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Preface

This book provides a novel approach to convex analysis and convex
optimization, based on subdifferential calculus of pointwise suprema of con-
vex functions. The main goal in writing this book consists of analyzing the
subdifferential of the supremum of an arbitrary collection of convex functions,
defined on a separated locally convex space, in terms of the subdifferentials
of the data functions. We provide a series of results in this line, but in
different settings and under different assumptions. Since many convex func-
tions such as the Fenchel conjugate, the sum, the composition with affine
applications, etc. can be written as a supremum, the formulas provided in the
book lead to calculus rules unifying many results in the literature.

We present in this book a rather original approach to convex analysis,
which we hope will be appreciated by the community of optimizers, mathe-
matical analysts, operations researchers, etc. The contents and style are
appropriate for graduate and doctoral students in mathematics, economics,
physics, engineering, etc., and also for specialists and practitioners. The book
offers a source of alternative perspectives to developments supplied in other
convex analysis and optimization texts, and it provides challenging and
motivating material for experts in functional analysis and convex geometry
who may be interested in the applications of their work. A considerable part
of the book, more precisely chapters 2, 3, and 4, constitutes a source of
valuable didactic material for an advanced course on convex analysis and
optimization.

Deriving calculus rules for subdifferentials is one of the main issues raised
in convex analysis. The study of the subdifferential of the supremum function
has attracted the attention of specialists in convex analysis; in fact, many
earlier contributions dealing with pointwise supremum functions can be
found in the literature, starting in the 1960s. Let us quote a paragraph from
the second page of J.-B. Hiriart-Urruty, in his article. “Convex analysis and
optimization in the past 50 years: some snapshots” [107]: “One of the most
specific constructions in convex or nonsmooth analysis is certainly taking the
supremum of a (possibly infinite) collection of functions”. In the years 1965–
1970, various calculus rules concerning the subdifferential of supremum
functions started to emerge; working in that direction and using various
assumptions, several authors contributed to these calculus rules. Among
them we can cite B. N. Pshenichnyi, A. D. Ioffe, V. L. Levin, R.
T. Rockafellar, A. Sotskov, etc. The mathematical interest in the main
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subject of the book has been widely recognized by prestigious authors since
the very beginning of convex analysis history. A sample of remarkable con-
tributions to this topic are attributed to A. Brøndsted [29], F. H. Clarke [40],
J. M. Danskin [67], J.-B. Hiriart-Urruty and R. R. Phelps [111], A. D. Ioffe
and V. H. Tikhomirov [115], V. L. Levin [131], O. Lopez and L. Thibault
[139], B. S. Mordukhovich and T. Nghia [158], B. N. Pshenichnyi [169],
R. T. Rockafellar [177], M. Valadier [191], M. Volle [195], etc. See, for
instance, V. M. Tikhomirov [190] to trace out the historical origins of the
subject. A short historical review of some of these results appears in the
introduction and bibliographic notes of the corresponding chapters.

Furthermore, any formula for the subdifferential of the supremum function
can be seen as a useful tool in deriving Karush–Kuhn–Tucker optimality
conditions for a convex optimization problem. This is due to the fact that any
family of convex constraints, even an infinite one, can be replaced with a
unique convex constraint via the supremum function. An alternative
approach consists of replacing the constraints with the indicator function
of the feasible set. It turns out that, under certain constraint qualifications,
its subdifferential (i.e., the normal cone to the feasible set) appears in the
so-called Fermat optimality principle, and its relation to the subdifferential
of the supremum function can then be exploited.

The context of locally convex spaces has been chosen with the aim of
proposing formulations of our results at their maximum level of generality in
order to compare them with the pre-existing results in the literature. Around
40 examples have been included to clarify the meaning of concepts and
results. Each chapter concludes with a list of exercises which are strongly
related to its contents. There are in total 131 exercises, and their solutions,
detailed or schematic, are given in chapter 9 (“Exercises - Solutions”). Some
of them are used inside the proofs of some results to shorten them by keeping
exclusively the core part of the arguments. The last section of each chapter,
entitled “Bibliographical notes”, is devoted to supplying historical notes,
comments on related results, etc. The following paragraphs summarize the
contents of the book.

- Introductory chapter 1 intends to motivate the reader and provide a
detailed account of the objectives and contents of the book, and their relation
to antecedents in the literature.

- Section 2.1 in chapter 2 contains background material, including a brief
introduction to locally convex spaces, duality pairs, weak topologies, sepa-
ration theorems, and the Banach–Alaoglu–Bourbaki theorem, among other
basic results. The relation between convexity and continuity is reviewed in
section 2.2, whereas the last section of this chapter, section 2.3, presents
typical examples of convex functions.

- Chapter 3 provides an extensive background on convex analysis, including
preliminary results and the notation used in the book. Special emphasis is put
on the Fenchel–Moreau–Rockafellar theorem (Theorem 3.2.2) and its conse-
quences, including dual representations of the support function of sublevel sets

viii PREFACE



and extensions of the minimax theorem. The purpose of this chapter is to show
that such a crucial theorem constitutes the main tool for deriving many other
fundamental results of convex analysis.

- Chapter 4 complements chapter 3 by presenting an in-depth study of key
concepts and results involving the subdifferential and the Fenchel conjugate,
such as the duality theory, integration of the subdifferential, convexity in
Banach spaces, subdifferential calculus rules, etc. Some results and/or their
proofs are new, justifying their inclusion in a book that aspires to become a
reference text.

- Chapter 5 is a key part of the book, with characterizations of the sub-
differential of the supremum function provided. It starts by presenting some
particular formulas for the approximate subdifferential of the supremum
function, which are proved using classic tools of convex analysis presented in
chapter 4. Next, the main formula of the subdifferential, involving exclusively
the ɛ-subdifferential of the data functions, is given in Theorem 5.2.2. Other
simpler formulas are derived under additional continuity assumptions.

- The main purpose of chapter 6 is to specify the fundamental results of the
previous chapter in the presence of specific structures such as the so-called
compact-continuous setting. This allows simpler characterizations which
appeal to the subgradients of active (instead of ɛ-active) functions. In order to
unify the last setting and the general framework, different compactification
procedures are proposed in section 6.2. All previous characterizations include,
aside from the subdifferentials of ɛ-active (or active) functions, additional
terms relying on the normal cone to the effective domain of the supremum
function (or finite-dimensional sections of such a domain). Alternatively,
homogeneous formulas where this normal cone is dropped out are also derived
in section 6.4. The last section of this chapter presents a family of different
qualification conditions under which the above formulas become more
manageable.

- Chapter 7 emphasizes the unifying character of the supremum function in
modeling most operations in convex analysis. Indeed, the primary purpose of
this chapter is to characterize the subdifferential of the sum and the com-
position with linear mappings. To this aim, general formulas involving the ɛ-
subgradients are established for convex functions with a mere lower
semicontinuity-like property (see section 7.1). Further symmetric and
asymmetric qualifications in section 7.2 allow replacing the ɛ-subgradients
with (exact) subgradients, and both settings are combined in section 7.3.
Particular instances are examined in relation to the family of
infinite-dimensional polyhedral functions.

- Chapter 8 presents some selected topics which are closely related to the
material in the previous chapters. These topics can be seen, to a certain
extent, as theoretical applications of the main results in the book. The first
part contains extensions of the Farkas lemma for systems of convex
inequalities, and provides constraint qualifications, such as the Farkas–
Minkowski property in infinite convex optimization. Section 8.2 is intended
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to establish different Karush–Kuhn–Tucker and Fritz–John optimality con-
ditions for infinite convex optimization. The approach adopted consists of
replacing the set of constraints with a single one associated with a supremum
function, and appeals to properties of its subdifferentials, exhaustively
studied in the previous chapters. The chapter also gives an account of other
applications devoted to convexification processes in optimization, integration
in locally convex spaces, variational characterizations of convexity, and the
theory of Chebychev sets.

Much of the book has come out of work done at the Universidad de
Alicante (UA), Universidad de Chile (UCH), and Universidad de O’Higgins
(UOH), over the last ten years. We would like to acknowledge the support
provided by the Center for Mathematical Modeling (CMM-UCH) and the
Department of Mathematics of UA. We also would like to express our grat-
itude to our colleagues and friends of the Optimization Laboratory of UA, the
Optimization and Equilibrium Group of CMM, and the optimization group
of the Engineering Institute of UOH, who helped to create the ideal scientific
atmosphere for the production of this book. We are particularly grateful to all
our collaborators of the papers and projects that are used in the book. Our
thanks also go to Pedro Pérez-Aros and Anton Svensson for their help in the
revision of the manuscript, to Donna Chernyk, Editor in Mathematics, Casey
Russell, Editorial Assistant, and Boopalan Renu and Velmurugan
Vidyalakshmi, responsible for the production team, for their assistance dur-
ing the publication process, as well as to Lisa Lupiani and Verónica Ojeda for
their technical support. Funding support for the authors’ research has been
provided by the following projects: Contract Beatriz Galindo BEA-GAL
18/00205 of MICIU (Spain) and Universidad de Alicante, AICO/2021/165 of
Generalitat Valenciana, PGC2018-097960-B-C21 of MICINN (Spain),
Fondecyt 1190012 and 1190110 of ANID (Chile), and Basal FB210005
(Chile). The research of the third author was also supported by the
Australian ARC—Discovery Projects DP 180100602.
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Chapter 1

Introduction

Whenever an operation on a family of convex functions preserves con-
vexity, one naturally wonders whether the subdifferential of this new
function can be written in terms of the subdifferentials of the original
data functions.

It is well-known that many operations with convex functions pre-
serve convexity. Specific to convex analysis is the classical operation
which consists of taking the pointwise supremum of an arbitrarily
indexed family of convex functions. It has no equivalence in the classi-
cal theory of differential analysis, and constitutes a largely used tool in
convex optimization, in theory as well as in practice (see, for instance,
[8], [108], and references therein). Another motivation for developing
calculus rules for the supremum function is the need for handling con-
vex analysis tools in the framework of stability and well/ill-posedness
in linear semi-infinite optimization (see [33–35, 100] and others).

The main goal of this book is to present explicit characterizations
for the subdifferential mapping of the supremum function of an arbi-
trarily indexed family of convex functions, exclusively in terms of data
functions. The convex functions we consider in the book are general,
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2 CHAPTER 1. INTRODUCTION

defined on a separated locally convex space, and not necessarily lower
semicontinuous or even proper. In the most general context, the so-
called non-continuous setting, the index set over which the supremum
is taken is arbitrary, without any algebraic or topological structure.
Moreover, generally we do not assume regularity conditions such as
continuity of the supremum function, continuity of the data functions,
conditions on their domains, and the like.

Since many convex functions can be written as the supremum of
particular families of convex functions (perhaps, affine), the second
main goal of the book is to develop a unified approach for the frame-
work of calculus rules in convex analysis. In fact, our characterizations
of the subdifferential of the supremum function also allow us to obtain
formulas for the subdifferential of the resulting function in many oper-
ations such as the sum of convex functions, the composition of an affine
continuous mapping with a convex function, and conjugation. In this
way, we provide more direct and easier proofs for the basic chain rules
when some supplementary qualification conditions are assumed, and
our approach gives rise to a unifying view of many well-known calculus
rules in convex analysis.

1.1 Motivation

In order to provide motivation by showing the practical interest of
the supremum function, the main subject of this book, we present in
this section some examples developed in the Euclidean space R

n for
the sake of simplicity, although the framework of the book is that of
locally convex spaces. The first one constitutes an application to the
following optimization problem:

(P) Min g(x)
s.t. ft(x) ≤ 0, t ∈ T,

where g, ft : Rn → R, t ∈ T, with T being an arbitrary index set. The
supremum function can be used here to transform (P) into an uncon-
strained problem

(˜P) Min f(x)
s.t. x ∈ R

n.

In fact, it is easy to see that every optimal solution x̄ of (P) is also
optimal for the unconstrained problem (˜P), taking as the objective
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function the supremum function f : Rn → R ∪ {+∞} given by

f(x) := sup{g(x) − g(x̄); ft(x), t ∈ T}.

Actually, for any other feasible point x, one has g(x) − g(x̄) ≥ 0, and
so f(x) ≥ f(x̄) = 0. If x is not feasible, one has supt ft(x) > 0. In this
way, one could derive optimality conditions for (P) just by dealing with
its unconstrained representation involving the supremum function f.

The supremum function also allows unifying many other operations
in convex analysis. For instance, given a function g : Rn → R, a con-
vex function h : Rm → R, and a linear mapping A : Rn → R

m with
transpose A′, the function f := g + h ◦ A can be written as

f(x) = g(x) + h(Ax)
= g(x) + sup{〈y, Ax〉 − h∗(y) : y ∈ R

m}
= sup{g(x) + 〈A′y, x〉 − h∗(y) : y ∈ R

m},

where h∗ : Rm → R ∪ {+∞} is the conjugate of h; i.e., h∗(y) :=
sup{〈y, x〉 − h(x) : x ∈ X}. The linearization of h above is made pos-
sible thanks to the Moreau theorem (see Theorem 3.2.2), which estab-
lishes in this case that h and its biconjugate h∗∗ coincide. In other
words, f is the supremum of the family of functions g(·) + 〈A′y, ·〉 −
h∗(y), y ∈ R

m, which are sums of g and affine functions. Moreover,
provided that g is also convex, f becomes the supremum of affine
functions

f(x) = sup{〈z + A′y, x〉 − g∗(z) − h∗(y) : y, z ∈ R
m}.

The Moreau theorem is a key tool in convex analysis and its conse-
quences are conveniently exploited throughout the book. In fact, it is
equivalent to the property that the conjugate of f := supt∈T ft, where
the functions ft : Rn → R, t ∈ T, are convex, coincides with the closed
convex hull of the function inft∈T f∗

t (see Corollary 3.2.7).
Supremum functions can also be used to study geometrical proper-

ties of sublevel sets of a function h : Rn → R; i.e.,

[h ≤ 0] := {x ∈ R
n : h(x) ≤ 0}.

This analysis can be done by considering, for instance, the indicator
function I[h≤0] : Rn → R ∪ {+∞}, which is equal to 0 if h(x) ≤ 0 and
+∞ otherwise. We observe that
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I[h≤0](x) = sup{(αh)(x) : α > 0}

and, consequently, normal vectors to the set [h ≤ 0] can be seen as
subgradients of the supremum function f(·) := sup{(αh)(·) : α > 0}.
This information is used in section 8.2 to derive optimality conditions
for problem (P) by writing it as

(P) Min g(x) + I[h≤0](x)
s.t. x ∈ R

n,

where h := supt∈T ft. Additional qualification conditions would then
lead to Karush–Kuhn–Tucker optimality conditions involving subgra-
dients of both g and a finite number of functions ft. Results related to
the Farkas lemma are also obtained in section 8.1 by appealing to the
supremum function.

The supremum function is useful in convexification processes as
well. Let us consider the optimization problem Minx∈X f(x), where
f : Rn → R is a general function, possibly non-convex, and its associ-
ated convex relaxation given by Minx∈X(cof)(x), where (cof) : Rn →
R is the closed convex hull of f, assumed here to be proper for simplic-
ity. Then one can see that both problems have the same optimal value,
and that every optimal solution of the original problem is also optimal
for its convex relaxation. We wonder how we can obtain optimal solu-
tions of the original problem from the optimal solutions of the relaxed
one. At this moment, as it is detailed in section 8.3, the supremum
function comes into play since the optimal solutions of the relaxed
problem turn out to be subgradients of f∗ at the origin (remember
that f∗ is itself a supremum function).

Many specific functions in convex and functional analysis can be
expressed as supremum functions. For instance, in a normed space
(X, ‖·‖), the dual norm is defined as ‖x∗‖∗ := sup{〈x∗, x〉 : ‖x‖ ≤ 1};
that is, ‖·‖∗ is the supremum of continuous linear functions. Simi-
larly, the primal dual norm is also the supremum of continuous linear
functions on X∗, as we can show that ‖x‖ = sup{〈x∗, x〉 : ‖x∗‖∗ ≤ 1}.
More generally, the support and gauge functions of a set in X or X∗
are examples of supremum functions.

The supremum function is also a useful device in robust optimiza-
tion. Actually, in the case that problem (P) includes some uncertainty,
say (P) is written as

(P) Min f(x, u)
s.t. x ∈ R

n, u ∈ U ,
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for some given set of parameters U , the so-called pessimistic robust
counterpart is the ordinary optimization problem with objective func-
tion f := supu∈U f(·, u).

1.2 Historical antecedents

In what follows, we will summarize the contents of the book, and relate
them to their antecedents by means of a brief presentation of the state
of the art. The common thread throughout the book is the supremum
of arbitrary families of convex functions. More precisely, we consider a
family of convex functions {ft, t ∈ T}, where T is an arbitrary index
set, defined on a (real) separated locally convex space X with values
in the extended real line R, and its associated pointwise supremum
function

f := sup
t∈T

ft.

This new function is convex and our aim is to express its subdifferential
by means of the subdifferential of the ft’s.

We start in chapters 3 and 4 by reviewing the main and fundamental
results of convex analysis, via the crucial Fenchel–Moreau–Rockafellar
theorem (Theorem 3.2.2). This result actually constitutes a conjuga-
tion rule for the (proper) supremum function f as (see Proposition
3.2.6 and Corollary 3.2.7)

f∗ := co
(

inf
t∈T

f∗
t

)

,

where the star in the superscript represents the Fenchel conjugate and
co is used for the closed convex hull. Chapter 3 also includes dual
representations of the support function of sublevel sets and extensions
of the minimax theorem, all presented as consequences of the above-
mentioned Fenchel–Moreau–Rockafellar theorem. Along the same line,
we develop in chapter 4 an in-depth study of key concepts and results
involving the subdifferential and the Fenchel conjugate, covering the
convex duality theory, integration of the subdifferential, convexity
in Banach spaces, standard subdifferential calculus rules, etc. Some
results of these two chapters and/or their proofs are new.

Concerning the subdifferential of the supremum function f, when
the index set T is finite and the data functions ft’s are all continuous,
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a basic result due to Dubovitskii and Milyutin (see, e.g., [115]) asserts
that, at every point x ∈ X, the subdifferential of f is completely char-
acterized by means of the subdifferential of active data functions at
the reference point x. More explicitly, we have

∂f(x) = co

(

⋃

t∈T (x)

∂ft(x)

)

,

where
T (x) := {t ∈ T : ft(x) = f(x)}

is the set of active indices, and co stands for the convex hull. The
last formula extends to the more general setting, where T is a sep-
arated compact topological space and the function (t, z) �→ ft(z) is
upper semicontinuous (usc, for short) with respect to t and continuous
with respect to z. In this case, the subdifferential of f is given by

∂f(x) = co

(

⋃

t∈T (x)

∂ft(x)

)

, (1.1)

where co stands for the closed convex hull. The closure in the last for-
mula can be removed in the finite-dimensional setting. Formula (1.1)
goes back to [191], whereas the case of finite-valued functions defined
on R

n was established in [131] (see, also, [115, Section 4.2]). The con-
tinuity assumption on the data functions was weakened in [177, The-
orem 4] and [196] in the case of finitely many functions. The case of
the maximum of a finite family of Fréchet-differentiable functions was
studied in [67] and [169], and extended to Lipschitz functions in [40]
using the notion of generalized gradient (see, also, [130]). A recent
development for non-convex Lipschitz functions is due to [157] using
different concepts of nonsmooth subdifferentials.

Even in simple situations, involving finitely many convex functions,
the problem is not easy, and simple examples in the Euclidean space
show that these nice formulas do not hold in general (e.g., Example
5.2.1). Nevertheless, in order to overcome this difficulty, Brøndsted [29]
used the concept of ε-subdifferential to establish the following formula,
which is valid when T = {1, 2, ..., k} and all functions fi, i ∈ T, agree
at x and belong to Γ0(X), the family of proper convex and lower
semicontinuous (lsc, in brief) functions:
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∂f(x) =
⋂

ε>0
co

(

⋃

i=1,...,k

∂εfi(x)

)

.

In regard to infinite collections of convex functions (T is infinite), a
remarkable result was established by Valadier in [191] where, assuming
that the supremum function f is finite and continuous at x, the subd-
ifferential ∂f(x) is expressed by considering not only x but all nearby
points around it. More precisely, in the particular context of normed
spaces, and denoting by ‖·‖ the norm in X, the following formula is
given in [191]:

∂f(x) =
⋂

ε>0
co {⋃ ∂ft(y) : t ∈ Tε(x) and ‖y − x‖ ≤ ε} ,

where Tε(x) is the set of ε-active indices,

Tε(x) := {t ∈ T : ft(x) ≥ f(x) − ε}.

By using the concept of ε-subdifferential, Volle [195] obtained in
normed spaces another characterization of ∂f(x) where only the nom-
inal point x appears:

∂f(x) =
⋂

ε>0
co

(

⋃

t∈Tε(x)

∂εft(x)

)

. (1.2)

It is straightforward that the two formulas above are identical if the
functions ft are affine. Moreover, when the space X is Banach, each of
the two formulas can be obtained from the other one. This equivalence
is proved by using the Brøndsted–Rockafellar theorem, expressing the
ε-subdifferential by means of exact subdifferentials at nearby points.
Actually, the advantage of using enlargements of the subdifferential,
such as the ε-subdifferential, is to avoid qualification-type conditions.
This idea is exploited in the survey paper [110] to provide many cal-
culus rules without regularity conditions.

1.3 Working framework and objectives

Throughout this book we work in a (real) separated locally convex
space (lcs) X. By NX and P we represent a neighborhood base of closed
convex balanced neighborhoods of θ (θ-neighborhoods) and a saturated
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family of seminorms generating the topology in X, respectively. The
topological dual space of X is X∗, and the associated duality pairing
is represented by 〈·, ·〉. Unless otherwise stated, X∗ is endowed with a
locally convex topology which makes (X, X∗) a compatible dual pair.
When another lcs Y is given, the lcs X × Y is endowed with the locally
convex topology of the Cartesian product associated with the bilinear
form 〈(x∗, y∗), (x, y)〉 = 〈x∗, x〉 + 〈y∗, y〉Y , where 〈·, ·〉Y is the bilinear
form in Y, and x∗ ∈ X∗, y∗ ∈ Y ∗, x ∈ X, y ∈ Y. All these concepts and
related results will be defined in section 2.1.

Given a set C ⊂ X∗, by cl C or, indistinctly C, we usually refer to the
closure of C with respect to such a compatible topology. One of these
topologies is the w∗-topology; however, sometimes we write clw

∗
C for

those results which are specifically valid for the w∗-topology (as in
the Alaoglu–Banach–Bourbaki theorem). Of course, if C is convex,
then clw

∗
C coincides with the closure of C for any other compatible

topology.
The following key formula will constitute the most general represen-

tation of the subdifferential of the supremum function f = supt∈T ft
when ft, t ∈ T, are given convex functions defined on the lcs X. It was
established in [103, Theorem 4] (see [141, Theorem 4] and [134] for
related formulas) when ft ∈ Γ0(X), t ∈ T :

∂f(x) =
⋂

L∈F(x), ε>0

co

(

⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

, (1.3)

where dom f is the (effective) domain of f,

F(x) := {L ⊂ X : L is a finite-dimensional linear subspace such that x ∈ L},
(1.4)

and NL∩dom f (x) is the normal cone to L ∩ dom f at the point x. In fact,
(1.3) is also valid for general convex functions ft : X → R, t ∈ T , under
the following closedness condition, which is held in various situations
(e.g., Proposition 5.2.4),

cl f = sup
t∈T

(cl ft), (1.5)

where cl also stands for the closed hull.
A variant of formula (1.3), which does not assume condition (1.5),

involves the augmented functions ft + IL∩dom f instead of the original
ft’s:
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∂f(x) =
⋂

L∈F(x), ε>0

co

(

⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)

, (1.6)

where IL∩dom f is the indicator function of the set L ∩ dom f . If, addi-
tionally, we are in the so-called continuous-compact setting, which
stands for the compactness of the index set T and the upper semi-
continuity of the mappings t ∈ T �→ ft(z), z ∈ X, we get

∂f(x) =
⋂

L∈F(x)

co

{

⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

,

where now, instead of Tε(x), we use T (x) := T0(x) the set of active
indices at x. The last formula has the advantage that the closure and
the intersection over ε in (1.6) are dropped out. We can always appeal
to a compactification strategy consisting of compactifying T (Stone–
Čech or one-point extensions), and enlarging the original set of func-
tions by taking upper limits of the mappings t �→ ft(z), z ∈ X. The
main results in this line are Theorems 6.2.5 and 6.2.8.

Under additional continuity assumptions, we can remove the finite-
dimensional sections L ∩ dom f in (1.3). More specifically, if the closed-
ness criterion (1.5) holds and, for a given x ∈ dom f , we assume that
either ri(cone(dom f − x)) �= ∅ or cone(dom f − x) is closed, where
riC and cone C refer to the relative interior of C and the cone gener-
ated by C ∪ {θ}, respectively, then

∂f(x) =
⋂

ε>0
co

(

⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

)

. (1.7)

In addition, if the interior of cone(dom f − x) is non-empty, then (1.7)
gives rise to

∂f(x) = Ndom f (x) +
⋂

ε>0
co

(

⋃

t∈Tε(x)

∂εft(x)

)

. (1.8)

In particular, if f is finite and continuous at the nominal point x, then
Ndom f (x) = {θ} and (1.8) yields (1.2).

If ft ∈ Γ0(X), t ∈ T , and we are in the continuous-compact setting
introduced above, the following result, involving only the active func-
tions at the reference point x, is established in [53, Theorem 3.8],
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∂f(x) =
⋂

L∈F(x), ε>0

co

(

⋃

t∈T (x)

∂εft(x) + NL∩dom f (x)

)

. (1.9)

In order to avoid the presence of normal cones, and without requir-
ing the continuity of f at the nominal point x, we provide in the
continuous-compact setting in section 6.4 the following formula, for
a family {ft, t ∈ T} ⊂ Γ0(X) satisfying the condition inft∈T ft(x) >
−∞,

∂f(x) =
⋂

ε>0
co

((

⋃

t∈T (x)

∂εft(x)

)

+

(

⋃

t∈T\T (x)

{θ, ε} ∂εft(x)

))

.

(1.10)
The proof of (1.10) uses the following expression for the normal cone
Ndom f (x), with x ∈ dom f and assuming that inft∈T ft(x) > −∞:

Ndom f (x) =
[

co
(

⋃

t∈T
∂εft(x)

)]

∞
for every ε > 0,

where C∞ stands for the recession cone of C. If we remove the
continuous-compact assumption, we get in section 6.4 a refinement
of (1.10) involving finite subfamilies of indices.

In chapter 7, and based on our main formula (1.3), we obtain the
Hiriart-Urruty and Phelps formula ([111])

∂(g + f ◦ A)(x) =
⋂

ε>0
cl (∂εg(x) + A∗∂εf(Ax)) ,

involving two convex functions f : Y → R and g : X → R, where Y is
also a (real) separated locally convex space, and A : X → Y is a con-
tinuous linear mapping with continuous adjoint A∗. The last formula
assumes that cl(g + f ◦ A) = (cl g) + (cl f) ◦ A, instead of the slightly
stronger assumption that f ∈ Γ0(Y ), g ∈ Γ0(X). In fact, that assump-
tion constitutes a counterpart to the closedness condition (1.5) for the
sum operation.

In this chapter we also deal with asymmetric subdifferential sum
rules, which are given in terms of the exact subdifferential of one func-
tion (the most qualified one), and the approximate subdifferential of
the other. They require that the domains of f and g overlap suffi-
ciently, or that the epigraphs enjoy certain closedness-type properties.
More precisely, we prove that for f, g ∈ Γ0(X) and x ∈ dom f ∩ dom g,
if at least one of the following conditions, involving the effective
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domains and the epigraphs, holds: (i) R+(epi g − (x, g(x))) is closed,
(ii) dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g),
then

∂(f + g)(x) =
⋂

ε>0
cl(∂εf(x) + ∂g(x)).

Observe that if the set epi g is polyhedral, then condition (i) holds.
We even get the quasi-exact subdifferential rule

∂(f + g)(x) = cl (∂f(x) + ∂g(x)) ,

under any one of the following assumptions: (iii) R+(epi f − (x, f(x)))
is closed, dom f ∩ ri(dom g) �= ∅, and g|aff(dom g) is continuous on
ri(dom g), (iv) R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are
closed, and (v) ri(dom f) ∩ ri(dom g) �= ∅ and f|aff(dom f) and g|aff(dom g)

are continuous on ri(dom f) and ri(dom g), respectively. Moreover,
under (v), if ∂f(x) or ∂g(x) is locally compact, then ∂(f + g)(x) =
∂f(x) + ∂g(x).

We also characterize in chapter 7 the subdifferential of the sum
f + g, when f := supt∈T ft, and g, ft : X → R∞, t ∈ T (�= ∅), are all
proper convex functions. In particular, under the assumption

cl (f + g) (x) = sup
t∈T

(cl ft)(x) + g(x) for all x ∈ dom f ∩ dom g,

we derive the following formula, which constitutes an extension of
(1.3),

∂(f + g)(x) =
⋂

L∈F(x), ε>0

co

{

⋃

t∈Tε(x)

∂εft(x) + ∂(g + IL∩dom f )(x)

}

.

Miscellaneous chapter 8 starts by considering the convex infinite
optimization problem

(P) Min g(x)
s.t. ft(x) ≤ 0, t ∈ T,

x ∈ C,
(1.11)

where {g, ft, t ∈ T} ⊂ Γ0(X) and C is a non-empty closed convex
subset of X. We assume that the constraint system
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S := {ft(x) ≤ 0, t ∈ T ; x ∈ C},

is consistent; i.e., the set of feasible solutions, represented by F , is
assumed to be non-empty. An important particular case is that in
which ft(x) = 〈a∗

t , x〉 − bt, with a∗
t ∈ X∗, t ∈ T . When T is infinite, the

objective function g is linear and continuous, and X is the Euclidean
space, (P) becomes the so-called linear semi-infinite optimization prob-
lem. The purpose of the first two sections of this chapter is twofold.
The first is to study some constraint qualifications, in particular the
Farkas–Minkowski property and the local Farkas–Minkowski property;
and the second is to provide optimality conditions for problem (P) by
appealing to the properties of the supremum function f̃ = supt∈T ft.
Here, in this introduction, and for the sake of simplicity, we exclusively
focus on the Farkas–Minkowski property.

A key tool in our approach is the so-called characteristic cone of
system S defined as follows:

K := cone co
{

⋃

t∈T
epi f∗

t ∪ epi σC

}

= cone co
{

⋃

t∈T
epi f∗

t

}

+ epiσC .

It can be easily proved that, if F �= ∅, then epiσF = cl K, where σF

is the support function of the feasible set. In fact, a kind of general-
ized Farkas lemma can be formulated in terms of the characteristic
cone: given ϕ,ψ ∈ Γ0(X), we have ϕ(x) ≤ ψ(x) for all x ∈ F , assumed
non-empty, if and only if epiϕ∗ ⊂ cl (epi ψ∗ + K). A straightforward
consequence of the last result is the following characterization of con-
tinuous linear consequences of S : given (a∗, α) ∈ X∗ × R, the inequal-
ity 〈a∗, x〉 ≤ α holds for all x ∈ F , assumed non-empty, if and only if
(a∗, α) ∈ cl K.

The system S = {ft(x) ≤ 0, t ∈ T ; x ∈ C}, assumed consistent, is
said to enjoy the Farkas–Minkowski (FM) property if K is w∗-closed.
This property has a clear geometrical meaning, namely if S has the
FM property, then every continuous linear consequence 〈a∗, x〉 ≤ α of
S is also a consequence of a finite subsystem

̂S := {ft(x) ≤ 0, t ∈ T̂ ; x ∈ C}, with T̂ ⊂ T and
∣

∣T̂
∣

∣ < ∞,

and the converse statement holds if S is linear; i.e., S = {〈a∗
t , x〉 ≤

bt, t ∈ T}.
Moreover, the Farkas–Minkowski property is crucial in formulating

Karush–Kuhn–Tucker and Fritz–John optimality conditions for prob-
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lem (P). In fact, let us suppose that S is Farkas–Minkowski and that g
is continuous at some point of F , and let x ∈ F ∩ dom g. Then x is a
(global) minimum of (P) if and only if there exists λ ∈ R

(T )
+ such that

∂ft(x) �= ∅, for all t ∈ supp λ := {t ∈ T : λt > 0}, and the Karush–
Kuhn–Tucker conditions hold; that is,

θ ∈ ∂g(x) +
∑

t∈sup λ

λt∂ft(x) + NC(x) and λtft(x) = 0, ∀t ∈ T, (KKT’1)

where
R

(T )
+ := {λ : T → R+ : suppλ finite}.

We are also interested in comparing the set of optimal solutions of
a given possibly non-convex optimization problem

(P) Min g(x)
s.t. x ∈ X,

and its convex relaxation

(Pr) Min (cog)(x)
s.t. x ∈ X.

This analysis reveals that the solution set of (Pr) can be written by
means of either the global approximate solutions of (P) or the global
exact ones, plus a term which reflects the asymptotic behavior of the
function g (see Theorem 8.3.2 and its consequences).

We make use of subdifferential calculus rules of the supremum func-
tion given in the book to establish an integration theory for the Fenchel
subdifferential (Theorem 8.4.3) and the ε-subdifferential (Theorem
8.4.7) of non-convex functions, both in Banach and locally convex
spaces. This theory aims to extend the classical result of the integra-
tion formula of convex functions by Moreau and Rockafellar, stating
that for every f1, f2 ∈ Γ0(X)

∂f1 ⊂ ∂f2 ⇒ f1 and f2 coincide up to some constant.

The last two sections are addressed to establish some variational
characterizations for convexity of functions and sets. While the case
of functions relies on the convexity of the solution sets of linear per-
turbations (see Theorem 8.5.2 and its consequences), the one estab-
lishing the convexity of sets comes as a consequence of the convex-
ity/uniqueness of projections (see Theorem 8.6.8). Sets with unique
projections are called Chebychev sets.



Chapter 2

Preliminaries

2.1 Functional analysis background

In this section, we present some basic concepts and results of functional
analysis that will be used throughout the book.

Nets
Given a binary relation � in a non-empty set I, we say that the pair

(I,�) is a directed set if the following properties hold:
(a) i � i for all i ∈ I (reflexivity).
(b) i � j and j � k imply that i � k (transitivity).
(c) Any pair i, j ∈ I has an upper bound k ∈ I; i.e., i � k and j � k.
A net in a non-empty set S is a function x : I → S, where (I,�)

is a directed set. It is customary to denote a net x by (xi)i∈I , where
xi = x(i) ∈ S. The set I is called the index set of the net (xi)i∈I .

Given a subset V ⊂ S, we say that a net (xi)i∈I in S is eventually in
V if there exists i0 ∈ I such that xi ∈ V for all i ∈ I such that i0 � i.
The net (xi)i∈I is frequently in V if, for each i ∈ I, there exists j ∈ I,
i � j, such that xj ∈ V .

A net (yj)j∈J is a subnet of the net (xi)i∈I , if there is a function
φ : J → I satisfying

(a) yj = xφ(j) for all j ∈ J .
(b) For all i0 ∈ I, there exists j0 ∈ J such that i0 � φ(j) when j0 � j.
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It is clear that the order in I is not necessarily the same as in J ,
although we have used the same symbol.

A binary relation � in the set I is a partial order if it is reflexive,
transitive, and antisymmetric; that is, i � j and j � i imply i = j.
A binary relation ∼ in I is an equivalence relation if it satisfies the
reflexivity and the transitivity properties together with the symmetry
property; that is, i ∼ j if and only if j ∼ i for all i, j ∈ I. The equiv-
alence class of i ∈ I is the set 〈i〉 := {j ∈ I : i ∼ j}, and the quotient
set of I by ∼ is I / ∼:= {〈i〉 : i ∈ I}.

Topological spaces
A family TX of subsets of a set X is called a topology in X if it

contains the empty set, ∅, the whole set X, as well as all arbitrary
unions and finite intersections of its elements. We say that the pair
(X,TX) is a topological space. The elements of TX are called open sets
and their complements are the closed sets. A neighborhood of x ∈ X
is a set V ⊂ X such that x ∈ W ⊂ V for some W ∈ TX . We denote
by VX(x) the family of all neighborhoods of x. A subfamily of VX(x)
is a neighborhood base of x if every V ∈ VX(x) contains an element
of this subfamily. Given two topologies T1 and T2 on X, we say that
T2 is finer (coarser) than T1 if T1 ⊂ T2 (T2 ⊂ T1, respectively). A
topological subspace of (X,TX) is a pair (Y,TY ) such that Y ⊂ X
and

TY := {W ∩ Y : W ∈ TX}.

The topology TY is called the relative (or induced) topology of TX

in Y .
Given a mapping f between two non-empty sets X, Y , the sets

f(A) := {f(a) : a ∈ A} and f−1(B) := {a ∈ X : f(a) ∈ B} are the
image of A ⊂ X and pre-image of B ⊂ Y , respectively. The range and
the domain of f are the sets Im f := f(X) and f−1(Y ), respectively.
The graph of f is the set gph f := {(x, y) ∈ X × Y : y = f(x)}. The
mapping f is said to be injective if x = y whenever f(x) = f(y), sur-
jective if Im f = Y , and bijective if it enjoys both properties. These
definitions are also valid for a set-valued mapping F : X ⇒ Y as it
can be seen as a usual mapping between X and the power set of Y ,
denoted by 2Y .

Given a topological space (X,TX) and an equivalence relation ∼ in
X, the quotient canonical projection associated with ∼ is the surjective
mapping q : X → X/ ∼ defined as

q(x) := 〈x〉 . (2.1)
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The quotient topological space is the topological space (X/ ∼,T∼),
where

T∼ := {U ⊂ X/ ∼: q−1(U) ∈ TX}.

Equivalently, T∼ is the finest topology that makes q continuous.
The interior of C ⊂ X is the largest open set contained in C and

is denoted by TX -int C (or just intC when no confusion is possible);
that is, intC = ∪W∈TX , W⊂CW . The closure of C is the smallest closed
set that contains C, and it is denoted by clC (or C); that is, the
intersection of all closed sets containing C. If clC = X we say that C
is dense in X. The boundary of C is bdC := C \ (int C).

A distance (or metric) on a set X is a nonnegative function
d : X × X → [0, +∞[, defined on the Cartesian product X × X that
satisfies the following three conditions, for all x, y, z ∈ X,

(a) d(x, y) = 0 if and only if x = y,
(b) d(x, y) = d(y, x), and
(c) d(x, y) ≤ d(x, z) + d(z, y).
Let Td be the topology formed by ∅, X, and the sets U satisfying

the following property: for each x ∈ U there exists r > 0 such that

{y ∈ X : d(x, y) < r} ⊂ U.

The pair (X, d) := (X,Td) is called a metric space, and a sequence
(xk)k ⊂ X is called a Cauchy sequence in (X, d) if, for every ε > 0,
there exists kε ≥ 1 such that d(xp, xq) ≤ ε for all p, q ≥ kε. A metric
space is complete if every Cauchy sequence in X is convergent. By the
Baire category theorem, a complete metric space is a Baire space; that
is, for every countable collection {Cn ⊂ X, n ≥ 1} of closed subsets of
a complete metric space X such that int (∪n≥1Cn) �= ∅, there exists
some n0 ≥ 1 satisfying int(Cn0) �= ∅.

A function f : (X, d) → R is said to be Lipschitz continuous (or,
just, Lipschitz ) if there exists some l ≥ 0 such that

|f(x1) − f(x2)| ≤ l d(x1, x2) for allx1, x2 ∈ X.

It is locally Lipschitz at x ∈ X if the last inequality holds for all x1, x2

in some neighborhood of x.
A topological space X is separated (or Hausdorff ) if for all x1, x2 ∈

X (x1 �= x2) there exist V1 ∈ VX(x1) and V2 ∈ VX(x2) such that V1 ∩
V2 = ∅. A topological space X is separable if X = cl(C) for a countable
subset C ⊂ X. A subset C ⊂ X is compact if, whenever C is contained
in the union of a family of open sets, it is also contained in the union
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of a finite subfamily. In this section the given topological spaces are
assumed to be Hausdorff. We say that C is locally compact if each
point x ∈ C has a compact neighborhood for the induced topology in
C by TX .

A net (xi)i in X converges to x ∈ X if it is eventually in every
neighborhood of x; we write xi → x or limi xi = x. A point x is said to
be a cluster point of a net (xi)i∈I in X if there exists a subnet (yj)j∈J

of (xi)i∈I that converges to x. For any set C ⊂ X, x ∈ cl C if and only
if there exists a net (xi)i in C such that xi → x. It follows that C is
closed if and only if the limit of every convergent net in C belongs
to C.

The limit of a convergent net is unique, and every subnet of a con-
vergent net converges to the same point. Moreover, it turns out that
a set C ⊂ X is compact if and only if every net in C has a subnet
that converges to a point in C. Consequently, a compact set in X
is closed, and every closed subset of it is also compact. We say that
C ⊂ X is sequentially closed if the limit of every convergent sequence
in C belongs to C. Moreover, the set C is sequentially compact if every
sequence in C has a subsequence that converges to a point in C.

A mapping f : X → Y between two topological spaces (X,TX) and
(Y,TY ) is continuous at x ∈ X if, for all W ∈ VY (f(x)), there exists
V ∈ VX(x) such that f(V ) ⊂ W . Equivalently, f is continuous at x
if and only if f(xi) → f(x) for every net (xi)i ⊂ X such that xi → x.
Similarly, f is sequentially continuous at x if the last condition holds
when we replace nets by sequences. We say that f is continuous
(sequentially continuous) on X if it is continuous (sequentially con-
tinuous, respectively) at every point in X. If f is continuous, then the
image f(C) of a compact set C ⊂ X is also compact in Y . A function
f : X → Y is said to be a homeomorphism if it is a continuous bijection
with a continuous inverse.

We extend the usual order in R to R = R ∪ {+∞, −∞} by setting
−∞ < r < +∞ for all r ∈ R. We also denote

R∞ := R ∪ {+∞}, R+ := [0, +∞[ , R
∗
− :=] − ∞, 0[, R

∗
+ :=]0, +∞[,

and adopt the convention

(+∞) + (−∞) = (−∞) + (+∞) = +∞, 0(+∞) = +∞, 0(−∞) = 0.
(2.2)

By sign(·) : R \ {0} → {−1, 1}, we refer to the sign function; i.e.,
sign(α) = −1 if α < 0, and sign(α) = +1 if α > 0.
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The upper and lower limits of a net (ri)i∈I in R are, respectively,

lim supi ri = inf
i∈I

(
sup
i�j

rj

)
and lim infi ri = sup

i∈I

(
inf
i�j

rj

)
.

It is clear that lim infi ri ≤ lim supi ri and when the upper and lower
limits coincide in R, the common value is called the limit of (ri)i∈I ; it
is written as

lim
i

ri := lim infi ri = lim supi ri.

If the net (ri)i∈I ⊂ R is non-increasing; that is, i1 � i2, i1, i2 ∈ I ⇒
ri2 ≤ ri1 , then the limit of (ri)i∈I exists in R and is given by

lim
i

ri = inf
i

ri.

Similarly, if (ri)i∈I is non-decreasing, then the limit exists in R and is
given by

lim
i

ri = sup
i

ri.

Given a topological space (X,TX), a function f : X → R is lower
semicontinuous (or lsc, for short) at x ∈ X if, for every net xi → x,

f(x) ≤ lim inf
i

f(xi).

The function f is lsc if it is lsc at every point of X. The function f
is sequentially lsc at x ∈ X (sequentially lsc, respectively) if these last
conditions hold with sequences instead of nets.

The function f is inf-compact if all its sublevel sets,

[f ≤ λ] := {x ∈ X : f(x) ≤ λ}, λ ∈ R,

are compact sets.
The most fundamental theorem in optimization theory is the Weier-

strass theorem.

Theorem 2.1.1 Let f : X → R be an lsc function and let C ⊂ X be
a non-empty compact set. Then f achieves its infimum over the set C.

Given a family (Xt,Tt)t∈T of topological spaces, the product topol-
ogy T in the Cartesian product
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X :=
∏
t∈T

Xt

is the weakest (i.e., the smallest) topology on X for which all the
canonical projections πt : X → Xt are continuous. In this way, a net
(xi)i∈I in X converges to x ∈ X if and only if πt(xi) → πt(x) for all
t ∈ T . The space (X,T) is called the product topological space of the
Xt’s.

We give now the Tychonoff theorem, which is considered the most
important theorem in topology.

Theorem 2.1.2 The product topological space (X,T) is compact if
and only if each factor (Xt,Tt) is a compact topological space.

Let R
T denote the real linear space of functions from a given set T

to R. Again, the support of a function λ ∈ R
T is the set

supp λ := {t ∈ T : λt �= 0},

where λt := λ(t). We denote

R
(T ) := {λ ∈ R

T : supp λ is finite}. (2.3)

In particular, if the cardinal of T , denoted by |T |, is finite, say |T | =
k, then we set R

(T ) ≡ R
T ≡ R

k and, similarly, R
(T )
+ ≡ R

T
+ ≡ R

k
+. For

u ∈ R
T and λ ∈ R

(T ), we write

λ(u) :=
∑
t∈T

λtut :=

{ ∑
t∈supp λ

λtut, if suppλ �= ∅,

0, otherwise,
(2.4)

The nonnegative cone of R
(T ) is

R
(T )
+ :=

{
λ ∈ R

(T ) : λt ≥ 0 for all t ∈ T
}

,

and we denote

Δ(T ) :=
{

λ ∈ R
(T )
+ :

∑
t∈T

λt = 1
}

; (2.5)

in particular, the canonical simplex in R
k, k ∈ N, is given by
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Δk :=

{
λ ∈ R

k
+ :

∑
1≤i≤k

λi = 1

}
.

Sometimes, we also use the notation

Δ∗
k = {λ ∈ Δk : λi > 0 for all 1 ≤ i ≤ k} .

Operations and concepts in vector spaces
Next we define standard operations and concepts in a (real) vector

space X. We denote by θ the zero vector in X. Given two non-empty
sets C and D in X, we define the algebraic (or Minkowski) sum of C
and D by

C + D := {c + d : c ∈ C, d ∈ D}, C + ∅ = ∅ + D = ∅, (2.6)

with C + d, d ∈ X, (c + D, c ∈ X), representing the set C + {d} ({c} +
D, respectively). If ∅ �= Λ ⊂ R, the scalar product of Λ and C is the set

ΛC := {λc : λ ∈ Λ, c ∈ C}, Λ∅ = ∅, (2.7)

and, in particular, for x ∈ X and λ ∈ R we write Λx := Λ{x} and
λC := {λ}C. This last set is a scalar multiple of C.

A set C ⊂ X is convex if, for every x, y ∈ C,

[x, y] := {λx + (1 − λ)y : λ ∈ [0, 1]} ⊂ C,

and affine if, for every x, y ∈ C,

{λx + (1 − λ)y : λ ∈ R} ⊂ C.

We say that C ⊂ X is a hyperplane (affine hyperplane) if it is a proper
linear subspace (affine set, respectively), which is maximal for the
inclusion.

The set C is a cone if it contains θ and R+C ⊂ C; balanced if
[−1, 1]C ⊂ C; and absorbing if, for every x ∈ X, there exists α > 0
such that λx ∈ C when |λ| < α. The intersection of a family of convex
sets is convex; the scalar multiple of a convex set is convex; and the
sum of two convex sets is convex. The convex , the affine, the linear
(or span), and the conic hulls of a set C are defined as
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co C =
{ ∑

c∈C

λcc : λ ∈ Δ(C)
}

,

aff C =
{ ∑

c∈C

λcc : λ ∈ R
(C),

∑
c∈C

λc = 1
}

,

span C =
{ ∑

c∈C

λcc : λ ∈ R
(C)

}
, and

cone C = R+C ∪ {θ}.

Observe that C is convex if and only if C = co C, and that C is
a cone if and only if C ∪ {θ} = cone C; in particular, co ∅ = ∅ and
cone ∅ = {θ}. Equivalently, coC is the intersection of all convex sets
containing C. By dim C we represent the dimension of the vector space
aff C, and we say that C is finite-dimensional if dimC is finite. In an
n-dimensional vector space, the convex hull is characterized by the cel-
ebrated Carathéodory theorem, stating that every x ∈ co C is a convex
combination of no more than n + 1 elements of C.

Topological vector spaces
Given a real vector space X and a topology TX in X, we say that

(X,TX) is a topological vector space (tvs, for short) if the two algebraic
operations

(x, y) ∈ X × X �→ x + y ∈ X and (α, x) ∈ R × X �→ αx ∈ X (2.8)

are continuous. We denote by X∗ the topological dual of X; that is,
the real vector space of continuous linear functions from X to R.
Associated with X and its topological dual X∗, the bilinear function
(x∗, x) ∈ X∗ × X �→ 〈x∗, x〉 := x∗(x) ∈ R is called a dual pairing , while
the pair (X, X∗) is referred to as a dual pair .

We have the following basic properties in a tvs: The set ΛC is open
if C is open and 0 /∈ Λ; the sum of an open set and an arbitrary set is
open; if D is open, then C + D = C + D for any set C; the sum of a
compact set and a closed set is closed; the sum of two compact sets is
compact; and the scalar multiple of a compact set is compact. A linear
function from X to R is continuous if and only if it is continuous at θ. A
set C ⊂ X is a hyperplane (affine hyperplane) if and only if C = {x ∈
X : �(x) = 0} (C = {x ∈ X : �(x) = α}, α ∈ R, respectively) for some
nonzero linear function � : X → R. The hyperplane C is closed if and
only if � is continuous, and it is dense if and only if � is not continuous.
A (closed) half-space of X is a set of the form {x ∈ X : �(x) ≤ α},
α ∈ R, where � : X → R is a nonzero continuous linear function.
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In addition, the following relations hold for every pair of sets C,
D ⊂ X:

(cl C) + (clD) ⊂ cl(C + D) = cl(C + cl D), (2.9)

cl(C + D) = cl(C) + D, when D is compact, (2.10)

and ⋂
U∈VX(θ)

cl (C + U) =
⋂

U∈VX(θ)

(C + U) = cl (C) . (2.11)

Thanks to the continuity of the operations in (2.8), every element
V ∈ VX(θ) is absorbing and satisfies the following properties:

(i) x + V ∈ VX(x) for all x ∈ X.
(ii) There exists W ∈ VX(θ) such that W + W ⊂ V .
(iii) λV ∈ VX(θ) for all λ �= 0.
If X is a finite-dimensional tvs, then there is a unique (Hausdorff)

topology TX such that (X,TX) is a tvs; it is the Euclidean topology.
Every finite-dimensional vector subspace of a tvs is closed. A tvs X is
finite-dimensional if and only if θ has a compact neighborhood.

We denote

coC := cl(co C) and coneC := cl(cone C).

Correspondingly, coC is the intersection of all closed convex sets con-
taining C. If C is convex, then the interior and the closure of C are
also convex; in fact, we have the following property:

[x, y[ ⊂ int C for every x ∈ int C and y ∈ cl C. (2.12)

Moreover, if intC �= ∅, then

cl(int C) = cl C and int(clC) = intC.

Relation (2.12) can be relaxed using the (topological) relative interior
of C, denoted by riC, which is the interior of C in the topology rel-
ative to aff C if aff C is closed, and the empty set otherwise. One of
the main features of the relative interior is that it is non-empty for
every non-empty finite-dimensional convex set. In addition, the rela-
tive interior enjoys nice properties in finite dimensions, including the
following relations which hold for convex sets C ⊂ R

n, D ⊂ R
m, and

a linear mapping T : R
n → R

m,
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ri(TC) = T (ri C) (2.13)

and, provided that the pre-image T−1(riD) �= ∅,

ri(T−1D) = T−1(ri D). (2.14)

In fact, for every non-empty convex set C ⊂ X, we have the following
extension of (2.12):

[x, y[ ⊂ riC, for every x ∈ ri C and y ∈ cl C; (2.15)

this result is sometimes referred to as the accessibility lemma. There-
fore, when ri(C) �= ∅, we also have

C = ri(C) and ri(C) = ri(C). (2.16)

In particular, this last relation holds for every non-empty finite-
dimensional convex set C.

Other useful consequences of (2.15) come next: If C and D are
convex sets in X such that ri(C) ∩ ri(D) �= ∅, then we have

ri(C) ∩ ri(D) = ri(C ∩ D) (2.17)

and

C ∩ D = C ∩ D = ri(C) ∩ ri(D) = ri(C) ∩ ri(D). (2.18)

Also, if int(D) �= ∅, so that int(D) = ri(D), then

int(C + D) = C + int(D), (2.19)

and if, in addition, C ∩ int(D) �= ∅, then

C ∩ D = C ∩ D. (2.20)

All these results, involving the interior and the relative interior of
convex sets, are based on the separation theorems that come below.

We also consider the algebraic interior of a set C contained in a
vector space X, denoted by Ci. It is the set of points c ∈ C such that

R+(C − c) = X;
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that is, the set C − c is absorbing. In a tvs we have intC ⊂ Ci, while
the equality Ci = int C holds for convex sets C such that, for instance,
int C �= ∅ or C is finite-dimensional (another important case is men-
tioned below).

Given a non-empty closed convex set C �= ∅, the recession cone of
C is defined as

C∞ := {u ∈ X : x + R+u ⊂ C} ,

where x is an arbitrary point of C. The recession cone is closed and
convex, and collapses to θ when C is bounded ; that is, for any V ∈
VX(θ), there exists λ > 0 such that C ⊂ λV . The lineality space of a
non-empty closed convex set C is

linC := C∞ ∩ (−C∞). (2.21)

If C, D ⊂ X are non-empty closed convex sets such that C ⊂ D, then

C∞ ⊂ D∞. (2.22)

If Ci ⊂ X, i ∈ I, is a family of non-empty closed convex sets such that⋂
i∈ICi �= ∅, then ( ⋂

i∈I

Ci

)
∞

=
⋂
i∈I

(Ci)∞ . (2.23)

One of the most important and far-reaching results of functional
analysis is the Hahn–Banach extension theorem (see (2.32) for the
convexity of functions).

Theorem 2.1.3 Let X be a vector space, and � : L → R be a linear
function defined on a linear subspace L ⊂ X, which is dominated by a
convex function g : X → R (that is, �(x) ≤ g(x) for all x ∈ L). Then
there is a linear extension �̃ of � to X (that is, �̃(x) = �(x) for all
x ∈ L), which is also dominated by g.

We give now the geometric version of the last theorem, which is a
cornerstone in convex analysis.

Theorem 2.1.4 Two non-empty disjoint convex subsets, C and D,
in a vector space X such that one of them has a non-empty algebraic
interior, can be properly separated by a nonzero linear function � :
X → R; that is, there exists α ∈ R such that �(x) ≤ α ≤ �(y) for all
x ∈ C and y ∈ D, and there exists a point z ∈ C ∪ D with �(z) �= α.
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The two previous theorems do not mention any topology, whereas
the next result ensures the separation by means of a continuous linear
function.

Theorem 2.1.5 If X is a tvs and int C �= ∅ in the previous theorem,
then cl C and cl D can be properly separated by a nonzero continuous
linear function.

To obtain a stronger separation property than the one given above,
we need to assume that the tvs X is locally convex. As we said before,
this is the framework of the book. A tvs is said to be a locally convex
space (lcs, for short) if every neighborhood of θ includes a convex
neighborhood. The associated topology of an lcs is called a locally
convex topology. For example, observing that R

T ≡ Πt∈T Xt with Xt :=
R for all t ∈ T , it follows that R

T endowed with the product topology
is an lcs and that R

(T ) is its topological dual space with the pairing
defined in (2.4).

In an lcs every neighborhood of θ includes a closed convex balanced
neighborhood, so that the family

NX := {V ∈ VX(θ) : V is convex, closed, and balanced}

is a neighborhood base of θ. The elements of NX are called θ-
neighborhoods in this book.

Theorem 2.1.6 Given two non-empty disjoint convex sets in an lcs,
C and D, if one of them is compact and the other one is closed, then
there is an � ∈ X∗ \ {θ} that strongly separates them; that is, there
exist α, β ∈ R such that �(x) ≤ α < β ≤ �(y) for all x ∈ C and y ∈ D.

The typical example of convex sets in an lcs that cannot be properly
separated from any point of its complement are the dense subspaces
(this is the case of the hyperplane {x ∈ X : �(x) = 0}, where � : X → R

is a non-continuous linear function).
Theorem 2.1.6 easily leads us to the following result, which is fre-

quently used throughout the book.

Corollary 2.1.7 Given a non-empty closed convex set C in an lcs, for
every point x /∈ C there are � ∈ X∗ \ {θ} and α ∈ R such that �(x) <
α ≤ �(y) for all y ∈ C.

Next, we see the most important consequences of the strong separa-
tion property in Theorem 2.1.6, which is stated in an lcs X. The first
one is the Dieudonné theorem, exploiting the notion of the recession
cone for checking the closedness of the sum of two convex sets.
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Theorem 2.1.8 Given two non-empty closed convex sets in an lcs,
C and D, we assume that one of them is locally compact and C∞ ∩
(−D∞) is a linear subspace. Then C + D is closed.

Other consequences of Theorem 2.1.6 follow:
(i) A linear subspace L ⊂ X fails to be dense in X if and only if

there exists � ∈ X∗ \ {θ} such that L = {x ∈ X : �(x) = 0}.
(ii) The elements of X∗ separate points in X; that is, given x, y in

X such that x �= y, there exists � ∈ X∗ such that �(x) �= �(y).
(iii) If C ⊂ X is closed and convex, then it is the intersection of

all closed half-spaces that contain it. The analytic counterpart to this
result constitutes the subject of section 3.2.

(iv) If C is a convex cone, then for all x ∈ X we have that either
x ∈ cl C or there exists some � ∈ X∗ such that �(x) > 0 and �(z) ≤ 0
for all z ∈ C.

(v) If Y is a linear subspace of X and � ∈ Y ∗, then � can be extended
to a linear function �̃ ∈ X∗.

Associated with a subset C in an lcs X, we consider the sets

C◦ := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 for all x ∈ C} ,

C− := (cone C)◦ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 for all x ∈ C} , and

C⊥ := (−C−) ∩ C− = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ C} ,

i.e., the (one-sided) polar , the negative dual cone, and the orthogonal
subspace (or annihilator) of C, respectively. Observe that C◦ is a closed
convex set containing θ, C− is a closed convex cone, and C⊥ = (aff C)⊥
is a closed linear subspace. Additionally, given ε ≥ 0, we define the ε-
normal set to C at x ∈ C by

Nε
C(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε for all y ∈ C} , (2.24)

with NC(x) := N0
C(x) being the normal cone of C at x. Observe that

NC(x) = (C − x)−.
Given an lcs (X,TX) with the topological dual X∗ endowed with

a locally convex topology TX∗ , we say that ((X,TX), (X∗,TX∗)) is a
compatible dual pair if the dual of (X∗,TX∗) is identified with X. In
such a case, the topologies TX and TX∗ are said to be compatible (or
consistent) topologies for the dual pair (X, X∗).

Observe that an lcs X can be regarded as a linear subspace of R
X∗

,
using the identification x ∈ X �→ 〈·, x〉 ∈ R

X∗
, where 〈x∗, x〉 := x∗(x).

In this way, the space X inherits the product topology of R
X∗

, which
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gives rise to the weak-topology σ(X, X∗) on X, also denoted by w. Since
R

X∗
is an lcs, so is the topological space (X, w). We use the symbol

→w (or → when no confusion is possible) to represent the convergence
in the topology σ(X, X∗), so that a net xi →w x in (X, w) if and only
if 〈xi, x

∗〉 → 〈x, x∗〉 in R for all x∗ ∈ X∗.
A seminorm on a linear space X is a function p : X → R that sat-

isfies p(x + y) ≤ p(x) + p(y) and p(λx) = |λ|p(x) for all x, y ∈ X and
all λ ∈ R. Note that a seminorm is nonnegative and satisfies p(θ) = 0
together with −p(x) ≤ p(−x). A seminorm p that satisfies the implica-
tion p(x) = 0 ⇒ x = θ is called a norm. An important family of semi-
norms in an lcs X is

{px∗ := |〈x∗, ·〉| : x∗ ∈ X∗}.

This family generates the weak topology on X; in fact, the semiballs

Bx∗(θ, r) := {x ∈ X : px∗(x) ≤ r}, x∗ ∈ X∗ and r > 0,

are θ-neighborhoods. In addition, for any U ∈ NX in the weak topol-
ogy, there exists a finite number of elements x∗

1, . . . , x∗
n ∈ X∗ and r > 0

such that

⋂
1≤i≤n

Bx∗
i
(θ, r) = {x ∈ X : px∗

i
(x) ≤ r, i = 1, . . . , n} ⊂ U.

The weak∗-topology defined on X∗, denoted by σ(X∗, X) (also by w∗-
topology or, simply, w∗), is the locally convex topology on X∗ gener-
ated by the family of seminorms

{px := |〈·, x〉|, x ∈ X}.

Similarly as above, given any V ∈ NX∗ in the w∗-topology, there exist
x1, . . . , xm ∈ X and r > 0 such that

⋂
1≤i≤m

Bxi
(θ, r) = {x∗ ∈ X∗ : pxi

(x∗) ≤ r, i = 1, . . . , m} ⊂ V ;

that is, in particular, for L := span{x1, . . . , xm} we have that L⊥ ⊂ V .
Observe that a net (x∗

i )i converges to x∗ in (X∗, w∗), also written as
x∗

i →w∗
x∗ (or x∗

i → x∗ when no confusion is possible), if and only if
〈x∗

i , x〉 → 〈x∗, x〉 for all x ∈ X. A net (xi)i is said to be TX∗-boundedly
w∗-convergent to x∗, where TX∗ is a given locally convex topology on
X∗, if it is TX∗-bounded and satisfies x∗

i →w∗
x∗.
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The weak and weak∗ topologies, among other important ones, are
compatible with the dual pair (X, X∗). In fact, we have the identifi-
cation (X, w)∗ = X∗, and the w-topology is the coarsest of the locally
convex topologies preserving the family of continuous linear functions
on X. Similarly, we have the identification (X∗, w∗)∗ = X; that is, for
every w∗-continuous linear function � : X∗ → R, there exists a unique
x ∈ X such that

�(x∗) = 〈x∗, x〉 for all x∗ ∈ X∗.

Therefore, ((X,TX), (X∗, w∗)) and ((X, w), (X∗, w∗)) are compatible
dual pairs for the bilinear function (x∗, x) ∈ X∗ × X �→ 〈x∗, x〉 ∈ R.
This fundamental property of the weak topology shows that closed
convex subsets of X and lsc convex functions defined on X are the
same if we consider in X the weak topology instead of the original one.

Another important topology in X for which the dual of X remains
X∗ is the one generated by the family of seminorms

ρA(x) = sup{|〈x∗, x〉| : x∗ ∈ A},

where A is a non-empty w∗-compact subset in X∗ (implying that, for
all x ∈ X, the set {〈x∗, x〉 : x∗ ∈ A} is bounded in R). This topology is
called the Mackey-topology and is denoted by τ(X, X∗) (also written
as τ). This is the finest of the locally convex topologies T such that
the dual of (X,T) is X∗. In parallel, the Mackey-topology defined on
X∗, τ(X∗, X), is the one generated by the family of seminorms

ρA(x∗) = sup{|〈x∗, x〉| : x ∈ A},

where A is any non-empty w-compact subset in X. Hence, it is the
finest of the locally convex topologies T such that the dual of (X∗,T)
is X. Any locally convex topology T on X (on X∗) that satisfies
w ⊂ T ⊂ τ (w∗ ⊂ T ⊂ τ(X∗, X)), respectively) satisfies (X,T)∗ = X∗
((X∗,T)∗ = X, respectively). We also consider the strong topology
β(X∗, X), also written as β, which is generated by the family of semi-
norms

ρA(x∗) = sup{|〈x∗, x〉| : x ∈ A},

where A is any non-empty w-bounded subset in X. Hence, we have
τ(X∗, X) ⊂ β(X∗, X) with a possibly strict inclusion, and so
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(X∗, β(X∗, X))∗ may not coincide with X. Observe that one can also
define the strong topology β(X, X∗), generated by the family of semi-
norms

ρA(x) = sup{|〈x∗, x〉| : x∗ ∈ A},

for A being a non-empty w∗-bounded subset in X∗. However, it turns
out that the topology β(X, X∗) coincides with the Mackey-topology
τ(X, X∗) as a consequence of the Alaoglu–Banach–Bourbaki theorem
given below (Theorem 2.1.9). In other words, the difference between
the Mackey and the strong topologies only occurs in the dual space X∗.

To show that every locally convex topology on a vector space X is
generated by the family of seminorms, we use the Minkowski function
(also called Minkowski gauge), defined for a non-empty set C ⊂ X as

pC(x) := inf{λ ≥ 0 : x ∈ λC}, (2.25)

with the convention inf ∅ = +∞. Then the collection of functions

pU (x) := inf{λ ≥ 0 : x ∈ λU},

where U runs the family NX gives the desired family of seminorms
that defines the locally convex topology of X. Conversely, we consider
a saturated family P of seminorms; that is, for every p1, p2 ∈ P there
exists a p ∈ P such that max{p1, p2} ≤ p. Then P defines a locally
convex topology on X for which the semiballs

Bp(θ, r) := {y ∈ X : p(y) < r}, r > 0, p ∈ P,

constitute a neighborhood base of θ. If Y is a linear subspace, then the
locally convex topology induced on Y by the one of X is generated by
the family of seminorms {p|Y : p ∈ P}. The associated locally convex
topology is separated if and only if, for every x �= θ, there exists some
p ∈ P such that p(x) �= 0.

Now, we come to the Alaoglu–Banach–Bourbaki theorem, which is
one of the most useful theorems in functional analysis.

Theorem 2.1.9 If X is an lcs and V ∈ NX , then the polar V ◦ is
w∗-compact in X∗.

Given a linear subspace Y of an lcs X, we consider the following
equivalence relation in the topological dual space X∗ :

x∗
1 ∼ x∗

2 ⇔ x∗
1 − x∗

2 ∈ Y ⊥,
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and denote X∗/Y ⊥ := X∗/ ∼. Let h : X∗/Y ⊥ → Y ∗ be the mapping
defined by

h(〈x∗〉) := z∗
|Y , for any z∗ ∈ 〈x∗〉 .

Then h defines a linear isomorphism from X∗/Y ⊥, endowed with the
quotient topology, onto the dual space Y ∗ of Y ; in other words, h is a
continuous linear bijection with a continuous inverse. Then, since the
canonical quotient mapping q (see (2.1)) is open (the image of every
open set is open), for every V ∈ NX∗ we have q(V ) ∈ NX∗�Y ⊥ , and so

V|Y := h({〈x∗〉 : x∗ ∈ V }) =
{

x∗
|Y : x∗ ∈ V

}
∈ NY ∗ .

To finish this summary of locally convex spaces, we focus on the
case when the associated topology is defined by a norm ‖ · ‖. In such
a case, we say that X is a normed space and represent it by (X, ‖·‖)
(or, simply, by X when no confusion is possible). The closure of a set
A ⊂ X with respect to the norm-topology is denoted by cl‖·‖(A) (or
simply cl(A) if no confusion is possible). A normed space is Banach if
it is complete (as a metric space). The dual norm on X∗ is denoted
similarly (when no confusion is possible) and is defined by

‖x∗‖ := sup{|〈x∗, x〉| : ‖x‖ ≤ 1}, x∗ ∈ X∗;

equivalently, we have ‖x∗‖ = sup{|〈x∗, x〉| : ‖x‖ = 1}. In particular, for
all x ∈ X and x∗ ∈ X∗, we get

|〈x∗, x〉| ≤ ‖x∗‖ ‖x‖ ,

known as the Cauchy–Schwarz inequality . It is easy to see that
(BX)◦ = BX∗ . The space X∗ endowed with this dual norm is always
Banach (even if the normed space X is not). It is worth observing
that the strong topology β(X∗, X) coincides with the norm topology.
The dual norm in a general Banach space is a typical example of a
w∗-lsc convex function which is β-continuous but not necessarily w∗-
continuous. By BX(x, r) (or B(x, r) if no confusion is possible) we rep-
resent the closed ball in X with center x and radius r > 0. In particular,
BX := BX(θ, 1) is the closed unit ball in X. It is known that in any
infinite-dimensional normed space the unit sphere {x ∈ X : ‖x‖ = 1}
is weakly dense in BX .

An inner product defined in a linear space X is a bilinear form
〈·, ·〉 : X × X → R (that is, the mappings 〈·, y〉 and 〈x, ·〉, x, y ∈ X,
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are both linear), which is symmetric and satisfies 〈x, x〉 ≥ 0 for all
x ∈ X, whereas 〈x, x〉 = 0 if and only if x = θ. An inner product 〈·, ·〉
induces a norm which is defined by ‖x‖ :=

√〈x, x〉. A Hilbert space
is a normed space whose norm is induced by an inner product. The
Kadec–Klee property holds in Hilbert spaces; that is, every sequence
(xk)k, which is weakly convergent to x and satisfies ‖xk‖ → ‖x‖, is
norm-convergent to x.

If X and Y are Banach, then the product space X × Y is also
Banach when endowed with the sum (or the maximum) of the norms.
In this normed setting, the Mazur theorem asserts that every closed
convex subset of X is closed for the topology σ(X, X∗).

The convex hull of a compact set in a finite-dimensional tvs is com-
pact, as a consequence of the Carathéodory theorem, but this property
may fail in infinite dimensions. However, the convex hull of a finite
union of convex compact sets is always compact. In addition, if the
space is Banach, then the closed convex hull of a compact set is com-
pact, and the closed convex hull of a weakly compact set is weakly
compact (this fact corresponds to the Krein–Šmulian theorem).

The following result gives a topological counterpart to the Hahn–
Banach extension theorem above.

Theorem 2.1.10 A continuous linear function � ∈ Y ∗, where Y is
a linear subspace of a normed space X, admits a continuous linear
extension �̃ ∈ X∗ which preserves the norm; i.e., ‖�̃‖ = ‖�‖.

We also recall the celebrated Eberlein–Šmulian theorem, which
establishes that the compactness and the sequential compactness in
(X, σ(X, X∗)) coincide in every normed space X.

The dual of (X∗, ‖ · ‖) is called the bidual of X and is denoted by
X∗∗. It is also a Banach space for the dual norm

‖z‖ := sup{|〈z, x∗〉| : ‖x∗‖ ≤ 1}, z ∈ X∗∗.

The normed space X is embedded in X∗∗ in a natural way by means
of the injection mapping

x ∈ X �→ x̂ := 〈·, x〉 ∈ X∗∗. (2.26)

It can be shown that

‖x̂‖ = ‖x‖ = max{〈x∗, x〉 : ‖x∗‖ ≤ 1} for all x ∈ X. (2.27)
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We see that the above injection mapping is a linear isometry (i.e.,
an injective linear mapping from X to X∗∗ such that ‖x‖ = ‖x̂‖ for
all x ∈ X). The bidual space X∗∗ can also be endowed with the cor-
responding w∗-topology σ(X∗∗, X∗), also denoted by w∗∗. Hence, we
write →w∗∗

for the convergence with respect to the topology w∗∗ in
X∗∗ and represent the associated closure of a set C ⊂ X∗∗ by clw

∗∗
C.

A Banach space is called reflexive if

X̂ := {x̂ : x ∈ X} ≡ X∗∗;

that is, when the isometry x ∈ X �→ x̂ ∈ X∗∗ is surjective. In this case,
according to the Mazur theorem above, every norm-closed convex sub-
set of X∗ is closed for the topology σ(X∗, X∗∗) ≡ σ(X∗, X).

In a dual pair (X, X∗), where X is a normed space, all compati-
ble topologies on X have the same bounded sets (this is the Mackey
theorem).

We have the following important special case of Theorem 2.1.9,
which supports the proof of (2.27).

Theorem 2.1.11 Given a normed space X, BX∗ is w∗-compact in
X∗. Consequently, a subset C ⊂ X∗ is w∗-compact if and only if it is
w∗-closed and norm-bounded.

