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Preface 

Fractional Calculus is a branch of Mathematics which deals with the derivatives and 
integrals of arbitrary (non-integer) order. Though the subject is as old as conventional Cal-
culus, the applications are rather recent. The researchers Grunwald, Letnikov, L’Hospital, 
Leibnitz, Hardy, Caputo, Mainardi, and others did pioneering work in this field. The key 
feature of the models involving fractional derivative is the flexibility in the choice of 
fractional order. Such models are proved appropriate in modeling the processes show-
ing an intermediate behavior. The fractional order operators are nonlocal in contrast with 
the classical integer-order operator. This nonlocality plays a vital role in modeling the 
memory and hereditary properties in the natural systems. 

This book is devoted to the existence, uniqueness, and stability results for various 
classes of problems with different conditions. All of the problems in this book deal with 
fractional differential equations and some form of extension of the well-known Hilfer frac-
tional derivative which unifies the Riemann-Liouville and Caputo fractional derivatives. 
We made certain that each chapter contains results that may be regarded as a generaliza-
tion or a partial continuation of the prior chapter’s results. Classical and new fixed point 
theorems associated with the concept of measure of noncompactness in Banach spaces, as 
well as several generalizations of Gronwall’s lemma, are employed as tools. Each chapter 
ends with a section devoted to remarks and bibliographical suggestions, and all abstract 
results are substantiated with illustrations. 

This monograph adds to the current literature on fractional calculus by providing orig-
inal content. All of the chapters include some of the authors’ most current research work 
on the topic. This book is appropriate for use in advanced graduate courses, seminars, 
and research projects in numerous applied sciences.
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1Introduc tion 

Fractional calculus is a field in mathematical analysis which is a generalization of integer 
differential calculus that involves real or complex order derivatives and integrals [ 10– 14, 25, 
28, 43, 50– 52]. There is a long history of this concept of fractional differential calculus. One 
might wonder what meaning could be attributed to the derivative of a fractional order, that 
is d

n y 
dxn , where n is a fraction. Indeed, in correspondence with Leibniz, L’Hopital considered 

this very possibility. L’Hopital wrote to Leibniz in 1695 asking, “What if n be 1 2 ?” The study 
of the fractional calculus was born from this question. Leibniz responded to the question, 
“d 

1 
2 x will be equal to x dx  : x√

. This is an apparent paradox from which, one day, useful 
consequences will be drawn.” 

Over the years, many well-known mathematicians have assisted in this theory. Thus, 30 
September 1695 is the precise date of birth of the “fractional calculus”! Consequently, the 
fractional calculus has its roots in the work of Leibnitz, L’Hopital (1695), Bernoulli (1697), 
Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier (1822), Abel 
(1823), Liouville (1832), Riemann (1847), Gr ünwald (1867), Letnikov (1868), Nekrasov 
(1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz (1922), P. 
Levy(1923), Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953), J. L. Lions 
(1959), Liverman (1964), and several more have developed the fundamental principle of 
fractional calculus. 

Ross held the first fractional calculus conference at the University of New Haven in June 
of 1974 and edited its proceedings [118]. Thereafter, Spanier published the first monograph 
devoted to “Fractional Calculus” in 1974 [107]. In recent research in theoretical physics, 
mechanics, and applied mathematics; the integrals and derivatives of non-integer order; 
and the fractional integrodifferential equations have seen numerous applications. Samko, 
Kilbas, and Marichev’s exceptionally detailed encyclopedic-type monograph was published 
in Russian in 1987 and in English in 1993 [138], (for more details, see [ 95]). The works 
devoted substantially to fractional differential equations are the book of Miller and Ross 
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2 1 Introduction

[ 99], of Podlubny [111], by Kilbas et al. [ 85], by Diethelm [ 67], by Ortigueira [108], by 
Abbas et al. [ 14], and by Baleanu et al. [ 42]. 

The origins of fixed point theory, as it is very well-known, go to the system of successive 
approximations (or the iterative method of Picard) used to solve certain differential equa-
tions. Roughly speaking, from the process of successive approximations, Banach obtained 
the fixed point theorem. The fixed point theory has been immense and independent of the 
differential equations in the last few decades. But, lately, the outcomes of fixed points have 
turned out to be the instruments for the differential equation’s solutions. Recently, differen-
tial fractional order equations have been shown to be an effective instrument for researching 
multiple phenomena in diverse fields of science and engineering, such as electrochemistry, 
electromagnetics, viscoelasticity, and economics. It is very popular in the literature to suggest 
a solution to fractional differential equations by adding various forms of fractional deriva-
tives; see, e.g., [ 7– 9, 13, 14, 17, 19– 21, 25, 28, 34, 43, 46, 58, 83, 84, 162]. In the other 
hand, there are more findings concerned with the issues of boundary value for fractional 
differential equations [ 25, 40, 48, 49, 59, 162]. 

In 1940, Ulam [152, 153] raised the following problem of the stability of the functional 
equation (of group homomorphisms): “Under what conditions does it exist an additive 
mapping near an approximately additive mapping ?” 

Let G 1 be a group and let G 2 be a metric group with a metric d(·, ·). Given any ∈    >  
0, does there exist a δ >  0 such that if a function h : G 1 → G 2 satisfies the inequality 
d(h ( xy  ), h ( x)h ( y )) < δ for all x, y ∈ G 1 , then there exists a homomorphism H : G 1 → G 2 
with d(h ( x), H ( x)) < ∈    for all x ∈ G 1 ? 

A partial answer was given by Hyers [ 80] in 1941, and between 1982 and 1998 Rassias 
[116, 117] established the Hyers-Ulam stability of linear and nonlinear mappings. Subse-
quently, many works have been published in order to generalize Hyers results in various 
directions; see, for example, [ 10, 13, 51, 52, 80, 89, 96, 114, 115, 119, 141, 153]. 

Many physical phenomena have short-term perturbations at some points caused by exter-
nal interventions during their evolution. Adequate models for this kind of phenomenon 
are impulsive differential equations. Two types of impulses are popular in the literature: 
instantaneous impulses (whose duration is negligible) and non-instantaneous impulses (these 
changes start impulsively and remain active on finite initially given time intervals). There 
are mainly two approaches for the interpretation of the solutions of impulsive fractional 
differential equations: one by keeping the lower bound of the fractional derivative at the 
fixed initial time and the other by switching the lower limit of the fractional derivative at the 
impulsive points. The statement of the problem depends significantly on the type of frac-
tional derivative. Fractional derivatives have some properties similar to ordinary derivatives 
(such as the derivative of a constant) which lead to similar initial value problems as well as 
similar impulsive conditions (instantaneous and non-instantaneous). The class of problems 
for fractional differential equations with abrupt and instantaneous impulses is vastly studied, 
and different topics on the existence and qualitative properties of solutions are considered, 
[ 50, 69, 154]. In pharmacotherapy, instantaneous impulses cannot describe the dynamics of
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certain evolution processes. For example, when one considers the hemodynamic equilibrium 
of a person, the introduction of the drugs in the bloodstream and the consequent absorption 
by the body are a gradual and continuous process. In the literature, many types of initial 
value problems and boundary value problems for different fractional differential equations 
with instantaneous and non-instantaneous impulses are studied (see, for example, [ 1, 3– 8, 
15, 24, 39, 50, 78, 87, 150, 155, 157]). 

The measure of noncompactness, which is one of the fundamental tools in the theory of 
nonlinear analysis, was initiated by the pioneering articles of Alvàrez [ 35] and Mönch [101] 
and was developed by Banas and Goebel [ 45] and many researchers in the literature. The 
applications of the measure of noncompactness can be seen in the wide range of applied 
mathematics: theory of differential equations (see [ 22, 109] and references therein). Recently, 
in [ 13, 35, 38, 45], the authors applied the measure of noncompactness to some classes of 
differential equations in Banach spaces. 

Nonlocal conditions were initiated by Byszewski [ 60] when he proved the existence 
and uniqueness of mild and classical solutions of nonlocal Cauchy problems. The nonlocal 
condition can be more useful than the standard initial condition to describe some physical 
phenomena. Fractional differential equations with nonlocal conditions have been discussed 
in [ 18, 26, 105] and references therein. 

Many articles and monographs have been written recently in which the authors investi-
gated numerous results for systems with different types of differential and integral equations 
and inclusions and various conditions. One may see the papers [ 16, 30, 36, 47, 74, 77, 92, 
120, 121, 135, 136, 140] and the references therein. 

One of the primary topics of this monograph is a new generalization of the well-known 
Hilfer fractional derivative, as well as a generalization of Grönwall’s lemma and the many 
types of Ulam stability. In fact, this form of fractional derivative appears in the majority of the 
problems covered in this book. In order to define this new derivative, we took the publications 
of Diaz et al. [ 66] into account, where they presented the k-gamma and k-beta functions 
and demonstrated a number of their properties, many of which can also be found in [ 63, 
102–104]. In addition, we were inspired by Sousa’s numerous publications [143–149], in 
which they established another sort of fractional operator known as the ψ-Hilfer fractional 
derivative with respect to a particular function and provided several essential properties 
about this type of fractional operator. Our work on this monograph may be viewed as a 
continuation and generalization of the preceding studies, i.e., several results in the fractional 
calculus literature. 

In the following, we give an outline of this monograph organization, which consists of 
five chapters defining the contributed work. 

Chapter 2 provides the notation and preliminary results, descriptions, theorems, and other 
auxiliary results that will be needed for this study. In the first section, we give some nota-
tions and definitions of the functional spaces used in this book. In the second section, we 
give the definitions of the elements from fractional calculus theory, then we present some 
necessary lemmas, theorems, and properties. In the third section, we give some properties
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to the measure of noncompactness. We finish the chapter in the last section by giving all the 
fixed point theorems that are used throughout the book. 

Chapter 3 deals with some existence and Ulam stability results for a class of initial and 
boundary value problems for differential equations with generalized Hilfer-type fractional 
derivative in Banach spaces. The chapter is divided into six sections. We start with Sect. 3.1, 
which provides an introduction and some motivations, then finish the chapter with Sect. 3.6, 
which contains some remarks and suggestions. The main results of the chapter begin with 
Sect. 3.2; in it, we provide some existence results for the boundary value problem of the 
following generalized Hilfer-type fractional differential equation: 

⎧ 
⎨ 

⎩ 

( 
ρ D α,β 

a + u 
) 

(t) = f 
( 
t, u (t), 

( 
ρ D α,β 

a + u 
) 

(t) 
) 

, t ∈ (a , b ], 
l 
( 

ρ J 1−γ 
a + u 

) 
(a + ) + m 

( 
ρ J 1−γ 

a + u 
) 

(b ) = φ, 

where ρ D α,β 
a + ,

ρ J 1−γ 
a + are the generalized Hilfer-type fractional derivative of order α ∈ (0 , 1) 

and type β ∈ [0 , 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, φ ∈ E , 0 < a < b < +∞, f : (a , b ] ×  E × E → E is a given function where 
(E, || · ||) is a Banach space and l, m are reals with l + m /= 0. The results are based on 
the fixed point theorems of Darbo and Mönch associated with the technique of measure of 
noncompactness. Next, we prove that our problem is generalized Ulam-Hyers-Rassias stable. 
An example is included to show the applicability of our results. In Sect. 3.3, we prove some  
existence, uniqueness, and Ulam-Hyers-Rassias stability results for the following initial 
value problem for implicit nonlinear fractional differential equations and k-generalized ψ-
Hilfer fractional derivative: 

⎧ 
⎨ 

⎩ 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) = f 
( 
t, x(t), 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) 
) 

, t ∈ (a , b ], 
( 
J k(1−ξ),k ;ψ 
a + x 

) 
(a + ) = x 0, 

where H k D α,β ;ψ 
a + , J k (1−ξ),k ;ψ 

a + are the k-generalized ψ-Hilfer fractional derivative of order 
α ∈ (0 , 1) and type β ∈ [0 , 1], and  k-generalized ψ-fractional integral of order k(1 − ξ), 
where ξ = 1 k (β(k − α) + α), x 0 ∈ R, k > 0, and  f ∈ C([a , b ] ×  R2, R). The result is based 
on the Banach contraction principle. In addition, two examples are given for justifying our 
results. Section 3.4 deals with some existence and Ulam-Hyers-Rassias stability results for 
the following initial value problem for implicit nonlinear fractional differential equations 
and generalized ψ-Hilfer fractional derivative in Banach spaces: 

⎧ 
⎨ 

⎩ 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) = f 
( 
t, x(t), 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) 
) 

, t ∈ (a , b ], 
( 
J k(1−ξ),k ;ψ 
a + x 

) 
(a + ) = x 0,
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where f ∈ C([a , b ] ×  E × E, E). The results are based on fixed point theorems of Darbo 
and Mönch associated with the technique of measure of noncompactness. Illustrative exam-
ples are the subject of the last part. In Sect. 3.5, we prove some existence, uniqueness, and 
k-Mittag-Leffler-Ulam-Hyers stability results for the following boundary value problem for 
implicit nonlinear fractional differential equations and k-generalized ψ-Hilfer fractional 
derivative: 

⎧ 
⎨ 

⎩ 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) = f 
( 
t, x(t), 

( 
H 
k D α,β;ψ 

a + x 
) 

(t) 
) 

, t ∈ (a , b ], 
c1 

( 
J k (1−ξ),k ;ψ 
a + x 

) 
(a + ) + c2 

( 
J k (1−ξ),k ;ψ 
a + x 

) 
(b ) = c3 , 

where f ∈ C([a , b ] ×  R2, R) and c1 , c2 , c3 ∈ R such that c1 + c2 /= 0. Finally, several 
examples are given for justifying our results and addressing the different specific cases 
of our problem. 

The aim of Chap. 4 is to prove some existence, uniqueness, and Ulam-Hyers-Rassias 
stability results for a class of boundary value problem for nonlinear implicit fractional 
differential equations with impulses and generalized Hilfer-type fractional derivative. We 
base our arguments on some relevant fixed point theorems combined with the technique 
of measure of noncompactness. Examples are included to show the applicability of our 
results for each section. The first result is provided in Sect. 4.2; in it, we establish existence, 
uniqueness, and Ulam-Hyers-Rassias results to the boundary value problem with nonlinear 
implicit generalized Hilfer-type fractional differential equation with impulses: 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

( 
ρ D α,β 

t+ 
k 

u 

) 
(t) = f 

( 
t, u (t), 

( 
ρ D α,β 

t+ 
k 

u 

) 
(t) 

) 
; t ∈ Jk , k = 0 , . . . ,  m, 

( 
ρ J 1−γ 

t+ 
k 

u 

) 
(t+ 
k ) = 

( 
ρ J 1−γ 

t+ 
k −1 

u 

) 
(t− 
k ) + Lk (u (t

− 
k )); k = 1, . . . ,  m, 

c1 
( 

ρ J 1−γ 
a + u 

) 
(a + ) + c2 

( 
ρ J 1−γ 

t+m 
u 
) 

(b ) = c3 , 

where ρ D α,β 
t+ 
k 

,ρ J 1−γ 
t+ 
k 

are the generalized Hilfer fractional derivative of order α ∈ (0 , 1) 
and type β ∈ [0 , 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, c1 , c2 , c3 are reals with c1 + c2 /= 0, Jk := (tk , tk +1 ]; k = 0 , . . . ,  m , a = t0 < 
t1 < · · ·  < tm < tm +1 = b < ∞, u (t+ 

k ) = lim
∈    →0+ 

u (tk + ∈    ) and u (t− 
k ) = lim

∈    →0− 
u (tk + ∈    ) rep-

resent the right- and left-hand limits of u (t) at t = tk , f : (a , b ] ×  R × R → R is a given 
function, and Lk : R → R; k = 1, . . . ,  m are given continuous functions. The results are 
based on the Banach contraction principle and Krasnoselskii’s and Schaefer’s fixed point 
theorems. In Sect. 4.3, we examine the existence and the Ulam stability of the solutions 
to the boundary value problem with nonlinear implicit generalized Hilfer-type fractional 
differential equation with instantaneous impulses:
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⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

( 
ρ D α,β 

t+ 
k 

u 

) 
(t) = f 

( 
t, u (t), 

( 
ρ D α,β 

t+ 
k 

u 

) 
(t) 

) 
; t ∈ Jk , k = 0 , · · ·  , m, 

( 
ρ J 1−γ 

t+ 
k 

u 

) 
(t+ 
k ) = 

( 
ρ J 1−γ 

t+ 
k −1 

u 

) 
(t− 
k ) + φk (u (t

− 
k )); k = 1, · · ·  , m, 

c1 
( 

ρ J 1−γ 
a + u 

) 
(a + ) + c2 

( 
ρ J 1−γ 

t+m 
u 
) 

(b ) = c3 , 

where ρ D α,β 
t+ 
k 

, ρ J 1−γ 
t+ 
k 

are the generalized Hilfer fractional derivative of order α ∈ (0 , 1) and 
type β ∈ [0 , 1] and generalized Hilfer fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, c1 , c2 are reals with c1 + c2 /= 0, Jk := (tk , tk +1 ]; k = 0 , . . . ,  m , a = t0 < 
t1 < · · ·  < tm < tm +1 = b < ∞, u (t+ 

k ) = lim
∈    →0+ 

u (tk + ∈    ) and u (t− 
k ) = lim

∈    →0− 
u (tk + ∈    ) rep-

resent the right- and left-hand limits of u (t) at t = tk , c3 ∈ E , f : (a , b ] ×  E × E → E is 
a given function, and φk : E → E ; k = 1, . . . ,  m are given continuous functions, where 
(E, || · ||) is a Banach space. The results are based on fixed point theorems of Darbo and 
Mönch associated with the technique of measure of noncompactness. Examples are included 
to show the applicability of our results for each case. 

Chapter 5 deals with some existence, uniqueness, and Ulam stability results for a class of 
initial and boundary value problems for nonlinear implicit fractional differential equations 
with non-instantaneous impulses and generalized Hilfer-type fractional derivative. The tools 
employed are some suitable fixed point theorems combined with the technique of measure 
of noncompactness. We provide illustrations to demonstrate the applicability of our results 
for each section. After the introduction section, in Sect. 5.2, we present some existence 
results to the initial value problem with nonlinear implicit generalized Hilfer-type fractional 
differential equation with non-instantaneous impulses: 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) = f 

( 
t, u (t), 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) 

) 
; t ∈ I k , k = 0 , . . . ,  m, 

u (t) = gk (t, u (t)); t ∈ Ĩ k , k = 1, . . . ,  m,( 
ρ J 1−γ 

a + u 
) 

(a + ) = φ0, 

where ρ D α,β 
s + 
k 

, ρ J 1−γ 
a + are the generalized Hilfer fractional derivative of order α ∈ (0 , 1) 

and type β ∈ [0 , 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − 
αβ), respectively, φ0 ∈ R , I k := (sk , tk +1 ]; k = 0 , . . . ,  m , Ĩ k := (tk , sk ]; k = 1, . . . ,  m , a = 
t0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · ·  ≤  sm −1 < tm ≤ sm < tm +1 = b < ∞, u (t+ 

k ) = lim
∈    →0+ 

u (tk + ∈    ) and u (t− 
k ) = lim

∈    →0− 
u (tk + ∈    ) represent the right- and left-hand limits of u (t) at 

t = tk , f : (a , b ] ×  R × R → R is a given function, and gk : Ĩ k × R → R; k = 1, . . . ,  m, 

are given continuous functions such that 

( 
ρ J 1−γ 

s + 
k 

gk 

) 
(t, u (t)) 

| 
|t =sk = φk ∈ R . The results 

are based on the Banach contraction principle and Schaefer’s fixed point theorem. In 
Sect. 5.2.2, we give a generalization of the previous result to nonlocal impulsive fractional
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differential equations. More precisely, we present some existence results for the following 
nonlocal problem: 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) = f 

( 
t, u (t), 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) 

) 
; t ∈ I k , k = 0 , . . . ,  m, 

u (t) = gk (t, u (t)); t ∈ Ĩ k , k = 1, . . . ,  m,( 
ρ J 1−γ 

a + u 
) 

(a + ) + ξ(u ) = φ0, 

where ξ is a continuous function. In Sect. 5.3, we establish some existence results to the 
initial value problem of nonlinear implicit generalized Hilfer-type fractional differential 
equation with non-instantaneous impulses: 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) = f 

( 
t, u (t), 

( 
ρ D α,β 

s + 
k 
u 

) 
(t) 

) 
; t ∈ I k , k = 0 , . . . ,  m, 

u (t) = gk (t, u (t)); t ∈ Ĩ k , k = 1, . . . ,  m, 

( 
ρ J 1−γ 

a + u 
) 

(a + ) = φ0, 

where ρ D α,β 
s + 
k 

, ρ J 1−γ 
a + are the generalized Hilfer-type fractional derivative of order α ∈ (0 , 1) 

and type β ∈ [0 , 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, ρ >  0 , φ0 ∈ E , I k := (sk , tk +1 ]; k = 0 , . . . ,  m , Ĩ k := (tk , sk ]; k = 1, . . . ,  m , 
a = s0 < t1 ≤ s1 < t2 ≤ s2 < · · ·  ≤  sm −1 < tm ≤ sm < tm +1 = b < ∞, u (t+ 

k ) = lim
∈    →0+ 

u (tk + ∈    ) and u (t− 
k ) = lim

∈    →0− 
u (tk + ∈    ) represent the right- and left-hand limits of u (t) at 

t = tk , f : I k × E × E → E is a given function, and gk : Ĩ k × E → E ; k = 1, . . . ,  m are 

given continuous functions such that 

( 
ρ J 1−γ 

s + 
k 

gk 

) 
(t, u (t)) 

| 
|t =sk = φk ∈ E , where  (E, || · ||) 

is a real Banach space. The results are based on fixed point theorems of Darbo and Mönch 
associated with the technique of measure of noncompactness. Examples are included to show 
the applicability of our results. Section 5.4 presents some existence and stability results to 
the boundary value problem with nonlinear implicit generalized Hilfer-type fractional dif-
ferential equation with non-instantaneous impulses: 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

( 
α D α,β 

τ + 
i 
x 

) 
(t) = f 

( 
t, x(t), 

( 
α D α,β 

τ + 
i 
x 

) 
(t) 

) 
; t ∈ Ji , i = 0 , . . . ,  m, 

x(t) = ψi (t, x(t)); t ∈ J̃i , i = 1, . . . ,  m, 
φ1 

( 
α J 1−γ 

a + x 
) 

(a + ) + φ2 

( 
α J 1−γ 

m + x 
) 

(b ) = φ3 , 

where α D α,β 
τ + 
i 

,α J 1−γ 
a + are the generalized Hilfer fractional derivative of order α ∈ (0 , 1) 

and type β ∈ [0 , 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − 
αβ), respectively, φ1 , φ2, φ3 ∈ R ,φ1 /= 0, Ji := (τi , ti +1 ]; i = 0 , . . . ,  m , J̃i := (ti , si ]; i = 
1, . . . ,  m , a = t0 = τ0 < t1 ≤ τ1 < t2 ≤ τ2 < · · ·  ≤  τm −1 < tm ≤ τm < tm +1 = b < ∞,
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x(t+ 
i ) = lim

∈    →0+ 
x(ti + ∈    ) and x(t− 

i ) = lim
∈    →0− 

x(ti + ∈    ) represent the right- and left-hand limits 

of x(t) at t = ti , f : (a , b ] ×  R × R → R is a given function, and ψi : J̃i × R → R; i = 

1, . . . ,  m are given continuous functions such that 
( 

α J 1−γ 
τ + 
i 

ψi 

) 
(t, x(t)) 

| 
|t =τi = ci ∈ R . 

The results are based on the Banach contraction principle and Krasnoselskii’s fixed point 
theorem. Further, for the justification of our results, we provide two examples.



2Preliminary Background 

In this chapter, we discuss the necessary mathematical tools, notations, and concepts we need 
in the succeeding chapters. We look at some essential properties of fractional differential 
operators. We also review some of the basic properties of measures of noncompactness 
and fixed point theorems which are crucial in our results regarding fractional differential 
equations. 

2.1 Notations and Functional Spaces 

In this section, we will provide all the notations and definitions of the functional spaces that 
are considered as fundamental and fixed throughout all the preceding chapters. Indeed, these 
are mentioned only one time in this section. 

Let 0 < a < b, J = (a, b] where J̄ = [a, b]. Consider the following parameters α, β, γ 
satisfying γ = α + β − αβ and 0 <  α, β, γ  <  1. Let ξ = 1 k (β(k − α) + α) where k > 0. 
Let ρ >  0. 

Let ψ be an increasing and positive function on J̄ such that ψ ' is continuous on J̄ . 

2.1.1 Space of Continuous Functions 

By C( J̄ , R) we denote the Banach space of all continuous functions from J̄ into R with the 
norm

||u||∞ = sup{|u(t)| :  t ∈ J̄ }. 
Let (E, || · ||) be a Banach space. By C( J̄ , E) we denote the Banach space of all contin-

uous functions from J̄ into E with the norm 
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||u||E = sup{||u(t)|| :  t ∈ J̄ }. 

ACn(J , R), Cn(J , R) are the spaces of n-times absolutely continuous and n-times contin-
uously differentiable functions on J , respectively. 

2.1.2 Spaces of Integrable Functions 

Consider the space X p c (a, b), (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue 
measurable functions f on J̄ for which || f ||X p c < ∞, where the norm is defined by

|| f ||X p c =
(} b 

a 
|tc f (t)|p dt  

t

) 1 
p 

, (1 ≤ p < ∞, c ∈ R). 

In particular, when c = 1 p , the space X 
p 
c (a, b) coincides with the L p(a, b) space: X p 1 

p 
(a, b) = 

L p(a, b). 
By L1(J ), we denote the space of Bochner-integrable functions f : J −→ E with the 

norm

|| f ||1 =
} b 

a
|| f (t)||dt . 

Consider the space X p ψ (a, b), (1 ≤ p ≤ ∞) of those real-valued Lebesgue measurable 

functions g on J̄ for which ||g||X p ψ 
< ∞, where the norm is defined by

||g||X p ψ 
=
(} b 

a 
ψ '(t)|g(t)|pdt

) 1 
p 

, 

where ψ is an increasing and positive function on [a, b] such that ψ ' is continuous on J̄ . In  
particular, when ψ(x) = x, the space X p ψ (a, b) coincides with the L p(a, b) space. 

2.1.3 Spaces of Continuous Functions with Weight 

We consider the weighted spaces of continuous functions 

Cγ,ρ  (J ) =
{
u : J → E :

(
tρ − aρ 

ρ

)1−γ 
u(t) ∈ C

)
J̄ , E

(}
, 

and 

Cn 
γ,ρ  (J ) =

{
u ∈ Cn−1 : u(n) ∈ Cγ,ρ  (J )

}
, n ∈ N, 

C0 
γ,ρ  (J ) = Cγ,ρ  (J ),
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with the norms

||u||Cγ,ρ  = sup 
t∈ J̄

||||||||||
(
tρ − aρ 

ρ

)1−γ 
u(t)

|||||||||| , 

and

||u||Cn 
γ,ρ  = 

n−1e
k=0

||u(k)||∞ + ||u(n)||Cγ,ρ  . 

We define the spaces 

Cα,β 
γ,ρ  (J ) =

{
u ∈ Cγ,ρ  (J ), ρDα,β 

a+ u ∈ Cγ,ρ  (J )
}

, 

and 
Cγ 

γ,ρ  (J ) =
{
u ∈ Cγ,ρ  (J ), ρDγ 

a+u ∈ Cγ,ρ  (J )
}
, 

where ρDα,β 
a+ and ρDγ 

a+ are fractional derivatives defined in the following sections. 
Consider the weighted Banach space 

Cγ ;ψ (J ) =
{
u : J → R : t → (ψ(t) − ψ(a))1−γ u(t) ∈ C( J̄ , R)

}
, 

with the norm
||u||Cγ ;ψ = sup 

t∈ J̄

||(ψ(t) − ψ(a))1−γ u(t)
|| , 

and 

Cn 
γ ;ψ (J ) =

{
u ∈ Cn−1(J ) : u(n) ∈ Cγ ;ψ (J )

}
, n ∈ N, 

C0 
γ ;ψ (J ) = Cγ ;ψ (J ), 

with the norm

||u||Cn 
γ ;ψ 

= 
n−1e
i=0

||u(i)||∞ + ||u(n)||Cγ ;ψ . 

The weighted space Cα,β 
γ ;ψ (J ) is defined by 

Cα,β 
γ ;ψ (J ) =

{
u ∈ Cγ ;ψ (J ), HDα,β;ψ 

a+ u ∈ Cγ ;ψ (J )
}

where HDα,β;ψ 
a+ is a fractional derivative defined in the following sections. 

Consider the weighted Banach space 

Cξ ;ψ (J ) =
{
x : J → E : t → (ψ(t) − ψ(a))1−ξ x(t) ∈ C( J̄ , E)

}
,



12 2 Preliminary Background

with the norm
||x||Cξ ;ψ = sup 

t∈ J̄

||||(ψ(t) − ψ(a))1−ξ x(t)
|||| , 

and 

Cn 
ξ ;ψ (J ) =

{
x ∈ Cn−1(J ) : x (n) ∈ Cξ ;ψ (J )

}
, n ∈ N, 

C0 
ξ ;ψ (J ) = Cξ ;ψ (J ), 

with the norm

||x||Cn 
ξ ;ψ 

= 
n−1e
i=0

||x (i )||∞ + ||x (n)||Cξ ;ψ . 

The weighted space Cα,β 
ξ,k;ψ (J ) is defined by 

Cα,β 
ξ ;ψ (J ) =

{
x ∈ Cξ ;ψ (J ), H k D

α,β;ψ 
a+ x ∈ Cξ ;ψ (J )

}
, 

where H k D
α,β;ψ 
a+ is defined in the sequel. 

2.2 Special Functions of the Fractional Calculus 

2.2.1 Gamma Function 

Undoubtedly, one of the basic functions of the fractional calculus is Euler’s gamma func-
tion Γ(z), which generalizes the factorial n! and allows n to take also non-integer and even 
complex values. Leonhard Euler was a Swiss mathematician, physicist, astronomer, geog-
rapher, logician, and engineer who pioneered and inspired discoveries in a wide range of 
mathematical fields, including analytic number theory, complex analysis, and infinitesimal 
calculus. He pioneered much of today’s mathematical terminology and notation, including 
the notion of a mathematical function. In addition, he is well-known for his contributions to 
mechanics, fluid dynamics, optics, astronomy, and music theory. 

Daniel Bernoulli then developed the gamma function for complex numbers with a positive 
real part. Daniel Bernoulli was a Swiss mathematician and physicist who was a member of 
the famous Bernoulli family from Basel. He is most known for his mathematical applications 
to mechanics, notably fluid mechanics, as well as his groundbreaking work in probability 
and statistics. 

Definition 2.1 ([111]) The gamma function is defined via a convergent improper integral:

Γ(z) =
} +∞ 

0 
t z−1e−t dt, 

where z > 0.
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One of the basic properties of the gamma function is that it satisfies the following functional 
equation:

Γ(z + 1) = zΓ(z), 

so, for positive integer values n, the gamma function becomes Γ(n) = (n − 1)! and thus 
can be seen as an extension of the factorial function to real values. A useful particular value 
of the function: Γ( 1 2 ) =

√
π is used throughout many examples in this monograph. 

2.2.2 k-Gamma and k-Beta Functions 

In 2005, Diaz and Petruel [ 66] have defined new functions called k-gamma and k-beta 
functions given by

Γk (α) =
} ∞ 

0 
tα−1e− tk 

k dt, α  >  0, k > 0 

and 

Bk (α, β) = 
1 

k

} 1 

0 
t 

α 
k −1(1 − t) 

β 
k −1dt . 

It is noteworthy that if k → 1 then Γk (α) → Γ(α) and Bk (α, β) → B(α, β). We have also  
the following useful relations:

Γk (α) = k 
α 
k −1Γ

(α 
k

)
, Γk (α + k) = αΓk (α), Γk (k) = Γ(1) = 1, 

Bk (α, β) = 
1 

k 
B

(
α 
k 

, 
β 
k

)
, Bk (α, β) = Γk (α)Γk (β)

Γk (α + β) 
. 

2.2.3 Mittag-Leffler Function 

The exponential function ez plays a very important role in the theory of integer-order dif-
ferential equations. 

Definition 2.2 ([111]) The one-parameter generalization of the exponential function is now 
denoted by 

Eα(z) = 
∞e
k=0 

zk

Γ(αk + 1) 
, α  >  0. 

Definition 2.3 ([111]) A two-parameter function of the Mittag-Leffler type is defined by 
the series expansion 

Eα,β (z) = 
∞e
k=0 

zk

Γ(αk + β) 
, α  >  0, β  >  0.
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It follows from the definition that 

E1,1(z) = 
∞e
k=0 

zk

Γ(k + 1) 
= 

∞e
k=0 

zk 

k! = ez . 

Definition 2.4 ([102]) The Mittag-Leffler function can also be refined into the k-Mittag-
Leffler function defined as follows: 

E 
α,β 
k (z) = 

∞e
i=0 

zi

Γk (αi + β) 
, α, β  >  0. 

In this monograph, we will employ the following notation: 

E
α 
k (z) = E α,k 

k (z) = 
∞e
i=0 

zi

Γk (αi + k) 
, α  >  0. 

2.3 Elements from Fractional Calculus Theory 

In this section, we recall some definitions of fractional integral and fractional differential 
operators that include all we use throughout this monograph. We conclude it with some 
necessary lemmas, theorems, and properties. 

2.3.1 Fractional Integrals 

Definition 2.5 (Generalized fractional integral [ 85]) Let α ∈ R+ and g ∈ L1(J ). The gen-
eralized fractional integral of order α is defined by

)
ρJ α 

a+ g
(
(t) =

} t 

a 
sρ−1

(
tρ − sρ 

ρ

)α−1 g(s)

Γ(α) 
ds, t > a, ρ  >  0. 

Definition 2.6 (ψ-Riemann-Liouville fractional integral [ 85]) Let (a, b) (−∞ ≤ a < b ≤ 
∞) be a finite or infinite interval of the real line R, α >  0, c ∈ R, and  h ∈ X p c (a, b). Also, let 
ψ(t) be an increasing and positive monotone function on J , having a continuous derivative 
ψ '(t) on (a, b). The left- and right-sided fractional integrals of a function h of order α with 
respect to another function ψ on J are defined by

(
J α;ψ 
a+ h

)
(t) =

} t 

a 
ψ '(τ ) (ψ(t) − ψ(τ  ))α−1 h(τ )

Γ(α) 
dτ, 

and
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(
J α;ψ 
b− h

)
(t) =

} b 

t 
ψ '(τ ) (ψ(τ  )  − ψ(t))α−1 h(τ )

Γ(α) 
dτ. 

Definition 2.7 (k-Generalized ψ-fractional integral [113]) Let g ∈ X p ψ (a, b), ψ(t) >  0 
be an increasing function on J and ψ '(t) >  0 be continuous on (a, b) and α >  0. The  
generalized k-fractional integral operators of a function g (left-sided and right-sided) of 
order α are defined by 

J α,k;ψ 
a+ g(t) = 1 

kΓk (α)

} t 

a 

ψ '(s)g(s)ds  
(ψ(t) − ψ(s))1−

α 
k 
, 

J α,k;ψ 
b− g(t) = 1 

kΓk (α)

} b 

t 

ψ '(s)g(s)ds  
(ψ(s) − ψ(t))1−

α 
k 
, 

with k > 0. Also, in [103], Nápoles Valdés gave more generalized fractional integral oper-
ators defined by 

J α,k;ψ 
G,a+ g(t) =

1 

kΓk (α)

} t 

a 

ψ '(s)g(s)ds  
G(ψ(t) − ψ(s), α 

k ) 
, 

J α,k;ψ 
G,b− g(t) =

1 

kΓk (α)

} b 

t 

ψ '(s)g(s)ds  
G(ψ(s) − ψ(t), α 

k ) 
, 

where G(·, α)  ∈ AC(J ). 

2.3.2 Fractional Derivatives 

Definition 2.8 (Generalized fractional derivative [ 85]) Let α ∈ R+ \ N and ρ >  0. The 
generalized fractional derivative ρDα 

a+ of order α is defined by
)
ρDα 

a+ g
(
(t) = δn ρ (

ρJ n−α 
a+ g)(t) 

=
(
t1−ρ d 

dt

)n } t 

a 
sρ−1

(
tρ − sρ 

ρ

)n−α−1 g(s)

Γ(n − α) 
ds, t > a, ρ  >  0, 

where n = [α] +  1 and δn ρ =
(
t1−ρ d 

dt

)n 

. 

Definition 2.9 (Generalized Hilfer-type fractional derivative [106]) Let order α and type β 
satisfy n − 1 < α  <  n and 0 ≤ β ≤ 1, with n ∈ N. The generalized Hilfer-type fractional 
derivative to t, with ρ >  0 of a function g, is defined by

(
ρDα,β 

a+ g
)

(t) =
(

ρJ β(n−α) 
a+

(
tρ−1 d 

dt

)n 
ρJ (1−β)(n−α) 

a+ g

)
(t) 

=
(

ρJ β(n−α) 
a+ δn ρ 

ρJ (1−β)(n−α) 
a+ g

)
(t).
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Definition 2.10 (ψ-Riemann-Liouville fractional derivative [ 85]) Let ψ '(t) /= 0 (−∞ ≤ 
a < t < b ≤ ∞), α >  0, and  n ∈ N. The Riemann-Liouville derivatives of a function h of 
order α with respect to another function ψ on J̄ are defined by

(
Dα;ψ 

a+ h
)

(t) = δn(J n−α;ψ 
a+ h)(t) 

= δn
} t 

a 
ψ '(τ ) (ψ(t) − ψ(τ  ))n−α−1 h(τ )

Γ(n − α) 
dτ, 

and
(
Dα;ψ 

b− h
)

(t) = (−1)nδn(J n−α;ψ 
a+ h)(t) 

= (−1)nδn
} b 

t 
ψ '(τ ) (ψ(τ  )  − ψ(t))n−α−1 h(τ )

Γ(n − α) 
dτ, 

where n = [α] +  1 and δn =
(

1 

ψ '(t) 
d 

dt

)n 

. 

Definition 2.11 (ψ-Hilfer fractional derivative [148]) Let order α and type β satisfy 
n − 1 < α  <  n and 0 ≤ β ≤ 1, with n ∈ N, let h, ψ  ∈ Cn( J̄ , R) be two functions such 
that ψ is increasing and ψ '(t) /= 0. The  ψ-Hilfer fractional derivatives to t of a function h 
are defined by

(
HDα,β;ψ 

a+ h
)

(t) =
(
J β(n−α);ψ 
a+

(
1 

ψ '(t) 
d 

dt

)n 

J (1−β)(n−α);ψ 
a+ h

)
(t) 

and (
HDα,β;ψ 

b− h
)

(t) =
(
J β(n−α);ψ 
b−

(
− 

1 

ψ '(t) 
d 

dt

)n 

J (1−β)(n−α);ψ 
b− h

)
(t). 

In this monograph, we consider the case n = 1 only, because 0 < α  <  1. 

We are now able to define the k-generalized ψ-Hilfer derivative as follows. 

Definition 2.12 (k-Generalized ψ-Hilfer derivative) Let n − 1 < 
α 
k 

≤ n with 

n ∈ N, −∞ ≤ a < b ≤ ∞  and g, ψ  ∈ Cn( J̄ , R) be two functions such that ψ is increasing 
and ψ '(t) /= 0, for all t ∈ J . The  k-generalized ψ-Hilfer fractional derivatives 
(left-sided and right-sided) H k D

α,β;ψ 
a+ (·) and H k D

α,β;ψ 
b− (·) of a function g of order α and type 

0 ≤ β ≤ 1, with k > 0, are defined by 

H 
k D

α,β;ψ 
a+ g (t) =

(
J β(kn−α),k;ψ 
a+

(
1 

ψ ' (t) 
d 

dt

)n (
knJ (1−β)(kn−α),k;ψ 

a+ g
))

(t) 

=
(
J β(kn−α),k;ψ 
a+ δn ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ g
))

(t) , 

and
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H 
k D

α,β;ψ 
b− g (t) =

(
J β(kn−α),k;ψ 
b−

(
− 1 

ψ ' (t) 
d 

dt

)n (
knJ (1−β)(kn−α),k;ψ 

b− g
))

(t) 

=
(
J β(kn−α),k;ψ 
b− (−1)nδn ψ

(
knJ (1−β)(kn−α),k;ψ 

b− g
))

(t) , 

where δn ψ =
(

1 

ψ ' (t) 
d 

dt

)n 

. 

Property 2.13 It is worth noting that the k-generalized ψ-Hilfer fractional derivative is 
thought to be an expansion to many fractional operators defined over the years; indeed, in the 
following part, we will give a list of some of the most commonly used fractional derivatives 
that are considered to be a particular case of our operator. The fractional derivative H k D

α,β;ψ 
a+ 

interpolates the following fractional derivatives: 

• The ψ-Hilfer fractional derivative (k = 1); 
• The ψ-Riemann-Liouville fractional derivative (k = 1, β  = 0); 
• The ψ-Caputo fractional derivative (k = 1, β  = 1); 
• The Hilfer fractional derivative (k = 1, ψ(t) = t); 
• The Riemann-Liouville fractional derivative (k = 1, ψ(t) = t, β  = 0); 
• The Caputo fractional derivative (k = 1, ψ(t) = t, β  = 1); 
• The Hilfer-Hadamard fractional derivative (k = 1, ψ(t) = ln(t)); 
• The Caputo-Hadamard fractional derivative (k = 1, ψ(t) = ln(t), β = 1); 
• The Hadamard fractional derivative (k = 1, ψ(t) = ln(t), β = 0); 
• The Hilfer-generalized fractional derivative (k = 1, ψ(t) = tρ ); 
• The Caputo-generalized fractional derivative (k = 1, ψ(t) = tρ , β  = 1); 
• The generalized fractional derivative (k = 1, ψ(t) = tρ , β  = 0); 
• The Weyl fractional derivative (k = 1, ψ(t) = tρ , β  = 0, a = −∞). 

2.3.3 Necessary Lemmas,Theorems, and Properties 

Theorem 2.14 ([ 85]) Let α >  0, β  >  0, 0 ≤ ρ ≤ ∞, 0 < a < b < ∞. Then, for 
g ∈ L1(J ) we have (

ρJ α 
a+ 

ρJ β 
a+ g

)
(t) =

(
ρJ α+β 

a+ g
)

(t). 

Lemma 2.15 ([145]) Let α >  0, 0 ≤ γ <  1. Then, J α;ψ 
a+ is bounded from Cγ ;ψ (J ) into 

Cγ ;ψ (J ). In addition, if γ ≤ α, then J α;ψ 
a+ is bounded from Cγ ;ψ (J ) into C( J̄ , R). 

Theorem 2.16 ([103]) Let g : J̄ → R be an integrable function, and take α >  0 and k > 0. 
Then J α,k;ψ 

G,a+ g exists for all t ∈ J̄ .
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Theorem 2.17 ([103]) Let g ∈ X p ψ (a, b) and take α >  0 and k > 0. Then J α,k;ψ 
G,a+ g ∈ 

C( J̄ , R). 

Lemma 2.18 Let α >  0, β >  0, and k > 0. Then, we have the following semigroup property 
given by 

J α,k;ψ 
a+ J β,k;ψ 

a+ f (t) = J α+β,k;ψ 
a+ f (t) = J β,k;ψ 

a+ J α,k;ψ 
a+ f (t), 

and 
J α,k;ψ 
b− J β,k;ψ 

b− f (t) = J α+β,k;ψ 
b− f (t) = J β,k;ψ 

b− J α,k;ψ 
b− f (t). 

Proof By Lemma 1 in [148] and the property of k-gamma function, for α >  0, β >  0, and  
k > 0, we get  

J α,k;ψ 
a+ J β,k;ψ 

a+ f (t) = Γ( α 
k )Γ( β 

k ) 
k2Γk (α)Γk (β)

J 
α 
k ;ψ 
a+ J 

β 
k ;ψ 
a+ f (t) 

= Γ( α 
k )Γ( β 

k ) 

k2k 
α 
k −1Γ( α 

k )k 
β 
k −1Γ( β 

k ) 
J 

α 
k ;ψ 
a+ J 

β 
k ;ψ 
a+ f (t) 

= 1 

k 
α+β 
k 

J 
α+β 
k ;ψ 

a+ f (t) 

= J α+β,k;ψ 
a+ f (t), 

where J α;ψ 
a+ is ψ-Riemann-Liouville fractional integral. We also have 

J α,k;ψ 
a+ J β,k;ψ 

a+ f (t) = Γ( α 
k )Γ( β 

k ) 
k2Γk (α)Γk (β)

J 
α 
k ;ψ 
a+ J 

β 
k ;ψ 
a+ f (t) 

= Γ( α 
k )Γ( β 

k ) 
k2Γk (α)Γk (β)

J 
β 
k ;ψ 
a+ J 

α 
k ;ψ 
a+ f (t) 

= J β,k;ψ 
a+ J α,k;ψ 

a+ f (t).

|

Lemma 2.19 ([ 33]) Let t > a. Then, for α ≥ 0 and β >  0ρ >  0, we have
|

ρJ α 
a+

(
sρ − aρ 

ρ

)β−1
|

(t) = Γ(β)

Γ(α + β)

(
tρ − aρ 

ρ

)α+β−1 

,

|
ρDα 

a+

(
sρ − aρ 

ρ

)α−1
|

(t) = 0, 0 < α  <  1.
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Lemma 2.20 ([ 85, 148]) Let t > a. Then, for α ≥ 0 and β >  0, we have
|
J α;ψ 
a+ (ψ(τ  )  − ψ(a))β−1

\
(t) = Γ(β)

Γ(α + β) 
(ψ(t) − ψ(a))α+β−1 . 

Lemma 2.21 Let α, β > 0 and k > 0. Then, we have 

J α,k;ψ 
a+ [ψ(t) − ψ(a)] 

β 
k −1 = Γk (β)

Γk (α + β) 
(ψ(t) − ψ(a)) 

α+β 
k −1 

and 

J α,k;ψ 
b− [ψ(b) − ψ(t)] 

β 
k −1 = Γk (β)

Γk (α + β) 
(ψ(b) − ψ(t)) 

α+β 
k −1. 

Proof By Definition 2.7 and using the change of variable μ = 
ψ(s) − ψ(a) 
ψ(t) − ψ(a) 

, where  t > a, 
we get 

J α,k;ψ 
a+ [ψ(t) − ψ(a)] 

β 
k −1 

= 1 

kΓk (α)

} t 

a 
(ψ(t) − ψ(s)) 

α 
k −1 ψ '(s) (ψ(s) − ψ(a)) 

β 
k −1 ds  

=
} t 

a 

(ψ(t) − ψ(a)) 
α 
k −1 

kΓk (α)

|
1 − 

ψ(s) − ψ(a) 
ψ(t) − ψ(a)

| α 
k −1 

ψ '(s) (ψ(s) − ψ(a)) 
β 
k −1 ds  

= 
[ψ (t) − ψ (a)] 

α+β 
k −1 

kΓk (α)

} 1 

0 
[1 − μ] 

α 
k −1 μ 

α 
k −1dμ. 

Using the definition of k-beta function and the relation with gamma function, we have 

J α,k;ψ 
a+ [ψ(t) − ψ(a)] 

β 
k −1 = Γk (β)

Γk (α + β) 
(ψ(t) − ψ(a)) 

α+β 
k −1.

|

Property 2.22 ([106]) The operator ρDα,β 
a+ can be written as 

ρDα,β 
a+ = ρJ β(1−α) 

a+ δρ 
ρJ 1−γ 

a+ = ρJ β(1−α) 
a+ 

ρDγ 
a+ , γ  = α + β − αβ. 

