𝛽𝜏
)2

8𝜋𝜎
sinh

(
𝜋𝓁
𝛽𝜏

)

−
(

A1𝛽𝜏
)2

2𝜋𝜎
cosh

(
𝜋𝓁
2𝛽𝜏

)
sinh

(
𝜋𝓁
2𝛽𝜏

)

−
(
𝜔𝜏B0

𝜋

)2 (
𝜎e2j𝜔t) 𝛽𝜏𝓁

8

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]
(2.209)

Using the identity cosh (2x) = 2 cosh x sinh x, this becomes

W ′ =
(

A1𝛽𝜏
)2

8𝜋𝜎
sinh

(
𝜋𝓁
𝛽𝜏

)
−
(
𝜔𝜏B0

𝜋

)2 (
𝜎e2j𝜔t) 𝛽𝜏𝓁

8

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]
Next the time-varying factor is replaced by 1∕2 (because the rms value of the
square of current density is half the square of the peak value) and A2

1 is expanded
using (2.200), yielding

W ′ = 2𝜎
𝜋

(
𝜔B0𝛽𝜏

2

2𝜋2

)2

tanh
(

𝜋𝓁
2𝛽𝜏

){ sin
[
(1 − 𝛽)𝜋∕2

]
1 − 𝛽

−
sin
[
(1 + 𝛽)𝜋∕2

]
1 + 𝛽

}2

−
(
𝜔𝜏B0

4𝜋

)2

(𝛽𝜏𝓁𝜎)
[

1 − 1
𝛽𝜋

sin (𝛽𝜋)
]

(2.210)

Combining common coefficients, this becomes

W ′ =
(
𝜔𝜏B0

)2
⎛⎜⎜⎝

8𝛽2𝜏2𝜎

𝜋
tanh

(
𝜋𝓁
2𝛽𝜏

){ sin
[
(1 − 𝛽)𝜋∕2

]
1 − 𝛽

−
sin
[
(1 + 𝛽)𝜋∕2

]
1 + 𝛽

}2
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− 𝛽𝜏𝓁𝜋2𝜎

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]⎞⎟⎟⎠ (2.211)

Finally, we introduce a parameter λ for the ratio of the radial dimension of the
plate 𝓁 to the peripheral dimension 𝛽𝜏

λ = 𝓁
𝛽𝜏

(2.212)

and then (2.211) becomes

W ′ =
(
𝜔𝜏B0

)2
⎛⎜⎜⎝

8𝓁2𝜎

𝜋λ2 tanh
(
𝜋λ
2

){ sin
[
(1 − 𝛽) 𝜋∕2

]
1 − 𝛽

−
sin
[
(1 + 𝛽)𝜋∕2

]
1 + 𝛽

}2

− 𝜋2𝜎
𝓁2

λ

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]⎞⎟⎟⎠ (2.213)

or

W ′ =
(
𝜔𝜏B0

)2 𝓁2

λ

⎛⎜⎜⎝
8𝜎
𝜋λ

tanh
(
𝜋λ
2

){ sin
[
(1 − 𝛽) 𝜋∕2

]
1 − 𝛽

−
sin
[
(1 + 𝛽)𝜋∕2

]
1 + 𝛽

}2

− 𝜋2𝜎

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]⎞⎟⎟⎠ (2.214)

We will now examine this expression further by splitting it into two parts; the
first may be considered a “field” term and the second a correction factor:

W ′ = W ′
fieldΛ (2.215)

where

W ′
field =

(
𝜔𝜏B0

)2 𝓁2

λ
(2.216)

Λ = 8𝜎
𝜋λ

tanh
(
𝜋λ
2

){ sin
[
(1 − 𝛽)𝜋∕2

]
1 − 𝛽

−
sin
[
(1 + 𝛽) 𝜋∕2

]
1 + 𝛽

}2

− 𝜋2𝜎

[
1 − 1

𝛽𝜋
sin (𝛽𝜋)

]
(2.217)

A plot of the correction factor Λ vs. the end plate radial length to peripheral
width ratio λ, for various fractional pitch values 𝛽, is given in Figure 2.32. Similarly,
a plot ofΛ vs. 𝛽 for various λ is given in Figure 2.33. These figures show the relative
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Figure 2.32 Loss correction factor Λ as a function of 𝓁
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influence of the geometrical parameters on the loss solution and indicate regimes
where approximations may be made for (2.214).

2.9 Eddy Currents in Multi-Layered Plate Geometries

In this section, we look at the problem of a multi-layered geometry with a sinu-
soidally time varying and sinusoidally space-varying current sheet as the source.
The problem is fairly general in that other types of excitation can be produced by
decomposing that source into its Fourier coefficients and then superimposing the
results. In the example that follows, we use two layers of different material prop-
erties and dimensions as well as free space regions. This method can be extended
to larger numbers of layers by following the same analytic process.

We begin with a two-dimensional Cartesian coordinate system. The source is
a sinusoidally distributed current sheet carrying a sinusoidally time-varying cur-
rent. Material 1 has thickness d1, permeability 𝜇1, and conductivity 𝜎1. Material
2 has thickness d2, permeability 𝜇2, and conductivity 𝜎2. The material properties
of both regions are linear and isotropic. The problem, being two-dimensional, has
no variation in the z direction which we assume extends to infinity. The geometry
is illustrated in Figure 2.34.

Let the source current be

J(x) = J0ejnkxejm𝜔t (2.218)

x

y

z

Source (current sheet)

Gap

Region 1

Region 2

Air

y = –(d
1
 + d

2
)

y = –d
1

y = 0

y = g

Figure 2.34 Two-dimensional layered geometry and source.



�

� �

�

2.9 Eddy Currents in Multi-Layered Plate Geometries 95

where J0 is the peak value of the current sheet, n is the space harmonic order, k is
the wave number, m is the time harmonic order, and 𝜔 is the fundamental angular
frequency.

For the air-gap region, we have the homogeneous Laplace equation for the z
component of the magnetic vector potential.

∇2Ag = 0 (2.219)

The general solution of Equation (2.219) is

Ag(x, y) =
(

Cg
1enky + Cg

2e−nky) ej(nkx+m𝜔t) (2.220)

In region 1, we have

∇2A1 − jm𝜔𝜇1𝜎1A1 = 0 (2.221)

The general solution of Equation (2.221) is

A1(x, y) =
(

C1
1ea1y + C1

2e−a1y) ej(nkx+m𝜔t) (2.222)

where

a1 =
√

(nk)2 + jm𝜔𝜇1𝜎1 (2.223)

In region 2, we have

∇2A2 − jm𝜔𝜇2𝜎2A2 = 0 (2.224)

The general solution of Equation (2.224) is

A2(x, y) =
(

C2
1ea2y + C2

2e−a2y) ej(nkx+m𝜔t) (2.225)

where

a2 =
√

(nk)2 + jm𝜔𝜇2𝜎2 (2.226)

In the air region, which extends to infinity, we have

∇2Aa = 0 (2.227)

The general solution of Equation (2.227) is

Aa(x, y) =
(

Ca
1 enky) ej(nkx+m𝜔t) (2.228)

We now must evaluate the constants. There are seven complex numbers to eval-
uate, and there are seven interface conditions to enforce, these being the normal
flux density and tangential field continuity conditions. Note that at the current
source, Ht = J. We have the following interface conditions.

At the source,

Ht|y=g =
1
𝜇0

𝜕Ag

𝜕y

|||||y=g
= J0ej(nkx+m𝜔t) (2.229)
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which leads to
nk
𝜇0

(
Cg

1enkg − Cg
2e−nkg) ej(nkx+m𝜔t) = J0ej(nkx+m𝜔t) (2.230)

Therefore,

enkgCg
1 − e−nkgCg

2 =
𝜇0J0

nk
(2.231)

At the gap – region 1 interface, B normal is continuous so that

−
𝜕Ag

𝜕x

|||||y=0
= −

𝜕A1

𝜕x
||||y=0

(2.232)

which gives

−jnk
(

Cg
1 + Cg

2
)

ej(nkx+m𝜔t) = −jnk
(

C1
1 + C1

2
)

ej(nkx+m𝜔t) (2.233)

Therefore,

Cg
1 + Cg

2 − C1
1 − C1

2 = 0 (2.234)

Also, the tangential component of H is continuous so

1
𝜇0

𝜕Ag

𝜕y

|||||y=0
= 1

𝜇1

𝜕A1

𝜕y
||||y=0

(2.235)

This results in
nk
𝜇0

(
Cg

1 − Cg
2
)

ej(nkx+m𝜔t) =
a1

𝜇1

(
C1

1 − C1
2
)

ej(nkx+m𝜔t) (2.236)

We multiply both sides of Equation (2.236) by the permeability of free space, 𝜇0,
so that we can use the relative permeability of region 1. Rearrange the terms to get

nkCg
1 − nkCg

2 −
a1

𝜇r1
C1

1 +
a1

𝜇r1
C1

2 = 0 (2.237)

At the region 1–2 interface, we must have the normal component B continuous,
so that

−
𝜕A1

𝜕x
||||y=−d1

= −
𝜕A2

𝜕x
||||y=−d1

(2.238)

This gives

−jnk
(

C1
1e−a1d1 + C1

2ea1d1
)

ej(nkx+m𝜔t) = (2.239)

−jnk
(

C2
1e−a2d1 + C2

2ea2d1
)

ej(nkx+m𝜔t)

Therefore,

e−a1d1 C1
1 + ea1d1 C1

2 − e−a2d1 C2
1 − ea2d1 C2

2 = 0 (2.240)
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The tangential H condition gives

1
𝜇1

𝜕A1

𝜕y
||||y=−d1

= 1
𝜇2

𝜕A2

𝜕y
||||y=−d1

(2.241)

which results in

a1

𝜇1

(
C1

1e−a1d1 − C1
2ea1d1

)
ej(nkx+m𝜔t) =

a2

𝜇2

(
C2

1e−a2d1 − C2
2ea2d1

)
ej(nkx+m𝜔t)

(2.242)

Similar to Equation (2.237), we multiply by 𝜇0 to use the relative permeabilities of
regions 1 and 2. Therefore,

a1

𝜇r1
e−a1d1 C1

1 −
a1

𝜇r1
ea1d1 C1

2 −
a2

𝜇r2
e−a2d1 C2

1 +
a2

𝜇r2
ea2d1 C2

2 = 0 (2.243)

At the region 2–air interface, for the B normal condition, we have

−
𝜕A2

𝜕x
||||y=−(d1+d2)

= −
𝜕Aa

𝜕x
||||y=−(d1+d2)

(2.244)

−jnk
(

C2
1e−a2(d1+d2) + C2

2ea2(d1+d2)
)

ej(nkx+m𝜔t) =

−jnkCa
1 e−nk(d1+d2)ej(nkx+m𝜔t) (2.245)

Therefore,

e−a2(d1+d2)C2
1 + ea2(d1+d2)C2

2 − e−nk(d1+d2)Ca
1 = 0 (2.246)

For the tangential H condition

1
𝜇2

𝜕A2

𝜕y
||||y=−(d1+d2)

= 1
𝜇0

𝜕Aa

𝜕y
||||y=−(d1+d2)

(2.247)

so

a2

𝜇2

(
C2

1e−a2(d1+d2) − C2
2ea2(d1+d2)

)
ej(nkx+m𝜔t) = nk

𝜇0
Ca

1 e−nk(d1+d2)ej(nkx+m𝜔t)

(2.248)

Similar to Equations (2.237) and (2.243), we multiply by 𝜇0 to use the relative per-
meability of region 2. Therefore,

a2

𝜇r2
e−a2(d1+d2)C2

1 −
a2

𝜇r2
ea2(d1+d2)1 C2

2 − nke−nk(d1+d2)Ca
1 = 0 (2.249)
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This gives seven equations and seven unknown coefficients. To evaluate the
unknowns, we solve the simultaneous linear set of equations shown below

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

enkg −e−nkg 0 0 0 0 0

1 1 −1 −1 0 0 0

nk −nk −a1
𝜇r1

a1
𝜇r1

0 0 0

0 0 e−a1d1 ea1d1 −e−a2d1 −ea2d1 0

0 0 a1
𝜇r1

e−a1d1 − a1
𝜇r1

ea1d1 − a2
𝜇r2

e−a2d1
a2
𝜇r2

ea2d1 0

0 0 0 0 e−a2(d1+d2) ea2(d1+d2) −e−nk(d1+d2)

0 0 0 0 a2
𝜇r2

e−a2(d1+d2) − a2
𝜇r2

ea2(d1+d2) −nke−nk(d1+d2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cg
1

Cg
2

C1
1

C1
2

C2
1

C2
2

Ca
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜇0J0
nk
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
With these seven (complex) coefficients, we can completely describe the field in

the entire domain. The reader can see that the method can be extended to more lay-
ers in the same way, by equating the normal flux density and tangential magnetic
field at each boundary.

Once the coefficients are found, we find the eddy current density as

J = −𝜎 dA
dt

= −jm𝜔𝜎A (2.250)

The loss density is then

q =
JgJ∗

2𝜎
=

(m𝜔)2AgA∗

2
(2.251)

These expressions give the watts per cubic meter, but it is convenient to find the
loss for a unit surface area in regions 1 and 2.

The surface loss density is

q1 = ∫
0

−d1

qdy =
(m𝜔)2𝜎1

2 ∫
0

−d1

A1gA∗
1dy

A1 =
(

C1
1ea1y + C1

2e−a1y) ej(nkx+m𝜔t)

(2.252)
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Let

C1
1 = |C1

1|ej∠C1
1 ,C1

2 = |C1
2|ej∠C1

2 , a1 = a1r + ja1i (2.253)

A1 =
(|C1

1|ea1r yej(∠C1
1+a1iy) + |C1

2|e−a1r yej(∠C1
2−a1iy)

)
ej(nkx+m𝜔t)

A1gA∗
1 = |C1

1|2e2a1r y + |C1
2|2e−2a1r y + 2|C1

1||C1
2| cos

(
∠C1

1 − ∠C1
2 + 2a1iy

)
q1 =

(m𝜔)2𝜎1

2

(|C1
1|2 ∫ 0

−d1

e2a1r ydy (2.254)

+ |C1
2|2 ∫ 0

−d1

e−2a1r ydy + 2|C1
1||C1

2|∫ 0

d1

cos
(
∠C1

1 − ∠C1
2 + 2a1iy

)
dy
)

Performing the integration we get

q1 =
(m𝜔)2𝜎1

4

(|C1
1|2 (1 − e−2a1r d1

)
+ |C1

2|2 (e2a1r d1 − 1
)

a1r
+

2|C1
1||C1

2| (sin
(
∠C1

1 − ∠C1
2
)
− sin

) (
∠C1

1 − ∠C1
2
)
− 2a1id1

a1i

)
(2.255)

For region 2, we use the same process

q2 = ∫
−d1

−(d1+d2)
qdy =

(m𝜔)2𝜎2

2 ∫
−d1

−(d1+d2)1

A2gA∗
2dy (2.256)

A2 =
(

C2
1ea2y + C2

2e−a2y) ej(nkx+m𝜔t)

Let

C2
1 = |C2

1|ej∠C2
1 (2.257)

C2
2 = |C2

2|ej∠C2
2

a2 = a2r + ja2i

q2 =
(m𝜔)2𝜎2

4

(|C2
1|2e−2a2r d1

(
1 − e−2a2r d1

)
+ |C2

2|2e2a2r d1
(

e2a2r d2 − 1
)

a2r
(2.258)

+
2|C2

1||C2
2| (sin

(
∠C2

1 − ∠C1
2 − 2a2id1

)
− sin

) (
∠C2

1 − ∠C2
2
)
− 2a2i

(
d1 + d2

)
a1i

)

This process has been applied to a problem with two conducting layers, but the
same procedure can be used if there are more than two layer. In this case, the
coefficient matrix will be larger to account for the extra interface conditions.
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2.10 Thin Wire Carrying Current Above
Conducting Plates

In many engineering applications, eddy current losses in metallic structures due to
the proximity of current-carrying conductors must be evaluated. Where possible,
these losses are reduced by, for example, laminating the cores in transformers and
rotating machines. However, many regions of solid conducting material remain
exposed to alternating fields. Among these are end iron structures of electrical
machines, terminal equipment, transformer tanks, reinforcing rods, isolated
phase bus bars, and others. Eddy currents induced in these structures also impose
an additional burden on the source, resulting in reduced efficiency and higher
temperatures.

It is therefore necessary to analyze this problem rigorously to obtain results
accurate enough for engineering design. The work was pioneered by Poritsky and
Jerrard [27], and later by Jain and Ray [28, 29]. Lawrenson et al. [30] carried out a
two-dimensional traveling wave solution of the field problem in solid poles of elec-
trical machines. Stoll and Hammond [31, 32] and Sen and Adkins [33] presented a
solution with a semi-infinite slab with a single-valued permeability. Agarwal [19],
McConnell [20, 34], Winchester [35], Lawrenson and coworker [36], and Stoll [26]
presented a nonlinear solution based on a rectangular approximation of the B − H
curve (see Section 2.6).

In this section, a two-dimensional Cartesian analytical solution is presented
using the Fourier integral method applicable to a variety of problems.

The following assumptions are made:

● The source field is a harmonic function of time.
● The properties of each material are constant and single-valued.
● Temperature effects on the material properties are neglected.
● The field problem is solved in two-dimensions, end effects are ignored.
● Currents are in the z direction and are not a function of z.

From Maxwell’s equations we have

∇ × H = J (2.259)

∇ × E = −𝜕B
𝜕t

(2.260)

∇ ⋅ B = 0 (2.261)

and constitutive equations

J = 𝜎E (2.262)

B = 𝜇H (2.263)
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Assuming that the electric field, magnetic field, and current density are
all time-varying steady-state sinusoidal quantities, we obtain from Equations
(2.259)–(2.263)

𝜕2Bx

𝜕x2 +
𝜕2Bx

𝜕y2 = j𝜔𝜎𝜇Bx (2.264)

𝜕2By

𝜕x2 +
𝜕2By

𝜕y2 = j𝜔𝜎𝜇By (2.265)

In the nonconducting regions, Laplace’s equation holds so

𝜕2Bx

𝜕x2 +
𝜕2Bx

𝜕y2 = 0 (2.266)

𝜕2By

𝜕x2 +
𝜕2By

𝜕y2 = 0 (2.267)

We solve Equations (2.264)–(2.267) by the separation of variables method and
match the interface conditions at the boundaries.

2.10.1 A Semi-Infinite Slab Excited by a Filamentary Current

Referring to Figure 2.35, for region 1 (h < y < ∞) we have

Bx1 = C1 cos mx e−my

By1 = −C1 sin mx e−my (2.268)

For region 2 (0 < y < h)

Bx2 =
(

C2emy + C3e−my) cos mx
By2 =

(
C2emy − C3e−my) sin mx (2.269)

x

y

z

i
s
(x)

Region 1

Region 2

Region 3

h

μ
0
, σ = 0

μ, σ

Figure 2.35 Semi-infinite slab with filament conductor.
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For region 3 (−∞ < y < 0)

Bx3 = C4e𝛽y cos mx

By3 =
m
𝛽

C4e𝛽y sin mx (2.270)

where

𝛽 =
√

m2 + j𝜔𝜇𝜎 (2.271)

Equating the tangential components of the magnetic field and the normal com-
ponents of the flux density, respectively, we have for the interface between regions
1 and 2, at y = h

Bx1 − Bx2

𝜇0
= is(x) (2.272)

By1 = By2 (2.273)

Between regions 2 and 3 (y = 0)

Hx2 =
Bx3

𝜇r
= Hx3 (2.274)

By2 = By3 (2.275)

The point source of ac current can be expanded in a Fourier series and the solu-
tion can be found by superposition of the solutions of a series of harmonics. To
avoid singularities, we will represent the source current as a surface current with
a very small but finite width 𝜉.

is(x) = i0 cos(mx) =
{

J, −𝜉∕2 > x > 𝜉∕2
0, elsewhere

(2.276)

The current filament can be expressed by the Fourier integral

is(x) = ∫
∞

0
g(m) cos(mx) dm (2.277)

From Equation (2.277) above

g(m) = 1
𝜋 ∫

∞

0
is(x) cos(mx) dx = 1

𝜋 ∫
𝜉∕2

−𝜉∕2
J cos(mx) dx = 2J

sin m𝜉

2

m𝜋
(2.278)

For small values of 𝜉, g(m) approaches the value J𝜉
𝜋

. Since J is the surface current
density, J𝜉 will be the total conductor current. Hence we have

i0 = |is(x)| = ∫
∞

0

1
𝜋

dm (2.279)
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Using the interface conditions from Equations (2.272)–(2.275) and substituting
for is(x) from Equation (2.279) and after considerable algebra, we find the flux
density in the different regions as

Region 1

Bx1 =
𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝sinh(mh)e−my + me−m(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ cos(mx) dm

By1 =
𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝sinh(mh)e−my + mem(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ sin(mx) dm (2.280)

Region 2

Bx2 =
−𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝cosh(my)e−my − me−m(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ cos(mx) dm

By2 =
−𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝sinh(mh)emy + mem(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ sin(mx) dm (2.281)

Region 3

Bx3 =
−𝜇0I
𝜋 ∫

∞

0

𝛽e−mhe𝛽y

m + 𝛽

𝜇r

cos(mx) dm

By3 =
−𝜇0I
𝜋 ∫

∞

0

𝛽e−mhe𝛽y

m + 𝛽

𝜇r

sin(mx) dm (2.282)

The electric field in the different regions are obtained from Maxwell’s equation
for the two-dimensional case

∇ × E = 𝜕E
𝜕y

ûx −
𝜕E
𝜕x

ûy = −𝜕B
𝜕t

= −j𝜔B = −j𝜔Bxûx − j𝜔Byûy (2.283)

Equating the Cartesian components and integrating we obtain

E = ∫ −j𝜔Bx dy − ∫ j𝜔By dx (2.284)

Substituting for Bx and By for the regions from Equations (2.280)–(2.282) into
Equation (2.284)

E1 =
j𝜔𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝
sinh(mh)e−my

m
+ e−m(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ cos(mx) dm (2.285)
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E2 =
j𝜔𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝
sinh(my)e−mh

m
+ e−m(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ cos(mx) dm (2.286)

E3 =
j𝜔𝜇0I
𝜋 ∫

∞

0

⎛⎜⎜⎝
e−mhe𝛽y

m + 𝛽

𝜇r

⎞⎟⎟⎠ cos(mx) dm (2.287)

As an example, we show a finite element solution to the problem with a
small circular wire carrying 1.0 A at 60 Hz above a thick copper plate with
𝜎 = 5.8 × 107 S m−1 and 𝜇 = 4𝜋 × 10−7 H m−1.

Figure 2.36 shows the imaginary part of the flux distribution. The applied cur-
rent is 1.0 + j0.0 A, so that the current in the wire is zero at this instant in the cycle.
All of the flux is then due to the eddy currents in the plate. We can see in the figure
that there appears to be a source in the copper plate directly below the filamentary
wire. In Figure 2.37, we see the real part of the flux distribution. This is the com-
ponent that is in-phase with the excitation current. We note that the flux does not
penetrate very deeply into the plate.

Figure 2.36 Imaginary component
of the flux.

Figure 2.37 Real component of
the flux.



�

� �

�

2.10 Thin Wire Carrying Current Above Conducting Plates 105

Figure 2.38 Losses in the
plate.

In Figure 2.38, we see the loss density in the plate. As expected, the losses are
highest just below the current-carrying wire. The losses drop off quickly as we
go deep into the plate and as we move in the horizontal direction. This behavior
agrees with the formulation.

2.10.2 A Finite Slab Excited by a Filamentary Current

A conducting slab of finite thickness is shown in Figure 2.39. The equations for
the magnetic flux density in the four regions are

Region 1 (h < y < ∞)

Bx1 = C1e−my cos mx
By1 = −C1e−my sin mx (2.288)

Region 2 (0 < y < h)

Bx2 =
(

C2emy + D2e−my) cos mx
By2 =

(
C2emy − D2e−my) sin mx (2.289)

Region 3 (−t < y < 0)

Bx3 =
(

C3e𝛽y + D3e−𝛽y) cos mx

By3 =
m
𝛽

(
C3e𝛽y − D3e−𝛽y) sin mx (2.290)

x

y

z

Region 1

Region 2

Region 3

Region 4

t

h

μ
0
, σ = 0

μ
0
, σ = 0

μ, σ

i
s
(x)

Figure 2.39 Finite thickness slab with filament conductor.
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Region 4 (−∞ < y < −t)

Bx4 = C4emy cos mx
By4 = C4emy sin mx (2.291)

The following interface conditions apply: At the interface between regions 1
and 2 (y = h)

Bx1 − Bx2

𝜇0
= i0 cos mx

By1 = By2 (2.292)

At the interface between regions 2 and 3 (y = 0)

Bx2 =
Bx3

𝜇r
By2 = By3 (2.293)

At the interface between regions 3 and 4 (y = −t)
Bx3

𝜇r
= Bx4

By3 = By4 (2.294)

Solving Equations (2.288)–(2.294) and substituting the expression for is(x)

Bx1 =
𝜇0I
𝜋 ∫

∞

0

(
me−m(y+h) S4e−2t𝛽 − S3

S2
3 − S2

4e−2t𝛽
− e−my sinh(mh)

)
cos(mx) dm (2.295)

By1 = −
𝜇0I
𝜋 ∫

∞

0

(
me−m(y+h) S4e−2t𝛽 − S3

S2
3 − S2

4e−2t𝛽
− e−my sinh(mh)

)
sin(mx) dm (2.296)

E1 =
−j𝜔𝜇0I

𝜋 ∫
∞

0

(
e−m(y+h) S4e−2t𝛽 − S3

S2
3 − S2

4e−2t𝛽
− e−my sinh(mh)

m

)
cos(mx) dm (2.297)

Where

S3 = m +
𝛽3

𝜇r3

S4 = m −
𝛽3

𝜇r3
(2.298)

2.10.3 A Slab of Finite Thickness Near a Semi-Infinite Slab Excited
by a Filamentary Current

In several practical cases, a conducting shield is inserted between the source and
another conducting body to shield that body from stray fields and produce an
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x

y

z

Region 1

Region 2

Region 3

Region 4

Region 5

h
4

t
3

h
2

µ
0
, σ = 0

µ
3
, σ

3

µ
5
, σ

5

µ
0
, σ = 0

i
s
(x) = i

0  
cos mx

Figure 2.40 Finite thickness shield in front of a semi-infinite slab excited by a
filamentary current.

overall reduction of loss in the protected object. We see in Figure 2.40 a filament
current parallel to a shielding plate and a semi-infinite body below.

Using the same process described above, we have for the various regions
Region 1: (h2 < y < ∞)

Bx1 = D1e−my cos mx
By1 = −D1e−my sin mx (2.299)

Region 2: (0 < y < h)

Bx2 =
(

C2emy + D2e−my) cos mx
By2 =

(
C2emy − D2e−my) sin mx (2.300)

Region 3: (−t3 < y < 0)

Bx3 =
(

C3e𝛽3y + D3e−𝛽3y) cos mx

By3 =
m
𝛽3

(
C3e𝛽3y − D3e−𝛽3y) sin mx (2.301)

Region 4: (−(t3 + h4) < y < −t3)

Bx4 =
(

C4emy + D4e−my) cos mx
By4 =

(
C4emy − D4e−my) sin mx (2.302)

Region 5: (−∞ < y < −(t3 + h4))

Bx5 = C5e−𝛽5y cos mx

By5 =
m
𝛽5

C5e−𝛽5y sin mx (2.303)
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The integration constants in Equations (2.299)–(2.303) are evaluated using the
interface conditions below.

Regions 1–2 interface (y = h2)

i0 =
Bx1 − Bx2

𝜇0
= ∫

∞

0

I
𝜋

dm

By1 = By2 (2.304)

Regions 2–3 interface (y = 0)

Bx2 =
Bx3

𝜇r3
By2 = By3 (2.305)

Regions 3–4 interface (y = −t)

Bx4 =
Bx3

𝜇r3
By3 = By4 (2.306)

Regions 4–5 interface (y = −(t3 + h4))

Bx4 =
Bx5

𝜇r5
By4 = By5 (2.307)

We shall define two expressions in addition to S3 and S4 of Equation (2.298).

S5 = m +
𝛽5

𝜇r5

S6 = m −
𝛽5

𝜇r5
(2.308)

The field quantities in terms of S3, S4, S5, and S6 are

Bx1 =
𝜇0I
𝜋 ∫

∞

0
e−my

(
sinh(mh2) (2.309)

+
me−mh2

(
S5emh4 (S3 − S4e−2𝛽3t3 ) − S6e−mh4 (S4 − S3e−2𝛽3t3 )

)
S5emh4 (S2

3 − S2
4e−2𝛽3t3 ) − S3S4S6e−mh4 (1 − e−2𝛽3t3 )

)
cos mx dm

By1 =
−𝜇0I
𝜋 ∫

∞

0
e−my

(
sinh(mh2) (2.310)

+
me−mh2

(
S5emh4 (S3 − S4e−2𝛽3t3 ) − S6e−mh4 (S4 − S3e−2𝛽3t3 )

)
S5emh4 (S2

3 − S2
4e−2𝛽3t3 ) − S3S4S6e−mh4 (1 − e−2𝛽3t3 )

)
sin mx dm
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E1 =
j𝜔𝜇0I
𝜋 ∫

∞

0

(
e−my sinh(mh2)

m
(2.311)

+
e−m(y+h2)

(
S5emh4 (S3 − S4e−2𝛽3t3 ) − S6e−mh4 (S4 − S3e−2𝛽3t3 )

)
S5emh4 (S2

3 − S2
4e−2𝛽3t3 ) − S3S4S6e−mh4 (1 − e−2𝛽3t3 )

)
cos mx dm

There are in general two ways in which surface ohmic losses due to the eddy
currents can be determined. The first is to determine the current density vector
and then obtain the losses by evaluating the volume integral

W = ∫
J ⋅ J∗𝜌

2
dv (2.312)

where J∗ is the complex conjugate of the current density J.
The second method is to find the source impedance and then evaluate the loss

as the product of the resistive part of the source impedance and the square of the
RMS source current. This second method is more convenient as it eliminates the
volume integral and the computation of the conjugate of the current density. The
expression for the source impedance is the ratio of the surface value of the electric
field to the source current.

So

Z = E(0, h)
I

(2.313)

The following are the expressions for the surface impedance for the different
cases we have discussed.

For the semi-infinite conducting slab, we use Equation (2.285) to find the surface
impedance as

Z1 =
E1(0, y)

I
=

−j𝜔𝜇0

𝜋 ∫
∞

0

⎛⎜⎜⎝
sinh(mh)e−my

m
+ e−m(h+y)

m + 𝛽

𝜇r

⎞⎟⎟⎠ dm (2.314)

The first term in the definite integral of Equation (2.314) can be written as

∫
∞

0
− e−m(y−h) − e−m(y+h)

2m
dm (2.315)

which can be integrated to find

−1
2

ln
(

y − h
y + h

)
(2.316)

If y = h, the definite integral will tend to infinity. To overcome this difficulty, we
will assume the conductor to be very small with a finite radius r so that y − h = r
and y + h ≈ 2h. Therefore

Z1 =
−j𝜔𝜇0

𝜋

⎛⎜⎜⎝−
1
2

ln r
2h

+ ∫
∞

0

e−2mh

m + 𝛽

𝜇r

dm
⎞⎟⎟⎠ (2.317)
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When the slab is of finite thickness we obtain the impedance

Z1 = E(0, h)
I

=
j𝜔𝜇0

𝜋

(
−1
2

ln r
2h

+ ∫
∞

0

e−2mh (S4e−2𝛽t − S3
)

S2
3 − S2

4e−2𝛽t

)
dm (2.318)

For the case of the finite thickness conducting shield interposed between the
source and the semi-infinite conducting slab, we expand Equation (2.312)

Z1 =
j𝜔𝜇0

𝜋

(
1
2

ln r
2h

(2.319)

+∫
∞

0
e−2mh2

(
S5emh4 (S3 − S4e−2𝛽3t3 )

−
S6e−mh4 (S4 − S3e−2𝛽3t3 )

S5emh4 (S2
3 − S2

4e−2𝛽3t3 ) − S3S4S6e−mh4 (1 − e−2𝛽3t3 )

)
dm

)
In the above expressions, if 𝜇r = 1, 𝜎5 = 0, and h4 = 0 we have

𝜇r5𝜇0𝜎5 = 0 (2.320)

S6 = m −
𝛽5

𝜇r5
= 0

Substituting Equation (2.321) into (2.320) we obtain

Z1 = E(0, h)
I

=
j𝜔𝜇0

𝜋

(
1
2

ln r
2h

+ ∫
∞

0

e−2mh (S4e−2𝛽t − S3
)

S2
3 − S2

4e−2𝛽t

)
dm (2.321)

Which, as a check, is the same as Equation (2.318).
For these cases, the power loss per unit length of source current is

W = I2ℜe(Z1) (2.322)

We can find a condition for minimum loss. The minimum power loss (for a
nontrivial case) occurs at a specific value of the shield thickness, this thickness
being independent of the distance of the shield from the source current. Thus for
every shield type, magnetic or nonmagnetic, this minimum power loss occurs at
a unique value of the thickness of the slab, or more precisely, at a definite value
of the thickness-to-skin depth ratio. We demonstrate this by considering the loss
equation for a single finite-thickness slab.

The power loss is

P = I2ℜe

(
j𝜔𝜇0

𝜋

(
1
2

ln r
2h

+ ∫
∞

0

e−2mh (S4e−2𝛽t − S3
)

S2
3 − S2

4e−2𝛽t

)
dm

)
(2.323)

Since for a given conducting shield type, the losses are only a function of the
thickness as seen in Equation (2.318), we can obtain the minimum loss condition
by differentiating Equation (2.323) with respect to the thickness t, assuming m = 0.
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This last assumption means that for each value of m, the loss contribution is a
minimum.

Substituting (1 + j)∕𝛿 for
√

j𝜔𝜇𝜎 in the expressions for S3 and S4, and setting
m = 0, we obtain

S3 = m + 𝛽

𝜇r
=

1 + j
𝛿

(2.324)

S4 = m − 𝛽

𝜇r
= −

1 + j
𝛿

(2.325)

If we now express

e−2𝛽t = e−𝛼(1+j) (2.326)

where 𝛼 = 2t∕𝛿, then

P = I2ℜe
⎛⎜⎜⎝

j𝜔𝜇0

𝜋

⎛⎜⎜⎝
−1
2

ln r
2h

+ ∫
∞

0

1+j
𝛿

+ 1+j
𝛿

e−𝛼(1+j)

(1+j)2
𝛿

− (1+j)2
𝛿

e−𝛼(1+j)
dm
⎞⎟⎟⎠
⎞⎟⎟⎠ (2.327)

Expanding e−j𝛼 as cos 𝛼 − j sin 𝛼 the expression for power loss becomes

P = I2ℜe
( j𝜔𝜇0

𝜋

(
−1
2

ln r
2h

+ ∫
∞

0

𝜇r𝛿

(1 + j)
1 + e−𝛼 cos 𝛼 − je−𝛼 sin 𝛼

1 − e−𝛼 cos 𝛼 + je−𝛼 sin 𝛼
dm
))

=
−I2𝜔𝜇0

𝜋 ∫
∞

0

e2𝛼 − 2 sin 𝛼e−𝛼 − 1
1 + e−2𝛼 − 2e−𝛼 cos 𝛼

dm (2.328)

Note that Equations (2.327) and (2.328), based on the assumption that m = 0, is
valid for all plate thickness except zero thickness. Hence 𝛼 = 2t∕𝛿 can not be zero.

Differentiating Equation (2.328) with respect to 𝛼 and setting the result to zero

dP
d𝛼

= d
d𝛼

(
e2𝛼 − 2 sin 𝛼e−𝛼

1 + e−2𝛼 − 2e−𝛼 cos 𝛼

)
= 0 (2.329)

Which gives

e−𝛼 sin(1 − e−2𝛼) = 0 (2.330)

For nontrivial solutions, we consider the values of 𝛼 which yield sin 𝛼 = 0 so that
𝛼 = 𝜋, 2𝜋, 3𝜋,… ,n𝜋.

Assuming 𝛼 = 𝜋 we obtain

t = 𝛼𝛿

2
= 𝜋𝛿

2
(2.331)

If we had substituted a value of m not equal to zero, it can be shown that the
differential of P with respect to 𝛼 yields the same solution for t. Hence the assump-
tions of m = 0 and 𝛼 ≠ 0 do not affect the generality of the solution.

For a copper shield at 60 HZ and 𝜎 = 5.8 × 107 S m−1, we have 𝛿 = 0.0085 m, and
the theoretical minimum loss occurs at a value of 0.0134 m.
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The solution for the power loss as well as the electric and magnetic fields in
the different regions involves the evaluation of infinite integrals. Poritsky and Jer-
rard [27] suggested closed-form solutions, by separating the integrals by parts and
dealing with the individual components by means of summation of infinite series.
In this analysis, much care had to be taken to avoid singularities in the kernels of
the definite integrals making the analysis cumbersome. We suggest that numerical
integration using quadrature formulae be used to evaluate these terms. The evalu-
ation of these integrals has been done with a three-point Newton–Coates formula
commonly known as Simpson’s rule. In each subdivision, the quadrature formula
is used to evaluate the function, and this value is then summed over the total num-
ber of subdivisions. The final result is multiplied by the interval length.

For a given interval, the integrated value of any function is

f (O) =
f1 + 4f2 + f3

3
× h (2.332)

where h is the interval length. If the total number of intervals is n the value of the
integral is given by

S = h
3
(

f1 + 4f2 + 2f3 + 4f4 + · · · + fn
)

(2.333)

where f1, f2, f3,… fn are the function values at the ends of the respective intervals
starting with zero. With 3000 intervals, convergence of the definite integral has
been found to be within 1% of the analytical solution. As an example, we consider
the solution for the semi-infinite slab of permeable steel with a filament current
at height 10 cm. The material had properties 𝜌 = 80 × 10−8 Ω m and 𝜇r = 100. The
surface resistance found was R = 6.46474 × 10−5 Ωm−1. Poritsky’s analytical solu-
tion gives R = 6.433 × 10−5 Ωm−1. The difference is 0.497%.

2.11 Eddy Currents in Materials with Anisotropic
Permeability

A problem that is common in electrical equipment such as power transformers,
motors, and generators, is that there is a component of magnetic flux that
impinges on the laminations on the wide surface. We have discussed eddy cur-
rents produced by ac flux which is parallel to the surface of the lamination (flux
is normal to the small dimension) and we saw that for cases in which 𝛿, the skin
depth, is greater than the lamination thickness we could use the resistance-limited
formula. For cases where 𝛿 is equivalent to or larger than the width, we would
need the reactance-limited analysis. These formulations do not apply in cases that
have the flux normal to the stack on laminations since the effective permeability in
the direction of the flux (across laminations) is much lower than the permeability
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along the laminations. This is due to the “air” layers in series with the flux.
A typical stacking factor is 0.95, which means that for the axial dimension of
the stack, we have 95% steel and 5% space. This reduces the axial permeability
substantially as the large reluctance of the air is in series with the reluctance of
the steel. Typical permeabilities in that direction are in the range of 10 − 20 times
𝜇0. The effective permeability along the laminations is only slightly lowered due
to the stacking, as the air reluctance is in parallel with the steel reluctance. The
analysis which follows allows for the anisotropy of the permeability.

The formulation is based on the following assumptions.

● The eddy currents are invariant in the z (radial) direction. See Figure 2.41.
● The permeabilities 𝜇x ≠ 𝜇y, but the conductivities 𝜎x = 𝜎y.
● Edge effects are ignored.
● Each tooth is a semi-infinite region in the z direction.
● The flux density is decomposed into its components and the losses are found as

the sum of the contributions of each component.

Considering the geometry in Figure 2.41, we can write Maxwell’s equations as

∇ × H = J (2.334)

∇ × E = −𝜕B
𝜕t

(2.335)

∇ ⋅ B = 0 (2.336)

x

z

Eddy current path

b

x

y

t

b

�

Figure 2.41 End region laminations: geometry and coordinate system.
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and

J = 𝜎E (2.337)

Assuming all of the field quantities are sinusoidally time varying, we obtain

∇2B = j𝜔𝜎𝜇B (2.338)

We will allow for the case in which 𝜇x ≠ 𝜇y.
In Cartesian coordinates

𝜇x
𝜕Hx

𝜕x
+ 𝜇y

𝜕Hy

𝜕y
= 0 (2.339)

𝜕Hy

𝜕x
−

𝜕Hx

𝜕y
= J (2.340)

𝜕Ez

𝜕y
= −j𝜔Bx (2.341)

𝜕Ez

𝜕x
= −j𝜔By (2.342)

After some manipulation we have

1
𝛼2

{
𝜕2Bx

𝜕x2 +
𝜕2Bx

𝜕y2

}
= j𝜔𝜎𝜇xBx (2.343)

1
𝛼2

{
𝜕2By

𝜕x2 +
𝜕2By

𝜕y2

}
= j𝜔𝜎𝜇xBy (2.344)

where 𝛼2 = 𝜇y

𝜇x
, kx = 𝜇x𝜎 and ky = 𝜇y𝜎.

The solution can be written as a summation

Bx =
∞∑

n=1,3,5,…
C sin(nmx)e−𝛽y (2.345)

By =
∞∑

n=1,3,5,…

nmC
𝛽

cos(nmx)e−𝛽y (2.346)

Here b is the width of the lamination, m = 𝜋∕b, and 𝛽 =
√

n2m2 + j𝜔𝜇y𝜇0𝜎.
At y = 0 we have By = B0, so we can find the integration constant C as

∫
b∕2

−b∕2

nmC
𝛽

cos2(nmx)dx = ∫
b∕2

−b∕2
B0 cos(nmx)dx (2.347)

The value of C is then

C =
( 4B0𝛽

n2m2b

)
sin
(n𝜋

2

)
(2.348)
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Using this value of C, we get

Bx =
∑

n=1,3,5,…

4B0𝛽

n2m2b
sin(n𝜋

2
) sin(nmx)e−𝛽y (2.349)

By =
∑

n=1,3,5,…

4B0

nmb
sin(n𝜋

2
) cos(nmx)e−𝛽y (2.350)

As we see, the axial flux varies exponentially. We now obtain the expression for
the eddy current density from the relation

∇ × H = J = 1
𝜇0

(
1
𝜇y

𝜕By

𝜕x
− 1

𝜇x

𝜕Bx

𝜕y

)
(2.351)

This gives

J = − 1
𝜇y𝜇0

∑
n=1,3,5,…

4B0

w
sin n𝜋

2

(
1 − 𝛽2𝛼2

n2m2

)
sin(nmx)e−𝛽y (2.352)

The power loss can now be found as

P = ∫ ∫ ∫
J ⋅ J∗

2𝜎
dx dy dz (2.353)

P = b𝓁
𝜇2

0𝜇
2
y

(
8B2

0

b2𝜎

) ∞∑
n=1,3,5,…

sin2 n𝜋
2

(
1 − 𝛽2𝛼2

n2m2

)(
1 − 𝛽∗2𝛼2

n2m2

)

× ∫
b
2

−b
2

sin2(nmx)dx ∫
t

0
e−(𝛽+𝛽∗) dy

(2.354)

or

P = b𝓁
𝜇2

0𝜇
2
y

(
8B2

0

b2𝜎

) ∞∑
n=1,3,5,…

sin2 n𝜋
2

(
1 − 𝛽2𝛼2

n2m2

)
×
(

1 − 𝛽∗2𝛼2

n2m2

)(
1

𝛽 + 𝛽∗

)(
1 − e−(𝛽+𝛽∗)t

) (2.355)

We have now extended the solution of eddy currents in laminations to include
the effect of anisotropic permeability. This formulation is useful in cases in which
magnetic flux crosses laminations and the small gaps between them.

2.12 Isolated Rectangular Conductor with Axial
Current Applied

The solution for the current density in a long-isolated rectangular conductor with
axial field was first solved by Press [37]. If we consider the case of a long iso-
lated rectangular conductor, with an applied axial ac current, we can obtain a



�

� �

�

116 2 Conductors with Rectangular Cross Sections

2b

2a

Figure 2.42 Rectangular conductor with
ac axial current applied.

two-dimensional solution for the current distribution using an infinite series. In
Section 2.5, we have seen the one-dimensional distribution for the reactance lim-
ited case. This is now generalized to two-dimensions and the effect of the eddy
currents on the current density are included. The rectangular conductor is shown
in Figure 2.42. The conductor has dimensions 2b × 2a. The current density has
only a z component and the current density can vary in magnitude and phase in
the x and y directions.

The current density is described by the equation

𝜕2Jz

𝜕x2 +
𝜕2Jz

𝜕y2 = 𝛽2Jz (2.356)

where

𝛽 =
1 + j
𝛿

(2.357)

The solution to Equation (2.356) will be written as an infinite series. By sym-
metry, we can deduce that only even terms are possible solutions. In other words,
the solution at points ±x or ±y must be the same. In this case, with the origin of
the coordinate system at the center of the conductor, the summation must be only
over even functions like the cosine function.

We will make the assumption that due to the isolated nature of this conductor,
the magnetic field follows the contour of the boundary and the current density
at the surface is uniform around the conductor perimeter. The assumption that
the boundary of the conductor is a flux line is an approximation. Near the center
lines of the rectangle, the flux is nearly parallel to the conductor boundary, but at
the corners, the flux lines do not follow the contour of the conductor. Using the
assumption that the contour of the conductor is a flux line, that the current density
is constant along that boundary, can be seen by considering the magnetic vector
potential. If the contour is a flux line, then it is a contour of equi-magnetic vector
potential. This comes from the curl relationship between the flux density and the
vector potential. A constant vector potential contour means that the derivative is
zero as we move along the contour. Using the curl relationship, there is no flux
perpendicular to this path, therefore all flux is along the path. We now use the
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relationship that the current density is found by J = j𝜔𝜎A, and can see that if A is
constant, then the current density is constant as well.

We then have

J(x, y) = 4
𝜋

J0

∞∑
n=1,3,5...

jn+1

n

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

cosh
√

𝛽2 + n2𝜋2

4a2 x

cosh
√

𝛽2 + n2𝜋2

4a2 b

⎞⎟⎟⎟⎠ cos n𝜋
2a

y

+
⎛⎜⎜⎜⎝

cosh
√

𝛽2 + n2𝜋2

4a2 y

cosh
√

𝛽2 + n2𝜋2

4a2 a

⎞⎟⎟⎟⎠ cos n𝜋
2b

x
⎞⎟⎟⎟⎠ sin(𝜔t) (2.358)

In Figure 2.43, we see an example of Equation (2.358) evaluated for a copper
conductor with a = 0.01 m and b = 0.02 m excited with an axial current of
J0 = 1.0 Am−2. In the figure, we see the magnitude of the current density plot-
ted for the upper right quadrant of the conductor. We note, as expected, the
exponential-like decay of the current density as we move toward the center of the
conductor.

As a further example, let us consider a case in which the conductor is very tall
with respect to the width. In this case, we have a = 0.1 m, b = 0.01 m, and cop-
per at 60 HZ, with J0 = 1.0 Am−2. We would expect that on the axes of symmetry,
we would get a result similar to the one-dimensional solutions. In Figures 2.44
and 2.45, we see the solutions for the magnitude of the current density along the
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Figure 2.43 Magnitude of the current density using copper at 60 HZ for a = 0.01 m,
b = 0.02 m.
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Figure 2.44 Magnitude of the current density along the y axis for copper at 60 HZ for
the long narrow conductor.
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Figure 2.45 Magnitude of the current density along the x axis for copper at 60 HZ for
the long narrow conductor.

x and y directions. These solutions are very much like those we have seen for the
isolated plate in one-dimension.

2.13 Transient Diffusion Into a Solid Conducting Block

We will now consider problems that include transient or time-domain diffusion of
flux and current into a conductor. Consider the problem described in Figure 2.46.

We have a uniform, homogeneous, linear conductor which extends far in the
y and z directions. By symmetry then, the magnetic field H, will have only a y
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Figure 2.46 Uniform conducting
block with step function of
current applied to terminals.
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component and the current density J, will have only a z component. We will
assume that there is no variation of the field or current density in the y or z
directions. These variables then are only a function of x and t. A current sheet
source is connected to the conducting block in the (x, y) plane by means of highly
conducting plates, so we can assume an equi-potential surface in the back and
front of the block.

This problem is described by the one-dimensional diffusion equation in rectan-
gular coordinates. We have

𝜕2H
𝜕x2 = 𝜇𝜎

𝜕H
𝜕t

(2.359)

From Ampere’s law, we can write

Jz = −
𝜕Hy

𝜕x
(2.360)

Using the separation of variables technique, (see Appendix B), we can assume
that the solution can be expressed as the product of two functions, one a function
of x and one a function of time.

H(x, t) = X(x)T(t) (2.361)

Since each term is a function of only one variable, then each term must be a
constant.

Let
1
X
𝜕2X
𝜕x2 = −𝛾2 (2.362)

or
𝜕2X
𝜕x2 + 𝛾2X = 0 (2.363)
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and

−𝜇𝜎

T
𝜕T
𝜕t

= 𝛾2 (2.364)

or
𝜕T
𝜕t

− 𝛾2

𝜇𝜎
T = 0 (2.365)

We now consider the boundary conditions. We can find constraints at x = 0 and
x = b. At x = 0, we must have Hy = Js. At x = b, we must have Hy = 0.

The solution is composed of a particular part, which at steady state or t = ∞, is
a constant, and a transient part or the homogeneous solution.

For the steady-state solution, we have d
dt

= 0, so that

𝜕2Hy

𝜕x2 = 0 (2.366)

The steady-state solution is then

Hp = −Js
x
b

(2.367)

Using the boundary conditions at the edges, we can state that the solution is of
the form

X = sin 𝛽x (2.368)

where 𝛽 = n𝜋
b

.
The time-dependent part of the solution is an exponential with time constant

𝜏n = 𝜇𝜎b2

(n𝜋)2 (2.369)

H =
∞∑

n=1
Cn sin

(n𝜋
b

x
)

e−
t
𝜏n (2.370)

We now multiply each side by sin
(

m𝜋x
b

)
dx and integrate from 0 to b.

∫
b

0
Js

x
b

sin
(m𝜋x

b

)
dx =

∞∑
m=1

Cm ∫
b

0
sin
(n𝜋x

b

)
sin
(m𝜋x

b

)
dx (2.371)

Due to the orthogonality of the sine function, the only non-zero term in the
summation is the n = m term. We therefore find that2

Cn = −2Js
(−1)n

n𝜋
(2.372)

The expression for the magnetic field is then

H(x, t) = −Js
x
b
−

∞∑
n=1

2Js
(−1)n

n𝜋
sin
(n𝜋x

b

)
e−

t
𝜏n (2.373)

2 We are using the result ∫ 𝜃 sin 𝜃 d𝜃 = sin 𝜃 − 𝜃 cos 𝜃.
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The current density is found by taking the curl of Equation (2.373).

J(x, t) =
Js

b
+

∞∑
n=1

2Js
(−1)n

b
cos
(n𝜋x

b

)
e−

t
𝜏n (2.374)

As an example, consider the case of a copper block (𝜎 = 5.8 × 107 S m−1, 𝜇0 =
4𝜋 × 10−7 H m−1) and a width of b = 0.1 m.