More properties of normed spaces come next:
(i) (X, τ(X, X∗)) = (X, ‖ · ‖), and σ(X∗∗, X∗) induces σ(X, X∗) on

X ⊂ X∗∗.
(ii) BX is σ(X∗∗, X∗)-dense in BX∗∗ ; consequently, X is σ(X∗∗, X∗)-

dense in X∗∗ (Goldstein theorem).
In addition, for a Banach space X, the following statements are

equivalent:
(i) X is reflexive.
(ii) BX is weakly compact.
(iii) X∗ is reflexive.
In a Banach space X, every convex subset C which is a countable

union of closed convex sets satisfies Ci = int C (see Exercise 3(iii) in
chapter 3).

The following result is the fundamental James theorem.

Theorem 2.1.12 A non-empty weakly closed bounded set C in a
Banach space X is weakly compact if and only if every continuous
linear function on X attains its maximum on C.

A mapping A : X → 2X∗
is a monotone operator if
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〈x∗ − y∗, x − y〉 ≥ 0 for all x, y ∈ X, x∗ ∈ Ax, and y∗ ∈ Ay. (2.28)

We say that A is cyclically monotone if

n∑
i=0

〈x∗
i , xi+1 − xi〉 +

〈
x∗

n+1, x0 − xn+1

〉 ≤ 0, (2.29)

for all xi ∈ X, x∗
i ∈ Axi, i = 0, 1, . . . , n + 1, n ≥ 1. It is clear that every

cyclically monotone operator is monotone. The converse also holds
when X = R.

A maximally monotone (maximally cyclically monotone) operator
A : X → 2X∗

is a monotone (cyclically monotone, respectively) oper-
ator such that, for any monotone (cyclically monotone, respectively)
operator B : X → 2X∗

such that gphB ⊃ gphA, we have A = B.

Differentiability
Given an extended real-valued function f : X → R, defined on a

linear space X, the directional derivative of f at the point x ∈ f−1(R)
in the direction u ∈ X is defined by

f ′(x; u) := lim
t↓0

f(x + tu) − f(x)
t

. (2.30)

In particular, when f : R → R∞, the functions

s �→ f ′
+(s) := f ′(s; 1) = lim

t↓0

f(s + t) − f(s)
t

and
s �→ f ′

−(s) := −f ′(s; −1) = lim
t↑0

f(s + t) − f(s)
t

are called the right and left derivatives of f , respectively.
If X is an lcs, f : X → R, f ′(x; u) exists for all u ∈ X, and f ′(x; ·) ∈

X∗, then we say that f is Gâteaux-differentiable at x. The mapping
f ′

G(x) := f ′(x; ·) is called the Gâteaux-derivative of f at x. If X is
normed, then we say that f is Fréchet-differentiable at x if there exists
f ′(x) ∈ X∗ such that

lim
u→0

f(x + u) − f(x) − 〈f ′(x), u〉
‖u‖ = 0;
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we call f ′(x) the Fréchet-derivative of f at x. If X is a Hilbert space
with an inner product 〈·, ·〉, then, by the Riesz representation theo-
rem, the dual X∗ is identified with X, and the function f is Fréchet-
differentiable at x ∈ X if and only if there exists a vector ∇f(x) ∈ X,
called gradient of f at x, such that

f ′(x)(v) = 〈∇f(x), v〉 for all v ∈ X.

If f is Gâteaux-differentiable at x and f ′
G(·) is continuous at x, then f

is Fréchet-differentiable at x with f ′(x) = f ′
G(x). Moreover, the Fréchet

and Gâteaux-differentiability coincide for convex functions defined on
the Euclidean space. For example, if X is Hilbert, then the function
f := ‖·‖2 is C1 (in fact, f ′(x)(v) = 2 〈x, v〉 for all x, v ∈ X).

A Banach space X is said to be an Asplund space (or just Asplund) if
every continuous convex function defined on X is Fréchet-differentiable
in a dense Gδ-set ; that is, a set which is the intersection of countably
many open sets. If X is separable, then X is Asplund if and only if X∗
is separable. All reflexive Banach spaces are Asplund.

Given a convex subset C of a Banach space X, a point x ∈ C is said
to be an exposed point of C if there exists x∗ ∈ X∗ \ {θ} such that x
is the unique point that satisfies

sup
c∈C

〈c, x∗〉 = 〈x, x∗〉 .

More restrictively, the point x is said to be a strongly exposed point of C
if there exists some x∗ ∈ X∗ \ {θ} such that every sequence (xn)n ⊂ C,
satisfying

〈xn, x∗〉 → sup
c∈C

〈c, x∗〉 ,

converges to x. Equivalently, x ∈ C is a strongly exposed point of C if
and only if the (support) function z∗ ∈ X∗ �→ supc∈C 〈c, z∗〉 is Fréchet-
differentiable at x∗ with Fréchet-derivative x.

The Banach space X is said to have the Radon–Nikodym property
(RNP, for short) if every non-empty closed bounded convex set C can
be written as the closed convex hull of its strongly exposed points. It is
known that X has the RNP if and only if X∗ is a w∗-Asplund ; that is,
when every (norm-)continuous and w∗-lsc convex function defined on
X∗ is Fréchet-differentiable in a dense Gδ-subset of X∗. In addition,
the space X is Asplund if and only if X∗ has the RNP.
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2.2 Convexity and continuity

In this section we review the main algebraic and topological proper-
ties of the extended real-valued convex functions. We work in a (real)
separated locally convex space (lcs) X as described in section 1.3; that
is, X and X∗ form a compatible dual pair via the duality pairing
〈x∗, x〉 := x∗(x), x∗ ∈ X∗, x ∈ X; by NX we represent a neighborhood
base of closed convex balanced neighborhoods of θ (θ-neighborhoods),
and P is a saturated family of seminorms generating the topology in X.

Given an extended real-valued function f : X → R, also written as
f ∈ R

X , we introduce some geometric objects associated with it. First,
since f is allowed to take the value +∞, we define the effective domain
or (simply, domain) of f by

dom f := {x ∈ X : f(x) < +∞} = f−1(R ∪ {−∞}).

This definition does not exclude those points where f takes the
value −∞. It is clear that the domain of the sum or maximum of
two functions is the intersection of the associated domains, and that
this is not true for the supremum of an arbitrary family of functions.
Sometimes, functions are defined only on subsets of X where they are
finite, by writing f : C ⊂ X → R for some given set C ⊂ X.

An intrinsic geometric object in convex analysis, which further cap-
tures the properties of a function f , is the epigraph of f defined by

epi f := {(x, λ) ∈ X × R : f(x) ≤ λ}.

This set provides an exact identification of the function f as it allows
its recovery by writing

f(x) = inf{λ ∈ R : (x, λ) ∈ epi f}. (2.31)

The epigraph is then placed above the graph of f , which is the set

gph f := {(x, λ) ∈ X × R : f(x) = λ}.

A related concept is the strict epigraph given by

epis f := {(x, λ) ∈ X × R : f(x) < λ}.

We can check that both the epigraph and the strict epigraph have the
same closure.



2.2. CONVEXITY AND CONTINUITY 37

Now we give the definition of convex functions, taking into account
the current convention (2.2).

Definition 2.2.1 A function f : X → R is convex if the following
inequality, called Jensen inequality, holds for all x1, x2 ∈ X and λ ∈
[0, 1] :

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). (2.32)

Observe that, due to our conventions (2.2) on the sum and product
operations in R, we can restrict the inequality in (2.32) to x1, x2 ∈
dom f and λ ∈ ]0, 1[. The geometric meaning of convexity is made
clear, thanks to the concepts of epigraph and strict epigraph. The
following proposition shows this fact.

Proposition 2.2.2 For every function f : X → R, the following
assertions are equivalent:

(i) f is convex.
(ii) epi f is a convex set in X × R.
(iii) epis f is a convex set in X × R.

Proof. (i) ⇒ (iii) Take (xi, λi) ∈ epis f , i = 1, 2, and α ∈ ]0, 1[. Then,
by the convexity of f ,

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2) < αλ1 + (1 − α)λ2,

and α(x1, λ1) + (1 − α)(x2, λ2) ∈ epis f .
(iii) ⇒ (ii) Take (xi, λi) ∈ epi f , i = 1, 2, and α ∈ ]0, 1[. So, for each

fixed ε > 0, (xi, λi + ε) ∈ epis f and (iii) implies that α(x1, λ1 + ε) +
(1 − α)(x2, λ2 + ε) ∈ epis f . Thus,

f(αx1 + (1 − α)x2) < αλ1 + (1 − α)λ2 + ε,

and (ii) follows when ε ↓ 0.
(ii) ⇒ (i) Take x1, x2 ∈ dom f and λ ∈ ]0, 1[. Given k ≥ 1, we denote

αk,i := max{f(xi), −k}, i = 1, 2. So, (xi, αk,i) ∈ epi f , i = 1, 2, and (ii)
yields

f(λx1 + (1 − λ)x2) ≤ λαk,1 + (1 − λ)αk,2 for all k ≥ 1.

Hence, the Jensen inequality follows when k ↑ +∞.
A function f : X → R is said to be proper if it has a non-empty

(effective) domain and never takes the value −∞. This is a natural
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assumption in extended real-valued functions. However, we often allow
non-proper functions, not for the sake of generality, but because our
theory will sometimes lead to new functions that may not be proper
(see Exercise 39, for an example illustrating this situation). Obviously,
a function f : X → R∞ is proper if and only if it has a non-empty
domain. Clearly, the functions which are identically equal to +∞ or
to −∞ are not proper. In addition, the sum of two proper functions
may not be proper, unless their effective domains intersect.

We say that f : X → R is positively homogeneous if f(θ) = 0 and

f(λx) = λf(x) for all x ∈ dom f and all λ > 0.

Observe that the condition f(θ) = 0 above can be replaced with the
less restrictive relation f(θ) ∈ R (see Exercise 8). As for convexity, the
positive homogeneity is also characterized by means of the epigraph.
Indeed, a proper function f : X → R∞is positively homogeneous if and
only if its epigraph is a cone in X × R.

The function f : X → R is subadditive if for all x1, x2 ∈ X :

f(x1 + x2) ≤ f(x1) + f(x2),

and sublinear if it is subadditive and positively homogeneous. Equiva-
lently, a sublinear function is a positive homogeneous convex function.

We now turn to the topological side, showing that the epigraph also
captures the lower semicontinuity of the associated function. In this
case, the sublevel sets come into play since their closure also charac-
terizes the lower semicontinuity property. There is a subtle difference
here with convexity, the (non-empty) sublevel sets of convex functions
are convex, but we can have non-convex functions with convex sublevel
sets. The property of having convex sublevel sets in fact characterizes
the so-called quasi-convex functions.

Proposition 2.2.3 For every function f : X → R, the following
assertions are equivalent:

(i) f is lsc.
(ii) epi f is a closed set in X × R.
(iii) [f ≤ λ] is closed in X for all λ ∈ R.

Due to the equivalence of (i) and (ii), lsc functions are also called
closed. Note that the sequential lower semicontinuity of f is also char-
acterized by statements (ii)–(iii), provided that the condition on the
closure is replaced with the sequential closure. Moreover, due to the
Mazur theorem, every lsc convex function on X is weakly lsc.
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When a given function f : X → R is not lsc (or convex), we some-
times proceed by replacing it with an appropriate lsc (or convex,
respectively) approximation. The convex hull , closed hull , and closed
convex hull of f are respectively defined by

co f := sup{g : X → R : g is convex and g ≤ f},

cl f := sup{g : X → R : g is lsc and g ≤ f},

cof := sup{g : X → R : g is convex, lsc, and g ≤ f};

the closed hull is also represented by f̄ .
Closed and closed convex hulls can also be obtained by operating

topologically and algebraically on the epigraph.

Proposition 2.2.4 For every function f : X → R, we have

epi(cl f) = cl (epi f) and epi(cof) = co (epi f) . (2.33)

Note that there is no equivalent relation to (2.33) for the convex hull;
in fact, co (epi f) need not be an epigraph. We also can write cl f and
co f in terms of lower limits and convex combinations, respectively: for
every x ∈ X,

(cl f)(x) = lim inf
y→x

f(y) = sup
U∈NX

inf
y∈U

f(x + y), (2.34)

and (see the definition of Δ(epi f) in (2.5))

(co f)(x) = inf

{ ∑
(z,s)∈epi f

λ(z,s)s :
∑

(z,s)∈epi f

λ(z,s)z = x, λ ∈ Δ(epi f)

}

= inf

{ ∑
z∈dom f

λzf(z) :
∑

z∈dom f

λzz = x, λ ∈ Δ(dom f)

}
.

Then we can easily check that

cl (dom (cl f)) = cl (dom f) , dom(co f) = co (dom f) , (2.35)

and, as a consequence, we get

cl (dom(cof)) = co (dom f) . (2.36)



40 CHAPTER 2. PRELIMINARIES

Moreover, we have the following equalities:

inf f = inf(cl f) = inf(co f) = inf(cof), (2.37)

showing that the above hulls do not change the value of the infimum
of the original function.

To continue the previous discussion on the properness assumption,
note that when X is infinite-dimensional the closed hull cl f may be
non-proper, even when f is proper and convex (Exercise 39). In addi-
tion, if f is convex and lsc but not proper, then f(x) = −∞ for all
x ∈ dom f ; i.e., f cannot take finite values. In other words, if f is
an lsc convex function which is finite at some point, then it must be
proper.

Now we introduce the most important family of functions in convex
analysis, which is

Γ0(X) := {f : X → R∞ : f is proper, lsc, and convex}.

The goal of the next paragraph is to review the strong link between
convexity and continuity, extending the well-known continuity proper-
ties of linear functions. This connection confirms that convex functions
can be regarded as natural generalizations of linear functions. The
key to this connection lies in the fact that, for every convex function
f : X → R, and every x ∈ dom f and u ∈ X, the quotient

s �→ f(x + su) − f(x)
s

is non-decreasing with s > 0. Indeed, for every 0 < s1 < s2, the con-
vexity of f gives rise to

f(x + s1u) = f

(
s1

s2
(x + s2u) +

(
1 − s1

s2

)
x

)

≤ s1

s2
f(x + s2u) +

(
1 − s1

s2

)
f(x), (2.38)

which easily leads us to the desired non-decreasingness property.
Therefore, the directional derivative of f at x in the direction u turns
out to be (see (2.30))

f ′(x; u) = lim
s↓0

f(x + su) − f(x)
s

= inf
s>0

f(x + su) − f(x)
s

; (2.39)
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that is, the last limits exist in R. For the same reason we have the
equality

lim
s↑+∞

f(x + su) − f(x)
s

= sup
s>0

f(x + su) − f(x)
s

,

describing the behavior of f at +∞ in the direction u.
Relation (2.39) constitutes the key property relating convexity to

continuity. Moreover, when f : R → R∞ is a convex function and
t1, t2, t3 ∈ dom f are such that t1 < t2 < t3, we have that (see Exer-
cise 16)

f(t2) − f(t1)
t2 − t1

≤ f(t3) − f(t1)
t3 − t1

≤ f(t3) − f(t2)
t3 − t2

. (2.40)

As a consequence of (2.40) we obtain the following result.

Proposition 2.2.5 Given a convex function f : X → R∞, x ∈ dom f ,
and u ∈ X, for every

α ∈
[
sup
t<0

t−1(f(x + tu) − f(x)), inf
t>0

t−1(f(x + tu) − f(x))
]

,

the function ϕα : R → R defined by

ϕα(s) :=
{

s−1(f(x + su) − f(x)), if s �= 0,
α, if s = 0,

(2.41)

is non-decreasing on R.

In other words, Proposition 2.2.5 says that the multifunction which
assigns to s ∈ R the value⎧⎨

⎩
{s−1(f(x + su) − f(x))}, if s �= 0,[
sup
t<0

t−1(f(x + tu) − f(x)), inf
t>0

t−1(f(x + tu) − f(x))
]

, if s = 0,

is monotone.
The following proposition constitutes a remarkable topological prop-

erty of convex functions. More precisely, the statement of the propo-
sition shows a Lipschitz-like behavior of convex functions.

Proposition 2.2.6 Given a convex function f : X → R∞ and x ∈
dom f , we suppose the existence of some m ≥ 0 and U ∈ NX such
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that
f(x + y) − f(x) ≤ m for all y ∈ U.

Then
|f(x + y) − f(x)| ≤ mpU (y) for all y ∈ U,

and, consequently, for all ρ ∈ ]0, 1[ we have that

|f(y) − f(z)| ≤ m
1 + ρ

1 − ρ
pU (y − z) for all y, z ∈ x + ρU.

Proof. We only give the proof of the first statement. We may suppose,
without loss of generality, that x = θ and f(θ) = 0, so that the current
assumption reads

f(y) ≤ m for all y ∈ U.

Fix y ∈ U . If pU (y) > 0, then y/pU (y) ∈ U and the convexity of f
yields

f(y) = f

(
pU (y)

y

pU (y)

)
≤ pU (y)f

(
y

pU (y)

)
≤ mpU (y).

If pU (y) = 0, for all 0 < ε < 1, we have y/ε ∈ U and, again by the
convexity of f ,

f(y) = f (εy/ε) ≤ εf (y/ε) ≤ εm,

implying that f(y) ≤ 0 as ε ↓ 0. Hence,

f(y) ≤ mpU (y) for all y ∈ U.

Moreover, as −y ∈ U , we also have

0 = f(θ) = f (y/2 + (1/2)(−y))
≤ (1/2)f(y) + (1/2)f(−y) ≤ (1/2)f(y) + (1/2)mpU (y),

showing that −f(y) ≤ mpU (y). The first statement is proved.
As the first consequence of the last proposition, we conclude the

following important result which shows the main inheritance of conti-
nuity of convex functions from continuity of linear functions.

Corollary 2.2.7 The following three statements are equivalent, for
every proper convex function f : X → R∞ :
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(i) f is bounded above around a point of its domain.
(ii) f is continuous at some point in dom f .
(iii) f is continuous on int(dom f).

Proof. The equivalence of assertions (i) and (ii) is Proposition 2.2.6.
To see that assertion (ii) also implies the stronger statement in (iii),
let x0 ∈ dom f be a continuity point of f and take any x ∈ int(dom f)
different from x0. Let U ∈ NX such that

f(x0 + u) ≤ f(x0) + 1 for all u ∈ U,

and choose ρ > 0 such that

z0 := x + ρ(x − x0) ∈ int(dom f);

hence, z0 �= x, and there exists some λ0 ∈ ]0, 1[ such that

x = λ0z0 + (1 − λ0)x0.

Then, for every u ∈ U ,

f(x + (1 − λ0)u) = f(λ0z0 + (1 − λ0)x0 + (1 − λ0)u)
≤ λ0f(z0) + (1 − λ0)f(x0 + u) ≤ λ0f(z0) + (1 − λ0)m,

and the desired equivalence comes from Proposition 2.2.6 when applied
taking Uλ0 := (1 − λ0)U ∈ NX .

Furthermore, in a normed space the equivalences in Corollary 2.2.7
remain true if the continuity assumption in (ii) and (iii) is replaced
with the local Lipschitzianity property. The following property is also
useful.

Corollary 2.2.8 Assume that X is Banach. If f ∈ Γ0(X), then f is
locally Lipschitz on int(dom f) whenever the last set is non-empty.

Proof. We write dom f = ∪n≥1[f ≤ n], where each set [f ≤ n] is a
closed subset of X. Since X is a Baire space and int(dom f) �= ∅, by
the Baire category theorem there exists some n0 ≥ 1 such that the set
int([f ≤ n0]) �= ∅. It follows that f is bounded above around a point
in [f ≤ n0] ⊂ dom f , and the equivalences above imply the desired
result.

The lower semicontinuity condition required in the previous corol-
lary is removed in finite dimensions.
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Corollary 2.2.9 Assume that f : R
n → R∞ is a proper convex func-

tion. Then ri(dom f) is non-empty and the function f|aff(dom f) is finite
and continuous on ri(dom f). More generally, f is lsc on ri(dom f).

We deduce from the previous corollary that every function f ∈
Γ0(X) is continuous relative to each closed segment within its domain:

Corollary 2.2.10 Given a convex function f : X → R and x, y ∈
dom f , the function ϕ : R → R defined by

ϕ(t) := f(tx + (1 − t)y)

is continuous on ]0, 1[. It is continuous relative to [0, 1[ (]0, 1]) when,
additionally, f is lsc at y (x, respectively).

Proof. The function ϕ is continuous on ]0, 1[ by Corollary 2.2.9. More-
over, by convexity of f , we have ϕ(t) ≤ tϕ(1) + (1 − t)ϕ(0) and, using
the lower semicontinuity of f at y, by taking limits we obtain

ϕ(0) = f(y) ≤ lim inf
t↓0

ϕ(t) ≤ lim sup
t↓0

ϕ(t) ≤ lim sup
t↓0

(tf(x) + (1 − t)f(y)) = ϕ(0).

Thus, limt↓0 ϕ(t) = ϕ(0) and ϕ is continuous at 0 relative to [0, 1[. The
same reasoning shows that ϕ is continuous at 1 relative to ]0, 1] when
f is lsc at x.

Convexity of functions is preserved under many operations. For
example, the convexity of the sum of two convex functions follows
easily by the Jensen inequality. The convexity of the supremum of a
family of convex functions comes from the fact that the epigraph of the
supremum is the intersection of their epigraphs (see (2.47)). Further
properties of the supremum are given in the forthcoming section.

We close this section with a property of the closed hull operation
that will be used several times in the book. This result will help us
to develop calculus rules in section 4.1 for the subdifferential of the
function f + g ◦ A (allowing us to reduce the problem to that of a
problem involving lsc functions).

Proposition 2.2.11 Let X, Y be two lcs, f : Y → R and g : X →
R convex functions, and A : X → Y a continuous affine mapping.
Assume that f is finite and continuous at Ax0 for some x0 ∈ dom g.
Then we have that

cl(f ◦ A + g) = (cl f) ◦ A + (cl g). (2.42)
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Proof. For the sake of brevity, we suppose that X = Y and A is
the identity mapping. First, we observe that the inequality cl f +
cl g ≤ cl(f + g) always holds because cl f + cl g ≤ f + g and cl f +
cl g is obviously lsc. To prove the converse inequality, we pick x ∈
(dom (cl f)) ∩ (dom (cl g)); that is, due to (2.35),

x ∈ (dom (cl f)) ∩ cl (dom (cl g)) = (dom (cl f)) ∩ cl (dom g) .

Let us fix λ ∈ ]0, 1[ and denote xλ := λx0 + (1 − λ)x. Since x0 ∈
int (dom f) and x ∈ dom (cl f) ⊂ cl(dom (cl f)) = cl (dom f), again by
(2.35), (2.15) yields xλ ∈ int (dom f), and Proposition 2.2.6 entails the
continuity of f at xλ.

Now, by (2.34), we choose a net zi →i xλ such that (cl g) (xλ) =
limi g(zi). Observe that xi := (1 − λ)−1(zi − λx0) →i x. Since
limi f(zi) = f(xλ) = (cl f) (xλ), by the continuity of f at xλ, we obtain

(cl(f + g))(xλ) ≤ lim inf
i

(f(zi) + g(zi))

= lim
i

(f(zi) + g(zi)) = (cl f) (xλ) + (cl g) (xλ),

and the convexity assumption gives rise to

(cl(f + g))(xλ) ≤ λ((cl f) (x0) + (cl g) (x0)) + (1 − λ)((cl f)(x) + (cl g) (x))
≤ λ(f(x0) + g(x0)) + (1 − λ)((cl f)(x) + (cl g) (x)).

Whence, as λ ↓ 0 and g(x0) ∈ R we get

lim inf
λ↓0

(cl (f + g))(xλ) ≤ (cl f) (x) + (cl g) (x),

and this yields (cl (f + g))(x) ≤ (cl f) (x) + (cl g) (x). If g(x0) = −∞,
then (cl(f + g))(xλ) = −∞ and we deduce that (cl (f + g))(x) ≤
lim infλ↓0(cl(f + g))(xλ) = −∞ ≤ (cl f) (x) + (cl g) (x). The proof is
complete.

Observe that, due to (2.37), relation (2.42) implies

inf
x∈X

(f + g ◦ A)(x) = inf
x∈X

cl(f + g ◦ A)(x) = inf
x∈X

((cl f) + (cl g) ◦ A) (x),

(2.43)

resulting in an optimization problem involving only lsc functions. It
is this precise property that will allow us in chapter 4 to establish
different subdifferential calculus rules and duality results for convex
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functions not necessarily lsc. A counterpart to (2.43) for perturbation
functions will be given in Proposition 4.1.23.

2.3 Examples of convex functions

In this section, we present some particular convex functions, which are
crucial in convex analysis and optimization.

The indicator function of a set C ⊂ X is defined as

IC(x) :=
{

0, if x ∈ C,
+∞, if x ∈ X \ C.

We have dom IC = C and epi IC = C × R+, so that IC is a convex
(lsc) function if and only if C is a convex (closed, respectively) set.
The function IC is proper if and only if the set C is non-empty. More
generally, the closed and closed convex hulls of IC are the indicator
functions

cl IC = Icl C and coIC = IcoC .

The indicator function provides a good device for penalizing con-
strained optimization problems. In fact, if f : X → R∞ is a given func-
tion, then for every non-empty set C ⊂ X we have

inf
x∈C

f(x) = inf
x∈X

{f(x) + IC(x)} .

We also have the following properties, when C := ∩iCi and D := ∪iCi

for some arbitrary family of sets Ci ⊂ X,

IC = sup
i

ICi
and ID = inf

i
ICi

.

The operation of taking the supremum of an arbitrary family of con-
vex functions is a usual operation preserving convexity. Given an arbi-
trary family of convex functions ft : X → R, t ∈ T , where T is a fixed
index set, the associated pointwise supremum function is defined as

f := sup
t∈T

ft. (2.44)

Observe that f can be expressed as

f = sup
λ∈Δ(T )

∑
t∈T

λtft, (2.45)
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where Δ(T ) is defined as in (2.5); that is,

Δ(T ) =
{

λ ∈ R
(T )
+ :

∑
t∈T

λt = 1
}

. (2.46)

The function f is convex, and lsc when all the ft’s are so. These asser-
tions are easily seen in the relation

epi f =
⋂

t∈T

epi ft. (2.47)

Generally, we cannot replace the epigraph by the strict epigraph in
(2.47), nor can we express the domain of f as the intersection of the
domains of the ft’s. However, when T is Hausdorff compact and the
mappings t �→ ft(x) are upper semicontinuous (usc, for short) for all
x ∈ X, then (see Exercise 9)

dom f =
⋂

t∈T

dom ft.

An interesting example of supremum functions is the support func-
tion. Given a set C ⊂ X∗, the support function of C is the function
σC : X → R defined as

σC(x) := sup{〈x∗, x〉 : x∗ ∈ C},

with the convention that σ∅ ≡ −∞. Similarly, we can define σC on
X∗ when C ⊂ X. The function σC is always convex and lsc as it is the
pointwise supremum of continuous linear functions. Here the convexity
of C is superfluous; in fact, we have the following relation resembling
(2.45),

σC = σcl C = σcoC . (2.48)

Also, provided that C �= ∅, we have

dom σC = R+C◦, (2.49)

and so σC is proper (when C �= ∅). Also, given two non-empty sets C,
D ⊂ X∗, we verify that

σC+D = σC + σD and σC∪D = max{σC , σC}. (2.50)

An operation related to the supremum, which also preserves the
convexity, is the pointwise upper limit of convex functions. If (fi)i is
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a net of convex functions, with (I, �) being a directed set, then the
pointwise upper limit function f : X → R defined as f := lim supi fi

satisfies for all x, y ∈ X and λ ∈ ]0, 1[ :

f(λx + (1 − λ)y) = lim supi fi(λx + (1 − λ)y)
≤ lim supi (λfi(x) + (1 − λ)fi(y))
≤ λ lim supi fi(x) + (1 − λ) lim supi fi(y)
= λf(x) + (1 − λ)f(y). (2.51)

Equivalently, the convexity of the upper limit function f also follows
from the expression of its strict epigraph,

epis f =
⋃
i

⋂
j�i

epis fj .

To see that the supremum function f = supt∈T ft is a particular
instance of the upper limit function, we endow the family of finite
subsets of T ,

F(T ) := {S ⊂ T : T is finite}

with the partial order “�” of ascending inclusions:

S1 � S2 ⇐⇒ S1 ⊂ S2, for all S1, S2 ∈ F(T ).

Then we verify that

sup
t∈T

ft = inf
S0∈F(T )

sup
S⊃S0

S∈F(T )

(
max
t∈S

ft

)
= lim sup

S∈F(T )

(
max
t∈S

ft

)
.

The convexity is also preserved by the pointwise lower limit function,
lim infi fi, of any non-increasing net (fi)i of convex functions, because

lim inf
i

fi = inf
i

fi = lim sup
i

fi. (2.52)

We saw in section 2.1 that the Minkowski gauge is a fundamental
device for characterizing locally convex topologies by means of semi-
norms. Remember that the Minkowski gauge (see (2.25)) of a given
non-empty set C ⊂ X is given by

pC(x) = inf{λ ≥ 0 : x ∈ λC},

with inf ∅ = +∞. If C is a closed set containing θ, then
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[pC ≤ α] = αC for all α > 0 (2.53)

and so pC is lsc. In addition, due to our convention 0(+∞) = +∞,
the positive homogeneity of pC is established below only on the set
dom pC ; that is,

pC(αx) = αpC(x) for all x ∈ dom pC and α ≥ 0.

The proof of the following proposition is postponed to Exercise 1.

Proposition 2.3.1 The Minkowski gauge of a non-empty set C ⊂ X
is positively homogeneous in its domain. Moreover, we have

epis pC = R
∗
+ ((C ∪ {θ}) × ]1, +∞[) , (2.54)

and pC is convex whenever C is convex.

In the case when U ∈ NX , the function pU is a continuous seminorm
and satisfies

U = {x ∈ X : pU (x) ≤ 1} and intU = {x ∈ X : pU (x) < 1}. (2.55)

The inf-convolution operation is very useful in convex analysis,
especially in the context of regularization processes. Given two func-
tions f, g : X → R, the inf-convolution of f and g is the function
f�g : X → R defined by

(f�g) (x) := inf{f(y) + g(x − y) : y ∈ X}.

We say that the inf-convolution is exact at x when the infimum above
is attained. We have

dom (f�g) = dom f + dom g, (2.56)

because x ∈ dom (f�g) if and only if there exists some y ∈ X such
that f(y) + g(x − y) < +∞. And thanks to our sign rules, if and only
if x = y + (x − y) ∈ dom f + dom g. The inf-convolution is also called
the epigraphical sum, due to the following relations:

epis (f�g) = epis f + epis g, (2.57)

and
epi(cl(f�g)) = cl(epi f + epi g). (2.58)
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Hence, it is immediate from (2.57) that f�g is convex when f and g
are convex. The inf-convolution has a regularizing effect. For instance,
if the function g is continuous at some point y0 ∈ dom g, then we can
find some U ∈ NX such that, for all x0 ∈ dom f and all u ∈ U ,

(f�g) (x0 + y0 + u) ≤ f(x0) + g(y0 + u) ≤ f(x0) + g(y0) + 1,

and f�g is continuous at x0 + y0, due to Proposition 2.2.6.
A typical example of functions that can be expressed as an inf-

convolution is the distance function to a non-empty subset C of a
normed space X, dC : X → R+, defined as

dC(x) := inf
y∈C

‖x − y‖ .

In fact,
dC = ‖·‖�IC ,

and so dC is convex whenever C is convex. A point c ∈ C is said to be
a projection of x ∈ X on C if ‖x − c‖ = dC(x). The set of projections
of the point x on C is denoted by πC(x).

Given a function f : X → R∞, defined on the normed space X, the
Moreau–Yosida approximation of f with a parameter γ > 0 is the
function fγ : X → R defined as

fγ(x) := f�
(

1
2γ

‖·‖2

)
.

Then fγ is convex whenever f is convex. In particular, we verify that
(IC)γ = 1

2γ d2
C .

More general than the inf-convolution operation is the post-
composition with linear mappings. Given two locally convex spaces X
and Y , a function f : X → R, and a linear mapping A : X → Y , the
post-composition of f with A is the function Af : Y → R defined by

(Af)(y) := inf {f(x) : Ax = y} .

We say that Af is exact at y when the infimum is attained. Observe
that, for every pair of functions f, g : X → R, we have

(f�g) (x) = inf{f(x1) + g(x2) : x1 + x2 = x} = inf{h(x1, x2) : A(x1, x2) = x},
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where h : X × X → R and A : X × X → X are defined by

h(x1, x2) := f(x1) + g(x2) and A(x1, x2) = x1 + x2,

showing that f�g = Ah.
Given a continuous linear mapping A : X → Y , we consider the con-

tinuous linear mapping Â : X × R → Y × R defined by

Â(x, α) := (Ax, α), (2.59)

which satisfies
epis(Af) = Â(epis f). (2.60)

Actually, (y, α) ∈ epis(Af) if and only if there exists some x ∈ A−1(y)
such that f(x) < α; equivalently, there exists some x ∈ X such that
(y, α) = (Ax, α) = Â(x, α) and (x, α) ∈ epis f . Consequently, Af is
convex whenever f is convex. Also, we have that

dom(Af) = A(dom f). (2.61)

Indeed, y ∈ dom(Af) if and only if there exists x ∈ X such that Ax = y
and f(x) < +∞; that is, if and only if y ∈ A(dom f).

Given a function f ∈ Γ0(X), the recession function of f is the func-
tion f∞ : X → R∞ defined by

f∞(u) := sup
s>0

f(x + su) − f(x)
s

,

for any x ∈ dom f . Since the quotient mapping

s �→ s−1(f(x + su) − f(x))

is non-decreasing with s > 0, we also have that

f∞(u) = lim
s↑∞

f(x + su) − f(x)
s

.

Moreover, it readily follows from the definition of f∞ that

epi f∞ = [epi f ]∞ ,

so that f∞ is a proper closed sublinear function. In particular, for
every non-empty closed and convex set C ⊂ X we have
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(IC)∞ = IC∞ . (2.62)

Let X and Y be two lcs. Given a function F : X × Y → R∞, the
marginal function of F is the function f : X → R defined by

f(x) := inf
y∈Y

F (x, y).

It is worth noting that the inf-convolution of any two functions f1, f2

can also be viewed as a marginal function, taking

F (x, y) := f1(y) + f2(x − y).

The strict epigraph of f is the projection of epis F onto X × R; that is,

epis f = πX×R(epis F ) := {(x, λ) ∈ X × R : ∃y ∈ Y such that (x, y, λ) ∈ epis F}.

Certainly, (x, α) ∈ epis f if and only if there exists some y ∈ Y such
that F (x, y) < α; hence, if and only if there exists some y ∈ Y such
that (x, y, α) ∈ epis F . Thus, provided that F is convex, the convexity
of the set πX×R(epis F ) entails the convexity of the marginal value
function f .

2.4 Exercises

Exercise 1 Given a non-empty set C ⊂ X, prove that:
(i) The Minkowski gauge of C, pC , is positively homogeneous in its

domain.
(ii) The strict epigraph of pC is expressed as

epis pC = R
∗
+ ((C ∪ {θ}) × ]1, +∞[) . (2.63)

(iii) The function pC is convex whenever C is convex.

Exercise 2 Given a polyhedral set

C := {z ∈ X : 〈a∗
i , z〉 ≤ bi, i ∈ 1, ..., m}, m ≥ 1,

prove that for every x ∈ C the set R+(C − x) is closed.

Exercise 3 Let A be a convex subset of X. Prove that Ai = intA in
each one of the following situations: (i) int A �= ∅, (ii) X is finite-
dimensional, and (iii) A is a countable union of closed convex subsets
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and X is Banach. Apply (iii) to show that int(dom f) = (dom f)i when
f ∈ Γ0(X).

Exercise 4 Consider the following sets in �2,

Ak :=
{

k∑
i=1

αiei : αk > 0
}

, k ≥ 1,

together with A := ∪k≥1Ak. Prove that Ai = int A = ∅.
Exercise 5 (i) Given a non-empty convex set C ⊂ X such that either
ri(C) �= ∅ or C is closed, prove that ∪L∈FX

cl(L ∩ C) = cl(C), where
FX denotes the family of all finite-dimensional linear subspaces of X.

(ii) Give an example of a non-empty convex set C ⊂ X such that
∪L∈FX

cl(L ∩ C) � cl(C).
(iii) Give an example of a function f ∈ Γ0(�2) such that ∪L∈FX

cl(L ∩ dom f) � cl(dom f).

Exercise 6 Given a set A ⊂ X such that θ ∈ A, prove that

inf
α>0

(IαA◦ + α) = σA. (2.64)

Exercise 7 Let us consider a family of sets {Ai,p ⊂ X, i ∈ J , p ∈
P}, where (J,�) is a directed set and P is the family of seminorms
generating the topology of X. We assume that

i1 � i2 and p1 ≤ p2, i1, i2 ∈ J, p1, p2 ∈ P ⇒ Ai1,p1 ⊃ Ai2,p2 .

Prove that the function h := infi∈J, p∈P σAi,p
is sublinear.

Exercise 8 Given a proper function f : X → R∞, prove that f is pos-
itively homogeneous if and only if f(θ) = 0 and f(λx) = λf(x) for all
x ∈ dom f and λ > 0, if and only if θ ∈ dom f and f(λx) = λf(x) for
all x ∈ dom f and λ > 0.

Exercise 9 Given proper convex functions ft, t ∈ T , such that T is
compact and the mappings t �→ ft(z), z ∈ X, are usc, prove that

dom f =
⋂

t∈T

dom ft, (2.65)

and, for every x ∈ dom f ,

R+(dom f − x) =
⋂

t∈T

R+(dom ft − x). (2.66)
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Exercise 10 Given non-empty sets A, B ⊂ X, C ⊂ X∗, prove the fol-
lowing statements:

(i) If F is the family of finite-dimensional linear subspaces of X,
then ⋂

U∈NX∗
(A + U) = cl (A) , (2.67)

and, for every x ∈ X,

⋂
L∈F

cl
(
C + L⊥

)
=

⋂
L∈F(x)

cl
(
C + L⊥

)
= cl (C) ,

where the closure is taken with respect to the w∗-topology, and F(x) =
{L ∈ F : x ∈ L}.

(ii) If A is closed and B is convex compact with θ ∈ B, then

⋂
ε>0

(A + εB) = A. (2.68)

More generally, given closed sets Aε ⊂ X, ε > 0, non-decreasing with
respect to ε; that is, if 0 < ε1 ≤ ε2, then Aε1 ⊂ Aε2, and B is convex
compact with θ ∈ B, we have that

⋂
ε>0

(Aε + εB) =
⋂

ε>0
Aε.

(iii) Let CL ⊂ X∗, L ∈ F , be non-increasing with respect to the L’s
in F ; that is, if L1 ⊂ L2, L1, L2 ∈ F , then CL1 ⊃ CL2. Then, we have
that ⋂

L∈F
cl

(
CL + L⊥

)
=

⋂
L∈F

cl (CL) .

Moreover, for every x ∈ X we can replace F with F(x) in the equality
above.

(iv) Let (Aε)ε>0 ⊂ X∗ be a family of non-decreasing sets with respect
to ε. We have that

⋂
ε>0, L∈F

co
(
Aε + L⊥

)
=

⋂
ε>0, U∈NX∗

co (Aε + U) =
⋂

ε>0
co (Aε) ,

and, provided that X is a normed space,

⋂
ε>0

co(Aε + εBX∗) =
⋂

ε>0
co(Aε).



2.4. EXERCISES 55

Exercise 11 Given a non-empty set A ⊂ X and a compact interval
Λ ⊂ R such that 0 /∈ Λ, prove that

Λ(coA) = co(ΛA).

Exercise 12 Suppose that (Λε)ε>0 is a non-decreasing family of closed
sets in R (i.e., ifε′ < ε, then Λε′ ⊂ Λε) such that

⋂
ε>0 Λε = {1}. Let

(Aε)ε>0 be another non-decreasing family of closed sets in X (or in
X∗). Prove that ⋂

ε>0
ΛεAε =

⋂
ε>0

Aε.

Exercise 13 Consider a finite family {Ci, i = 1, . . . , m}, m ≥ 1, of
non-empty convex subsets of R

n, and denote C := ∩i=1,...,mCi. Prove
that ⋂

i=1,...,m
ri(Ci) �= ∅ (2.69)

if and only if
ri(Ci) ∩ C �= ∅ for i = 1, . . . , m. (2.70)

Exercise 14 Let f : X → R be a convex function, and A ⊂ X be a
convex set such that (ri A) ∩ dom f �= ∅. Prove that infA f = infri A f =
infcl A f .

Exercise 15 Despite the fact that co f ≤ f on X, it happens that co f
ends by “behaving like f at infinity”, as we have

lim inf
‖x‖→∞

f(x) − (co f)(x)
‖x‖ = 0. (2.71)

Prove (2.71), and give an example of a function f : R → R satisfying

lim
|x|→∞

{f(x) − (co f)(x)} = +∞.

Exercise 16 Given a convex function f : R → R∞, prove that

f(t2) − f(t1)
t2 − t1

≤ f(t3) − f(t1)
t3 − t1

≤ f(t3) − f(t2)
t3 − t2

,

for every t1, t2, t3 ∈ dom f such that t1 < t2 < t3.



56 CHAPTER 2. PRELIMINARIES

Exercise 17 Given a function f ∈ Γ0(X), prove that

cl(f�f) = f�f = 2f

(
1
2
·
)

. (2.72)

Exercise 18 Let f and g be two proper convex functions defined
on X. Suppose that ri(dom f) ∩ ri(dom g) �= ∅ and that the functions
f|aff(dom f) and g|aff(dom g) are continuous on ri(dom f) and ri(dom g),
respectively. Prove that

ri(dom(f + g)) = ri(dom f) ∩ ri(dom g), (2.73)

and

(f + g)|aff(dom(f+g)) is continuous on ri(dom(f + g)).

Exercise 19 Prove that the following statements are equivalent, for
any proper convex functions f , g defined on X,

(i) dom f ∩ ri(dom g) �= ∅ and g|aff(dom g) is continuous on ri(dom g).
(ii) ((dom f − x) × R) ∩ (ri(epi g − (x, g(x)))) �= ∅ for all x ∈ dom g.
(iii) ((dom f − x) × R) ∩ (ri(epi g − (x, g(x)))) �= ∅ for x ∈ dom g.

Exercise 20 Let f , g be two proper convex functions defined on X.
Prove that f + g = f + ḡ in each one of the following cases:

(i) ri(dom f) ∩ ri(dom g) �= ∅ and the functions f|aff(dom f) and
g|aff(dom g) are continuous on ri(dom f) and ri(dom g), respectively.

(ii) dom f ∩ ri(dom g) �= ∅, the function g|aff(dom g) is continuous on
ri(dom g), and f + g = f + g.

2.5 Bibliographical notes
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(1905–1988), J. J. Moreau (1923-2014), and R. T. Rockafellar. He also
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and Th. Precupanu [11], H. H. Bauschke and P. L. Combettes [12],
D. P. Bertsekas et al. [15], F. Bonnans and A. Shapiro [16], J. M.
Borwein and A. Lewis [20], J. M. Borwein and J. D. Vanderwerff [23],
J. M. Borwein and Q. J. Zhu [24], R. I. Boţ [26], C. Castaing and M.
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[108], A. D. Ioffe [112], A. D. Ioffe and V. M. Tikhomirov [115], P.-
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Theorem 2.1.8 is the so-called Dieudonné theorem (see, e.g., [201,
Theorem 1.1.8]). The continuity properties of convex functions given
in Proposition 2.2.6 and its consequences are well-known and can be
consulted in the references above. The first statement in Exercise 3 is
a slight extension of Lemma 2.71 in [16]. A finite-dimensional version
of Exercise 9 has been given in [100]. Exercise 15 can be found in [28]
(see also [109]).



Chapter 3

Fenchel–Moreau–
Rockafellar
theory

This chapter and the following one offer a crash course in convex analy-
sis, including the fundamental results in the theory of convex functions
which are used throughout this book. In the present chapter we review
the Fenchel–Moreau–Rockafellar theory, giving new proofs while high-
lighting the role of separation theorems. These results are then applied
to provide dual representations of support functions, which are used
in section 4.2 to develop a general duality theory. We also apply the
Fenchel–Moreau–Rockafellar theorem to give non-convex slight exten-
sions of the classical minimax theorem.

As in the previous chapter, X is a (real) separated lcs with NX

being a neighborhood base of θ-neighborhoods. We denote by P the
family of continuous seminorms on X. The topological dual space X∗ of
X is, unless otherwise stated, endowed with a locally convex topology
making (X, X∗) a compatible dual pair. The associated duality pairing
is represented by 〈·, ·〉 . By cl C or, interchangeably C, we represent
the closure of C ⊂ X∗ with respect to such a compatible topology.
However, we also sometimes write clw

∗
C when such a specification is

needed.
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3.1 Conjugation theory

In the present section, we study the main features of the conjugation
theory, which is considered the cornerstone of convex analysis.

Definition 3.1.1 Given a function f : X → R, the Fenchel conjugate
of f is the function f∗ : X∗ → R defined by

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X}.

Equivalently, we have

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ dom f}.

Notice that if dom f = ∅, then f∗ ≡ −∞, and if f takes somewhere the
value −∞, then f∗ ≡ +∞. Sometimes, f∗ is called the dual function
of f, and we say that f dualizes to f∗. The function f∗ is a w∗-lsc
convex function for being the pointwise supremum of (w∗-) continuous
affine functions.

If f = IC for a non-empty set C ⊂ X, then f∗ reduces to the support
function of C

I∗C = σC . (3.1)

The following relation is also easy to prove: For every x∗ ∈ X∗, α > 0,
and β ∈ R, we have

(αf − 〈x∗, ·〉 + β)∗ = αf∗(α−1(· + x∗)) − β. (3.2)

As we said before, f∗ is w∗-lsc and convex regardless of what the orig-
inal function f is like, but possibly lacking properness. Furthermore,
as follows from the definition of f∗, we have the equality

inf
X

f = −f∗(θ). (3.3)

Below are some other simple facts related to the conjugation operation.
The primal and dual norms in a normed space are typical examples of
conjugate functions.

Example 3.1.2 Consider a normed space (X, ‖·‖) and f := ‖·‖ . Then

f∗ = IBX∗ and ‖·‖∗ = σBX
= (IBX

)∗.
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Indeed, the equalities ‖·‖∗ = σBX
= (IBX

)∗ come from the own defini-
tion of the dual norm and (3.1). To show the equality f∗ = IBX∗ , we
take x∗ ∈ X∗. Then

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − ‖x‖} = sup
α>0

α( sup
z∈BX

{〈x∗, z〉 − ‖z‖}).

If x∗ /∈ BX∗ , then ‖x∗‖∗ = σBX
(x∗) > 1 and there exists z0 ∈ BX such

that 〈x∗, z0〉 > 1 ≥ ‖z0‖ , implying that supz∈BX
{〈x∗, z〉 − ‖z‖} > 0.

Therefore, f∗(x∗) = +∞. Otherwise, if x∗ ∈ BX∗ , then the Cauchy–
Schwarz inequality yields

sup
z∈BX

{〈x∗, z〉 − ‖z‖} ≤ sup
z∈BX

{‖z‖ (‖x∗‖ − 1)} ≤ 0, (3.4)

and we deduce that f∗(x∗) = 0; that is, f∗(x∗) = IBX∗ .

A primal condition satisfied by f is said to be dualized into a dual
property satisfied by f∗ if the first property implies the second. Both
properties are dual to each other if they are equivalent. The following
statement gives an example of these dualized properties, others will be
given in Proposition 3.3.7.

Proposition 3.1.3 Consider a convex function f : X → R∞, which
is finite and continuous at x ∈ X. Then the function f∗(·) − 〈·, x〉 is
inf-compact with respect to the w∗-topology.

Proof. We may assume that x = θ, due to the relation (f(· + x0))∗ =
f∗(·) − 〈·, x

0
〉 . Given α ∈ R, we take m > −α and U ∈ NX such that

f(u) ≤ m for all u ∈ U (by the continuity assumption). Then, for all
x∗ ∈ [f∗ ≤ α] and u ∈ U, we have

〈x∗, u〉 − m ≤ 〈x∗, u〉 − f(u) ≤ f∗(x∗) ≤ α;

that is, x∗ ∈ (m + α)U◦. Thus, [f∗ ≤ α] ⊂ (m + α)U◦ and Theorem
2.1.9 implies that the (w∗-closed) set [f∗ ≤ α] is w∗-compact.

A proper conjugate requires that the original function f be minorized
by a continuous affine mapping as stated in the following proposition.

Proposition 3.1.4 The following statements are equivalent, for every
lsc convex function f : X → R :

(i) f ∈ Γ0(X).
(ii) dom f 
= ∅ and f is minorized by a continuous affine mapping.
(iii) f∗ ∈ Γ0(X∗).
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Proof. We are going to prove the equivalences (i) ⇔ (ii) and (ii) ⇔
(iii).

(ii) ⇒ (i) It is obvious, since f is convex and lsc by assumption.
(i) ⇒ (ii) Suppose that f ∈ Γ0(X). Then dom f 
= ∅ and there exists

x0 ∈ dom f such that f(x0) > −∞, and so (x0, f(x0) − 1) /∈ epi f.
Next, Corollary 2.1.7 yields a nonzero vector (z∗, α) ∈ X∗ × R such
that

σepif (z∗, α) < 〈z∗, x0〉 + (f(x0) − 1)α =: β; (3.5)

that is, 〈z∗, x〉 + α(f(x) + t) < β for all x ∈ dom f and t ≥ 0. Then,
letting t → +∞, we deduce that α ≤ 0. More precisely, we have α < 0
(taking x = x0 in the last inequality), and so

〈−α−1z∗, x
〉

+ α−1β ≤
f(x) for all x ∈ X; that is, (ii) follows and the equivalence (i) ⇔ (ii)
holds.

(ii) ⇒ (iii) Suppose that dom f 
= ∅ and f ≥ 〈z∗, ·〉 + α for some
z∗ ∈ X∗ and α ∈ R. Hence, f∗(z∗) ≤ −α < +∞ and dom f∗ 
= ∅. At
the same time, for any x0 ∈ dom f, we have

f∗(x∗) ≥ 〈x∗, x0〉 − f(x0) > −∞ for all x∗ ∈ X∗,

and f∗ ∈ Γ0(X∗).
(iii) ⇒ (ii) Suppose that f∗ ∈ Γ0(X∗). If f(y0) = −∞ for some

y0 ∈ X, then f∗ ≡ +∞ and f∗ would be non-proper. If f ≡ +∞,
then f∗ ≡ −∞ and again f∗ would be non-proper. Therefore, f is
proper and minorized by any of the continuous affine mappings x �→
〈z∗, x〉 − f∗(z∗), z∗ ∈ dom f∗. Thus, the equivalence (ii) ⇔ (iii) also
holds.

The following inequality, called Fenchel inequality , is also a simple
consequence of the definition of the conjugate,

〈x∗, x〉 ≤ f(x) + f∗(x∗) for all x ∈ X, x∗ ∈ X∗. (3.6)

In addition, as a consequence of (2.37), the conjugation operation does
not distinguish between a given function and its closed and closed
convex hulls. We have the following proposition.

Proposition 3.1.5 For every function f : X → R, we have

f∗ = (cl f)∗ = (co f)∗ = (cof)∗. (3.7)

Proof. First, since cof ≤ cl f ≤ f and cof ≤ co f ≤ f, we get f∗ ≤
(cl f)∗ ≤ (cof)∗ and f∗ ≤ (co f)∗ ≤ (cof)∗. So, we only need to prove
that (cof)∗ = f∗. In fact, for each x∗ ∈ X∗
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(cof)∗(x∗) = sup
x∈X

{〈x∗, x〉 − (cof)(x)} = − inf
x∈X

{(cof)(x) − 〈x∗, x〉}.

(3.8)
At the same time, we have

co(f − x∗) = sup{g : g convex, lsc, and g ≤ f − x∗}
= sup{(g + x∗) − x∗ : g convex, lsc, and g + x∗ ≤ f}
= sup{h − x∗ : h convex, lsc, and h ≤ f} = (cof) − x∗,

and (2.37) together with (3.8) leads us to

(cof)∗(x∗) = − inf{co(f − x∗)} = − inf{f − x∗} = f∗(x∗).

Conjugation can also be used for a function g : X∗ → R; namely,

g∗(x) := sup{〈x∗, x〉 − g(x∗) : x∗ ∈ dom g}.

So, in particular, we come to the concept of biconjugate functions.

Definition 3.1.6 Given a function f : X → R, the biconjugate of f
is the function f∗∗ : X → R defined as

f∗∗(x) := sup{〈x∗, x〉 − f∗(x∗) : x∗ ∈ dom f∗}.

Notice that, for every x ∈ X,

f∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − sup
z∈X

{〈x∗, z〉 − f(z)}}

≤ sup
x∗∈X∗

{〈x∗, x〉 − (〈x∗, x〉 − f(x))} = f(x).

Thus, since f∗∗ is clearly convex and lsc, we get

f∗∗ ≤ cof ≤ cl f ≤ f, (3.9)

and the closed convex function f∗∗ gives a lower lsc convex estimate
to f. The purpose of the Fenchel–Moreau–Rockafellar theorem, which
is the subject of next section 3.2, is to see that f∗∗ is nothing else but
cof (when the latter function is proper). In the same way as with the
conjugate, we can define the function f∗∗∗ : X∗ → R as

f∗∗∗ := (f∗∗)∗.
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However, this new function does not provide additional information,
since it generally coincides with the conjugate of the initial function.
This fact is at the heart of section 3.2.

Next, we see how the conjugation operation behaves with respect
to some operations on convex functions. In the first place, it is easy to
see that the infimum dualizes to the supremum; that is, for a family
of functions fi : X → R , we always have

(
inf
i

fi

)∗
= sup

i
f∗
i . (3.10)

The converse, which goes from the supremum to the infimum, is less
direct as we see in Proposition 3.2.6 below.

The second result connects the conjugate of a function to the sup-
port of its epigraph.

Proposition 3.1.7 Given a proper function f : X → R∞, for all x∗ ∈
X∗ and α ∈ R, we have

σepif (x∗, −α) =

⎧
⎨

⎩

αf∗(α−1x∗), if α > 0,
σdomf (x∗), if α = 0,
+∞, if α < 0.

(3.11)

Proof. Using (2.31), for every x ∈ X we write

f(x) = inf {λ ∈ R : (x, λ) ∈ epi f} = inf {λ + Iepi f (x, λ) : λ ∈ R} ,

and, thanks to (3.10), the conjugate of f is given by

f∗(x∗) = sup
x∈X, λ∈R

{〈x∗, x〉 − λ − Iepi f (x, λ)}

= I∗epi f (x
∗, −1) = σepif (x∗, −1),

where the last equality comes from (3.1). Therefore, for every α > 0,

σepif (x∗, −α) = ασepif (α−1x∗, −1) = αf∗(α−1x∗),

and we conclude as we can easily verify that σepif (x∗, 0) = σdomf (x∗)
and σepif (x∗, −α) = +∞ for all α < 0.

The following proposition compares the support function of the
domains of f and f∗∗. The proof of this property, which will be part of
the proof of the aforementioned Fenchel–Moreau–Rockafellar theorem,
is based on Proposition 3.1.7.
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Proposition 3.1.8 For every function f : X → R∞ having a proper
conjugate, we have

σdomf∗∗ = σdomf .

Proof. First, without loss of generality, we may suppose that f ∈
Γ0(X) and f∗(θ) = 0 (see Exercise 21). Furthermore, by (3.9), we have
the inequality σdomf ≤ σdomf∗∗ , and so it suffices to show that

σdomf∗∗(x∗) ≤ σdomf (x∗), (3.12)

for any given x∗ ∈ domσdomf . We consider the lsc convex function
ϕ : R → R∞ defined as

ϕ(α) := σepif (x∗, −α),

so that ϕ(0) = σdomf (x∗) < +∞ and ϕ(α) = +∞ for all α < 0. More-
over, dom ϕ cannot be reduced to {0}. Indeed, otherwise, if domϕ =
{0}, then Proposition 3.1.7 would imply that

ϕ(α) = σepif (x∗, −α) = αf∗(α−1x∗) = +∞ for all α > 0.

In particular, taking α = 1, we obtain f∗(x∗) = +∞, and so

+∞ = sup
x∈dom f

{〈x∗, x〉 − f(x)} ≤ σdomf (x∗) − inf
dom f

f(x)

= σdomf (x∗) + f∗(θ) = σdomf (x∗) = ϕ(0),

producing a contradiction with ϕ(0) < +∞. Now, since {0} 
= domϕ ⊂
R+, Corollary 2.2.9 and Proposition 3.1.7 entail

ϕ(0) = lim
α↓0

ϕ(α) = lim
α↓0

σepif (x∗, −α) = lim
α↓0

αf∗(α−1x∗).

Thus, since f∗∗ is proper by Proposition 3.1.4, for all x ∈ dom f∗∗, we
have f∗∗(x) ∈ R, and (3.6) yields

ϕ(0) = lim
α↓0

α(f∗(α−1x∗) + f∗∗(x)) ≥ lim inf
α↓0

α(
〈
α−1x∗, x

〉
) = 〈x∗, x〉 .

So,
σdomf (x∗) = ϕ(0) ≥ sup

x∈dom f∗∗
〈x∗, x〉 = σdomf∗∗(x∗),

and (3.12) follows.
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We introduce the concept of star product function.

Definition 3.1.9 The star product of a function f : X → R by α ∈ R

is the function α ∗ f : X → R defined by

(α ∗ f)(x) :=

⎧
⎨

⎩

αf(α−1x), if α > 0,
σdomf∗(x), if α = 0,
+∞, if α < 0.

(3.13)

It is clear that the star product function α ∗ f is convex and lsc
whenever α ≤ 0. Furthermore, when α > 0, one has

epi(α ∗ f) = α epi f ,

because (x, λ) ∈ epi(α ∗ f) if and only if f(α−1x) ≤ α−1λ, if and only
if (x, λ) ∈ α epi f. Hence, the star product function α ∗ f is convex if
and only if f is convex.

We also introduce the concept of perspective function.

Definition 3.1.10 The perspective function of f : X → R is the func-
tion Pf : R × X → R defined by

Pf (α, x) := (α ∗ f)(x).

The following proposition establishes some properties of the per-
spective function. More details are given in Proposition 3.2.5.

Proposition 3.1.11 For every function f : X → R, we have

epi Pf = R
∗
+({1} × epi f}) ∪ ({0} × epi σdomf∗})

and, whenever f has a proper conjugate,

Pf∗(α, x∗) = σepif (x∗, −α) for all x∗ ∈ X∗ and α ∈ R. (3.14)

Proof. The first statement follows from the definition of Pf . To prove
the other statement we observe, thanks to Proposition 3.1.8 and the
assumption that f∗ is proper, that

Pf∗(α, x∗) = (α ∗ f∗)(x∗) =

⎧
⎨

⎩

αf∗(α−1x∗), if α > 0,
σdomf (x∗), if α = 0,
+∞, if α < 0.
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Thus, since f is also proper, Proposition 3.1.7 yields Pf∗(α, x∗) =
σepif (x∗, −α).

The following proposition shows the relationship of “duality” between
the star product functionα ∗ f∗ and theusual productαf , explaining the
meaning of the term“star product”.

Proposition 3.1.12 For every function f : X → R∞, with proper
conjugate, and every α ≥ 0, we have

(αf)∗ = α ∗ f∗.

Proof. First assume that α > 0. Then, for every x∗ ∈ X∗,

(αf)∗(x∗) = sup
x∈X

(〈x∗, x〉 − (αf)(x))

= α sup
x∈X

(
〈
α−1x∗, x

〉− f(x))

= αf∗(α−1x∗) = (α ∗ f∗)(x∗).

Second, if α = 0, then αf = Idom f by (2.2), and (3.1) together with
Proposition 3.1.8 entails (0f)∗ = σdomf = σdomf∗∗ = 0 ∗ f∗. Here the
last equality comes from the definition of 0 ∗ f∗ in (3.13).

Next, we study the effect of conjugation on inf-convolution, which
in fact dualizes to post-composition with linear mappings. To do this,
we recall that the continuous adjoint mapping of a continuous linear
mapping A : X → Y, given between two lcs X and Y, is the continuous
linear mapping A∗ : Y ∗ → X∗ defined by

〈A∗y∗, x〉 = 〈y∗, Ax〉 for all x ∈ X, y∗ ∈ Y ∗. (3.15)

Similarly, we can define the second adjoint of A by A∗∗ := (A∗)∗.
Observe that A∗∗ : X∗∗ → Y ∗∗, so that

〈A∗∗z, y∗〉 = 〈z, A∗y∗〉 for all z ∈ X∗∗ and y∗ ∈ Y ∗. (3.16)

Therefore, provided that X∗ and Y ∗ are endowed with compatible
topologies for the pairs (X, X∗) and (Y, Y ∗), it turns out that A∗∗ = A.

Proposition 3.1.13 Assume that A : X → Y is a continuous linear
mapping with continuous adjoint A∗. Then, for every functions f :
Y → R and g : X → R, we have

(f�(Ag))∗ = f∗ + g∗ ◦ A∗.
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Proof. Fix y∗ ∈ Y ∗. Then, since (Ag)(y) = infAx=y g(x) by definition,
we have

(f�(Ag))∗(y∗) = sup
y∈Y

(〈y∗, y〉 − (f�(Ag))(y))

= sup
y,z∈Y

(
〈y∗, y + z〉 − f(z) − inf

x∈X, Ax=y
g(x)

)

= sup
x∈X, y,z∈Y, Ax=y

(〈y∗, y + z〉 − f(z) − g(x)) .

Hence, using the definition of A∗,

(f�(Ag))∗(y∗) = sup
x∈X, z∈Y

(〈y∗, Ax + z〉 − f(z) − g(x))

= sup
x∈X

(〈A∗y∗, x〉 − g(x)) + f∗(y∗)

= f∗(y∗) + g∗(A∗y∗),

and we are done.

3.2 Fenchel–Moreau–Rockafellar theorem

The Fenchel–Moreau–Rockafellar theorem, presented in Theorem 3.2.2
below, constitutes the main tool for deriving many other fundamental
results of convex analysis. In this section, we provide a new proof
of this result based on Lemma 3.2.1 below, which itself is a particular
instance of the Fenchel–Moreau–Rockafellar theorem. As the proposed
approach confirms, the keystone in this development is essentially the
separation theorem.

Lemma 3.2.1 For every non-empty closed convex set A ⊂ X, we have

(σA)∗ = IA. (3.17)

Consequently, I∗∗
A = IA and (σA)∗∗ = σA.

Proof. We denote f := IA, so that f∗ = σA and (σA)∗ = f∗∗ ≤ f , due
to (3.9). So, using the Fenchel inequality (3.6),

0 = 〈θ, x〉 − σA(θ) ≤ (σA)∗(x) = f∗∗(x) ≤ f(x) for all x ∈ X,
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and (σA)∗(x) = 0 = f(x) if x ∈ A. Otherwise, for x /∈ A, the separa-
tion theorem (Corollary 2.1.7) yields x∗

0 ∈ X∗ such that β0 := 〈x∗
0, x〉 −

σA(x∗
0) > 0. So,

(σA)∗(x) ≥ 〈λx∗
0, x〉 − σA(λx∗

0) = λβ0 for all λ > 0,

and we deduce that (σA)∗(x) = +∞ = f(x). In other words, (σA)∗(x) =
f(x)forallx ∈ X,and(3.17)follows.Thelastconclusionofthelemmaalso
holds because (3.1) and (3.17) together give rise to I∗∗

A = σ∗
A = IA, which

leads us to (σA)∗∗ = (I∗∗
A )∗ = I∗A = σA.

We now give the Fenchel–Moreau–Rockafellar Theorem.

Theorem 3.2.2 (Fenchel–Moreau–Rockafellar Theorem) For
every function f : X → R∞, the following assertions are true:
(i) As long as f is proper, we have

f = f∗∗ if and only if f ∈ Γ0(X). (3.18)

(ii) Whenever f admits a continuous affine minorant, we have

f∗∗ = cof. (3.19)

Proof. (i) Suppose that f is proper. If f = f∗∗, then f is convex and
lsc, so f ∈ Γ0(X). To prove the converse statement, we assume that
f ∈ Γ0(X), so that epi f is a non-empty closed convex subset of X × R.
Then, by Lemma 3.2.1, for any (x, λ) ∈ X × R, we have

Iepi f (x, λ) = I∗∗
epi f (x, λ) = (σepi f )∗(x, λ)

= sup
x∗∈X∗, α∈R

{〈x, x∗〉 + αλ − σepif (x∗, α)} ,

= sup
x∗∈X∗, α∈R

{〈x, x∗〉 − αλ − σepif (x∗, −α)} ,

which reads, applying Propositions 3.1.7 and 3.1.8 (the latter propo-
sition ensures that σdomf = σdomf∗∗),

Iepi f (x, λ) = max

⎧
⎪⎨

⎪⎩

sup
x∗∈X∗

α>0

(〈x, x∗〉 − αλ − αf∗(α−1x∗)
)
,

sup
x∗∈X∗

{〈x, x∗〉 − σdomf∗∗(x∗)}

⎫
⎪⎬

⎪⎭
.

Moreover, again by Lemma 3.2.1, we have
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sup
x∗∈X∗

{〈x, x∗〉 − σdomf∗∗(x∗)} = (σcl(dom f∗∗))
∗(x) = Icl(dom f∗∗)(x),

and, therefore, the above relation simplifies to

Iepi f (x, λ) = max

⎧
⎨

⎩
sup

x∗∈X∗
α>0

{α(〈x, x∗〉 − λ − f∗(x∗))}, Icl(dom f∗∗)(x)

⎫
⎬

⎭

= max
{

sup
α>0

{α(f∗∗(x) − λ)}} , Icl(dom f∗∗)(x)
}

. (3.20)

Consequently, for each x ∈ X such that f∗∗(x) > −∞ we get

Iepi f (x, λ) = max
{
Iepi f∗∗(x, λ), Icl(dom f∗∗)(x)

}
= Iepi f∗∗(x, λ),

(3.21)

where the last equality holds due to the implication (x, λ) ∈ epi f∗∗ ⇒
x ∈ dom f∗∗ ⊂ cl(dom f∗∗). Furthermore, when f∗∗(x) = −∞, (3.20)
entails
Iepi f (x, λ) = max

{−∞, Icl(dom f∗∗)(x)
}

= Icl(dom f∗∗)(x) = 0 = Iepi f∗∗(x, λ).

In other words, (3.21) holds for all (x, λ) ∈ X × R, and we deduce that
f = f∗∗.

(ii) Suppose now that f admits a continuous affine minorant.
If f ≡ +∞, then direct calculations produce f∗∗ = cof ≡ +∞, and
(3.19) holds trivially. Otherwise, since f admits a continuous affine
minorant, the functions f and cof are proper and, thanks to (3.7),
relation (3.18) entails cof = (cof)∗∗ = f∗∗.

The following corollary, which is essentially the Hahn–Banach sep-
aration theorem, can be regarded as a geometric version of Theorem
3.2.2.

Corollary 3.2.3 Let C ⊂ X be a non-empty closed convex set. Then
C is the intersection of all the closed half-spaces that contain it.

Proof. It is obvious that C is included in the intersection of all the
closed half-spaces that contain it. Conversely, let x be in such an inter-
section and denote

Hx∗ := {z ∈ X : 〈z, x∗〉 ≤ σC(x∗)}, x∗ ∈ domσC .

Then, since each Hx∗ is a closed half-space containing the set C, x ∈
Hx∗ and we obtain 〈x, x∗〉 ≤ σC(x∗) for all x∗ ∈ dom σC . Consequently,
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since IC = (IC)∗∗ = (σC)∗ by Theorem 3.2.2, we deduce that

IC(x) = sup
x∗∈dom σC

{〈x, x∗〉 − σC(x∗)} ≤ 0;

that is, x ∈ C as required.
Next, we continue with Example 3.1.2 which shows the equivalent

representation of the norm using the closed dual unit ball.

Example 3.2.4 If we consider a normed space (X, ‖·‖), then

‖·‖ = σBX∗ . (3.22)

In fact, denoting f := ‖·‖ , by Example 3.1.2, we have f∗ = IBX∗ .
Thus, since f ∈ Γ0(X), Theorem 3.2.2 and (3.1) yield ‖·‖ = f = f∗∗ =
(IBX∗ )∗ = σBX∗ .

As a first consequence of Theorem 3.2.2, we deduce the convexity
and the lower semicontinuity of perspective functions.

Proposition 3.2.5 For any function f ∈ Γ0(X), we have

Pf (α, x) = σepif∗(x,−α) for all x ∈ X and α ∈ R.

Consequently, Pf is proper, lsc, and convex.

Proof. Applying Theorem 3.2.2, by (3.14) we have

Pf (α, x) = Pf∗∗(α, x) = σepif∗(x,−α),

for every x ∈ X and α ∈ R. As f∗ ∈ Γ0(X∗), due to Proposition 3.1.4,
we have epi f∗ 
= ∅ and Pf ∈ Γ0(R × X).

The second application of Theorem 3.2.2 allows a useful expression
of the conjugate of pointwise suprema.

Proposition 3.2.6 Given a family {ft, t ∈ T} ⊂ Γ0(X), we assume
that f := supt∈T ft is proper. Then we have

f∗ = co
(

inf
t∈T

f∗
t

)
, (3.23)

and, consequently,

epi f∗ = co
(
⋃

t∈T
epi f∗

t

)
. (3.24)
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Proof. Using (3.7) and (3.10), Theorem 3.2.2 implies

(
co
(

inf
t∈T

f∗
t

))∗
=
(

inf
t∈T

f∗
t

)∗
= sup

t∈T
f∗∗
t = sup

t∈T
ft = f.

In particular, since f is proper, the function co (inft∈T f∗
t ) must also be

proper. Therefore, applying Theorem 3.2.2 once again, the last relation
entails

f∗ =
(

co
(

inf
t∈T

f∗
t

))∗∗
= co

(
inf
t∈T

f∗
t

)
,

and (3.23) follows. Finally, statement (3.24) is the geometrical coun-
terpart to (3.23).

It is worth noting that Proposition 3.2.6 also entails Theorem 3.2.2,
which shows that these two results are indeed equivalent.

Corollary 3.2.7 The following assertions are equivalent:
(i) For every function f : X → R∞ with a proper conjugate, we have

f∗∗ = cof.
(ii) For every family {ft, t ∈ T} ⊂ Γ0(X) with f := supt∈T ft being

proper, we have f∗ = co (inft∈T f∗
t ) .

Proof. The implication (i) ⇒ (ii) is the statement of Proposition
3.2.6. To prove that (ii) ⇒ (i), we choose a function f : X → R∞ that
has a proper conjugate. So, f is proper and we can write

f∗ = sup
z∈dom f

fz, where fz := 〈·, z〉 − f(z).

Given that {fz, z ∈ dom f} ⊂ Γ0(X∗) and f∗
z = I{z}(·) + f(z), asser-

tion (ii) implies that

f∗∗ =
(

sup
z∈X

fz

)∗
= co

(
inf
z∈X

f∗
z

)
= co

(
inf
z∈X

(I{z}(·) + f(z))
)

.

But we have infz∈X(I{z}(·) + f(z)) = f, then the last relation reads
f∗∗ = cof .

The following result specifies Proposition 3.2.6 to monotone families
of functions.

Proposition 3.2.8 The following assertions are true:
(i) Given a non-decreasing net (fi)i ⊂ Γ0(X) such that f := supi fi

is proper, we have f∗ = cl (infi f∗
i ) .
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(ii) Let (Ai)i ⊂ X be a non-increasing net of non-empty closed con-
vex sets. Then ∩iAi 
= ∅ if and only if the function cl (infi σAi

) is
proper. Furthermore, under each one of these two equivalent properties,
we have σ∩iAi

= cl (infi σAi
) .

Proof. (i) Proposition 3.2.6 entails f∗ = (supi fi)
∗ = co (infi f∗

i ) . But
the net (f∗

i )i is non-increasing, so the function infi f∗
i is convex (by

(2.52)). Thus, the last relation reads

f∗ = cl
(
co
(
inf
i

f∗
i

))
= cl

(
inf
i

f∗
i

)
.

(ii) Take fi := IAi
, so that f∗

i = σAi
. Then, using (3.7) and (3.10),

Lemma 3.2.1 gives rise to
(
cl
(
inf
i

σAi

))∗
=
(
inf
i

σAi

)∗
= sup

i
(σAi

)∗ = sup
i

IAi
= I∩iAi

.