Lemma 2.23 ([ 85, 106]) Let α >  0, and 0 ≤ γ <  1. Then, ρJ α 
a+ is bounded from Cγ,ρ  (J ) 

into Cγ,ρ  (J ). Since ρDα,β 
a+ u = ρJ β(1−α) 

a+ ρDγ 
a+u, it follows that 

Cγ 
1−γ,ρ  (J ) ⊂ Cα,β 

1−γ,ρ  (J ) ⊂ C1−γ,ρ  (J ). 

Lemma 2.24 ([106]) Let 0 < a < b < ∞, α  >  0, 0 ≤ γ <  1, and u ∈ Cγ,ρ  (J ). If α >  
1 − γ,  then ρJ α 

a+u is continuous on J and
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)
ρJ α 

a+u
(
(a) = lim 

t→a+
)
ρJ α 

a+u
(
(t) = 0. 

Lemma 2.25 ([148]) Let 0 < a < b < ∞, α  >  0, 0 ≤ γ <  1, u ∈ Cγ ;ψ (J ). If  α >  1 − γ,  
then J α;ψ 

a+ u ∈ C( J̄ , R) and
(
J α;ψ 
a+ u

)
(a) = lim 

t→a+

(
J α;ψ 
a+ u

)
(t) = 0. 

Theorem 2.26 Let 0 < a < b < ∞, α  >  0, 0 ≤ ξ <  1, k > 0, and u ∈ Cξ ;ψ (J ). If  
α 
k 

> 
1 − ξ, then (

J α,k;ψ 
a+ u

)
(a) = lim 

t→a+

(
J α,k;ψ 
a+ u

)
(t) = 0. 

Proof u ∈ Cξ ;ψ (J ) means that (ψ(t) − ψ(a))1−ξ u(t) ∈ C(J , R), then there exists a pos-
itive constant R such that 

| (ψ(t) − ψ(a))1−ξ u(t)| < R, 

thus, 

|u(t)| < R| (ψ(t) − ψ(a))ξ−1 |. (2.1) 

Now, we apply the operator J α,k;ψ 
a+ (·) on both sides of Equation (2.1) and using Lemma 

2.21, so that we have|||(J α,k;ψ 
a+ u

)
(t)
||| < R

|||J α,k;ψ 
a+ (ψ(t) − ψ(a))ξ −1

|||
= 

RΓk (kξ)

Γk (α + ξ)  
(ψ(t) − ψ(a)) 

α 
k +ξ −1 . 

Then, we have the right-hand side → 0 as u → a, and  

lim 
t→a+

(
J α,k;ψ 
a+ u

)
(t) =

(
J α,k;ψ 
a+ u

)
(a) = 0.

|

Lemma 2.27 ([106]) Let α >  0, 0 ≤ γ <  1, and g ∈ Cγ,ρ  (J ). Then,
)
ρDα 

a+ 
ρJ α 

a+ g
(
(t) = g(t), for all t ∈ J . 

Lemma 2.28 ([148]) Let α >  0, 0 ≤ β ≤ 1, and h ∈ C1 
γ ;ψ (J ). Then,

(
HDα,β;ψ 

a+ J α;ψ 
a+ h

)
(t) = h(t), for all t ∈ J .
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Lemma 2.29 Let α >  0, 0 ≤ β ≤ 1, and u ∈ C1 
ξ ;ψ (J ), where k > 0, then for  t ∈ J , we 

have (
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) = u(t). 

Proof We have from Definition 2.12, Lemma 2.18, and  ξ = 1 k (β(k − α) + α) that
(
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) =
(
J β(k−α),k;ψ 
a+ δ1 ψ

(
kJ (1−β)(k−α),k;ψ 

a+ J α,k;ψ 
a+ u

))
(t) 

=
(
J kξ−α,k;ψ 
a+ δ1 ψ

(
kJ (1−β)(k−α)+α,k;ψ 

a+ u
))

(t) 

=
(
J kξ−α,k;ψ 
a+ δ1 ψ

(
kJ k−kξ+α,k;ψ 

a+ u
))

(t) , 

then, we obtain

(
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) =

} t 

a 

ψ '(s) 
(ψ(t) − ψ(s))1−ξ+ α 

k 
δ1 ψ

|} s 

a 

ψ '(τ )u(τ )dτ 
(ψ(s) − ψ(τ  ))ξ− α 

k

|
ds  

kΓk (kξ − α)Γk (k(1 − ξ)  + α) 
. 

(2.2) 

On other hand, by integrating by parts, we have

} s 

a 

ψ '(τ )u(τ )dτ 
(ψ(s) − ψ(τ  ))ξ− α 

k 
= 1 

1 − ξ + α 
k

|
u(a) (ψ(s) − ψ(a))1−ξ+ α 

k 

+
} s 

a 

u'(τ )dτ 
(ψ(s) − ψ(τ  ))ξ−1− α 

k

|
, 

then, by applying δ1 ψ , we get  

δ1 ψ

} s 

a 

ψ '(τ )u(τ )dτ 
(ψ(s) − ψ(τ  ))ξ− α 

k 
= u(a) (ψ(s) − ψ(a))−ξ+ α 

k +
} s 

a 

u'(τ )dτ 
(ψ(s) − ψ(τ  ))ξ− α 

k 
. 

(2.3) 

Now, replacing (2.3) into Equation (2.2), and by Dirichlet’s formula and the properties of 
k-gamma function, we get

(
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) 

= 1 

kΓk (kξ − α)Γk (k(1 − ξ)  + α)

|} t 

a 

u(a)ψ '(s) (ψ(s) − ψ(a))−ξ + α 
k ds  

(ψ(t) − ψ(s))1−ξ + α 
k 

+
} t 

a 
u'(t)dt

} t 

s 

ψ '(s)dτ 
(ψ(t) − ψ(s))1−ξ+ α 

k (ψ(s) − ψ(τ  ))ξ −
α 
k

|
.
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Making the following change of variables μ = 
ψ(s) − ψ(a) 
ψ(t) − ψ(a) 

in the integral from a to t and 

similarly changing the variable in the integral from s to t , then we have
(
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) 

=

} t 

a 
u(a)ψ '(s) (ψ(s) − ψ(a))−ξ + α 

k (ψ(t) − ψ(s))ξ −
α 
k −1 ds  

kΓk (kξ − α)Γk (k(1 − ξ)  + α) 

+

} t 

a 
u'(t)dt

} t 

s 
ψ '(s) (ψ(t) − ψ(s))ξ− α 

k −1 (ψ(s) − ψ(τ  ))−ξ + α 
k dτ 

kΓk (kξ − α)Γk (k(1 − ξ)  + α) 

=

(
u(a) +

} t 

a 
u'(t)dt

)

Γk (kξ − α)Γk (k(1 − ξ)  + α)

|
1 

k

} 1 

0 
μ−ξ+ α 

k (1 − μ)ξ− α 
k −1 dμ

|

=

(
u(a) +

} t 

a 
u'(t)dt

)

Γk (kξ − α)Γk (k(1 − ξ)  + α)

|
1 

k

} 1 

0 
μ(1−(ξ− α 

k ))−1 (1 − μ)ξ −
α 
k −1 dμ

|
, 

then by the definition of k-beta function, we obtain

(
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ u
)

(t) = 
[Γk (kξ − α)Γk (k(1 − ξ)  + α)]

Γk (kξ − α)Γk (k(1 − ξ)  + α)

(
u(a) +

} t 

a 
u'(t)dt

)

= u(a) +
} t 

a 
u'(t)dt  

= u(t).

|

Lemma 2.30 ([142, 148]) Let t > a, α >  0, 0 ≤ β ≤ 1. Then for 0 < γ  <  1; γ = α + 
β − αβ, we have |

Dγ ;ψ 
a+ (ψ(τ  )  − ψ(a))γ −1

\
(t) = 0, 

and |
HDα,β;ψ 

a+ (ψ(τ  )  − ψ(a))γ −1
\
(t) = 0. 

Lemma 2.31 Let t > a, α >  0, 0 ≤ β ≤ 1, k > 0. Then for 0 < ξ  <  1; ξ = 1 k (β(k − 
α) + α), we have

|
H 
k D

α,β;ψ 
a+ (ψ(s) − ψ(a))ξ−1

\
(t) = 0.
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Proof From Definitions 2.7 and 2.12, we have  

kJ (1−β)(k−α),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 = k 

kΓk (kX  )

} t 

a 

ψ '(s) (ψ(s) − ψ(a))ξ −1 ds  

(ψ(t) − ψ(s))1−X 
, 

where X = 
1 

k 
(1 − β) (k − α). Now, we make the change of the variable by 

μ = 
ψ(s) − ψ(a) 
ψ(t) − ψ(a) 

to obtain 

kJ (1−β)(k−α),k;ψ 
a+ (ψ(t) − ψ(a))ξ −1 = 

k [ψ(t) − ψ(a)]ξ −1+X

Γk (kX  ) 

×
|
1 

k

} 1 

0 
(1 − μ)X−1μξ −1dμ

|
, 

then, by the following definition of k-beta function 

Bk (α, β) = 
1 

k

} 1 

0 
t 

α 
k −1(1 − t) 

β 
k −1dt  = Γk (α)Γk (β)

Γk (α + β) 
, 

we have 

kJ (1−β)(k−α),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 = kΓk (kξ)

Γk (k(X + ξ))  
= kΓk (kξ),  

kJ (1−β)(k−α),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 = kΓk (kξ)

Γk (k(X + ξ))  
= kΓk (kξ),  

then, we have 

δ1 ψ

(
kJ (1−β)(k−α),k;ψ 

a+ (ψ(t) − ψ(a))ξ −1
)

= 0.

|

Lemma 2.32 ([106]) Let 0 < α  <  1, 0 ≤ γ <  1. If g ∈ Cγ,ρ  (J ) and ρJ 1−α 
a+ g ∈ C1 

γ,ρ  (J ), 
then

)
ρJ α 

a+ 
ρDα 

a+ g
(
(t) = g(t) −

(
ρJ 1−α 

a+ g
)

(a)

Γ(α)

(
tρ − aρ 

ρ

)α−1 

, for all t ∈ J . 

Lemma 2.33 ([106]) Let 0 < α  <  1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If u ∈ Cγ 
γ,ρ  (J ), 

then 
ρJ γ 

a+ 
ρDγ 

a+u = ρJ α 
a+ 

ρDα,β 
a+ u,
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and 
ρDγ 

a+ 
ρJ α 

a+u = ρDβ(1−α) 
a+ u. 

Lemma 2.34 ([142, 148]) Let α >  0, 0 ≤ β ≤ 1, and h ∈ C1 
γ ;ψ (J ). Then,

(
J α;ψ 
a+ 

HDα,β;ψ 
a+ h

)
(t) = h(t) −

(
J 1−γ ;ψ 
a+ h

)
(a)

Γ(γ ) 
(ψ(t) − ψ(a))γ −1 , for all t ∈ J . 

Theorem 2.35 If f ∈ Cn 
ξ ;ψ [a, b], n − 1 < α  <  n, 0 ≤ β ≤ 1, where n ∈ N and k > 0, 

then

(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) = 

ne
i=1 

− (ψ(t) − ψ(a))ξ−i 

ki−nΓk (k(ξ − i + 1))

{
δn−i 
ψ

(
J k(n−ξ),k;ψ 
a+ f (a)

)}

+ f (t), 

where 

ξ = 
1 

k 
(β(kn − α) + α) . 

In particular, if n = 1, we have

(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) = f (t) − 

(ψ(t) − ψ(a))ξ−1

Γk (β(k − α) + α)
J (1−β)(k−α),k;ψ 
a+ f (a). 

Proof From Definition 2.12 and Lemma 2.18, we have
(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) =

(
J α,k;ψ 
a+ J β(kn−α),k;ψ 

a+ δn ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f
))

(t) 

=
(
J β(kn−α)+α,k;ψ 
a+ δn ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f
))

(t) 

= 1 

kΓk (kξ)

} t 

a 

ψ '(s)
{
δn ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (s)
)}

(ψ(t) − ψ(s))1−ξ
ds. 

Integrating by parts, we obtain

(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) = 

− (ψ(t) − ψ(a))ξ−1 

kΓk (kξ)

{
δn−1 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (a)
)}

+
} t 

a 

(ξ − 1)ψ '(s)
{
δn−1 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (s)
)}

kΓk (kξ)  (ψ(t) − ψ(s))2−ξ
ds. 

Using the property of the functions gamma and k-gamma, we get
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(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) = 

− (ψ(t) − ψ(a))ξ−1 

kξΓ(ξ )

{
δn−1 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (a)
)}

+
} t 

a 

ψ '(s)
{
δn−1 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (s)
)}

kξΓ(ξ − 1) (ψ(t) − ψ(s))2−ξ
ds. 

So, by integrating by parts  n times, we obtain
(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) 

= −  
ne

i=1 

(ψ(t) − ψ(a))ξ −i 

kξΓ(ξ − i + 1)

{
δn−i 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (a)
)}

+ 1 

kξ−nΓ(ξ − n)

} t 

a 

ψ '(s) 
(ψ(t) − ψ(s))n+1−ξ

(
J (1−β)(kn−α),k;ψ 
a+ f (s)

)
ds, 

= −  
ne

i=1 

(ψ(t) − ψ(a))ξ−i 

kiΓk (k(ξ − i + 1))

{
δn−i 
ψ

(
knJ (1−β)(kn−α),k;ψ 

a+ f (a)
)}

+ 1 

kΓk (k(ξ − n))

} t 

a 

ψ '(s) 
(ψ(t) − ψ(s))n+1−ξ

(
J (1−β)(kn−α),k;ψ 
a+ f (s)

)
ds, 

= −  
ne

i=1 

(ψ(t) − ψ(a))ξ −i 

ki−nΓk (k(ξ − i + 1))

{
δn−i 
ψ

(
J (1−β)(kn−α),k;ψ 
a+ f (a)

)}

+ J k(ξ −n),k;ψ 
a+ J (1−β)(kn−α),k;ψ 

a+ f (t), 

then by using Lemma 2.18, we get

(
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ f

)
(t) = 

ne
i=1 

− (ψ(t) − ψ(a))ξ−i δn−i 
ψ

(
J (1−β)(kn−α),k;ψ 
a+ f (a)

)
ki−nΓk (k(ξ − i + 1)) 

+ f (t).
|

Property 2.36 ([148]) The operator HDα,β;ψ 
a+ can be written as 

HDα,β;ψ 
a+ = J β(1−α);ψ 

a+ Dγ ;ψ 
a+ , γ  = α + β − αβ. 

Lemma 2.37 ([ 85, 148]) Let α >  0, β  >  0, 0 < a < b < ∞. Then, for h ∈ X p c (a, b) the 
semigroup property is valid, i.e.,

(
J α;ψ 
a+ J β;ψ 

a+ h
)

(t) =
(
J α+β;ψ 
a+ h

)
(t).
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Lemma 2.38 ([106]) Let f be a function such that f ∈ Cγ,ρ  (J ). Then u ∈ Cγ 
γ,ρ  (J ) is a 

solution of the differential equation:
(

ρDα,β 
a+ u

)
(t) = f (t), for each , t ∈ J , 0 < α  <  1, 0 ≤ β ≤ 1, ρ  >  0 

if and only if u satisfies the following Volterra integral equation: 

u(t) =
(

ρJ 1−γ 
a+ u

)
(a+)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1

Γ(α)

} t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1 f (s)ds, 

where γ = α + β − αβ. 

Lemma 2.39 Let α, β > 0 and k > 0. Then, we have 

J α,k;ψ 
a+ E

α 
k

(
(ψ(t) − ψ(a)) 

α 
k

)
= Eα 

k

(
(ψ(t) − ψ(a)) 

α 
k

)
− 1. 

Proof We have 

J α,k;ψ 
a+ E

α 
k

(
(ψ(t) − ψ(a)) 

α 
k

)

= 1 

kΓk (α)

} t 

a 

ψ '(s)Eα 
k

(
(ψ(s) − ψ(a)) 

α 
k

)
ds  

(ψ(t) − ψ(s))1−
α 
k 

= 1 

kΓk (α)

} t 

a 

ψ '(s) 
(ψ(t) − ψ(s))1−

α 
k 

∞e
i=0 

(ψ(s) − ψ(a)) 
αi 
k

Γk (αi + k) 
ds. 

With a change of variables μ = ψ(s) − ψ(a), we get  

J α,k;ψ 
a+ E

α 
k

(
(ψ(t) − ψ(a)) 

α 
k

)

= 1 

kΓk (α) 

∞e
i=0 

1

Γk (αi + k)

} ψ(t)−ψ(a) 

0 

μ 
αi 
k 

(ψ(t) − ψ(a) − μ)1−
α 
k 
dμ 

= 1 

kΓk (α) 

∞e
i=0 

(ψ(t) − ψ(a)) 
α 
k −1

Γk (αi + k)

} ψ(t)−ψ(a) 

0 
μ 

αi 
k

(
1 − μ 

ψ(t) − ψ(a)

) α 
k −1 

dμ. 

Making the change of variables ς = μ 
ψ(t) − ψ(a) 

and using the definition of k-beta func-

tion, we have
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J α,k;ψ 
a+ E

α 
k

(
(ψ(t) − ψ(a)) 

α 
k

)

= 1 

kΓk (α) 

∞e
i=0 

(ψ(t) − ψ(a)) 
α 
k (i+1)

Γk (αi + k)

} 1 

0 
ς 

αi 
k (1 − ς ) 

α 
k −1 dς 

= 1

Γk (α) 

∞e
i=0 

(ψ(t) − ψ(a)) 
α 
k (i+1) Γk (αi + k)Γk (α)

Γk (αi + k)Γk (α(i + 1) + k) 

= 
∞e
i=0 

(ψ(t) − ψ(a)) 
α 
k (i+1)

Γk (α(i + 1) + k) 

= 
∞e
j=0 

(ψ(t) − ψ(a)) 
α j 
k

Γk (α j + k) 
− 1 = Eα 

k

(
(ψ(t) − ψ(a)) 

α 
k

)
− 1.

|

2.4 Grönwall’s Lemma 

The Grönwall’s inequality is fundamental in the study of qualitative theory of integral and 
differential equations, as well as in the solution of Cauchy-type problems of nonlinear 
differential equations. 

Lemma 2.40 (Grönwall’s lemma [ 32]) Let u and w be two integrable functions and v be 
a continuous function, with domain J̄ . Assume that 

• u and w are nonnegative; 
• v is nonnegative and nondecreasing. 

If 

u(t) ≤ w(t) + v(t)
} t 

a 
sρ−1

(
tρ − sρ 

ρ

)α−1 

u(s)ds, t ∈ J̄ , 

then 

u(t) ≤ w(t) +
} t 

a 

∞e
τ =1 

(v(t)Γ(α))τ

Γ(τ α) 
sρ−1

(
tρ − sρ 

ρ

)τα−1 

w(s)ds, t ∈ J̄ . 

In addition, if w is nondecreasing, then 

u(t) ≤ w(t)Eα

|
v(t)Γ(α)

(
tρ − aρ 

ρ

)α|
, t ∈ J̄ . 

In 2019, Sousa et al. managed to give a Grönwall’s inequality using the ψ-Hilfer fractional 
integral.
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Lemma 2.41 ([145]) Let u, v  be two integrable functions and g continuous, with domain 
[a, b]. Let ψ ∈ C1[a, b] be an increasing function such that ψ '(t) /= 0, for all t ∈ [a, b]. 
Assume that 

• u and v are nonnegative; 
• g in nonnegative and nondecreasing. 

If 

u(t) ≤ v(t) + g(t)
} t 

a 
ψ '(τ )(ψ(t) − ψ(τ  ))α−1u(τ )dτ, 

then 

u(t) ≤ v(t) +
} t 

a 

∞e
k=1 

[g(t)Γ(α)]k
Γ(αk) 

ψ '(τ )[ψ(t) − ψ(τ  )]αk−1v(τ )dτ, 

for all t ∈ [a, b]. 

Now, we give generalized Grönwall’s inequality taking into account the properties of the 
functions k-gamma, k-beta, and k-Mittag-Leffler. 

Theorem 2.42 Let u, v be two integrable functions and g continuous, with domain J̄ . Let 
ψ ∈ C1(J ) be an increasing function such that ψ ' (t) /= 0, t ∈ J̄ , and α >  0 with k > 0. 
Assume that 

1. u and v are nonnegative; 
2. w is nonnegative and nondecreasing. 

If 

u (t) ≤ v (t) + 
w (t) 
k

} t 

a 
ψ ' (s) [ψ(t) − ψ(s)] 

α 
k −1 u (s) ds, 

then 

u (t) ≤ v (t) +
} t 

a 

∞e
i=1 

[w (t) Γk (α)]i 

kΓk (αi ) 
ψ ' (s) [ψ(t) − ψ(s)] 

i α 
k −1 v (s) ds, (2.4) 

for all t ∈ J̄ . And  if  v is a nondecreasing function on J̄ , then we have 

u (t) ≤ v (t) E α,k 
k

(
w (t) Γk (α) (ψ (t) − ψ (a)) 

α 
k

)
. 

Proof Let 

ϒv(t) (t) = 
w (t) 
k

} t 

a 
ψ ' (τ ) [ψ(t) − ψ(τ  )] 

α 
k −1 v (τ ) dτ, (2.5)
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for all t ∈ J̄ , for locally integral function v, we have  

u (t) ≤ v (t) + ϒu (t) . 

Iterating, for n ∈ N, we can write 

u (t) ≤ 
n−1e
i=0 

ϒ i v (t) + ϒnu (t) . 

Then, by mathematical induction, and if v is a nonnegative function, then 

ϒnu (t) ≤
} t 

a 

[w (t) Γk (α)]n 

kΓk (nα) 
ψ ' (τ ) [ψ(t) − ψ(τ  )] 

nα 
k −1 u (τ ) dτ. (2.6) 

We know that relation Eq. (2.6) is true for  n = 1. Suppose that the formula is true for some 
n = i ∈ N, then the induction hypothesis implies 

ϒ i+1u (t) = ϒ
(
ϒ i u (t)

)

≤ ϒ

(} t 

a 

[w (t) Γk (α)]i 

kΓk (i α) 
ψ ' (τ ) [ψ(t) − ψ(τ  )] 

i α 
k −1 v (τ ) dτ

)

= 
w (t) 
k

} t 

a 

ψ ' (τ ) 
[ψ(t) − ψ(τ  )]1− α 

k

(} τ 

a 

[w (τ ) Γk (α)]i ψ ' (s) v (s) ds  

kΓk (i α) [ψ(τ  )  − ψ(s)]1− i α 
k

)
dτ. 

Since w is a nondecreasing function, that is w (τ ) ≤ w (t) , for all τ ≤ t , then we obtain 

ϒ i+1u (t) ≤ Γk (α)i 

k2Γk (αi ) 
[w (t)]i+1 

×
} t 

a

} τ 

a 
ψ ' (τ ) [ψ(t) − ψ(τ  )] 

α 
k −1 ψ ' (s) [ψ(τ  )  − ψ(s)] 

i α 
k −1 u (s) dsdτ. 

(2.7) 

From Eq. (2.7) and by Dirichlet’s formula, we can have 

ϒ i+1u (t) ≤ Γk (α)i 

k2Γk (αi ) 
[w (t)]i+1 

×
} t 

a 
ψ ' (τ ) u (τ )

} t 

τ 
ψ ' (s) [ψ(t) − ψ(s)] 

α 
k −1 [ψ(s) − ψ(τ  )] 

i α 
k −1 dsdτ. 

(2.8)
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On other hand, we have
} t 

τ 
ψ ' (s) [ψ (t) − ψ (s)] 

α 
k −1 [ψ (s) − ψ (τ )] 

i α 
k −1 ds  

=
} t 

τ 
ψ ' (s) [ψ (t) − ψ (τ )] 

α 
k −1

|
1 − 

ψ (s) − ψ (τ ) 
ψ (t) − ψ (τ )

| α 
k −1 

[ψ (s) − ψ (τ )] 
i α 
k −1 ds. 

With a change of variables μ = 
ψ (s) − ψ (τ ) 
ψ (t) − ψ (τ ) 

and using the definition of k-beta function 

and the relation with gamma function Bk (α, β) = Γk (α) Γk (β)

Γk (α + β) 
, we have

} t 

τ 
ψ ' (s) [ψ (t) − ψ (s)] 

α 
k −1 [ψ (s) − ψ (τ )] 

i α 
k −1 ds  

= [ψ (t) − ψ (τ )] 
i α+α 
k −1

} 1 

0 
[1 − μ] 

α 
k −1 μ 

i α 
k −1dμ 

= k [ψ (t) − ψ (τ )] 
i α+α 
k −1 Γk (α) Γk (iα)

Γk (α + i α) 
. (2.9) 

By replacing Eq. (2.9) in Eq.  (2.8), we get 

ϒ i+1u (t) ≤
} t 

a 

[w (t) Γk (α)]i+1 

kΓk (α (i + 1)) 
ψ ' (τ ) u (τ ) [ψ (t) − ψ (τ )] 

α(i+1) 
k −1 dτ. 

Let us now prove that ϒnu (t) → 0 as n → ∞. Since w is a continuous function on J̄ , there  
exists a constant M > 0 such that w (t) ≤ M for all t ∈ J̄ . Then, we obtain 

ϒnu (t) ≤
} t 

a 

[MΓk (α)]n 

kΓk (αn) 
ψ ' (τ ) u (τ ) [ψ (t) − ψ (τ )] 

αn 
k −1 dτ. 

Consider the series ∞e
n=1 

[MΓk (α)]n

Γk (αn) 
. 

Using the property of the generalized k-gamma, we have 

∞e
n=1 

[MΓk (α)]n

Γk (αn) 
= 

∞e
n=1

|
Mk 

α 
k −1Γ

)
α 
k

(\n 
k 

αn 
k −1Γ

)
αn 
k

( = 
∞e
n=1 

k
|
Mk−1Γ

)
α 
k

(|n
Γ
)

αn 
k

( . 

By using the Stirling approximation and the root test, we can show that the series converges. 
Therefore, we conclude that
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u (t) ≤ 
∞e
i=0 

ϒ i v (t) 

≤ v (t) +
} t 

a 

∞e
i=1 

[w (t) Γk (α)]i 

kΓk (αi ) 
ψ ' (τ ) [ψ (t) − ψ (τ )] 

αi 
k −1 v (τ ) dτ. 

Now, since v is nondecreasing, so, for all τ ∈ [a, t], we have  v (τ ) ≤ v (t) and we can write 

u (t) ≤ v (t) +
} t 

a 

∞e
i=1 

[w (t) Γk (α)]i 

kΓk (αi ) 
ψ ' (τ ) [ψ (t) − ψ (τ )] 

αi 
k −1 v (τ ) dτ 

≤ v (t)

|
1 +

} t 

a 

∞e
i=1 

[w (t) Γk (α)]i 

kΓk (αi ) 
ψ ' (τ ) [ψ (t) − ψ (τ )] 

αi 
k −1 dτ

|

= v (t)

|
1 + 

∞e
i=1 

[w (t) Γk (α)]i 

αiΓk (αi ) 
[ψ (t) − ψ (a)] 

αi 
k

|
, 

and by using the properties of k-gamma function and the definition of k-Mittag-Leffler 
function, we have 

u (t) ≤ v (t) 

| 

⎢⎣1 + 
∞e
i=1

|
w (t) Γk (α) (ψ (t) − ψ (a)) 

α 
k

\i
Γk (αi + k) 

⎤ 

⎥⎦ 

= v (t) E α,k 
k

(
w (t) Γk (α) (ψ (t) − ψ (a)) 

α 
k

)
.

|

2.5 Kuratowski Measure of Noncompactness 

As mentioned in the introduction part, the measure of noncompactness is one of the funda-
mental tools in the theory of nonlinear analysis. In this section, we recall some fundamental 
facts of the notion of measure of noncompactness. Particularly, we employ the Kuratowski 
measure of noncompactness in our studies throughout this book. 

Let ΩX be the class of all bounded subsets of a metric space X . 

Definition 2.43 ([ 45]) A function μ : ΩX → [0, ∞) is said to be a measure of noncom-
pactness on X if the following conditions are verified for all B, B1, B2 ∈ ΩX . 

(a) Regularity, i.e., μ(B) = 0 if and only if B is precompact, 
(b) invariance under closure, i.e., μ(B) = μ(B), 
(c) semi-additivity, i.e., μ(B1 ∪ B2) = max{μ(B1), μ(B2)}.
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Definition 2.44 ([ 45]) Let X be a Banach space. The Kuratowski measure of noncompact-
ness is the map μ : ΩX −→ [0, ∞) defined by 

μ(M) = in  f  {ε >  0 : M ⊂ 
m||
j=1 

M j , diam(M j ) ≤ ε}, 

where M ∈ ΩX . 
The map μ satisfies the following properties : 

• μ(M) = 0 ⇔ M is compact (M is relatively compact). 
• μ(M) = μ(M). 
• M1 ⊂ M2 ⇒ μ(M1) ≤ μ(M2). 
• μ(M1 + M2) ≤ μ(B1) + μ(B2). 
• μ(cM) = |c|μ(M), c ∈ R. 
• μ(convM) = μ(M). 

2.6 Fixed Point Theorems 

In this section, we will be going through all the fixed point theorems used in the different 
studies throughout the monograph. Fixed point theory is one of the most intensively studied 
research topics of the last decades. The roots of the fixed point concept date back to the 
middle of the eighteenth century. Although fixed point theory appears to be an independent 
research topic today, the notion of the fixed point appeared in the papers that dealt with 
the solution of certain differential equations; see, e.g., Liouville [ 93], Picard [110], and 
Poincaré [112]. One of the first independent fixed point results was obtained by Banach [ 44] 
by abstracting the successive approximation method of Picard. 

Theorem 2.45 (Banach’s fixed point theorem [ 72]) Let D be a nonempty closed subset of 
a Banach space E, then any contraction mapping N of D into itself has a unique fixed point. 

The most important feature that distinguishes Banach’s fixed point theorem from other 
fixed point theorems is that it guarantees not only the existence but also the uniqueness of 
the fixed point. More importantly, it not only tells the existence and uniqueness of a fixed 
point but also tells you how to get the fixed point. 

In what follows, we list some other fixed point theorems that have turned out to be the 
instruments for the differential equations solutions.
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Theorem 2.46 (Schauder’s fixed point theorem [ 72]) Let X be a Banach space, D be a 
bounded closed convex subset of X , and T : D → D be a compact and continuous map. 
Then T has at least one fixed point in D. 

Theorem 2.47 (Schaefer’s fixed point theorem [ 72]) Let X be a Banach space and N : 
X → X be a completely continuous operator. If the set 

D = {u ∈ X : u = λNu, for some λ ∈ (0, 1)} 

is bounded, then N has a fixed point. 

Theorem 2.48 (Darbo’s fixed point Theorem [ 71]) Let D be a nonempty, closed, bounded, 
and convex subset of a Banach space X , and let T be a continuous mapping of D into itself 
such that for any nonempty subset C of D, 

μ(T (C)) ≤ kμ(C), (2.10) 

where 0 ≤ k < 1, and μ is the Kuratowski measure of noncompactness. Then T has a fixed 
point in D. 

Theorem 2.49 (Mönch’s fixed point Theorem [101]) Let D be closed, bounded, and convex 
subset of a Banach space X such that 0 ∈ D, and let T be a continuous mapping of D into 
itself. If the implication 

V = convT (V ), or V = T (V ) ∪ {0} ⇒  μ(V ) = 0, (2.11) 

holds for every subset V of D, then T has a fixed point. 

Theorem 2.50 (Krasnoselskii’s fixed point theorem [ 72]) Let D be a closed, convex, and 
nonempty subset of a Banach space X , and A, B the operators such that 

(1) Au + Bv ∈ D for all u, v  ∈ D; 
(2) A is compact and continuous; 
(3) B is a contraction mapping. 

Then there exists w ∈ D such that w = Aw + Bw. 

Theorem 2.51 Let Ω be a closed, convex, bounded, and nonempty subset of a Banach 
algebra (X , || · ||), and let T1 : X → X and T2 : Ω → X be two operators such that
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(1) T1 is Lipschitzian with Lipschitz constant λ, 
(2) T2 is completely continuous, 
(3) v = T1yT2w ⇒ v ∈ Ω for all w ∈ Ω, 
(4) λM < 1, where M = ||B(Ω)|| =  sup{||B(w)|| :  w ∈ Ω}. 

Then the operator equation T1yT2 y = v has a solution in Ω. 

Theorem 2.52 Let B be a closed, convex, bounded and nonempty subset of a Banach 
algebra (X , || · ||), and let P, R : X → X and Q : B → X be three operators such that 

(1) P and R are Lipschitzian with Lipschitz constants η1 and η2, respectively, 
(2) Q is compact and continuous, 
(3) u = PuQv + Ru ⇒ u ∈ B for all v ∈ B 
(4) η1β + η2 < 1, where β = ||Q(B)|| =  sup{||Q(v)|| :  v ∈ B}. 

Then the operator equation PuQu + Ru = u has a solution in B.



3Implicit Fractional Differential Equations 

3.1 Introduction and Motivations 

This chapter deals with some existence and Ulam stability results for a class of initial and 
boundary value problems for differential equations with generalized Hilfer-type fractional 
derivative in Banach spaces. The results are based on suitable fixed point theorems associated 
with the technique of measure of noncompactness. At the end of each section, examples 
are included to show the applicability of our results. The results obtained in this chapter are 
studied and presented as a consequence of the following: 

• The monographs of Abbas et al. [ 7, 14] and Benchohra et al. [ 50] and the papers of 
Ahmad et al. [ 25], Benchohra et al. [ 48, 49], and Zhou et al. [162], which are focused 
on linear and nonlinear initial and boundary value problems for fractional differential 
equations involving different kinds of fractional derivatives. 

• The monographs of Abbas et al. [ 7, 13], Kilbas et al. [ 85], and Zhou et al. [162], and the 
papers of Abbas et al. [ 10] and Benchohra et al. [ 51, 52]; in it, considerable attention has 
been given to the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of various 
classes of functional equations. 

• The paper of Diaz et al. [ 66], where the authors presented the k-gamma and k-beta 
functions and demonstrated a number of their properties. As well as the papers [ 63, 102– 
104], where many researchers managed to generalize various fractional integrals and 
derivatives. 

• The papers of Sousa et al. [143–149], where the authors introduced another so-called ψ-
Hilfer fractional derivative with respect to a given function and presented some important 
properties concerning this type of fractional operator. 

• The paper of Almalahi et al. [ 31], which deals with the boundary value problem of 
ψ-Hilfer fractional derivative of the form: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Benchohra et al., Advanced Topics in Fractional Differential Equations, 
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⎧ 
⎨ 

⎩ 

HDα,β;ψ 
a+ x(t) = f 

( 
t, x(t), 

{ t 
a k(t, s)x(s)ds  

) 
, t ∈ J := (a, b] 

J 1−γ,ψ  
a+ 

[ 
px 

( 
a+) + qx  

( 
b−)] = c, (γ  = α + β − αβ) 

where HDα,β;ψ 
a+ (·) is the generalized Hilfer fractional derivative of order α ∈ (0, 1) and 

type β ∈ [0, 1] and J 1−γ,ψ  
a+ (·) is the generalized fractional integral in the sense of Rie-

mann-Liouville of order 1 − γ , and  f : J × E × E → E is a continuous function in an 
abstract Banach space E , c1, c2 ∈ R, c3 ∈ E , c1 + c2 /= 0, and  

{ t 
a k(t, s)x(s)ds  is a lin-

ear integral operator with k : J × J → R. They discussed the Eα-Ulam-Hyers stability 
and the continuous dependence of the problem. 

• The paper of Liu et al. [ 94], where they considered the ψ-Hilfer fractional differential 
equation: ⎧ 

⎪⎪⎨ 

⎪⎪⎩ 

HDα,β;ψ 
0+ x(τ ) = f (τ, x(τ ), x(g(τ ))), τ ∈ J = (0, d], 

J 1−γ ;ψ 
0+ x 

( 
0+) = c0 ∈ R, 

x(τ ) = ϕ(τ ), τ ∈ [−h, 0], 
where HDα,β;ψ 

0+ (·) is the ψ-Hilfer fractional derivative of order 0 < α  ≤ 1 and type 0 ≤ 
β ≤ 1, J 1−γ ;ψ 

0+ (·) is the Riemann-Liouville fractional integral of order 1 − γ , γ = α + 
β(1 − α) with respect to the function ψ , and  f : J × R × R → R is a given function. 
They established the existence and uniqueness of solutions to the problem and introduced 
the Ulam-Hyers-Mittag-Leffler stability of the solutions. 

3.2 Existence and Ulam Stability Results for Generalized 
Hilfer-Type Boundary Value Problem 

In this section, we establish the existence and Ulam stability results for the boundary value 
problem of the following generalized Hilfer-type fractional differential equation: 

( 
ρDα,β 

a+ u 
) 

(t) = f 
( 
t, u(t), 

( 
ρDα,β 

a+ u 
) 

(t) 
) 

, for each , t ∈ J , (3.1) 

l 
( 

ρJ 1−γ 
a+ u 

) 
(a+) + m 

( 
ρJ 1−γ 

a+ u 
) 

(b) = φ, (3.2) 

where ρDα,β 
a+ ,

ρ J 1−γ 
a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1) 

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, φ ∈ E , f : J × E × E → E is a given function, and l, m are reals with l + 
m /= 0.
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3.2.1 Existence Results 

We consider the following linear fractional differential equation: 
( 

ρDα,β 
a+ u 

) 
(t) = ψ(t), t ∈ J , (3.3) 

where 0 < α  <  1, 0 ≤ β ≤ 1, ρ  >  0, with the boundary condition 

l 
( 

ρJ 1−γ 
a+ u 

) 
(a+) + m 

( 
ρJ 1−γ 

a+ u 
) 

(b) = φ, (3.4) 

where γ = α + β − αβ, φ ∈ E , and  l, m ∈ R with l + m /= 0. The following theorem 
shows that the problem (3.3)–(3.4) has a unique solution given by 

u(t) = 

[ 

φ − m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1ψ(s)ds

]

× 1 

(l + m)⎡(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds. (3.5) 

Theorem 3.1 Let γ = α + β − αβ, where 0 < α  <  1 and 0 ≤ β ≤ 1ρ >  0. If ψ : J → E 
is a function such that ψ(·) ∈ Cγ,ρ  (J ), then u ∈ Cγ 

γ,ρ  (J ) satisfies the problem (3.3)–(3.4) 
if and only if it satisfies (3.5). 

Proof By Lemma 2.38, the solution of (3.3) can be written as 

u(t) = 

( 
ρJ 1−γ 

a+ u 
) 

(a+) 

⎡(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds. (3.6) 

Applying ρJ 1−γ 
a+ on both sides of (3.6), using Lemma 2.19, and taking t = b, we obtain 

( 
ρJ 1−γ 

a+ u 
) 

(b) = 
( 

ρJ 1−γ 
a+ u 

) 
(a+) + 1 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1ψ(s)ds, 

(3.7) 

multiplying both sides of (3.7) by  m, we get 

m 
( 

ρJ 1−γ 
a+ u 

) 
(b) = m 

( 
ρJ 1−γ 

a+ u 
) 

(a+) 

+ m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1ψ(s)ds.
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Using condition (3.4), we obtain 

m 
( 

ρJ 1−γ 
a+ u 

) 
(b) = φ − l 

( 
ρJ 1−γ 

a+ u 
) 

(a+). 

Thus 

φ − l 
( 

ρJ 1−γ 
a+ u 

) 
(a+) = m 

( 
ρJ 1−γ 

a+ u 
) 

(a+) 

+ m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1ψ(s)ds, 

which implies that 

( 
ρJ 1−γ 

a+ u 
) 

(a+) = φ 
l + m 

− 

bρ − sρ 

ρ
m

∫ b 

a

( )α−γ 
sρ−1ψ(s)ds  

(l + m)⎡(1 − γ + α) 
. (3.8) 

Substituting (3.8) into (3.6), we obtain (3.5). 
Reciprocally, applying ρJ 1−γ 

a+ on both sides of (3.5), using Lemma 2.19 and Theorem 
2.14, we get  

( 
ρJ 1−γ 

a+ u 
) 

(t) = φ 
l + m 

− m 

(l + m) 

( 
ρJ 1−γ +α 

a+ ψ 
) 

(b) + 
( 

ρJ 1−γ +α 
a+ ψ 

) 
(t). (3.9) 

Next, taking the limit t → a+ of (3.9) and using Lemma 2.24, with 1 − γ <  1 − γ + α, 
we obtain 

( 
ρJ 1−γ 

a+ u 
) 

(a+) = φ 
l + m 

− m 

(l + m) 

( 
ρJ 1−γ +α 

a+ ψ 
) 

(b). (3.10) 

Now, taking t = b in (3.9), we get 
( 

ρJ 1−γ 
a+ u 

) 
(b) = φ 

l + m 
− m 

(l + m) 

( 
ρJ 1−γ +α 

a+ ψ 
) 

(b) + 
( 

ρJ 1−γ +α 
a+ ψ 

) 
(b). (3.11) 

From (3.10) and (3.11), we find that 

l 
( 

ρJ 1−γ 
a+ u 

) 
(a+) + m 

( 
ρJ 1−γ 

a+ u 
) 

(b) = 
l.φ 

l + m 
− 

lm 

l + m 

( 
ρJ 1−γ +α 

a+ ψ 
) 

(b) 

+ 
m.φ 
l + m 

− 
m2 

l + m 

( 
ρJ 1−γ +α 

a+ ψ 
) 

(b) 

+ m 
( 

ρJ 1−γ +α 
a+ ψ 

) 
(b) 

= φ +
(

m − 
lm − m2 

l + m

)( 
ρJ 1−γ +α 

a+ ψ 
) 

(b) 

= φ,
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which shows that the boundary condition l 
( 

ρJ 1−γ 
a+ u 

) 
(a+) + m 

( 
ρJ 1−γ 

a+ u 
) 

(b) = φ is sat-
isfied. Next, apply operator ρDγ 

a+ on both sides of (3.5). Then, from Lemmas 2.19 and 2.33, 
we obtain 

(ρDγ 
a+u)(t) = 

( 
ρDβ(1−α) 

a+ ψ 
) 

(t). (3.12) 

Since u ∈ Cγ 
γ,ρ  (J ) and by definition of Cγ 

γ,ρ  (J ), we have ρDγ 
a+u ∈ Cγ,ρ  (J ), then (3.12) 

implies that 

(ρDγ 
a+u)(t) = 

( 
δρ 

ρJ 1−β(1−α) 
a+ ψ 

) 
(t) = 

( 
ρDβ(1−α) 

a+ ψ 
) 

(t) ∈ Cγ,ρ  (J ). (3.13) 

As ψ(·) ∈ Cγ,ρ  (J ) and from Lemma 2.23, it follows that 

( 
ρJ 1−β(1−α) 

a+ ψ 
) 

∈ Cγ,ρ  (J ). (3.14) 

From (3.13), (3.14), and by the Definition of the space Cn 
γ,ρ  (J ), we obtain 

( 
ρJ 1−β(1−α) 

a+ ψ 
) 

∈ C1 
γ,ρ  (J ). 

Applying operator ρJ β(1−α) 
a+ to both sides of (3.12) and using Lemmas 2.32 and 2.24 and 

Property 2.22, we have  
( 

ρ Dα,β 
a+ u 

) 
(t) = ρJ β(1−α) 

a+ 
(
ρ Dγ 

a+u 
) 
(t) 

= ψ(t) + 

( 
ρJ 1−β(1−α) 

a+ ψ(t) 
) 

(a) 

⎡(β(1 − α))

(
tρ − aρ 

ρ

)β(1−α)−1 

= ψ(t), 

that is, (3.3) holds. This completes the proof. ⛛ 

As a consequence of Theorem 3.1, we have the following result. 

Lemma 3.2 Let γ = α + β − αβ where 0 < α  <  1 and 0 ≤ β ≤ 1, let f : J × E × E → 
E be a function such that f (·, u(·), v(·)) ∈ Cγ,ρ  (J ) for any u, v  ∈ Cγ,ρ  (J ). If u ∈ Cγ 

γ,ρ  (J ), 
then u satisfies the problem (3.1)–(3.2) if and only if u is the fixed point of the operator 
ψ : Cγ,ρ  (J ) → Cγ,ρ  (J ) defined by 

ψu(t) = 

[ 

φ − m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1h(s)ds

]

× 1 

(l + m)⎡(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1h(s)ds, 

(3.15)
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where h : J → E be a function satisfying the functional equation 

h(t) = f (t, u(t), h(t)). 

Clearly, h ∈ Cγ,ρ  (J ). Also, by Lemma 2.23, ψu ∈ Cγ,ρ  (J ). 

Lemma 3.3 ([ 75]) Let D ⊂ Cγ,ρ  (J ) be a bounded and equicontinuous set, then 

(i) the function t → μ

((
tρ − aρ 

ρ

)1−γ 
D(t)

)

¯is continuous on J , and 

¯
μCγ,ρ  (D) = sup 

t∈J 

μ

((
tρ − aρ 

ρ

)1−γ 
D(t)

)

. 

(ii) μ 
({{ b 

a u(s)ds  : u ∈ D
}) 

≤
∫ b 

a 
μ(D(s))ds, where 

D(t) = {u(t) : u ∈ D}, t ∈ J . 

We are now in a position to state and prove our existence result for the problem (3.1)–(3.2) 
based on Theorem 2.49. 

Theorem 3.4 Assume that the following hypotheses hold: 

(3.4.1) The function t |→ f (t, u, v)  is measurable and continuous on J for each u, v  ∈ E, 
and the functions u |→ f (t, u, v)  and v |→ f (t, u, v)  are continuous on E for a.e. 
t ∈ J . 

(3.4.2) There exists a continuous function ¯p : J −→ [0, ∞) such that 

|| f (t, u, v)|| ≤  p(t), for a.e. t ∈ J and for each u, v  ∈ E . 

(3.4.3) For each bounded set B ⊂ E and for each t ∈ J , we have 

μ( f (t, B, (ρDα,β 
a+ B))) ≤

(
tρ − aρ 

ρ

)1−γ 
p(t)μ(B), 

where ρDα,β 
a+ B = {ρDα,β 

a+ w : w ∈ B} and p∗ = sup 
t∈ J̄ 

p(t). 

If 

l := p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
< 1, (3.16) 

then the problem (3.1)–(3.2) has at least one solution defined on J .
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Proof Consider the operator ψ : Cγ,ρ  (J ) → Cγ,ρ  (J ) defined in (3.15). 
For any u ∈ Cγ,ρ  (J ), and each t ∈ J we have 

|| 
|| 
|| 
|| 
||

(
tρ − aρ 

ρ

)1−γ 
(ψu)(t) 

|| 
|| 
|| 
|| 
|| ≤

||φ|| 
|l + m|⎡(γ ) 

+ 
|m|

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1||h(s)||ds  

|l + m|⎡(γ )⎡(1 − γ + α) 

+
(
tρ − aρ 

ρ

)1−γ ∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1 ||h(s)|| 
⎡(α) 

ds  

≤ ||φ|| 
|l + m|⎡(γ ) 

+ 
|m|p∗ 

|l + m|⎡(γ ) 

( 
ρJ 1−γ +α 

a+ (1) 
) 

(b) 

+ p∗
(
tρ − aρ 

ρ

)1−γ (
ρJ α 

a+ (1) 
) 
(t). 

By Lemma 2.19, we have  
|| 
|| 
|| 
|| 
||

(
tρ − aρ 

ρ

)1−γ 
(ψu)(t) 

|| 
|| 
|| 
|| 
|| 

≤ ||φ|| 
|l + m|⎡(γ ) 

+ |m|p∗ 

|l + m|⎡(γ )⎡(α − γ )

(
bρ − aρ 

ρ

)1−γ +α 

+ p∗ 

⎡(α + 1)

(
tρ − aρ 

ρ

)1−γ +α 
. 