We switch on a current sheet of 1.0 A m−1 at t = 0. Figure 2.47 shows the field
across the conducting region at several instants of time. Initially, we see that there
is a field only very close to the current sheet side. After a long time, we expect the
steady, state solution, with a linear drop to zero at the edge of the conductor. The
longest diffusion time constant, (n = 1), in this case is 𝜏 = 𝜇𝜎b2∕𝜋2 = 0.074 s.

In Figure 2.48, we see the current density in the block at different times. As
expected, there is current only at the surface close to the current sheet at short
times and in steady state we have uniform current density.

As we found in Section 1.10, for the transient case, as the field penetrates into
the conducting region, skin depth takes on a different meaning and depends on

√
t.

Using the result, we just found for transient diffusion, we can verify this behav-
ior. In Figure 2.49, we have a block of copper, 1 m wide, and a current sheet of
1.0 A m−1 applied on one face of the conductor with the current returning through
the conductor. The magnetic field at the surface will then be 1.0A m−1 at all times
greater than t = 0. If we now look at the location where the field is 1∕e of the sur-
face value at different times, we find that as time increases, the location moves

t = 0.001 s

x/b

H

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

t = 0.01 s

t = 0.1 s

t → ∞

Figure 2.47 Field diffusion into copper block.
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Figure 2.48 Current diffusion into copper block.
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Figure 2.49 Location of a particular value of the field as a function of time.

in the positive direction as the square root of time. For example, at t = 0.004 s,
the location is approximately 10 mm. At t = 0.016 s the location is approximately
20 mm. Figure 2.49 shows the location at which the field is 1∕e as a function of
time. We plot the location vs. time and vs. the square root of time, in which case
we see a linear relationship.

Another example was suggested by Silvester [38]. Referring to Figure 2.50, we
are interested in the turn-off transient in the conducting region between the two
current sheets.
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Figure 2.50 Conducting region in solenoidal field: turn-off transient.

In this problem, the symmetry is different and the sine functions are replaced
by cosine functions. The time constant is now

𝜏n = 4𝜇𝜎b2

(n𝜋)2 (2.375)

due to the width of the conducting region being twice as large.
The solution is then

H(x, t) =
∞∑

n=1
4Js

sin(n𝜋∕2)
n𝜋

cos
(n𝜋x

2b

)
e−

t
𝜏n (2.376)

For the turn on transient, we obtain

H(x, t) =
∞∑

n=1
4Js

sin(n𝜋∕2)
n𝜋

cos
(n𝜋x

2b

)(
1 − e−

t
𝜏n

)
(2.377)

The current density is

J(x, t) =
∞∑

n=1
− 2Js

sin(n𝜋∕2)
b

sin
(n𝜋x

2b

)
e−

t
𝜏n (2.378)

Using a uniform copper conducting region of width 2b and an initial magnetic
field of 1.0 A m−1, we find the field decay as shown in Figure 2.51. We note that
the field starts out as the initial magnetic field and decays to zero.

In Figure 2.52, we see the turn-off transient current density at various times. As
expected, the current density goes to zero after several time constants.
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Figure 2.51 Turn-off magnetic field transient in conducting region at different times.
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2.14 Eddy Current Modes in a Rectangular Core

We have looked at one-dimensional transient diffusion into a conducting block
in Section 2.13. We will now look at transient diffusion into a rectangular bar as
shown in Figure 2.53 [38]. The dimensions of the bar are 2b × 2h. We will assume
that the material properties are linear and homogeneous.

We will also assume that the bar is very long compared to its width and height so
that variation in the z direction may be neglected. We will employ the separation of
variables technique (see Appendix B) that was used in Section 2.13. The difference
is that we now have two space variables, x and y. Considering the space variables
together, we assume a solution of the form

S = X(x)Y (y) (2.379)

Then the Laplacian part of the diffusion equation becomes

𝜕2S
𝜕x2 + 𝜕2S

𝜕y2 = −𝛾2S (2.380)

Combining these we get

X ′′

X
+ Y ′′

Y
= −𝛾2 (2.381)

Let

𝛾2 = 𝛼2 + 𝛽2 (2.382)

Figure 2.53 Rectangular
conductor with applied
magnetic field.
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From the geometry, we deduce that the solution must have even symmetry, so that
sine functions cannot be a solution. We, therefore, obtain a solution of the form

X ′′ = Kx cos(𝛼x)
Y ′′ = Ky cos(𝛽y) (2.383)

The total solution then has the form

H = K cos(𝛼x)cos(𝛽y)e−t∕𝜏 (2.384)

where

𝜏 = 𝜇𝜎

𝛼2 + 𝛽2 (2.385)

While these functions satisfy the diffusion equation, they do not satisfy the bound-
ary conditions. To make sure that the field vanishes at the boundaries (x = ±b) and
(y = ±h), we require that the parameters 𝛼 and 𝛽 are limited to

𝛼 = m𝜋

2b

𝛽 = n𝜋
2h

(2.386)

for any odd integers m and n.
This general solution satisfies the boundary conditions at the conductor’s edges,

but not the initial conditions or steady-state distribution for the turn-on or turn-off
transients. For example, in the turn-off transient, the initial state of the conduc-
tor is uniform magnetization. For the turn-on transient, the steady-state solution
is a uniform field. Referring to the general solution of Equation (2.384), we see
that a single term cannot produce either of these results. We now multiply each
term (in x and y) by a cosine function, and use the orthogonality property, where
only the i = j term survives the integration. We are left with a Fourier series, in
which the summation will give us the desired result. As an example, Figure 2.54
shows the m = 5, n = 7 solution.

As in the previous example, each term in the series decays with a different time
constant, the time constants getting shorter as the spatial orders get larger. The
solution is then

H(x, y, t) =
∞∑

m=1,3,5...

∞∑
n=1,3,5,...

Kmn cos
(m𝜋

2b
x
)

cos
(n𝜋

2h
y
) (

1 − e−t∕𝜏mn
)

(2.387)

where

𝜏mn = 𝜇𝜎(
𝜋m
2b

)2
+
(

𝜋n
2h

)2 (2.388)
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Figure 2.54 The 5,7 mode in a rectangular conductor.

and

Kmn =
16Js

𝜋2mn
sin m𝜋

2
sin n𝜋

2
(2.389)

To find the current density, we can use Ampere’s law and take the curl of
Equation (2.387).

Jx(x, y, t) = −
∞∑

m=1,3,5...

∞∑
n=1,3,5,...

Kmn
n𝜋
2h

cos
(m𝜋

2h
x
)

sin
(n𝜋

2h
y
)

e−t∕𝜏mn (2.390)

and

Jy(x, y, t) =
∞∑

m=1,3,5...

∞∑
n=1,3,5,...

Kmn
n𝜋
2b

sin
(m𝜋

2b
x
)

cos
(n𝜋

2h
y
)

e−t∕𝜏mn (2.391)

As an example, in Figures 2.55–2.57 we see the magnetic field for the turn-on
transient across the rectangular surface of the conducting bar. The bar is initially
unmagnetized when, at t = 0, a current sheet of 1.0 A m−1 is applied. The figure
shows the field distribution three times during the transient. Shortly after the cur-
rent is applied, the edges of the bar become magnetized, some time later the field
has diffused further into the center. After a longer time interval, we see that steady
state is nearly achieved.
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Figure 2.55 Magnetic field distribution in bar soon after current is applied at t = 0.1 s.
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Figure 2.56 Magnetic field distribution in bar at t = 0.5 s.
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Figure 2.57 Magnetic field distribution in bar near steady state at t = 2 s.

2.15 Summary

In this chapter, we have presented many solutions for conductors with rectangular
cross section. The theory is based on the principles developed in Chapter 1. We dis-
cussed the lamination problem covering both the resistance and reactance-limited
cases. In the later example, the skin depth for steady-state ac fields was devel-
oped from a first principles argument from Ampere’s law and Faraday’s law. This
is an extremely practical example and the results presented here are still in use
in the design of many electrical devices. We then presented an extensive discus-
sion of the conducting plate problem and compared different techniques to find
losses. These examples were all for linear, homogeneous, and isotropic materials.
We then introduced a limiting nonlinear analysis for eddy currents in saturat-
ing steel. This analysis used a square wave saturation curve. The analysis allows
us to find the current density and loss in a saturating material and this analy-
sis is still commonly used in design. We also introduced the concepts of effective
permeability as a way of dealing with saturation in steady-state ac analysis and
complex permeability as a way of accounting for hysteresis loss. These method are
approximations but give useful results for losses in plates and laminations. We
then looked at problems in which the magnetic field has both space and time vari-
ations in one-dimension and two-dimensions. This analysis is applicable to find
losses in structural members, especially in electrical machines. We then analyzed
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a number of problems involving layered geometries with sinusoidal space-varying
excitation and with filamentary excitation. These included single plates and mul-
tiple layered plates with or without gaps. Formulas for eddy currents and losses
were derived for these cases. We then turned our attention to problems in which
the material was anisotropic. When designing magnetic circuits with laminations,
most of the flux should travel perpendicular to the thin edge of the lamination and
the losses are usually resistance limited. At the end of these structures, however,
some of the flux enters through one of the wide sides, wide being compared to the
skin depth. In this case, the flux crossed the lamination stack and encounters a
number of small air gaps. This has a significant effect on the permeability in that
particular direction. Since the permeability is different for the different directions
of flux, we found a formulation that will account for the eddy currents and losses
in this particular application. We then introduced a closed-form solution for eddy
currents in an isolated rectangular conductor, in which the eddy currents vary in
magnitude and phase in two-dimensions. We concluded Chapter 2 with a number
of problems in the time domain. These included two examples of magnetic diffu-
sion into a solid conductor and an example that introduced the concept of eddy
current modes. This formulation was used to find the transient eddy current dis-
tribution on the face of a two-dimensional conductor responding to a step function
of field excitation. We now turn our attention to problems in which the conductor
cross section is circular.
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3

Conductors with Circular Cross Sections

In Chapter 2, we studied a number of problems involving eddy currents in
conductors with rectangular cross sections. These problems were formulated in
Cartesian or rectangular coordinates. As we have seen, the solution of the diffu-
sion equation in rectangular coordinates usually results in exponential functions
which, depending on boundary conditions, we can express as sines and cosines
or hyperbolic functions. In this section, we will consider problems involving
conductors with circular cross sections. There are, of course, many applications
for circular conductors. Many motors and transformers are wound with circular
wire, as are many electromagnets and inductors. Conductors with circular cross
section are universally used in overhead power transmission and for underground
or underwater cables. In the field of instrumentation, co-axial conductors are
in widespread use. These problems are best described in polar or cylindrical
coordinates. The solution of the diffusion equation in polar coordinates often
results in Bessel functions. Since these functions are often less familiar, we refer
the reader to Appendix A for more information. There are also a number of
excellent works on the subject [1, 34, 39, 74]. The process we have followed in
Chapter 2 is continued here so that we consider circular conductors with axial
fields and axial current, and circular conductors with transversely directed fields
applied. We consider both the resistance limited case, in which the reaction field
of the conductor can be neglected, and the reactance-limited case, in which the
field produced by eddy currents redistributes the field.

3.1 Axial Current in a Conductor with Circular Cross
Section: Reactance-Limited Case

This example deals with the case of skin effect for a long straight wire of circular
cross-section carrying steady-state sinusoidal current in the axial direction. The
geometry is illustrated in Figure 3.1. We assume that the wire is made of linear

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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r0

r θ

z

Figure 3.1 Coordinate system defined for the long
straight wire.

homogeneous material and we ignore any perturbation of the field from external
sources or magnetic material. In this case, the current has only one component,
along the wire. The magnetic field has only a 𝜃 component. The current and the
magnetic field are only a function of the radial coordinate.

We have from Maxwell’s equations

∇ × J = −𝜎𝜇 𝜕H
𝜕t

(3.1)

Taking the curl of both sides of Equation (3.1) and assuming steady-state
time-harmonic behavior, we have

∇ × ∇ × J = −𝜎𝜇∇ × 𝜕H
𝜕t

= −𝜎𝜇 𝜕J
𝜕t

= j𝜔𝜇𝜎J (3.2)

Expanding Equation (3.2) in cylindrical coordinates

𝜕2J
𝜕r2 + 1

r
𝜕J
𝜕r

= j𝜔𝜇𝜎J (3.3)

Equation (3.3) is a Bessel equation of zero order whose solution is found in [39]

J = C (ber(𝛼r) + j bei(𝛼r)) (3.4)

where 𝛼 =
√
𝜔𝜇𝜎.

We can find the constant of integration, C, by setting the current density at the
outer radius of the conductor r0 to J0. This value, J0, is the uniform current density
which would exist at dc conditions. We find then that

C =
J0

ber(𝛼r0) + j bei(𝛼r0)
(3.5)

The current density as a function of r is then

J = J0
(ber(𝛼r) + j bei(𝛼r))
ber(𝛼r0) + j bei(𝛼r0)

(3.6)

As an example, let us look at the solution for the case of a circular copper wire
with 60 HZ current. In this example, the wire has a radius of r0 = 0.05 m and is
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Figure 3.2 Current
density magnitude as a
function of r for 60 HZ.
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Figure 3.3 Real and
imaginary components of
current density as a
function of r for 60 HZ.
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carrying (1.0 + j0.0) A. Evaluating Equation (3.6), the magnitude of the current
density is shown in Figure 3.2. In Figure 3.3, we see the real and imaginary com-
ponents of the current density. Here the radius is larger than the skin depth and
we expect that the current density at the surface is much higher than that in the
center.

We can find the current in the conductor up to a given radius r by integrating
the current density over the cross section of the wire.

Ir = ∫
2𝜋

0 ∫
r

0
Jr dr d𝜃 = ∫

r

0
2𝜋Jr dr = ∫

r

0

J0 (ber(𝛼r) + j bei(𝛼r))
ber(𝛼r0) + j bei(𝛼r0)

dr (3.7)

We have the relations

∫
r

0
ber(𝛼r)r dr = r

𝛼
bei′(𝛼r) (3.8)
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∫
r

0
bei(𝛼r)r dr = r

𝛼
ber′(𝛼r) (3.9)

The current in the entire wire is then

Ir = ∫
r0

0
2𝜋Jr dr = ∫

r0

0
2𝜋Jr dr = 2𝜋J0

r0

𝛼

bei′(𝛼r0) − j ber′(𝛼r0)
ber(𝛼r0) + j bei(𝛼r0)

(3.10)

and

Ir = I0
r
r0

bei′(𝛼r0) − j ber′(𝛼r0)
ber(𝛼r0) + j bei(𝛼r0)

(3.11)

We may now find the impedance per unit length as

Z =
E0

I
=

𝜌J0

2𝜋J0
r0
𝛼

ber(𝛼r0) + j bei(𝛼r0)
bei′(𝛼r0) − j ber′(𝛼r0)

(3.12)

Rewriting Equation (3.12), we have

R + j𝜔L = 𝜌𝛼

2𝜋r0

ber(𝛼r0) + j bei(𝛼r0)
bei′(𝛼r0) − j ber′(𝛼r0)

(3.13)

Rationalizing, by multiplying numerator and denominator by the complex con-
jugate of the denominator, then taking the real and imaginary parts, we find the
resistance and reactance per unit length as

R = 𝜌𝛼

2𝜋r0

ber(𝛼r0)bei′(𝛼r0) − bei(𝛼r0)ber′(𝛼r0)
ber′2(𝛼r0) + bei′2(𝛼r0)

(3.14)

X = 𝜔L = 𝜌𝛼

2𝜋r0

bei(𝛼r0)bei′(𝛼r0) + ber(𝛼r0)ber′(𝛼r0)
ber′2(𝛼r0) + bei′2(𝛼r0)

(3.15)

The power loss per unit length is then

P = I2 𝜌𝛼

2𝜋r0

ber(𝛼r0)bei′(𝛼r0) − bei(𝛼r0)ber′(𝛼r0)
ber′2(𝛼r0) + bei′2(𝛼r0)

(3.16)

As an example, let us consider a long circular wire, carrying 1.0 A at various
frequencies: 60, 200, and 500 HZ. The radius of the wire is a = 0.01 m and the
material is copper (𝜎 = 5.8 × 107 S m−1).

The magnitude of the current density in the wire vs. radius is illustrated in
Figure 3.4. The dc resistance per meter depth is

Rdc =
1

𝜎𝜋a2 = 5.488 × 10−5 Ωm−1 (3.17)

Using Equation (3.14) for 60 HZ, we get Rac = 5.697 × 10−5 Ω. This is somewhat
higher than the dc resistance as expected. Stoll [26] uses asymptotic expansions
for the Bessel functions to obtain approximate solutions for the resistance and
reactance. This is convenient since it is no longer necessary to evaluate the
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Figure 3.4 Magnitude of current density in copper wire at three frequencies vs. radius.

Bessel functions, only a simple polynomial expression. These approximations are
valid either in the low frequency regime (a < 𝛿) or in the high frequency regime
(a > 𝛿). In the low frequency regime, when the skin depth is comparable or larger
than the radius, we obtain

Rac ≈ Rdc

(
1 + a4

48𝛿4

)
(3.18)

Evaluating this expression for 60 Hz, we obtain the result Rac = 5.704 ×
10−5 Ωm−1. There is a slight difference compared to the exact solution since
the radius is slightly larger than the 60 Hz skin depth. We now consider
the same conductor but with current at 10 HZ (𝛿 = 0.021 m). The exact
solution gives Rac = 5.494 × 10−5 Ωm−1 while the approximate result is
Rac = 5.494 × 10−5 Ωm−1. The solutions agree to four significant figures.

Stoll [26] also uses asymptotic expansions to obtain a high frequency (a ≫ 𝛿)
approximation for the resistance of the conductor.

Rac ≈ Rdc

( a
2𝛿

+ 1
4
+ 3𝛿

32a

)
(3.19)

If we now consider, the case of 500 HZ (𝛿 = 0.002955 m), the exact solution
is Rac = 1.0809 × 10−4 Ωm−1 and the approximation in Equation (3.19) gives
Rac = 1.0789 × 10−4 Ωm−1. The value here is considerably greater than the dc
resistance as expected. In Figure 3.5, we see the exact solution for the ac resistance
divided by the dc resistance and the high frequency approximation plotted as
a function of the variable 𝜉 = r0∕𝛿. We can see from the figure that at high
frequencies, where 𝛿 < r0, the approximation is valid for 𝜉 > 2.

In Figure 3.6, we have plotted the normalized resistance vs. 𝜉 for the low fre-
quency approximation, 𝛿 > r0. We see from the figure that the approximation is
very good for values of 𝜉 < 2.
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Figure 3.5 Normalized resistance vs. 𝜉 = r0
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3.2 Axial Current in Composite Circular Conductors

There are several applications in which we have composite conductors with
circular cross sections as illustrated in Figure 3.7. One of these is overhead power
transmission lines. These lines are typically made with an inner layer of steel,
which supplies the strength, and an outer layer of aluminum which carries most
of the current. Aluminum is used instead of copper due to it’s light weight and
mechanical strength. These conductors are referred to as ACSR or Aluminum
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Figure 3.7 Two layer conductor with
circular cross section.
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Conductor Steel Reinforced. The center steel layer does not carry much of the
load current due to its higher resistance and higher inductance. In Section 3.1,
we solved for the magnetic field and eddy current density directly. In this section,
we will use the magnetic vector potential to solve the coupled set of equations in
the two regions.

We will first consider the case of a solid homogeneous conductor to introduce the
vector potential formulation, and then extend this method to the case of multiple
layers. The magnetic vector potential is defined by

∇ × A = B (3.20)

We can write the electric field in terms of the flux density by using Faraday’s law,

∇ × E = −j𝜔B (3.21)

As shown in Chapter 1, the electric field has two sources, one the induced field
and the other the field produced by an electric charge distribution. Therefore

E = −j𝜔A + ∇V (3.22)

Since we are only interested in the curl of the vector potential, and since we can
arbitrarily set the divergence, we choose to set the divergence to zero.

∇ ⋅ A = 0 (3.23)

Using the vector identity

∇ × ∇ × F = ∇(∇ ⋅ F) − ∇2F (3.24)

for any vector F, we obtain

∇2A − j𝜔𝜎𝜇A = −𝜇J0 (3.25)
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In the present example, in cylindrical coordinates, A and J have only z compo-
nents and none of the variables depend on z or 𝜃. This gives

𝜕2Az

𝜕r2 + 1
r
𝜕Az

𝜕r
− 𝛼2Az = −𝜇Jz0 (3.26)

where 𝛼2 = j𝜔𝜎𝜇. The solution of Equation (3.26) is given in terms of modified
Bessel functions of the first and second kind of zero order.

Az(r) = C1I0(𝛼r) + C2K0(𝛼r) +
𝜇Jz0

𝛼2 (3.27)

The two constants are solved for by applying the boundary conditions. For a
single homogeneous conductor in free space, we can set the vector potential at
the outer radius to zero. The second condition is that the vector potential is finite
at r = 0, giving C2 = 0. Solving then, we obtain for the vector potential,

Az(r) =
𝜇Jz0

𝛼2

(
1.0 −

I0(𝛼r)
I0(𝛼a)

)
(3.28)

This solution can be used to analyze the problem treated in Section 3.1, in
which we used the field variables instead of the vector potential. In the examples
below, where we consider conductors made of composite materials to make
a layered conductor, solving for the vector potential will be more convenient.
Considering Equation (3.28), let us consider the example of a copper conductor
of radius a = 0.05 m. The conductivity is 𝜎 = 5.8 × 107 S m−1 and the frequency
is 60 HZ. In this formulation, the conductor is driven by the input current
density Jz0. In this case, the current density is chosen such that the current in
the conductor would be 1.0 A without the effect of eddy currents. Therefore the
current density input in Equation (3.28) is

Jz0 = 1.0
𝜋a2 = 127.32 A m−2 (3.29)

Equation (3.28) was then solved for a number of points along a radius. The solution
for the magnitude of the vector potential is shown in Figure 3.8.

Consideration of the shape of Figure 3.8 reveals some interesting aspects of the
vector potential. First we note that the vector potential magnitude is changing
rapidly near the surface of the conductor and then is relatively constant after
around three skin depths. We expect the highest current and flux density at the
surface and relatively little current or flux density near the center as this is several
skin depths from the surface. To get approximately zero current at the center,
the induced current must cancel the applied current. Refer back to Section 1.1
where we discussed the two different sources of electric field. The conservative
electric field, produced by charges, is the one associated with the source current
density, Jz0. This component of electric field is

E𝜙 =
Jz0

𝜎
= 127.32

5.8 × 107 = 2.195 × 10−6 V m−1 (3.30)



�

� �

�

3.2 Axial Current in Composite Circular Conductors 139

Figure 3.8 Magnitude of the
magnetic vector potential.
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For the induced nonconservative field to cancel this applied electric field, we
can deduce what value of vector potential must exist near the center. The induced
field is

E𝜓 = j𝜔A (3.31)

This tell us that the expected vector potential at the center of the conductor is

|A| = Jz0

𝜔𝜎
= 5.82 × 10−9 Wb m−1 (3.32)

This value agrees with that shown in the figure. The vector potential is, of course,
a complex number and Figure 3.9 shows the real and imaginary components. Note
that real and imaginary parts are referred to the input current density, which in
this case has no imaginary component, Jz0 = (127.0 + j0.0)A m−2, so the real part
of the vector potential is the component in phase with the input current density.

From the vector potential solution, we can easily find the current density. The
eddy current density is given by

Je = −j𝜔𝜎A (3.33)

For the steady-state sinusoidal case, the eddy current density is proportional to
the vector potential. To find the total current density, we must add in the input
current density, Jz0. When we evaluate this along the radius of the conductor,
we obtain the results in Figure 3.10 for the magnitude of the total current density.

We can find the total current in the conductor by integrating the current density
over the conductor surface. The total current is found to be I = (0.1685 − j1.558)A.
We can now find the impedance per meter by dividing this current into the applied
electric field.

Zac =
E𝜙

I
= 7.02 × 10−6 + j6.43 × 10−6 Ω (3.34)



�

� �

�

140 3 Conductors with Circular Cross Sections

0 1 2 3 4 5

−2

0

2 Real part
Imaginary part

M
ag

ne
tic

 v
ec

to
r 

po
te

nt
ia

l (
W

b 
m

−
1 )

−4

−6

Radius, r (cm)

·10−9

Figure 3.9 Real and imaginary parts of Az for solid conductor example.
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Figure 3.10 Magnitude of the
current density for solid
conductor example.

This agrees with the formulation of Section 3.1 which is repeated here

Z = 𝛼𝜌

2𝜋a
ber(𝛼a) + j bei(𝛼a)

bei′(𝛼a) − j bei′(𝛼a)
(3.35)

Evaluating this expression gives Zac = 7.015 × 10−6 + j6.40 × 10−6 Ω. The vector
potential can also be used to find the magnetic flux density which is given by the
curl of the vector potential. The curl in cylindrical coordinates is given by

B𝜃 = −
𝜕Az

𝜕r
(3.36)

We can evaluate this numerically by taking the values of Az at two points,
relatively close to each other, and dividing by the distance between the two
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points. For example, near the surface of the conductor, this process gives,
B𝜃 = 6.80 × 10−7 − j6.23 × 10−7 T. Since we found the total current in the con-
ductor, we can use Ampere’s law and find the flux density at the conductor
surface as

B𝜃 =
𝜇0I
2𝜋a

= 6.80 × 10−7 − j6.23 × 10−7 T (3.37)

Now that we have applied the MVP formulation to the solid homogeneous case,
we can use this formulation to consider the problem of a composite conductor
with two layers as shown in Figure 3.7.

For the two region problem, we have, for the inner and outer regions
respectively,

𝜕2A1

𝜕r2 + 1
r
𝜕A1

𝜕r
− 𝛼2

1A1 = −𝜇Jz1 (3.38)

and
𝜕2A2

𝜕r2 + 1
r
𝜕A2

𝜕r
− 𝛼2

2A2 = −𝜇Jz2 (3.39)

These are second-order differential equations requiring two boundary condi-
tions each to evaluate the four constants of integration. We require

1. A2 = 0 at r = r2
2. A2 = A1 at r = r1
3. A1 is finite at r = 0
4. 𝜇1

𝜕A1
𝜕r

= 𝜇2
𝜕A2
𝜕r

at r = r1 (Tangential H is continuous).

The homogeneous solutions to Equations (3.38) and (3.39) are

A1h = C1I0(𝛼1r) + C2K0(𝛼1r) (3.40)

A2h = C3I0(𝛼2r) + C4K0(𝛼2r) (3.41)

For the particular solution, we introduce constants D1 and D2 such that

A1p = D1 =
𝜇1J1

𝛼2
1

(3.42)

A2p = D2 =
𝜇2J2

𝛼2
2

(3.43)

Our complete solutions are then

A1 = A1h + A1p = C1I0(𝛼1r) + C2K0(𝛼1r) +
𝜇1J1

𝛼2
1

(3.44)

A2 = A2h + A2p = C3I0(𝛼2r) + C4K0(𝛼2r) +
𝜇2J2

𝛼2
2

(3.45)
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From the requirement that the potential remains finite at the center, we find that

C2 = 0 (3.46)

From the flux line boundary condition at r2, we have

C3I0(𝛼2r2) + C4K0(𝛼2r2) = −
𝜇2J2

𝛼2
2

(3.47)

From the continuity condition at r1, we get

C1I0(𝛼1r1) − C3I0(𝛼2r1) − C4K0(𝛼2r1) =
𝜇2J2

𝛼2
2

−
𝜇1J1

𝛼2
1

(3.48)

Finally, from the continuity of tangential H, we have

𝜇1C1𝛼1I1(𝛼1r1) − 𝜇2C3𝛼2I1(𝛼2r1) − C4𝛼2K1(𝛼2r1) = 0 (3.49)

These are now solved simultaneously for the constants.

⎛⎜⎜⎝
I0(𝛼1r1) −I0(𝛼2r1) −K0(𝛼2r1)

𝜇1𝛼1I1(𝛼1r1) −𝜇2𝛼2I1(𝛼2r1) −𝜇2𝛼2K1(𝛼2r1)
0 I0(𝛼2r2) K0(𝛼2r2)

⎞⎟⎟⎠
⎛⎜⎜⎝

C1
C3
C4

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝜇2J2
𝛼2

2
− 𝜇1J1

𝛼2
1

0
− 𝜇2J2

𝛼2
2

⎞⎟⎟⎟⎠ (3.50)

The determinant of the matrix is

Δ = I0
(
−𝜇2𝛼2I1(𝛼2r1)K0(𝛼2r2) + 𝛼2K1(𝛼2r1)I0(𝛼2r2)

)
−𝜇1𝛼1I1(𝛼1r1)

(
−I0(𝛼1r1)K0(𝛼2r2) + I0(𝛼2r2)K0(𝛼2r1)

)
(3.51)

Using Cramer’s rule

C1 = 1
Δ

||||||||
𝜇2J2
𝛼2

2
− 𝜇1J1

𝛼2
2

−I0(𝛼1r1) −K0(𝛼2r1)
0 −𝜇2𝛼2I1(𝛼2r1) −𝜇2𝛼2K1(𝛼2r1)

−𝜇2J2
𝛼2

2
I0(𝛼2r2) K0(𝛼2r2)

||||||||
(3.52)

Evaluating this, we have

C1 =

((
𝜇2J2

𝛼2
2

−
𝜇1J1

𝛼2
2

)(
−𝜇2𝛼2I1(𝛼2r1)K0(𝛼2r2) + 𝜇2𝛼2K1(𝛼2r1)I0(𝛼2r2)

)
−
𝜇2J2

𝛼2
2

(
I0(𝛼1r1)𝜇2𝛼2K1(𝛼2r1) − 𝜇2𝛼2I1(𝛼2r1)K0(𝛼2r1)

)) 1
Δ

(3.53)

Similarly

C3 =

((
𝜇2J2

𝛼2
2

−
𝜇1J1

𝛼2
1

)(
−𝜇1𝛼1I1(𝛼1r1)K0(𝛼2r2)

)
−
𝜇2J2

𝛼2
2

(
−I0(𝛼1r1)𝜇2𝛼2K1(𝛼2r1) + 𝜇1𝛼1I1(𝛼1r1)K0(𝛼2r1)

)) 1
Δ

(3.54)
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and

C4 =

((
𝜇2J2

𝛼2
2

−
𝜇1J1

𝛼2
1

)(
𝜇1𝛼1I1(𝛼1r1)

)
−
𝜇2J2

𝛼2
2

(
−I0(𝛼1r1)𝜇1𝛼1I1(𝛼1r1) + I0(𝛼1r1)𝜇2𝛼2I1(𝛼2r1)

)) 1
Δ

(3.55)

With these constants now known, the solution can be evaluated. This process
can be now extended to geometries with more layers. The governing equation for
the regions remains the same. One need only match the vector potential and tan-
gential fields at the interfaces in order to evaluate the constants in the solution.

We can now apply the formulation to a numerical example. First, let us check
the results for a homogeneous problem. We will use the example we solved with
the copper cylindrical conductor, r = 0.05 m, carrying 60 HZ current. In this case,
we select an arbitrary boundary (half of the radius) between the two materials and
use the two layer formulation to find the vector potential. The magnitude of the
vector potential is plotted against radius for this case in Figure 3.11. This agrees
with Figure 3.9 which was computed using the homogeneous material analysis.

For the second example, we consider the problem of an overhead trans-
mission line ACSR conductor. The inner region, (r1 = 0.01 m) is steel with
𝜎1 = 10 × 107 S m−1 and relative permeability of 𝜇r = 250. The outer layer

Figure 3.11 Magnitude of
vector potential vs. radius
using the two layer
formulation for a solid
copper conductor.
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(r2 = 0.02 m) has conductivity 𝜎2 = 3.5 × 107 S m−1. The frequency of the current
is 60 HZ.

The magnitude of the vector potential vs. radius is plotted in Figure 3.12. The
current density magnitude vs. radius is shown in Figure 3.13.

3.3 Circular Conductor with Applied Axial Flux:
Resistance-Limited Case

Consider a long cylinder of radius b and resistivity 𝜌. We apply a uniform axial
magnetic flux density of Bz = B0 cos𝜔t. This is illustrated in Figure 3.14.

Based on our resistance limited assumptions and symmetry, the current den-
sity has only a 𝜃 component and all of the current is in phase. In computing the
loss, we need only find the RMS value of the emf. Considering the circular path in
Figure 3.14, the flux linked by the current element is

𝜓(t) = B0𝜋r2 cos(𝜔t) (3.56)

Then the induced voltage, or emf, is the negative derivative of 𝜓 with respect to
time

(t) = 𝜔B0𝜋r2 sin(𝜔t) (3.57)
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Figure 3.13 Magnitude
of current density vs.
radius using the two layer
formulation for a
composite conductor.
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Figure 3.14 Long cylinder with axial flux.

b
r

B
0 
sin(ωt)

Iθ

the RMS value of which is

rms = 𝜔B0𝜋r2∕
√

2 (3.58)

The resistance of the element per unit depth is

dR = 2𝜋r𝜌∕dr (3.59)

The loss per unit depth in the thin element is then found by combining (3.58)
and (3.59):

dW =
2

rms

dR
=

𝜋𝜔2B2
0r3dr

4𝜌
(3.60)
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Figure 3.15 Long hollow cylinder with
axial flux.

We find the total loss per unit depth by integrating over the radius of the cylinder

W = ∫
b

0

𝜋𝜔2B2
0r3dr

4𝜌
=

𝜋𝜔2B2
0b4

16𝜌
(3.61)

We can easily find the current density by dividing the emf (3.58) by the path
length to obtain the electric field and then dividing by the resistivity. The RMS
current density is then

Jrms =
rms

2𝜋r
=

𝜔B0r

2
√

2𝜌
(3.62)

The current density is zero at the center and increases linearly as we approach
the edge.

We can extend this analysis to include some other cases of interest. For
example, if the cylinder is hollow, as shown in Figure 3.15, then the analysis is
basically the same, but in (3.61) we integrate from a to b instead of 0 to b, giving

W =
𝜋𝜔2B2

0
(

b4 − a4)
16𝜌

(3.63)

Another variation is if we have a cylinder made of different materials, such as
shown in Figure 3.16. This solution is a combination of the hollow cylinder (the
outer one) and the solid cylinder (the inner one).

3.4 Circular Conductor with Applied Axial Flux:
Reactance-Limited Case

Now let us consider the case of a long rod with circular cross section, being excited
by a solenoidal field in the axial direction using reactance-limited analysis.
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Figure 3.16 Long composite cylinder
with axial flux.
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2

Figure 3.17 Long cylinder
with solenoidal applied field.

B

Figure 3.17 shows a slice of an infinitely long solenoid with a conducting core of
circular cross section. The excitation is provided by a thin current sheet repre-
senting the winding of the solenoid. The current sheet contains NI ampere-turns
per unit length. The problem is to determine the magnetic field, flux-density, and
the eddy current density and power loss in the conducting circular rod.

We assume here that the material properties are linear, homogeneous, and
isotropic. The permeability and the conductivity are taken as constant. The
conditions are steady-state sinusoidal and the problem can be described in
cylindrical coordinates.

From Ampere’s law

∇ × H = Js (3.64)

Since the solenoid is assumed infinitely long, we have only a z component of the
magnetic field, which is not a function of z or 𝜃. Therefore

∇ × H = −
𝜕Hz

𝜕r
= Jsû𝜽 (3.65)
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Taking the curl of both sides of Equation (3.65), we get

∇ × ∇H = ∇ ×
(
−
𝜕Hz

𝜕r

)
= ∇ × Js = 𝜎∇ × E (3.66)

We recognize that

∇ ×
(
−
𝜕Hz

𝜕r

)
= −1

r
𝜕

𝜕r

(
r
𝜕Hz

𝜕r

)
(3.67)

Faraday’s law states that

∇ × E = −𝜕B
𝜕t

= −𝜇𝜕H
𝜕t

(3.68)

For the steady-state time-harmonic case, we have

∇ × E = −j𝜔𝜇H (3.69)

From Equations (3.66) through (3.69), we have

∇ × ∇ × H = −1
r
𝜕

𝜕r

(
r
𝜕Hz

𝜕r

)
= −j𝜔𝜇𝜎Hz (3.70)

Expanding Equation (3.70) we get

𝜕2Hz

𝜕r2 + 1
r
𝜕Hz

𝜕r
− j𝜔𝜇𝜎Hz = 0 (3.71)

Equation (3.71) is a Bessel equation of zeroth order and the solution is in terms
of Kelvin functions.

Hz = C (ber(kr) + j bei(kr)) (3.72)

where k2 = 𝜔𝜇𝜎 and C is a constant of integration.
We now apply the boundary conditions. At the outer radius, r = r0, we have

∮ H ⋅ d𝓁 = NI (3.73)

Therefore, at r = r0 we have

Hz =
NI
𝓁

= C
(
ber(kr0) + j bei(kr0)

)
(3.74)

and

C = NI
𝓁

1(
ber(kr0) + j bei(kr0)

) (3.75)

From Equations (3.74) and (3.75), we find

Hz(r) =
NI
𝓁

(ber(kr) + j bei(kr))(
ber(kr0) + j bei(kr0)

) (3.76)
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The eddy current density is

J𝜃 = −
𝜕Hz

𝜕r
= −NI

𝓁
k
(
ber′(kr) + j bei′(kr)

)(
ber(kr0) + j bei(kr0)

) (3.77)

The power dissipated is

P = ∫
2𝜋

0 ∫
r0

0 ∫
𝓁

0

J𝜃J∗
𝜃
𝜌

2
dv (3.78)

Substituting from Equation (3.77) we get

P = 2𝜋𝓁𝜌
(NI
𝓁

)2 k2

2 ∫
r0

0

(
ber′(kr) + j bei′(kr)

) (
ber′(kr) − j bei′(kr)

)(
ber(kr0) + j bei(kr0)

) (
ber(kr0) − j bei(kr0)

) r dr

(3.79)

or

P = 𝜋𝓁𝜌
(NI
𝓁

)2
k2 ∫

r0

0

(
ber′2(kr) + bei′2(kr)

)(
ber2(kr0) + bei2(kr0)

) r dr (3.80)

Then the loss per unit length is

P = 𝜋𝜌

(NI
𝓁

)2
kr0

(
ber(kr0)ber′(kr0) + bei(kr0)bei′(kr0)

)(
ber2(kr0) + bei2(kr0)

) (3.81)

Let us consider a numerical example. We have a long copper (𝜎 = 5.8 ×
107 S m−1) rod of circular cross section of radius r0 = 0.03 m. The solenoidal
applied field is H0 = 1.0 A m−1. The frequency is 60 HZ. From these parameters
𝛿 = 0.0085 m, so that the radius is about three times the skin depth. Evaluating
Equation (3.77), we see in Figure 3.18, the real part, imaginary part, and the mag-
nitude of the current density. As shown in the figure, the current density is much
greater near the outer radius and is quite small near the center. In Figure 3.19, we
see the real and imaginary parts and the magnitude of the magnetic field. Note
that the field at the outer radius is Hz = 1.0 A m−1 as we expect. Also we see that
the field decays as we mover closer to the center of the conductor.

This reduction in the field is due to the field produced by the eddy currents
opposing the uniform axial field produced by the external coil. This is clear evi-
dence that the reactance-limited assumptions are valid here. To further illustrate
this point, let us apply the equations for the same conductor and solenoid, but with
the frequency of 1.0 HZ. Now the skin depth is 𝛿 = 0.066 m. This is larger than
the radius and we would expect the resistance limited assumptions to be valid.
In Figure 3.20, we see the magnitude of the current density vs. radius. Note that
the curve is almost a straight line as predicted by the resistance-limited analysis in
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Figure 3.18 Magnitude, real part, and imaginary part of the current density vs. radius at
60 Hz.
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Figure 3.19 Magnitude, real part, and imaginary part of the magnetic field vs. radius at
60 Hz.

Section 3.3. The peak current density in the resistance-limited case is

J(r0) =
𝜔𝜇𝜎r0H0

2
= 6.86 A m−2 (3.82)

From the figure, we have for the peak current density, J = 6.85 A m−2. This
agrees extremely well with the resistance-limited theory. If we look at the
magnetic field magnitude as a function of the radius in Figure 3.21, we see that
the field is practically constant and is equal to the applied field H0 = 1.0 A m−1.
This tells us that the assumption of the eddy current field having no effect on the
applied field is valid. This confirms our previous argument that if the skin depth
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Figure 3.20 Magnitude of the
current density vs. radius for 1.0 Hz.
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Figure 3.21 Magnitude of the
magnetic field vs. radius for 1.0 Hz.
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is smaller than the radius, we have a reactance-limited case and if the skin depth
is larger than the radius, we can use the much simpler resistance-limited analysis.

3.5 Shielding with a Conducting Tube in an Axial Field

We can investigate an example of eddy current shielding by considering a conduct-
ing tube oriented along the axis of a solenoid as shown in Figure 3.22. The eddy
currents in the tube will oppose the field inside the tube and there will be some
cancellation. The amount of shielding will depend on the frequency, conductivity,
permeability, and thickness of the tube. From Ampere’s law, we can deduce that
the field inside the tube will be constant since there are no sources inside. The
currents induced in the tube, in the peripheral direction, will produce a field only
inside the tube. The ratio of the magnitude of the field inside and outside the tube
is the shielding factor.
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Figure 3.22 Shielding
cylinder in axial field.

In this example, it is not necessary for us to evaluate the field inside the con-
ducting region. We will only find the field in the inner nonconducting region
and compare this with the applied field. Considering the problem illustrated
in Figure 3.22, we will assume steady-state sinusoidal behavior. The solenoidal
source field, Ho, is constant and in the z direction. The field in the hollow of the
tube, Hi, is also constant over the cross section.

The problem we consider here is axisymmetric. There is no variation of the
field or current in the 𝜃 direction. There is also no variation of any variable in
the axial or z direction. The magnetic field has only a z component and is only a
function of r. The current and electric field have only 𝜃 components.

The magnetic field in the conductor is described in cylindrical coordinates by

𝜕2H
𝜕r2 + 1

r
𝜕H
𝜕r

= 𝛼2H (3.83)

where

𝛼 =
√

j𝜔𝜇𝜎 (3.84)

The solution to Equation (3.83) is well know in terms of Bessel functions and given
in Equation (3.85).

H(r) = CI0(𝛼r) + DK0(𝛼r) (3.85)

The constants C and D are found by applying the interface conditions at the
boundaries of the conducting tube. The tangential magnetic field must be contin-
uous at the boundary. At r = r2, the outer radius of the tube, we have

Ho = Hs(r2) = CI0(𝛼r2) + DK0(𝛼r2) (3.86)
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At the inner radius, r1 we have

Hi = Hs(r1) = CI0(𝛼r1) + DK0(𝛼r1) (3.87)

We must now find the unknown coefficients C and D. We can use Faraday’s law
to find a relationship between the field in the shielded region, Hi, and the current
density on the inner boundary, r1. From Faraday’s law, we can write the integral
of the electric field along the inner boundary as

∮ E ⋅ d𝓁 = −d𝜓
dt

(3.88)

where 𝜓 is the flux linking the path of integration. Since, by symmetry, the electric
field is constant along the path, this gives

2𝜋r1E = −j𝜔𝜇0H1𝜋r2
1 (3.89)

Using

J = 𝜎E (3.90)

we have

J(r1) = −𝜕H
𝜕r

|r=r1
= −

𝛼2r1

2
Hi (3.91)

Substituting

𝜕Hi

𝜕r
= C𝛼I′0(𝛼r1) + D𝛼K′

0(𝛼r1) = −
𝛼2r1

2
Hi (3.92)

Combining these equations, we obtain

Hi =
2Ho

𝛼2r2
1

1
I0(𝛼r1)K2(𝛼r2) − K0(𝛼r1)I2(𝛼r2)

(3.93)

We can simplify Equation (3.93) if r1 and r2 are much greater than 𝛿 and r1 ≈ r2.
In other words, the radius of the tube is large compared to a skin depth, and the
wall thickness is smaller than the skin depth [26, 43]. In this case

Hi ≈
√

r1

r2
Ho

(
cosh(𝛼(r2 − r1)) +

1
2
𝛼1r2 sinh(𝛼(r2 − r1))

)
(3.94)

The ratio of |Hi|∕|Ho| is the shielding factor. If the ratio is close to 1, then there
is little effect of the shield. If the ratio is close to 0, then the shielding is very
effective. We expect that the effectiveness of the shield would improve as the fre-
quency increases, the thickness of the shield increases and the conductivity of the
tube increases.

As a numerical example, let us consider a copper tube with inner diameter
r1 = 0.2 m. In this case, the tube thickness is 0.005 m. In Figure 3.23, we see the
shielding factor plotted vs. frequency using the exact and approximate formulas.
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Figure 3.23 Exact and approximate formulas for r1 = 0.2 m and r2 = 0.205 m.
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Figure 3.24 Exact and approximate formulas for r1 = 0.05 m and r2 = 0.07 m.

As we expect, at low frequency, the shielding factor approaches 1.0 (no shield-
ing), while at high frequency, the shielding factor goes to zero (perfect shielding).
Whether we use Equation (3.93) or (3.94), we get the same results down to 1.0 HZ.
This example does meet the criterion of the asymptotic expansion stated above
since the radii are large and the wall is thin. If we consider a copper tube of inner
radius r1 = 0.05 m and r2 = 0.07 m, then the assumptions are not as good for the
approximation to be valid. We investigate this in Figure 3.24, by plotting the shield-
ing factor using both Equations (3.93) and (3.94). We can see that the approximate
formula is still quite good until we get to very low frequencies.

Figure 3.25 shows the shielding factor for different tube thicknesses plotted
against the logarithm of the frequency. As expected, as the shield thickness
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Figure 3.25 Shielding
factor for r1 = 0.2 m and
various tube thicknesses. 2 mm
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gets greater, the shielding factor is lower, meaning more flux is canceled by the
shield.

3.6 Circular Conductors with Transverse Applied Field:
Resistance-Limited Case

Consider the case of Figure 3.26 in which we have a long conducting cylinder
of circular cross section with a uniform sinusoidally time varying flux density,
B0 cos(𝜔t), applied in the transverse direction. The conductor has radius b, and
resistivity, 𝜌. In this case, the eddy currents are axial and in opposite directions on
the top and bottom of Figure 3.26.

The current loop is of rectangular cross section with sides of 2r sin 𝜃. For the
resistance limited assumption, the eddy currents do not affect the applied field.
The flux linked by the current loop, per unit axial depth, is then

𝜓 = 2B0r sin 𝜃 cos(𝜔t) (3.95)

The induced emf per unit axial length is therefore

(t) = −d𝜓
dt

= 2𝜔B0r sin(𝜔t) (3.96)

and the RMS value of the induced voltage per unit axial length is

rms =
√

2𝜔B0r sin 𝜃 (3.97)
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Figure 3.26 Long cylinder with transverse flux.

The resistance of the infinitesimal element per unit axial length is

dR = 2𝜌
r dr d𝜃

(3.98)

where the factor of 2 accounts for the top and bottom sides of the loop.
The loss in the differential element per unit length is then found by combining

Equations (3.97) and (3.98)

dW =
2

rms

dR
=

𝜔2B2
0sin2

𝜃

𝜌
r3dr d𝜃 (3.99)

Then the total loss per unit length is

W =
2𝜔2B2

0

𝜌 ∫
𝜋∕2

0
sin2

𝜃 d𝜃 ∫
b

0
r3dr (3.100)

which gives1

W =
𝜋𝜔2B2

0b4

8𝜌
(3.101)

The current density is found by dividing the emf by the path length to obtain
the electric field and then dividing by the resistivity. The emf of (3.97) is already
in the form of voltage per unit axial length. Therefore, the electric field is found
simply by dividing (3.97) by 2 to obtain the value for one side of the path. The RMS
current density, which is now a function of r and 𝜃, is then

Jrms =
𝜔B0r sin 𝜃√

2𝜌
(3.102)

1 Convert sin2
𝜃 = 1

2
(1 − cos(2𝜃)).
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Figure 3.27 Long composite cylinder with transverse flux.

Equation (3.101) can be adapted to the problem of a hollow conducting cylinder
with inner radius a and outer radius b as shown in Figure 3.27. In this case, the
integral over r is from a to b instead of 0 to b. We obtain for the loss per unit length

W =
𝜋𝜔2B2

0(b
4 − a4)

8𝜌
(3.103)

The solution for a composite cylinder made of two (or more) layers can be found
from superposition of the solid and hollow cylinders (see Figure 3.27). Recall that
in the resistance-limited analysis, the eddy currents in one section have no effect
on the field or losses in another section.

3.7 Cylindrical Conductor with Applied Transverse
Field: Reactance-Limited Case

In Section 3.6 we found the solution of a long conductor with circular cross-section
in a transverse sinusoidally time-varying field for the resistance-limited case. Due
to the assumption that the eddy current field does not affect the source field, the
field remained one-dimensional viewed in Cartesian coordinates. The field was
only in the x direction. The eddy currents were only in the z direction and the
eddy currents were only a function of y. If we now remove that restriction, and
include the effects of the eddy current produced field, we will get a net field in
both the x and y directions, or in cylindrical coordinates, we will have a field in
the r and 𝜃 directions. This makes the solution more complicated. We can simplify
the analysis by solving for the magnetic vector potential. The vector potential has
only a z component, but by taking the curl, we obtain the radial and peripheral
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components of the flux density. The time-harmonic form of the diffusion equation
for the vector potential in cylindrical coordinates is

𝜕2A1

𝜕r2 + 1
r
𝜕A1

𝜕r
+ 1

r2

𝜕2A1

𝜕𝜃2 = j𝜔𝜇𝜎A1 (3.104)

In the free-space region surrounding, the conductor we have 𝜎 = 0, and there-
fore the relevant equation is

𝜕2A2

𝜕r2 + 1
r
𝜕A2

𝜕r
+ 1

r2

𝜕2A2

𝜕𝜃2 = 0 (3.105)

In region 1, the conductor, we will assume a solution of the form

A1 = R(r) sin(n𝜃) (3.106)

Substituting this into the diffusion equation gives the Bessel equation

𝜕2R
𝜕r2 + 1

r
𝜕R
𝜕r

−
(

j𝜔𝜇𝜎 + n2

r2

)
R = 0 (3.107)

Let 𝜅 =
√
𝜔𝜇𝜎. The general solution for R1 is

R1 = CnJn

(
j

3
2 𝜅r

)
n = 1, 2, 3,… (3.108)

Since each one of these terms is a solution to the equation, the sum of all the terms
is the general solution.