Thus, using Proposition 3.1.4, ∩iAi 
= ∅ if and only if the function
(cl (infi σAi

))∗ is proper, if and only if the closed convex function
cl (infi σAi

) is proper.
Finally, if∩iAi 
= ∅, then, since the net (fi)i ⊂ Γ0(X) is non- increas-

ing, assertion (i) gives rise to

σ∩iAi
= (I∩iAi

)∗ =
(

sup
i

IAi

)∗
= cl

(
inf
i

(IAi
)∗
)

= cl
(
inf
i

σAi

)
.

The following corollary is another consequence of Theorem 3.2.2.

Corollary 3.2.9 Let A, B be non-empty sets. Then coA = coB if and
only if σA = σB.

Proof. If coA = coB, then IcoA = IcoB and, taking the conjugates,

σA = σcoA = I∗coA = I∗coB = σcoB = σB.

Conversely, if σA = σB, then, again taking the conjugates, Theorem
3.2.2 entails

IcoA = (IcoA)∗∗ = (σcoA)∗ = (σA)∗ = (σB)∗ = (σcoB)∗ = IcoB,

and the equality coA = coB follows.
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The following result is an important fact that characterizes the
recession function in terms of the associated conjugate. Our proof is
also based on Theorem 3.2.2.

Proposition 3.2.10 For every function f ∈ Γ0(X), we have

f∞ = σdomf∗ . (3.25)

As a consequence, we also have that

(f∗)∞ = σdomf . (3.26)

Proof. First, suppose that f(θ) = 0. We introduce the functions

ϕs := f(s·) ∈ Γ0(X), s > 0,

so that (s−1ϕs)s>0 is non-decreasing and sups>0 s−1ϕs = f∞; there-
fore, f∞ ∈ Γ0(X). Next, for each fixed x∗ ∈ X∗, Proposition 3.2.8(i)
leads us for all x∗ ∈ X∗ to

(f∞)∗(x∗) =
(

sup
s>0

s−1ϕs

)∗
(x∗) = cl

(
inf
s>0

(s−1ϕs)∗
)

(x∗). (3.27)

Notice that, due to Theorem 3.2.2,

inf
X

f∗ = −f∗∗(θ) = −f(θ) = 0, (3.28)

and, for every s > 0 and z∗ ∈ X∗,

(s−1ϕs)∗(z∗) = sup
x∈X

{〈z∗, x〉 − s−1ϕs(x)} = sup
x∈X

{〈z∗, x〉 − s−1f(sx)}

= s−1 sup
x∈X

{〈z∗, sx〉 − f(sx)} = s−1f∗(z∗).

Thus, using (3.28),

inf
s>0

(s−1ϕs)∗(z∗) = inf
s>0

s−1f∗(z∗) = Idom f∗(z∗),

and (3.27) leads us to

(f∞)∗(x∗) = cl (Idom f∗) (x∗) = Icl(dom f∗)(x
∗). (3.29)
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Furthermore, taking conjugates and using Theorem 3.2.2 (as f∞ ∈
Γ0(X)), we obtain the desired property:

f∞ = (f∞)∗∗ =
(
Icl(dom f∗)

)∗ = σcl(dom f∗) = σdomf∗ .

In the general case, when possibly f(θ) 
= 0, we choose x0 ∈ dom f
and consider the function

g := f(· + x0) − f(x0) ∈ Γ0(X).

Then g(θ) = 0, g∗ = f∗(·) − 〈·, x0〉 + f(x0), and the first part of the
proof entails f∞ = g∞ = σdomg∗ = σdomf∗ ; that is, (3.25) holds. Finally,
since f∗ ∈ Γ0(X∗) due to Proposition 3.1.4, relation (3.26) results from
combining (3.25) and Theorem 3.2.2, (f∗)∞ = σdomf∗∗ = σdomf .

Further consequences of Theorem 3.2.2 come in the following sec-
tions of this chapter.

3.3 Dual representations of support
functions

In this section, we use Theorem 3.2.2 to establish some dual represen-
tations of the support function of sublevel sets. The results obtained
here will be used in the sequel, specifically in section 4.2, where we
develop general schemes of duality in convex optimization. The first
result applies Theorem 3.2.2 to write σ[f≤0] in terms of the conjugate
of f.

Theorem 3.3.1 Given a function f ∈ Γ0(X) such that [f ≤ 0] 
= ∅,
we have

σ[f≤0] = cl
(

inf
α>0

(αf)∗
)

, (3.30)

and, as a consequence of that,

epiσ[f≤0] = cl(R+ epi f∗). (3.31)

Proof. First, using (3.7) and (3.10), Proposition 3.2.6 and Theorem
3.2.2 yield

(
cl
(

inf
α>0

(αf)∗
))∗

= sup
α>0

(αf)∗∗ = sup
α>0

(αf) = I[f≤0]. (3.32)
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Consider the function ϕ : X∗ → R defined by

ϕ := inf
α>0

(αf)∗, (3.33)

so that ϕ is a marginal of the function

(x∗, α) �→ (αf)∗(x∗) = sup
x∈dom f

{〈x∗, x〉 − αf(x)}.

This last function is convex because it is the pointwise supremum of
the (linear) convex functions

(x∗, α) �→ 〈x∗, x〉 − αf(x), x ∈ dom f,

and so ϕ is also convex. Moreover, since [f ≤ 0] 
= ∅ by assumption,
(3.32) also shows that both ϕ and clϕ are proper; that is, in particu-
lar, clϕ ∈ Γ0(X∗). Therefore, taking the conjugate in (3.32), Theorem
3.2.2 implies that

σ[f≤0] =
(

cl
(

inf
α>0

(αf)∗
))∗∗

= clϕ, (3.34)

showing that (3.30) holds.
To prove (3.31), we easily observe that epis ϕ = R

∗
+ (epis f∗) , and

(3.34) leads us to

epi σ[f≤0] = epi (clϕ) = cl (epi ϕ) = cl (epis ϕ)

= cl
(
R

∗
+ (epis f∗)

)
= cl (R+ (epi f∗)) .

Theorem 3.3.1 can be easily extended to convex functions which are
not necessarily lsc.

Corollary 3.3.2 The conclusion of Theorem 3.3.1 holds if, instead of
f ∈ Γ0(X), we suppose that cl f is proper and

cl ([f ≤ 0]) = [cl f ≤ 0] 
= ∅. (3.35)

Proof. Of course, we have [cl f ≤ 0] 
= ∅ and σ[f≤0] = σcl([f≤0]) =

σ[cl f≤0]. Thus, since (αf)∗ = (α(cl f))∗ for all α > 0, by applying The-
orem 3.3.1 to cl f ∈ Γ0(X), we obtain
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σ[f≤0] = σ[cl f≤0] = cl
(

inf
α>0

(α(cl f))∗
)

= cl
(

inf
α>0

(αf)∗
)

and

epi σ[f≤0] = epiσ[cl f≤0] = cl(R+ epi(cl f)∗) = cl(R+ epi f∗).

We describe below a situation in which hypothesis (3.35) is satisfied.

Lemma 3.3.3 Let f : X → R∞ be a convex function such that [f < 0] is
non-empty.Thenwe have

[cl f ≤ 0] = cl ([f ≤ 0]) = cl ([f < 0]) . (3.36)

Proof. It is clear that [f < 0] ⊂ [f ≤ 0] ⊂ [cl f ≤ 0] , and so

cl ([f < 0]) ⊂ cl ([f ≤ 0]) ⊂ [cl f ≤ 0] . (3.37)

For the opposite inclusion, we choose x0 ∈ [f < 0] . Then, given
x ∈ [cl f ≤ 0] and a net (δi)i ⊂ ]0, 1[ such that δi ↓ 0, there exists a
net (xi)i ⊂ X such that xi → x,

(cl f)(x)= lim
i

f(xi)andxi ∈ [f≤−δif(x0)] .

Furthermore, the net (yi)i ⊂ X defined by yi := δix0 + (1 − δi)xi also
converges to x and satisfies, thanks to the convexity of f ,

f(yi) ≤ δif(x0) + (1 − δi)f(xi) ≤ δif(x0) − δi(1 − δi)f(x0) = δ2i f(x0) < 0,

showing that (yi)i ⊂ [f < 0] ; that is, x ∈ cl ([f < 0]) , as we wanted to
prove.

We proceed by giving a refinement of Theorem 3.3.1 under the
non-emptiness of the strict sublevel set [f < 0] ; this condition will
be exploited in later sections such as 4.2 and 8.2, where it is called
Slater condition.

Theorem 3.3.4 For every convex function f : X → R∞ such that
infX f < 0, we have

σ[f≤0] = min
α≥0

(αf)∗. (3.38)

If, in addition, infX f > −∞, then we also have
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σ[f≤0] = inf
α>0

(αf)∗. (3.39)

Proof. We can assume that cl f ∈ Γ0(X); otherwise, the function cl f
would be non-proper and we would have epi f∗ = ∅ (as dom(cl f) ⊃
dom f 
= ∅, cl f must take the value −∞, so f∗ = (cl f)∗ ≡ +∞). The
conclusion in this case follows as demonstrated in Exercise 27.

Furthermore, since [cl f ≤ 0] = cl ([f ≤ 0]) due to Lemma 3.3.3,
Corollary 3.3.2 implies that

σ[f≤0] = cl
(

inf
α>0

(αf)∗
)

. (3.40)

Let us denote ϕ = infα>0(αf)∗. Therefore, the functions clϕ and ϕ
are proper as well as their associated conjugates, by Proposition 3.1.4.
Now we fix u∗ ∈ dom(cl ϕ). By (3.40), there exist nets (u∗

i )i ⊂ ϕ−1(R)
and (αi)i ⊂ R

∗
+ such that (αif)∗(u∗

i ) ∈ R, for all i, u∗
i → u∗ and

σ[f≤0](u
∗) = (clϕ)(u∗) = limi(αif)∗(u∗

i ). (3.41)

The net (αi)i must be bounded, otherwise θ would be a w∗-cluster
point of the net (α−1

i u∗
i )i, and (3.41) together with the w∗-lower semi-

continuity of f∗ would lead us to a contradiction:

0 < − inf f = f∗(θ) ≤ lim inf
i

f∗(α−1
i u∗

i ) = lim inf
i

α−1
i (αif)∗(u∗

i ) = 0.

Consequently, we may assume without loss of generality that (αi)i
converges to some α0 ≥ 0. In addition, for all x ∈ dom f, due to (3.41)
the scalar α0 satisfies

〈u∗, x〉 − α0f(x) = lim
i

(〈u∗
i , x〉 − αif(x))

≤ lim sup
i

(αif)∗(u∗
i ) = lim

i
(αif)∗(u∗

i ) = (clϕ)(u∗);

(3.42)

that is, taking the supremum over x ∈ dom f,

(α0f)∗(u∗) ≤ (cl ϕ)(u∗). (3.43)

At this step, we distinguish two cases: First, if α0 > 0, then (3.43)
entails

ϕ(u∗) = inf
α>0

(αf)∗(u∗) ≤ (α0f)∗(u∗) ≤ (clϕ)(u∗) ≤ ϕ(u∗).

Hence, (3.40) gives us
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σ[f≤0](u
∗) = (clϕ)(u∗) = ϕ(u∗) = inf

α>0
(αf)∗(u∗) = (α0f)∗(u∗); (3.44)

that is, σ[f≤0](u∗) = minα>0(αf)∗(u∗). Therefore, since

σ[f≤0](u
∗) ≤ σdomf (u∗) = (Idom f )∗(u∗) = (0f)∗(u∗), (3.45)

we conclude that

σ[f≤0](u
∗) = inf

α>0
(αf)∗(u∗) = min

α>0
(αf)∗(u∗) = min

α≥0
(αf)∗(u∗), (3.46)

and both (3.38) and (3.39) are valid.
Second, if α0 = 0, then (3.43) and (3.40) produce

σdomf (u∗) = (0f)∗(u∗) ≤ (clϕ)(u∗) = σ[f≤0](u
∗) ≤ σdomf (u∗), (3.47)

so that

σ[f≤0](u∗) = (0f)∗(u∗) = (cl ϕ)(u∗) = cl
(

inf
α>0

(αf)∗
)

(u∗) ≤ inf
α>0

(αf)∗(u∗),

(3.48)
and (3.38) follows.

Under the supplementary condition infX f > −∞ (so, −∞ < infX
f < 0) we also have that

inf
α>0

(αf)∗(u∗) = inf
α>0

sup
x∈dom f

{〈u∗, x〉 − αf(x)}

≤ inf
α>0

(
σdomf (u∗) − α inf

X
f

)
= σdomf (u∗),

and (3.39) follows by combining (3.47) and (3.48).
To finish the proof, we observe, thanks to (3.40), that for all u∗ /∈

dom(cl ϕ)

+∞ = (cl ϕ)(u∗) = σ[f≤0](u
∗) = cl

(
inf
α>0

(αf)∗
)

(u∗) ≤ inf
α>0

(αf)∗(u∗).

In addition, (3.45) implies that (0f)∗(u∗) = +∞ and both (3.38) and
(3.39) trivially hold.

The following corollary gives the geometric counterpart to Theorem
3.3.4.

Corollary 3.3.5 For every convex function f : X → R∞ such that
infX f < 0, we have
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epi σ[f≤0] =
(
R

∗
+ epi f∗) ∪ epiσdomf . (3.49)

Proof. We may assume, as in the proof of Theorem 3.3.4, that
cl f ∈ Γ0(X). We fix (u∗, λ) ∈ epi σ[f≤0]. Then, by Theorem 3.3.4, there
exists α0 ≥ 0 such that σ[f≤0](u∗) = (α0f)∗(u∗) ≤ λ. If α0 > 0, then
α0f

∗(α−1
0 u∗) ≤ λ and we get (u∗, λ) ∈ α0 epi f∗ ⊂ R

∗
+ epi f∗. Other-

wise, if α0 = 0, then σ[f≤0](u∗) = (0f)∗(u∗) = σdomf (u∗) ≤ λ, and thus
(u∗, λ) ∈ epi σdomf . Consequently, (u∗, λ) ∈ (R∗

+ epi f∗) ∪ epi σdomf ,
and the inclusion “⊂” in (3.49) follows.

To show the opposite inclusion we first observe, by the Fenchel
inequality, that for all u∗ ∈ X∗

σ[f≤0](u
∗) = sup

f(u)≤0
〈u∗, u〉 ≤ sup

f(u)≤0
(f∗(u∗) + f(u)) ≤ f∗(u∗),

entailing the relation epi f∗ ⊂ epi σ[f≤0]. Hence, because epi σ[f≤0] is a
cone, R∗

+ epi f∗ ⊂ R
∗
+ epi σ[f≤0] = epiσ[f≤0]. Moreover, since epi σ[f≤0]

is closed and both functions cl f and f∗ are proper (see Proposition
3.1.4), the last relation together with (3.26) entails

epiσdomf = epiσdom(cl f) = epi(f∗)∞

= [epi f∗]∞ ⊂ [epi σ[f≤0]

]
∞ = epiσ[f≤0],

showing that the desired inclusion holds.
The following corollary is a consequence of Theorem 3.3.4. In fact,

(3.50) and (3.51) are the well-known bipolar and Farkas theorems,
respectively.

Corollary 3.3.6 For every non-empty set A ⊂ X, we have

A◦◦ := (A◦)◦ = co(A ∪ {θ}), (3.50)

and
A−− := (A−)− = co(cone(A)). (3.51)

Consequently,
cl(dom σA) = ([coA]∞)− . (3.52)

Proof. Since A◦ = (A ∪ {θ})◦, we can assume, without loss of gener-
ality, that θ ∈ A. To prove (3.50), we consider the function

f := σA◦ − 1 ∈ Γ0(X).
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So, f(θ) = −1 < 0 and A◦◦ = [σA◦ ≤ 1] = [f ≤ 0]. Moreover, using
Theorem 3.2.2, we have infX f = −f∗(θ) = −1 > −∞. Then again by
Theorem 3.2.2, (3.39) entails

σA◦◦ = σ[f≤0] = inf
α>0

(αf)∗ = inf
α>0

((σαA◦)∗ + α) = inf
α>0

(IαA◦ + α).

Thus, σA◦◦ = σA by Exercise 6 (using the assumption θ ∈ A), and the
conclusion follows from Corollary 3.2.9.

Relation (3.51) comes from (3.50) noting that

A−− = (co (cone A))◦◦.

Finally, thanks to (2.49) and (3.51), (3.52) is equivalent to [coA]∞ =
(dom σA)−. So, we are done because (2.62) and (3.25) yield I[coA]∞

=
(IcoA)∞ = σdomσcoA = σdomσA

= I(dom σA)− .
The following result completes Proposition 3.1.3 by discussing the

effect of imposing the w∗-continuity of the conjugate function.

Proposition 3.3.7 (i) Let f : X → R∞ be convex. If f∗ is finite and
w∗-continuous somewhere in X∗, then dom f is a finite-dimensional
set.

(ii) The space X is of finite dimension if and only if there exists
a convex function f : X → R∞, which is finite and continuous some-
where, whose conjugate is finite and w∗-continuous somewhere.

Proof. (i) Since f∗ is proper and f∗ = (cl f)∗, the function cl f
is also (convex, lsc, and) proper by Proposition 3.1.4. Let x∗

0 ∈ X∗
be a w∗-continuity point of f∗; by the current assumption, and let
vectors x1, . . . , xk ∈ X such that V := ({xi, i = 1, . . . , k})◦ is a w∗-
neighborhood of θ ∈ X∗ and f∗(x∗

0 + x∗) ≤ f∗(x∗
0) + 1 for all x∗ ∈ V.

In particular, for all x∗ ∈ ({xi, i = 1, . . . , k})⊥ ⊂ V we have that
R+x∗ ⊂ V and so, taking into account (3.26),

σdomf (x∗) = σcl(dom f)(x
∗) = σdom(cl f)(x

∗) = ((cl f)∗)∞(x∗)

= (f∗)∞(x∗) = sup
α>0

α−1(f∗(x∗
0 + αx∗) − f∗(x∗

0))

= lim
α↑+∞

α−1(f∗(x∗
0 + αx∗) − f∗(x∗

0)) ≤ lim
α↑+∞

α−1 = 0.

Consequently, due to Corollary 3.3.6, dom f ⊂ span{xi, i = 1, . . . , k},
and dom f is a finite-dimensional subset of X.

(ii) Suppose that there exists a convex function f : X → R∞ which
is finite and continuous somewhere and such that f∗ is finite and w∗-
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continuous somewhere too. Then, by (i), the (non-empty) effective
domain of f is finite-dimensional. Thus, due to the continuity assump-
tion of f, dom f contains a closed ball which is finite-dimensional,
implying that X is of finite dimension. The converse statement is clear:
When X is of finite dimension, the convex function f := IBX

is contin-
uous at θ ∈ X and its conjugate f∗ = ‖·‖ is (norm−) w∗-continuous
on X∗.

We close this section by giving another illustration of Theorem
3.2.2 and Corollary 3.3.6, providing a slight extension of the Cauchy–
Schwarz inequality. Relation (3.53) exhibits a duality between the sup-
port and the gauge functions.

Corollary 3.3.8 For every non-empty closed convex set C containing
θ, we have

pC = σC◦ , (3.53)

and consequently, for all x ∈ X and x∗ ∈ X∗,

〈x∗, x〉 ≤ σC(x∗)pC(x) = σC(x∗)σC◦(x). (3.54)

Proof. We have, for every x ∈ X,

pC(x) = inf{λ ≥ 0 : x ∈ λC} = inf{IλC(x) + λ : λ ≥ 0},

and (3.10) entails

(pC)∗ = sup
λ≥0

(σλC − λ)

= max
{

sup
λ>0

λ(σC − 1), 0
}

= max
{
I[σC≤1], 0

}
= I[σC≤1] = IC◦ .

Thus, since pC ∈ Γ0(X) (see (2.53) and Proposition 2.3.1), (3.53) fol-
lows by applying Theorem 3.2.2.

To show (3.54), fix x ∈ X, x∗ ∈ X∗ and ε > 0. Then, since C and
C◦ are non-empty closed convex sets containing θ, we have

x ∈ pC(x)C ⊂ (pC(x) + ε)C and x∗ ∈ pC◦(x∗)C◦ ⊂ (pC◦(x∗) + ε)C◦.

Thus,
〈
(pC◦(x∗) + ε)−1x∗, (pC(x) + ε)−1x

〉 ≤ 1 and we get

〈x∗, x〉 ≤ (pC◦(x∗) + ε)(pC(x) + ε).

Finally, taking into account (3.53) and (3.50), the inequality in (3.54)
follows by letting ε ↓ 0.
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3.4 Minimax theory

In this section, we use Theorem 3.2.2 to obtain different variants of the
minimax theorem. We consider two lcs X, Y with respective topological
duals X∗ and Y ∗, both endowed with locally convex topologies making
the dual pairs (X, X∗) and (Y, Y ∗) compatible. The associated duality
pairings in X and Y are denoted by 〈·, ·〉. For a function f : X × Y → R

and non-empty convex sets A ⊂ X and B ⊂ Y, our goal is to see that,
given appropriate convexity/concavity conditions on f, we can ensure
the equality

sup
x∈A

inf
y∈B

f(x, y) = inf
y∈B

sup
x∈A

f(x, y) (3.55)

or equivalently, as the opposite of the following inequality always holds,

sup
x∈A

inf
y∈B

f(x, y) ≥ inf
y∈B

sup
x∈A

f(x, y).

Additional compactness conditions on the sets A, B, and the upper/
lower semicontinuity of the functions f(·, y) and f(x, ·) will allow han-
dling maxA and minB instead of supremum and infimum, respectively.
Theorems that allow such an interchange between the minimum and
the supremum are called minimax theorems. They were at the origin of
the duality theory and continue to play a fundamental role in convex
analysis and optimization.

We start by giving a topological minimax result, which encloses
the essential elements behind the proof of minimax theorems. Then
convexity will come into play to replace the monotonicity assumption
in this result.

Proposition 3.4.1 Let (I,�) be a directed set, let {ϕi : X → R} be
a family of usc functions, which is non-increasing (that is, i1 � i2 ⇒
ϕi2 ≤ ϕi1 for all i1, i2), and let A ⊂ X be a non-empty compact set.
Then we have

inf
i

max
x∈A

ϕi(x) = max
x∈A

inf
i

ϕi(x). (3.56)

Proof. Since the function infi ϕi is usc, both it and the usc function
ϕi reach their maxima on the compact set A, justifying the use of the
maxima instead of suprema in (3.56). Consequently, there exists a net
(xi)i ⊂ A such that ϕi(xi) = maxx∈A ϕi(x). In fact, again because of
the compactness of A, we assume that (xi)i converges to some x̄ ∈ A.
Therefore, given any index j, since the functions i �→ ϕi(x), x ∈ A, are
non-increasing by assumption, we get
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ϕj(x̄) ≥ lim sup
i, j�i

ϕj(xi) ≥ lim sup
i

ϕi(xi)

= lim sup
i

max
x∈A

ϕi(x) ≥ inf
i

max
x∈A

ϕi(x).

Thus, by the arbitrariness of j,

max
x∈A

inf
i

ϕi(x) ≥ inf
j

ϕj(x̄) ≥ inf
i

max
x∈A

ϕi(x),

and the inequality “≤” in (3.56) is proved. The proof is over since the
opposite inequality is obvious.

We will need the following technical lemma in the proof of the min-
imax theorems below.

Lemma 3.4.2 Given a function f : X × Y → R and non-empty con-
vex sets A ⊂ X and B ⊂ Y, we consider the function g : Y ∗ → R

defined by
g(y∗) := inf

x∈A
(f(x, ·) + IB(·))∗ (y∗). (3.57)

If A is compact and the functions f(·, y), y ∈ B, are concave and usc,
then g is convex and lsc.

Proof. Under the current assumptions, for each y ∈ B, the function
(x, y∗) ∈ X × Y ∗ �→ 〈y, y∗〉 − f(x, y) is convex and lsc, and so is the
supremum function

(x, y∗) ∈ X × Y ∗ �→ sup
y∈B

{〈y, y∗〉 − f(x, y)} = (f(x, ·) + IB(·))∗ (y∗).

(3.58)
Therefore, g is convex because it is the marginal of the last convex
function. To show that g is also lsc, we fix y∗ ∈ X∗ and take a net
(y∗

i )i ⊂ dom g such that y∗
i → y∗. Then, for each net αi ↓ 0, we can

find another net (xi)i ⊂ A such that (f(xi, ·) + IB)∗ (y∗
i ) ≤ g(y∗

i ) + αi;
that is, for each y ∈ B, we have 〈y, y∗

i 〉 − f(xi, y) ≤ g(y∗
i ) + αi for all i.

But A is compact, we may assume, without loss of generality, that (xi)i
converges to some x̄ ∈ A. Thus, taking limits in the inequality above
and using the upper semicontinuity of the functions f(·, y), y ∈ B, we
get

〈y, y∗〉 − f(x̄, y) ≤ lim inf
i

(〈y, y∗
i 〉 − f(xi, y))

≤ lim inf
i

g(y∗
i ) for all y ∈ B.
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Hence, passing to the supremum over y ∈ B, we get (f(x̄, ·) + IB)∗ (y∗)
≤ lim infi g(y∗

i ) and, finally, we deduce that

g(y∗) = inf
x∈A

(f(x, ·) + IB)∗ (y∗) ≤ (f(x̄, ·) + IB)∗ (y∗) ≤ lim inf
i

g(y∗
i );

that is, g is lsc at y∗.
We give the first minimax theorem. Note that we do not use here

the condition A × B ⊂ f−1(R), which is usually required in minimax
theorems.

Theorem 3.4.3 Given a function f : X × Y → R and non-empty
convex sets A ⊂ X and B ⊂ Y, we assume the following conditions:

(i) The set A compact.
(ii) The functions f(·, y), y ∈ B, are concave and usc.
Then we have

max
x∈A

inf
y∈B

f(x, y) ≥ inf
y∈B

sup
x∈A0

f(x, y), (3.59)

where
A0 := {x ∈ A : f(x, ·) + IB(·) ∈ Γ0(Y )}. (3.60)

Proof. First of all, we may assume that A0 
= ∅ because, otherwise,
(3.59) trivially holds (as supx∈A0

f(x, y) = −∞). Note that (3.59) also
holds if, in addition, we have supx∈A0

f(x, y) = +∞ for all y ∈ B (see
Exercise 35). Thus, in what follows, we assume the non-emptiness of
A0 together with the existence of some y0 ∈ B such that

sup
x∈A0

f(x, y0) < +∞. (3.61)

In addition, since the functions f(·, y), y ∈ B, are usc and concave by
(ii), the pointwise infimum infy∈B f(·, y) is also usc and concave, so
that all these functions achieve their suprema over the compact convex
set A. Furthermore, using the definition of the conjugate, we write

max
x∈A

inf
y∈B

f(x, y) = max
x∈A

inf
y∈Y

(f(x, y) + IB(y))

= max
x∈A

(−(f(x, ·) + IB)∗(θ))

= − inf
x∈A

(f(x, ·) + IB)∗ (θ), (3.62)

and Lemma 3.4.2 together with the fact that A0 ⊂ A yields
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max
x∈A

inf
y∈B

f(x, y) = −co
(

inf
x∈A

(f(x, ·) + IB)∗
)

(θ)

≥ −co
(

inf
x∈A0

(f(x, ·) + IB)∗
)

(θ).

But we have f(x, ·) + IB ∈ Γ0(Y ), for all x ∈ A0, and supx∈A0
(f(x, ·)+

IB) ∈ Γ0(Y ) by (3.61), soProposition 3.2.6 yields

max
x∈A

inf
y∈B

f(x, y) ≥ −
(

sup
x∈A0

(f(x, ·) + IB)
)∗

(θ)

= inf
y∈Y

sup
x∈A0

(f(x, y) + IB(y)) = inf
y∈B

sup
x∈A0

f(x, y),

which is the desired inequality.
Consequently, to obtain an equality like (3.55), we need more prop-

erties on the set A0. The proof of the following corollary is direct from
Theorem 3.4.3.

Corollary 3.4.4 In addition to the assumptions of Theorem 3.4.3, we
suppose that the set A0 is not empty and satisfies

inf
y∈B

sup
x∈A0

f(x, y) ≥ inf
y∈B

max
x∈A

f(x, y). (3.63)

Then we have

max
x∈A

inf
y∈B

f(x, y) = inf
y∈B

max
x∈A

f(x, y).

The following example presents a typical situation where Corollary
3.4.4 applies, requiring the convexity of the function f(x, ·) only for
points x ∈ int A. The finite-dimensional version of this result follows
similarly by using the relative interior of A instead of the interior.

Example 3.4.5 Given a function f : X × Y → R and non-empty con-
vex sets A ⊂ X and B ⊂ Y, we assume the following conditions:

(i) The set A compact.
(ii) The functions f(·, y), y ∈ B, are concave and usc.
(iii) (intA) ∩ {x ∈ X : f(x, y) > −∞} 
= ∅ for all y ∈ B.
(iv) f(x, ·) + IB ∈ Γ0(Y ) for all x ∈ int A.
Observe that condition (iii) ensures that (see Exercise 14)

sup
x∈intA

f(x, y) = sup
x∈A

f(x, y) for all y ∈ B.
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Thus, since (iv) implies that

int A ⊂ A0 := {x ∈ A : f(x, ·) + IB ∈ Γ0(Y )} ⊂ A,

we deduce that

sup
x∈A0

f(x, y) = sup
x∈A

f(x, y) for all y ∈ B.

Consequently, condition (3.63) holds, and Corollary 3.4.4 gives rise to

max
x∈A

inf
y∈B

f(x, y) = inf
y∈B

max
x∈A

f(x, y).

A simpler form of Theorem 3.4.3 is presented below.

Corollary 3.4.6 Given a function f : X × Y → R and non-empty
convex sets A ⊂ X and B ⊂ Y , we assume the following conditions:

(i) The set A ⊂ X is compact and the set B is closed.
(ii) For every y ∈ B, f(·, y) is an usc concave function.
(ii) For every x ∈ A, f(x, ·) ∈ Γ0(Y ) and B ∩ dom f(x, ·) 
= ∅.
Then we have

max
x∈A

inf
y∈B

f(x, y) = inf
y∈B

max
x∈A

f(x, y).

We give another variant of the minimax theorem, dropping out the
lower semicontinuity condition of the functions f(x, ·) + IB, x ∈ A,
used in Theorem 3.4.3. Instead, we use here the condition that the
function f is finite-valued on the set A × B.

Theorem 3.4.7 Given a function f : X × Y → R and non-empty
convex sets A ⊂ X and B ⊂ Y, we assume the following conditions:

(i) The set A is compact and A × B ⊂ f−1(R).
(ii) The functions f(·, y), y ∈ B, are concave and usc.
Then we have

max
x∈A

inf
y∈B

f(x, y) ≥ inf
y∈B

sup
x∈A1

f(x, y),

where A1 := {x ∈ A : f(x, ·) is convex}.

Proof. Let us first note that the relation A × B ⊂ f−1(R) together
with condition (ii) entails

sup
x∈A

f(x, y) = max
x∈A

f(x, y) < +∞ for every y ∈ B,
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implying that

B ⊂ dom
(

sup
x∈A

f(x, ·)
)

. (3.64)

We denote

FB := {finite-dimensional linear subspaces of Y that intersect B},

and fix L ∈ FB. Then, arguing as in (3.62) and using (3.7), we write

max
x∈A

inf
y∈L∩B

f(x, y) = max
x∈A

inf
y∈Y

(f(x, y) + IL∩B(y))

= max
x∈A

[−(f(x, ·) + IL∩B)∗(θ)]

= max
x∈A

[− (cly(f(x, ·) + IL∩B(·)))∗ (θ)]

= − inf
x∈A

[(cly(f(x, ·) + IL∩B(·)))∗ (θ)] , (3.65)

where cly denotes the closure with respect to the variable y. Further-
more, since the function gL : Y ∗ → R defined by

gL(y∗) := inf
x∈A

(cly(f(x, ·) + IL∩B(·)))∗ (y∗) = inf
x∈A

(f(x, ·) + IL∩B(·))∗ (y∗),

is convex and lsc by Lemma 3.4.2, because A1 ⊂ A the inequality in
(3.65) is also written

max
x∈A

inf
y∈L∩B

f(x, y) = −co
(

inf
x∈A

(cly(f(x, ·) + IL∩B(·)))∗
)

(θ)

≥ −co
(

inf
x∈A1

(cly(f(x, ·) + IL∩B(·)))∗
)

(θ). (3.66)

To remove the closure cly from the last inequality, we first note that
the functions cly(f(x, ·) + IL∩B(·)), x ∈ A1, are (lsc) proper and convex
(since each of the functions f(x, ·) + IL∩B(·) is proper, convex, and
has a finite-dimensional domain; see Exercise 39). In particular, the
function ϕ := supx∈A1

(cly(f(x, ·) + IL∩B(·))) does not take the value
−∞. Moreover, by (3.64), we have

∅ �= L ∩ B ⊂ dom

(
max
x∈A

f(x, ·) + IL∩B(·)
)

⊂ dom

(
sup
x∈A1

(f(x, ·) + IL∩B(·))
)
,

(3.67)
which shows that for all x ∈ A1
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dom
(

sup
x∈A1

(f(x, ·) + IL∩B(·))
)

= dom (f(x, ·) + IL∩B(·)) = L ∩ B;

(3.68)
that is, L ∩ B ⊂ dom ϕ and the function ϕ is proper. Consequently,
Proposition 3.2.6 entails

ϕ∗(θ) = co
(

inf
x∈A1

(cly(f(x, ·) + IL∩B(·)))∗
)

(θ),

and (3.66) gives rise to

max
x∈A

inf
y∈L∩B

f(x, y) ≥ −
(

sup
x∈A1

(cly(f(x, ·) + IL∩B(·)))
)∗

(θ) = inf
y∈Y

ϕ(y).

(3.69)
Moreover, due to (3.68), for each x ∈ A1, the set

dom(f(x, ·) + IL∩B(·)) = L ∩ B

is finite-dimensional, and therefore, Proposition 5.2.4 (iv) entails

ϕ = sup
x∈A1

(cly(f(x, ·) + IL∩B(·))) = cly

(
sup
x∈A1

(f(x, ·) + IL∩B(·))
)

.

Thus, (3.69) and (2.37) yield

max
x∈A

inf
y∈L∩B

f(x, y) ≥ inf
y∈Y

(
cly

(
sup
x∈A1

(f(x, ·) + IL∩B(·))
))

= inf
y∈Y

sup
x∈A1

(f(x, ·) + IL∩B(·))

≥ inf
y∈Y

sup
x∈A1

(f(x, ·) + IB(·))

= inf
y∈B

sup
x∈A1

f(x, ·). (3.70)

Consequently, endowing the family FB with the partial order given
by ascending inclusions, and applying Proposition 3.4.1 with (I,�) ≡
(FB, ⊂) to the usc concave functions ϕL := infy∈L∩B f(·, y), L ∈ FB,
(3.70) yields

max
x∈A

inf
y∈B

f(x, y) = max
x∈A

inf
L∈FB

ϕL(x)

= inf
L∈FB

max
x∈A

ϕL(x) ≥ inf
y∈B

sup
x∈A1

f(x, ·),

showing that the desired inequality holds.
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The following theorem, commonly called the minimax theorem, is a
particular case of Theorem 3.4.7. It corresponds to taking A1 = A in
Theorem 3.4.7; that is, assuming that all functions f(x, ·), x ∈ A, are
convex.

Theorem 3.4.8 Given a function f : X × Y → R and non-empty
convex sets A ⊂ X and B ⊂ Y, we assume the following conditions:

(i) The set A is compact and A × B ⊂ f−1(R).
(ii) The functions f(·, y), y ∈ B, are concave and usc.
(iii) The functions f(x, ·), x ∈ A, are convex.
Then we have

max
x∈A

inf
y∈B

f(x, y) = inf
y∈B

max
x∈A

f(x, y).

We give a useful application of Theorem 3.4.8.

Corollary 3.4.9 Given a collection of proper convex functions fk :
X → R∞, 1 ≤ k ≤ n, we assume that f := max1≤k≤n fk is proper.
Then we have

inf
x∈X

f(x) = max
λ∈Δn

inf
x∈X

∑

1≤k≤n

λkfk(x).

Proof. We consider the function ϕ : Rn × X → R defined as

ϕ(λ, x) :=
∑

1≤k≤n

λkfk(x) − IRn
+
(λ), λ ∈ R

n, x ∈ X, (3.71)

and denote
A := Δn ⊂ R

n, B := dom f ⊂ X.

It is clear that A is compact and A × B ⊂ ϕ−1(R). In addition, the
functions ϕ(·, x), x ∈ B, are usc and concave, whereas the functions
ϕ(λ, ·), λ ∈ A, are convex. In other words, the conditions of Theorem
3.4.8 are fulfilled, and we deduce that

max
λ∈A

inf
x∈B

ϕ(λ, x) = inf
x∈B

max
λ∈A

ϕ(λ, x);

that is,
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max
λ∈Δn

inf
x∈X

∑

1≤k≤n

λkfk(x) = max
λ∈Δn

inf
x∈dom f

∑

1≤k≤n

λkfk(x)

= max
λ∈Δn

inf
x∈dom f

ϕ(λ, x)

= inf
x∈dom f

max
λ∈Δn

ϕ(λ, x) = inf
x∈X

f(x),

where the last equality comes from (2.45).

3.5 Exercises

Exercise 21 Let f : X → R∞ be such that f∗ is proper. To estab-
lish the equality σdomf = σdomf∗∗ , show that it is sufficient to assume
f∗(θ) = 0 and f ∈ Γ0(X). This exercise serves to complete the proof
of Proposition 3.1.8, which is part of the proof of the Fenchel–Moreau–
Rockafellar theorem (Theorem 3.2.2).

Exercise 22 If A1, . . . , Am ⊂ X are non-empty sets (m ≥ 2) and 1 ≤
k < m, prove that

σA1 + . . . + σAk
+ max

{
σAk+1 , . . . , σAm

}
= σA1+...+Ak+(Ak+1∪...∪Am),

together with

[co(A1 + . . . + Am)]∞ = [co(A1 ∪ . . . ∪ Am)]∞
= [co (A1 + . . . + Ak + (Ak+1 ∪ . . . ∪ Am))]∞ .

(3.72)

Exercise 23 Consider a family of non-empty sets {At, t ∈ T1 ∪ T2} ⊂
X, where T1 and T2 are disjoint non-empty sets. Prove that, for every
ρ > 0,

[

co

(
⋃

t∈T1∪T2

At

)]

∞
=

[

co

((
⋃

t∈T1

At

)

∪
(
⋃

t∈T2

ρAt

))]

∞

=

[

co

(
⋃

t1∈T1, t2∈T2

(At1 + ρAt2)

)]

∞
. (3.73)

Exercise 24 Given a non-empty set A ⊂ X, for every x ∈ domσA

and ε ≥ 0 prove that

Nε
dom σA

(x) = Nε

([coA]∞)−(x) = {x∗ ∈ [coA]∞ : −ε ≤ 〈x∗, x〉 ≤ 0} .

(3.74)
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Exercise 25 Assume that X is a normed space. Given a non-empty
set A ⊂ X, we consider the function fA : X → R∞ given by (see
(8.89))

fA(x) := IA(x) +
1
2

‖x‖2 . (3.75)

Prove the following statements:
(i) fA is convex if and only if A is convex.
(ii) fA is lsc if and only if A is closed.
(iii) cl fA is convex if and only if cl A is convex.
(iv) If the weak closure of f, clw(fA), is convex, then the set clw A is

convex.
(v) (∂fA)−1(x) = πA(x) for all x ∈ X, where ∂fA is the convex sub-

differential of fA (see Definition 4.1.2).

Exercise 26 Let f : X → R∞ be a proper function bounded below by
a continuous affine mapping. Prove that f�σU◦ is continuous on X,
for every U ∈ NX , and cl f = supU∈NX

(f�σU◦) .

Exercise 27 Given a convex function f : X → R∞ such that dom f 
=
∅, we assume that cl f is not proper. Prove that σ[f≤0] = min

α≥0
(αf)∗, and

as a consequence of that,

epiσ[f≤0] =
(
R

∗
+ epi f∗) ∪ epiσdomf .

Exercise 28 Assume that X is a normed space, and let A, B, C ⊂ X
be non-empty sets such that A is bounded and A + B ⊂ A + C. Prove
that B ⊂ co(C).

Exercise 29 Let X = 
1 (see the Glossary of notations for the defi-
nition) and

A1 := {ie1 + 2iei : i ≥ 1}, A2 := {−iei : i ≥ 1},

where (ei)i≥1 is the sequence with all the terms being equal to zero
except the i’th component which is one. Prove that [co(A1 + A2)]∞ =
R+{e1}.

Exercise 30 Given a non-empty set A ⊂ X, prove that for every z ∈
domσA we have

Ndom σA
(z) = [coA]∞ ∩ {z}⊥, (3.76)

and consequently,
(dom σA)− = [coA]∞ . (3.77)
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Exercise 31 Given an arbitrary family of functions {ft, t ∈ T} ⊂
Γ0(X), we denote f := supt∈T ft. Prove that, for every x ∈ dom f,

Ndom f (x) =

{

x∗ ∈ X∗ : (x∗, 〈x∗, x〉) ∈
[
co
(
⋃

t∈T
gph f∗

t

)]

∞

}

(3.78)

=

{

x∗ ∈ X∗ : (x∗, 〈x∗, x〉) ∈
[
co
(
⋃

t∈T
epi f∗

t

)]

∞

}

.

(3.79)

Exercise 32 Let f ∈ Γ0(X) and F = {x ∈ X : f(x) ≤ 0}. Prove that
the following statements hold:

(a) F 
= ∅ ⇔ (θ, −1) /∈ cl(cone epi f∗).
(b) If F 
= ∅, then epi σF = cl(cone epi f∗).

Exercise 33 Given a function f ∈ Γ0(X), prove that

(f+)∗ = cl
(

inf
λ∈[0,1]

(λf)∗
)

,

where f+ := max{f, 0} is the positive part of f.

Exercise 34 Given ai ∈ X∗, bi ∈ R, 1 ≤ i ≤ k, with k ≥ 1, we con-
sider the function f := max{〈ai, ·〉 − bi : 1 ≤ i ≤ k}. Prove that, for
each x∗ ∈ X∗,

f∗ (x∗) = min

{
∑

1≤i≤k

γibi :
∑

1≤i≤k

γiai = x∗, γ ∈ Δk

}

. (3.80)

Exercise 35 Consider a function f : X × Y → R defined on the
Cartesian product of two lcs X and Y, a non-empty compact convex set
A ⊂ X, and a non-empty convex set B ⊂ Y. Assume that the functions
f(·, y), y ∈ B, are concave and usc. Denote

A0 := {x ∈ A : f(x, ·) + IB ∈ Γ0(Y )},

and assume that A0 
= ∅ and supx∈A0
f(x, y) = +∞ for all y ∈ B.

Prove that

max
x∈A

inf
y∈B

f(x, y) = inf
y∈B

sup
x∈A0

f(x, y) = +∞.



94 CHAPTER 3. FENCHEL–MOREAU–ROCKAFELLAR . . .

3.6 Bibliographical notes

The conducting wire of this chapter is the celebrated Fenchel–Moreau–
Rockafellar theorem 3.2.2 ([161]), which is considered the cornerstone
of convex analysis. The proof given here is new and, like the original
proof by Moreau, is based on the Hahn–Banach separation theorem. In
the current chapter, as well as the upcoming chapter 4, we show that
many fundamental results in the theory of convex functions admit
new proofs which are based on Theorem 3.2.2. This is the case of
Proposition 3.2.5 which goes back to [174, Corollary 13.5.1]; also see
[149, 150] for a general concept of perspective functions. Theorems
3.3.1 and 3.3.4, giving dual representations of the support function of
sublevel sets, provide an instance of a simple convex duality scheme.
Corollary 3.3.6, which is the classical bipolar theorem, is proved here
via Theorem 3.2.2. Theorem 3.4.3 gives a slightly weaker variant of
the minimax theorem. Other concave-like and convex-like variants can
be considered as in the Fan and Sion minimax theorems ([25, 83] and
[183], respectively). Other minimax results involving dense sets can be
found in [128].

Exercises 22 and 31 are in [103]. The case ε = 0 in Exercise 24 can
be found in [100, (8), page 835]. Exercise 28 is the so-called Radström
cancellation law. Exercise 29 was partially suggested to us in a ref-
eree report for [102]. Exercise 32 extends Lemma3.1 in [118] to infinite
dimensions.



Chapter 4

Fundamental topics in
convex analysis

This chapter accounts for the most relevant developments of convex
analysis in relation to the contents of this book. Specifically, we empha-
size the role played by the concept of ε-subgradients of a convex func-
tion. Here, X is a locally convex space (lcs) and X∗ is its topological
dual space. Unless otherwise stated, we assume that X∗ (as well as
any other involved dual lcs) is endowed with a compatible topology, in
particular, the topologies σ(X∗, X) and τ(X∗, X), or the dual norm
topology when X is a reflexive Banach space. The associated bilinear
form is represented by 〈·, ·〉.

4.1 Subdifferential theory

Given a convex function f : X → R. a point x ∈ X where f is finite, and
a direction u ∈ X, we have shown in section 2.2 that the function
s �→ s−1(f(x + su) − f(x)) is non-decreasing on R

∗
+, so the directional

derivative of f at x in the direction u turns out to be (see (2.30) and
(2.39))
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f ′(x; u) = lim
s↓0

f(x + su) − f(x)
s

= inf
s>0

f(x + su) − f(x)
s

∈ R.

It also makes sense to define, for each ε ≥ 0, the ε-directional derivative
of f at x in the direction u ∈ X by

f ′
ε(x; u) := inf

s>0

f(x + su) − f(x) + ε

s
,

with f ′
0(x; u) ≡ f ′(x; u). Note that, for all ε ≥ 0,

dom f ′
ε(x, ·) = R+ (dom f − x) . (4.1)

Furthermore, if we consider the function hε : X → R defined by

hε := f ′
ε(x; ·), (4.2)

then its Fenchel conjugate is expressed as (see Exercise 37)

(hε)∗(x∗) = sup
s>0

f(x) + f∗(x∗) − 〈x, x∗〉 − ε

s
. (4.3)

In other words, (hε)∗ is nothing else but the indicator function of the
(possibly empty) (w∗-) closed convex subset of X∗ given by

∂εf(x) := {x∗ ∈ X∗ : f(x) + f∗(x∗) ≤ 〈x, x∗〉 + ε}. (4.4)

Using the definition of f∗, the last set is equivalently written as

∂εf(x) := {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 − ε for all y ∈ X},
(4.5)

showing that an element x∗ ∈ X∗ belongs to ∂εf(x) if and only if the
continuous affine function

y �→ f(x) + 〈x∗, y − x〉 − ε

is below f and differs only by ε from the value of f at x. In particular,
when ε = 0, such a continuous affine function coincides with f at x.
Therefore, (4.3) is written as

(hε)∗ = I∂εf(x), (4.6)

and we can also define ∂εf(x) as
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∂εf(x) := {x∗ ∈ X∗ : 〈x∗, u〉 ≤ hε(u) for all u ∈ X}. (4.7)

It is clear that the operator ∂εf : X → 2X∗
satisfies the ε-Fermat rule,

stating that
θ ∈ ∂εf(x) ⇔ x ∈ ε- argmin f, (4.8)

where

ε- argmin f :=
{

x ∈ X : f(x) ≤ inf
X

f + ε

}

is the set of ε-minima of the function f. Furthermore, as long as
∂εf(x) �= ∅, we can verify that (Exercise 38)

[∂εf(x)]∞ = Ndom f (x). (4.9)

In addition, under the assumption ∂εf(x) �= ∅, the function f admits
a continuous affine minorant and thus, thanks to the convexity of hε,
(4.6) together with Theorem 3.2.2 gives rise to

cl hε = (I∂εf(x))
∗ = σ∂εf(x) (4.10)

(a more precise relationship will be given in (4.28), showing that the
closure in clhε can be removed when f ∈ Γ0(X) and ε > 0). Therefore,
in particular, clhε is a sublinear function. More precisely, as we quote
in the following proposition for later references, the function hε itself
is sublinear. The positive homogeneity of hε easily follows from its
definition, whereas the subadditivity comes from the convexity of f. In
particular, hε is a convex function. This useful behavior of hε parallels
the role of the classical differential in providing linear approximations
for differentiable functions, while in our convex framework the desired
approximations are furnished by sublinear functions.

Proposition 4.1.1 Given a convex function f : X → R∞ and x ∈
dom f, for every ε ≥ 0 the mapping u ∈ X �→ f ′

ε(x; u) is sublinear.

We extend the notation of ∂εf(x) to the whole space X and to the
negative values of the parameters ε, stating

∂εf(x) := ∅ when f(x) /∈ R or ε < 0. (4.11)

Definition 4.1.2 Given a function f : X → R and ε ∈ R, the set
∂εf(x) is called ε-subdifferential of f at x ∈ X, while the elements
of ∂εf(x) are called ε-subgradients of f at x.
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In particular, the set ∂f(x) ≡ ∂0f(x) is called (exact) subdifferential
of f at x, and its elements are the subgradients of f at x. We also call
∂εf(x) approximate subdifferential when it is not necessary to specify
the value of ε. The function f is said to be ε-subdifferentiable at x
when ∂εf(x) is not empty. Subdifferentiability is defined in a similar
way.

It is clear that, for every set C ⊂ X, ε ≥ 0 and x ∈ C, we have

∂εIC(x) = Nε
C(x),

where

Nε
C(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε for all y ∈ C}

is the ε-normal set of C at x ∈ C (see (2.24)). Furthermore, from the
definition of ∂εf we get

x∗ ∈ ∂εf(x) ⇔ (x∗, −1) ∈ Nε
epi f (x, f(x)).

We will use the following comparison result for approximate subd-
ifferentials. It shows that a function and its closure have the same
approximate subdifferential up to an appropriate adjustment of the
parameter ε.

Remark 1 For every pair of functions f, g : X → R such that g ≤
f, x ∈ dom f ∩ dom g, and ε ∈ R, we have ∂ε+g(x)g(x) ⊂ ∂ε+f(x)f(x).
Applying this when g = f̄ , we obtain the equality

∂ε+f̄(x)f̄(x) = ∂ε+f(x)f(x).

The following example is related to Proposition 2.2.5 (and (2.40)),
and provides estimates for the subdifferential of convex functions
defined on R via the right and left derivatives.

Example 4.1.3 Given a proper convex function f : R → R∞, the
right and left derivatives of f at t ∈ dom f, f ′

+(t), f ′−(t), exist in R

(and belong to R when t ∈ int(dom f)). Furthermore, for all t ∈ dom f,
we have f ′−(t) ≤ f ′

+(t) and

∂f(t) = [f ′
−(t), f ′

+(t)] ∩ R.

Indeed, the existence of the derivatives in question stems from the fact
that
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f ′
+(t) = f ′(t; 1) = inf

s>t

f(s) − f(t)
s − t

= lim
s↓t

f(s) − f(t)
s − t

∈ R

and

f ′
−(t) = −f ′(t; −1) = sup

s<t

f(s) − f(t)
s − t

= lim
s↑t

f(s) − f(t)
s − t

∈ R.

Combining Proposition 2.2.6 and Corollary 2.2.9, we deduce that
f ′−(t), f ′

+(t) ∈ R when t ∈ int(dom f). Now, taking into account Propo-
sition 4.1.1, for every q ∈ [f ′−(t), f ′

+(t)] ∩ R one has

q(s − t) ≤ (s − t)f ′
+(t) = (s − t)f ′(t; 1)

= f ′(t; s − t) ≤ f(s) − f(t) for all s ≥ t,

and

q(s − t) ≤ (s − t)f ′
−(t) = −f ′(t; −1)(s − t)

= f ′(t; s − t) ≤ f(s) − f(t) for all t > s,

showing that q ∈ ∂f(t). Conversely, if q ∈ R is such that q(s − t) ≤
f(s) − f(t) for all s, t ∈ R, then we get

f ′
−(t) = lim

s↑t

f(s) − f(t)
s − t

≤ q ≤ lim
s↓t

f(s) − f(t)
s − t

= f ′
+(t).

Another feature of the ε-subdifferential that can be easily verified
is that it is ε-cyclically monotone; that is,

n∑
i=0

〈x∗
i , xi+1 − xi〉 +

〈
x∗

n+1, x0 − xn+1

〉 ≤ ε, (4.12)

for all xi ∈ X, x∗
i ∈ ∂εif(xi), εi ≥ 0, i = 0, 1, . . . , n + 1, n ≥ 1, such

that
∑n+1

i=0 εi ≤ ε. In particular, the subdifferential is monotone and
cyclically monotone (see (2.28) and (2.29), respectively, for the defini-
tion of these concepts).

The first result of this section establishes a useful fact relating the
ε-subdifferentiability of a general convex function and the lower semi-
continuity of its ε-directional derivative, which is a sublinear function
by Proposition 4.1.1.
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Proposition 4.1.4 Given a convex function f : X → R, x ∈ f−1(R)
and ε ≥ 0, the following assertions are equivalent:

(i) f is ε-subdifferentiable at x.
(ii) f ′

ε(x; ·) is ε-subdifferentiable at θ.
(iii) f ′

ε(x; ·) is lsc at θ.

Proof. Remember that h = f ′
ε(x; ·), so h(θ) = 0. If f : X → R is ε-

subdifferentiable at x, then for each x∗
0 ∈ ∂εf(x) relation (4.7) yields

〈x∗
0, u〉 ≤ f ′

ε(x; u) = h(u) − h(θ) for all u ∈ X.

This shows that x∗
0 ∈ ∂h(θ) = ∂εh(θ) (since h is sublinear, by Propo-

sition 4.1.1), and (i) ⇒ (ii).
If x∗

0 ∈ ∂εh(θ) = ∂h(θ), then the convexity of h entails (cl h)(θ) =
h(θ); that is, h is lsc at θ (Exercise 62). Therefore, (ii) ⇒ (iii).

To show that (iii) ⇒ (i), we assume that h is lsc at θ. Since cl h is
convex and (clh)(θ) = h(θ) = 0, the function clh is proper. Further-
more, by Proposition 3.1.4, there are x∗

0 ∈ X∗ and α0 ∈ R such that

h(λu) ≥ (cl h)(λu) ≥ 〈x∗
0, λu〉 + α0 for all u ∈ X and λ > 0.

But h is sublinear, then h(u) ≥ 〈x∗
0, u〉 for all u ∈ X; that is, x∗

0 ∈
∂εf(θ) by (4.7).

A notable difference between the exact and approximate subdifferen-
tials of a convex function is the fact that the first one is a local notion;
that is, if two convex functions f and g coincide in a neighborhood of
x, then ∂f(x) = ∂g(x), but it may happen that ∂εf(x) �= ∂εg(x) for all
ε > 0. This can be seen in the following example.

Example 4.1.5 Consider the convex functions f, gk : R → R∞,
k ≥ 1, defined by

f(x) := x2 and gk(x) := x2 + I[−1/k,1/k](x).

So, f and gk coincide locally at 0 for all k ≥ 1. At the same time, we
verify that ∂εf(0) � ∂εgk(0) for every ε > 0 and all k > 2(2 − √

2)/
√

ε
(see Exercise 42).

It is also important to study how the ε-subdifferential behaves with
respect to operations with functions. The following proposition estab-
lishes several elementary rules that follow from the definition of ε-
subdifferential.
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Proposition 4.1.6 The following rules are valid, for any function
f : X → R and every x ∈ X:

(i) ∂ε(f + x∗
0 + α)(x) = ∂εf(x) + x∗

0 for all x∗
0 ∈ X∗, α ∈ R and ε ≥

0.

(ii) λ∂εf(x) = ∂λε(λf)(x) for all λ > 0 and ε ≥ 0.

(iii) If g : X → R is another convex function, then ∂ε1f(x) + ∂ε2g(x)
⊂ ∂ε1+ε2 (f + g) (x) for all ε1, ε2 ≥ 0.

(iv) ∂ε1f(x) ⊂ ∂ε2f(x) for all 0 ≤ ε1 ≤ ε2.

(v) x∗ ∈ ∂εf(x) if and only if f(x) + f∗(x∗) ≤ 〈x∗, x〉 + ε, for all
ε ≥ 0. When ε = 0 the last inequality becomes an equality.

(vi) x∗ ∈ ∂f(x) whenever there exist nets x∗
i →w∗

x∗ and εi ↓ 0 such
that x∗

i ∈ ∂εif(x) for all i.

(vii) ∂εf(x) × {−1}=Nε
epi f (x, f(x)) ∩ (X∗ × {−1}) for every ε ≥ 0.

(viii) If A : Y → X is a linear mapping defined on another lcs Y
with adjoint A∗, then A∗∂εf(Ay) ⊂ ∂ε(f ◦ A)(y) for all y∈Y and ε ≥ 0.

(ix) If ε ≥ 0, f is lsc at x, and the nets (xi)i ⊂ X, (x∗
i )i ⊂ X∗ are

such that xi → x, x∗
i →w∗

x∗ ∈ X∗, (x∗
i )i ⊂ U◦ for some U ∈ NX , and

x∗
i ∈ ∂εf(xi) for all i, then we have x∗ ∈ ∂εf(x).

To illustrate statement (v) in Proposition 4.1.6, we consider a non-
empty closed convex set C ⊂ X∗. Since σ∗

C = IC , by (3.17), we obtain

∂σC(θ) = {x∗ ∈ X∗ : σC(θ) + IC(x∗) = 0} = C. (4.13)

In particular, if (X, ‖·‖) is a normed space and BX∗ is the closed unit
dual ball, then the norm coincides with σBX∗ by (3.22). Thus, (4.13)
entails

∂ ‖·‖ (θ) = ∂σBX∗ (θ) = BX∗ . (4.14)

We can also add to the above list the following properties that are
easily verified. In fact, for every x ∈ f−1(R) and ε ≥ 0, we have that

f ′
ε(x; ·) = inf

δ>ε
f ′

δ(x; ·)

and
∂εf(x) =

⋂
δ>ε

∂δf(x). (4.15)

In addition, we can verify that
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∂f(x) =
⋂

L∈F(x)

∂(f + IL)(x). (4.16)

Regarding the relationship between the ε-subdifferential of a (possibly
non-convex) function and that of its conjugate, we have

(∂εf)−1 ⊂ ∂εf
∗, (4.17)

for every function f : X → R, x ∈ X and ε ≥ 0. More precisely, when
f ∈ Γ0(X), Theorem 3.2.2 gives rise to

(∂εf)−1 = ∂εf
∗. (4.18)

The following result gives some geometrical insight to the
ε-subdifferential concept.

Proposition 4.1.7 Let f : X → R∞ be a convex function, which is
finite and continuous at x ∈ X. Then, for every ε ≥ 0, there exists
some U ∈ NX such that, associated with every V ∈ NX∗ , there is λV >
0 satisfying

∂εf(x + y) ⊂ λV V for all y ∈ U. (4.19)

Consequently, the same neighborhood U satisfies
(i)

∂εf(x + y) ⊂ U◦ for all y ∈ U. (4.20)

(ii) ∂εf(x + y) is w∗-compact for all y ∈ U.
(iii) For every w∗-open set W ⊂ X∗ such that ∂εf(x) ⊂ W, there

exists U0 ∈ NX such that

∂εf(x + y) ⊂ W for all y ∈ U0.

Proof. Fix ε ≥ 0 and let U ∈ NX such that, using Proposition 2.2.6,

|f(y) − f(z)| ≤ 1 for all y, z ∈ x + 2(1 + ε)U.

Then, for every y ∈ x + (1 + ε)U , y∗ ∈ ∂εf(y) and u ∈ (1 + ε)U , we
have u + y ∈ x + 2(1 + ε)U and, so,

〈y∗, u〉 = 〈y∗, (u + y) − y〉 ≤ f(u + y) − f(y) + ε ≤ 1 + ε;

that is, y∗ ∈ U◦. Take V ∈ NX∗ and let V0 ⊂ V be an open neighbor-
hood of θ, so that X∗ = ∪λ>0(λV0) (since V0 is absorbing). Given that
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U◦ is w∗-compact by Theorem 2.1.9, from the inclusion U◦ ⊂ X∗ =
∪λ>0(λV0) we find λ1, . . . , λk > 0, k ≥ 0, such that

U◦ ⊂ ⋃
1≤i≤k

(λiV0) ⊂ ⋃
1≤i≤k

(λiV ) ⊂ λV V,

where λV := max1≤i≤k λi > 0. Therefore, ∂εf(x + y) ⊂ U◦ ⊂ λV V for
all y ∈ U (⊂ (1 + ε)U), showing that (4.19) and (4.20) hold. In par-
ticular, since ∂εf(y) is w∗-closed and U◦ is w∗-compact, (4.20) implies
that ∂εf(x + y) is w∗-compact for all y ∈ U ; that is, (ii) follows.

Assertion (iii) remains to be verified. Fix a w∗-open set W ⊂ X∗
such that ∂εf(x) ⊂ W, and let U ∈ NX be as in (4.20). Then, proceed-
ing by contradiction, we assume the existence of nets (xi)i ⊂ x + U
and (x∗

i )i ⊂ X∗ such that xi → x and x∗
i ∈ ∂εf(xi) \ W for all i. Then

(x∗
i )i ⊂ U◦ and Theorem 2.1.9 entails, without loss of generality that,

x∗
i →w∗

x∗ for some x∗ ∈ X∗. Thus, by Proposition 4.1.6(ix) we deduce
that x∗ ∈ ∂εf(x) \ W0, and this yields a contradiction.

The following known result deals with the Fréchet and Gâteaux-
differentiability of a convex function f, defined on a Banach space X.
The characterizations here are given in terms of continuous selections
of the subdifferential mapping ∂f ; that is, mappings s : X → X∗ with
the property s(x) ∈ ∂f(x) for all x ∈ X. We say that a selection s
is (norm, w∗)-continuous at x ∈ X, if s(xi) → s(x) in the w∗-topology
provided that (xi)i ⊂ X is a net such that xi → x in the norm topology.
The (norm, norm)-continuity is defined in a similar way by replacing
the w∗-topology with the norm-topology in X∗.

Proposition 4.1.8 Assume that X is a Banach space. For every con-
vex function f : X → R that is continuous at x ∈ X, the following
assertions hold:

(i) The function f is Gâteaux-differentiable at x if and only if there
exists a selection of ∂f which is (norm, w∗)-continuous at x.

(ii) The function f is Fréchet-differentiable at x if and only if every
selection of ∂f is (norm, norm)-continuous at x.

Relation (4.15) produces outer estimates of ∂εf by means of approxi-
mate subdifferentials with larger parameters. Alternatively, the follow-
ing result, which is used later on, gives inner estimates for ∂εf(x) by
using approximate subdifferentials with smaller parameters.

Proposition 4.1.9 Given a function f : X → R∞, x ∈ dom f , and
ε > 0, we have
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∂εf(x) = cl
( ⋃

0<δ<ε

∂δf(x)
)

, (4.21)

as long as the last set is not empty.

Proof. By the current assumption, there exists γ ∈ ]0, ε[ such that
∂γf(x) �= ∅. If we take x∗

γ ∈ ∂γf(x), then the function g : X → R∞,
defined by

g(·) := f(·) − f(x) − 〈x∗
γ, · − x

〉
+ γ,

is nonnegative and, due to Proposition 4.1.6(i), satisfies

∂μg(x) = ∂μf(x) − x∗
γ for all μ ≥ 0. (4.22)

We choose x∗ ∈ ∂εf(x) so that x∗ − x∗
γ ∈ ∂εg(x). Thus, by Proposition

4.1.6(ii), for every fixed α ∈ ]0, 1[ we obtain

α(x∗ − x∗
γ) ∈ α∂εg(x) = ∂αε(αg)(x). (4.23)

Therefore, since αg ≤ g and g(x) = γ, for every z∗ ∈ ∂αε(αg)(x) and
z ∈ X, we have

〈z∗, z − x〉 ≤ (αg)(z) − (αg)(x) + αε

≤ g(z) − αγ + αε = g(z) − g(x) + (1 − α)γ + αε,

showing that z∗ ∈ ∂(1−α)γ+αεg(x); that is, ∂αε(αg)(x) ⊂ ∂(1−α)γ+αεg(x).
But (1 − α)γ + αε < ε, so (4.22) and (4.23) yield

α(x∗ − x∗
γ) ∈ ∂αε(αg)(x) ⊂ ∂(1−α)γ+αεg(x)

= ∂(1−α)γ+αεf(x) − x∗
γ ⊂
( ⋃

0<δ<ε

∂δf(x)
)

− x∗
γ,

and we infer that αx∗ + (1 − α)x∗
γ ∈ ∪0<δ<ε∂δf(x). Consequently, x∗ ∈

cl (∪0<δ<ε∂δf(x)) when α ↑ 1, and the inclusion “⊂” in (4.21) follows.
The proof is finished because the opposite inclusion in (4.21) is obvious.

The following result, which is an immediate consequence of Theorem
3.2.2, is one of the main important properties of the ε-subdifferential.
It asserts that every function from Γ0(X) is ε-subdifferentiable in its
effective domain whenever ε > 0. Obviously, this is not the case for the
exact subdifferential as shown by the lsc convex function f : R → R∞
defined by f := −√

x + IR+(x). In this case, we have
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∂εf(x) =] − ∞, −1/(4ε)] for all ε > 0,

while
∂f(0) =

⋂
ε>0

∂εf(x) =
⋂

ε>0
]−∞, −1/(4ε)] = ∅. (4.24)

Proposition 4.1.10 Every function f ∈ Γ0(X) is ε-subdifferentiable
in dom f for ε > 0.

Proof. Given a function f ∈ Γ0(X), we fix x ∈ dom f and ε > 0. Then,
by Theorem 3.2.2, we have

−∞ < f(x) = f∗∗(x) = sup{〈x∗, x〉 − f∗(x∗) : x∗ ∈ dom f∗} < +∞,

and there exists some x∗ ∈ X∗ such that

f(x) < 〈x∗, x〉 − f∗(x∗) + ε; (4.25)

that is, x∗ ∈ ∂εf(x).
Thanks to Proposition 4.1.10, Proposition 4.1.9 takes a simpler form

when applied to functions from Γ0(X).

Corollary 4.1.11 Given f ∈ Γ0(X), x ∈ dom f , and ε > 0, we have
that

∂εf(x) = cl
( ⋃

0<δ<ε

∂δf(x)
)

(4.26)

and, consequently,

f ′
ε(x; u) = sup

0<δ<ε
f ′

δ(x; u) for all u ∈ X. (4.27)

Proof. Since ∂δf(x) �= ∅ for all δ ∈ ]0, ε[, due to Proposition 4.1.10,
(4.26) follows by Proposition 4.1.9. The second statement of the corol-
lary is an immediate consequence of (4.26) and the definition of
f ′

ε(x; u).
Relation (4.26) is not necessarily true when the convex function f

is not lsc at x ∈ dom f. In fact, in that case we have

∂εf(x) = ∅ for ε ∈ [0, f(x) − (cl f)(x)[.

To see this, suppose that x∗
ε ∈ ∂εf(x) for some ε ≥ 0. Then we get

〈x∗
ε , y − x〉 ≤ f(y) − f(x) + ε for all y ∈ X,
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implying that

〈x∗
ε , y − x〉 ≤ (cl f)(y) − f(x) + ε for all y ∈ X.

Therefore, taking y = x in this last inequality, we obtain ε ≥ f(x) −
(cl f)(x) and, consequently,

cl

( ⋃
0<δ<f(x)−(cl f)(x)

∂δf(x)

)
= ∅.

At the same time, we can have ∂f(x)−(cl f)(x)f(x) �= ∅, leading us in
such a case to the strict inclusion

cl

( ⋃
0<δ<f(x)−(cl f)(x)

∂δf(x)

)
⊂ ∂f(x)−(cl f)(x)f(x).

The following proposition provides additional information about the
relationship between σ∂εf(x) and the ε-directional derivative of f , which
further extends and improves (4.10). Next we denote by qx,u : R+ →
R∞, x ∈ dom f , and u ∈ X, the function defined as

qx,u(s) :=
{

s(f(x + s−1u) − f(x)), if s > 0,
σdom f∗(u), if s = 0.

Proposition 4.1.12 Given function f ∈ Γ0(X), for all x ∈ dom f,
u ∈ X, and ε > 0, we have

σ∂εf(x) = f ′
ε(x; ·). (4.28)

More precisely, one has

σ∂εf(x)(u) = min
s≥0

(qx,u(s) + sε) (4.29)

and, consequently,

epi f ′
ε(x; ·) =

{
R

∗
+(epi f − (x, f(x) − ε))

} ∪ epi f∞. (4.30)

Proof. Suppose first that x = θ and f(θ) = 0; the general case will be
examined in the second part of the proof. We introduce the function
g := f∗ − ε, which belongs to Γ0(X∗), thanks to Proposition 3.1.4.
Moreover, using (4.4) and Proposition 4.1.10, we get
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[g ≤ 0] = [f∗ ≤ ε] = ∂εf(θ) �= ∅. (4.31)

In addition, again by Proposition 4.1.10, we have

[g < 0] = [f∗ < ε] ⊃ [f∗ ≤ δ] = ∂δf(θ) �= ∅ for all δ < ε, (4.32)

while the Fenchel inequality entails

infX∗ g = infX∗(f∗ + f(θ) − ε) ≥ −ε. (4.33)

Let us now verify that

(sg)∗ = (s ∗ f) + sε for all s ≥ 0. (4.34)

Indeed, when s > 0, Theorem 3.2.2 yields

(sg)∗(·) = (sf∗)∗(·) + sε = sf∗∗(s−1·) + sε

= sf(s−1·) + sε = (s ∗ f)(·) + sε. (4.35)

Similarly, when s = 0 we get

(0g)∗ = (0f∗)∗ = (Idom f∗)∗ = σdom f∗ = 0 ∗ f = 0 ∗ f + 0ε.

Thus, applying Theorem 3.3.4 (since −∞ < infX g < 0, by (4.32) and
(4.33)), relation (4.34) reads

σ[g≤0](u) = inf
s>0

(sg)∗(u) = min
s≥0

(sg)∗(u)

= min
s≥0

((s ∗ f)(u) + sε) = min
s≥0

(qθ,u(s) + sε), (4.36)

and (4.28) together with (4.29) follows because [g ≤ 0] = ∂εf(θ) and

inf
s>0

(sg)∗ = inf
s>0

s
(
f(s−1·) + ε

)
= f ′

ε(θ; ·).

Therefore, using (4.28), (4.31), Corollary 3.3.5, and Theorem 3.2.2,
(4.30) follows as

epi f ′
ε(θ; ·) = epiσ∂εf(x) = epi σ[g≤0] = (R∗

+ epi g∗)∪ [epi g∗]∞
= R

∗
+(epi f − (θ, −ε)) ∪ [epi f − (θ, −ε)]∞

= R
∗
+(epi f − (θ, −ε)) ∪ epi f∞,

and the proof is done when x = θ and f(θ) = 0.
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Finally, dealing with any x ∈ dom f, we consider the function ϕ :=
f(· + x) − f(x) ∈ Γ0(X), which satisfies ϕ(θ) = 0. Notice that ∂εϕ(θ)
= ∂εf(x), ϕ′

ε(θ; ·) = f ′
ε(x; ·) and for all u ∈ X and s > 0

(s ∗ ϕ)(u) = sϕ(s−1u) = s(f(x + s−1u) − f(x)).

Furthermore, since ϕ∗ = f∗(·) − 〈·, x〉 + f(x), we also have (0 ∗ ϕ)(u) =
σdom ϕ∗ = σdom f∗ ; that is, (s ∗ ϕ)(u) = qx,u(s) for all u ∈ X. Thus,
applying the first part of the proof to the function ϕ we obtain
σ∂εf(x) = σ∂εϕ(θ) = ϕ′

ε(θ; ·) = f ′
ε(x; ·) (see (4.36)) and

σ∂εf(x)(u) = σ∂εϕ(θ) = min
s≥0

((s ∗ ϕ)(u) + sε) = min
s≥0

(qx,u(s) + sε).

Moreover, since epi ϕ = epi f − (x, f(x)) and (epi ϕ)∞ = (epi f)∞, we
also get

epi f ′
ε(x; ·) = epiϕ′

ε(θ; ·) =
{
R

∗
+(epi ϕ − (θ, −ε))

} ∪ epi ϕ∞

=
{
R

∗
+(epi f − (x, f(x) − ε))

} ∪ epi f∞.