Hence, for any u ∈ Cγ,ρ  (J ), and each t ∈ J , we get  

||(ψu)||Cγ,ρ  

≤ ||φ|| 
|l + m|⎡(γ ) 

+ |m|p∗ 

|l + m|⎡(γ )⎡(α − γ )

(
bρ − aρ 

ρ

)1−γ +α 
+ p∗ 

⎡(α + 1)

(
tρ − aρ 

ρ

)1−γ +α 

:= R. 

This proves that ψ transforms the ball BR := B(0, R) = {w ∈ Cγ,ρ  : ||w||Cγ,ρ  ≤ R} into 
itself. We shall show that the operator ψ : BR → BR satisfies all the assumptions of Theorem 
2.49. The proof will be given in several steps. 

Step 1: ψ : BR → BR is continuous. 
Let {un}n∈N be a sequence such that un −→ u in BR . Then, for each t ∈ J , we have
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|| 
|| 
|| 
|| 
||

(
tρ − aρ 

ρ

)1−γ 
(ψun)(t) −

(
tρ − aρ 

ρ

)1−γ 
(ψu)(t) 

|| 
|| 
|| 
|| 
|| 

≤ |m| 
|l + m|⎡(γ )⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1||hn(s) − h(s)||ds  

+ 
1 

⎡(α)

(
tρ − aρ 

ρ

)1−γ ∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1||hn(s) − h(s)||ds, 

(3.17) 

where hn, h ∈ Cγ,ρ  (J ) be such that 

hn(t) = f (t, un(t), hn(t)) , h(t) = f (t, u(t), h(t)). 

Since un −→ u as n −→ ∞ and f is continuous, then by the Lebesgue dominated 
convergence theorem, Eq. (3.17) implies 

||ψun − ψu||Cγ,ρ  −→ 0asn −→ ∞. 

Step 2: ψ(BR) is bounded and equicontinuous. 
Since ψ(BR) ⊂ BR and BR is bounded, then ψ(BR) is bounded. 

Next, let t1, t2 ∈ J such that a < t1 < t2 ≤ b and let u ∈ BR . Thus, we have 
|| 
|| 
|| 
|| 
||

(
tρ 
2 − aρ 

ρ

)1−γ 
(ψu)(t2) −

(
tρ 
1 − aρ 

ρ

)1−γ 
(ψu)(t1) 

|| 
|| 
|| 
|| 
|| 

≤ 

|| 
|| 
|| 
|| 
|| 

1 

⎡(α)

(
tρ 
2 − aρ 

ρ

)1−γ ∫ t2 

a

(
tρ 
2 − sρ 

ρ

)α−1 

sρ−1h(s)ds  

− 
1 

⎡(α)

(
tρ 
1 − aρ 

ρ

)1−γ ∫ t1 

a

(
tρ 
1 − sρ 

ρ

)α−1 

sρ−1h(s)ds  

|| 
|| 
|| 
|| 
|| , 

then, 
|| 
|| 
|| 
|| 
||

(
tρ 
2 − aρ 

ρ

)1−γ 
(ψu)(t2) −

(
tρ 
1 − aρ 

ρ

)1−γ 
(ψu)(t1) 

|| 
|| 
|| 
|| 
|| 

≤ 1 

⎡(α)

(
tρ 
2 − aρ 

ρ

)1−γ ∫ t2 

t1

(
tρ 
2 − sρ 

ρ

)α−1 

sρ−1||h(s)||ds  + ρα−γ 

×
∫ t1 

a 

| 
| 
| 
( 
tρ 
2 − aρ )1−γ ( 

tρ 
2 − sρ )α−1 − 

( 
tρ 
1 − aρ )1−γ ( 

tρ 
1 − sρ )α−1 

| 
| 
| 
sρ−1||h(s)|| 

⎡(α) 
ds  

≤ p∗
(
bρ − aρ 

ρ

)1−γ ( 
ρJ α 

t+ 
1 
(1) 

) 
(t2) + ρα−γ 

×
∫ t1 

a 

| 
| 
| 
( 
tρ 
2 − aρ )1−γ ( 

tρ 
2 − sρ )α−1 − 

( 
tρ 
1 − aρ )1−γ ( 

tρ 
1 − sρ )α−1 

| 
| 
| 
p∗sρ−1ds  

⎡(α) 
.
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By Lemma 2.19, we have  
|| 
|| 
|| 
|| 
||

(
tρ 
2 − aρ 

ρ

)1−γ 
(ψu)(t2) −

(
tρ 
1 − aρ 

ρ

)1−γ 
(ψu)(t1) 

|| 
|| 
|| 
|| 
|| 

≤ p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ (
tρ 
2 − tρ 

1 

ρ

)α 
+ ρα−γ 

+
∫ t1 

a 

| 
| 
| 
( 
tρ 
2 − aρ )1−γ ( 

tρ 
2 − sρ )α−1 − 

( 
tρ 
1 − aρ )1−γ ( 

tρ 
1 − sρ )α−1 

| 
| 
| 
p∗sρ−1ds  

⎡(α) 
. 

As t1 −→ t2, the right side of the above inequality tends to zero. Hence, ψ(BR) is 
bounded and equicontinuous. 
Step 3: The implication (2.11) of Theorem 2.49 holds. 
Now let D be an equicontinuous subset of BR such that D ⊂ ψ(D) ∪ {0}; therefore, the 
function t −→ d(t) = μ(D(t)) is continuous on J . By hypothesis (3.4.3) and the properties 
of the measure μ, for each t ∈ J , we have

(
tρ − aρ 

ρ

)1−γ 
d(t) ≤ μ

((
tρ − aρ 

ρ

)1−γ 
(ψ D)(t) ∪ {0}

)

≤ μ

((
tρ − aρ 

ρ

)1−γ 
(ψ D)(t)

)

≤
(
bρ − aρ 

ρ

)1−γ 

×
∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1 p(s)μ(D(s)) 
⎡(α)

(
sρ − aρ 

ρ

)1−γ 
ds  

≤ p∗
(
bρ − aρ 

ρ

)1−γ 
||d||Cγ,ρ  

(
ρJ α 

a+ (1) 
) 
(t) 

≤ p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
||d||Cγ,ρ  . 

Thus 
||d||Cγ,ρ  ≤ l||d||Cγ,ρ  . 

From (3.16), we get ||d||Cγ,ρ  = 0, that is d(t) = μ(D(t)) = 0, for each t ∈ J , and  then  
D(t) is relatively compact in E . In view of the Ascoli-Arzela Theorem, D is relatively 
compact in BR . Applying now Theorem 2.49, we conclude that ψ has a fixed point, which 
is solution of the problem (3.1)–(3.2). ⛛ 

Our next existence result for the problem (3.1)–(3.2) is based on Theorem 2.48 (Darbo’s 
fixed point theorem). 

Theorem 3.5 Assume that the hypotheses (3.4.1)–(3.4.3) and the condition (3.16) hold. 
Then the problem (3.1)–(3.2) has a solution defined on J .
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Proof Consider the operator ψ defined in (3.15). We know that ψ : BR −→ BR is bounded 
and continuous and that ψ(BR) is equicontinuous, we need to prove that the operator ψ is 
a l-contraction. 

Let D ⊂ BR and t ∈ J . Then we have 

μ

((
tρ − aρ 

ρ

)1−γ 
(ψ D)(t)

)

= μ

((
tρ − aρ 

ρ

)1−γ 
(ψu)(t) : u ∈ D

)

≤
⎧∫ t 

a

(
tρ − sρ 

ρ

)α−1 sρ−1 p(s)μ(D(s)) 
⎡(α)

(
sρ − aρ 

ρ

)1−γ 
ds  : u ∈ D

⎫

×
(
bρ − aρ 

ρ

)1−γ 

≤ p∗
(
bρ − aρ 

ρ

)1−γ 
μCγ,ρ  (D) 

(
ρJ α 

a+ (1) 
) 
(t) 

≤ p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
μCγ,ρ  (D). 

Therefore, 

μCγ,ρ  (ψ D) ≤ p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
μCγ,ρ  (D). 

So, by (3.16), the operator ψ is a l-contraction, where 

l := p∗ 

⎡(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
< 1. 

Consequently, from Theorem 2.48, we conclude that ψ has a fixed point u ∈ BR, which 
is a solution to problem (3.1)–(3.2). ⛛ 

3.2.2 Ulam-Hyers-Rassias Stability 

Now we are concerned with the generalized Ulam-Hyers-Rassias stability of our Eq. (3.1). 
Let ∈ >  0 and θ : J −→ [0, ∞) be a continuous function. We consider the following 
inequalities : 

|| 
|| 
|| 
( 

ρDα,β 
a+ u 

) 
(t) − f 

( 
t, u(t), 

( 
ρDα,β 

a+ u 
) 

(t) 
)|| 
|| 
|| ≤ ∈; t ∈ J , (3.18) 

|| 
|| 
|| 
( 

ρDα,β 
a+ u 

) 
(t) − f 

( 
t, u(t), 

( 
ρDα,β 

a+ u 
) 

(t) 
)|| 
|| 
|| ≤ θ(t); t ∈ J , (3.19) 

|| 
|| 
|| 
( 

ρDα,β 
a+ u 

) 
(t) − f 

( 
t, u(t), 

( 
ρDα,β 

a+ u 
) 

(t) 
)|| 
|| 
|| ≤ ∈θ (t); t ∈ J . (3.20)
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Definition 3.6 ([ 51, 52]) Problem (3.1)–(3.2) is Ulam-Hyers (U-H) stable if there exists a 
real number a f > 0 such that for each ∈ >  0 and for each solution u ∈ Cγ,ρ  (J ) of inequality 
(3.18) there exists a solution v ∈ Cγ,ρ  (J ) of (3.1)–(3.2) with 

||u(t) − v(t)|| ≤  ∈a f ; t ∈ J . 

Definition 3.7 ([ 51, 52]) Problem (3.1)–(3.2) is generalized Ulam-Hyers (G.U-H) stable 
if there exists a f : C([0, ∞), [0, ∞)) with a f (0) = 0 such that for each ∈ >  0 and for each 
solution u ∈ Cγ,ρ  (J ) of inequality (3.18) there exists a solution v ∈ Cγ,ρ  (J ) of (3.1)–(3.2) 
with 

||u(t) − v(t)|| ≤  a f (∈); t ∈ J . 

Definition 3.8 ([ 51, 52]) Problem (3.1)–(3.2) is Ulam-Hyers-Rassias (U-H-R) stable with 
respect to θ if there exists a real number a f ,θ > 0 such that for each ∈ >  0 and for each 
solution u ∈ Cγ,ρ  (J ) of inequality (3.20) there exists a solution v ∈ Cγ,ρ  (J ) of (3.1)–(3.2) 
with 

||u(t) − v(t)|| ≤  ∈a f ,θ θ(t); t ∈ J . 

Definition 3.9 ([ 51, 52]) Problem (3.1)–(3.2) is generalized Ulam-Hyers-Rassias (G.U-H-
R) stable with respect to θ if there exists a real number a f ,θ > 0 such that for each solution 
u ∈ Cγ,ρ  (J ) of inequality (3.19) there exists a solution v ∈ Cγ,ρ  (J ) of (3.1)–(3.2) with 

||u(t) − v(t)|| ≤  a f ,θ θ(t); t ∈ J . 

Remark 3.10 It is clear that 

1. Definition 3.6 =⇒ Definition 3.7. 
2. Definition 3.8 =⇒ Definition 3.9. 
3. Definition 3.8 for θ(.)  = 1 =⇒ Definition 3.6. 
Theorem 3.11 Assume that the hypotheses (3.4.1), (3.4.2), and the following hypotheses 
hold: 

(3.11.1) There exists λθ > 0 such that for each t ∈ J , we have 

(ρJ α 
a+ θ)(t) ≤ λθ θ(t). 

(3.11.2) There exists a continuous function q : J̄ −→ [0, ∞) such that for each t ∈ J , we  
have 

p(t) ≤ q(t)θ (t). 

Then equation Problem (3.1)–(3.2) is G.U-H-R stable.
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Proof Consider the operator ψ defined in (3.15). Let u be a solution of inequality (3.19), 
and let us assume that v is a solution of the problem (3.1)–(3.2). Thus, we have 

ψv(t) = 

[ 

φ − m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1g(s)ds

]

× 1 

(l + m)⎡(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1g(s)ds, t ∈ J , 

where g : J → E be a function satisfying 

g(t) = f (t, v(t), g(t)). 

From inequality (3.19), for each t ∈ J , we have  
|| 
|| 
|| 
||u(t) − 

[ 

φ − m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1h(s)ds

]

× 1 

(l + m)⎡(γ )

(
tρ − aρ 

ρ

)γ −1 

− 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1h(s)ds  

|| 
|| 
|| 
|| 

≤ (ρJ α 
a+ θ)(t). 

Set 
¯

q∗ = sup 
t∈J 

q(t). 

From hypotheses (3.11.1) and (3.11.2), for each t ∈ J , we get  

||u(t) − v(t)|| ≤  
|| 
|| 
|| 
||u(t) − 

[ 

φ − m 

⎡(1 − γ + α)

∫ b 

a

(
bρ − sρ 

ρ

)α−γ 
sρ−1h(s)ds

]

×

(
tρ − aρ 

ρ

)γ −1 

(l + m)⎡(γ ) 
− 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1h(s)ds  

|| 
|| 
|| 
|| 

+ 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1||h(s) − g(s)||ds  

≤ (ρJ α 
a+ θ)(t) + 1 

⎡(α)

∫ t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−12q∗θ(s)ds  

≤ λθ θ(t) + 2q∗(ρJ α 
a+ θ)(t) 

≤ [1 + 2q∗]λθ θ(t) 
:= a f ,θ θ(t). 

Hence, Eq. (3.1) is G.U-H-R stable. ⛛
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3.2.3 An Example 

Let 

E = l1 =
⎫

u = (u1, u2, . . . ,  un, . . .),  
∞Σ 

n=1 

|un| < ∞
⎫

be the Banach space with the norm 

||u|| =  
∞Σ 

n=1 

|un|. 

Consider the following boundary value problem of fractional differential equation: 

1D 
1 
2 ,0 
1+ un(t) = fn

(

t, un(t),
(
1D 

1 
2 ,0 
1+ un

)

(t)

)

, t ∈ (1, e] (3.21)

(
1J 

1 
2 
1+un

)

(1+) +
(
1J 

1 
2 
1+un

)

(e) = 0, (3.22) 

where 

fn

(

t, un(t),
(
1D 

1 
2 ,0 
1+ un

)

(t)

)

= 
ct2 

e2 
(sin(t − 1) + un(t)) , t ∈ (1, e]. 

Let 

f = ( f1, f2, . . . ,  fn, . . .),  u = (u1, u2, . . . ,  un, . . .)  c = 
1 

4 
⎡

(
1 

2

)

, 

γ = α = 1 2 , ρ = 1, and  β = 0. Clearly, the function f is continuous. 
The hypothesis (3.4.2) is satisfied with 

p(t) = 
ct2| sin(t − 1)| 

e2
, t ∈ (1, e]. 

A simple computation shows that the conditions of Theorem 3.4 are satisfied. Hence the 
problem (3.21)–(3.22) has at least one solution defined on [1, e]. 

Also, hypotheses (3.11.1) and (3.11.2) are satisfied with θ(t) = e2, q(t) = 
p(t) 
e2 

, and  

λθ = 
4 √
π 
. Indeed, for each t ∈ (1, e], we get  

(ρJ α 
a+ θ)(t) ≤ 

4e2 √
π 

= λθ θ(t). 

Consequently, Theorem 3.11 implies that Eq. (3.21) is G.U-H-R stable.
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3.3 Existence and Ulam Stability Results for k-Generalized ψ-Hilfer 
Initial Value Problem 

In this section, we consider the initial value problem with nonlinear implicit k-generalized 
ψ-Hilfer-type fractional differential equation: 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
, t ∈ J , (3.23) 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = x0, (3.24) 

where H k D
α,β;ψ 
a+ , J k(1−ξ),k;ψ 

a+ are the k-generalized ψ-Hilfer fractional derivative of order 
α ∈ (0, 1) and type β ∈ [0, 1], and  k-generalized ψ-fractional integral of order k(1 − ξ), 
respectively, where ξ = 1 k (β(k − α) + α), x0 ∈ R, k > 0, and  f ∈ C( J̄ × R2, R). 

3.3.1 Existence Results 

We consider the following fractional differential equation: 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = w(t), t ∈ J , (3.25) 

where 0 < α  <  1, 0 ≤ β ≤ 1, with the condition 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = x0, (3.26) 

where ξ = 
β(k − α) + α 

k 
, x0 ∈ R, k > 0, and where w ∈ C(J ¯ , R) satisfies the functional 

equation: 
w(t) = f (t, x(t), w(t)) . 

The following theorem shows that the problem (3.25)–(3.26) has a unique solution. 

Theorem 3.12 If w(·) ∈ C1 
ξ ;ψ (J ), then x satisfies (3.25)–(3.26) if and only if it satisfies 

x(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)  
x0 + 

( 
J α,k;ψ 
a+ w 

) 
(t). (3.27) 

Proof Assume x ∈ C1 
ξ ;ψ (J ) satisfies Eqs. (3.25) and (3.26), and applying the fractional 

integral operator J α,k;ψ 
a+ (·) on both sides of the fractional equation (3.25), so 

( 
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ x 

) 
(t) = 

( 
J α,k;ψ 
a+ w 

) 
(t),



3.3 Existence and Ulam Stability Results for k-Generalized… 49

and using Theorem 2.35 and Eq. (3.26), we get 

x(t) = 
(ψ(t) − ψ(a))ξ−1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ x(a) + 

( 
J α,k;ψ 
a+ w 

) 
(t) 

= 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)  
x0 + 

( 
J α,k;ψ 
a+ w 

) 
(t). 

Let us now prove that if x satisfies Eq. (3.27), then it satisfies Eqs. (3.25) and (3.26). Applying 
the fractional derivative operator H k D

α,β;ψ 
a+ (·) on both sides of the fractional equation (3.27), 

then we get 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = H 

k D
α,β;ψ 
a+

(
(ψ(t) − ψ(a))ξ−1 

⎡k (kξ)  
x0

)

+ 
( 
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ w 
) 

(t). 

Using Lemmas 2.31 and 2.29, we obtain Eq. (3.25). Now we apply the operatorJ k(1−ξ),k;ψ 
a+ (·) 

on Eq. (3.27) to have  
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(t) = x0 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 

+ 
( 
J k(1−ξ),k;ψ 
a+ J α,k;ψ 

a+ w 
) 

(t). 

Now, using Lemmas 2.18 and 2.21, we get  
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(t) = x0 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 

+ 
( 
J k(1−ξ),k;ψ 
a+ J α,k;ψ 

a+ w 
) 

(t) 

= x0 + 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(t). 

Using Theorem 2.26 with t → a, we obtain Eq. (3.26). This completes the proof. ⛛ 

As a consequence of Theorem 3.12, we have the following result. 

Lemma 3.13 Let ξ = 
β(k − α) + α 

k 
where 0 < α  <  1, 0 ≤ β ≤ 1, and k > 0, let  f : J ¯ × 

R × R → R be a continuous function such that f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ 

Cξ ;ψ (J ). If  x ∈ C1 
ξ ;ψ (J ), then x satisfies the problem (3.23)–(3.24) if and only if x is the 

fixed point of the operator T : Cξ ;ψ (J ) → Cξ ;ψ (J ) defined by 

(T x) (t) = 
(ψ(t) − ψ(a))ξ−1 

⎡k (kξ)  
x0 + 1 

k⎡k (α)

∫ t 

a 

ψ '(s)ϕ(s)ds  

(ψ(t) − ψ(s))1−
α 
k 
, (3.28)



50 3 Implicit Fractional Differential Equations

where ϕ be a function satisfying the functional equation 

ϕ(t) = f (t, x(t), ϕ(t)). 

We are now in a position to state and prove our existence result for the problem (3.23)– 
(3.24) based on Banach’s fixed point theorem. 

Theorem 3.14 Assume that the following hypotheses are met. 

(3.14.1) The function f : J ¯ × R × R → R is continuous and 

f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ Cξ ;ψ (J ). 

(3.14.2) There exist constants η1 > 0 and 0 < η2 < 1 such that 

| f (t, x, y) − f (t, x̄, ȳ)| ≤  η1|x − x̄ | +  η2|y − ȳ| 

for any x, y, x̄, y ¯ ∈ R and t ∈ J ¯ . 

If 

L = 
η1⎡k (kξ)  (ψ(b) − ψ(a)) 

α 
k 

⎡k (α + kξ)(1 − η2) 
< 1, (3.29) 

then the problem (3.23)–(3.24) has a unique solution in Cξ ;ψ (J ). 

Proof We show that the operator T defined in (3.28) has a unique fixed point in Cξ ;ψ (J ). 
Let x, y ∈ Cξ ;ψ (J ). Then, for t ∈ J we have 

|T x(t) − T y(t)| ≤ 1 

k⎡k (α)

∫ t 

a 

ψ '(s)|ϕ1(s) − ϕ2(s)|dt  
(ψ(t) − ψ(s))1−

α 
k 

, 

where ϕ1 and ϕ1 be functions satisfying the functional equations 

ϕ1(t) = f (t, x(t), ϕ1(t)), 
ϕ2(t) = f (t, y(t), ϕ2(t)). 

By hypothesis (3.14.2), we have  

|ϕ1(t) − ϕ2(t)| = |  f (t, x(t), ϕ1(t)) − f (t, y(t), ϕ2(t))| 
≤ η1|x(t) − y(t)| +  η2|ϕ1(t) − ϕ2(t)|. 

Then, 
|ϕ1(t) − ϕ2(t)| ≤ η1 

1 − η2 
|x(t) − y(t)|.
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Therefore, for each t ∈ J 

|T x(t) − T y(t)| ≤ η1 

(1 − η2)k⎡k (α)

∫ t 

a 

ψ '(s)|x(s) − y(s)|dt  
(ψ(t) − ψ(s))1−

α 
k 

≤ 
η1||x − y||Cξ ;ψ 

1 − η2 
J α,k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 . 

By Lemma 2.21, we have  

|T x(t) − T y(t)| ≤
[

η1⎡k (kξ)  
⎡k (α + kξ)(1 − η2) 

(ψ(t) − ψ(a)) 
α+kξ 
k −1

]

||x − y||Cξ ;ψ , 

hence 

| 
|(ψ(t) − ψ(a))1−ξ (T x(t) − T y(t)) 

| 
| ≤ 

[ 
η1⎡k (kξ)  (ψ(t) − ψ(a)) 

α 
k 

⎡k (α + kξ)(1 − η2)

]

||x − y||Cξ ;ψ 

≤ 

[ 
η1⎡k (kξ)  (ψ(b) − ψ(a)) 

α 
k 

⎡k (α + kξ)(1 − η2)

]

||x − y||Cξ ;ψ , 

which implies that 

||T x − T y||Cξ ;ψ ≤ 

[ 
η1⎡k (kξ)  (ψ(b) − ψ(a)) 

α 
k 

⎡k (α + kξ)(1 − η2)

]

||x − y||Cξ ;ψ . 

By (3.29), the operator T is a contraction. Hence, by Banach’s contraction principle, T 
has a unique fixed point x ∈ Cξ ;ψ (J ), which is a solution to our problem (3.23)–(3.24). ⛛ 

3.3.2 Ulam-Hyers-Rassias Stability 

Now, we consider the Ulam stability for problem (3.23)–(3.24). Let x ∈ C1 
ξ ;ψ (J ), ∈ >  0, 

and v : J −→ [0, ∞) be a continuous function. We consider the following inequality : 
| 
| 
| 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) − f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

)| 
| 
| ≤ ∈v(t), t ∈ J . (3.30) 

Definition 3.15 Problem (3.23)–(3.24) is Ulam-Hyers-Rassias (U-H-R) stable with respect 
to v if there exists a real number a f ,v > 0 such that for each ∈ >  0 and for each solution 
x ∈ C1 

ξ ;ψ (J ) of inequality (3.30) there exists a solution y ∈ C1 
ξ ;ψ (J ) of (3.23)–(3.24) with 

|x(t) − y(t)| ≤  ∈a f ,vv(t), t ∈ J .
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Remark 3.16 A function x ∈ C1 
ξ ;ψ (J ) is a solution of inequality (3.30) if and only if there 

exist σ ∈ Cξ ;ψ (J ) such that 

1. |σ(t)| ≤  ∈v(t), t ∈ J , 
2. 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . 

Theorem 3.17 Assume that in addition to assumptions (3.14.1), (3.14.2), and (3.29), the 
following hypothesis holds. 

(3.17.1) There exist a nondecreasing function v ∈ C1 
ξ ;ψ (J ) and κv > 0 such that for each 

t ∈ J , we have ( 
J α,k;ψ 
a+ v 

) 
(t) ≤ κvv(t). 

Then the problem (3.23)–(3.24) is U-H-R stable with respect to v. 

Proof Let x ∈ C1 
ξ ;ψ (J ) be a solution of inequality (3.30), and let us assume that y is the 

unique solution of the problem 
⎧ 
⎨ 

⎩ 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) = f 

( 
t, y(t), 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) 

) 
; t ∈ J , 

( 
J k(1−ξ),k;ψ 
a+ y 

) 
(a+) = 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+). 

By Lemma 3.13, we obtain for each t ∈ J 

y(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ y(a) + 

( 
J α,k;ψ 
a+ w 

) 
(t), 

where w ∈ C1 
ξ ;ψ (J ) be a function satisfying the functional equation 

w(t) = f (t, y(t), w(t)). 

Since x is a solution of the inequality (3.30), by Remark 3.16, we have  
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . (3.31) 

Clearly, the solution of (3.31) is given  by  

x(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ x(a) + 

( 
J α,k;ψ 
a+ ( w̃ + σ)  

) 
(t),
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where w̃ ∈ C1 
ξ ;ψ (J ) be a function satisfying the functional equation 

w̃(t) = f (t, x(t), w̃(t)). 

Hence, for each t ∈ J , we have 

|x(t) − y(t)| ≤  
( 
J α,k;ψ 
a+ |w̃(s) − w(s)| 

) 
(t) + 

( 
J α,k;ψ 
a+ σ 

) 
(t) 

≤ ∈κvv(t) + η1 

(1 − η2)k⎡k (α)

∫ t 

a 

ψ '(s)|x(s) − y(s)|dt  
(ψ(t) − ψ(s))1−

α 
k 

. 

By applying Theorem 2.42, we obtain 

|x(t) − y(t)| ≤  ∈κvv(t) +
∫ t 

a 

∞Σ 

i=1 

( 
η1 

1−η2 

)i 

k⎡k (αi ) 
ψ ' (s) [ψ(t) − ψ(s)] 

i α 
k −1 ∈κvv (s) ds, 

≤ ∈κvv(t)E α,k 
k

[
η1 

1 − η2 
(ψ (t) − ψ (a)) 

α 
k

]

≤ ∈κvv(t)E α,k 
k

[
η1 

1 − η2 
(ψ (b) − ψ (a)) 

α 
k

]

. 

Then for each t ∈ J , we have  

|x(t) − y(t)| ≤  a f ,v∈v(t), 

where 

a f ,v = κv E 
α,k 
k

[
η1 

1 − η2 
(ψ (b) − ψ (a)) 

α 
k

]

. 

Hence, the problem (3.23)–(3.24) is U-H-R stable with respect to v. ⛛ 

3.3.3 Examples 

With the following examples, we look at particular cases of the problem (3.23)–(3.24). 

Example 3.18 Taking β → 0, α = 1 2 , k = 1, ψ(t) = t , a = 1, b = 2, and  x0 = 1, we  
obtain a particular case of problem (3.23)–(3.24) with the Riemann-Liouville fractional 
derivative, given by
(
H 
1 D 

1 
2 ,0;ψ 
1+ x

)

(t) =
(
RLD 

1 
2 
1+ x

)

(t) = f
(

t, x(t),
(
RLD 

1 
2 
1+ x

)

(t)

)

, t ∈ (1, 2], (3.32)

(

J 
1 
2 ,1;ψ 
1+ x

)

(1+) = 1, (3.33)
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where J ¯ = [1, 2], ξ = 1 k (β(k − α) + α) = 1 2 , and  

f (t, x, y) =
√
t − 1|sin(t)|(1 + x + y) 

66e−t+3 , t ∈ J ¯ , x, y ∈ R. 

We have 

Cξ ;ψ (J ) = C 1 
2 ;ψ (J ) =

{
u : (1, 2] →  R : ( √t − 1)u ∈ C(J ¯ , R)

}
, 

and 
C1 

ξ ;ψ (J ) = C1 
1 
2 ;ψ (J ) =

{
u ∈ C 1 

2 ;ψ (J ) : u' ∈ C 1 
2 ;ψ (J )

}
. 

Since the continuous function f ∈ C1 
1 
2 ;ψ 

(J ), then the condition (3.14.1) is satisfied. 

For each x, x̄, y, y ¯ ∈ R and t ∈ J ¯ , we have 

| f (t, x, x̄) − f (t, y, ȳ)| ≤
√
t − 1|sin(t)| 
66e−t+3 (|x − x̄ | + |y − ȳ|) , 

and so the condition (3.14.2) is satisfied with η1 = η2 = 
1 

66e 
. Also, the condition (3.29) of  

Theorem 3.14 is satisfied. Indeed, we have 

L =
√

π 
66e − 1 

≈ 0.01 < 1. 

Then the problem (3.32)–(3.33) has a unique solution in C1 
1 
2 ;ψ 

([1, 2]). 

Now, if we take v(t) = t − 1 and κv =
√
2⎡(2) 
⎡( 5 2 ) 

, then for each t ∈ J , we get

(

J 
1 
2 ,1;ψ 
1+ v

)

(t) ≤
√
2

⎡( 5 2 ) 
(t − 1) 

= κvv(t), 

⎡(2) 

which shows that the hypothesis (3.17.1) is satisfied. Consequently, Theorem 3.17 implies 
that the problem (3.32)–(3.33) is U-H-R stable. 

Example 3.19 Taking β → 0, α = 1 2 , k = 1, ψ(t) = ln t , a = 1, b = e, and  x0 = π , we  
get a particular case of problem (3.23)–(3.24) using the Hadamard fractional derivative, 
given by
(
H 
1 D 

1 
2 ,0;ψ 
1+ x

)

(t) =
(
HDD 

1 
2 
1+ x

)

(t) = f
(

t, x(t),
(
HDD 

1 
2 
1+ x

)

(t)

)

, t ∈ (1, e], (3.34)

(

J 
1 
2 ,1;ψ 
1+ x

)

(1+) = π, (3.35)
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where J ¯ = [1, e], and  

f (t, x, y) = 
e + x + y 
111et 

, t ∈ J ¯ , x, y ∈ R. 

We have 

Cξ ;ψ (J ) = C 1 
2 ;ψ (J ) =

{
u : (1, e] →  R : ( √ln t)u ∈ C(J ¯ , R)

}
, 

and 
C1 

ξ ;ψ (J ) = C1 
1 
2 ;ψ (J ) =

{
u ∈ C 1 

2 ;ψ (J ) : u' ∈ C 1 
2 ;ψ (J )

}
. 

Clearly, the function f ∈ C1 
1 
2 ;ψ 

(J ). Hence, condition (3.14.1) is satisfied. 

For each x, x̄, y, y ¯ ∈ R and t ∈ J ¯ , we have 

| f (t, x, x̄) − f (t, y, ȳ)| ≤ 1 

111et 
|x − x̄ | + 1 

111et 
|y − ȳ|, 

and so the condition (3.14.2) is satisfied with η1 = η2 = 1 

111e 
. 

Also, we have 

L =
√

π 
111e − 1 

≈ 0.0058 < 1, 

then the condition (3.29) of Theorem 3.14 is satisfied. Then the problem (3.34)–(3.35) has  
a unique solution in C 1 

2 ;ψ ([1, e]). The problem is also U-H-R stable if we take v(t) = e2 

and κv = 1 

⎡( 3 2 ) 
. Indeed, for each t ∈ J , we get

(

J 
1 
2 ,1;ψ 
1+ v

)

(t) ≤ e2 

⎡( 3 2 ) = κvv(t). 

3.4 Existence and Ulam Stability Results for k-Generalized ψ-Hilfer 
Initial Value Problem in Banach Spaces 

This section deals with the initial value problem with nonlinear implicit k-generalized ψ-
Hilfer-type fractional differential equation : 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
, t ∈ J , (3.36) 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = x0, (3.37)
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where H k D
α,β;ψ 
a+ , J k(1−ξ),k;ψ 

a+ are the k-generalized ψ-Hilfer fractional derivative of order 
α ∈ (0, 1) and type β ∈ [0, 1], and  k-generalized ψ-fractional integral of order k(1 − ξ), 
where ξ = 1 k (β(k − α) + α), x0 ∈ E , k > 0, and  f ∈ C(J ¯ × E × E, E). 

3.4.1 Existence Results 

We consider the following fractional differential equation: 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = w(t), t ∈ J , (3.38) 

where 0 < α  <  1, 0 ≤ β ≤ 1, with the condition 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = x0, (3.39) 

where ξ = 
β(k − α) + α 

k 
, x0 ∈ E , k > 0, and where w ∈ C(J ¯ , E) satisfies the functional 

equation: 
w(t) = f (t, x(t), w(t)) . 

Following the same approach of Theorem 3.12, we have the results that follow. 

Theorem 3.20 If w(·) ∈ C1 
ξ ;ψ (J ), then x satisfies (3.38)–(3.39) if and only if it satisfies 

x(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)  
x0 + 

( 
J α,k;ψ 
a+ w 

) 
(t). (3.40) 

As a consequence of Theorem 3.20, we have the following result. 

Lemma 3.21 Let ξ = 
β(k − α) + α 

k 
where 0 < α  <  1, 0 ≤ β ≤ 1 and k > 0, let  f : J ¯ × 

E × E → E be a continuous function such that f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ 

Cξ ;ψ (J ). Then, x satisfies the problem (3.36)–(3.37) if and only if x is the fixed point of the 
operator T : Cξ ;ψ (J ) → Cξ ;ψ (J ) defined by 

(T x) (t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)  
x0 + 1 

k⎡k (α)

∫ t 

a 

ψ '(s)ϕ(s)ds  

(ψ(t) − ψ(s))1−
α 
k 
, (3.41) 

where ϕ be a function satisfying the functional equation 

ϕ(t) = f (t, x(t), ϕ(t)).
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Lemma 3.22 ([ 75]) Let D ⊂ Cξ ;ψ (J ) be a bounded and equicontinuous set , then 
(i) the function t → μ(D(t)) is continuous on J , and 

μCξ ;ψ (D) = sup 
t∈J ¯

μ 
( 
(ψ(t) − ψ(a))1−ξ D(t) 

) 
. 

(ii) μ

(∫ b 

a 
u(s)ds  : u ∈ D

)

≤
∫ b 

a 
μ(D(s))ds, where 

D(t) = {u(t) : t ∈ D}, t ∈ J . 

Now we can state and demonstrate our existence result for the problem (3.36)–(3.37) by  
using Mönch’s fixed point Theorem. 

Theorem 3.23 Suppose that the assumptions that follow hold. 

(3.23.1) The function t |→ f (t, x, y) is measurable and continuous on J for each x, y ∈ E, 
the functions x |→ f (t, x, y) and y |→ f (t, x, y) are continuous on E for t ∈ J 
and 

f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ Cξ ;ψ (J ). 

(3.23.2) There exists a continuous function p : J ¯ −→ [0, ∞) such that 

|| f (t, x, y)|| ≤  p(t), for t ∈ J and for each x, y ∈ E . 

(3.23.3) For each bounded and measurable set B ⊂ E and for each t ∈ J , we have 

μ 
( 
f 
( 
t, B, 

( 
H 
k D

α,β;ψ 
a+ B 

))) 
≤ (ψ(t) − ψ(a))1−ξ p(t)μ(B) 

where H k D
α,β;ψ 
a+ B =

{
H 
k D

α,β;ψ 
a+ w : w ∈ B

}
and p∗ = sup 

t∈J ¯
p(t). 

If 

L = 
p∗ (ψ(b) − ψ(a))1−ξ+ α 

k 

⎡k (α + k) 
< 1, (3.42) 

then the problem (3.36)–(3.37) has at least one solution in Cξ ;ψ (J ). 

Proof The proof will be given in several steps. 

Step 1: We show that the operator T defined in (3.41) transforms the ball BR := B(0, R) = 
{w ∈ Cξ ;ψ (J ) : ||w||Cξ ;ψ ≤ R} into itself. 
For any x ∈ Cξ ;ψ (J ), and each t ∈ J we have
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|| 
||(ψ(t) − ψ(a))1−ξ (T x)(t) 

|| 
|| ≤ 

||x0|| 
⎡k (kξ)  

+ 
(ψ(t) − ψ(a))1−ξ 

k⎡k (α)

∫ t 

a 

ψ '(s)||ϕ(s)||ds  
(ψ(t) − ψ(s))1−

α 
k 

≤ 
||x0|| 

⎡k (kξ)  
+ p∗ (ψ(t) − ψ(a))1−ξ 

( 
J α,k;ψ 
a+ (1) 

) 
(t). 

By Lemma 2.21, we have  

|| 
||(ψ(t) − ψ(a))1−ξ (T x)(t) 

|| 
|| ≤ 

||x0|| 
⎡k (kξ)  

+ 
p∗ (ψ(t) − ψ(a))1−ξ + α 

k 

⎡k (α + k) 
. 

Hence , for any x ∈ Cξ ;ψ (J ), and each t ∈ J we get 

||T x||Cξ ;ψ ≤ 
||x0|| 

⎡k (kξ)  
+ 

p∗ (ψ(b) − ψ(a))1−ξ+ α 
k 

⎡k (α + k)
:= R. 

Step 2: T : BR → BR is continuous. 
Let {xn}n∈N be a sequence such that xn −→ x in BR . Then, for each t ∈ J , we have  

|| 
||(ψ(t) − ψ(a))1−ξ [(T xn)(t) − (T x)(t)] 

|| 
|| ≤ 

(ψ(t) − ψ(a))1−ξ 

k⎡k (α) 

×
∫ t 

a 

ψ '(s)||ϕn(s) − ϕ(s)||ds  
(ψ(t) − ψ(s))1−

α 
k 

, 

where ϕn, ϕ  ∈ Cξ ;ψ (J ) such that 

ϕn(t) = f (t, xn(t), ϕn(t)), 
ϕ(t) = f (t, x(t), ϕ(t)). 

Since xn −→ x as n −→ ∞ and f is continuous , then by the Lebesgue dominated conver-
gence theorem, we have 

||T xn − T x||Cξ ;ψ −→ 0 as  n −→ ∞. 

Step 3: T (BR) is bounded and equicontinuous. Since T (BR) ⊂ BR and BR is bounded , 
then T (BR) is bounded. 

Next , let t1, t2 ∈ J such that a < t1 < t2 ≤ b and let u ∈ BR . Thus, we have
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|| 
||(ψ(t2) − ψ(a))1−ξ (T x)(t2) − (ψ(t1) − ψ(a))1−ξ (T x)(t1) 

|| 
|| 

≤ 

|| 
|| 
|| 
|| 
|| 
(ψ(t2) − ψ(a))1−ξ 

k⎡k (α)

∫ t2 

a 

ψ '(s)ϕ(s)ds  

(ψ(t2) − ψ(s))1−
α 
k 

− 
(ψ(t1) − ψ(a))1−ξ 

k⎡k (α)

∫ t1 

a 

ψ '(s)ϕ(s)ds  

(ψ(t1) − ψ(s))1−
α 
k 

|| 
|| 
|| 
|| 
|| 

≤ 
(ψ(t2) − ψ(a))1−ξ 

k⎡k (α)

∫ t2 

t1 

ψ '(s)||ϕ(s)||ds  
(ψ(t2) − ψ(s))1−

α 
k 

+ 1 

k⎡k (α)

∫ t1 

a 

| 
| 
| 
| 
| 
(ψ(t2) − ψ(a))1−ξ 

(ψ(t2) − ψ(s))1−
α 
k 

− 
(ψ(t1) − ψ(a))1−ξ 

(ψ(t1) − ψ(s))1−
α 
k 

| 
| 
| 
| 
| ψ

'(s)||ϕ(s)||ds  

≤ p∗ (ψ(b) − ψ(a))1−ξ 
( 
J α,k;ψ 
t1+ (1) 

) 
(t2) 

+ p∗ 

k⎡k (α)

∫ t1 

a 

| 
| 
| 
| 
| 
(ψ(t2) − ψ(a))1−ξ 

(ψ(t2) − ψ(s))1−
α 
k 

− 
(ψ(t1) − ψ(a))1−ξ 

(ψ(t1) − ψ(s))1−
α 
k 

| 
| 
| 
| 
| ψ

'(s)ds. 

By Lemma 2.21, we have  

|| 
||(ψ(t2) − ψ(a))1−ξ (T x)(t2) − (ψ(t1) − ψ(a))1−ξ (T x)(t1) 

|| 
|| 

≤ 
p∗ (ψ(b) − ψ(a))1−ξ (ψ(t2) − ψ(t1)) 

α 
k 

⎡k (α + k) 

+ p∗ 

k⎡k (α)

∫ t1 

a 

| 
| 
| 
| 
| 
(ψ(t2) − ψ(a))1−ξ 

(ψ(t2) − ψ(s))1−
α 
k 

− 
(ψ(t1) − ψ(a))1−ξ 

(ψ(t1) − ψ(s))1−
α 
k 

| 
| 
| 
| 
| ψ

'(s)ds. 

As t1 −→ t2, the right side of the above inequality tends to zero. Hence,T (BR) is bounded 
and equicontinuous. 
Step 4: The implication (2.11) of Theorem  2.49 holds. 
Now let D be an equicontinuous subset of BR such that D ⊂ T (D) ∪ {0}; therefore, the 
function t −→ d(t) = μ(D(t)) is continuous on J . By  (3.23.3) and the properties of the 
measure μ , for each t ∈ J , we have  

(ψ(t) − ψ(a))1−ξ d(t) ≤ μ 
( 
(ψ(t) − ψ(a))1−ξ (T D)(t) ∪ {0}) 

≤ μ 
( 
(ψ(t) − ψ(a))1−ξ (T D)(t) 

) 

≤ 
(ψ(b) − ψ(a))1−ξ 

k⎡k (α) 

×
∫ t 

a 

(ψ(s) − ψ(a))1−ξ 

(ψ(t) − ψ(s))1−
α 
k 
ψ '(s)p(s)μ(D(s))ds  

≤ p∗ (ψ(b) − ψ(a))1−ξ ||d||Cξ ;ψ 

( 
J α,k;ψ 
a+ (1) 

) 
(t) 

≤ 
α 
k 

⎡k (α + k)
p∗ (ψ(b) − ψ(a))1−ξ +

||d||Cξ ;ψ .
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Thus 
||d||Cξ ;ψ ≤ L||d||Cξ ;ψ . 

From (3.42), we get ||d||Cξ ;ψ = 0, that is d(t) = μ(D(t)) = 0, for each t ∈ J , and  then  
D(t) is relatively compact in E . In view of the Ascoli-Arzela Theorem, D is relatively 
compact in BR . Applying now Theorem 2.49, we conclude that T has a fixed point, which 
is solution of the problem (3.36)–(3.37). ⛛ 

Our next existence result for the problem (3.36)–(3.37) is based on Darbo’s fixed point 
theorem. 

Theorem 3.24 Assume that the hypothesis (3.23.1)-(3.23.3) and the condition (3.42) hold.  
Then the problem (3.36)–(3.37) has a solution defined on J . 

Proof Consider the operator T is defined as in (3.41). We shall show that T satisfies the 
assumption of Darbo’s fixed point theorem. 

We know that T : BR −→ BR is bounded and continuous and that T (BR) is equicon-
tinuous, we need to prove that the operator T is a L-set contraction. 

Let D ⊂ BR and t ∈ J . Then we have 

μ 
( 
(ψ(t) − ψ(a))1−ξ (T D)(t) 

) = μ 
( 
(ψ(t) − ψ(a))1−ξ (T x)(t) : x ∈ D 

) 

≤
⎫

1 

k⎡k (α)

∫ t 

a 

(ψ(s) − ψ(a))1−ξ 

(ψ(t) − ψ(s))1−
α 
k 
ψ '(s)p(s)μ(D(s))ds  : x ∈ D

⎫

× (ψ(b) − ψ(a))1−ξ 

≤ p∗ (ψ(b) − ψ(a))1−ξ μCξ ;ψ (D) 
( 
J α,k;ψ 
a+ (1) 

) 
(t) 

≤ 
p∗ (ψ(b) − ψ(a))1−ξ + α 

k 

⎡k (α + k) 
μCξ ;ψ (D). 

Therefore, 

μCξ ;ψ (T D) ≤ 
p∗ (ψ(b) − ψ(a))1−ξ + α 

k 

⎡k (α + k) 
μCξ ;ψ (D). 

So, by (3.42),the operator T is a L-set contraction. Consequently, from Theorem 2.48, 
we conclude that T has a fixed point x ∈ BR which is a solution to our problem (3.36)– 
(3.37). ⛛
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3.4.2 Ulam-Hyers-Rassias Stability 

Now, we consider the Ulam stability for problem (3.36)–(3.37). Let x ∈ C1 
ξ ;ψ (J ), ∈ >  0, 

and v : J −→ [0, ∞) be a continuous function. We consider the following inequality: 
|| 
|| 
|| 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) − f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

)|| 
|| 
|| ≤ ∈v(t), t ∈ J . (3.43) 

Definition 3.25 Problem (3.36)–(3.37) is Ulam-Hyers-Rassias (U-H-R) stable with respect 
to v if there exists a real number a f ,v > 0 such that for each ∈ >  0 and for each solution 
x ∈ C1 

ξ ;ψ (J ) of inequality (3.43) there exists a solution y ∈ C1 
ξ ;ψ (J ) of (3.36), (3.37) with 

||x(t) − y(t)|| ≤  ∈a f ,vv(t), t ∈ J . 

Remark 3.26 A function x ∈ C1 
ξ ;ψ (J ) is a solution of inequality (3.43) if and only if there 

exist σ ∈ Cξ ;ψ (J ) such that 

1. ||σ(t)|| ≤  ∈v(t), t ∈ J , 
2. 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . 

Theorem 3.27 Assume that in addition to (3.23.1)–(3.23.3) and (3.42), the following 
hypothesis hold. 

(3.27.1) There exist a nondecreasing function v ∈ C1 
ξ ;ψ (J ) and κv > 0 such that for each 

t ∈ J , we have ( 
J α,k;ψ 
a+ v 

) 
(t) ≤ κvv(t). 

(3.27.2) There exists a continuous function q : J ¯ −→ [0, ∞) such that for each t ∈ J , we  
have 

p(t) ≤ q(t)v(t). 

Then the problem (3.36)–(3.37) is U-H-R stable. 
Set q∗ = sup 

t∈J ¯
q(t). 

Proof Let x ∈ C1 
ξ ;ψ (J ) be a solution of inequality (3.43), and let us assume that y is the 

unique solution of the problem
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⎧ 
⎨ 

⎩ 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) = f 

( 
t, y(t), 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) 

) 
; t ∈ J , 

( 
J k(1−ξ),k;ψ 
a+ y 

) 
(a+) = 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+). 

By Lemma 3.21, we obtain for each t ∈ J 

y(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ y(a) + 

( 
J α,k;ψ 
a+ w 

) 
(t), 

where w ∈ C1 
ξ ;ψ (J ) be a function satisfying the functional equation 

w(t) = f (t, y(t), w(t)). 