A1 =
∞∑

n=1
CnJn

(
j

3
2 𝜅r

)
sin(n𝜃) (3.109)

In the surrounding region, region 2, we use the same process. With 𝜎 = 0 in this
region, we assume a solution of the form

A2(r, 𝜃) = Dnr−n + Enrn n = 1, 2, 3,… (3.110)

The flux density far from the conductor must be the applied field, B0. Therefore
the vector potential in the far field must have the form

A(r, 𝜃) = B0r sin 𝜃 (3.111)

This tells us that the only possible positive n term in Equation (3.110) must be the
n = 1 term. Therefore

A2(r, 𝜃) = B0r sin 𝜃 +
∞∑

n=1
Dnr−n sin(n𝜃) (3.112)

To evaluate the constants, we use the curl operator to find the normal, r, and
tangential, 𝜃, components of the flux density and magnetic field and match these
at the interface.
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Br =
1
r
𝜕A
𝜕𝜃

B𝜃 = −𝜕A
𝜕r

(3.113)

After many algebraic manipulations, (see [18]) we obtain, for the vector potential
in the conductor

A1(r, 𝜃) =
4B0

j
3
2 𝜅

J1

(
j

3
2 𝜅r

)
(𝜇1 + 𝜇2)J0

(
j

3
2 𝜅a

)
+ (𝜇1 − 𝜇2)J2

(
j

3
2 𝜅a

) sin 𝜃 (3.114)

With Equation (3.114), we can find the eddy current density as

J(r, 𝜃) = j𝜔𝜎A(r, 𝜃)

= 4B0 j
3
2 𝜅

J1

(
j

3
2 𝜅r

)
(𝜇1 + 𝜇2)J0

(
j

3
2 𝜅a

)
+ (𝜇1 − 𝜇2)J2

(
j

3
2 𝜅a

) sin 𝜃 (3.115)

We can now evaluate Equation (3.115) for a particular example. We will use
a copper conductor with radius a = 0.05 m, conductivity 𝜎 = 5.8 × 107 S m−1,
and a frequency of 60 HZ. The conductor is excited by a transverse field of
H0 = 1.0 A m−1. The magnitude of the eddy current density along a radial line
from the center in the positive y direction is shown in Figure 3.28. As we expect,
the current density is highest at the surface and drops to zero at the center.
Since the radius is much larger than the skin depth, we have the approximate
exponential decay. Comparing the current density at one skin depth from the
surface (r = 0.0415 m) and the current density at the surface, the ratio is 0.379 or
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Figure 3.28 Magnitude of current density vs. r, for 60 HZ in copper conductor.
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Figure 3.29 Real and imaginary current density vs. r, for 60 HZ in copper conductor.
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Figure 3.30 Current density vs. r, for 0.01 HZ in copper conductor.

almost exactly 1∕e. Figure 3.29 shows the real and imaginary parts of the current
density along the radius.

If we lower the frequency to 0.01 HZ, we obtain the result shown in Figure 3.30.
As we found in Section 3.6, the current density distribution is linear, starting at
zero at the center and reaching a maximum at the surface. We can easily use
the resistance-limited analysis to check the result. If we apply a flux density of
1.0 T, and the area of the loop (from top to bottom) is 2a = 0.1 m, then the flux
linkage is 𝜓 = B0S = 0.01 Wb m−1. We find the induced voltage magnitude as
emf = 𝜔𝜓 = 0.00628 V. The resistance of the path is dR = 2∕𝜎 = 3.448 × 10−8 Ω.
The current density is J = emf∕dR = 1.822 × 105 A m−2 which agrees with the
result on Figure 3.30.
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Using this expression for the current density, the losses have been computed [18]
in terms of the Kelvin functions, ber and bei. The result is

P = 4𝜋
𝜎
(𝜅a)2B2

0

(
ber(𝜅a)bei′(𝜅a) − ber′(𝜅a)bei(𝜅a)

D

)
(3.116)

where the denominator, D, is

D =
(
(𝜇1 + 𝜇2)ber(𝜅a) + (𝜇1 − 𝜇2)ber2(𝜅a)

)2

+
(
(𝜇1 + 𝜇2)bei(𝜅a) + (𝜇1 − 𝜇2)bei2(𝜅a)

)2 (3.117)

As this expression is rather complicated, reference [18] offer asymptotic
expansions for the cases in which the a < 𝛿 and a > 𝛿. For the case a < 𝛿, the loss
becomes,

P = 𝜋

2𝜎
B2

0
(𝜅a)4(

1 + 𝜇1
𝜇2

)2 (3.118)

where 𝜇1 is the permeability of region 1 and 𝜇2 is the permeability of the surround-
ing region. For many of our applications, we will have 𝜇1 = 𝜇2, and in this case,
the formula simplifies to

P = 𝜋

8𝜎
B2

0

(a
𝛿

)4
(3.119)

Substituting the expression

𝛿 =
√

2
𝜔𝜇𝜎

(3.120)

we obtain exactly the expression found in Section 3.6 where we used the resistance-
limited analysis. For the case a > 𝛿, the loss becomes

P = 2𝜋
𝜎

B2
0

(a
𝛿
− 1

2

)
(3.121)

We will now apply this analysis, and use Equation (3.119) to the problem
of a composite circular conductor of radius a with a large number of small
insulated conductors, each of radius b which is smaller than the skin depth (see
Figure 3.31). In practice, these conductors are twisted so that all of the conductors
occupy the same average position in the coil. This means that all of the fine wires
have the same impedance and we can safely assume that each strand carries the
same current. The self-field from these conductors is peripheral and, by Ampere’s
law, increases linearly from zero at the center to

H = I
2𝜋a

(3.122)

at the outer radius. Considering the individual small wires in the bundle, we
have circular conductors in a transverse field and can use the present analysis
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Figure 3.31 Circular composite conductor
with fine wires.

to find how we can correct the resistance to account for the eddy current losses.
A good analysis of losses in Litz wire is given in Perry [44] and Lammeraner and
Štafl [18].

Assume that the number of small conductors in the coil is N. The process will
be to find the number of small conductors in a layer, find the flux density in those
layers, and use our formulas to find the local loss density. Then we can integrate
this quantity over the entire conductor cross section. If the total current in the coil
is I, then the current density is

J = I
N

p
𝜋b2 (3.123)

where p is the packing factor or fill factor. The packing factor is the ratio of the
total area to the area of the conductor. A typical packing factor might be in the
range of 0.5–0.6. From Ampere’s law, the field at any radius will be

H(r) = Jr
2

= I
2𝜋b2

p
N

r (3.124)

We also have

H = I
2𝜋a2 r (3.125)

We have found that the eddy current loss in each wire is

P = 2𝜋
𝜎

H2
0

(
b
𝛿

)4

(3.126)

The number of wires per unit area is N
𝜋a2 , but this is the same as p

𝜋b2 . We can then
write Equation (3.126) for the loss density as

P′ = 2𝜋
𝜎

p
𝜋b2 H(r)2

(
b
𝛿

)4

(3.127)
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The loss in a thin annulus as shown in Figure 3.31 is

dP = 4𝜋
𝜎

p
b2 H(r)2

(
b
𝛿

)4

r dr (3.128)

We can now integrate this expression over the cross section of the coil.

P = 4𝜋
𝜎

p
b2

b4

𝛿4
I2

4𝜋a4 ∫
a

0
r3 dr = I2

4𝜋𝜎
f

b2
4b4

𝛿4 (3.129)

Evaluating the resistance as

R = 2P
I2 (3.130)

We find

R = 1
8𝜋𝜎

p
b2

b4

𝛿4 = 1
8𝜋𝜎

b2

𝛿4 (3.131)

The losses we have just found are the circulating eddy losses due to the fields
produced by the wires in the coil. In finding the resistance, we must also include
the losses produced by the load current. We have found this in Section 3.1. The
result for the resistance of a circular wire of radius less than the skin depth (low
frequency approximation) is repeated here.

R′
ac = R0

(
1 + 1

48

(
b
𝛿

)4
)

(3.132)

where

R0 = 1
𝜋𝜎b2 (3.133)

is the dc resistance. Since there are N conductors in parallel, the final contribution
must be divided by N. Therefore

Rac =
R′

ac

N
= 1

N𝜋𝜎b2

(
1 + 1

48

(
b
𝛿

)4
)

(3.134)

To find the total effective resistance, we must add Equations (3.131) and (3.134)
to obtain

R = 1
8𝜋𝜎

b2

𝛿4 + 1
N𝜋𝜎b2

(
1 + 1

48

(
b
𝛿

)4
)

(3.135)

To illustrate this point, let us consider a numerical example. We will take
a copper conductor of radius a = 0.01 m, composed of many smaller circular
conductors. For the conductivity, we use 𝜎 = 5.8 × 107 S m−1. Assume the
packing factor is p = 0.5. This is the ratio of the cross section of the entire
conductor, 𝜋a2 = 314.16 mm2, to the cross section of all of the smaller strands
combined. If the wire is made of N = 400 strands, then the radius of each strand
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is b = a
√

p
N
= 0.00035 m. The total area of copper is then N𝜋b2 = 157.08 mm2.

The frequency is f = 1000 HZ. For copper, the skin depth is then 𝛿 = 0.0021 m.
We will compare the effective resistance of the stranded wire to the resistance of
an equivalent solid wire of radius a.

The exact solution for the ac resistance for the solid circular conductor is

Racsolid
= ℜe

(
j3∕2𝜅

2𝜋a𝜎
J0( j3∕2𝜅a)
J1( j3∕2𝜅a)

)
= 0.146 × 10−3 Ω (3.136)

where

𝜅 =
√
𝜔𝜇𝜎 = 676.72 m−1 (3.137)

We have that
Racsolid

Rdcsolid

= 2.662 (3.138)

For the individual strand of radius b, the exact solution is

Racstrand
= 1

N
ℜ

(
j3∕2𝜅

2𝜋b𝜎
J0(j3∕2𝜅b)
J1(j3∕2𝜅b)

)
= 0.1098 × 10−3 Ω (3.139)

We find that the ratio of the ac and dc resistance for the individual strand
is essentially 1.0 due to the small radius of the strand. This is reasonable since
we are in the resistance-limited regime. The ratio of the ac resistance of the
stranded conductor to the ac resistance of the solid conductor is then 0.0751
considering only the load current.

We have found previously that the high frequency (a > 𝛿) approximation for the
ratio of ac resistance to dc resistance for the wire is a factor of

A =
Rac

Rdc
= 1

4
+ a

2𝛿
+ 3𝛿

32a
= 2.662 (3.140)

For the case in which the skin depth is larger that the wire radius, which applies
to the small strands, we have the factor

B =
(

1 + 1
48

b
𝛿

)4

≈ 1.0 (3.141)

which agrees with the exact formula.
For the problem of transverse flux, for the case of the skin depth greater than

the radius, we have the factor

C = 1
4

(
b
𝛿

)4

= 0.000021 (3.142)

which also agrees with the exact formula. Therefore
Rstranded

Rsolid
= B

p × A

(
1 +

p2

2

(a
b

)2 C
B

)
= 0.7686 (3.143)
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This means that, even though we are using only one half the amount of copper
as a solid wire, the effective resistance is lower, by a factor of 0.7686, due to the
stranding. We note that the assumptions used here are that the large wire radius
is greater than the skin depth and the strand radius is smaller than the skin depth.
If this is not the case then the full Bessel function solutions should be used. Com-
paring this result to the ratio of the ac-stranded conductor to the ac solid conductor
which was 0.0751 we see the difference is only a factor of 1.02. This means that
most of the reduction in resistance is due to the lower losses in the individual
strands from the load current and only around 2% is due to the extra loss produced
by the peripheral flux in the coil.

3.8 Shielding with a Conducting Tube in a
Transverse Field

In Section 3.5, we considered the case of a conducting tube in an axial field. This
problem was one-dimensional, with only one component of field (axial) and one
component of current (peripheral) [44]. If we now consider a long conducting tube
in a transverse field, the fields are two-dimensional. We have fields both in the
radial direction (Br) and peripheral direction, (B𝜃).

For the case of a conducting cylinder or tube in a transverse field, we have two
components of the magnetic flux density, Br and B𝜃 . Consider the problem illus-
trated in Figure 3.32.

Region 1

Region 2

Region 3

r
1

B

μ
0 
, σ = 0

μ
0 
, σ = 0

μ, σ

r
0

Figure 3.32 Conducting tube in transverse field.
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The equation for the radial component in cylindrical coordinates is

r2 𝜕
2Br

𝜕r2 + 3r
𝜕Br

𝜕r
+ Br +

𝜕2Br

𝜕𝜃2 + j𝜔𝜇𝜎r2Br = 0 (3.144)

Using ∇ ⋅ B = 0, we can relate Br to B𝜃 as

𝜕Br

𝜕r
+ 1

r

(
𝜕B𝜃

𝜕𝜃
+ Br

)
= 0 (3.145)

In regions 1 and 3, we have no conducting material so the last term in Equation
(3.144) vanishes, leaving us with

r2 𝜕
2Br

𝜕r2 + 3r
𝜕Br

𝜕r
+ Br +

𝜕2Br

𝜕𝜃2 = 0 (3.146)

The interface conditions require that the normal flux density (r component) and
tangential magnetic field (𝜃 component) are continuous at the inner and outer
boundaries of the cylinder. The solution of Equation (3.144) in the conducting
region [44] is

Br = B0
(

C1I1(𝛼r) + C2K1(𝛼r)
) r1 cos 𝜃

r
(3.147)

B𝜃 = −B0
(

C1
(
𝛼rI0(𝛼r) − I1(𝛼r)

)
− C2

(
𝛼rK0(𝛼r) + K1(𝛼r)

)) r1 sin 𝜃

r
(3.148)

Applying the interface conditions, we have the complete solution in the inner
region as

Br = −2B0𝜇r(𝛼r1)
(

I0(𝛼r0)K1(𝛼r0) + K0(𝛼r0)I1(𝛼r0)
) cos 𝜃

D
(3.149)

B𝜃 = 2B0𝜇r(𝛼r1)
(

I0(𝛼r0)K1(𝛼r0) + K0(𝛼r0)I1(𝛼r0)
) sin 𝜃

D
(3.150)

For the outer free space region, we get

Br = B0

(
1 −

(
1 − C1I1(𝛼r1) − C2K1(𝛼r1)

) r2
1

r2

)
cos 𝜃 (3.151)

B𝜃 = −B0

(
1 +

(
1 − C1I1(𝛼r1) − C2K1(𝛼r1)

) r2
1

r2

)
sin 𝜃 (3.152)

The constants are given by

C1 = −2𝜇r
(
(1 + 𝜇r)K1(𝛼r0) + 𝛼r0K0(𝛼r0)

)
∕D

C2 = 2𝜇r
(
(1 + 𝜇r)I1(𝛼r0) − 𝛼r0I0(𝛼r0)

)
∕D

D =
(
(𝜇r − 1)K1(𝛼r1) − 𝛼r1K0(𝛼r1)

) (
(𝜇r + 1)I1(𝛼r0) − 𝛼r0Io(𝛼r0)

)
−
(
(𝜇r + 1)K1(𝛼r0) + 𝛼r0K0(𝛼r0)

) (
(𝜇r − 1)I1(𝛼r1) + 𝛼r1I0(𝛼r1)

)
(3.153)
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Figure 3.33 Flux density in outer
region.

As an example, consider the case of a hollow copper conductor of inner radius
r0 = 0.08 m and outer radius r1 = 0.1 m. The conductivity of the copper is
𝜎 = 5.8 × 107 S m−1. There is a transverse field applied in the x direction of mag-
nitude 1.0 T at 60 HZ. We see in Figure 3.33 the flux density in the outer region
computed using Equations (3.151) and (3.152). The arrows indicate the direction
of the field and the length of the arrows is proportional to the field strength.
We see that the eddy currents in the conductor are shielding the interior of the
conductor.

We now consider the same geometry and look at the shielding factor as a
function of frequency. Since we are applying an exterior field of 1.0 T, we use
Equations (3.149) and (3.150) to evaluate the field in the interior region, which is
constant. This interior field is then the shielding ratio. A ratio of 1.0 means there
is no shielding and a ratio of 0.0 means perfect shielding. We see in Figure 3.34
the shielding ratio vs. frequency. As we expect, for low frequency, we have very
little shielding, and as the frequency increases the shielding increases.

3.9 Spherical Conductor in a Uniform Sinusoidally
Time-Varying Field: Resistance-Limited Case

Consider now the case of a conducting sphere in a uniform time-varying field.
We will consider the field applied in the z direction, but of course, with a sphere
the direction is arbitrary. Using the resistance-limited assumptions, the eddy cur-
rents in the sphere will not affect the applied field. The geometry is shown in
Figure 3.35.
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Figure 3.34 Shielding
ratio vs. frequency.

To find the emf in the infinitesimal loop in Figure 3.35, we see that the area
circumscribed by the loop is

S = 𝜋(r sin 𝜃)2 (3.154)

The flux linked by the loop is then

𝜓(t) = B0𝜋(r sin 𝜃)2 cos(𝜔t) (3.155)

The emf induced in the loop is therefore

(t) = −d𝜓
dt

= B0𝜔𝜋(r sin 𝜃)2 sin(𝜔t) (3.156)

the RMS value of which is

rms =
B0√

2
𝜔𝜋r2sin2

𝜃 (3.157)

The elemental resistance of the filament is

dR = 𝜌2𝜋r sin 𝜃

r dr d𝜃
= 𝜌2𝜋 sin 𝜃

dr d𝜃
(3.158)

The loss in the differential loop is

dW =
2

rms

dR
=

B2
0𝜔

2𝜋r4sin3
𝜃

4𝜌
dr d𝜃 (3.159)
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Figure 3.35 Conducting sphere with applied field.

b

r
dr

r cos θ

θ

B
0
 sin(ωt)

and the total loss in the sphere is then2

W = ∫
𝜋

0 ∫
b

0

B2
0𝜔

2𝜋r4sin3
𝜃

4𝜌
dr d𝜃 =

𝜋B2
0𝜔

2b5

15𝜌
(3.160)

If we have a hollow sphere as shown in Figure 3.36, the process is the same but
we would integrate over r from a to b instead of 0 to b. The resulting loss is

W =
𝜋B2

0𝜔
2(b5 − a5)
15𝜌

(3.161)

As in the case of the cylinder, we can now make a composite sphere of two or
more materials by combining the solutions for the hollow and solid spheres.

3.10 Diffusion Through Thin Cylinders

We have considered the eddy currents produced by alternating flux impinging
on conducting hollow cylinders. These previously examples considered only
steady-state ac excitation. In this section, we will analyze the eddy currents in

2 For the integral of sin3
𝜃 we use sin3

𝜃 = sin2
𝜃 sin 𝜃 = (1 − cos2𝜃) sin 𝜃. Then, let x = cos 𝜃,

dx = − sin 𝜃d𝜃. We are then integrating − ∫ (1 − x2)dx = −x + x3∕3. We now evaluate
− cos 𝜃 + cos3𝜃

3
from 0 to 𝜋.
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b
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Figure 3.36 Conducting hollow sphere with applied
uniform field.

thin conducting tubes with a step function of field applied in the axial direction
and in the transverse direction. One feature of this analysis is that since the
conductor is assumed to be thin, we can assume that the current density in the
tube is constant in the radial direction. This also allows us to use scalar potential
analysis to find the field in the nonconducting regions. The discontinuity in the
magnetic potential will give us the current in the cylinder.

3.10.1 Diffusion Through Hollow Cylinder with Applied Axial
Magnetic Field

First, let us consider the long cylinder with a thin wall shown in Figure 3.37. If we
apply an axial field, we will induce currents in the peripheral direction. In this case,
by symmetry, the field inside the tube is constant. We will assume that the cylinder
is made of conducting material with homogeneous conductivity, 𝜎. The relative
permeability of the cylinder is 𝜇r = 1.0. The cylinder has radius a and thickness
b and is thin enough that we may consider the current density in the conductor
uniform through the thickness. We apply a magnetic field, Ho, in the y direction,
parallel to the axis of the cylinder. Applying Ampere’s law to the contour shown in
the figure, we obtain an expression relating the field inside the cylinder Hi to the
field outside Ho and the surface current density, Js. Using

∮ H ⋅ d𝓁 = Ienclosed (3.162)
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Figure 3.37 Thin
conducting cylinder in
applied axial field.

we find

−Ho + Hi = Js (3.163)

From Faraday’s law, we have

∮ E ⋅ d𝓁 = − d
dt ∮ B ⋅ dS (3.164)

The current density in the conductor can be written
in terms of the surface current as

Js = Jb = 𝜎Eb (3.165)

So that

E =
Js

𝜎b
(3.166)

Applying Faraday’s law
2𝜋aJs

𝜎b
= − d

dt
(
𝜇02𝜋a2H2

i
)

(3.167)

giving

− d
dt

Hi =
2Js

𝜇0𝜎ba
=

2
(
−Ho + Hi

)
𝜇0𝜎ba

(3.168)

Defining the time constant as

𝜏 = 1
2
𝜇0𝜎ab (3.169)

We have
dHi

dt
+

Hi

𝜏
=

Ho

𝜏
(3.170)

This first-order differential equation has a particular solution given by the
applied constant field, Hi = Ho. The homogeneous solution is Hoe−

t
𝜏 . Resulting in

the complete solution

Hi = Ho

(
1 − e−

t
𝜏

)
(3.171)

We also have an expression for the current sheet

Js = −Hoe−
t
𝜏 (3.172)

By looking at the form of Equation (3.171), we see that at the instant of the
application of the external field, the conductor perfectly shields the interior of the
cylinder. As time progresses, we reach a steady state, in which the field completely
penetrates the cylinder and the field inside the cylinder is equal to the external
applied field.
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Figure 3.39 Surface current density vs. time.

Let us consider a numerical example. We will apply a step function of magnetic
field along the axis of a conducting tube at t = 0+. The cylinder is made of copper.
The radius is 0.1 m and the thickness is 0.005 m. The applied magnetic field
is 1.0 A m−1. The time constant is found from Equation (3.169) and is equal to
𝜏 = 0.01822 s. The solution for the magnetic field is shown in Figure 3.38. As
we expect, the field starts out at zero and then approaches the applied value of
H = 1.0 A m−1 exponentially.

In Figure 3.39, we see the results for the current sheet in the conductor vs.
time. As the figure shows, the initial current sheet density is −1.0 A m−1 which
is exactly the magnitude of the current sheet necessary to completely cancel the
applied field. As the current decays to zero, the field inside the tube approaches
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Figure 3.40 Thin conducting cylinder with magnetic
core.

a

μ

μ
0

H
O

the applied value of field. The difference between the outside and inside tangential
field is equal to the value of the surface current sheet.

3.10.2 Diffusion Through Hollow Cylinder with Applied Transverse
Magnetic Field

Previously, we have looked at the problem of a hollow conducting cylinder with
transverse applied field. We have done this for steady-state sinusoidal excitation.
We will now look at this problem with the application of a step function of trans-
verse field. Haus and Melcher [45] describes the problem of a thin conducting
cylinder with a permeable, non-conducting core, excited by the sudden applica-
tion of a dc magnetic field. The geometry is shown in Figure 3.40.

In this case, since the conducting region is very thin and we will not be finding
the field inside this region, we can represent the exterior magnetic field as the
gradient of a scalar potential. We recall that the magnetic potential and field are
related by

H = −∇𝜓 (3.173)

If we assume that far from the cylinder, the field is uniform with a value of H0,
we can represent the potential as 3

𝜓 = −H0r cos𝜙 (3.174)

3 To verify this, we use r2 = x2 + y2, cos(𝜙) = x∕r and sin(𝜙) = y∕r which gives for the gradient
in rectangular coordinates, 𝜕f

𝜕x
= cos(𝜙)ûr −

1
r

sin(𝜙)û
𝝓

and 𝜕f
𝜕y

= sin(𝜙)ûr +
1
r

cos(𝜙)û
𝝓

.
Substituting Equation (3.174) we obtain Hx = H0 and Hy = 0.
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We will assume a solution of the form

𝜓o = −H0r cos𝜙 + C1
cos(𝜙)

r
(3.175)

Note that the first term is the potential far from the cylinder. Inside the cylinder,
we assume

𝜓 = C2r cos𝜙 (3.176)

The constants C1 and C2 are found from matching interface conditions.
Substituting Equations (3.175) and (3.176) into Equation (3.173) gives

Bo = 𝜇0

(
H0 +

C1

r2

)
cos𝜙 ûr − 𝜇0

(
H0 −

C1

r2

)
sin𝜙 û𝝓 (3.177)

and

Bi = −𝜇C2
(
cos𝜙 ûr − sin𝜙 û𝝓

)
(3.178)

We require that the normal component of flux density is continuous and the
tangential components of field are related by the surface current density. In
matching the boundary conditions, we note that both the inside and outside flux
densities vary as sin𝜙.

𝜇0

(
H0 +

C1

a2

)
= −𝜇C2 (3.179)

− 1
ab𝜎

(
H0 −

C1

a2

)
−

𝜇0

𝜇ab𝜎

(
H0 −

C1

a2

)
= 𝜇0

(dH0

dt
+ 1

a2

dC1

dt

)
(3.180)

Rearranging we have
dC1

dt
+

C1

𝜏
= −a2 dH0

dt
−

H0a
𝜇0b𝜎

(
𝜇 − 𝜇0

𝜇0

)
(3.181)

where

𝜏 = 𝜇

𝜇0 + 𝜇
𝜇0𝜎ba (3.182)

As an example, let us consider the application of a step function of field produced
by an ideal source. The time-domain solution is made of the steady-state solution
plus the transient solution. We have a solution of the form

C1 = H0a2
( r

a
− a

r
(
1 − e−t∕𝜏) − e−t∕𝜏

)
(3.183)

We now evaluate C2 from (3.179) which results in

𝜓o = −H0a
(

r
a
− a

r

( (𝜇 − 𝜇0)
(𝜇 + 𝜇0)

(
1 − e−t∕𝜏) − e−t∕𝜏

))
cos𝜙 (3.184)

𝜓i = −H0a r
a

2𝜇0

(𝜇 + 𝜇0)
(
1 − e−t∕𝜏) cos𝜙 (3.185)
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Figure 3.41 Current density around the cylinder at different times.

Recognizing that the current sheet at the cylinder surface is equal to the difference
between the outside field and the inside field. This gives

J(𝜃, t) = −2H0e−t∕𝜏 sin 𝜃 (3.186)

Consider the case of a conducting cylinder with a permeable core with 𝜇r = 100.
The conducting cylinder is made of copper and has a radius of 0.1 m and a thick-
ness of 0.005 m. We apply a step function of field equal to H = 1.0 A m−1. From
Equation (3.182), we find 𝜏 = 0.0361 s. In Figure 3.41, we see the current density
around the cylinder at different times. As expected, initially the current is high
and will cancel the interior field. At later times, we see that the current decays and
after a few times constants, the current is quite small.

3.11 Surface Impedance Formulation for Electric
Machines

Using the methods we have introduced in this chapter, we can treat a problem
that has been useful in the analysis of electric machines. The geometry will be
cylindrical, but the fields will vary sinusoidally in the peripheral direction. This
has applications in solid rotor induction machines as well as the study of shielding
in superconducting machines. Consider a circular cross section of an electrical
machine comprising three regions as shown in Figure 3.42.

The inner-most radius, r1, is the radius of the rotor indicating region 1, the mid-
dle radius, r2, is the outer radius of the air-gap region, and r3 is the outer radius of
the nonconducting stator region. The inner circular cross section (region 1) rep-
resents the eddy current region, such as a round rotor of an electrical machine.
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Region 1

Region 2

Region 3
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μ
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0
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1

Figure 3.42 Cylindrical electric
machine geometry.

The middle region is the air-gap annulus and the outer region is the non-eddy
current stator region consisting of thin laminations stacked in the axial direction.
We shall now investigate the magnetic field solution in the cross section.

The assumptions made in this analysis are that the problem is two-dimensional.
There is no variation of any variable in the z direction. We also assume that the
material properties are linear and homogeneous. The analysis assumes only
time-harmonic or phasor quantities. The appropriate field equations which
apply are

∇ × A = B (3.187)

∇ × H = Je (3.188)

∇ × E = −𝜕B
𝜕t

= − 𝜕

𝜕t
∇ × A (3.189)

B = 𝜇r𝜇0H (3.190)

Je = 𝜎E (3.191)

Combining these gives

∇ × H = 1
𝜇r𝜇0

∇ × B = 1
𝜇r𝜇0

∇ × ∇ × A = Je (3.192)

E = −𝜕A
𝜕t

(3.193)

In cylindrical coordinates

B = ∇ × A = 1
r
𝜕A
𝜕𝜃

ûr −
𝜕A
𝜕r

û𝜽 (3.194)
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Manipulating Equations (3.191), (3.193), and (3.194), and using vector identi-
ties, we obtain the partial differential equation in cylindrical polar coordinates as

r2 𝜕
2Az

𝜕r2 + r
𝜕Az

𝜕r
+

𝜕2Az

𝜕𝜃2 = j𝜔𝜇𝜎r2Az (3.195)

Using separation of variables, we assume the solution is of the form

Az = R(r)Θ(𝜃) (3.196)

The diffusion equation can now be written in the form

r2 𝜕
2R(r)
𝜕r2 Θ(𝜃) + r 𝜕R(r)

𝜕r
Θ(𝜃) + 𝜕2Θ

𝜕𝜃2 R(r) = j𝜔𝜎𝜇r2R(r)Θ(𝜃) (3.197)

Dividing Equation (3.197) by R(r)Θ(𝜃), we get

r2

R(r)
𝜕2R(r)
𝜕r2 + r

R(r)
𝜕R(r)
𝜕r

+ 1
Θ(𝜃)

𝜕2Θ
𝜕𝜃2 = j𝜔𝜎𝜇r2R (3.198)

We now separate the terms with R(r) and Θ(𝜃) so that

r2 𝜕
2R(r)
𝜕r2 + r 𝜕R(r)

𝜕r
=
(

j𝜔𝜇𝜎r2 + n2)R(r) (3.199)

𝜕2Θ(𝜃)
𝜕𝜃2 = −

(
n2)Θ(𝜃) (3.200)

Equation (3.199) is the modified Bessel equation of order n. The solution is

R(r) =
∞∑

n=1
C
(
bern(kr) + j bein(kr)

)
(3.201)

where k2 = 𝜔𝜎𝜇. The solution to Equation (3.200) is

Θ(𝜃) = F cos(n𝜃) + G sin(n𝜃) (3.202)

In the current problem, we have even symmetry, so only the cosine terms are
considered. We conclude that the magnetic vector potential is described by

Az =
∞∑

n=1
C
(
bern(kr) + j bein(kr)

)
cos(n𝜃) (3.203)

For the two-dimensional problem, under consideration

Br =
1
r
𝜕Az

𝜕𝜃
(3.204)

B𝜃 = −
𝜕Az

𝜕r
(3.205)
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so

Br =
∞∑

n=1
− n

r
(
bern(kr) + j bein(kr)

)
sin(n𝜃) (3.206)

B𝜃 =
∞∑

n=1
− k

(
ber′n(kr) + j bei′n(kr)

)
cos(n𝜃) (3.207)

In regions 2 and 3, we have k = 0, and therefore

Az =
∞∑

n=1
C
(

Crn + Dr−n) cos(n𝜃) (3.208)

To summarize, we find the following expressions for the vector potential Az
and the flux density components Br and B𝜃 .

For region 1:

Az1 =
∞∑

n=1
C1

(
bern(k1r) + j bein(k1r)

)
cos(n𝜃) (3.209)

Br1
=

∞∑
n=1

− n
r

C1
(
bern(k1r) + j bein(k1r)

)
sin(n𝜃) (3.210)

B𝜃1
=

∞∑
n=1

− k1C1
(
ber′n(k1r) + j bei′n(k1r)

)
cos(n𝜃) (3.211)

In region 2:

Az2 =
∞∑

n=1

(
C2rn + D2r−n) cos(n𝜃) (3.212)

Br2
=

∞∑
n=1

− n
(

C2rn−1 + D2r−n−1) sin(n𝜃) (3.213)

B𝜃2
=

∞∑
n=1

− n
(

C2rn−1 − D2r−n−1) cos(n𝜃) (3.214)

In region 3:

Az3 =
∞∑

n=1

(
C3rn + D3r−n) cos(n𝜃) (3.215)

Br3
=

∞∑
n=1

− n
(

C3rn−1 + D3r−n−1) sin(n𝜃) (3.216)

B𝜃3
=

∞∑
n=1

− n
(

C3rn−1 − D3r−n−1) cos(n𝜃) (3.217)

We can evaluate the constants by applying the appropriate interface conditions
at the boundaries. At r = r1, the normal flux density is continuous and the tangen-
tial magnetic field is also continuous.
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Therefore at r = r1

Br1
= Br2

(3.218)

and

B𝜃1
= B𝜃2

𝜇r1 (3.219)

And at r = r2

Br2
= Br3

(3.220)

and

B𝜃3
= B𝜃2

𝜇r3 (3.221)

First, considering the r = r1 interface

− n
r1

C1
(
bern(k1r1) + j bein(k1r1)

)
= −n

(
C2rn−1

1 + D2r−n−1
1

)
(3.222)

−
k1

𝜇r1
C1

(
ber′n(k1r1) + j bei′n(k1r1)

)
= −n

(
C2rn−1

1 − D2r−n−1
1

)
(3.223)

With these two equations we find

C2 =
C1

2
r−n+1

(
n
r1

C1
(
bern(k1r1) + j bein(k1r1)

)
+

k1

𝜇r1

(
ber′n(k1r1) + j bei′(k1r1)

))
(3.224)

D2 =
C1

2
rn+1

(
n
r1

C1
(
bern(k1r1) + j bein(k1r1)

)
−

k1

𝜇r1

(
ber′n(k1r1) + j bei′(k1r1)

))
(3.225)

Now, for the r = r2 boundary

C3rn−1
2 + D3r−n−1

2 − C2rn−1
2 − D2r−n−1

2 = 0 (3.226)

C3rn−1
2 − D3r−n−1

2

𝜇r3
− C2rn−1

2 + D2r−n−1
2 = 𝜇0Js (3.227)

These two simultaneous equations give

C3rn−1
2

(
1 + 1

𝜇r3

)
+ D3r−n−1

2

(
1 − 1

𝜇r3

)
− 2C2rn−1

2 = 𝜇0Js (3.228)

C3rn−1
2

(
1 − 1

𝜇r3

)
+ D3r−n−1

2

(
1 + 1

𝜇r3

)
− 2D2r−n−1

2 = −𝜇0Js (3.229)

We notice that at r = r3, we have Az3 = 0, so that

D3 = −C3r2n
3 (3.230)
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Defining

P =
(

1 + 1
𝜇r3

)
Q =

(
1 − 1

𝜇r3

)
(3.231)

After some simplification, we obtain

C3

[
P − Q

( r3

r2

)2n
]
− 2C2 = 𝜇0Jsr−n+1

2 (3.232)

C3

[
Q − P

( r3

r2

)2n
]
− 2D2r−2n

2 = −𝜇0Jsr−n+1
2 (3.233)

Eliminating C3 from these equations, and after simplification, we get

C2 − D2

[
P − Q

(
r3

r2

)2n
]

r−2n
2[

Q − P
(

r3

r2

)2n
] = −

𝜇0Js

2
r−n+1

2 (P + Q)

[
1 −

(
r3

r2

)2n
]

[
Q − P

(
r3

r2

)2n
] (3.234)

Defining

S = n
r1

(
bern(k1r1) + j bein(k1r1)

)
+

k1

𝜇r1

(
ber′n(k1r1) + j bei′n(k1r1)

)
(3.235)

and

T = n
r1

(
bern(k1r1) + j bein(k1r1)

)
+ −

k1

𝜇r1

(
ber′n(k1r1) + j bei′n(k1r1)

)
(3.236)

We find

C2 =
C1

2n
r−n+1

1 (S + T) (3.237)

and

D2 =
C1

2n
rn+1

1 (S − T) (3.238)

Solving for C1

C1 = −
𝜇0Jsn

(
rn−1

1
rn+1

2

)
(P + Q)

[
1 −

(
r3

r2

)2n
]

{[
(S + T)

[
Q − P

(
r3

r2

)2n
]]

− (S − T)
} (3.239)

So that

Az1 =
∞∑

n=1
C1

(
bern(k1r) + j bein(k1r)

)
cos(n𝜃) (3.240)
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At r = r1

Az1 =
∞∑

n=1
C1

(
bern(k1r1) + j bein(k1r1)

)
cos(n𝜃) (3.241)

The electric field is found as E = −j𝜔Az1 and the total current is then

I = ∫
𝜋

2

0
Js cos(n𝜃) d𝜃 =

Js

n
sin

(n𝜋
2

)
(3.242)

The surface impedance per unit length is then defined as

Zs = −
j𝜔Az1

I
(3.243)

Substituting we get

Zs =
∞∑

n=1

−j𝜔𝜇0n2
(

rn−1
1

rn+1
2

)
(P + Q)

[
1 −

(
r3

r2

)2n
] (

bern(k1r1) + j bein(k1r1)
)

sin
(

n𝜋
2

)[
(S + T)

[
Q − P

(
r3

r2

)2n
]
− (S − T)

] cos(n𝜃)

(3.244)

This formulation can now be used to find the field and eddy current distribution
in the machine and the field in the air gap. From these, other quantities such as
energy and torque can also be evaluated.

3.12 Summary

In this chapter, we have applied our techniques to analyze conductor geometry
with circular cross sections and cylindrical symmetry. We have analyzed these
using field variables as well as vector and scalar potentials. The problems include
conductors with axial current, applied axial fields, and applied transverse fields.
These were done in the steady-state ac domain using complex phasor analysis and
in the time domain in which the differential equations were solved directly. We dis-
cussed the shielding effects of the eddy currents and the diffusion time constants
involved. Many of these solutions involved Bessel functions or modified Bessel
functions. In some cases, asymptotic expansions were introduced to replace the
Bessel functions and these considerably simplify the analysis. We also considered
multi-layered circular conductors and stranded conductors. Finally, an application
involving sinusoidally distributed fields that is applicable to electric machines was
introduced.
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4

Formulations

In Chapters 2 and 3 we have presented a number of examples of practical
importance but with simple regular geometries. These also had rather sim-
ple boundary conditions and with some exceptions, had linear homogeneous
material properties. Many problems however have irregular boundaries,
non-homogeneous and non-isotropic materials, and perhaps complex bound-
ary conditions. These problems have no closed-form solutions. These problems
require numerical methods which will typically involve large systems of equations
and often iterative techniques. Numerical methods give approximate solutions to
the field and eddy current problems, but ones which have proven very useful in
the analysis of important practical applications. Surprisingly, the methods that
we will introduce in Chapters 5-7, the finite difference method, finite element
method, and integral equation formulations, often result in physical models
that can be used to understand the eddy current solutions. We shall see that
all of these methods result in equivalent circuit interpretations that help in the
understanding of the eddy current or magnetic diffusion results.

We have seen in Chapters 2 and 3 that eddy current problems can be described by
the diffusion equation for the magnetic field or the current density. For numerical
method applications, we often rewrite the equations in terms of potentials, either
scalar, vector, or a combination of the two. These are often easier to formulate and
allow more freedom in incorporating the boundary conditions. In this chapter, we
will introduce some of the most common formulations for eddy currents.

4.1 Mathematical Formulations for Eddy Current
Modeling

Many problems have both conducting and non-conducting regions. In the
conducting regions, where we may have eddy currents, we cannot use a scalar
potential formulation. A vector formulation results in three unknowns at each

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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nodal point, while in scalar potential formulations, we need a single unknown
at the node. It is often possible to use vector unknowns in the current-carrying
regions and scalar unknowns in the nonconducting regions. We have seen that
in two-dimensional eddy current problems we often use the diffusion equation
for the magnetic vector potential. This has the advantage that we only need
to compute one component of the vector potential so that the mathematics is
essentially the same as in a scalar solution. We have already made the argument
for ignoring the displacement currents. For the steady-state time-harmonic case,
we have, in Chapters 2 and 3, used the single component MVP formulation.

𝜕2Az

𝜕x2 +
𝜕2Az

𝜕y2 = −𝜇J𝟎 + j𝜔𝜇𝜎Az (4.1)

This is not the only choice available to us, and we will consider some of the other
options that are currently in use for eddy current analysis. First, let us look at the
full set of Maxwell’s equations and formulate the problem in terms of the field
variables directly.

∇ × E = −𝜕B
𝜕t

(4.2)

∇ × H = J (4.3)

∇ ⋅ D = 𝜌 (4.4)

∇ ⋅ B = 0 (4.5)

We have five variables and four equations. For the general three-dimensional
analysis, the unknowns will all be vectors. This means that there are 15 variables.
We can use the constitutive relationships to eliminate some of these unknowns.

D = 𝜀E (4.6)

B = 𝜇H (4.7)

J = 𝜎E (4.8)

For example, we can eliminate flux densities, D and B, and solve for the six com-
ponents of fields, E and H.

To reduce the number of unknowns, we transform these first-order equations
into second-order equations. Taking the curl of Equation (4.3)

∇ × ∇ × H = ∇ × J = ∇ × 𝜎E = −𝜎 𝜕B
𝜕t

(4.9)

We use the vector identity

∇ × ∇ × F = ∇∇ ⋅ F − ∇2F

to get

∇2H − 𝜎𝜇
𝜕H
𝜕t

= ∇∇ ⋅ H = 0 (4.10)
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If we have linear isotropic materials, then ∇ ⋅ H = 0. Then Equation (4.10) is a
second-order equation with only one vector unknown.

4.1.1 Uniqueness of the Solution

In modeling electromagnetic phenomena, many of our choices depend on
ensuring that the boundary conditions are satisfied. Any vector field that satisfies
Maxwell’s equations and also satisfies tangential components of the field on the
boundaries is the only possible solution. For example, assume that E𝟏 and H𝟏 are
solutions that meet these criteria. Then

∇ ⋅ 𝜀E𝟏 = 𝜌 (4.11)

∇ ⋅ 𝜇H𝟏 = 0 (4.12)

∇ × E𝟏 = −𝜇
𝜕H𝟏
𝜕t

(4.13)

∇ × H𝟏 = J𝟎 + 𝜎E𝟏 (4.14)

If there is another solution, say E𝟐 and H𝟐, then

∇ ⋅ 𝜀E𝟐 = 𝜌 (4.15)

∇ ⋅ 𝜇H𝟐 = 0 (4.16)

∇ × E𝟐 = −𝜇
𝜕H𝟐
𝜕t

(4.17)

∇ × H𝟐 = J𝟎 + 𝜎E𝟐 (4.18)

Now take the differences between the two solutions.

𝛿E = E𝟏 − E𝟐 (4.19)

𝛿H = H𝟏 − H𝟐 (4.20)

Since the system is linear, 𝛿E and 𝛿H must also be solutions.

∇ ⋅ 𝜀𝛿E = 𝜌 (4.21)

∇ ⋅ 𝜇𝛿H = 0 (4.22)

∇ × 𝛿E = −𝜇𝜕𝛿H
𝜕t

(4.23)

∇ × 𝛿H = J𝟎 + 𝜎𝛿E (4.24)

If we take the dot product of the last equations with 𝛿E

𝛿E ⋅ ∇ × 𝛿H = 𝜎𝛿E𝟐 (4.25)

and use the identity

F ⋅ ∇ × G = G ⋅ ∇ × F − ∇ ⋅ (F × G) (4.26)
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we get

𝛿H ⋅ ∇ × 𝛿E = ∇ ⋅ (𝛿E × 𝛿H) + 𝜎𝛿E𝟐 (4.27)

The left-hand side becomes

𝛿H ⋅ ∇ × 𝛿E = −1
2
𝜇

d𝛿H𝟐

dt
(4.28)

Integrating this over the volume, Ω, and applying the divergence theorem we find

∫
S

(𝛿E × 𝛿H) ⋅ dS = −1
2
𝜇∫

Ω

(
d𝛿H𝟐

dt

)
dΩ + ∫

Ω

(
𝜎𝛿E𝟐) dΩ (4.29)

If the tangential components of E and H on the boundary are equal in both
solutions, then the left-hand side of Equation (4.29) vanishes. We notice that each
individual term on the right-hand side must also vanish. This demonstrates that if
we specify the tangential fields of the boundaries, we have completely defined the
problem and therefore the solution is unique.

4.1.2 Total Magnetic Potential and Reduced Magnetic Potential

We cannot generally use a scalar potential to solve eddy current problems. This
can easily be seen since, for any scalar

∇ × ∇f = 0 (4.30)

and from Ampere’s law, ignoring displacement current,

∇ × H = J (4.31)

This means that the magnetic field in the current carrying region cannot be
described as the gradient of a scalar. However, we can often solve problems in
regions with current using mixed formulations. In regions with no current, it is
valid to use a scalar potential formulation. One needs to be careful in these cases
as the numerical solution may not be unique. We, therefore, include the following
discussion.

If we consider a current free region, we can write

∇ × H = 0 (4.32)

We can, in this case, describe the field as the gradient of a scalar potential.

H = −∇Ω (4.33)

where Ω, the magnetic scalar potential, has units of amperes. Because

∇ × H = 0 (4.34)
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and

∇ ⋅ B = 0 (4.35)

and

B = 𝜇H (4.36)

we obtain

∇ ⋅ 𝜇∇Ω = 0 (4.37)

The scalar potential described in Equation (4.37) is not unique in current-carrying
regions. This is a serious issue for numerical computation and often results in
singular matrices. One way to avoid this difficulty is to define a new variable.
Therefore, we now define a reduced scalar potential so that the gradient gives only
part of the magnetic field. We do this in the following manner. We consider the
component of H which is produced by currents and which we will call Hc. Then

∇ × Hc = J (4.38)

so

∇ × (H − Hc) = 0 (4.39)

and

H − Hc = −∇Ωr (4.40)

The reduced magnetic potential, Ωr , exists and is unique in current-free
regions. So

∇ ⋅ 𝜇(H − Hc) = −∇ ⋅ 𝜇∇Ωr (4.41)

Since ∇ ⋅ 𝜇H = 0, we have

∇ ⋅ 𝜇∇Ωr = ∇ ⋅ 𝜇Hc (4.42)

One common way of evaluating Hc [46] is to find the field produced by known
current sources in an open boundary region containing uniform permeability. In
this case, we can use the Biot–Savart law to compute Hc as

Hc = 1
4𝜋 ∫

V

J × r
r3 dV (4.43)

This field has no divergence, so

∇ ⋅ 𝜇∇Ωr = ∇ ⋅ 𝜇Hc = 𝜇∇ ⋅ Hc + Hc ⋅ ∇𝜇 (4.44)

and then

∇ ⋅ 𝜇∇Ωr = Hc ⋅ ∇𝜇 (4.45)



�

� �

�

190 4 Formulations

4.1.3 Using a Mixed Scalar Potential Formulation

We have just seen that the magnetic scalar potential is not unique in regions with
currents, but that we could use a reduced scalar potential in these regions. This
would theoretically solve our problem. However, the magnetic scalar potential is
prone to error in regions with magnetic material. In these regions 𝜇 ≫ 𝜇0, and
the magnetic field can be very small. Using the reduced scalar potential, the field
is found as the sum of the source field (produced by currents) and the negative
gradient of the potential. Since H ≈ 0, these two fields must almost exactly can-
cel in regions of high permeability, so that small errors in either one can result
in large errors in H. We can overcome this by using a mixed formulation. The
reduced magnetic scalar potential is used in the current-carrying regions, and the
total potential is used in the high-permeability regions. For more information on
the topic, the reader is directed to [46]. We illustrate this idea with some examples
in Figures 4.1–4.3.

These figures illustrate the problem of connectivity. The total scalar potential can
be used only in curl-free regions (∇ × H = 0). This means that the formulation is
not valid if there exists a path that links a current. For example, in Figure 4.1, we
can use a mixed formulation, since there is no path in the total scalar region that
encloses a current. In the total scalar potential domain

∮
l

H ⋅ dl = 0 (4.46)

for any closed path.

Ω

Ω
r

Figure 4.1 Correct use of mixed scalar potential formulation.
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Ω Ω
r

Figure 4.2 Incorrect use of scalar potential formulation.

Ω Ω
r

Figure 4.3 Closed magnetic circuit linking no current.

This is valid since we have a break in the magnetic circuit, in which we are using
the reduced potential formulation. In Figure 4.2, there is a continuous magnetic
circuit, but because this circuit is linking the current source, we cannot apply the
total scalar potential. However, in Figure 4.3, we can apply the mixed formulation
because the path in the scalar potential region does not link any current. There is
sometimes a trick that may be used. In Figure 4.4, we see the same geometry as
in Figure 4.2. We have used symmetry here to solve only one-half of the problem.
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Ω Ω
r
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Figure 4.4 Scalar potential is valid with symmetry condition.

There is now no path in the magnetic region that links the current in the problem
domain. In this case, the mixed scalar potential can be applied.

4.1.4 Combined Vector and Scalar Potential, the A − V Formulation

We often use a formulation involving both vector and scalar potentials. One
very popular example is the A − V formulation. This uses the three-component
magnetic vector potential and the electric scalar potential. We will develop the
curl–curl equation by starting with

∇ ⋅ B = 0 (4.47)

As we have seen, we can write the magnetic flux density as the curl of a vector.
This is because for any vector F

∇ ⋅ ∇ × F = 0 (4.48)

This gives

∇ × A = B (4.49)

where we define A as the magnetic vector potential (MVP). The MVP has units of
webers/meter. The MVP is a measure of the magnetic flux. In integral form

∮ A ⋅ dl = 𝜓m (4.50)

where 𝜓m is equal to the flux passing through the area enclosed by the path of
integration.

To see the connection between the MVP and the electric scalar potential, V , we
consider Faraday’s law.

∇ × E = −𝜕B
𝜕t

(4.51)
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Figure 4.5 Vector potential
and flux.
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Using Equation (4.49), we have

∇ × E = −∇ × 𝜕A
𝜕t

(4.52)

or

∇ ×
(

E + 𝜕A
𝜕t

)
= 0 (4.53)

so that

E = −𝜕A
𝜕t

− ∇V (4.54)

This is because for any scalar 𝜙,

∇ × ∇𝜙 = 0

To understand the interface conditions on the MVP, we consider Figure 4.5.
Consider the interface of material 1 and material 2 in Figure 4.5. If we integrate

∮ A ⋅ dl = 𝜓m (4.55)

around the path abcda, then, as the sides bc and da approach zero length, the
flux linked by the path goes to zero. Therefore, the tangential components of the
magnetic vector potential must be continuous.

n̂ × (A𝟏 − A𝟐) = 0 (4.56)

4.1.5 The Curl–Curl Equation for the Magnetic Vector Potential

We will now develop the curl–curl equation for the MVP beginning with

∇ × A = B (4.57)

where 𝜈 is the magnetic reluctivity of the material. Taking the curl of both sides
and using 𝜈B = H we get

∇ × 𝜈∇ × A = ∇ × H (4.58)

From Maxwell’s equations

∇ × 𝜈∇ × A = J (4.59)
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or

∇ × 𝜈∇ × A = 𝜎E (4.60)

Now in terms of the vector and scalar potentials,

∇ × 𝜈∇ × A = 𝜎

(
𝜕A
𝜕t

− ∇V
)

(4.61)

The curl–curl operator is usually replaced by the Laplacian operator. Applying
the vector identity,

∇ × ∇ × F = ∇∇ ⋅ F − ∇2F (4.62)

Equation (4.61) becomes

𝜈∇2A − 𝜎
𝜕A
𝜕t

= ∇(𝜈∇ ⋅ A) + 𝜎∇V (4.63)

If 𝜈 is not constant, then

∇ × 𝜈∇ × A = −𝜈∇2A + 𝜈∇∇ ⋅ A + ∇𝜈 × ∇ × A (4.64)

so

𝜈∇2A − ∇𝜈 × ∇ × A − 𝜎
𝜕A
𝜕t

= 𝜈(∇∇ ⋅ A + 𝜎∇V) (4.65)

We will now look at some possible choices for the divergence.