Relation (4.28) could also be proved in a more direct way: since
f ∈ Γ0(X), f is ε-subdifferentiable at x by Proposition 4.1.10, and
Proposition 4.1.4 implies that f ′

ε(x; ·) is lsc at θ. Thus, (4.28) follows
from (4.10).

The ε-subdifferential allows us to establish calculus rules without
additional continuity assumptions. This is an important feature of the
ε-subdifferential, which facilitates the formulation of optimality con-
ditions for the convex optimization problems studied in section 8.2.

Proposition 4.1.13 below provides alternative formulas for the ε-
subdifferential of the inf-convolution. Such an operation is frequently
used in optimization and variational analysis, especially in regulariza-
tion processes (e.g., Corollary 5.1.14). The characterizations given here
are in terms of ε-subdifferentials of the involved functions, evaluated
at almost attaining points; that is, points x1, x2 ∈ X satisfying

f1(x1) + f2(x2) < (f1�f2)(x) + α for α > 0 small.

Formula (4.38) also involves such attaining points, but implicitly,
since the non-emptiness of the intersection ∂ε1f1(x1) ∩ ∂ε2f2(x2) guar-
antees that x1 and x2 are also almost attaining points. It is pre-
cisely the existence of such points that supports the success of the
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ε-subdifferential in producing explicit calculus rules. This is in oppo-
sition to the exact subdifferential which would require the existence of
exact attaining points (equivalently, the exactness of the inf-convolution
at x). In fact, this exactness requirement motivates the need for addi-
tional qualifying conditions (e.g., Proposition 4.1.20 and subsequent
results).

Formula (4.39) is a sharp version of formulas (4.37) and (4.38) when
ε > 0, using approximate subdifferentials of the data with parameters
whose sum does not exceed ε.

Proposition 4.1.13 Given the functions f1, f2 : X → R∞, for every
x ∈ (f1�f2)−1(R) and ε ≥ 0 we have

∂ε(f1�f2)(x) =
⋂

α>0

⋃
x1+x2=x

ε1,ε2>0, ε1+ε2=ε+α
f1(x1)+f2(x2)<(f1�f2)(x)+α

∂ε1f1(x1) ∩ ∂ε2f2(x2)

(4.37)

=
⋂

α>0

⋃
x1+x2=x

ε1,ε2>0, ε1+ε2=ε+α

∂ε1f1(x1) ∩ ∂ε2f2(x2). (4.38)

Moreover, whenever ε > 0 and

⋃
0<δ<ε

∂δ(f1�f2)(x) �= ∅,

we have

∂ε(f1�f2)(x) = cl

⎛
⎜⎝ ⋃

x1+x2=x
ε1,ε2>0, ε1+ε2=ε

∂ε1f1(x1) ∩ ∂ε2f2(x2)

⎞
⎟⎠ . (4.39)

Proof. We only need to prove the inclusions “⊂” in (4.37) and (4.39),
since all the others are straightforward. Given x∗ ∈ ∂ε(f1�f2)(x), we
choose α > 0 and y ∈ X such that f1(y) + f2(x − y) < (f1�f2)(x) + α.
Let us also denote

δ1 := f1(y) + f∗
1 (x∗) − 〈x∗, y〉 , δ2 := f2(x − y) + f∗

2 (x∗) − 〈x∗, x − y〉 ,

so that δ1, δ2 ≥ 0 by the Fenchel inequality. Moreover, since (f1�f2)∗ =
f∗
1 + f∗

2 by Proposition 3.1.13, we also have

δ1 + δ2 = f1(y) + f2(x − y) + (f1�f2)∗(x∗) − 〈x∗, x〉
< (f1�f2)(x) + (f1�f2)∗(x∗) − 〈x∗, x〉 + α
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and there exists ρ > 0 such that (as x∗ ∈ ∂ε(f1�f2)(x))

δ1 + δ2 + ρ < (f1�f2)(x) + (f1�f2)∗(x∗) − 〈x∗, x〉 + α ≤ ε + α.

Take ε1 := δ1 + ρ/2 and ε′
2 := δ2 + ρ/2, so that ε1, ε

′
2 ≥ ρ/2 > 0, ε1 +

ε′
2 = δ1 + δ2 + ρ < ε + α and

x∗ ∈ ∂δ1f1(y) ∩ ∂δ2f2(x − y) ⊂ ∂ε1f1(y) ∩ ∂ε′
2
f2(x − y)

⊂ ∂ε1f1(y) ∩ ∂ε+α−ε1f2(x − y),

as ε′
2 < ε + α − ε1. The desired inclusion in (4.37) follows by taking

ε2 := ε + α − ε1, and then intersecting over α > 0.
Suppose now that ε > 0 and ∪0<δ<ε∂δ(f1�f2)(x) �= ∅. Then, by

Proposition 4.1.9 and (4.38),

∂ε(f1�f2)(x) = cl
( ⋃

0<δ<ε

∂δ(f1�f2)(x)
)

= cl
( ⋃

0<δ<ε

⋂
α>0

⋃
x1+x2=x

ε1,ε2>0, ε1+ε2=δ+α
∂ε1f1(x1) ∩ ∂ε2f2(x2)

)

and, taking α = ε − δ,

∂ε(f1�f2)(x) ⊂ cl
(⋃

x1+x2=x
ε1,ε2>0, ε1+ε2=ε

∂ε1f1(x1) ∩ ∂ε2f2(x2)
)

,

which is the non-trivial inclusion in (4.39).
The following result expresses the ε-subdifferential of cl f by means

of the ε-subdifferential of f at nearby points.

Proposition 4.1.14 Let f : X → R∞ be a proper function. Then we
have

∂ε(cl f)(x) =
⋂

δ>0, U∈NX

⋃
y∈U

∂ε+δf(x + y) for all x ∈ X and ε ≥ 0

(4.40)
and, equivalently,

(∂ε(cl f))−1 (x∗) =
⋂

δ>0
cl((∂ε+δf)−1 (x∗)) for all x∗ ∈ X∗.

Proof. Fix x ∈ X, ε ≥ 0 and take x∗ ∈ ∂ε(cl f)(x). So, for every η > 0,

f∗(x∗) + (cl f)(x) = (cl f)∗(x∗) + (cl f)(x) ≤ 〈x∗, x〉 + ε + η/2.
(4.41)
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Then, given δ > 0 and U ∈ NX , we choose U0 ∈ NX such that U0 ⊂ U,
〈x∗, x〉 ≤ 〈x∗, x + y〉 + δ

4 , for all y ∈ U0, and (by (2.34))

inf
y∈U0

f(x + y) < (cl f)(x) +
δ

4
.

Therefore, taking η = δ in (4.41), there exists some y ∈ U0 ⊂ U such
that

f∗(x∗) + f(x + y) < f∗(x∗) + (cl f)(x) +
δ

4

≤ 〈x∗, x〉 + ε +
δ

2
+

δ

4

≤ 〈x∗, x + y〉 +
δ

4
+ ε +

δ

2
+

δ

4
= 〈x∗, x + y〉 + ε + δ;

that is, x∗ ∈ ∂ε+δf(x + y) and the proof of the inclusion “⊂” in (4.40)
is done. The opposite inclusion there is straightforward.

To prove the second statement, we use (4.40) to see that x ∈
(∂ε(cl f))−1 (x∗) if and only if

x∗ ∈ ∂ε(cl f)(x) =
⋂

δ>0, U∈NX

⋃
y∈U

∂ε+δf(x + y);

in other words, if and only if for all δ > 0 and U ∈ NX there exists some
y ∈ U such that x∗ ∈ ∂ε+δf(x − y) (recall that U is balanced). Equiva-
lently, x ∈ (∂ε+δf)−1(x∗) + y, and we deduce that x ∈ (∂ε+δf)−1(x∗) +
U for all δ > 0 and U ∈ NX . Setting δ > 0, we deduce that x ∈
cl((∂ε+δf)−1 (x∗)) and end up intersecting over δ > 0.

Continuing with the developments of subdifferential calculus, we
characterize the ε-subdifferential of the convex and closed convex hulls.
Given z ∈ X, ε, δ ≥ 0, k ≥ 1, and λ ∈ Δk, we consider the set in X ×
R+ defined as

E(z, ε, δ, k, λ) :=

⎧⎨
⎩(xi, εi)1≤i≤k :

∑
1≤i≤k

λixi = z,
∑

1≤i≤k

λiεi ≤ ε + δ

and
∑

1≤i≤k

λif(xi) ≤ (co f)(z) + δ

⎫⎬
⎭ .

Proposition 4.1.15 Given a proper function f : X → R∞, for every
x ∈ dom(co f) and ε ≥ 0 we have

∂ε(co f)(x) =
⋂

δ>0

⋃
(xi,εi)1≤i≤k∈E(x,ε,δ,k,λ)

λ∈Δk, k≥1

⋂
1≤i≤k

∂εif(xi), (4.42)
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and, when co f is proper,

∂ε(cof)(x) =
⋂

δ>0
U∈NX

⋃
(xi,εi)1≤i≤k∈E(x+y,ε,δ,k,λ)

y∈U, λ∈Δk, k≥1

⋂
1≤i≤k

∂εif(xi). (4.43)

Proof. Take x∗ ∈ ∂ε(co f)(x) and δ > 0, so that

(co f)(x) + (co f)∗(x∗) = (co f)(x) + f∗(x∗) ≤ 〈x∗, x
〉
+ ε <
〈
x∗, x
〉
+ ε + δ/2.

Then there are k ∈ N, xi ∈ X, 1 ≤ i ≤ k, and λ ∈ Δk such that

∑
1≤i≤k

λixi = x,
∑

1≤i≤k

λif(xi) ≤ (co f)(x) + δ/2 < (co f)(x) + δ,

and

∑
1≤i≤k

λif(xi) + f∗(x∗) ≤ (co f)(x) + f∗(x∗) + δ/2 < 〈x∗, x〉 + ε + δ.

Therefore, denoting εi := f(xi) + f∗(x∗) − 〈x∗, xi〉, we have εi ≥ 0,
x∗ ∈ ∂εif(xi) and

∑
1≤i≤k

λiεi =
∑

1≤i≤k

λi(f(xi) + f∗(x∗) − 〈x∗, xi〉)

=
∑

1≤i≤k

λif(xi) + f∗(x∗) − 〈x∗, x〉 < ε + δ,

which show that

x∗ ∈ ⋂
1≤i≤k

∂εif(xi) ⊂ ⋃
(xi,εi)1≤i≤k∈E(x,ε,δ,k,λ)

λ∈Δk, k≥1

⋂
1≤i≤k

∂εif(xi).

The inclusion “⊂” in (4.42) follows by intersecting over δ > 0, and the
opposite inclusion there is easily checked. Finally, (4.43) is satisfied by
combining (4.42) and Proposition 4.1.14.

We provide below a calculus rule for the approximate subdifferential
and the conjugate of the sum and the composition of convex functions
with continuous linear mappings. Everything is done without addi-
tional continuity assumptions on the involved functions. In particular,
formula (4.44) transforms the operation of composition into a post-
composition of the conjugate function and the adjoint of the given
linear mapping.
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Proposition 4.1.16 Let Y be another lcs, f ∈ Γ0(X), g ∈ Γ0(Y ),
and let A : X → Y be a continuous linear mapping with continuous
adjoint A∗. Then, provided that dom f ∩ A−1(dom g) �= ∅, we have

(f + g ◦ A)∗ = cl(f∗�(A∗g∗)), (4.44)

and, for every x ∈ X and ε ≥ 0,

∂ε(f + g ◦ A)(x) =
⋂

δ>0
cl

⎛
⎜⎝ ⋃

ε1+ε2=ε+δ
ε1,ε2≥0

(∂ε1f(x) + A∗∂ε2g(Ax))

⎞
⎟⎠ .

(4.45)
In particular, when ε > 0 we also have

∂ε(f + g ◦ A)(x) = cl

⎛
⎜⎝ ⋃

ε1+ε2=ε
ε1,ε2≥0

(∂ε1f(x) + A∗∂ε2g(Ax))

⎞
⎟⎠ . (4.46)

Proof. We fix x0 ∈ dom f ∩ A−1(dom g). Given Proposition 3.1.13, the
Fenchel inequality and Theorem 3.2.2 imply that, for all x∗ ∈ X∗,

(f∗�(A∗g∗))(x∗) + (f + g ◦ A)(x0) = (f∗�(A∗g∗))(x∗) + (f∗∗ + g∗∗ ◦ A)(x0)

= (f∗�(A∗g∗))(x∗) + (f∗�(A∗g∗))∗(x0) ≥ 〈x∗, x0〉 ;

in other words,

(f∗�(A∗g∗))(x∗) ≥ 〈x∗, x0〉 − f(x0) − g(Ax0) for all x∗ ∈ X∗,

and taking the closed hull we get

f∗�(A∗g∗) ≥ cl(f∗�(A∗g∗)) ≥ 〈·, x0〉 − f(x0) − g(Ax0).

Furthermore, using Proposition 3.1.4, by (2.56) and (2.61) we get

∅ �= dom f∗ + A∗(dom g∗) = dom(f∗�(A∗g∗)) ⊂ dom(cl(f∗�(A∗g∗))),

and cl(f∗�(A∗g∗)) ∈ Γ0(X); that is, due to (3.7) and Theorem 3.2.2,

(f∗�(A∗g∗))∗∗ = (cl(f∗�(A∗g∗)))∗∗ = cl(f∗�(A∗g∗)). (4.47)
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Finally, formula (4.44) follows because Proposition 3.1.13 and Theorem
3.2.2 imply that

(f∗�(A∗g∗))∗∗ = ((f∗�(A∗g∗))∗)∗ = (f∗∗ + (A∗g∗)∗)∗

= (f∗∗ + g∗∗ ◦ A∗∗)∗ = (f + g ◦ A)∗,

where we use the fact that A∗∗ = A (see (3.16)).
To show the non-trivial inclusion “⊂” in (4.45), we fix x ∈ X,

ε ≥ 0 and take x∗ ∈ ∂ε(f + g ◦ A)(x); hence, x ∈ dom f ∩ A−1(dom g).
Moreover, by (4.44), for every given δ > 0 we have

(f + g ◦ A)(x) + (cl(f∗�(A∗g∗)))(x∗) = (f + g ◦ A)(x) + (f + g ◦ A)∗(x∗)
≤ 〈x∗, x〉 + ε < 〈x∗, x〉 + ε + δ,

and then there exist nets (x∗
i )i, (y∗

i )i ⊂ X∗, and (z∗
i )i ⊂ Y ∗ such that

x∗
i → x∗, A∗z∗

i = x∗
i − y∗

i and, for all i,

f∗(y∗
i ) + g∗(z∗

i ) ≤ 〈x∗
i , x〉 − (f + g ◦ A)(x) + ε + δ. (4.48)

Let us denote

ε1,i := f∗(y∗
i ) + f(x) − 〈y∗

i , x〉 ≥ 0, ε2,i := g∗(z∗
i ) + g(Ax) − 〈z∗

i , Ax〉 ≥ 0,

so that y∗
i ∈ ∂ε1,if(x), z∗

i ∈ ∂ε2,ig(Ax) and, due to (4.48),

ε1,i + ε2,i = f∗(y∗
i ) + g∗(z∗

i ) + f(x) + g(Ax) − 〈y∗
i + A∗z∗

i , x〉
= f∗(y∗

i ) + g∗(z∗
i ) + f(x) + g(Ax) − 〈x∗

i , x〉 ≤ ε + δ.

Therefore, writing

x∗
i = y∗

i + (x∗
i − y∗

i ) = y∗
i + A∗z∗

i

∈ ∂ε1,if(x) + A∗∂ε2,ig(Ax) ⊂ ∂ε1,if(x) + A∗∂ε+δ−ε1,ig(Ax)
⊂ ⋃

ε1+ε2=ε+δ
ε1,ε2≥0

(∂ε1f(x) + A∗∂ε2g(Ax)) ,

the inclusion “⊂” in (4.45) follows by, successively, passing to the limit
on i and intersecting over δ > 0.

To verify the non-trivial inclusion “⊂” in (4.46), we fix ε > 0 and x ∈
dom f ∩ A−1(dom g). So, taking into account Corollary 4.1.11, formula
(4.45) results in
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∂ε(f + g ◦ A)(x) = cl
( ⋃

0<α<ε
∂α(f + g ◦ A)(x)

)

= cl

⎛
⎜⎝ ⋃

0<α<ε

⋂
δ>0

cl

⎛
⎜⎝ ⋃

ε1+ε2=α+δ
ε1,ε2≥0

(∂ε1f(x) + A∗∂ε2g(Ax))

⎞
⎟⎠
⎞
⎟⎠ .

So, taking δ = ε − α, we get

∂ε(f + g ◦ A)(x) ⊂ cl

⎛
⎜⎝ ⋃

ε1+ε2=ε
ε1,ε2≥0

∂ε1f(x) + A∗∂ε2g(Ax)

⎞
⎟⎠ ,

and we are done since the opposite inclusion is straightforward.
As an illustration of Proposition 4.1.16, we give the following corol-

lary which extends Proposition 3.2.8. Now, the given family is not
necessarily non-decreasing, but it satisfies a more general property
that we will later call closedness for convex combinations in Definition
5.1.3.

Corollary 4.1.17 Given a family of functions {ft, t ∈ T} ⊂ Γ0(X),
we assume that f := supt∈T ft is proper and, for all λ ∈ Δ(T ), there
exists some s ∈ T such that

∑
t∈supp λ

λtft ≤ fs. (4.49)

Then we have f∗ = cl (inft∈T f∗
t ) .

Proof. By Proposition 3.2.6, we have

f∗ = co
(

inf
t∈T

f∗
t

)
≤ cl
(

inf
t∈T

f∗
t

)
,

so we just need to check that, for each fixed x∗ ∈ dom f∗,

cl
(

inf
t∈T

f∗
t

)
(x∗) ≤ f∗(x∗).

Let α ∈ R such that f∗(x∗) = co (inft∈T f∗
t ) (x∗) < α, and take a net

x∗
i → x∗ satisfying

f∗(x∗) = lim
i

(
co
(

inf
t∈T

f∗
t

))
(x∗

i ).
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Since f∗ is also proper, due to Proposition 3.1.4, we may assume that
(co (inft∈T f∗

t )) (x∗
i ) ∈ R for all i. Then there are associated (λi)i ⊂

Δ(T ) and x∗
i,t ∈ X∗, t ∈ supp λi, such that

∑
t∈T λi,tx

∗
i,t = x∗

i and

f∗(x∗) = lim
i

∑
t∈supp λi

λi,t

(
inf
s∈T

f∗
s

)
(x∗

i,t) < α.

More precisely, we can find associated fsi,t
, si,t ∈ T, such that (without

loss of generality)
∑

t∈supp λi
λi,tf

∗
si,t

(x∗
i,t) < α for all i. Then, for each

i, by assumption we choose si ∈ T such that
∑

t∈supp λi
λi,tfsi,t

≤ fsi
.

But
(∑

t∈supp λi
λi,tfsi,t

)∗
is the closed hull of the inf-convolution of

the functions (λi,tfsi,t
)∗ (see Proposition 4.1.16), so we get

f∗
si

(x∗
i ) ≤
( ∑

t∈supp λi

λi,tfsi,t

)∗
(x∗

i )

≤ ∑
t∈supp λi

(λi,tfsi,t
)∗(λi,tx

∗
i,t) =

∑
t∈supp λi

λi,tf
∗
si,t

(
x∗

i,t

)
< α.

In other words,

cl
(

inf
t∈T

f∗
t

)
(x∗) ≤ lim inf

i

(
inf
t∈T

f∗
t

)
(x∗

i ) ≤ lim inf
i

f∗
si

(x∗
i ) ≤ α,

and the desired inequality, cl (inft∈T f∗
t ) (x∗) ≤ f∗(x∗), follows when

α ↓ f∗(x∗).
We give an example of families of functions satisfying the property

used in Corollary 4.1.17; in fact, as we show here, any family can be
adjusted to satisfy such a property.

Example 4.1.18 For any family {ft, t ∈ T} ⊂ Γ0(X) such that f :=
supt∈T ft is proper, we have

f∗ = cl
(

inf
λ∈Δ(T )

f∗
λ

)
,

where fλ :=
∑

t∈supp λ

λtft. Consequently, the function infλ∈Δ(T ) f∗
λ and

its closure are convex and proper.
Indeed, by (2.45), we have

f = sup
t∈T

ft = sup
λ∈Δ(T )

fλ. (4.50)

In addition, for any λ1, . . . , λk ∈ Δ(T ), k ≥ 1 and α := (α1, . . . , αk) ∈
Δ∗

k, we have
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g :=
∑

1≤i≤k

αifλi
=

∑
t∈supp λi,1≤i≤k

(αiλi,t) ft =
∑
t∈T

( ∑
1≤i≤k

αiλi,t

)
ft.

Furthermore, it is clear that the element λ̃ ∈ R
(T )
+ defined by λ̃t :=∑

1≤i≤kαiλi,t satisfies
∑

t∈T λ̃t =
∑

1≤i≤kαi = 1 and g = fλ̃; that is,
the family {fλ, λ ∈ Δ(T )} satisfies condition (4.49). Thus, we conclude
by applying Corollary 4.1.17.

The operations of addition and composition in Proposition 4.1.16
can be put in the general form ϕ(x) := F (x, θ) that we present in the
following corollary. For instance, the operation f + g ◦ A corresponds
to the function ϕ for F : X × Y → R∞ being defined by

F (x, y) := f(x) + g(Ax + y). (4.51)

Corollary 4.1.19 Let Y be another lcs, F ∈ Γ0(X, Y ) and let ϕ :
X → R∞ be defined as ϕ(x) := F (x, θ). Then, provided that {x ∈ X :
(x, θ)} ∈ dom F} �= ∅, we have

ϕ∗ = cl
(

inf
y∗∈Y ∗

F ∗(·, y∗)
)

(4.52)

and, for every x ∈ X and ε > 0,

∂εϕ(x) = cl {x∗ ∈ X∗ : ∃ y∗ ∈ Y ∗ such that (x∗, y∗) ∈ ∂εF (x, θ)} .
(4.53)

Proof. We introduce the continuous linear mapping A : X → X × Y
defined as Ax = (x, θ), so that ϕ = F ◦ A. Since A−1(dom F ) = {x ∈
X : (x, θ)} ∈ dom F} �= ∅ and the adjoint mapping of A, A∗ : X∗ ×
Y ∗ → X∗, is defined by A∗(x∗, y∗) = x∗, (4.44) entails ϕ∗ = (F ◦ A)∗ =
cl(A∗F ∗). Thus, (4.52) follows because

(A∗F ∗)(x∗) = inf{F ∗(u∗, y∗) : A∗(u∗, y∗) = x∗, (u∗, y∗) ∈ X∗ × Y ∗}
= inf{F ∗(x∗, y∗) : y∗ ∈ Y ∗}.

To verify (4.53), we fix x ∈ X and ε > 0. Then (4.46) yields

∂εϕ(x) = cl (A∗∂εF (x, θ))
= cl{x∗ ∈ X∗ : ∃ y∗ ∈ Y ∗ such that (x∗, y∗) ∈ ∂εF (x, θ)},

and we are done.
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The formulas of Proposition 4.1.16 use limiting processes (since they
involve closures), so they are called approximate or fuzzy rules. To
get more precise characterizations, additional conditions are usually
needed as happens in Proposition 4.1.20 below. Given a continuous
linear mapping A : X → Y, where Y is another lcs, we consider again
the mapping Â : X × R → Y × R defined by (see (2.59))

Â(x, α) := (Ax,α). (4.54)

Then we easily verify that the adjoint of Â, Â∗ : Y ∗ × R → X∗ × R, is
given by

Â∗(y∗, λ) = (A∗y∗, λ). (4.55)

Proposition 4.1.20 Given convex functions f : X → R, g : Y → R,
and a linear continuous mapping A : X → Y with continuous adjoint
A∗, we suppose that g is finite and continuous at some point in
A(dom f). Then the following assertions hold true:

(i)
(f + g ◦ A)∗ = f∗�(A∗g∗), (4.56)

where both the inf-convolution and the post-composition are exact.
(ii)

epi(f + g ◦ A)∗ = epi f∗ + Â∗(epi g∗), (4.57)

where Â∗ comes from (4.55).
(iii) For every x ∈ X and ε ≥ 0,

∂ε(f + g ◦ A)(x) =
⋃

0≤ε1,ε2, ε1+ε2≤ε

(∂ε1f(x) + A∗∂ε2g(Ax)) . (4.58)

Proof. (i) We may assume that θ ∈ dom f ∩ (A−1(dom g)
)

= dom(f +
g ◦ A) and g is continuous at θ ∈ A(dom f).

Let us proceed with the proof of (4.56), assuming first that f ∈
Γ0(X) and g ∈ Γ0(Y ). We fix x∗ ∈ X∗. If (f + g ◦ A)∗(x∗) = +∞, then
Proposition 4.1.16 yields

+∞ = (f + g ◦ A)∗(x∗) = cl(f∗�(A∗g∗))(x∗) ≤ (f∗�(A∗g∗))(x∗),

and (4.56) obviously holds. Therefore, we can assume that (f + g ◦
A)∗(x∗) < +∞. Consequently, since (f + g ◦ A)∗ ∈ Γ0(X∗) by Propo-
sition 3.1.4, we again use Proposition 4.1.16 to find a net (x∗

i ) ⊂ X∗
that w∗-converges to x∗ and satisfies
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(f + g ◦ A)∗(x∗) = cl(f∗�(A∗g∗))(x∗) = limi(f∗�(A∗g∗))(x∗
i ) ∈ R.

(4.59)
Furthermore, we choose nets (z∗

i ) ⊂ X∗ and (y∗
i ) ⊂ Y ∗ such that

A∗y∗
i = x∗

i − z∗
i and

(f + g ◦ A)∗(x∗) = limi (f∗(z∗
i ) + g∗(y∗

i )) . (4.60)

Note that f∗(z∗
i ) ≥ −f(θ) > −∞ and g∗(y∗

i ) ≥ −g(θ) > −∞. Then
(4.60) implies the existence of some m ≥ 0 such that g∗(y∗

i ) ≤ m even-
tually for i. Therefore, by Proposition 3.1.3, we may assume that
(y∗

i )i is w∗-convergent to some ȳ∗ ∈ Y ∗, so (z∗
i )i is also w∗-convergent

to x∗ − A∗ȳ∗. Consequently, taking the limits in (4.60), the w∗-lower
semicontinuity of the conjugate function and (4.59) imply that

f∗(x∗ − A∗ȳ∗) + g∗(ȳ∗) ≤ lim inf
i

f∗(z∗
i ) + lim inf

i
g∗(y∗

i )

≤ lim inf
i

(f∗(z∗
i ) + g∗(y∗

i ))

= (f + g ◦ A)∗(x∗) = cl(f∗�(A∗g∗))(x∗)
≤ (f∗�(A∗g∗))(x∗) ≤ f∗(x∗ − A∗ȳ∗) + g∗(ȳ∗).

In other words, (4.56) follows under the current assumption that f ∈
Γ0(X) and g ∈ Γ0(Y ).

Now, we show (4.56) in the general case where f and g are convex
functions, possibly not lsc. We observe that cl g ∈ Γ0(Y ) as g is finite
and continuous at θ. Furthermore, by Proposition 2.2.11, the current
continuity assumption yields

cl(f + g ◦ A) = (cl f) + (cl g) ◦ A. (4.61)

If cl f /∈ Γ0(X), then cl f is not proper and (4.61) together with the
relation (cl f)(θ) = −∞ (see (40)) implies that

cl(f + g ◦ A)(θ) = (cl f)(θ) + (cl g)(Aθ) = (cl f)(θ) + g(θ) = −∞.

Consequently,

(f + g ◦ A)∗ = (cl(f + g ◦ A))∗ ≡ +∞ ≡ (cl f)∗ = f∗

and, at the same time, for all x∗ ∈ X∗ we have

(f∗�(A∗g∗))(x∗) = inf{f∗(x∗
1) + (A∗g∗)(x∗

2) : x∗
1 + x∗

2 = x∗} = +∞.
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Therefore, (f + g ◦ A)∗ = f∗�(A∗g∗) ≡ +∞ and (4.56) also holds with
exact inf-convolution and exact post-composition.

We now assume that cl f ∈ Γ0(X). So, taking into account (4.61)
and the fact that cl g is also proper, by the reasoning before we get

(f + g ◦ A)∗ = (cl(f + g ◦ A))∗ = ((cl f) + (cl g) ◦ A)∗

= (cl f)∗�(A∗(cl g)∗) = f∗�(A∗g∗),

and, for each x∗ ∈ X∗, there exist z̄∗ ∈ X∗ and ȳ∗ ∈ Y ∗ such that
z̄∗ + A∗ȳ∗ = x∗ and

(f + g ◦ A)∗(x∗) = ((cl f) + (cl g) ◦ A)∗(x∗)
= (cl f)∗(z̄∗) + (cl g)∗(ȳ∗) = f∗(z̄∗) + g∗(ȳ∗).

Consequently, both the inf-convolution and the post-composition in
f∗�(A∗g∗) are exact, and we conclude (4.56) in all its generality.

(ii) The inclusion “⊃” in (4.57) follows as we show next. First, the
continuity of Â∗ yields

epi f∗ + Â∗(epi g∗) ⊂ epi f∗ + Â∗(cl(epis g∗)) ⊂ cl(epi f∗) + cl(Â∗(epis g∗)).

Second, because of (2.9) and (2.60), we have

cl(epi f∗) + cl(Â∗(epis g∗)) ⊂ cl(epi f∗ + Â∗(epis g∗))
= cl(epi f∗ + epis(A

∗g∗)) = cl(epi f∗ + epi(A∗g∗)).

Third, by (2.58) we have cl(epi f∗ + epi(A∗g∗)) = epi(cl(f∗�(A∗g∗)),
and so (4.56) produces

epi f∗ + Â∗(epi g∗) ⊂ epi(cl(f∗�(A∗g∗)) = epi(f + g ◦ A)∗. (4.62)

To prove the converse inclusion, observe that if cl f is not proper,
then (f + g ◦ A)∗ ≡ +∞ as shown above. So, epi(f + g ◦ A)∗ = ∅ and
(4.62) becomes an equality as required. Suppose now that cl f is proper
and take (x∗, λ) ∈ epi(f + g ◦ A)∗. Then, by (4.56), we find some y∗ ∈
dom g∗ such that f∗(x∗ − A∗y∗) + g∗(y∗) = (f + g ◦ A)∗(x∗) ≤ λ; that
is, g∗(y∗), f∗(x∗ − A∗y∗) ∈ R (due to Proposition 3.1.4). Therefore,

(x∗, λ) =(x∗ − A∗y∗, f∗(x∗ − A∗y∗) + (λ − f∗(x∗ − A∗y∗) − g∗(y∗)))

+ (A∗y∗, g∗(y∗)) ⊂ epi f∗ + Â∗(epi g∗),

and the desired inclusion follows.
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(iii) We verify the non-trivial inclusion “⊂” in (4.58). Fix x ∈ X,
ε ≥ 0 and take x∗ ∈ ∂ε(f + g ◦ A)(x), so that

(f + g ◦ A)(x) + (f + g ◦ A)∗(x∗) ≤ 〈x∗, x〉 + ε.

Thus, (4.56) gives rise to the existence of some y∗ ∈ dom g∗ such that
f(x) + g(Ax) + f∗(x∗ − A∗y∗) + g∗(y∗) ≤ 〈x∗, x〉 + ε. Let us denote

ε1 := f(x) + f∗(x∗ − A∗y∗) − 〈x∗ − A∗y∗, x
〉
, ε2 := g(Ax) + g∗(y∗) − 〈y∗, Ax

〉
,

so that ε1, ε2 ≥ 0, x∗ − A∗y∗ ∈ ∂ε1f(x), y∗ ∈ ∂ε2g(Ax) and

ε1 + ε2 = f(x) + g(Ax) + f∗(x∗ − A∗y∗) + g∗(y∗) − 〈x∗, x〉 ≤ ε.

Therefore, x∗ = (x∗ − A∗y∗) + A∗y∗ ∈ ∂ε1f(x) + A∗∂ε2g(Ax), and the
desired inclusion follows.

We illustrate the previous result by means of a simple example.

Example 4.1.21 Let X, Y be two normed spaces, and let A : X → Y
be a continuous linear mapping. Consider the function ϕ(x) := ‖Ax‖ ,
x ∈ X, where ‖·‖ denotes the norm in Y. Then, for all x ∈ X, we have

∂ϕ(x) = A∗∂ ‖Ax‖ . (4.63)

In particular, if Y = R and A(·) := 〈x∗
0, ·〉 for some x∗

0 ∈ X∗, then

∂ϕ(x) =
{

[−1, 1]x∗
0, if 〈x∗

0, x〉 = 0,
sign(〈x∗

0, x〉)x∗
0, otherwise. (4.64)

In fact, (4.63) follows by applying Proposition 4.1.20 to f ≡ 0 and
g := ‖·‖, since g is obviously continuous. In the second case, the adjoint
of A is given by A∗α := αx∗

0, α ∈ R, and (4.63) reduces to ∂ϕ(x) =
A∗∂ |Ax| = (∂ |〈x∗

0, x〉|)x∗
0. Then (4.64) follows because

∂ |·| (β) =
{

[−1, 1], if β = 0,
sign(β), otherwise.

The following proposition is an important consequence of Propo-
sition 4.1.20 on the subdifferentiability of convex functions, which
extends (4.28) from positive to any nonnegative ε. It shows, in partic-
ular, that convex functions inherit a lot from the linear ones, proving
that every continuous convex function is subdifferentiable.
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Proposition 4.1.22 Let f : X → R∞ be a convex function, which is
finite and continuous at x ∈ dom f. Then, for all ε ≥ 0, ∂εf(x) is a
non-empty w∗-compact set satisfying

f ′
ε(x; ·) = σ∂εf(x).

Proof. Fix ε ≥ 0. We apply Proposition 4.1.20(i) to the convex func-
tions f and g := I{x} to conclude the existence of some x∗ ∈ X∗ such
that

−f(x) = (f + I{x})∗(θ) = (f∗�σ{x})(θ) = f∗(x∗) + 〈x,−x∗〉 ;

that is, x∗ ∈ ∂f(x) ⊂ ∂εf(x). Moreover, since the w∗-lsc function h :=
f∗(·) − 〈·, x〉 is w∗-inf-compact by Proposition 3.1.3, the set ∂εf(x) =
[h ≤ ε − f(x)] is w∗-compact. Moreover, if U ⊂ X is an open neigh-
borhood of θ such that, for all u ∈ U,

|f(x + u) − f(x)| ≤ 1, (4.65)

then f ′
ε(x; u) ≤ f(x + u) − f(x) + ε ≤ 1 + ε. Now f ′

ε(x; ·) is sublinear
according to Proposition 4.1.1 and, therefore, Proposition 2.2.6 entails
its continuity on X. Thus, (4.10) leads us to σ∂εf(x) = cl(f ′

ε(x; ·)) =
f ′

ε(x; ·).
Using Proposition 4.1.22, we get the following result which is in line

with (2.43). In what follows Y is another lcs.

Proposition 4.1.23 Let F : X × Y → R be a convex function such
that F (x0, ·) is finite and continuous at θ for some x0 ∈ X. Then we
have

inf
x∈X

F (x, θ) = inf
x∈X

(cl F )(x, θ) (4.66)

and, consequently,

(F (·, θ))∗ = ((cl F )(·, θ))∗. (4.67)

Proof. We have

ϕ(x) := F (x, θ) ≥ (cl F )(x, θ), for all x ∈ X, (4.68)

so the inequality “≥” in (4.66) follows. To prove the opposite inequal-
ity, consider the (convex) marginal function h : Y → R defined by

h(y) := inf
x∈X

F (x, y).
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So, thanks to (2.37), we have

h(θ) ≥ inf
x∈X

(cl ϕ)(x) = inf
x∈X

ϕ(x). (4.69)

In particular, if h(θ) = −∞, then the inequality in (4.69) holds as an
equality, and (4.68) gives

−∞ = h(θ) = inf
x∈X

ϕ(x) ≥ inf
x∈X

(cl F )(x, θ);

that is, (4.66) follows in this case. Thus, in the rest of the proof we
assume that h(θ) > −∞. Moreover, if U ∈ NY is such that

F (x0, y) ≤ F (x0, θ) + 1 for all y ∈ U,

then
h(y) ≤ F (x0, y) ≤ F (x0, θ) + 1 for all y ∈ U, (4.70)

and, in particular, h is uniformly bounded from above on U. Conse-
quently, h is proper; otherwise, there would exist some y0 ∈ U such
that h(y0) = −∞. Then −y0 ∈ U and the convexity of h leads us to
the contradiction

−∞ < h(θ) = h((1/2)y0 − (1/2)y0)
≤ (1/2)h(y0) + (1/2)h(−y0) = −∞.

Now, since h is confirmed to be proper, (4.70) and Proposition 2.2.6
imply that h is continuous at θ. Therefore, according to Proposition
4.1.22, it is subdifferentiable at θ and there exists some subgradient
y∗
0 ∈ ∂h(θ) such that, for all u, y ∈ X,

inf
x∈X

ϕ(x) = h(θ) ≤ h(y) − 〈y∗
0, y〉 ≤ F (u, y) − 〈y∗

0, y〉 .

Next, by taking the closure in both sides, we get infx∈X ϕ(x) ≤
(cl F )(u, y) − 〈y∗

0, y〉 for all u, y ∈ X, and we deduce that

inf
x∈X

ϕ(x) ≤ (cl F )(u, θ), for all u ∈ X.

Hence, by taking the infimum over u ∈ X, we obtain the desired
inequality that yields (4.66).
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To establish (4.67), by (2.37) we obtain that for each x∗ ∈ X∗

(F (·, θ))∗(x∗) = − inf
x∈X

{F (x, θ) − 〈x∗, x〉} = − inf
x∈X

cl(F̃ (·, θ)),

where F̃ : X × Y → R is the convex function defined by F̃ (x, y) :=
F (x, y) − 〈x∗, x〉 . Since F̃ satisfies the same continuity assumptions as
F, (4.66) gives rise to

(F (·, θ))∗(x∗) = − inf
x∈X

(cl F̃ )(·, θ)

= − inf
x∈X

{(cl F )(·, θ) − 〈x∗, x〉} = ((cl F )(·, θ))∗(x∗),

showing that (4.67) also holds.

We now give the counterpart to Corollary 4.1.19 under additional
continuity conditions on the function F. It is worth noting that Propo-
sition 4.1.20 can also be derived from the following result (see Exercise
51).

Proposition 4.1.24 Let F : X × Y → R∞ be a convex function, and
denote ϕ := F (·, θ). Assume that F (x0, ·) is finite and continuous at θ
for some x0 ∈ X. Then the following assertions hold true:

(i)
ϕ∗ = min

y∗∈Y ∗
F ∗(·, y∗). (4.71)

(ii)

epi ϕ∗ = {(x∗, λ) ∈ X∗ × R : ∃ y∗ ∈ Y ∗ such that (x∗, y∗, λ) ∈ epi F ∗}.
(4.72)

(iii) For every x ∈ X and ε ≥ 0,

∂εϕ(x) = {x∗ ∈ X∗ : ∃ y∗ ∈ Y ∗, (x∗, y∗) ∈ ∂εF (x, θ)}. (4.73)

Proof. (i) We start by assuming that F ∈ Γ0(X × Y ), so that ϕ ∈
Γ0(X) and

ϕ∗ = cl
(

inf
y∗∈Y ∗

F ∗(·, y∗)
)

, (4.74)

by Corollary 4.1.19. So, to show (4.71), we just need to prove the
inequality “≥” there for a given x∗ ∈ dom ϕ∗. Then, by (4.74) and
the fact that ϕ∗ ∈ Γ0(X∗) (thanks to Proposition 3.1.4), we take nets
x∗

i → x∗ and (y∗
i )i ∈ Y ∗ such that F ∗(x∗

i , y
∗
i ) ∈ R (for all i) and
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ϕ∗(x∗) = lim
i

F ∗(x∗
i , y

∗
i ) ∈ R. (4.75)

Thus, without loss of generality, for all y ∈ Y we have

〈x∗
i , x0〉 + 〈y∗

i , y〉 − F (x0, y) ≤ F ∗(x∗
i , y

∗
i ) ≤ ϕ∗(x∗) + 1 for all i,

and so, as x∗
i → x∗, there exists some constant m ∈ R such that

(F (x0, ·))∗(y∗
i ) ≤ m for all i (without loss of generality). Consequently,

using Proposition 3.1.3 and the current continuity assumption, we can
assume that y∗

i → y∗ (in the w∗-topology) for some y∗ ∈ Y ∗. Thus,
(4.75) and (4.74) imply that

inf
v∗∈Y ∗

F ∗(x∗, v∗) ≥ ϕ∗(x∗) ≥ F ∗(x∗, y∗),

and (4.71) follows when F ∈ Γ0(X × Y ).
To show (4.71) in the general case, we fix x∗ ∈ dom ϕ∗. Then we

distinguish two situations: First, we assume that clF is proper. Then,
applying the previous paragraph to clF ∈ Γ0(X × Y ), by (3.7) and
the fact that (F (·, θ))∗ = ((cl F )(·, θ))∗, coming from (4.67), we deduce
that

ϕ∗(x∗) = ((cl F )(·, θ))∗(x∗) = min
y∗∈Y ∗

(cl F )∗(x∗, y∗) = min
y∗∈Y ∗

F ∗(x∗, y∗),

and (4.71) follows in the first case. Second, if clF is not proper (so, it
takes the value −∞ somewhere), then F ∗ ≡ +∞ and we obtain

min
y∗∈Y ∗

F ∗(x∗, y∗) = F ∗(x∗, y∗) = +∞ for all y∗ ∈ X∗.

At the same time, the condition F (x0, θ) ∈ R implies that (clF )(x0, θ)
= −∞ and, using again (4.67), we infer that ϕ∗(x∗) = (F (·, θ))∗(x∗) =
((cl F )(·, θ))∗ = +∞. Thus, (4.71) also holds, and the proof of (i) is
finished.

(ii) If (x∗, λ) ∈ epi ϕ∗, then (4.71) yields some y∗ ∈ Y ∗ such that
ϕ∗(x∗) = F ∗(x∗, y∗) ≤ λ, and we deduce that (x∗, y∗, λ) ∈ epi F ∗. Con-
versely, if (x∗, λ) ∈ X∗ × R is such that (x∗, y∗, λ) ∈ epi F ∗ for some
y∗ ∈ Y ∗, then (4.74) gives rise to

ϕ∗(x∗) ≤ inf
v∗∈Y ∗

F ∗(x∗, u∗) ≤ F ∗(x∗, y∗) ≤ λ;

that is, (x∗, λ) ∈ epi ϕ∗ and (4.72) follows.
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(iii) We take x∗ ∈ ∂εϕ(x). So, by (4.71), there exists some y∗ ∈ Y ∗
such that

F (x, θ) + F ∗(x∗, y∗) = ϕ(x) + ϕ∗(x∗)
≤ 〈x∗, x〉 + ε = 〈(x∗, y∗), (x, θ)〉 + ε;

that is, (x∗, y∗) ∈ ∂εF (x, θ) and the non-trivial inclusion “⊂” in (4.73)
follows.

The continuity assumptions in Proposition 4.1.20 are often used in
convex analysis, although they are not always necessary. The following
example demonstrates this fact and, at the same time, illustrates what
can be gained from Proposition 4.1.24 rather than Proposition 4.1.20.

Example 4.1.25 Let F : X × Y → R be a convex function such that
F (x0, ·) is finite and continuous at θ for some x0 ∈ X. Then the func-
tions F and g := IX×{θ} satisfy the conclusion of Proposition 4.1.20;
that is, we have that

(F + g)∗ = F ∗�g∗ (= F ∗�σX×{θ}) (4.76)

(with an exact inf-convolution),

epi(F + g)∗ = epi F ∗ + epi g∗ (= epi F ∗ + {θ} × Y ∗ × R+), (4.77)

and, for each x ∈ X and ε ≥ 0,

∂ε(F + g)(x) =
⋃

ε1+ε2=ε
ε1,ε2≥0

(∂ε1F (x) + ∂ε2g(x)) (= ∂εF (x) + {θ} × Y ∗).

(4.78)
In fact, by Proposition 4.1.24(i), for each (x∗, y∗) ∈ X∗ × Y ∗ we have
that

(F + g)∗(x∗, y∗) = sup
x∈X

{〈x∗, x〉 − F (x, θ)}

= (F (·, θ))∗(x∗) = min
v∗∈Y ∗

F ∗(x∗, v∗)

= min
u∗,v∗∈Y ∗

(
F ∗(u∗, v∗) + σX×{θ}(x∗ − u∗, y∗ − v∗)

)
= (F ∗�g∗)(x∗, y∗),

and (4.76) holds. Finally, relations (4.77) and (4.78) are derived from
(4.76) as in the proof of statements (ii)–(iii) in Proposition 4.1.24.
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The following result gives a finite-dimensional counterpart to Propo-
sition 4.1.20. The unilateral continuity condition used there is now
replaced with a symmetric relation that requires the sets A(dom f) and
dom g to overlap sufficiently. Notice that A(ri(dom f)) = ri(A(dom f)),
due to (2.13).

Proposition 4.1.26 Consider two convex functions f : R
m → R∞,

g : R
n → R∞, and let A : R

m → R
n be a linear mapping. Assume that

A(ri(dom f)) ∩ ri(dom g) �= ∅. Then (4.56), (4.57), and (4.58) hold.

Proof. For the sake of simplicity, we only prove (4.58) when ε = 0,
m = n, and A is the identity mapping; the general case is made by
arguing in a similar way. We may suppose that θ ∈ dom f ∩ dom g,
without loss of generality, and denote E := span(dom g). We consider
the respective restrictions f̃ and g̃ of the functions f + IE and g
to E. Based on the current assumption, we choose x0 ∈ ri(dom f) ∩
ri(dom g), so that x0 ∈ E, f̃(x0) = f(x0) ∈ R, and Corollary 2.2.9
entails that g̃ is (finite and) continuous at x0 ∈ f̃−1(R). Therefore,
by Proposition 4.1.20, we have ∂(f̃ + g̃)(x) = ∂f̃(x) + ∂g̃(x) which in
turn yields (see Exercise 55(ii))

∂(f + g)(x) = ∂(f + g + IE)(x) = ∂(f + IE)(x) + ∂g(x) + E⊥.
(4.79)

Let us also set F := span(dom f) and consider the respective restric-
tions f̂ and ÎE∩F of the functions f and IF∩E to F. Then, by Corollary
2.2.9, f̂ is continuous at x0 ∈ E ∩ F = dom ÎE∩F and, again, Propo-
sition 4.1.20 gives us ∂(f̂ + ÎE∩F )(x) = ∂f̂(x) + ∂ ÎE∩F (x); that is to
say (Exercise 55(ii)),

∂(f + IE)(x) = ∂(f + IE∩F )(x)

= ∂f(x) + ∂IE∩F (x) + F⊥ = ∂f(x) + (E ∩ F )⊥ + F⊥.
(4.80)

Therefore, combining the last relation together with (4.79) and observ-
ing that (E ∩ F )⊥ = cl(E⊥ + F⊥) = E⊥ + F⊥ (Exercise 53), we get

∂(f + g)(x) = ∂f(x) + ∂g(x) + E⊥ + F⊥ = ∂f(x) + ∂g(x),

and (4.58) follows.
The proof of (4.56) follows the same reasoning as the proof of (4.58)

above and is left as exercise (see Exercise 56). Relation (4.57) comes
from (4.56) as in the proof of Proposition 4.1.20.
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Remark 2 The subdifferential rule in Proposition 4.1.26 is also valid
in more general situations. For example, for a function f defined on
(the lcs) X instead of R

m, and a linear mapping A : X → R
n, the

formula ∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax) holds whenever

A(qri(dom f)) ∩ ri(dom g) �= ∅.

Here, the set qri(dom f) represents the quasi-relative interior of dom f ;
that is, the set of points u ∈ dom f such that cl(R+(dom f − u)) is a
linear subspace of X.

We proceed by giving a couple of applications based on Proposition
4.1.20, which are also needed in what follows.

Corollary 4.1.27 (i) Let f, g, h : X → R be convex functions such
that θ ∈ dom f and (dom h) ∩ ri(dom f) �= ∅. If g ≤ f and the restric-
tion of f to E := aff(dom f) is finite and continuous on ri(dom f),
then for all x ∈ dom f ∩ dom g ∩ dom h we have that

∂(g + Idom f + h)(x) = ∂(g + Idom f )(x) + ∂(h + IE)(x).

(ii) If C ⊂ X is a convex set, then, for every x ∈ C and L ∈ F(x) such
that L ∩ ri(C) is non-empty, we have

NL∩C(x) = cl(L⊥ + NC(x)).

Proof. (i) Fix x ∈ dom f ∩ dom g ∩ dom h and denote by f̃ , g̃, and
h̃ the respective restrictions to E of the functions f, g + Idom f , and
h + IE . Since g + Idom f ≤ f , we have g̃ ≤ f̃ and the continuity of f̃
on ri(dom f) implies that g̃ is locally uniformly bounded from above
on ri(dom f). We distinguish two cases: First, if g̃ is finite somewhere
in (dom h) ∩ ri(dom f) (⊂ (dom h̃) ∩ ri(dom f)), then it is proper and
Proposition 2.2.6 implies its continuity on ri(dom f). Thus, applying
Proposition 4.1.20 in the lcs E, we get

∂(g̃ + h̃)(x) = ∂g̃(x) + ∂h̃(x). (4.81)

Second, if g̃ were not finite at every point in (domh) ∩ ri(dom f), then
the condition g ≤ f and the continuity assumption on f imply that g̃
and g̃ + h̃ are identically −∞ in (dom h) ∩ ri(dom f). This entails that
∂(g̃ + h̃) ≡ ∂g̃ ≡ ∅, and (4.81) also holds.

Now, taking into account Exercise 55(ii), (4.81) gives rise to
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∂(g + Idom f + h)(x) = ∂(g + Idom f )(x) + ∂(h + IE)(x) + E⊥

= ∂(g + Idom f )(x) + ∂(h + IE)(x),

and (i) follows.
(ii) The convex functions f ≡ IC , g ≡ 0, and h ≡ IL satisfy the con-

ditions of statement (i) for E := aff(C), so we obtain

∂(IC + IL)(x) = NC(x) + ∂(IL + IE)(x)

= NC(x) + (E ∩ L)⊥ = NC(x) + cl(L⊥ + E⊥),

where the last equality comes from Exercise 53. Therefore,

NL∩C(x) ⊂ NC(x) + cl(L⊥ + NC(x)) = cl(L⊥ + NC(x)),

and we conclude the proof of (ii) since the opposite of the last inclusion
is straightforward.

A second application of Proposition 4.1.20 comes next. Relation
(4.82) is a technical result that will be used in the proof of certain
formulas of the subdifferential of the supremum function in section
5.3.

Proposition 4.1.28 Let B ⊂ X convex, x ∈ B, and let (Ai)i ⊂ X∗
be a non-increasing net of non-empty convex sets; that is, Ai2 ⊂ Ai1

whenever i2 is posterior to i1, such that
(⋃

i
dom σAi

)
∩ int(cone(B − x)) �= ∅.

Then we have

⋂
i

cl (Ai + NB(x)) = NB(x) +
⋂
i

cl Ai. (4.82)

Proof. Only the inclusion “⊂” needs to be proved. Let C denote the
closed convex set on the left-hand side of (4.82), and consider the non-
trivial case C �= ∅. Then, denoting g := infi σAi

and h := σNB(x), we
have

σC ≤ inf
i

σAi+NB(x) =
(
inf
i

σAi

)
+ σNB(x) = g + h, (4.83)

and both functions g and h are sublinear (Exercise 7). Then we
choose any z0 ∈ (∪i dom σAi

) ∩ int(cone(B − x)) (⊂ dom g). So, from
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the inequality

h(y − x) = σNB(x)(y − x) ≤ 0 for all y ∈ B,

Proposition 2.2.6 implies that h is continuous at z0. Therefore, using
Proposition 2.2.11, (4.83) implies that

σC ≤ cl(g + h) = (cl g) + (clh) = (cl(infi σAi
)) + σNB(x)

and both functions σC and (cl(infi σAi
)) + σNB(x) coincide at θ. Conse-

quently, taking into account (2.50) and remembering that h is contin-
uous at z0 ∈ dom g ⊂ dom(cl g), Proposition 4.1.20 and (4.13) produce

∅ �= C = ∂σC(θ) ⊂ ∂((cl g) + h)(θ)
= ∂(cl g)(θ) + ∂h(θ) = ∂(cl(infi σAi

))(θ) + NB(x). (4.84)

In particular, the function cl(infi σAi
) is proper for having a non-

empty subdifferential at θ. Then, thanks to Proposition 3.2.8(ii)
applied to the net (clAi)i, which is also non-increasing, we have that
A := ∩i cl Ai �= ∅ and cl (infi σAi

) = cl (infi σcl Ai
) = σA. Consequently,

again by (4.13), (4.84) leads us to C ⊂ ∂σA(θ) + NB(x) = A + NB(x),
which is the desired inclusion.

In the following proposition we avoid the continuity assumptions
in Proposition 4.1.20, replacing f and g with the respective aug-
mented functions f + Idom g and g + Idom f . More general formulas will
be established in section 7.2. Remember that F(x) is defined in (1.4).

Proposition 4.1.29 Let f, g : X → R∞ be proper convex functions.
Then, for every x ∈ X,

∂(f + g)(x) =
⋂

L∈F(x)

(∂(f + IL∩dom g)(x) + ∂(g + IL∩dom f )(x)) .

(4.85)
Additionally, if ri(dom f ∩ dom g) �= ∅ and the restriction of g to
aff(dom f ∩ dom g) is continuous on ri(dom f ∩ dom g), then

∂(f + g)(x) = ∂(f + Idom g)(x) + ∂(g + Idom f )(x). (4.86)

Proof. If x /∈ dom f ∩ dom g, (4.85) and (4.86) trivially hold. We pro-
ceed by showing (4.86) when x ∈ dom f ∩ dom g and assuming, with-
out loss of generality, that θ ∈ dom f ∩ dom g; so, E := aff(dom f ∩
dom g) is a closed subspace of X. Let us introduce the proper convex
functions f̃ , g̃ : E → R∞ defined by
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f̃ = (f + Idom g)|E , g̃ = (g + Idom f )|E .

Notice that dom f̃ = dom g̃ = dom f ∩ dom g. Then, by Proposition
4.1.20, the additional continuity assumption yields ∂(f̃ + g̃)(x) =
∂f̃(x) + ∂g̃(x). So, we get (see Exercise 55(ii))

∂(f̃ + g̃)(x) = ∂(f + Idom g)(x) + ∂(g + Idom f )(x) + E⊥,

which easily leads us to (4.86).
To show (4.85) we observe that, using (4.16),

∂(f + g)(x) =
⋂

L∈F(x)

∂(f + g + IL)(x)

=
⋂

L∈F(x)

∂((f + IL∩dom g) + (g + IL∩dom f ))(x), (4.87)

where each pair of functions f + IL∩dom g and g + IL∩dom f satisfies the
assumptions of the paragraph above. Thus,

∂((f + IL∩dom g) + (g + IL∩dom f ))(x) = ∂(f + IL∩dom g)(x) + ∂(g + IL∩dom f )(x),

and (4.85) follows from (4.87).

4.2 Convex duality

In the present section, we use the previous dual representations of the
support function of sublevel sets to provide a new and unified approach
to convex duality , covering Lagrange and Fenchel duality. The results
here will be applied later, in section 8.2, to develop a duality theory
for convex infinite optimization. We begin by extending Theorem 3.3.1
by providing dual representations of the function p0 : X∗ → R defined
by

p0(x∗) := − inf
x∈[f≤0]

(f0(x) − 〈x∗, x〉) , (4.88)

by means of the conjugates of f0 and f . Remember that the statement
of Theorem 3.3.1 corresponds to f0 ≡ 0, where (4.88) takes the form

p0(x∗) = − inf
x∈[f≤0]

(− 〈x∗, x〉) = σ[f≤0](x
∗).
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The function p0 : X∗ → R gives a particular example of what we will
later call (linear) perturbation functions of the optimization problem
inf [f≤0] f0.

Theorem 4.2.1 Let functions f0, f ∈ Γ0(X) such that

[f ≤ 0] ∩ dom f0 �= ∅.

Then we have

p0 = cl
(

inf
α>0

(f∗
0 �(αf)∗)

)
(4.89)

and
epi p0 = cl(epi f∗

0 + R+ epi f∗). (4.90)

Proof. Fix x∗ ∈ X∗. Since inf [f≤0] f0 < +∞ and dom f0 ∩ dom I[f≤0] �=
∅ by the current assumption, Proposition 4.1.16 yields

inf
[f≤0]

(f0 − x∗) = inf
X

(f0 + I[f≤0] − x∗)

= −(f0 + I[f≤0])
∗(x∗) = − cl(f∗

0 �σ[f≤0])(x
∗). (4.91)

Thus, since [f ≤ 0] �= ∅, by applying (3.30) to σ[f≤0] we obtain

p0(x∗) = cl(f∗
0 � cl(infα>0(αf)∗))(x∗). (4.92)

Now we proceed by showing that the inner closure in (4.92) can be
dropped out. Indeed, the convex functions f∗

0 � cl(infα>0(αf)∗) and
f∗
0 �(infα>0(αf)∗) have the same (proper) conjugate which is, by The-

orem 3.2.2, given by

f∗∗
0 + sup

α>0
(αf)∗∗ = f0 + sup

α>0
(αf) = f0 + I[f≤0].

So, again by Theorem 3.2.2, we have cl(f∗
0 � cl(infα>0(αf)∗)) =

cl(f∗
0 �(infα>0(αf)∗)), and (4.89) is derived from (4.92).

Now, due to (4.91), we have p0 = cl(f∗
0 �σ[f≤0]) and so, applying

(3.31), we obtain

epi p0 = cl(epi(f∗
0 �σ[f≤0])) = cl(epi f∗

0 + epi σ[f≤0])

= cl(epi f∗
0 + cl (R+ epi f∗)) = cl(epi f∗

0 + R+ epi f∗);

that is, (4.90) also holds.
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The following result simplifies the representation of the value func-
tion p0 given in (4.89) by removing the closure there.

Theorem 4.2.2 Given convex functions f0, f : X → R∞, we assume
that

[f < 0] ∩ dom f0 �= ∅.

Then we have

inf
[f≤0]

f0 = max
α≥0

inf
x∈X

(f0(x) + αf(x)). (4.93)

Moreover, if one of the functions f0 and f is finite and continuous
at some point in the domain of the other (or, more generally, under
any condition ensuring that (f0 + αf)∗ = f∗

0 �(αf)∗ with exact inf-
convolution), then

inf
[f≤0]

f0 = − min
x∗∈X∗, α≥0

(f∗
0 (x∗) + (αf)∗(−x∗)). (4.94)

Proof. First, if inf [f≤0] f0 = −∞, then we get

inf
x∈X

(f0(x) + αf(x)) ≤ inf
[f≤0]

f0(x) = −∞ for all α ≥ 0,

and (4.93) holds trivially. Thus, taking into account the current
assumption, we suppose in the rest of the proof that −∞ < inf [f≤0] f0 <
+∞. Let us express inf [f≤0] f0 as the following optimization problem,
posed in X × R :

inf
[f≤0]

f0 = inf
(x,γ)∈X×R, f(x)≤0

f0(x)−γ≤0,

γ = −σ[h≤0](θ, −1), (4.95)

where h : X × R → R∞ is the convex function defined by

h(x, γ) := max{f(x), f0(x) − γ}. (4.96)

Next, taking any point x0 ∈ [f < 0] ∩ dom f0, we observe that
h(x0, f0(x0) + 1) = max{f(x0), −1} < 0; that is, [h < 0] �= ∅. There-
fore, according to (3.38) in Theorem 3.3.4, relation (4.95) gives rise
to

inf
[f≤0]

f0 = − min
β≥0

(βh)∗(θ, −1) = max
β≥0

(−(βh)∗(θ, −1)). (4.97)
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Furthermore, taking into account Corollary 3.4.9 and (2.45), for each
given β ≥ 0 we have

−(βh)∗(θ, −1) = inf
x∈X,γ∈R

{γ + β max{f(x), f0(x) − γ}}
= inf

(x,γ)∈X×R

max
η∈[0,1]

{γ + β(1 − η)f(x) + βηf0(x) − βηγ}
= max

η∈[0,1]
inf

x∈dom f∩dom f0
inf
γ∈R

ψ(γ), (4.98)

where ψ : R → R is the function (depending on x ∈ dom f ∩ dom f0,
β ≥ 0 and η ∈ [0, 1]) defined as

ψ(γ) := (1 − ηβ)γ + ηβf0(x) + β(1 − η)f(x);

that is, (4.97) reads

inf
[f≤0]

f0 = max
β≥0,η∈[0,1]

inf
x∈dom f∩dom f0

inf
γ∈R

ψ(γ).

Since infγ∈R ψ(γ) is equal to 0 or −∞ (because ψ is affine) and
inf [f≤0] f0 ∈ R, the maximum in the last expression is reached when
ηβ = 1; that is, β ≥ 1 and

inf
[f≤0]

f0 = max
β≥1

inf
x∈dom f∩dom f0

(f0(x) + (β − 1)f(x))

= max
α≥0

inf
x∈X

(f0(x) + αf(x)),

showing that (4.93) holds.
Finally, taking into account (4.93) together with Proposition 4.1.20

and the fact that the functions f0 and αf satisfy the same continuity
assumptions as those imposed on the functions f0 and f, (4.94) follows
as

inf
[f≤0]

f0 = max
α≥0

inf
x∈X

(f0(x) + αf(x)) = − min
α≥0

(f0 + αf)∗(θ)

= − min
α≥0, x∗∈X∗

(f∗
0 (x∗) + (αf)∗(−x∗)).

Theorems 4.2.1 and 4.2.2 can be written in a more general form. In
fact, defining the function F : X × R →R∞ as

F (x, y) := f0(x) + I[f≤y](x),
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we get
inf

[f≤0]
f0 = inf

x∈X
F (x, θ),

and the conclusion in Theorems 4.2.1 and 4.2.2 can be read as a relation
involving F and its conjugate. With the choice of F above, the con-
dition [f ≤ 0] ∩ dom f0 �= ∅ is equivalent to infx F (x, θ) < +∞, while
the existence of a point x0 ∈ [f < 0] ∩ dom f0 is nothing other than
the continuity of F (x0, ·) at θ (in fact, we have that F (x0, ·) = f0(x0)
in a neighborhood of θ).

More generally, we can be interested in finding a dual representation
of the quantity infx∈X F (x, θ) in terms of the conjugate of F, for any
convex function F : X × Y → R∞. We have the following result whose
proof is based on Theorems 4.2.1 and 4.2.2.

Theorem 4.2.3 Given another lcs Y, we consider a convex function
F : X × Y → R∞ such that infx∈X F (x, θ) < +∞. Then we have

inf
x∈X

F (x, θ) = − cl
(

inf
y∗∈Y ∗

F ∗(·, y∗)
)

(θ). (4.99)

In addition, if there exists some x0 ∈ X such that F (x0, ·) is finite and
continuous at θ, then

inf
x∈X

F (x, θ) = − min
y∗∈Y ∗

F ∗(θ, y∗). (4.100)

Proof. We consider the convex functions f0, f : X × Y → R∞ defined
by

f0 := F, f := IX×{θ} − 1,

so that

[f ≤ 0] ∩ dom f0 = {(x, θ) ∈ X × Y : F (x, θ) < +∞} �= ∅,

and (αf)∗ = σX×{θ} + α = I{θ}×Y ∗ + α for all α > 0. Therefore, apply-
ing Theorem 4.2.1 in X × Y , we obtain
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inf
x∈X

F (x, θ) = inf
f(x,y)≤0

f0(x, y) = − cl
(

inf
α>0

(f∗
0 �(αf)∗)

)
(θ)

= − cl
(

inf
α>0

(f∗
0 �(I{θ}×Y ∗ + α))

)
(θ)

= − cl
(
f∗
0 �I{θ}×Y ∗

)
(θ) = − cl

(
inf

y∗∈Y ∗
F ∗(·, y∗)

)
(θ),

and (4.99) follows.
To establish the second assertion, we observe that

[f < 0] ∩ dom f0 = [f ≤ 0] ∩ dom f0 = {(x, θ) ∈ X × Y : F (x, θ) < +∞} �= ∅.

So, by (4.93),

inf
x∈X

F (x, θ) = inf
[f≤0]

f0 = max
α≥0

inf
x∈X, y∈Y

(f0(x, y) + αf(x, y))

= max
α≥0

inf
x∈X, y∈Y

(F (x, y) + IX×{θ}(x, y) − α)

= inf
x∈X, y∈Y

(F (x, y) + IX×{θ}(x, y)) = −(F + IX×{θ})∗(θ).

Moreover, using Example 4.1.25, we have that

(F + IX×{θ})∗(θ) = min
y∗∈Y ∗

(
F ∗(θ, y∗) + I{θ}×Y ∗(θ,−y∗)

)
= min

y∗∈Y ∗
F ∗(θ, y∗),

and the desired relation follows.
Anticipating the analysis of duality that we will develop in section

8.2 for infinite optimization, here we rewrite the previous results using
the language of the classical duality theory. To do this, given convex
functions fi : X → R∞, i = 0, . . . , m, m ≥ 1, we consider the convex
optimization problem

(P) inf
fi(x)≤0, i=1,...,m

f0(x),

together with its Lagrangian dual problem

(D) sup
λ∈R

m
+

inf
x∈X

L(x, λ)

given through the so-called Lagrangian function L : X × R
m → R∞ :

L(x, λ) := f0(x) + λ1f1(x) + . . . + λmfm(x), λ := (λ1, . . . , λm) ∈ R
m.
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The following result establishes the (Lagrangian) strong duality
between (P) and (D), asserting that problem (D) has optimal solutions
and that the optimal values of (P) and (D) coincide. This is possible
thanks to the Slater condition, which requires the existence of some
x0 ∈ dom f0 such that

max
1≤i≤m

fi(x0) < 0. (4.101)

Corollary 4.2.4 Given convex functions fi : X → R∞, i = 1, . . . , m,
m ≥ 1, we assume the Slater condition. Then the strong duality between
(P) and (D) holds; that is,

inf
fi(x)≤0, i=1,...,m

f0(x) = max
λ∈R

m
+

inf
x∈X

L(x, λ).

Proof. Applying Theorem 4.2.2 with f := max1≤i≤m fi, we obtain

inf
[f≤0]

f0 = max
α≥0

inf
x∈X

(f0(x) + αf(x)).

Thus, by (2.45),

inf
[f≤0]

f0 = max
α≥0

inf
x∈X

sup
λ∈Δm

(f0(x) + αλ1f1(x) + . . . + αλmfm(x)),

and Corollary 3.4.9 gives rise to

inf
[f≤0]

f0 = max
α≥0

max
λ∈Δm

inf
x∈X

(f0(x) + αλ1f1(x) + . . . + αλmfm(x))

= max
λ∈R

m
+

inf
x∈X

L(x, λ).

The above duality result can also be included within the more gen-
eral framework of Fenchel duality. Given another lcs Y and a convex
function F : X × Y → R∞, we introduce the family of problems

(Py) inf
x∈X

F (x, y), y ∈ Y,

and
(Dx∗) inf

y∗∈Y ∗
F ∗(x∗, y∗), x∗ ∈ X∗,
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respectively called perturbed primal problem and perturbed dual prob-
lem. Problem (Pθ) is referred to as primal problem, and (Dθ) as dual
problem (of (Pθ)). Let us represent by vP : Y → R and vD : X∗ → R the
perturbed optimal value functions of (Py) and (Dx∗), respectively; that
is,

vP(y) := inf
x∈X

F (x, y) and vD(x∗) := inf
y∗∈Y ∗

F ∗(x∗, y∗).

Then vP and vD are convex since they are marginal functions of the
convex functions F and F ∗, respectively, and vP(θ) and vD(θ) coincide
with the optimal values of (Pθ) and (Dθ):

vP(θ) ≡ v(Pθ) := inf
x∈X

F (x, θ) and vD(θ) ≡ v(Dθ) := inf
y∗∈Y ∗

F ∗(θ, y∗).

It is worth noting that when F ∈ Γ0(X × Y ), problem (Pθ) can also be
seen as a dual problem of (Dθ), considering that we are dealing with
the compatible dual pairs (X, X∗) and (Y, Y ∗), so that X∗∗ ≡ X and
Y ∗∗ ≡ Y . In fact, representing (Dθ) as

inf
y∗∈Y ∗

F ∗(θ, y∗) = inf
y∗∈Y ∗

G(y∗, θ),

where G ∈ Γ0(Y ∗ × X∗) is defined by G(y∗, x∗) := F ∗(x∗, y∗), the dual
of (Dθ) is given by infx∈X G∗(θ, x). Therefore, applying Theorem 3.2.2,
we have

G∗(θ, x) := sup
x∗∈X∗, y∗∈Y ∗

{〈x∗, x〉 − G(y∗, x∗)}

= sup
x∗∈X∗, y∗∈Y ∗

{〈x∗, x〉 − F ∗(x∗, y∗)} = F ∗∗(x, θ) = F (x, θ),

and infx∈X G∗(θ, x) = infx∈X F (x, θ). In other words, the dual of (Dθ)
is nothing more than the primal problem (Pθ).

The main conclusion of Theorem 4.2.3 implies that

vP(θ) = inf
x∈X

F (x, θ) = − cl
(

inf
y∗∈Y ∗

F ∗(·, y∗)
)

(θ)

= −(cl vD)(θ) ≥ −vD(θ),

and, consequently, we have the weak duality between (Pθ) and (Dθ) :

v(Pθ) + v(Dθ) ≥ 0.
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Moreover, when F (x0, ·) is finite and continuous at θ for some x0 ∈ X,
the second conclusion of Theorem 4.2.3 implies that

vP(θ) = inf
x∈X

F (x, θ) = − min
y∗∈Y ∗

F ∗(·, y∗)(θ) = −vD(θ),

giving rise to the strong duality between (Pθ) and (Dθ) : the dual prob-
lem (Dθ) has optimal solutions and there is a zero duality gap; that is,
v(Pθ) + v(Dθ) = 0. The following corollary summarizes these facts.

Corollary 4.2.5 Let F : X × Y → R∞ be a convex function such that
infx∈X F (x, θ) < +∞. Then the weak duality holds between (Pθ) and
(Dθ). Furthermore, if F (x0, ·) is finite and continuous at θ for some
x0 ∈ X, then the strong duality is also fulfilled.

It is worth observing that Corollary 4.2.5 can also be used to estab-
lish the (Lagrangian) strong duality given in Corollary 4.2.4 (see Exer-
cise 48). We also give the following example, which is a useful illustra-
tion of Corollary 4.2.5.

Example 4.2.6 Given two convex functions f, g : X → R∞ such that
dom f ∩ dom g �= ∅, we consider the convex function F : X × X → R∞
defined as

F (x, z) := f(x) + g(x + z).

So, direct calculations give rise to

F ∗(x∗, z∗) = f∗(x∗ − z∗) + g∗(z∗),

and problems (Pz) and (Dx∗) are written in the form

(Pz) inf
x∈X

(f(x) + g(x + z)) , z ∈ X,

(Dx∗) inf
z∗∈X∗

(f∗(x∗ − z∗) + g∗(z∗)) , x∗ ∈ X∗.

If g is finite and continuous at some point x0 ∈ dom f, then F (x0, ·)
is finite and continuous at θ. Therefore, Corollary 4.2.5 implies the
strong duality between (Pθ) and (Dθ); that is, we have

inf
x∈X

(f(x) + g(x)) = − min
z∗∈X∗

(f∗(z∗) + g∗(−z∗)) ,

which is nothing other than the conclusion of Proposition 4.1.20(i).
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Since the supremum function will be our main concern in the next
two chapters, we take advantage here of the duality theory presented
above to provide a dual representation for optimization problems writ-
ten in the form infX(max{f, g}).