Since x is a solution of the inequality (3.43), by Remark 3.26, we have  
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . (3.44) 

Clearly, the solution of (3.44) is given  by  

x(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ x(a) + 

( 
J α,k;ψ 
a+ ( w̃ + σ)  

) 
(t), 

where w̃ ∈ C1 
ξ ;ψ (J ) be a function satisfing the functional equation 

w̃(t) = f (t, x(t), w̃(t)). 

Hence, for each t ∈ J , we have 

||x(t) − y(t)|| ≤  
( 
J α,k;ψ 
a+ ||w̃(s) − w(s)|| 

) 
(t) + 

( 
J α,k;ψ 
a+ ||σ(s)|| 

) 
(t) 

≤ ∈κvv(t) + 1 

k⎡k (α)

∫ t 

a 

ψ '(s)2q(s)v(s)ds  

(ψ(t) − ψ(s))1−
α 
k 

≤ ∈κvv(t) + 2q∗ 
( 
J α,k;ψ 
a+ v 

) 
(t) 

≤ (∈ + 2q∗)κvv(t). 

Then for each t ∈ J , we have  

||x(t) − y(t)|| ≤  a f ,v∈v(t), 

where 

a f ,v = κv

(

1 + 
2q∗ 

∈

)

. 

Hence, the problem (3.36)–(3.37) is U-H-R stable. ⛛
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3.4.3 Examples 

Let 

E = l1 =
⎫

u = (u1, u2, . . . ,  un, . . .),  
∞Σ 

n=1 

|un| < ∞
⎫

be the Banach space with the norm 

||u|| =  
∞Σ 

n=1 

|un|. 

Example 3.28 Taking β → 0, α = 1 2 , , ψ(t) = 2 k = 1
√
t , a = 1, b = 3, and  x0 ∈ E , we  

get a problem of generalized Hilfer fractional differential equation of the form
(
H 
1 D 

1 
2 ,0;ψ 
1+ xn

)

(t) =
(

1 
2 D 

1 
2 ,0 
1+ xn

)

(t) = fn
(

t, xn(t),
(

1 
2 D 

1 
2 ,0 
1+ xn

)

(t)

)

, t ∈ (1, 3] 
(3.45)(

J 
1 
2 ,1;ψ 
1+ x

)

(1+) = x0, (3.46) 

where 

fn

(

t, xn(t),
(

1 
2 D 

1 
2 ,0 
1+ xn

)

(t)

)

= (2t2 + e−2)|xn(t)| 
177e−t+3

(

1 + ||x(t)|| +  
|| 
|| 
|| 
||

(
1 
2 D 

1 
2 ,0 
1+ xn

)

(t) 
|| 
|| 
|| 
||

) , 

for t ∈ (1, 3] with 

f = ( f1, f2, . . . ,  fn, . . .)  and x = (x1, x2, . . . ,  xn, . . .).  

Set 

f (t, x, y) = (2t2 + e−2)||x|| 
177e−t+3(1 + ||x|| + ||y||) , t ∈ (1, 3], x, y ∈ E . 

We have 

Cξ ;ψ (J ) = C 1 
2 ;ψ (J ) =

⎧

x : (1, 3] →  E : √
2 
( √

t − 1 
) 1 

2 
x ∈ C(J ¯ , E)

⎫

, 

and 
C1 

ξ,1,ψ (J ) = C1 
1 
2 ;ψ (J ) =

{
x ∈ C 1 

2 ;ψ (J ) : x ' ∈ C 1 
2 ;ψ (J )

}
. 

It is clear that the function f satisfies the hypothesis (3.23.1). Also, the hypothesis (3.23.2) 
is satisfied with 

p(t) = 
2t2 + e−2 

177e−t+3 , t ∈ (1, 3],
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and 

p∗ = 
18 + e−2 

177 
. 

The conditions of Theorem 3.23 are satisfied. Indeed, we have 

L = 
p∗ (ψ(b) − ψ(a))1−ξ + α 

k 

⎡k (α + k) 

= 
2(18 + e−2) 

( 
2 
√
3 − 2 

) 

177
√

π 
≈ 0.169269 < 1. 

Hence, the problem (3.45)–(3.46) has at least one solution defined on (1, 3]. 
Let 

v(t) = e, and  κv = 
4 √
π 
. Then, for each t ∈ (1, 3], we get

(

J 
1 
2 ,1;ψ 
1+ v

)

(t) ≤ 
4e √
π 

= κvv(t). 

Let the function q : [1, 3] → [0, ∞) be defined by 

q(t) = 
2t2 + e−2 

177e−t+4 , 

then, for each t ∈ (1, 3], we have  

p(t) = q(t)v(t). 

Then, hypothesis (3.27.1) and (3.27.2) are satisfied; consequently, Theorem 3.27 implies 
that problem (3.45)–(3.46) is Ulam-Hyers-Rassias stable. 

Example 3.29 Taking β → 1, α = 1 2 , k = 1, ψ(t) = t , a = 1, b = 2, and  x0 ∈ E , we get  a  
particular case of problem (3.36)–(3.37), which is a problem of Caputo Fractional differential 
equation of the form
(
H 
1 D 

1 
2 ,1;ψ 
1+ xn

)

(t) =
(
C D 

1 
2 
1+ xn

)

(t) = fn
(

t, xn(t),
(
C D 

1 
2 
1+ xn

)

(t)

)

, t ∈ (1, 2] (3.47) 

( 
J 0,1;ψ 
1+ x 

) 
(1+) = x0, (3.48)
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where 

fn

(

t, xn(t),
(
C D 

1 
2 
1+ xn

)

(t)

)

= et−2|xn(t)| 
33

(

1 + ||x(t)|| +  
|| 
|| 
|| 
||

(
C D 

1 
2 
1+ xn

)

(t) 
|| 
|| 
|| 
||

) , t ∈ (1, 2]. 

With 

f = ( f1, f2, . . . ,  fn, . . .)  and x = (x1, x2, . . . ,  xn, . . .).  

Set 

f (t, x, y) = et−2||x|| 
33(1 + ||x|| + ||y||) , t ∈ (1, 2], x, y ∈ E . 

We have 

Cξ ;ψ (J ) = C1;ψ (J ) =
{
x : (1, 2] →  E : x ∈ C(J ¯ , E)

}
, 

and 

C1 
ξ,1,ψ (J ) = C1 

1;ψ (J ) =
{
x ∈ C1;ψ (J ) : x ' ∈ C1;ψ (J )

}
. 

Hence, the function f satisfies the hypothesis (3.23.1). Also, the hypothesis (3.23.2) is 
satisfied with 

p(t) = 
et−2 

33 
, t ∈ (1, 2], 

and 

p∗ = 
1 

33 
. 

Since 

L = 
p∗ (ψ(b) − ψ(a))1−ξ+ α 

k 

⎡k (α + k) 

= 2 

33
√

π 
≈ 0.03419 < 1, 

then the condition of Theorem 3.24 is satisfied. Hence, the problem (3.47)–(3.48) has at least 
one solution defined on (1, 2]. Also, same as the last example, we can easily choose a function 
v that satisfies the hypothesis (3.27.1) and (3.27.2), which gives us the Ulam-Hyers-Rassias 
stability of our problem (3.47)–(3.48).
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3.5 Existence and k-Mittag-Leffler-Ulam-Hyers Stability Results 
of k-Generalized ψ-Hilfer Boundary Valued Problem 

In this section, we consider the boundary valued problem with nonlinear implicit k-
generalized ψ-Hilfer-type fractional differential equation: 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
, t ∈ J , (3.49) 

c1 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) + c2 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c3, (3.50) 

where H k D
α,β;ψ 
a+ , J k(1−ξ),k;ψ 

a+ are the k-generalized ψ-Hilfer fractional derivative of order 
α ∈ (0, k) and type β ∈ [0, 1] defined in Section 2, and k-generalized ψ-fractional integral 
of order k(1 − ξ)  defined in [113], respectively, where ξ = 1 k (β(k − α) + α), k > 0, f ∈ 
C(J × R2, R), and  c1, c2, c3 ∈ R such that c1 + c2 /= 0. 

3.5.1 Existence Results 

We consider the following fractional differential equation: 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = w(t), t ∈ J , (3.51) 

where 0 < α  <  k, 0 ≤ β ≤ 1, with the condition 

c1 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) + c2 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c3, (3.52) 

where ξ = 

¯

β(k − α) + α 
k 

, k > 0, c1, c2, c3 ∈ R such that c1 + c2 /= 0 and where w ∈ 

C(J ¯ , R) satisfies the functional equation: 

w(t) = f (t, x(t), w (t)) . 

The following theorem shows that the problem (3.51)–(3.52) has a unique solution. 

Theorem 3.30 If w(·) ∈ C1 
ξ ;ψ (J ), then x satisfies (3.51)–(3.52) if and only if it satisfies 

x(t) = 
(ψ(t) − ψ(a))ξ−1 

(c1 + c2)⎡k (kξ)

[
c3 − c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b)

]
+ 

( 
J α,k;ψ 
a+ w 

) 
(t). (3.53) 

Proof Assume x ∈ C1 
ξ ;ψ (J ) satisfies Eqs. (3.51) and (3.52), by applying the fractional inte-

gral operator J α,k;ψ 
a+ (·) on both sides of the fractional equation (3.51), we have
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( 
J α,k;ψ 
a+ H 

k D
α,β;ψ 
a+ x 

) 
(t) = 

( 
J α,k;ψ 
a+ w 

) 
(t), 

2.35, we get  

x(t) = 

using Theorem 

(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ x(a) + 

( 
J α,k;ψ 
a+ w 

) 
(t). (3.54) 

Applying J k(1−ξ),k;ψ 
a+ (·) on both sides of (3.54), using Lemmas 2.18, 2.21, and taking t = b, 

we have 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = J k(1−ξ),k;ψ 

a+ x(a) + 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). (3.55) 

Multiplying both sides of (3.55) by  c2, we get  

c2 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c2J k(1−ξ),k;ψ 

a+ x(a) + c2 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). 

Using condition (3.52), we obtain 

c2 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c3 − c1 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+). 

Thus 

c3 − c1 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = c2J k(1−ξ),k;ψ 

a+ x(a) + c2 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). 

Then 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) = c3 

c1 + c2 
− c2 

c1 + c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). (3.56) 

Substituting (3.56) into (3.54), we obtain (3.53). 
Let us now prove that if x satisfies Eq. (3.53), then it satisfies Eqs. (3.51) and  (3.52). 

Applying the fractional derivative operator H k D
α,β;ψ 
a+ (·) on both sides of the fractional equa-

tion (3.53), then we get 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = H k D

α,β;ψ 
a+

(
(ψ(t) − ψ(a))ξ−1 

(c1 + c2)⎡k (kξ)

[
c3 − c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b)

])

+ 
( 
H 
k D

α,β;ψ 
a+ J α,k;ψ 

a+ w 
) 

(t). 

Using the Lemmas 2.31 and 2.29, we obtain Eq. (3.51). Now we apply the operator 
J k(1−ξ),k;ψ 
a+ (·) on Eq. (3.53), to have
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( 
J k(1−ξ),k;ψ 
a+ x 

) 
(t) = 

⎡ 

⎣ 
c3 − c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b) 

(c1 + c2)⎡k (kξ)  

⎤ 

⎦ J k(1−ξ),k;ψ 
a+ (ψ(t) − ψ(a))ξ−1 

+ 
( 
J k(1−ξ),k;ψ 
a+ J α,k;ψ 

a+ w 
) 

(t). 

Now, using Lemmas 2.18 and 2.21, we get  
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(t) = c3 

c1 + c2 
− c2 

c1 + c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b) 

+ 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(t). (3.57) 

2.26 with t → a, we obtain 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) =

Using Theorem 

c3 
c1 + c2 

− c2 
c1 + c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). (3.58) 

Now, taking t = b in (3.57), to get 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c3 

c1 + c2 
− c2 

c1 + c2 

( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b) 

+ 
( 
J k(1−ξ)+α,k;ψ 
a+ w 

) 
(b). (3.59) 

From (3.58) and (3.59), we obtain (3.52). This completes the proof. ⛛ 

As a consequence of Theorem 3.30, we have the following result. 

Lemma 3.31 Let ξ = 
β(k − α) + α 

k 
where 0 < α  <  k and 0 ≤ β ≤ 1, let  f : J ¯ × R × 

R → R be a continuous function such that f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ 

Cξ ;ψ (J ). If  x ∈ C1 
ξ ;ψ (J ), then x satisfies the problem (3.49)–(3.50) if and only if x is 

the fixed point of the operator T : Cξ ;ψ (J ) → Cξ ;ψ (J ) defined by 

(T x) (t) = 
(ψ(t) − ψ(a))ξ −1 

(c1 + c2)⎡k (kξ)

[
c3 − c2 

( 
J k(1−ξ)+α,k;ψ 
a+ ϕ 

) 
(b)

]
+ 

( 
J α,k;ψ 
a+ ϕ 

) 
(t), 
(3.60) 

where ϕ be a function satisfying the functional equation 

ϕ(t) = f (t, x(t), ϕ(t)). 

We are now in a position to state and prove our existence result for the problem (3.49)– 
(3.50) based on Banach’s fixed point theorem [ 72].
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Theorem 3.32 Assume that the requirements that follow are met. 

(3.32.1) The function f : J ¯ × R × R → R is continuous and 

f (·, x(·), y(·)) ∈ C1 
ξ ;ψ (J ), for any x, y ∈ Cξ ;ψ (J ). 

(3.32.2) There exist constants η1 > 0 and 0 < η2 < 1 such that 

| f (t, x, y) − f (t, x̄, ȳ)| ≤  η1|x − x̄ | +  η2|y − ȳ| 

for any x, y, x̄, y ¯ ∈ R and t ∈ J ¯ . 

If 

L = 
η1 (ψ(b) − ψ(a)) 

α 
k 

1 − η2

[ |c2| 
|c1 + c2|⎡k (k + α) 

+ ⎡k (kξ)  
⎡k (α + kξ)

]

< 1, (3.61) 

then the problem (3.49)–(3.50) has a unique solution in Cξ ;ψ (J ). 

Proof We show that the operator T defined in (3.60) has a unique fixed point in Cξ ;ψ (J ). 
Let x, y ∈ Cξ ;ψ (J ). Then, for t ∈ J we have 

|T x(t) − T y(t)| ≤  
|c2|(ψ(t) − ψ(a))ξ −1 

|c1 + c2|⎡k (kξ)  

( 
J k(1−ξ)+α,k;ψ 
a+ |ϕ1(s) − ϕ2(s)| 

) 
(b) 

+ 
( 
J α,k;ψ 
a+ |ϕ1(s) − ϕ2(s)| 

) 
(t), 

where ϕ1 and ϕ1 be functions satisfying the functional equations 

ϕ1(t) = f (t, x(t), ϕ1(t)), 
ϕ2(t) = f (t, y(t), ϕ2(t)). 

By (3.32.2), we have  

|ϕ1(t) − ϕ2(t)| =  |  f (t, x(t), ϕ1(t)) − f (t, y(t), ϕ2(t))| 
≤ η1|x(t) − y(t)| +  η2|ϕ1(t) − ϕ2(t)|. 

Then, 

|ϕ1(t) − ϕ2(t)| ≤ η1 

1 − η2 
|x(t) − y(t)|. 

Therefore, for each t ∈ J
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|T x(t) − T y(t)| ≤  
η1|c2|(ψ(t) − ψ(a))ξ −1 

( 
J k(1−ξ)+α,k;ψ 
a+ |x(s) − y(s)| 

) 
(b) 

(1 − η2)|c1 + c2|⎡k (kξ)  

+ η1 

(1 − η2) 

( 
J α,k;ψ 
a+ |x(s) − y(s)| 

) 
(t) 

≤ 

⎡ 

⎣
|c2|(ψ(t) − ψ(a))ξ −1 

( 
J k(1−ξ)+α,k;ψ 
a+ (ψ(s) − ψ(a))ξ −1 

) 
(b) 

|c1 + c2|⎡k (kξ)  

+ 
( 
J α,k;ψ 
a+ (ψ(s) − ψ(a))ξ−1 

) 
(t)

] η1||x − y||Cξ ;ψ 

1 − η2 
. 

By Lemma 2.21, we have  

|T x(t) − T y(t)| ≤  

[ 
η1|c2|(ψ(t) − ψ(a))ξ −1 (ψ(b) − ψ(a)) 

α 
k 

(1 − η2)|c1 + c2|⎡k (k + α) 

+ η1⎡k (kξ)  
⎡k (α + kξ)(1 − η2) 

(ψ(t) − ψ(a)) 
α+kξ 
k −1

]

||x − y||Cξ ;ψ . 

Hence 

| 
|(ψ(t) − ψ(a))1−ξ (T x(t) − T y(t)) 

| 
| ≤ 

[ 
η1|c2| (ψ(b) − ψ(a)) 

α 
k 

(1 − η2)|c1 + c2|⎡k (k + α) 

+ 
η1⎡k (kξ)  (ψ(t) − ψ(a)) 

α 
k 

⎡k (α + kξ)(1 − η2)

]

||x − y||Cξ ;ψ , 

which implies that 

||T x − T y||Cξ ;ψ ≤
[ |c2| 

|c1 + c2|⎡k (k + α) 
+ ⎡k (kξ)  

⎡k (α + kξ)

]

× 
η1 (ψ(b) − ψ(a)) 

α 
k ||x − y||Cξ ;ψ 

1 − η2 
. 

By (3.61), the operator T is a contraction. Hence, by Banach’s contraction principle, T has 
a unique fixed point x ∈ Cξ ;ψ (J ), which is a solution to our problem (3.49)–(3.50). ⛛ 

3.5.2 k-Mittag-Leffler-Ulam-Hyers Stability 

In this section, we consider the k-Mittag-Leffler-Ulam-Hyers stability for our problem 
(3.49)–(3.50). Let x ∈ C1 

ξ ;ψ (J ), t ∈ J , and  ∈ >  0. We consider the following inequality: 

| 
| 
| 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) − f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

)| 
| 
| ≤ ∈Eα 

k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
. (3.62)
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In [ 94], Liu et al. introduced the concept of Ulam-Hyers-Mittag-Leffler; by substituting the 
Mittag-Leffler function of their definitions with the more refined k-Mittag-Leffler function, 
we give the following definitions. 

Definition 3.33 Problems (3.49)–(3.50) is  k-Mittag-Leffler-Ulam-Hyers stable with respect 

to Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
if there exists a real number aEα 

k 
> 0 such that for each ∈ >  0 and 

for each solution x ∈ C1 
ξ ;ψ (J ) of inequality (3.62) there exists a solution y ∈ C1 

ξ ;ψ (J ) of 
(3.49)–(3.50) with 

|x(t) − y(t)| ≤  aEα 
k 
∈Eα 

k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
, t ∈ J . 

Definition 3.34 Problem (3.49)–(3.50) is generalized k-Mittag-Leffler-Ulam-Hyers stable 

with respect to Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
if there exists v : C(R+, R+) with v(0) = 0 such that 

for each ∈ >  0 and for each solution x ∈ C1 
ξ ;ψ (J ) of inequality (3.62) there exists a solution 

y ∈ C1 
ξ ;ψ (J ) of (3.49)–(3.50) with 

|x(t) − y(t)| ≤  v(∈)Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
, t ∈ J . 

Remark 3.35 It is clear that Definition 3.33 =⇒ Definition 3.34. 

Remark 3.36 A function x ∈ C1 
ξ ;ψ (J ) is a solution of inequality (3.62) if and only if there 

exist σ ∈ Cξ ;ψ (J ) such that 

1. |σ(t)| ≤  ∈Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
, t ∈ J , 

2. 
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . 

Theorem 3.37 Assume that the hypothesis (3.32.1), (3.32.2), and the condition (3.61) 
hold. Then the problem (3.49)–(3.50) is  k-Mittag-Leffler-Ulam-Hyers stable with respect to 

E
α 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
and consequently generalized k-Mittag-Leffler-Ulam-Hyers stable. 

Proof Let x ∈ C1 
ξ ;ψ (J ) be a solution of inequality (3.62), and let us assume that y is the 

unique solution of the problem 
⎧ 
⎨ 

⎩ 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) = f 

( 
t, y(t), 

( 
H 
k D

α,β;ψ 
a+ y 

) 
(t) 

) 
; t ∈ J , 

( 
J k(1−ξ),k;ψ 
a+ y 

) 
(a+) = 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+).
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By Lemma 3.31, we obtain for each t ∈ J 

y(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ y(a) + 

( 
J α,k;ψ 
a+ w 

) 
(t), 

where w ∈ C1 
ξ ;ψ (J ) be a function satisfying the functional equation 

w(t) = f (t, y(t), w(t)). 

Since x is a solution of the inequality (3.62), by Remark 3.36, we have  
( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) = f 

( 
t, x(t), 

( 
H 
k D

α,β;ψ 
a+ x 

) 
(t) 

) 
+ σ(t), t ∈ J . (3.63) 

Clearly, the solution of (3.63) is given  by  

x(t) = 
(ψ(t) − ψ(a))ξ −1 

⎡k (kξ)
J k(1−ξ),k;ψ 
a+ x(a) + 

( 
J α,k;ψ 
a+ ( w̃ + σ)  

) 
(t), 

where w̃ ∈ C1 
ξ ;ψ (J ) be a function satisfying the functional equation 

w̃(t) = f (t, x(t), w̃(t)). 

Hence, for each t ∈ J , we have 

|x(t) − y(t)| 
≤ 

( 
J α,k;ψ 
a+ |w̃(s) − w(s)| 

) 
(t) + 

( 
J α,k;ψ 
a+ σ 

) 
(t) 

≤ ∈J α,k;ψ 
a+ E

α 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
+ η1 

(1 − η2)k⎡k (α)

∫ t 

a 

ψ '(s)|x(s) − y(s)|dt  
(ψ(t) − ψ(s))1−

α 
k 

. 

Using Lemma 2.39, we get  

|x(t) − y(t)| ≤  ∈Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 

+ η1 

(1 − η2)k⎡k (α)

∫ t 

a 

ψ '(s)|x(s) − y(s)|dt  
(ψ(t) − ψ(s))1−

α 
k 

. 

By applying Theorem 2.42, we obtain
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|x(t) − y(t)| 

≤ ∈Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
+

∫ t 

a 

∞Σ 

i=1 

( 
η1 

1−η2 

)i 
ψ ' (s) ∈Eα 

k 

( 
(ψ(s) − ψ(a)) 

α 
k 

k⎡k (αi ) [ψ(t) − ψ(s)]1− i α 
k 

) 
ds  

≤ ∈Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
E

α 
k

[
η1 

1 − η2 
(ψ (t) − ψ (a)) 

α 
k

]

≤ ∈Eα 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
E

α 
k

[
η1 

1 − η2 
(ψ (b) − ψ (a)) 

α 
k

]

. 

Then for each t ∈ J , we have  

|x(t) − y(t)| ≤  aEα 
k 
∈Eα 

k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
, 

where 

aEα 
k 

= Eα 
k

[
η1 

1 − η2 
(ψ (b) − ψ (a)) 

α 
k

]

. 

Hence, the problem (3.49)–(3.50) is  k-Mittag-Leffler-Ulam-Hyers stable with respect to 

E
α 
k 

( 
(ψ(t) − ψ(a)) 

α 
k 

) 
. If we set  v(∈) = aEα 

k 
∈, then the problem (3.49)–(3.50) is also gen-

eralized k-Mittag-Leffler-Ulam-Hyers stable. ⛛ 

3.5.3 Examples 

In this section, we look at particular cases of our problem (3.49)–(3.50), with J ¯ = [1, 2] and 

f (t, x, y) = 
1 + x + y 
107e−t+2 , t ∈ J ¯ , x, y ∈ R. 

Cξ ;ψ (J ) =
{
x : J → R : t → (ψ(t) − ψ(a))1−ξ x(t) ∈ C(J ¯ , R)

}
, 

ξ = 1 k (β(k − α) + α) 

L = 
η1 (ψ(b) − ψ(a)) 

α 
k 

1 − η2

[ |c2| 
|c1 + c2|⎡k (k + α) 

+ ⎡k (kξ)  
⎡k (α + kξ)

]

< 1, 

c1 
( 
J k(1−ξ),k;ψ 
a+ x 

) 
(a+) + c2 

( 
J k(1−ξ),k;ψ 
a+ x 

) 
(b) = c3. 

Example 3.38 Taking β → 0, α = 1 2 , k = 1, ψ(t) = t , c1 = 1, c2 = 0, c3 = 0, and  ξ = 1 2 , 
we obtain an initial valued problem which is a particular case of problem (3.49)–(3.50) with



74 3 Implicit Fractional Differential Equations

the Riemann-Liouville fractional derivative, given by
(
H 
1 D 

1 
2 ,0;ψ 
1+ x

)

(t) =
(
RLD 

1 
2 
1+ x

)

(t) = f
(

t, x(t),
(
RLD 

1 
2 
1+ x

)

(t)

)

, t ∈ (1, 2], (3.64)

(

J 
1 
2 ,1;ψ 
1+ x

)

(1+) = 0. (3.65) 

We have 

Cξ ;ψ (J ) = C 1 
2 ;ψ (J ) =

{
u : (1, 2] →  R : ( √t − 1)u ∈ C(J ¯ , R)

}
, 

and 
C1 

ξ ;ψ (J ) = C1 
1 
2 ;ψ (J ) =

{
u ∈ C 1 

2 ;ψ (J ) : u' ∈ C 1 
2 ;ψ (J )

}
. 

Since the continuous function f ∈ C1 
1 
2 ;ψ 

( J ), then the condition (3.32.1) is satisfied. 

For each x, x̄, y, y ¯ ∈ R and t ∈ J ¯ , we have 

| f (t, x, x̄) − f (t, y, ȳ)| ≤ 1 

107e−t+2 (|x − x̄ | + |y − ȳ|) , 

and so the condition (3.32.2) is satisfied with η1 = η2 = 
1 

107 
. Also, the condition (3.61) of  

Theorem 3.32 is satisfied. Indeed, we have 

L =
√

π 
106 

≈ 0.01672126 < 1. 

Then the problem (3.64)–(3.65) has a unique solution in C1 
1 
2 ;ψ 

([1, 2]) and is Mittag-Leffler-

Ulam-Hyers stable with respect to E 
1 
2 
1 

( √
t − 1 

) 
. 

Example 3.39 Taking β → 1, α = 1 2 , k = 1, ψ(t) = t , c1 = 0, c2 = 1, c3 = 0, and  ξ = 1, 
we obtain a terminal value problem which is a particular case of problem (3.49)–(3.50) with 
Caputo fractional derivative, given by

(
H 
1 D 

1 
2 ,1;ψ 
1+ x

)

(t) =
(
CD 

1 
2 
1+ x

)

(t) = f
(

t, x(t),
(
CD 

1 
2 
1+ x

)

(t)

)

, t ∈ (1, 2], (3.66) 

( 
J 0,1;ψ 
1+ x 

) 
(2) = x(2) = 0. (3.67) 

We have Cξ ;ψ (J ) = C1;ψ (J ) = C(J ¯ , R) and C1 
ξ ;ψ (J ) = C1 

1;ψ (J ) = C1(J ¯ , R). 
Also, 

L = 4 

106
√

π 
≈ 0.02129017 < 1.



3.5 Existence and k-Mittag-Leffler-Ulam-Hyers Stability Results of k-Generalized 75

As all the assumptions of Theorems 3.32 and 3.37 are satisfied, then the problem (3.66)– 
(3.67) has a unique solution in C1(J ¯ , R) and is Mittag-Leffler-Ulam-Hyers stable with 

respect to E 
1 
2 
1 

( √
t − 1 

) 
. 

Example 3.40 Taking β → 1 2 , α = 1 2 , k = 1, ψ(t) = t , c1 = 1, c2 = 1, c3 = 0, and  ξ = 3 4 , 
we obtain an anti-periodic problem which is a particular case of problem (3.49)–(3.50) with 
Hilfer fractional derivative, given by
(
H 
1 D 

1 
2 , 

1 
2 ;ψ 

1+ x

)

(t) =
(
HD 

1 
2 , 

1 
2 

1+ x

)

(t) = f
(

t, x(t),
(
HD 

1 
2 , 

1 
2 

1+ x

)

(t)

)

, t ∈ (1, 2], (3.68)

(

J 
1 
4 ,1;ψ 
1+ x

)

(1) = −
(

J 
1 
4 ,1;ψ 
1+ x

)

(2). (3.69) 

We have 

Cξ ;ψ (J ) = C 3 
4 ;ψ (J ) =

{
u : (1, 2] →  R : (t − 1) 

1 
4 u ∈ C(J ¯ , R)

}
, 

and 
C1 

ξ ;ψ (J ) = C1 
3 
4 ;ψ (J ) =

{
u ∈ C 3 

4 ;ψ (J ) : u' ∈ C 3 
4 ;ψ (J )

}
. 

Also, 

L = 
1 

166 

[ 
1 √
π 

+ 
⎡( 3 4 ) 
⎡( 5 4 )

]

≈ 0.01154306579 < 1. 

As all the assumptions of Theorem 3.32 and Theorem 3.37 are satisfied, then the problem 
(3.68)–(3.69) has a unique solution in C1 

3 
4 ;ψ 

(J ) and is Mittag-Leffler-Ulam-Hyers stable with 

respect to E 
1 
2 
1 

( √
t − 1 

) 
. 

Example 3.41 Taking β → 0, α = 1 2 , k = 1, ψ(t) = ln(t), c1 = 1, c2 = 1, c3 = 1 and 
ξ = 1 2 , we obtain a boundary valued problem which is a particular case of problem (3.49)– 
(3.50) with Hadamard fractional derivative, given by

(
H 
1 D 

1 
2 ,0;ψ 
1+ x

)

(t) =
(
HD 

1 
2 
1+ x

)

(t) = f
(

t, x(t),
(
HD 

1 
2 
1+ x

)

(t)

)

, t ∈ (1, 2], (3.70)

(

J 
1 
2 ,1;ψ 
1+ x

)

(1) +
(

J 
1 
2 ,1;ψ 
1+ x

)

(2) = 1. (3.71) 

We have 
Cξ ;ψ (J ) = C 1 

2 ;ψ (J ) =
{
u : (1, 2] →  R : √ln(t)u ∈ C(J ¯ , R)

}
, 

and 
C1 

ξ ;ψ (J ) = C1 
1 
2 ;ψ (J ) =

{
u ∈ C 1 

2 ;ψ (J ) : u' ∈ C 1 
2 ;ψ (J )

}
.
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Also 

L =
√
ln(2) 
166

[
1 √
π 

+ √
π

]

≈ 0.011719176301 < 1. 

As all the assumptions of Theorems 3.32 and 3.37 are satisfied, then the problem 3.70)–(3.71) 
has a unique solution in C1 

1 
2 ;ψ 

(J ) and is Mittag-Leffler-Ulam-Hyers stable with respect to 

E 

1 
2 
1 

( √
ln(t) 

) 
. 

Remark 3.42 By varying β and the function ψ , we can obtain several cases of our problem 
(3.49)–(3.50). And if we take the same steps as the last examples with appropriate conditions, 
we can prove the existence, uniqueness, and Mittag-Leffler-Ulam-Hyers stability results for 
each case. 

We may have additional problems with the following fractional derivative : 

• Caputo-Hadmard derivative: By taking β → 1, k = 1, ψ(t) = ln(t). 
• Hilfer-Hadmard derivative: By taking β ∈ (0, 1), k = 1, ψ(t) = ln(t). 
• Katugampola derivative: By taking β → 0, k = 1, ψ(t) = tρ . 
• Caputo-Katugampola derivative: By taking β → 1, k = 1, ψ(t) = tρ . 
• Hilfer-Katugampola derivative: By taking β ∈ (0, 1), k = 1, ψ(t) = tρ . 

3.6 Notes and Remarks 

The results of this chapter are taken from Salim et al. [126, 127, 134, 137]. For more relevant 
results and studies, one can see the monographs [ 7, 14, 23, 27, 37, 50, 62, 68, 85, 100] and  
the papers [ 57, 63, 65, 90, 91, 102–104, 122, 124, 129, 131, 143–149].



4Fractional Differential Equations with 
Instantaneous Impulses 

4.1 Introduction and Motivations 

The aim of this chapter is to prove some existence, uniqueness, and Ulam-Hyers-Rassias 
stability results for a class of boundary value problem for nonlinear implicit fractional 
differential equations with impulses and generalized Hilfer-type fractional derivative. We 
base our arguments on some relevant fixed point theorems combined with the technique of 
measure of noncompactness. Examples are included to show the applicability of our results 
for each section. 

The outcome of our study in this chapter can be considered as a partial continuation of 
the problems raised recently in the following: 

• The monographs of Abbas et al. [ 7, 8, 14], Baleanu et al. [ 43], and Rassias et al. [115], 
and the papers of Afshari et al. [ 20, 21], Benchohra et al. [ 48, 49], Karapınar et al. [ 17, 19, 
34, 83, 84], and Zhou et al. [162], which deal with various linear and nonlinear initial and 
boundary value problems for fractional differential equations involving different kinds 
of fractional derivatives. 

• The monographs of Benchohra et al. [ 50], Graef et al. [ 73], and Samoilenko et al. [139], 
and the papers of Abbas et al. [ 9] and Benchohra et al. [ 49] where the authors investigated 
various problems with fractional differential equations and impulsive conditions. 

• The monographs of Abbas et al. [ 7, 13], and the papers of Abbas et al. [ 10, 12], Benchohra 
et al. [ 51– 53], and Kucche et al. [ 89, 96, 141]; in it, considerable attention has been given 
to the study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of various classes of 
functional equations. 

• The paper of Harikrishnan et al. [ 76]; in it, the authors investigated existence theory and 
different kinds of stability in the sense of Ulam, for the following boundary value problem 
with nonlinear generalized Hilfer-type fractional differential equation with impulses: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
M. Benchohra et al., Advanced Topics in Fractional Differential Equations, 
Synthesis Lectures on Mathematics & Statistics, 
https://doi.org/10.1007/978-3-031-26928-8_4 

77
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⎧ 
⎨ 

⎩

(
ρDα,βu

)
(t) = f (t, u(t)); t ∈ I := I\{t1, . . . ,  tm}, I := [0, b],

ΔρJ 1−γ u(t)
|
|t=tk = Lk (u(t− 

k )); k = 1, . . . ,  m, 
ρJ 1−γ u(0) = u0, 

where ρDα,β ,ρ J 1−γ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) 
and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − 
αβ), respectively, 0 = t0 < t1 < .  .  .  <  tm < tm+1 = b < ∞, u(t+ 

k ) = lim
∈→0+ 

u(tk + ∈) 

and u(t− 
k ) = lim

∈→0− 
u(tk + ∈) represent the right- and left-hand limits of u(t) at t = tk ,

ΔρJ 1−γ u(t)
|
|t=tk = ρJ 1−γ u(t+ 

k ) − ρJ 1−γ u(t− 
k ) , f : I × R → R is a given function, 

and Lk : R → R; k = 1, . . . ,  m are given continuous functions. 

4.2 Existence and Ulam Stability Results for Generalized 
Hilfer-Type Boundary Value Problem 

In this section, we establish the existence and uniqueness results to the boundary value 
problem with nonlinear implicit generalized Hilfer-type fractional differential equation with 
impulses:

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

; t ∈ Jk , k = 0, . . . ,  m, (4.1)

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + Lk (u(t− 

k )); k = 1, . . . ,  m, (4.2) 

c1
(

ρJ 1−γ 
a+ u

)
(a+) + c2

(
ρJ 1−γ 

t+m 
u
)

(b) = c3, (4.3) 

where ρDα,β 
t+ 
k 

,ρ J 1−γ 
t+ 
k 

are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and 
type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), ρ >  0 
respectively, c1, c2, c3 are reals with c1 + c2 /= 0, Jk := (tk , tk+1]; k = 0, . . . ,  m, a = t0 < 
t1 <  . . .  <  tm < tm+1 = b < ∞, u(t+ 

k ) = lim
∈→0+ 

u(tk + ∈) and u(t− 
k ) = lim

∈→0− 
u(tk + ∈) rep-

resent the right- and left-hand limits of u(t) at t = tk , f : J × R × R → R is a given func-
tion, and Lk : R → R; k = 1, . . . ,  m are given continuous functions.
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4.2.1 Existence Results 

Before establishing our existence results, we need to define the following weighted Banach 
space: 

PCγ,ρ  (J ) =
(

u : J → R : u(t) ∈ Cγ,ρ  (Jk ); k = 0, . . . ,  m, and there exist 

u(t− 
k ) and

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ); k = 0, . . . ,  m, with u(t− 

k ) = u(tk )

)

, 

and 

PCn 
γ,ρ  (J ) =

{
u ∈ PCn−1 : u(n) ∈ PCγ,ρ  (J )

}
, n ∈ N, 

PC0 
γ,ρ  (J ) = PCγ,ρ  (J ), 

with the norm

||u||PCγ,ρ  = max 
k=0,...,m 

⎧ 
⎨ 

⎩ sup 
t∈[tk ,tk+1]

|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

u(t)

|
|
|
|
|
|

⎫ 
⎬ 

⎭ . 

We also define the space 

PCγ 
γ,ρ  (J ) =

(

u ∈ PCγ,ρ  (J ), ρDγ 
t+ 
k 
u ∈ PCγ,ρ  (J )

)

, k = 0, . . . ,  m. 

Let us now consider the following linear fractional differential equation:
(

ρDα,β 
t+ 
k 

u

)

(t) = ψ(t), t ∈ Jk , k = 0, . . . ,  m, (4.4) 

where 0 < α  <  1, 0 ≤ β ≤ 1, ρ  >  0, with the conditions
(

ρJ 1−γ 
t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + Lk (u(t− 

k )); k = 1, . . . ,  m, (4.5) 

and 
c1
(

ρJ 1−γ 
a+ u

)
(a+) + c2

(
ρJ 1−γ 

t+m 
u
)

(b) = c3, (4.6) 

where γ = α + β − αβ, c1, c2, c3 ∈ R with 

c1 + c2 /= 0, ϑ1 = c2 
c1 + c2 

, ϑ2 = c3 
c1 + c2 

and
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p∗ = sup 

⎧ 
⎨ 

⎩

(
tρ 
k − tρ 

k−1 

ρ

)γ −1 

: k = 1, . . . ,  m 

⎫ 
⎬ 

⎭ , 

such that ψ : J → R be a function satisfying the functional equation 

ψ(t) = f (t, u(t), ψ(t)). 

The following theorem shows that the problem (4.4)–(4.6) has a unique solution given 
by 

u(t) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
tρ − aρ 

ρ

)γ −1

Γ(γ )

[

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

t+m 
ψ
)

(b)

]

+
( t 

a

(
tρ − sρ 

ρ

)α−1 sρ−1ψ(s)ds

Γ(α) 
, t ∈ J0,

(
tρ − tρ 

k 

ρ

)γ −1

Γ(γ )

[

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

t+m 
ψ
)

(b) + 
kΣ

i=1 

Li (u(t− 
i )) + 

kΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti )

]

+
(

ρJ α 
t+ 
k 
ψ

)

(t), t ∈ Jk , k = 1, . . . ,  m. 

(4.7) 

Theorem 4.1 Let γ = α + β − αβ, where 0 < α  <  1 and 0 ≤ β ≤ 1. If ψ : J → R is a 
function such that ψ(·) ∈ PCγ,ρ  (J ), then u ∈ PCγ 

γ,ρ  (J ) satisfies the problem (4.4)–(4.6) 
if and only if it satisfies (4.7). 

Proof Assume u satisfies (4.4)–(4.6). If t ∈ J0, then
(

ρDα,β 
a+ u

)
(t) = ψ(t). 

Lemma 2.38 implies we have a solution that can be written as 

u(t) =
(

ρJ 1−γ 
a+ u

)
(a+)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1

Γ(α)

( t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds. (4.8) 

If t ∈ J1, then Lemma 2.38 implies
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u(t) =

(
ρJ 1−γ 

t+ 
1 

u

)

(t+ 
1 )

Γ(γ )

(
tρ − tρ 

1 

ρ

)γ −1 

+ 1

Γ(α)

( t 

t1

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds  

=
(

ρJ 1−γ 
a+ u

)
(t− 
1 ) + L1(u(t− 

1 ))

Γ(γ )

(
tρ − tρ 

1 

ρ

)γ −1 

+
(

ρJ α 
t+ 
1 
ψ
)

(t) 

= 
(tρ − tρ 

1 ) 
γ −1

Γ(γ )ργ −1

[ (
ρJ 1−γ 

a+ u
)

(a+) + L1(u(t− 
1 )) +

(
ρJ 1−γ +α 

a+ ψ
)

(t1)

]

+
(

ρJ α 
t+ 
1 
ψ
)

(t). 

If t ∈ J2, then Lemma 2.38 implies 

u(t) =

(
ρJ 1−γ 

t+ 
2 

u

)

(t+ 
2 )

Γ(γ )

(
tρ − tρ 

2 

ρ

)γ −1 

+ 1

Γ(α)

( t 

t2

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds  

=

(
ρJ 1−γ 

t+ 
1 

u

)

(t− 
2 ) + L2(u(t− 

2 ))

Γ(γ )

(
tρ − tρ 

2 

ρ

)γ −1 

+
(

ρJ α 
t+ 
2 
ψ
)

(t) 

= 1

Γ(γ )

(
tρ − tρ 

2 

ρ

)γ −1 [ (
ρJ 1−γ 

a+ u
)

(a+) + L1(u(t− 
1 )) + L2(u(t− 

2 )) 

+
(

ρJ 1−γ +α 
a+ ψ

)
(t1) +

(
ρJ 1−γ +α 

t+ 
1 

ψ

)

(t2)

]

+
(

ρJ α 
t+ 
2 
ψ
)

(t). 

Repeating the process in this way, the solution u(t) for t ∈ Jk , k = 1, . . . ,  m, can be written 
as 

u(t) =
[ (

ρJ 1−γ 
a+ u

)
(a+) +Σk 

i=1 Li (u(t− 
i )) +Σk 

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti )

]

× 
1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 

+
(

ρJ α 
t+ 
k 
ψ
)

(t). 
(4.9) 

Applying ρJ 1−γ 
t+m 

on both sides of (4.9), using Lemma 2.19 and taking t = b, we obtain

(
ρJ 1−γ 

t+m 
u
)

(b) =
(

ρJ 1−γ 
a+ u

)
(a+) + 

mΣ

i=1 

Li (u(t− 
i )) + 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

+
(

ρJ 1−γ +α 
(tm )+ ψ

)
(b). (4.10) 

Multiplying both sides of (4.10) by  c2 and using condition (4.6), we obtain
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c3 − c1
(

ρJ 1−γ 
a+ u

)
(a+) = c2

(
ρJ 1−γ 

a+ u
)

(a+) + c2 
mΣ

i=1 

Li (u(t− 
i )) 

+ c2 
mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) + c2

(
ρJ 1−γ +α 

(tm )+ ψ
)

(b), 

which implies that

(
ρJ 1−γ 

a+ u
)

(a+) = ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

(tm )+ ψ
)

(b). 
(4.11) 

Substituting (4.11) into (4.9) and (4.8), we obtain (4.7). 
Reciprocally, applying ρJ 1−γ 

t+ 
k 

on both sides of (4.7) and using Lemma 2.19 and Theorem 

2.14, we get

(
ρJ 1−γ 

t+ 
k 

u

)

(t) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

(tm )+ ψ
)

(b) +
(

ρJ 1−γ +α 
a+ ψ

)
(t), t ∈ J0, 

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

t+m 
ψ
)

(b) + 
kΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

+ 
kΣ

i=1 

Li (u(t− 
i )) +

(
ρJ 1−γ +α 

t+ 
k 

ψ

)

(t), t ∈ Jk , k /= 0. 

(4.12) 

Next, taking the limit t → a+ of (4.12) and using Lemma 2.24, with 1 − γ <  1 − γ + α, 
we obtain

(
ρJ 1−γ 

a+ u
)

(a+) = ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

−ϑ1

(
ρJ 1−γ +α 

t+m 
ψ
)

(b). 
(4.13) 

Now, taking t = b in (4.12), we get

(
ρJ 1−γ 

t+m 
u
)

(b) = ϑ2 + (1 − ϑ1)

( mΣ

i=1 

Li (u(t− 
i )) + 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ψ

)
(ti ) 

+
(

ρJ 1−γ +α 
t+m 

ψ
)

(b)

)

. 
(4.14)
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From (4.13) and (4.14), we find that 

c1
(

ρJ 1−γ 
a+ u

)
(a+) + c2

(
ρJ 1−γ 

t+m 
u
)

(b) = c3, 

which shows that the boundary condition c1
(

ρJ 1−γ 
a+ u

)
(a+) + c2

(
ρJ 1−γ 

t+m 
u
)

(b) = c3 is 
satisfied. 
Next, apply operator ρDγ 

t+ 
k 
on both sides of (4.7), where k = 0, . . . ,  m. Then, from Lemma 

2.19 and Lemma 2.33, we obtain 

(ρDγ 
t+ 
k 
u)(t) =

(
ρDβ(1−α) 

t+ 
k 

ψ

)

(t). (4.15) 

Since u ∈ Cγ 
γ,ρ  (Jk ) and by definition of Cγ 

γ,ρ  (Jk ), we have ρDγ 
t+ 
k 
u ∈ Cγ,ρ  (Jk ), then (4.15) 

implies that 

(ρDγ 
t+ 
k 
u)(t) =

(

δρ 
ρJ 1−β(1−α) 

t+ 
k 

ψ

)

(t) =
(

ρDβ(1−α) 
t+ 
k 

ψ

)

(t) ∈ Cγ,ρ  (Jk ). (4.16) 

As ψ(·) ∈ Cγ,ρ  (Jk ) and from Lemma 2.23, follows

(
ρJ 1−β(1−α) 

t+ 
k 

ψ

)

∈ Cγ,ρ  (Jk ). (4.17) 

From (4.16), (4.17), and by the definition of the space Cn 
γ,ρ  (Jk ), we obtain

(
ρJ 1−β(1−α) 

t+ 
k 

ψ

)

∈ C1 
γ,ρ  (Jk ). 

Applying operator ρJ β(1−α) 
t+ 
k 

on both sides of (4.15) and using Lemma 2.32, Lemma 2.24, 

and Property 2.22, we have
(

ρDα,β 
t+ 
k 

u

)

(t) = ρJ β(1−α) 
t+ 
k

(
ρDγ 

t+ 
k 
u

)

(t) 

= ψ(t) −

(
ρJ 1−β(1−α) 

t+ 
k 

ψ

)

(tk )

Γ(β(1 − α))

(
tρ − tρ 

k 

ρ

)β(1−α)−1 

= ψ(t), 

that is, (4.4) holds. 
Also, we can easily show that

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + Lk (u(t− 

k )); k = 1, . . . ,  m.
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This completes the proof. ▢

As a consequence of Theorem 4.1, we have the following result. 

Lemma 4.2 Let γ = α + β − αβ where 0 < α  <  1 and 0 ≤ β ≤ 1, let f : J × R × R → 
R be a function such that f (·, u(·), w(·)) ∈ PCγ,ρ  (J ) for any u, w  ∈ PCγ,ρ  (J ). 
If u ∈ PCγ 

γ,ρ  (J ), then u satisfies the problem (4.1)–(4.3) if and only if u is the fixed point 
of the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined by

Ψu(t) = 
1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ h

)
(ti ) 

− ϑ1

(
ρJ 1−γ +α 

t+m 
h
)

(b) +
Σ

a<tk <t 

Lk (u(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

+
(

ρJ α 
t+ 
k 
h
)

(t), t ∈ Jk , k = 0, . . . ,  m, (4.18) 

where h : J → R be a function satisfying the functional equation 

h(t) = f (t, u(t), h(t)). 