4.1.6 Choosing the Divergence of A

In vector calculus, a quantity is fully defined if both the curl and the divergence
are specified. In the case of the MVP, we are interested only in the curl, since this
gives the flux density. The divergence is not usually used and can be independently
selected to simplify the formulation. There are a number of possibilities and we
will consider a few here. Consider the equation

∇2A − 𝜇𝜎
𝜕A
𝜕t

− 𝜇𝜖
𝜕2A
𝜕t2 = ∇

[
∇ ⋅ A + 𝜇σV + 𝜇𝜖

𝜕V
𝜕t

]
(4.66)

A popular choice for the divergence of A is

∇ ⋅ A = 0 (4.67)

If the divergence A is zero, then

∫S
∇ ⋅ A dS = 0 (4.68)

Consider the material interface of Figure 4.6. If the divergence of the vector
potential is zero, then the flux of the vector A which enters the disc from the bot-
tom, must leave the disc through the top as the height of the disc approaches zero.
This means that

n̂ ⋅ (A1 − A2) = 0 (4.69)
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Figure 4.6 Vector potential at material boundary.

Therefore, we conclude that the normal component of A is continuous at a
material interface. This choice of divergence is called the Coulomb gauge. We then
have from Equation (4.65)

∇2A − ∇(𝜇σV) = −𝜇J (4.70)

which is a popular choice for eddy current modeling.
If we go back to Equation (4.66)

∇2A − 𝜇𝜎
𝜕A
𝜕t

− 𝜇𝜖
𝜕2A
𝜕t2 = ∇

[
∇ ⋅ A + 𝜇𝜎V + 𝜇𝜖

𝜕V
𝜕t

]
(4.71)

We can see that another possible choice for divergence is

∇ ⋅ A = −𝜇𝜖 𝜕V
𝜕t

(4.72)

Applying the same argument at a material interface to evaluate the flux leaving
a closed surface, we get

∮ A ⋅ dS = S ⋅ n̂
(
𝜇2𝜖2 − 𝜇1𝜖1

) 𝜕V
𝜕t

(4.73)

This gives

n̂ ⋅ (A1 − A2) = (𝜇2𝜖2 − 𝜇1𝜖1)
𝜕V
𝜕t

(4.74)

We see then that, in this case, the normal component of A is not continuous. We
can simplify the equation to

∇2A − 𝜇𝜎
𝜕A
𝜕t

− 𝜇𝜖
𝜕2A
𝜕t2 = 𝜇𝜎∇V (4.75)

Yet another possible choice for divergence is

∇ ⋅ A = −𝜇𝜎V − 𝜇𝜖
𝜕V
𝜕t

(4.76)

From Maxwell’s equations

∇ ⋅ E = 𝜌

𝜖
(4.77)

Therefore

∇ ⋅ E = ∇ ⋅
(
−𝜕A

𝜕t
− ∇V

)
= − 𝜕

𝜕t
∇ ⋅ A − ∇2V (4.78)
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We now have a set of coupled equations

∇2V − 𝜇𝜎
𝜕V
𝜕t

− 𝜇𝜖
𝜕2V
𝜕t2 = −𝜌

𝜖

∇2A − 𝜇𝜎
𝜕A
𝜕t

− 𝜇𝜖
𝜕2A
𝜕t2 = 0 (4.79)

We again have a discontinuity in the normal component of the MVP at the inter-
face between two materials. We get

n̂ ⋅ (A1 − A2) = −(𝜇1𝜎1 − 𝜇2𝜎2)V − (𝜇1𝜖1 − 𝜇2𝜖2)
𝜕V
𝜕t

(4.80)

4.1.7 The A∗ Formulation

The A − V formulation that we just discussed is quite general and popular. This
formulation uses four unknowns at each point, three vector components, and one
scalar. To reduce the number of unknowns, we can sometimes use the A∗ formu-
lation. We begin by considering the diffusion equation for eddy currents.

∇ × 𝜈∇ × A + 𝜎

(
𝜕A
𝜕t

+ ∇V
)
= J0 (4.81)

The continuity equation (∇ ⋅ J = 0) leads to

∇ ⋅ 𝜎
(
𝜕A
𝜕t

+ ∇V
)
= 0 (4.82)

We define a modified vector potential A∗ such that
𝜕A∗

𝜕t
= 𝜕A

𝜕t
+ ∇V = 0 (4.83)

This gives for Equation (4.81)

∇ × 𝜈∇ × A∗ + 𝜎
𝜕A∗

𝜕t
= J0 (4.84)

We have now eliminated the scalar potential. This gives us fewer unknowns at
each point. The A∗ formulation is less general and can only be used in problems
having uniform conductivity. The continuity condition ∇ ⋅ J = ∇ ⋅ 𝜎A∗ = 0 is sat-
isfied only in a weak sense as is J ⋅ n̂ on the boundary.

4.1.8 Electric Vector Potential, the T −𝛀 Formulation

We have seen that the continuity equation for the magnetic flux,∇ ⋅ B = 0, allowed
us to represent B using a vector potential (MVP) so that ∇ × A = B. The continuity
of current density, ∇ ⋅ J = 0, allows us to define a current vector potential, often
referred to as the electric vector potential, T.

∇ × T = J (4.85)
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Note that ∇ × H = J as well, so H and T can differ by the gradient of a scalar.
Both quantities also have the same units, amperes/meter. Therefore,

H = T − ∇Ω (4.86)

Using E = 𝜌J, and from Faraday’s law

∇ × E = −𝜕B
𝜕t

= ∇ × 𝜌∇ × T (4.87)

Substituting for the magnetic flux density

B = 𝜇H = 𝜇(T − ∇Ω) (4.88)

we obtain

∇ × 𝜌∇ × T + 𝜇
𝜕T
𝜕t

− 𝜇∇𝜕Ω
𝜕t

= 0 (4.89)

In current-free regions, we can find the magnetic field from the scalar potential.

H = −∇Ω (4.90)

where Ω can be found from Laplace’s equation

−∇ ⋅ 𝜇∇Ω = 0 (4.91)

As in the case of the MVP, the solution can be made unique by specifying the
divergence. For example, we can use the Coulomb gauge, ∇ ⋅ T = 0. With this
choice, Equation (4.77) becomes [47]

∇ × 𝜌∇ × T − ∇𝜌∇ ⋅ T + 𝜇
𝜕T
𝜕t

− 𝜇∇𝜕Ω
𝜕t

= 0 (4.92)

To find the relationship between the vector and scalar potential, we use ∇ ⋅ B = 0.
From (4.76) we have

∇ ⋅ 𝜇(T − ∇Ω) = 0 (4.93)

We have presented some of the most widely-used formulations for eddy currents.
The reader interested in more detail is referred to [46]. We will now apply some of
these formulations to finite difference, finite element, and integral equation meth-
ods for eddy current problems.
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5

Finite Differences

In Section 4.1, we found that electromagnetic phenomena are described by partial
differential equations, with the dependent variables being either potentials or
field values. One of the earliest attempts to solve these problems numerically
was by the finite difference method. In the finite difference method, the partial
derivatives are replaced by difference equations [48, 49]. Space is divided into
finite difference cells and the equations are written for the unknown potential
or field values at nodes. The partial differential equations are replaced by a set of
simultaneous difference equations. The unknowns are computed on a finite set of
points (the nodes). If we need the values at other locations, we must interpolate
between the nodes.

In this section, we will introduce the concept of difference equations and apply
it to the eddy current problem. We will also look at the application of boundary
conditions and the treatment of non-homogeneous materials. We will then show
that these difference equations can be represented by an equivalent circuit to find
the solution to the eddy current problem.

5.1 Difference Equations

The basic approximations for the spatial derivatives with respect to x in the finite
difference method are

f ′(x0) ≈
f (x0 + Δx) − f (x0)

Δx
, forward difference

f ′(x0) ≈
f (x0) − f (x0 − Δx)

Δx
, backward difference (5.1)

f ′(x0) ≈
f (x0 + Δx) − f (x0 − Δx)

2Δx
, central difference

These values are illustrated in Figure 5.1.

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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x

f (x + ∆x)

f (x)

f (x − ∆x)

f (x)

∆x ∆x

x
0
 − ∆x x

0
 + ∆xx

0

Figure 5.1 Forward, backward, and central differences.

The approximate second derivatives are found by using a central difference
formula based on the first derivatives, where the first derivatives are estimated at
the intermediate points (x + Δx∕2) and (x − Δx∕2). This gives

f ′′(x0) =
f ′(x0 + Δx∕2) − f ′(x0 − Δx∕2)

Δx

f ′′(x0) =

f (x0 + Δx) − f (x0)
Δx

−
f (x0) − f (x0 − Δx)

Δx
Δx

(5.2)

f ′′(x0) =
f (x0 + Δx) − 2f (x0) + f (x0 − Δx)

(Δx)2

We can find the truncation errors by expanding the function f (x) around x0 + Δx
and x0 − Δx in a Taylor series.

f (x0 + Δx) = f (x0) + Δxf ′(x0) +
(Δx)2

2!
f ′′(x0) + · · · (5.3)

f (x0 − Δx) = f (x0) − Δxf ′(x0) +
(Δx)2

2!
f ′′(x0) − · · · (5.4)

If we subtract Equation (5.4) from (5.3), we obtain
f (x0 + Δx) − f (x0 − Δx) = 2Δxf ′(x0) + O(Δx)3 (5.5)

where the symbol O means order of . Dividing Equation (5.5) by 2Δx, we obtain
the central difference formula (5.1). We see that the truncation error is of the
order (Δx)2.

Solving for the first derivatives in Equations (5.3) and (5.4) separately, we obtain
the forward and backward difference formulas of Equation (5.1). We see from the
Taylor formula that the truncation error associated with each of these is of the
order of Δx.
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If we add Equations (5.3) and (5.4), we obtain

f (x0 + Δx) + f (x0 − Δx) = 2f (x0) + (Δx)2f ′′(x0) + O(Δx)4 (5.6)

Solving Equation (5.6) for the second derivative, we obtain Equation (5.2) and
see that the truncation error is of the order of (Δx)2.

5.2 The Two-Dimensional Diffusion Equation

We will now focus on the two-dimensional diffusion equation for the magnetic
vector potential. This has been well developed for problems in Cartesian and polar
coordinates. In this particular case, where the fields have only two components
and the current has only one component, the formulation simplifies and it is only
necessary to solve for one component of the magnetic vector potential. The limi-
tation of the two-dimensional analyses is that there is no variation of the fields or
currents in the direction of the current.

Let us consider the diffusion equation for homogeneous materials in
two-dimensional Cartesian coordinates.

𝜈∇2A = 𝜈

(
𝜕2A
𝜕x2 + 𝜕2A

𝜕y2

)
= −J0(x, y) + 𝜎

dA
dt

(5.7)

where 𝜈 is the magnetic material property (reluctivity). Using the expansion for
the second derivative in Equation (5.2), we obtain (see Figure 5.2)

𝜕2A
𝜕x2 =

Ai+1,j − 2Ai,j + Ai−1,j

(Δx)2 + O(Δx)2 (5.8)

A
i,j + 1

∆y

A
i – 1, j A

i + 1, j

A
i, j

A
i, j – 1

∆x

Figure 5.2 Finite difference cell and diagram.
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and
𝜕2A
𝜕y2 =

Ai,j+1 − 2Ai,j + Ai,j−1

(Δy)2 + O(Δy)2 (5.9)

Substituting these into (5.7), multiplying through by ΔxΔy, and adding, we
obtain

𝜈

(
Δy

Ai+1,j − 2Ai,j + Ai−1,j

Δx
+ Δx

Ai,j+1 − 2Ai,j + Ai,j−1

Δy

)
= J0(x, y)ΔxΔy − 𝜎

dA
dt

ΔxΔy (5.10)

This equation is written for each node in the problem. This will give us a set of
simultaneous equations. The set of equations is singular until the potential of at
least one node is specified. The first term on the right-hand side of the equation
is the source current density times the area of the finite difference cell. This is the
total applied current in the cell. The second term is the eddy current in the cell.

5.2.1 Interfaces Between Materials

One of the reasons why we use numerical methods is the ease with which they han-
dle complex material properties and irregular interfaces. Consider Figure 5.3, in
which we have a five-point finite difference graph, including a boundary between
different materials. Recall that the well-known interface condition of Bn1 = Bn2
(continuous normal flux density) comes directly from application of Gauss’ law for

A
2

v
1a

2

a
1

A
0

a
3

a
4

A
4

A
1

v
2

A
3

Figure 5.3 Interface between different materials.
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the magnetic field. The interface condition Ht1 = Ht2 (continuous tangential mag-
netic field) must also be satisfied. In the case of the finite difference method for
the vector potential used here, the normal component of flux density must be con-
tinuous at the boundaries, as can be seen by noting that By =

(A0−A1)
Δx

is the normal
flux density for both the first and fourth quadrants of the figure. This condition is
exactly satisfied in the vector potential formulation. The tangential magnetic field,
however, is only approximately continuous since this quantity involves A2 and A4.
This discontinuity in tangential field will get smaller as the mesh size gets smaller
and can be used as a measure of the error in the solution.

To find the finite difference formula for the interface, we use Ampere’s law

∮ H ⋅ d𝓁 = Ienc (5.11)

Evaluating Equation (5.11) around the finite difference cell we find,

𝜈1
(A0 − A1)

a1

a2

2
+ 𝜈1

(A0 − A2)
a2

a1

2
+ 𝜈2

(A0 − A2)
a2

a3

2
+ 𝜈2

(A0 − A3)
a3

a2

2

𝜈3
(A0 − A3)

a3

a4

2
+ 𝜈3

(A0 − A4)
a4

a3

2
+ 𝜈4

(A0 − A4)
a4

a1

2
+ 𝜈4

(A0 − A1)
a1

a4

2

=
(a1a2

4
J1 +

a2a3

4
J2 +

a3a4

4
J3 +

a4a1

4
J4

)
−j𝜔

(
𝜎1

a1a2

4
+ 𝜎2

a2a3

4
+ 𝜎3

a3a4

4
+ 𝜎4

a4a1

4

)
A0 (5.12)

Combining terms we can write

𝛼1(A0 − A1) + 𝛼2(A0 − A2) + 𝛼3(A0 − A3) + 𝛼4(A0 − A4) = I0 − Ie (5.13)

where

𝛼1 =
𝜈1a2 + 𝜈4a4

2a1

𝛼2 =
𝜈1a1 + 𝜈2a3

2a2

𝛼3 =
𝜈2a2 + 𝜈3a4

2a3

𝛼4 =
𝜈4a1 + 𝜈3a3

2a4

I0 =
1
4
(

a1a2J1 + a2a3J2 + a3a4J3 + a4a1J4
)

Ie =
j𝜔A0

4
(

a1a2𝜎1 + a2a3𝜎2 + a3a4𝜎3 + a4a1𝜎4
)

(5.14)

Where I0 is the applied current in the finite difference cell and Ie is the eddy current
in the cell.
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5.2.2 Dirichlet and Neumann Boundary Conditions

For the diffusion equation to have a unique solution, either the potential or the
normal derivative of the potential must be specified at each point on the boundary.
If the potential is specified, this is called a Dirichlet condition and the unknown
nodal potential is eliminated. If the normal derivative is specified (Neumann
boundary condition), then we apply the following procedure. Consider Figure 5.4.
In this case, the potential at node (i, j) is unknown. If we consider the finite
difference expansion for the potential at node (i, j), then we see that it involves
the potential at point (i + 1, j), which is outside the domain of interest. We express
the normal derivative at (i, j), as

𝜕A
𝜕n

= 𝜕A
𝜕x

=
Ai+1,j − Ai−1,j

2Δx
(5.15)

From (5.15), we solve for the potential at (i + 1, j).

Ai+1,j = 2Δx 𝜕A
𝜕n

+ Ai−1,j (5.16)

The finite difference expansion for the potential at node (i, j) now becomes
(using Equation (5.10)),

𝜈x

2Δx 𝜕A
𝜕n

− 2Ai,j + 2Ai−1,j

(Δx)2 + 𝜈y
Ai,j+1 − 2Ai,j + Ai,j−1

(Δy)2 (5.17)

where 𝜈x and 𝜈y are the material properties in the x and y directions, respectively.
A special, but very common case is the homogeneous Neumann boundary
condition where 𝜕A

𝜕n
= 0. In this case, the equipotential lines are perpendicular to

Solution
domain

A
(i, j + 1)

A
(i – 1, j)

A
(i, j)

A
(i + 1, j)

A
(i, j – 1)

Figure 5.4 Boundary with normal derivative specified.
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the surface. This is the case if, for example, we have a plane of symmetry where
the potential on one side of the surface is the same as the potential on the other
side of the surface. From Figure 5.4, we have Ai−1,j = Ai+1,j, and, setting 𝜕A

𝜕n
= 0 in

Equation (5.17), we see that this condition is satisfied.

5.3 Time-Domain Solution of the Diffusion Equation

This section introduce some popular methods used in solving problems in the time
domain.

∇2A − 𝜇𝜎
dA
dt

= −𝜇J0 (5.18)

Considering the finite difference representation of the time derivative, we can
use the forward, backward, or central difference formulas. To solve an ordinary
differential equation (ODE), we need not only Dirichlet and/or Neumann bound-
ary conditions but also initial conditions. From the initial conditions, we project
forward in time by using an approximation for the time derivative. To illustrate the
different methods, we will use the one-dimensional diffusion equation.

5.3.1 The Explicit Integration Scheme

If we use a central difference formula for the Laplacian terms and a backward
difference formula for the time derivative, the finite difference formula is

Ai−1(t − Δt) − 2Ai(t − Δt) + Ai+1(t − Δt)
(Δx)2

− 𝜇𝜎
Ai(t) − Ai(t − Δt)

Δt
= 𝜇J (5.19)

Rearranging terms,

Ai(t) =
Δt

𝜇𝜎(Δx)2 (Ai−1(t − Δt) − 2Ai(t − Δt) + Ai+1(t − Δt))

+ Ai(t − Δt) − J Δt
𝜎

(5.20)

Defining

𝛼 = Δt
𝜇𝜎(Δx)2 (5.21)

we obtain

Ai(t) = 𝛼Ai−1(t − Δt) + (1 − 2𝛼)Ai(t − Δt)

+ 𝛼Ai+1(t − Δt) − 𝛼𝜇(Δx)2J (5.22)
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This is called an explicit integration scheme. The advantage of an explicit
method is that the solution at time, t, can be found by using the known values
of the unknown at the previous time, t − Δt. Therefore, we avoid solving a large
system of simultaneous equations. We sweep through the equations and use
the results from the previous time step to obtain the solution at the next time
step. Although this is certainly an advantage, the backward difference scheme
is not used very frequently. We previously saw that the error associated with the
backward difference calculation is O(Δt). This means that very small time steps
are required to obtain an accurate result. It may also be that, for large-time steps,
the solution is unstable [50].

5.3.2 Implicit Integration Schemes

To avoid these very small time steps and improve accuracy, we usually rely on
implicit integration schemes. These methods express the values of the unknowns
at a particular time in terms of the unknowns at the previous time step and the
current time step. The drawback of this process is that we must solve a system of
simultaneous equations for the unknowns. This means that the method is more
computationally intensive. The advantage is that we can use much larger time
steps. These implicit methods are therefore much more popular.

To illustrate the process, we will use the one-dimensional diffusion equation
for the magnetic vector potential. For the implicit schemes, we replace the Lapla-
cian by averages of the central difference formulas at time t and time t + Δt. These
are weighted averages, with the weight between 0 and 1, with weighting factor 𝜃.
These methods are sometimes called 𝜃 methods. Expanding the Laplacian

𝜕2A
𝜕x2 ≈ A(x − Δx, t) − 2A(x, t) + A(x + Δx, t)

(Δx)2 (1 − 𝜃)

+ A(x − Δx, t + Δt) − 2A(x, t + Δt) + A(x + Δx, t + Δt)
(Δx)2 𝜃 (5.23)

The time derivative of A is approximated by a forward difference

𝜕A
𝜕t

≈ A(x, t + Δt) − A(x, t)
Δt

(5.24)

In terms of the parameter 𝛼

𝛼(1 − 𝜃)A(x − Δx, t) + (1 − 2𝛼 + 2𝛼𝜃)A(x, t)

+ 𝛼(1 − 𝜃)A(x + Δx, t) + 𝛼𝜃A(x − Δx, t + Δt)

− (2𝛼𝜃 + 1)A(x, t + Δt) + 𝛼𝜃A(x + Δx, t + Δt) = 0 (5.25)

For 𝜃 = 0, we have a backward difference and the equations are the same as in
the explicit method. For 𝜃 = 1, we have a forward difference equation. For 𝜃 = 0.5,
we have the Crank–Nicholson method.
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5.4 Equivalent Circuit Representation for Finite
Difference Equations

We will now show that the finite difference equations have an equivalent circuit
representation [26, 27, 58]. We will illustrate this with the two-dimensional expres-
sion for the magnetic vector potential

1
𝜇
∇2A = −J0 + 𝜎

dA
dt

(5.26)

Consider the resistive-capacitive network of Figure 5.5. Summing the currents
leaving node 0, using Kirchhoff’s current law, we find

v0 − v1

R1
+

v0 − v2

R2
+

v0 − v3

R3
+

v0 − v4

R4
+ C

dv0

dt
= I0 (5.27)

We can see that Equation (5.26) has the same form as Equation (5.10). We can
make this equivalent with the following substitutions.

R1 = R3 = 𝜇Δx
Δy

R2 = R4 =
𝜇Δy
Δx

vi = Ai (5.28)

C = 𝜎ΔxΔy

I0 = −J0(ΔxΔy)

A
2

C

I
0

R
2

R
3

R
4

R
1

A
1

A
0A

3

A
4

Figure 5.5 R–C circuit for the vector potential eddy current problem.
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· · · · · ·
Current sheet

μ, σ

Conducting material

Figure 5.6 One-dimensional diffusion problem.

Therefore, in this equivalent circuit for the MVP, the nodal voltages are the z
components of the MVP, the resistances represent permeances normal to the direc-
tion of the flux, the source current is the total input current to the finite difference
cell, and the currents in the resistors are the ampere-turns (magneto-motive force)
magnetizing that section of the cell [51, 52].

The capacitor connected to ground represents the eddy current path and current
flowing through the capacitor, is the z directed eddy current in the cell. The total
current in the cell is the sum of the eddy current and the source current. Since
the ground or neutral point is included in the circuit, it is not necessary to set a
value of potential in order to obtain a non-singular system of equations. This is
not the case with magneto-static problems in which not setting a reference value
of potential would result in the system being ill-conditioned.

It is interesting that this circuit reflects the observed behavior of skin effect
problems. Let us look at the one-dimensional problem of a current sheet and a
linear conducting material as illustrated in Figure 5.6. The finite difference equiv-
alent circuit is shown in Figure 5.7. We know from Chapter 1.1, that as the fre-
quency increases, the skin depth decreases. Considering the equivalent circuit, as
the frequency increases, the reactances of the capacitors decrease and more cur-
rent leaves the network near the surface. This results in a smaller skin depth. As
the conductivity increases, the capacitors get larger and again the eddy currents
flow more at the surface. We also see that if the permeability increases, the resis-
tors in the equivalent circuit get larger, limiting the depth to which the current can
penetrate. Similarly, as either the frequency decrease, the conductivity decreases,
or the permeability decreases, the currents can penetrate farther into the material.

5.4.1 Numerical Example Using a Ladder Network Solution

We will now look at the result of a one-dimensional example using the ladder
network. This example has been chosen for a number of reasons. First, there is
a simple analytical solution. There are also a number of practical applications for
this case. We can also demonstrate how the results of the numerical computation
can be used to find quantities such as losses, effective resistance and inductance,
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Current sheet

Permeance

Conductance

Figure 5.7 Equivalent circuit for the one-dimensional diffusion problem.

and electromagnetic force. We can use this equivalent circuit for steady-state
ac (complex phasor analysis) as well as instantaneous (time domain) analysis.
The circuit is also easily modified to include nonlinear and non-homogeneous
materials.

One method of computing global quantities such as loss, resistance and reac-
tance, is by means of the Poynting vector. For the complex or phasor case, the
complex Poynting vector is defined as

P = E × H∗ (5.29)

Since we are using the magnetic vector potential in the formulation, the electric
field is found as

E = j𝜔A (5.30)

The magnetic field is

H = 1
𝜇
(∇ × A) (5.31)

With these, we can compute the Poynting vector.
We can also use stored energy as an option to find impedance. For the linear

example above, the energy in the magnetic field is

Wm = 1
2∫V

B ⋅ H dv (5.32)
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The magnetic permeance can be found as

 =
2Wm

I2 (5.33)

In terms of the vector potential

Wm = 1
2∫V

∇ × A ⋅ H dv (5.34)

From a vector identity, we have

∇ ⋅ (A × H) = (∇ × A) ⋅ H − (∇ × H) ⋅ A (5.35)

Now, using ∇ × H = J, we have

Wm = 1
2∫V

J ⋅ A dv + 1
2∫V

∇ ⋅ (A × H) dv (5.36)

Wm = 1
2∫V

J ⋅ A dv + 1
2∮S

A × H ⋅ dS

As we allow the surface in the second integral to go to infinity, we note that
A ∝ 1∕r and H ∝ 1∕r2 while S ∝ r2. We conclude that this integral vanishes as
r → ∞.

This leaves

Wm = 1
2∫V

J ⋅ A dv (5.37)

Consider the slot in Figure 5.8. The example here uses a one-dimensional lad-
der network that can represent a rectangular slot in a motor or a section of a
semi-infinite slab of uniform isotropic conductor. The problem is excited with a
current sheet located at y = 0. In this particular case, this is equivalent to applying
the total current to the conductor, since current injected at the first node will leave
the network through the grounded capacitors. The current distribution will then
be determined by the network solution. This example also gives us an opportunity

b
s

h
c Conductor μ = ∞μ = ∞

Figure 5.8 One-dimensional example.



�

� �

�

5.4 Equivalent Circuit Representation for Finite Difference Equations 211

to illustrate the calculation of some useful quantities, such as losses, resistance,
inductance, energy and force.

In the numerical example which follows, we explore the solution in the fre-
quency domain (phasor analysis) and then in the time domain with steady-state
sinusoidal and step function inputs. The conductor is copper and the conductiv-
ity is 𝜎 = 5.8 × 107 S m−1. The width of the conductor is 0.01 m and the height is
0.10 m. In this one-dimensional example, the width is not important as there is no
variation of any quantity in the x or z directions. The width will be important of
course in the evaluation of losses, resistance, and forces. The depth is chosen so
that for power frequencies (50 − 60 Hz) the skin depth is small compared to the
depth of the conductor and a simple analytical formula can be used to validate the
finite difference solution.

In the first example, we apply a current sheet as the excitation at y = 0, which
corresponds to the top of the conductor. This example is done in the complex
mode so the solution is steady-state sinusoidal and the variables are complex
numbers. We solve directly for the magnetic vector potential at the nodes (corre-
sponding to the nodal voltage). The flux density, only in the x direction, is found
by taking the curl of the vector potential. In this case, the numerical derivative
is approximated as the difference of the voltage at two adjacent nodes divided by
the distance between the nodes. The eddy current corresponds to the capacitor
current, j𝜔AC. All other quantities can now be found from these values as will be
illustrated below.

The analytical solution for this problem has been given in Section 2.2. The solu-
tion for the current density is

J(y) = J0e
−
(1 + j)y

𝛿 (5.38)

where

J0 = H0
1 + j
𝛿

(5.39)

The value of H0 is simply the total current divided by the conductor width. We
know that the real and imaginary components of the eddy current should be equal
at the surface (y = 0). Also we know that the magnitude of the eddy current density
will decay exponentially with y, so that the value at one skin depth will be 1∕e
times that at the surface and the phase will lag the phase at the surface by one
radian. This is illustrated in Figure 5.9 in which we see the current density as a
function of depth. Point A is at the surface and point B is located one skin depth
below the surface. A comparison of the finite difference solution and the analytical
expression of Equation (5.38) shows that the ladder network gives an extremely
good approximation of the solution. There are two curves in Figure 5.10.

We can now use this example to illustrate some of the post-processing that can
be done with the solution. We may require local quantities such as the flux density
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Figure 5.9 Real and imaginary components of current density as a function of depth.

or loss density at a specific location, or we may be interested in global quantities
such as resistance, inductance, and force. One quantity of interest is the loss (often
referred to as Joule loss). One method of determining the loss is to integrate the loss
density over the surface of the conductor. In our example, we assume the depth is
1 m (axial direction). The loss in each of the finite difference cells is then the square
of the cell current magnitude times the cell resistance. The cell resistance is

Rc =
1

bshcell𝜎
Ωm−1 (5.40)

where bs is the cell width and hcell is the cell height.
In the example used here, the total current is 1.0 A. Adding up the loss in all of

the cells gives 0.1987 × 10−3 W. Since the total current is 1.0 A, the effective resis-
tance is 0.1987 × 10−3Ω. We can compare this result to the analytical expression
we found in Section 2.2 (high-frequency limit).

Rac =
1

𝜎𝛿bs
(5.41)

This result is also Rac = 0.1987 × 10−3Ω.
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Figure 5.10 Numerical and analytical solution for magnitude of current density at
different depths.

Alternatively, we can use the Poynting vector discussed previously. The equation
is repeated here.

P = E × H∗ (5.42)

Recall that the Poynting vector gives the complex power density crossing a sur-
face. The surface of interest is at the top of the conductor, so bs × 1.0. Evaluat-
ing the Poynting vector at the surface of our finite difference model, we obtain
PV × bs = (0.00019867 + j0.00019871)VA.

This is P + jQ and we need only divide by the current squared to get the
resistance and inductive reactance. The resistance agrees with the value we have
obtained above. The inductive reactance is then X = 0.0001987Ω. Our previous
discussion of the one-dimensional plate gave us the result that the resistance and
reactance should be equal, which is the case.

The eddy currents (or skin effect) will cause the ac resistance to be higher than
dc resistance by restricting the area that the current passes through. The induc-
tance is also affected. By restricting the area that the flux must pass through, the
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inductance will be reduced by the same factor. Recalling that the skin depth is
proportional to the inverse square root of the frequency (𝛿 ∝ 1∕

√
𝜔) we see how

the resistance and reactance change by the same factor as a function of frequency.
For example, if we double the frequency, the resistance increases by

√
2 and the

inductance decreases by the same amount. To find the reactance, we multiply the
inductance by frequency so the resistance and reactance change by the same fac-
tor. In the example above, if we make the frequency 120Hz, we obtain R + jX =
0.000281 + j0.000281 which is the 60Hz result times

√
2.

We can also use the magnetic energy to find the inductance. As shown above,
with a magnetic vector potential solution, it is convenient to find the magnetic
energy using

Wm = 1
2∫V

J ⋅ A dv (5.43)

The result for the 60 Hz case is that the stored energy is 2.635 × 10−7 J. Since the
current is 1.0A, the inductance is twice the value of the stored energy or 5.27 ×
10−7 H. Multiplying this by the angular frequency we obtain the same reactance as
found above.

The redistribution of the current due to the skin effect, not only changes the
resistance and inductance, but the electromagnetic force on the conductor. In the
case of force on nonmagnetic conductors, we can use the Lorentz formula

dF = J × Bd𝓁 (5.44)

This local force density is then integrated over the conductor cross section. In
the ladder network, we shall add the contributions of each cell. For the 60 Hz case,
we obtain a force of 6.22 × 10−5 N downward. We can check the use of this local
approach by evaluating the Maxwell Stress at the top of the conductor. The normal
force (to the top surface) is then

Fn =
B2

n − B2
t

2𝜇0
bs (5.45)

The result is 6.28 × 10−5 N or less than a 1% difference.

5.4.2 Time-Domain Example for the Finite Difference Network

The same model can be used for the transient or time-domain solution. In this case,
the excitation is a current sheet which is sinusoidal in time. To compare it to the
phasor analysis for the steady-state sinusoidal case, we must let the solution go for
several cycles until steady state is reached. A central difference method, which was
described above, was used to find the time-domain solution. The current density
near the surface and one skin depth down is shown in Figure 5.11. We note that the
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Figure 5.11 Current density at surface and at one skin depth with sinusoidal excitation.

phase angle of the current density is 45∘ at the surface which agrees with theory.
The current density at a depth 𝛿 is lagging the current density at the surface by one
radian. If we compare the peak values of the current density we see that the ratio
is 1∕e as expected.

Another interesting example is the diffusion of current produced by a
step-function of current. This solution has already been discussed in Section 1.10
and is repeated here for convenience. For a semi-infinite conductor, initially
unexcited, with an applied surface magnetic field of H0, the current density as a
function of space and time is

J(x, t) =
2H0√
4𝜋Dt

e−
x2

4Dt (5.46)

where

D = 1
𝜇𝜎

(5.47)

The finite difference model represents a slab of copper (𝜇 = 𝜇0) which is excited
by a step function current sheet at the surface. The conductor in the model is 1.0m
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Figure 5.12 Current density vs. time at three depths for a step function of current.

deep and is divided into 1000 cells. The results of the model and the closed-form
solution are shown in Figure 5.12 at three different locations below the surface
of the conductor. As we move down from the surface, the peak current decreases
and the time to peak increases which agrees with the theoretical predictions. The
concept of treating this case as an R − C ladder network also gives some insight
into the phenomenon. At the application of a step function of current to the net-
work, the first capacitor will take most of the current. As it charges and the voltage
increases, current will be driven down the network and the second capacitor will
begin to charge. This time delay is related to the diffusion time constant introduced
previously. Since the total current in the conductor must equal the Ampere-turns
in the current sheet, the capacitors further from the surface will have less current
and that current will reach a maximum at a later time.

We have seen that the finite difference method is well-adapted to solv-
ing eddy current problems both in the time and frequency domain. For the
two-dimensional MVP formulation, we developed an R − C network which also
gives physical insight into the eddy current distribution. The examples given were
for Cartesian coordinates but the equivalent circuit is valid for polar coordinates
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as well. This circuit cannot be used in three-dimensions, since the vector potential
will have multiple components. The finite difference method is extremely general
and can be used to solve problems with complicated geometry and boundary
conditions, as well as nonlinear and nonhomogeneous material properties. We
will now turn our attention to the finite element method.
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6

Finite Elements

6.1 Finite Elements

The finite element method is a numerical method which was first applied in
structural and continuum mechanics in the 1960s and then became popular in
electromagnetic and thermal analysis. The method can be applied to complex
geometries having nonlinear and anisotropic materials. It can handle diffusion
problems, like eddy currents, as well as wave problems. The method is based on
two solution approaches: the variational method (also called Ritz’s Method) and
the Galerkin method. In the variational finite element method, an electromag-
netic partial differential equation (PDE) is written in terms of an energy related
functional. The approach yields a solution by minimizing this functional with
respect to the unknown field variables or potentials. The finite element method
using the Galerkin approach, uses the PDEs multiplied by a weighting function
and integrated over the problem domain. The process then also minimizes an
error function to find the unknown variables.

The method requires that the domain of the problem domain be discretized or
divided into elements which completely cover the solution domain. Boundary con-
ditions and sources can then be applied which makes the problem well-posed.

The steps involved in the finite element method are as follows:

● Define the electromagnetic problem by PDEs.
● Obtain a functional formulation for the PDEs in terms of the variational or the

Galerkin approach.
● Subdivide the problem domain into finite elements.
● Start with a trial solution using the nodal values of the elements and interpola-

tion functions.

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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● Minimize the functional with respect to each of the nodal potentials.
● Solve the set of algebraic equations for the nodal values.
● Post-process the nodal solution to find useful parameters.

6.2 The Variational Method

The variational method is one of the most practical and accurate methods for solv-
ing boundary value problems [46]. In this method, the PDE describing the problem
is expressed as an energy-related formula which is called a functional. The solution
to the PDE is based on the minimization of the functional.

In this section, the derivation of the functional and its variational form will be
presented. A functional is an operator on a class of functions. For example, if we
define 𝜙 to be a set of functions of two variables (x, y) subject to the condition
𝜙 = f (s) on S (where S is the surface bounding the region R) and which is contin-
uously differentiable, then any quantity, such as  , that takes a specific numerical
value corresponding to each function in the set is said to be a functional on the
set 𝜙.

Here, the extremum of a functional with one independent variable will be con-
sidered in the form given below

 = ∫
b

a
f (x,u,u′)dx (6.1)

where u′ = 𝜕u
𝜕x

, and the boundary conditions are

u(a) = A, u(b) = B (6.2)

where a, b,A, and B are constants. We will assume that f has continuous
second-order derivatives with respect to its three arguments and require that the
unknown function u(x) possesses two derivatives everywhere in (a, b). A family
of admissible functions that includes u(x) is of the form

u(x) + 𝜖𝜂(x) (6.3)

where 𝜂(x) is an arbitrary twice-differentiable function that vanishes at the end
points (a, b). Thus,

𝜂(a) = 𝜂(b) = 0 (6.4)

Also, 𝜖 is a parameter that is a constant for any one function in the set but varies
from one function to another.

If u(x) is replaced by u(x) + 𝜖𝜂(x), then the integral  assumes the form (after
dropping the terms in the parentheses for convenience)

 = ∫
b

a
f (x,u + 𝜖𝜂,u′ + 𝜖𝜂′) dx (6.5)



�

� �

�

6.2 The Variational Method 221

It is apparent that the maximum or minimum value (extremum) of  (𝜖) occurs
when 𝜖 = 0, that is, when the variation of u is zero. Hence it follows that

d
d𝜖

= 0 (6.6)

when 𝜖 = 0.
Substituting for (𝜖) from Equation (6.5) into Equation (6.6) and using the chain

rule of differentiation
d
d𝜖

= ∫
b

a

(
𝜕f (x,u + 𝜖𝜂,u′ + 𝜖𝜂′)

𝜕(u + 𝜖𝜂)
𝜂 +

𝜕f (x,u + 𝜖𝜂,u′ + 𝜖𝜂′)
𝜕(u′ + 𝜖𝜂′)

𝜂′
)

dx (6.7)

Setting 𝜖 = 0, the equation becomes

d
d𝜖

= ∫
b

a

(
𝜕f
𝜕u

𝜂(x) +
𝜕f
𝜕u′ 𝜂

′(x)
)

dx =  ′(0) = 0 (6.8)

The second term of the definite integral in Equation (6.8) can be transformed by
integration by parts as follows:

∫
b

a

(
𝜕f
𝜕u′ 𝜂

′(x)
)

dx =
𝜕f
𝜕u′ 𝜂(x)

||||
b

a
− ∫

b

a

(
𝜕

𝜕x
𝜕f
𝜕u′ 𝜂(x)

)
dx (6.9)

Because 𝜂(a) = 𝜂(b) = 0, the first term on the right vanishes. Equation (6.9) then
reduces to the form

∫
b

a

(
𝜕f
𝜕u′ 𝜂

′(x)
)

dx = −∫
b

a

(
𝜕

𝜕x
𝜕f
𝜕u′ 𝜂(x)

)
dx (6.10)

Substituting (6.10) into (6.8),

 ′(0) = −∫
b

a

(
𝜕

𝜕x
𝜕f
𝜕u′ −

𝜕f
𝜕u

)
𝜂(x) dx (6.11)

The integrand of this function must be zero for any arbitrary function 𝜂(x) in the
neighborhood of u(x), so that

𝜕

𝜕x

(
𝜕f
𝜕u′

)
−
(
𝜕f
𝜕u

)
= 0 (6.12)

Equation (6.12) is called the Euler–Lagrange equation of the functional (6.1),
subject to boundary conditions (6.2).

We will now present the functional for time-varying fields. We will consider two
methods: the residual excitation method and the Poynting vector method.

Let us first consider the linear Poisson equation.

𝜈∇2𝜙0 = f0 (6.13)

where 𝜙0 is the true potential solution, f0 is the forcing function, and 𝜈 is a physi-
cal parameter. If 𝜙 is an approximate solution, then a residue will be obtained as
follows

𝜈∇2𝜙 = f0 − R (6.14)
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The right-hand side of (6.14) is expressed as an equivalent source density, f1.
We now multiply both sides by 𝜙0 and integrate the result over the entire region.
We obtain

 = ∫ 𝜙0R dV = ∫ (𝜙0𝜈∇2𝜙0 − 𝜙0 f1) dV (6.15)

The integral on the right-hand side of (6.15) yields the residual energy in the
system, which we call the functional  . The minimization of this energy-related
functional yields the true solution to the field problem defined by (6.13). This
integral on the right-hand side of Equation (6.15) can be transformed by vector
identities as follows:

∫ 𝜈𝜙0∇2𝜙0 dV = ∫ ∇ ⋅ (𝜈𝜙0∇𝜙0) dV − ∫ 𝜈|∇𝜙0|2 dV (6.16)

Substituting (6.16) into (6.15),

 = −∫ 𝜙0 f1 dV + ∫ ∇ ⋅ (𝜈𝜙0∇𝜙0) dV − ∫ 𝜈|∇𝜙0|2 dV (6.17)

Using the divergence theorem, the second integral of (6.17) is transformed into
a surface integral so that

 = −∫ 𝜙0 f1 dV + ∮ (𝜈𝜙0∇𝜙0) dS − ∫ 𝜈|∇𝜙0|2 dV (6.18)

Minimization of the Euler–Lagrange equation (6.12) results in the solution of
the PDE.

We now consider the problem beginning with the Poynting vector. The func-
tional is a scalar quantity, and its minimum value is the precondition for obtaining
the true solution to scalar and vector potential field problems. The Poynting vec-
tor can be used to find a functional formulation for electromagnetic fields. Using
a power balance, we have

−∮S
(E × H) ⋅ dS = ∫V

J ⋅ E dV + 𝜕

𝜕t∫V

(
𝜖

2
E2 + 𝜇

2
H2

)
dV (6.19)

We will neglect the energy term associated with the electrostatic field and the
displacement currents. The equation then becomes

−∮S
(E × H) ⋅ dS = ∫V

J ⋅ E dV + 𝜕

𝜕t∫V

𝜇

2
H2 dV (6.20)

Defining the vector potential, A, such that

B = ∇ × A (6.21)

and using the relationship

∇ × E = −𝜕B
𝜕t

(6.22)
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we obtain

∇ × E = − 𝜕

𝜕t
(∇ × A) (6.23)

or

E = −𝜕A
𝜕t

(6.24)

First let us assume that the current density, J, does not vary with time.
𝜕

𝜕t
(J ⋅ A) = J ⋅

𝜕A
𝜕t

(6.25)

Thus from Equations (6.24) and (6.25)

∫V
J ⋅ E dV = − 𝜕

𝜕t∫V
J ⋅ A dV (6.26)

Substituting Equation (6.26) into (6.20)

∮S
(E × H) ⋅ dS = − 𝜕

𝜕t

(
∫V

J ⋅ A dV − ∫V

𝜇

2
H2 dV

)
(6.27)

Equation (6.27) can be rewritten in terms of the reluctivity 𝜈 (𝜈 = 1
𝜇
) so that

H = 𝜈B = 𝜈∇ × A (6.28)

and

−∮S
(E × H) ⋅ dS = − 𝜕

𝜕t

(
∫V

J ⋅ A dV − ∫
𝜈

2
(∇ × A)2 dV

)
(6.29)

Assuming that A has only a z-directed component Az, we have, for the
two-dimensional problem,

(∇ × A)2 = |∇A|2 =
(
𝜕A
𝜕x

)2
+
(
𝜕A
𝜕y

)2

(6.30)

Substituting for (∇ × A)2 from (6.30) into (6.29) and integrating both sides of
Equation (6.29) with respect to time, we have

∫
(
−∮S

(E × H) ⋅ dS
)

dt = −∫V
J ⋅ A dV + ∫V

𝜈

2

((
𝜕A
𝜕x

)2
+
(
𝜕A
𝜕y

)2
)

dV

(6.31)

which is the energy flowing out of the surface enclosing the volume of the field
region [46].

We now look at the energy functional for the diffusion problem. We have seen
that electromagnetic field problems, including eddy current effects, can be mod-
eled by the diffusion equation in terms of a magnetic vector potential A, source
current density Js, and scalar potential function, 𝜙 as

∇ × 𝜈∇ × A + 𝜎
𝜕A
𝜕t

− 𝜎∇𝜙 = Js (6.32)
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In addition to Equation (6.32), the vector and scalar potentials are related by a
zero divergence condition on the current density vector. The resulting equation is

∇ ⋅ 𝜎
𝜕A
𝜕t

− ∇ ⋅ 𝜎∇𝜙 = 0 (6.33)

Integrating Equation (6.33) over time, assuming 𝜎 is constant,

𝜎∇ ⋅ A − 𝜎 ∫ ∇2𝜙 dt = 0 (6.34)

Equations (6.32) and (6.34) fully define the time-dependent eddy current prob-
lem. For two-dimensional problems with a single component of vector potential,
the divergence of A is automatically zero, and therefore there is no need for a scalar
potential function, 𝜙.

The functional for the diffusion equation (6.32) and gauge condition (6.34) are
obtained as follows [46]

 = ∫

(
A ⋅ ∇ × 𝜈∇ × A + 𝜎A ⋅

𝜕A
𝜕t

−𝜎A ⋅ ∇𝜙 + 𝜎𝜙∇ ⋅ A − 𝜎𝜙∇2𝜙 − 2A ⋅ Js

)
dV (6.35)

Using vector identities (Green’s theorem and the divergence theorem), substi-
tuting 𝜙 for the term containing time in (6.35), replacing the integrals containing
∇ × 𝜈∇ × A and Laplace’s equation in 𝜙 by volume and surface integrals, and rear-
ranging terms, after considerable algebra, the energy-related functional for the
diffusion equation is obtained as

 = ∫V

(
𝜈(∇ × A)2 + 𝜎A ⋅

𝜕A
𝜕t

− 𝜎A ⋅ ∇𝜙 + 𝜎𝜙∇ ⋅ A

+ 𝜎∇𝜙 ⋅ ∇𝜙 − 2A ⋅ Js

)
dV − ∮S

A ⋅ (n × 𝜈∇ × A) dS

− ∮ 𝜙
𝜕𝜙

𝜕n
dS (6.36)

The steady-state time-harmonic diffusion equation and the related functional
are obtained by representing the vector potential A, the scalar potential 𝜙, and the
source current density Js as time-harmonic functions or phasors. Thus

A = |A|e j𝜃A

𝜙 = |𝜙|e j𝜃𝜙

Js = |Js|e j𝜃Js (6.37)

Substituting for A, 𝜙, and Js from Equation (6.37) into Equations (6.32) and
(6.34), the steady-state diffusion equation and the divergence condition on A [46]
are obtained as Equations (6.38) and (6.39) respectively.

∇ × 𝜈∇ × A + j𝜔𝜎A − 𝜎∇𝜙 = Js (6.38)

𝜎∇ ⋅ A − 𝜎

j𝜔
∇ ⋅ ∇𝜙 = 0 (6.39)
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From the generalized expression for the functional of Equation (6.36), we have

 = ⟨𝜓T|𝜓⟩ − 2⟨𝜓T|f ⟩ (6.40)

Making the following substitutions from Equations (6.38) and (6.39) in
Equation (6.40)

𝜓 =
(

A
𝜙

)
f = Js (6.41)

𝜓 =

(
∇ × 𝜈∇ × A + j𝜔𝜎A − 𝜎∇𝜙

𝜎∇ ⋅ A − 𝜎

j𝜔
∇ ⋅ ∇𝜙

)
(6.42)

The functional for the steady-state diffusion equation is obtained as

 = ∫V

(
A ⋅ ∇ × 𝜈∇ × A + j𝜔𝜎A2 − 𝜎A ⋅ ∇𝜙

+ 𝜎𝜙∇ ⋅ A − 𝜎𝜙

j𝜔
∇ ⋅ ∇𝜙 − 2A ⋅ Js

)
dV = 0 (6.43)

Using the vector identities

A ⋅ ∇ × 𝜈∇ × A = 𝜈(∇ × A)2 − ∇ ⋅ [A × 𝜈∇ × A] (6.44)

−
j𝜎
𝜔
𝜙∇ ⋅ ∇𝜙 =

j𝜎
𝜔
(∇𝜙)2 −

j𝜎
𝜔
∇ ⋅ (𝜙∇𝜙) (6.45)

and substituting them in the expression for the functional of Equation (6.43), we
obtain

 = ∫V

(
𝜈(∇ × A)2 + j𝜔𝜎A2 − 𝜎A ⋅ ∇𝜙 − 𝜎𝜙∇ ⋅ A +

j𝜎
𝜔
(∇𝜙)2 − 2A ⋅ Js

)
dV

−∫V
∇ ⋅ (A × 𝜈∇ × A) dV − ∫V

j𝜎
𝜔
∇ ⋅ (𝜙∇𝜙) dV (6.46)

The last two volume integrals on the right-hand side of Equation (6.46) are trans-
formed into surface integrals using the divergence theorem. This gives

 = ∫V

(
𝜈(∇ × A)2 + j𝜔𝜎A2 − 𝜎A ⋅ ∇𝜙 − 𝜎𝜙∇ ⋅ A +

j𝜎
𝜔
(∇𝜙)2 − 2A ⋅ Js

)
dV

−∮S
A ⋅ (n × 𝜈∇ × A) dS − ∮S

j𝜎
𝜔
𝜙∇𝜙 ⋅ dS (6.47)

Equation (6.47) represents the functional for the generalized steady-state diffusion
equation.

6.2.1 Finite Element Discretization

The problem domain is divided into a number of finite elements. These elements
can be first-order or higher-order elements depending on the approximating func-
tion. These elements are the finite element mesh. The elements will contain nodes,
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Figure 6.1 One triangular element.

which can be at the vertices, along the edges and in the interior of the elements.
For example, a two-dimensional surface can be discretized into linear triangu-
lar elements. In this case, the nodes will be at the triangle vertices. An example
of the polynomial for this approximating function can be illustrated by using a
first-order triangular element as shown in Figure 6.1 with its nodal coordinates
(x1, y1), (x2, y2), and (x3, y3). The linear approximating function for the potential
can be written as shown in Equation (6.48).

A = a + bx + cy (6.48)

By substituting each coordinate for the vertices in this potential equation, a set of
simultaneous equations is obtained for the potentials at each node.

A1 = a + bx1 + cy1

A2 = a + bx2 + cy2

A3 = a + bx3 + cy3 (6.49)

These equations can be expressed in matrix form as

⎛⎜⎜⎝
A1
A2
A3

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 x1 y1
1 x2 y2
1 x3 y3

⎞⎟⎟⎠
⎛⎜⎜⎝

a
b
c

⎞⎟⎟⎠ (6.50)

We can obtain the a, b, and c constants for this element by solving
Equation (6.50).

⎛⎜⎜⎝
a
b
c

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1 x1 y1
1 x2 y2
1 x3 y3

⎞⎟⎟⎠
−1 ⎛⎜⎜⎝

A1
A2
A3

⎞⎟⎟⎠ (6.51)
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The inverse of the coefficient matrix is equal to

⎛⎜⎜⎝
1 x1 y1
1 x2 y2
1 x3 y3

⎞⎟⎟⎠
−1

= 1
2S

⎛⎜⎜⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞⎟⎟⎠
T

(6.52)

where S is the area of the triangle. So,

⎛⎜⎜⎝
a
b
c

⎞⎟⎟⎠ =
1

2S

⎛⎜⎜⎝
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎞⎟⎟⎠
T ⎛⎜⎜⎝

V1
V2
V3

⎞⎟⎟⎠ (6.53)

where

a1 = x2y3 − x3y2

a2 = x3y1 − x1y3

a3 = x1y2 − x2y1

b1 = y2 − y3

b2 = y3 − y1 (6.54)
b3 = y1 − y2

c1 = x3 − x2

c2 = x1 − x3

c3 = x2 − x1

Now the a, b, and c values can be substituted into Equation (6.48) to obtain the
potential.