Example 4.2.7 Given two convex functions f, g : X → R∞ such that
dom f ∩ dom g �= ∅, we assume that g is finite and continuous at some
point x0 ∈ dom f. We introduce the convex function F : X × X → R∞
defined as

F (x, z) := max{f(x), g(x + z)},

which is also written, using (2.45), as

F (x, z) = max
λ∈[0,1]

Fλ(x, z),

where Fλ : X × X → R∞ is the convex function defined as Fλ(x, z) :=
λf(x) + (1 − λ)g(x + z). Observe that each function Fλ(x0, ·) is finite
and continuous at θ. Then, using Corollary 3.4.9, we have

inf
x∈X

F (x, θ) = inf
x∈X

max
λ∈[0,1]

Fλ(x, θ) = max
λ∈[0,1]

inf
x∈X

Fλ(x, θ),

where, thanks to Corollary 4.2.5,

inf
x∈X

Fλ(x, θ) = − min
z∗∈X∗

F ∗
λ (θ, z∗) for all λ ∈ [0, 1].

Consequently,

inf
x∈X

(max{f(x), g(x)}) = inf
x∈X

F (x, θ) = max
λ∈[0,1]

(
− min

z∗∈X∗
F ∗

λ (θ, z∗)
)

and, since F ∗
λ (θ, z∗) = (λf)∗(−z∗) + ((1 − λ)g)∗(z∗), we conclude that

inf
x∈X

(max{f(x), g(x)}) = − min
z∗∈X∗, λ∈[0,1]

((λf)∗(z∗) + ((1 − λ)g)∗(−z∗)) .

We close this section by introducing another type of duality, called
Singer–Toland duality , which is also a consequence of Theorem 3.2.2.
Note that when g ≡ 0, (4.102) reduces to the simple relation infX f =
−f∗(θ).
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Proposition 4.2.8 Consider two functions f, g : X → R∞ such that
f∗ ∈ Γ0(X∗) and g ∈ Γ0(X). Then we have

inf
x∈X

(f(x) − g(x)) = inf
x∗∈X∗

(g∗(x∗) − f∗(x∗)). (4.102)

Proof. We have, for all x∗ ∈ X∗,

inf
x∈X

(f(x) − g(x)) = inf
x∈X

(f(x) − 〈x∗, x〉 + 〈x∗, x〉 − g(x))

≤ inf
x∈X

(f(x) − 〈x∗, x〉) + g∗(x∗) = −f∗(x∗) + g∗(x∗),

and, taking into account our conventions, we conclude that

inf
x∈X

(f(x) − g(x)) ≤ inf
x∗∈X∗

(g∗(x∗) − f∗(x∗)).

Moreover, since g∗ ∈ Γ0(X) by Proposition 3.1.4, arguments similar to
the above ones show that

inf
x∗∈X∗

(g∗(x∗) − f∗(x∗)) ≤ inf
x∈X

(f∗∗(x) − g∗∗(x)) ≤ inf
x∈X

(f(x) − g∗∗(x)),

and the desired equality follows as g∗∗ = g, due to Theorem 3.2.2.
Proposition 4.2.8 allows us to express the conjugate of the difference

f − g in terms of the conjugates of f and g.

Corollary 4.2.9 Consider two functions f, g : X → R∞ such that
f∗ ∈ Γ0(X∗) and g ∈ Γ0(X). Then we have that

(f − g)∗ = f∗�g∗ := sup
z∗∈X∗

(f∗(z∗ + ·) − g∗(z∗)).

Proof. Given x∗ ∈ X∗, we have

(f − g)∗(x∗) = − inf
x∈X

(f(x) − 〈x∗, x〉 − g(x)),

and Proposition 4.2.8 applied to the pair (f − x∗, g) yields

(f − g)∗(x∗) = − inf
z∗∈X∗

(g∗(z∗) − f∗(z∗ + x∗)) = (f∗�g∗)(x∗).

The following result establishes (global) necessary optimality con-
ditions for unconstrained dc (difference of convex) optimization. This
extends the classical optimality conditions for convex functions (see
(4.8)).
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Proposition 4.2.10 Given f, g ∈ Γ0(X), we assume that x is an ε-
minimum of the dc optimization problem infX(f − g). Then

∂δg(x) ⊂ ∂δ+εf(x) for all δ ≥ 0.

Proof. Take δ ≥ 0 and x∗ ∈ ∂δg(x). Observe that f∗ ∈ Γ0(X∗), due to
Proposition 3.1.4. Then, according to Proposition 4.2.8, for all x∗ ∈ X∗
we have

f(x) − g(x) ≤ inf
X

(f − g) + ε

= inf
X∗

(g∗ − f∗) + ε ≤ g∗(x∗) − f∗(x∗) + ε.

Thus,

f(x) + f∗(x∗) ≤ g(x) + g∗(x∗) + ε ≤ 〈x, x∗〉 + δ + ε,

and we deduce that x∗ ∈ ∂δ+εf(x).

4.3 Convexity in Banach spaces

In this section we adapt some results from previous sections for the
setting of Banach spaces. We consider a Banach space X and denote by
X∗ and X∗∗ the associated dual and bidual spaces, respectively. All the
given norms are denoted by ‖·‖ (when no confusion is possible), while
BX(x, r) is the closed ball centered at x ∈ X with radius r > 0. The
unit ball is BX := BX(θ, 1). The balls BX∗(x∗, r) and BX∗∗(z, r), when
x∗ ∈ X∗ and z ∈ X∗∗, as well as the closed unit balls BX∗ and BX∗∗ are
defined similarly. We identify X as a linear subspace of X∗∗ by means
of the injection x ≡ x̂ := 〈·, x〉 : X∗ → R (see (2.26)). Along with the
norm topology on X∗∗, we will also consider the w∗-topology w∗∗ ≡
σ(X∗∗, X∗) together with the associated convergence →w∗∗

. Remember
that →w and →w∗

represent the convergence with respect to the weak
topologies w ≡ σ(X, X∗) and w∗ ≡ σ(X∗, X), respectively, and that
→ denotes the norm-convergence in X, X∗, and X∗∗.

The main issue in the current Banach setting is that sometimes one
is led to use the norm-topology on X∗, even though it is not compatible
with the dual pair (X, X∗) outside reflexive spaces. For instance, given
a function f : X → R, nothing prevents defining the conjugate (f∗)∗
of f∗ as a function defined on X∗∗ by
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(f∗)∗(z) = sup{〈z, x∗〉 − f∗(x∗) : x∗ ∈ X∗}, z ∈ X∗∗.

It follows easily from this definition that the restriction of (f∗)∗ to X
coincides with the biconjugate of f, f∗∗, introduced above and, there-
fore, Theorem 3.2.2 implies that the restriction to X of (f∗)∗ coincides
with the closed convex hull cof under simple conditions satisfied by f.
However, a relation of the form (f∗)∗ = cof on the whole space X∗∗ is
obviously out of the scope of this book. Another difficulty that arises
in the Banach setting comes from the fact that the subdifferential of
f∗ is a subset of X∗∗ and, thus, ∂f∗(x∗) might contain elements in
X∗∗ \ X. The following example illustrates the last observation.

Example 4.3.1 Take

X = c0 := {(xn)n≥1 : xn ∈ R, xn → 0},

endowed with the �∞-norm, so that X∗ = �1 and X∗∗ = �∞. We con-
sider the function f := IBX

, so that f∗ ≡ ‖·‖�1
and f∗ is continuous.

Moreover, for every x∗ ∈ �1 such that x∗
n > 0 for all n ≥ 1, it is known

that f∗ is Gâteaux-differentiable at x∗ (see Exercise 58), so that

∂f∗(x∗) = {(f∗)′
G(x∗)} = {(1, 1, . . .)} ⊂ �∞ \ c0.

One of the possibilities to overcome the aforementioned difficulty is
to use the compatible dual pair ((X∗, ‖·‖∗), (X

∗∗, w∗∗)). To do this, we
begin by introducing extensions to the bidual space X∗∗ of functions
defined on X. Associated with a function f : X → R∞, we consider its
extension f̂ : X∗∗ → R∞ to X∗∗ given by

f̂(z) :=
{

f(x), if z = x̂, x ∈ X,
+∞, if not, (4.103)

where x ∈ X �→ x̂ := 〈·, x〉 ∈ X∗∗ is the usual injection mapping. Note
that the closure of f̂ with respect to the w∗∗-topology, denoted by
clw

∗∗
f̂ : X∗∗ → R, is given by

(clw
∗∗

f̂)(z) := lim inf
y→w∗∗z, y∈X∗∗

f̂(y) = lim inf
x→w∗∗z, x∈X

f(x),

so that, for all x ∈ X,

(clw
∗∗

f̂)|X(x) = (clw f) (x) := lim inf
y→wx, y∈X

f(y), (4.104)
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where clw f denotes the closure of f with respect to the weak topology
w = σ(X, X∗). Thus, in the particular case where X is reflexive, we
have that f̂ ≡ f and, thus, clw

∗∗
f̂ = clw f. Also, taking into account

(3.7), we easily check that

f∗ = (f̂)∗ = (clw
∗∗

f̂)∗ and ∂εf̂(x) = ∂εf(x) for every x ∈ X and ε ≥ 0.

The following lemma, which is used in the proof of Theorem 4.3.3
below, establishes another relation between ∂(clw

∗∗
f̂) and ∂(clw f).

Lemma 4.3.2 For every function f : X → R∞, we have

X ∩ (∂(clw
∗∗

f̂))−1 = (∂(clw f))−1.

Proof. Consider the compatible dual pair ((X∗∗, w∗∗), (X∗, ‖·‖)). We
have that x ∈ X ∩ (∂(clw

∗∗
f̂))−1(x∗) if and only if x ∈ X and, by

Proposition 4.1.6(v),

(clw
∗∗

f̂)(x) + (clw
∗∗

f̂)∗(x∗) = 〈x∗, x〉 .

Then, given that (clw
∗∗

f̂)(x) = (clw f)(x) because x ∈ X, and (clw
∗∗

f̂)∗

= (f̂)∗ = f∗ = (clw f)∗, due to (3.7), the above relation reads (clw f)(x)
+ (clw f)∗(x∗) = 〈x∗, x〉 ; equivalently, x ∈ ∂(clw f))−1(x∗). Therefore,
x ∈ X ∩ (∂(clw

∗∗
f̂))−1(x∗) if and only if x ∈ (∂(clw f))−1(x∗).

The following result specifies Theorem 3.2.2 to the current Banach
spaces framework, where the dual space X∗ is endowed with its dual
norm topology. When applied to the indicator function of the unit
closed ball in X, BX , this result gives rise to the Goldstein theorem
(Exercise 65).

Theorem 4.3.3 Let f : X → R∞ be a function having a continuous
affine minorant. Then

(f∗)∗ = cow∗∗
(f̂) (4.105)

and, in particular,
((f∗)∗)|X ≡ cof. (4.106)

Proof. The function f̂ satisfies (f̂)∗ = f∗. Then, considering that
((X∗∗, w∗∗), (X∗, ‖·‖)) is a compatible dual pair, it follows that the
conjugate of (f̂)∗ is nothing other than the biconjugate of f̂ ; that is,
(f∗)∗ = ((f̂)∗)∗ = (f̂)∗∗. Also, using the current assumption, if x∗

0 ∈ X∗
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and α ∈ R are such that f(·) ≥ l(·) := 〈x∗
0, ·〉 + α, then any affine con-

tinuous extension l̂ of the mapping l to X∗∗ satisfies f̂(·) ≥ l̂(·). There-
fore, applying Theorem 3.2.2 in the pair ((X∗∗, w∗∗), (X∗, ‖·‖)), we
conclude that

(f∗)∗ = (f̂)∗∗ = cow∗∗
(f̂),

which entails the first assertion of the proposition. Finally, for each
x ∈ X, (4.105) gives rise to

((f∗)∗)|X(x) =
(
cow∗∗

(f̂)
)

(x) =
(
clw

∗∗
(ĉo f)
)

(x),

where ĉo f is the extension of the function co f to X∗∗, as defined in
(4.103). Thus, as we can easily verify that ĉo f = co f̂ , the last equality
above yields ((f∗)∗)|X(x) =

(
cl(co f̂)

)
(x) = (cof)(x).

Although ∂f∗(x∗) may not have points in X (as in Exercise 58), the
following corollary shows that the approximate subdifferential ∂εf

∗(x∗)
with ε > 0 can be built on its elements in X. Remember that the
Mackey topology on X∗ is denoted by τ .

Corollary 4.3.4 Given a function f ∈ Γ0(X), for every x∗ ∈ X∗ and
ε > 0, we have

∂εf
∗(x∗) = clw

∗∗
(∂εf

∗(x∗) ∩ X) = clw
∗∗

((∂εf)−1(x∗)), (4.107)

and, consequently,

∂f∗(x∗) =
⋂

ε>0
clw

∗∗
(∂εf

∗(x∗) ∩ X) =
⋂

ε>0
clw

∗∗
((∂εf)−1(x∗)).

In particular, if f∗ is τ -continuous at x∗ ∈ X∗, then for every ε ≥ 0

∂εf
∗(x∗) = (∂εf)−1(x∗). (4.108)

Proof. Fix x∗ ∈ X∗. Taking into account that (f∗)∗
|X ≡ f by Theorem

4.3.3, for all ε ≥ 0 we have that

∂εf
∗(x∗) ∩ X = {z ∈ X : f∗(x∗) + (f∗)∗(z) ≤ 〈z, x∗〉 + ε}

= {x ∈ X : f∗(x∗) + f(x) ≤ 〈x∗, x〉 + ε} = (∂εf)−1(x∗).
(4.109)

Furthermore, by applying Proposition 4.1.12 in the pair ((X∗, ‖·‖),
(X∗∗, w∗∗)), when ε > 0 we get
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(f∗)′
ε(x

∗; z∗) = σ∂εf∗(x∗)(z
∗) for all z∗ ∈ X∗.

The same proposition applied in the pair ((X∗, w∗), (X, ‖·‖)) gives rise
to

(f∗)′
ε(x

∗; z∗) = σ∂εf∗(x∗)∩X(z∗) for all z∗ ∈ X∗.

Consequently, combining with (4.109),

σ∂εf∗(x∗)(z
∗) = σ∂εf∗(x∗)∩X(z∗) = σ(∂εf)−1(x∗)(z

∗) for all z∗ ∈ X∗,

and Corollary 3.2.9 implies the first statement of the corollary. The
second statement is an immediate consequence of the first.

To show the last statement, we assume that f∗ is τ -continuous at x∗.
Then f∗ is also norm-continuous at x∗ and by applying Proposition
4.1.22, first in the pair ((X∗, ‖·‖), (X∗∗, w∗∗)) and next in the pair
((X∗, τ), (X, ‖·‖)), we deduce that

σ∂εf∗(x∗)(z
∗) = (f∗)′

ε(x
∗; z∗)

= σ∂εf∗(x∗)∩X(z∗) for all z∗ ∈ X∗ and ε ≥ 0.

This shows that ∂εf
∗(x∗) = clw

∗∗
(∂εf

∗(x∗) ∩ X), due to Corollary
3.2.9. Moreover, since f∗ is τ -continuous at x∗, by applying Proposition
4.1.22 to the pair ((X∗, τ), (X, w)) it follows that the set ∂εf

∗(x∗) ∩ X
is w-compact and, thus, w∗∗-compact. So, ∂εf

∗(x∗) = ∂εf
∗(x∗) ∩ X =

(∂εf)−1(x∗), due to (4.109).
Remember that (4.108) above holds for every function f ∈ Γ0(X)

when X∗ is endowed with the w∗-topology (see (4.18)). As an illustra-
tion, we apply it in the following example to the indicator function of
the closed unit ball in X, BX .

Example 4.3.5 Consider the convex function f = IBX
, so that

f∗ = σBX
= σBX∗∗ = ‖·‖∗ (the norm in X∗),

due to the Goldstein theorem. Therefore, f∗ is obviously (norm-) con-
tinuous in X∗ and we have, applying (4.14) in the compatible dual pair
((X∗, ‖·‖∗), (X

∗∗, w∗∗)),

∂f∗(θ) = BX∗∗ .

At the same time, applying (4.13) in the compatible dual pair ((X∗, w∗),
(X, ‖·‖)), we get ∂f∗(θ) ∩ X = BX and, again, the Goldstein theorem
yields
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∂f∗(θ) = BX∗∗ = clw
∗∗

(BX) = clw
∗∗

(∂f∗(θ) ∩ X).

This formula can also be obtained from (4.107), since ∂εf
∗(θ) = ∂f∗(θ)

by the positive homogeneity of the norm.
Next, we discuss the continuity assumption imposed on f∗ in Corol-

lary 4.3.4: If f∗ = ‖·‖∗ is τ -continuous somewhere, then Corollary
2.2.7 would imply that f∗ is also τ -continuous at θ. Consequently,
(4.108) would lead us to

BX∗∗ = ∂f∗(θ) = ∂f∗(θ) ∩ X = BX ,

and X would be a reflexive Banach space. But if, instead of the τ -
continuity, we assume the (more restrictive) w∗-continuity of f∗ at θ
(equivalently, somewhere in X∗), then, due to the continuity of f =
IBX

at θ, Proposition 3.3.7 would imply that X is a finite-dimensional
space.

The following result is the well-known Ekeland variational principle,
which is stated in the broader framework of complete metric spaces.

Theorem 4.3.6 Let (X, d) be a complete metric space, and let f :
X → R∞ be an lsc function, which is bounded below. Let x0 ∈ X and
ε > 0 such that

f(x0) ≤ infX f + ε.

Then, for every λ > 0, there exists xλ ∈ X such that

d(xλ, x0) ≤ λ, |f(xλ) − f(x0)| ≤ ε,

and
f(xλ) < f(x) + ελ−1d(xλ, x) for all x �= xλ.

Proposition 4.3.7 shows that the ε-subdifferential of convex func-
tions defined on Banach spaces is approximated by exact subdifferen-
tials at nearby points.

Proposition 4.3.7 Given f ∈ Γ0(X) and x ∈ dom f, for every ε >
0 and x∗ ∈ ∂εf(x) there exist xε ∈ BX(x,

√
ε), y∗

ε ∈ BX∗ , and λε ∈
[−1, 1] such that

x∗
ε := x∗ +

√
ε(y∗

ε + λεx
∗) ∈ ∂f(xε),

and



148 CHAPTER 4. FUNDAMENTAL TOPICS IN . . .

|〈x∗
ε , xε − x〉| ≤ ε +

√
ε, |f(xε) − f(x)| ≤ ε +

√
ε.

Proof. Fix x ∈ dom f, ε > 0, and x∗ ∈ ∂εf(x). We consider the func-
tion g := f(·) − 〈x∗, ·〉 ∈ Γ0(X), so that

g(x) ≤ infX g + ε;

that is, g is bounded below by g(x) − ε ∈ R. Then, applying Theorem
4.3.6 with λ =

√
ε in the Banach space (X, ‖·‖0), where ‖·‖0 := ‖·‖ +

|〈x∗, ·〉| , we find xε ∈ X such that |g(xε) − g(x)| ≤ ε,

‖xε − x‖0 = ‖xε − x‖ + |〈x∗, xε − x〉| ≤ √
ε (4.110)

and

g(xε) < g(z) +
√

ε ‖z − xε‖ +
√

ε |〈x∗, z − xε〉| for all z �= xε.

Hence, since ∂(‖· − xε‖)(xε) = ∂ ‖·‖ (θ) = BX∗ by (4.14), and (see
Example 4.1.21)

∂ |〈x∗, · − xε〉| (xε) = ∂ |〈x∗, ·〉| (θ) = [−1, 1]x∗,

by Proposition 4.1.20 we find some y∗
ε ∈ BX∗ and λε ∈ [−1, 1] such

that

θ ∈ ∂(g +
√

ε ‖· − xε‖ +
√

ε |〈x∗, · − xε〉|)(xε)

= ∂g(xε) − √
εy∗

ε − √
ελεx

∗ = ∂f(xε) − x∗ − √
εy∗

ε − √
ελεx

∗;

that is, x∗
ε := x∗ +

√
ε(y∗

ε + λεx
∗) ∈ ∂f(xε). Moreover, using (4.110),

|〈x∗
ε − x∗, xε − x〉| =

√
ε |〈y∗

ε + λεx
∗, xε − x〉|

≤ √
ε(‖y∗

ε ‖ ‖xε − x‖ + |λε| |〈x∗, xε − x〉|)
≤ √

ε ‖xε − x‖0 ≤ ε.

Thus, again by (4.110), we have |〈x∗
ε , xε − x〉| ≤ |〈x∗

ε − x∗, xε − x〉| +√
ε ≤ ε +

√
ε, and the inequality |g(xε) − g(x)| ≤ ε entails

|f(xε) − f(x)| ≤ ε + |〈x∗, x − xε〉| ≤ ε +
√

ε.

The following result gives another variant of Proposition 4.3.7.
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Proposition 4.3.8 Given f ∈ Γ0(X) and x ∈ dom f, for every ε > 0
and x∗ ∈ ∂εf(x) there exist xε ∈ BX(x,

√
ε) and x∗

ε ∈ ∂f(xε) such that
‖x∗

ε − x∗‖ ≤ √
ε and |f(xε) − f(x) + 〈x∗, x − xε〉| ≤ 2ε.

Proof. The proof is similar to that of Proposition 4.3.7, but applying
Theorem 4.3.6 in the Banach space X (endowed with the original norm
instead of ‖·‖0).

The following result is a notable consequence of Proposition 4.3.7
which, in particular, shows that a function from Γ0(X) is subdifferen-
tiable in a dense set of its effective domain. A non-convex version of
this result is provided in Corollary 8.3.10.

Corollary 4.3.9 The following assertions hold for every function
f ∈ Γ0(X) :

(i) For every x ∈ dom f, there exists a sequence (xn)n ⊂ X norm-
convergent to x such that f(xn) → f(x) and ∂f(xn) �= ∅ for all n ≥ 1;
that is, in particular, cl(dom f) = cl(dom ∂f).

(ii) For every x∗ ∈ dom f∗, there exists a sequence (x∗
n)n ⊂ X∗

norm-convergent to x∗ such that f∗(x∗
n) → f∗(x∗) and x∗

n ∈ Im ∂f for
all n ≥ 1; that is, in particular, cl‖·‖∗(dom f∗) = cl‖·‖∗(Im ∂f).

Proof. (i) Take x ∈ dom f and ε > 0, so that ∂εf(x) �= ∅ by Propo-
sition 4.1.10. Next, given x∗ ∈ ∂εf(x), Proposition 4.3.7 yields some
xε ∈ BX(x,

√
ε) and x∗

ε ∈ ∂f(xε) such that |f(xε) − f(x)| ≤ ε +
√

ε.
This proves assertion (i) as well as the relation cl(dom f) = cl(dom ∂f).

(ii) The proof of this part also uses Proposition 4.3.7 (see the bib-
liographical notes of this chapter).

We close this section by giving, without proof, a well-known primal
characterization of the differentiability of conjugate functions in the
setting of Banach spaces. A non-convex counterpart to the following
result is given in section 8.3.

Proposition 4.3.10 The following assertions are equivalent for every
function f ∈ Γ0(X) :

(i) The function f∗ is Fréchet-differentiable at x∗, with Fréchet-
derivative (f∗)′(x∗).

(ii) For every sequence (xn)n ⊂ X such that 〈xn, x∗〉 − f(xn) →
f∗(x∗), we have that (xn)n norm-converges to (f∗)′(x∗), and so
(f∗)′(x∗) ∈ X.

Proposition 4.3.10 applies to the support function and gives rise to
the following result.
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Corollary 4.3.11 The following assertions are equivalent for every
non-empty closed convex set C ⊂ X :

(i) The support function σC : X∗ → R∞ is Fréchet-differentiable at
x∗ ∈ X∗ and (σC)′(x∗) ∈ X.

(ii) For every sequence (xn)n ⊂ X such that 〈xn, x∗〉 − IC(xn) →
σC(x∗) ∈ R (equivalently, 〈xn, x∗〉 → σC(x∗) with (xn)n ⊂ C), we
have that (xn)n norm-converges to (σC)′(x∗).

We recall below the Stegall variational principle, which is valid in
Banach spaces with the RNP. A slight extension of this result will be
proved in Corollary 8.3.8. We need the following definition.

Definition 4.3.12 Given a function f : X → R∞ and a set C ⊂
dom f, a point x ∈ C is said to be a strong minimum of f on C if
every sequence (xn)n ⊂ C such that f(xn) → infC f converges to x.

Theorem 4.3.13 Let X be a Banach space with the RNP, let the
function f : X → R∞ be lsc bounded below, and let C ⊂ dom f be a
closed bounded convex set. Then there exists some Gδ-dense set D ⊂ X∗
such that every function f − x∗, with x∗ ∈ D, attains a strong mini-
mum on C.

4.4 Subdifferential integration

We provide in this section some integration criteria for convex func-
tions defined on the lcs X. The first result, given in Theorem 4.4.3,
uses an integration criterion that assumes continuity somewhere of
the involved functions or their conjugates. The need for such continu-
ity assumptions is necessary for the current setting of locally convex
spaces, as there are functions in Γ0(X) with an empty subdifferential
everywhere.

We first prove a couple of lemmas related to the integration of func-
tions from Γ0(R). The integral in the first lemma is given in the sense
of Riemann integration.

Lemma 4.4.1 Let ϕ ∈ Γ0(R) such that J := int(domϕ) �= ∅ and take
α ∈ R. Then ϕ′(t; α) ∈ R for all t ∈ J, ϕ′(·; α) is non-decreasing on J
if α > 0, ϕ′(·; α) is non-increasing on J if α < 0, and we have
∫ s2

s1
ϕ′(t; α)dt = α(ϕ(s2) − ϕ(s1)) for all s1 ≤ s2, s1, s2 ∈ J.
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Proof. Taking into account the positive homogeneity of the directional
derivative, we prove the lemma when α = 1 (the case α = −1 is sim-
ilar). Due to the convexity of ϕ, by Corollary 2.2.8 the function ϕ is
locally Lipschitz on J, and Proposition 2.2.5 implies that ϕ′(s; 1) exists
and belongs to R for every s ∈ J. Moreover, using (2.40), for every
s1, s2 ∈ J and h > 0 such that s1 < s1 + h < s2 < s2 + h we have

ϕ(s1 + h) − ϕ(s1)
h

≤ ϕ(s2 + h) − ϕ(s1)
s2 + h − s1

≤ ϕ(s2 + h) − ϕ(s2)
h

.

So, letting h ↓ 0, the non-decreasingness of ϕ′(·; 1) on J follows by
Proposition 2.2.5; hence, it is integrable on every set [s1, s2] ⊂ J .
Next, given [s1, s2] ⊂ J and η > 0, the integrability of ϕ′(·; 1) yields
a subdivision t0 = s1 < . . . < tk = s2, k ≥ 1, of [s1, s2] such that

∫ s2

s1
ϕ′(t; 1)dt ≤ ∑

0≤i≤k−1

ϕ′(ti; 1)(ti+1 − ti) + η.

Thus, since

ϕ′(ti; 1) = inf
h>0

h−1(ϕ(ti + h) − ϕ(ti)) ≤ (ti+1 − ti)−1(ϕ(ti+1) − ϕ(ti)),

we deduce that
∫ s2

s1
ϕ′(t; 1)dt ≤ ∑

0≤i≤k−1

(ϕ(ti+1) − ϕ(ti)) + η = ϕ(s2) − ϕ(s1) + η.

(4.111)
Similarly, we find another subdivision (denoted in the same way for
simplicity) t0 = s < . . . < tl = s2, l ≥ 1, such that

∫ s2

s1
ϕ′(t; 1)dt ≥ ∑

0≤i≤l−1

ϕ′(ti+1; 1)(ti+1 − ti) − η. (4.112)

Moreover, Proposition 2.2.5 entails

ϕ′(ti+1; 1) = lim
h↓0

h−1(ϕ(ti+1 + h) − ϕ(ti+1))

≥ (ti − ti+1)−1(ϕ(ti+1 + (ti − ti+1)) − ϕ(ti+1))

= (ti − ti+1)−1(ϕ(ti) − ϕ(ti+1)),

and (4.112) gives rise to
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∫ s2

s1
ϕ′(t; 1)dt ≥ ∑

0≤i≤l−1

(ϕ(ti+1) − ϕ(ti)) − η = ϕ(s2) − ϕ(s1) − η.

(4.113)
Therefore, (4.111) and (4.113) lead us to

ϕ(s2) − ϕ(s1) − η ≤ ∫ s2

s1
ϕ′(t; 1)dt ≤ ϕ(s2) − ϕ(s1) + η,

and we conclude the proof when η ↓ 0.

Lemma 4.4.2 Let functions ϕ, ψ ∈ Γ0(R) such that J := int(domϕ)
�= ∅ and

∂ϕ(s) ⊂ ∂ψ(s) for all s ∈ R. (4.114)

Then ϕ and ψ are equal up to some additive constant.

Proof. According to Proposition 4.1.22, (4.114) entails the following
relationship between the directional derivatives of ϕ and ψ, for every
s ∈ J (⊂ int(dom ψ)),

ϕ′(s; α) = maxs∗∈∂ϕ(s) αs∗ ≤ maxs∗∈∂ψ(s) αs∗ = ψ′(s; α), for all α ∈ R.

Then Lemma 4.4.1 gives as a result, for all s1 ≤ s2, s1, s2 ∈ J, α ∈ R,

α(ϕ(s2) − ϕ(s1)) =
∫ s2

s1
ϕ′(t; α)dt ≤ ∫ s2

s1
ψ′(t; α)dt = α(ψ(s2) − ψ(s1)),

and the lower semicontinuity of ϕ and ψ implies, due to Corol-
lary 2.2.10, that

ϕ(s2) − ϕ(s1) = ψ(s2) − ψ(s1) for all s1, s2 ∈ dom ϕ. (4.115)

At the same time, due to (4.18), we also have

∂ϕ∗(s) = (∂ϕ)−1(s) ⊂ (∂ψ)−1(s) = ∂ψ∗(s) for all s ∈ R. (4.116)

If int(domϕ∗) �= ∅, then the reasoning above also yields

ϕ∗(s2) − ϕ∗(s1) = ψ∗(s2) − ψ∗(s1) for all s1, s2 ∈ dom ϕ∗, (4.117)

so that ψ∗ ≤ ϕ∗ + (ψ∗(s1) − ϕ∗(s1)) for any fixed s1 ∈ dom ϕ∗ (the
last set is non-empty and we have ψ∗(s1), ϕ∗(s1) ∈ R, by Proposi-
tion 3.1.4 and the fact dom ϕ∗ ⊂ dom ψ∗ coming from (4.117)). Thus,
by Theorem 3.2.2, we infer that ϕ ≤ ψ + (ψ∗(s1) − ϕ∗(s1)) and, so,
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dom ψ ⊂ dom ϕ. Consequently, the conclusion of the lemma follows
from (4.115). Otherwise, if int(domϕ∗) = ∅, then the properness of ϕ∗
(also coming from Proposition 3.1.4) ensures that dom ϕ∗ = {s∗} for
some s∗ ∈ R. So, ϕ∗ = I{s∗} + ϕ∗(s∗) and, again, Theorem 3.2.2 implies
that ϕ(s) = s∗s − ϕ∗(s∗) for all s ∈ R. In other words, domϕ = R and
(4.115) also leads us to the desired conclusion.

Theorem 4.4.3 Given a function f ∈ Γ0(X) and an lsc function g :
X → R∞, we assume that (i) f is continuous somewhere or (ii) f∗ is
τ -continuous somewhere and g ∈ Γ0(X). If

∂f(x) ⊂ ∂g(x) for all x ∈ X, (4.118)

then f and g are equal up to some additive constant.

Proof. The continuity assumption on f in (i) implies, due to Propo-
sition 4.1.22, that ∂f(x) �= ∅ for all x ∈ int(dom f). Thus, assuming
without loss of generality that θ ∈ int(dom f) and f(θ) = 0, we get
the continuity of f at θ together with ∅ �= ∂f(θ) ⊂ ∂g(θ) = ∂(cog)(θ).
Therefore, θ ∈ int(dom g) and we obtain that (cog)(θ) = g(θ); hence,
we may also suppose that g(θ) = 0.

Let us start by supposing that g is convex, so that g ∈ Γ0(X) as
∂g(θ) �= ∅. We also fix u ∈ X and consider the functions ϕ, ψ ∈ Γ0(R)
defined as

ϕ(s) := f(su) and ψ(s) := g(su), s ∈ R. (4.119)

Notice that, for all sufficiently small s>0, we have that su ∈ int(dom f)
by (2.15) and, so, the continuity of f at θ ensures that ϕ is finite and
continuous at such small s. Then, the conditions of Proposition 4.1.20
are fulfilled and we obtain, for all s ∈ R,

∂ϕ(s) = {〈x∗, u〉 : x∗ ∈ ∂f(su)} ⊂ {〈x∗, u〉 : x∗ ∈ ∂g(su)} ⊂ ∂ψ(s).
(4.120)

Consequently, since int(dom ϕ) �= ∅ and f(θ) = g(θ) = 0, Lemma 4.4.2
entails that

f(su) = g(su) + f(θ) + g(θ) = g(su) for all s ∈ R,

showing that f(u) = g(u) for all u ∈ X.
To finish the proof of case (i), we consider that g is any lsc func-

tion; that is, g is not necessarily convex but satisfies cog ∈ Γ0(X),
as a consequence of (4.118). Since ∂f ⊂ ∂g ⊂ ∂(cog), by (4.118), and
(cog)(θ) = f(θ) = 0, the reasoning above implies that f = cog. More
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precisely, given any x ∈ X such that ∂f(x) �= ∅, (4.118) implies that
∂g(x) �= ∅ and, so, f(x) = (cog)(x) = g(x). Moreover, if x ∈ dom f ⊂
cl(int(dom f)), then by (2.15) there exists a sequence (xn)n ⊂
int(dom f) such that xn → x and f(xn) → f(x). Hence, Proposition
4.1.22 ensures that f(xn) = g(xn) for all n ≥ 1 and, taking limits as
n → ∞, the equality f = cog together with the lower semicontinuity
of g entails

f(x) = lim
n

f(xn) = lim inf
n

g(xn) ≥ g(x) ≥ (cog)(x) = f(x);

that is, f(x) = g(x). The last equality also holds when x /∈ dom f, as
+∞ = f(x) = (cog)(x) ≤ g(x), and the proof is over under condition
(i).

Finally, under condition (ii), (4.18) and (4.118) entail

∂f∗(x∗) = (∂f)−1(x∗) ⊂ (∂g)−1(x∗) = ∂g∗(x∗) for all x∗ ∈ X∗,

and we are in case (i). Then, applying the paragraph above in the pair
((X∗, τ), (X,TX)) yields f∗ = g∗ − c for some c. Therefore, according
to Theorem 3.2.2, we have f = f∗∗ = g∗∗ + c = g + c and the conclu-
sion follows.

The following corollary uses an integration criterion slightly weaker
than (4.118), which requires comparison of ∂f(x) and ∂g(x) only on
the set int(dom f).

Corollary 4.4.4 Given a function f ∈ Γ0(X), which is continuous
somewhere, and an lsc function g := X → R∞, we assume that

∂f(x) ⊂ ∂g(x) for all x ∈ int(dom f).

Then there exists some c ∈ R such that f = g + c on cl(dom f).

Proof. First, we assume that g is convex, so that g ∈ Γ0(X) because
∂g(x) ⊃ ∂f(x) �= ∅ for all x ∈ int(dom f) (�= ∅) due to Proposition
4.1.22. Also, we assume without loss of generality that θ ∈ int(dom f).
We fix λ ∈ ]0, 1[ and denote Aλ := λ idX (a multiple of the identity
mapping on X), which is an auto-adjoint mapping (i.e., A∗

λ = Aλ).
Then, using (2.15), we have that λ cl(dom f) ⊂ int(dom f), and the
current assumption yields

Aλ∂f(Aλx) ⊂ Aλ∂g(Aλx) for all x ∈ cl(dom f).
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Thus, thanks to (4.58) in Proposition 4.1.20, we have for all x ∈
cl(dom f)

∂
(
f ◦ Aλ + Icl(dom f)

)
(x) = A∗

λ∂f(Aλx) + Ncl(dom f)(x)

⊂ Aλ∂g(Aλx) + Ncl(dom f)(x)

⊂ ∂
(
g ◦ Aλ + Icl(dom f)

)
(x).

This inclusion also trivially holds when x /∈ cl(dom f). Therefore,
because the involved functions are in Γ0(X) and the convex function
f ◦ Aλ + Icl(dom f) is continuous somewhere in X, Theorem 4.4.3 yields
some cλ ∈ R such that, for all x ∈ X,

f(λx) + Icl(dom f)(x) = g(λx) + Icl(dom f)(x) + cλ; (4.121)

in fact, we have that cλ = f(θ) − g(θ) =: c as θ ∈ dom f. Thus, taking
the limits as λ ↑ 1 in (4.121), the lower semicontinuity of the given
functions and Proposition 2.2.10 imply that

f(x) = g(x) + c for all x ∈ cl(dom f),

and we are done when g is convex.
Finally, we suppose that g is any lsc function (possibly not convex).

Since ∂f ⊂ ∂g ⊂ ∂(cog), by the first part we conclude that

f(x) = (cog)(x) + c for all x ∈ cl(dom f). (4.122)

In particular, for all x ∈ int(dom f) we have ∅ �= ∂f(x) ⊂ ∂g(x) and,
so, f(x) = (cog)(x) + c = g(x) + c. If x ∈ dom f , then by (2.15) we find
a sequence (xn)n ⊂ int(dom f) such that xn → x and f(xn) → f(x).
Therefore, using (4.122), we get

f(x) = lim
n

f(xn) = lim inf
n

g(xn) + c

≥ g(x) + c ≥ (cog)(x) + c = f(x);

that is, f(x) = g(x) + c. Finally, if x ∈ cl(dom f) \ dom f, then (4.122)
yields +∞ = f(x) = (cog)(x) + c ≤ g(x) + c, and the relation f ≡ g +
c holds on cl(dom f).

In the following proposition, we modify the integration criterion in
Corollary 4.4.4 requiring only that the subdifferentials of the functions
involved intersect over the set int(dom f) ∪ int(dom g).
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Proposition 4.4.5 Let function f, g ∈ Γ0(X) be such that

∂f(x) ∩ ∂g(x) �= ∅ for all x ∈ int(dom f) ∪ int(dom g).

Then f and g are equal up to some additive constant, provided that
one of them is continuous somewhere.

Proof. The current assumption implies that int(dom f) ⊂ dom g and
int(dom g) ⊂ dom f ; that is, int(dom f) = int(dom g). Thus, denoting
h := f�g, the current assumption implies that int(domh) =
2 int(dom f) = 2 int(dom g), cl(dom h) = 2 cl(dom f) = 2 cl(dom g) and
for all x ∈ int(dom f) (see Exercise 49)

h(2x) = f(x) + g(x) and ∂h(2x) = ∂f(x) ∩ ∂g(x) �= ∅. (4.123)

In particular, the convex function h is proper and continuous on
the interior of its effective domain. Moreover, given x ∈ cl(dom f),
for every fixed x0 ∈ int(dom f) (⊂ dom g) and λ ∈ ]0, 1[ we have that
xλ := λx0 + (1 − λ)x ∈ int(dom f), by (2.15), and (4.123) entails

f(x) + g(x) ≤ lim infλ↓0(f(xλ) + g(xλ)) = lim infλ↓0 h(2xλ)
≤ lim infλ↓0(λh(2x0) + (1 − λ)h(2x))
= lim infλ↓0(λf(x0) + λg(x0) + (1 − λ)h(2x))
= h(2x) ≤ f(x) + g(x),

showing that h(2x) = f(x) + g(x) for all x ∈ cl(dom f). In addition, if
x /∈ cl(dom f), then 2x /∈ cl(dom h) and we obtain that +∞ = h(2x) ≤
f(x) + g(x) = +∞. Therefore, h(2·) = f + g and Proposition 4.1.20
together with Exercise 49 yields, for all x ∈ X,

∂(h(2·))(x) = 2∂h(2x) ⊂ 2(∂f(x) ∩ ∂g(x)) = ∂(2f)(x) ∩ ∂(2g)(x).

Then, according to Theorem 4.4.3, we find some constants c1, c2 ∈ R

such that

2f(x) = h(2x) + c1 = 2g(x) + c2 for all x ∈ X,

and the proof is finished.
To avoid the continuity assumption used in previous integration

criteria, we proceed by giving other conditions that use the
ε-subdifferential.

Proposition 4.4.6 Given f ∈ Γ0(X) and a function g : X → R∞, we
consider a function ζ : R

∗
+ → R

∗
+ such that lim supε↓0 ζ(ε) = 0 and
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assume the existence of some ε0 > 0 such that, for all x ∈ X and
ε ∈ ]0, ε0],

∂εf(x) ⊂ ∂ζ(ε)g(x).

Then f and g are equal up to some additive constant.

Proof. Let us first suppose that g ∈ Γ0(X). In addition, since ∅ �=
∂εf(x) ⊂ ∂ζ(ε)g(x) due to Proposition 4.1.10, we deduce that ∅ �=
dom f ⊂ dom g. So, we may assume that θ ∈ dom f ∩ dom g and f(θ) =
g(θ) = 0. Next, we fix u ∈ dom f (⊂ dom g) and consider, as in (4.119),
the functions ϕ, ψ ∈ Γ0(R) defined by

ϕ(s) := f(su) and ψ(s) := g(su).

Then, due to Proposition 4.1.16, the current assumption entails for
every s ∈ R

∂ϕ(s) =
⋂

ε>0
cl ({〈x∗, u〉 : x∗ ∈ ∂εf(su)})

⊂ ⋂
ε>0

cl
({〈x∗, u〉 : x∗ ∈ ∂ζ(ε)g(su)

})

⊂ ⋂
ε>0

cl ({〈x∗, u〉 : x∗ ∈ ∂εg(su)}) = ∂ψ(s). (4.124)

Note that if ∅ �= int(domϕ) (⊂ R), then the function ϕ is continuous on
int(dom ϕ) (Corollary 2.2.9) and Theorem 4.4.3 yields some constant
c ∈ R such that

f(su) = ϕ(s) = ψ(s) + c = g(su) + c for all s ∈ R;

indeed, c = f(θ) − f(θ) = 0 and the last equality reduces to

f(u) = g(u) for all u ∈ dom f. (4.125)

Otherwise, if domϕ = {s0} for some s0 ∈ R, then ϕ = I{s0} + ϕ(s0),
and the conjugate of ϕ, given by ϕ∗(s) = s0s − ϕ(s0), s ∈ R, is obvi-
ously continuous. Therefore, again due to Theorem 4.4.3, (4.124) also
leads to (4.125), which in turn implies that

g(u) ≤ f(u) for all u ∈ X. (4.126)

At the same time, taking into account (4.18), the current assumption
also implies that, for each x∗ ∈ X∗ and ε ∈ ]0, ε0],
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∂εf
∗(x∗) = (∂εf)−1(x∗) ⊂ (∂ζ(ε)g)−1(x∗) = ∂ζ(ε)g

∗(x∗).

Note that f∗, g∗ ∈ Γ0(X∗) by Proposition 3.1.4; hence, we may also
assume that f∗(θ) = g∗(θ) = 0. Therefore, the paragraph above (see
(4.126)) ensures that g∗(u∗) ≤ f∗(u) for all u∗ ∈ X∗, and Theorem
3.2.2 gives rise to the opposite inequality of (4.126). In other words,
the conclusion of the theorem follows when g ∈ Γ0(X).

Assume now that g is any (proper) function so that, by the current
assumption, for each x ∈ X and ε ∈ ]0, ε0],

∂εf(x) ⊂ ∂ζ(ε)g(x) ⊂ ∂ζ(ε)(cog)(x).

Thus, since co(g) ∈ Γ0(X) as a consequence of Proposition 4.1.10, by
the paragraph above there exists some c ∈ R such that

f(x) = (cog)(x) + c for all x ∈ X. (4.127)

More precisely, if x ∈ dom f, then for all ε ∈ ]0, ε0] we have ∅ �=
∂εf(x) ⊂ ∂ζ(ε)g(x) by Proposition 4.1.10, and the condition
lim supδ↓0 ζ(δ) = 0 implies that g(x) = (cog)(x); that is, by (4.127),

f(x) = g(x) + c for all x ∈ dom f. (4.128)

Finally, if x /∈ dom f, then (4.127) yields +∞ = f(x) = (cog)(x) + c ≤
g(x) + c and (4.128) also holds outside dom f.

The following corollary is a simple version of Proposition 4.4.6.

Corollary 4.4.7 Given functions f, g ∈ Γ0(X), we assume the exis-
tence of some ε0 > 0 such that, for all x ∈ dom f ∪ dom g and ε ∈
]0, ε0],

∂εf(x) ∩ ∂εg(x) �= ∅.

Then f and g are equal up to some additive constant.

Proof. We denote h := f�g. Then, since the current assumption
implies that dom f = dom g (by Proposition 4.1.10), we have that

dom h = dom f + dom g = dom f + dom f = 2 dom f,

where the last equality comes from the convexity of dom f. Next we
fix x ∈ 1

2 dom h so that x ∈ dom f = dom g. So, by the current assump-
tion, for each ε ∈ ]0, ε0] we have
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∅ �= ∂εf(x) ∩ ∂εg(x) ⊂ ∂2εh(2x)

(Exercise 49), showing that h(2x) ≥ f(x) + g(x) − 2ε; that is, h(2x) =
f(x) + g(x). Moreover, for x /∈ 1

2 dom h we have that +∞ = h(2x) ≤
f(x) + g(x), and we conclude that h = f(·/2) + g(·/2); that is, h ∈
Γ0(X) and

∂εh(x) ⊂ ∂εf(x/2) ∩ ∂εg(x/2) for all x ∈ X and ε ∈ ]0, ε0]. (4.129)

Consequently, according to Proposition 4.4.6, we find constants c1, c2 ∈
R such that f(x) = h(2x) + c1 = g(x) + c2 for all x ∈ X, and we are
done.

In the setting of Banach spaces, the subdifferential on its own allows
us to recover convex functions, without any further continuity assump-
tions on the involved functions.

Proposition 4.4.8 Suppose X is Banach and let functions f, g :
X → R∞ be such that

∂f(x) ⊂ ∂g(x) for all x ∈ X.

If f ∈ Γ0(X) and g is lsc, then f and g are equal up to some additive
constant.

Proof. Assuming first that g ∈ Γ0(X), we choose k0 ∈ N such that

dom f ∩ (k0BX) �= ∅, dom g ∩ (k0BX) �= ∅,

where BX is the closed unit ball in X, so that for each fixed k ≥ k0

fk := f + IkBX
∈ Γ0(X) and gk := g + IkBX

∈ Γ0(X).

Furthermore, taking into account Proposition 4.1.20, we get the rela-
tions f∗

k = f∗�σkBX
and

∂fk(x) = ∂f(x) + NkBX
(x) ⊂ ∂g(x) + NkBX

(x) ⊂ ∂gk(x) for all x ∈ X;

in particular, the function f∗
k is norm-continuous on X∗. Moreover, for

any fixed ε > 0 and each x ∈ X, thanks to Proposition 4.3.8 we have
that

∂εfk(x) ⊂ ⋃
y∈BX(x,

√
ε)

∂fk(y) +
√

εBX∗ ⊂ ⋃
y∈BX(x,

√
ε)

∂gk(y) +
√

εBX∗ ,

which leads us, using (4.18), for all x∗ ∈ X∗ to
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∂εf
∗
k (x∗) ∩ X = (∂εfk)−1(x∗) ⊂ ⋃

y∗∈BX∗ (x∗,
√

ε)

(∂fk(y∗))−1 +
√

εBX

⊂ ⋃
y∗∈BX∗ (x∗,

√
ε)

(∂gk(y∗))−1 +
√

εBX

⊂ ⋃
y∗∈BX∗ (x∗,

√
ε)

∂g∗
k(y

∗) +
√

εBX .

Furthermore, since ∂εf
∗
k (x∗) is bounded in (X∗∗, σ(X∗∗, X∗)) by Propo-

sition 4.1.7, it is also norm-bounded (as X is Banach), so there exists
some bounded set D ⊂ X∗∗ (possibly depending on x∗) such that the
above inclusions read

∂εf
∗
k (x∗) ∩ X ⊂ ⋃

y∗∈BX∗ (x∗,
√

ε)

(D ∩ ∂g∗
k(y

∗)) +
√

εBX .

Consequently, taking into account the Goldstein theorem and the fact
that BX∗∗ is σ(X∗∗, X∗)-compact by Theorem 2.1.9, Corollary 4.3.4
entails

∂f∗
k (x∗) =

⋂
ε>0

clw
∗∗

(∂εf
∗
k (x∗) ∩ X)

⊂ ⋂
ε>0

clw
∗∗

( ⋃
y∗∈BX∗ (x∗,

√
ε)

(D ∩ ∂g∗
k(y

∗)) +
√

εBX

)

=
⋂

ε>0
clw

∗∗

( ⋃
y∗∈BX∗ (x∗,

√
ε)

(D ∩ ∂g∗
k(y

∗)) +
√

εBX∗∗

)

=
⋂

ε>0
clw

∗∗

( ⋃
y∗∈BX∗ (x∗,

√
ε)

(D ∩ ∂g∗
k(y

∗))

)
⊂ ∂g∗

k(x
∗),

where the last equality comes from Proposition 4.1.6(ix). In other
words, we have shown that

∂f∗
k (x∗) ⊂ ∂g∗

k(x
∗) for all x∗ ∈ X∗,

and, therefore, Theorem 4.4.3 implies that f∗
k = g∗

k − ck, for some ck ∈
R; that is, thanks to Theorem 3.2.2, we have that

f + IkBX
= fk = gk + ck = g + IkBX

+ ck.

More precisely, given any x0 ∈ dom f ∩ dom g, we can take ck = f(x0)
− g(x0) =: c for all k large enough, and we deduce that f = g + c.
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Let us now consider the general case where g is any function. Using
the relation ∂g ⊂ ∂(cog), and the fact that cog ∈ Γ0(X) that comes
from the combination of the current assumption and Corollary 4.3.9(i),
the current assumption entails ∂f(x) ⊂ ∂(cog)(x) for all x ∈ X. There-
fore, by the previous paragraph, there exists some c ∈ R such that

f = cog + c ≤ g + c; (4.130)

in particular, f(x) = g(x) + c = +∞ for all x /∈ dom f. Furthermore, if
x ∈ X is such that ∂f(x) �= ∅, then ∂g(x) �= ∅ and we deduce that
(cog)(x) = g(x). Thus, the equality in (4.130) implies that f(x) =
(cog)(x) + c = g(x) + c. More generally, if x ∈ dom f, then Corollary
4.3.9(i) gives rise to some sequence (xn)n ⊂ X such that xn → x,
f(xn) → f(x), and ∂f(xn) �= ∅ for all n ≥ 1. Thus, from the last para-
graph, we infer that f(xn) = g(xn) + c for all n ≥ 1, and by taking
limits for n → +∞ and using the lower semicontinuity of g we infer
that

f(x) = lim
n

f(xn) = lim
n

g(xn) + c = lim inf
n

g(xn) + c ≥ g(x) + c.

Consequently, the desired relationship between f and g follows taking
into account (4.130).

The following corollary provides a process for constructing con-
vex functions from their subgradients. Below we use the convention∑0

i=0 := 0.

Corollary 4.4.9 Given a function f ∈ Γ0(X), we suppose that either
X is Banach or at least one of the functions f and f∗ is continuous
somewhere. Then (∂f)−1(X∗) �= ∅ and, for each x0 ∈ (∂f)−1(X∗), we
have for all x ∈ X,

f(x) = f(x0) + sup
{

n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉
}

, (4.131)

where the supremum is taken over n ∈ N, xi ∈ X, and x∗
i ∈ ∂f(xi),

i = 1, . . . , n.

Proof. We denote by g the function on the right-hand side of (4.131),
so that g ≤ f by the own definition of the subdifferential. Furthermore,
there must exist some z0 ∈ X such that ∂f(z0) �= ∅, and so g ∈ Γ0(X).
In fact, if X is Banach, then the existence of such a z0 follows from
Corollary 4.3.9. Also, if f is continuous at some z0 ∈ X, then ∂f(z0) �=
∅, thanks to Proposition 4.1.22. Finally, if f∗ is continuous at some z∗

0 ∈
X∗, then it is τ -continuous there and (4.108) together with Proposition
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4.1.22 implies that ∅ �= ∂f∗(z∗
0) = (∂f)−1(z∗

0); that is, there exists some
z0 ∈ X such that z∗

0 ∈ ∂f(z0) and ∂f(z0) is non-empty.
Let us fix z ∈ X and pick z∗ ∈ ∂f(z). Then g(z) ∈ R and so,

for every δ > 0, there exist some n ∈ N, xi ∈ X, and x∗
i ∈ ∂f(xi),

i = 0, 1, . . . , n, such that

g(z) − δ < f(x0) +
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉.

Thus, for xn+1 := z we have that z∗ ∈ ∂f(xn+1) and, for every x ∈ X,

〈z∗, x − z〉 + g(z) − δ < f(x0) +
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉 + 〈z∗, x − z〉

= f(x0) +
n∑

i=0
〈x∗

i , xi+1 − xi〉 + 〈z∗, x − z〉 ≤ g(x).

In other words, z∗ ∈ ∩δ>0∂δg(z) = ∂g(z), and we infer that ∂f ⊂ ∂g.
Consequently, using Proposition 4.4.8 and Theorem 4.4.3, there exists
some constant c ∈ R such that f = g + c. More precisely, taking n = 1
and (x1, x

∗
1) = (x0, x

∗
0) in (4.131), we get

f(x0) = f(x0) + 〈x∗
0, x1 − x0〉 + 〈x∗

1, x0 − x1〉 ≤ g(x0) ≤ f(x0),

which shows that c = f(x0) − g(x0) = 0 and, finally, f = g.
The main difference between the following result and Corollary 4.4.9

is that now the supremum in (4.132) is only evaluated for elements
xi ∈ int(dom f) when this latter set is not empty. In this case, con-
vex functions are constructed from their subgradients when evaluated
within the interior of the effective domain.

Corollary 4.4.10 Assume that f ∈ Γ0(X) is continuous at x0 ∈
int(dom f). Then, for every x ∈ cl(dom f), we have that

f(x) = f(x0) + sup
{

n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉
}

, (4.132)

where the supremum is taken over n ∈ N, xi ∈ int(dom f) and x∗
i ∈

∂f(xi), i = 0, 1, . . . , n.

Proof. We proceed as in the proof of Corollary 4.4.9 and denote by g
the function on the right-hand side of (4.132), so that g ≤ f , g ∈ Γ0(X)
and we verify that ∂f(z) ⊂ ∂g(z) for all z ∈ int(dom f). Consequently,
by Corollary 4.4.4, there exists some constant c ∈ R such that f =
g + c on cl(dom f); indeed, like in the proof of Corollary 4.4.9 we can
verify that c = 0.
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Since the functions in Γ0(X) may have no subgradients, as X is
a general lcs, the point x0 in the following corollary is taken in the
effective domain of f instead of (∂f)−1(X∗) as in Corollary 4.4.10. This
choice ensures that ∂εf(x0) �= ∅ for all ε > 0.

Corollary 4.4.11 Given function f ∈ Γ0(X), we fix x0 ∈ dom f and
ε̄ > 0. Then, for every x ∈ X, we have that

f(x) = f(x0) + sup
{

n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉 −
n∑

i=0
εi

}
,

(4.133)
where the supremum is taken over n ∈ N, xi ∈ X, 0 < εi < ε̄, and x∗

i ∈
∂εif(xi), i = 0, 1, . . . , n.

Proof. We denote by g the function on the right-hand side of (4.133)
so that, for all x ∈ X,

g(x) ≤ f(x0) + sup

{
n−1∑
i=0

(f(xi+1) − f(xi) + εi) + (f(x) − f(xn) + εn) −
n∑

i=0

εi

}
= f(x),

and hence g ∈ Γ0(X), since ∂εf(x) �= ∅ for all x ∈ dom f and ε > 0 due
to Proposition 4.1.10. Now take ε ∈ ]0, ε̄[, z ∈ X and pick z∗ ∈ ∂εf(z).
Then g(z) ∈ R and so, for every δ > 0, there exist some n ∈ N, xi ∈ X,
0 < εi < ε̄, and x∗

i ∈ ∂εif(xi), i = 0, 1, . . . , n, such that

g(z) − δ < f(x0) +
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉 −
n∑

i=0
εi.

Thus, as in the proof of Corollary 4.4.9, we denote xn+1 := z and
εn+1 = ε, so that z∗ ∈ ∂εf(xn+1) and, for every x ∈ X,

〈z∗, x − z〉 + g(z) − δ < f(x0) +
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉

+ 〈z∗, x − z〉 −
n+1∑
i=0

εi + ε

= f(x0) +
n∑

i=0
〈x∗

i , xi+1 − xi〉 + 〈z∗, x − z〉

−
n+1∑
i=0

εi + ε ≤ g(x) + ε;

in other words, z∗ ∈ ∩δ>0∂δ+εg(z) = ∂εg(z), and we infer that ∂εf(z) ⊂
∂εg(z) for all z ∈ X and ε ∈ ]0, ε̄[. Therefore, by Proposition 4.4.6, we
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conclude that f = g + c for some c ∈ R. More precisely, taking n = 1,
x1 = x0 = x and x∗

1 = x∗
0 ∈ ∂δf(x0) for δ > 0 (this last set is not empty

by Proposition 4.1.10) in the right-hand side of (4.133), we obtain that

f(x0) + sup {〈x∗
0, x0 − x0〉 + 〈x∗

0, x0 − x0〉 − 2δ} ≤ g(x0);

that is, f(x0) − 2δ ≤ g(x0) ≤ f(x0) for all δ > 0, and we derive that
c = f(x0) − g(x0) = 0.

We have seen in (4.12) that the subdifferential operator is monotone
and cyclically monotone (see (2.28) and (2.29), respectively). The fol-
lowing proposition shows that it is also maximally cyclically monotone.

Proposition 4.4.12 Given function f ∈ Γ0(X), we assume that
either X is Banach or at least one of the functions f and f∗ is contin-
uous somewhere. Then the mapping ∂f is maximally cyclically mono-
tone.

Proof. Assuming the existence of some cyclically monotone operator
A such that gphA ⊃ gph(∂f), we fix x0 ∈ X, x∗

0 ∈ ∂f(x0) (such points
exist by Corollary 4.4.9) and define the function g : X → R∞ as

g(x) = sup
{

n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉
}

,

where the supremum is taken over n ∈ N, xi ∈ A−1(X∗), x∗
i ∈ A(xi),

i = 1, . . . , n. Then g is convex and lsc. In fact, we have that g ∈ Γ0(X),
since g(x0) ≤ 0 by the cyclic monotonicity of A. Furthermore, given
z ∈ X, z∗ ∈ Az, δ > 0 and m ≥ 1, we choose n ∈ N and x∗

i ∈ A(xi),
i = 1, . . . , n, such that

min{g(z), m} − δ <
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉.

Thus, taking xn+1 := z, we obtain that z∗ ∈ A(xn+1) and so, for every
x ∈ X,

〈z∗, x − z〉 +min{g(z),m} − δ <
n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, z − xn〉 + 〈z∗, x − z〉

=
n∑

i=0
〈x∗

i , xi+1 − xi〉 + 〈z∗, x − xn+1〉 ≤ g(x);

in other words, as m ↑ +∞, we get
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〈z∗, x − z〉 + g(z) − δ ≤ g(x) for all x ∈ X.

Therefore, z ∈ dom g and z∗ ∈ ∩δ>0∂δg(z) = ∂g(z), and we deduce
that gph(∂f) ⊂ gph A ⊂ gph(∂g). Consequently, using Proposition
4.4.8 and Theorem 4.4.3, we find some constant c ∈ R such that
f = g + c, showing that ∂f ⊂ A ⊂ ∂g = ∂f.

The maximal monotonicity of the subdifferential of functions in
Γ10(X), where X is Banach, is also a well-known property.

Proposition 4.4.13 Assume that X is Banach and take f ∈ Γ0(X).
Then ∂f is maximally monotone.

4.5 Exercises

Exercise 36 Given function f : X → R and ε ≥ 0, prove that
cone(dom f∗) ⊂ dom (σε- argmin f ) , where ε-argmin f = ∅ if infX f /∈ R.

Exercise 37 Given a function f : X → R, x ∈ f−1(R), and ε ≥ 0,
prove that

(f ′
ε(x; ·))∗ = sup

s>0

f(x) + f∗(x∗) − 〈x, x∗〉 − ε

s
.

Exercise 38 Let x ∈ X and ε ≥ 0 such that ∂εf(x) �= ∅. Prove that
[∂εf(x)]∞ = Ndom f (x).

Exercise 39 Let f : X → R∞ be a convex function such that dom f �=
∅. Prove that if X = R

n, then f is proper if cl f is proper. Give a
counterexample when X is infinite-dimensional; in other words, find a
proper convex function f such that cl f is not proper.

Exercise 40 Let f, g : X → R be two convex functions. Prove that f
and g have the same subdifferential at x ∈ f−1(R) ∩ g−1(R) in each
one of the following cases:

(i) f and g coincide in a neighborhood of x.
(ii) f is lsc at x and g := max{f, f(x) − 1}.

Exercise 41 Given another lcs Y, functions f1, . . . , fm ∈ Γ0(X), g ∈
Γ0(Y ), with m ≥ 1, and a continuous linear mapping A : X → Y, prove
the following statements:
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(i) For every x ∈ dom (f1 + . . . + fm + (g ◦ A)) and all ε1, . . . , εm,
ε > 0 we have

Ndom(f1+...+fm+g◦A)(x) = [cl (∂ε1f1(x) + . . . + ∂εmfm(x) + A∗(∂εg(Ax)))]∞ .

(ii) If k < m, for all x ∈ dom (f1 + . . . + fm + g ◦ A) and all ε1, . . . ,
εm, ε > 0 one has

Ndom(f1+...+fm+g◦A)(x) =
[

cl (∂ε1f1(x) + . . . + ∂εkfk(x)
+ co
(
∂εk+1fk+1(x) ∪ . . . ∪ A∗ (∂εg(Ax))

)) ]
∞

.

Exercise 42 Given the functions f, gk : R → R∞, k ≥ 1, with f(x) =
x2 and gk := f + I[−1/k,1/k], despite the fact that f and gk coincide
locally at 0, prove that for every ε > 0 we have ∂εf(0) � ∂εgk(0), pro-
vided that k > 2(2−√

2)√
ε

.

Exercise 43 Consider a convex function f : X → R∞ and let x ∈
dom f. Prove that Ndom f (x) =

[
Nε

dom f (x)
]
∞

for every ε ≥ 0.

Exercise 44 Let f be a proper convex function defined on X. If x ∈ X
is such that f(x) ∈ R and R+(epi f − (x, f(x)) is closed, prove that cl f
is proper and

epi f ′(x; ·) = R+(epi f − (x, f(x)). (4.134)

Consequently, show that ∂f(x) �= ∅, f ′(x; ·) = (cl f)′(x; ·) = σ∂f(x), and
that f is lsc at x.

Exercise 45 Let f, g : X → R∞ be two convex functions, and let
x ∈ X such that f(x) and g(x) are finite. If the sets R+(epi f −
(x, f(x)) and R+(epi g − (x, g(x)) are closed, prove that R+(epi(f +
g) − (x, f(x) + g(x)) is also closed.

Exercise 46 Consider function f ∈ Γ0(Y ) and a continuous linear
mapping A : X → Y, where Y is another lcs. Let the functions g, h :
X × Y → R∞ be defined as

g(x, y) := f(y) and h(x, y) := Igph A(x, y).

Given x ∈ A−1(dom f), prove that x∗ ∈ ∂(f ◦ A)(x) if and only if
(x∗, θ) ∈ ∂(g + h)(x, Ax).
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Exercise 47 Let f : X → R∞ be a proper convex function, and let
x ∈ dom f. Prove that

∂εf(x) = ∂(f ′
ε(x; ·))(θ) and dom f ′

ε(x; ·) = R+(dom f − x).

Exercise 48 Given functions fi ∈ Γ0(X), i = 1, . . . , m, m ≥ 1, we
assume that the Slater condition is fulfilled in dom f0; that is,
max1≤i≤m fi(x0) < 0 for some x0 ∈ dom f0. Use Corollary 4.2.5 to
prove that

inf
[max1≤i≤m fi≤0]

f0 = max
λ1,...λm≥0

inf
x∈X

(f0(x) + λ1f1(x) + . . . + λmfm(x)) .

Exercise 49 Given two functions f, g : X → R and ε1, ε2 ≥ 0, prove
that

∂ε1f(x) ∩ ∂ε2g(y) ⊆ ∂ε1+ε2(f�g)(x + y) for all x, y ∈ X, (4.135)

∂ε1f(x) ∩ ∂ε2g(y) �= ∅ =⇒ (f�g)(x + y) ≥ f(x) + g(y) − ε1 − ε2,

and, for all x ∈ dom f, y ∈ dom g and ε, δ ≥ 0,

(f�g)(x + y) ≥ f(x)+g(y) − ε

=⇒ ∂δ(f�g)(x + y) ⊂ ∂δ+εf(x) ∩ ∂δ+εg(x).

In addition, provided that ∂f(x) ∩ ∂g(y) �= ∅, prove that

∂(f�g)(x + y) = ∂f(x) ∩ ∂g(y).

Exercise 50 Given a Banach space X, we endow X∗∗ with the w∗∗-
topology. Given a proper function f : X → R, prove that for every z ∈
X∗∗

∂(clw
∗∗

f̂)(z) =
⋂

ε>0, U∈NX∗∗

⋃
y∈z+U

∂εf(y),

where NX∗∗ denotes the collection of the θ-neighborhoods in (X∗∗,
w∗∗) and, consequently, for every x∗ ∈ X∗

(
∂(clw

∗∗
f̂)
)−1

(x∗) =
⋂

ε>0
clw

∗∗
((∂εf)−1 (x∗)).

Exercise 51 Give a proof of (4.56) based on Proposition 4.1.24.
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Exercise 52 Let Y be another lcs, f ∈ Γ0(Y ), and let A0 : X → Y
be a continuous linear mapping such that A−1

0 (dom f) �= ∅. If Ax :=
A0x + b, with b ∈ Y, prove that

∂(f ◦ A)(x) =
⋂

δ>0
cl (A∗

0∂δf(Ax)) , for every x ∈ X, (4.136)

and

∂ε(f ◦ A)(x) = cl (A∗
0∂εf(Ax)) , for every x ∈ X and ε > 0, (4.137)

where A∗
0 is the adjoint of A0.

Exercise 53 Let Y be another lcs, L ⊂ X and M ⊂ Y two closed
convex cones, and A : X → Y be a continuous linear mapping with
adjoint A∗. Use Proposition 4.1.16 to prove that

(L ∩ A−1(M))− = cl(L− + A∗(M−)).

Exercise 54 Consider the support function σA of a non-empty set
A ⊂ R

n. Prove that Ndom σA
(x) = (coA)∞ ∩ {x}⊥, for every x ∈

dom σA.

Exercise 55 (i) Given function f : X → R∞ and linear subspace L ⊂
X, for every x ∈ L and ε ≥ 0 prove that

{x∗
|L ∈ L∗ : x∗ ∈ ∂εf(x)} ⊂ ∂εf|L(x), (4.138)

with equality when dom f ⊂ L. In particular, prove that

∂ε(f + IL)|L(x) = {x∗
|L ∈ L∗ : x∗ ∈ ∂ε(f + IL)(x)}, (4.139)

and so

∂ε(f + IL)(x) = {x∗ + L⊥ : x∗
|L ∈ ∂ε(f + IL)|L(x)}. (4.140)

(ii) Let g : X → R∞ be another function and x ∈ X. If

∂(f|L + g|L)(x) = ∂(f|L)(x) + ∂(g|L)(x),

prove that

∂(f + g + IL)(x) = ∂(f + IL)(x) + ∂(g + IL)(x) + L⊥.
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(iii) Let M ⊂ X be another linear subspace. If

∂((f + IL + g)|M )(x) = ∂(f + IL)|M (x) + ∂g|M (x) (4.141)

and

∂
(
(f + IM )|L

)
(x) = ∂(f + IL)|L(x) + ∂ (IM )|L (x), (4.142)

prove that

∂(f + g + IL∩M )(x) = ∂ (f + IL) (x) + ∂ (g + IM ) (x) + cl(M⊥ + L⊥).

(iv) Given a non-empty set A ⊂ X and x ∈ A, apply (i) to show
that, for every linear subspace L ⊂ X such that x ∈ L, we have

{x∗
|L ∈ L∗ : x∗ ∈ Nε

A(x)} ⊂ Ñε
A∩L(x),

where Ñε
A∩L(x) is the ε-normal set to A at x relative to the subspace

L; that is,

Ñε
A∩L(x) := {x∗ ∈ L∗ : 〈x∗, y − x〉 ≤ ε for all y ∈ A ∩ L}.

Moreover, if A ⊂ L, then prove that the following equality holds:

{x∗
|L ∈ L∗ : x∗ ∈ Nε

A(x)} = Ñε
A∩L(x).

Exercise 56 Starting with Proposition 4.1.20, complete the proof of
Proposition 4.1.26 by verifying (4.56).

Exercise 57 Given non-empty convex sets A, C ⊂ X and x ∈ C, we
assume that A is closed and int(C − x) ∩ dom σA �= ∅. Prove that the
set A + NC(x) is closed.

Exercise 58 Let g := ‖·‖�1
. Prove that ∂g(x) = {(1, 1, . . .)} for all

x ∈ �1 such that xn > 0 for all n ≥ 1.

Exercise 59 Let f ∈ Γ0(X) be such that f∗ is τ(X∗, X)-continuous
at some point in dom f. Assume that x∗

0 ∈ ∂εf(x0) ∩ int(dom f∗), for
some ε ≥ 0 and x0 ∈ X. Prove that, for every β ≥ 0, every continuous
seminorm p in X, and every λ > 0, there are xε ∈ X, y∗

ε ∈ [p ≤ 1]◦,
and λε ∈ [−1, 1] such that :

p(x0 − xε) + β |〈x∗
0, x0 − xε〉| ≤ λ, |〈x∗

ε , x0 − xε〉| ≤ ε + λ/β,
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|f(x0) − f(xε)| ≤ ε + λ/β,

and
x∗

ε := x∗
0 +

ε

λ
(y∗

ε + βλεx
∗
0) ∈ ∂f(xε) ∩ ∂2εf(x0).

Exercise 60 Let f, g ∈ Γ0(X) be given.
(i) We assume that f is finite and continuous at some point, and

∂f(x) ∩ ∂g(x) �= ∅ for all x ∈ int(dom f). Prove that f and g + Idom f
are equal up to some additive constant.

(ii) We assume that there exists some ε0 > 0 such that ∂εf(x) ∩
∂εg(x) �= ∅ for all x ∈ dom f and ε ∈ ]0, ε0]. Prove that f and g +
Idom f are equal up to some additive constant.

Exercise 61 Let f, g ∈ Γ0(X) be such that ∂f(x) ⊂ ∂g(x) for all x ∈
X. Provided that dom f is finite-dimensional, prove that the functions
f and g + Iaff(dom f) are equal up to some additive constant.

Exercise 62 Let f be a function defined on X and ε-subdifferentiable
at x ∈ X with ε ≥ 0. Prove the following assertions:

f(x) ≥ (cl f)(x) ≥ (cof)(x) ≥ f(x) − ε,

and

∂δf(x) ⊂ ∂δ (cl f) (x) ⊂ ∂δ+εf(x),

∂δf(x) ⊂ ∂δ(cof)(x) ⊂ ∂δ+εf(x) for all δ ≥ 0.

In particular, if ε = 0, then f(x) = (cl f)(x) = (cof)(x) and

∂δf(x) = ∂δ (cl f) (x) = ∂δ(cof)(x) for all δ ≥ 0.

Exercise 63 Let f : X → R be a function such that cof is proper, and
let x ∈ dom f. Prove that ∂εf(x) = ∂(cof)(x)−f(x)+ε(cof)(x). Conse-
quently, prove that f is ε-subdifferentiable for each ε > f(x) − (cof)(x),
while f(x) = (cof)(x) if and only if ∂εf(x) �= ∅ for all ε > 0.