We are now in a position to state and prove our existence result for problem (4.1)–(4.3) 
based on Banach’s fixed point. 

Theorem 4.3 Assume that the following hypotheses hold. 

(4.3.1) The continuous function f : J × R × R → R be such that 

f (·, u(·), w(·)) ∈ PCβ(1−α) 
γ,ρ (J ) for any u, w  ∈ PCγ,ρ  (J ). 

(4.3.2) There exist constants K > 0 and 0 < M < 1 such that 

| f (t, u, w)  − f (t, ū, w̄)| ≤  K |u − ū| +  M |w − w̄| 

for any u, w,  ̄u, w̄ ∈ R and t ∈ J . 
(4.3.3) There exists a constant l∗ > 0 such that 

|Lk (u) − Lk (ū)| ≤  l∗|u − ū| 

for any u, ū ∈ R and k = 1, . . . ,  m.
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If 

L :=
(

|ϑ1| +  1
)(

ml∗ p∗

Γ(γ ) 
+ mK  

(1 − M)Γ(1 + α)

(
bρ − aρ 

ρ

)α )

+ K 

(1 − M)

( |ϑ1|
Γ(1 + α) 

+ Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α 
< 1, 

(4.19) 

then the problem (4.1)–(4.3) has a unique solution in PCγ 
γ,ρ  (J ). 

Proof The proof will be given in two steps. 

Step 1: We show that the operator Ψ defined in (4.18) has a unique fixed point u∗ in 
PCγ,ρ  (J ). Let u, w  ∈ PCγ,ρ  (J ) and t ∈ J , then we have 

|Ψu(t) − Ψw(t)| 

≤
[

|ϑ1| 
mΣ

i=1 

|Li (u(t− 
i )) − Li (w(t− 

i ))| + |ϑ1|
(

ρJ 1−γ +α 
t+m 

|h(s) − g(s)|
)

(b) 

+ |ϑ1| 
mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ |h(s) − g(s)|

)
(ti ) +

Σ

a<tk <t 

|Lk (u(t− 
k )) − Lk (w(t− 

k ))| 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ |h(s) − g(s)|

)
(tk )

](
tρ − tρ 

k

)γ −1

Γ(γ )ργ −1 

+
(

ρJ α 
t+ 
k 
|h(s) − g(s)|

)
(t), 

where h, g ∈ PCγ,ρ  (J ) such that 

h(t) = f (t, u(t), h(t)), 
g(t) = f (t, w(t), g(t)). 

By (4.3.2), we have  

|h(t) − g(t)| = |  f (t, u(t), h(t)) − f (t, w(t), g(t))| 
≤ K |u(t) − w(t)| +  M |h(t) − g(t)|. 

Then, 

|h(t) − g(t)| ≤ K 

1 − M 
|u(t) − w(t)|.
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Therefore, for each t ∈ J 

|Ψu(t) − Ψw(t)| 

≤
[

|ϑ1| 
mΣ

i=1 

l∗|u(ti ) − w(ti )| +  
|ϑ1|K 
1 − M

(
ρJ 1−γ +α 

t+m 
|u(s) − w(s)|

)
(b) 

+ 
|ϑ1|K 
1 − M 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ |u(s) − w(s)|

)
(ti ) + 

mΣ

i=1 

l∗|u(ti ) − w(ti )| 

+ K 

1 − M 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ |u(s) − w(s)|

)
(ti )

](
tρ − tρ 

k

)γ −1

Γ(γ )ργ −1 

+ K 

1 − M

(
ρJ α 

t+ 
k 
|u(s) − w(s)|

)
(t). 

Thus 

|Ψu(t) − Ψw(t)| 
≤
(
tρ − tρ 

k

)γ −1

Γ(γ )ργ −1

[

|ϑ1|ml∗ p∗ + 
|ϑ1|K 
1 − M

(

ρJ 1−γ +α 
t+m

(
sρ − tρ 

m 

ρ

)γ −1
)

(b) 

+ 
mK |ϑ1| 
1 − M 

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+

(
sρ − tρ 

k−1 

ρ

)γ −1 
⎞ 

⎠ (tk ) 

+ml∗ p∗ + 
mK  

1 − M 

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+

(
sρ − tρ 

k−1 

ρ

)γ −1 
⎞ 

⎠ (tk )
]

||u − w||PCγ,ρ  

+ K 

1 − M
||u − w||PCγ,ρ  

⎛ 

⎝ρJ α 
t+ 
k

(
sρ − tρ 

k 

ρ

)γ −1 
⎞ 

⎠ (t). 

By Lemma 2.19, we have  

|Ψu(t) − Ψw(t)| 

≤ 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1

||u − w||PCγ,ρ

[

|ϑ1|ml∗ p∗ 

+ 
|ϑ1|KΓ(γ ) 

(1 − M)Γ(1 + α)

(
bρ − tρ 

m 

ρ

)α 
+ mK |ϑ1|Γ(γ ) 

(1 − M)Γ(1 + α)

(
tρ 
k − tρ 

k−1 

ρ

)α 

+ml∗ p∗ + mKΓ(γ ) 
(1 − M)Γ(1 + α)

(
tρ 
k − tρ 

k−1 

ρ

)α]

+ KΓ(γ ) 
(1 − M)Γ(γ + α)

||u − w||PCγ,ρ

(
tρ − tρ 

k 

ρ

)α+γ −1 

,



4.2 Existence and Ulam Stability Results for Generalized Hilfer … 87

hence

|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

(Ψu(t) − Ψw(t))

|
|
|
|

≤
[

(|ϑ1| +  1)
(
ml∗ p∗

Γ(γ ) 
+ mK  

(1 − M)Γ(1 + α)

(
bρ − aρ 

ρ

)α)

+ K 

(1 − M)

( |ϑ1|
Γ(1 + α) 

+ Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α]

||u − w||PCγ,ρ  , 

which implies that

||Ψu − Ψw||PCγ,ρ  

≤
[

(|ϑ1| +  1)
(
ml∗ p∗

Γ(γ ) 
+ mK  

(1 − M)Γ(1 + α)

(
bρ − aρ 

ρ

)α)

+ K 

(1 − M)

( |ϑ1|
Γ(1 + α) 

+ Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α]

||u − w||PCγ,ρ  . 

By (4.19), the operator Ψ is a contraction. Hence, by Theorem 2.45, Ψ has a unique fixed 
point u∗ ∈ PCγ,ρ  (J ). 

Step 2: We show that such a fixed point u∗ ∈ PCγ,ρ  (J ) is actually in PCγ 
γ,ρ  (J ). 

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ  (J ), then for each t ∈ Jk , with 
k = 0, . . . ,  m, we have 

u∗(t) = 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ h

)
(ti ) 

− ϑ1

(
ρJ 1−γ +α 

t+m 
h
)

(b) +
Σ

a<tk <t 

Lk (u(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

+
(

ρJ α 
t+ 
k 
h
)

(t), 

where h ∈ PCγ,ρ  (J ) such that 

h(t) = f (t, u∗(t), h(t)). 

Applying ρDγ 
t+ 
k 
to both sides and by Lemmas 2.19 and 2.33, we have  

ρDγ 
t+ 
k 
u∗(t) =

(
ρDγ 

t+ 
k 

ρJ α 
t+ 
k 
f (s, u∗(s), h(s))

)

(t) 

=
(

ρDβ(1−α) 
t+ 
k 

f (s, u∗(s), h(s))

)

(t).



88 4 Fractional Differential Equations with Instantaneous Impulses

Since γ ≥ α, by (4.3.1), the right-hand side is in PCγ,ρ  (J ) and thus ρDγ 
t+ 
k 
u∗ ∈ PCγ,ρ  (J ) 

which implies that u∗ ∈ PCγ 
γ,ρ  (J ). As a consequence of Steps 1 and 2 together with Theorem 

4.3, we can conclude that the problem (4.1)–(4.3) has a unique solution in PCγ 
γ,ρ  (J ). ▢

Our second result is based on Schaefer’s fixed point theorem. 

Theorem 4.4 Assume that in addition of the hypothesis (4.3.1)–(4.3.3), the following hold. 

(4.4.1) There exist functions p1, p2, p3 ∈ C([a, b], R+) with 

p∗
1 = sup 

t∈[a,b] 
p1(t), p∗

2 = sup 
t∈[a,b] 

p2(t), p∗
3 = sup 

t∈[a,b] 
p3(t) <  1 

such that 

| f (t, u, w)| ≤  p1(t) + p2(t)|u| +  p3(t)|w| for t ∈ J and u, w  ∈ R. 

(4.4.2) The functions Lk : R −→ R are continuous and there exist constants Φ1, Φ2 > 0 
such that 

|Lk (u)| ≤ Φ1|u| + Φ2 for each u ∈ R, k = 1, . . . ,  m. 

If 

(|ϑ1| +  1)
(
mΦ1 p∗
Γ(γ ) + mp∗

2 (b
ρ−aρ )α 

(1−p∗
3 )Γ(1+α)ρα

)
+
( |ϑ1|

Γ(1+α) + Γ(γ )
Γ(γ +α)

) (
p∗
2 (b

ρ−aρ )α 

(1− p∗
3 )ρ

α

)
< 1, (4.20) 

then the problem (4.1)–(4.3) has at least one solution in PCγ 
γ,ρ  (J ). 

Proof We shall use Schaefer’s fixed point theorem to prove in several steps that the operator
Ψ defined in (4.18) has a fixed point. 

Step 1: Ψ is continuous. 
Let {un} be a sequence such that un → u in PCγ,ρ  (J ). 
Then for each t ∈ J , we have

|
|
|
| ((Ψun)(t) − (Ψu)(t))

(
tρ − tρ 

k 

ρ

)1−γ |
|
|
|

≤ 1

Γ(γ )

[

|ϑ1| 
mΣ

i=1 

|Li (un(t
− 
i )) − Li (u(t− 

i ))| + |ϑ1|
(

ρJ 1−γ +α 
t+m 

|hn(s) − h(s)|
)

(b)
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+ |ϑ1| 
mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ |hn(s) − h(s)|

)
(ti ) +

Σ

a<tk <t 

|Lk (un(t
− 
k )) − Lk (u(t− 

k ))| 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ |hn(s) − h(s)|

)
(tk )

]

+
(
tρ − tρ 

k 

ρ 

)1−γ (
ρJ α 

t+ 
k 
|hn(s) − h(s)|

)
(t), 

where hn, h ∈ PCγ,ρ  (J ) such that 

hn(t) = f (t, un(t), hn(t)), 
h(t) = f (t, u(t), h(t)). 

Since un → u, then we get  hn(t) → h(t) as n → ∞  for each t ∈ J , and since f and Lk are 
continuous, then we have

||Ψun − Ψu||PCγ,ρ  → 0 as  n → ∞. 

Step 2: We show that Ψ is the mapping of two bounded sets in PCγ,ρ  (J ). 
For η >  0, there exists a positive constant β such that Bη = {u ∈ PCγ,ρ  (J ) : ||u||PCγ,ρ  ≤ 
η}, we have ||Ψ(u)||PCγ,ρ  ≤ β. 
By (4.4.1) and from (4.18), we have for each t ∈ Jk , k = 0, . . . ,  m,

|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

h(t)

|
|
|
|
|
|
=
|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

f (t, u(t), h(t))

|
|
|
|
|
|

≤
(
tρ − tρ 

k 

ρ

)1−γ 

(p1(t) + p2(t)|u(t)| +  p3(t)|h(t)|) , 

which implies that

||h||PCγ,ρ  ≤ p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2 η + p∗
3||h||PCγ,ρ  . 

Then

||h||PCγ,ρ  ≤ 
p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2 η 

1 − p∗
3 

:= Λ. 

Thus (4.18) implies
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|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

(Ψu)(t)

|
|
|
|
|
|

≤ 1

Γ(γ )

[

|ϑ2| + |ϑ1| 
mΣ

i=1 

|Li (u(t− 
i ))| + |ϑ1| 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ |h(s)|

)
(ti ) 

+ |ϑ1|
(

ρJ 1−γ +α 
t+m 

|h(s)|
)

(b) +
Σ

a<tk <t 

|Lk (u(t− 
k ))| 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ |h(s)|

)
(tk )

]

+
(
tρ − tρ 

k 

ρ

)1−γ (
ρJ α 

t+ 
k 
|h(s)|

)
(t). 

Then
|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

(Ψu)(t)

|
|
|
|
|
|

≤
[

|ϑ2| + |ϑ1|m(Φ1 p
∗η + Φ2) + |ϑ1|mΛ

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+

(
sρ − tρ 

k−1 

ρ

)γ −1 
⎞ 

⎠ (tk ) 

+ |ϑ1|Λ
(

ρJ 1−γ +α 
t+m

(
sρ − tρ 

m 

ρ

)γ −1
)

(b) + m(Φ1 p
∗η + Φ2) 

+ mΛ

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+

(
sρ − tρ 

k−1 

ρ

)γ −1 
⎞ 

⎠ (tk )
]

1

Γ(γ ) 

+ Λ

(
tρ − tρ 

k 

ρ

)1−γ 
⎛ 

⎝ρJ α 
t+ 
k

(
sρ − tρ 

k 

ρ

)γ −1 
⎞ 

⎠ (t). 

By Lemma 2.19, we have

||Ψu||PCγ,ρ  ≤ (|ϑ1| +  1)
(
m(Φ1 p∗η + Φ2)

Γ(γ )
+ mΛ

Γ(1 + α)

(
bρ − aρ 

ρ

)α )

+Λ

( |ϑ1|
Γ(1 + α) 

+ Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α 
+ 

|ϑ2|
Γ(γ ) 

:= β. 

Step 3: Ψ maps bounded sets into equicontinuous sets of PCγ,ρ . 
Let ∈1, ∈2 ∈ J , ∈1 < ∈2, Bη be a bounded set of PCγ,ρ  as in Step 2, and let u ∈ Bη. Then
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|
|
|
|
|
|

(
∈
ρ 
1 − tρ 

k 

ρ

)1−γ 

(Ψu)(∈1) −
(

∈
ρ 
2 − tρ 

k 

ρ

)1−γ 

(Ψu)(∈2)

|
|
|
|
|
|

≤ 1

Γ(γ )

[ Σ

∈1<tk <∈2 

|Lk (u(t− 
k ))| +

Σ

∈1<tk <∈2

(
ρJ 1−γ +α 

(tk−1)
+ |h(s)|

)
(tk )

]

+ ΛΓ(γ )
Γ(γ + α)

|
|
|
|
|

(
∈
ρ 
1 − tρ 

k 

ρ

)α 

−
(

∈
ρ 
2 − tρ 

k 

ρ

)α||
|
|
|
. 

As ∈1 → ∈2, the right-hand side of the above inequality tends to zero. From steps 1 to 3 
with the Arzela-Ascoli theorem, we conclude that Ψ : PCγ,ρ  → PCγ,ρ  is continuous and 
completely continuous. 

Step 4: A priori bound. Now it remains to show that the set 

G = {u ∈ PCγ,ρ  : u = λ∗Ψ(u) for some 0 < λ∗ < 1} 

is bounded. Let u ∈ G, then u = λ∗Ψ(u) for some 0 < λ∗ < 1. 
By (4.4.1), we have for each t ∈ J ,

|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

h(t)

|
|
|
|
|
|
=
|
|
|
|
|
|

(
tρ − tρ 

k 

ρ

)1−γ 

f (t, u(t), h(t))

|
|
|
|
|
|

≤
(
tρ − tρ 

k 

ρ

)1−γ 

(p1(t) + p2(t)|u(t)| +  p3(t)|h(t)|) , 

which implies that

||h||PCγ,ρ  ≤ p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2||u||PCγ,ρ  + p∗
3||h||PCγ,ρ  , 

then

||h||PCγ,ρ  ≤ 
p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2||u||PCγ,ρ  

1 − p∗
3 

. 

This implies, by (4.18), (4.4.2) and by letting the estimation of Step 2, that for each t ∈ J 
we have
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||u||PCγ,ρ  ≤ (|ϑ1| +  1)
(
m(Φ1 p∗||u||PCγ,ρ  + Φ2)

Γ(γ )
+ 1 

(1 − p∗
3 )Γ(1 + α) 

×
[

mp∗
1

(
bρ − aρ 

ρ

)1+α−γ 
+ mp∗

2||u||PCγ,ρ

(
bρ − aρ 

ρ

)α
])

+ 
p∗
1

(
bρ − aρ 

ρ

)1+α−γ 
+ p∗

2||u||PCγ,ρ

(
bρ − aρ 

ρ

)α 

(1 − p∗
3 ) 

×
( |ϑ1|

Γ(1 + α) 
+ Γ(γ )

Γ(γ + α)

)

+ 
|ϑ2|
Γ(γ ) 

, 

≤
[

(|ϑ1| +  1)
(
mΦ1 p∗

Γ(γ ) 
+ mp∗

2 (b
ρ − aρ )α 

(1 − p∗
3 )Γ(1 + α)ρα

)

+
( |ϑ1|

Γ(1 + α) 
+ Γ(γ )

Γ(γ + α)

)(
p∗
2 (b

ρ − aρ )α 

(1 − p∗
3 )ρ

α

)]

||u||PCγ,ρ  

+ 
|ϑ2|
Γ(γ ) 

+ (|ϑ1| +  1)

(
mΦ2

Γ(γ ) 
+ mp∗

1 (b
ρ − aρ )1+α−γ 

(1 − p∗
3 )Γ(1 + α)ρ1+α−γ

)

+
( |ϑ1|

Γ(1 + α) 
+ Γ(γ )

Γ(γ + α)

)(
p∗
1 (b

ρ − aρ )1+α−γ 

(1 − p∗
3 )ρ

1+α−γ

)

. 

By (4.20), we have

||u||PCγ,ρ  

≤ 

|ϑ2|
Γ(γ ) +

[

(|ϑ1|+1)

(
mΦ2
Γ(γ ) + 

mp∗
1 (b

ρ−aρ )1+α−γ 

(1− p∗
3 )Γ(1+α)ρ1+α−γ

)

+
( |ϑ1|

Γ(1+α) +
Γ(γ )

Γ(γ +α)

)(
p∗
1 (b

ρ−aρ )1+α−γ 

(1− p∗
3 )ρ

1+α−γ

)]

1−
[

(|ϑ1|+1)

(
mΦ1 p∗
Γ(γ ) + 

mp∗
2 (b

ρ−aρ )α 

(1−p∗
3 )Γ(1+α)ρα

)

+
( |ϑ1|

Γ(1+α) +
Γ(γ )

Γ(γ +α)

)(
p∗
2 (b

ρ−aρ )α 

(1− p∗
3 )ρ

α

)]

:= R. 

As a consequence of Theorem 2.47, and using Step 2 of the last result, we deduce that Ψ

has a fixed point which is a solution of the problem (4.1)–(4.3). ▢

Our third result is based on Krasnoselskii’s fixed point theorem. 

Theorem 4.5 Assume that (4.3.1), (4.4.1), and (4.4.2) hold. If 

(|ϑ1| +  1)
(
mΦ1 p∗

Γ(γ ) 
+ mp∗

2 (b
ρ − aρ )α 

(1 − p∗
3 )Γ(1 + α)ρα

)

+ 
p∗
2 |ϑ1| (bρ − aρ )α 

(1 − p∗
3 )Γ(1 + α)ρα < 1, (4.21) 

then the problem (4.1)–(4.3) has at least one solution in PCγ 
γ,ρ  (J ).
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Proof Consider the set 

Bη = {u ∈ PCγ,ρ  (J ) : ||u||PCγ,ρ  ≤ η}, 

where 

η ≥ 
(|ϑ1|+1)

(
mΦ2
Γ(γ ) + mΛ

Γ(1+α)

(
bρ−aρ 

ρ

)α
)

+Λ

( |ϑ1|
Γ(1+α) +

Γ(γ )
Γ(γ +α)

)(
bρ−aρ 

ρ

)α 
+ |ϑ2|

Γ(γ ) 

1−(|ϑ1|+1) mΦ1 p∗
Γ(γ ) 

. 

We define the operators Q1 and Q2 on Bη by 

Q1u(t) = 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [

ϑ2 − ϑ1 

mΣ

i=1 

Li (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ h

)
(ti ) 

− ϑ1

(
ρJ 1−γ +α 

t+m 
h
)

(b) +
Σ

a<tk <t 

Lk (u(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

, 

(4.22) 

Q2u(t) =
(

ρJ α 
t+ 
k 
h
)

(t), (4.23) 

where k = 0, . . . ,  m and h : J → R be a function satisfying the functional equation 

h(t) = f (t, u(t), h(t)). 

Then the fractional integral equation (4.18) can be written as operator equation

Ψu(t) = Q1u(t) + Q2u(t), u ∈ PCγ,ρ  (J ). 

The proof will be given in several steps. 

Step 1: We prove that Q1u + Q2w ∈ Bη for any u, z ∈ Bη. 
Same as Step 2 of the last result, by (4.4.1), (4.4.2), and Lemma 2.19, for each t ∈ J , we  
have

||Q1u + Q2w||PCγ,ρ  ≤ ||Q1u||PCγ,ρ  + ||Q2w||PCγ,ρ  

≤ (|ϑ1| +  1)
(
m(Φ1 p∗η + Φ2)

Γ(γ )
+ mΛ

Γ(1 + α)

(
bρ − aρ 

ρ

)α )

+ Λ

( |ϑ1|
Γ(1 + α) 

+ Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α 
+ 

|ϑ2|
Γ(γ ) 

. 

Since
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η ≥ 
(|ϑ1|+1)

(
mΦ2
Γ(γ ) + mΛ

Γ(1+α)

(
bρ−aρ 

ρ

)α
)

+Λ

( |ϑ1|
Γ(1+α) +

Γ(γ )
Γ(γ +α)

)(
bρ−aρ 

ρ

)α 
+ |ϑ2|

Γ(γ ) 

1−(|ϑ1|+1) mΦ1 p∗
Γ(γ ) 

, 

we have
||Q1y + Q2z||PCγ,ρ  ≤ η, 

which infers that Q1u + Q2w ∈ Bη. 

Step 2: Q1 is a contraction. 
Let u, w  ∈ PCγ,ρ  (J ) and t ∈ J . 
By (4.4.1), we have  

|h(t) − g(t)| = |  f (t, u(t), h(t)) − f (t, w(t), g(t))| 
≤ p2(t)|u(t) − w(t)| +  p3(t)|h(t) − g(t)|. 

Then, 

|h(t) − g(t)| ≤ p2(t) 
1 − p3(t)

|u(t) − w(t)| ≤ p∗
2 

1 − p∗
3 
|u(t) − w(t)|, 

where p∗
1 = sup 

t∈[a,b] 
p1(t), p∗

2 = sup 
t∈[a,b] 

p2(t) and h, g ∈ C([a, b], R) such that 

h(t) = f (t, u(t), h(t)), 
g(t) = f (t, w(t), g(t)). 

Then by (4.4.2) and using the estimation in Step 1 of the first result, we have 

|Q1y(t) − Q1z(t)| 

≤ 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1

||u − w||PCγ,ρ

[

|ϑ1|mΦ1 p
∗ 

+ p∗
2 |ϑ1|Γ(γ ) 

(1 − p∗
3 )Γ(1 + α)

(
bρ − tρ 

m 

ρ

)α 
+ mp∗

2 |ϑ1|Γ(γ ) 
(1 − p∗

3 )Γ(1 + α)

(
tρ 
k − tρ 

k−1 

ρ

)α 

+mΦ1 p∗ + mp∗
2Γ(γ ) 

(1 − p∗
3 )Γ(1 + α)

(
tρ 
k − tρ 

k−1 

ρ

)α]

, 

hence

||Q1u − Q1w||PCγ,ρ  ≤
[

(|ϑ1| +  1)
(
mΦ1 p∗

Γ(γ ) 
+ mp∗

2 

(1 − p∗
3 )Γ(1 + α)

(
bρ − aρ 

ρ

)α )

+ p∗
2 |ϑ1| 

(1 − p∗
3 )Γ(1 + α)

(
bρ − aρ 

ρ

)α]

||u − w||PCγ,ρ  . 

By (4.21), the operator Q1 is a contraction.
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Step 3: Q2 is continuous and compact. 
The continuity of Q2 follows from the continuity of f . Next we prove that Q2 is uniformly 
bounded on Bη. Let any w ∈ Bη. By using the estimation in Step 2 of the last result, (4.23) 
implies

|
|
|
|

(
tρ−tρ 

k 
ρ

)1−γ 
(Q2z)(t)

|
|
|
| ≤

(
tρ−tρ 

k 
ρ

)1−γ
(

ρJ α 
t+ 
k 
|g(s)|

)

(t), 

≤ Λ
(
tρ−tρ 

k 
ρ

)1−γ
(

ρJ α 
t+ 
k

(
sρ−tρ 

k 
ρ

)γ −1
)

(t), 

where k = 0, . . . ,  m and g : J → R be a function satisfying the functional equation 

g(t) = f (t, w(t), g(t)). 

By Lemma 2.19, we have

||Q2z||PCγ,ρ  ≤
ΛΓ(γ )

Γ(γ + α)

(
bρ − aρ 

ρ

)α 
. 

This means that Q2 is uniformly bounded on Bη. Next, we show that Q2 Bη is equicontinuous. 
Let any w ∈ Bη and a < ∈1 < ∈2 ≤ b. Then

|
|
|
|

(
∈
ρ 
1 −tρ 

k 
ρ

)1−γ 
(Q2z)(∈1) −

(
∈
ρ 
2 −tρ 

k 
ρ

)1−γ 
(Q2z)(∈2)

|
|
|
|

≤ ΛΓ(γ )
Γ(γ +α)

|
|
|
|

(
∈
ρ 
1 −tρ 

k 
ρ

)α 
−
(

∈
ρ 
2 −tρ 

k 
ρ

)α
|
|
|
| . 

Note that
|
|
|
|
|
|

(
∈
ρ 
1 − tρ 

k 

ρ

)1−γ 

(Q2z)(∈1) −
(

∈
ρ 
2 − tρ 

k 

ρ

)1−γ 

(Q2z)(∈2)

|
|
|
|
|
|
→ 0 as ∈1 → ∈2. 

This shows that Q2 Bη is equicontinuous on J . Therefore, Q2 Bη is relatively compact. By 
PCγ -type Arzela-Ascoli Theorem, Q2 is compact. 
As a consequence of Theorem 2.50, we deduce that Ψ has at least a fixed point u∗ ∈ 
PCγ,ρ  (J ), and by the same way of the proof of Theorem 4.3, we can easily show that 
u∗ ∈ PCγ 

γ,ρ  (J ). Using Lemma 4.2, we conclude that the problem (4.1)–(4.3) has at least 
one solution in the space PCγ 

γ,ρ  (J ). ▢

4.2.2 Ulam-Hyers-Rassias Stability 

Now we are concerned with the Ulam-Hyers-Rassias Stability of our problem (4.1)–(4.3). Let 
u ∈ PCγ,ρ  (J ), ∈ >  0, τ >  0, and  θ : J −→ [0, ∞) be a continuous function. We consider 
the following inequality:
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⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

|
|
|
|

(
ρDα,β 

t+ 
k 

u

)

(t) − f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)|
|
|
| ≤ ∈θ (t), t ∈ Jk , k = 0, . . . ,  m,

|
|
|
|

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) −

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) − Lk (u(t− 

k ))

|
|
|
| ≤ ∈τ, k = 1, . . . ,  m. 

(4.24) 

Definition 1 ([156]) Problem (4.1)–(4.3) is Ulam-Hyers-Rassias (U-H-R) stable with 
respect to (θ, τ ) if there exists a real number a f ,m,θ > 0 such that for each ∈ >  0 and 
for each solution u ∈ PCγ,ρ  (J ) of inequality (4.24) there exists a solution w ∈ PCγ,ρ  (J ) 
of (4.1)–(4.3) with 

|u(t) − w(t)| ≤ ∈a f ,m,θ (θ (t) + τ), t ∈ (a, b]. 

Remark 4.6 ([156]) A function u ∈ PCγ,ρ  (J ) is a solution of inequality (4.24) if and only 
if there exist σ ∈ PCγ,ρ  (J ) and a sequence σk , k = 0, . . . ,  m such that 

1. |σ(t)| ≤ ∈θ (t) and |σk | ≤ ∈τ , t ∈ Jk , k = 1, . . . ,  m; 
2.

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

+ σ(t), t ∈ Jk , k = 0, . . . ,  m; 

3.

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + Lk (u(t− 

k )) + σk , k = 1, . . . ,  m. 

Theorem 4.7 Assume that in addition to (4.3.1)–(4.3.3) and (4.19), the following hypoth-
esis holds: 

(4.8.1) There exist a nondecreasing function θ ∈ PCγ,ρ  (J ) and λθ , λ̃θ > 0 such that for 
each t ∈ (a, b], we have 

(ρJ α 
a+ θ)(t) ≤ λθ θ(t), 

and 
(ρJ 1−γ 

a+ θ)(t) ≤ λ̃θ θ(t). 

Then Eq. (4.1) is U-H-R stable with respect to (θ, τ ). 

Proof Consider the operatorΨ defined in (4.18). Let u ∈ PCγ,ρ  (J ) be a solution of inequal-
ity (4.24), and let us assume that w is the unique solution of the problem
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρDα,β 

t+ 
k 

w

)

(t) = f
(

t, w(t),

(
ρDα,β 

t+ 
k 

w

)

(t)

)

; t ∈ Jk , k = 0, . . . ,  m,
(

ρJ 1−γ 
t+ 
k 

w

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

w

)

(t− 
k ) + Lk (w(t− 

k )); k = 1, . . . ,  m, 

c1
(

ρJ 1−γ 
a+ w

)
(a+) + c2

(
ρJ 1−γ 

t+m 
w
)

(b) = c3,
(

ρJ 1−γ 
a+ w

)
(a+) =

(
ρJ 1−γ 

a+ u
)

(a+). 

By Lemma 4.2, we obtain for each t ∈ J 

w(t) =
[(

ρJ 1−γ 
a+ w

)
(a+) +

Σ

a<tk <t 

Lk (w(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

× 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 

+
(

ρJ α 
t+ 
k 
h
)

(t), t ∈ Jk , k = 0, . . . ,  m, 

where h : J → R be a function satisfying the functional equation 

h(t) = f (t, w(t), h(t)). 

Since u is a solution of the inequality (4.24), by Remark 4.6, we have  
⎧ 
⎪⎪⎨ 

⎪⎪⎩

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

+ σ(t), t ∈ Jk , k = 0, . . . ,  m;
(

ρJ 1−γ 
t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + Lk (u(t− 

k )) + σk , k = 1, . . . ,  m. 
(4.25) 

Clearly, the solution of (4.25) is given  by  

u(t) = 1
Γ(γ )

(
tρ−tρ 

k 
ρ

)γ −1
[(

ρJ 1−γ 
a+ u

)
(a+) +

Σ

a<tk <t 

Lk (u(t− 
k )) +

Σ

a<tk <t 

σk 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ g

)
(tk ) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ σ

)
(tk )

]

+
(

ρJ α 
t+ 
k 
g

)

(t) +
(

ρJ α 
t+ 
k 
σ

)

(t) t ∈ Jk , k = 0, . . . ,  m, 

where g : J → R be a function satisfying the functional equation 

g(t) = f (t, u(t), g(t)). 

Hence, for each t ∈ J , we have
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|u(t) − w(t)| ≤
[ mΣ

k=1 

|Lk (u(t− 
k )) − Lk (w(t− 

k ))| +  
mΣ

k=1

(
ρJ 1−γ +α 

(tk−1)
+ |σ(s)|

)
(tk ) 

+ 
mΣ

k=1

(
ρJ 1−γ +α 

(tk−1)
+ |g(s) − h(s)|

)
(tk ) + 

mΣ

k=1 

|σk |
]
(
tρ−tρ 

k 
ρ

)γ −1

Γ(γ ) 

+
(

ρJ α 
t+ 
k 
|g(s) − h(s)|

)
(t) +

(
ρJ α 

t+ 
k 
|σ(s)|

)
(t). 

Thus,

||u − w||PCγ,ρ  ≤
1

Γ(γ )

[

m∈τ + (mλ̃θ + 1)∈λθ θ(t) + 
mΣ

k=1 

l∗|u(t− 
k ) − w(t− 

k )| 

+ 
mΣ

k=1

(
ρJ 1−γ +α 

(tk−1)
+ |g(s) − h(s)|

)
(tk )

]

+
(
tρ − tρ 

k 

ρ

)1−γ (
ρJ α 

t+ 
k 
|g(s) − h(s)|

)
(t). 

By condition (4.3.2) and Lemma 2.19, for  t ∈ J , we have

||u − w||PCγ,ρ  ≤
1

Γ(γ )

[

m∈τ + (mλ̃θ + 1)∈λθ θ(t) + ml∗ p∗||u − w||PCγ,ρ

]

+
[

mK  

(1 − M)Γ(1 + α)

(
tρ 
k − tρ 

k−1 

ρ

)α 

+ KΓ(γ ) 
(1 − M)Γ(γ + α)

(
tρ − tρ 

k 

ρ

)α ]

||u − w||PCγ,ρ  . 

Thus,

||u − w||PCγ,ρ  ≤
1

Γ(γ )

(
m∈τ + (mλ̃θ + 1)∈λθ θ(t)

)

+
[
ml∗ p∗

Γ(γ ) 
+ K 

1 − M

(
m

Γ(1 + α) 
+ Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α ]

× ||u − w||PCγ,ρ  . 

Then by (4.19), we have
||u − w||PCγ,ρ  ≤ aθ ∈(τ + θ(t)), 

where
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aθ = 1

Γ(γ ) 
(m + (mλ̃θ + 1)λθ )

[

1 − 
ml∗ p∗

Γ(γ ) 

+ K 

1 − M

(
m

Γ(1 + α) 
+ Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α]−1 

. 

Hence, Eq. (4.1) is U-H-R stable with respect to (θ, τ ). ▢

4.2.3 Examples 

Example 4.8 Consider the following impulsive boundary value problem of generalized 
Hilfer fractional differential equation

(
1 
2 D 

1 
2 ,0 

t+ 
k 

u

)

(t) = 1 

97et+2

(

1 + |u(t)| +
|
|
|
|
1 
2 D 

1 
2 ,0 

t+ 
k 

u(t)

|
|
|
|

) + 
ln(e + √

t) 
e2 

√
t − 1 

, t ∈ J0 ∪ J1, 

(4.26)

(
1 
2 J 

1 
2 
e+u

)

(e+) −
(

1 
2 J 

1 
2 
1+u

)

(e−) = 
|u(e−)| 

3 + |u(e−)| , (4.27) 

3

(
1 
2 J 

1 
2 
1+u

)

(1+) − 2
(

1 
2 J 

1 
2 
e+u

)

(3) = 0, (4.28) 

where J0 = (1, e], J1 = (e, 3], t0 = 1, and  t1 = e. 
Set 

f (t, u, w)  = 1 

97et+2(1 + |u| + |w|) + 
ln(e + √

t) 
e2 

√
t − 1 

, t ∈ (1, 3], u, w  ∈ R. 

We have 

PCβ(1−α) 
γ,ρ ([1, 3]) = PC0 

1 
2 , 

1 
2 
([1, 3]) 

=
(

g : (1, 3] →  R : √
2
(√

t − √
tk
) 1 

2 
g ∈ PC([1, 3])

)

, 

with γ = α = 1 2 , ρ = 1 2 , β = 0,, and  k ∈ {0, 1}. Clearly, the continuous function f ∈ 
PC0 

1 
2 , 

1 
2 
([1, 3]). Hence, the condition (4.3.1) is satisfied. 

For each u, ū, w,  ̄w ∈ R and t ∈ (1, 3] :  

| f (t, u, w)  − f (t, ū, w̄)| ≤ 1 

97et+2 (|u − ū| + |w − w̄|) 

≤ 1 

97e3 
(|u − ū| + |w − w̄|) .
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Hence, condition (4.3.2) is satisfied with K = M = 1 
97e3 

. 
And let 

L1(u) = u 

3 + u 
, u ∈ [0, ∞). 

Let u, w  ∈ [0, ∞). Then we have 

|L1(u) − L1(w)| = |  
u 

3 + u 
− w 

3 + w 
| = 3|u − w| 

(3 + u)(3 + w) 
≤ 

1 

3
|u − w|, 

and so the condition (4.3.3) is satisfied and l∗ = 1 3 . 
A simple computation shows that the condition (4.19) of Theorem 4.3 is satisfied for 

L = 1 √
2π( 

√
e−1) 

+ 3 
√
2( 

√
3−1) 

1 
2 

(97e3−1)Γ( 3 2 ) 
+ 

√
2( 

√
3−1) 

1 
2 

(97e3−1)

(
2

Γ( 3 2 ) 
+ √

π

)

≈ 0.52720987569 < 1. 

Then the problem (4.26)–(4.28) has a unique solution in PC 
1 
2 
1 
2 , 

1 
2 
([1, 3]). 

Also, hypothesis (4.8.1) is satisfied with 

θ(t) = e5, τ = 1 and λθ = λ̃θ = 2

Γ( 3 2 ) 
. 

Indeed, for each t ∈ J0 ∪ J1, we get  

(ρJ 
1 
2 
1+ θ)(t) ≤ 

2e5

Γ( 3 2 ) = λθ θ(t) = λ̃θ θ(t). 

Consequently, Theorem 4.7 implies that Eq. (4.26) is U-H-R stable. 

Example 4.9 Consider the following impulsive initial value problem of generalized Hilfer 
fractional differential equation

(
1D 

1 
2 ,0 

t+ 
k 

u

)

(t) = 
3 + |u(t)| + |1D 

1 
2 ,0 

t+ 
k 

u(t)| 

53e−t+4(1 + |u(t)| + |1D 
1 
2 ,0 

t+ 
k 

u(t)|) 
, for each t ∈ J0 ∪ J1, (4.29)

(
1J 

1 
2 
e+u

)

(e+) −
(
1J 

1 
2 
1+u

)

(e−) = 
|u(e−)| 

2 + |u(e−)| , (4.30)

(
1J 

1 
2 
1+u

)

(1+) = 0, (4.31)
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where J0 = (1, e], J1 = (e, 3], t0 = 1 and t1 = e. 
Set 

f (t, u, w)  = 3 + |u| + |w| 
53e−t+4(1 + |u| + |w|) , t ∈ (1, 3], u, w  ∈ R. 

We have 

PCβ(1−α) 
γ,ρ ([1, 3]) = PC0 

1 
2 ,1 

([1, 3]) = {
g : (1, 3] →  R : ( √t − tk )g ∈ PC([1, 3])} , 

with γ = α = 1 2 , ρ = 1, β = 0 and k ∈ {0, 1}. 
Clearly, the continuous function f ∈ PC0 

1 
2 ,1 

([1, 3]). Hence the condition (4.3.1) is satisfied. 
For each u, w  ∈ R and t ∈ (1, 3] :  

| f (t, u, w)| ≤ 1 

53e−t+4 (3 + |u| + |w|). 

Hence, condition (4.4.1) is satisfied with 

p1(t) = 3 
53e−t+4 , p2(t) = p3(t) = 1 

53e−t+4 , 

and 

p∗
1 = 3 

53e , p
∗
2 = p∗

3 = 1 
53e . 

And let 
L1(u) = u 

2 + u 
, u ∈ [0, ∞). 

Then we have 

|L1(u)| ≤  
1 

2
|u| +  2, 

and so the condition (4.4.2) is satisfied with Φ1 = 1 2 and Φ2 = 2. 
The condition (4.20) of Theorem  4.4 is satisfied for 

(|ϑ1| +  1)
(
mΦ1 p∗
Γ(γ ) + mp∗

2 (b
ρ−aρ )α 

(1− p∗
3 )Γ(1+α)ρα

)
+
( |ϑ1|

Γ(1+α) + Γ(γ )
Γ(γ +α)

) (
p∗
2 (b

ρ−aρ )α 

(1− p∗
3 )ρ

α

)

=
(

1 

2 
√
2π 

+
√
2 

(53e − 1)Γ( 3 2 )

)

+
√
2π 

53e − 1 
≈ 0.22814541069 ≤ 1. 

Then the problem (4.29)–(4.31) has at least one solution in PC 
1 
2 
1 
2 ,1 

([1, 3]). Also, hypothesis 
(4.8.1) is satisfied with 

θ(t) = t − 1, τ = 1 and λθ = λ̃θ =
√
2Γ(2)

Γ( 5 2 ) 
.
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Indeed, for each t ∈ J0 ∪ J1, we get  

(ρJ 
1 
2 

√
1+ θ)(t) ≤ 

2Γ(2)

Γ( 5 2 ) 
(t − 1) 

= λθ θ(t) = λ̃θ θ(t). 

Consequently, by a simple change of the constants l∗, K , and  M from hypothesis (4.3.1) 
and (4.3.2) to Φ1, p∗

2 , and  p
∗
3 from (4.4.1) and (4.4.2), Theorem 4.7 implies that Eq. (4.29) 

is G.U-H-R stable. 

Example 4.10 Consider the following impulsive anti-periodic boundary value problem of 
generalized Hilfer fractional differential equation:

(
1D 

1 
2 ,0 

t+ 
k 

u

)

(t) = 
e2 + |u(t)| + |1D 

1 
2 ,0 

t+ 
k 

u(t)| 

77e−t+2(1 + |u(t)| + |1D 
1 
2 ,0 

t+ 
k 

u(t)|) 
, t ∈ Jk; k = 0, . . . ,  4, (4.32)

(
1J 

1 
2 

t+ 
k 
u

)

(t+ 
k ) −

(
1J 

1 
2 
t(k−1)

+u

)

(t− 
k ) =

|u(t− 
k )| 

10k + |u(t− 
k )|

; k = 1, . . . ,  4, (4.33)

(
1J 

1 
2 
1+u

)

(1+) = −
(
1J 

1 
2 
9 
5 

+u

)

(2), (4.34) 

where Jk = (tk , tk+1], tk = 1 + k 5 for k = 0, . . . ,  4, m = 4, a = t0 = 1, and  b = t5 = 2. 
Set 

f (t, u, w)  = e2 + |u| + |w| 
77e−t+2(1 + |u| + |w|) , t ∈ (1, 2], u, w  ∈ R. 

We have 

PCβ(1−α) 
γ,ρ ([1, 2]) = PC0 

1 
2 ,1 

([1, 2]) = {
g : (1, 2] →  R : ( √t − tk )g ∈ PC([1, 2])} , 

with γ = α = 1 2 , ρ = 1, β = 0, and  k = 0, . . . ,  4. 
Clearly, the continuous function f ∈ PC0 

1 
2 ,1 

([1, 2]). So, the condition (4.3.1) is satisfied. 
For each u, w  ∈ R and t ∈ (1, 2] :  

| f (t, u, w)| ≤ 1 

77e−t+2 (e
2 + |u| + |w|). 

Hence, the condition (4.4.1) is satisfied with 

p1(t) = e2 

77e−t+2 , p2(t) = p3(t) = 1 
77e−t+2 , 

and
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p∗
1 = e2 77 , p

∗
2 = p∗

3 = 1 
77 . 

And let 
Lk (u) = u 

10k + u 
, k = 1, . . . ,  4, u ∈ [0, ∞). 

Then we have 

|Lk (u)| ≤  
1 

10
|u| +  1, k = 1, . . . ,  4, 

and so the condition (4.4.2) is satisfied with Φ1 = 1 
10 and Φ2 = 1. 

The condition (4.21) of Theorem  4.5 is satisfied for 

(|ϑ1| +  1)
(
mΦ1 p∗
Γ(γ ) + mp∗

2 (b
ρ−aρ )α 

(1−p∗
3 )Γ(1+α)ρα

)
+ p∗

2 |ϑ1|(bρ−aρ )α 

(1− p∗
3 )Γ(1+α)ρα = 

3 
√
5 

5
√

π 
+ 125 

1463Γ( 3 2 ) 
< 1. 

Then the problem (4.32)–(4.34) has at least one solution in PC 
1 
2 
1 
2 ,1 

([1, 2]). Also, hypothesis 
(4.8.1) is satisfied with 

θ(t) = (1 − t)2, τ = 1 and λθ = λ̃θ = Γ(3)

Γ( 7 2 ) 
. 

Indeed, for each t ∈ Jk , k = 0, . . . ,  4, we get  

(ρJ 
1 
2 
1+ θ)(t) ≤ Γ(3)

Γ( 7 2 ) 
(t − 1)2 

= λθ θ(t) = λ̃θ θ(t). 

Same as Example 4.9, Theorem 4.7 implies that Eq. (4.32) is U-H-R stable. 

4.3 Existence and Ulam Stability Results for Generalized 
Hilfer-Type Boundary Value Problem 

Motivated by the works mentioned in the introduction of the current chapter, in this section, 
we discuss the existence results to the boundary value problem with nonlinear implicit 
generalized Hilfer-type fractional differential equation with instantaneous impulses:

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

; t ∈ Jk , k = 0, · · ·  , m, (4.35)

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + ok (u(t− 

k )); k = 1, · · ·  , m, (4.36) 

c1
(

ρJ 1−γ 
a+ u

)
(a+) + c2

(
ρJ 1−γ 

t+m 
u
)

(b) = c3, (4.37)
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where ρDα,β 
t+ 
k 

, ρJ 1−γ 
t+ 
k 

are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and 
type β ∈ [0, 1] and generalized Hilfer fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, c1, c2 are reals with c1 + c2 /= 0, Jk := (tk , tk+1]; k = 0, · · ·  , m, a = t0 < 
t1 < · · ·  < tm < tm+1 = b < ∞, u(t+ 

k ) = lim
∈→0+ 

u(tk + ∈) and u(t− 
k ) = lim

∈→0− 
u(tk + ∈) rep-

resent the right- and left-hand limits of u(t) at t = tk , c3 ∈ E , f : J × E × E → E is a given 
function, and ok : E → E ; k = 1, · · ·  , m are given continuous functions. 

4.3.1 Existence Results 

Consider the weighted Banach space 

PCγ,ρ  (J ) =
(

u : J → E : u(t) ∈ C(Jk , E); k = 0, · · ·  , m, and there exist 

u(t− 
k ) and

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ); k = 0, · · ·  , m, with u(t− 

k ) = u(tk )

)

, 

and 

PCn 
γ,ρ  (J ) =

{
u ∈ PCn−1 : u(n) ∈ PCγ,ρ  (J )

}
, n ∈ N, 

PC0 
γ,ρ  (J ) = PCγ,ρ  (J ), 

with the norm

||u||PCγ,ρ  = max 
k=0,...,m 

⎧ 
⎨ 

⎩ sup 
t∈[tk ,tk+1]

||
||
||
||
||
||

(
tρ − tρ 

k 

ρ

)1−γ 

u(t)

||
||
||
||
||
||

⎫ 
⎬ 

⎭ . 

We define the space 

PCγ 
γ,ρ  (J ) =

(

u ∈ PCγ,ρ  (J ), ρDγ 
t+ 
k 
u ∈ PCγ,ρ  (J )

)

, k = 0, . . . ,  m. 

Lemma 4.11 ([ 75]) Let D ⊂ PCγ,ρ  (J ) be a bounded and equicontinuous set, then 
(i) the function t → μ(D(t)) is continuous on J , and 

μPCγ,ρ  (D) = sup 
t∈[a,b] 

μ 

⎛ 

⎝

(
tρ − tρ 

k 

ρ

)1−γ 

D(t) 

⎞ 

⎠ , 

(ii) μ

(( b 

a 
u(s)ds  : u ∈ D

)

≤
( b 

a 
μ(D(s))ds, where
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D(t) = {u(t) : t ∈ D}, t ∈ J . 

By following the same results from the previous section, we have the following result. 