A = 1
2S

[(a1 + b1x + c1y)A1 + (a2 + b2x + c2y)A2 + (a3 + b3x + c3y)A3]

(6.55)

We can also use the shape functions 𝛼1, 𝛼2, and 𝛼3, which are polynomial weight-
ing functions, to obtain the approximation polynomials.

𝛼1 = 1
2S

[a1 + b1x + c1y]

𝛼2 = 1
2S

[a2 + b2x + c2y]

𝛼3 = 1
2S

[a3 + b3x + c3y] (6.56)

The potential can be written by using these shape functions as

A =
n∑

i=1
𝛼iAi (6.57)
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where n is the number of nodes in the element. The sum of the shape functions of
any element will always be equal to one.

𝛼1 + 𝛼2 + 𝛼3 = 1 (6.58)

These shape functions will be used to calculate the coefficient matrix for each
element. Considering triangular element 1, the coefficient matrix for this element
can be expressed by using Equation (6.59). This matrix is also called the stiffness
matrix.

[K1] =
⎛⎜⎜⎜⎝

k1
11 k1

12 k1
13

k1
21 k1

22 k1
23

k1
31 k1

32 k1
33

⎞⎟⎟⎟⎠ (6.59)

The each element of this stiffness matrix is calculated separately by using the
shape functions.

k1
ij =

[
∫ ∇𝛼i∇𝛼ydS

]
(6.60)

6.2.2 Global Matrix Assembly

The global stiffness matrix is created by assembling the element stiffness matrices.
Here, an assembly example will be shown for two triangular elements given in
Figure 6.2. Nodal potentials and stiffness matrices of each elements are given by
Equations (6.61)–(6.64) respectively [46].

[A]1 =
⎛⎜⎜⎝

A1
A2
A3

⎞⎟⎟⎠ (6.61)

[K]1 =
⎛⎜⎜⎜⎝

k1
11 k1

12 k1
13

k1
21 k1

22 k1
23

k1
31 k1

32 k1
33

⎞⎟⎟⎟⎠ (6.62)

[A]2 =
⎛⎜⎜⎝

A4
A5
A6

⎞⎟⎟⎠ (6.63)

[K]2 =
⎛⎜⎜⎜⎝

k2
11 k2

12 k2
13

k2
21 k2

22 k2
23

k2
31 k2

32 k2
33

⎞⎟⎟⎟⎠ (6.64)

After taking derivatives of the shape functions and considering the a, b, and c
constants for the related elements, each element of the coefficient matrix can be
expressed in a general form in Equation (6.65) and matrix form in Equation (6.66).

kij =
𝜇

4S
(bibj + cicj) i = 1, 2, 3, j = 1, 2, 3 (6.65)
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1
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1
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Figure 6.2 Two separate triangular elements.

[K]e = 𝜇

4S

⎛⎜⎜⎜⎝
b2

1 + c2
1 b1b2 + c1c2 b1b3 + c1c3

b1b2 + c1c2 b2
2 + c2

2 b2b3 + c2c3

b1b3 + c1c3 b2b3 + c2c3 b2
3 + c2

3

⎞⎟⎟⎟⎠ (6.66)

The energy equation for a triangular element is

W = 𝜇

2
[A]T

s [K]s[A]s (6.67)

The vector potential and coefficient matrix are given as follows:

[A]T
s =

(
A1 A2 A3 A4 A5 A6

)
(6.68)

[K]s =
[
[K]1 0

0 [K]2

]
(6.69)

The nodes 1 and 6, and 3 and 4 are connected as shown in Figure 6.3. The assem-
bled potential and system matrix equations are

[A]c =

⎛⎜⎜⎜⎜⎝
A1
A2
A3
A5

⎞⎟⎟⎟⎟⎠
(6.70)

[K]c =

⎛⎜⎜⎜⎜⎝
k11 k12 k13 k15
k21 k22 k23 k25
k31 k32 k33 k35
k51 k52 k53 k55

⎞⎟⎟⎟⎟⎠
(6.71)

The Kc matrix is the global coefficient matrix and is symmetric, sparse, and sin-
gular. It shows the connection between the nodes. In the above example, the global
coefficient matrix with all sub elements is given in Equation (6.72).
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Figure 6.3 Two adjacent triangular elements.

[K]c =

⎛⎜⎜⎜⎜⎜⎝

k1
11 + k2

33 k2
12 k1

13 + k2
31 k2

32

k1
21 k1

22 k1
23 0

k1
31 + k2

13 k1
32 k1

33 + k2
11 k2

12

k2
32 0 k2

21 k2
22

⎞⎟⎟⎟⎟⎟⎠
(6.72)

6.2.3 Numerical Examples: Conducting Plates

The finite element method is now applied to an example that we have solved in
closed-form in Section 2.3 and with the finite difference method in Section 5.1.
The example is a conducting plate in a sinusoidally time-varying, 60HZ solenoidal
field. The finite element mesh is made of first-order triangles and the excitation is a
surface current sheet. The material is copper with conductivity 𝜎 = 5.8 × 107 Sm−1

and permeability 𝜇0 = 4𝜋 × 10−7 Hm−1. The geometry is shown in Figure 6.4.
The mesh used for the example is a regular mesh constructed of triangles. The

mesh chosen is especially easy to check. If we take a square and draw the two

··· ···
Current sheet

μ,σ

Conducting material

Figure 6.4 Current sheet and copper plate.
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Figure 6.5 Mesh consisting of
four-element, five-node blocks. 1 2

3

4
5

1

2 3

4

6

7 8

d

d

diagonals as shown in Figure 6.5, we obtain a regular pattern including four trian-
gles (elements) and five vertices (nodes).

As illustrated in the figure, element 1 has nodes (1,3,2), element 2 has nodes
(1,4,3), element 3 has nodes (2,3,5), and element 4 has nodes (3,4,5). The node
ordering is in the counterclockwise direction. Table 6.1 shows the cyclic ordering
of the nodes for each element.

Table 6.1 Elements and node numbering for the
uppermost four-element block.

Element i j k

1 1 3 2
2 1 4 3
3 2 3 5
4 3 4 5
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The global finite element matrix consists of two parts: the element stiffness
matrix (reluctance) and the mass matrix (conductance). The elements of the
stiffness matrix are given by

[K] = 1
4𝜇0S

⎡⎢⎢⎣
b2

i + c2
i bibj + cicj bibk + cick

b2
j + c2

j bjbk + cjck

symmetric b2
k + c2

k

⎤⎥⎥⎦ (6.73)

We recall that

bi = yj − yk

ci = xk − xj (6.74)

with the other indices varying in cyclic order. The values of these parameters for
elements in the uppermost block are given in Table 6.2.

The S matrix for element 1 is then

[K]1 = 1
𝜇0

⎡⎢⎢⎣
0.5 −0.5 0
−0.5 1 −0.5

0 −0.5 0.5

⎤⎥⎥⎦ (6.75)

Following the same process for elements 2–4 and combining the resulting ele-
mental stiffness matrices, we obtain the 5 × 5 stiffness matrix for the uppermost
4-element block:

[K] = 1
𝜇0

⎡⎢⎢⎢⎢⎢⎣

1 0 −1 0 0
0 1 −1 0 0
−1 −1 4 −1 −1
0 0 −1 1 0
0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎦
(6.76)

The T (conductance) matrix for each element is given by

[T] =
j𝜔𝜎S

12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦ (6.77)

Table 6.2 Values of b, c, and S (area) for elements in the uppermost block.

Element xi xj xk yi yj yk bi bj bk ci cj ck S

1 0 d
2

d 0 −d
2

0 −d
2

0 d
2

d
2

−d d
2

d2

4

2 0 0 d
2

0 −d −d
2

−d
2

−d
2

d d
2

−d
2

0 d2

4

3 d d
2

d 0 −d
2

−d d
2

−d d
2

d
2

0 −d
2

d2

4

4 d
2

0 d −d
2

−d −d 0 −d
2

d
2

d −d
2

−d
2

d2

4



�

� �

�

6.2 The Variational Method 233

and the 5 × 5 conductance matrix for each 4-element block is then

[T] =
j𝜔𝜎S

12

⎡⎢⎢⎢⎢⎢⎣

4 1 2 1 0
1 4 2 0 1
2 2 8 2 2
1 0 2 4 1
0 1 2 1 4

⎤⎥⎥⎥⎥⎥⎦
(6.78)

As explained earlier, the global matrix is assembled by adding the contributions
of each individual element. In the present example, we have the 5 × 5 matrix for
the uppermost 4-element block. We then work downward, adding each successive
4-element block, noting that we are adding 3 new nodes each time: the 2 nodes
at the bottom and the one at the center of the new block. The 2 nodes at the top of
the new block are the same as the 2 nodes at the bottom of the previous block. It is
then a straightforward process to form the global matrix. The row corresponding to
each node will ultimately include contributions from all elements containing that
node (2 elements for the nodes at the top and bottom, and 4 elements for all others).

To completely define the problem, we need a forcing or excitation function.
For first-order triangular elements containing source current density, J, we apply
one-third of the current within an element to each of the three nodes of the ele-
ment to generate the element’s contribution to the forcing function vector. In this
example, the excitation is not provided by a region of current density but rather by
an x-directed external field H0 at the surface of the conductor. The source of this
field can be viewed as a z-directed sheet of current of linear density H0 amperes
per meter at the surface of the conductor. The total excitation current in this prob-
lem is then H0 times the width of the surface, d. Since there are 2 nodes at the
surface, this current is equally divided and half is injected in each node. The input
vector then is all zeros except for terms 1 and 2, which are identical and equal to
one half the surface current:

{F} =
[

H0d∕2 H0d∕2 0 0 · · · 0
]T (6.79)

We are now ready to solve the global matrix equation

[K + T] {A} = {F} (6.80)

for the values of the vector potential at each node {A}. Since this problem
is two-dimensional, the vector potential is purely z directed. The system was
solved for the case of a 60HZ applied field of H0 = 1.0Am−1, using 300 layers
of 4-element blocks of side dimension d = 0.283mm (i.e. one-thirtieth of a skin
depth) making a total domain depth of 10 skin depths.

Once the model is solved for the values of the vector potential at the nodes, we
can post-process these values to obtain flux densities and current densities. We
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Figure 6.6 Flux density magnitude vs. depth.

note that since the vector potential has only a z component, then from B = ∇ × A
we have

B = Bx =
𝜕Az

𝜕y

Therefore, the flux density in the region between two nodes is the difference of the
nodal vector potentials divided by the y-distance between the two nodes.

The magnitude of the flux density as a function of depth, normalized to the flux
density at the surface, B0 = 𝜇0H0, is given in Figure 6.6. At a depth of one skin
depth, the magnitude of the calculated flux density is 1∕e times the value at the
surface, consistent with closed-form theory.

To find the current density, we first recall that J = 𝜎E. Using Faraday’s Law and
the definition of magnetic vector potential

∇ × E = −𝜕B
𝜕t

B = ∇ × A
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Figure 6.7 Current density vs. depth.

which, in the absence of electric scalar potential, can be combined to yield

E = −𝜕A
𝜕t

(6.81)

Substituting j𝜔 for the time derivative, we have

E = −j𝜔A (6.82)

and using the resulting expression for E in the relationship for J above, we obtain
for our example problem

Jz = −j𝜔𝜎Az (6.83)

Figure 6.7 shows the current density magnitude as a function of depth in the con-
ductor. As shown in Figure 6.7, the values of current density at points separated
by one skin depth have the ratio 1∕e.

We can also check the phase angles of these variables. We plot the phase angles
of the flux density and current density in Figure 6.8. As expected from B = 𝜇0H,
the flux density at the surface has a phase angle of zero, consistent with the applied
H field. We further expect, from (2.27), that the phase shifts linearly with depth
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Figure 6.8 Phase angles of flux density and current density vs. depth.

and that the phase will shift by one radian as we move one skin depth into the
material. The phase of the current density at the surface lags the magnetic field by
45∘ which agrees with (2.29).

As further verification, we can calculate the total current in the slab by integrat-
ing the current density over the area. The current density within each element
can be found from (6.83), using the average of the vector potentials at the three
vertices of the element. This is multiplied by the area of the element to obtain the
total current in that element. The process is repeated for each element:

Ieddy = −j𝜔
∑
elm

𝜎elm

(Ai,elm + Aj,elm + Ak,elm

3

)
Δelm = −284 × 10−6A (6.84)

which is equal in magnitude and opposite in sign to the input current found from
H0d.

To evaluate global quantities, we can start by finding the total apparent power P
in the slab by integrating the Poynting vector, E × H∗ over a surface Γ surrounding
the region

P = ∮Γ
(E × H∗) ⋅ dΓ (6.85)
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In this one-dimensional problem, the contributions from the vertical sides cancel,
and the fields at the bottom boundary should be negligible since the problem is
assumed to be infinite in this direction. The surface integral, therefore, reduces to a
line integral of E × H∗ along the upper boundary of the domain only, multiplied by
the depth of the problem in the z direction (1m). The magnetic field at the surface
has been specified as purely x directed. The electric field is purely z directed and
therefore the Poynting vector is y directed along the upper surface.

The electric field is found from (6.82)

E = Ez = −j𝜔Az (6.86)

Using vector potential at nodes on the upper boundary of the problem, we find that
Ez0 = (−2.02 − j2.02) × 10−6 Vm−1 at the upper boundary. Combining this with
the specified surface magnetic field of H0 = (1.0 + j0.0)Am−1, the apparent power
into the region through this surface is found as

P = Ez0H0d ⋅ 1m = (−575 − j575) × 10−12 VA (6.87)

The negative value indicates that power is flowing downward through the upper
surface and into the domain of the problem, which is as expected.

We obtain the resistance and reactance by dividing the apparent power by the
square of the current:

Z = P|I|2 = (0.007 + j0.007)Ω (6.88)

We can check this result by estimating the resistance using a current path of length
1m and cross-sectional area 𝛿d, since the slab is much deeper than the skin depth,
and the current is largely contained within the skin depth:

R = 1m
𝜎𝛿d

= 0.007Ω (6.89)

which is consistent with (6.88). We also observe that the resistance and reactance
are equal, which is consistent with closed-form expressions for an infinite slab.

Another check on the results is a comparison with the closed-form solution to
the problem of a finite depth plate. Consider the problem in Figure 6.9. The mate-
rial properties are the same here but the depth of the plate is 2𝛿. The center line
is an axis of symmetry. The solution for a plate of thickness 2b is repeated here in
Equations (6.90) and (6.91).

Bx = B0
cosh(y

√
1 + j∕𝛿)

cosh(b
√

1 + j∕𝛿)
(6.90)

Jz = −
B0

𝜇𝛿
(1 + j)

(
sinh(y∕𝛿) cos(y∕𝛿) + j cosh(y∕𝛿) sin(y∕𝛿)
cosh(b∕𝛿) cos(b∕𝛿) + j sinh(b∕𝛿) sin(b∕𝛿)

)
(6.91)

In Figure 6.10, we see the results of the closed-form solution for the flux density
magnitude and the finite element results which agree extremely well (There are
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Figure 6.10 Comparison between FEA results and closed-form solution for flux density
magnitude vs. depth.
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Figure 6.11 Comparison between FEA results and closed-form solution for current
density magnitude vs. depth.

two curves plotted). In Figure 6.11, we compare the results for the current density
magnitude.

6.2.4 Equivalent Circuit for Two-Dimensional Finite Element Eddy
Current Analysis

We have seen in Section 5.1 that we can have an equivalent circuit representation
for the two-dimensional finite difference formulation of the eddy current prob-
lem. In a similar way, Carpenter has developed an equivalent circuit for the finite
element formulation [54].

As described above, for first-order triangular elements (see Figure 6.12), the lin-
ear interpolation is described by

A(x, y) = 1
2Δ

3∑
i=1

(
ai + bix + ciy

)
Ai (6.92)
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Figure 6.12 First-order triangular element.

The interpolation coefficients are defined in terms of the triangle vertex
coordinates.

ai = xkyj − xjyk

bi = yk − yj

ci = xj − xk (6.93)

In the first-order element, since the vector potential varies linearly, the current
density also varies linearly, so that

J(x, y) = 1
2Δ

3∑
i=1

(
ai + bix + ciy

)
Ji (6.94)

As in the finite difference equivalent circuit, the resistive part of the circuit rep-
resents the permeance in a magnetic circuit where the current in that branch is
equivalent to the MMF (ampere-turns).

These circuit elements are evaluated as

Rk =
𝜇𝓁ij

wk
(6.95)

The equivalent height is defined as

wk =
hk

2

(
1 −

𝓁ik𝓁jk

h2
k

)
(6.96)

as shown in Figure 6.13. We can progress by analogy by considering the finite
element matrix equations derived above. There are two terms in the element
equation, one referring to the magnetic flow (network permeances) and one to
the electric current flow (network conductance). We treat these equations as an
admittance network with the magnetic vector potential as the nodal voltage, just
as we did for the finite difference equivalent circuit in Section 5.1.
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Figure 6.14 Triangular finite element for equivalent circuit.

The equations are repeated here for convenience. The stiffness matrix is given by

S = 1
4𝜇Δ

⎡⎢⎢⎣
b2

i + c2
i bibj + cicj bibk + cick

bibj + cicj b2
j + c2

j bjbk + cjck

bibk + cick bjbk + cjck b2
k + c2

k

⎤⎥⎥⎦ (6.97)

Referring to Figure 6.14, we can write the b and c terms in Equation (6.97) in terms
of the indicated distances.

As an example, consider the S12 term, which will represent the equivalent reluc-
tance between nodes 1 and 2. We have

S12 = 1
4𝜇Δ

(
b1b2 + c1c2

)
(6.98)



�

� �

�

242 6 Finite Elements

where

b1 = y3 − y2 = h23

b2 = y1 − y3 = −h23

c1 = x2 − x3 = 𝓁32

c2 = x3 − x1 = 𝓁13 (6.99)

Therefore,

S12 = −h2
23 + 𝓁32𝓁13 (6.100)

The equivalent permeance is

 = 4𝜇Δ
−h2

23 + 𝓁32𝓁13
(6.101)

The element area can be found as

Δ = 1
2
(
(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)

)
=

𝓁12h23

2
(6.102)

We can write the permeance in the more traditional form by using the path length
divided by an equivalent area.

 =
2𝜇𝓁12H12

−h2
23 + 𝓁32𝓁13

=
𝜇𝓁12

weq
(6.103)

where wk is found (see Figure 6.13) as

weq =
h23

2

(
1 −

𝓁13𝓁32

h23

)
(6.104)

By interpreting the finite element system equations as a network admittance
matrix, we can find the network elements by inspection. Recall that in network
theory, we form the admittance matrix by the following algorithm. On the diago-
nal, we have the sum of all admittances connected to the node.

Yii =
N∑

k=1
yik (6.105)

On the off-diagonal, we have the negative of the admittance connected between
nodes. For the off-diagonal terms, we have

Yij = −yij (6.106)

It follows that for nodes that are not connected, the admittance is zero. The
admittance matrix is then a sparse symmetric matrix as is the finite element
matrix. (In our notation, the upper case Y refers to the matrix element, while the
lower case y is the circuit admittance.) Following Carpenter’s approach, we can
infer two networks, one for the flux and one for the current. The flux network
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Figure 6.15 Flux network of triangular element.

can now be described as a set of permeances connecting the three nodes of the
element. This is illustrated in Figure 6.15. By applying the rules of the admittance
matrix formation, the reader can verify that we obtain the magnetic flux matrix
of Equation (6.97).

In the same way, we can use the conductance matrix to infer a network repre-
senting the electric current.

Recall that the T matrix (conductance) is given by

T =
j𝜔𝜎Δ

12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦ (6.107)

The elements of the T matrix, interpreted as an admittance matrix, give the
circuit elements. The off-diagonal terms are the negatives of the direct circuit con-
nections between the nodes. For example, the (1,2) connection is a negative capac-
itance.

c12 = −
j𝜔𝜎Δ

12
(6.108)

The diagonal term is the sum of all admittances connected to the node, and we
know that each node has 2 negative capacitances given by Equation (6.108). By
subtracting these from the diagonal, we obtain the connection to ground equal to

cg =
j𝜔𝜎Δ

3
(6.109)

This is illustrated in Figure 6.16. Once again, we see the elements in the network
add up to the elements in the admittance matrix.

If we compare the finite element equivalent circuit with the finite difference
equivalent circuit, we notice that the flux carrying elements (reluctances) are the
same for the case of a square grid which was used in the previous example. Sev-
eral terms in the matrix (those opposite a right angle) vanish in the finite element
matrix.
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Figure 6.17 Section of long conducting cylinder.

Following Carpenter [54], we look at the case of a long cylindrical conductor
carrying current in the axial direction as a numerical example. Due to symmetry
in the 𝜃 direction, we analyze 1/8 of the problem or a 45∘ section. The model has
9 first-order triangular elements and 10 nodes as shown in Figure 6.17.
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The assembly of the 9 elements results in a 10 × 10 nodal admittance matrix.
The circuit elements are the permeances between the nodes, the negative capac-
itances between the nodes, and the positive capacitances to ground represent the
conductance network in the case of an infinitely long wire. In this example, we are
interested in the impedance of the conductor. This can easily be found from the
magnetic vector potential solution as will be described below. Of interest here is
the relatively few elements that are required for a reasonable solution. In this case,
we have the exact solution in terms of Bessel functions as described in Section 3.1.
We can compare the resistance and reactance per unit depth. If the skin depth is
much larger than the conductor radius, we expect a solution in which the cur-
rent is approximately uniformly distributed and the resistance approaches the dc
resistance. As the skin depth gets smaller, we expect that the solution accuracy
diminishes. Carpenter finds good results even with one first-order element per
skin depth. After that the error is not acceptable. This is indeed the case. The finite
element method minimizes the error in the global energy, and quantities such as
resistance and inductance can be found with relatively few elements. If we wanted
an accurate description of the current vs. depth however, the best we can get with
this model is a linear variation over each element.

The inputs to the model are ac current sources (with phase angle of zero) injected
at nodes 7–10. Physically, this would represent a current sheet at the boundary, and
the return current is forced into the conductor. The total current in the conductor
is 1 A, therefore, 1/8 A is injected into the model. The current at nodes 7 and 10 is
1/48 A. On nodes 8 and 9, we inject 1/24 A. In order to find the impedance per unit
length of the conductor, we can continue with the circuit analogy. Since we have
1 A in the conductor, the complex impedance will be equal to the voltage drop per
meter in the conductor. If we take the vector potential solution at the conductor
surface, then the electric field is

Ez = j𝜔Az (6.110)

In the specific model, the vector potential on the surface should be a constant.
In practice, nodes 7 and 10 have the same vector potential and nodes 8 and 9 have
the same vector potential but they are very slightly different. In this case, we have
averaged them. It is interesting to compare this with the Poynting vector method
used previously.

P = Ez × H𝜃 (6.111)

Recall that the Poynting vector integrated over the surface of the conductor gives
the real and reactive power flow into the conductor. Since we have 1 A, this will
also be the resistance and inductive reactance. The electric field at the surface is
given by Equation (6.110) above. The magnetic field is found by application of
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Ampere’s law, integrated around the conductor. Since we have 1 A in the conduc-
tor, for a conductor of radius a,

H𝜃 =
1

2𝜋a
(6.112)

We now integrate the Poynting vector around the conductor. Since the Poynting
vector is constant, we simply multiply by the circumference. This gives

∮ P ⋅ d𝓁 = 1
2𝜋a

× j𝜔Az × 2𝜋a = j𝜔Az (6.113)

We can supply a physical interpretation of the currents in the equivalent cir-
cuit. The current injection at the perimeter of the model (nodes 7–10) are physical
axial currents representing the current sheet at the edge of the conductor. The cur-
rent through the positive capacitors to ground represents the physical axial eddy
currents. The currents between the nodes through the resistor and parallel neg-
ative capacitor can be thought of as ampere-turn flow. These currents are in the
plane of the problem, while the real currents are all axial. These currents produce
a potential difference between the nodes they connect and this (vector) potential
difference is equal to the magnetic flux per unit depth, crossing the line connect-
ing the two nodes. All of the physical current injected at the surface leaves the
network through the grounded capacitors.

As a check on the results, we ran the model at a very low frequency. In this case,
we should obtain the dc resistance. The dc resistance for our example is Rdc =
5.488 × 10−5Ωm−1. The model gives Rdc = 5.603 × 10−5Ωm−1. The difference is
2%. Most of this is explained by the area of the model being slightly less than the
theoretical cylinder. The perimeter of the model is made of four straight-line seg-
ments. This reduces the area of the model by 1.2%. Correcting for this area differ-
ence, the results differ by less than 1%. In the case of dc, we have a very simple solu-
tion to the current and flux distribution. The current is uniform, which agrees with
the model result, and the flux density is zero at the center and increases linearly to

B𝜃 =
𝜇I

2𝜋a
(6.114)

at the surface r = a. The circuit, which is based on first-order elements, gives
constant flux density in each element. If we compare the theoretical flux density
and the model flux density (from Figure 6.18), we see that the model does give a
relatively accurate representation of the flux density variation. The plot shows the
real part of the flux density, but in this case, the flux density and current density
have negligible imaginary parts.

Even when the element size is equal to the skin depth, the model gives reason-
able results. For the example above, that corresponds to a frequency of 393.06HZ.
The skin depth is then 𝛿 = 0.00333m, or 1/3 of the conductor radius. Figure 6.19
shows the real part of the flux density for the model and for the exact solution.
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Figure 6.18 Exact and equivalent circuit flux density at dc.
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Figure 6.19 Exact and equivalent circuit flux density at 𝛿 = a∕3.
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Figure 6.20 Exact and equivalent circuit normalized resistance vs. frequency.

The model gives very good results if we use it to find the ac resistance and inter-
nal reactance. We have already found the resistance and reactance for the long
conducting cylinder in Section 3.1 in terms of modified Bessel functions. We can
compare the result for the resistance as a function of frequency. In the specific
example, we have the radius of the conductor equal to 0.01m. The conductivity is
𝜎 = 5.8 × 107 Sm−1, and the permeability is 𝜇0. In order to make the results more
general, we plot the resistance divided by the dc resistance of the conductor. This
is plotted as a function of frequency (Figure 6.20).

We see that with just a few elements, the equivalent circuit gives reasonable
results for the effective resistance, even when the first-order element is larger than
the skin depth.

6.3 Axisymmetric Finite Element Eddy Current
Formulation with Magnetic Vector Potential

There are many practical applications of eddy currents in axisymmetric geome-
tries. Some of these have been illustrated in Chapter 3. As in the eddy current
analysis for Cartesian coordinates, we can describe the problem using only one
component of the magnetic vector potential. Both the MVP, A, and the current
density, J, have only 𝜃 components.

A = A𝜃

J = J𝜃 (6.115)
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Our functional becomes

 = 1
2∫ ∫R

{
𝜈
[
(∇ × A𝜃) ⋅ (∇ × A𝜃)

]
− 2A𝜃 ⋅ J𝜃 + j𝜔𝜎A2

𝜃

}
dR

+ ∮C
A𝜃

(
𝜕A𝜃

𝜕n
+

A𝜃

r
⋅
𝜕r
𝜕n

)
dc (6.116)

Writing this in cylindrical coordinates, we obtain

 = 2𝜋∫ ∫R

(
𝜈r
2

[(
𝜕A𝜃

𝜕r

)2

+

(
𝜕A𝜃

𝜕z

2
)]

+ 𝜈A𝜃

𝜕A𝜃

𝜕r
+

𝜈A2
𝜃

2r
− J𝜃rA𝜃

)
dr dz

+ 2𝜋∫ ∫R

j𝜔𝜎A2
𝜃
r

2
dr dz + ∮C

A𝜃

(
𝜕A𝜃

𝜕n
+

A𝜃

r
⋅
𝜕r
𝜕n

)
dc (6.117)

The line integral term is normally set to zero, except in the case where the
finite elements region is coupled to a different solution technique [46], such as
a closed-form solution or an integral equation solution. In these cases, the line
integral term can be used to ensure continuity at the boundary. We now minimize
 over the problem domain. As in the two-dimensional case, we divide the region
into triangular elements as shown in Figure 6.21.

The shape functions for the first-order elements are

𝜁i = (ai + biz + cir)∕2Δ
𝜁j = (aj + bjz + cjr)∕2Δ (6.118)
𝜁k = (ak + bkz + ckr)∕2Δ

where

ai =
|||||zj zk
rj rk

|||||
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bi = rj − rk

ci = zk − zj (6.119)

and the indices are cyclic. For each element we have

A =
∑
i,j,k

Ai𝜁i =
∑
i,j,k

(ai + biz + cir)Ai

2Δ
(6.120)

We minimize the functional by setting the first derivative of (6.117) to zero.
𝛿F
𝛿Ai

= 2𝜋 ∫∫R

{
𝜈r
[(

𝜕A
𝜕r

)
𝜕

𝜕Ai

(
𝜕A
𝜕r

)
+
(
𝜕A
𝜕z

)
𝜕

𝜕Ai

(
𝜕A
𝜕z

)]
+ 𝜈

(
𝜕A
𝜕Ai

)(
𝜕A
𝜕r

)
+ 𝜈A 𝜕

𝜕Ai

(
𝜕A
𝜕r

)
+ 𝜈A

r

(
𝜕A
𝜕Ai

)
+ j𝜔𝜎rA

(
𝜕A
𝜕Ai

)
− Jr

(
𝜕A
𝜕Ai

)}
dr dz = 0 (6.121)

Substituting (6.120) into (6.121)
n∑

i=1
2𝜋 ∫∫R

{
𝜈r
[(

𝜕𝜁i

𝜕r

)(
𝜕𝜁j

𝜕r

)
+
(
𝜕𝜁i

𝜕z

)(
𝜕𝜁j

𝜕z

)] [
Ai
]

+𝜈

[
𝜁i

(
𝜕𝜁i

𝜕r

)
+ (𝜁i)T

(
𝜕𝜁i

𝜕r

)T
] [

Ai
]

+𝜈
[
𝜁i𝜁j

r

] [
Ai
]
+ j𝜔𝜎r

[
𝜁i𝜁j

] [
Ai
]

−Jr𝜁i
}

dR = 0 (6.122)

In matrix form, Equation (6.122) becomes

𝜈[S][A] + 𝜈[D][A] + 𝜈[E][A] + j𝜔𝜎[T][A] = [T][J] (6.123)

The matrices [S], [D], [E], and [T] have elements

Sij = ∫∫ r
[(

𝜕𝜁i

𝜕r

)(
𝜕𝜁j

𝜕r

)
+
(
𝜕𝜁i

𝜕z

)(
𝜕𝜁j

𝜕z

)]
dr dz

Dij = ∫∫
[
𝜁i

(
𝜕𝜁j

𝜕r

)
+ 𝜁j

(
𝜕𝜁i

𝜕r

)]
dr dz

Eij = ∫∫
1
r
𝜁i𝜁j dr dz

Tij = ∫∫ r𝜁i𝜁j dr dz (6.124)

Note that the third term goes to infinity as r approaches 0. To overcome this,
Konrad and Silvester [55] have utilized a change of variables. Let

A =
√

r𝜙
J =

√
r𝜓 (6.125)
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Substituting these into the matrix equation (6.121) we obtain

Sij = ∫∫ r2
[(

𝜕𝜁i

𝜕r

)(
𝜕𝜁j

𝜕r

)
+
(
𝜕𝜁i

𝜕z

)(
𝜕𝜁j

𝜕z

)]
dr dz

Dij = ∫∫
3
2

r
[
𝜁i

(
𝜕𝜁i

𝜕r

)
+ 𝜁i

(
𝜕𝜁i

𝜕r

)]
dr dz

Eij = ∫∫
9
4
𝜁i𝜁j dr dz

Tij = ∫∫ r2𝜁i𝜁j dr dz (6.126)

We see that the singularity in Equation (6.124) has now disappeared in (6.126).
For first-order elements, the matrices in Equation (6.126) become

𝜁m =
am + bmz + cmr

2Δ
, m = i, j, k

𝜕𝜁m

𝜕r
=

cm

2Δ
, m = i, j, k

𝜕𝜁m

𝜕z
=

bm

2Δ
, m = i, j, k (6.127)

r is written as a linear combination of the element vertex values.

r =
∑

m=i,j,k
𝜁mrm (6.128)

Substituting,

Sij = 2𝜋 ∫∫ (𝜁iri + 𝜁jrj + 𝜁krk)2

[(
bibj + cicj

)
4Δ2

]
dr dz (6.129)

We now use

dr dz = 2Δd𝜁id𝜁j (6.130)

and

𝜁i + 𝜁j + 𝜁k = 1 (6.131)

where the limits of 𝜁i are 0 to 1, and the limits of 𝜁j are 0 to (1 − 𝜁i).
Substituting this into Equation (6.129).

Sij =
2𝜋𝜈
2Δ ∫

1

0 ∫
1−𝜁i

0

{
𝜁2

i
(

ri − rk
)2 + 𝜁2

j
(

rj − rk
)2 + r2

k

+ 2𝜁i𝜁j(ri − rk)(rj − rk) + 2rk𝜁j(rj − rk)

+2rk𝜁i(ri − rk)
}
[bibj + cicj] d𝜁1d𝜁j (6.132)

We now evaluate the integrals. The first integral becomes

2𝜋𝜈
2Δ ∫

1

0 ∫
1−𝜁i

0
𝜁2

i (ri − rk)2 d𝜁i d𝜁j =
𝜋𝜈

12Δ
(ri − rk)2 (6.133)
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The other terms are evaluated [46] in the same way. We obtain

[S] = 𝜋𝜈

12
(r2

i + r2
j + r2

k + rirj + rjrk + rkri)

×
⎡⎢⎢⎣

b2
i + c2

i bibj + cicj bibk + cick
b2

j + c2
j bjbk + cjck

symmetric b2
k + c2

k

⎤⎥⎥⎦ (6.134)

For the elements of the [D] matrix

Dij = 4𝜋Δ∫∫
3
2
(ri𝜁i + rj𝜁j + rk𝜁k)

[
𝜁i
𝜕𝜁j

𝜕r
+ 𝜁j

𝜕𝜁i

𝜕r

]
d𝜁i d𝜁j (6.135)

Multiplying the terms, we get

Dij = 6𝜋Δ∫∫
[

ri𝜁
2
i

(
𝜕𝜁j

𝜕r

)
+ rj𝜁i𝜁j

(
𝜕𝜁j

𝜕r

)
+ rk𝜁i𝜁k

(
𝜕𝜁j

𝜕r

)]
𝜕𝜁i 𝜕𝜁j

+
[

ri𝜁i𝜁j

(
𝜕𝜁i

𝜕r

)
+ rj𝜁

2
j

(
𝜕𝜁i

𝜕r

)
+ rk𝜁j𝜁k

(
𝜕𝜁i

𝜕r

)]
d𝜁i d𝜁j (6.136)

Integrating 𝜁i from 0 to 1 and 𝜁j from 0 to (1 − 𝜁i) gives

Dij =
𝜋

8
{cirj + cjri − ck(ri + rj + rk)} (6.137)

Therefore, D becomes

D = 𝜈𝜋

8

⎡⎢⎢⎢⎢⎢⎣

2ci(2ri + rj + rk) cirj + cjri −cj(ri + rj + rk)
−ck(ri + rj + rk) +cirk + ckri
2cj(ri + 2rj + rk) −ci(ri + rj + rk)
+cjrk + ckrj

symmetric 2ck(ri + rj + 2rk)

⎤⎥⎥⎥⎥⎥⎦
(6.138)

The elements of the T matrix are found as

Tij = j2𝜋𝜔𝜎 ∫∫ r2𝜙

(
𝜕𝜙

𝜕𝜙k

)
= j2𝜋𝜔𝜎 ∫∫ 2Δ(𝜁iri + 𝜁jrj + 𝜁krk)2

∑
𝜁i𝜁j𝜙i d𝜁i d𝜁j (6.139)

Integrating over the same limits, the first row of T becomes

j𝜔𝜎Tii,Tij,Tik =
j2𝜋𝜔𝜎Δ

180

[(
12r2

i + 6rirj + 6rirk + 2r2
j + 2rjrk + 2r2

k ,

(3r2
i + 4rirj + 2rirk + 3r2

j + r2
k),

3r2
i + 2rirj + 4rirk + r2

j + 2rjrk + 3r2
k

)]
(6.140)

For the second row of the matrix, we need only the jj and jk terms since the matrix
is symmetric.

j𝜔𝜎Tjj =
j2𝜋𝜔𝜎Δ

180
(2r2

i + 6rirj + 2rirk + 12r2
j + 6rjrk + 2r2

k)
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j𝜔𝜎Tkj = j2𝜋𝜔𝜎Δ
180

(r2
i + 2rirj + 2rirk + 3r2

j + 4rjrk + 3r2
k) (6.141)

The Tkk term is

j𝜔𝜎Tkk =
j2𝜋𝜔𝜎Δ

180
(2r2

i + 2rirj + 6rirk + 2r2
j + 6rjrk + 12r2

k) (6.142)

For the E matrix, we have

Eij =
9𝜋𝜈

2 ∫∫ 𝜙
𝜕𝜙

𝜕𝜙k
= 9𝜋𝜈

2 ∫
1

0 ∫
1−𝜁i

0
2Δ(𝜁2

i , 𝜁i𝜁j, 𝜁i𝜁k)[𝜙] d𝜁i d𝜁j (6.143)

Integrating each term of the equation gives

9𝜋𝜈
2 ∫∫ 𝜙

(
𝜕𝜙

𝜕𝜙k

)
= 3𝜋𝜈Δ

8
[2,1, 1, ][𝜙] (6.144)

Integrating over i, j, and k, we obtain

[E] = 3𝜋𝜈Δ
8

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦
⎛⎜⎜⎝
𝜙i
𝜙j
𝜙k

⎞⎟⎟⎠ (6.145)
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7

Integral Equations

In Chapters 5 and 6, we have presented the finite difference and finite element
methods. These are differential formulations. These techniques approximate the
differential equation over small regions, the finite difference cell, or finite element.
The shape functions or approximating functions are not required to be solutions to
the differential equation. Also, the element shape functions are defined only inside
an individual element. This is referred to as local support. A different numerical
approach to electromagnetic problems is to use integral equations. In this formu-
lation, the field or potential is approximated by a series of functions, which are
usually exact solutions of the differential equations, and have global support. Their
actions are over the entire problem domain. We shall see, however, that while the
solutions to the governing differential equations are exact, the boundary condi-
tions may be only approximately satisfied. This is in contrast to the finite element
method (FEM), in which the Dirichlet boundary conditions are satisfied exactly
but the operator equation is satisfied only approximately.

We will present a number of integral equations approaches to the eddy current
problem in this chapter.

7.1 Surface Integral Equation Method for Eddy Current
Analysis

In two-dimensional eddy current analysis, we have found it useful to use the mag-
netic vector potential, A, as we only need a single component. We will now develop
a numerical method based on the vector potential in which a conductor is divided
into two-dimensional patches, on which we will assume that the vector potential,
and therefore the current density, is constant. The result will be surface integral
equations for either the vector potential or the current density.

We recall that

J = 𝜎E (7.1)

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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Recall that the electric field has two parts. One is the induced electric field (Fara-
day’s law) and the other part can be described by the gradient of a scalar. So we
may write J as

J = −𝜎 dA
dt

− 𝜎∇V (7.2)

The magnetic vector potential in two-dimensions, produced by an axial current
distribution, can be found as

A = 𝜇

2𝜋 ∫ ∫ J ln r dS (7.3)

We then obtain an expression for the current density in terms of an integral over
the current distribution.

J = 𝜇𝜎

2𝜋 ∫ ∫
𝜕J
𝜕t

ln
(
(x − 𝜉)2 + (y − 𝜂)2)1∕2 d𝜉 d𝜂 + 𝜎E0 (7.4)

For the case of sinusoidally time-varying fields, we can replace the time deriva-
tive with j𝜔 to obtain

J =
j𝜔𝜇𝜎

2𝜋 ∫ ∫ J(𝜉, 𝜂) ln
(
(x − 𝜉)2 + (y − 𝜂)2)1∕2 d𝜉 d𝜂 + 𝜎E0 (7.5)

This last equation is known as a Fredholm integral equation of the second kind,
in which the unknown, J, is both under the integral sign and outside the inte-
gral. We now divide the surface into small patches over which we can assume that
the current density is constant. Since the current density is constant over each
element, we can take the current density out of the integral.

Ji =
j𝜔𝜇𝜎

2𝜋

N∑
i=1

Ji ∫ ∫ ln
(
(x − 𝜉)2 + (y − 𝜂)2)1∕2 d𝜉 d𝜂 + 𝜎E0 (7.6)

In the evaluation of Equation (7.6), we can use the distance between the center
points of the patches for all terms in the series except for the self-term (i = j). For
this term, the distance between the source point and the field point is zero, and
the logarithm goes to infinity. The integral is finite, however, and can be evaluated
either numerically or in closed-form for different shapes. For a square element,
the geometric mean distance (GMD) to itself is 0.44705a where a is the dimension
of a side of the square. Rosa and Grover [56] give an approximation for the GMD
for rectangular (a × b) shapes that is useful in evaluating this term.

GMD = 0.2235(a + b) (7.7)

The formula is used as follows. If, for example, the ratio of a and b is 0.5, then
GMD = 0.2235(1 + 0.5)a = 0.3354a. For b = 0.25a, we have GMD = 0.2796a. If b
is 1∕10 of a then GMD = 0.2459a.
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Figure 7.1 Rectangular copper
conductor with axial ac current.
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Figure 7.2 Normalized current density magnitude for thin rectangular conductor.

The following example will illustrate the use of this technique. Consider a rect-
angular conductor of dimensions 0.004m × 0.16m. The conductor is made of cop-
per with 𝜎 = 5.8 × 107 Sm−1 and has permeability 𝜇0 = 4𝜋 × 10−7 Hm−1. We will
apply an electric field of 1.0 Vm−1 at 60Hz in the z direction (see Figure 7.1).

The conductor is then divided into 40 square elements (a = 0.004) and the
system of equations described by Equation (7.6) was formed using the value of
0.44705a for the diagonal term and using the distance between center points for
the off diagonals. In this case, we need only solve for 20 terms due to symmetry.
The results are shown for the magnitude and phase angle of the current density in
Figures 7.2 and 7.3. In Figure 7.2, we see the magnitude of the normalized current
density. The total current in the bar was found and then the individual current
density values in each element were divided by the average current density and
multiplied by 100. This gives us the percent normalized current density. We also
note that the staircase shape of the curve results from the model giving constant
values of current density over the element.
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Figure 7.3 Current density phase for thin rectangular conductor.

In this problem, the current density only varies in one direction, so we will con-
sider a second example of a square copper conductor, 0.04m × 0.04m, with an
applied electric field of 1.0 Vm−1 at 60Hz. In this case, the current density is a
function of both x and y. The conductor is divided into a 40 × 40 mesh. In this
case, we have 1600 unknown values of current density. In Figure 7.4, we see the
magnitude of the current density over the conductor. As expected, we observe that
the current density is highest near the surface.

We compare the results to a finite element solution shown in Figure 7.5. We see
that the results match very well.

We note here some properties of the surface integral equation method. First,
we see that the system matrix described by Equation (7.6) is a full matrix. Recall
that the system matrices we obtained for the finite difference and finite element
methods were sparse. This results in longer computation times for populating the
matrix and solving the system of equations. On the other hand, we see that it was
not necessary to mesh or in any other way describe the surrounding air region. The
logarithm function, which is the kernel of the integral, is the analytical solution for
flux linkage of a long current filament in two-dimensions. The far-field and open
boundary conditions are automatically included in the formulation. The finite ele-
ment model that was used for Figure 7.5, used significantly more elements and
had significantly more unknowns. Furthermore, a special technique involving a
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Figure 7.4 Current density magnitude for square conductor by integral equations.
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Figure 7.5 Current density magnitude for square conductor by finite elements.
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transformation on the outer boundary to simulate the infinite space surrounding
the conductor was used.

The reader may notice that the system matrix for the integral equation method
has a striking resemblance to a network model. The inductance of a loop made of
parallel filaments is

Li,j =
𝜇0

2𝜋
ln dij (7.8)

where di,j is the distance between the two parallel filaments. We can interpret this
surface integral method for the current density as a set of coupled circuits with
resistance and self and mutual inductances. In fact, referring back to Section 1.11,
where we introduced the coupled circuit model, we see that the set of equations is
the same.

7.2 Boundary Element Method for Eddy Current
Analysis

In Section 7.1 we introduced the surface integral method. In this analysis, the
surface of the regions with current were divided into small patches, and a set of
simultaneous equations was developed for the potential at each of the segments. In
the boundary element method, we also divide the conductor into small segments
but only on the boundary of the region. There are no unknowns on the inside of
the regions. The interior local variables, such as current density or field, are found
in the post-processing stage in terms of the values on the boundary. The boundary
element method, therefore, results in a very small set of equations when compared
to finite difference, finite element, or even surface integrals techniques.

Typical eddy current problems have regions that contain conducting materials,
but there may be regions that are nonconducting or contain sources. These regions
are described by Laplace’s or Poisson’s equation as opposed to the eddy current
region, which is described by the diffusion equation.

In this section, we will develop the boundary element relations for the Laplace
or the diffusion equation in two-dimensions. Consider the region and boundary
shown in Figure 7.6. We begin with

∇2𝜙 = f (x, y) (7.9)

Consider now the function G(r), which satisfies

∇2G = 𝛿(r) (7.10)

where G is the Green’s function and 𝛿(r) is defined by

𝛿(r) =
{

0 for r ≠ 0
∞ for r = 0

(7.11)
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Figure 7.6 Two-dimensional region and surface. n̂

Ω

The delta function has the property that

∫
∞

−∞
𝛿(r)dr = 1 (7.12)

where r =
√
(𝜉 − x)2 + (𝜂 − y)2, and (𝜉, 𝜂) and (x, y) are the source and field points,

respectively.
Integrating the difference of Equation (7.9) times G and Equation (7.10) multi-

plied by 𝜙 over the region of interest, Ω, we obtain

∫ ∫Ω
(G∇2𝜙 − 𝜙∇2G)dΩ = ∫ ∫Ω

fG dΩ (7.13)

The function G, defined by Equation (7.10), is the Green’s function or the poten-
tial due to an infinite line source located at r = 0. G can be found as the solution
of

1
r
𝜕

𝜕r
r 𝜕G
𝜕r

= 𝛿(r) (7.14)

The solution of this equation is

G = − 1
2𝜋

ln(r) (7.15)

Applying Green’s theorem to the left-hand side of Equation (7.13), we obtain

∫𝓁

(
G𝜕𝜙

𝜕n
− 𝜙

𝜕G
𝜕n

)
d𝓁 = ∫ ∫Ω

fG dΩ (7.16)

The kernel of the line integral in Equation (7.16) contains a singularity when
the source and field points coincide. The integral, however, is finite. To evaluate
the line integral, we divide it into two parts, one which is singularity-free and the
other which contains the singularity as shown in Figure 7.7. We can then evaluate

∫𝓁

(
G𝜕𝜙

𝜕n
− 𝜙

𝜕G
𝜕n

)
d𝓁 + lim

Δ𝓁→0∫Δ𝓁

(
G𝜕𝜙

𝜕n
− 𝜙

𝜕G
𝜕n

)
d𝓁 = ∫ ∫Ω

fG dΩ

(7.17)

The contour Δ𝓁, shown in Figure 7.7, is a semicircle of radius 𝜖 with center on
the singularity. On the contour Δ𝓁 we have 𝜕

𝜕n
= − 𝜕

𝜕r
and d𝓁 = 𝜖d𝜃. Using these
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Figure 7.7 Integrating around the
singularity.
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Figure 7.8 Definition of boundary
terms.

relationships, the integral over Δ𝓁 becomes

lim
Δ𝓁→0∫Δ𝓁

(
G𝜕𝜙

𝜕n
− 𝜙

𝜕G
𝜕n

)
d𝓁 = 1

2𝜋
lim
𝜖→0 ∫

2𝜋

0

(
𝜕𝜙

𝜕r
𝜖 ln 𝜖 − 𝜙

)
d𝜃 = −𝜙

(7.18)

Referring to Figure 7.8, we see that
𝜕r
𝜕n

= cos 𝛾 (7.19)

and
𝜕G
𝜕n

= 𝜕G
𝜕r

𝜕r
𝜕n

= −cos 𝛾
2𝜋r

(7.20)

Substituting into Equation (7.17),

𝜙(x, y) = 1
2𝜋 ∫𝓁

(
𝜙

cos 𝛾
r

− 𝜕𝜙

𝜕n
ln r

)
d𝓁 + 1

2𝜋 ∫ ∫Ω
f ln r dΩ (7.21)

Equation (7.21) is an expression for the potential at any position in the region
in terms of the potential and its normal derivative at the boundaries, plus a con-
tribution due to the sources in the region. This demonstrates that by knowing the
values of the potential and its normal derivative on the boundary, we can com-
pletely describe the potential inside the region.

If the sources are known, as is frequently the case, the surface integral in
Equation (7.21) can be evaluated numerically or sometimes analytically. In an
important class of problems, the surface integral can be transformed into another
boundary integral and the potential can be expressed entirely in terms of values
at the boundary. To see this, let us assume that the forcing function is harmonic,
that is, it is a solution of Laplace’s equation.

∇2f = 0 (7.22)
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Figure 7.9 Integration for a field point located on
the boundary.
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An important example would be a constant source. We now define a function, g,
that satisfies

∇2g = G (7.23)

We see that the last term of Equation (7.21) is of the form

∫ ∫Ω
fG dΩ (7.24)

Equation (7.24) is equal to the integral of (7.23) times f minus the integral of (7.22)
(which is zero) times g. Thus,

∫ ∫Ω
fG dΩ = ∫ ∫Ω

(f∇2g − g∇2f )dΩ (7.25)

We use Green’s theorem again to obtain

∫ ∫Ω
fG dΩ = ∫𝓁

(
f
𝜕g
𝜕n

− g
𝜕f
𝜕n

)
d𝓁 + lim

Δ𝓁→0∫Δ𝓁

(
f
𝜕g
𝜕n

− g
𝜕f
𝜕n

)
d𝓁 (7.26)

As before, we can integrate around the singularity at r = 0 by distorting the bound-
ary into a circular arc. We then take the limit as the radius of the circle goes to zero.