Exercise 64 Consider a family of functions {ft, t ∈ T} ⊂ Γ0(X),
x ∈ dom f , where f = supt∈T ft, and ε > 0. We define the function
h := inft∈T (f∗

t (·) − 〈·, x〉 + f(x)) and the set Tε(x) := {t ∈ T : ft(x) ≥
f(x) − ε}. Prove that h ≥ 0, h∗ = supt∈T (ft(x + ·) − f(x)), and

[h < ε] ⊂ ⋃
t∈Tε(x)

∂εft(x). (4.143)
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Exercise 65 Let X be a Banach space. Apply Theorem 4.3.3 to prove
that BX∗∗ = clw

∗∗
(BX) (Goldstein’s theorem).

Exercise 66 Given two functions f, g : X → R∞ with f being convex
and having a proper conjugate, we assume the existence of some δ > 0
such that

∂εf(x) ⊂ ∂εg(x) for all x ∈ X and ε ∈ ]0, δ[.

Then the functions cl f and cl g are equal up to an additive constant.

4.6 Bibliographical notes

The proofs of Propositions 4.1.1 and 4.1.8 can be found in [201, The-
orems 2.1.14 and 3.3.2, respectively]. Other similar expressions to the
one in Proposition 4.1.13 are given in [110, Theorem 6.1] for the case
of convex functions. A related result to formula (4.40) can be found in
[198, Theorem 2.2 and Remark 2.4].

Theorems 3.3.1 and 3.3.4, together with Corollary 3.3.5, lead to
the well-established Fenchel and Lagrange dualities given in Theorem
4.2.3 and subsequent corollaries. Proposition 4.1.10, which is well-
known, is proved here by means of the Fenchel–Moreau–Rockafellar
theorem. Proposition 4.1.12 is a new result which reinforces the fact
that the support function of the ε-subdifferential coincides with the ε-
directional derivative. Propositions 4.1.16, 4.1.20, and 4.1.22 are well-
known results (see, e.g., [161]). Other conditions ensuring the sum
and the composition rules can be found, e.g., in [201, Theorem 2.8.3]
(see, also, [31, Proposition 4.1]). The subdifferential rules in Propo-
sition 4.1.26 are given in [174, Theorems 23.8 and 23.9], where the
author applied the rule for the conjugate of the sum in [174, Theorem
16.4]. Our proof here is new and is based on the infinite-dimensional
results established in Proposition 4.1.20. The subdifferential rule given
in Remark 2 can be found in [19, Corollary 4.4]. More details on the
notion of the quasi-relative interior can be found in [19] (see, also,
[26] and [201]). Proposition 4.1.15 was also given in Corollaries 10.1
and 10.2 of [110]. Proposition 4.1.16 gives the Hiriart-Urruty–Phelps
formulas ([111]) for the ε-subdifferential of the sum and composition.

Theorem 4.3.6 is the well-known Ekeland variational principle [79].
Proposition 4.3.7 gathers many facts related to the Borwein ([17]),
the Brøndsted–Rockafellar ([30]), and the Bishop–Phelps ([168]) the-
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orems. Proposition 4.3.8 can be found in [188]. Corollary 4.3.9 is [201,
Theorem 3.1.4]. Proposition 4.3.10 is [5, Corollary 5]. Theorem 4.3.13
is [23, Corollary 6.6.17] and constitutes a version of the Stegall vari-
ational principle. The integration criterion given in Theorem 4.4.3 is
not new (see, e.g., [153]) and the proof here is based on a reduction to
the one-dimensional setting. Other integration results in locally con-
vex spaces can be found in [41]. Similar results to Proposition 4.4.6
can be found in [148]. Proposition 4.4.5 is new and extends the result
of [126], obtained when the involved functions are continuous every-
where. Other integration criteria in the line of Proposition 4.4.5, and
using the ε-subdifferential, are given in [104]. The maximality of the
subdifferential was first investigated in [153] for certain classes of con-
vex functions in Hilbert spaces, and then in [160]. Propositions 4.4.12
and 4.4.13 are the most general results about the maximal (cyclic-)
monotonicity of the subdifferential mapping (given for Banach spaces
in [173]; see, also, [175]). This discovery allows laying a bridge between
convex analysis and operator theory. Standard modern references on
the theory of monotone operators are [12], [168], and [182], among oth-
ers. The first part in Exercise 39 is [23, Exercise 2.4.8], and the second
part is [23, Exercise 4.1.2(c)]. Exercise 59 is [60, Theorem 4.2].



Chapter 5

Supremum of convex
functions

In this chapter, we characterize the subdifferential of pointwise suprema
of arbitrarily indexed families of convex functions, defined on a sep-
arated locally convex space X. First, some subdifferential formu-
las are derived in section 5.1 via classical tools of convex analysis,
mainly based on conjugation processes through the Fenchel–Moreau–
Rockafellar theorem (Theorem 3.2.2). This direct approach leads to
formulas which are written in terms of sums and/or maxima of finite
subfamilies. The formulas in section 5.2 provide more geometric insight
as they involve the ε-subdifferential of the data functions that are
almost active at the reference point, together with the normal cone to
finite-dimensional sections of the domain of the supremum function.
Our analysis makes use of a mere closedness condition, but without
assuming any restriction on the set of indices or on the behavior of the
data functions in relation to their dependence on the corresponding
index. However, additional continuity assumptions are used in section
5.3 to derive simpler formulas that recover, extend, and unify some
classical results on the subject. In this case, finite-dimensional sections
of the domain are not necessary. In order to have a complete picture of
the present formulas in which both (almost) active and non-active data
functions are involved, we establish in section 6.1 some equivalent rep-
resentations of the normal cone to the domain of the supremum. Then
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we derive, from the main formula of section 5.2, an alternative (sym-
metric) formula for the subdifferential in which only the data func-
tions are involved, both the (almost) active and non-active functions.
In sections 6.2 and 6.4, additional structures relying on arguments of
compactness and compactification will lead us to formulas expressed
in terms of the exact subdifferential of the data functions.

Remember that X stands for an lcs and X∗ for its topological dual
space. Unless otherwise stated, we assume that X∗ is endowed with
a compatible topology, in particular, the topologies σ(X∗, X) and
τ(X∗, X), or the dual norm topology when X is a reflexive Banach
space. The associated bilinear form is represented by 〈·, ·〉.

5.1 Conjugacy-based approach

In this section, we present some particular instances of formulas of the
approximate subdifferential of the supremum function through classic
tools of convex analysis. More precisely, we use a conjugate repre-
sentation of the supremum function, which is a consequence of the
Fenchel–Moreau–Rockafellar theorem (see Theorem 3.2.2), to give for-
mulas that involve convex combinations of the data functions. This
section is a sample of how much we can directly obtain from Theorem
3.2.2.

A standard and important example of supremum function is the
support function σC of a given non-empty set C ⊂ X∗. Thanks to
Theorem 3.2.2, we know that the conjugate of σC is nothing more
than the indicator function of the closed convex hull of the set C.
Thus, with the help of the Fenchel–Moreau inequality (4.4), we obtain
the following characterization of ∂εσC , which constitutes an extension
of (4.13).

Proposition 5.1.1 Let C ⊂ X∗ be a non-empty set. Then, for every
x ∈ X and ε ≥ 0,

∂εσC(x) = {x∗ ∈ co(C) : 〈x∗, x〉 ≥ σC(x) − ε} (5.1)

and consequently, provided that C is a non-empty closed convex set,

∂εσC(x) = {x∗ ∈ C : 〈x∗, x〉 ≥ σC(x) − ε} . (5.2)

Despite the general appearance of formula (5.1), valid for sets that
are not necessarily convex or closed, observe that it is equivalent to
(5.2) as a consequence of the relation σC = σco(C). Starting from the
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last expression, we analyze in the following result the ε-subdifferential
of the supremum of affine functions. The proof of this result will follow
from formula (5.1) with the help of Proposition 4.1.16.

Proposition 5.1.2 Let

C := {(at, bt) ∈ X∗ × R, t ∈ T}

be a non-empty set, and denote

f := sup
t∈T

(〈at, ·〉 − bt).

Then, for every x ∈ dom f and ε > 0, we have

∂εf(x) = cl
{
x∗ ∈ X∗ : (x∗, β) ∈ co(C), β ∈ R, f(x) ≥ 〈

x∗, x
〉 − β ≥ f(x) − ε

}
,

(5.3)
and, particularly,

∂f(x) = {x∗ ∈ X∗ : (x∗, β) ∈ co(C), β ∈ R, 〈x∗, x〉 − β = f(x)} .
(5.4)

Proof. Let us write f = σC ◦ (A0 + (θ, −1)), where A0 : X → X × R

is the continuous linear mapping defined by A0(x) := (x, 0), and fix
x ∈ dom f and ε > 0. Then, since the adjoint mapping A∗

0 : X∗ × R →
X∗ of A0 is given by A∗

0(x
∗, β) = x∗, by making use of relation

(5.1) and formula (4.46) in Proposition 4.1.16 we obtain ∂εf(x) =
cl(A∗

0(∂εσC(x,−1))) = cl (Bε) , where

Bε :=
{
x∗ ∈ X∗ : (x∗, β) ∈ co(C), β ∈ R, f(x) ≥ 〈

x∗, x
〉 − β ≥ f(x) − ε

}
.

Take nets (x∗
i )i ⊂ Bε and (βi) ⊂ R such that x∗

i → x∗ ∈ X∗ and

(x∗
i , βi) ∈ co(C), f(x) ≥ 〈x∗

i , x〉 − βi ≥ f(x) − ε, (5.5)

so that 〈x∗
i , x〉 − f(x) ≤ βi ≤ 〈x∗

i , x〉 − f(x) + ε. So, taking into
account that (x∗

i )i converges, we may assume that (β)i converges to
some β that satisfies (x∗, β) ∈ co(C) and 〈x∗, x〉 − β ≥ f(x) − ε, due
to (5.5). In other words, x∗ ∈ Bε and we deduce that Bε is closed.
Consequently,

∂εf(x) = Bε. (5.6)

Next, we claim that the given x ∈ dom f and ε > 0 satisfy
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∂εf(x) =
⋂

δ>ε

cl (Eδ) , (5.7)

where

Eδ := {x∗ ∈ X∗ : (x∗, β) ∈ co(C), β ∈ R, f(x) ≥ 〈x∗, x〉 − β ≥ f(x) − δ} .

Indeed, given x∗ ∈ ∂εf(x) and δ > δ1 > ε ≥ 0, we have x∗ ∈ ∂δ1f(x)
and (5.6) gives rise to the existence of some β ∈ R such that (x∗, β) ∈
co(C) and 〈x∗, x〉 − β ≥ f(x) − δ1 > f(x) − δ. Thus, we can find a net
(x∗

i , βi)i ⊂ co(C) converging to (x∗, β) such that 〈x∗
i , x〉 − βi > f(x) −

δ for all i; that is, x∗
i ∈ Eδ and we deduce that x∗ ∈ cl (Eδ) . In other

words, by the arbitrariness of δ > ε, the inclusion “⊂” in (5.7) holds,
and the claim is proved because the opposite inclusion also follows
easily from (5.6),

⋂

δ>ε

cl (Eδ) ⊂
⋂

δ>ε

cl (Bδ) =
⋂

δ>ε

cl (∂δf(x)) =
⋂

δ>ε

∂δf(x) = ∂εf(x).

Now, taking into account Corollary 4.1.11 and the fact that f ∈
Γ0(X), (5.7) yields

∂εf(x) = cl

( ⋃
0<γ<ε

∂γf(x)

)
= cl

( ⋃
0<γ<ε

⋂
δ>γ

cl (Eδ)

)
⊂ cl (Eε) ⊂ cl (Bε) = ∂εf(x),

and (5.3) follows. Moreover, using again (5.6), we have that ∂f(x) =
∩δ>0∂δf(x) = ∩δ>0Bδ. Thus, given any x∗ ∈ ∂f(x), for every δ > 0,
there exists some βδ ∈ R such that (x∗, βδ) ∈ co(C) and 〈x∗, x〉 − βδ ≥
f(x) − δ. In particular, proceeding as in the paragraph above, we see
that 〈x∗, x〉 − f(x) ≤ βδ ≤ 〈x∗, x〉 − f(x) + δ, which implies that βδ →
β = 〈x∗, x〉 − f(x) as δ ↓ 0. Thus, (x∗, β) ∈ co(C) and 〈x∗, x〉 − β =
f(x), and the non-trivial inclusion “⊂” in (5.4) follows.

With the aim of gathering the previous results on the supremum of
affine and linear functions, we introduce the following convexity-like
concept about the dependence of data functions on indices. We shall
use the notation

Δ(S) :=
{

λ ∈ R
(S)
+ :

∑

t∈S

λt = 1
}

, for sets S ⊂ T,

(already introduced in (2.46)) and

S0 := {t ∈ T : f̄t ∈ Γ0(X)}. (5.8)
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Definition 5.1.3 A family of convex functions {ft : X → R, t ∈ T}
is said to be closed for convex combinations if, for each λ ∈ Δ(S0),
there exists some s ∈ S0 such that

fλ :=
∑

t∈supp λ

λtft ≤ fs. (5.9)

The family {fc := 〈c, ·〉 , c ∈ C} for a convex subset C ⊂ X∗, associ-
ated with the support function σC , provides a basic example of families
that are closed for convex combinations. Also, families that are non-
decreasing with respect to the associated indices (see Example 5.1.6
for the definition) is another useful example of such families.

Theorem 5.1.4 below gives the main result of the current section.
It provides characterizations of the ε-subdifferential of the supremum
function f of a family {ft : X → R, t ∈ T} of convex functions that is
closed for convex combinations and satisfies the following closedness
criterion

cl f = sup
t∈T

(cl ft). (5.10)

More details on this condition will be given in section 5.2. The resulting
formula of ∂εf is given by means of the approximate subdifferential of
the data functions augmented by the indicator of convex sets D ⊂ X
that satisfy

dom f ⊂ D ⊂
⋂

t∈T\S0

cl (dom ft) (5.11)

(with the convention ∩t∈∅ cl (dom ft) = X). Thus, in particular, when
all the f̄t’s are in Γ0(X) we take D = X, so that the resulting formula
writes ∂εf by means exclusively of the data functions.

Theorem 5.1.4 Let {ft : X → R, t ∈ T} be a family of convex func-
tions which is closed for convex combinations, D ⊂ X a convex set
satisfying (5.11), and denote f := supt∈T ft. If (5.10) holds, then for
all x ∈ dom f and ε > 0

∂εf(x) = cl

{
⋃

t∈S0

∂(ε+ft(x)−f(x)) (ft + ID) (x)

}

, (5.12)

and ∂f(x) is obtained by intersecting these sets over ε > 0.

Proof. We give the proof in the case where {ft, t ∈ T} ⊂ Γ0(X) and
D = X (= ∩t∈∅ cl (dom ft)); the general case is proved in Exercise 71.
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First, we denote A := {(x∗, f∗
t (x∗)) : x∗ ∈ dom f∗

t , t ∈ T} so that, by
Theorem 3.2.2,

f = sup
t∈T

ft = sup
t∈T

f∗∗
t = sup

t∈T, x∗∈dom f∗
t

{〈x∗, ·〉 − f∗
t (x∗)}

= sup
(a∗

t ,bt)∈A, t∈T
{〈a∗

t , ·〉 − bt}.

So, by (5.3), for every x ∈ dom f and ε > 0 we obtain

∂εf(x) = cl {x∗ ∈ X∗ : (x∗, α∗) ∈ co(A), 〈x∗, x〉 − α∗ ≥ f(x) − ε} .

Moreover, if (x∗, α∗) ∈ co (A) satisfies 〈x∗, x〉 − α∗ ≥ f(x) − ε, then
there are t1, . . . , tk ∈ T , x∗

i ∈ dom f∗
ti
, i = 1, . . . , k, k ≥ 1, and λ ∈ Δ∗

k
such that (x∗, α∗) =

∑
1≤i≤kλi(x∗

i , f
∗
ti
(x∗

i )) and

fλ(x) :=
∑

1≤i≤k

λifti
(x) ≥

∑

1≤i≤k

〈λix
∗
i , x〉 −

∑

1≤i≤k

λif
∗
ti
(x∗

i )

=

〈
∑

1≤i≤k

λi(x∗
i , f

∗
ti
(x∗

i )), (x,−1)

〉

= 〈x∗, x〉 − α∗ ≥ f(x) − ε.

(5.13)

Next, we set εi := fti
(x) + f∗

ti
(x∗

i ) − 〈x∗
i , x〉 ≥ 0, i = 1, . . . , k, and, by

the current closedness assumption, we choose s ∈ T (= S0) such that
fλ ≤ fs. Then, by applying (5.13) we get

∑

1≤i≤k

λiεi + fs(x) − fλ(x) = fs(x) +
∑

1≤i≤k

λi

(
f∗

ti
(x∗

i ) − 〈x∗
i , x〉

)
≤ fs(x) − f(x) + ε

and, in particular,
∑

1≤i≤kλiεi ≤ fλ(x) − f(x) + ε ≤ ε. Consequently,
using Proposition 4.1.6,

x∗ =
∑

1≤i≤k

λix
∗
i ∈

∑

1≤i≤k

λi∂εifti (x) =
∑

1≤i≤k

∂λiεi
(λifti )(x)

⊂ ∂(Σ1≤i≤kλiεi)
fλ(x) ⊂ ∂(Σ1≤i≤kλiεi+fs(x)−fλ(x))fs(x) ⊂ ∂(ε+fs(x)−f(x))fs(x).

Therefore, the inclusion “⊂” in (5.12) holds, and the proof is finished
as the converse inclusion is straightforward.

Being an easy consequence of Theorem 5.1.4, formula (5.14) below
is given for the purpose of comparison with the results of the next
section (more precisely, Theorem 5.2.2), where we deal with families
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that are not necessarily closed for convex combinations. This formula
confirms that ∂εf(x) only involve those data functions that are indexed
in the set of almost active indices at x; i.e., Tε(x) := {t ∈ T : ft(x) ≥
f(x) − ε}, ε ≥ 0. Furthermore, only data functions that have proper
closures are explicitly used within ∂εf(x). The impact of the other data
functions, having non-proper closures, is only decisive when choosing
the set D in (5.11).

Corollary 5.1.5 With the assumptions of Theorem 5.1.4 we have, for
all x ∈ dom f and ε > 0,

∂εf(x) = cl

{
⋃

t∈Tε−α(x), α≥0

∂α (ft + ID) (x)

}

. (5.14)

Proof. By a simple change of parameters in (5.12), putting α := ε +
ft(x) − f(x), we obtain α ≤ ε and ft(x) − f(x) = α − ε. Hence, t ∈
Tε−α(x) and the inclusion “⊂” in (5.14) holds (because ∂αft(x) = ∅
when α < 0). The opposite inclusion in (5.14) is easily checked.

In the following example, we illustrate the application of Theorem
5.1.4 and Corollary 5.1.5 by analyzing the supremum of non-decreasing
nets. See Exercise 74 for an alternative proof of this result.

Example 5.1.6 Let ft : X → R, t ∈ T, be a non-decreasing net of
convex functions satisfying (5.10), where (T, �) is a given directed set,
and suppose that f := supt∈T ft has a proper closure. In order to com-
pute ∂εf(x), we first observe that {ft, t ∈ T} is closed for convex com-
binations. Indeed, for every λ ∈ Δ(S0) with supp λ := (λt1 , . . . , λtk

),
λt1 � . . . � λtk

, and t1, . . . , tk ∈ T , we have that fλ ≤ ftk
. This implies

that
∑

1≤i≤kλi cl(fti
) ≤ cl

(∑
1≤i≤kλifti

)
≤ cl(ftk

) and cl(ftk
) is nec-

essarily proper; that is, tk ∈ S0.
Next, we verify the existence of some t0 ∈ T such that cl(ft) is proper

for all t ∈ T with t0 � t. Otherwise, if not, then cl(ft) would be fre-
quently non-proper, and this would imply that cl f is non-proper too,
a contradiction with our assumption. Consequently, the family {fs :
t0 � s, s ∈ T} also satisfies (5.10), since the net (cl ft)t∈T is also non-
decreasing and, so, cl f = supt∈T (cl ft) = supt0�s, s∈T (cl fs) . There-
fore, as f = supt0�s, s∈T fs, by applying (5.12) with D = X and using
the fact that (ft)t∈T is non-decreasing, for all x ∈ dom f and ε > 0 we
obtain

∂εf(x) = cl

{
⋃

t0�s,s∈T

∂(ε+fs(x)−f(x))fs(x)

}

⊂ cl

{
⋃

s∈T

⋂

s�t
∂εft(x)

}

,
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showing that

∂εf(x) = cl
{

⋃

t∈T

∂(ε+ft(x)−f(x))ft(x)
}

= cl

(
⋃

s∈T

⋂

s�t
∂εft(x)

)

. (5.15)

It is not difficult to verify that the convex combinations closedness
condition used in Theorem 5.1.4 does not constitute any loss of gener-
ality, because we can replace the family {ft, t ∈ T} by the new one

{

fλ :=
∑

t∈supp λ

λtft, λ ∈ Δ(S0); ft, t ∈ T \ S0

}

,

where S0 = {t ∈ T : f̄t ∈ Γ0(X)} (see (5.8)). Due to the easy rela-
tion cl(fλ) ≥

∑
t∈supp λλt cl(ft), we see that cl(fλ) is proper for all

λ ∈ Δ(S0) and, therefore, we can easily verify that the new family
above is closed for convex combinations. The point here is that the
value of the supremum is not altered with this change, both the old
and the new families have the same supremum. Consequently, applying
formula (5.12) to this new family, we obtain the following result.

Theorem 5.1.7 Let {ft, t ∈ T} be a family of convex functions and
denote f := supt∈T ft. If (5.10) holds, then, for all x ∈ dom f and ε >
0, we have

∂εf(x) = cl

{
⋃

λ∈Δ(S0)

∂(ε+fλ(x)−f(x)) (fλ + ID) (x)

}

, (5.16)

where D ⊂ X is any convex set satisfying (5.11).

Proof. Following the previous theorem, it is enough to apply (5.12)
to the family of convex functions {fλ, λ ∈ Δ(S0); ft, t ∈ T \ S0} once
we have verified that this family satisfies condition (5.10); that is,

f̄ = max

{

sup
λ∈Δ(S0)

cl(fλ), sup
t∈T\S0

cl(ft)

}

. (5.17)

In fact, the inequality “≥” always holds, while the opposite one follows
because the given new family contains the original one that is supposed
to satisfy (5.10).

Remark 3 (i) We obtain the expression for ∂f(x) in Theorem 5.1.7
just by intersecting (5.16) on ε > 0. Alternatively, we easily check the
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following formula that gives a characterization of ∂εf(x) by covering
together both cases, ε > 0 and ε = 0 :

∂εf(x) =
⋂

δ>ε

cl

{ ⋃
λ∈Δ(S0)

∂(δ+fλ(x)−f(x)) (fλ + ID) (x)

}
, ∀x ∈ dom f, ∀ε ≥ 0.

(ii) If, additionally, we assume in theorem 5.1.7 that the family {ft,
t ∈ T} is closed for convex combinations, then (5.16) implies that, for
all x ∈ dom f and ε > 0,

∂εf(x) = cl
{

⋃

t∈T

∂(ε+ft(x)−f(x)) (ft + ID) (x)
}

,

and, taking into account the remark in (i), we deduce that, for all
x ∈ dom f and ε ≥ 0,

∂εf(x) =
⋂

δ>ε

cl
{

⋃

t∈T

∂(δ+ft(x)−f(x)) (ft + ID) (x)
}

.

Next, with the purpose of illustrating the scope of Theorems 5.1.4
and 5.1.7, we give an example dealing with the conjugate function. In
turn, the result provided in this example (and its non-convex version
given in Exercise 75) is so general that it allows us to rediscover formula
(5.12) and its consequences given above. To do this, one can consider
the function g := inft∈T f∗

t whose conjugate is nothing other than our
supremum function f = supt∈T ft = g∗.

Example 5.1.8 Given a convex function f : X → R∞, we verify that
(5.14) gives rise to the following characterization, completing relation
(4.18) and Corollary 4.3.4,

∂εf
∗(x∗) = cl((∂εf)−1(x∗)) for all x∗ ∈ X∗ and ε > 0. (5.18)

In particular, if f is additionally lsc, then the set (∂εf)−1(x∗) is
closed and the last relation reduces to the well-known expression,
∂εf

∗ = (∂εf)−1 (see (4.18)). Of course, we may additionally assume
that f∗ is proper (and, hence, f is proper too), otherwise (5.18) always
holds, since all the involved sets would be empty.

To establish (5.18), we first observe that {fx := 〈·, x〉 − f(x), x ∈
dom f} is closed for convex combinations. In fact, for every λ ∈
Δ(dom f), we have x̄ :=

∑
x∈supp λλxx ∈ dom f and
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∑

x∈supp λ

λxfx ≤ 〈·, x̄〉 − f(x̄) =: fx̄.

Next, since f∗ = supx∈dom f fx and {fx, x ∈ dom f} ⊂ Γ0(X), (5.14)
yields

∂εf
∗(x∗) = cl

{
⋃

x∈Tε−α(x∗), α≥0

∂αfx(x∗)

}

= cl

{
⋃

α≥0
Tε−α(x∗)

}

= cl(Tε(x∗)) = cl((∂εf)−1(x∗),

as we wanted to prove.

Remark 4 It was also possible to obtain Example 5.1.8 as a con-
sequence of its non-convex counterpart given in Exercise 75, since
the convexity of f implies that, for all λ ∈ Δ(dom f) and εx ≥ 0 (see
(5.84)), ∑

x∈dom f

λx(∂εx
f)−1(x∗) ⊂ (∂εf)−1(x∗).

It is important to point out that, when X is a reflexive Banach space,
the closure operation previously used in (5.12), (5.14), and (5.16) can
be taken with respect to the norm topology in X∗. This fact comes
from certain convexity properties of the sets between the curly brackets
which appear there and from the Mazur theorem (see Exercise 72).

In the special situation where T is finite we do not require any
lower semicontinuity-like condition, because the family

{∑
1≤i≤kλkfk,

λ ∈ Δn} satisfies condition (5.10) for free as we show in the following
corollary.

Corollary 5.1.9 Given a finite family of convex functions {fk, 1 ≤
k ≤ n} and f := max1≤k≤n fk, for every x ∈ dom f and ε ≥ 0 we have

∂εf(x) =
⋃

λ∈Δn

∂(ε+Σ1≤k≤nλkfk(x)−f(x))

(
∑

1≤k≤n

λkfk

)

(x) (5.19)

and, particularly, for ε = 0,

∂f(x) =

{
⋃

∂

(
∑

1≤k≤n

λkfk

)

(x) : λ ∈ Δn,
∑

1≤k≤n

λkfk(x) = f(x)

}

.
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Proof. We start by proving that the family
{

gλ :=
∑

1≤k≤nλkfk,

λ ∈ Δn} , whose supremum coincides with f, satisfies condition (5.10);
that is, cl f = maxλ∈Δn

cl(gλ). Indeed, for every z ∈ X, we have

(cl f)(z) = sup
U∈NX

inf
y∈U

f(z + y) = sup
U∈NX

inf
y∈U

max
λ∈Δn

gλ(z + y),

and the minimax theorem (Theorem 3.4.3 and Corollary 3.4.9) yields

(cl f)(z) = sup
U∈NX

max
λ∈Δn

inf
y∈U

∑

1≤k≤n

λkfk(z + y) = max
λ∈Δn

sup
U∈NX

inf
y∈U

∑

1≤k≤n

λkfk(z + y).

Therefore,

(cl f)(z) = max
λ∈Δn

sup
U∈NX

inf
y∈U

gλ(z + y) = max
λ∈Δn

cl (gλ) (z),

and condition (5.10) is satisfied.
Now, since {gλ, λ ∈ Δn} is obviously closed for convex combina-

tions, applying Theorem 5.1.7 (or, more specifically, Remark 3(ii))
with D = dom f = dom gλ, for all λ ∈ Δn, for every x ∈ dom f and
ε ≥ 0 we obtain

∂εf(x) =
⋂

δ>ε

cl

{
⋃

λ∈Δn

∂(δ+gλ(x)−f(x)) (gλ + ID) (x)

}

.

Therefore, given x∗ ∈ ∂εf(x) and δi ↓ ε (δi ≡ ε when ε > 0), we find
λi ∈ Δn and x∗

i ∈ ∂(δi+gλi
(x)−f(x)) (gλi

+ ID) (x) such that x∗
i → x∗.

We may assume without loss of generality that λi → λ̄ ∈ Δn and, thus,
we can easily prove that x∗ ∈ ∂(ε+gλ̄(x)−f(x)) (gλ̄ + ID) (x), yielding the
non-trivial inclusion in (5.19).

Next, we apply Corollary 5.1.9 to the positive part function, f+ =
max{0, f}.

Example 5.1.10 Consider the convex function f : X → R. Then, for
every x ∈ dom f and ε ≥ 0, Corollary 5.1.9 yields

∂εf
+(x) =

⋃

0≤λ≤1

∂(ε+λf(x)−f+(x))(λf)(x). (5.20)

In particular, for ε = 0 we get
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∂f+(x) =

{
⋃

0≤λ≤1

∂ (λf) (x) : λf(x) = f+(x)

}

;

that is,

∂f+(x) =

⎧
⎪⎨

⎪⎩

∂f(x), if f(x) > 0,⋃

0<λ≤1

λ∂f(x)
⋃

Ndom f (x), if f(x) = 0,

Ndom f (x), if f(x) < 0.

Another way to make the family {ft, t ∈ T} closed for convex com-
binations is to take maxima of finite subfamilies; i.e.,

fJ := max{ft, t ∈ J}, J ∈ T := {S ⊂ T : |S| < +∞}. (5.21)

Therefore, in contrast to the previous approach using convex com-
binations, the resulting formulas of ∂εf(x) now involve approximate
subdifferentials of the functions fJ , reducing the problem to that of
computing the subdifferential of the supremum of a finite family. Fur-
thermore, in Exercise 77, the expression of ∂εf(x) is further simplified
when the underlying space is a reflexive Banach space.

Corollary 5.1.11 Let {ft, t ∈ T} be a family of convex functions sat-
isfying (5.10), and denote f := supt∈T ft. Then, for all x ∈ dom f and
ε > 0,

∂εf(x) = cl

{
⋃

J∈T , J⊂S0

∂(ε+fJ(x)−f(x)) (fJ + ID) (x)

}

, (5.22)

where D ⊂ X is any convex set satisfying (5.11).

Proof. We use Theorem 5.1.4 to calculate the subdifferential of the
supremum of {fJ , J ∈ T , J ⊂ S0; ft, t ∈ T \ S0}, which has the same
supremum as the original family {ft, t ∈ T}. Also, it is clear that
cl(fJ) ∈ Γ0(X) for all J ∈ T , J ⊂ S0, because cl(fJ) ≥ max{cl(ft), t ∈
J} and cl(ft) ∈ Γ0(X) for all t ∈ J ⊂ S0. At the same time, this new
family is easily checked to be closed for convex combinations, and to
satisfy condition (5.10); that is,

f̄ = max

{

sup
J∈T , J⊂S0

cl(fJ); sup
t∈T\S0

f̄t

}

.
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In the formulas given above the functions whose closures are proper
stand out, while the others with non-proper closures are present via
the set D. If this distinction needs not to be made, then Example 5.1.6
could directly be applied to the net (fJ)J∈T by considering T as a set
directed by ascending inclusions. Then, since we can easily verify that
f = supJ∈T fJ and cl f = supJ∈T (cl fJ) (under (5.10)), Example 5.1.6
gives rise, for all x ∈ dom f and ε > 0, to

∂εf(x) = cl
{

⋃

J∈T
∂(ε+fJ(x)−f(x))fJ(x)

}
. (5.23)

It is worth observing that, when X is a reflexive Banach space, the
closure in this expression can be removed provided that, instead of T ,
we consider the collection of countable subsets of T (see Exercise 77).

The need to make explicit characterizations of the normal cone to
sublevel sets is of great interest in convex analysis (see, for instance,
the proof of Theorem 8.2.2). The following two examples provide pre-
cise characterizations of the normal cone which are immediate conse-
quences of Theorem 5.1.4.

Example 5.1.12 Consider a convex function f : X → R such that

cl ([f ≤ 0]) =
[
f̄ ≤ 0

]
. (5.24)

We are going to prove that, for every x ∈ [f ≤ 0] and every ε > 0,

Nε
[f≤0](x) = cl

(
⋃

t>0
t∂( ε

t
+f(x))f(x)

)
; (5.25)

consequently, N[f≤0](x) is obtained by intersecting the last sets over
ε > 0.

To this aim, we define the functions

gt := tf, t > 0, and g := sup
t>0

gt.

Obviously, {gt, t > 0} is closed for convex combinations. Therefore,
because g = I[f≤0] and (5.10) holds (as a consequence of (5.24)), by
(5.12) we infer that

Nε
[f≤0](x) = ∂εg(x) = cl

(
⋃

t>0
∂(ε+tf(x)) (tf) (x)

)

= cl

(
⋃

t>0
t∂( ε

t
+f(x))f(x)

)

.
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Our analysis also covers the case where the function that defines the
sublevel set in Example 5.1.12 is a supremum.

Example 5.1.13 Consider a family of convex functions {ft, t ∈ T}
such that f := supt∈T ft and

cl ([f ≤ 0]) =
[
sup
t∈T

f̄t ≤ 0
]

.

Then, by combining Example 5.1.12 and Theorem 5.1.7 we obtain, for
all x ∈ [f ≤ 0] and ε > 0,

Nε
[f≤0](x) = cl

(
⋃

μ>0
μ∂ ε

μ
+f(x)f(x)

)

= cl

(
⋃

μ>0, λ∈Δ(S0)

μ∂(
ε
μ

+fλ(x)
) (fλ + ID) (x)

)

,

where S0 = {t ∈ T : f̄t ∈ Γ0(X)}, fλ =
∑

t∈supp λ λtft, and D ⊂ X is
any convex set satisfying (5.11).

We close this section by showing how Theorems 5.1.4 and 5.1.7 can
be useful for performing regularization procedures that are used for
developing subdifferential calculus rules. More results in this direction
will be given in chapter 7. In fact, for every function f ∈ Γ0(X) defined
on a Banach space X, we know that the Moreau envelope of f, which is
given by fγ := f� 1

2γ ‖·‖2 , non-decreases to f as γ ↓ 0. This can also be
extended to finite sums of convex functions f1, . . . , fk ∈ Γ0(X), so that
fγ
1 + . . . + fγ

k ↗ f1 + . . . + f as γ ↓ 0. So, we can apply our previous
results to write ∂ε(f + g) by means of ∂ε(fγ + gγ). The advantage here
is that fγ and gγ are regular enough to guarantee that ∂ε(fγ + gγ) can
be decomposed. We have the following corollary.

Corollary 5.1.14 Assume that X is Banach. Then the following
assertions hold true:

(i) Given f, g ∈ Γ0(X), for all x ∈ dom f ∩ dom g and ε > 0, we
have

∂ε(f + g)(x) = cl

{
⋃

γ>0, α∈R

∂(ε−α+fγ(x)−f(x))f
γ(x) + ∂(α+gγ(x)−g(x))g

γ(x)

}

.

(ii) Let {ft, t ∈ T} ⊂ Γ0(X) and denote f := supt∈T ft. Then, for
all x ∈ dom f and ε > 0, we have

∂εf(x) = cl

⎧
⎨

⎩

⋃

γ>0, α∈Δ(T )

∂(
ε+ Σ

t∈supp α
αtf

γ
t (x)−f(x)

)
(∑

t∈supp ααtf
γ
t

)
(x)

⎫
⎬

⎭
.
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Proof. (i) Since f, g, fγ , gγ ∈ Γ0(X), and fγ + gγ ↗ f + g, Theorem
5.1.4 applies and yields

∂ε(f + g)(x) = cl

{
⋃

γ>0
∂(ε+fγ(x)+gγ(x)−f(x)−g(x))(f

γ + gγ)(x)

}

,

and the desired result follows by Proposition 4.1.20(iii).
(ii) We have supt∈T fγ

t ↗ f and, again, Theorem 5.1.4 yields

∂εf(x) = cl

{
⋃

γ>0
∂(ε+supt∈T fγ

t (x)−f(x))

(
sup
t∈T

fγ
t

)
(x)

}

.

Thus, applying Theorem 5.1.7 (formula (5.16)) with D = X (as the
functions involved are in Γ0(X)),

∂εf(x) = cl

⎧
⎨

⎩

⋃

γ>0
cl

⎛

⎝
⋃

α∈Δ(T )

∂(
ε+ Σ

t∈supp α
αtf

γ
t (x)−f(x)

)
(

∑

t∈supp α
αtf

γ
t

)

(x)

⎞

⎠

⎫
⎬

⎭
,

and we are done.
In the subsequent sections, we derive different characterizations of

the subdifferential of pointwise suprema, which provide more geomet-
rical insight, and highlight the role played by (almost) active and non-
active functions. For instance, in the case of the support function σC ,
the forthcoming characterizations will rely on the set C and not on its
closed convex hull, as in (5.1). Also, in the setting of Theorem 5.1.4,
we shall characterize the subdifferential of the supremum function f
by appealing to the (almost) active functions and making implicit use
of the remaining functions through the normal cone to the effective
domain of f (or equivalent representations of it).

5.2 Main subdifferential formulas

We deal with an arbitrary family of convex functions ft : X → R, t ∈ T,
defined on the real (separated) locally convex space X. The index set
T is a fixed arbitrary (possibly, infinite) set. Our aim in this section
is to express in the most general framework the subdifferential of the
associated supremum function f := supt∈T ft, at any reference point
x ∈ X. The formulas that we give rely on the ε-active functions at
x, i.e., Tε(x) := {t ∈ T : ft(x) ≥ f(x) − ε}, ε ≥ 0. More precisely, our
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objective is to express the subdifferential of f at x by using exclusively
the data functions ft, t ∈ Tε(x), for small positive ε’s. Only a weak
closedness condition, which is satisfied by many families of functions,
is assumed in this section; but no hypothesis affecting the set of indices
or the continuity behavior of the functions involved is required.

We start with the following simple example illustrating the impos-
sibility of writing in general the set ∂f by means of ∂ft, t ∈ T.

Example 5.2.1 Let f1, f2 : R → R∞ be defined as

f1(x) = −
√

|x| + I[0,+∞[ and f2(x) = f1(−x),

so that f1(0) = f2(0) = 0 and f := max{f1, f2} = I{0}. Then it turns
out that ∂f(0) = N{0}(0) = R, while ∂f1(0) = ∂f2(0) = ∅.

Theorem 5.2.2 below provides the main formula of the subdiffer-
ential of the supremum function f, under the closedness condition
(5.10); that is, cl f = supt∈T (cl ft). This condition is satisfied not only
for lsc functions but also for wider families of functions as it is shown,
for instance, in Proposition 5.2.4 below. It is worth observing that the
inequality “≥” in (5.10) always holds, due to the following obvious rela-
tion f ≥ ft ≥ cl(ft). Hence, the lsc function supt∈T (cl ft) is majorized
by f and, thus, also by its closure cl f.

Due to the generality of our infinite-dimensional setting, we shall
make use of the family F(x) (see (1.4)).

Theorem 5.2.2 Assume that the convex functions ft : X → R, t ∈ T,
satisfy condition (5.10). Then, for every x ∈ X,

∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

. (5.26)

Proof. For the sake of brevity, here we only give the crucial part of
the proof corresponding to the case when ft ∈ Γ0(X), for all t ∈ T, so
that condition (5.10) trivially holds. The proof of the general case is
completed in Exercises 80 and 81, applying the arguments below to
updated families of functions related to {cl ft, t ∈ T} (while distin-
guishing among proper and non-proper functions).

Given x ∈ X, we denote by A the set on the right-hand side of (5.26),
and start by proving the inclusion A ⊂ ∂f(x). To this aim we prove
that ⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x) ⊂ ∂2ε(f + IL∩dom f )(x),
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for each ε > 0 and L ∈ F(x). Indeed, for every t ∈ Tε(x) we have that

∂εft(x) + NL∩dom f (x) ⊂ ∂ε(ft + IL∩dom f )(x) ⊂ ∂2ε(f + IL∩dom f )(x),
(5.27)

and so (4.15) and (4.16) give rise to

A ⊂
⋂

L∈F(x)

⋂

ε>0
∂2ε(f + IL∩dom f )(x) = ∂f(x).

Next, we shall prove the converse inclusion ∂f(x) ⊂ A, assuming
that x = θ, ∂f(θ) = ∂(cl f)(θ) �= ∅, f(θ) = (cl f)(θ) = 0 (Exercise 78).

Given x∗ ∈ X∗ \ A, we shall prove that x∗ ∈ X∗ \ ∂f(θ). Then there
are some ε > 0 and L ∈ F(θ) such that

x∗ /∈ cl (co (Aε) + NL∩dom f (θ)) ,

where Aε := ∪t∈Tε(θ)∂εft(θ) is non-empty because the functions ft are
assumed to be lsc. Next, the separation theorem gives rise to some
x̄ ∈ X and γ < 0 such that

〈x̄, x∗〉+γ > 〈x̄, u∗+αv∗〉 for all u∗∈Aε, v∗ ∈ NL∩dom f (θ) and α > 0.
(5.28)

Hence, dividing by α and making α ↑ ∞, we get

x̄ ∈ (NL∩dom f (θ))− = cl(cone(L ∩ dom f)). (5.29)

Notice that we have

σAε
(z) = sup

u∗∈Aε

〈z, u∗〉 ≤ f(z) + 2ε for all z ∈ X,

which easily comes from the following inequalities:

〈z, u∗〉 ≤ ft(z) − ft(θ) + ε ≤ f(z) + 2ε for all z ∈ X, t ∈ Tε(θ), u∗ ∈ ∂εft(θ).

Hence, dom f ⊂ dom σAε
and we have that

C := cone(L ∩ dom f) ⊂ dom σAε
= dom(σAε

− x∗). (5.30)

In particular, we have that x̄ ∈ cl(C), by (5.29), and riC �= ∅ because
aff C ⊂ L and L is finite-dimensional. Next, by taking v∗ = θ in (5.28)
we get

γ > 〈x̄, u∗ − x∗〉 for all u∗ ∈ Aε,
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which gives rise to (applying Exercise 14 to the convex proper function
σAε

− x∗ satisfying (riC) ∩ dom(σAε
− x∗) = riC �= ∅, by (5.30))

γ/2 > γ ≥ (σAε
− x∗)(x̄) ≥ inf

z∈cl(C)
(σAε

− x∗)(z) = inf
z∈C

(σAε
− x∗)(z).

Therefore, we find z ∈ L ∩ dom f and λ > 0 such that

0 > γ/2 > (σAε
− x∗)(λz) ≥ 〈λz, u∗ − x∗〉 for all u∗ ∈ Aε,

or, equivalently, γ/(2λ) > 〈z, u∗ − x∗〉 for all u∗ ∈ Aε. Thus, for all
u∗ ∈ Aε and v∗ ∈ NL∩dom f (θ), z satisfies

〈z, x∗〉 + γ/(2λ) > 〈z, u∗〉 ≥ 〈z, u∗ + v∗〉.

In other words, up to an adjustment of the parameter γ, z̄ plays the
same role as the one of x̄ in (5.28); therefore, we can suppose that

x̄ ∈ L ∩ dom f. (5.31)

Now, we consider the function h := inft∈T f∗
t so that, by (3.10) and

Theorem 3.2.2,
h∗ = sup

t∈T
f∗∗

t = sup
t∈T

ft = f. (5.32)

Observe that, due to the Fenchel inequality, for all z∗ ∈ X∗

h(z∗) = inf
t∈T

f∗
t (z∗) = inf

t∈T
(f∗

t (z∗) + f(θ) − 〈θ, z∗〉)

≥ inf
t∈T

(f∗
t (z∗) + ft(θ) − 〈θ, z∗〉) ≥ 0. (5.33)

Let us check that the function h additionally satisfies

h(z∗) ≥ ε for all z∗ ∈ X∗ \ Aε. (5.34)

Indeed, given z∗ ∈ X∗ \ Aε, so that z∗ /∈ ∂εft(θ) for all t ∈ Tε(θ), by
using again the Fenchel inequality we obtain that, for all t ∈ Tε(θ),

f∗
t (z∗) = f∗

t (z∗) + f(θ) − 〈θ, z∗〉 ≥ f∗
t (z∗) + ft(θ) − 〈θ, z∗〉 > ε.

Also, for all t ∈ T \ Tε(θ) we have that

f∗
t (z∗) = f∗

t (z∗) + f(θ) − 〈θ, z∗〉 > f∗
t (z∗) + ft(θ) + ε − 〈θ, z∗〉 ≥ ε,
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and the two inequalities above yield h(z∗) = inf
t∈T

f∗
t (z∗) ≥ ε, which is

(5.34). Next, by (5.32), for every given λ ∈ ]0, 1[ we have that

f(λx̄) = h∗(λx̄) = sup{〈λx̄, z∗〉 − h(z∗) : z∗ ∈ X∗}

= max

{

sup
z∗∈Aε

[〈λx̄, z∗〉 − h(z∗)] , sup
z∗∈X∗\Aε

[〈λx̄, z∗〉 − h(z∗)]

}

.

(5.35)

Then, on the one hand, we have that 〈x̄, x∗〉 + γ ≥ σAε
(x̄), by (5.28),

and so, due to the fact that h∗ ≥ 0 (see (5.33)),

sup
z∗∈Aε

[〈λx̄, z∗〉 − h(z∗)] ≤ sup
z∗∈Aε

〈λx̄, z∗〉 = λσAε(x̄) ≤ λ(γ + 〈x̄, x∗〉) < 〈λx̄, x∗〉.

(5.36)
On the other hand, (5.34) yields

sup
z∗∈X∗\Aε

[〈λx̄, z∗〉 − h(z∗)] ≤ sup
z∗∈X∗\Aε

λ [〈x̄, z∗〉 − h(z∗)] + sup
z∗∈X∗\Aε

(1 − λ) [−h(z∗)]

≤ λh∗(x̄) − (1 − λ)ε = λf(x̄) − (1 − λ)ε;

hence, if λ0 ∈ ]0, 1[ is such that λf(x̄) − (1 − λ)ε < 〈λx̄, x∗〉 for all
λ ∈]0, λ0], the last inequality yields

sup
z∗∈X∗\Aε

[〈λx̄, z∗〉 − h(z∗)] < 〈λx̄, x∗〉 for all λ ∈]0, λ0].

Consequently, by combining this inequality with (5.36), (5.35) gives
us f(λx̄) < 〈λx̄, x∗〉 for all λ ∈]0, λ0]; in other words, f(λx̄) − f(θ) =
f(λx̄) < 〈λx̄, x∗〉=〈λx̄ − θ, x∗〉, showing that x∗ /∈ ∂f(θ), as we wanted
to prove.

Remark 5 The same conclusion of Theorem 5.2.2 is valid if, instead
of condition (5.10), we assume that

(cl f)(x) = sup
t∈T

(cl ft)(x) for all x ∈ dom f,

as the reader will see in Theorem 7.3.2 in section 7.3 (see, also, Exer-
cise 114(i)).

Observe that if X = R
n in Theorem 5.2.2, then X ∈ F(x),

Ndom f (x) ⊂ NL∩dom f (x) for all L ∈ F(x),
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and formula (5.26) becomes

∂f(x) =
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

)

.

The intersection over the L’s can also be removed in other situations
which are analyzed in section 5.3.

As a consequence of Theorem 5.2.2, the following corollary shows
that the functions ft, t ∈ T \ Tε(x), only contribute to building the
effective domain of f.

Corollary 5.2.3 Let {ft, t ∈ T} be a non-empty family of convex
functions, and set f := supt∈T ft. Then for every x ∈ dom f we have
that

∂f(x) = ∂

(

sup
t∈Tε(x)

ft + Idom f

)

(x) for all ε > 0. (5.37)

Consequently, provided that int(dom f) �= ∅ or some of the functions
supt∈Tε(x) ft, ε > 0, is continuous somewhere in dom f, there exists
some ε0 > 0 such that

∂f(x) = Ndom f (x) + ∂

(

sup
t∈Tε(x)

ft

)

(x) for all 0 < ε ≤ ε0. (5.38)

Proof. We fix x ∈ dom f such that ∂f(x) = ∅; otherwise, if ∂f(x) = ∅,
then the desired formulas hold trivially. First, we assume that the
family {ft, t ∈ T} satisfies (5.10). We denote Aε := ∪t∈Tε(x)∂εft(x)
and gε := supt∈Tε(x) ft. Given δ > ε > 0, we observe that for all x∗ ∈
∂εft(x) and t ∈ Tε(x) we have that, for all y ∈ X,

〈x∗, y − x〉 ≤ ft(y) − ft(x) + ε ≤ gε(y) − ft(x) + ε ≤ gδ(y) − gδ(x) + 2ε;

that is, x∗ ∈ ∂2εgδ(x) and we deduce that Aε ⊂ ∂2εgδ(x). Hence, by
Theorem 5.2.2 and taking into account (4.16), we obtain
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∂f(x) =
⋂

L∈F(x), 0<ε<δ

co
{⋃

t∈Tε(x)∂εft(x) + NL∩dom f (x)
}

⊂
⋂

L∈F(x), 0<ε<δ

cl(∂2εgδ(x) + NL∩dom f (x))

⊂
⋂

L∈F(x), 0<ε<δ

∂2ε(gδ + IL∩dom f )(x)

=
⋂

0<ε<δ

∂2ε(gδ + Idom f )(x) = ∂(gδ + Idom f )(x).

Moreover, since gδ ≤ f and gδ(x) = f(x), we also have that ∂(gδ +
Idom f )(x) ⊂ ∂(f + Idom f )(x) = ∂f(x); that is, by combining the last
two inclusions, ∂f(x) ⊂ ∂(gδ + Idom f )(x) ⊂ ∂f(x), and ∂f(x) = ∂(gδ +
Idom f )(x) for all δ > 0.

To prove (5.37) in the general case, we fix ε > 0 and L ∈ F(x). Then

∂f(x) ⊂ ∂(f + IL∩dom f )(x) = ∂

(
sup
t∈T

(ft + IL∩dom f )
)

(x).

Moreover, since the family {ft + IL∩dom f , t ∈ T} satisfies (5.10)
(Proposition 5.2.4(iv)), by the first part of the proof we infer that
∂f(x) ⊂ ∂(supt∈Tε(x) ft + IL∩dom f )(x) and, by intersecting over the L’s
and using (4.16),

∂f(x) ⊂
⋂

L∈F(x)

∂

(

sup
t∈Tε(x)

ft + IL∩dom f

)

(x) = ∂

(

sup
t∈Tε(x)

ft + Idom f

)

(x).

Then we are done as the opposite inclusion is straightforward:

∂

(

sup
t∈Tε(x)

ft + Idom f

)

(x) ⊂ ∂(f + Idom f )(x) = ∂f(x).

Assume now that for some ε0 > 0 the function gε0 is continuous at x0 ∈
dom f . Then, by Proposition 4.1.20 and the first part of the proof, we
deduce ∂f(x) = ∂(gε0 + Idom f )(x) = ∂gε0(x) + Ndom f (x). Also, thanks
to Proposition 4.1.20, the same conclusion holds when int(dom f) �= ∅

The following proposition shows that condition (5.10) is satisfied in
a variety of situations.

Proposition 5.2.4 Let {ft, t ∈ T} be a non-empty family of convex
functions, and set f := supt∈T ft. Then condition (5.10) is fulfilled in
any of the following situations:
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(i) Each one of the ft’s is continuous somewhere in dom f. This
holds if, for instance, the function f is continuous somewhere.

(ii) T is finite and each one of the ft’s, except perhaps one of them,
is continuous somewhere in dom f.

(iii) X = R
n and f is finite at a common point of the sets ri(dom ft),

t ∈ T.
(iv) aff(dom ft) = aff(dom f), for all t ∈ T, and f|aff(dom f) is finite

and continuous somewhere in ri(dom f).

Proof. Setting At := epi ft for t ∈ T and A := epi f , one always has
A = ∩t∈T At, and we have to show that

cl(A) =
⋂

t∈T

cl(At).

The inclusion “⊂” being obvious, the opposite one remains to be
proved in each case.

(i) Take x0 ∈ X and μ ∈ R such that μ > f(x0). Hence, ft(x0) ≤
f(x0) < μ for all t ∈ T, so that y0 := (x0, μ) ∈ ∩t∈T int(At). Now, if
y ∈ ∩t∈T cl(At), then (1 − λ)y + λy0 ∈ ∩t∈T int(At) ⊂ A for every λ ∈
]0, 1[, due to (2.15), and so y ∈ cl(A).

(ii) We denote T := {1, . . . , k, k + 1}, and assume that each one of
the functions f1, . . . , fk is continuous at some xi ∈ dom f, respectively.
Set B := ∩1≤t≤kAt and x0 :=

∑k
1

1
kxi. Then x0 ∈ ∩1≤t≤k int(dom fi),

by (2.15), and so each one of the functions f1, . . . , fk is continuous
at x0. Next, similarly to (i), we can show that y0 := (x0, μ) ∈ Ak+1 ∩
(∩1≤t≤k int(At)) = Ak+1 ∩ int(B). Hence, using (2.20),

cl
(

⋂

t∈T

At

)
= cl (Ak+1 ∩ B) = cl(Ak+1) ∩ cl(B)

= cl(Ak+1) ∩
(

⋂

1≤t≤k

cl(At)

)

=
⋂

t∈T

cl(At).

(iii) Let x0 be the given continuity point. If all the ft’s are proper,
then the result is known (see the bibliographical notes). Otherwise,
given α ∈ R such that α < f(x0), we consider the functions

ft,α := max {ft, α} , t ∈ T ;

hence, fα := supt∈T ft,α = max {supt∈T ft, α} = max {f, α} , and

ft,α(x0) = max {ft(x0), α} ≤ max {f(x0), α} = f(x0) < +∞;
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that is, all the ft,α’s are proper. Moreover, by assertion (ii) we have
that cl(ft,α) = max {cl(ft), α} for all t ∈ T and, similarly, cl(fα) =
cl(max {f, α}) = max {cl f, α} . Since dom f = dom fα and dom ft =
dom ft,α for all t ∈ T, and the functions ft,α are proper, we infer that

max {cl f, α} = cl(fα) = supt∈T cl(ft,α) = max {supt∈T cl(ft), α} .
(5.39)

Thus, (5.10) follows when α goes to −∞. Indeed, we only need to
prove that (cl f)(x) ≤ supt∈T cl(ft)(x) for each x ∈ X. If (cl f)(x) =
+∞, (5.39) yields, for every scalar α,

+∞ = max {(cl f)(x), α} = max
{
supt∈T (cl ft)(x), α

}
,

and we obtain supt∈T (cl ft)(x) = +∞. If (cl f)(x) ∈ R and we take
α < (cl f)(x), we get, thanks to (5.39),

(cl f)(x) = max {(cl f)(x), α} = max {supt∈T (cl ft)(x), α} ,

and this implies supt∈T (cl ft)(x) = (cl f)(x).
Finally, if (cl f)(x) = −∞, for every scalar α, also by (5.39) we get

α = max {(cl f)(x), α} = max {supt∈T (cl ft)(x), α} ,

entailing this time supt∈T (cl ft)(x) ≤ α, and so supt∈T (cl ft)(x) = −∞.
(iv) Since the inequality supt∈T (cl ft) ≤ cl f is always true, we

need to prove that (cl f)(x) ≤ supt∈T (cl ft)(x) for x ∈ X such that
supt∈T (cl ft)(x) < +∞. Then

x ∈ dom(cl ft) ⊂ cl(dom ft) ⊂ aff(dom ft) = aff(dom f).

We also observe that

(cl ft)(x) = cl(ft|aff(dom f))(x) and (cl f)(x) = cl(f|aff(dom f))(x).

Then the conclusion follows from assertion (i) when applied to the
functions ft|aff(dom f), t ∈ T, and f|aff(dom f).

Relation (5.40) below constitutes an alternative formula to (5.26)
in which condition (5.10) is not required. Nonetheless, instead of the
original ft’s used in (5.26), formula (5.40) involves the augmented func-
tions ft + IL∩dom f , t ∈ T.

Corollary 5.2.5 Given the convex functions ft : X → R, t ∈ T, for
every x ∈ X we have
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∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)

. (5.40)

Proof. We shall consider the non-trivial case x ∈ dom f. To prove
the inclusion “⊂” in (5.40), we take L ∈ F(x) and define the convex
functions

gt := ft + IL∩dom f , t ∈ T, g := supt∈T gt.

Observe that g = f + IL∩dom f and dom gt = (dom ft) ∩ (L ∩ dom f) =
L ∩ (dom f) = dom g. Then, since dom g is a non-empty finite-
dimensional set, the family {gt, t ∈ T} satisfies condition (5.10)
(Proposition 5.2.4(iv)). Thus, due to the following relations, ∂εgt(x) +
NL∩dom f (x) ⊂ ∂ε(ft + IL∩dom f )(x) for all t ∈ Tε(x), and {t ∈ T :
gt(x) ≥ g(x) − ε} = Tε(x), ε ≥ 0,Theorem5.2.2 gives us

∂f(x) ⊂ ∂(f + IL)(x) = ∂g(x) ⊂
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εgt(x) + NL∩dom g(x)

)

⊂
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)

,

and the direct inclusion “⊂” in (5.40) follows. The proof is finished
because the opposite inclusion in (5.40) is straightforward.

In the sequel, we shall need the following representation of ∂f(x)
involving augmented lsc convex functions.

Corollary 5.2.6 Given the lsc convex functions ft : X → R, t ∈ T,
for every x ∈ X we have

∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)

. (5.41)

Proof. We shall consider the non-trivial case x ∈ dom f. We apply
formula (5.26) to the family of lsc convex functions {ft, t ∈ T} and
obtain that
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∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

=
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

⊂
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)

,

which is the inclusion “⊂” in (5.41). The proof is finished because the
opposite inclusion is straightforward.

Remark 6 If dom f = dom ft for all t ∈ T, then the formula in Corol-
lary 5.2.5 reduces to

∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂ε(ft + IL)(x)

)

.

A Banach version of main formula (5.26) is given next, in Theo-
rems 5.2.7 and 5.2.9, where the subdifferential of f is expressed using
the (exact) subdifferentials of the data functions ft, t ∈ Tε(x), but at
nearby points.

Theorem 5.2.7 Assume that X is a Banach space and let the func-
tions ft : X → R, t ∈ T, be convex and lsc. Then, for every x ∈ X,

∂f(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

, (5.42)

where
Sε(y − x) := {y∗ ∈ X∗ : 〈y∗, y − x〉 ≤ ε}, (5.43)

and
Bt(x, ε) := {y ∈ BX(x, ε) : |ft(y) − ft(x)| ≤ ε}. (5.44)

Proof. If x /∈ dom f, then (5.42) holds trivially, thanks to the conven-
tion in (2.6), since both sets NL∩dom f (x) and ∂f(x) are empty; hence,
we suppose that x ∈ dom f .

To prove the inclusion “⊃” we first observe that, given any ε > 0,

∂ft(y) ∩ Sε(y − x) ⊂ ∂3εf(x), (5.45)
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for every t ∈ Tε(x) and y ∈ Bt(x, ε). Indeed, if y∗ ∈ ∂ft(y) ∩ Sε(y − x),
then for every z ∈ X

〈y∗, z − x〉 = 〈y∗, z − y〉 + 〈y∗, y − x〉
≤ ft(z) − ft(y) + ε ≤ ft(z) − ft(x) + 2ε,

and the fact that t ∈ Tε(x) yields 〈y∗, z − x〉 ≤ ft(z) − ft(x) + 2ε ≤
f(z) − f(x) + 3ε; that is, y∗ ∈ ∂3εf(x). Thus, denoting by E the right-
hand side set in (5.42),

E ⊂
⋂

ε>0, L∈F(x)

co(∂3εf(x) + NL∩dom f (x)) ⊂
⋂

ε>0, L∈F(x)

∂3ε(f + IL∩dom f )(x)

=
⋂

ε>0, L∈F(x)

∂3ε(f + Idom f + IL)(x) =
⋂

ε>0, L∈F(x)

∂3ε(f + IL)(x),

and the inclusion “⊃” follows, thanks to (4.15) and (4.16).
To prove the inclusion “⊂”, we pick L ∈ F(x) and x∗ ∈ ∂εft(x) (if

any), for ε > 0 and t ∈ Tε(x). Since ∂εft(x) �= ∅, it turns out that ft is
proper. Next, according to Proposition 4.3.7, there are xε ∈ BX(x,

√
ε),

y∗
ε ∈ BX∗ , and λε ∈ [−1, 1] such that

x∗
ε := x∗ +

√
ε(y∗

ε + λεx
∗) ∈ ∂ft(xε), (5.46)

|〈x∗
ε, xε − x〉| ≤ ε +

√
ε, |ft(xε) − ft(x)| ≤ ε +

√
ε, (5.47)

entailing that xε ∈ Bt(x, ε +
√

ε) and x∗
ε ∈ ∂ft(xε) ∩ Sε+

√
ε(xε − x).

From the relation x∗ = (1/(1 + λε
√

ε)) (x∗
ε − √

εy∗
ε) coming

from (5.46), we get

x∗ ∈
(
1/(1 + λε

√
ε)

) (
∂ft(xε) ∩ Sε+

√
ε(xε − x) +

√
εBX∗

)

⊂
(
1/(1 + λε

√
ε)

) (
∂ft(xε) ∩ Sε+

√
ε(xε − x) + NL∩dom f (x) +

√
εBX∗

)

⊂
(
1/(1 + λε

√
ε)

)
co

(
Aε +

√
εBX∗

)
,

where

Aε :=
⋃

t∈Tε(x), y∈Bt(x,ε+
√

ε)

∂ft(y) ∩ Sε+
√

ε(y − x) + NL∩dom f (x).

We take 0 < ε < 1, so that 1/(1 + λε
√

ε) ∈ Λε := [1/(1 +
√

ε), 1/(1−√
ε)] , entailing that x∗ ∈ Λε co (Aε +

√
εBX∗) . Observe that 0 /∈ Λε

for all 0 < ε < 1. Then, according to formula (5.26) in Theorem 5.2.2,
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∂f(x) ⊂
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

(5.48)

⊂
⋂

0<ε<1
co

(
Λε co(Aε +

√
εBX∗) + NL∩dom f (x)

)

=
⋂

0<ε<1
co

{
Λε

(
co(Aε +

√
εBX∗) + NL∩dom f (x)

)}

=
⋂

0<ε<1
Λεco

{
co(Aε +

√
εBX∗) + NL∩dom f (x)

}

=
⋂

0<ε<1
Λεco

(
Aε + NL∩dom f (x) +

√
εBX∗

)

=
⋂

0<ε<1
Λεco

(
Aε +

√
εBX∗

)
,

where the second equality comes from Exercise 11. Moreover, since
the families (Λε)ε>0 and (co (Aε +

√
εBX∗))ε>0 are non-decreasing and

∩ε>0Λε = {1}, the last inclusion yields (Exercise 12)

∂f(x) ⊂
⋂

ε>0
co

(
Aε +

√
εBX∗

)
=

⋂

ε>0

(
co(Aε) +

√
εBX∗

)
,

and so ∂f(x) ⊂ ∩ε>0co(Aε) (Exercise 10(ii)). The desired inclusion
follows by the arbitrariness of L in F(x).

The following example draws aside, in general, the possibility of
extending Theorem 5.2.7 to non-Banach spaces.

Example 5.2.8 Assume that there is a proper lsc convex function g,
defined on the locally convex space X, which has an empty subdiffer-
ential everywhere (such a function exists as it is commented in the
bibliographical notes of this chapter). We may suppose that θ ∈ dom g
and g(θ) = 0. We define the function ft ∈ Γ0(X) as

ft(x) := tg(x), t ∈ T := ]0, +∞[ ,

so that f := supt∈T ft = I[g≤0]. Since ∂ft ≡ t∂g ≡ ∅ for all t ∈ T, the
set in the right-hand side of (5.42) is empty, whereas ∂f(θ) =
N[g≤0](θ) �= ∅.

Theorem 5.2.7 can be applied in a general locally convex space X
provided that the set cl(span(∪t∈T dom ft)) is a Banach subspace. We
have the following result where P is the family of all continuous semi-
norms inX.

Theorem 5.2.9 Let ft : X → R, t ∈ T, be convex and lsc functions,
and denote f := supt∈T ft. Assume that X0 := cl(span(∪t∈T dom ft))
is a Banach linear subspace of X. Then, for every x ∈ X, we have that
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∂f(x) =
⋂

ε>0, p∈P, L∈F(x)

co

{
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

,

(5.49)
where

Bp,t(x, ε) := {y ∈ X : p(y − x) ≤ ε, |ft(y) − ft(x)| ≤ ε}. (5.50)

Proof. Fix x ∈ dom f (⊂ X0) and L ∈ F(x). Let us first prove that

∂f(x) ⊂
⋂

ε>0
co

{
⋃

t∈Tε(x), y∈B0,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

,

(5.51)
where

B0,t(x, ε) := {y ∈ X : ‖y − x‖0 ≤ ε, |ft(y) − ft(x)| ≤ ε},

with ‖·‖0 being the norm in X0 which generates the induced topology
from X. To this aim, fix ε > 0 and denote X1 := X0 + L0, where L0 :=
span{L \ X0}; hence, X1 is a Banach subspace of X given with the
norm

‖u + v‖1 = ‖u‖0 + ‖v‖L0
, u ∈ X0, v ∈ L0. (5.52)

We define the functions gt : X1 → R, t ∈ T, as the restrictions of the
corresponding functions ft to X1; that is, gt(z) = ft(z), for z ∈ X1 ⊂
X, together with g := supt∈T gt. It is clear that each gt, t ∈ T, is convex
and lsc on L, as for all z ∈ X1

lim inf
y→z, y∈X1

gt(y) = lim inf
y→z, y∈X1

ft(y) ≥ lim inf
y→z

ft(y) ≥ ft(z) = gt(z).

(5.53)
Thus, since L is also a finite-dimensional subspace of the Banach space
X1, by applying Theorem 5.2.7 in X1 we get

∂g(x) ⊂ co(Ãε + ÑL∩dom g(x)), (5.54)

where Ãε := ∪t∈T̃ε(x), y∈B̃1,t(x,ε)∂gt(y) ∩ S̃ε(y − x), with

T̃ε(x) := {t ∈ T : gt(x) ≥ g(x) − ε} = {t ∈ T : ft(x) ≥ f(x) − ε} = Tε(x),

B̃1,t(x, ε) := {y ∈ X1 : ‖y − x‖1 ≤ ε, |gt(y) − gt(x)| ≤ ε},
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and
S̃ε(y − x) := {y∗ ∈ X∗

1 : 〈y∗, y − x〉 ≤ ε}, y ∈ X1.

More precisely, since ∪t∈T dom ft ⊂ X0, we have that

B̃1,t(x, ε) = {y ∈ X0 : ‖y − x‖0 ≤ ε, |ft(y) − ft(x)| ≤ ε} = B0,t(x, ε).

The closure operation and the normal cone ÑL∩dom g(x) in (5.54) are
given with respect to the subspace X1. In particular, since L ∩ dom g ⊂
X1 we verify that (Exercise 55(iv))

ÑL∩dom g(x) = {u∗
|X1

: u∗ ∈ NL∩dom g(x)} = {u∗
|X1

: u∗ ∈ NL∩dom f (x)},

(5.55)
as dom g = dom f. Similarly, using again the extension theorem, we
verify that

S̃ε(y − x) = {y∗
|X1

: y∗ ∈ Sε(y − x)} for all y ∈ X1. (5.56)

Accordingly, each element y∗
0 ∈ Ãε (if any) satisfies y∗

0 ∈ ∂gt0(y0) ∩
S̃ε(y0 − x) for some t0 ∈ T̃ε(x) and y0 ∈ B̃1,t0(x, ε). Hence, since
dom ft0 ⊂ X0 ⊂ X1, there exists y∗ ∈ ∂ft0(y0) such that y∗

0 = y∗
|X1

(by Exercise 55(i)). Moreover, due to (5.56), we may assume that
y∗ ∈ Sε(y0 − x). Thus,

y∗ ∈
⋃

t∈Tε(x), y∈B0,t(x,ε)

∂ft(y) ∩ Sε(y − x) =: Aε.

Therefore, given any x∗ ∈ ∂f(x), we have that x∗
|X1

∈ ∂g(x) and so, by
(5.54) and (5.55),

x∗
|X1

∈ co(Ãε + ÑL∩dom g(x)) ⊂ co
{

y∗
|X1

+ u∗
|X1

: y∗ ∈ Aε, u∗ ∈ NL∩dom f (x)
}

.

In other words, for all v ∈ X1,

〈x∗, v〉 ≤ sup
y∗∈Aε, u∗∈NL∩dom f (x)

〈
y∗

|X1
+ u∗

|X1
, v

〉

= sup
y∗∈Aε, u∗∈NL∩dom f (x)

〈y∗ + u∗, v〉

= σAε+NL∩dom f (x)(v) ≤ σAε+NL∩dom f (x)+X⊥
1
(v).

Thus, since this last inequality also holds for all v /∈ X1 (the term of
the right-hand side is equal to +∞ in such a case, due to (3.51)), we
deduce that
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x∗ ∈ co(Aε + NL∩dom f (x) + X⊥
1 )

⊂ co(Aε + NL∩dom f (x) + L⊥) ⊂ co(Aε + NL∩dom f (x)),

as NL∩dom f (x) + L⊥ ⊂ NL∩dom f (x). Then the inclusion “⊂” in (5.51)
follows because ε was arbitrarily chosen.

Finally, fix x∗ ∈ ∂f(x). Given q ∈ P and ε > 0, we have that

Bq(x, ε) := {y ∈ X : q(y − x) ≤ ε}
⊃ {y ∈ X0 : q(y − x) ≤ ε} = {y ∈ X0 : q|X0

(y − x) ≤ ε}.

So, since the norm topology in X0 is equivalently determined by the
family {p|X0

: p ∈ P}, we find 0 < δ < ε such that

{y ∈ X0 : ‖y − x‖0 ≤ δ} ⊂ {y ∈ X0 : q|X0
(y − x) ≤ ε} ⊂ Bq(x, ε).

Consequently, using (5.51),

x∗ ∈ co

{
⋃

t∈Tδ(x), y∈B0,t(x,δ)

∂ft(y) ∩ Sδ(y − x) + NL∩dom f (x)

}

⊂ co

{
⋃

t∈Tε(x), y∈Bq,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

,

and, by the arbitrariness of q and ε, we infer that

x∗ ∈
⋂

ε>0, q∈P
co

{
⋃

t∈Tε(x), y∈Bq,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

.

So, the inclusion “⊂” in (5.49) follows by intersecting over the L’s. The
proof is complete as the opposite inclusion there is straightforward.

Observe that we can replace Bp,t(x, ε) in formula (5.49) with the
larger set

Bt(x, ε) := {y ∈ X : |ft(y) − ft(x)| ≤ ε},

giving rise to a representation of ∂f(x) free of the seminorms. However,
the use of seminorms in (5.49) will be crucial in the sequel, namely in
Corollary 5.3.6. Moreover, we have the following result.

Corollary 5.2.10 Under the assumptions of Theorem 5.2.9, we have
that
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∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

)

.

Proof. The inclusion “⊂” follows from (5.49) as Bp,t(x, ε) ⊂ Bt(x, ε)
for all p ∈ P. To verify the opposite inclusion, observe that, for all
t ∈ Tε(x) and y ∈ Bt(x, ε)

∂ft(y) ∩ Sε(y − x) ⊂ ∂3εf(x). (5.57)

Indeed, if z∗ ∈ ∂ft(y) ∩ Sε(y − x), then for all z ∈ X we get 〈z∗, z−
y〉 ≤ ft(z) − ft(y) ≤ f(z) − ft(x) + ε, and so,

〈z∗, z − x〉 ≤ f(z) − ft(x) + 〈z∗, y − x〉 + ε

≤ f(z) − ft(x) + 2ε ≤ f(z) − f(x) + 3ε.

Consequently, using (4.9),

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x) ⊂ ∂3εf(x) + NL∩dom f (x)
= ∂3ε(f + IL∩dom f )(x) = ∂3ε(f + IL)(x),

and (4.15) together with (4.16) yield, intersecting over ε and then over
L,

⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

)

⊂
⋂

L∈F(x)

⋂

ε>0
∂3ε(f + IL)(x) =

⋂

L∈F(x)

∂(f + IL)(x) = ∂f(x).