Lemma 4.12 Let γ = α + β − αβ where 0 < α  <  1 and 0 ≤ β ≤ 1, let f : J × E × 
E → E be a function such that f (·, u(·), w(·)) ∈ PCγ,ρ  (J ) for any u, w  ∈ PCγ,ρ  (J ). 
If u ∈ PCγ 

γ,ρ  (J ), then u satisfies the problem (4.35)–(4.37) if and only if u is the fixed point 
of the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined by

Ψu(t) = 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [

ϑ2 − ϑ1 

mΣ

i=1

oi (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ h

)
(ti ) 

− ϑ1

(
ρJ 1−γ +α 

t+m 
h
)

(b) +
Σ

a<tk <t

ok (u(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

+
(

ρJ α 
t+ 
k 
h
)

(t) t ∈ Jk , k = 0, · · ·  , m, (4.38) 

where h : J → R be a function satisfying the functional equation: 

h(t) = f (t, u(t), h(t)). 

We are now in a position to state and prove our existence result for the problem (4.35)– 
(4.37) based on Mönch’s fixed point theorem. 

Theorem 4.13 Assume that the hypotheses that follow are met. 

(4.14.1) The function t |→ f (t, u, w)  is measurable and continuous on J for each u, w  ∈ E, 
and the functions u |→ f (t, u, w)  and w |→ f (t, u, w)  are continuous on E for a.e. 
t ∈ J , and 

f (·, u(·), w(·)) ∈ PCβ(1−α) 
γ,ρ for any u, w  ∈ PCγ,ρ  (J ). 

(4.14.2) There exists a continuous function p : [a, b] −→ [0, ∞) such that

|| f (t, u, w)|| ≤  p(t), for a.e. t ∈ J and for each u, w  ∈ E . 

(4.14.3) For each bounded set B ⊂ E and for each t ∈ (a, b], we have 

μ( f (t, B, (ρ Dα,β 
a+ B))) ≤

(
tρ − tρ 

k 

ρ

)1−γ 

p(t)μ(B),
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where ρ Dα,β 
a+ B = {ρ Dα,β 

a+ w : w ∈ B} and k = 1, · · ·  , m. 

(4.14.4) The functions ok : E −→ E are continuous and there exists η∗ > 0 such that

||ok (u)|| ≤  η∗||u|| for each u ∈ E, k = 1, · · ·  , m. 

(4.14.5) For each bounded set B ⊂ E and for each t ∈ J , we have 

μ(ok (B)) ≤ η∗
(
tρ − tρ 

k 

ρ

)1−γ 

μ(B), k = 1, · · ·  , m. 

If 

L := mη∗
Γ(γ ) + p∗

(
1

Γ(α+1) + m
Γ(γ )Γ(2−γ +α)

) (
bρ−aρ 

ρ

)1−γ +α 
< 1, (4.39) 

where p∗ = sup 
t∈[a,b] 

p(t), then the problem (4.35)–(4.37) has at least one solution in PCγ 
γ,ρ  (J ). 

Proof Consider the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined in (4.38) and the ball 
BR := B(0, R) = {w ∈ PCγ,ρ  (J ) : ||w||PCγ,ρ  ≤ R}. 
For any u ∈ BR , and each t ∈ J we have

||
||
||
||

(
tρ−tρ 

k 
ρ

)1−γ 
(Ψu)(t)

||
||
||
||

≤ 1
Γ(γ )

[

||ϑ2|| + |ϑ1| 
mΣ

i=1

||oi (u(t− 
i ))|| + |ϑ1| 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ||h(s)||

)
(ti ) 

+|ϑ1|
(

ρJ 1−γ +α 
t+m

||h||
)

(b) +
Σ

a<tk <t

||ok (u(t− 
k ))||

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ ||h(s)||

)
(tk )

]

+
(
tρ − tρ 

k 

ρ

)1−γ (
ρJ α 

t+ 
k
||h(s)||

)
(t) 

≤ ||ϑ2||
Γ(γ ) + |ϑ1|+1

Γ(γ )

(
ml∗ R + mp∗

(
ρJ 1−γ +α 

(ti−1)
+ (1)

)
(ti )

)

+|ϑ1|p∗
Γ(γ )

(
ρJ 1−γ +α 

t+m 
(1)

)
(b) + p∗

(
tρ−tρ 

k 
ρ

)1−γ
(

ρJ α 
t+ 
k 
(1)

)

(t). 

By Lemma 2.19, we have
||
||
||
||

(
tρ−tρ 

k 
ρ

)1−γ 
(Ψu)(t)

||
||
||
||

≤ ||ϑ2||
Γ(γ ) + |ϑ1|+1

Γ(γ )

(

ml∗ R + mp∗
Γ(2−γ +α)

(
tρ 
i −tρ 

i−1 
ρ

)1−γ +α
)

+ |ϑ1|p∗
Γ(γ )Γ(2−γ +α)

(
bρ−tρ 

m 
ρ

)1−γ +α + p∗
Γ(α+1)

(
tρ−tρ 

k 
ρ

)1−γ +α 
.
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Hence, for any u ∈ PCγ,ρ  (J ), and each t ∈ (a, b] we get

||(Ψu)||PCγ,ρ  ≤ ||ϑ2||
Γ(γ ) + |ϑ1|+1

Γ(γ )

[

ml∗ R + mp∗
Γ(2−γ +α)

(
bρ−aρ 

ρ

)1−γ +α
]

+
( |ϑ1|p∗

Γ(γ )Γ(2−γ +α) + p∗
Γ(α+1)

) (
bρ−aρ 

ρ

)1−γ +α 

≤ R. 

This proves that Ψ transforms the ball BR into itself. We shall show that the operator
Ψ : BR → BR satisfies all the assumptions of Theorem 2.49. The proof will be given in 
several steps. 

Step 1: Ψ : BR → BR is continuous. 
Let {un} be a sequence such that un → u in PCγ,ρ  (J ). 
Then for each t ∈ (a, b], we have

||
||
||
||
||
||
((Ψun)(t) − (Ψu)(t))

(
tρ − tρ 

k 

ρ

)1−γ
||
||
||
||
||
||

≤
[

|ϑ1| 
mΣ

i=1

||oi (un(t
− 
i )) − oi (u(t− 

i ))|| + |ϑ1|
(

ρJ 1−γ +α 
t+m

||hn(s) − h(s)||
)

(b) 

+ |ϑ1| 
mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ ||hn(s) − h(s)||

)
(ti ) +

Σ

a<tk <t

||ok (un(t
− 
k )) − ok (u(t− 

k ))||

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ ||hn(s) − h(s)||

)
(tk )

]
1

Γ(γ ) 

+
(
tρ − tρ 

k 

ρ

)1−γ (
ρJ α 

t+ 
k
||hn(s) − h(s)||

)
(t), 

where hn, h ∈ PCγ,ρ  such that 

hn(t) = f (t, un(t), hn(t)), 
h(t) = f (t, u(t), h(t)). 

Since un → u, then we get  hn(t) → h(t) as n → ∞  for each t ∈ J , and by the Lebesgue 
dominated convergence theorem, we have

||Ψun − Ψu||PCγ,ρ  → 0 as  n → ∞. 

Step 2: Ψ(BR) is bounded and equicontinuous. 
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded. 
Next, let ∈1, ∈2 ∈ J , ∈1 < ∈2, and let u ∈ BR . Then
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||
||
||
||

(
∈
ρ 
1 −tρ 

k 
ρ

)1−γ 
(Ψu)(∈1) −

(
∈
ρ 
2 −tρ 

k 
ρ

)1−γ 
(Ψu)(∈2)

||
||
||
||

≤ 1
Γ(γ )

[ Σ

∈1<tk <∈2

||ok (u(t− 
k ))|| +

Σ

∈1<tk <∈2

(
ρJ 1−γ +α 

(tk−1)
+ ||h(s)||

)
(tk )

]

+ p∗
Γ(α+1)

|
|
|
|

(
∈
ρ 
1 −tρ 

k 
ρ

)1−γ +α 
−
(

∈
ρ 
2 −tρ 

k 
ρ

)1−γ +α
|
|
|
| . 

As ∈1 → ∈2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is 
bounded and equicontinuous. 

Step 3: The implication (2.11) of Theorem  2.49 holds. 
Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D) ∪ {0}; therefore, the 

function t −→ d(t) = μ(D(t)) is continuous on J . By  (4.14.3), (4.14.5), and the properties 
of the measure μ, for each t ∈ J , we have
(
tρ − tρ 

k 

ρ

)1−γ 

d(t) ≤ μ 

⎛ 

⎝

(
tρ − tρ 

k 

ρ

)1−γ 

(ΨD)(t) ∪ {0} 
⎞ 

⎠ 

≤ μ 

⎛ 

⎝

(
tρ − tρ 

k 

ρ

)1−γ 

(ΨD)(t) 

⎞ 

⎠ 

≤ 1

Γ(γ )

[ Σ

a<tk <t 

η∗
(
tρ − tρ 

k 

ρ

)1−γ 

μ(D(t)) 

+
Σ

a<tk <t 

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+

(
sρ − tρ 

k 

ρ

)1−γ 

p(s)μ(D(s)) 

⎞ 

⎠ (tk )
]

+
(
tρ − tρ 

k 

ρ

)1−γ 
⎛ 

⎝ρJ α 
t+ 
k

(
sρ − tρ 

k 

ρ

)1−γ 

p(s)μ(D(s)) 

⎞ 

⎠ (t) 

≤ p∗
(
bρ − aρ 

ρ

)1−γ 
⎛ 

⎝ρJ α 
a+

(
sρ − tρ 

k 

ρ

)1−γ 

d(s) 

⎞ 

⎠ (t) 

+ 
mη∗||d||PCγ,ρ

Γ(γ )
+ 

mp∗

Γ(γ ) 

⎡ 

⎣ρJ 1−γ +α 
a+

(
sρ − tρ 

k 

ρ

)1−γ 

d(s) 

⎤ 

⎦ (t) 

≤
[
mη∗

Γ(γ ) 
+ p∗

Γ(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 

+ mp∗

Γ(γ )Γ(2 − γ + α)

(
bρ − aρ 

ρ

)1−γ +α]

||d||PCγ,ρ  . 

Thus
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||d||PCγ,ρ  ≤ L||d||PCγ,ρ  . 

From (4.39), we get ||d||PCγ,ρ  = 0, that is d(t) = μ(D(t)) = 0, for each t ∈ Jk , k = 
0, · · ·  , m, and  then  D(t) is relatively compact in E . In view of the Ascoli-Arzela theo-
rem, D is relatively compact in BR . Applying now Theorem 2.49, we conclude that Ψ has 
a fixed point u∗ ∈ PCγ,ρ  (J ), which is solution of the problem (4.35)–(4.37). 

Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ  (J ) is actually in PCγ 
γ,ρ  (J ). 

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ  (J ), then for each t ∈ Jk , with 
k = 0, · · ·  , m, we have 

u∗(t) = 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [

ϑ2 − ϑ1 

mΣ

i=1

oi (u(t− 
i )) − ϑ1 

mΣ

i=1

(
ρJ 1−γ +α 

(ti−1)
+ h

)
(ti ) 

− ϑ1

(
ρJ 1−γ +α 

t+m 
h
)

(b) +
Σ

a<tk <t

ok (u(t− 
k )) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ h

)
(tk )

]

+
(

ρJ α 
t+ 
k 
h
)

(t), 

where h ∈ PCγ,ρ  (J ) such that 

h(t) = f (t, u∗(t), h(t)). 

Applying ρDγ 
t+ 
k 
to both sides and by Lemmas 2.19 and 2.33, we have  

ρDγ 
t+ 
k 
u∗(t) =

(
ρDγ 

t+ 
k 

ρJ α 
t+ 
k 
f (s, u∗(s), h(s))

)

(t) 

=
(

ρDβ(1−α) 
t+ 
k 

f (s, u∗(s), h(s))

)

(t). 

Since γ ≥ α, by (4.14.1), the right-hand side is in PCγ,ρ  (J ) and thus ρDγ 
t+ 
k 
u∗ ∈ PCγ,ρ  (J ) 

which implies that u∗ ∈ PCγ 
γ,ρ  (J ). As a consequence of Steps 1 to 4 together with The-

orem 4.13, we can conclude that the problem (4.35)–(4.37) has at least one solution in 
PCγ 

γ,ρ  (J ). ▢

Our second existence result for the problem (4.35)–(4.37) is based on Darbo’s fixed point 
theorem. 

Theorem 4.14 Assume (4.14.1)–(4.14.5) and (4.39) hold. Then the problem (4.35)–(4.37) 
has at least one solution in PCγ 

γ,ρ  (J ).



110 4 Fractional Differential Equations with Instantaneous Impulses

Proof Consider the operatorΨ defined in (4.38). We know thatΨ : BR −→ BR is bounded 
and continuous and that Ψ(BR) is equicontinuous, we need to prove that the operator Ψ is 
a L-contraction. 
Let D ⊂ BR and t ∈ J . Then we have 

μ

((
tρ−tρ 

k 
ρ

)1−γ 
(ΨD)(t)

)

= μ
((

tρ−tρ 
k 

ρ

)1−γ 
(Ψu)(t) : u ∈ D

)

≤ 1
Γ(γ )

[ Σ

a<tk <t 

η∗μ 

⎛ 

⎝

((
tρ − tρ 

k 

ρ

)1−γ 

u(t), u ∈ D
)
⎞ 

⎠ 

+
Σ

a<tk <t 

⎧ 
⎨ 

⎩ 

⎛ 

⎝ρJ 1−γ +α 
(tk−1)

+ p
∗μ 

⎛ 

⎝

(
sρ − tρ 

k 

ρ

)1−γ 

u(s) 

⎞ 

⎠ 

⎞ 

⎠ (tk ), u ∈ D 

⎫ 
⎬ 

⎭

]

+
(
bρ − aρ 

ρ

)1−γ 
⎧ 
⎨ 

⎩ 

⎛ 

⎝ρJ α 
t+ 
k 
p∗μ 

⎛ 

⎝

(
sρ − tρ 

k 

ρ

)1−γ 

u(s) 

⎞ 

⎠ 

⎞ 

⎠ (t), u ∈ D 

⎫ 
⎬ 

⎭ . 

By Lemma 2.19, we have  

μPCγ,ρ  (ΨD) ≤
[
mη∗

Γ(γ ) 
+
(

p∗

Γ(α + 1) 
+ mp∗

Γ(γ )Γ(2 − γ + α)

)

×
(
bρ − aρ 

ρ

)1−γ +α]

μPCγ,ρ  (D). 

Therefore, 
μPCγ,ρ  (ΨD) ≤ LμPCγ,ρ  (D). 

So, by (4.39), the operator Ψ is a L-contraction. 
As a consequence of Theorem 2.48 and using Step 4 of the last result, we deduce that Ψ has 
a fixed point which is a solution of the problem (4.35)–(4.37). ▢

4.3.2 Ulam-Type Stability 

Now, we consider the Ulam stability for problem (4.35)–(4.37). Let u ∈ PCγ,ρ  (J ), ∈ >  0, 
τ >  0, and  θ : J −→ [0, ∞) be a continuous function. We consider the following inequality: 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

||
||
||
||

(
ρDα,β 

t+ 
k 

u

)

(t) − f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)||
||
||
|| ≤ ∈θ (t), t ∈ Jk , k = 0, . . . ,  m,

||
||
||
||

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) −

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) − ok (u(t− 

k ))

||
||
||
|| ≤ ∈τ, k = 1, . . . ,  m. 

(4.40)
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Definition 2 ([156]) Problem (4.35)–(4.37) is Ulam-Hyers-Rassias (U-H-R) stable with 
respect to (θ, τ ) if there exists a real number a f ,m,θ > 0 such that for each ∈ >  0 and for 
each solution u ∈ PCγ,ρ  (J ) of inequality (4.40) there exists a solution w ∈ PCγ,ρ  (J ) of 
(4.35)–(4.37) with

||u(t) − w(t)|| ≤ ∈a f ,m,θ (θ (t) + τ), t ∈ J . 

Remark 4.15 ([156]) A function u ∈ PCγ,ρ  (J ) is a solution of inequality (4.40) if and  
only if there exist σ ∈ PCγ,ρ  (J ) and a sequence σk , k = 0, . . . ,  m such that 

1. ||σ(t)|| ≤ ∈θ (t) and ||σk|| ≤ ∈τ , t ∈ Jk , k = 1, . . . ,  m; 
2.

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

+ σ(t), t ∈ Jk , k = 0, . . . ,  m; 

3.

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + ok (u(t− 

k )) + σk , k = 1, . . . ,  m. 

Theorem 4.16 Assume that in addition to (4.14.1)–(4.14.5) and (4.39), the following 
hypothesis hold. 

(4.18.1) There exist a nondecreasing function θ ∈ PCγ,ρ  (J ) and λθ > 0 such that for each 
t ∈ J , we have 

(ρJ α 
a+ θ)(t) ≤ λθ θ(t). 

(4.18.1) There exists a continuous function χ : [a, b] −→ [0, ∞) such that for each t ∈ 
Jk; k = 0, . . . ,  m, we have 

p(t) ≤ χ(t)θ (t). 

Then Eq. (4.35) is U-H-R stable with respect to (θ, τ ). 

Set χ ∗ = sup 
t∈[a,b] 

χ(t). 

Proof Consider the operatorΨ defined in (4.38). Let u ∈ PCγ,ρ  (J ) be a solution of inequal-
ity (4.40), and let us assume that w is the unique solution of the problem
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρDα,β 

t+ 
k 

w

)

(t) = f
(

t, w(t),

(
ρDα,β 

t+ 
k 

w

)

(t)

)

; t ∈ Jk , k = 0, . . . ,  m,
(

ρJ 1−γ 
t+ 
k 

w

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

w

)

(t− 
k ) + ok (w(t− 

k )); k = 1, . . . ,  m, 

c1
(

ρJ 1−γ 
a+ w

)
(a+) + c2

(
ρJ 1−γ 

t+m 
w
)

(b) = c3,
(

ρJ 1−γ 
t+ 
k 

w

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ); k = 0, . . . ,  m. 

By Lemma 2.38, we obtain for each t ∈ (a, b] 

w(t) =

(
ρJ 1−γ 

t+ 
k 

w

)

(t+ 
k )

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 

+
(

ρJ α 
t+ 
k 
h
)

(t) t ∈ Jk , k = 0, . . . ,  m, 

where h : (a, b] →  E be a function satisfying the functional equation 

h(t) = f (t, w(t), h(t)). 

Since u is a solution of the inequality (4.40), by Remark 4.15, we have  
⎧ 
⎪⎪⎨ 

⎪⎪⎩

(
ρDα,β 

t+ 
k 

u

)

(t) = f
(

t, u(t),

(
ρDα,β 

t+ 
k 

u

)

(t)

)

+ σ(t), t ∈ Jk , k = 0, . . . ,  m;
(

ρJ 1−γ 
t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

t+ 
k−1 

u

)

(t− 
k ) + ok (u(t− 

k )) + σk , k = 1, . . . ,  m. 
(4.41) 

Clearly, the solution of (4.41) is given  by  

u(t) = 1

Γ(γ )

(
tρ − tρ 

k 

ρ

)γ −1 [(
ρJ 1−γ 

a+ u
)

(a+) +
Σ

a<tk <t

ok (u(t− 
k )) +

Σ

a<tk <t 

σk 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ g

)
(tk ) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ σ

)
(tk )

]

+
(

ρJ α 
t+ 
k 
g

)

(t) +
(

ρJ α 
t+ 
k 
σ

)

(t) t ∈ Jk , k = 0, . . . ,  m, 

where g : (a, b] →  E be a function satisfying the functional equation 

g(t) = f (t, u(t), g(t)). 

We have for each t ∈ Jk , k = 0, . . . ,  m,

(
ρJ 1−γ 

t+ 
k 

u

)

(t+ 
k ) =

(
ρJ 1−γ 

a+ u
)

(a+) +
Σ

a<tk <t

ok (u(t− 
k )) +

Σ

a<tk <t 

σk 

+
Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ g

)
(tk ) +

Σ

a<tk <t

(
ρJ 1−γ +α 

(tk−1)
+ σ

)
(tk ).
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Hence, for each t ∈ J , we have

||u(t) − w(t)|| ≤
(

ρJ α 
t+ 
k 
|g(s) − h(s)|

)

(t) +
(

ρJ α 
t+ 
k 
|σ(s)|

)

(t). 

Thus,
||u(t) − w(t)|| ≤ (

ρJ α 
a+||g(s) − h(s)||) (t) + (

ρJ α 
a+||σ(s)||)

≤ ∈λθ θ(t) +
( t 

a 
sρ−1

(
tρ − sρ 

ρ

)α−1 2χ(t)θ (t)
Γ(γ ) 

ds  

≤ ∈λθ θ(t) + 2χ ∗
(
ρJ α 

a+ θ
)
(t) 

≤ (∈ + 2χ ∗)λθ θ(t) 

≤ (1 + 
2χ ∗

∈
)λθ ∈(τ + θ(t)) 

≤ aθ ∈(τ + θ(t)), 

where aθ = (1 + 2χ ∗
∈

)λθ . Hence, Eq. (4.35) is U-H-R stable with respect to (θ, τ ). ▢

4.3.3 Examples 

Let 

E = l1 =
(

u = (u1, u2, · · ·  , un, · · ·  ), 
∞Σ

n=1 

|un| < ∞
)

be the Banach space with the norm

||u|| =  
∞Σ

n=1 

|un|. 

Example 4.17 Consider the following impulsive boundary value problem of generalized 
Hilfer fractional differential equation

(
1D 

1 
2 ,0 

t+ 
k 

un

)

(t) = 3t2 − 20 

213e−t+3(1 + |un(t)| + |1D 
1 
2 ,0 

t+ 
k 

un(t)|) 
, t ∈ Jk , k = 0, · · ·  , 9, 

(4.42)

(
1J 

1 
2 

t+ 
k 
un

)

(t+ 
k ) −

(
1J 

1 
2 
t(k−1)

+un

)

(t− 
k ) =

|un(t− 
k )| 

10(k + 3) + |un(t− 
k )| 

, k = 1, · · ·  , 9, (4.43)

(
1J 

1 
2 
1+un

)

(1+) + 2
(
1J 

1 
2 
9 
5 

+un

)

(3) = 0, (4.44)
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where Jk = (tk , tk+1], tk = 1 + 
k 

5 
for k = 0, · · ·  , 9, m = 9, a = t0 = 1, and  b = t10 = 3. 

Set 

f (t, u, w)  = 3t2 − 20 
213e−t+3(1 + ||u|| + ||w||) , t ∈ (1, 3], u, w  ∈ E . 

We have 

PCβ(1−α) 
γ,ρ ([1, 3]) = PC0 

1 
2 ,1 

([1, 3]) = {
g : (1, 3] →  R : ( √t − tk )g ∈ PC([1, 3])} , 

with γ = α = 1 2 , ρ = 1, β = 0, and  k = 0, · · ·  , 9. Clearly, the continuous function f ∈ 
PC0 

1 
2 ,1 

([1, 2]). 
Hence, the condition (4.14.1) is satisfied. 
For each u, w  ∈ E and t ∈ (1, 3] :

|| f (t, u, w)|| ≤  
3t2 − 20 
213e−t+3 . 

Hence, condition (4.14.2) is satisfied with p∗ = 
7 

213 
. 

And let

ok (u) = ||u||
10(k + 3) + ||u|| , k = 1, · · ·  , 9, u ∈ E . 

Let u ∈ E . Then we have

||ok (u)|| ≤  
1 

40
||u||, k = 1, · · ·  , 9, 

and so the condition (4.14.4) is satisfied with η∗ = 
1 

40 
. 

The condition (4.39) of Theorem  4.13 is satisfied for 

L := 
mη∗

Γ(γ ) 
+
(

p∗

Γ(α + 1) 
+ mp∗

Γ(γ )Γ(2 − γ + α)

)(
bρ − aρ 

ρ

)1−γ +α 

= √
π 

9 

40
+ 2

(
17 

213
√

π 
+ 63 

213Γ(2)
√

π

)

≈ 0.55074703829 < 1. 

Then the problem (4.42)–(4.44) has at least one solution in PC 
1 
2 
1 
2 ,1 

([1, 3]). 

Example 4.18 Let the following impulsive anti-periodic boundary value problem

(
1 
2 D 

1 
2 ,0 

t+ 
k 

un

)

(t) = (3t3 + 5e−3)|un(t)| 
144e−t+e(1 + ||u(t)|| + || 1 

2 D 
1 
2 ,0 

t+ 
k 

u(t)||) 
, for each t ∈ J0 ∪ J1, (4.45)
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(
1 
2 J 

1 
2 
2+un

)

(2+) −
(

1 
2 J 

1 
2 
1+un

)

(2−) = 
|un(2−)| 

77e−t+4 + 2 
, (4.46)

(
1 
2 J 

1 
2 
1+u

)

(1+) = −
(

1 
2 J 

1 
2 
2+u

)

(e), (4.47) 

where J0 = (1, 2], J1 = (2, e], t1 = 2, m = 1, a = t0 = 1, and  b = t2 = e. 
Set 

f (t, u, w)  = (3t3 + 5e−3)||u||
144e−t+e(1 + ||u|| + ||w||) , t ∈ (1, e], u, w  ∈ E . 

We have 

PCβ(1−α) 
γ,ρ ([1, 2]) = PC0 

1 
2 , 

1 
2 
([1, e]) 

=
(

g : (1, e] →  E : √
2( 

√
t − √

tk ) 
1 
2 g ∈ C([1, e])

)

, 

with γ = α = 1 2 , ρ = 1 2 , β = 0, and  k ∈ {0, 1}. Clearly, the continuous function f ∈ 
PC0 

1 
2 , 

1 
2 
([1, e]) . 

Hence, the condition (4.14.1) is satisfied. 
For each u, w  ∈ E and t ∈ (1, e] :

|| f (t, u, w)|| ≤  
(3t3 + 5e−3) 
144e−t+e 

. 

Hence, condition (4.14.2) is satisfied with 

p(t) = 
(3t3 + 5e−3) 
144e−t+e 

, 

and 

p∗ = 
(3e3 + 5e−3) 

144 
. 

And let

o1(u) = ||u||
77e−t+4 + 2 

, u ∈ E . 

Let u ∈ E . Then we have
||ok (u)|| ≤ 1 

77e−t+4 + 2
||u||, 

and so the condition (4.14.4) is satisfied with η∗ = 1 

77e4−e + 2 
.
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The condition (4.39) of Theorem 4.13 is satisfied for 

L := 
mη∗

Γ(γ ) 
+
(

p∗

Γ(α + 1) 
+ mp∗

Γ(γ )Γ(2 − γ + α)

)(
bρ − aρ 

ρ

)1−γ +α 

= 1 

(77e4−e + 2)
√

π 
+ (2 

√
e − 2)

(
6e3 + 10e−3 

144
√

π 
+ 

3e3 + 5e−3 

144
√

πΓ(2)

)

≈ 0.92473323802 < 1. 

Then the problem (4.45)–(4.47) has at least one solution in PC 
1 
2 
1 
2 , 

1 
2 
([1, e]). Also, hypothesis 

(4.18.1) is satisfied with τ = 1, θ(t) = e3, and  λθ = 3. Indeed, for each t ∈ (1, e], we get  

( 
1 
2 J 

1 
2 
1+ θ)(t) ≤ 

2e3

Γ( 3 2 ) 
≤ λθ θ(t). 

Let the function χ : [1, e] −→ [0, ∞) be defined by 

χ(t) = 
(3e−3t3 + 5e−6) 

144e−t+e 
, 

then, for each t ∈ (1, e], we have  

p(t) = χ(t)θ (t), 

with χ ∗ = p∗e−3. Hence, the condition (4.18.2) is satisfied. Consequently, Theorem 4.16 
implies that Eq. (4.45) is U-H-R stable. 

4.4 Notes and Remarks 

The results of this chapter are taken from the papers of Salim et al. [125, 133]. The mono-
graphs [ 7, 8, 14, 27, 43, 81, 98, 115, 151, 159, 160], and the papers [ 17, 19, 34, 48, 49, 83, 
84, 88, 132] provide more important conclusions and analyses about the subject.



5Fractional Differential Equations 
with Non-Instantaneous Impulses 

5.1 Introduction and Motivations 

The present chapter deals with some existence, uniqueness, and Ulam stability results for 
a class of initial and boundary value problems for nonlinear implicit fractional differential 
equations with non-instantaneous impulses and generalized Hilfer-type fractional derivative. 
The tools employed are some suitable fixed point theorems combined with the technique 
of measure of noncompactness. We provide illustrations to demonstrate the applicability of 
our results for each section. 

The outcome of our study in this chapter can be considered as a partial continuation of 
the problems raised recently in the following: 

• The monographs of Abbas et al. [ 7, 8, 14], Ahmad et al. [ 25], and Baleanu et al. [ 43], and 
the papers of Ahmed et al. [ 28], which deal with various linear and nonlinear initial and 
boundary value problems for fractional differential equations involving different kinds 
of fractional derivatives. 

• The monographs of Abbas et al. [ 7], Agarwal et al. [ 24], Benchohra et al. [ 50], and 
Stamova et al. [150], and the papers of Abbas et al. [ 1– 6, 8, 15],  Bai et al.  [  39], Hernández 
et al. [ 78], Kong et al. [ 87], and Wang et al. [155, 157], where the authors investigated 
the class of problems for fractional differential equations with impulsive conditions, and 
the books [ 69, 154], where different topics on the qualitative properties of solutions are 
considered. 

• The monographs of Abbas et al. [ 7, 13], and the papers of Abbas et al. [ 10, 12] and  
Benchohra et al. [ 51, 52]; in it, considerable attention has been given to the study of the 
Ulam-Hyers and Ulam-Hyers-Rassias stability of various classes of functional equations. 
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5.2 Initial Value Problem for Nonlinear Implicit Generalized 
Hilfer-Type Fractional Differential Equations 

In this section, we establish existence results to the initial value problem with nonlin-
ear implicit generalized Hilfer-type fractional differential equation with non-instantaneous 
impulses:

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
; t ∈ Ik , k = 0, . . . ,  m, (5.1) 

u(t) = gk (t, u(t)); t ∈ Ĩk , k = 1, . . . ,  m, (5.2)

(
ρJ 1−γ 

a+ u
)

(a+) = φ0, (5.3) 

where ρDα,β 
s+ 
k 

, ρJ 1−γ 
a+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) 

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − 
αβ), respectively, φ0 ∈ R , Ik := (sk , tk+1]; k = 0, . . . ,  m, Ĩk := (tk , sk]; k = 1, . . . ,  m, a = 
t0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · ·  ≤  sm−1 < tm ≤ sm < tm+1 = b < ∞, u(t+ 

k ) = 
lim

∈→0+ 
u(tk + ∈) and u(t− 

k ) = lim
∈→0− 

u(tk + ∈) represent the right- and left-hand limits of u(t) 

at t = tk , f : J × R × R → R is a given function, and gk : Ĩk × R → R; k = 1, . . . ,  m are 

given continuous functions such that

(
ρJ 1−γ 

s+ 
k 

gk

)
(t, u(t))

||t=sk = φk ∈ R . 

5.2.1 Existence Results 

Consider the Banach space 

PCγ,ρ  (J ) =
(
u : J → R : u ∈ Cγ,ρ  (Ik , R); k = 0, . . . ,  m, and 

u ∈ C( ̃Ik , R); k = 1, . . . ,  m, and there exist u(t− 
k ), u(t+ 

k ), 

u(s− 
k ), and u(s+ 

k ) with u(t− 
k ) = u(tk )

)
, 

and 

PCn 
γ,ρ  (J ) =

{
u ∈ PCn−1(J ) : u(n) ∈ PCγ,ρ  (J )

}
, n ∈ N, 

PC0 
γ,ρ  (J ) = PCγ,ρ  (J ),
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with the norm

||u||PCγ,ρ  

= max 

⎧⎨ 

⎩ max 
k=0,...,m 

⎧⎨ 

⎩ sup 
t∈[sk ,tk+1]

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

u(t)

||||||
⎫⎬ 

⎭ , max 
k=1,...,m

(
sup 

t∈[tk ,sk ] 
|u(t)|

)⎫⎬ 

⎭ . 

We define the space 

PCγ 
γ,ρ  (J ) =

(
u : J → R : u ∈ Cγ 

γ,ρ  (Ik , R); k = 0, . . . ,  m, and 

u ∈ C( ̃Ik , R); k = 1, . . . ,  m, and there exist u(t− 
k ), u(t+ 

k ), 

u(s− 
k ), and u(s+ 

k ) with u(t− 
k ) = u(tk )

)
. 

We consider the following linear fractional differential equation:
(

ρDα,β 
s+ 
k 
u

)
(t) = ψ(t), t ∈ Ik , k = 0, . . . ,  m, (5.4) 

where 0 < α  <  1, 0 ≤ β ≤ 1, ρ  >  0, with the conditions 

u(t) = gk (t, u(t)); t ∈ Ĩk , k = 1, . . . ,  m, (5.5) 

and (
ρJ 1−γ 

a+ u
)

(a+) = φ0, (5.6) 

where γ = α + β − αβ, φ0 ∈ R, and  φ∗ = max{|φk | :  k = 0, . . . ,  m}. The following the-
orem shows that the problem (5.4)–(5.6) has a unique solution given by 

u(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
ψ
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

u(t) = gk (t, u(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m. 

(5.7) 

Theorem 5.1 Let γ = α + β − αβ, where 0 < α  <  1 and 0 ≤ β ≤ 1. If ψ : Ik → R; k = 
0, . . . ,  m, is a function such that ψ(·) ∈ Cγ,ρ  (Ik ), then u ∈ PCγ 

γ,ρ  (J ) satisfies the problem 
(5.4)–(5.6) if and only if it satisfies (5.7). 

Proof Assume u satisfies (5.4)–(5.6). If t ∈ I0, then
(

ρDα,β 
a+ u

)
(t) = ψ(t). 

Lemma 2.38 implies we have a solution that can be written as
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u(t) =
(

ρJ 1−γ 
a+ u

)
(a)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1

Γ(α)

( t 

a

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds. 

If t ∈ Ĩ1, then we have u(t) = g1(t, u(t)). 
If t ∈ I1, then Lemma 2.38 implies 

u(t) =

(
ρJ 1−γ 

s+ 
1 

u

)
(s1)

Γ(γ )

(
tρ − sρ 

1 

ρ

)γ −1 

+ 1

Γ(α)

( t 

s1

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds  

= φ1

Γ(γ )

(
tρ − sρ 

1 

ρ

)γ −1 

+
(

ρJ α 
s+ 
1 
ψ
)

(t). 

If t ∈ Ĩ2, then we have u(t) = g2(t, u(t)). 
If t ∈ I2, then Lemma 2.38 implies 

u(t) =

(
ρJ 1−γ 

s+ 
2 

u

)
(s2)

Γ(γ )

(
tρ − sρ 

2 

ρ

)γ −1 

+ 1

Γ(α)

( t 

s2

(
tρ − sρ 

ρ

)α−1 

sρ−1ψ(s)ds  

= φ2

Γ(γ )

(
tρ − sρ 

2 

ρ

)γ −1 

+
(

ρJ α 
s+ 
2 
ψ
)

(t). 

Repeating the process in this way, the solution u(t) for t ∈ J can be written as 

u(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
ψ
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

u(t) = gk (t, u(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m. 

Reciprocally, for t ∈ I0, applying ρJ 1−γ 
a+ on both sides of (5.7) and using Lemma 2.19 

and Theorem 2.14, we get
(

ρJ 1−γ 
a+ u

)
(t) = φ0 +

(
ρJ 1−γ +α 

a+ ψ
)

(t). (5.8) 

Next, taking the limit t → a+ of (5.8) and using Lemma 2.24, with 1 − γ <  1 − γ + α, 
we obtain

(
ρJ 1−γ 

a+ u
)

(a+) = φ0, (5.9) 

which shows that the initial condition
(

ρJ 1−γ 
a+ u

)
(a+) = φ0 is satisfied. Next, for t ∈ 

Ik; k = 0, . . . ,  m, apply operator ρDγ 
s+ 
k 
on both sides of (5.7). Then, from Lemmas 2.19 

and 2.33, we obtain
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(ρDγ 
s+ 
k 
u)(t) =

(
ρDβ(1−α) 

s+ 
k 

ψ

)
(t). (5.10) 

Since u ∈ Cγ 
γ,ρ  (Ik ) and by definition of Cγ 

γ,ρ  (Ik ), we have ρDγ 
s+ 
k 
u ∈ Cγ,ρ  (Ik ), then (5.10) 

implies that 

(ρDγ 
s+ 
k 
u)(t) =

(
δρ 

ρJ 1−β(1−α) 
s+ 
k 

ψ

)
(t) =

(
ρDβ(1−α) 

s+ 
k 

ψ

)
(t) ∈ Cγ,ρ  (Ik ). (5.11) 

As ψ(·) ∈ Cγ,ρ  (Ik ) and from Lemma 2.23, follows

(
ρJ 1−β(1−α) 

s+ 
k 

ψ

)
∈ Cγ,ρ  (Ik ), k = 0, . . . ,  m. (5.12) 

From (5.11), (5.12), and by the definition of the space Cn 
γ,ρ  (Ik ), we obtain

(
ρJ 1−β(1−α) 

s+ 
k 

ψ

)
∈ C1 

γ,ρ  (Ik ), k = 0, . . . ,  m. 

Applying operator ρJ β(1−α) 
s+ 
k 

on both sides of (5.10) and using Lemmas 2.32 and 2.24 and 

Property 2.22, we have
(

ρDα,β 
s+ 
k 
u

)
(t) = ρJ β(1−α) 

s+ 
k

(
ρDγ 

s+ 
k 
u

)
(t) 

= ψ(t) −

(
ρJ 1−β(1−α) 

s+ 
k 

ψ

)
(sk )

Γ(β(1 − α))

(
tρ − sρ 

k 

ρ

)β(1−α)−1 

= ψ(t), 

that is, (5.4) holds. 
Also, we can easily show that 

u(t) = gk (t, u(t− 
k )); t ∈ Ĩk , k = 1, . . . ,  m. 

This completes the proof. ⎕

As a consequence of Theorem 5.1, we have the following result. 

Lemma 5.2 Let γ = α + β − αβ where 0 < α  <  1 and 0 ≤ β ≤ 1, and k = 0, . . . ,  m, let 
f : J × R × R → R be a function such that f (·, u(·), w(·)) ∈ Cγ,ρ  (Ik ), for any u, w  ∈ 
PCγ,ρ  (J ). If u ∈ PCγ 

γ,ρ  (J ), then u satisfies the problem (5.1)–(5.3) if and only if u is the 
fixed point of the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined by
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Ψu(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

gk (t, u(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m. 

(5.13) 

where h ∈ Cγ,ρ  (Ik ), k = 0, . . . ,  m be a function satisfying the functional equation 

h(t) = f (t, u(t), h(t)). 

Also, by Lemma 2.23, Ψu ∈ PCγ,ρ  (J ). 

We are now in a position to state and prove our existence result for the problem (5.1)–(5.3) 
based on Banach’s fixed point theorem. Set ϒ = K 

1−M . 

Theorem 5.3 Suppose that the following assumptions hold. 

(5.3.1) The function f : Ik × R × R → R is continuous on Ik; k = 0, . . . ,  m, and 

f (·, u(·), w(·)) ∈ Cβ(1−α) 
γ,ρ (Ik ), k = 0, . . . ,  m, for any u, w  ∈ PCγ,ρ  (J ). 

(5.3.2) There exist constants M1 > 0 and 0 < M2 < 1 such that 

| f (t, u, w)  − f (t, ū, w̄)| ≤  M1|u − ū| +  M2|w − w̄| 

for any u, w,  ̄u, w̄ ∈ R and t ∈ Ik , k = 0, . . . ,  m. 

(5.3.3) The functions gk are continuous and there exists a constant l∗ > 0 such that 
|gk (u) − gk (ū)| ≤  l∗|u − ū| for any u, ū ∈ R and k = 1, . . . ,  m. 

If 

L := l∗ + ϒΓ(γ  )
Γ(γ + α)

(
bρ − aρ 

ρ

)α 
< 1, (5.14) 

then the problem (5.1)–(5.3) has a unique solution in PCγ,ρ  (J ). 

Proof The proof will be given in two steps. 
Step 1: We show that the operator Ψ defined in (5.13) has a unique fixed point u∗ in 
PCγ,ρ  (J ). Let u, w  ∈ PCγ,ρ  (J ) and t ∈ J . 
For t ∈ Ik , k = 0, . . . ,  m, we have 

|Ψu(t) − Ψw(t)| ≤
(

ρJ α 
s+ 
k 
|h(s) − g(s)|

)
(t), 

where h, g ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, such that



5.2 Initial Value Problem for Nonlinear Implicit Generalized… 123

h(t) = f (t, u(t), h(t)), 
g(t) = f (t, w(t), g(t)). 

By (5.3.2), we have  

|h(t) − g(t)| = |  f (t, u(t), h(t)) − f (t, w(t), g(t))| 
≤ M1|u(t) − w(t)| +  M2|h(t) − g(t)|. 

Then, 
|h(t) − g(t)| ≤  ϒ |u(t) − w(t)|. 

Therefore, for each t ∈ Ik , k = 0, . . . ,  m, 

|Ψu(t) − Ψw(t)| ≤  ϒ
(

ρJ α 
s+ 
k 
|u(s) − w(s)|

)
(t). 

Thus 

|Ψu(t) − Ψw(t)| ≤  

⎡ 

⎣ϒ 

⎛ 

⎝ρJ α 
s+ 
k

(
sρ − sρ 

k 

ρ

)γ −1
⎞ 

⎠ (t) 

⎤ 

⎦ ||u − w||PCγ,ρ  . 

By Lemma 2.19, we have  

|Ψu(t) − Ψw(t)| ≤  

⎡ 

⎣ ϒΓ(γ  )
Γ(γ + α)

(
tρ − sρ 

k 

ρ

)α+γ −1
⎤ 

⎦ ||u − w||PCγ,ρ  . 

Hence||||||(Ψu(t) − Ψw(t))

(
tρ − sρ 

k 

ρ

)1−γ
|||||| ≤

[
ϒΓ(γ  )

Γ(γ + α)

(
tρ − sρ 

k 

ρ

)α]
||u − w||PCγ,ρ  

≤
[
l∗ + ϒΓ(γ  )

Γ(γ + α)

(
bρ − aρ 

ρ

)α]
||u − w||PCγ,ρ  . 

For t ∈ Ĩk , k = 1, . . . ,  m, we have 

|Ψu(t) − Ψw(t)| ≤  |(gk (t, u(t)) − gk (t, w(t)))| 
≤ l∗||u − w||PCγ,ρ  

≤
[
l∗ + ϒΓ(γ  )

Γ(γ + α)

(
bρ − aρ 

ρ

)α]
||u − w||PCγ,ρ  . 

Then, for each t ∈ J , we have

||Ψu − Ψw||PCγ,ρ  ≤
[
l∗ + ϒΓ(γ  )

Γ(γ + α)

(
bρ − aρ 

ρ

)α]
||u − w||PCγ,ρ  .
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By (5.14), the operator Ψ is a contraction. Hence, by Theorem 2.45, Ψ has a unique fixed 
point u∗ ∈ PCγ,ρ  (J ). 

Step 2: We show that such a fixed point u∗ ∈ PCγ,ρ  (J ) is actually in PCγ 
γ,ρ  (J ). 

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ  (J ), then for each t ∈ J , we have

Ψu∗(t) = 

⎧⎪⎨ 

⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

gk (t, u∗(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m, 

where h ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, such that 

h(t) = f (t, u∗(t), h(t)). 

Applying ρDγ 
s+ 
k 
to both sides and by Lemmas 2.19 and 2.33, we have  

ρDγ 
s+ 
k 
u∗(t) =

(
ρDγ 

s+ 
k 

ρJ α 
s+ 
k 
f (s, u∗(s), h(s))

)
(t) 

=
(

ρDβ(1−α) 
s+ 
k 

f (s, u∗(s), h(s))

)
(t). 

Since γ ≥ α, by (5.3.1), the right-hand side is in Cγ,ρ  (Ik ) and thus ρDγ 
s+ 
k 
u∗ ∈ Cγ,ρ  (Ik ). 

And since gk ∈ C( ̃Ik , R); k = 1, . . . ,  m, then u∗ ∈ PCγ 
γ,ρ  (J ). As a consequence of Steps 1 

and 2 together with Theorem 5.3, we can conclude that the problem (5.1)–(5.3) has a unique 
solution in PCγ,ρ  ( J ). ⎕

Our second result is based on Schaefer’s fixed point theorem. Set 

p∗
1 = sup 

t∈[a,b] 
p1(t), p∗

2 = sup 
t∈[a,b] 

p2(t), p∗
3 = sup 

t∈[a,b] 
p3(t) <  1. 

Theorem 5.4 Assume that in addition to the hypothesis (5.3.1), the following assumptions 
are met. 

(5.4.1) There exist functions p1, p2, p3 ∈ C([a, b], R+) such that 

| f (t, u, w)| ≤  p1(t) + p2(t)|u| +  p3(t)|w|, 

for t ∈ Ik; k = 0, . . . ,  m, and u, w  ∈ R. 
(5.4.2) The functions gk are continuous and there exist constants φ1, φ2 > 0 such that 

|gk (t, u)| ≤ φ1|u| + φ2 for each u ∈ R, t ∈ J '
k , k = 1, . . . ,  m.



5.2 Initial Value Problem for Nonlinear Implicit Generalized… 125

If 

max

(
φ1,

(
p∗
2Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
< 1, (5.15) 

then the problem (5.1)–(5.3) has at least one solution in PCγ,ρ  (J ). 

Proof We shall use Schaefer’s fixed point theorem to prove in several steps that the operator
Ψ defined in (5.13) has a fixed point. 

Step 1: Ψ is continuous. Let {un} be a sequence such that un → u in PCγ,ρ  (J ). 
Then for each t ∈ Ik , k = 0, . . . ,  m, we have

|||| ((Ψun)(t) − (Ψu)(t))
(
tρ−sρ 

k 
ρ

)1−γ
|||| ≤

(
tρ−sρ 

k 
ρ

)1−γ (
ρJ α 

s+ 
k 
|hn(s) − h(s)|

)
(t), 

where hn, h ∈ Cγ,ρ  (Ik ), such that 

hn(t) = f (t, un(t), hn(t)), 
h(t) = f (t, u(t), h(t)). 

For each t ∈ Ĩk , k = 1, . . . ,  m, we have 

|Ψun(t) − Ψu(t)| ≤  |(gk (t, un(t)) − gk (t, u(t)))| . 

Since un → u, then we get  hn(t) → h(t) as n → ∞  for each t ∈ J , and since f and gk are 
continuous, then we have

||Ψun − Ψu||PCγ,ρ  → 0 as  n → ∞. 

Step 2: We show that Ψ is the mapping of two bounded sets in PCγ,ρ  (J ). 
For η >  0, there exists a positive constant ∈ such that Bη = {u ∈ PCγ,ρ  (J ) : ||u||PCγ,ρ  ≤ η}, 
we have ||Ψ(u)||PCγ,ρ  ≤ ∈. 
By (5.4.1) and from (5.13), we have for each t ∈ Ik , k = 0, . . . ,  m,

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| =
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

f (t, u(t), h(t))

||||||
≤
(
tρ − sρ 

k 

ρ

)1−γ 

(p1(t) + p2(t)|u(t)| +  p3(t)|h(t)|) , 

which implies that
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| ≤ p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2 η + p∗
3

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| .
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Then ||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| ≤ 
p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2 η 

1 − p∗
3 

:= ⋀. 