We can evaluate g in Equation (7.23) by solving
1
r
𝜕

𝜕r
r
𝜕g
𝜕r

= − 1
2𝜋

ln r (7.27)

The solution for g is

g = r2

8𝜋
(1 − ln r) (7.28)

The last integral in Equation (7.26) now becomes

1
8𝜋

lim
𝜖→0 ∫

2𝜋

0

(
f 𝜖2(2 ln 𝜖 − 1) +

𝜕f
𝜕r

𝜖3(1 − ln 𝜖)
)

d𝜃 = 0 (7.29)

and we see that
𝜕g
𝜕n

=
𝜕g
𝜕r

𝜕r
𝜕n

= r
8𝜋

(1 − 2 ln r) cos 𝛾 (7.30)
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Substituting Equations (7.29) and (7.30) into (7.26), and the result into
Equation (7.21), we obtain

𝜙(x, y) = 1
2𝜋 ∫𝓁

(
𝜙

cos 𝛾
r

− 𝜕𝜙

𝜕n
ln r

)
d𝓁

− 1
8𝜋 ∫𝓁

(
𝜕f
𝜕n

r2(1 − ln r) − fr(1 − 2 ln r) cos 𝛾
)

d𝓁 (7.31)

The singularity in this last integral is removed by integrating around the singular
point along a circular arc and taking the limit as the radius of the arc goes to zero.
So we have

lim
Δ𝓁→0∫Δ𝓁

(
𝜕f
𝜕n

r2(1 − ln r) − f 𝜕

𝜕r
r2(1 − ln r)

)
d𝓁 (7.32)

Finally, we obtain an expression for the potential at any point (x′, y′) on the con-
tour as in Figure 7.9,

𝛼𝜙(x′, y′) + ∫𝓁

(
𝜕𝜙

𝜕n
ln r − 𝜙

cos 𝛾
r

)
d𝓁

= 1
4∫𝓁

(
𝜕f
𝜕n

r2(1 − ln r) − fr(1 − 2 ln r) cos 𝛾
)

d𝓁 (7.33)

Note that the integral should not be evaluated at the singularity because the (finite)
contribution to the integral has already been evaluated. Equation (7.33) contains
two unknowns, the potential and its normal derivative on the contour. Once these
are known, Equation (7.31) can be used to find the potential at any point in the
region.

7.2.1 T −𝛀 Boundary Element Eddy Current Formulation
in Two-Dimensions

If we consider the set of problems in Cartesian coordinates with long uniform con-
ductors and applied axial fields, we then will have eddy currents circulating in the
(x, y) plane and a magnetic field in the z direction. We have considered this class
of problems in Chapters 2 and 3 for rectangular and circular conductors. For these
problems, we can use a T − Ω formulation [46]. The vector T is called the current
vector potential and behaves similarly to the magnetic vector potential, A. As con-
tours of equal magnetic vector potential are flux lines in two-dimensions, lines
of constant current vector potential are the current flow lines (streamlines in a
fluid analogy). Also, since the flux density is found by taking the curl of the mag-
netic vector potential, the current density is found by taking the curl of the current
vector potential,

∇ × T = J (7.34)
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The reader will note the similarity between this and

∇ × H = J (7.35)

In fact, the units of H and T are the same, and since the two vectors have the
same curl, they can differ only by the gradient of a scalar. T offers more flexibility
in the application of boundary conditions and that has made it more useful in
numerical computation.

Similarly to the magnetic vector potential problem, T has only a z component
for the two-dimensional case. Using ∇ ⋅ T = 0, the governing differential equation
is

1
𝜎
∇2T − j𝜔𝜇T = j𝜔𝜇H0 (7.36)

where H0 is the applied external field.
For homogeneous media, we can write Equation (7.36) as

∇2T − 𝛼2T = 𝛼2H0 (7.37)

where

𝛼2 = j𝜔𝜇𝜎 (7.38)

Consider the Green’s function that satisfies the equation

∇2G − 𝛼2G = 𝛿(𝜉 − x, 𝜂 − y) (7.39)

where (x, y) are the field points and (𝜉, 𝜂) are the source points. Multiplying
equation (7.39) by T and Equation (7.37) by G, subtracting, and integrating over
the region R, we obtain

∫R
T𝛿(𝜉 − x, 𝜂 − y)d𝜉 d𝜂 = 𝛼2∫R

H0G d𝜉 d𝜂 + ∫R
(T∇2G − G∇2T)d𝜉 d𝜂

(7.40)

Using Green’s theorem on the last term of Equation (7.40) gives

T(x, y) = 𝛼2∫R
H0G d𝜉d𝜂 + ∫C

(
T 𝜕G
𝜕n

− G𝜕T
𝜕n

)
dC (7.41)

To evaluate the Green’s function, we consider Equation (7.39), which becomes

𝜕2G
𝜕r2 + 1

r
𝜕G
𝜕r

− 𝛼2G = 𝛿(𝜉 − x, 𝜂 − y) (7.42)

where

r =
√
(𝜉 − x)2 + (𝜂 − y)2 (7.43)

The solution of Equation (7.42) is

G(𝜉, 𝜂; x, y) = CI0(𝛼r) + DK0(𝛼r) (7.44)
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ψ

(ξ, η)

n̂

r (x, y)

Figure 7.10 Boundary definitions.

where I0 and K0 are modified Bessel functions of the first and second kinds of order
zero, respectively. From the behavior of these functions at infinity, we deduce that
C = 0. The constant D is found to be 1

2𝜋
by integrating over a small disk centered

at r = 0.
The term 𝜕G

𝜕n
is evaluated as

𝜕G
𝜕n

= 𝜕G
𝜕r

𝜕r
𝜕n

(7.45)

where
𝜕G
𝜕r

= − 𝛼

2𝜋
K1(𝛼r) (7.46)

and
𝜕r
𝜕n

= − cos𝜓 (7.47)

where K1 is the modified Bessel function of the first kind of order 1. The boundary
terms are defined in Figure 7.10.

Using Equations (7.46) and (7.47) we obtain

T(x, y) = 𝛼2

2𝜋 ∫R
H0K0(𝛼r)d𝜉 d𝜂 + ∫C

TK1(𝛼r) cos𝜓 dC − 1
2𝜋 ∫C

𝜕T
𝜕n

K0(𝛼r)dC

(7.48)

As shown before, the surface integral involving the source can be transformed
into a line integral if we limit H0 to the class of functions that satisfy Laplace’s
equation. Otherwise we must integrate over the region R. If we have

∇2H0 = 0 (7.49)

then we define a function g such that

∇2g = K0(𝛼r) (7.50)

The first integral in Equation (7.48) can be written as

∫R
H0K0(𝛼r)dR = ∫R

(H0∇2g − g∇2H0)dR (7.51)
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Figure 7.11 Integrating around a
singularity.

(ξ, η)C

∆C

(x', y')

ϵ

Applying Green’s theorem, we get

∫R
H0K0(𝛼r)dR = ∫C

(
H0

𝜕g
𝜕n

− g
𝜕H0

𝜕n

)
dC (7.52)

The solution to Equation (7.50) is

g = − 1
𝛼2 K0(𝛼r) (7.53)

We also have
𝜕g
𝜕n

= −
K1(𝛼r) cos𝜓

𝛼
(7.54)

Substituting Equations (7.53) and (7.54) into Equation (7.52) gives

∫R
H0K0(𝛼r)dR = − 1

𝛼∫C
H0K1(𝛼r)dR + 1

𝛼2 ∫C

𝜕H0

𝜕n
K0(𝛼r)dC (7.55)

Substituting this result into Equation (7.48)

T(x, y) = − 𝛼

2𝜋 ∫C
H0K1(𝛼) cos𝜓 dC + 1

2𝜋 ∫C

𝜕H0

𝜕n
K0(𝛼r)dC

+ 𝛼2

2𝜋 ∫C
TK1(𝛼r) cos𝜓 dC − 1

2𝜋 ∫C

𝜕T
𝜕n

K0(𝛼r)dC (7.56)

We see then that the potential at any point in the region is expressed entirely
in terms of values on the boundary. As before, we must remove the singularities
that occur on the boundary. Referring to Figure 7.11, we integrate around a singu-
larity along an arc of a circle. We allow (x, y) to approach the point (x′, y′) on the
boundary. Therefore T may be written as

T(x, y) = − 𝛼

2𝜋 ∫C−ΔC
H0K1(𝛼) cos𝜓 dC − 𝛼

2𝜋 ∫ΔC
H0K1(𝛼) cos𝜓 dC

+ 1
2𝜋 ∫C−ΔC

𝜕H0

𝜕n
K0(𝛼r)dC + 1

2𝜋 ∫C

𝜕H0

𝜕n
K0(𝛼r)dC

+ 𝛼2

2𝜋 ∫C−ΔC
TK1(𝛼r) cos𝜓 dC + 𝛼2

2𝜋 ∫C
TK1(𝛼r) cos𝜓 dC

− 1
2𝜋 ∫C−ΔC

𝜕T
𝜕n

K0(𝛼r)dC

− 1
2𝜋 ∫C

𝜕T
𝜕n

K0(𝛼r)dC (7.57)
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All singularities have been isolated in the three integrals around ΔC. Using the
asymptotic property of K0, we have

K0(𝛼r) → − ln r (7.58)

As r → 0 in these integrals, we get:
For the first integral

lim
𝜖→0

− 𝛼

2𝜋 ∫ΔC
H0K1(𝛼r) cos𝜓 dC = 1

2𝜋 ∫ΔC
H0

𝜕

𝜕n
K0(𝛼r)dC

= 1
2𝜋 ∫ΔC

H0
𝜕

𝜕n
(− ln r)dC

= 1
2𝜋 ∫

𝜋

0
H0

1
𝜖
(𝜖 d𝜃) =

H0

2
(7.59)

For the second integral, we get

lim
𝜖→0∫ΔC

𝜕H0

𝜕n
K0(𝛼r)dC = ∫ΔC

○ (𝜖 ln 𝜖)dC = 0 (7.60)

For the third integral, we get

lim
𝜖→0

𝛼

2𝜋 ∫ΔC
TK1(𝛼r′) cos𝜓 dC = 1

2𝜋 ∫
𝜋

0
T 1
𝜖
(𝜖 d𝜃) =

T(x′, y′)
2

(7.61)

And for the fourth integral, we get

lim
𝜖→0

− 1
2𝜋 ∫ΔC

𝜕T
𝜕n

K0(𝛼r)dC = ∫ΔC
○ (𝜖 ln 𝜖)dC = 0 (7.62)

We can now express T at the boundary as

T(x′, y′) = −H0 − 𝛼∫C
H0K1(𝛼r) cos𝜓 dC

+𝛼

𝜋 ∫C
TK1(𝛼r) cos𝜓 dC

− 1
𝜋 ∫C

𝜕T
𝜕n

K0(𝛼r)dC (7.63)

We now can write a system of simultaneous algebraic equations by assuming
that T and 𝜕T

𝜕n
are constant on the straight-line boundary elements (pulse func-

tions). Writing the integrals in Equation (7.63) as summations, we get

Ti = −𝜋H0 − 𝛼

N∑
j = 1
j ≠ i

H0K1(𝛼rij) cos𝜓ijΔCj

+𝛼

𝜋

N∑
j = 1
j ≠ i

TjK1(𝛼rij) cos𝜓ijΔCj
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Table 7.1 Definition of c and d.

k ck dk

0 2.0 0.8456
1 0.6667 0.5041
2 0.100 0.1123

− 1
𝜋

N∑
j = 1
j ≠ i

𝜕Tj

𝜕n
K0(𝛼rij)ΔCj +

𝛼Ti

𝜋 ∫i
K1(𝛼r) cos𝜓 dC

− 1
𝜋 ∫i

K0(𝛼r)dC (7.64)

The two integrals in Equation (7.64) contain singularities. The first integral is
zero because the direction cosine is zero. The second integral has been evaluated
by Luke [41] and is

1
𝜋 ∫i

K0(𝛼r) cos𝜓 dC = 2
𝛼𝜋

( 2∑
k=0

dk𝛽
2k+1 − ln 𝛽

2∑
k=0

ck𝛽
2k+1

)
(7.65)

where 𝛽 = 𝛼ΔCi∕4 and the coefficients ck and dk are defined in Table 7.1.
Thus, using Equation (7.64), we obtain the set of simultaneous equations

(J){T} + (K)
(
𝜕T
𝜕n

)
= {F} (7.66)

At each point on the boundary either T or 𝜕T
𝜕n

must be specified in order to make
the problem well posed.

7.2.2 Example Problem

As an example of this formulation, we look at a square copper conductor of
dimension 10mm on a side. A uniform magnetic field H0 = 1.0 + j0.0 Am−1 is
applied in the z direction. Because of symmetry, we will solve for only one-fourth
of the geometry. The boundary conditions are T = 0 on the conductor boundary
and 𝜕T

𝜕n
= 0 on the two lines of symmetry. If the normal derivative is zero, then

there is no current component normal to the boundary. We see that either T or 𝜕T
𝜕n

is specified at each point on the boundary. In this case, the boundary was divided
into 72 elements and Equation (7.66) was solved. Equation (7.56) was then used to
find T in the conductor. The results for the real part of the current vector potential
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Figure 7.12 Real part of T .

are shown in Figure 7.12. Recall that we interpret lines of equipotential as indicat-
ing the direction of the current. We see the expected pattern with current parallel
to the outer boundaries and perpendicular to the lines of symmetry. We also note
that the current density is higher near the outer edges (lines closer together).

We have seen that the boundary element method is a very efficient process,
resulting in a very small set of equations, yet capturing all of the physics of the
problem. A drawback of the boundary element method is that it is difficult to apply
in problems with nonhomogeneous or nonlinear material characteristics. In these
cases, the Green’s function is either not known or difficult to find, and methods
that discretize the entire region are usually applied.

7.3 Integral Equations for Three-Dimensional Eddy
Currents

We have seen examples of integral equations in which we divide a surface or
boundary into small elements or patches. In general, we can extend the integral
equation method into three-dimensions, in which case we divide the relevant
space into small volumetric elements [5, 11, 44].

For the development of the integral equations, the following assumptions are
made:

● The problem is linear and isotropic.
● Material properties such as permeability and conductivity are constant.
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● Only non-ferromagnetic conducting materials are considered.
● The field is quasi-stationary and displacement currents are neglected.

From Maxwell’s equations of Ampere’s and Faraday’s laws excluding displace-
ment we have currents

∇ × H = Je + Js (7.67)

∇ × E = −𝜕B
𝜕t

(7.68)

where Je eddy current density A m−2

Js eddy current free source current density A m−2

H magnetic field A m−1

B magnetic flux density (T)
E electric field V m−1

t time (s)

Using a vector potential function, A, such that B equals the curl of A and the
constitutive relations, we obtain the eddy current diffusion equation as follows:

B = ∇ × A (7.69)

Je = 𝜎E (7.70)

∇ × H = ∇ × 1
𝜇

B = ∇ ⋅
1
𝜇
× A = 𝜎E + Js (7.71)

∇ × E = −𝜕B
𝜕t

= − 𝜕

𝜕t
∇ ⋅ A (7.72)

or

E = −𝜕A
𝜕t

− ∇𝜙 (7.73)

where 𝜙 is the scalar potential function which acts as a gauge on A.
Substituting Equation (7.72) into Equation (7.71), the differential form of the

diffusion equation is obtained as

∇ × 1
𝜇
∇ × A = −𝜎 𝜕A

𝜕t
− 𝜎∇𝜙 + Js (7.74)

The vector potential can also be split up as

A = Ae + As (7.75)
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where A is the total vector potential, Ae is the vector potential due to eddy currents,
and As is the vector potential due to source currents. In integral form, Ae and As
can be expressed in terms of the respective current densities Je and Js as

Ae =
𝜇0

4𝜋 ∫
Je|r′ − r| dV +

𝜇0

4𝜋 ∫
𝜎E|r′ − r| dV = −

𝜇0

4𝜋 ∫
𝜎

𝜕A
𝜕t

+ 𝜎∇𝜙|r′ − r| dV

(7.76)

As =
𝜇0

4𝜋 ∫
Js|r′ − r| dV (7.77)

where r′ is the radius to the observation point from the origin and r is the radius
to the source point in Cartesian coordinates such that||r′ − r|| = √

(x′ − x)2 + (y′ − y)2 + (z′ − z)2.

From Equations (7.76) and (7.77), the total vector potential, A, is obtained in
integral form as

A = Ae + As = −
𝜇0

4𝜋 ∫
𝜎

𝜕A
𝜕t

+ 𝜎∇𝜙|r′ − r| dV + As (7.78)

Equation (7.78) is a Fredholm integral equation of the second kind. Since the vec-
tor potential is not unique, we must set its divergence to zero by applying the
Coulomb gauge, ∇ ⋅ A = 0. Taking the divergence of Equation (7.78) and setting
it to zero by applying the Coulomb gauge, we obtain

∇ ⋅ A = 0 = −
𝜇0

4𝜋 ∫ ∇ ⋅
𝜎

𝜕A
𝜕t

+ 𝜎∇𝜙|r′ − r| dV + ∇ ⋅ As (7.79)

Because the divergence of the vector potential due to eddy current free source cur-
rents must be zero, the second term on the right-hand side of Equation (7.79) van-
ishes. We shall now expand the integral on the right-hand side of Equation (7.79)
term by term.

From Green’s theorem, we know for isotropic conductivity 𝜎,

∇ ⋅

(
𝜎

𝜕A
𝜕t|r′ − r|

)
= 𝜎∇

(
1|r′ − r|

)
⋅
𝜕A
𝜕t

+ 𝜎

𝜕∇⋅A
𝜕t|r′ − r| (7.80)

Once again, by the application of the Coulomb gauge, the second term on the
right-hand side of Equation (7.80) vanishes, yielding

∇ ⋅

(
𝜎

𝜕A
𝜕t|r′ − r|

)
= 𝜎∇

(
1|r′ − r|

)
⋅
𝜕A
𝜕t

(7.81)

Also, by the application of Green’s theorem

∇ ⋅
(

∇𝜙|r′ − r|
)

= ∇𝜙 ⋅ ∇
(

1|r′ − r|
)
+
(
∇ ⋅ ∇𝜙|r′ − r|

)
(7.82)
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Since, by using the Coulomb gauge, ∇ ⋅ A = 0, then ∇ ⋅ ∇𝜙 must necessarily be
zero. Therefore, Equation (7.82) reduces to the form

∇ ⋅
(

∇𝜙|r′ − r|
)

= ∇𝜙 ⋅ ∇
(

1|r′ − r|
)

(7.83)

Substituting Equations (7.81) and (7.83) into (7.79), we have

−
𝜎𝜇0

4𝜋 ∫
𝜕A
𝜕t

⋅ ∇
(

1|r′ − r|
)

dV −
𝜎𝜇0

4𝜋 ∫ ∇𝜙 ⋅ ∇
(

1|r′ − r|
)

dV = 0

(7.84)

Equations (7.78) and (7.84) must be simultaneously solved to obtain the solution
for the vector potential, A, and scalar potential, 𝜙, which are the unknowns.

Restating the two equations, we have

A = Ae + As = −
𝜇0

4𝜋 ∫
𝜎

𝜕A
𝜕t

+ 𝜎∇𝜙|r′ − r| dV + As (7.85)

and

−
𝜎𝜇0

4𝜋 ∫
𝜕A
𝜕t

⋅ ∇
(

1|r′ − r|
)

dV −
𝜎𝜇0

4𝜋 ∫ ∇𝜙 ⋅ ∇
(

1|r′ − r|
)

dV = 0

(7.86)

For time-harmonic cases where A = |A| ej𝜔t and 𝜙 = |𝜙| ej𝜔t, Equations (7.85)
and (7.86) reduce to the form

A = −
𝜇0𝜎

4𝜋 ∫
(j𝜔A + ∇𝜙)|r′ − r| dV + As (7.87)

−
𝜎𝜇0

4𝜋 ∫ j𝜔A ⋅ ∇
(

1|r′ − r|
)

dV −
𝜎𝜇0

4𝜋 ∫ ∇𝜙 ⋅ ∇
(

1|r′ − r|
)

dV = 0

(7.88)

Further, in Cartesian coordinates,

∇
(

1|r′ − r|
)

=
(x′ − x)ûx + (y′ − y)ûy + (z′ − z)ûz[
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

]3∕2 (7.89)

Decomposing Equations (7.87) and (7.88) with Equation (7.89) into their respec-
tive Cartesian components, we have, after rearranging terms

Asx = Ax +
𝜎𝜇0

4𝜋 ∫
j𝜔Ax +

𝜕𝜙

𝜕x|r′ − r| dV (7.90)

Asy = Ay +
𝜎𝜇0

4𝜋 ∫
j𝜔Ay +

𝜕𝜙

𝜕y|r′ − r| dV (7.91)
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Asz = Az +
𝜎𝜇0

4𝜋 ∫
j𝜔Az +

𝜕𝜙

𝜕z|r′ − r| dV (7.92)

𝜎𝜇0

4𝜋 ∫

(
j𝜔Ax +

𝜕𝜙

𝜕x

) (
x′ − x

)
|r′ − r|3 dV +

𝜎𝜇0

4𝜋 ∫

(
j𝜔Ay +

𝜕𝜙

𝜕y

) (
y′ − y

)
|r′ − r|3 dV

+
𝜎𝜇0

4𝜋 ∫

(
j𝜔Az +

𝜕𝜙

𝜕z

) (
z′ − z

)
|r′ − r|3 dV = 0 (7.93)

where |r′ − r| √
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

Asx , Asy, Asz are vector potentials due to eddy current free source currents
Ax , Ay, Az are unknown vector potentials
𝜕𝜙

𝜕x
, 𝜕𝜙
𝜕y

, 𝜕𝜙
𝜕z

are derivatives of the unknown scalar potential 𝜙

Using the summation convention, we can expand r, x, y, z, the radius vector, the
vector potentials, and the derivatives of the scalar potential in terms of shape func-
tions inside the volume integrals of the above equations, and obtain the following
expressions:

r =
N∑

i=1
𝜁iri, x =

N∑
i=1

𝜁ixi, y =
N∑

i=1
𝜁iyi, z =

N∑
i=1

𝜁izi (7.94)

where 𝜁i’s are the shape functions (see Appendix F), i is the element node and N
is the number of nodes in the element.

Therefore,

Asx = 𝛿k𝓁Ax +
𝜎𝜇0

4𝜋 ∫
j𝜔

N∑
i=1

𝜁iAxi +
N∑

i=1

𝜕𝜁i
𝜕x
𝜙i|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
dV (7.95)

Asy = 𝛿k𝓁Ay +
𝜎𝜇0

4𝜋 ∫
j𝜔

N∑
i=1

𝜁iAyi +
N∑

i=1

𝜕𝜁i
𝜕y
𝜙i|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
dV (7.96)

Asz = 𝛿k𝓁Az +
𝜎𝜇0

4𝜋 ∫
j𝜔

N∑
i=1

𝜁iAzi +
N∑

i=1

𝜕𝜁i
𝜕z
𝜙i|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
dV (7.97)



�

� �

�

7.3 Integral Equations for Three-Dimensional Eddy Currents 275

𝜎𝜇0

4𝜋 ∫

(
j𝜔

N∑
i=1

𝜁iAxi +
N∑

i=1

𝜕𝜁i
𝜕x
𝜙i

)( N∑
i=1

𝜁ix′i −
N∑

i=1
𝜁ixi

)
|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
3

+
𝜎𝜇0

4𝜋 ∫

(
j𝜔

N∑
i=1

𝜁iAxi +
N∑

i=1

𝜕𝜁i
𝜕x
𝜙i

)( N∑
i=1

𝜁ix′i −
N∑

i=1
𝜁ixi

)
|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
3

+
𝜎𝜇0

4𝜋 ∫

(
j𝜔

N∑
i=1

𝜁iAxi +
N∑

i=1

𝜕𝜁i
𝜕x
𝜙i

)( N∑
i=1

𝜁ix′i −
N∑

i=1
𝜁ixi

)
|||||

N∑
i=1

𝜁ir′i −
N∑

i=1
𝜁iri

|||||
3 = 0 (7.98)

where 𝛿kl is the Kronecker delta function (= 1 for k = 𝓁; = 0 for k ≠ 𝓁) and k, 𝓁
are element numbers. With the above Equations (7.95) through (7.98), a matrix
can be formed as shown in Equation (7.99).⎡⎢⎢⎢⎢⎣

A 0 0 D
0 B 0 E
0 0 C F
G H I J

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Ax
Ay
Az
𝜙

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
Asx
Asy
Asz
0

⎤⎥⎥⎥⎥⎦
(7.99)

where A and D are from Equation (7.95), B and E are from (7.96), C and F are
from (7.97) and G, H, I and J are from (7.98). The evaluation of the isoparametric
element is shown in Appendix F.
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8

Induction Heating

8.1 Simplified Induction Heating Analysis

Brown et al. [59] present a simplified approach to understand the principles of
induction heating. First consider the problem of a wire carrying current I located
a distance h above a conducting half-space (the load) as shown in Figure 8.1.
We have presented a complete solution to this problem in Section 2.10, but for now,
we will assume the skin depth to be very small, so that the current distribution in
the conducting space can be considered a surface current sheet.

The field produced at the surface by the wire is given as

H1 = I
2𝜋r

(8.1)

where r =
√

h2 + x2. Using the method of images

H = 2H1 cos(𝜙) = 2H1
h
r

(8.2)

Using the current sheet approximation, the tangential field at the surface is equal
to the surface current density.

Js = H = I
𝜋

h
h2 + x2 = I

𝜋h
1(

1 +
(

x
h

)2
) (8.3)

Figure 8.2 shows the surface current density for different values of height, h, for a
filament conductor with 1 A. As we expect, if the conductor is closer to the surface,
the current density just beneath the conductor is higher and falls off quickly.

As a check, we find the total current in the conducting plate by integrating the
surface current density to infinity.

∫
∞

−∞
Js dx = hI

𝜋 ∫
∞

−∞

dx
h2 + x2 = 2I

𝜋
tan−1

( x
h

)||||
∞

0
= I (8.4)

To find the losses in the load, consider the incremental section shown in Figure 8.3.

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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h

h

r

x

Figure 8.1 Long wire parallel to
conducting half-plane.

The incremental resistance of this section is

dR = 1
𝜎𝛿dx

(8.5)

To find the total loss in the sheet, we integrate the loss density over the surface.

dWL = (J ⋅ dx)2 dR = J2dx
𝜎𝛿

(8.6)

Therefore

WL = 1
𝜎𝛿 ∫

∞

−∞
J2(x)dx = 2h2I2

𝜋2𝜎𝛿 ∫
∞

0

dx(
h2 + x2

)2 (8.7)
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Figure 8.2 Surface current density for wire of height h above a conducting plane.
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δ
Figure 8.3 Incremental conducting
section on surface.
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Integrating

∫
∞

0

dx(
h2 + x2

)2 = 1
2h3 tan−1

( x
h

)||||
∞

0
= 𝜋

4h3 (8.8)

Therefore

WL = I2

2𝜋𝜎𝛿h
(8.9)

We will now consider the losses in the cylindrical conductor. We will assume
that the conductor has a circular cross section and radius a. We will first assume
that the conductor is sufficiently far away that the current distribution is not
affected by the currents in the conducting plate. We will then consider the current
redistribution produced by the currents in the conducting sheet. In the first case,
the current will be uniformly distributed around the conductor and is contained
in the skin depth as shown in Figure 8.4. A more accurate representation can be
found in Section 3.2 in terms of Bessel functions, but we have already shown that
for the case in which the skin depth is much smaller than the radius, the present
assumption is valid.

The power dissipated in the conductor is therefore

Wc =
I2

2𝜋a𝜎𝛿
(8.10)

We now consider the more general situation in which the cylindrical conductor
is close to the load. In this case, the current distribution is not uniform around
the conductor, and the current distribution in the load is affected by the nearby
finite cylinder. We can use the method of images (see Figure 8.5) and replace the
conductor by a filament located at a height above the conducting plate equal to
(see Appendix D).

h′ =
√

h2 − a2 (8.11)

Figure 8.4 Circular conductor and current
distribution.

a

δ
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The current density in the load can now be studied by using Equation (8.3) and
replacing h with h′. The new formula is

Js =
I
𝜋h

√
1 −

(
a
h

)2

(
1 −

(
a
h

)2
+
(

x
h

)2
) (8.12)

The power dissipated in the load can now be found from Equation (8.9) by
replacing h with h′. This gives

W = 2h2I2

𝜋2𝜎𝛿 ∫
∞

0

dx(
h2 + x2

)2 (8.13)

The integral is evaluated by

∫
∞

0

dx(
h2 + x2

)2 = 1
2h3 tan−1

( x
h

)||||
x=∞

x=0
= 𝜋

4h3 (8.14)

So the power dissipated is

WL = I2

2𝜋𝜎𝛿h
(8.15)

The current distribution in the cylindrical conductor is found by adding the tan-
gential components of field produced by the two sources as shown in Figure 8.5.

The current distribution is given by [59] as

J = I
2𝜋a

√
1 −

(
a
h

)2

(
1 − a

h
cos 𝜃

) (8.16)

In Figure 8.6, we see the current density around the conductor for 1 A as a function
of the conductor height to radius ratio. As h → ∞ the distribution is uniform as
expected.

The loss in the conductor is now found by integrating the loss density around
the perimeter.

Wc = 2∫
𝜋

0

(Ja d𝜃)2

𝜎𝛿a d𝜃
(8.17)

The integral can be evaluated as
𝜋[

1 −
(

a
h

)2
]3∕2 (8.18)
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Figure 8.5 Geometry to find
the image source and current
distribution around the
conductor.
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Figure 8.6 Surface
current density around
conductor as a function of
h∕a.
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Therefore the conductor loss is

Wc =
I2

2𝜋a𝜎𝛿

[
1 −

(a
h

)2
]−1∕2

(8.19)

Calling the power dissipated in the load WL and the power dissipated in the
conductor Wc, we find the ratio of the two

WL

Wc
=

a𝛿c

h𝛿L
(8.20)

We can then define the efficiency of the induction heating process as

𝜂 =
WL

WL + Wc
= 1

1 + h𝛿L
a𝛿c

(8.21)

We will now look at a numerical example. We have a hollow copper circular
conductor of radius 0.01 m and the conductor thickness is 0.002 m. The height
of the conductor above the conducting plane is h = 0.05 m. The current density
around the conductor, by Equation (8.16), is shown in Figure 8.7.

A finite element model was also constructed for this problem and the current
density around the conductor is shown in Figure 8.8.

As we can see, the results are almost identical. This shows that the assumptions
made in the simplified analysis is valid for this case. The losses in the conductor,
by finite element analysis are shown in Figure 8.9.
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Figure 8.7 Surface
current density around
copper conductor of
radius a = 0.01 m.
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Figure 8.8 Surface
current density around
copper conductor by finite
element analysis.
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Figure 8.9 Loss density around copper conductor of
radius a = 0.01 m.

8.2 Coupled Eddy Current and Thermal Analysis:
Induction Heating

Induction heating of metals is an important industrial application. In induction
heating, there is a coupling between the electrical, electromagnetic, and thermal
phenomena. To illustrate this point, we consider the induction heating of magnetic
steel. The application may be, for example, surface hardening for gears or axles.
As we apply current to the induction coil, the steel work-piece saturates mag-
netically, as was explained in Section 2.6. This affects the skin depth and the
impedance seen from the power supply, which in turn affects the current from
the power supply. Another coupling is due to the effect of the temperature on the
resistivity of the steel. During the induction heating process, the temperature is
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T (°C)

ρ (Ωm)

ρ
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T
0

Straight line
of slope ρ

a
a

Figure 8.10 Resistivity vs.
temperature.

usually rising very rapidly and the resistivity of the load is continuously chang-
ing. This dependence of resistivity on temperature is illustrated in Figure 8.10
where we see that the resistivity of the material has a linear relationship with
temperature in the temperature range of interest.

As the temperature rises, not only does the electrical resistivity change, but the
magnetic permeability changes as well. As the temperature rises, the permeability
decreases. We, therefore, need a series of measured curves such as that shown in
Figure 8.11.

Since the temperature distribution is highly nonuniform, the material prop-
erties involved in the electromagnetic computation vary locally. There are no
closed-form or analytical solutions which can accurately account for this phe-
nomenon. Numerical methods, like the finite element method, are ideal since
they are able to represent the nonlinearity of the magnetic steel and the local
variation of permeability and resistivity due to temperature effects.

All of these changes to the electrical material properties and possibly to the coil
current, affect the losses and therefore the temperature rise. The thermal conduc-
tivity and specific heat of the work piece are also temperature dependent and will
also be changing over the duration of the process. The thermal conductivity as a
function of temperature is shown in Figure 8.12.

μ
0
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H (A m−1)

B (T)

μ
0
μ

rT1

μ
0
μ

rT2

Figure 8.11 Magnetization curves vs.
temperature.
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Figure 8.12 Thermal
conductivity vs. temperature.

Asymptote

T (°C)

k (W m−1 °C−1)

Figure 8.13 Specific heat vs.
temperature.

T
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p
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The specific heat as a function of temperature is shown in Figure 8.13. At one
point, the material may go through a phase change (Curie point) where the specific
heat increases dramatically. The analysis in this region often involves a variable
time step since it is very easy to jump over this region if the time step is too large.
As we approach the phase transition, the time step is shortened using the following
process. The temperature is found at the end of a time step. We then go back to the
beginning of the time step and using smaller time steps, arrive at the end of the
original time step. If the results agree, we go on. If not, we again reduce the time
step until we get agreement.

With this strong coupling between the electromagnetic and thermal phenom-
ena, we must either solve the magnetic and thermal equations simultaneously or
solve each set of equations separately and then exchange parameters (with possi-
ble iterations), to ensure that the electrical and thermal properties correspond to
the up-to-date value of temperature and flux density. Time steps must be kept very
small in order to capture these material property changes.

We usually opt for the second option and solve the electromagnetic and thermal
equations separately and then iterate between the solutions until convergence
is reached. The difficulty is that the thermal time constants are considerably
longer than the electromagnetic time scales. In fact, we normally solve the
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Start

Steady-state ac magnetic analysis
with a voltage driven coil finds
the current distribution

Find the power dissipated
by eddy current heating

Transient thermal analysis takes
the losses from the magnetic
analysis and computes the
temperature distribution at each
time step

Evaluate the electric ρ(T ) and
magnetic µ(T ) characteristics

Figure 8.14 Flow chart of computation process.

electromagnetic eddy current problem using steady-state ac or phasor analysis,
then transfer the losses to the time-domain thermal model. The thermal model
gives the temperature distribution, which is then sent to the electromagnetic
model so that the material properties can be adjusted. At each time step in the ther-
mal analysis, there is an iterative exchange with the electromagnetic analysis until
the process converges. This process is illustrated in the flow chart of Figure 8.14.

The eddy current analysis is typically done using a T − Ω or an A − V formu-
lation as described in Section 4.1. The local losses computed in this step are then
transferred to the thermal model and the temperature is found. The local temper-
ature distribution is then transferred back to the electromagnetic model and the
material properties are updated.

In many cases involving induction heating, the skin depth is very small com-
pared with the other dimensions in the problem. In these cases, it is very difficult to
make a good finite element mesh. As was discusses in Section 6.1, we need several
elements per skin depth for a good solution. The elements in this case would be
very narrow and therefore have a poor aspect ratio. An alternative which is some-
times used is to employ the surface impedance concept. We have seen the idea
of surface impedance applied to an electric machine rotor in Section 3.11. In this
case, we replace the eddy current layer with a boundary that has the property that

n̂ × E = Zsn̂ × (n̂ × H) (8.22)
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The surface impedance Zs is found as

Zs =
1 + j
𝜎𝛿

(8.23)

The evaluation of the temperature distribution, T(x, y, z, t), in regions described
by thermal conductivity k and specific heat 𝜌Cp along with volumetric and/or sur-
face heat flux input q is described by the Fourier heat diffusion equation (note
that this is the same equation that describes the eddy current phenomena but the
dependent variable in this case is the scalar temperature, T).

𝜌Cp
𝜕T
𝜕t

= ∇(k∇T) + q (8.24)

The boundary conditions are given by

kn̂ ⋅ ∇T = h(T − Ta) + 𝜖Cn
(

T4 − T4
a
)
+ qs (8.25)

where h is the heat transfer coefficient, 𝜖 is the radiation coefficient, Ta is the
ambient temperature, and qs the surface thermal flux. The initial temperature
distribution T(x, y, z, 0) must be known to make the problem well-posed. The ther-
mal conductivity is also temperature dependent as is the specific heat as described
above.

8.2.1 Example of Coupling the Magnetic and Thermal Problems

As an example, we will describe the models used in an induction heating problem.
The process of coupling the eddy current problem with the thermal problem is
illustrated in Figure 8.14. The method illustrated below uses a so-called “weak”
coupling between the electromagnetic and thermal problems. The problems
are solved separately and the material properties are continuously corrected to
account for the field and temperature properties.

The computation proceeds as follows: A field problem is done using a set of
material properties at the assumed starting temperature. The eddy current dis-
tribution and power is found in the lossy regions. This electromagnetic problem
is solved as a steady-state sinusoidal problem, i.e. with complex phasor analysis.
With these losses, the thermal problem is then solved in the time domain. Space is
discretized using the finite element method and time is discretized by finite differ-
ences. The electromagnetic problem is solved again with all of the relevant electric
and magnetic properties corrected for the temperature. This process is repeated,
performing the eddy current and thermal calculations and correcting the material
properties until convergence is reached. A given error criterion is met in which
the material properties are consistent with both the electromagnetic and thermal
solutions. We then move to the next time step and repeat the process. As one might
imagine, depending on the complexity of the geometry and length of the calcula-
tion, the solution time can be quite long.
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Figure 8.15 Flux
distribution at t = 3 s
showing source coils and
load.

As an example, we consider the case of an axisym-
metric billet of magnetic steel with resistivity 𝜌 =
25.0 × 10−6 Ωm. The radius of the billet is 20.0 mm.
The frequency of excitation is 50 kHz. The perme-
ability is modeled by a series of effective permeability
curves as discussed in Section 2.6. The steady-state
eddy current problem was solved using the finite ele-
ment method and the A − V formulation discussed in
Section 4.1. The iterative procedure described above
was performed and the results after 3 s are displayed
in the following set of figures.

In Figure 8.15, we see the flux distribution in the
core, coils, and load regions computed at t = 3 s. Due
the high frequency, high resistivity, and high perme-
ability of the load, we can see that the skin depth is
extremely small. In Figure 8.16, we see the power dis-
tribution in the load. Again, we note that the power is
dissipated in a very thin region near the surface.

Figure 8.16 Loss density
in the load at t = 3 s.

In Figure 8.17, we see the temperature distribution at
t = 3 s. Even though the heat is flowing from the sur-
face into the load, the temperature distribution shows
that, for short times, the temperature rise remains lim-
ited to the region near the surface. In this way, the heat
treatment process can affect the surface and not the
interior regions.

Figure 8.17 Temperature
distribution in the load at
t = 3 s.
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9

Wattmeter

The watt-hour meter is a good example of an electro-mechanical device with
moving conductors. Watt-hour meters are extremely complex due to their
three-dimensional topology and required accuracy.

There are three main parts to an electro-mechanical watt-hour meter: the motor
which produces the torque, the magnetic brake which retards the speed of the disc,
and the register which counts the motor revolutions. The portions of the stator
energized by the line voltage and load current are known as the voltage coil and the
current coil respectively. The voltage coil is designed to be highly inductive while
the current coil is highly resistive. Therefore, the current through voltage coil lags
the line voltage by almost 90∘. If one neglects saturation, the fluxes produced by
these currents will be 90∘ out of phase. Torque can be produced by two alternating
fluxes which have both time and a space displacement. These fluxes, which are
out of phase by approximately 90∘, induce an electromotive force (emf) on the
conducting disc. Since the disc has its own impedance (mostly resistive), there
will be circulating eddy currents on the disc, and these currents will be interacting
with the fluxes which produce them. This interaction produces a torque in the
system and disc rotates. The torque is directly proportional to the sine of the angle
between two currents (current in the voltage coil and current in the current coil).
The design attempts to make the angle larger (close to 90∘) to increase the torque
on the disc.

To obtain a better understanding of this device and the eddy currents involved,
a finite element model of a watt-hour meter was created. Figure 9.1 shows the
geometry of the watt-hour meter. The coils were modeled as non-eddy current con-
ductors and the field was computed using the Biot–Savart law. The current coils are
wound around the two limbs of the C-core, and the voltage coil is wound around
the central limb of the E-Core. The phase angle of the voltage coil excitation was
offset from the excitation in the current coil. The model includes the C-Core (cur-
rent coil), the E-Core (voltage coil), the conducting disc, and the tie bars (shunts)

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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Disc

Back steel layer

E-Core

C-Core

Front steel layer

Figure 9.1 The 3-D model of the watt-hour meter.

across the C-Core. These shunts are located on both sides of the C-Core. Each side
of the shunt consists of two layers of steel, one layer of brass, and one layer of
aluminum. The C-Core and E-core are made of laminated steel [60].

A three-dimensional second-order finite element mesh with 242 000 elements
was created. The disc has one layer of triangular prism elements. Figure 9.2 shows
the finite element mesh of the watt-hour meter.

The analysis was done using a magneto-dynamic (steady-state sinusoidal) for-
mulation. Because this is a low-frequency application, one may neglect displace-
ment currents. In the watt-hour meter model, both scalar and vector potential
formulation were used in the different regions. The electromagnetic field in the
conductors can be derived in two different ways, using vector potentials: A − V
and T − Ω formulations [47] discussed in Section 4.1. One method uses a magnetic
vector potential, A, defined by

B = ∇ × A (9.1)

E = −𝜕A
𝜕t

− ∇V (9.2)

The other method uses an electric vector potential, T, and magnetic scalar poten-
tial, Ω, defined by

J = ∇ × T (9.3)

H = T − ∇Ω (9.4)
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Figure 9.2 The 3-D finite
element mesh model of the
watt-hour meter.

On the disc, the T − Ω vector potential formulation was used. There is a 90∘
phase angle between voltage coil excitation and current coil excitation. By using
Faraday’s law

∇ × 𝜌∇ × T + 𝜇
𝜕T
𝜕t

− 𝜇∇𝜕Ω
𝜕t

= 0 (9.5)

For eddy current-free regions like air, the magnetic field can be obtained from a
magnetic scalar potential as

H = −∇Ω (9.6)

The differential equation satisfied by this potential is

−∇𝜇∇Ω = 0 (9.7)

Numerical stability requires formulations involving unique potentials. The
uniqueness of the potential can be guaranteed by specifying its divergence and
its normal or tangential component on the boundary. To use different sets of
potentials in the same model, one must ensure that the interface conditions
are satisfied. This difficulty can be avoided if the potentials A, and V in the
conductors, are coupled with A outside the conductor, and/or the potentials T
and Ω in the conductors are coupled with Ω in eddy current-free regions. The
two regions (conductor and nonconductor) can be coupled by imposing B ⋅ ûn
and H × ûn continuity. In this problem, the continuity of current (J ⋅ ûn = 0)
is satisfied by setting the tangential component of the electric vector potential
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Figure 9.3 The current density distribution (as arrows) of the model for 𝜔t = 0.

Figure 9.4 The current density distribution (as arrows) of the model for 𝜔t = 90∘.

T × ûn to zero. This condition and the continuity of Ω ensure that H × ûn is
continuous. H and T differ by the gradient of a scalar and have the same units.

For the problem we are considering, the continuity conditions can be satisfied
by setting a gauge condition, for example the Coulomb gauge, ∇ ⋅ T = 0.

With this choice, Equation (9.5) becomes

∇ × 𝜌∇ × T − ∇𝜌∇ ⋅ T + 𝜇
𝜕T
𝜕t

− 𝜇∇𝜕Ω
𝜕t

= 0 (9.8)

The circulating current in the disc will oppose the change of flux linkage. These
circulating currents can be seen in Figures 9.3 and 9.4 for different instants of time.

For the torque computation, the virtual work method was used [23]. The torque
is calculated by differentiating the system magnetic energy with respect to a virtual
rotation angle on an axis parallel to the absolute coordinate system axes.

Table 9.1 summarizes the results obtained for different phase angles between the
current and voltage coils. These results were obtained to verify the torque pattern
due to the phase angle between voltage coil excitation and current coil excitation.
All values are in per unit based on the 90∘ torque value.
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Table 9.1 The torque values for different phase angles.

Angle 90 80 70 45 30 15 5 0
Torque (pu) 1.0 0.9927 0.956 0.738 0.5369 0.297 0.1257 0.0366

Angle (º)
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Figure 9.5 The comparison between sine and torque values.

Figure 9.5 shows the comparison between the torque curves for different phase
angles and the sine curve. The torque produced on the disc can be written in terms
of load current and frequency as

Tm = K I2

Z
f cos 𝛼 sin 𝛽 (9.9)

where Z is the impedance of the disc, 𝛼 is the angle between the induced volt-
ages on the disc, and eddy currents, and K is a proportionality constant. As seen,
the torque has a sine wave pattern due to the angle of 𝛽 which is the phase angle
between voltage coil excitation and current coil excitation.

The shunts (tie bars) across the C-core consist of sheets of three different
materials: steel, brass, and aluminum, as shown in Figure 9.6. We assume that
the steel has no conductivity. Conductivity values of 2.6 × 107 Sm−1 for brass and
4.2 × 107 Sm−1 for aluminum were used. The brass and aluminum regions were
modeled using T − Ω formulations to allow for eddy currents. These regions
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Brass

Steel

Aluminum

Figure 9.6 Eddy currents in the shunt parts.

Figure 9.7 Eddy currents in the screw and aluminum parts.

have the permeability of free space, 𝜇0. The eddy currents produced in these
regions were small in magnitude. However, the effect of the permeable sheets
caused the torque value to change significantly. If the torque without the tie bars
is normalized to 1.0 pu, the computed torque value is different by 11.2% in the
model that includes the tie bars.

The effect of the load adjust screw on the power factor of the watt-hour meter
was also studied. Figure 9.7 shows the details of the screw attached to the E-core
and the eddy current distribution in it and the aluminum cylinder around it.
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Figure 9.8 After adding the light load
adjustment piece.

Because of the conductivity of the aluminum, the flux is phase shifted with respect
to the E coil flux. The flux through the screw was computed and found to have a
phase shift of about 14∘ compared to the case with no eddy currents in the screw.

With no current coil excitation, any lack of symmetry in the potential coil flux
can produce a torque that might be either forward or backward. Since electrical
steels are not perfect conductors of magnetic flux, the flux produced by the current
coils is not exactly proportional to the current, so that when the meter is carrying
a small fraction of its rated load, it tends to run slowly. In addition, there is friction
caused by the bearings and the register, which also tends to make the disc rotate
at a lower speed than desired with small load currents. To compensate for these
tendencies, a controlled driving torque is added to the disc. This is called the “light
load adjustment.” As the plate is moved circumferentially with respect to the disc,
the net driving torque changes and the disc rotation speed changes accordingly.
The pieces representing this plate group can be seen in Figure 9.8. This light load
adjustment will change the torque by about 10%.

Since the efficiency of this device is low, the force distribution was studied to
understand the torque production. Thus the nodal forces were found on the con-
ducting disc.

Knowing the value of the flux density, B, and current density, J, in the eddy
current region is sufficient to calculate the local Lorentz force vector.

dF = J × B (9.10)
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Figure 9.9 The torque distribution over the disc.

Figure 9.9 shows the resulting torque response at the instant of 𝜔t = 0. We see
that in addition to positive torque, negative torque is produced at some points on
the disc due to the direction of current and flux density.

An electromagnetic braking torque is created by the interaction between a per-
manent magnet and the conducting disc in this device. This produces an elec-
tromagnetic brake in which the braking torque depends on the velocity of the
conductor. In the example problem we have a disc that has electrical conductivity
(𝜎 = 5 × 107 S m−1) and a permanent magnet region having magnetic properties
(𝜇r = 1.15 and Br = 0.8T). An air region (nonconducting) surrounds the disc. The
thin conducting disc is 0.05 cm thick and 7.6 cm in diameter. The disc and its sur-
rounding region rotate during the solution process, in this case by imposing a
speed equal to 80∘/s. The model with the mesh is shown in Figure 9.10.

In the model, both scalar and vector potential formulations are used in differ-
ent parts. The T − Ω vector potential formulation is used in the conducting disc.
Because the nonconducting regions are free of eddy currents, the magnetic field
can be described by a magnetic scalar potential.

In this model, the total magnetic scalar potential formulation is used for the
magnet and surrounding air.

The geometry consists of independent meshes for the different regions. Each
mesh corresponds to a moving or a fixed part. In our case, the fixed part includes
a permanent magnet and surrounding air region and the moving mesh is made of
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Figure 9.10 The mesh of the model.

Figure 9.11 Flux density distribution on the disc.

a disc and air gap. The moving mesh is bounded by the fixed mesh. The air region
is discretized with a free mesh. The meshes of the disc and magnet are created by
an extrusion of the boundary facets.

Global values such as torque or flux vary continuously with the movement of
mechanical parts. The equations of the model are solved simultaneously using the
finite element system at each time step and then stored. Figure 9.11 shows the flux
density distribution on the disc. The effect of the permanent magnet is apparent.

Figure 9.12 shows the eddy current distribution on the conducting region for the
same computation time as shown in Figure 9.11. The effect of the magnet can be
seen easily on the conducting region. At steady state, these eddy currents remain
constant in space as the rotor turns. For the disc region, power dissipation is cal-
culated by integrating the loss density over the disc volume.
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Figure 9.12 The eddy current distribution on the disc.

Figure 9.13 The mesh of the
model including rotating air gap.

Figure 9.13 shows how the mesh is created in 3D for the model. The braking
torque produced by the permanent magnet is expected to be almost equal to the
positive torque.

There is no voltage or current coil excitation in this model. The torque is created
only by the magnet and conducting disc interaction. The variation of torque vs.
time after two cycles can be observed in Figure 9.14.

The variation of calculated torque vs. time for different time step values is appar-
ent. Because of the constant field of the magnet, the braking torque is expected to
be a constant at steady state. The transient solution for the braking torque can be
seen in Figures 9.14 and 9.15 for different time steps, respectively. Higher velocity
requires shorter time steps. Figure 9.15 presents a curve of calculated torque vs.
time using a 0.01ms time step.

There are various difficulties that have critical effects on the numerical solution
of the electromagnetic problem. These are reported in the literature and are related
to the general problem of moving conductors in a magnetic field. Various solutions
have been proposed, usually due to the effects of the u × B terms in the matrix.
Since differential equations have time derivative terms, the use of time-stepping
algorithms is unavoidable. If the mesh size in the direction of motion exceeds a
certain limit, spurious oscillations may occur in time-domain-based numerical
solutions. The method used here does not use the u × B term but rather remeshes
each time step.
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Figure 9.14 Braking torque vs. time Δt = 0.1s.
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Figure 9.15 Braking torque vs. time Δt = 0.01ms.

In transient problems with eddy currents, the time step value for every sam-
ple point becomes very important for the calculation. Because the finite element
algorithm uses a nodal solution, it is obvious that mesh size and time step have an
important role in obtaining a stable and accurate solution. The solution is unstable
for large time steps when motion is involved.

As the time step is reduced, the torque approaches a constant value as we expect.
This procedure can be applied to the three-dimensional models of many different
kinds of applications such as watt-hour meters, brakes, dampers of vibration, etc.
The discussion above gives some of the modeling considerations relating to mesh
and time step.
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10

Magnetic Stirring

10.1 Introduction

A practical application of eddy currents for industrial use is the problem of
heating and stirring of a liquid metal, steel in this case. In our simplified example,
the geometry is axisymmetric. The eddy currents will vary in the r direction.
The geometry is illustrated in Figure 10.1.