The proof of the following corollary is similar to the one of Theorem
5.2.7, but uses formula (5.41) instead of (5.26) in Theorem 5.2.2. In
Theorem 5.2.12 we will indeed prove that this result holds in any
locally convex space.

Corollary 5.2.11 Assume that X is a Banach space and let the func-
tions ft : X → R, t ∈ T, be convex and lsc. Then, for every x ∈ X, we
have that

∂f(x) =
⋂

ε>0, L∈F(x)

co

⎧
⎨

⎩

⋃

t∈Tε(x), y∈Bt(x,ε)

∂(ft + IL∩dom f )(y) ∩ Sε(y − x)

⎫
⎬

⎭
.

We can place ourselves in the same setting as that of Theorem 5.2.9
by using the augmented data functions ft + IL∩dom f , t ∈ T. Addition-
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ally, in this case, the normal cone NL∩dom f (x) is dropped out from
formula (5.49) as we show next.

Theorem 5.2.12 Given lsc convex functions ft : X → R, t ∈ T, we
denote f := supt∈T ft. Then, for every x ∈ X, we have that

∂f(x) =
⋂

ε>0, p∈P, L∈F(x)

co

(
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂(ft + IL∩dom f )(y) ∩ Sε(y − x)

)

.

(5.58)

Remark 7 (before the proof) Taking into account that, for every
t ∈ Tε(x) and y ∈ Bp,t(x, ε),

∂(ft + IL∩dom f )(y) ∩ Sε(y − x) ⊂ ∂3ε(f + IL)(x), for every L ⊂ X,

(5.59)
formula (5.58) is equivalently written as

∂f(x) =
⋂

ε>0, p∈P
L∈F(x)

co

⎛
⎜⎝ ⋃

t∈Tε(x)
y∈Bp,t(x,ε)

∂(ft + IL∩dom f )(y) ∩ Sε(y − x) ∩ ∂ε(f + IL)(x)

⎞
⎟⎠ .

(5.60)

Proof. First we suppose that X is Banach. The proof in this case is
similar to the one in Theorem 5.2.7, and so we only give a sketch of the
proof of the inclusion “⊂”. Fix 0 < ε < 1 and L ∈ F(x), and consider
the lsc convex functions gt : X → R, t ∈ T, defined as

gt := ft + IL∩dom f . (5.61)

So, by Corollary 5.2.6,

∂f(x) ⊂ co

(
⋃

t∈Tε(x)

∂εgt(x)

)

. (5.62)

Then, by Proposition 4.3.7, associated with each element x∗ ∈ ∂εgt(x),
t ∈ Tε(x), there are xε ∈ BX(x,

√
ε) ∩

(
L ∩ dom f

)
, y∗

ε ∈ BX∗ , and
λε ∈ [−1, 1] such that

x∗
ε := x∗ +

√
ε(y∗

ε + λεx
∗) ∈ ∂gt(xε), (5.63)

|〈x∗
ε, xε − x〉| ≤ ε +

√
ε, |ft(xε) − ft(x)| ≤ ε +

√
ε,

entailing that x∗
ε ∈ ∂gt(xε) ∩ Sε+

√
ε(xε − x). Hence, since x∗ =

(1/(1 + λε
√

ε)) (x∗
ε − √

εy∗
ε), coming from (5.63), we get
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x∗ ∈
(
1/(1 + λε

√
ε)
) (

∂gt(xε) ∩ Sε+
√

ε(xε − x) +
√

εBX∗
)

⊂
(
1/(1 + λε

√
ε)
)
co

(
Aε +

√
εBX∗

)
,

where Λε := [1/(1 +
√

ε), 1/(1 − √
ε)] and

Aε :=
⋃

t∈Tε(x), y∈Bt(x,ε+
√

ε)

∂gt(y) ∩ Sε+
√

ε(y − x).

Consequently, (5.62) entails (Exercise 12)

∂f(x) ⊂
⋂

0<ε<1, L∈F(x)

Λεco

(
⋃

t∈Tε(x)

Aε

)

=
⋂

0<ε<1, L∈F(x)

co

(
⋃

t∈Tε(x)

Aε

)

.

More generally, we suppose that X is not necessarily Banach. Given
x ∈ dom f, x∗ ∈ ∂f(x), and L ∈ F(x), we introduce the lsc convex
functions gt : L → R, t ∈ T, defined as

gt(z) := ft(z) + IL∩dom f (z), for z ∈ L,

together with the associated supremum g := supt∈T gt; hence, g is the
restriction of f + IL∩dom f to L whose effective domain is given by

dom g = L ∩ (dom f ∩ L ∩ dom f) = L ∩ dom f.

Fix ε > 0 and p ∈ P. Then, since x∗
0 := x∗

|L ∈ ∂g(x), by applying Corol-
lary 5.2.11 to the family {gt, t ∈ T} we get

x∗
0 ⊂ co

(
⋃

t∈T̃ε(x), y∈B̃p,t(x,ε)

∂gt(y) ∩ S̃ε(y − x)

)

, (5.64)

where T̃ε(x) := {t ∈ T : gt(x) ≥ g(x) − ε} = Tε(x),

B̃p,t(x, ε) := {y ∈ L ∩ dom f : p|L(y − x) ≤ ε, |ft(y) − ft(x)| ≤ ε} ⊂ Bp,t(x, ε),

and S̃ε(y − x) := {y ∈ L∗ : 〈y∗, y − x〉 ≤ ε}. Observe that for all t ∈
T̃ε(x) and y ∈ B̃p,t(x, ε) we have that (Exercise 55(i))

∂gt(y) ∩ S̃ε(y − x) = {y∗
|L ∈ L∗ : y∗ ∈ ∂(ft + IL∩dom f)(y) ∩ Sε(y − x)}.

Therefore, (5.64) entails
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x∗ ⊂ co

(
⋃

t∈T̃ε(x), y∈B̃p,t(x,ε)

∂(ft + IL∩dom f )(y) ∩ Sε(y − x)

)

+ L⊥

⊂ co

(
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂(ft + IL∩dom f )(y) ∩ Sε(y − x)

)

+ L⊥,

and so, by taking the intersection over L and after that over ε and
p (Exercise 10(iii)), we get the inclusion “⊂” in (5.58). The opposite
inclusion is straightforward.

The lower semicontinuity assumption cannot be dropped from The-
orem 5.2.7, as we show in the following example, which imitates the
construction in Example 5.2.8. Alternative formulas for the non-lsc
case can be done for functions satisfying the closure condition (5.10)
(Exercise 87).

Example 5.2.13 Let X be any infinite-dimensional Banach space,
let g be a non-continuous linear mapping, and define the functions
ft : X → R as

ft(x) := tg(x), t ∈ T := ]0, +∞[ .

Also now f := supt∈T ft = I[g≤0] and ∂f(θ) = N[g≤0](θ) �= ∅. Simulta-
neously, ∂ft ≡ t∂g ≡ ∅ for all t ∈ T, and the conclusion of Theorem
5.2.7 fails.

We continue with Example 5.2.1 to give the corresponding formula
of ∂f, using Theorem 5.2.7.

Example 5.2.14 (Example 5.2.1, revisited) Let f1, f2 : R → R∞
be defined as

f1(x) = −
√

|x| + I[0,+∞[ and f2(x) = f1(−x).

Then f := max{f1, f2} = I{0} and, so, ∂f(0) = R. This can be con-
firmed by Theorem 5.2.7. Indeed, denote

Ai := {y∗ ∈ ∂fi(y) : y ∈ εBR, |fi(y)| ≤ ε, y∗y ≤ ε} , i = 1, 2,

where 0 < ε < 1 is fixed. Then we have that

A1 =
{
−1/(2

√
y) : 0 < y ≤ ε2

}
= ]−∞, −1/(2ε)] ,
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and, similarly, A2 = [1/(2ε), +∞[ . Therefore, since Tε(0) = {1, 2} and
dom f = {0}, Theorem 5.2.7 yields ∂f(0) = ∩ε>0co {(A1 ∪ A2) + R} =
R.

5.3 The role of continuity assumptions

In this part, we derive other characterizations of the subdifferential of
f when the data functions satisfy additional continuity assumptions.
The first result allows us to remove the finite-dimensional sections of
dom f used in the general characterization of the subdifferential of f
given in Theorem 5.2.2.

Proposition 5.3.1 Let x ∈ dom f be such that either ri(cone(dom f −
x)) �= ∅ or cone(dom f − x) is closed. Then, provided that (5.10) holds,
we have that

∂f(x) =
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

)

. (5.65)

Proof. The inclusion “⊃” always holds, due to Theorem 5.2.2. To
prove the inclusion “⊂”, we only consider the case when ∂f(x) �= ∅;
hence, we may suppose that x = θ and f(θ) = 0 (Exercise 78).

Assume first that ri(cone(dom f)) �= ∅. We fix ε > 0, a θ-
neighborhood V ⊂ X∗, and choose L ∈ F(θ) such that L⊥ ⊂ (1/2)V
and L ∩ ri(cone(dom f)) �= ∅. We also denote Aε := ∪t∈Tε(θ)

∂εft(θ). Then, by (2.15), we have that cl (L ∩ (cone(dom f))) = L ∩
cl(cone(dom f)), which leads us to

NL∩dom f (θ) = (L ∩ cl(cone(dom f)))−

= cl(L− + (cone(dom f))−) = cl
(
L⊥ + Ndom f (θ)

)
.

Thus, according to Theorem 5.2.2,

∂f(θ) ⊂ co
(
Aε + NL∩dom f (θ)

)
= co

(
Aε + L⊥ + Ndom f (θ)

)
⊂ co(Aε) + Ndom f (θ) + V,

and the desired inclusion follows then by intersecting over V and ε > 0.
Now, we assume that cone(dom f) is closed. Then, for every L ∈

F(θ), we have

NL∩dom f (θ) = NL∩(cone(dom f))(θ) = ∂(IL + Icone(dom f))(θ).
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Then, using (4.45) together with the relations ∂εIL(θ) = L⊥ and

∂εIcone(dom f)(θ) = ∂Icone(dom f)(θ) = Ndom f (θ),

we obtain

NL∩dom f (θ) =
⋂

ε>0

cl(∂εIL(θ) + ∂εIcone(dom f)(θ)) = cl(L⊥ + Ndom f (θ)).

Consequently, by Theorem 5.2.2 and Exercise 10,

∂f(θ) =
⋂

ε>0, L∈F(θ)

cl
(
co(Aε) + Ndom f (θ) + L⊥)

=
⋂

ε>0
co (Aε + Ndom f (θ)) ,

as we wanted to prove.

Remark 8 The conditions in Proposition (5.3.1) guarantee that (see
Exercise 5(i))

⋃

L∈FX

cl(L ∩ (cone(dom f − x))) = cl(cone(dom f − x)),

where FX = FX(θ). At the same time, the second part in that exercise
gives an example where the last equality is not fulfilled.

Corollary 5.3.2 Assume that (5.10) holds, and let x ∈ dom f be such
that the set int(cone(dom f − x)) is non-empty. Then we have

∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

. (5.66)

Proof. We may assume that ∂f(x) �= ∅. By Proposition 5.3.1 we have
that

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

}

,

and the conclusion follows by applying Proposition 4.1.28 to the non-
decreasing family of non-empty convex sets Aε = co

{
∪t∈Tε(x)∂εft(x)

}
,

ε > 0 (non-empty because we are assuming that ∂f(x) �= ∅).

Corollary 5.3.3 Assume that condition (5.10) holds. Fix x ∈ dom f
and let ε0 > 0 such that the function fε0 := supt∈Tε0 (x) ft is finite and
continuous at some point in dom f. Then we have that
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∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

.

Proof. Theorem 5.2.2 together with Proposition 4.1.20 yields, due to
Corollary 5.2.3,

∂f(x) = ∂(fε0 + Idom f )(x) = ∂fε0(x) + Ndom f (x). (5.67)

Moreover, since the supremum function fε0 is continuous somewhere,
the family {ft, t ∈ Tε0(x)} satisfies condition (5.10) (Exercise 67(i)).
Thus, Corollary 5.3.2 gives rise to

∂fε0(x) = Ndom fε0
(x) +

⋂

ε>0
co

{⋃
t∈T̃ε(x)∂εft(x)

}

= Ndom fε0
(x) +

⋂

0<ε<ε0

co
{⋃

t∈T̃ε(x)∂εft(x)
}

,

where T̃ε(x) :={t ∈ Tε0(x) : ft(x)≥fε0(x) − ε} = {t ∈ Tε0(x) : ft(x) ≥
f(x) − ε}. Hence, T̃ε(x) = Tε(x) for all ε ∈ ]0, ε0[, and the relation
above, together with (5.67), entails

∂f(x) = Ndom f (x) + Ndom fε0
(x) +

⋂

0<ε<ε0

co

{
⋃

t∈Tε(x)

∂εft(x)

}

.

(5.68)
More precisely, again by Proposition 4.1.20, we have that Ndom f (x) +
Ndom fε0

(x) = Ndom f∩dom fε0
(x) = Ndom f (x), and (5.68) implies the

desired formula.
In the following result, the continuity assumption on the ft’s allows

us to avoid the assumption that the whole space X is Banach in The-
orem 5.2.7.

Theorem 5.3.4 Let the functions ft, t ∈ T, be convex and lsc, and
denote f := supt∈T ft. Assume that there exists a Banach linear sub-
space X0 such that each one of the ft’s has a point of continuity in
X0 ∩ f−1

t (R). Then for every x ∈ X we have that

∂f(x) =
⋂

ε>0, p∈P, L∈F(x)

co

{ ⋃
t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}
.

(5.69)

Remark 9 (before the proof) The hypothesis above is fulfilled if,
for instance, all the ft’s have a common continuity point x0 ∈ X; in
such a case, we can take X0 ≡ R{x0}.
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Proof. Fix x ∈ dom f, ε > 0, and p ∈ P. Given L ∈ F(x), we denote
L0 := span{L \ X0} and X1 := X0 + L0, so that L ⊂ X1. Hence, X1 is
a Banach space and cl(span(∪t∈T dom(ft + IX1))) ⊂ X1. So, by apply-
ing Theorem 5.2.9 to the supremum function, f + IX1 , of the family of
lsc convex functions {ft + IX1 , t ∈ T} we obtain that

∂f(x) ⊂ ∂(f + IX1)(x) ⊂ co
{

Ãε,p + NL∩dom f∩X1(x)
}

= co
{

Ãε,p + NL∩dom f (x)
}

,

(5.70)
where

Ãε,p :=
⋃

t∈Tε(x), y∈B̃p,t(x,ε)

∂(ft + IX1)(y) ∩ Sε(y − x),

and

B̃p,t(x, ε) := {y ∈ X1 : p(y − x) ≤ ε, |ft(y) − ft(x)| ≤ ε} ⊂ Bp,t(x, ε).

Observe that ∂(ft + IX1)(y) = ∂ft(y) + X1
⊥, due to Proposition 4.1.20.

Thus, because Sε(y − x) + X1
⊥ ⊂ Sε(y − x) for all y ∈ B̃p,t(x, ε) ⊂

X1, we can easily verify that

∂(ft + IX1 )(y) ∩ Sε(y − x) ⊂ (∂ft(y) ∩ Sε(y − x)) + X1
⊥ ⊂ (∂ft(y) ∩ Sε(y − x)) + L⊥.

Thus, (5.70) entails

∂f(x) ⊂ co
{

Ãε,p + NL∩dom f (x)
}

⊂ co

{
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x) + L⊥
}

= co

{
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x) + NL∩dom f (x)

}

.

Hence, the inclusion “⊂” holds by intersecting over ε > 0, p ∈ P, and
L ∈ F(x), and we are done as the opposite inclusion is straightforward.

The previous formulas of ∂f(x) are significantly simplified under
the continuity of the supremum function.

Theorem 5.3.5 Let the functions ft, t ∈ T, be convex, and assume
that f := supt∈T ft is finite and continuous somewhere. Then, for every
x ∈ X, we have that
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∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

(5.71)

and, provided that the ft’s are lsc,

∂f(x) = Ndom f (x) +
⋂

ε>0, p∈P
co

{
⋃

t∈Tε(x),y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x)

}

.

(5.72)

Remark 10 (before the proof) Observe that formula (5.71) uses
approximate subdifferentials of the ft’s at the reference point x, like
in (5.26), whereas (5.72) is given in terms of exact subdifferentials at
nearby points, as in (5.58).

Proof. Formula (5.71) follows from Corollary 5.3.2, as condition (5.10)
automatically holds in the current setting (Proposition 5.2.4(i)). To
prove formula (5.72) we denote

Aε,p :=
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x).

Since Aε,p ⊂ ∂3εf(x), coming from (5.57), we have that

Ndom f (x) +
⋂

ε>0, p∈P
co(Aε,p) ⊂ Ndom f (x) +

⋂

ε>0
∂3εf(x)

= Ndom f (x) + ∂f(x) = ∂f(x),

showing that the inclusion “⊃” in (5.72) holds. Hence, (5.72) holds
whenever ∂f(x) = ∅, and we only need to establish the inclusion “⊂”
in (5.72) when ∂f(x) �= ∅.

To this aim, we assume that all the ft’s are proper; the general case
is treated in Exercise 89. Then, due to Proposition 2.2.6, the current
continuity hypothesis implies that all the ft’s are finite and continuous
at some point x0 ∈ dom f . Therefore, Theorem 5.3.4 applies and yields

∂f(x) =
⋂

ε>0, p∈P, L∈F(x)

co (NL∩dom f (x) + Aε,p) .

Observe that the same relation holds if F(x) is replaced with the family
F(x, x0) := {L ∈ F(x) : x0 ∈ L} (Exercise 82). Notice also that, due to
Proposition 4.1.20, NL∩dom f (x) = Ndom f (x) + L⊥ for all L ∈ F(x, x0),
and the relation above yields (Exercise 10(i))
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∂f(x) =
⋂

ε>0, p∈P, L∈F(x,x0)

co
(
Ndom f (x) + Aε,p + L⊥

)

=
⋂

ε>0, p∈P
co

(
Ndom f (x) + Aε,p

)
=

⋂

ε>0, p∈P
cl

(
Ndom f (x) + co (Aε,p)

)
. (5.73)

Now we consider the following partial order in the set ]0, +∞[×P,

(ε1, p1) � (ε2, p2) ⇐⇒ ε1 ≤ ε2 and p1 ≥ p2,

so that (]0, +∞[×P, �) becomes a directed set, and the net
(co Aε,p)(ε,p) is non-decreasing. Moreover, using again the relation
Aε,p ⊂ ∂3εf(x), for every z ∈ dom f, ε > 0, and p ∈ P we have that

σcoAε,p
(z − x) = σAε,p

(z − x) ≤ σ∂3εf(x)(z − x) ≤ f(z) − f(x) + 3ε < +∞;

that is, dom f − x ⊂ ∩ε>0, p∈P dom σAε,p
and, obviously, dom f − x ⊂

∪ε>0, p∈P dom σAε,p
. Therefore, Proposition 4.1.28 applies and (5.73)

produces the desired result.

Corollary 5.3.6 Let ft : X → R∞, t ∈ T, be convex functions and
assume that f := supt∈T ft is finite and continuous at x ∈ X. Then
we have that

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

(5.74)

=
⋂

ε>0, p∈P
co

{
⋃

t∈Tε(x), y∈Bp(x,ε)

∂ft(y)

}

, (5.75)

where Bp(x, ε) := {y ∈ X : p(y − x) ≤ ε}.

Proof. Without any loss of generality, we may suppose that all the
ft’s are proper. Otherwise, according to Corollary 5.2.3, and since

∂f(x) = ∂

(

sup
t∈Tε(x)

ft

)

(x) + Ndom f (x) for all ε > 0, (5.76)

we can deal with the subfamily {ft, t ∈ Tε(x)} of functions, which are
continuous at x and, therefore, proper. We may assume that x = θ
and f(θ) = 0 (Exercise 78). First, formula (5.74) is straightforward
from (5.71) as Ndom f (θ) = {θ}, whereas formula (5.72) implies that

∂f(θ) =
⋂

ε>0, p∈P
co(Aε,p) ⊂

⋂

ε>0, p∈P
co

{
⋃

t∈Tε(θ), y∈Bp(θ,ε)

∂ft(y)

}

,
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where we remember that

Aε,p :=
⋃

t∈Tε(θ), y∈Bp,t(θ,ε)

∂ft(y) ∩ Sε(y).

This yields the inclusion “⊂” in (5.75). To prove the other inclusion
in (5.75), we only need to verify that

C :=
⋂

ε>0, p∈P
co(Cε,p) ⊂

⋂

ε>0, p∈P
co(Aε,p),

where Cε,p := ∪t∈Tε(θ), y∈Bp(θ,ε)∂ft(y). To this aim, we take ε0 ∈ ]0, 1[
and U ∈ NX such that (see Proposition 2.2.6)

|ft(y) − ft(z)| ≤ pU (y − z) for all y, z ∈ U, t ∈ Tε0(θ), (5.77)

where pU is the gauge function of U. Next, take ε ∈ ]0, ε0/2[, p ∈ P
and consider p̃ := max{p, pU}. Then, given y ∈ Bp̃(θ, ε) (⊂ BpU

(θ, ε) =
ε[pU ≤ 1] = εU), y∗ ∈ ∂ft(y), and t ∈ Tε(θ) ⊂ Tε0(θ), relation (5.77)
gives rise to

〈y∗, z − y〉 ≤ ft(z) − ft(y) ≤ |ft(y) − ft(z)| ≤ pU (y − z) for all z ∈ U.

In particular, taking z = θ we obtain that |ft(y) − ft(θ)| ≤ pU (y) ≤ ε,
while z = 2y ∈ 2εU ⊂ U gives 〈y∗, y〉 ≤ pU (y) ≤ ε, entailing that y∗ ∈
∂ft(y) ∩ Sε(y) and y ∈ Bp̃,t(θ, ε); in other words, Cε,p̃ ⊂ Aε,p̃. There-
fore, choosing p0 ∈ P such that p̃ ≤ p0,

C ⊂
⋂

0<ε<ε0/2

co(Cε,p0) ⊂
⋂

0<ε<ε0/2

co(Cε,p̃)

⊂
⋂

0<ε<ε0/2

co(Aε,p̃) ⊂
⋂

0<ε<ε0/2

co(Aε,p).

Hence, C ⊂ ∩0<ε<ε0/2, p∈Pco(Aε,p) = ∩ε>0, p∈Pco(Aε,p) and the proof
is complete.

Remark 11 Taking into account (5.76), the proof above shows that
formulas (5.74) and (5.75) also hold if, instead of the continuity of
f at x, we assume that the function supt∈Tε(x) ft, for some ε > 0, is
continuous at x and that x ∈ int(dom f).

The following corollary deals with a non-convex situation, where
Theorem 5.2.2 can also be applied.
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Corollary 5.3.7 Given non-necessarily convex functions ft : X → R,
t ∈ T, and f := supt∈T ft, formula (5.26) is still valid under the con-
dition

cof = sup
t∈T

(coft). (5.78)

Proof. We only need to prove the inclusion “⊂”. We fix x ∈ dom f such
that ∂f(x) �= ∅; hence, (cof)(x) = f(x) ∈ R and ∂f(x) = ∂(cof)(x)
(Exercise 78). Then, by applying Theorem 5.2.2 to the family of lsc
convex functions {coft, t ∈ T} , we obtain that

∂f(x) =
⋂

ε>0, L∈F(x)

co

(
⋃

t∈T̃ε(x)

∂ε(coft)(x) + NL∩dom(cof)(x)

)

, (5.79)

where T̃ε(x) := {t ∈ T : (coft)(x) ≥ f(x) − ε} ⊂ Tε(x). Observe that
for all t ∈ T̃ε(x) we have (coft)(x) ≥ f(x) − ε ≥ ft(x) − ε, giving rise
to ∂ε(coft)(x) ⊂ ∂2εft(x) (Exercise 62). In fact, if x∗ ∈ ∂ε(coft)(x),
then for all y ∈ X

〈x∗, y − x〉 ≤ (coft)(y) − (coft)(x) + ε ≤ ft(y) − ft(x) + 2ε.

Consequently, taking into account that

T̃ε(x) ⊂ Tε(x) and NL∩dom(cof)(x) ⊂ NL∩dom f (x),

Exercise 62 entails

∂f(x) ⊂
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

∂2εft(x) + NL∩dom f (x)

)

,

and we are done.
As an illustration of the previous results, in the following example

we provide some formulas for the subdifferential of the supremum of
affine functions.

Example 5.3.8 Assume that

f(x) := sup {〈at, x〉 − bt : t ∈ T} ,

with (at, bt) ∈ X∗ × R. Then, according to Theorem 5.2.2, for every
fixed x ∈ dom f we have that
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∂f(x) =
⋂

ε>0, L∈F(x)

co(Aε + NL∩dom f (x)), (5.80)

where Aε := {at ∈ A : 〈at, x〉 − bt ≥ f(x) − ε} .
Let us suppose that X = R and at > 0 for all t ∈ T. We also assume

that x = 0, so that b̄ := sup {−bt : t ∈ T} < +∞. Then, by Proposition
5.3.1, the intersection over the L’s is removed from (5.80), which is
now written in two forms:
1) When 1 ∈ [co {at, t ∈ T}]∞ . In this case, we have supt∈T at = +∞,
and so dom f = ]−∞, c] for some c ∈ R. If c = 0, then Ndom f (0) = R+

and (5.80) simplifies to ∂f(0) = ∩ε>0 [infat∈Aε
at, +∞[ . If c > 0, then

Ndom f (0) = {0} and (5.80) reads

∂f(0) =
⋂

ε>0
co

{
at ∈ A : −bt ≥ b̄ − ε

}
.

2) When 1 /∈ [co {at, t ∈ T}]∞ . In this case, the set {at : t ∈ T} is
bounded, and so f is finite everywhere; that is, dom f = R. Hence, the
last formula holds in this case too.

We shall discuss a pair of particular cases:
i) (at, bt) = (t, 1/t), t > 0. We have dom f = ] − ∞, 0] so that 0 ∈
bd(dom f), and the formula in 1) entails ∂f(0) = ∩ε>0 [1/ε, +∞ [
= ∅; i.e., f has no subgradient at 0. In fact, we have in this case
f(x) = −2

√
−x, for x ≤ 0.

ii) (at, bt) = (t |sin(t)| , 1/t), t > 0. Again dom f = ] − ∞, 0] and the
formula in 1) also applies because

(1, 0) = lim
k→∞

2
(2k + 1)π

(
(2k + 1)π

2
|sin((2k + 1)π/2)| , 2

(2k + 1)π

)
.

Thus ∂f(0) = ∩ε>0 [0, +∞ [= R+.

In the case of the support function, let us say f = σA for a non-
empty set A ⊂ X∗, the formula in Theorem 5.2.2 is different from
the following classical characterization, which can be derived from the
Fenchel inequality (see (5.1)).

Example 5.3.9 Let T ⊂ R
3 be the set given by

T := {(1, α, β) : α ≥ 0, β ∈ R} ∪ {(0, γ,− log γ) : 0 < γ ≤ 1},

so that ft := 〈t, ·〉 , t ∈ T, and f := supt∈T ft is the support function of
the set T. For x := (−1, −1, 0) we have f(x) = 0 and, with ε ≤ 1 fixed,
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Tε(x) := {t ∈ T : 〈t, x〉 ≥ f(x) − ε} = {t ∈ T : 〈t, x〉 = −t1 − t2 ≥ −ε}
= {(0, γ,− log γ) : 0 < γ ≤ ε},

and

co

{
⋃

t∈Tε(x)

∂εft(x)

}

= {(0, γ, δ) : 0 < γ ≤ ε; − log ε ≤ δ ≤ − log γ}.

Moreover, Ndom f (x) = R(0, 0, 1) and

co

{
⋃

t∈Tε(x)

∂εft(x)

}

+ Ndom f (x) = (coTε(x)) + R(0, 0, 1)

= {(0, γ, δ) : 0 < γ ≤ ε, δ ∈ R},

which obviously is not closed. Then

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

}

= R{(0, 0, 1)}.

However, for every ε > 0 the Fenchel equality yields

∂εf(x) = {t ∈ coT : 〈t, x〉 ≥ −ε}
= {t ∈ R

3 : 0 ≤ t1 ≤ 1, t2 ≥ 0, t1 + t2 ≤ ε}.

This shows that, for every ε > 0,

co

{ ⋃
t∈Tε(x)

∂εft(x) + Ndom f (x)

}
= cl

(
co

{ ⋃
t∈Tε(x)

∂εft(x)

}
+ Ndom f (x)

)
� ∂εf(x).

The above example also shows that even in finite-dimensional
spaces, one may have that

⋂

ε>0

(

co

{
⋃

t∈Tε(x)

∂εft(x)

}

+ Ndom f (x)

)

� ∂f(x).

The following example shows that, in general, the set Ndom f (x) in
formula (5.26) cannot be removed.

Example 5.3.10 Consider the family of linear functions ft : R
2 →

R∞, t ∈ T := {0} ∪ ]1, +∞[, given by
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ft(u, v) :=
{

−v, for t = 0,
tu + v

t−1 , for t > 1,

and the associated supremum function

f(u, v) := max {−v, sup {tu + v/(t − 1) : t > 1}} .

Observe that f is the support function of the set {(u, v) ∈ R
2 : u ≥

0, v ≥ −1}. On the one hand, for x := (−1, 0) we easily check that
f(x) = 0 and ∂f(x)={0} × [−1, +∞[. On the other hand, for all ε < 1
we have that Tε(x) = {t ∈ T : ft(x) ≥ −ε} = {0}, and

⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

=
⋂

ε∈]0,1[

∂εf0(x) = ∂f0(x) = {(0, −1)} .

Thus, ∩ε>0co

{
⋃

t∈Tε(x)

∂εft(x)

}

� ∂f(x). At the same time, we have

dom f =] − ∞, 0]×] − ∞, 0].

ThenNdom f (x) = {0} × [0, +∞[, and formula (5.71) reads

∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

= {0} × [0, +∞[+ {(0, −1)} = {0} × [−1, +∞[.

5.4 Exercises

Exercise 67 Let {ft, t ∈ T} be a non-empty family of proper convex
functions, and set f := supt∈T ft. Assume that {ft, t ∈ T} satisfies
condition (5.10).

(i) Given Ti ⊂ T such that ∪iTi = T, we set gi := supt∈Ti
ft. Prove

that the family {gi} satisfies (5.10). Prove in addition that (5.26) holds
if there exists some ε0 > 0 such that the following condition holds:

cl f = sup

{

cl ft, t ∈ Tε0(x); cl

(

sup
t∈T\Tε0 (x)

ft

)}

.

(ii) Assume that {cl ft : t ∈ T} ⊂ Γ0(X). Prove that, for every con-
vex set A ⊃ dom f, the family {ft + IA : t ∈ T} satisfies (5.10).
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Exercise 68 Let A ⊂ X∗ be a non-empty set. Prove that, for every
x ∈ X and ε ≥ 0,

∂εσA(x) =
⋂

δ>ε

cl {x∗ ∈ co A : 〈x∗, x〉 ≥ σA(x) − δ} . (5.81)

Exercise 69 Let A := {(at, bt) ∈ X∗ × R, t ∈ T} be a non-empty set,
and denote f := supt∈T (〈at, ·〉 − b). Prove that, for every x ∈ X and
ε ≥ 0,

∂εf(x) =
⋂

δ>ε

cl {x∗ ∈ X∗ : (x∗, α∗) ∈ co A, 〈x∗, x〉 − α∗ ≥ f(x) − δ} .

Exercise 70 Let C := {(at, bt) ∈ X∗ × R, t ∈ T} be a non-empty set,
and denote f := supt∈T (〈at, ·〉 − b). Let the mappings A, A0 : X →
X × R be such that A0x := (x, θ), Ax := A0x + (θ, −1). Prove the fol-
lowing statements:

(i) f = σC ◦ A.
(ii) For every x ∈ X and ε > 0,

∂εf(x) = cl(A∗
0(∂εσC(x,−1)))

= cl({x∗ ∈ X∗ : (x∗, α∗) ∈ ∂εσC(x,−1)}).

Exercise 71 We have proved in Theorem 5.1.4 that, when {ft, t ∈
T} ⊂ Γ0(X) is closed for convex combinations and f := supt∈T ft, for
all x ∈ X and ε > 0 we have

∂εf(x) = cl
{

⋃

t∈T

∂(ε+ft(x)−f(x))ft(x)
}

. (5.82)

The purpose of this exercise is to show, under the assumptions that
the functions ft, t ∈ T, are not necessarily in Γ0(X) but satisfy (5.10),
that for all x ∈ X and ε > 0

∂εf(x) = cl

{
⋃

t∈S0

∂(ε+ft(x)−f(x))(ft + ID)(x)

}

, (5.83)

where D ⊂ X is as in (5.11). To this aim, proceed by proving the fol-
lowing facts.

(i) f̄ = supt∈S0
gt, where gt := f̄t + Icl(D).

(ii) {gt, t ∈ S0} ⊂ Γ0(X) is closed for convex combinations.
(iii) Formula (5.83) holds.
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Exercise 72 Assume that X is a reflexive Banach space. Prove that
formula (5.16) also holds if the closure is taken with respect to the
norm topology.

Exercise 73 Prove that formula (5.22) also holds if the closure is
taken with respect to the norm topology when X is a reflexive Banach
space.

Exercise 74 Give a proof of Example 5.1.6 by using Proposition
3.2.8.

Exercise 75 Given any function f : X → R∞ with a proper conju-
gate, prove that, for all x∗ ∈ X∗ and ε > 0,

∂εf
∗(x∗) = cl

{ ∑
x∈dom f

λx(∂εxf)−1(x∗) : λ ∈ Δ(dom f), εx ≥ 0,
∑

x∈dom f

λxεx ≤ ε

}
.

(5.84)

Exercise 76 Let (fn)n ⊂ Γ0(X) be a countable family, and denote
f := supn≥1 fn. Using Corollary 5.1.9 and Example 5.1.6, prove that,
for all x ∈ dom f and ε ≥ 0,

∂εf(x) =
⋂

δ>0

cl

(
⋃

λ∈Δn, n≥1

∂ε+δ+Σ1≤i≤nλifi(x)−f(x)

(
∑

1≤i≤n
λifi

)

(x)

)

.

Exercise 77 Assume that X is a reflexive Banach space. Let {ft, t ∈
T} be a family of convex functions satisfying (5.10), denote f :=
supt∈T ft, and let D ⊂ X be convex set satisfying (5.11). Prove the
following assertions, for every x ∈ dom f and ε ≥ 0 :

(i) ∂εf(x) =
⋃

J⊂S0, J countable

∂(ε+fJ(x)−f(x)) (fJ + ID) (x).

(ii) ∂εf(x) =
⋃

J⊂T, J countable

∂(ε+fJ(x)−f(x))fJ(x).

Exercise 78 Given convex functions ft, t ∈ T, f := supt∈T ft, and
x ∈ f−1(R), we introduce the functions

f̃t := ft(· + x) − f(x), t ∈ T,

and the associated supremum function

f̃ := sup
t∈T

f̃t = f(· + x) − f(x).
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(i) Prove that if the family {ft, t ∈ T} satisfies condition (5.10),
then the family {f̃t, t ∈ T} also does.

(ii) Use the f̃t’s to prove that, in order to establish (5.26) and related
formulas when ∂f(x) �= ∅, it suffices to suppose that x = θ, ∂f(θ) =
∂(cl f)(θ) �= ∅, and f(θ) = (cl f)(θ) = 0.

Exercise 79 Let C be a convex set in X, and let {Aε}ε>0 be a family
of convex subsets of X∗, which is non-increasing as ε ↓ 0. Given x ∈ C,
we assume that either R+(C − x) is closed or ri(C − x) ∩ dom σAε0

�= ∅
for some ε0 > 0. Prove that

⋂

ε>0
cl {Aε + Nε

C(x)} =
⋂

ε>0
cl {Aε + NC(x)} . (5.85)

Exercise 80 Complete the proof of Theorem 5.2.2 where, instead of
supposing that {ft, t ∈ T} ⊂ Γ0(X), we assume that the functions ft

are lsc.

Exercise 81 Complete the proof of Theorem 5.2.2 when the convex
functions ft, t ∈ T, are not necessarily lsc (as in Exercise 80) but sat-
isfy condition (5.10).

Exercise 82 Let the functions ft, t ∈ T, be convex and lsc, and denote
f := supt∈T ft. Let A ⊂ X be a finite-dimensional subset. Prove that
in formulas (5.26), (5.42), (5.49), (5.69), etc., F(x) can be replaced
with the family F(x, A) := {L ∈ F(x) : A ⊂ L}.

Exercise 83 (i) Prove that if X is a reflexive Banach space, then
formula (5.26) holds when the convex closure is taken with respect to
the norm topology.

(ii) Prove that if X is a Banach space, then the formula in Corollary
5.2.5 is also true when the convex closure is taken with respect to the
norm topology.

Exercise 84 Given a non-empty set A ⊂ R
p, p ≥ 1, and the associ-

ated support function σA, prove that for every x ∈ dom σA we have

∂σA(x) =
⋂

ε>0
cl ((co{a ∈ A : 〈a, x〉 ≥ σA(x) − ε}) + A(x)) , (5.86)

where
A(x) := [coA]∞ ∩ {x}⊥. (5.87)

In the particular case when x ∈ ri(dom σA) prove that
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∂σA(x) =
⋂

ε>0
cl ((co{a ∈ A : 〈a, x〉 ≥ σA(x) − ε}) + lin(coA)) ,

where lin(coA) is the lineality space of coA (see (2.21)). Moreover,
when x ∈ int(dom σA) prove that

∂σA(x) =
⋂

ε>0
co{a ∈ A : 〈a, x〉 ≥ σA(x) − ε}.

Exercise 85 Given a non-empty set A := {(at, bt) : t ∈ T} ⊂ R
p+1,

p ≥ 1, and the supremum function f(x) := sup{〈at, x〉 − bt : t ∈ T},
prove that, for every x ∈ dom f,

∂f(x) =
⋂

ε>0
cl (co {at : t ∈ Tε(x)} + B(x)) , (5.88)

where B(x) := {v ∈ R
p : (v, 〈v, x〉) ∈ [co(A)]∞}. In particular, if x ∈

ri(dom f), one has

∂f(x) =
⋂

ε>0
cl (co {at : t ∈ Tε(x)} + C(x)) , (5.89)

where C(x) := {v ∈ R
p : (v, 〈v, x〉) ∈ lin(co{A})}, and if x∈ int(dom f)

∂f(x) =
⋂

ε>0
co{at : t ∈ Tε(x)}. (5.90)

Exercise 86 Let T �= ∅ and {ft, t ∈ T} ⊂ Γ0(Rn), and set f :=
supt∈T ft. Prove that, for every x ∈ X, we have

∂f(x) =
⋂

ε>0
co

{

A +
⋃

t∈Tε(z)

∂εft(x)

}

,

where

A :=

{

v∗ ∈ X∗ : (v∗, 〈v∗, x〉) ∈
[
co

{
⋃

t∈T

epi f∗
t

}]

∞

}

.

Exercise 87 Given convex functions ft, t ∈ T, we denote f :=
supt∈T ft and assume that condition (5.10) holds. Prove that, for all
x ∈ X,
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∂f(x) =
⋂

ε>0
L∈F(x), p∈P

co

⎛

⎜
⎜
⎝

⋃

t∈T̃ε(x)
y∈Bp,t(x,ε)

∂((cl ft) + IL∩dom(cl f))(y) ∩ Sε(y − x)

⎞

⎟
⎟
⎠ ,

where T̃ε(x) := {t ∈ T : (cl ft)(x) ≥ f(x) − ε} and

Bp,t(x, ε) := {y ∈ X : p(y − x) ≤ ε, |(cl ft)(y) − ft(x)| ≤ ε}.

Exercise 88 Let ft : R
n → R, t ∈ T, be convex and lsc, and denote

f := supt∈T ft. Prove that, for every x ∈ R
n,

(i)

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x) + Ndom f (x)

}

,

(5.91)
where Sε and Bt(x, ε) are defined in (5.43) and (5.44), respectively.

(ii)

∂f(x) =
⋂

ε>0

co

(
⋃

t∈Tε(x), y∈Bt(x,ε)

∂(ft + Idom f )(y) ∩ Sε(y − x) ∩ ∂εf(x)

)

.

(5.92)

(iii) In addition, if dom ft = dom f for all t ∈ T, then

∂f(x) =
⋂

ε>0
co

⎧
⎨

⎩

⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x)

⎫
⎬

⎭
. (5.93)

Exercise 89 Complete the proof of Theorem 5.3.5 when the proper-
ness assumption is dropped out.

Exercise 90 Let ft : X → R, t ∈ T, be convex, and suppose that f :=
supt∈T ft is finite and continuous at some point. Prove that, for every
x ∈ X,

∂f(x) = Ndom f (x) +
⋂

ε>0, p∈P
co

{
⋃

t∈Tε(x), y∈B̃p,t(x,ε)

∂(cl ft)(y) ∩ Sε(y − x)

}

,

(5.94)
where Sε(y − x) := {y∗ ∈ X∗ : 〈y∗, y − x〉 ≤ ε} and

B̃p,t(x, ε) := {y ∈ X : p(y − x) ≤ ε, |(cl ft)(y) − ft(x)| ≤ ε}.
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(Observe that when the ft’s are lsc, B̃p,t(x, ε) reduces to Bp,t(x, ε)
introduced in (5.50).)

Exercise 91 Let the functions ft, t ∈ T, be convex, and let x ∈ dom f.
Assume the existence of some ε0 > 0 such that fε0 := supt∈Tε0 (x) ft is
finite and continuous somewhere in dom f . Prove that

∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

, (5.95)

and, provided that the ft’s are lsc,

∂f(x) = Ndom f (x) +
⋂

ε>0, p∈P
co

{
⋃

t∈Tε(x), y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x)

}

.

(5.96)

5.5 Bibliographical notes

The chapter presents extensions of the following historical results:
Dubovitskii and Milyutin (see [115]) for a finite number of contin-
uous functions, Levin [131] for infinitely many finite-valued convex
functions, Rockafellar [177, Theorem 4] and Volle [196] under weaker
continuity assumptions with finitely many functions, Brøndsted [29]
who used the concept of approximate subdifferentials, Valadier [191] in
normed spaces, assuming the continuity of the supremum function and
resorting to the exact subdifferential at nearby points around it, and
Volle [195] who obtained another characterization in terms of approx-
imate subgradients at the nominal point. The material in this chapter
has been mainly extracted from [50], [51], [52], [53], [99], [100], and
[103].

The large number of references allows us to emphasize the impor-
tance of this subject. Let us quote a paragraph on the second page
of [107]: “One of the most specific constructions in convex or nons-
mooth analysis is certainly taking the supremum of a (possibly infi-
nite) collection of functions”. In the years 1965–1970, various calculus
rules concerning the subdifferential of supremum functions started to
emerge. There is extensive literature dealing with subdifferential calcu-
lus rules for the supremum of convex functions including, among many
others, [64, 113, 114, 122, 134, 139, 141, 142, 185, 191, 196, 198,
201], etc. Pioneering works for the subdifferential/directional deriva-
tive of the supremum function are attributed to A. Y. Dubovitskii and
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A. A. Milyutin ([76]), and J. M. Danskin ([66, 67]) (and references
therein). The first two authors dealt with the supremum of finitely
many continuous convex functions, whereas the results in [66, 67] con-
cern finite families of C1-functions. These results were extended by
Valadier ([191]) to arbitrary families provided that the data functions
are continuous with respect to both the state variable and the index
parameter. In such a case, and assuming the compactness of the index
set and the upper semicontinuity of the index mappings, the subdiffer-
ential of the supremum function is completely characterized by means
of the subdifferentials of active functions at the nominal point. In the
general case, maintaining only the continuity of the supremum with
respect to the state variable, the same author provided other charac-
terizations using the subdifferentials at nearby points of the ε-active
functions. The last result was rewritten by M. Volle ([195, Theorem A])
replacing exact subdifferentials with ε-subdifferentials of the ε-active
functions ft, evaluated at the reference point instead of nearby ones.
Therefore, the mathematical interest of this topic, which is the main
subject of this book, has been widely recognized by such prestigious
authors since the very beginning of convex analysis history. Although
we are mainly concerned with the convex case, the general case is also
of great interest. For example, besides the aforementioned works by
Danskin, dealing with the maximum of a finite family of C1-functions,
we also cite [169] and [40] for further extensions. The last one deals
with the maximum of Lipschitz functions and appeals to the concept
of the generalized gradient introduced by the same author (see, also,
[130]). More recently, [157] considered the supremum of an arbitrary
family of non-convex Lipschitz functions and established some formu-
las via different notions of nonsmooth subdifferentials.

Corollary 5.1.9 and Example 5.1.10 are well-known; see, for instance,
[201, Corollary 2.8.11 and Example 2.8.1, respectively]. Example 5.1.12
is given in [105, Corollary 7] for the case of lsc convex functions (see,
also, [32] and references therein). For results related to Corollary 5.1.14
we refer to [6]. Example 5.2.1 can also be found in [110]. Theorem 5.1.7
is in the line of some results in [105], [142], and [167, Proposition 3.1].

Theorem 5.2.2 is established in [103], but the first attempts to
obtain it have been made in [100] and [99] in the finite-dimensional
setting. Namely, the approach used in [100] starts from the analysis of
the subdifferential of the support function, which is extended, in the
second step, to the supremum of affine functions. Then, the general
case of arbitrary convex functions is obtained based on the Fenchel–
Moreau–Rockafellar theorem (Theorem 3.2.2). The lower semicontinu-
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ity assumption (5.10) is an intrinsic condition for developing subdif-
ferential calculus rules for convex functions. A variant of (5.10) was
shown in [134, Theorem 3.1] to be necessary for the validity of for-
mula (5.26) in the Banach setting. For other variants of [103], see
[134, Theorem 3.1] and [113]. Proposition 5.2.4(iii) can be found in
[174, Theorem 9.4] in the case where all the functions are proper. In
Banach spaces, [139] gives a formula using the exact subdifferentials
of the data functions but at points which are close to the reference
point. The locally convex version of this result is investigated in [52].
We also quote here [185], which deals with the directional derivative
of the supremum function, under certain conditions on the index set.
The first non-convex counterpart to Theorem 5.2.2, given in Corollary
5.3.7, has been proposed in [141]. The condition relying on the local
closedness of the set cone(dom f − x) in Proposition 5.3.1 has been
used in [141] and [113]. Corollary 6.4.4, established in [55], extends to
the compact setting the well-known Brøndsted formula ([29]), given
for the supremum of a finite number of proper lsc convex functions,
all of them being active at the reference point. Other extensions of
the Brøndsted formula were provided in [100, Proposition 6.3] for the
finite-dimensional setting. Theorem 5.2.7 is given in [51, Theorem X]
(see, also, [139]). The existence of proper lsc convex functions with
empty subdifferential mapping, such as those considered in Example
5.2.8, can be consulted in [172] (for some Fréchet spaces) and in [21]
(for some non-complete normed spaces; actually, certain subspaces of

2(N)). Exercise 66 is [43, Theorem 5.3]. Exercise 84 is [100, Proposi-
tion 2.1]. Exercise 90 extends formula (5.72) to convex (non-necessarily
lsc) functions.



Chapter 6

The supremum in
specific contexts

This chapter aims to provide formulas for the subdifferential of supre-
mum functions in specific contexts. In these scenarios, an additional
structure is available so that the proposed characterizations can adopt
particular formats, generally of greater simplicity. As in the previous
chapter, X is an lcs with a topological dual X∗. Unless otherwise
stated, X∗ is endowed with a compatible topology, in particular, the
topologies σ(X∗, X) and τ(X∗, X), or the dual norm topology when X
is a reflexive Banach space. The associated bilinear form is represented
by 〈·, ·〉.

6.1 The compact-continuous setting

In this section, we provide precise formulas for the subdifferential of
the supremum function f := supt∈T ft, which only involve the sub-
differentials of the active data functions at the reference point. We
focus on the compact-continuous setting where the following standard
hypothesis holds:

T is compact and the mapping t �→ ft(z) is usc, for every z ∈ dom f ;
(6.1)
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the topological space T needs not to be Hausdorff, and so its compact
subsets are not necessarily closed. As in the previous chapters, given
x ∈ X and ε ≥ 0, we denote F(x) := {L is a finite-dimensional linear
subspace of X containing x} and Tε(x) := {t ∈ T : ft(x) ≥ f(x) − ε} ,
with T (x) := T0(x).

Below, in Theorems 6.1.4 and 6.1.5, we establish the main result
of this section. Formula (6.12) in Theorem 6.1.4 characterizes ∂f(x)
by means of exact subdifferentials of the active enlarged data func-
tions ft + IL∩dom f , t ∈ T (x). The proof of this theorem appeals to the
following technical lemmas.

Lemma 6.1.1 Given the lsc convex functions ft, t ∈ T, and f :=
supt∈T ft, we suppose that f(θ) = 0 and L ⊂ X is a finite-dimensional
linear subspace. We denote D := L ∩ dom f and Z := spanD, and
introduce the lsc convex functions

gt := (ft + Icl D)|Z and g := sup
t∈T

gt.

Then dom g = D and

∂f|Z(θ) ⊂ ∂g(θ) =
⋂

ε>0
co

{
⋃

t∈Tε(θ), z∈Bt(θ,ε)

A(t, z, ε)

}

, (6.2)

where Tε(θ) := {t ∈ T : gt(θ) ≥ −ε},

Bt(θ, ε) := {z ∈ Z : ‖z‖Z ≤ ε, |gt(z) − gt(θ)| ≤ ε},

and

A(t, z, ε) := ∂gt(z) ∩ Sε(z) ∩ ∂εg(θ), with t ∈ T, z ∈ Z.

Proof. Observe that g = (f + Icl D)|Z , and since cl D ⊂ L, we have the
following relation in X:

dom g = Z ∩ dom(f + Icl D) = (cl D) ∩ dom f = D. (6.3)

Consequently,

∂f|Z(θ) ⊂ ∂
(
(f + Icl D)|Z

)
(θ) = ∂g(θ). (6.4)

To prove the second inclusion in (6.2), we apply formula (5.60) (or,
more precisely, formula (5.92)) to the family of lsc convex functions
{gt, t ∈ T}. Indeed, thanks to (5.92), we get
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∂g(θ) =
⋂

ε>0
co

(
⋃

t∈Tε(θ), z∈Bt(θ,ε)

∂gt(z) ∩ Sε(z) ∩ ∂εg(θ)

)

. (6.5)

The following lemma gives more information on the convex combi-
nations involved in (6.2).

Lemma 6.1.2 With the same assumptions and notations as Lemma
6.1.1, for every z∗ ∈ ∂f|Z(θ) there exist ρ > 0 and d ≥ 1 such that, for
each ε ∈ ]0, 1], there are λ ∈ Δd+1, u∗ ∈ BZ∗ and some

ti ∈ Tε(θ), zi ∈ Bti
(θ, ε) ∩ cl D, and z∗

i ∈ A(ti, zi, ε), 1 ≤ i ≤ d + 1,

such that λiz
∗
i ∈ ρBZ∗ and z∗ =

∑
1≤i≤d+1λiz

∗
i + εu∗.

Proof. First, we pick z0 ∈ riD. Then z0 ∈ riD = ri(dom g), by Lemma
6.1.1, and the continuity of g at z0 entails the existence of m ≥ 0 and
δ > 0 such that z0 + δBZ ⊂ D and

g(z0 + z) ≤ m for all z ∈ δBZ . (6.6)

Now, we fix ε ∈ ]0, 1]. According to (6.2), we have that

z∗ ∈ ∂f|Z(θ) ⊂ ∂g(θ) ⊂ co

{
⋃

t∈Tε(θ), z∈Bt(θ,ε)

A(t, z, ε)

}

⊂ Z∗.

Hence, taking into account the Carathéodory theorem, and denoting
d := dimZ, we find λ ∈ Δd+1, u∗ ∈ BZ∗ , ti ∈ Tε(θ), zi ∈ Bti

(θ, ε), and
z∗
i ∈ A(ti, zi, ε), 1 ≤ i ≤ d + 1, such that

z∗ =
∑

1≤i≤d+1

λiz
∗
i + εu∗. (6.7)

Notice also that zi ∈ Bti
(θ, ε) ⊂ dom gti

⊂ cl D for all 1 ≤ i ≤ d +
1. Next, for each fixed 1 ≤ i ≤ d + 1, the relation z∗

i ∈ A(ti, zi, ε) ⊂
∂εg(θ) together with (6.6) implies that

〈z∗
i , z0 + z〉 ≤ g(z0 + z) − g(θ) + ε ≤ m + 1 for all z ∈ δBZ ;

that is, taking z = θ and multiplying by λi, we get 〈λiz
∗
i , z0〉 ≤ λi(m +

1) and
〈λiz

∗
i , z〉 ≤ −〈λiz

∗
i , z0〉 + m + 1 for all z ∈ δBZ . (6.8)
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Hence, (6.7) yields

〈λiz
∗
i , z0〉 = 〈z∗, z0〉 −

∑
1≤j≤d+1, j �=i

〈
λjz

∗
j , z0

〉
− ε 〈u∗, z0〉

≥ 〈z∗, z0〉 − m − 1 − ‖z0‖Z ;

that is, |〈λiz
∗
i , z0〉| ≤ M, where M ≥ max{m + 1, m + 1 + ‖z0‖Z −

〈z∗, z0〉}. Therefore, (6.8) implies that 〈λiz
∗
i , z〉 ≤ M + m + 1 for all

z ∈ δBZ , showing that λiz
∗
i ∈ (M + m + 1)δ−1BZ∗ , and the conclu-

sion holds by taking ρ := (M + m + 1)δ−1 > 0.

Lemma 6.1.3 Given the convex functions ft, t ∈ T, and f :=
supt∈T ft, we suppose that f(θ) = 0, ∂f(θ) �= ∅, and L ∈ F(θ). We
denote D := L ∩ dom f and Z := spanD, and introduce the lsc con-
vex functions

ht := cl(ft + ID), t ∈ T, and h := sup
t∈T

ht. (6.9)

Then h = cl(f + ID), h(θ) = 0,

dom h ⊂ cl(D), cl(dom h) = cl(D), Z = span(L ∩ dom h), (6.10)

and
∂f(θ) ⊂ ∂h(θ). (6.11)

Proof. Notice that, for all t ∈ T,

dom(ft + ID) = D ∩ dom ft = L ∩ dom f = dom(f + ID) = D,

so that

aff(dom(ft + ID)) = aff(dom(f + ID)) = aff(D)and(f + ID)|aff D

is finite and continuous on riD, because D is finite-dimensional. Hence,
since f + ID = supt∈T (ft + ID), Proposition 5.2.4(iv) applies and we
get

cl(f + ID) = sup
t∈T

cl(ft + ID) = h,

which also implies that

dom h = dom(cl(f + ID)) ⊂ cl(D ∩ dom f)) = cl(D) ⊂ L
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and, using (2.35),

cl(dom h) = cl(dom(f + ID)) = cl(D).

Therefore, Z = aff(dom h) = aff(L ∩ dom h),

∅ �= ∂f(θ) ⊂ ∂(f + ID)(θ) = ∂(cl(f + ID))(θ) = ∂h(θ),

and 0 = (f + ID)(θ) = (cl(f + ID))(θ) = h(θ).

Theorem 6.1.4 Given the convex functions ft, t ∈ T, we denote f :=
supt∈T ft. Under hypothesis (6.1), for every x ∈ dom f , we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

. (6.12)

Remark 12 (before the proof) Actually, we prove the following
formula:

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + Icl(L∩dom f))(x)

}

, (6.13)

which will be used in the proof of Theorem 6.1.5 and elsewhere. This
formula easily leads us to the inclusion “⊂” in (6.12), as ∂(ft +
Icl(L∩dom f))(x) ⊂ ∂(ft + IL∩dom f )(x), for all t ∈ T and x ∈ L ∩ dom f,
while the inclusion “⊃” in (6.12) is straightforward (Exercise 92).

Proof. We only need to prove the inclusion “⊂” in (6.13) when x =
θ, ∂f(θ) �= ∅ and f(θ) = 0, by using Lemmas 6.1.1, 6.1.2, 6.1.3, and
the notations used there. Given a fixed L ∈ F(θ), we consider the lsc
convex functions ht and h defined in (6.9), together with the sets D =
L ∩ dom f and Z := spanD; hence cl D = cl(dom h) = cl(L ∩ dom h)
due to (6.10).

Fix x∗ ∈ ∂f(θ) ⊂ ∂h(θ), so that z∗ := x∗
|Z ∈ ∂h|Z(θ). By applying

Lemma 6.1.2 to the family {ht, t ∈ T}, we find some ρ > 0 and
d ≥ 1 such that, for each k ≥ 1, there are λk ∈ Δd+1, u∗

k ∈ BZ∗ ,
ti,k ∈ T h

1/k(θ) := {t ∈ T : ht(θ) ≥ −1/k},

zi,k ∈ Bh
ti,k

(θ, 1/k) := {z ∈ Z : ‖z‖Z ≤ 1/k,
∣
∣hti,k

(z) − hti,k
(θ)
∣
∣ ≤ 1/k},

and
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z∗
i,k ∈ ∂(hti,k

+ Icl D)|Z(zi,k) ∩ S1/k(zi,k) ∩ ∂1/k(h + Icl D)|Z(θ)

with (λi,kz
∗
i,k)k ⊂ ρBZ∗ , 1 ≤ i ≤ d + 1, and

z∗ =
∑

1≤i≤d+1

λi,kz
∗
i,k + (1/k)u∗

k. (6.14)

By taking subnets if necessary, we may suppose that ti,k → ti ∈ T (T
is compact by (6.1)) and λi,k → λi ∈ Δd+1, 1 ≤ i ≤ d + 1. At the same
time, by the Weierstrass theorem, we also may suppose that (λi,kz

∗
i,k)k

converges to some z∗
i ∈ Z∗, 1 ≤ i ≤ d + 1. Consequently, since z∗

i,k ∈
∂(hti,k

+ Icl D)|Z(zi,k) and zi,k ∈ Bh
ti,k

(θ, 1/k) ∩ (cl D), for all z ∈ cl D
we obtain

〈z∗
i , z〉 = lim

k

〈
λi,kz

∗
i,k, z

〉
= lim

k
(λi,k

〈
z∗
i,k, z − zi,k

〉
+
〈
λi,kz

∗
i,k, zi,k

〉
)

≤ lim inf
k

(λi,k(hti,k
(z) − hti,k

(zi,k)) + (1/k)
∥
∥λi,kz

∗
i,k

∥
∥

Z∗)

= lim inf
k

λi,k(hti,k
(z) − hti,k

(zi,k)).

More precisely, because zi,k ∈ Bh
ti,k

(θ, 1/k) and ti,k ∈ T h
1/k(θ), the last

inequality yields for all z ∈ cl D

〈z∗
i , z〉 ≤ lim inf

k
λi,k(hti,k

(z) − hti,k
(θ) + 1/k)

≤ lim inf
k

λi,k(hti,k
(z) + 2/k) = lim inf

k
λi,khti,k

(z).

In particular, using the upper semicontinuity assumption in (6.1), for
every z ∈ D (⊂ dom fti

) the last inequality gives rise to

〈z∗
i , z〉 ≤ lim inf

k
λi,kfti,k

(z) ≤ λifti
(z). (6.15)

Therefore, if i is such that λi = 0 (if any), then 〈y∗
i , z〉 ≤ 0 for all

z ∈ D, and so z∗
i ∈ ÑD(θ) (the normal cone to D in Z). Other-

wise, if λi > 0, then (6.15) yields 0 = 〈z∗
i , θ〉 ≤ λifti

(θ) ≤ λif(θ) = 0
(that is, ti ∈ T (θ)) and

〈
λ−1

i z∗
i , z
〉

≤ fti
(z) = fti

(z) − fti
(θ) for all

z ∈ D. Moreover, as (riD) ∩ (dom fti
) = riD �= ∅, the last inequality

also implies that
〈
λ−1

i z∗
i , z
〉

≤ fti
(z) − fti

(θ) for all z ∈ cl D (Exer-
cise 14 applied in Z), and we get z∗

i ∈ λi∂(fti
+ Icl D)|Z(θ). Thus, by

taking limits in (6.14), and remembering that each one of (λi,kz
∗
i,k)k,

1 ≤ i ≤ d + 1, converges, we deduce
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x∗
|Z = z∗ = lim

k

(
∑

1≤i≤d+1, λi=0

λi,kz
∗
i,k +

∑

1≤i≤d+1, λi>0

λi,kz
∗
i,k

)

∈ ÑD(θ) +
∑

1≤i≤d+1, λi>0

λi∂(fti
+ Icl D)|Z(θ).

Hence, because (see Exercise 55(iv))

ÑD(θ) = {u∗
|Z : u∗ ∈ ND(θ)}, ∂(fti + Icl D)(θ) = {u∗

|Z : u∗ ∈ ∂(fti + Icl D)(θ)},

and {1 ≤ i ≤ d + 1 : λi > 0} �= ∅, the relation above yields

x∗ ∈ ND(θ) +
∑

1≤i≤d+1, λi>0

λi∂(fti + Icl D)(θ) + Z⊥

⊂
∑

1≤i≤d+1, λi>0

λi∂(fti + Icl D + IZ)(θ) = co

{
⋃

t∈T (θ)

∂(ft + Icl D)(θ)

}

.

Finally, (6.13) follows by the arbitrariness of the L’s in F(θ).
Formula (6.16) below gives another variant of (5.26) involving the

approximate subdifferentials of the active data functions ft, t ∈ T (x).

Theorem 6.1.5 Given the lsc convex functions ft, t ∈ T, and f :=
supt∈T ft, we assume that hypothesis (6.1) fulfills. Then, for every x ∈
dom f, we have

∂f(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈T (x)

∂εft(x) + NL∩dom f (x)

}

. (6.16)

Proof. As in the proof of Theorem 6.1.4, only the inclusion “⊂”
in (6.16) needs to be verified, as the opposite one comes easily
from Theorem 5.2.2. Again, we suppose that ∂f(x) �= ∅, x = θ, and
f(θ) = (cl f)(θ) = 0, consider a fixed finite-dimensional linear subspace
L ⊂ X, and denote D = L ∩ dom f. Then, by (6.13), we get

∂f(θ) ⊂ co

{
⋃

t∈T (θ)

∂(ft + Icl D)(θ)

}

. (6.17)

Thus, since each ft for t ∈ T (θ) is proper and lsc, Proposition 4.1.16
entails
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∂f(θ) ⊂
⋂

ε>0
co

{
⋃

t∈T (θ)

cl (∂εft(θ) + Nε
cl D(θ))

}

⊂
⋂

ε>0
co

{

cl

(
⋃

t∈T (θ)

∂εft(θ) + Nε
cl D(θ)

)}

⊂
⋂

ε>0
cl(Aε + Nε

D(θ)),

where Aε := co
{
∪t∈T (θ)∂εft(θ)

}
. But we have ∅ �= ri D ⊂ dom σAε

for
all ε > 0, as the following inequality holds for all x0 ∈ ri D,

σAε
(x0) = sup

t∈T (θ)
σ∂εft(θ)(x0) ≤ sup

t∈T (θ)
σ∂εf(θ)(x0) ≤ f(x0) + ε < +∞,

and so Exercise 79 applies and yields the desired inclusion.

Remark 13 Due to the relation (see Corollary 5.2.3)

∂f(x) = ∂

(

sup
t∈Tε(x)

(ft + Idom f )

)

(x) for all ε > 0,

it suffices to apply formulas (6.12) and (6.16) to the smaller family
of functions {ft + Idom f , t ∈ Tε(x)}. In other words, when calculating
∂f(x), the compactness of the index set used in hypothesis (6.1) can
be relaxed by taking, instead of the whole set T, the subset Tε(x) for
sufficiently small ε > 0.

As the following corollary shows, ∂f(x) is based only on the active
functions at the reference point, while the rest of the functions are
beyond the construction of dom f.

Corollary 6.1.6 Given the convex functions ft : X → R, t ∈ T, and
f := supt∈T ft, suppose that hypothesis (6.1) fulfills. Then, for every
x ∈ dom f, we have that

∂f(x) = ∂

(

sup
t∈T (x)

ft + Idom f

)

(x).

Consequently, provided that int(dom f) �= ∅ or supt∈T (x) ft is continu-
ous somewhere in dom f , we get

∂f(x) = ∂

(

sup
t∈T (x)

ft

)

(x) + Ndom f (x).
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Proof. It suffices to prove the inclusion “⊂”. By Theorem 6.1.4, we
have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

.

Observe that, for all t ∈ T (x) and L ∈ F(x), one has ft + IL∩dom f ≤
sups∈T (x) fs + IL∩dom f , and both functions coincide at x, entailing
∂(ft + IL∩dom f )(x) ⊂ ∂(sups∈T (x) fs + IL∩dom f )(x). Consequently,
using (4.16),

∂f(x) ⊂
⋂

L∈F(x)

∂

(

sup
t∈T (x)

ft + IL∩dom f

)

(x) = ∂

(

sup
t∈T (x)

ft + Idom f

)

(x),

and the proof of the first statement is complete since the opposite
inclusion is straightforward. The last statement comes by applying
Proposition 4.1.20.

We can relax the upper semicontinuity assumption in Theorems
6.1.4 and 6.1.5, but maintaining the compactness of the index set T.
To this aim, we introduce the usc regularizations of the functions ft,
f̃t : X → R, t ∈ T, defined by

f̃t(z) := lim sup
s→t

fs(z). (6.18)

The following lemma gives some properties of the functions f̃t, t ∈ T,
which are exploited in the sequel.

Lemma 6.1.7 Let ft : X → R, t ∈ T, be convex and let f̃t be defined
as in (6.18). Then the following statements hold true:

(i) The f̃t’s are convex and satisfy f = supt∈T f̃t.
(ii) The family {f̃t, t ∈ T} satisfies condition (5.10) if the original

family {ft, t ∈ T} does.
(iii) The mappings s ∈ T �→ f̃s(z), z ∈ dom f, are usc on T.

Proof. (i) Given t ∈ T, for every x, y ∈ X and λ ∈ ]0, 1[, we have

f̃t(λx + (1 − λ)y) ≤ lim sup
s→t

(λfs(x) + (1 − λ)fs(y))

≤ lim sup
s→t

λfs(x) + lim sup
s→t

(1 − λ)fs(y) = λf̃t(x) + (1 − λ)f̃t(y),

entailing the convexity of f̃t. To verify that f = supt∈T f̃t, we observe
that for every z ∈ X
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sup
t∈T

f̃t(z) = sup
t∈T

(

lim sup
s→t

fs(z)
)

≤ f(z).

The opposite inclusion follows as lim sups→t fs(z) ≥ ft(z) for all z ∈ X.
(ii) Assume that the family {ft, t ∈ T} satisfies condition (5.10).

We observe that cl ft ≤ ft ≤ f̃t ≤ f, for all t ∈ T. So, cl ft ≤ cl f̃t ≤
cl f and, taking the supremum over t ∈ T and using the equality f =
supt∈T f̃t coming from (i),

cl f = sup
t∈T

(cl ft) ≤ sup
t∈T

(cl f̃t) ≤ cl f = cl(sup
t∈T

f̃t);

that is, {f̃t, t ∈ T} satisfies condition (5.10) too.
(iii) Take any t ∈ T and z ∈ dom f (= dom(supt∈T f̃t)), and con-

sider a net (ti)i ⊂ T such that ti → t and lim sups→t f̃s(z) = limi f̃ti
(z).

Similarly, for each i, there exists a net (ti,j)j ⊂ T such that ti,j →j ti
and f̃ti

(z) = limj fti,j
(z). Next, we can find a diagonal net (ti,ji

)i such
that ti,ji

→i t and limi fti,ji
(z) = lim sups→t f̃s(z); that is,

lim sup
s→t

f̃s(z) = lim
i

fti,ji
(z) ≤ lim sup

s→t
ft(z) = f̃t(z),

showing the desired property.

Corollary 6.1.8 Given the convex functions ft : X → R, t ∈ T, and
f := supt∈T ft, assume that T is compact. Then, for every x ∈ dom f,
we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T̃ (x)

∂(f̃t + IL∩dom f )(x)

}

, (6.19)

where f̃t is defined in (6.18) and T̃ (x) := {t ∈ T : f̃t(x) = f(x)}.

Proof. According to Lemma 6.1.7, the family {f̃t, t ∈ T} satisfies (6.1)
and its supremum is f. Therefore, formula (6.19) follows by applying
formula (6.12) to the family {f̃t, t ∈ T}.

Example 6.1.9 Consider the set T = [0, 1] and define the affine func-
tions ft : R → R, t ∈ T, by

ft(x) :=
x

t
− t, t ∈ ]0, 1], and f0(x) := x − 1.

Hence,
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f(x) := sup
t∈T

ft(x) =

⎧
⎨

⎩

+∞, if x > 0,
−2

√
−x, if − 1 ≤ x ≤ 0,

x − 1, if x < −1.

We have that T (0) = ∅, f̃t := lim sups→t fs = ft for all t ∈ ]0, 1], and
f̃0(x) := lim sups→0 fs(x) = max{x − 1, lim supt↓0

x
t }; that is,

f̃0(x) =

⎧
⎨

⎩

+∞, if x > 0,
0, if x = 0,
x − 1, if x < 0.

Hence, T̃ (0) = {t ∈ [0, 1] : f̃t(0) = f(0) = 0} = {0} and formula (6.19)
entails

∂f(0) = ∂(f̃0 + I]−∞,0])(0) = ∂f̃0(0) = ∅.

Let us show how this conclusion can be achieved using formula (5.26).
Observe that, for every 0 < ε < 1,

Tε(0) := {t ∈ [0, 1] : ft(0) ≥ −ε} = {t ∈ ]0, 1] : t ≤ ε} = ]0, ε],

and ∂εft(0) = {1/t} for all t ∈ ]0, ε]. Then formula (5.26) (or better
its variant given in (5.65)) yields

∂f(0) =
⋂

ε>0
co

(
⋃

t∈Tε(0)

∂εft(0) + Ndom f (0)

)

=
⋂

0<ε<1
co

(
⋃

t∈]0,ε]

{1/t} + R+

)

=
⋂

0<ε<1
[1/ε, +∞[= ∅.

Remark 14 The L’s are naturally dropped out from Theorems 6.1.4
and 6.1.5 if the underlying space is finite-dimensional. For instance,
Theorem6.1.4 simplifies to

∂f(x) = co

{
⋃

t∈T (x)

∂(ft + Idom f )(x)

}

. (6.20)

The following corollary establishes a slight generalization of this last
relation.

Corollary 6.1.10 Given convex functions ft : X → R, t ∈ T, satisfy-
ing hypothesis (6.1), assume that ri(dom f) �= ∅ and that the restriction
of f := supt∈T ft to aff(dom f) is continuous on ri(dom f). Then, for
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every x ∈ X, we have

∂f(x) = co

{
⋃

t∈T (x)

∂(ft + Idom f )(x)

}

.

Proof. We may assume that x = θ and ∂f(θ) �= ∅. Only the inclusion
“⊂” needs to be proved. The key idea of the proof consists of simpli-
fying the formula provided in Theorem 6.1.4, by means of Corollary
4.1.27 applied in the subspace Y := aff(dom f), which is closed because
ri(dom f) �= ∅.

Fix x0 ∈ ri(dom f), L ∈ F(θ) and denote L0 := span{L, x0}. Then,
for every t ∈ T (θ), Corollary 4.1.27 gives rise to

∂(ft + IL0∩dom f )(θ) = ∂(ft + Idom f + IL0 )(θ) = ∂(ft + Idom f )(θ) + ∂(IL0 + IY )(θ),

and Proposition 4.1.16 (applied to the functions IL0 , IY ) yields

∂(ft + IL0∩dom f )(θ) = ∂(ft + Idom f )(θ) + cl(L⊥
0 + Y ⊥).

Therefore, Theorem 6.1.4 implies that

∂f(θ) ⊂ co

{
⋃

t∈T (θ)

∂(ft + IL0∩dom f )(x)

}

= co

{
⋃

t∈T (θ)

∂(ft + Idom f )(θ) + cl(L⊥
0 + Y ⊥)

}

⊂ co

{
⋃

t∈T (θ)

∂(ft + Idom f )(θ) + L⊥
0 + Y ⊥

}

.