Thus, for t ∈ Ik , k = 0, . . . ,  m, (5.13) implies
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

(Ψu)(t)

|||||| ≤ 
|φk |
Γ(γ ) 

+
(
tρ − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
|h(s)|

)
(t). 

By Lemma 2.19, for  t ∈ Ik , k = 0, . . . ,  m, we have
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

(Ψu)(t)

|||||| ≤ φ∗

Γ(γ ) 
+ ⋀

(
Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α 

:= r1. 

And for each t ∈ Ĩk , k = 1, . . . ,  m, we have 

|Ψu(t)|PCγ,ρ  ≤ |gk (t, u(t))| ≤ φ1η + φ2 := r2. 

Thus, for each t ∈ J , we have

||Ψu||PCγ,ρ  ≤ max{r1, r2} := ∈. 

Step 3: Ψ maps bounded sets into equicontinuous sets of PCγ,ρ  (J ). 
Let ∈1, ∈2 ∈ J , ∈1 < ∈2, Bη be a bounded set of PCγ,ρ  (J ) as in Step 2, and let u ∈ Bη. 
Then for each t ∈ Ik , k = 0, . . . ,  m, and by Lemma 2.19, we have

||||||
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈1) −
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈2)

||||||

≤
||||||
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
h(τ )

)
(∈1) −

(
∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
h(τ )

)
(∈2)

||||||
≤
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
ρJ α

∈+ 
1 
|h(τ )|

)
(∈2) + 1

Γ(α)

( ∈1 

sk

||τ ρ−1 H (τ )h(τ )
|| dτ, 

where 

H (τ ) = 

⎡ 

⎣
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ (
∈
ρ 
1 − τ ρ 

ρ

)α−1 

−
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
∈
ρ 
2 − τ ρ 

ρ

)α−1
⎤ 

⎦ .
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Then by Lemma 2.19, we have
||||||
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈1) −
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈2)

||||||
≤ ⋀Γ(γ )

Γ(α + γ )

(
∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
∈
ρ 
2 − ∈

ρ 
1 

ρ

)α+γ −1 

+ ⋀

( ∈1 

sk

||||H (τ ) 
τ ρ−1

Γ(α)

||||
(

τ ρ − sρ 
k 

ρ

)γ −1 

dτ. 

And for each t ∈ Ĩk , k = 1, . . . ,  m, we have  

|(Ψu)(∈1) − (Ψu)(∈2)| ≤ |gk (∈1, u(∈1)) − gk (∈2, u(∈2))| . 

As ∈1 → ∈2, the right-hand side of the above inequality tends to zero. From steps 1 to 3 
with the Arzela-Ascoli theorem, we conclude that Ψ : PCγ,ρ  → PCγ,ρ  is continuous and 
completely continuous. 

Step 4: A priori bound. Now it remains to show that the set 

G = {u ∈ PCγ,ρ  : u = λ∗Ψ(u) for some 0 < λ∗ < 1} 

is bounded. Let u ∈ G, then u = λ∗Ψ(u) for some 0 < λ∗ < 1. 
By (5.4.1), we have for each t ∈ Ik , k = 0, . . . ,  m,

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| =
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

f (t, u(t), h(t))

||||||
≤
(
tρ − sρ 

k 

ρ

)1−γ 

(p1(t) + p2(t)|u(t)| +  p3(t)|h(t)|) , 

which implies that
||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| ≤ p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2||u||PCγ,ρ  

+p∗
3

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| ,
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then ||||||
(
tρ − sρ 

k 

ρ

)1−γ 

h(t)

|||||| ≤ 
p∗
1

(
bρ − aρ 

ρ

)1−γ 
+ p∗

2||u||PCγ,ρ  

1 − p∗
3 

. 

This implies, by (5.13), (5.4.2), and by letting the estimation of Step 2, that for each t ∈ 
Ik , k = 0, . . . ,  m, we have

||||||
(
tρ − sρ 

k 

ρ

)1−γ 

u(t)

|||||| ≤ 
|φk |
Γ(γ ) 

+ 
p∗
1

(
bρ−aρ 

ρ

)1−γ + p∗
2||u||PCγ,ρ  

1 − p∗
3

(
Γ(γ )

Γ(γ + α)

)

×
(
bρ − aρ 

ρ

)α 
, 

thus ||||||
(
tρ − sρ 

k 

ρ

)1−γ 

u(t)

|||||| ≤ φ∗

Γ(γ ) 
+
(

p∗
1Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)1−γ +α 

+
(

p∗
2Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)α

||u||PCγ,ρ  . 

And for each t ∈ Ĩk , k = 1, . . . ,  m, we have 

|u(t)| ≤  |gk (t, u(t))| ≤ φ1||u||PCγ,ρ  + φ2. 

Then, for each t ∈ J , we have

||u||PCγ,ρ  ≤ χ1 + χ2||u||PCγ,ρ  , 

where 

χ1 = max

(
φ2, 

φ∗

Γ(γ ) 
+
(

p∗
1Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)1−γ +α
)

, 

and 

χ2 = max

(
φ1,

(
p∗
2Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
. 

Then by (5.15), we have

||u||PCγ,ρ  ≤
χ1 

1 − χ2 
:= R. 

As a consequence of Theorem 2.47, and using Step 2 of the last result, we deduce that Ψ

has a fixed point which is a solution of the problem (5.1)–(5.3). ⎕
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5.2.2 Nonlocal Impulsive Differential Equations 

This part is concerned with a generalization of the results presented previously to nonlocal 
impulsive fractional differential equations. More precisely, we shall present some existence 
results for the following nonlocal problem:

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
; t ∈ Ik , k = 0, . . . ,  m, (5.16) 

u(t) = gk (t, u(t)); t ∈ Ĩk , k = 1, . . . ,  m, (5.17)

(
ρJ 1−γ 

a+ u
)

(a+) + ϑ(u) = φ0, (5.18) 

where ρDα,β 
s+ 
k 

,ρ J 1−γ 
a+ are the generalized Hilfer fractional derivative of order α ∈ (0, 1) and 

type β ∈ [0, 1] and generalized Hilfer fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, φ0 ∈ R ρ >  0 and Ik , Ĩk , f , gk are as in the last section, and ϑ : PCγ,ρ  (J ) |→ R 
is a continuous function. Nonlocal conditions were initiated by Byszewski [ 60] when he 
proved the existence and uniqueness of mild and classical solutions of nonlocal Cauchy 
problems. The nonlocal condition can be more useful than the standard initial condition to 
describe some physical phenomena. 

Theorem 5.5 Assume that (5.3.1)–(5.3.3), (5.4.2), and the hypothesis that follows hold. 

(5.5.1) There exist constants K ∗ > 0 such that 

|ϑ(u) − ϑ(ū)| ≤  K ∗|u(t) − ū(t)| 

for any u, ū ∈ PCγ,ρ  (J ). 

If 

l∗ + K ∗ + ϒΓ(γ  )
Γ(γ + α)

(
bρ − aρ 

ρ

)α 
< 1, (5.19) 

then the nonlocal problem (5.16)–(5.18) has a unique solution in PCγ,ρ  (J ). 

Proof We transform the problem (5.16)–(5.18) into a fixed point problem. Consider the 
operator Ψ̃ : PCγ,ρ  (J ) −→ PCγ,ρ  (J ) defined by



130 5 Fractional Differential Equations with Non-Instantaneous Impulses

Ψ̃u(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

φ0 − ϑ(u)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ (
ρJ α 

a+h
)
(t) i f  t  ∈ I0, 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t) i f  t  ∈ Ik , k = 1, . . . ,  m, 

gk (t, u(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m. 

, (5.20) 

where h ∈ Cγ,ρ  (Ik ), k = 0, . . . ,  m be a function satisfying the functional equation 

h(t) = f (t, u(t), h(t)). 

Clearly, the fixed points of the operator Ψ̃ are solutions of the problem (5.16)–(5.18). We 
can easily show that Ψ̃ is a contraction and its fixed points are in PCγ 

γ,ρ  (J ). ⎕

Theorem 5.6 Assume (5.3.1), (5.4.1)–(5.4.2), and (5.5.1) hold. If 

max

(
φ1,

(
p∗
2Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
< 1, (5.21) 

then the nonlocal problem (5.16)–(5.18) has at least one solution in PCγ,ρ  (J ). 

5.2.3 Ulam-Hyers-Rassias Stability 

First, we consider the Ulam Stability for problem (5.1)–(5.3). Let u ∈ PCγ,ρ  (J ), ∈ >  0, τ >  
0, and  θ : J −→ [0, ∞) be a continuous function. We consider the following inequalities: 

⎧⎪⎪⎨ 

⎪⎪⎩

||||
(

ρDα,β 
s+ 
k 
u

)
(t) − f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)|||| ≤ ∈θ (t), t ∈ Ik , k = 0, . . . ,  m, 

|u(t) − gk (t, u(t))| ≤ ∈τ, t ∈ Ĩk , k = 1, . . . ,  m. 
(5.22) 

Definition 5.7 ([156, 158]) Problem (5.1)–(5.3) is Ulam-Hyers-Rassias (U-H-R) stable 
with respect to (θ, τ ) if there exists a real number a f ,θ > 0 such that for each ∈ >  0 and for 
each solution u ∈ PCγ,ρ  (J ) of inequality (5.63) there exists a solution w ∈ PCγ,ρ  (J ) of 
(5.1)–(5.3) with 

|u(t) − w(t)| ≤ ∈a f ,θ (θ (t) + τ), t ∈ J . 

Remark 5.8 ([156, 158]) A function u ∈ PCγ,ρ  (J ) is a solution of inequality (5.22) if and  
only if there exist σ ∈ PCγ,ρ  (J ) and a sequence σk , k = 0, . . . ,  m such that
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1. |σ(t)| ≤ ∈θ (t), t ∈ Ik , k = 0, . . . ,  m; and |σk | ≤ ∈τ , t ∈ Ĩk , k = 1, . . . ,  m, 

2.

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
+ σ(t), t ∈ Ik , k = 0, . . . ,  m, 

3. u(t) = gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m. 

Theorem 5.9 Assume that in addition to (5.3.1)–(5.3.3) and (5.14), the following hypoth-
esis holds. 

(5.9.1) There exist a nondecreasing function θ : J −→ [0, ∞) and λθ > 0 such that for 
each t ∈ Ik; k = 0, . . . ,  m, we have 

(ρJ α 
s+ 
k 
θ)(t) ≤ λθ θ(t). 

Then problem (5.1)–(5.3) is U-H-R stable with respect to (θ, τ ). 

Proof Consider the operator Ψ is defined as in (5.13). Let u ∈ PCγ,ρ  (J ) be a solution of 
inequality (5.22), and let us assume that w is the unique solution of the problem 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩

(
ρDα,β 

s+ 
k 

w

)
(t) = f

(
t, w(t),

(
ρDα,β 

s+ 
k 

w

)
(t)

)
; t ∈ Ik , k = 0, . . . ,  m, 

u(t) = gk (y, w(t− 
k )); t ∈ Ĩk , k = 1, . . . ,  m,(

ρJ 1−γ 
s+ 
k 

w

)
(s+ 

k ) =
(

ρJ 1−γ 
s+ 
k 

u

)
(s+ 

k ) = φk , k = 0, . . . ,  m. 

By Lemma 5.2, we obtain for each t ∈ (a, b] 

w(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

gk (t, w(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m, 

where h ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, be a function satisfying the functional equation 

h(t) = f (t, w(t), h(t)). 

Since u is a solution of the inequality (5.22), by Remark 5.8, we have  
⎧⎪⎨ 

⎪⎩

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
+ σ(t), t ∈ Ik , k = 0, . . . ,  m; 

u(t) = gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m. 
(5.23)
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Clearly, the solution of (5.23) is given  by  

u(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
g
)

(t) +
(

ρJ α 
s+ 
k 
σ
)

(t), t ∈ Ik , k /= 0, 

gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m, 

where g : Ik → R, k = 0, . . . ,  m, be a function satisfying the functional equation 

g(t) = f (t, u(t), g(t)). 

Hence, for each t ∈ Ik ,k = 0, . . . ,  m, we have 

|u(t) − w(t)| ≤
(

ρJ α 
s+ 
k 
|g(s) − h(s)|

)
(t) +

(
ρJ α 

s+ 
k 
|σ(s)|

)

≤ ∈λθ θ(t) + ϒ
( t 

sk 
sρ−1

(
tρ − sρ 

ρ

)α−1 |u(s) − w(s)|
Γ(α) 

ds. 

We apply Lemma 2.40 to obtain 

|u(t) − w(t)| ≤ ∈λθ θ(t) +
( t 

sk 

∞Σ
τ =1 

(ϒ)τ

Γ(τ α) 
sρ−1

(
tρ − sρ 

ρ

)τα−1 

(∈λθ θ(s))ds  

≤ ∈λθ θ(t)Eα

[
ϒ

(
tρ − sρ 

k 

ρ

)α]

≤ ∈λθ θ(t)Eα

[
ϒ

(
bρ − aρ 

ρ

)α]
. 

And for each t ∈ Ĩk ,k = 1, . . . ,  m, we have 

|u(t) − w(t)| ≤ |gk (t, u(t)) − gk (t, w(t))| + |σk | 
≤ l∗|u(t) − w(t)| + ∈τ, 

then by 5.14, we have  

|u(t) − w(t)| ≤ ∈τ 
1 − l∗ . 

Then for each t ∈ J , we have  

|u(t) − w(t)| ≤  aθ ∈(τ + θ(t)), 

where 

aθ = 1 

1 − l∗ + λθ Eα

[
ϒ

(
bρ − aρ 

ρ

)α]
.
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Hence, problem (5.1)–(5.3) is U-H-R stable with respect to (θ, τ ). Now we are concerned 
with the Ulam-Hyers-Rassias stability of our problem (5.16)–(5.18). ⎕

Theorem 5.10 Assume that (5.3.1), (5.4.1), (5.4.2), (5.5.1), (5.9.1), and (5.21) hold. Then 
the problem (5.16)–(5.18) is U-H-R stable with respect to (θ, τ ). 

5.2.4 Examples 

Example 5.11 Consider the following impulsive Cauchy problem:

(
1 
2 D 

1 
2 ,0 

s+ 
k 
u

)
(t) = e−t 

79et+3(1 + |u(t)| + | 1 2 D 
1 
2 ,0 

s+ 
k 
u(t)| 

, for each t ∈ I0 ∪ I1, (5.24) 

u(t) = 
|u(t)| 

et + 2|u(t)| , for each t ∈ Ĩ1, (5.25)

(
1 
2 J 

1 
2 
1+u

)
(1+) = 0, (5.26) 

where 
I0 = (1, 2], I1 = (e, 3], Ĩ1 = (2, e], s0 = 1, t1 = 2, and s1 = e. 

Set 

f (t, u, w)  = e−t 

79et+3(1 + |u| + |w|) , t ∈ I0 ∪ I1, u, w  ∈ R. 

We have 

Cβ(1−α) 
γ,ρ ((1, 2]) = C0 

1 
2 , 

1 
2 
((1, 2]) 

=
(
v : (1, 2] →  R : √

2
(√

t − 1
) 1 

2 
v ∈ C([1, 2], R)

)
, 

and 

Cβ(1−α) 
γ,ρ ((e, 3]) = C0 

1 
2 , 

1 
2 
((e, 3]) 

=
(
v : (e, 3] →  R : √

2
(√

t − √
2
) 1 

2 
v ∈ C([e, 3], R)

)
, 

with 

γ = α = 
1 

2 
ρ = 

1 

2 
, β  = 0, and k ∈ {0, 1}. 

Clearly, the continuous function f ∈ C0 
1 
2 , 

1 
2 
((1, 2]) ∩ C0 

1 
2 , 

1 
2 
((e, 3]) . 

Hence, the condition (5.3.1) is satisfied.
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For each u, ū, w,  ̄w ∈ R and t ∈ I0 ∪ I1, we have 

| f (t, u, w)  − f (t, ū, w̄)| ≤ e−t 

79et+3 (|u − ū| + |w − w̄|) 

≤ 1 

79e5 
(|u − ū| + |w − w̄|) . 

Hence condition (5.3.2) is satisfied with M1 = M2 = 1 

79e5 
. 

And let 
g1(u) = u 

et + 2u 
, u ∈ [0, ∞). 

Let u, w  ∈ [0, ∞). Then we have 

|g1(u) − g1(w)| = | u 

et + 2u 
− w 

et + 2w 
| = et |u − w| 

(et + 2u)(et + 2w) 
≤ 

1 

e
|u − w|, 

and so the condition (5.3.3) is satisfied with l∗ = 
1 

e 
. 

A simple computation shows that the condition (5.14) of Theorem 5.3 is satisfied, for 

L = 
1 

e 
+

√
2π ( 

√
3 − 1) 

1 
2 

(79e5 − 1) 
≈ 0.368062377 < 1. 

Then the problem (5.24)–(5.26) has a unique solution in PC 1 
2 , 

1 
2 
([1, 3]). Also, hypothesis 

(5.9.1) is satisfied with τ = 1 and 

θ(t) = 

⎧⎨ 

⎩ 

2( 
√
t − √

sk ), i f  t  ∈ I0 ∪ I1, 

e, i f  t  ∈ Ĩ1, 

and λθ =
√
2Γ(2)( 

√
2 − 1) 

1 
2

Γ( 5 2 ) 
. Indeed, for each t ∈ I0 ∪ I1, we get  

( 
1 
2 J 

1 
2 
1+ θ)(t) ≤

Γ( 5 2 ) 

√
2Γ(2)( 

√
2 − 1) 

1 
2

(2 
√
t − 2), 

and 

( 
1 
2 J 

1 
2 
e+ θ)(t) ≤

√
2Γ(2)( 

√
3 − √

e) 
1 
2

Γ( 5 2 ) 
(2 

√
t − 2 

√
e). 

Consequently, Theorem 5.9 implies that the problem (5.24)–(5.26) is U-H-R stable.
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Example 5.12 Consider the following impulsive nonlocal initial value problem:

(
1D 

1 
2 ,0 

s+ 
k 
u

)
(t) = 

1 + |u(t)| + |1D 
1 
2 ,0 

s+ 
k 
u(t)| 

107e−t+3(1 + |u(t)| + |1D 
1 
2 ,0 

s+ 
k 
u(t)|) 

, t ∈ Ik , k = 0, . . . ,  4, (5.27) 

u(t) = |u(t)| 
10ek + |u(t)| , for each t ∈ Ĩk , k = 1, . . . ,  4, (5.28)

(
1J 

1 
2 
1+u

)
(1+) + 

1 

5 

u(t) 
|u(t)| +  1 

= 1, (5.29) 

where 

Ik = (sk , tk+1], sk = 1 + 
2k 

9 
for k = 0, . . . ,  4 

and 

Ĩk = (tk , sk], tk = 1 + 
2k − 1 

9 
for k = 1, . . . ,  4, (m = 4), 

and 
a = s0 = 1, b = t5 = 2. 

Set 

f (t, u, w)  = 1 + |u| + |w| 
107e−t+3(1 + |u| + |w|) , t ∈ Ik , k = 0, . . . ,  4, u, w  ∈ R. 

We have 

Cβ(1−α) 
γ,ρ ((sk , tk+1]) = C0 

1 
2 ,1 

((sk , tk+1]) 
= {

v : (sk , tk+1] →  R : ( √t − sk )v ∈ C([sk , tk+1], R)
}
, 

with γ = α = 1 2 , ρ = 1, β = 0, and  k = 0, . . . ,  4. Clearly, the continuous function f ∈ 
C0 

1 
2 ,1 

([sk , tk+1]); k = 0, . . . ,  4. Hence, the condition (5.3.1) is satisfied. 
For each u, w  ∈ R and t ∈ Ik; k = 0, . . . ,  4, we have 

| f (t, u, w)| ≤ 1 

107e−t+3 (1 + |u| + |w|). 

Hence, condition (5.4.1) is satisfied with 

p1(t) = p2(t) = p3(t) = 1 

107e−t+3 , 

and 

p∗
1 = p∗

2 = p∗
3 =

1 

107e 
.
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Let 
gk (u) = u 

10ek + u 
, k = 1, . . . ,  4, u ∈ [0, ∞), 

then we have 

|gk (u)| ≤  
1 

10e
|u| +  1, k = 1, . . . ,  4, 

and so the condition (5.4.2) is satisfied with φ1 = 
1 

10e 
and φ2 = 1. 

And let 

ϑ(u) = 
1 

5 

u 

|u| +  1 
, u ∈ R 

then we have 

|g(u)| ≤  42 sup{u(tk ), k = 1, . . . ,  4}, 
and so the condition (5.5.1) is satisfied with M̃ = 42 sup{u(tk ), k = 1, . . . ,  4}. 
The condition (5.21) of Theorem  5.6 is satisfied, for

φ1 = 
1 

10e 
< 1, 

and (
p∗
2Γ(γ ) 

(1 − p∗
3 )Γ(γ + α)

)(
bρ − aρ 

ρ

)α 
=

√
π 

(107e − 1) 
< 1. 

Then the problem (5.27)–(5.29) has at least one solution in PC 1 
2 ,1

([1, 2]). Also, hypothesis 
(5.9.1) is satisfied with τ = 1 and 

θ(t) = 

⎧⎨ 

⎩ 

(t − sk )2, i f  t  ∈ Ik , k = 0, . . . ,  4, 

2, i f  t  ∈ Ĩk , k = 1, . . . ,  4, 

and λθ = Γ(3)

Γ( 7 2 ) 
. Indeed, for each t ∈ Ik , k = 0, . . . ,  4, we get  

(1J 
1 
2 

s+ 
k 
θ)(t) ≤ Γ(3)

Γ( 7 2 ) 
(t − sk ) 

5 
2 

≤ Γ(3)

Γ( 7 2 ) 
(t − sk )2 

= λθ θ(t). 

Consequently, Theorem 5.10 implies that the problem (5.27)–(5.29) is U-H-R stable.
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5.3 Initial Value Problem for Nonlinear Implicit Generalized 
Hilfer-Type Fractional Differential Equations in Banach Spaces 

Motivated by the works mentioned in the introduction, in this section, we establish existence 
results to the initial value problem of nonlinear implicit generalized Hilfer-type fractional 
differential equation with non-instantaneous impulses:

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
; t ∈ Ik , k = 0, . . . ,  m, (5.30) 

u(t) = gk (t, u(t)); t ∈ Ĩk , k = 1, . . . ,  m, (5.31)(
ρJ 1−γ 

a+ u
)

(a+) = φ0, (5.32) 

where ρDα,β 
s+ 
k 

, ρJ 1−γ 
a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1) 

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − αβ), 
respectively, ρ >  0, φ0 ∈ E , Ik := (sk , tk+1]; k = 0, . . . ,  m, Ĩk := (tk , sk]; k = 1, . . . ,  m, 
a = s0 < t1 ≤ s1 < t2 ≤ s2 < · · ·  ≤  sm−1 < tm ≤ sm < tm+1 = b < ∞, u(t+ 

k ) = lim
∈→0+ 

u(tk + ∈) and u(t− 
k ) = lim

∈→0− 
u(tk + ∈) represent the right- and left-hand limits of u(t) at 

t = tk , f : Ik × E × E → E is a given function, and gk : Ĩk × E → E ; k = 1, . . . ,  m are 

given continuous functions such that

(
ρJ 1−γ 

s+ 
k 

gk

)
(t, u(t))

||t=sk = φk ∈ E , where  (E, || · ||) 
is a real Banach space. 

5.3.1 Existence Results 

Consider the Banach space 

PCγ,ρ  (J ) =
(
u : J → E : u ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, and 

u ∈ C( ̃Ik , E); k = 1, . . . ,  m, and there exist u(t− 
k ), u(t+ 

k ), 

u(s− 
k ), and u(s+ 

k ) with u(t− 
k ) = u(tk )

)
, 

and 

PCn 
γ,ρ  (J ) =

{
u ∈ PCn−1(J ) : u(n) ∈ PCγ,ρ  (J )

}
, n ∈ N, 

PC0 
γ,ρ  (J ) = PCγ,ρ  (J ),
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with the norm

||u||PCγ,ρ  

= max 

⎧⎨ 

⎩ max 
k=0,...,m 

⎧⎨ 

⎩ sup 
t∈[sk ,tk+1]

||||||||||||
(
tρ − sρ 

k 

ρ

)1−γ 

u(t)

||||||||||||
⎫⎬ 

⎭ , max 
k=1,...,m

(
sup 

t∈[tk ,sk ]
||u(t)||

)⎫⎬ 

⎭ . 

Also, we define the following Banach space: 

PCγ 
γ,ρ  (J ) =

(
u : J → E : u ∈ Cγ 

γ,ρ  (Ik ); k = 0, . . . ,  m, and 

u ∈ C( ̃Ik , E); k = 1, . . . ,  m, and there exist u(t− 
k ), u(t+ 

k ), 

u(s− 
k ), and u(s+ 

k ) with u(t− 
k ) = u(tk )

)
. 

Lemma 5.13 ([75]) Let D ⊂ PCγ,ρ  (J ) be a bounded and equicontinuous set, then 
(i) the function t → μ(D(t)) is continuous on J , and 

μPCγ,ρ  

= max

(
max 

k=0,...,m

(
sup 

t∈[sk ,tk+1] 
μ

((
tρ−sρ 

k 
ρ

)1−γ 
u(t)

))
, max 
k=1,...,m

(
sup 

t∈[tk ,sk ] 
μ (u(t))

))
, 

(ii) μ

(( b 

a 
u(s)ds  : u ∈ D

)
≤
( b 

a 
μ(D(s))ds, where 

D(t) = {u(t) : t ∈ D}, t ∈ J . 

Same as the last section, by following the same steps, we can have the following result: 

Lemma 5.14 Let γ = α + β − αβ where 0 < α  <  1, 0 ≤ β ≤ 1, and k = 0, . . . ,  m, let 
f : Ik × E × E → E, be a function such that f (·, u(·), w(·)) ∈ Cγ,ρ  (Ik ), for any u, w  ∈ 
PCγ,ρ  (J ). If u ∈ PCγ 

γ,ρ  (J ), then u satisfies the problem (5.30)–(5.32) if and only if u is 
the fixed point of the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined by

Ψu(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t), t ∈ Ik , k = 0, . . . ,  m, 

gk (t, u(t)), t ∈ Ĩk , k = 1, . . . ,  m, 

(5.33) 

where φ∗ = max{||φk|| :  k = 0, . . . ,  m} and h ∈ Cγ,ρ  (Ik ), k = 0, . . . ,  m be a function sat-
isfying the functional equation
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h(t) = f (t, u(t), h(t)). 

Also, by Lemma 2.23, Ψu ∈ PCγ,ρ  (J ). 

We are now in a position to state and prove our existence result for the problem (5.30)–(5.32) 
based on Mönch’s fixed point theorem. 

Theorem 5.15 Assume that the following hypotheses are met. 

(5.15.1) The function t |→ f (t, u, w)  is measurable on Ik; k = 0, . . . ,  m, for each u, w  ∈ 
E, and the functions u |→ f (t, u, w)  and w |→ f (t, u, w)  are continuous on E 
for a.e. t ∈ Ik; k = 0, . . . ,  m, and 

f (·, u(·), w(·)) ∈ Cβ(1−α) 
γ,ρ (Ik ) for any u, w  ∈ PCγ,ρ  (J ). 

(5.15.2) There exists a continuous function p : [a, b] −→ [0, ∞) such that

|| f (t, u, w)|| ≤  p(t), for a.e. t ∈ Ik; k = 0, . . . ,  m , and for each u, w  ∈ E . 

(5.15.3) For each bounded set B ⊂ E and for each t ∈ Ik; k = 0, . . . ,  m, we have 

μ( f (t, B, (ρDα,β 
s+ 
k 

B))) ≤ p(t)μ(B), 

where ρDα,β 
s+ 
k 

B = {ρDα,β 
s+ 
k 

w : w ∈ B} and p∗ = sup 
t∈[a,b] 

p(t). 

(5.15.4) The functions gk ∈ C( ̃Ik , E); k = 1, . . . ,  m, and there exists l∗ > 0 such that

||gk (t, u)|| ≤  l∗||u|| for each u ∈ E, k = 1, . . . ,  m. 

(5.15.5) For each bounded set B ⊂ E and for each t ∈ Ĩk; k = 1, . . . ,  m, we have 

μ(gk (t, B)) ≤ l∗μ(B), k = 1, . . . ,  m. 

If 

L := max

(
l∗, p∗Γ(γ )

Γ(α + γ )

(
bρ − aρ 

ρ

)α)
< 1, (5.34) 

then the problem (5.30)–(5.32) has at least one solution in PCγ,ρ  (J ). 

Proof Consider the operator Ψ : PCγ,ρ  (J ) → PCγ,ρ  (J ) defined in (5.33) and the ball 
BR := B(0, R) = {w ∈ PCγ,ρ  (J ) : ||w||PCγ,ρ  ≤ R}, such that
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R ≥ φ∗ 

(1 − l∗)Γ(γ ) 
+ p∗ 

(1 − l∗)Γ(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
. 

For any u ∈ BR , and each t ∈ Ik , k = 0, . . . ,  m, we have

||Ψu(t)|| ≤ ||φk||
Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k
||h(s)||

)
(t) 

≤ φ∗

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+ p∗ (ρJ α 
s+ 
k 
(1)

)
(t). 

By Lemma 2.19, we have
||||||||||||
(
tρ − sρ 

k 

ρ

)1−γ

Ψu(t)

|||||||||||| ≤ φ∗

Γ(γ ) 
+ p∗

Γ(α + 1)

(
tρ − sρ 

k 

ρ

)1−γ +α 

≤ φ∗

Γ(γ ) 
+ p∗

Γ(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
. 

And for t ∈ Ĩk , k = 1, . . . ,  m, we have

||(Ψu)(t)|| ≤ l∗||u(t)|| ≤  l∗ R. 

Hence,

||Ψu||PCγ,ρ  ≤ l∗ R + φ∗

Γ(γ ) 
+ p∗

Γ(α + 1)

(
bρ − aρ 

ρ

)1−γ +α 
≤ R. 

This proves that Ψ transforms the ball BR into itself. We shall show that the operator
Ψ : BR → BR satisfies all the assumptions of Theorem 2.49. The proof will be given in 
several steps. 

Step 1:Ψ : BR → BR is continuous. Let {un} be a sequence such that un → u in PCγ,ρ  (J ). 
Then for each t ∈ Ik , k = 0, . . . ,  m, we have

|||||||| ((Ψun)(t) − (Ψu)(t))
(
tρ−sρ 

k 
ρ

)1−γ
|||||||| ≤

(
tρ−sρ 

k 
ρ

)1−γ
(

ρJ α 
s+ 
k
||hn(s) − h(s)||

)
(t), 

where hn, h ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, such that 

hn(t) = f (t, un(t), hn(t)), 
h(t) = f (t, u(t), h(t)). 

For each t ∈ Ĩk , k = 1, . . . ,  m, we have

||((Ψun)(t) − (Ψu)(t))|| ≤ ||(gk (t, un(t)) − gk (t, u(t)))|| .
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Since un → u, then we get  hn(t) → h(t) as n → ∞  for each t ∈ J , and since f and gk are 
continuous, then we have

||Ψun − Ψu||PCγ,ρ  → 0 as  n → ∞. 

Step 2: Ψ(BR) is bounded and equicontinuous. 
Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded. 
Next, let ∈1, ∈2 ∈ Ik , k = 0, . . . ,  m, ∈1 < ∈2, and let u ∈ BR . Then||||||||||||

(
∈
ρ 
1 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈1) −
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈2)

||||||||||||
≤
||||||||||||
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
h(τ )

)
(∈1) −

(
∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
h(τ )

)
(∈2)

||||||||||||
≤
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
ρJ α

∈+ 
1
||h(τ )||

)
(∈2) + 1

Γ(α)

( ∈1 

sk

||||τ ρ−1 H (τ )h(τ )
|||| dτ, 

where 

H (τ ) = 

⎡ 

⎣
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ (
∈
ρ 
1 − τ ρ 

ρ

)α−1 

−
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
∈
ρ 
2 − τ ρ 

ρ

)α−1
⎤ 

⎦ . 

Then by Lemma 2.19, we have
||||||||||||
(

∈
ρ 
1 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈1) −
(

∈
ρ 
2 − sρ 

k 

ρ

)1−γ 

(Ψu)(∈2)

||||||||||||
≤ p∗

Γ(1 + α)

(
∈
ρ 
2 − sρ 

k 

ρ

)1−γ (
∈
ρ 
2 − ∈

ρ 
1 

ρ

)α 

+ p∗
( ∈1 

sk

||||||||H (τ ) 
τ ρ−1

Γ(α)

||||||||
(

τ ρ − sρ 
k 

ρ

)γ −1 

dτ, 

and for each t ∈ Ĩk , k = 1, . . . ,  m, we have

||(Ψu)(∈1) − (Ψu)(∈2)|| ≤ ||(gk (∈1, u(∈1))) − (gk (∈2, u(∈2)))|| . 

As ∈1 → ∈2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is 
bounded and equicontinuous. 

Step 3: The implication (2.11) of Theorem  2.49 holds. 
Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D) ∪ {0}; therefore, the
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function t −→ d(t) = μ(D(t)) is continuous on J . By  (5.15.3), (5.15.5), and the properties 
of the measure μ, for each t ∈ Ik , k = 0, . . . ,  m, we have

(
tρ − sρ 

k 

ρ

)1−γ 

d(t) ≤ μ 

⎛ 

⎝
(
tρ − sρ 

k 

ρ

)1−γ 

(ΨD)(t) ∪ {0} 
⎞ 

⎠ 

≤ μ 

⎛ 

⎝
(
tρ − sρ 

k 

ρ

)1−γ 

(ΨD)(t) 

⎞ 

⎠ , 

then (
tρ − sρ 

k 

ρ

)1−γ 

d(t) ≤
(
tρ − sρ 

k 

ρ

)1−γ (
ρJ α 

s+ 
k 
p(s)μ(D(s))

)
(t) 

≤ p∗
(
bρ − aρ 

ρ

)1−γ (
ρJ α 

s+ 
k 
d(s)

)
(t) 

≤
[

p∗Γ(γ )
Γ(α + γ )

(
bρ − aρ 

ρ

)α]
||d||PCγ,ρ  . 

And for each t ∈ Ĩk , k = 1, . . . ,  m, we have  

d(t) ≤ μ (gk (t, D(t))) ≤ l∗d(t). 

Thus, for each t ∈ J , we have

||d||PCγ,ρ  ≤ L||d||PCγ,ρ  . 

From (5.34), we get ||d||PCγ,ρ  = 0, that is d(t) = μ(D(t)) = 0, for each t ∈ J , and  then  D(t) 
is relatively compact in E . In view of the Ascoli-Arzela Theorem, D is relatively compact 
in BR . Applying now Theorem 2.49, we conclude that Ψ has a fixed point u∗ ∈ PCγ,ρ  (J ), 
which is solution of the problem (5.30)–(5.32). 

Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ  (J ) is actually in PCγ 
γ,ρ  (J ). 

Since u∗ is the unique fixed point of operator Ψ in PCγ,ρ  (J ), then for each t ∈ J , we have

Ψu∗(t) = 

⎧⎪⎨ 

⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t), t ∈ Ik , k = 0, . . . ,  m, 

gk (t, u∗(t)), t ∈ Ĩk , k = 1, . . . ,  m. 

where h ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, such that 

h(t) = f (t, u∗(t), h(t)). 

For t ∈ Ik; k = 0, . . . ,  m, applying ρDγ 
s+ 
k 
to both sides and by Lemmas 2.19 and 2.33, we  

have
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ρDγ 
s+ 
k 
u∗(t) =

(
ρDγ 

s+ 
k 

ρJ α 
s+ 
k 
f (s, u∗(s), h(s))

)
(t) 

=
(

ρDβ(1−α) 
s+ 
k 

f (s, u∗(s), h(s))

)
(t). 

Since γ ≥ α, by condition (5.15.1), the right-hand side is in Cγ,ρ  (Ik ) and thus ρDγ 
s+ 
k 
u∗ ∈ 

Cγ,ρ  (Ik ) which implies that u∗ ∈ Cγ 
γ,ρ  (Ik ). And since gk ∈ C( ̃Ik , E); k = 1, . . . ,  m, then 

u∗ ∈ PCγ 
γ,ρ  (J ). As a consequence of Steps 1 to 4 together with Theorem 5.15, we can 

conclude that the problem (5.30)–(5.32) has at least one solution in PCγ,ρ  (J ). ⎕

Our second existence result for the problem (5.30)–(5.32) is based on Darbo’s fixed point 
Theorem. 

Theorem 5.16 Assume that conditions (5.15.1)–(5.15.5) hold. If 

L := max

(
l∗, p∗Γ(γ )

Γ(α + γ )

(
bρ − aρ 

ρ

)α)
< 1, 

then the problem (5.30)–(5.32) has at least one solution in PCγ,ρ  (J ). 

Proof Consider the operatorΨ defined in (5.33). We know thatΨ : BR −→ BR is bounded 
and continuous and that Ψ(BR) is equicontinuous, we need to prove that the operator Ψ is 
a L-contraction. 
Let D ⊂ BR and t ∈ Ik , k = 0, . . . ,  m. Then we have 

μ 

⎛ 

⎝
(
tρ − sρ 

k 

ρ

)1−γ 

(ΨD)(t) 

⎞ 

⎠ = μ 

⎛ 

⎝
(
tρ − sρ 

k 

ρ

)1−γ 

(Ψu)(t) : u ∈ D 

⎞ 

⎠ 

≤
(
bρ − aρ 

ρ

)1−γ ((
ρJ α 

s+ 
k 
p∗μ(u(s))

)
(t), u ∈ D

)
. 

By Lemma 2.19, we have for  t ∈ Ik , k = 0, . . . ,  m, 

μ 

⎛ 

⎝
(
tρ − sρ 

k 

ρ

)1−γ 

(ΨD)(t) 

⎞ 

⎠ ≤
[

p∗Γ(γ )
Γ(α + γ )

(
bρ − aρ 

ρ

)α]
μPCγ,ρ  (D). 

And for each t ∈ Ĩk , k = 1, . . . ,  m, we have  

μ ((ΨD)(t)) ≤ μ (gk (t, D(t))) ≤ l∗μ (D(t)) . 

Hence, for each t ∈ J , we have  

μPCγ,ρ  (ΨD) ≤ LμPCγ,ρ  (D).
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So, by (5.34), the operator Ψ is a L-contraction. As a consequence of Theorem 2.48 and 
using Step 4 of the last result, we deduce that Ψ has a fixed point which is a solution of the 
problem (5.30)–(5.32). ⎕

5.3.2 Ulam-Hyers-Rassias Stability 

We are concerned with the Ulam-Hyers-Rassias stability of our problem (5.30)–(5.32). Let 
u ∈ PCγ,ρ  (J ), ∈ >  0, τ >  0, and  θ : J −→ [0, ∞) be a continuous function. We consider 
the following inequality: 

⎧⎨ 

⎩
||||||||
(

ρDα,β 
s+ 
k 
u

)
(t) − f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)|||||||| ≤ ∈θ (t), t ∈ Ik , k = 0, . . . ,  m,

||u(t) − gk (t, u(t))|| ≤ ∈τ, t ∈ Ĩk , k = 1, . . . ,  m. 
(5.35) 

Definition 5.17 ([156, 158]) Problem (5.30)–(5.32) is Ulam-Hyers-Rassias (U-H-R) stable 
with respect to (θ, τ ) if there exists a real number a f ,θ > 0 such that for each ∈ >  0 and for 
each solution u ∈ PCγ,ρ  (J ) of inequality (5.35) there exists a solution w ∈ PCγ,ρ  (J ) of 
(5.30)–(5.32) with

||u(t) − w(t)|| ≤ ∈a f ,θ (θ (t) + τ),  t ∈ J . 

Remark 5.18 ([156, 158]) A function u ∈ PCγ,ρ  (J ) is a solution of inequality (5.35) if  
and only if there exist σ ∈ PCγ,ρ  (J ) and a sequence σk , k = 0, . . . ,  m such that 

1. ||σ(t)|| ≤ ∈θ (t), t ∈ Ik , k = 0, . . . ,  m; and ||σk|| ≤ ∈τ , t ∈ Ĩk , k = 1, . . . ,  m, 

2.

(
ρDα,β 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
+ σ(t), t ∈ Ik , k = 0, . . . ,  m, 

3. u(t) = gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m. 

Theorem 5.19 Assume that in addition to (5.15.1)–(5.15.5) and (5.34), the following 
hypothesis holds. 

(5.19.1) There exist a nondecreasing function θ : J −→ [0, ∞) and λθ > 0 such that for 
each t ∈ Ik; k = 0, . . . ,  m, we have 

(ρJ α 
s+ 
k 
θ)(t) ≤ λθ θ(t). 

(5.19.2) There exists a continuous function χ : 
m |

k=1 

[sk , tk+1] −→ [0, ∞) such that for each 

t ∈ Ik; k = 0, . . . ,  m, we have
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p(t) ≤ χ(t)θ (t). 

Then problem (5.30)–(5.32) is U-H-R stable with respect to (θ, τ ). 

Proof Consider the operatorΨ defined in (5.33). Let u ∈ PCγ,ρ  (J ) be a solution of inequal-
ity (5.35), and let us assume that w is the unique solution of the problem 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

(
ρDα,β 

s+ 
k 

w

)
(t) = f

(
t, w(t),

(
ρDα,β 

s+ 
k 

w

)
(t)

)
; t ∈ Ik , k = 0, . . . ,  m, 

w(t) = gk (t, w(t− 
k )); t ∈ Ĩk , k = 1, . . . ,  m,(

ρJ 1−γ 
s+ 
k 

w

)
(s+ 

k ) =
(

ρJ 1−γ 
s+ 
k 

u

)
(s+ 

k ) = φk , k = 0, . . . ,  m. 

By Lemma 5.14, we obtain for each t ∈ (a, b] 

w(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
h
)

(t) i f  t  ∈ Ik , k = 0, . . . ,  m, 

gk (t, w(t)) i f  t  ∈ Ĩk , k = 1, . . . ,  m, 

where h ∈ Cγ,ρ  (Ik ); k = 0, . . . ,  m, be a function satisfying the functional equation 

h(t) = f (t, w(t), h(t)). 

Since u is a solution of the inequality (5.35), by Remark 5.18, we have  
⎧⎨ 

⎩
(

ρDα,β 
s+ 
k 
u

)
(t) = f

(
t, u(t),

(
ρDα,β 

s+ 
k 
u

)
(t)

)
+ σ(t), t ∈ Ik , k = 0, . . . ,  m; 

u(t) = gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m. 
(5.36) 

Clearly, the solution of (5.36) is given  by  

u(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

φk

Γ(γ )

(
tρ − sρ 

k 

ρ

)γ −1 

+
(

ρJ α 
s+ 
k 
g
)

(t) 

+
(

ρJ α 
s+ 
k 
σ

)
(t), t ∈ Ik , k = 0, . . . ,  m, 

gk (t, u(t)) + σk , t ∈ Ĩk , k = 1, . . . ,  m, 

where g : Ik → E, k = 0, . . . ,  m, be a function satisfying the functional equation 

g(t) = f (t, u(t), g(t)). 

Hence, for each t ∈ Ik ,k = 0, . . . ,  m, we have
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||u(t) − w(t)|| ≤ (
ρJ α 

a+||g(s) − h(s)||) (t) + (
ρJ α 

a+||σ(s)||)
≤ ∈λθ θ(t) +

( t 

a 
sρ−1

(
tρ − sρ 

ρ

)α−1 2χ(t)θ (t)
Γ(γ ) 

ds  

≤ ∈λθ θ(t) + 2χ ∗
(
ρJ α 

a+ θ
)
(t) 

≤ (∈ + 2χ ∗)λθ θ(t) 

≤ (1 + 
2χ ∗

∈
)λθ ∈(τ + θ(t)), 

where 

χ ∗ = max 
k=0,...,m

(
sup 

t∈[sk ,tk+1] 
χ(t)

)
. 

For each t ∈ Ĩk ,k = 1, . . . ,  m, we have

||u(t) − w(t)|| ≤ ||gk (t, u(t)) − gk (t, w(t))|| + ||σk||
≤ l∗||u(t) − w(t)|| + ∈τ, 

then by (5.34),

||u(t) − w(t)|| ≤ ∈τ 
1 − l∗ ≤

∈

1 − l∗ (τ + θ(t)). 

Then for each t ∈ (a, b], we have

||u(t) − w(t)|| ≤  aθ ∈(τ + θ(t)), 

where 

aθ = max

(
(1 + 

2χ ∗

∈
)λθ , 

1 

1 − l∗

)
. 

Hence, problem (5.30)–(5.32) is U-H-R stable with respect to (θ, τ ). ⎕

5.3.3 An Example 

Example 5.20 Let 

E = l1 =
(

v = (v1, v2, . . . , vn, . . .),  
∞Σ
n=1 

|vn| < ∞
)

be the Banach space with the norm

||v|| =  
∞Σ
n=1 

|vn|. 

Consider the following initial value problem with non-instantaneous impulses:
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(
1D 

1 
2 ,0 

s+ 
k 
u

)
(t) = f

(
t, u(t),

(
1D 

1 
2 ,0 

s+ 
k 
u

)
(t)

)
, t ∈ (1, 2] ∪  (e, 3], k ∈ {0, 1} (5.37) 

u(t) = g(t, u(t)), t ∈ (2, e], (5.38)

(
1J 

1 
2 
1+u

)
(1+) = 0, (5.39) 

where 
a = t0 = s0 = 1 < t1 = 2 < s1 = e < t2 = 3 = b, 

u = (u1, u2, . . . ,  un, . . .),  

f = ( f1, f2, . . . ,  fn, . . .),  

1D 
1 
2 ,0 

s+ 
k 
u = (1D 

1 
2 ,0 

s+ 
k 
u1, . . . ,  1D 

1 
2 ,0 

s+ 
k 
u2, . . . ,  1D 

1 
2 ,0 

s+ 
k 
un, . . .),  

g = (g1, g2, . . . ,  gn, . . .),  

fn(t, un(t),
(
1D 

1 
2 ,0 

s+ 
k 
un

)
(t)) = (2t3 + 5e−2)|un(t)| 

183e−t+3(1 + ||u(t)|| + ||
(
1D 

1 
2 ,0 

s+ 
k 
u

)
(t)||) 

, 

for t ∈ (1, 2] ∪  (e, 3], with k ∈ {0, 1}, n ∈ N, and  

gn(t, un(t)) = |un(t)| 
105e−t+5 + 1 

, t ∈ (2, e], n ∈ N. 

We have 

Cβ(1−α) 
γ,ρ ((1, 2]) = C0 

1 
2 ,1 

((1, 2]) =
{
h : (1, 2] →  E : ( √t − 1)h ∈ C([1, 2], E)

}
, 

and 

Cβ(1−α) 
γ,ρ ((e, 3]) = C0 

1 
2 ,1 

((e, 3]) = {
h : (e, 3] →  E : ( √t − e)h ∈ C([e, 3], E)

}
, 

with γ = α = 1 2 , ρ = 1, β = 0, and  k ∈ {0, 1}. Clearly, the continuous function f ∈ 
C0 

1 
2 ,1 

((1, 2]) ∩ C0 
1 
2 ,1 

((e, 3]). Hence, the condition (5.15.1) is satisfied. 
For each u, w  ∈ E and t ∈ (1, 2] ∪  (e, 3] :

|| f (t, u, w)|| ≤  
2t3 + 5e−2 

183e−t+3 . 

Hence, condition (5.15.2) is satisfied with 

p(t) = 
2t3 + 5e−2 

183e−t+3 ,
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and 

p∗ = 
54 + 5e−2 

183 
. 

And for each u ∈ E and t ∈ (2, e], we have

||g(t, u)|| ≤ ||u||
105e5−e + 1 

, 

and so the condition (5.15.4) is satisfied with l∗ = 1 

105e5−e + 1 
. 