The billet or load is in the cylindrical region 1. This is where the steel is being
heated and stirred by the Lorentz force produced by the interaction of the mag-
netic field and the eddy currents. The billet is contained in a stainless steel tank,
region 2, which will also carry eddy currents. Region 3, which surrounds the stain-
less steel tank, contains a set of 𝜃 directed coils. These coils produce an axial field
in the load and will be represented as a 𝜃 directed current sheet. The currents in
the example are steady-state sinusoidally time-varying at 50 Hz. The outermost
region, region 4, is also an annulus and is made of magnetic laminations, which
completes the magnetic circuit. We will assume that this region is infinitely per-
meable and nonconducting. The magnetic properties in all regions are assumed
to be linear, homogeneous, and isotropic. We also assume that there is no varia-
tion of any quantity in the 𝜃 direction. The magnetic field and the eddy currents in
the load are functions of r. We will be computing the local loss density and force
density as a function of r.

The symbols used in this analysis as well as the numerical values used in the
numerical example are as follows:
𝓁 length
𝜇 permeability of the billet material
𝜇2 permeability of stainless steel sheath
𝜇0 free space permeability (4𝜋 × 10−7)
𝜇r relative permeability of the billet (assumed to be 100)
𝜇r2 relative permeability of stainless steel sheath (assumed to be 1)
𝜎 conductivity of billet material

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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Figure 10.1 Geometry of liquid metal stirrer.

𝜎2 conductivity of stainless steel
𝜌 resistivity of billet material (assumed to be 2.0 × 10−7)
𝜌2 resistivity of stainless steel (assumed to be 5.0 × 10−7)
f frequency (assumed to be 50)
𝜔 angular frequency
J0 maximum source sheet current density (assumed to be 1)
Hz magnetic field
Bz flux-density in the z direction
Je eddy current density
k1 complex constant for the billet (region 1),

√
𝜔𝜇𝜎

k2 complex constant for the steel sheath (region 2),
√
𝜔𝜇2𝜎2

ro outer radius of billet (assumed to be 0.1)
r1 outer radius of the steel sheath (assumed to be 1.2)

10.2 Analysis

The analysis begins with Ampere’s law

∇ × H = Je = 𝜎E (10.1)

and

∇ × ∇ × H = 𝜎∇ × E (10.2)
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From Faraday’s law, we have

∇ × E = −j𝜔𝜇H (10.3)

and

∇ × ∇ × H = −j𝜔𝜇𝜎H (10.4)

In cylindrical coordinates, we get

∇ × H = −
𝜕Hz

𝜕r
û𝜃 (10.5)

Neglecting the 𝜃 variation of Hz, we can write

∇ × ∇ × H = −1
r
𝜕

𝜕r

(
r
𝜕Hz

𝜕r

)
= −j𝜔𝜇𝜎Hz (10.6)

where

Hz = Hzo sin(𝜔t) (10.7)

Expanding Equation (10.6), we have(
𝜕2Hz

𝜕r2 + 1
r
𝜕Hz

𝜕r
− j𝜔𝜇𝜎Hz

)
= 0 (10.8)

Equation (10.8) is a Bessel equation of order zero and its solution is given by [43].

Hz = C
[
ber(kr) + j bei(kr)

]
(10.9)

For the different regions, we have the following conditions. In region 1, the billet
region:

Hz1 = C1
[
ber(k1r) + j bei(k1r)

]
(10.10)

In region 2, the stainless steel sheath:

Hz2 = C2
[
ber(k2r) + j bei(k2r)

]
(10.11)

Region 3 is the source current region, and region 4 is an infinitely permeable eddy
current free region.

We now look at the interfaces. At r = ro, Hz1 = Hz2, so that

C1 =
[
ber(k2ro) + j bei(k2ro)

][
ber(k1ro) + j bei(k1ro)

]C2 (10.12)

At r = r1, Hz2 = Jo, therefore

C2
[
ber(k2r1) + j bei(k2r1)

]
= Jo (10.13)

or

C2 =
Jo[

ber(k2r1) + j bei(k2r1)
] (10.14)
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Substituting Equation (10.14) in Equation (10.12), we have

C1 =
Jo
[
ber(k2ro) + j bei(k2ro)

][
ber(k2r1) + j bei(k2r1)

] [
ber(k1ro) + j bei(k1ro)

] (10.15)

Therefore,

Hz1 =
Jo
[
ber(k2ro) + j bei(k2ro)

] [
ber(k1r) + j bei(k1r)

][
ber(k2r1) + j bei(k2r1)

] [
ber(k1ro) + j bei(k1ro)

] (10.16)

Je1 = −
𝜕Hz1

𝜕r
(10.17)

= −
k1Jo

[
ber(k2ro) + j bei(k2ro)

] [
ber′(k1r) + j bei′(k1r)

][
ber(k2r1) + j bei(k2r1)

] [
ber(k1ro) + j bei(k1ro)

]
The power loss is given by

P = ∫
Je1 J∗e1 𝜌

2
dv (10.18)

To simplify the equation, let

D =
ber(k2ro) + j bei(k2ro)
ber(k2r1) + j bei(k2r1)

(10.19)

Therefore

Hz1 =
JoD

[
ber(k1r) + j bei(k1r)

][
ber(k1ro) + j bei(k1ro)

] (10.20)

Je1 = −
k1JoD

[
ber′(k1r) + j bei′(k1r)

][
ber(k1ro) + j bei(k1ro)

] (10.21)

For the present numerical example, we see in Figure 10.2, the magnitude of the
magnetic field vs. r.

In Figure 10.3, we see the magnitude of the current density as a function of r.
Substituting for the eddy current density, Je1, from Equation (10.21) into

Equation (10.18) for power loss, we have

P = ∫
2𝜋

0 ∫
𝓁

0 ∫
ro

0
k2

1J2
o DD∗ 𝜌

2

[
ber′2(k1r) + bei′2(k1r)

]
[
ber′2(k1ro) + bei′2(k1ro)

] r dr d𝜃 dz (10.22)

Therefore

P = ∫
ro

0
k2

1J2
o DD∗𝜌𝜋𝓁

[
ber′2(k1r) + bei′2(k1r)

]
[
ber′2(k1ro) + bei′2(k1ro)

] r dr (10.23)
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Figure 10.3 Current density components vs. r.
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Figure 10.4 Magnitude of the force density vs. r.

which gives for the power,

P = k2
1J2

o DD∗ 𝜌𝜋𝓁
2

ro

k1

[
ber′(k1ro)ber(k1ro) + bei′(k1ro)bei(k1ro)

][
ber′2(k1ro) + bei′2(k1ro)

] (10.24)

The Lorentz force is given by the expression

F = Re ∫
[
J𝜃ej(𝜔t) × Bze−j(𝜔t)] dv = ∫ Je Bz r dr d𝜃 dz (10.25)

In Figure 10.4, we see the compressive force as a function of r. Substituting
for Je from Equation (10.21) and Bz = 𝜇Hz with Hz from Equation (10.11) in
Equation (10.20), we have

F = ∫
2𝜋

0 ∫
𝓁

0 ∫
ro

0

×
−k1J2

o DD∗𝜇
[
ber′(k1r) + j bei′(k1r)

] [
ber(k1r) − j bei(k1r)

][
ber2(k1ro) + bei2(k1ro)

] r dr d𝜃 dz

(10.26)
or

F = −2𝜋𝜇k1J2
o DD∗𝓁 ∫

ro

0

ber′(k1r)ber(k1r) + jbei′(k1r)bei(k1r)
ber2(k1ro) + bei2(k1ro)

r dr (10.27)
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From [43], it is shown that this equation reduces to the form

F = −2𝜋𝜇J2
o DD∗𝓁

∞∑
k=0

(k1ro)(4k+1)

(4k + 1)42k(k!)2(2k − 1)!
[
ber2(k1ro) + bei2(k1ro)

]
(10.28)

This model can now be used to study the forces and losses in the liquid metal.
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11

Electric Machines

11.1 Eddy Currents in Slot-Embedded Conductors

In this section, we shall consider conductors carrying sinusoidally time-varying
currents which are embedded in an iron slot. This class of problem is important for
electric machine design and performance calculations, specifically for the deter-
mination of eddy current losses in the armature coils of AC machines and for
the design of squirrel cage induction motor rotor slots and conductors, where the
redistribution of current in the conductor as a function of slip frequency plays
an important role in machine performance and can be exploited to customize the
torque-speed profile of the machine. The problem was first addressed by Field [61]
in 1905 and continues to be treated today in advanced AC machine design books
such as Say [62], Lipo [63], Pyrhönen et al. [64], and especially Ostović [65].

11.1.1 Single Conductor in a Rectangular Slot

The first configuration to be analyzed is a single conductor in a simple rectangular
slot as shown in Figure 11.1. Any eddy current in the iron is assumed to be neg-
ligible for the purpose of calculating eddy current in the conductor (as would be
the case for a typical laminated armature core) and the permeability of the iron
is assumed to be infinite. Axial current in the conductor then produces flux that
travels in the iron on three sides and crosses through the slot perpendicular to the
sides of the conductor, producing axial eddy current in the conductor.

Armature coils of AC machines, which carry current at power line frequency,
are typically subdivided vertically into separate strands, and the strands them-
selves may also be transposed such that they do not occupy the same vertical
position in the slot along the whole axial extent of the machine. These design fea-
tures prevent the eddy current losses from becoming intolerable. In the case of the

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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Figure 11.1 Source Is and eddy Ie currents and cross-slot flux 𝜙 of a conductor in a slot.

squirrel cage induction motor, the relatively low slip frequency current carried by
the rotor conductors at normal running speed does not require fine stranding or
transposition. However, the frequency-dependent redistribution of net axial cur-
rent produced by eddy currents makes the rotor resistance and leakage inductance,
and hence the motor torque and current, speed-dependent. Designers exploit this
phenomenon by creating special slot and bar shapes to customize motor perfor-
mance for the needs of the application.

Field [61] showed that the case of the rectangular slot is amenable to straight-
forward analysis provided it can be assumed that the flux passes straight across
the slot. This renders the problem one-dimensional: the magnetic field and flux
density in the slot are purely x directed, the current is only z directed, and all three
quantities vary only with y. While the assumption of infinite permeability of the
iron ensures that the magnetic field is indeed purely x directed at the slot sides,
there is no guarantee that this is the case across the entire width of the slot. In
strict terms, symmetry about the vertical centerline of the slot is the only other
simplifying assumption that can be invoked at this point.

Further analysis by Roth [66], using a two-dimensional vector potential
solution, summarized by Hague [67, pp. 313–317] and with results described in
Say [62, pp. 53–54] demonstrates that any deviation of the flux lines from a path
straight across the slot is negligible in most practical situations. One exception
is the case of high-voltage armature coils with thick insulation that creates a
large space between the conductors and the slot boundary, where the solution
shows a slight “hump” in the flux lines at the center of the slot. The effect is not
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Figure 11.2 Finite element solution of flux lines in a trapezoidal slot for a frequency of
60HZ and conductivity IACS.

extreme, however. Another exception is when slot does not have parallel sides
such as a trapezoidal slot. Results from a finite element solution for a slot of this
shape are shown in Figure 11.2 where it is apparent that the flux lines are still
approximately straight across the slot. We are therefore justified in proceeding
with an analysis based on the one-dimensional assumption.

Figure 11.3 shows an elementary configuration of a single conductor in the slot
of an electric machine. In general, the conductor does not quite fill the entire slot,
due to the need for insulation. We, therefore, consider an equivalent simplified
problem, where the conductor does occupy the entire width of the slot, but the
current density is adjusted by the ratio of bc∕bs so that the total current is the same
as in the real problem. Then we can write the following field equations for current
that varies sinusoidally in time with angular frequency 𝜔, J = ûzJz cos𝜔t.

∇ × H = J reduces to
𝜕Hx

𝜕y
= −

bc

bs
J (11.1)

∇ × E = −𝜕B
𝜕t

reduces to
𝜕Ez

𝜕y
= −j𝜔Bx (11.2)

Noting that J = 𝜎E and B = 𝜇0H in the conductor, Equation (11.2) can be
written as

𝜕J
𝜕y

= −j𝜔𝜎𝜇0Hx (11.3)

If we now differentiate Equation (11.1)
𝜕2Hx

𝜕y2 = −
bc

bs

𝜕J
𝜕y

(11.4)
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Figure 11.3 Conductor of width bc in slot of width bs.

and use the result of Equation (11.3), we obtain

𝜕2Hx

𝜕y2 = j𝜔𝜎𝜇0Hx
bc

bs
(11.5)

For simplicity going forward, the ratio of the conductor width to the slot width
is built into a new modified conductivity, skin depth, and 𝛾 as follows:

𝜎′ =
bc

bs
𝜎 (11.6)

𝛿′ =
√

2
𝜔𝜇0𝜎

′ (11.7)

𝛾 =
√

j𝜔𝜇0𝜎
′ =

1 + j
𝛿′

(11.8)

Then Equation (11.5) can be written as

𝜕2Hx

𝜕y2 = 𝛾2Hx (11.9)

The general solution to this equation can be written in the form

Hx(y) = Ce𝛾(hc−y) − De−𝛾(hc−y) (11.10)
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where C and D are constants of integration which are determined by the boundary
conditions. At y = 0, the top of the conductor, and at y = hc, the bottom of the
conductor, we have, respectively

Hx(0) =
I
bs

and Hx(hc) = 0 (11.11)

where I is the peak value of the total current in the conductor. Therefore, from
Equations (11.10) and (11.11), we have

Ce𝛾hc − De−𝛾hc = I
bs

(11.12)

C − D = 0 (11.13)

Combining these equations and solving for C and D we obtain

C(e𝛾hc − e−𝛾hc

⏟⏞⏞⏞⏟⏞⏞⏞⏟

2 sinh 𝛾hc

) = I
bs

(11.14)

C = I
2bs sinh 𝛾hc

= D (11.15)

Substituting this result into Equation (11.10), we have

Hx(y) =
I

2bs sinh 𝛾hc
[e𝛾(hc−y) − e−𝛾(hc−y)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2 sinh 𝛾(hc − y)

] =
I sinh

[
𝛾(hc − y)

]
bs sinh 𝛾hc

(11.16)

We now find the eddy current density in the conductor. From Equations (11.1)
and (11.16)

J(y) = −
bs

bc

𝜕Hx

𝜕y
=

I𝛾 cosh
[
𝛾(hc − y)

]
bc sinh 𝛾hc

(11.17)

This is a complex quantity. To obtain expressions for its magnitude, it is convenient
to replace 𝛾 with its original definition from Equation (11.8)

𝛾 =
1 + j
𝛿′

= 𝛽 (1 + j) (11.18)

where

𝛽 = 1
𝛿′

(11.19)

Then Equation (11.17) can be written as

J(y) = I𝛽
bc

(1 + j)
cosh

[
𝛽 (1 + j)

(
hc − y

)]
bc sinh

[
𝛽 (1 + j) hc

] (11.20)
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which separates the real and imaginary parts of the arguments of the hyperbolic
function, thereby facilitating use of the identities

sinh(𝛼 + j𝛽) = sinh 𝛼 cos 𝛽 + j cosh 𝛼 sin 𝛽 (11.21)

cosh(𝛼 + j𝛽) = cosh 𝛼 cos 𝛽 + j sinh 𝛼 sin 𝛽 (11.22)

Equation (11.20) can then be written as

J(y) = I𝛽
bc

(1 + j)

cosh
[
𝛽
(

hc − y
)]

cos
[
𝛽
(

hc − y
)]

+ j sinh
[
𝛽
(

hc − y
)]

sin
[
𝛽
(

hc − y
)]

sinh 𝛽hc cos 𝛽hc + j cosh 𝛽hc sin 𝛽hc
(11.23)

The magnitude of the current density is then

|J(y)| = |I| 𝛽√2
bc√√√√cosh2 [

𝛽
(

hc − y
)]

cos2
[
𝛽
(

hc − y
)]

+ sinh2 [
𝛽
(

hc − y
)]

sin2 [
𝛽
(

hc − y
)]

sinh2
𝛽hccos2𝛽hc + cosh2

𝛽hcsin2
𝛽hc

(11.24)

This expression can be reduced further by applying the identities

cos2x = 1 + cos 2x
2

and sin2x = 1 − cos 2x
2

(11.25)

cosh2x = cosh 2x + 1
2

and sinh2x = cosh 2x − 1
2

(11.26)

which yields

|J(y)| = |I| 𝛽√2
bc

√√√√cosh
[
2𝛽

(
hc − y

)]
+ cos

[
2𝛽

(
hc − y

)]
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) (11.27)

If the current I were distributed uniformly over the conductor area, as would be
the case for DC current, the current density would be

JDC = |I|
bchc

(11.28)

The current density in the AC case may then be expressed in normalized form
relative to the DC case by combining Equations (11.27) and (11.28)

|J(y)|
JDC

= hc𝛽
√

2

√√√√cosh
[
2𝛽

(
hc − y

)]
+ cos

[
2𝛽

(
hc − y

)]
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) (11.29)

This function is illustrated in Figure 11.4 which shows the relative magnitude of
current density vs. depth in a slot for two different frequencies, with a conductiv-
ity of IACS (International Annealed Copper Standard) (5.8 × 107Sm−1). This result
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Figure 11.4 Current density vs. slot depth for 𝜎 = IACS, bs = 0.028m, bc = 0.025m,
hc = 0.076m.

is consistent with Figure 11.1, which shows that application of Faraday’s Law
to cross-slot leakage flux tends to increase the current at the top of the slot and
decrease it at the bottom.

The power loss in the volume of the conductor can be determined using
Equation (11.27)

P = 1
2 ∫

hc

0

|J(y)|2

𝜎
bc𝓁dy

= |I|2
𝛽2𝓁

𝜎bc ∫
hc

0

cosh
[
2𝛽

(
hc − y

)]
+ cos

[
2𝛽

(
hc − y

)]
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) dy

= |I|2
𝛽𝓁

2𝜎bc

sinh
(
2𝛽hc

)
+ sin

(
2𝛽hc

)
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) (11.30)

If the current I were distributed uniformly over the conductor area, as would be
the case for DC current, the loss in the conductor would be

PDC =
I2

DC𝓁

𝜎hcbc
=

||I2||𝓁
2𝜎hcbc

(11.31)

where the factor of 2 is due to the definition of I as a peak current in the AC case,
and the equivalent DC current from a loss standpoint is the rms value I∕

√
2. The

ratio of the loss in the AC case to that of the DC case is then:
PAC

PDC
= 𝛽hc

sinh
(
2𝛽hc

)
+ sin

(
2𝛽hc

)
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) (11.32)
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Figure 11.5 Normalized loss vs. frequency for bs = 0.028m, bc = 0.025m, hc = 0.076m.

This expression is plotted in Figure 11.5 for two different conductivities. The
greater conductivity results in greater concentration of the current at the top of
the slot and higher overall loss with increasing frequency.

This result shows that coil losses due to eddy currents can become intolera-
ble at power line frequencies. In AC machine armatures, such losses are typically
mitigated by subdividing the conductor vertically into separate strands which are
insulated from each other within the slot (but ultimately all in parallel) as shown
Figure 11.6, or by use of conductors with fine, insulated strands called Litz wire.

The form of Equation (11.30) shows that the loss varies as the product 𝛽hc which
is the ratio of the conductor height to the effective skin depth. The loss relationship
is controlled by the quantity

sinh
(
2𝛽hc

)
+ sin

(
2𝛽hc

)
cosh

(
2𝛽hc

)
− cos

(
2𝛽hc

) (11.33)

which is plotted in Figure 11.7. It is seen that this function has a minimum at
𝛽hc = 𝜋∕2 which corresponds to a conductor height of 𝜋∕2 times the effective skin
depth. This is known as the critical conductor height,

hc,crit =
𝜋

2
𝛿′ (11.34)

11.1.2 Rectangular Hollow Conductor in a Slot

There are applications for a hollow rectangular conductor in a slot. These may
exist in the slots of electric machines that are inner cooled with gas or liquid.
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As shown in Ostović [65, pp. 281–284], the problem may be solved by approxi-
mating it as a one-dimensional case. The assumption is that all of the flux is in the
x direction as indicated in Figure 11.8.

The solution can be obtained using the relationships developed in Section 11.1.1
for a solid conductor in an infinitely permeable slot. We will start with the general
solution of Equation (11.10) which is repeated below with 𝛾 replaced by 𝛽 (1 + j)
per Equation (11.18)

Hx(y) = Ce𝛽(1+j)(hc−y) − De−𝛽(1+j)(hc−y) (11.35)

If we now consider the hollow rectangular conductor in Figure 11.8, we can
view this as a problem with three regions: the bottom conductor (Region 1), the
middle two vertical conductors (Region 2), and the top conductor (Region 3). The
factor 𝛽 may be different for the different regions. Recall from Equations (11.19),
(11.7), and (11.6) that

𝛽 = 1
𝛿′

=
√

𝜔𝜎′𝜇

2
=

√
𝜔𝜎bc𝜇

2bs
(11.36)

This expression applies directly for Regions 1 and 3, where the conductor width is
simply bc:

𝛽1 = 𝛽3 =

√
𝜔𝜎bc𝜇

2bs
(11.37)
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In Region 2 of the hollow conductor, the conductor width is not bc but rather 2d;
therefore,

𝛽2 =

√
𝜔𝜎2d𝜇

bs
(11.38)

With our one-dimensional assumption, the magnetic field and current density
in the three regions are each described by one equation. These equations have
constants C and D which may be different for the three regions. We will denote
them as C1, C2, C3, D1, D2, and D3. These six unknowns require six equations,
which are found from the boundary and interface conditions. For the magnetic
field H, we require that the field be zero at the bottom boundary of Region 1 where
y = hc, which yields, from Equation (11.35)

C1 − D1 = 0 (11.39)

We also know that the field at the top of the conductor in Region 3 where
y = 0, must equal the total current I divided by the slot width bs. Again from
Equation (11.35):

C3e𝛽3(1+j)hc − D3e−𝛽3(1+j)hc = I
bs

(11.40)

The magnetic field must be continuous at the interface of Regions 1 and 2 (y =
hc − d) and the interface of Regions 2 and 3 (y = d). Using these conditions in
Equation (11.35) yields

C1e𝛽1(1+j)d − D1e−𝛽1(1+j)d = C2e𝛽2(1+j)d − D2e−𝛽2(1+j)d (11.41)

C2e𝛽2(1+j)(hc−d) − D2e−𝛽2(1+j)(hc−d) = C3e𝛽3(1+j)(hc−d) − D3e−𝛽3(1+j)(hc−d) (11.42)

Finally, we will consider the current density at the interfaces. The general gov-
erning equation is obtained from Equation (11.1):

Jz(y) = −
bs

bc

𝜕Hx

𝜕y
=

𝛽(1 + j)bs

bc

[
Ce𝛽(1+j)(hc−y) + De−𝛽(1+j)(hc−y)] (11.43)

The current density must be continuous at the interfaces of Regions 1 and 2 and
Regions 2 and 3.1 Using Equation (11.43) at these interfaces:

𝛽1

bc

[
C1e𝛽1(1+j)d + D1e−𝛽1(1+j)d] = 𝛽2

2d
[
C2e𝛽2(1+j)d + D2e−𝛽2(1+j)d] (11.44)

𝛽2

2d
[
C2e𝛽2(1+j)(hc−d) + D2e−𝛽2(1+j)(hc−d)] = 𝛽3

bc

[
C3e𝛽3(1+j)(hc−d) + D3e−𝛽3(1+j)(hc−d)]

(11.45)

1 In fact, it is the electric field that must be continuous at these boundaries. In the present case,
the conductivity is the same in the three regions, so the current density is continuous. In a case
where the regions have different conductivities, the current density would be in the ratios of the
conductivities.
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The six Equations (11.39)–(11.42) and (11.44)–(11.45) can then be placed in
matrix equation form to solve for the C and D constants in the three regions
simultaneously:

[A] {X} = {F} (11.46)

The matrix [A] can be written as follows, using 𝜒 for 1 + j and hcd for hc − d:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 0 0 0 e𝛽3𝜒hc −e−𝛽3𝜒hc

e𝛽1𝜒d −e−𝛽1𝜒d −e𝛽2𝜒d e−𝛽2𝜒d 0 0
0 0 e𝛽2𝜒hcd −e−𝛽2𝜒hcd −e𝛽3𝜒hcd e−𝛽3𝜒hcd

𝛽1

bc
e𝛽1𝜒d 𝛽1

bc
e−𝛽1𝜒d −

𝛽2

2d
e𝛽2𝜒d −

𝛽2

2d
e−𝛽2𝜒d 0 0

0 0
𝛽2

2d
e𝛽2𝜒hcd

𝛽2

2d
e−𝛽2𝜒hcd −

𝛽3

bc
e𝛽3𝜒hcd −

𝛽3

bc
e−𝛽3𝜒hcd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.47)

and {X} and {F} are

{X} =
{

C1,D1,C2,D2,C3,D3
}T (11.48)

{F} =
{

0, I
bs
, 0,0, 0,0

}T

(11.49)

As a first check of the formulation, it is confirmed that it yields the same result
as Equation (11.29) for the limiting case where 2d = bc, i.e. a solid rectangular con-
ductor. As shown in Figure 11.9, both formulations give the same current density
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Figure 11.9 Current density vs. depth in slot, for limiting case of solid conductor,
computed with solid and hollow conductor formulations, 𝜎 = IACS, hc = 0.04m,
bc = bs = 0.03m, d = 0.015m.
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hc = 0.04m, bc = bs = 0.03m, d = 0.004m. Dashed lines show beginning and end of
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solution for this case. In Figure 11.10, the current density is shown for a hollow
conductor with wall thickness of one-tenth of the conductor height.

11.1.3 Slice Method for Rectangular Slot

There are a number of skin effect problems that can be reduced to a coupled circuit
analysis. One practical example is to find the resistance and leakage reactance of
a squirrel cage induction motor bar. Induction motor rotor bars may have compli-
cated shapes which make analytical solutions impossible. The effective resistance
and inductance are a function of frequency and this is quite important since the
starting resistance, where line frequency currents are in the bars, largely deter-
mines the starting torque while the reactance at this frequency limits the inrush
current. When the induction machine is at load, the frequency on the rotor is quite
small (slip frequency) and the resistance and reactance are smaller. The motor
efficiency will depend on this value of the resistance.

In order to understand the process, we will first consider the simpler problem
of finding the self and mutual inductance in a rectangular slot with conductors
carrying uniform current density. This is illustrated in Figure 11.11.

The width of the slot is b and the height of the bottom conductor is h2 and the top
conductor is h1. The height of the slot above the conductor is h0. We will make the
simplifying assumptions that the sides of the teeth are infinitely permeable and
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Figure 11.11 Rectangular slot with uniform current.

that the slot is narrow compared to the depth. In this case, the flux will be directed
across the slot in the x direction. Applying Ampere’s law

∮ H ⋅ d𝓁 = Ienclosed (11.50)

First, we will assume that there is uniformly-distributed current I2 in the
bottom conductor and no current in the top conductor. We see that by applying
Equation (11.50) to different paths, the magnetic field H is zero at the bottom of
the slot (no current enclosed) and increases linearly to the top of the conductor
(all current enclosed) where it reaches a maximum. The resulting cross-slot flux
density B(y) = 𝜇0H(y) is illustrated in Figure 11.12.

H(y) =
⎧⎪⎨⎪⎩

I2

b

(
y

h2

)
0 ≤ y ≤ h2

I2

b
y > h2

(11.51)

We now apply uniform current I1 to the top conductor. Using Ampere’s law, we
conclude that there is no field below the top conductor. The field rises linearly
in the top conductor and is constant above the top conductor. This is shown in
Figure 11.13.

To find the components of inductance attributable to the cross-slot flux, we find
the flux linkage of the individual conductors. For the case of the bottom conductor
carrying current I2, we use the flux density distribution of Figure 11.12. All of the
flux above the top of the conductor links the entire coil and as such contributes
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Figure 11.13 Cross-slot flux density for current in top conductor.

directly to the flux linkage. The flux crossing the slot in the region of the conductor
itself links a fraction of the conductor. This fraction is zero at the bottom of the
conductor and increases linearly to 1.0 at the top of the conductor. The flux density
in this region is also increasing linearly from zero to a maximum of B = 𝜇0I2∕b. To
find the flux linkage of the bottom conductor then we integrate the flux density
times the fraction of the bottom conductor linked over the entire slot. Therefore
in the squared term in the first integral of Equation (11.52), one factor of y∕h2
represents the variation of flux density over the conductor and the other factor of
y∕h2 represents the fraction of the conductor linked. The flux linkage of the lower
conductor due to current in the lower conductor only is then

λ22 =
𝜇0I2

b

[
∫

h2

0

(
y

h2

)2

dy + ∫
h2+h1

h2

dy + ∫
h2+h1+h0

h2+h1

dy

]
(11.52)

This gives

λ22 =
𝜇0I2

b

(
h2

3
+ h1 + h0

)
(11.53)

A similar analysis is used to obtain the flux linkage of the upper conductor due
to current in the upper conductor only:

λ11 =
𝜇0I1

b

(
h1

3
+ h0

)
(11.54)
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Note that the region below a conductor has no effect on the self-flux linkage as
there is no self-flux density in this region.

To find the mutual flux linkage, we can either excite the top conductor and find
the flux linking the bottom conductor or vice versa. In this case, there is only one
factor of y∕h in the integral. If we excite the bottom conductor, the flux density in
the top conductor is constant but the fraction of conductor linked has this linear
variation. If we excite the top conductor, all of the flux completely links the bottom
conductor but the flux density is linearly increasing over the top conductor area.
The result in either case is

λ12 = λ21 =
𝜇0I
b

(
h1

2
+ h0

)
(11.55)

To find the inductance per unit length, we divide the flux linkage equations by
the current:

L22 =
𝜇0

b

(
h2

3
+ h1 + h0

)
(11.56)

L11 =
𝜇0

b

(
h1

3
+ h0

)
(11.57)

L12 = L21 =
𝜇0

b

(
h1

2
+ h0

)
(11.58)

We can now generalize this result to analyze the eddy current behavior of a
solid rotor conductor in a squirrel cage induction motor. We will divide the slot
into a number of vertical sections (for example 5, as shown in Figure 11.14) and
use Equations (11.56)–(11.58). In the bottom-most conductor, assume we have a
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Figure 11.14 Squirrel cage rotor conductor divided into five sections.
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uniform current of value I5. The flux density in this region due only to the current
in section 5 is

B55(y) =
𝜇0I5y
b5h5

(11.59)

The flux linkage of section 5 conductor, only considering the flux crossing that
section, is then

𝜇0I5

b5 ∫
h5

0

(
y

h5

)2

dy =
𝜇0I5h5

3b5
(11.60)

We can now add the contributions of the flux above section 5 and since we are
interested in the inductance, we must divide by the current. We get, for the total
self-inductance per unit depth

L55 = 𝜇0

( h5

3b5
+

h4

b4
+

h3

b3
+

h2

b2
+

h1

b1

)
(11.61)

Similarly

L44 = 𝜇0

(
h4

3b4
+

h3

b3
+

h2

b2
+

h1

b1

)
(11.62)

L33 = 𝜇0

( h3

3b3
+

h2

b2
+

h1

b1

)
(11.63)

L22 = 𝜇0

(
h2

3b2
+

h1

b1

)
(11.64)

L11 = 𝜇0

(
h1

3b1

)
(11.65)

Following our example, from Equation (11.58) the mutual inductance between
sections 4 and 5 is

L45 = L54 = 𝜇0

(
h4

2b4
+

h3

b3
+

h2

b2
+

h1

b1

)
(11.66)

and then

L35 = L53 = 𝜇0

( h3

2b3
+

h2

b2
+

h1

b1

)
(11.67)

L25 = L52 = 𝜇0

(
h2

2b2
+

h1

b1

)
(11.68)

L15 = L51 = 𝜇0

(
h1

2b1

)
(11.69)

We also make the important observation that

L15 = L14 = L13 = L12 (11.70)
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In other words, it does not make any difference to the flux linkage of section 1,
whether there is 1 A in sections 2, 3, 4, or 5. All produce exactly the same results
as far as section 1 is concerned. Similar reasoning leads to

L23 = L24 = L25 (11.71)

and so on.
With all of the circuit elements computed, we can write the coupled circuit

equations for the five conducting elements, where X = 𝜔L:

⎛⎜⎜⎜⎜⎜⎝

Z1 jX12 jX13 jX14 jX15
jX12 Z2 jX23 jX24 jX25
jX13 jX23 Z3 jX34 jX35
jX14 jX24 jX34 Z4 jX45
jX15 jX25 jX35 jX45 Z5

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

I1
I2
I3
I4
I5

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

V
V
V
V
V

⎞⎟⎟⎟⎟⎟⎠
(11.72)

where the diagonal term, Zi = Ri + jXii.
The resistance of these sections per unit axial length will be

Ri =
1

𝜎ibihi
(11.73)

where 𝜎i is the conductivity of the section, bi is the width of the section and hi is
the height of the section.

If there is, for example, a space with no conductor as in a recessed slot, the
equations will still work with infinite (or a very high value) of resistance in the
open section. The vertical branch in the circuit below can be removed but the
height of the section will be included in the inductances.

Equation (11.72) can be conveniently represented by the ladder network of
Figure 11.15. The resistances are in all cases the dc resistance of the section. The
reactances are made of linear combinations of the self and mutual reactances as
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Figure 11.15 Equivalent circuit for five section slot.
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follows. If we consider the loop equation for current I1, we see that the voltage
drop is

V = R1I1 + jI1XB + j(I1 + I2 + I3 + I4 + I5)XA (11.74)

By rearranging this equation as

V = R1I1 + jI1(XB + XA) + j(I2 + I3 + I4 + I5)XA (11.75)

it is apparent that XA represents the mutuals from sections 2–5 to section 1:

XA = X12 = X13 = X14 = X15 = 𝜔𝜇0
h1

2b1
(11.76)

and XB + XA represents the self term for section 1:

XB + XA = X11 (11.77)

or

XB = X11 − XA = X11 − X12 = −𝜔𝜇0
h1

6b1
(11.78)

This satisfies the first row of Equation (11.72).
The remainder of the vertical reactances are

XD = −𝜔𝜇0
h2

6b2
(11.79)

XF = −𝜔𝜇0
h3

6b3
(11.80)

XH = −𝜔𝜇0
h4

6b4
(11.81)

and for the remainder of the horizontal reactances

XC = 𝜔𝜇0

(
h1

2b1
+

h2

2b2

)
(11.82)

XE = 𝜔𝜇0

(
h2

2b2
+

h3

2b3

)
(11.83)

XI = 𝜔𝜇0

(
h4

2b4
+

h5

2b5

)
(11.84)

As a check, consider current only in loop 2. The current passes through reac-
tances XA,XC, and XD. The sum of these three should then be the self reactance of
section 2. Adding these three components gives 𝜔𝜇0(h2∕3b2 + h1∕b1) which is the
expected result.

To understand the application of this method, we present a numerical example.
In Figure 11.16, we see a motor slot with a partially closed top and a tapered bot-
tom. The slot is assumed to be completely filled with solid copper of conductivity
IACS (5.8 × 107Sm−1), and the frequency is 60 Hz. The conductor is divided into
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Figure 11.16 Geometry of induction motor slot.
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Figure 11.17 Geometry of five section model.

five coupled sections approximated with parallel sides. For the tapered sections, we
take the average width. This is shown in Figure 11.17. Using the analysis above we
obtain the equivalent circuit of Figure 11.18.
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Figure 11.18 Equivalent circuit for the five section slot model (impedances in μΩm−1).

From Equation (11.72) and the equations that precede it, the impedance matrix
at 60HZ is found to be

Z =

⎡⎢⎢⎢⎢⎢⎣

265 + j103 j154 j154 j154 j154
j154 133 + j359 j385 j385 j385
j154 j385 133 + j513 j539 j539
j154 j385 j539 177 + j684 j719
j154 j385 j539 j719 265 + j924

⎤⎥⎥⎥⎥⎥⎦
μΩm−1

(11.85)

If we now apply 1 V m−1 to the circuit model we obtain for the five unknown
currents

I =

⎛⎜⎜⎜⎜⎜⎝

2210 − j675
562 − j1569
−389 − j729
−337 − j65
−146 + j113

⎞⎟⎟⎟⎟⎟⎠
(11.86)

Adding these terms to find the total current, we find

Islot = (1900 − j2910)A (11.87)

Since we have applied 1 V m−1, the inverse of the current is the slot impedance per
unit length

Zslot = (157 + j241)μΩm−1 (11.88)

The DC resistance per unit axial length in this case is

RDC = 1
5∑

i=1
𝜎ibihi

= 35μΩm−1 (11.89)
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while the AC resistance is seen from Equation (11.88) to be 157μΩm−1, giving a
ratio of 4.44. If we reduce the frequency to 1 Hz then the resistive part slot of the
impedance becomes 35μΩm−1 so we get the DC resistance as expected. The reac-
tive part also agrees with the theoretical value of reactance for a uniform current
distribution.

11.1.4 Finite Difference Equivalent Circuit Analogy

We have seen in Section 5.1 that the finite difference equations for the two-
dimensional magnetic vector potential eddy current problem resulted in an
equivalent circuit of resistances and capacitances. In this analog circuit, the
nodal voltage is the magnetic vector potential and the eddy current is the current
to ground in the capacitances. The resistances in the analog are the magnetic
circuit permeances at right angles to the magnetic flux. The current in the analog
problem represents the magneto-motive force (total ampere-turns) producing the
flux. The circuit elements are illustrated in Figure 11.19.

The resistors are found as the permeance of the flux paths. If we divide the slot
into five sections as we did above, the permeances are

Ri = 𝜇0
hi

bi
(11.90)

per meter of depth.

Current sheet

Permeance

Conductance

Figure 11.19 Vector potential equivalent circuit.
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The capacitances are found as

Ci = 𝜎ihibi (11.91)

The circuit is solved by a standard nodal admittance analysis. The admittance
matrix is a sparse matrix in which the diagonal elements for each node are the
sum of all admittances connected to the node. The off-diagonal elements are the
negative of the admittances between nodes. We can excite the circuit in a number
of ways. For example, we can inject a current into node 1 and see how the current
distributes in the slot. At high frequency, the upper capacitor is a low impedance
path to ground and much of the current will leave through this path. This illus-
trates the skin effect in the slot. As the frequency drops toward zero, the currents
will divide among the capacitors proportionally to the capacitance. This would
result in a uniform current density as we would expect at DC.

The system of equations has the form

(I) = (Y )(A) (11.92)

where the (A) vector is the magnetic vector potential at the nodes and (I) is the
nodal current injection. We solve the set of linear simultaneous equation for the
vector potential and then the current density in the slot is found by

J = 𝜎E = 𝜎
𝜕A
𝜕t

= j𝜔𝜎A (11.93)

The total current in each section is the current density times the area or

Ii = j𝜔𝜎AiSi (11.94)

where Si is the cross-sectional area of section i. Note that 𝜎Si is the value of capaci-
tance so the current through the capacitor is the eddy current in the section of bar.
The j𝜔 term is of course for steady-state AC analysis. The model can be used in the
time domain for transient problems as well. The current injection in this case is at
the top of the slot where we inject 1 A into node 1 and find the currents in the slot
sections. We then find the losses and effective resistance and reactance.

The results are very similar to those found in Section 11.1.3 with five slices. We
note that for high accuracy, we should use more than five nodes or slice sections,
as the slot depth is several times the skin depth, and we should have multiple
divisions per skin depth for a good representation.

The magnitude of the currents at each node (the capacitor current), is plotted in
Figure 11.20. When these five currents are added (as phasors), the sum is 1.0 A.

11.1.5 Slot with Arbitrary Shape

If the one-dimensional approximation is valid, we can obtain a solution for slots
that have fairly arbitrary cross sections. This can be done in an approximate way
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Figure 11.20 Magnitude of the current in each of five finite difference cells.

by making an equivalent circuit in which the slot is divided into a number of slices
that can have arbitrary widths and depths as shown in Figure 11.21.

The magnetic field at the kth layer is produced by all currents below that layer.
From Ampere’s law, we find

Hkbk =
k∑

p=1
ip (11.95)

The flux density at the top of the kth layer is then

Bk =
𝜇0

bk

k∑
p=1

ip (11.96)

We can write this in terms of the permeance of each layer where hk is the height
of the layer and 𝓁 is the length of the conductor.

k =
𝜇0hk𝓁

bk
(11.97)

Consider now the electromotive force (emf) induced in the loop formed by
sections k and k + 1, as illustrated in Figure 11.22. Considering the loop going
from the center of layer k to the center of layer k + 1, we now find the flux linking
that loop. We will consider the flux linking the loop to be from three sources. The
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Figure 11.21 Non-uniform slot divided into slices.
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Figure 11.22 Flux linking loop formed by slice k and k + 1.

currents below layer k will produce flux linkage of

𝜙k =
(k + k+1

2

) k−1∑
p=1

ip (11.98)

The flux linkage produced by the kth layer of current is found by referring to
Figure 11.23. The flux density increases linearly over the slice region, going from
zero at the bottom to 𝜇0ik∕bk at the top. Since we consider the loop from the mid-
point of the layer, we need only consider the flux above that point. The average
flux density is 3∕4 of the peak value at the top. We can multiply this flux density
by 1∕2 the permeance of layer k to find the flux linking the loop up to the bottom
of layer k + 1. The current in layer k also produces flux linkage in the bottom half
of layer k + 1 which is included in the loop. The flux density in the region ik is
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Figure 11.23 Flux produced by three sources.

constant and crosses half the area of layer k + 1. The contribution of the current
in layer k is then

𝜙k =
(3

8
k +

1
2
k+1

)
ik (11.99)

The final contribution to the flux linkage is that produced by the current in the
k + 1 layer. This produces flux in the lower half of the k + 1 slice. The average
flux density produced by ik+1 in this region is 1∕4 of the maximum flux density
produced by that current. The final term then is

𝜙k =
(1

8
k+1

)
ik+1 (11.100)

The total flux producing an emf in the loop is then the sum of the three
contributions.

d
dt

(
𝜙k,k+1

)
+ Rkik − Rk+1ik+1 = 0 (11.101)

The resistance of each slice is the DC resistance and is found as

Rk = 𝓁
𝜎hkbk

(11.102)

where 𝜎 is the conductivity of the material.
While Equation (11.101) is valid for general excitation types, we will consider

here steady-state ac excitation, in which case we replace d∕dt by j𝜔. Now the gov-
erning equation becomes

j𝜔

[k + k+1

2

k−1∑
p=1

ip +
(3

8
k +

1
2
k+1

)
ik +

1
8
k+1ik+1

]
+ Rkik − Rk+1ik+1 = 0

(11.103)
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A permeance times 𝜔 can be thought of as a reactance and the equation becomes

j
Xk + Xk+1

2

k−1∑
p=1

ip + j
(3

8
Xk +

1
2

Xk+1

)
ik +

1
8

jXk+1ik+1 + Rkik − Rk+1ik+1 = 0

(11.104)

If we have n slices, there are n − 1 loops and therefore n − 1 equations. To make
the problem well-posed, we add a constraint equation so that the sum of all n − 1
loop currents is equal to a specified value. We accomplish this by setting all of the
terms in the nth row of the system matrix equal to 1 and then setting the nth term
of the input vector to the specified total slot current. This gives a final n × n system
and makes the matrix non-singular.

The final system of equations has the form

(Z)(Iloop) = (Iin) (11.105)

where the matrix Z has the form

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R1 +
3
8

jX1 +
1
2

jX2 −R2 + jX2∕8 · · · 0 0

j(X2 + X3)∕2 R2 +
3
8

jX2 +
1
2

jX3 −R3 +
1
8

jX3 · · · 0

· · · · · · · · · · · · · · ·

j(X2 + X3)∕2 j(X3 + X4)∕2 · · · Rn−1 +
3
8

jXn−1 +
1
2

jXn −Rn + 1
8

jXn

1 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(11.106)

The Iin vector is all zeros, except for the nth term which is the complex total current
in the slot. (In practice, the last row of the Z matrix may be scaled to the same order
of magnitude as the other entries in the matrix, to better condition the matrix for
solving, with the last entry of Iin compensated accordingly.)

Two numerical examples will illustrate the process. We first consider the solid
rectangular conductor considered in Section 11.1.1. The conductor is 0.03 m wide
and 0.04 m deep with conductivity 𝜎 = IACS = 5.8 × 107Sm−1. The frequency is
60HZ. In Figure 11.24, the normalized current density vs. depth is plotted for the
slice method and the closed-form solution given in Equation (11.29). As can be
seen, the solutions are almost identical.

Now consider a trapezoidal conductor in a slot as shown in Figure 11.25. In this
example, the slot is 1.0 m long, the slot width at the top is 0.02 m, and the width at
the bottom is 0.03 m. The slot is 0.04 m deep. The conductivity of the slot conductor
is 𝜎 = IACS = 5.8 × 107Sm−1. The frequency is 60HZ and the total input current
is 1.0 + j0.0 A.

Figure 11.26 shows the current density in each layer with a total of 25 layers.
The plot shows the real and imaginary components. As a check, the sum of all 25
currents is 1.00000 − j55.511 × 10−18 A.
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Figure 11.24 Current density vs. depth for rectangular slot, 25-layer approximation.
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Figure 11.25 Slot with trapezoidal cross section.
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Figure 11.26 Current density in 25 layers of trapezoidal slot shown in Figure 11.25.

11.2 Solid Rotor Electric Machines

In this section, we shall discuss eddy current effects in rotating conducting struc-
tures subjected to a time-varying magnetic field from a stationary region such
as an electric machine stator. The excitation current will be assumed to be sinu-
soidally distributed spatially. The analytical technique developed will be applied
to a rotating electric machine for evaluating the magnetic and electric fields and
the power loss.

In our example, the rotating electric machine has a conducting rotating struc-
ture, the rotor, enclosed by a stationary structure, the stator. Discrete conductors
carrying electric currents can be placed both in the rotor and in the stator. The pres-
ence of these discrete conductors in the rotor and stator presents difficulties in elec-
tromagnetic analysis of these machines, especially for an asynchronous machine.

The separation of variables method can only be applied to field variables in space
and time if the boundaries of the field problem are invariant in time. In the magne-
tostatic analysis of synchronous machines, time invariance of the field is obtained
by rotating the rotor in synchronism with the rotating field produced by the sta-
tor. The field equations are then solved at one instant in time, which is valid at all
instants of time. Some slight variations in the field may occur due to tooth ripple
as the rotor advances through each slot pitch.

In an asynchronous machine, such as the induction motor, the problem can
only be rigorously solved by time-stepping methods using numerical analysis
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techniques [23, 46]. For steady-state asynchronous problems, however, the
time-stepping technique is time-consuming and is not the preferred choice. An
alternate method is to devise a way of separating the space and time variables.
This requires adopting a coordinate system, or frame of reference, which is fixed
to the rotor (a rotating coordinate system), so that the rotor geometry can be made
stationary. The basic problem, however, is to discover how the field equations are
modified in a rotating coordinate system. In this section, we describe the method
of deriving the field equations modified for a rotating coordinate system, and
we present a technique for separating time and space variables. This example
presents the closed-form solution of two-dimensional eddy current problems in
cylindrical structures like a solid rotor induction motor. A closed-form solution
of magnetic fields in induction motors provides a convenient method of field
analysis, which can help in sizing studies, in design and evaluation of perfor-
mance and in the determination of equivalent circuit parameters. Multilayered
cylindrical geometry is used for the example. A two-dimensional parabolic partial
differential equation is solved for each layer. From the analytical solution, eddy
currents and eddy current losses are calculated in the solid conducting region
and compared to the results of a finite element model. A summary of the main
assumptions and limitations of this analysis is that:

● The machine is long and end-effects are neglected;
● The field problem is considered two-dimensional and linear;
● The permeability and conductivity are time invariant and independent of the

field;
● Saturation and hysteresis effects are neglected;
● The stator is laminated and eddy currents are neglected;
● The stator source current is represented by a current sheet on the inner bore of

the stator;
● The rotor is solid and the permeability and conductivity are isotropic and single

valued;
● The field solution is obtained in cylindrical coordinates;
● The vector potential A has only a z-directed component equal to Az, and;
● The flux-density has two components in the radial and peripheral directions: Br

and B𝜃 .

11.2.1 Induction Motor Model

The cross-sectional model of the solid rotor induction motor is shown in
Figure 11.27. Region 1 is the rotor region with a relative permeability of 𝜇r1. This
region is an eddy current region. Torque is created by the rotor magnetic field
which arises from eddy currents in the rotor. Region 2, lying between r1 and
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Figure 11.27 Induction motor model.

r2, is free space with relative permeability of 1.0. This region represents the air
gap between the stator and rotor. Region 3, lying between r2 and r3, is the stator
region with a relative permeability of 𝜇r3. Beyond the stator, where r > r3, is free
space. The stator magnetic field passes through the rotor, crossing the air gap.
The source current density, Js, is applied as a current sheet between the air gap
and the stator core [68, 69].

Region 1 is characterized by the two-dimensional diffusion equation in polar
coordinates.

1
𝜇r1𝜇0

[
1
r
𝜕

𝜕r

(
r 𝜕A
𝜕r

)
+ 1

r2
𝜕2A
𝜕𝜃2

]
= j𝜔𝜎A (11.107)

Using the separation of variables technique described in Appendix B,
Equation (11.107) can be formulated as two equations.

r2 𝜕
2R(r)
𝜕r2 + r 𝜕R(r)

𝜕r
− (j𝜔𝜇r𝜇0𝜎r2 + n2)R(r) = 0 (11.108)

𝜕2Θ(𝜃)
𝜕𝜃2 + n2Θ(𝜃) = 0 (11.109)

where the vector potential solution is given by

A = R(r)Θ(𝜃) (11.110)

Using Equations (11.108) and (11.109) to find R(r) and Θ(𝜃) and substituting into
Equation (11.110), we obtain the solution for the diffusion equation (11.107) as

A =
∞∑

n=1

{
Cn

[
bern(kr) + jbein(kr)

]
+Dn

[
kern(kr) + jkein(kr)

]} [
En cos n𝜃 + Fn sin n𝜃

]
(11.111)
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Because the field at r = 0 is finite and has only cosine components, we have
Dn = 0 and Fn = 0. Therefore,

A =
∞∑

n=1

{
Cn

[
bern(kr) + jbein(kr)

]
cos n𝜃

}
(11.112)

where k =
√
𝜔𝜇r𝜇0𝜎.

Examining each region of the motor, the vector potential is evaluated as follows.
In Region 4, which is the free space region outside the motor, where r > r3,

A4 =
∞∑

n=1
D4nr−n cos n𝜃 (11.113)

In Region 3, which is the stator core region with no eddy currents, where
r2 < r < r3,

A3 =
∞∑

n=1
C3nrn + D3nr−n cos n𝜃 (11.114)

In Region 2, which is the air-gap region where, r1 < r < r2,

A2 =
∞∑

n=1
C2nrn + D2nr−n cos n𝜃 (11.115)

Lastly, in Region 1, which is the eddy current region, where 0 < r < r1,

A1 =
∞∑

n=1
C1n

[
bern(kr) + jbein(kr)

]
cos n𝜃 (11.116)

At each of the region boundaries, the conditions on the normal component of the
B field and on the tangential components of the H field must be satisfied. Specif-
ically, at r = r3, Br3 = Br4, and H𝜃3 = H𝜃4. At r = r2, Br3 = Br2, and H𝜃3 − H𝜃2 = Js.
And, at r = r1, Br2 = Br1, and H𝜃2 = H𝜃1.

From

B = ∇ × A = 1
r
𝜕A
𝜕𝜃

ûr −
𝜕A
𝜕𝜃

û𝜽 (11.117)

expressions for the normal and tangential components of the flux density are
found as

Br =
1
r
𝜕A
𝜕𝜃

(11.118)

B𝜃 =
𝜕A
𝜕r

(11.119)

Evaluating Equations (11.118) and (11.119) to find the field components in each
of the regions of the motor, we find in Region 4,

Br4 =
∞∑

n=1
− nD4nr−n−1 sin n𝜃 (11.120)

H𝜃4 =
∞∑

n=1

n
𝜇0

D4nr−n−1 cos n𝜃 (11.121)
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In Region 3,

Br3 =
∞∑

n=1
− n(C3nrn−1 + D3nr−n−1) sin n𝜃 (11.122)

H𝜃3 =
∞∑

n=1
− n

𝜇r3𝜇0
(C3nrn−1 − D3nr−n−1) cos n𝜃 (11.123)

In Region 2,

Br2 =
∞∑

n=1
− n(C2nrn−1 + D2nr−n−1) sin n𝜃 (11.124)

H𝜃3 =
∞∑

n=1
− n

𝜇0
(C2nrn−1 − D2nr−n−1) cos n𝜃 (11.125)

In Region 1,

Br1 =
∞∑

n=1
−

nC1n

r
[
bern(kr) + j bein(kr)

]
sin n𝜃 (11.126)

H𝜃1 =
∞∑

n=1
− nk

𝜇r1𝜇0
C1n

[
ber′n(kr) + j bei′n(kr)

]
cos n𝜃 (11.127)

Using the boundary conditions at r = r3, one finds
∞∑

n=1
− nD4nr−n−1

3 sin n𝜃 =
n∑
1

− n
(

C3nrn−1
3 + D3nr−n−1

3
)

sin n𝜃 (11.128)

∞∑
n=1

n
𝜇0

D4nr−n−1
3 cos n𝜃 =

∞∑
n=1

− n
𝜇r3𝜇0

(
C3nrn−1

3 − D3nr−n−1
3

)
cos n𝜃 (11.129)

Solving Equations (11.128) and (11.129) we obtain

C3n = (1 − 𝜇r3)
D4n

2
r−2n

3 (11.130)

D3n = (1 + 𝜇r3)
D4n

2
(11.131)

Substituting C3n and D3n into the expressions for Br3 and H𝜃3, we get

Br3 =
∞∑

n=1
−

nD4nr−n−1

2

[
(1 − 𝜇r3)

(
r
r3

)2n

+ (1 + 𝜇r)

]
sin n𝜃 (11.132)

H𝜃3 =
∞∑

n=1
−

nD4nr−n−1

2𝜇r3𝜇0

[
(1 − 𝜇r3)

(
r
r3

)2n

− (1 + 𝜇r)

]
cos n𝜃 (11.133)

A similar analysis follows from using the boundary conditions at r = r1.
∞∑

n=1
− n(C2nrn−1

1 + D2nr−n−1
1 ) sin n𝜃 =
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∞∑
n=1

−
nCn1

r1

[
bern(kr1) + j bein(kr1)

]
sin n𝜃 (11.134)

∞∑
n=1

− n
𝜇0

(C2nrn−1
1 − D2nr−n−1

1 ) cos n𝜃 =

∞∑
n=1

− nk
𝜇r1𝜇0

C1n
[
ber′n(kr1) + j bei′n(kr1)

]
cos n𝜃 (11.135)

Solving for C2n and D2n from the above set of simultaneous equations,

C2n =
C1n

2
r−n+1

1

[
P
r1

+ Q k
𝜇r1

]
(11.136)

D2n =
C1n

2
rn+1

1

[
P
r1

− Q k
𝜇r1

]
(11.137)

where

P = bern(kr1) + j bein(kr1) (11.138)

Q = ber′n(kr1) + j bei′n(kr1) (11.139)

Substituting C2n and D2n into the expressions for Br2 and H𝜃2,

Br2 =
∞∑

n=1
−

nC1n

2

[(
P
r1

+ Q k
𝜇r1

)(
r
r1

)n−1

+
(

P
r1

− Q k
𝜇r1

)(
r
r1

)−n−1
]

sin n𝜃

(11.140)

H𝜃2 =
∞∑

n=1
−

nC1n

2𝜇0

[(
P
r1

+ Q k
𝜇r1

)(
r
r1

)n−1

−
(

P
r1

− Q k
𝜇r1

)(
r
r1

)−n−1
]

cos n𝜃

(11.141)
The following two expressions will be used to help evaluate the boundary

conditions at r = r2.

E =

[
(1 − 𝜇r3)

(
r2

r3

)2n

+ (1 + 𝜇r3)

]
(11.142)

F =

[
(1 − 𝜇r3)

(
r2

r3

)2n

− (1 + 𝜇r3)

]
(11.143)

∞∑
n=1

−nD4n

2
r−n−1

2 E sin n𝜃 =

∞∑
n=1

−
nC1n

2

[(
P
r1

+ Q k
𝜇r1

)(
r2

r1

)n−1

+

(
P
r1

− Q k
𝜇r1

)(
r2

r1

)−n−1
]

sin n𝜃

(11.144)
∞∑

n=1

−nD4n

2𝜇r1𝜇0
r−n−1

2 F cos n𝜃



�

� �

�

11.2 Solid Rotor Electric Machines 345

−
∞∑

n=1
−

nC1n

2𝜇0

[(
P
r1

+ Q k
𝜇r1

)(
r2

r1

)n−1

−

(
P
r1

− Q k
𝜇r1

)(
r2

r1

)−n−1
]

cos n𝜃 =

∞∑
n=1

Js cos n𝜃 (11.145)

Therefore,

D4n2r−n−1
2 E − C1n

[(
P
r1

+ Q k
𝜇r1

)(
r2

r1

)n−1

+

(
P
r1

− Q k
𝜇r1

)(
r2

r1

)−n−1
]
= 0

(11.146)
D4n

𝜇r3
r−n−1

2 F

−
∞∑

n=1
− C1n

[(
P
r1

+ Q k
𝜇r1

)(
r2

r1

)n−1

−

(
P
r1

− Q k
𝜇r1

)(
r2

r1

)−n−1
]
= −2𝜇0Js

(11.147)

From the first equation, we have

C1n =
D4nr−n−1

2 E[(
P
r1
+ Q k

𝜇r1

)(
r2
r1

)n−1
+

(
P
r1
− Q k

𝜇r1

)(
r2
r1

)−n−1
] (11.148)

Substituting Equation (11.148) into Equation (11.147) yields

D4n

𝜇r3
r−n−1

2 F

−
D4nr−n−1

2 E
[(

P
r1
+ Q k

𝜇r1

)(
r2
r1

)n−1
−

(
P
r1
− Q k

𝜇r1

)(
r2
r1

)−n−1
]

(
P
r1
+ Q k

𝜇r1

)(
r2
r1

)n−1
+

(
P
r1
− Q k

𝜇r1

)(
r2
r1

)−n−1
= −2𝜇0Js

(11.149)

D4n =
−2𝜇0Jsrn+1

2
F
𝜇r3

− E (P∕r1+Qk∕𝜇r1)(r2∕r1)n−1−(P∕r1)−Qk∕𝜇r1)(r2∕r1)−n−1

(P∕r1+Qk∕𝜇r1)(r2∕r1)n−1+(P∕r1)−Qk∕𝜇r1)(r2∕r1)−n−1

(11.150)

To simplify the expressions for the integration constants, let

U =
(

P
r1

+ Qk
𝜇r1

)(
r2

r1

)n−1

−

(
P
r1

− Qk
𝜇r1

)(
r2

r1

)−n−1

(11.151)

V =
(

P
r1

+ Qk
𝜇r1

)(
r2

r1

)n−1

+

(
P
r1

− Qk
𝜇r1

)(
r2

r1

)−n−1

(11.152)
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Using U and V in the expression for D4n in Equation (11.150) we get

D4n =
−2𝜇0Jsrn+1

2

F∕𝜇r3 − EU∕V
(11.153)

Likewise, using U and V for the remaining integration constants yields the
following expressions.

C2n =
C1nr−n+1

1

2

(
P
r1

+ Qk
𝜇r1

)
=

−𝜇0JsEr−n+1
1

(
P∕r1 + Qk∕𝜇r1

)
V

(
F∕𝜇r3 − EU∕V

) (11.154)

D2n =
C1nrn+1

1

2

(
P
r1

+ Qk
𝜇r1

)
=

−𝜇0JsErn+1
1

(
P∕r1 − Qk∕𝜇r1

)
V

(
F∕𝜇r3 − EU∕V

) (11.155)

C3n =
(1 − 𝜇r3)D4nr−2n

3

2
=

−(1 − 𝜇r3)𝜇0Jsr−2n
3 rn+1

2

F∕𝜇r3 − EU∕V
(11.156)

D3n =
(1 + 𝜇r3)D4n

2
=

−(1 + 𝜇r3)𝜇0Jsrn+1
2

F∕𝜇r3 − EU∕V
(11.157)

Now that all the integration constants have been determined, the vector poten-
tials, the radial components of the flux-densities and the tangential components
of the magnetic fields in each region are obtained as follows.

A1 =
∞∑

n=1

−2𝜇0JsE
[
bern(kr) + j bein(kr)

]
V

(
F∕𝜇r3 − EU∕V

) cos n𝜃 (11.158)

Br1 =
∞∑

n=1

2n𝜇0JsE
[
bern(kr) + j bein(kr)

]
Vr

(
F∕𝜇r3 − EU∕V

) sin n𝜃 (11.159)

H𝜃1 =
∞∑

n=1

2nJsEk
[
ber′n(kr) + j bei′n(kr)

]
V𝜇r1

(
F∕𝜇r3 − EU∕V

) cos n𝜃 (11.160)

A2 =
∞∑

n=1

−𝜇0JsEr1

[(
P
r1
+ Qk

𝜇r1

)(
r
r1

)n
−

(
P
r1
− Qk

𝜇r1

)(
r
r1

)−n]
V

(
F∕𝜇r3 − EU∕V

) cos n𝜃

(11.161)

Br2 =
∞∑

n=1

n𝜇0JsE
[(

P
r1
+ Qk

𝜇r1

)(
r
r1

)n−1
+

(
P
r1
− Qk

𝜇r1

)(
r
r1

)−n−1
]

V
(

F∕𝜇r3 − EU∕V
) sin n𝜃

(11.162)

H𝜃2 =
∞∑

n=1

nJsE
[(

P
r1
+ Qk

𝜇r1

)(
r
r1

)n−1
+

(
P
r1
− Qk

𝜇r1

)(
r
r1

)−n−1
]

V
(

F∕𝜇r3 − EU∕V
) cos n𝜃

(11.163)
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A3 =
∞∑

n=1

−𝜇0Jsrn+1
2

[
(1 − 𝜇r3)r−2n

3 rn + (1 + 𝜇r3)r−n]
F∕𝜇r3 − EU∕V

cos n𝜃 (11.164)

Br3 =
∞∑

n=1

n𝜇0Jsrn+1
2

[
(1 − 𝜇r3)r−2n

3 rn−1 + (1 + 𝜇r3)r−n−1]
F∕𝜇r3 − EU∕V

sin n𝜃 (11.165)

H𝜃3 =
∞∑

n=1

nJsrn+1
2

[
(1 − 𝜇r3)r−2n

3 rn−1 − (1 + 𝜇r3)r−n−1]
V𝜇r3

(
F∕𝜇r3 − EU∕V

) cos n𝜃 (11.166)

A4 =
∞∑

n=1

−2𝜇0Jsr2

F∕𝜇r3 − EU∕V

(
r
r2

)−n

cos n𝜃 (11.167)

Br4 =
∞∑

n=1

2n𝜇0Js

F∕𝜇r3 − EU∕V

(
r
r2

)−n−1

sin n𝜃 (11.168)

H𝜃4 =
∞∑

n=1

−2nJs

F∕𝜇r3 − EU∕V

(
r
r2

)−n−1

cos n𝜃 (11.169)

Now that we have an expression for the vector potential, we can find the eddy
currents and the power loss. The eddy current density is found as

Je = −j𝜔𝜎A1 =
∞∑

n=1

2j𝜔𝜇0𝜎JsE
[
bern(kr) + j bein(kr)

]
V

[
F
𝜇r3

− EU
V

] cos(n𝜃) (11.170)

Figure 11.28 illustrates the variation of eddy current in the rotor as a function of
the radius.

P = ∫
JeJ∗e
2𝜎

dv (11.171)

where 𝜔 = s𝜔f , f is the fundamental frequency; s is the per unit slip, Js =
𝜎Vb

l
; 𝓁

is the stack length of the stator, and Vb is the bar voltage.
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Figure 11.28 Eddy current density variation in the solid rotor with rotor radius.
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After deriving the current density Equation (11.170), the power loss in eddy cur-
rent region can be obtained by using Equation (11.171) in polar coordinates:

P = 2p∫
2𝜋

0 ∫
l

0 ∫
r1

0

JeJ∗e
2𝜎

rdrd𝜃dz (11.172)

Substituting Je from the Equation (11.170) and its conjugate into Equation
(11.172) for power loss, one obtains, after some algebraic manipulation

P = 4ps2𝜔2𝜇2
o𝜎J2

s E2 ∫ 2𝜋
0 ∫ l

0 ∫ r1
0

[
ber2

n(kr) + jbei2
n(kr)

]
cos2n𝜃 rdrd𝜃dz

VV∗
[

F
𝜇r3

− EU
V

] [
F
𝜇r3

− EU
V

]∗
(11.173)

Solving for the integral in Equation (11.173) using reference [43], the loss expres-
sion becomes

P = 4ps2𝜔2𝜇2
o𝜎J2

s E2𝜋l
r1
k

[
bern(kr1)bei′n(kr1) + ber′n(kr1)bein(kr1)

]
VV∗

[
F
𝜇r3

− EU
V

] [
F
𝜇r3

− EU
V

]∗ (11.174)

11.2.2 Finite Element Model

A finite element analysis of the solid rotor motor was performed to verify the
closed-form solution. The same magnetic material is used in both the rotor and
the stator (𝜇r1 = 𝜇r3 = 750). The flux density crossing the air gap is calculated for
different operating conditions of the motor. Since the rotor is solid, the conductiv-
ity is defined for this region (𝜎 = 3 × 106S m−1). The current source of the motor
is defined as the fundamental of the stator current [68].

Js = Js cos n𝜃 (11.175)

The line current density is applied to the model and is shown on the motor model
with the finite element mesh in Figure 11.29.

The supply frequency is 50HZ. The phase currents of the motor are shown in
Figure 11.30 in per unit.

The solid rotor induction machine was analyzed at steady state for different
speeds. The equi-flux lines for different slip values are given in Figure 11.31. The
skin effect and phase delay caused by the eddy currents can be seen at different
slips.

The flux density variation in the air gap for different slip values is presented in
Figure 11.32. The four-pole distribution is apparent.

In the analytical model of the solid rotor machine, we computed the fundamen-
tal of the flux density. Figure 11.33 shows the normal component of the flux density
and its fundamental. The flux density was calculated by the finite element method.
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Figure 11.29 Mesh model of the motor with the injected current density.
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Figure 11.30 FEM results of the phase currents.
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Figure 11.31 Eddy currents for different slips.
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Figure 11.32 Flux density in the air gap for different slip values.
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Figure 11.33 Air-gap flux density and its first harmonic with FEM.
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Figure 11.34 Comparison of the analytical and numerical results of the flux density
around the air gap.
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Table 11.1 Current density and power loss comparison.

Method Je (per unit) Power loss (per unit)

Finite element method 1.00 1.00
Analytical method 1.08 1.12

The finite element results for the solid rotor induction motor are compared with
the closed-form solution in Figure 11.34. The finite element result is compared
with the analytical result for air-gap flux density which agree quite well.

The finite element and analytical results of eddy current density and eddy cur-
rent loss for the solid rotor are given in Table 11.1.

11.3 Squirrel Cage Induction Motor Analysis
by the Finite Element Method

The squirrel cage induction motor is perhaps the most widely used electric motor
due to its low cost and high reliability. It is also a motor in which eddy currents play
a major role. Not only are eddy currents important in determining the stray losses,
such as losses in the stator and rotor laminations (see Section 2.1), and the stator
copper losses, which include skin effect and proximity effect (see Section 2.3) but
the eddy currents are responsible for producing the main torque of the motor. The
squirrel cage has no power supply attached to it.2

The finite element method, described in Section 6.1, is a very popular technique
to analyze induction machines in particular and rotating machines in general. It
is versatile and can deal with complicated geometry and nonlinear nonhomoge-
neous materials. It is also common practice to couple the electric circuits in the
motor directly to the finite element field model by means of the magnetic vector
potential [23]. The analysis can be done in the time domain with a moving rotor
which involves re-meshing at each time step [23]. This is rather expensive and
typically many cycles must be computed until a steady state is reached.

The analysis presented here is done in the steady-state ac regime, sometimes
referred to as magneto-dynamic. The analysis is done using phasor variables for
the magnetic vector potential and the circuit current and voltage.

2 There is another type of induction motor which has a winding on the rotor, the wound-rotor
induction motor, and this winding is connected through slip rings either to a variable impedance
or to a power supply for the case of a doubly-fed induction motor. These motors can also be
treated by the finite element method but are not considered here.
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Using a time harmonic excitation with an angular frequency 𝜔, the diffusion
equation in terms of magnetic vector potential is given in Equation (11.176).

∇ ×
(

1
𝜇
∇ × A

)
+ j𝜎𝜔A + 𝜎∇V = 0 (11.176)

Ohm’s law is written as:

J = −j𝜎𝜔A − 𝜎∇V (11.177)

where A is the magnetic vector potential, 𝜇 is the permeability of the material, 𝜎
is the conductivity of the material, and J is the current density.

In the case of the induction motor, where the rotor is operating at slip s, the rotor
currents are subjected to the pulsation frequency s𝜔, which must be considered in
the governing Equations (11.176) and (11.177).

The finite element solution gives the complex vector potential, A, at the nodes.
The eddy current density is [23, 46]

J = −j𝜎𝜔A (11.178)

The instantaneous eddy current loss can be written in terms of current density

P= ∫ ∫ ∫Ω

1
𝜎

J2dxdydz (11.179)

To understand the methodology used here, we can refer to the classical induc-
tion machine equivalent circuit and the method used to refer the rotor quantities
to the stator. In a standard three-phase induction motor, the stator conductors
are wound in slots in a laminated magnetic core. The stator currents produce a
rotating magnetic field in the air gap whose fundamental rotates at synchronous
speed. This field is approximately sinusoidally distributed in space. It is this field
that induces voltage and current on the rotor. When the rotor is at standstill, the
frequency of current on the rotor and stator are the same and the machine resem-
bles a transformer with a short-circuited secondary (the rotor). However, at rated
speed the rotor is rotating near synchronous speed. The per-unit variation from
synchronous speed is called the slip and is defined as

s =
𝜔s − 𝜔m

𝜔s
(11.180)

where 𝜔s and 𝜔m are the synchronous speed and mechanical speed in radi-
ans/second, respectively.

An observer on the rotor, therefore, sees a time variation of magnetic field at a
frequency which is the difference between synchronous speed and the mechanical
speed of the rotor. This is equivalent to multiplying the stator frequency by the
slip. For example, if the stator is excited with 60 Hz current and the rotor has a
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Figure 11.35 Equivalent circuit showing an ideal transformer.

slip of s = 0.03, then the frequency on the rotor is 60 × 0.03 = 1.8 Hz. This can be
represented by the equivalent circuit shown in Figure 11.35.

The ideal transformer, shown in the middle of the figure, represents the elec-
tromagnetic coupling between the rotor and stator. The two share the common
air-gap flux. To find the EMF on the rotor, we first apply the turns ratio between
stator and rotor. This is indicated by the symbol a. This represents the effective
turns of the stator divided by the effective turns on the rotor as required by
Faraday’s law. This turns ratio is not important to us in the finite element context,
as the correct number of turns is included in the finite element analysis and the
solution of the field problem will automatically account for the turns. In the
induction motor case, we also have the issue that the frequency on the rotor is s𝜔
and therefore, since the flux is common, the induced voltage must be multiplied
by the slip. The secondary current is then

I2 =
E2

r2 + js𝜔s𝓁2
(11.181)

If we now write the secondary EMF in terms of the primary EMF, we have

I2 =
sE1

r2 + js𝜔s𝓁2
(11.182)

where the EMF is multiplied by the slip. In order to refer the secondary quantities
to the primary, effectively getting rid of the ideal transformer and connecting the
primary and secondary together, we can divide both numerator and denominator
by the slip. This gives

I2 =
E1

r2∕s + j𝜔s𝓁2
(11.183)

This process results in the standard representation of the induction motor shown
in Figure 11.36.
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Figure 11.36 Equivalent circuit of induction motor with rotor quantities referred to the
stator.

Now the rotor quantities are referred to the stator both by the turns ratio (auto-
matically done in the finite element model) and by the frequency. In the circuit, we
divide the rotor resistance by the slip, and in the finite element model, we divide all
rotor resistivities by the slip. The validity of this step can be justified by considering
the skin depth on the rotor. In the physical device, we have on the rotor

𝛿 =
√

2
s𝜔𝜇𝜎

(11.184)

So we see that if we multiply the physical rotor conductivity by the slip (or divide
the resistivity by the slip) we obtain the same skin depth as in the physical rotor, so
that the resistance, inductance, and losses will be the same. It is this process that
allows us to model the induction motor operating at speed in steady state in the
frequency domain.

Some approximations are necessary due to the use of phasor analysis. In the
physical induction motor, other frequencies exist apart from the fundamental fre-
quency on the stator and slip frequency on the rotor. Due to the layout of the
stator winding, there will be traveling harmonics of flux in the air gap. The most
important are the 5th and 7th and the 11th and 13th. These harmonics rotate in
the air gap, with the 5th and 11th moving backward or opposite in direction to
the rotor, and the 7th and 13th rotating in the direction of the rotor. These rotat-
ing harmonics induce current on the rotor at a frequency dependent on the rotor
speed and the speed and direction of the harmonic waves themselves. These effects
can not be included in our phasor analysis, since only the fundamental frequency
is considered. There are also effects which are caused by the rotor motion. An
observer on the rotor will pass by the stator slots and teeth at a frequency deter-
mined by the number of stator slots per pole and the rotor mechanical speed.
This ripple in the flux density will induce currents at the tooth passing frequency
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Figure 11.37 The B − H curve for the rotor.

and its harmonics. These effects are not included in our magneto-dynamic anal-
ysis. Also, since the rotor is not spinning, the three stator phases see a fixed rotor
slot-tooth pattern. This means that each stator phase will have a somewhat differ-
ent impedance and slightly different current. This is normally a small effect, but
if it is important, then several solutions with the rotor in different positions over a
tooth pitch can be made and then averaged.

Another factor that should be considered is the impedance of the end wind-
ings. The finite element analysis is two-dimensional and as such we consider only
axial current and magnetic field in the plane of the cross section. The end turns
on the rotor and stator are added as “lumped” circuit elements. For the stator, the



�

� �

�

11.3 Squirrel Cage Induction Motor Analysis by the Finite Element Method 357

Tesla

(E6) A m–1

0 0.001

1.5

1

0.5

0

0.002 0.003 0.004 0.005

Figure 11.38 The B − H curve for the stator.

values are found from normal design formulae [70, 71]. For the rotor, the resis-
tance and inductance of the end ring segments are inserted between the squirrel
cage bars [72].

The machine used for the studies is a three-phase, 4-pole, Y-connected squirrel
cage rotor induction motor. The motor has 36 stator slots and 28 rotor slots. The
saturation curves for the rotor and stator laminations are shown in Figures 11.37
and 11.38. Figure 11.39 shows the cross section of the motor. Figure 11.40 shows
one pole of the motor which will be modeled. Figures 11.41 and 11.42 show the
finite element mesh for one pole and an enlarged view including a section of the
air gap. Figure 11.43 shows the flux plot for rated load.
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Figure 11.39 The geometry of the motor.

Figure 11.40 Enlargement of the motor geometry.
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Figure 11.41 The finite element mesh of the motor.

Figure 11.42 Enlargement of the air-gap region.
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Figure 11.43 Equi-flux lines for rated load laminated rotor.
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12

Transformer Losses

12.1 Foil Wound Transformer

As a practical example of an application in which one conductor dimension is
much larger than the skin depth and another is much smaller than a skin depth,
we consider the case of a foil wound or sheet wound transformer [16, 17], see
Figure 12.1. In this problem, the sheets, usually made of copper or aluminum, are
quite thin in the radial direction and long in the axial direction. The radial field in
the transformer window will produce circulating currents in the sheet. In a trans-
former, we expect most of the flux in the winding region to be in the axial direction.
Since the foil winding is very thin in the direction normal to the flux, the eddy cur-
rents produced by the axial flux are less of a concern. We can get a good qualitative
understanding of the circulating current by using the analysis which we have done
in rectangular coordinates for conducting plates.

The circulating current problem can be treated as one-dimensional because we
are ignoring any variation in current across the conductor. Using symmetry around
the mid-plane, we can write the eddy current density as

J(y) =
H0

𝛿
e−

(
h
2
−y

)
∕𝛿e

j
(

𝜋

4
−

h
2 −y
𝛿

)
(12.1)

For copper at 60 Hz, we have 𝛿 = 0.00853 m. Considering a sheet of height 0.2 m,
we see, in Figure 12.2, the magnitude of the circulating current density vs. height
for half of the sheet. By evaluating the square of the current density and integrat-
ing over the length, we find that almost 90% of the loss occurs in the first skin
depth.

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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Figure 12.1
Foil wound
transformer
schematic.

We have only considered the circulating current. If we add
the load current back in, we see, in Figure 12.3, the magnitude
of the total current. The reader will note that, except for the
region of around 2–3 skin depths from the end, the current den-
sity is fairly constant and equal to the applied current density,
1.0 A m−2 in this case.

We also note that at around three skin depths from the end
of the winding (27 mm), the current density magnitude has
a minimum. This can be explained by considering the phase
shift of the eddy currents. We have seen that the phase shifts
one radian in one skin depth. This means that in 𝜋 skin depths,
the phase shift is 180∘ and the current reverses direction. The
eddy current is then 180∘ out to phase with the load current.
In looking at the current density magnitude in Figure 12.3,
this is just where the minimum occurs. We also see that in
the region of 2–3 skin depths from the end of the winding, the
losses can be more than a factor of 2 greater than the average
loss in the conductor which should be considered in the
design.
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Figure 12.2 Magnitude of eddy current density for 60 Hz and copper.
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Figure 12.3 Scaled total current magnitude.

12.2 Phase Shifting Transformers

We have discussed the losses in machine windings and the theory of stranded con-
ductors [16, 17]. This will now be applied to a multi-phase rectifier transformer
typical in motor drive systems. In a two-winding transformer, the flux pattern in
the region of the copper winding is mostly vertical (axial), except near the winding
ends where the flux turns radially. This is illustrated in Figure 12.4.

When using stranded windings, the strands are oriented as shown in the figure,
with the narrow dimension in the radial direction and the wide dimension in the
axial direction. In this way, for most of the winding, the losses due to eddy currents
will be rather small. Near the ends, we will see an increase in eddy losses since the
radial flux will impinge on the wide dimension of the strand. Once a field solution
is found, the calculation of eddy losses is done using the resistance limited formula
(see Section 2.1) for the loss per unit depth

W =
𝜔2B2

0d3

24𝜌
(12.2)
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Detail of
conductor strands

Figure 12.4 Flux map of two winding transformer.

Figure 12.5 3-Phase, 36 pulse phase-shifting rectifier transformer.

The axial direction of flux in the two-winding transformer is due to the fact that
the primary currents and secondary currents are 180∘ out of phase. In the 3-phase,
36 pulse phase-shifting rectifier transformer shown in Figure 12.5, there are 18 low
voltage windings in the extended delta secondary. Each winding has current which
is phase displaced by 10∘. These are arranged in a complicated way in the trans-
former which results in the secondary winding having many phase changes as we
go up the winding. This produces a significant radial flux. If the same type of strand
is used in this configuration, the losses due to the radial flux can get quite high.
There is no closed-form solution that can be used to find the field in this case. The
finite element model can give the designer the radial and axial flux components
and then we can use Equation (12.2) and find the losses in the different sections
in the winding.
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Many manufacturers will use continuously transposed conductors (CTC) which
are small strands that are transposed as the conductor travels through the trans-
former. Figures 12.6 and 12.7 show the flux distribution in the transformer.

The example illustrates that even though we can use relatively simple expression
to find the losses, these expressions require the field distribution, and the field
distribution is extremely complicated and requires numerical methods to describe.

Figure 12.6 Real part of the flux
distribution in transformer.

Figure 12.7 Imaginary part of the
flux distribution in transformer.
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Appendix A

Bessel Functions

The differential equation known as Bessel’s equation is given as [42]

x2 d2y
dx2 + x

dy
dx

+ (x2 + 𝜈2)y = 0 (A.1)

The solution of this equation is given as

y = AJ𝜈(x) + BY𝜈(x) (A.2)

where A and B are constants and J and Y are Bessel functions of the first and
second kind respectively. The order of the Bessel function is 𝜈 = 0,1, 2,….

By substituting x = jx into Bessel’s equation, we obtain the Modified Bessel
equation

x2 d2y
dx2 + x

dy
dx

− (x2 + 𝜈2)y = 0 (A.3)

which has solutions

y = CI𝜈(x) + DK𝜈(x) (A.4)

where I and K are modified Bessel functions of the first and second kind, respec-
tively.

A generalized form of the modified Bessel equation is written as

x2 d2y
dx2 + x

dy
dx

− (𝛽2x2 + 𝜈2)y = 0 (A.5)

whose solution is now

y = CI𝜈(𝛽x) + DK𝜈(𝛽x) (A.6)

where 𝛽 is a constant.
In Section 3.1, we obtained an expression for the magnetic flux density using the

time-harmonic form of the diffusion equation as

r2 d2B𝜃

dr2 + r
dB𝜃

dr
− (1 + j𝜔𝜇𝜎r2)B𝜃 = 0 (A.7)

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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The reader can check that this is a modified Bessel equation, and our solutions
are modified Bessel functions of order 1. Since the coefficient 𝛽 contains j =

√
−1,

we can find the real and imaginary parts of the Bessel functions.
We have

I𝜈(x) = j−𝜈J𝜈( jx) = J𝜈( j3∕2x) (A.8)

Then the solution becomes

y = CJ𝜈( j3∕2x) + DK𝜈( j1∕2x) (A.9)

This gives us the Kelvin functions

ber𝜈 =ℜe J𝜈( j3∕2x)
bei𝜈 =ℑm J𝜈( j3∕2x)

J𝜈(j3∕2x) = ber𝜈(x) + j bei𝜈(x) (A.10)

Similarly

ker𝜈 =ℜe j−𝜈K𝜈( j1∕2x)
kei𝜈 =ℑm j−𝜈K𝜈( j1∕2x)

j−𝜈K𝜈( j1∕2x) = ker𝜈(x) + j kei𝜈(x) (A.11)
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Appendix B

Separation of Variables

Separation of variables is a technique that can be used with linear homogeneous
equations [14]. In our examples in Chapters 2 and 3, we have used this method to
find the solutions to the diffusion equation with Dirichlet boundary conditions.
The diffusion equation involves variables that are a function of time and of space.
In the separation of variables technique, we assume that the solution can be
written as a product of two functions. One is a function of time but not of space,
and one a function of space but not of time.

B.1 One-Dimensional Separation of Variables
in Rectangular Coordinates

For a one-dimensional example in Cartesian coordinates, we have

𝜕F
𝜕t

= 𝛾2 𝜕
2F
𝜕x2 (B.1)

Assume now that

F(x, t) = X(x)T(t) (B.2)

There are many functions that satisfy Equation (B.1). Since the equation is linear,
the sum of all the solutions is also a solution.

Substituting Equation (B.2) into (B.1)

X(x)T′(t) = 𝛾2X ′′(x)T(t) (B.3)

which gives
X ′′(x)
X(x)

= 1
𝛾2

T′(t)
T(t)

(B.4)

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
© 2024 The Institute of Electrical and Electronics
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The left-hand side of the equation is only a function of x and not of t. The
right-hand side of the equation is only a function of t and not a function of x. In
order for these to be equal, each side must be a constant. So we have

X ′′(x)
X(x)

= 1
𝛾2

T′(t)
T(t)

= k (B.5)

We now have ordinary differential equations instead of partial differential
equations. The solution to Equation (B.5) (for k ≠ 0) is

X(x) = c1e
√

kx + c2e−
√

kx (B.6)

or we can use

X(x) = A sin(𝛾x) + B cos 𝛾x (B.7)

and

T(t) = c3e𝛾2t (B.8)

Since the constants c1, c2, and c3 are arbitrary, we have a large number of solu-
tions and since the system is linear, the sum of all these solutions is also a solution.

F(x, t) =
∑

i
ciXi(x)Ti(t) (B.9)

To eliminate many of these solutions, we now apply the boundary conditions and
initial conditions. The process may be slightly different from this point on and will
have to be adapted in order to match these conditions depending on the specific
application.

As an example, let us consider a bar of length 𝓁 in which the top and bottom
are held at a value F(0, t) = F(𝓁, t) = 0. Let us also assume that the bar at t = 0− is
initially at a uniform value F0. F then becomes

F(x, t) =
∞∑

m=1

(
Am sin 𝛾mx + Bm cos 𝛾mx

)
e−𝛾2t (B.10)

The only way that the boundary conditions can be satisfied is that

Bm = 0, 𝛾m = m𝜋

𝓁
(B.11)

Then initially, for 0 < x < 𝓁

F0 =
∞∑

m=1
Am sin

(m𝜋x
𝓁

)
(B.12)

We now use the orthogonality properties of the sine functions and multiply
equation (B.12) by sin(p𝜋x∕𝓁) and integrate from 0 to 𝓁. The result is that all terms
m ≠ p vanish, as do all terms with even m. This gives

Am =
4F0

m𝜋
m = 1,3, 5,… (B.13)



�

� �

�

B.2 Two-Dimensional Separation of Variables in Cylindrical Coordinates 371

The final solution is then

F(x, t) =
4F0

𝜋

∞∑
n=0

1
2n + 1

e−𝛾(2n+1)2𝜋2t∕𝓁2 sin
(
(2n + 1)𝜋x

𝓁

)
(B.14)

We can use m = 2n + 1, so the summation goes from 0 to ∞.

B.2 Two-Dimensional Separation of Variables
in Cylindrical Coordinates

As another example, consider the two-dimensional time-harmonic diffusion
equation in cylindrical coordinates,

𝜕2A
𝜕r2 + 1

r
𝜕A
𝜕r

+ 1
r2

𝜕2A
𝜕𝜃2 = j𝜔𝜇r𝜇0𝜎As (B.15)

We shall express the magnetic vector potential, A, as the product of two func-
tions: one of r and one of 𝜃 respectively, such that

A = R(r)Θ(𝜃) (B.16)

Substituting Equation (B.16) into Equation (B.15) yields

Θ(𝜃)𝜕
2R(r)
𝜕r2 + Θ(𝜃)1

r
𝜕R(r)
𝜕r

+ R(r)
r2

𝜕2Θ(𝜃)
𝜕𝜃2 = j𝜔𝜇r𝜇0𝜎R(r)Θ(𝜃) (B.17)

Dividing through by R(r)Θ(𝜃), Equation (B.17) becomes

1
R(r)

𝜕2R(r)
𝜕r2 + 1

R(r)
1
r
𝜕R(r)
𝜕r

+ 1
Θ(𝜃)

1
r2

𝜕2Θ(𝜃)
𝜕𝜃2 = j𝜔𝜇r𝜇0𝜎 (B.18)

or
r2

R(r)
𝜕2R(r)
𝜕r2 + r

R(r)
𝜕R(r)
𝜕r

+ 1
Θ(𝜃)

𝜕2Θ(𝜃)
𝜕𝜃2 = j𝜔𝜇r𝜇0𝜎r2 (B.19)

Equation (B.19) can be split into two equations, one as a function of r only and
the other as a function of 𝜃 only, so that

r2 𝜕
2R(r)
𝜕r2 + r 𝜕R(r)

𝜕r
− (j𝜔𝜇r𝜇0𝜎r2 + n2)R(r) = 0 (B.20)

𝜕2Θ(𝜃)
𝜕𝜃2 + n2Θ(𝜃) = 0 (B.21)

Equation (B.20) is a Bessel equation of order n, whose solution is of the form

R(r) =
∞∑

n=1
Cn[bern(kr) + j bein(kr)] + Dn[kern(kr) + j kein(kr)] (B.22)

where k = 𝜔𝜇r𝜇0𝜎
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The solution of Equation (B.21) is given as

Θ(𝜃) =
∞∑

n=1
En cos n𝜃 + Fn sin n𝜃 (B.23)

Combining Equations (B.22) and (B.23), the solution for the vector potential, A,
is obtained as

A = R(r)Θ(𝜃)

=
∞∑

n=1

(
Cn[bern(kr) + j bein(kr)] + Dn[kern(kr) + j kein(kr)]

)
× [En cos n𝜃 + Fn sin n𝜃] (B.24)

In free space, where the conductivity is zero, Equation (B.15) reduces to
Laplace’s equation

𝜕2A
𝜕r2 + 1

r
𝜕A
𝜕r

+ 1
r2

𝜕2A
𝜕𝜃2 = 0 (B.25)

The solution of this equation is obtained by separation of variables as before and
is given by

A =
∞∑

n=1
[Cnrn + Dnr−n][En cos n𝜃 + Fn sin n𝜃] (B.26)
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Appendix C

The Error Function

The error function is a solution to the diffusion problem in rectangular coordi-
nates [40]. We define the error function as

erf(x) = 2√
𝜋 ∫

x

0
e−𝛾2 d𝛾 (C.1)

From Equation (C.1), we can see that

erf(0) = 0
erf(∞) = 1

erf(−x) = −erf(x) (C.2)

A couple of approximations can be useful. For small values of x,

erf(x) = 2√
𝜋

∞∑
k=0

−1kx2k+1

(2k + 1)k!
(C.3)

For large values of x, we can evaluate the series

erf(x) = 1 − e−x2√
𝜋

(
1
x
− 1

2x3 + 1 ⋅ 3
22x5

− 1 ⋅ 3 ⋅ 5
23x7

· · ·
)

(C.4)

We also define the complementary error function as

erfc(x) = 1 − erf(x) (C.5)

Eddy Currents: Theory, Modeling, and Applications, First Edition.
Sheppard J. Salon, M. V. K. Chari, Lale T. Ergene, David
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Appendix D

Replacing Hollow Conducting Cylinders with Line Currents
Using the Method of Images

We would like to replace two hollow current-carrying cylinders of radii a and
separated by 2h, as shown in Figure D.1, with equivalent line currents so that the
fields exterior to the cylinders are the same as those produced by the cylinders
themselves.

Referring to Figure D.2, we have a cylindrical coordinate system and a long axial
current directed in the positive z direction.

From Ampere’s law, we find that the magnetic flux density from the long wire
with current I is

B𝜃 =
𝜇0I
2𝜋r

û𝜃 (D.1)

Recalling that the magnetic vector potential is defined such that ∇ × A = B, and
for this application, the flux density has only a 𝜃 component and does not vary in
the z or 𝜃 directions, we find

−
𝜕Az

𝜕r
=

𝜇0I
2𝜋r

(D.2)

This implies that

A = −
𝜇0I
2𝜋

ln r ûz (D.3)

In the application we are interested in, the cylindrical conductor carries current
in a thin layer at the surface and the flux at the surface is tangential. In terms
of the magnetic vector potential, we require that the surface of each cylinder be
a flux line. This is equivalent to enforcing the condition that the surface is an
equipotential.

Referring to Figure D.3, we define the geometry. Assuming that the equivalent
line currents are on the x axis and are separated by a distance 2h′, we now show
that the resulting equipotentials are circular surfaces. If we can find conditions
such that the circles are centered at the center of the physical cylinders, the unique-
ness theorem allows us to replace the cylinders by the line sources.
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Figure D.1 Hollow cylinders and equivalent line currents.
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Figure D.3 Coordinates of the equivalent current filaments.
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At a particular observation point, P, the potential is

A =
−𝜇0I

2𝜋
ln r1 +

𝜇0I
2𝜋

ln r2 =
−𝜇0I

2𝜋
ln

r1

r2
(D.4)

From Equation (D.4), we can see that for a surface of constant potential, the ratio
r1
r2

must be constant. Let us assume that the constant vector potential is Ak. Then
we have

r2

r1
= e

2𝜋Ak
𝜇0 I (D.5)

From Figure D.3, we have

r2
1 = (h′ − x)2 + y2 (D.6)

and

r2
2 = (h′ + x)2 + y2 (D.7)

For a particular value of the potential, we can describe the loci of points corre-
sponding to a constant value as

C2 =
r2

2

r2
1
=

(x + h′)2 + y2

(x − h′)2 + y2 (D.8)

This can be written as

x2 − 2xh′ C2 + 1
C2 − 1

+ h ′2 + y2 = 0 (D.9)

Comparing Equation (D.9) to the expression for a circle of radius a located on the
x axis at a point x = h, we have

(x − h)2 + y2 − a2 = x2 − 2xh + (h2 − a2) + y2 = 0 (D.10)

To make Equations (D.9) and (D.10) equal, we must have

−2h = −2h′ C2 + 1
C2 − 1

(D.11)

and

h′2 = h2 − a2 (D.12)

This is the result we have used in Section 8.1.
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Appendix E

Inductance of Parallel Wires

The flux density produced by a long conductor is found from Ampere’s law as

B𝜃 =
𝜇0

2𝜋r
Iz (E.1)

The total flux between points at a distance r1 and r2 produced by current I is

𝜆 =
𝜇0I
2𝜋

ln
r2

r1
(E.2)

To find the flux linkage of each conductor produced by any other conductor, we
refer to Figure E.1.

We want to find the flux linkage of conductor k produced by current in conductor
i up to point P. We see that flux line 1 and flux line 2 do not link this path, while
flux lines 3 and 4 do. By considering the figure, we note that the flux between
the conductor k and point P is the same flux crossing the line from conductor i
from dk,P to point P. Therefore, we can use Equation (E.2) using the distance from
conductor i to point P.

To include all of the flux, we let P go to infinity. This causes a problem since
the logarithm also goes to infinity as the argument goes to infinity. In fact, the
inductance of an isolated wire is infinite. There must always be a return circuit.
We will use the properties of the logarithm to address this issue. We can write
Equation (E.2) for conductor 1 as

λ1 =
𝜇0

2𝜋

(
I1 ln

(d1,P

r′1

)
+ I2 ln

(d2,P

d1,2

)
… In ln

(dN,P

d1,N

))
(E.3)

We can now break the expression into two separate terms.

λ1 =
𝜇0

2𝜋
(

I1 ln
(

d1,P
)
+ I2 ln

(
d2,P

)
… In ln

(
dN,P

))
−
(

I1 ln
(

r′1
)
+ I2 ln

(
d1,2

)
… In ln

(
d1,N

))
(E.4)

With the assumption that the sum of all currents is zero, we have

I1 + I2 + I3 + · · · + IN = 0 (E.5)
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Figure E.1 Flux linkage of parallel wires.

We can now add the following expression which is equal to zero.

I1 ln d1,P + I2 ln d1,P + I3 ln d1,P + · · · + IN ln d1,P = 0 (E.6)

Recombining, we have for Equation (E.4)

λ1 =
𝜇0

2𝜋
(

I1 ln
(

d1,P∕d1,P
)
+ I2 ln

(
d2,P∕d1,P

)
+ · · · + In ln

(
dN,P∕d1,P

))
−
(

I1 ln
(

r′1
)
+ I2 ln

(
d1,2

)
… In ln

(
d1,N

))
(E.7)

As we let the point P go to infinity and the distance becomes much larger than
the spacing between conductors, the fraction di,P

d1,P
approaches 1 and the natural

logarithm of 1 is zero. The first term then vanishes and we are left with the flux
linkage of conductor 1 as

λ1 =
𝜇0

2𝜋
(

I1 ln
(
1∕r′1

)
+ I2 ln

(
1∕d1,2

)
+ · · · + In ln

(
1∕d1,N

))
(E.8)

The term r′ is the geometric mean radius (GMR), which is the effective radius of
the conductor that corrects for the internal flux linkage. For circular conductors,
r′ = 0.7788r where r is the conductor radius. For square conductors, the GMR is
0.44705a, where a is the dimension of a side of the square (see Section 7.1). We
repeat the process for all conductors and obtain a system of equations of the form

(λ) = (L)(I) (E.9)
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Appendix F

Shape Functions for First-Order Hexahedral Element

In this appendix, we present the shape functions for a first-order, hexahedral
element shown in Figure F.1. For the development of these shape functions,
the index, i, represents a node number. So, for this 8-node element, i will be
1, 2,… , 8.

In the local coordinate system of the element (𝜉, 𝜂, λ), the shape function for
each node can be written as

𝜁i =
(1 + 𝜉i𝜉)(1 + 𝜂i𝜂)(1 + λiλ)

8
(F.1)

where

𝜉i =
{
+1 i = 1, 2, 5, 6
−1 i = 3, 4, 7, 8

(F.2)

𝜂i =
{
+1 i = 2, 3, 6, 7
−1 i = 1, 4, 5, 8

(F.3)

λi =
{
+1 i = 5, 6, 7, 8
−1 i = 1, 2, 3, 4

(F.4)

The derivatives of each function with respect to each direction of the local system
are

𝜕𝜁i

𝜕𝜉
=

𝜁i(1 + 𝜂i𝜂)(1 + λiλ)
𝜕𝜉

(F.5)

𝜕𝜁i

𝜕𝜂
=

𝜁i(1 + 𝜉i𝜉)(1 + λiλ)
𝜕𝜉

(F.6)

𝜕𝜁i

𝜕λ
=

𝜁i(1 + 𝜂i𝜂)(1 + 𝜉i𝜉)
𝜕𝜉

(F.7)

The global coordinates (x, y, z) are found from the shape functions.

x =
n∑

i=1
𝜁ixi y =

n∑
i=1

𝜁iyi z =
n∑

i=1
𝜁izi (F.8)
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Figure F.1 First-order hexahedral
element.

And, the derivatives of the global coordinates with respect to the local coordinates
are

𝜕x
𝜕𝜉

=
n∑

i=1

𝜕𝜁i

𝜕𝜉
xi

𝜕y
𝜕𝜉

=
n∑

i=1

𝜕𝜁i

𝜕𝜉
yi

𝜕z
𝜕𝜉

=
n∑

i=1

𝜕𝜁i

𝜕𝜉
zi (F.9)

𝜕x
𝜕𝜂

=
n∑

i=1

𝜕𝜁i

𝜕𝜂
xi

𝜕y
𝜕𝜂

=
n∑

i=1

𝜕𝜁i

𝜕𝜂
yi

𝜕z
𝜕𝜂

=
n∑

i=1

𝜕𝜁i

𝜕𝜂
zi (F.10)

𝜕x
𝜕λ

=
n∑

i=1

𝜕𝜁i

𝜕λ
xi

𝜕y
𝜕λ

=
n∑

i=1

𝜕𝜁i

𝜕λ
yi

𝜕z
𝜕λ

=
n∑

i=1

𝜕𝜁i

𝜕λ
zi (F.11)

The Jacobian is

|J| =
||||||||||||||

𝜕x
𝜕𝜉

𝜕y
𝜕𝜉

𝜕z
𝜕𝜉

𝜕x
𝜕𝜂

𝜕y
𝜕𝜂

𝜕z
𝜕𝜂

𝜕x
𝜕λ

𝜕y
𝜕λ

𝜕z
𝜕λ

||||||||||||||
(F.12)
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b
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central difference 199
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conduction current 22
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coupled circuits 39, 323
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discretization 225
displacement current 22
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implicit integration 206
inductance 214, 323, 379
inductance matrix 39
inductance of parallel lines 379
induction heating 279, 285
induction motor 311, 323, 326, 340
initial conditions 205
inrush current 323
integral equations 255, 270

j
Joule loss 212

k
Kelvin functions 148, 161, 368
Kirchhoff’s current law 207
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l
ladder network 207, 208, 328
lamination 45, 113
Laplace’s equation 101, 197, 260,

372
Laplacian 125
layered geometry 94
Lenz’s law 5
light load adjustment 297
liquid metal stirring 303
Litz wire 162, 318
load adjust screw 296
local support 255
Lorentz force 18, 214, 297, 303, 308
loss tangent 23

m
machine end region 112
machine slots 311
magnetic core 45
magnetic diffusion 34
magnetic energy 209, 214
magnetic permeance 210
magnetic scalar potential 188
magnetic thermal coupling 289
magnetic vector potential 138, 186, 192,

248
magnetic vector potential interface

condition 193
mass matrix 232
material interface 202
matrix assembly 228
maximum power transfer 12, 13
Maxwell stress 214
method of images 375
minimum loss 110
mixed formulation 190
mixed scalar potential 190
modified Bessel functions 138, 177,

248, 266, 367
modified vector potential 196
motional voltage 19

moving conductors 19
multi-layered plates 94

n
Neumann boundary condition 204
Newton-Coates 112
nonlinear 68
normal distribution 33, 38
numerical integration 205
numerical method 219

o
odd symmetry 11
ordinary differential equation 35

p
packing factor 162, 163
parabolic differential equation 340
permeance 210
phase shift 32
phase shifting transformer 363
phasor 24, 27
plate loss 59, 81
Poisson’s equation 260
post processing 211
potential difference 14
power loss 110, 317, 347
Poynting vector 25, 60, 62, 68, 82, 209,

222, 236, 245
complex 209

probability 32
propagation constant 23
proximity effect 8, 39, 41, 59
pulse functions 268

r
reactance 134, 328
reactance limited 11
rectangular conductor 115
rectangular hollow conductor 318
rectangular slot 311
reduced scalar potential 188, 189
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390 Index

resistance 134
resistance limited 11, 45, 144, 155,

167
resistance matrix 39
Ritz method 219
rotating machine 339
rotor bar 323

s
saturation 68
saturation curve 129
saturation flux density 69
self field 8
separation of variables 101, 119, 125,

177, 340, 369
shape function 227, 249, 255, 381
sheet wound transformer 361
shielding 151, 167, 175
shielding factor 151, 153, 167
Simpson’s rule 112
skin depth 7, 25, 27, 52
slice method 323
slip 311
soil temperature 31
solid rotor 175, 339
source convention 17
space variation of field 83
specific heat 30, 287
sphere 167
squirrel cage 323
stiffness matrix 228, 232
Stoke’s theorem 22
stranded conductor 161, 363
strands 311
superposition 58
superposition of losses 11
surface impedance 175, 288
surface integral equations 255
surface resistance 26

t
Taylor series 200
thermal conductivity 30, 286
thermal diffusivity 30
thermal equivalent circuit 30
thermal resistivity 30
thin cylinder 169
thin wire 100
torque 291, 323
total magnetic potential 188
transformer

foil or sheet wound 361
phase shifting 363

transformer voltage 19
transient diffusion 118, 169
transient shielding 169
transient skin depth 121
transpose 311
transverse field 157
trapezoidal slot 313
turn-off transient 122, 126
turn-on transient 126, 127

u
unbiased random walk 32
uniqueness 187

v
variational method 219, 220
vector potential 332
virtual work 294
volume integral equations 270

w
watt-hour meter 291
wave attenuation 26
wave equation 23
wave impedance 25, 26
wave number 23, 25, 95
weak coupling 289
weighting function 219
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