The condition (5.34) of Theorem  5.15 is satisfied, for 

L := max

(
l∗, p∗Γ(γ )

Γ(α + γ )

(
bρ − aρ 

ρ

)α)
≈ 0.7489295248 < 1. 

Let Ω be a bounded set in E where 1D 
1 
2 ,0 

s+ 
k

Ω =
(
1D 

1 
2 ,0 

s+ 
k 

v : v ∈ Ω

)
; k ∈ {0, 1}, then by the  

properties of the Kuratowski measure of noncompactness, for each u ∈ Ω and t ∈ (1, 2] ∪  
(e, 3], we have  

μ

(
f (t, Ω,  1D 

1 
2 ,0 

s+ 
k

Ω)

)
≤ p(t)μ(Ω), 

and for each t ∈ (2, e], 
μ (g(t, Ω)) ≤ l∗μ(Ω). 

Hence, conditions (5.15.3) and (5.15.5) are satisfied. Then the problem (5.37)–(5.39) has  
at least one solution in PC 1 

2 ,1
([1, 3]). 

Also, hypothesis (5.19.1) is satisfied with τ = 1 and 

θ(t) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

1 √
t − sk 

, i f  t  ∈ (1, 2] ∪  (e, 3], 

1, i f  t  ∈ (2, e], 
and λθ = √

π . Indeed, for each t ∈ (1, 2], we get  

(1J 
1 
2 
1+ θ)(t) = √

π ≤
√

π √
t − 1 

, 

and for each t ∈ (e, 3], we get  

(1J 
1 
2 
e+ θ)(t) = √

π ≤
√

π √
t − e 

. 

Let the function χ :[1, 2] ∪ [e, 3] −→ [0, ∞) be defined by: 

χ(t) = 
(2t3 + 5e−2) 

√
t − sk 

183e−t+3 ; k ∈ {0, 1},
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then, for each t ∈ (1, 2] ∪  (e, 3], we have  

p(t) = χ(t)θ (t), 

with χ ∗ = p∗. Hence, the condition (5.19.2) is satisfied. Consequently, Theorem 5.19 
implies that the problem (5.37)–(5.39) is U-H-R stable. 

5.4 Boundary Value Problem for Fractional Order Generalized 
Hilfer-Type Fractional Derivative 

Following the work of the previous section, in this section, we establish existence and 
stability results of the boundary value problem with nonlinear implicit generalized Hilfer-
type fractional differential equation with non-instantaneous impulses:

(
ρDα,β 

τ + 
i 
x

)
(t) = f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)
; t ∈ Ji , i = 0, . . . ,  m, (5.40) 

x(t) = ψi (t, x(t)); t ∈ J̃i , i = 1, . . . ,  m, (5.41) 

φ1

(
ρJ 1−γ 

a+ x
)

(a+) + φ2

(
ρJ 1−γ 

m+ x
)

(b) = φ3, (5.42) 

where ρDα,β 
τ + 
i 

, ρJ 1−γ 
a+ are the generalized Hilfer-type fractional derivative of order α ∈ (0, 1) 

and type β ∈ [0, 1] and generalized fractional integral of order 1 − γ,  (γ  = α + β − 
αβ), respectively, φ1, φ2, φ3 ∈ R , φ1 /= 0, Ji := (τi , ti+1]; i = 0, . . . ,  m, J̃i := (ti , τi ]; i = 
1, . . . ,  m, a = t0 = τ0 < t1 ≤ τ1 < t2 ≤ τ2 < · · ·  ≤  τm−1 < tm ≤ τm < tm+1 = b < ∞, 
x(t+ 

i ) = lim
∈→0+ 

x(ti + ∈) and x(t− 
i ) = lim

∈→0− 
x(ti + ∈) represent the right- and left-hand lim-

its of x(t) at t = ti , f : Ji × R × R → R is a given function, and ψi : J̃i × R → R; i = 

1, . . . ,  m are given continuous functions such that
(

ρJ 1−γ 
τ + 
i 

ψi

)
(t, x(t))

||t=τi = ci ∈ R . 

5.4.1 Existence Results 

We can use the preliminary details, essential notations, definitions, and lemmas introduced 
in the two previous sections. 

We consider the following linear fractional differential equation:

(
ρDα,β 

τ + 
i 
x

)
(t) = v(t), t ∈ Ji , i = 0, . . . ,  m, (5.43) 

where 0 < α  <  1, 0 ≤ β ≤ 1, ρ  >  0, with the conditions
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x(t) = ψi (t, x(τ − 
i )); t ∈ J̃i , i = 1, . . . ,  m, (5.44) 

φ1

(
ρJ 1−γ 

a+ x
)

(a+) + φ2

(
ρJ 1−γ 

τ +m 
x
)

(b) = φ3, (5.45) 

where γ = α + β − αβ, φ1, φ2, φ3 ∈ R, φ1 /= 0, and  c∗ = max{|ci | :  i = 1, . . . ,  m}. 

The following theorem shows that the problem (5.43)–(5.45) has a unique solution given 
by 

x(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

1

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 [
φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
v
)

(b)

]

+ (
ρJ α 

a+ v
)
(t) i f  t  ∈ J0, 

ci
Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
v
)

(t), t ∈ Ji , i = 1, . . . ,  m, 

ψi (t, x(t)), t ∈ J̃i , i = 1, . . . ,  m. 

(5.46) 

Theorem 5.21 Let γ = α + β − αβ, where 0 < α  <  1 and 0 ≤ β ≤ 1. If v : Ji → R; i = 
0, . . . ,  m, is a function such that v(·) ∈ Cγ,ρ  (Ji ), then x ∈ PCγ 

γ,ρ  (J ) satisfies the problem 
(5.43)–(5.45) if and only if it satisfies (5.46). 

Proof Assume x satisfies (5.43)–(5.45). If t ∈ J0, then
(

ρDα,β 
a+ x

)
(t) = v(t). 

Lemma 2.38 implies we have a solution that can be written as 

x(t) =
(

ρJ 1−γ 
a+ x

)
(a)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ 1

Γ(α)

( t 

a

(
tρ − τ ρ 

ρ

)α−1 

τ ρ−1v(τ )dτ. 

If t ∈ J̃1, then we have x(t) = ψ1(t, x(t)). 
If t ∈ J1, then Lemma 2.38 implies 

x(t) =

(
ρJ 1−γ 

τ + 
1 

x

)
(τ1)

Γ(γ )

(
tρ − τ ρ 

1 

ρ

)γ −1 

+ 1

Γ(α)

( t 

τ1

(
tρ − τ ρ 

ρ

)α−1 

τ ρ−1v(τ )dτ 

= c1
Γ(γ )

(
tρ − τ ρ 

1 

ρ

)γ −1 

+
(

ρJ α 
τ + 
1 
v
)

(t). 

If t ∈ J̃2, then we have x(t) = ψ2(t, x(t)).
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If t ∈ J2, then Lemma 2.38 implies 

x(t) =

(
ρJ 1−γ 

τ + 
2 

x

)
(τ2)

Γ(γ )

(
tρ − τ ρ 

2 

ρ

)γ −1 

+ 1

Γ(α)

( t 

τ2

(
tρ − τ ρ 

ρ

)α−1 

τ ρ−1v(τ )dτ 

= c2
Γ(γ )

(
tρ − τ ρ 

2 

ρ

)γ −1 

+
(

ρJ α 
τ + 
2 
v
)

(t). 

Repeating the process in this way, the solution x(t) for t ∈ J can be written as 

x(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρJ 1−γ 

a+ x
)

(a)

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ (
ρJ α 

a+ v
)
(t) i f  t  ∈ J0, 

ci
Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
v
)

(t) i f  t  ∈ Ji , i = 1, . . . ,  m, 

ψi (t, x(t)) i f  t  ∈ J̃i , i = 1, . . . ,  m. 

(5.47) 

Applying ρJ 1−γ 
τ +m 

on both sides of (5.47), using Lemma 2.19, and taking t = b, we obtain

(
ρJ 1−γ 

τ +m 
x
)

(b) = cm +
(

ρJ 1−γ +α 
τ +m 

v
)

(b). 

Using the condition (5.45), we get

(
ρJ 1−γ 

a+ x
)

(a) = 
φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
v
)

(b). (5.48) 

Substituting (5.48) in (5.47), we get (5.46). 

Reciprocally, for t ∈ Ji ; i = 0, . . . ,  m, applying ρJ 1−γ 
τ + 
i 

on both sides of (5.46) and using 

Lemma 2.19 and Theorem 2.14, we get

(
ρJ 1−γ 

τ + 
i 

x

)
(t) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
v
)

(b) +
(

ρJ 1−γ +α 
a+ v

)
(t), t ∈ J0, 

ci +
(

ρJ 1−γ +α 
τ + 
i 

v

)
(t), t ∈ Ji , i = 1, . . . ,  m. 

(5.49) 

Next, taking the limit t → a+ of (5.49) and using Lemma 2.24, with 1 − γ <  1 − γ + α, 
we obtain
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(
ρJ 1−γ 

a+ u
)

(a+) = 
φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
v
)

(b). (5.50) 

Now taking t = b in (5.49), we get
(

ρJ 1−γ 
τ +m 

u
)

(b) = cm +
(

ρJ 1−γ +α 
τ +m 

v
)

(b). (5.51) 

From (5.50) and (5.51), we obtain 

φ1

(
ρJ 1−γ 

a+ x
)

(a+) + φ2

(
ρJ 1−γ 

τ +m 
x
)

(b) = φ3, 

which shows that the boundary condition (5.45) is satisfied. 
Next, for t ∈ Ji ; i = 0, . . . ,  m, apply operator ρDγ 

τ + 
i 
on both sides of (5.46). Then, from 

Lemmas 2.19 and 2.33, we obtain 

(ρDγ 
τ + 
i 
x)(t) =

(
ρDβ(1−α) 

τ + 
i 

v

)
(t). (5.52) 

Since x ∈ Cγ 
γ,ρ  (Ji ) and by definition of Cγ 

γ,ρ  (Ji ), we have ρDγ 
τ + 
i 
x ∈ Cγ,ρ  (Ji ), then (5.52) 

implies that 

(ρDγ 
τ + 
i 
x)(t) =

(
δρ 

ρJ 1−β(1−α) 
τ + 
i 

v

)
(t) =

(
ρDβ(1−α) 

τ + 
i 

v

)
(t) ∈ Cγ,ρ  (Ji ). (5.53) 

As v(·) ∈ Cγ,ρ  (Ji ) and from Lemma 2.23, follows

(
ρJ 1−β(1−α) 

τ + 
i 

v

)
∈ Cγ,ρ  (Ji ), i = 0, . . . ,  m. (5.54) 

From (5.53), (5.54), and by the definition of the space Cn 
γ,ρ  (Ji ), we obtain

(
ρJ 1−β(1−α) 

τ + 
i 

v

)
∈ C1 

γ,ρ  (Ji ), i = 0, . . . ,  m. 

Applying operator ρJ β(1−α) 
τ + 
i 

on both sides of (5.52) and using Lemmas 2.32 and 2.24 and 

Property 2.22, we have
(

ρDα,β 
τ + 
i 
x

)
(t) = ρJ β(1−α) 

τ + 
i

(
ρDγ 

τ + 
i 
x

)
(t) 

= v(t) −

(
ρJ 1−β(1−α) 

τ + 
i 

v

)
(τi )

Γ(β(1 − α))

(
tρ − τ ρ 

i 

ρ

)β(1−α)−1 

= v(t),
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that is, (5.43) holds. Also, we can easily have 

x(t) = ψi (t, x(t)); t ∈ J̃i , i = 1, . . . ,  m. 

This completes the proof. ⎕

As a consequence of Theorem 5.21, we have the following result. 

Lemma 5.22 Let γ = α + β − αβ where 0 < α  <  1 and 0 ≤ β ≤ 1, and i = 0, . . . ,  m, 
let f : J × R × R → R be a function such that f (·, x(·), y(·)) ∈ Cγ,ρ  (Ji ), for any x, y ∈ 
PCγ,ρ  (J ). If x ∈ PCγ 

γ,ρ  (J ), then x satisfies the problem (5.40)–(5.42) if and only if x is 
the fixed point of the operator ξ :  PCγ,ρ  (J ) → PCγ,ρ  (J ) defined by

ξx(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

c

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ (
ρJ α 

a+ ϕ
)
(t), t ∈ J0, 

ci
Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
ϕ
)

(t), t ∈ Ji , i = 1, . . . ,  m, 

ψi (t, x(t)), t ∈ J̃i , i = 1, . . . ,  m, 

(5.55) 

where ϕ be a function satisfying the functional equation 

ϕ(t) = f (t, x(t), ϕ(t)), 

and c = 
φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
ϕ
)

(b). Also, by Lemma 2.23, ξu ∈ PCγ,ρ  (J ). 

We are now in a position to state and prove our existence result for the problem (5.40)– 
(5.42) based on Banach’s fixed point theorem. 

Theorem 5.23 Assume that the following hypotheses hold. 

(5.23.1) The function f : Ji × R × R → R is continuous on Ji ; i = 0, . . . ,  m, and 

f (·, x(·), y(·)) ∈ Cβ(1−α) 
γ,ρ (Ji ), i = 0, . . . ,  m, for any x, y ∈ PCγ,ρ  (J ). 

(5.23.2) There exist constants η1 > 0 and 0 < η2 < 1 such that 

| f (t, x, y) − f (t, x̄, ȳ)| ≤  η1|x − x̄ | +  η2|y − ȳ| 

for any x, y, x̄, ȳ ∈ R and t ∈ Ji , i = 0, . . . ,  m.
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(5.23.3) The functions ψi are continuous and there exists a constant K ∗ > 0 such that 

|ψi (x) − ψi (x̄)| ≤  K ∗|x − x̄ |, x, x̄ ∈ R, i = 1, . . . ,  m. 

If 

ẽ = max

(
K ∗, η1 

1 − η2

(
bρ − aρ 

ρ

)α [ |φ2| 
|φ1|Γ(α + 1) 

+ Γ(γ )
Γ(γ + α)

])
< 1, (5.56) 

then the problem (5.40)–(5.42) has a unique solution in PCγ,ρ  (J ). 

Before starting the proof of Theorem 5.23, we are obliged to provide the following remark. 

Remark 5.24 By hypothesis (5.23.2), we may have the following: 

| f (t, x, y)| ≤ |  f (t, x, y) − f (t, 0, 0)| + |  f (t, 0, 0)| 
≤ η1|x | +  η2|y| +  f0, 

where f0 = sup 
t∈[a,b] 

| f (t, 0, 0)|. 

Proof The proof will be given in two steps. 

Step 1: We show that the operator ξ defined in (5.55) has a unique fixed point x∗ in 
PCγ,ρ  (J ). Let x, y ∈ PCγ,ρ  (J ) and t ∈ J . 
For t ∈ J0 we have 

|ξx(t) − ξy(t)| ≤  
|φ2| 

|φ1|Γ(γ )

(
tρ − aρ 

ρ

)γ −1 (
ρJ 1−γ +α 

τ +m 
|ϕ(τ ) − ϕ̃(τ )|

)
(b) 

+ (
ρJ α 

a+|ϕ(τ ) − ϕ̃(τ )|) (t), 
and for t ∈ Ji , i = 1, . . . ,  m, we have 

|ξx(t) − ξy(t)| ≤
(

ρJ α 
τ + 
i 
|ϕ(τ ) − ϕ̃(τ )|

)
(t), 

where ϕ, ϕ̃ ∈ Cγ,ρ  (Ji ); i = 0, . . . ,  m, such that 

ϕ(t) = f (t, x(t), ϕ(t)), 
ϕ̃(t) = f (t, y(t), ϕ̃(t)). 

By (5.23.2), we have  

|ϕ(t) − ϕ̃(t)| = |  f (t, x(t), ϕ(t)) − f (t, y(t), ϕ̃(t))| 
≤ η1|x(t) − y(t)| +  η2|ϕ(t) − ϕ̃(t)|.
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Then, 
|ϕ(t) − ϕ(t)| ≤ η1 

1 − η2 
|x(t) − y(t)|. 

Therefore, for each t ∈ Ji , i = 1, . . . ,  m, 

|ξx(t) − ξy(t)| ≤ η1 

1 − η2

(
ρJ α 

τ + 
i 
|x(τ ) − y(τ )|

)
(t). 

Thus 

|ξx(t) − ξy(t)| ≤  

⎡ 

⎣ η1 

1 − η2 

⎛ 

⎝ρJ α 
τ + 
i

(
τ ρ − τ ρ 

i 

ρ

)γ −1
⎞ 

⎠ (t) 

⎤ 

⎦ ||x − y||PCγ,ρ  . 

By Lemma 2.19, we have  

|ξx(t) − ξy(t)| ≤  

⎡ 

⎣ η1Γ(γ ) 
(1 − η2)Γ(γ + α)

(
tρ − τ ρ 

i 

ρ

)α+γ −1
⎤ 

⎦ ||x − y||PCγ,ρ  , 

hence

||||||(ξx(t) − ξy(t))
(
tρ − τ ρ 

i 

ρ

)1−γ
|||||| ≤ 

⎡ 

⎢⎢⎢⎢⎣ 

η1Γ(γ )

(
tρ − τ ρ 

i 

ρ

)α 

(1 − η2)Γ(γ + α) 

⎤ 

⎥⎥⎥⎥⎦ ||x − y||PCγ,ρ  

≤ 

⎡ 

⎢⎢⎣ 

η1Γ(γ )
(
bρ − aρ 

ρ

)α 

(1 − η2)Γ(γ + α) 

⎤ 

⎥⎥⎦ ||x − y||PCγ,ρ  

≤ ẽ||x − y||PCγ,ρ  . 

And for t ∈ J0 we have 

|ξx(t) − ξy(t)| ≤  
|φ2| 

|φ1|Γ(γ )

(
tρ − aρ 

ρ

)γ −1 (
ρJ 1−γ +α 

τ +m 
|ϕ(τ ) − ϕ̃(τ )|

)
(b) 

+ (
ρJ α 

a+|ϕ(τ ) − ϕ̃(τ )|) (t) 
≤
[

|φ2| 
|φ1|Γ(α + 1)

(
bρ − τ ρ 

m 

ρ

)α+γ −1 

+ Γ(γ )
Γ(γ + α)

(
tρ − aρ 

ρ

)α+γ −1
]

× η1 

1 − η2
||x − y||PCγ,ρ  ,
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hence|||||(ξx(t) − ξy(t))
(
tρ − aρ 

ρ

)1−γ
||||| ≤ 

η1 (bρ − aρ )α 

(1 − η2)ρα

[ |φ2| 
|φ1|Γ(α + 1) 

+ Γ(γ )
Γ(γ + α)

]

× ||x − y||PCγ,ρ  

≤ ẽ||x − y||PCγ,ρ  . 

For t ∈ J̃i , i = 1, . . . ,  m, we have 

|ξx(t) − ξy(t)| ≤  |(ψi (t, x(t)) − ψi (t, y(t)))| 
≤ K ∗||x − y||PCγ,ρ  

≤ ẽ||x − y||PCγ,ρ  . 

Then, for each t ∈ J , we have

||ξx − ξy||PCγ,ρ  ≤ ẽ||u − w||PCγ,ρ  . 

By (5.56), the operator ξ is a contraction. Hence, by Theorem 2.45, ξ has a unique fixed 
point x∗ ∈ PCγ,ρ  (J ). 

Step 2: We prove that the fixed point x∗ ∈ PCγ,ρ  (J ) is actually in PCγ 
γ,ρ  (J ). 

Since x∗ is the unique fixed point of operator ξ in PCγ,ρ  (J ), then for each t ∈ J , we have

ξx∗(t) = 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

c

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ (
ρJ α 

a+ ϕ
)
(t) i f  t  ∈ J0, 

ci
Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
ϕ
)

(t) i f  t  ∈ Ji , i = 1, . . . ,  m, 

ψi (t, x∗(t)) i f  t  ∈ J̃i , i = 1, . . . ,  m, 

where ϕ ∈ Cγ,ρ  (Ji ); i = 0, . . . ,  m, such that 

ϕ(t) = f (t, x∗(t), ϕ(t)). 

For t ∈ Ji ; i = 0, . . . ,  m, applying ρDγ 
τ + 
i 
to both sides and by Lemmas 2.19 and 2.33, we  

have 
ρDγ 

τ + 
i 
x∗(t) =

(
ρDγ 

τ + 
i 

ρJ α 
τ + 
i 
f (τ, x∗(τ ), ϕ(τ ))

)
(t) 

=
(

ρDβ(1−α) 
τ + 
i 

f (τ, x∗(τ ), ϕ(τ ))
)

(t). 

Since γ ≥ α, by (5.23.1), the right-hand side is in Cγ,ρ  (Ji ) and thus ρDγ 
τ + 
i 
x∗ ∈ Cγ,ρ  (Ji ). 

And since ψi ∈ C( J̃i , R); i = 1, . . . ,  m, then x∗ ∈ PCγ 
γ,ρ  (J ). As a consequence of Steps
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1 and 2 together with Theorem 5.23, we can conclude that the problem (5.40)–(5.42) has  a  
unique solution in PCγ,ρ  (J ). ⎕

Our second result is based on Krasnoselskii’s fixed point theorem. 

Theorem 5.25 Assume that (5.23.1), (5.23.2), and the following condition hold: 

(5.25.1) The functions ψi are continuous and there exist constants 0 < φ1 < 1, φ2 > 0 
such that 

|ψi (x)| ≤ φ1|x | + φ2 for each x ∈ R, i = 1, . . . ,  m. 

If 
|φ2|η1 

|φ1|Γ(α + 1)(1 − η2)

(
bρ − aρ 

ρ

)α 
< 1, (5.57) 

then the problem (5.40)–(5.42) has at least one solution in PCγ,ρ  (J ). 

Proof Consider the set 

Bω = {x ∈ PCγ,ρ  (J ) : ||x ||PCγ,ρ  ≤ ω}, 

where ω ≥ r1 + r2, with 

r1 := max

(
c∗

Γ(γ ) 
, 
|φ3 − cm φ2|
Γ(γ )|φ1| + A|φ2|

Γ(α + 1)|φ1|
(
bρ − aρ 

ρ

)α)
, 

r2 := max

(
φ1r + φ2, A

(
Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
. 

We define the operators N1 and N2 on Bω by 

N1x(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

1

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 [
φ3 

φ1 
− 

cm φ2 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
ϕ
)

(b)

]
, t ∈ J0, 

ci
Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

, t ∈ Ji , i = 1, . . . ,  m, 

0, t ∈ J̃i , i = 1, . . . ,  m 
(5.58)
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and 

N2x(t) = 

⎧⎪⎪⎨ 

⎪⎪⎩

(
ρJ α 

τ + 
i 
ϕ

)
(t) i f  t  ∈ Ji , 0 = 1, . . . ,  m, 

ψi (t, x(t)) i f  t  ∈ J̃i , i = 1, . . . ,  m 

(5.59) 

where i = 0, . . . ,  m and ϕ : Ji → R be a function satisfying the functional equation 

ϕ(t) = f (t, x(t), ϕ(t)). 

Then the fractional integral equation (5.55) can be written as operator equation

ξx(t) = N1x(t) + N2x(t), x ∈ PCγ,ρ  (J ). 

We shall use Krasnoselskii’s fixed point theorem to prove in several steps that the operator
ξ defined in (5.55) has a fixed point. 

Step 1: We prove that N1x + N2 y ∈ Bω for any x, y ∈ Bω. 
By Remark (5.24) and from (5.55), we have for each t ∈ Ji , i = 0, . . . ,  m,

||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

ϕ(t)

|||||| =
||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

f (t, x(t), ϕ(t))

||||||
≤
(
tρ − τ ρ 

i 

ρ

)1−γ 

(η1|x(t)| +  η2|ϕ(t)| +  f0) , 

which implies that
||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

ϕ(t)

|||||| ≤ η1
(
bρ − aρ 

ρ

)1−γ 
ω + η2

||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

ϕ(t)

||||||
+ f0

(
bρ − aρ 

ρ

)1−γ 
. 

Then 

max 
i=0,...,m 

⎧⎨ 

⎩sup 
t∈Ji

||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

ϕ(t)

||||||

⎫⎬ 

⎭ ≤ 
(η1ω + f0)

(
bρ − aρ 

ρ

)1−γ 

1 − η2 
:= A. 

Thus, for t ∈ J0, by (5.58) and Lemma 2.19,
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|||||
(
tρ − aρ 

ρ

)1−γ 
(N1x)(t)

||||| ≤ 
|φ3 − cm φ2|
Γ(γ )|φ1| + 

|φ2|
Γ(γ )|φ1|

(
ρJ 1−γ +α 

τ +m 
|ϕ(τ )|

)
(b) 

≤ 
|φ3 − cm φ2|
Γ(γ )|φ1| + A|φ2|

Γ(α + 1)|φ1|
(
bρ − aρ 

ρ

)α 
, 

and for t ∈ Ji , i = 1, . . . ,  m, we have
||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

(N1x)(t)

|||||| ≤ 
|ci |

Γ(γ ) 
≤ 

c∗

Γ(γ ) 
, 

then for each t ∈ J we get

||N1x||PCγ,ρ  ≤ max

(
c∗

Γ(γ ) 
, 
|φ3 − cm φ2|
Γ(γ )|φ1| + A|φ2|

Γ(α + 1)|φ1|
(
bρ − aρ 

ρ

)α)
. (5.60) 

For t ∈ Ji , i = 0, . . . ,  m, by (5.59) and Lemma 2.19, we have
||||||
(
tρ − τ ρ 

i 

ρ

)1−γ 

(N2 y)(t)

|||||| ≤
(
tρ − τ ρ 

i 

ρ

)1−γ (
ρJ α 

τ + 
i 
|ϕ(τ )|

)
(t) 

≤ A
(

Γ(γ )
Γ(γ + α)

)(
bρ − aρ 

ρ

)α 
, 

and for each t ∈ J̃i , i = 1, . . . ,  m, we have 

|(N2 y)(t)| ≤  |ψi (t, y(t))| 
≤ φ1r + φ2, 

then for each t ∈ J , we get

||N2 y||PCγ,ρ  ≤ max

(
φ1r + φ2, A

(
Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
. (5.61) 

From (5.60) and (5.61), for each t ∈ J , we have

||N1x + N2 y||PCγ,ρ  ≤ ||N1x||PCγ,ρ  + ||N2 y||PCγ,ρ  

≤ r1 + r2 
≤ ω, 

which infers that N1x + N2 y ∈ Bω. 

Step 2: N1 is a contraction. 
Let x, y ∈ PCγ,ρ  (J ) and t ∈ J . 
By (5.23.2), we have
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|ϕ(t) − ϕ̃(t)| = |  f (t, x(t), ϕ(t)) − f (t, y(t), ϕ̃(t))| 
≤ η1|x(t) − y(t)| +  η2|ϕ(t) − ϕ̃(t)|. 

where ϕ, ϕ̃ ∈ Cγ,ρ  (Ji ); i = 0, . . . ,  m, such that 

ϕ(t) = f (t, x(t), ϕ(t)), 
ϕ̃(t) = f (t, y(t), ϕ̃(t)). 

Then, 
|ϕ(t) − ϕ(t)| ≤ η1 

1 − η2 
|x(t) − y(t)|. 

Therefore, for t ∈ J0, we have  

|N1x(t) − N1y(t)| ≤  
|φ2| 

|φ1|Γ(γ )

(
tρ − aρ 

ρ

)γ −1 (
ρJ 1−γ +α 

τ +m 
|ϕ(τ ) − ϕ̃(τ )|

)
(b) 

≤ η1 

1 − η2

[
|φ2| 

|φ1|Γ(α + 1)

(
bρ − τ ρ 

m 

ρ

)α+γ −1
]

||x − y||PCγ,ρ  . 

Hence,

|||||(N1x(t) − N1y(t))

(
tρ − aρ 

ρ

)1−γ
||||| ≤ 

|φ2|η1
(
bρ − aρ 

ρ

)α 

|φ1|Γ(α + 1)(1 − η2)
||x − y||PCγ,ρ  . 

Then, for each t ∈ J , we have

||N1x − N1y||PCγ,ρ  ≤
|φ2|η1 

|φ1|Γ(α + 1)(1 − η2)

(
bρ − aρ 

ρ

)α

||x − y||PCγ,ρ  . 

Then by (5.57), the operator N1 is a contraction. 

Step 3: N2 is continuous and compact. Let {xn} be a sequence such that xn → x in PCγ,ρ  (J ). 
Then for each t ∈ Ji , i = 0, . . . ,  m, we have

||||(N2xn)(t) − (N2x)(t))
(
tρ−τ ρ 

i 
ρ

)1−γ
|||| ≤

(
tρ−τ ρ 

i 
ρ

)1−γ (
ρJ α 

τ + 
i 
|ϕn(τ ) − ϕ(τ )|

)
(t), 

where hn, h ∈ C(Ji , R), such that 

ϕn(t) = f (t, xn(t), ϕn(t)), 
ϕ(t) = f (t, x(t), ϕ(t)). 

For each t ∈ J̃i , i = 1, . . . ,  m, we have 

|(N2xn)(t) − (N2x)(t)| ≤  |(ψi (t, xn(t)) − ψi (t, x(t)))| .
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Since xn → x , then we get  ϕn(t) → ϕ(t) as n → ∞  for each t ∈ Ji ; i = 0, . . . ,  m. By  
Lebesgue’s dominated convergence Theorem and since ψi are continuous, we have

||N2xn − N2x||PCγ,ρ  → 0 as  n → ∞. 

Then N2 is continuous. Next, we prove that N2 is uniformly bounded on Bω. Let any y ∈ Bω. 
We have from step 1 that for each t ∈ J

||N2 y||PCγ,ρ  ≤ max

(
φ1r + φ2, A

(
Γ(γ )

Γ(γ + α)

)(
bρ − aρ 

ρ

)α)
. 

This proves that the operator N2 is uniformly bounded on Bω. To prove the compactness of 
N2, we take  y ∈ Bω and a < ε1 < ε2 ≤ b. Then for ε1, ε2 ∈ Ji ; i = 0, . . . ,  m,

||||||
(

ε ρ 
1 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε1) −
(

ε ρ 
2 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε2)

||||||

≤
||||||
(

ε ρ 
1 − τ ρ 

i 

ρ

)1−γ (
ρJ α 

τ + 
i 
ϕ(τ )

)
(ε1) −

(
ε ρ 
2 − τ ρ 

i 

ρ

)1−γ (
ρJ α 

τ + 
i 
ϕ(τ )

)
(ε2)

||||||
≤
(

ε ρ 
2 − τ ρ 

i 

ρ

)1−γ (
ρJ α 

ε+ 
1 
|ϕ(τ )|

)
(ε2) + 1

Γ(α)

( ε1 

τi

||τ ρ−1 H (τ )ϕ(τ )
|| dτ, 

where 

H (τ ) = 

⎡ 

⎣
(

ε ρ 
1 − τ ρ 

i 

ρ

)1−γ (
ε ρ 
1 − τ ρ 

ρ

)α−1 

−
(

ε ρ 
2 − τ ρ 

i 

ρ

)1−γ (
ε ρ 
2 − τ ρ 

ρ

)α−1
⎤ 

⎦ . 

Then by Lemma 2.19, we have
||||||
(

ε ρ 
1 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε1) −
(

ε ρ 
2 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε2)

||||||
≤ AΓ(γ )

Γ(α + γ )

(
ε ρ 
2 − τ ρ 

i 

ρ

)1−γ (
ε ρ 
2 − ε ρ 

1 

ρ

)α+γ −1 

+A
( ε1 

τi

||||H (τ ) 
τ ρ−1

Γ(α)

||||
(

τ ρ − τ ρ 
i 

ρ

)γ −1 

dτ, 

note that||||||
(

ε ρ 
1 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε1) −
(

ε ρ 
2 − τ ρ 

i 

ρ

)1−γ 

(N2 y)(ε2)

|||||| → 0 as  ε1 → ε2.
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And for ε1, ε2 ∈ J̃i ; i = 1, . . . ,  m, 

|(N2 y)(ε1) − (N2 y)(ε2)| ≤ |ψi (ε1, y(ε1)) − ψi (ε2, y(ε2))| , 

note since ψi are continuous that 

|(N2 y)(ε1) − (N2 y)(ε2)| → 0 as  ε1 → ε2. 

This proves that N2 Bω is equicontinuous on J . Therefore, N2 Bω is relatively compact. By 
PCγ,ρ-type Arzela-Ascoli Theorem, N2 is compact. As a consequence of Theorem 2.50, 
we deduce that ξ has at least a fixed point x∗ ∈ PCγ,ρ  (J ), and by the same way of the 
proof of Theorem 5.23, we can easily show that x∗ ∈ PCγ 

γ,ρ  (J ). Using Lemma 5.22, we  
conclude that the problem (5.40)–(5.42) has at least one solution in the space PCγ,ρ  (J ). ⎕

5.4.2 Ulam-Hyers-Rassias Stability 

Now, we consider the Ulam stability for problem (5.40)–(5.42). Let x ∈ PCγ,ρ  (J ), θ >  0, 
μ >  0, and  χ : J −→ [0, ∞) be a continuous function. We consider the following inequal-
ity: 

⎧⎪⎪⎨ 

⎪⎪⎩

||||
(

ρDα,β 
τ + 
i 
x

)
(t) − f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)|||| ≤ θ,  t ∈ Ji , i = 0, . . . ,  m, 

|x(t) − ψi (t, x(t))| ≤ θ,  t ∈ J̃i , i = 1, . . . ,  m, 

(5.62) 

⎧⎪⎪⎨ 

⎪⎪⎩

||||
(

ρDα,β 
τ + 
i 
x

)
(t) − f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)|||| ≤ χ(t), t ∈ Ji , i = 0, . . . ,  m, 

|x(t) − ψi (t, x(t))| ≤ μ, t ∈ J̃i , i = 1, . . . ,  m, 

(5.63) 

and 
⎧⎪⎪⎨ 

⎪⎪⎩

||||
(

ρDα,β 
τ + 
i 
x

)
(t) − f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)|||| ≤ θχ(t), t ∈ Ji , i = 0, . . . ,  m, 

|x(t) − ψi (t, x(t))| ≤ θμ,  t ∈ J̃i , i = 1, . . . ,  m. 

(5.64) 

Definition 5.26 ([156, 158]) Problem (5.40)–(5.42) is Ulam-Hyers (U-H) stable if there 
exists a real number a f > 0 such that for each θ >  0 and for each solution x ∈ PCγ,ρ  (J ) 
of inequality (5.62) there exists a solution y ∈ PCγ,ρ  (J ) of (5.40)–(5.42) with 

|x(t) − y(t)| ≤  θa f , t ∈ J .



5.4 Boundary Value Problem for Fractional Order Generalized… 163

Definition 5.27 ([156, 158]) Problem (5.40)–(5.42) is generalized Ulam-Hyers (G.U-H) 
stable if there exists K f : C([0, ∞), [0, ∞)) with K f (0) = 0 such that for each θ >  0 and 
for each solution x ∈ PCγ,ρ  (J ) of inequality (5.62) there exists a solution y ∈ PCγ,ρ  (J ) 
of (5.40)–(5.42) with 

|x(t) − y(t)| ≤  K f (θ ), t ∈ J . 

Definition 5.28 ([156, 158]) Problem (5.40)–(5.42) is Ulam-Hyers-Rassias (U-H-R) stable 
with respect to (χ , μ) if there exists a real number a f ,χ > 0 such that for each θ >  0 and 
for each solution x ∈ PCγ,ρ  (J ) of inequality (5.64) there exists a solution y ∈ PCγ,ρ  (J ) 
of (5.40)–(5.42) with 

|x(t) − y(t)| ≤  θa f ,χ (χ (t) + μ), t ∈ J . 

Definition 5.29 ([156, 158]) Problem (5.40)–(5.42) is generalized Ulam-Hyers-Rassias 
(G.U-H-R) stable with respect to (χ , μ) if there exists a real number a f ,χ > 0 such that for 
each solution x ∈ PCγ,ρ  (J ) of inequality (5.63) there exists a solution y ∈ PCγ,ρ  (J ) of 
(5.40)–(5.42) with 

|x(t) − y(t)| ≤  a f ,χ (χ (t) + μ), t ∈ J . 

Remark 5.30 It is clear that 

1. Definition 5.26 =⇒ Definition 5.27. 
2. Definition 5.28 =⇒ Definition 5.29. 
3. Definition 5.28 for χ(.)  = μ = 1 =⇒ Definition 5.26. 

Remark 5.31 ([156, 158]) A function x ∈ PCγ,ρ  (J ) is a solution of inequality (5.64) if  
and only if there exist υ ∈ PCγ,ρ  (J ) and a sequence υi , i = 0, . . . ,  m such that 

1. |υ(t)| ≤  θχ(t), t ∈ Ji , i = 0, . . . ,  m; and |υi | ≤  θμ, t ∈ J̃i , i = 1, . . . ,  m, 

2.

(
ρDα,β 

τ + 
i 
x

)
(t) = f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)
+ υ(t), t ∈ Ji , i = 0, . . . ,  m, 

3. x(t) = ψi (t, x(t)) + υi , t ∈ J̃i , i = 1, . . . ,  m. 

Theorem 5.32 Assume that in addition to (5.23.1)–(5.23.3) and (5.56), the following 
hypothesis holds: 

(5.32.1) There exist a nondecreasing function χ : J −→ [0, ∞) and κχ > 0 such that for 
each t ∈ Ji ; i = 0, . . . ,  m, we have 

(ρJ α 
τ + 
i 
χ)(t) ≤ κχ χ(t).
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Then the problem (5.40)–(5.42) is U-H-R stable with respect to (χ , μ). 

Proof Let x ∈ PCγ,ρ  (J ) be a solution of inequality (5.64), and let us assume that y is the 
unique solution of the problem 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩

(
ρDα,β 

τ + 
i 
y

)
(t) = f

(
t, y(t),

(
ρDα,β 

τ + 
i 
y

)
(t)

)
; t ∈ Ji , i = 0, . . . ,  m, 

y(t) = ψi (t, y(t)); t ∈ J̃i , i = 1, . . . ,  m, 
φ1

(
ρJ 1−γ 

a+ y
)

(a+) + φ2

(
ρJ 1−γ 

m+ y
)

(b) = φ3,(
ρJ 1−γ 

τ + 
i 

y

)
(τi ) =

(
ρJ 1−γ 

τ + 
i 

x

)
(τi ), i = 0, . . . ,  m. 

By Lemma 5.22, we obtain for each t ∈ J 

y(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

c

Γ(γ )

(
tρ − aρ 

ρ

)γ −1 

+ (
ρJ α 

a+ ϕ
)
(t), t ∈ J0,

(
ρJ 1−γ 

τ + 
i 

y

)
(τi )

Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
ϕ
)

(t), t ∈ Ji , i = 1, . . . ,  m, 

ψi (t, y(t)), t ∈ J̃i , i = 1, . . . ,  m, 

where ϕ ∈ Cγ,ρ  (Ji ); i = 0, . . . ,  m, be a function satisfying the functional equation 

ϕ(t) = f (t, y(t), ϕ(t)) 

and c = 
φ3 

φ1 
− 

φ2 

φ1

(
ρJ 1−γ 

τ +m 
y
)

(τm ) − 
φ2 

φ1

(
ρJ 1−γ +α 

τ +m 
ϕ
)

(b). 
Since x is a solution of the inequality (5.64), by Remark 5.31, we have  

⎧⎨ 

⎩
(

ρDα,β 
τ + 
i 
x

)
(t) = f

(
t, x(t),

(
ρDα,β 

τ + 
i 
x

)
(t)

)
+ υ(t), t ∈ Ji , i = 0, . . . ,  m; 

x(t) = ψi (t, x(t)) + υi , t ∈ J̃i , i = 1, . . . ,  m. 
(5.65) 

Clearly, the solution of (5.65) is given  by  

x(t) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρJ 1−γ 

τ + 
i 

x

)
(τi )

Γ(γ )

(
tρ − τ ρ 

i 

ρ

)γ −1 

+
(

ρJ α 
τ + 
i 
( ̃ϕ + υ)

)
(t) i f  t  ∈ Ji , i = 1, . . . ,  m, 

ψi (t, x(t)) + υi i f  t  ∈ J̃i , i = 1, . . . ,  m,
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where ϕ̃ : Ji → R, i = 0, . . . ,  m, be a function satisfying the functional equation 

ϕ̃(t) = f (t, x(t), ϕ̃(t)). 

Hence, for each t ∈ Ji ,i = 0, . . . ,  m, we have 

|x(t) − y(t)| ≤
(

ρJ α 
τ + 
i 
|ϕ̃(τ ) − ϕ(τ )|

)
(t) +

(
ρJ α 

τ + 
i 
|υ(τ )|

)

≤ θκχ χ(t) + η1 

(1 − η2)

( t 

τi 

τ ρ−1
(
tρ − τ ρ 

ρ

)α−1 |x(τ ) − y(τ )|
Γ(α) 

dτ. 

We apply Lemma 2.40 to obtain 

|x(t) − y(t)| ≤  θκχ χ(t) +
( t 

τi 

∞Σ
k=1

(
η1 

1−η2

)k
Γ(kα) 

τ ρ−1
(
tρ − τ ρ 

ρ

)kα−1 

(θ κχ χ(τ  ))dτ 

≤ θκχ χ(t)Eα

[
η1 

1 − η2

(
tρ − τ ρ 

i 

ρ

)α]

≤ θκχ χ(t)Eα

[
η1 

1 − η2

(
bρ − aρ 

ρ

)α]
. 

And for each t ∈ J̃i ,i = 1, . . . ,  m, we have 

|x(t) − y(t)| ≤ |ψi (t, x(t)) − ψi (t, y(t))| + |υi | 
≤ K ∗|x(t) − y(t)| +  θμ,  

then by 5.56, we have  

|x(t) − y(t)| ≤ θμ  
1 − K ∗ . 

Then for each t ∈ J , we have  

|x(t) − y(t)| ≤  aχ θ(μ  + χ(t)), 

where 

aχ = 1 

1 − K ∗ + κχ Eα

[
η1 

1 − η2

(
bρ − aρ 

ρ

)α]
. 

Hence, the problem (5.40)–(5.42) is U-H-R stable with respect to (χ , τ ). ⎕

Remark 5.33 If the conditions (5.23.1)–(5.23.3), (5.32.1), and  (5.56) are satisfied, then 
by Theorem 5.32 and Remark 5.30, it is clear that problem (5.40)–(5.42) is U-H-R stable 
and G.U-H-R stable. And if χ(.)  = μ = 1, then problem (5.40)–(5.42) is also G.U-H stable 
and U-H stable.
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Remark 5.34 Our results for the boundary value problem (5.40)–(5.42) apply in the fol-
lowing cases: 

• Initial value problems: φ1 = 1, φ2 = 0. 
• Anti-periodic problems: φ1 = 1, φ2 = 1, φ3 = 0. 
• Periodic problems: φ1 = 1, φ2 = −1, φ3 = 0. 

5.4.3 An Example 

Example 5.35 Consider the following impulsive periodic problem of generalized Hilfer 
fractional differential equation:

(
1 
2 D 

1 
2 ,0 

τ + 
i 
x

)
(t) = |cos(t)|e−2t + |sin(t)| 

122et+2(1 + |x(t)| + | 1 2 D 
1 
2 ,0 

τ + 
i 
x(t)|) 

, for each t ∈ J0 ∪ J1, (5.66) 

x(t) = |x(t)| 
5et + 3|x(t)| , for each t ∈ J̃1, (5.67)

(
1 
2 J 

1 
2 
1+ x

)
(1+) =

(
1 
2 J 

1 
2 
3+ x

)
(π ), (5.68) 

where J0 = (1, e], J1 = (3, π ], J̃1 = (e, 3], s0 = 1, t1 = e, and  s1 = 3. 
Set 

f (t, u, w)  = 
|cos(t)|e−2t + |sin(t)| 
122et+2(1 + |x | + |y|) , t ∈ J0 ∪ J1, x, y ∈ R. 

We have 

Cβ(1−α) 
γ,ρ ((1, e]) = C0 

1 
2 , 

1 
2 
((1, e]) 

=
(
u : (1, e] →  R : √

2
(√

t − 1
) 1 

2 
u ∈ C([1, e], R)

)
, 

and 

Cβ(1−α) 
γ,ρ ((3, π ]) = C0 

1 
2 , 

1 
2 
((3, π ]) 

=
(
u : (3, π ] →  R : √

2
(√

t − √
3
) 1 

2 
u ∈ C([3, π ], R)

)
, 

with 

γ = α = 
1 

2 
, ρ  = 

1 

2 
, β  = 0, and i  ∈ {0, 1}.
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Clearly, the continuous function f ∈ C0 
1 
2 , 

1 
2 
((1, e]) ∩ C0 

1 
2 , 

1 
2 
((3, π ]) . Hence, the condition 

(5.23.1) is satisfied. 
For each x, x̄, y, ȳ ∈ R and t ∈ J0 ∪ J1, we have 

| f (t, x, y) − f (t, x̄, ȳ)| ≤  
|cos(t)|e−2t + |sin(t)| 

122et+2 (|x − x̄ | + |y − ȳ|) 

≤ 
1 + e2 

122e5 
(|x − x̄ | + |y − ȳ|) . 

Hence condition (5.23.2) is satisfied with η1 = η2 = 
1 + e2 

122e5 
. 

And let 
ψ(x) = x 

5et + 3x 
, u ∈ [0, ∞). 

Let x, y ∈ [0, ∞). Then we have 

|ψ(x) − ψ(y)| = | x 

5et + 3x 
− y 

5et + 3y 
| = 5et |x − y| 

(5et + 3x)(5et + 3y) 
≤ 

1 

5e
|x − y|, 

and so the condition (5.23.3) is satisfied with K ∗ = 
1 

5e 
. 

Also, the condition (5.56) of Theorem 5.23 is satisfied for 

ẽ = max

(
K ∗, η1 

1 − η2

(
bρ − aρ 

ρ

)α [ |φ2| 
|φ1|Γ(α + 1) 

+ Γ(γ )
Γ(γ + α)

])

= max

(
1 

5e 
, 

√
2(1 + e2) 

122e5 − e2 − 1
(√

π − 1
) 1 
2

[
1

Γ( 3 2 ) 
+ √

π

])

≈ max {0.0735758882, 0.00167130655} 
= 0.00167130655 < 1. 

Then the problem (5.66)–(5.68) has a unique solution in PC 1 
2 , 

1 
2 
([1, π ]). 

Hypothesis (5.32.1) is satisfied with μ = 1 and 

χ(t) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

1 /
2( 

√
t − √

τi ) 
, i f  t  ∈ J0 ∪ J1, 

π, i f  t  ∈ J̃1, 

and κχ =
√
2π ( 

√
e − 1) 

1 
2 . Indeed, for each t ∈ J0 ∪ J1, we get  

( 
1 
2 J 

1 
2 
1+ χ)(t) ≤

√
2π (

√
π − √

3) 
1 
2 √

2( 
√
t − 1) 

,
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and 

( 
1 
2 J 

1 
2 
3+ χ)(t) ≤

√
2π ( 

√
e − 1) 

1 
2 /

2( 
√
t − √

3) 
. 

Consequently, Theorem 5.32 implies that the problem (5.66)–(5.68) is U-H-R stable. 

5.5 Notes and Remarks 

The results of Chapter 5 are taken from the papers of Salim et al. [123, 128, 130]. We refer 
the reader to the monographs [ 7, 24, 27, 43, 61, 68, 70, 82, 97, 151], and the papers [ 1– 6, 8, 
15, 51, 52, 54– 56], for more information on the concepts studied in this chapter.
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