Notice that Y ⊥ = ∂IY (θ), so that ∂(ft + Idom f )(θ) + Y ⊥ ⊂ ∂(ft+
Idom f + IY )(θ) = ∂(ft + Idom f )(θ). Then, since L⊥

0 ⊂ L⊥, the
last inclusion gives

∂f(θ) ⊂ co

{
⋃

t∈T (θ)

∂(ft + Idom f )(θ) + L⊥
}

,

and the desired conclusion follows by intersecting over the L’s (Exercise
10(i)).

Theorem 6.1.11 Given the lsc convex functions ft : X → R, t ∈ T,
and f := supt∈T ft, suppose that hypothesis (6.1) fulfills. Then, pro-
vided that ri(dom f) �= ∅, for every x ∈ dom f , we have that
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∂f(x) =
⋂

ε>0
co

{
⋃

t∈T (x)

∂εft(x) + Ndom f (x)

}

. (6.21)

In particular, when int(dom f) �= ∅, we have

∂f(x) = Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈T (x)

∂εft(x)

}

. (6.22)

Proof. We only prove the inclusions “⊂” in (6.21) and (6.22), assum-
ing again that x = θ, f(θ) = 0 and ∂f(θ) �= ∅. Indeed, the converse
inclusions “⊃” follow easily from Theorem 5.2.2 and Corollary 5.3.2,
respectively.

Fix x0 ∈ ri(dom f), L ∈ F(θ), ε > 0, and consider L0 := span{L, x0}
and Y := aff(dom f), which is closed as ri(dom f) �= ∅. Then, accord-
ing to Corollary 4.1.27(ii), we have that NL0∩dom f (θ) = Ndom f (θ) +
cl(L⊥

0 + Y ⊥). Hence, denoting Aε := ∪t∈T (θ)∂εft(θ), by (6.16), (2.9),
and the identity Ndom f (θ) + Y ⊥ = Ndom f (θ) , we obtain that

∂f(θ) ⊂ co

{ ⋃
t∈T (θ)

∂εft(θ) + NL0∩dom f (θ)

}

= co
{
Aε + Ndom f (θ) + cl(L⊥

0 + Y ⊥)
}

= co
{
Aε + Ndom f (θ) + L⊥

0 + Y ⊥}
= co
{
Aε + Ndom f (θ) + L⊥

0

}
,

and the first conclusion follows from Exercise 10, by intersecting first
over the L’s, and then over the positive ε’s.

Now, we proceed with the proof of inclusion “⊂” in (6.22) when
int(dom f) �= ∅. By (6.21), we have

∅ �= ∂f(θ) =
⋂

ε>0
cl (co(Aε) + Ndom f (θ)) ,

and so all the sets co(Aε), ε > 0, are non-empty. Notice that co(Aε) ⊂
∂εf(θ) and the family {co(Aε), ε > 0} is non-decreasing. Therefore,
Proposition 4.1.28 leads us to ∂f(θ) = Ndom f (θ) + ∩ε>0co(Aε).

Next we derive simpler formulas for ∂f(x), which involve only the
exact subdifferential of active functions, adopting the assumption that
f is continuous somewhere. This assumption is possibly stronger than
the condition int(dom f) �= ∅, namely out of Banach spaces. In Corol-
lary 6.5.3, formula (6.23) is shown to be valid with co replaced with
co, provided that T is finite and each function ft, except perhaps one
of them, is continuous somewhere in dom f .
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Corollary 6.1.12 Given convex functions ft, t ∈ T, we suppose that
(6.1) fulfills. If the function f := supt∈T ft is continuous somewhere,
then for every x ∈ dom f , we have

∂f(x) = Ndom f (x) + co

{
⋃

t∈T (x)

∂ft(x)

}

(6.23)

= Ndom f (x) + co

{
⋃

t∈T (x)

∂ft(x)

}

(if X = R
n).

Proof. Only the inclusion “⊂” will be verified, and so we may assume
that x = θ, f(θ) = 0 and ∂f(θ) �= ∅. Applying Proposition 4.1.20,
Corollary 6.1.10 entails

∂f(θ) = co

{
⋃

t∈T (θ)

∂(ft + Idom f )(θ)

}

= cl (A + Ndom f (θ)) ,

whereA := co
{
∪t∈T (θ)∂ft(θ)

}
. Notice that ∅ �= A ⊂ ∂f(θ), and apply-

ing Proposition 4.1.28 with the constant family Aε := A, ε > 0, we get
the first formula of the corollary.

Finally, by combining formula (6.20) and Proposition 4.1.20, we get

∂f(θ) = co

{
⋃

t∈T (θ)

∂(ft + Idom f )(θ)

}

= co

{
⋃

t∈T (θ)

∂ft(θ) + Ndom f (θ)

}

,

and the second formula follows.
The following result is straightforward from Corollary 6.1.12.

Corollary 6.1.13 Given convex functions ft : X → R, t ∈ T, we sup-
pose that hypothesis (6.1) fulfills. If the function f := supt∈T ft is con-
tinuous at x ∈ X, then we have

∂f(x) = co

{
⋃

t∈T (x)

∂ft(x)

}

(6.24)

= co

{
⋃

t∈T (x)

∂ft(x)

}

(when X = R
n). (6.25)

Corollary 6.1.14 Given convex functions ft : X → R, t ∈ T, and f :=
supt∈T ft, suppose that hypothesis (6.1) holds. Assume the ft’s are
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finite and continuous on an open set U ⊂ X. Then formulas (6.24)
and (6.25) hold on U.

Proof. As in Corollary 6.1.12, we only prove the inclusion “⊂”, assum-
ing that x = θ ∈ U , f(θ) = 0 and ∂f(θ) �= ∅. Take x∗ ∈ ∂f(θ). Given
an L ∈ F(θ), we introduce the convex functions gt : L → R, t ∈ T,
defined for z ∈ L by

gt(z) := ft(z) and g(z) := sup
t∈T

gt(z) = f(z).

Since the family {gt, t ∈ T} satisfies condition (6.1) and the gt’s
are finite and continuous on the open set U ∩ L, the function g is
finite and continuous on U ∩ L (Exercise 96). Hence, formula (6.25)
entails z∗ := x∗

|L ∈ ∂g(θ) = co
{
∪t∈T (θ)∂gt(θ)

}
, where T (θ) = {t ∈ T :

ft(θ) = 0}. Consequently, taking into account Proposition 4.1.20, we
obtain that (Exercise 55(i))

x∗ ∈ co

{
⋃

t∈T (θ)

∂(ft + IL)(θ)

}

= co

{
⋃

t∈T (θ)

∂ft(θ) + L⊥
}

,

and the inclusion “⊂” in (6.25) follows (when X = R
n). The inclusion

“⊂” in formula (6.24) comes from the relation above by intersecting
over L ∈ F(θ) (Exercise 10(i)).

Remark 15 When the space X is Banach, the continuity assump-
tion in Corollary 6.1.14 implies the continuity of the function f on U
(Exercise 96), and Corollary 6.1.13 comes into play.

6.2 Compactification approach

The analysis of the compact framework developed in section 6.1 is
applied in this section to more general families, where the sets of
indices and the associated index mappings are not necessarily com-
pact and upper semicontinuous, respectively. To this aim, we propose
a compactification procedure for the index set and an upper semicon-
tinuous regularization of the index mappings. Doing so, we generate
new indices and enlarge the family of the data functions, but main-
taining the same supremum function. In a further step, and applying
the results of the compact-continuous setting of section 6.1, we obtain
new formulas for the subdifferential of the supremum which involve
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these new objects. In this way, we provide a unified analysis for the
compact-continuous and the non-compact non-continuous settings.

We consider a family of extended real-valued convex functions
ft : X → R, t ∈ T, and its supremum function f := supt∈T ft, defined
on the locally convex space X, which are indexed by an arbitrary
topological space T. In particular, if no topology is known on T, we
shall consider the discrete topology, which is completely regular and
Hausdorff.

The first step toward the compactification process is the identifica-
tion of the index set T as a subset of the compact product space

S := [0, 1]C(T,[0,1]) ≡ {γ : C(T, [0, 1]) → [0, 1]},

where C(T, [0, 1]) is the set of continuous functions from T to [0, 1]. The
product space S is endowed with the product topology, so that S is
Hausdorff for being the product of infinite copies of the Hausdorff
space [0, 1]. Hence, a given net (γi)i ⊂ S converges to γ ∈ S, written
γi → γ, if and only if

γi(ϕ) → γ(ϕ) for all ϕ ∈ C(T, [0, 1]). (6.26)

The identification of T as a subset of S is made possible thanks to the
mapping w : T → S, defined as

w(t) ≡ γt, (6.27)

where γt, t ∈ T, is the evaluation function defined as

γt(ϕ) := ϕ(t), ϕ ∈ C(T, [0, 1]). (6.28)

By abuse of language and notation, the closure of w(T ) with respect
to the product topology, denoted by

βT := cl(w(T )), (6.29)

is called Stone-Čech compactification (or just Stone-Čech compact
extension) of T. Recall that the formal definition of the Stone-Čech
compactification additionally requires that T and w(T ) be homeomor-
phic; indeed, this fact occurs if and only if T is completely regular and
Hausdorff (i.e., Tychonoff). In our analysis, we don’t need this addi-
tional condition since our approach exclusively relies on the properties
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of the associated regularized family, in particular, on the fact that the
new family maintains the same supremum (see Proposition 6.2.3).

The proof of the following lemma, gathering standard properties of
the compact extension βT, is given in Exercise 95.

Lemma 6.2.1 The following assertions hold true:
(i) The set βT is a Hausdorff compact subset of S.
(ii) The mapping w is continuous. So, if T is compact, then βT =

w(T ).
(iii) If T is Tychonoff, then the mapping w is a homeomorphism

between T and w(T ); that is,

γti
→ γt if and only if ti → t in T,

for every t ∈ T and net (ti)i ⊂ T.

Next, we enlarge the original family {ft, t ∈ T} for the aim of agree-
ing with the upper semicontinuity condition of the index mappings in
the compact framework (6.1).

Definition 6.2.2 Given γ ∈ βT, we define the function fγ : X → R

as
fγ(x) := lim sup

γt→γ, t∈T
ft(x). (6.30)

Remark 16 The family {fγ , γ ∈ βT} includes all the elements of the
form fγt

, t ∈ T, defined as

fγt
(x) = lim sup

γs→γt, s∈T
fs(x);

hence, provided that T is Tychonoff, Lemma 6.2.1(iii) yields

fγt
(x) = lim supγs→γt, s∈T fs(x) = lim sups→t, s∈T fs(x),

which is the usc regularization defined in (6.18). Let us point out that
these functions may not belong to the original family {ft, t ∈ T} as
Example 6.1.9 shows.

Let us emphasize that the changes we made to the original functions
do not modify the value of the supremum function f . Other properties
of these new functions fγ are given in the following proposition.
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Proposition 6.2.3 The following statements hold true:
(i) The functions fγ , γ ∈ βT, are convex and satisfy

f = supt∈T ft = maxγ∈βT fγ .

(ii) For all t ∈ T,
fγt

≥ ft. (6.31)

(iii) The mappings γ �→ fγ(z), z ∈ dom f , are usc.

Proof. (i) The convexity of the fγ ’s follows easily from the convexity of
the ft’s (see (2.51)). Next, for each γ ∈ βT and x ∈ X, we have fγ(x) =
lim supγs→γ fs(x) ≤ f(x), entailing that supγ∈βT fγ ≤ f. In addition,
given x ∈ X, if the sequence (tn)n ⊂ T is such that f(x) = limn ftn

(x),
then the compactness of βT gives rise to the existence of some subnet
(ti)i of (tn)n and γ0 ∈ βT such that γti

→ γ0. Hence, we obtain

f(x) ≥ fγ0(x) ≥ lim supi fti
(x) = limn ftn

(x) = f(x),

and fγ0(x) = f(x).
(ii) Since the mapping w is continuous by Lemma 6.2.1(ii), for all

t ∈ T and x ∈ X, we have

fγt
(x) = lim sup

γs→γt

fs(x) ≥ lim sup
s→t

fs(x) ≥ ft(x).

(iii) We prove that lim supγ→γ0
fγ(z) ≤ fγ0(z), for every fixed γ0 ∈

βT. Let (γi)i ⊂ βT such that γi → γ0 and

lim
i

fγi
(z) = lim supγ→γ0

fγ(z); (6.32)

hence, by (6.26), we have γi(ϕ) → γ0(ϕ) for all ϕ ∈ C(T, [0, 1]). Next,
for each i, there exists a net (ti,j)j ⊂ T such that γi = limj γti,j

and
fγi

(z) = limj fti,j
(z). So, applying a diagonal process to the scheme

(fti,j
(z), γti,j

) →j (γi, fγi
(z)) →i (γ0, lim

i
fγi

(z)),

we find a net (ti,ji
)i ⊂ T such that γt,ji

→i γ0 and limi ft,ji
(z) =

limi fγi
(z). Hence, by (6.32) and the definition of fγ0 in (6.30),

lim supγ→γ0
fγ(z) = limi fγi(z) = limi ft,ji(z) ≤ lim supγt→γ0

ft(z) = fγ0(z),



6.2. COMPACTIFICATION APPROACH 245

and we are done.
Now, given x ∈ f−1(R) and ε ≥ 0, we introduce the extended ε-

active index set of f at x defined by

T̂ε(x) := {γ ∈ βT : fγ(x) ≥ f(x) − ε} , (6.33)

and the extended active index set of f at x, which is

T̂ (x) := T̂0(x). (6.34)

Obviously, T̂ (x) ⊂ T̂ε(x) for all ε ≥ 0. Moreover, the following propo-
sition highlights the structure and properties of the extended active
index set T̂ε(x) and its relationships with Tε(x).

Proposition 6.2.4 Given x ∈ f−1(R) and ε ≥ 0, the following state-
ments hold:

(i) T̂ε(x) is non-empty and compact.
(ii) w(T (x)) ⊂ T̂ (x).
(iii) T̂ (x) =

⋂

ε>0
cl (w(Tε(x))) .

(iv) T̂ (x) = w(T (x)) =
⋂

ε>0
w(Tε(x)), provided that (6.1) holds.

Proof. (i) First, the non-emptiness of the set T̂ (x) comes from Propo-
sition 6.2.3, entailing that T̂ε(x) is also non-empty, for all ε > 0.

To prove the compactness of T̂ε(x), ε ≥ 0, we only need to verify
that it is closed in the Hausdorff compact space βT. Indeed, given
a net (γi)i ⊂ T̂ε(x) that converges to γ (∈ βT ) and, by the definition
of each fγi

, there exists a net (ti,j)j ⊂ T such that γti,j
→j γi and

f(x) − ε ≤ fγi
(x) = limj fti,j

(x) ≤ f(x).
We may assume that fγi

(x) → α ∈ [f(x) − ε, f(x)]. Thus, there
exists a diagonal net (γti,ji

, fti,ji
(x))i ⊂ (βT ) × R such that γti,ji

→i γ
and fti,ji

(x) →i α, and we get fγ(x) ≥ lim supi fti,ji
(x) = α ≥ f(x) −

ε, implying that γ ∈ T̂ε(x). Hence, we are done.
(ii) The inclusion obviously holds if T (x) = ∅; otherwise, take

t ∈ T (x). So, by Proposition 6.2.3 and (6.31), f(x) ≥ fγt
(x) ≥ ft(x) =

f(x) and we get w(t) = γt ∈ T̂ (x).
(iii) We take γ ∈ T̂ (x). Then there exists a net (ti)i ⊂ T such

that γti
→ γ and f(x) = fγ(x) = limi fti

(x). Hence, for each ε > 0,
we have ti ∈ Tε(x) eventually, and so γti

∈ w(Tε(x)), entailing that
γ ∈ cl (w(Tε(x))) .
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Conversely, take γ ∈ ∩ε>0 cl (w(Tε(x))) . Then, using a diagonal pro-
cess, we can find nets (ti)i and εi ↓ 0 such that γ = limi γti

and ti ∈
Tεi

(x) for all i. Hence, f(x) − εi ≤ fti
(x) ≤ fγti

(x) by (6.31), and we
obtain f(x) ≤ lim supi fγti

(x) ≤ fγ(x) ≤ f(x); that is, γ ∈ T̂ (x) and
we are done.

(iv) Under condition (6.1), the sets Tε(x), ε > 0, are compact by
Exercise 94. Thus, using the continuity of the mapping w, from asser-
tion (iii) and the fact that βT is Hausdorff compact, we obtain

T̂ (x) =
⋂

ε>0
cl (w(Tε(x))) =

⋂

ε>0
w(Tε(x)).

Take γ ∈ T̂ (x). Then, for every k ≥ 1, the last relation yields some
tk ∈ T1/k(x) such that γ = γtk

. Since T is compact, we find a sub-
net (tki

)i of (tk)k and t ∈ T such that tki
→ t. Hence, (6.1) leads

us to ft(x) ≥ lim supi ftki
(x) ≥ lim supi(f(x) − 1/ki) = f(x), that is,

t ∈ T (x). Moreover, the continuity of the mapping w implies that
γ = γtki

= w(tki
) → w(t), and so γ = w(t) ∈ w(T (x)).

Conversely, if t ∈ T (x), then w(t) ∈ w(T (x)) ⊂ w(Tε(x)) for all ε >
0, and so the desired inclusion follows by (iii).

We characterize in (6.35) below the subdifferential set ∂f(x) in
terms of (exact) subdifferentials involving the new functions fγ , γ ∈
T̂ (x).

Theorem 6.2.5 Given the convex functions ft : X → R, t ∈ T, and
f := supt∈T ft, where T is a topological space, for every x ∈ dom f , we
have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

γ∈ ̂T (x)

∂(fγ + IL∩dom f )(x)

}

. (6.35)

Proof. By Proposition 6.2.3(i), the functions fγ , γ ∈ βT, are convex
and their supremum is f. Therefore, since the set βT is compact in S by
Lemma 6.2.1, and the mappings γ �→ fγ(z), z ∈ dom f , are usc thanks
to Proposition 6.2.3(iii), the desired formula comes from Theorem
6.1.4.

The following result provides an explicit reformulation of Theorem
6.2.5, in which the elements coming from the set [0, 1]C(T,[0,1]) are now
replaced with nets in the index set T. The limits limi(fti

+ IL∩dom f )
involved in (6.36) are defined locally around the reference point x with
values in R∞; in other words, ∂(limi(fti

+ IL∩dom f ))(x) refers to the
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subdifferential of the function limi(fti
+ IU∩L∩dom f ), where U ⊂ X is

some convex neighborhood of x in which the limit limi(fti
+ IL∩dom f )

exists in R∞.

Theorem 6.2.6 Given the convex functions ft : X → R, t ∈ T, and
f := supt∈T ft, for every x ∈ dom f , we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

(ti)i∈T (x)

∂(lim
i

(fti
+ IL∩dom f ))(x)

}

, (6.36)

where each limit limi(fti
+ IL∩dom f ) exists in R∞ in a convex neigh-

borhood of x, and

T (x) := {(ti)i ⊂ T : lim
i

fti
(x) = f(x)}. (6.37)

Proof. We may assume that x = θ and f(θ) = 0. We introduce the
family of convex functions gt : X → R∞, t ∈ T, defined as

gt := max{ft, −1},

together with their associated supremum function g := supt∈T gt. Then
we obtain g = max{f, −1}, g(θ) = 0, and ∂f(θ) = ∂g(θ) (Exercise 93).
Next we endow T with the discrete topology and apply (6.35) to get

∂f(θ) = ∂g(θ) =
⋂

L∈F(x)

co

{
⋃

γ∈ ̂T (θ)

∂(gγ + IL∩dom f )(θ)

}

, (6.38)

where gγ := lim supγt→γ gt (see (6.30)) and

T̂ (θ) := {γ ∈ βT : gγ(θ) = 0} = {γ ∈ βT : fγ(θ) = 0}.

Let us introduce the real-valued functions ϕz, z ∈ dom f, defined on T
by

ϕz(t) := (max {f(z) + 1, 1})−1(gt(z) + 1). (6.39)

Then ϕz ∈ C(T, [0, 1]), since T has been endowed with the discrete
topology, and whenever the convergence γti

→ γ occurs, we have
ϕz(ti) →i γ(ϕz) (∈ [0, 1]) for all z ∈ dom f ; hence, thanks to (6.39),

gti
(z) →i γ(ϕz) max {f(z) + 1, 1} − 1 ∈ R. (6.40)
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In other words, for all z ∈ dom f and all net (ti)i satisfying γti
→i γ,

we have

gγ(z) = lim sup
γt→γ

gt(z) = lim
γt→γ

gt(z) = lim
i

gti (z) = γ(ϕz)max {f(z) + 1, 1} − 1 ∈ R.

(6.41)
Now, given L ∈ F(θ) and γ ∈ T̂ (θ) such that ∂(gγ + IL∩dom f )(θ) �= ∅,
we choose a net (ti)i ⊂ T such that γti

→ γ and

lim
i

gti
(θ) = lim

i
fti

(θ) = 0; (6.42)

that is, gγ(θ) = limi gti
(θ) = 0. Hence, for any z ∈ L ∩ dom f, the

equality gγ(z) = limi gti
(z), coming from (6.41) and the definition of

the gt’s, leads us to gγ(z) = limi gti
(z) = limi max{fti

(z), −1}. In par-
ticular, for a subnet of (ti)i that realizes the upper limit of (fti

(z))i;
that is, limj ftj

(z) = lim supi fti
(z), we get

gγ(z) = lim
j

gtj
(z) = lim

j
max

{
ftij

(z), −1
}

= max
{

lim
j

ftij
(z), −1

}

= max
{

lim sup
i

fti
(z), −1

}

.

By applying the same argument to the lower limit lim infi fti
(z), we

show that
gγ(z) = max{lim inf

i
fti

(z), −1};

that is, for all z ∈ L ∩ dom f such that gγ(z) > −1, we have

gγ(z) = lim inf
i

fti
(z) = lim sup

i
fti

(z);

in other words, for all z ∈ X such that (gγ + IL∩dom f )(z) > −1 we
have

(gγ + IL∩dom f )(z) = lim
i

(fti
+ IL∩dom f )(z). (6.43)

But we have assumed that the function gγ + IL∩dom f is subdifferen-
tiable at θ, and so it is proper, and lsc at θ. Thus, we find (convex)
U ∈ NX such that

(gγ + IL∩dom f )(z) > (gγ + IL∩dom f )(θ) − 1 = −1 for all z ∈ U,

and, a fortiori, (6.43) yields
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(gγ + IL∩dom f )(z) = lim
i

(fti
+ IU∩L∩dom f )(z) ∈ R∞ for all z ∈ X,

entailing that

∂(gγ + IL∩dom f )(θ) = ∂
(
lim

i
(fti + IU∩L∩dom f )

)
(θ) = ∂

(
lim

i
(fti + IL∩dom f )

)
(θ),

because of the local coincidence of the involved convex functions. This
yields the inclusion “⊂” in (6.36), due to (6.38). The proof is over
because the opposite inclusion in (6.36) is straightforward.

Example 6.2.7 Assume that T is finite and T = T (x). Therefore, T
is compact for the discrete topology and Theorem 6.1.4 applies and
gives

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

. (6.44)

Now we see how to recover this formula starting from (6.36), asserting
that

∂f(x) =
⋂

L∈F(x)

co

{
⋃

(ti)i∈T (x)

∂(lim
i

(fti
+ IL∩dom f ))(x)

}

. (6.45)

Take (ti)i ∈ T (x), so that limi fti
(x) = f(x) and limi(fti

+ IL∩dom f ) ∈
R∞ locally around x. Then there exists some S ⊂ T (x) such that each
element of S is visited infinitely many times by the net (ti)i. Pick
t0 ∈ S and consider the constant subnet tij

= t0 of (ti)i. Hence, for all
z close enough to x,

lim
i

(fti
+ IL∩dom f )(z) = lim

j
(ftij

+ IL∩dom f )(z) = (ft0 + IL∩dom f )(z),

so that

∂(lim
i

(fti + IL∩dom f ))(x) = ∂(ft0 + IL∩dom f )(x)

⊂
⋃

t∈S

∂(ft + IL∩dom f )(x) ⊂
⋃

t∈T (x)

∂(ft + IL∩dom f )(x).

Hence, (6.45) yields the inclusion “⊂” in (6.44), whereas the opposite
inclusion is easily verified.
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We show below that the results of Theorem 6.2.6, based on the
Stone-Čech compactification, also gives rise to formulas for ∂f(x)
involving the one-point compact extension of the index set T . Given a
topology T on T, we choose an element ω /∈ T and consider the com-
pact topological space T ∪ {ω}, where the topology is given by

Tω := T ∪ {{ω} ∪ (T \ C) : C ∈ C(T )}, (6.46)

and
C(T ) := {C ⊂ T : C is compact and closed};

remember that T and T ∪ {ω} are not required to be Hausdorff. Let
us recall that the space (T ∪ {ω},Tω) is Hausdorff if and only if (T,T)
is Hausdorff and locally compact.

In the following result, f̃ω : X → R denotes the convex function
defined by

f̃ω := lim sup
s→ω, s∈T

fs; (6.47)

that is, denoting by V(ω) the family of neighborhoods of ω,

f̃ω = inf
V ∈V(ω)

(

sup
s∈V \{ω}

fs

)

= inf
C∈C(T )

(

sup
s∈T\C

fs

)

.

Observe that
f̃ω ≤ f. (6.48)

Remember that f̃t : X → R, t ∈ T, denote the usc regularizations of
the ft’s defined in (6.18); that is,

f̃t := lim sup
s→t

fs, (6.49)

and
T̃ (x) := {t ∈ T : f̃t(x) = f(x)}.

Theorem 6.2.8 Assume that T is a topological space. Given the con-
vex functions ft : X → R, t ∈ T, and f := supt∈T ft, for every x ∈
dom f , we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

s∈T ω(x)

∂(f̃s + IL∩dom f )(x)

}

, (6.50)
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where

Tω(x) :=
{

T̃ (x), if f̃ω(x) < f(x),
T̃ (x) ∪ {ω}, if f̃ω(x) = f(x).

Proof. Fix L ∈ F(x) and denote

T1(x) :=

{
(ti)i ∈ T (x) :

limi (fti + IL∩dom f ) ∈ R∞ locally around x,
and (ti)i has a cluster point

}
,

and

T2(x) := {(ti)i ∈ T (x) \ T1(x) : lim
i

(fti + IL∩dom f ) ∈ R∞ locally around x}.

Pick (ti)i ∈ T1(x) and choose a convergent subnet (tij
)j such that

tij
→ t0 ∈ T. Then f(x) = limi fti

(x) = limj ftij
(x) = f̃t0(x) and the

following relation holds locally around the point x,

lim
i

(fti
+ IL∩dom f ) = f̃t0 + IL∩dom f . (6.51)

Then t0 ∈ T̃ (x) and

∂
(
lim

i
(fti + IL∩dom f )

)
(x) = ∂

(
f̃t0 + IL∩dom f

)
(x) ⊂

⋃
t∈T̃ (x)

∂(f̃t + IL∩dom f )(x).

(6.52)

Now take (ti)i ∈ T2(x). Then, for any C ∈ C(T ), we have ti ∈ T \
C eventually, and the inequality limi (fti

+ IL∩dom f ) ≤ supt∈T\C ft +
IL∩dom f holds locally around x; that is, taking the infimum over the
sets C ∈ C(T ),

lim
i

(fti
+ IL∩dom f ) ≤ f̃ω + IL∩dom f . (6.53)

Thus, taking into account (6.48), since

f(x) = lim
i

(fti
+ IL∩dom f ) (x) ≤ (f̃ω + IL∩dom f )(x) = f̃ω(x), (6.54)

relation (6.53) gives rise to

∂ (limi (fti
+ IL∩dom f )) (x) ⊂ ∂(f̃ω + IL∩dom f )(x). (6.55)

Consequently, when f̃ω(x) < f(x), relations (6.54) and (6.55) imply
that
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{(ti)i ∈ T (x) : lim
i

(fti
+ IL∩dom f ) ∈ R∞ locally around x} = T1(x),

and combining (6.36) and (6.52), we infer that

∂f(x) ⊂ co

{
⋃

t∈T̃ (x)

∂(f̃t + IL∩dom f )(x)

}

.

Hence, by intersecting over the L’s, the inclusion “⊂ ” in (6.50) follows,
and we are done as the opposite inclusion is straightforward. In the
other case, where f̃ω(x) = f(x), (6.50) follows by combining (6.36),
(6.52), and (6.55).

The special case of T = N easily comes from Theorem 6.2.8. In this
case, the function f̃ω defined in (6.47) is

f̃∞ := lim sup
n→+∞

fn.

Corollary 6.2.9 Given the convex functions fn : X → R, n ≥ 1, and
f := supn≥1 ft, for every x ∈ dom f , we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

s∈T ∞(x)

∂(fs + IL∩dom f )(x)

}

,

where

T∞(x) :=
{

T (x), if f̃∞(x) < f(x),
T (x) ∪ {∞}, if f̃∞(x) = f(x).

Proof. We are going to apply Theorem 6.2.8 to N, endowed with
the discrete topology, whose one-point compact extension is denoted
N ∪ {∞}. In the current case, we have f̃n := lim supm→n fm = fn for
all n ≥ 1, and

f̃ω := inf
C∈C(N)

(

sup
n∈N\C

fn

)

≡ f̃∞,

where C(N) = {C ⊂ N : C finite}. Hence, the conclusion follows from
Theorem 6.2.8.

The following result gives rise to a slight extension of Corollary 6.1.8,
stated in a kind of compact-like framework.

Corollary 6.2.10 Given the convex functions ft : X → R, t ∈ T, the
supremum f := supt∈T ft, and x ∈ dom f , let us assume that, for each
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net (ti)i ∈ T (x) (see (6.37)), there exist a subnet (tij
)j ⊂ T and t ∈ T

such that
lim supj ftij

(z) ≤ ft(z) for all z ∈ dom f.

Then we have

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

. (6.56)

Proof. Fix L ∈ F(x) and take (ti)i ∈ T (x) such that the limit limi

(fti
+ IL∩dom f ) exists in R∞, locally around x. By the current assump-

tion, there exist a subnet (tij
)j ⊂ T and t ∈ T such that

lim supj ftij
+ IL∩dom f ≤ ft + IL∩dom f ; that is, locally around x,

lim
i

(fti
+ IL∩dom f ) = lim

j

(
ftij

+ IL∩dom f

)
≤ ft + IL∩dom f .

But these functions take the same value at x, because

f(x) = lim
i

(fti
+ IL∩dom f ) (x) ≤ (ft + IL∩dom f )(x) ≤ f(x),

so that t ∈ T (x) and ∂(limi (fti
+IL∩dom f ))(x)⊂∂(ft + IL∩dom f )(x);

hence the inclusion “⊂” in (6.56) comes from (6.36). The other inclu-
sion is straightforward.

Additional continuity assumptions allow simple characterizations of
∂f(x). The following corollary simplifies the formula of Theorem 6.2.6.
Actually, we can apply the same analysis to simplify the formula of
Theorem 6.2.8.

Corollary 6.2.11 Given convex functions ft : X → R, t ∈ T, and f :=
supt∈T ft, the following assertions hold true for every x ∈ dom f :

(i) If f|aff(dom f) is continuous at some point in ri(dom f), then

∂f(x) = co

{
⋃

(ti)i∈T (x)

∂(lim sup
j

ftij
+ Idom f )(x)

}

, (6.57)

where (tij
)j denotes any particular subnet of the net (ti)i.

(ii) If f is continuous somewhere, then
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∂f(x) = Ndom f (x) + co

{
⋃

(ti)i∈T (x)

∂(lim sup
j

ftij
)(x)

}

(6.58)

= Ndom f (x) + co

{
⋃

(ti)i∈T (x)

∂(lim sup
j

ftij
)(x)

}

(if X = R
n),

(6.59)

where (tij
)j is as in (i).

Proof. We may assume that x = θ, f(θ) = 0 and ∂f(θ) �= ∅. Fix L ∈
F(θ) such that L ∩ ri(dom f) �= ∅, and let (ti)i ∈ T (θ) such that the
limit function limi(fti

+ IL∩dom f ) exists in R∞ around θ. Then, for
every subnet (tij

)j of (ti)i, locally around θ, we have

lim
i

(fti + IL∩dom f ) = lim
j

(ftij
+ IL∩dom f )

= lim supj(ftij
+ IL∩dom f ) ≤

(
lim supj ftij

)
+ IL∩dom f .

Thus, since these two convex functions take the same value at θ, we
get

∂(lim
i

fti
+ IL∩dom f )(θ) ⊂ ∂(lim supj ftij

+ IL∩dom f )(θ). (6.60)

Moreover, applying Corollary 4.1.27(i) to the convex functions (f,
lim supj ftij

, IL), we obtain

∂(lim
i

fti + IL∩dom f )(θ) ⊂ ∂(lim sup
j

ftij
+ Idom f )(θ) + ∂IL∩(aff dom f)(θ).

Since ∂IL∩(aff dom f)(θ) = cl(L⊥ + (aff dom f)⊥), due to Proposition
4.1.16, from (6.60) we get

∂(lim
i

fti + IL∩dom f )(θ) ⊂ ∂(lim sup
j

ftij
+ Idom f )(θ) + cl(L⊥ + (aff dom f)⊥)

⊂ cl(∂(lim sup
j

ftij
+ Idom f )(θ) + L⊥ + ∂Iaff dom f (θ)),

and Proposition 4.1.6(iii) yields

∂(lim
i

fti + IL∩dom f )(θ) ⊂ cl(∂(lim sup
j

ftij
+ Idom f + Iaff dom f )(θ) + L⊥)

= cl(∂(lim sup
j

ftij
+ Idom f )(θ) + L⊥).

Therefore, formula (6.36) leads us to



6.2. COMPACTIFICATION APPROACH 255

∂f(θ) ⊂ co

{
⋃

(ti)i∈T (θ)

∂(lim
i

fti
+ IL∩dom f )(θ)

}

⊂ co

{
⋃

(ti)i∈T (θ)

∂(lim sup
j

ftij
+ Idom f )(θ) + L⊥

}

, (6.61)

and the inclusion “⊂” in (6.57) follows by intersecting over the L’s
(Exercise 10(i)). We are done with assertion (i) since the inclusion
“⊃” in (6.57) is easily verified.

Now we establish formula (6.58). According to Proposition 4.1.20,
formula (6.57) simplifies to

∂f(θ) = co

{ ⋃
(ti)i∈T (θ)

∂(lim sup
j

ftij
+ Idom f )(θ)

}

= co

{ ⋃
(ti)i∈T (θ)

∂(lim sup
j

ftij
)(θ) + Ndom f (θ)

}
= cl
(
A + Ndom f (θ)

)
, (6.62)

where A is the non-empty convex set (because we have assumed that
∂f(θ) �= ∅)

A := co

{
⋃

(ti)i∈T (θ)

∂(lim sup
j

ftij
)(θ)

}

.

With the same arguments as in the proof of Theorem 6.1.11, we prove
that dom f ⊂ dom σA. In fact, observe that, for all z ∈ dom f,

σA(z) = sup
(ti)i∈T (θ)

σ∂(lim supj ftij
)(θ)(z)

≤ sup
(ti)i∈T (θ)

((lim sup
j

ftij
)(z) − (lim sup

j
ftij

)(θ))

≤ f(z) − f(θ) = f(z) < +∞.

Therefore, Proposition 4.1.28 ensures that cl(A + Ndom f (θ)) = (cl A) +
Ndom f (θ), and (6.62) yields the desired formula,

∂f(θ) = co

{
⋃

(ti)i∈T (θ)

∂(lim sup
j

ftij
)

}

+ Ndom f (θ).

Finally, to prove formula (6.59), we suppose X = R
n. Then, taking

into account Proposition 4.1.20, (6.61) with L = R
n yields
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∂f(θ) ⊂ co

{
⋃

(ti)i∈T (θ)

∂(lim sup
j

ftij
+ Idom f )(θ)

}

= Ndom f (θ) + co

{
⋃

(ti)i∈T (θ)

∂(lim sup
j

ftij
)(θ)

}

,

and we conclude the proof as the opposite inclusion easily comes from
(6.58).

A good choice of the subnet (tij
)j in formulas (6.57) and (6.58)

would lead to operative representations of ∂f(x), whereas inappropri-
ate choices make these formulas useless. This fact is illustrated in the
following example.

Example 6.2.12 Take T := {1, . . . , m} and f := maxt∈T ft. Let x ∈
X such that T (x) = T and f is continuous at x. We are going to show
that if we choose as a subnet (tij

)j the same net (ti)i in formula (6.58);
that is,

∂f(x) = co

{
⋃

(ti)i∈T (x)

∂(lim supi fti
)(x)

}

, (6.63)

may be useless. Notice that

T (x) = {(ti)i ⊂ T : fti (x) = f(x), eventually} = {(ti)i ⊂ T (x), eventually}; (6.64)

in other words, associated with each net (ti)i, there exists a subset
S ⊂ T (x) such that each element of S is visited by (ti)i infinitely many
times. Therefore, lim supi fti

(z) = maxt∈S ft(z) for all z ∈ X. Con-
versely, given any set S ⊂ T (x), we can easily construct a net (even
a sequence) such that all the elements of S are visited infinitely many
times. Consequently, formula (6.63) yields

∂f(x) = co

{
⋃

S⊂T (x)

∂(max
t∈S

ft)(x)

}

.

This representation is useless because the set in the right-hand side
could contain the subdifferential of the same supremum function f ;
this is the case when S = T (x) = T. Alternatively, given our net (ti)i,
if we choose a constant subnet (tij

)j such that tij
= t0 ∈ T (x) for all

j, then lim supj ftij
= ft0 , and formula (6.63) reads
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∂f(x) = co

{
⋃

t∈T (x)

∂ft(x)

}

,

which is nothing else but formula (6.24).

We give the following example to illustrate the difference between
Theorems 6.2.8 and 6.2.6 (or, more precisely, Corollary 6.2.11), which
are based on the one-point and the Stone-Čech compactifications,
respectively.

Example 6.2.13 Consider the family of convex functions g2n+1, h2n :
X → R, n ∈ N, defined on R as

g2n+1(x) := max
{

nx

n + 1
, 0
}

, h2n(x) := max
{

−nx

n + 1
, 0
}

.

We introduce the family {fn, n ∈ N} such that f2n+1 := g2n+1 and
f2n := h2n, together with the supremum function f := supn∈N fn =
supn∈N {g2n+1, h2n} . Obviously, f(x) = |x| ,

T (x) =
{
N, if x = 0,
∅, if x �= 0,

and ∂f(x) =

⎧
⎨

⎩

[−1, 1], if x = 0,
{1}, if x > 0,
{−1}, if x < 0.

If we apply the formula established in Theorem 6.1.4, then we attain
a false conclusion since, obviously, N is not compact: for every x ∈ R

∂f(x) =
{

]−1, 1[ , if x = 0,
∅, if x �= 0.

Next, we apply the formulas obtained in Corollaries 6.2.9 and 6.2.11.
(i) One-point compact extension (Corollary 6.2.9): the function f̃∞

defined in (6.47) is given in the current case by f̃∞(x) =
lim supn→∞ fn(x) = |x| = f(x), and Corollary 6.2.9 is useless.

(ii) Stone-Čech compact extension (finite-dimensional formula
(6.59) in Corollary 6.2.11(ii)): take x ∈ R and (ni)i ∈ T (x), so that
limi fni

(x) = |x| . Here T (x) is (see (6.64))

T (x) = {(ni)i ⊂ N : fni (x) = f(x), eventually} = {(ni)i ⊂ T (x), eventually}.

If x > 0, then ni must be odd eventually, so that

lim sup
i

fni
(z) = lim sup

i
g2ni+1(z) = max{z, 0} =: gγ̄(z).
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Thus, taking for (nij
)j the own net (ni)i in Corollary 6.2.11(ii),

∂f(x) = co

{
⋃

(ni)i∈T (x), ni odd

∂(lim sup
i

fni
)(x)

}

= ∂gγ̄(x) = {1}.

Similarly, if x < 0, then ni must be even eventually, so that

lim sup
i

fni
(z) = lim sup

i
h2ni

(z) = max{−z, 0} =: hγ̄(z),

and Corollary 6.2.11(ii) again yields ∂f(x) = ∂hγ̄(x) = {−1}.
Assume now that x = 0. In this case, given (ni)i ∈ T (0), we choose a

subnet (nij
)j of (ni)i that is composed uniquely of odd or even numbers.

Since

lim sup
j

fnij
= lim sup

j
g2nij

+1 ≤ lim sup
n→∞

g2n+1 = gγ̄, if nij
is odd,

lim sup
j

fnij
= lim sup

j
h2nij

≤ lim sup
n→∞

h2n = hγ̄ , if nij
is even,

and all these functions are equal at 0, we derive that

∂(lim sup
j

fnij
)(0) ⊂ ∂gγ̄(0), if nij

is odd for all j,

∂(lim sup
j

fnij
)(0) ⊂ ∂hγ̄(0), if nij

is even for all j;

that is, ∂(lim supj fnij
)(0) ⊂ ∂gγ̄(0) ∪ ∂hγ̄(0). So, by formula (6.59),

∂f(0) = co

{
⋃

n≥1
(∂g2n+1(0) ∪ ∂h2n(0))

⋃
∂gγ̄(0)

⋃
∂hγ̄(0)

}

= co

{
⋃

n≥1

(

[0,
n

n + 1
] ∪ [

−n

n + 1
, 0]
)
⋃

[0, 1]
⋃

[−1, 0]

}

= [0, 1[ ∪ ] − 1, 0] ∪ [0, 1] ∪ [−1, 0] = [−1, 1],

and we recover the whole set ∂f(0).
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6.3 Main subdifferential formula revisited

In this section, we again consider a family ft : X → R, t ∈ T, of con-
vex functions defined on the locally convex space X, together with the
supremum function f := supt∈T ft. Our goal is to derive new charac-
terizations for ∂f, starting from the compactification processes devel-
oped in section 6.2. To do this, we will write the subdifferential of the
regularizing functions fγ , γ ∈ βT, introduced in the Stone-Čech com-
pactification, in terms of the original data ft, t ∈ T . Theorems 6.1.4
and 6.2.6, and their consequences, will allow us to refine the results of
chapter 5. We will need the following technical proposition.

Proposition 6.3.1 Assume that the ft’s are proper and lsc such
that θ ∈ f−1(0) and f|span(dom f) is continuous at some point x0 ∈
ri(dom f). We consider a net (z∗

i )i ⊂ X∗ such that

lim
i

(

inf
t∈T

f∗
t

)

(z∗
i ) = 0 and lim sup

i
〈z∗

i , x0〉 > −∞. (6.65)

Then there exist a subnet (z∗
ij
)j of (z∗

i )i and z∗ ∈ X∗ such that
〈
z∗
ij

− z∗, z
〉

→j 0, for all z ∈ span(dom f), and

z∗ ∈
⋂

ε>0

cl

⎛

⎝
⋃

t∈Tε(θ)

∂εft(θ) + (dom f)⊥

⎞

⎠ . (6.66)

Proof. We denote E := span(dom f) with E∗ standing for the dual of
E; hence E is a closed subspace because ri(dom f) �= ∅. We also denote
h := inft∈T f∗

t so that, by (3.10) and Theorem 3.2.2,

h∗ =
(

inf
t∈T

f∗
t

)∗
= sup

t∈T
f∗∗

t = sup
t∈T

ft = f, (6.67)

and (6.65) gives rise to

h∗(θ) + h(z∗
i ) = f(θ) + h(z∗

i ) = (inft∈T f∗
t ) (z∗

i ) → 0. (6.68)

Hence, for every fixed ε > 0, eventually on i, we have

h∗(θ) + h∗∗(z∗
i ) ≤ h∗(θ) + h(z∗

i ) = h(z∗
i ) < ε, (6.69)

and (6.67) implies, also eventually on i,
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z∗
i ∈ ∂εh

∗(θ) = ∂εf(θ). (6.70)

Without loss of generality, we may assume that (6.70) holds for all i.
Moreover, using (6.69), for each i there exists ti ∈ T such that f∗

ti
(z∗

i ) <
ε, and so

fti
(θ) + f∗

ti
(z∗

i ) ≤ f(θ) + f∗
ti
(z∗

i ) = f∗
ti
(z∗

i ) < ε.

This entails that z∗
i ∈∂εfti

(θ) and −fti
(θ)= 〈z∗

i , θ〉 − fti
(θ) ≤ f∗

ti
(z∗

i ) <
ε; that is, ti ∈ Tε(θ) and (z∗

i )i ∈ ∂εfti
(θ) ⊂ ∪t∈Tε(θ)∂εft(θ). Now, thanks

to the continuity assumption of f at x0 ∈ dom f, we choose U ∈ NX

and r ≥ 0 such that

f(x0 + y) ≤ r for all y ∈ U ∩ E. (6.71)

Also, due to (6.65), there exists some M ≥ 0 such that infi 〈z∗
i , x0〉 ≥

−M for all i (without loss of generality). Therefore, taking into account
(6.70), (6.71) yields the existence of some m ≥ r + M + ε such that,
for all y ∈ U ∩ E and i,

〈z∗
i , y〉 ≤ f(x0 + y) + ε − inf

i
〈z∗

i , x0〉 ≤ m, (6.72)

showing that (z∗
i )i ⊂ (U ∩ E)◦. Consequently, using the w∗-

compactness of (U ∩ E)◦ and the fact that the dual E∗ is isomor-
phic to the quotient space X∗/E⊥, Exercise 106 yields the exis-
tence of a subnet (z∗

ij
)j and z∗ ∈ cl(∪t∈Tε(θ)∂εft(θ) + E⊥) such that

〈
z∗
ij

− z∗, u
〉

→j 0 for all u ∈ E. The conclusion follows by intersect-
ing over V and then over ε > 0.

We proceed by giving the main result of this section. The difference
between formula (6.73) below and main formula (5.26) in Theorem
5.2.2 can be particularly appreciated in section 8.3, where we obtained
expressions of the optimal sets of relaxed-convex optimization prob-
lems. While formula (5.26) produces characterizations by means of
approximate solutions of the original problem (Theorem 8.3.2), for-
mula (6.73) below gives rise to characterizations in terms of exact
rather than approximate solutions (Theorem 8.3.3). In Exercise 97, a
non-convex version of Theorem 6.3.2 is given.

Theorem 6.3.2 Let convex functions ft : X → R, t ∈ T, and f :=
supt∈T ft satisfy the same assumption as in Theorem 5.2.2; that is,
cl f = supt∈T (cl ft). Then, for every x ∈ X, we have
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∂f(x) =
⋂

L∈F(x)

co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)}

. (6.73)

Proof. The inclusion “⊃” follows easily from formula (5.26). To
prove the inclusion “⊂” we assume, without loss of generality, that
x = θ, f(θ) = 0 and ∂f(θ) �= ∅; hence, ∂(cl f)(θ) = ∂f(θ) and f(θ) =
(cl f)(θ) = 0. We give the proof only for the case {ft, t ∈ T} ⊂ Γ0(X),
the general case is treated in Exercise 105. We fix L ∈ F(θ) and intro-
duce the proper lsc convex functions f̃t : X → R, t ∈ T, defined by

f̃t := ft + IL, t ∈ T, (6.74)

together with the function h : X → R given by

h := inf
t∈T

f̃∗
t .

Hence, using Theorem 3.2.2,

f + IL = sup
t∈T

f̃∗∗
t =

(

inf
t∈T

f̃∗
t

)∗
= h∗ = sup

z∗∈X∗
hz∗ , (6.75)

where hz∗ := 〈z∗, ·〉 − h(z∗). Then, applying Theorem 6.2.6 to the func-
tion f + IL and the index set T = X∗, we get

∂f(θ) ⊂ ∂(f + IL)(θ) ⊂ co

⎧⎨
⎩ ⋃

(z∗
i )i⊂X∗, hz∗

i
(θ)→0

∂
(
lim

i
(hz∗

i
+ IL∩dom f )

)
(θ)

⎫⎬
⎭ , (6.76)

where each limit limi(hz∗
i

+ IL∩dom f ) exists in R∞ locally around θ,
say, in some (convex) neighborhood U ∈ NX . Let (z∗

i )i ⊂ X∗ be any
of the nets involved in (6.76). Hence, since U ∩ ri(L ∩ dom f) �= ∅ by
(2.15), for every x0 ∈ U ∩ ri(L ∩ dom f) we have

lim sup
i

〈z∗
i , x0〉 = lim

i
(〈z∗

i , ·〉 + IL∩dom f ) (x0) > −∞.

Moreover, because hz∗
i
(θ) → 0, (6.75) implies that h(z∗

i ) = 〈z∗
i , θ〉 −

hz∗(θ) → 0, and Proposition 6.3.1 yields the existence of z∗ ∈ X∗ such
that
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z∗ ∈
⋂

ε>0
cl

(
⋃

t∈Tε(θ)

∂ε(ft + IL)(θ) + (L ∩ dom f)⊥
)

, (6.77)

and a subnet (z∗
ij
)j such that

〈
z∗
ij

− z∗, z
〉

→j 0 for all z ∈ span(L ∩
dom f). Equivalently, for all z ∈ X,

lim
i

(hz∗
i

+ IU∩L∩dom f )(z) = lim
j

(〈
z∗
ij

, z
〉

− h(z∗
ij

) + IU∩L∩dom f (z)
)

= lim
j

〈
z∗
ij

, z
〉

+ IU∩L∩dom f (z) = 〈z∗, z〉 + IU∩L∩dom f (z).

(6.78)

In other words, taking into account (6.77) and the fact that (L ∩
dom f)⊥ + NL∩dom f (θ) ⊂ NL∩dom f (θ), we obtain

∂
(
lim

i
(hz∗

i
+ IU∩L∩dom f )

)
(θ) ⊂

⋂
ε>0

cl

( ⋃
t∈Tε(θ)

∂ε(ft + IL)(θ) + NL∩dom f (θ)

)
.

Finally, using Proposition 4.1.16, we have ∂ε(ft + IL)(θ) ⊂ cl(∂εft(θ) +
L⊥), and the last inclusion gives rise to

∂
(
lim

i
(hz∗

i
+ IU∩L∩dom f )

)
(θ) ∈

⋂

ε>0
cl

(
⋃

t∈Tε(θ)

∂εft(θ) + NL∩dom f (θ)

)

.

The desired inclusion “⊂” comes from (6.76) by intersecting over L ∈
F(θ).

In the following corollary, we remove the closedness condition (5.10).

Corollary 6.3.3 Given convex functions ft : X → R, t ∈ T, and f :=
supt∈T ft, for every x ∈ X we have

∂f(x) =
⋂

L∈F(x)

co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)}

. (6.79)

Proof. Given any x ∈ dom f and L ∈ F(x), the family of convex
functions {ft + IL∩dom f , t ∈ T} satisfies condition (5.10) (Proposition
5.2.4(iv)). Therefore, since supt∈T (ft + IL∩dom f ) = f + IL∩dom f , The-
orem 6.3.2 entails
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∂f(x) ⊂ co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x) + NL∩dom f (x)

)}

⊂ co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

)}

.

Then the inclusion “⊂” follows by intersecting over L. The proof is
complete since the opposite inclusion is straightforward.

It is clear that Theorem 6.3.2 easily implies Theorem 5.2.2, while
the converse implication is more complicated. To better appreciate
the difference between the scope of both results we give the following
example. It shows how to retrieve Theorem 6.1.4 from formula (6.73)
in the case of a finite number of functions. Notice that this analysis
cannot be done, at least directly, from formula (5.26).

Example 6.3.4 Assume that T is finite. Then formula (6.79) easily
implies, for any given x ∈ dom f, that

∂f(x) =
⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

, (6.80)

which is formula (6.12), whereas formula (5.26) only gives (by com-
bining Corollary 5.2.5 and Exercise 107)

∂f(x) =
⋂

L∈F(x), ε>0

co

{
⋃

t∈T (x)

∂ε(ft + IL∩dom f )(x)

}

. (6.81)

In fact, to obtain (6.80), we observe that Tε(x) = T (x), for all small
enough ε > 0, so formula (6.79) yields

∂f(x) =
⋂

L∈F(x)

co

(
⋂

ε>0

⋃

t∈T (x)

∂ε(ft + IL∩dom f )(x)

)

. (6.82)

Take x∗ ∈ ∩ε>0 ∪t∈T (x) ∂ε(ft + IL∩dom f )(x). Then, for each n ≥ 1, we
find tn ∈ T (x) such that x∗ ∈ ∂1/n(ftn

+ IL∩dom f )(x). Since T (x) is
finite, by taking a subsequence if needed, we may assume that tn ≡
t0 ∈ T (x) for all n ≥ 1, and (4.15) implies x∗ ∈ ∂(ft0 + IL∩dom f )(x).
Consequently, (6.82) gives rise to
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∂f(x) ⊂
⋂

L∈F(x)

co

(
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

)

,

and (6.80) follows, since the converse inclusion is straightforward.

If X = R
n in Theorem 6.3.2, then formula (6.73) reads

∂f(x) = co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

)}

. (6.83)

More generally, we have the following result.

Corollary 6.3.5 Given convex functions ft : X → R, t ∈ T, and f :=
supt∈T ft, we assume that (5.10) holds. Provided that ri(dom f) �= ∅
and f|aff(dom f) is continuous on ri(dom f), for every x ∈ X, we have

∂f(x) = co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

)}

.

Proof. The proof is similar to that of Theorem 6.3.2, except that
we use formula (6.57) instead of Theorem 6.2.6. For the sake of com-
pleteness, we give the proof of the non-trivial inclusion “⊂” when {ft,
t ∈ T} ⊂ Γ0(X), x = θ and ∂(cl f)(θ) = ∂f(θ) �= ∅, f(θ) = (cl f)(θ) =
0. We consider the function h : X → R defined by h := inft∈T f∗

t , so
that

f = h∗ = sup
z∗∈X∗

hz∗(z),

with hz∗ := 〈z∗, ·〉 − h(z∗). Moreover, (6.57) yields

∅ �= ∂f(θ) = co

{
⋃

(z∗
i )i⊂X∗, h(z∗

i )→0

∂

(

lim sup
j

hz∗
ij

+ Idom f

)

(θ)

}

,

(6.84)
where (z∗

ij
)j denotes any particular subnet of (z∗

i )i. Let nets (z∗
i )i,

(z∗
ij
)j ⊂ X∗ be as in (6.84) such that h(z∗

i ) = 〈z∗
i , θ〉 − hz∗(θ) → 0 and

∂(lim supj hz∗
ij

+ Idom f )(θ) �= ∅. Observe that

lim sup
j

hz∗
ij

≤ lim sup
i

hz∗
i

and
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0 = lim sup
j

hz∗
ij

(θ) ≤ lim sup
i

hz∗
i
(θ) ≤ h∗(θ) = f(θ) = 0,

so that ∅ �= ∂(lim supj hz∗
ij

+ Idom f )(θ) ⊂ ∂(lim supi hz∗
i

+ Idom f )(θ)
and the convex function lim supi(hz∗

i
+ Idom f ) is proper. Hence,

lim supi 〈z∗
i , x0〉 = lim supi(hz∗

i
(x0) + Idom f (x0)) > −∞ for all x0 ∈

dom f (⊃ ri(dom f)). Consequently, Proposition 6.3.1 applies and
yields some z∗ ∈ X∗ such that

z∗ ∈
⋂

ε>0
cl

(
⋃

t∈Tε(θ)

∂εft(θ) + (dom f)⊥
)

, (6.85)

together with the existence of a subnet (z∗
ik

)k of (z∗
i )i such that

〈
z∗
ik

− z∗, z
〉

→k 0 for all z ∈ span(dom f); that is, for all z ∈ X

lim sup
k

(hz∗
ik

+ Idom f )(z) = lim
k

(〈
z∗

ik
, z
〉
+ Idom f (z)

)
= Idom f (z) + 〈z∗, z〉 .

Therefore, by (6.85),

∂

(
lim sup

k
(hz∗

ik
+ Idom f

)
(θ) ⊂ Ndom f (θ) +

⋂
ε>0

cl

( ⋃
t∈Tε(θ)

∂εft(θ) + (dom f)⊥

)

⊂
⋂

ε>0

cl

( ⋃
t∈Tε(θ)

∂εft(θ) + (dom f)⊥ + Ndom f (θ)

)
,

and the relation

(dom f)⊥ + Ndom f (θ) = ∂Ispan f (θ) + Ndom f (θ) ⊂ ∂(Idom f + Ispan f )(θ) = Ndom f (θ)

leads us to

∂

(

lim sup
k

(hz∗
ik

+ Idom f

)

(θ) ⊂
⋂

ε>0
cl

(
⋃

t∈Tε(θ)

∂εft(θ) + Ndom f (θ)

)

.

Then the inclusion “⊂” follows from (6.84).

Corollary 6.3.6 Given convex functions ft : X → R, t ∈ T, we assume
that f := supt∈T ft is continuous somewhere. Then, for every x ∈ X,
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∂f(x) = Ndom f (x) + co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x)

)}

(6.86)

= Ndom f (x) + co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x)

)}

(if X = R
n).

(6.87)

Proof. First, the current continuity assumption on f implies condition
(5.10) (Proposition 5.2.4(i)). We proceed as in the proof of Corollary
6.3.5, using formula (6.58) and outlining only the proof of the inclu-
sion “⊂” when {ft, t ∈ T} ⊂ Γ0(X), x = θ and ∂(cl f)(θ) = ∂f(θ) �=
∅, f(θ) = (cl f)(θ) = 0. Again we consider the function h : X → R

defined by h := inft∈T f∗
t , so that f = h∗ = supz∗∈X∗ hz∗(z), where

hz∗ := 〈z∗, ·〉 − h(z∗). So, (6.58) yields

∅ �= ∂f(θ) = Ndom f (θ) + co

{
⋃

(z∗
i )i⊂X∗, h(z∗

i )→0

∂

(

lim sup
j

hz∗
ij

)

(θ)

}

,

(6.88)

where (z∗
ij
)j denotes any particular subnet of (z∗

i )i. As in the proof
of Corollary 6.3.5, we consider those nets (z∗

i )i ⊂ X∗ involved in
(6.88), which satisfy h(z∗

i ) → 0 and lim supi 〈z∗
i , x0〉 > −∞ for all

x0 ∈ int(dom f). Consequently, since (dom f)⊥ = {θ} due to the cur-
rent assumption, Proposition 6.3.1 yields the existence of z∗ ∈ X∗ such
that

z∗ ∈
⋂

ε>0
cl

(
⋃

t∈Tε(θ)

∂εft(θ)

)

, (6.89)

and a subnet (z∗
ij
)j such that

〈
z∗
ij

− z∗, z
〉

→j 0 for all z ∈ X; that is,

lim supj hz∗
ij

(z) = limj

〈
z∗
ij
, z
〉

= 〈z∗, z〉 for all z ∈ X. Thus, the inclu-
sion “⊂” in (6.86) comes by combining (6.88) and (6.89).

The proof of (6.87) is similar, except that we use formula (6.59)
instead of (6.58).

We end this section by illustrating the previous formulas with the
support function.

Example 6.3.7 Consider the support function f(x) := σA(x) =
sup {〈a, x〉 : a ∈ A} , where A ⊂ X ≡ R

n is a non-empty set. Let us
show that, for every given x ∈ dom f,
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∂f(x) = co
{
⋂

ε>0
cl
(
Aε(x) + (coA)∞ ∩ {x}⊥

)}

, (6.90)

where Aε(x) := {a ∈ A : 〈a, x〉 ≥ f(x) − ε} (and A(x) := {a ∈ A :
〈a, x〉 = f(x)}). Moreover, if A is closed and int ([(coA)∞]−) �= ∅, then

∂f(x) = (coA)∞ ∩ {x}⊥ + co (A(x)) . (6.91)

Indeed, since Ndom f (x) = (coA)∞ ∩ {x}⊥ (see Exercise 54), (6.90) fol-
lows by (6.73) (or, more precisely, its finite-dimensional version given
in formula (6.83)).

Assume now that A is closed and int ([(coA)∞]−) �= ∅, so that Aε(x)
is closed and we obtain

⋂

ε>0
cl (Aε(x)) =

⋂

ε>0
Aε(x) = A(x).

Therefore, thanks to (3.52), we have int(dom f) = int ([(coA)∞]−) �=
∅, and f is continuous on int(dom f). So, using again the relation
Ndom f (x) = (coA)∞ ∩ {x}⊥, formula (6.87) entails (6.91). If, in addi-
tion x ∈ int ([(coA)∞]−) , then

∂f(x) = co (A(x)) . (6.92)

Consequently, f is (Fréchet-) differentiable at x ∈ int ([(coA)∞]−) if
and only if the set A(x) is a singleton; in this case, we have A(x) =
{∇f(x)}.

6.4 Homogeneous formulas

In this section, we represent the subdifferential of the supremum func-
tion f := supt∈T ft, using exclusively the data functions ft, t ∈ T,
belonging to Γ0(X). If the (almost) active functions are still present
in the final formulas, the normal cone Ndom f (x) is now removed and
replaced with the approximate subdifferential of non-active functions,
but affected by appropriate weights. The resulting formulas are called
homogeneous because they do not depend, at least explicitly, on the
normal cone to the effective domain of f (or to finite-dimensional sec-
tions of it).



268 CHAPTER 6. THE SUPREMUM IN SPECIFIC . . .

To this aim, we first characterize the normal cone Ndom f (x) by
means of the data functions ft, t ∈ T. The following result deals with
the so-called compact-continuous case.

Proposition 6.4.1 Assume that {ft, t ∈ T} ⊂ Γ0(X) with T compact
and that the mappings t �→ ft(z), z ∈ X, are usc. Then, for every x ∈
dom f, such that

inf
t∈T

ft(x) > −∞, (6.93)

we have

Ndom f (x) =
[

co
(
⋃

t∈T

∂εft(x)
)]

∞
for all ε > 0. (6.94)

Proof. We fix ε > 0 and denote

Eε :=
⋃

t∈T

∂εft(x);

observe that Eε is non-empty by Proposition 4.1.10.
To establish the inclusion “⊃” in (6.94), we take x∗ ∈ [co(Eε)]∞ and

fix x∗
0 ∈ Eε. Then for every α > 0, we have x∗

0 + αx∗ ∈ co(Eε), and
so there are nets (λj,1, . . . , λj,kj

) ∈ Δ∗
kj

, tj,1, . . . , tj,kj
∈ T, and x∗

j,1 ∈
∂εftj,1(x), . . . , x∗

j,kj
∈ ∂εftj,kj

(x) such that x∗
0 + αx∗ = limj(λj,1x

∗
j,1 +

. . . + λj,kj
x∗

j,kj
). Hence, for every fixed y ∈ dom f,

〈x∗
0 + αx∗, y − x〉 = limj

〈
λj,1x

∗
j,1 + . . . + λj,kj

x∗
j,kj

, y − x
〉

≤ lim supj

(
∑

i=1,...,kj

λj,i(ftj,i
(y) − ftj,i

(x) + ε)

)

≤ lim supj

(
∑

i=1,...,kj

λj,i(f+(y) − ftj,i
(x) + ε)

)

≤ f+(y) − inf {ft(x), t ∈ T} + ε,

where f+ is the positive part of f. Next, dividing by α and making α ↑
+∞, condition (6.93) ensures that 〈x∗, y − x〉 ≤ 0 for all y ∈ dom f =
dom f+; that is, x∗ ∈ Ndom f (x), as we wanted to prove.

Now, we prove the inclusion

([co (Eε)]∞)− ⊂ (Ndom f (x))−, (6.95)
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or equivalently, according to (3.52) and the fact that (Ndom f (x))− =
cl(R+(dom f − x)),

cl(dom σEε
) ⊂ cl(R+(dom f − x)). (6.96)

Take z ∈ dom σEε
= dom

(
supt∈T σ∂εft(x)

)
= dom (supt∈T (ft)′

ε(x; ·)) ,
where the last equality comes from Proposition 4.1.12. Then, by (4.1),

z ∈
⋂

t∈T

dom((ft)′
ε(x; ·)) =

⋂

t∈T

R+(dom ft − x),

and (see Exercise 9)

z ∈
⋂

t∈T

R+(dom ft − x) = R+(dom f − x) ⊂ cl(R+(dom f − x)).

Hence, (6.96) holds and (6.95) follows. Finally, the inclusion “⊂” in
(6.94) follows from (6.95) by the bipolar theorem (3.51).

The following result provides the non-compact counterpart to Propo-
sition 6.4.1. Now, instead of the individual functions ft, t ∈ T, we use
the following max-type functions (introduced in (5.21))

fJ := max{ft, t ∈ J}, J ∈ T := {J ⊂ T : |J | < +∞}. (6.97)

The proof of this result uses a countable reduction argument given in
Exercise 100 whose proof is based on strictly topological arguments.

Proposition 6.4.2 Consider the family {ft, t ∈ T} ⊂ Γ0(X), the
function f := supt∈T ft, and let x ∈ dom f such that condition (6.93)
holds; that is, inft∈T ft(x) > −∞. Then, for every ε > 0,

Ndom f (x) =
[

co
(
⋃

J∈T
∂εfJ(x)

)]

∞
. (6.98)

Proof. Take u∗ ∈ Ndom f (x) and ε > 0. By Exercise 100, for every
fixed L ∈ F(x) there exists a sequence (tn)n ⊂ T such that u∗ ∈
Ndom(supn≥1 ftn )∩L(x). We denote Jn := {t1, . . . , tn}, n ≥ 1, and intro-

duce the convex functions f̂n := fJn
+ IL, n ≥ 1 (see (6.97)). So, (f̂n)n

is non-decreasing and satisfies supn≥1 (ftn
+ IL) = supn≥1 f̂n and

dom
(
supn≥1 ftn

)
∩ L = dom

(
supn≥1 f̂n

)
. In addition, according to

Example 5.1.6 (formula (5.15)), we have
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∂ε/2

(
sup
n≥1

f̂n

)
(x) =

⋂
δ>0

cl

( ⋃
k≥1

⋂
n≥k

∂δ+ε/2f̂n(x)

)
⊂ cl

( ⋃
k≥1

∂ε(fJk
+ IL)(x)

)
,

taking δ = ε/2 and n = k. Next, using formula (4.46) in Proposition
4.1.16, we get

∂ε/2

(

sup
n≥1

f̂n

)

(x) ⊂ cl

⎛

⎜
⎝
⋃

k≥1

cl

⎛

⎜
⎝

⋃

ε1+ε2=ε
ε1,ε2≥0

(∂ε1fJk
(x) + ∂ε2IL(x))

⎞

⎟
⎠

⎞

⎟
⎠

⊂ co

(
⋃

k≥1

∂εfJk
(x) + L⊥

)

.

Therefore, applying (4.9) and Proposition 4.1.10,

u∗ ∈ Ndom(supn≥1 ftn )∩L(x) =
[

∂ε/2

(

sup
n≥1

f̂n

)

(x)
]

∞

⊂
[

co

(
⋃

k≥1

∂εfJk
(x) + L⊥

)]

∞
⊂
[

co
(
⋃

J∈T
∂εfJ(x) + L⊥

)]

∞
,

and so, by (2.23),

u∗ ∈
⋂

L∈F(x)

[
co

( ⋃
J∈T

∂εfJ (x) + L⊥
)]

∞
=

[ ⋂
L∈F(x)

co

( ⋃
J∈T

∂εfJ (x) + L⊥
)]

∞

,

and we obtain that u∗ ∈ [co (∪J∈T ∂εfJ(x))]∞ (see Exercise 10(iv)).
Hence, the inclusion “⊂” in (6.98) follows, and we are done since the
opposite inclusion follows as in the proof of Proposition 6.4.1.

Next, we give the first homogeneous formula of ∂f(x), corresponding
to the so-called compact-continuous framework.

Theorem 6.4.3 Assume that {ft, t ∈ T} ⊂ Γ0(X) with T compact
and that the mappings t �→ ft(z), z ∈ X, are usc. Denote f := supt∈T ft

and let x ∈ dom f such that condition (6.93) holds; that is, inft∈T

ft(x) > −∞. Then we have

∂f(x) =
⋂

ε>0
co

((
⋃

t∈T (x)

∂εft(x)

)

+

(
⋃

t∈T\T (x)

{θ, ε} ∂εft(x)

))

.

(6.99)
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Proof. We may assume that f(x) = 0 (without loss of generality).
Fix ε > 0, U ∈ NX∗ , and pick L ∈ F(x) such that L⊥ ⊂ U. An isolated
index is assigned to the function IL so that the family {ft, t ∈ T ; IL} ⊂
Γ0(X) also satisfies the same compactness and upper semicontinu-
ity assumptions. Therefore, applying Proposition 6.4.1 to the family
{ft, t ∈ T ; IL} , we obtain

NL∩dom f (x) =

[

co

((
⋃

t∈T (x)

∂εft(x)

)
⋃
(

⋃

t∈T\T (x)

∂εft(x)

)
⋃

L⊥
)]

∞
,

(6.100)
and so (see Exercises 22 and 23)

NL∩dom f (x) =

[

co

((

⋃

t∈T (x)

∂εft(x)

)

⋃

(

⋃

t∈T\T (x)

ε∂εft(x)

)

⋃

L⊥
)]

∞

=

[

co

((

⋃

t∈T (x)

∂εft(x)

)

+

(

⋃

t∈T\T (x)

ε∂εft(x)

)

+ L⊥
)]

∞

⊂
[

co
(

Aε + L⊥
)]

∞
,

where we denote

Aε :=

(
⋃

t∈T (x)

∂εft(x)

)

+

(
⋃

t∈T\T (x)

{θ, ε} ∂εft(x)

)

.

Observe that, due to the lower semicontinuity of the ft’s, the sets
∂εft(x) are non-empty and we have θ ∈ ∪t∈T\T (x) {θ, ε} ∂εft(x) + L⊥.
Thus, using (6.16),

∂f(x) ⊂ co

(
⋃

t∈T (x)

∂εft(x) + NL∩dom f (x)

)

⊂ co

(
⋃

t∈T (x)

∂εft(x) +
[
co
(
Aε + L⊥

)]

∞

)

,

and, taking into account that ∪t∈T (x)∂εft(x) ⊂ Aε, we have

∂f(x) ⊂ co
(

Aε +
[

co
(

Aε + L⊥
)]

∞

)

⊂ co
(

Aε + L⊥
)

⊂ co
(

Aε + L⊥
)

+ U = co (Aε) + L⊥ + U ⊂ co (Aε) + 2U.

Therefore, the first inclusion “⊂” in (6.99) follows by intersecting over
U ∈ NX∗ and then over ε > 0. Conversely, to show the inclusion “⊃”
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in (6.99) we fix ε > 0. Then we have ∂εft(x) ⊂ ∂ε−Mf(x), for all ε > 0
and t ∈ T, where M := inft∈T ft(x). Thus, given any x∗ in the right-
hand side set of (6.99), we obtain

x∗ ∈ co

((
⋃

t∈T (x)

∂εft(x)

)

+

(
⋃

t∈T\T (x)

{θ, ε} ∂ε−Mf(x)

))

⊂ cl (∂εf(x) + co ({θ, ε} ∂ε−Mf(x))) = cl (∂εf(x) + [θ, ε]∂ε−Mf(x)) ,

where in the last inclusion we used the fact that ∂εft(x) ⊂ ∂εf(x) for all
t ∈ T (x). Let us consider nets (y∗

i )i ⊂ ∂εf(x), (εi)i ⊂ [θ, ε] and (z∗
i )i ⊂

∂ε−Mf(x) such that x∗ = limi (y∗
i + εiz

∗
i ) . Then, for each y ∈ dom f,

〈x∗, y − x〉 = lim
i

〈y∗
i + εiz

∗
i , y − x〉

≤ lim sup
i

((f(y) − f(x) + ε) + εi (f(y) − f(x) − M + ε))

≤ (f(y) − f(x) + ε) + ε (f(y) − f(x) − M + ε)+ ;

that is,

〈x∗, y − x〉 ≤ (f(y) − f(x) + ε) + ε (f(y) − f(x) − M + ε)+ for all ε > 0,

and we deduce that x∗ ∈ ∂f(x) as ε ↓ 0.
The following corollary deals with the particular case in which all

the functions are active; it is an immediate consequence of Theorem
6.4.3.

Corollary 6.4.4 Assume in Theorem 6.4.3 that T (x) = T. Then

∂f(x) =
⋂

ε>0
co
(
⋃

t∈T

∂εft(x)
)

.

Next, we give a non-compact counterpart to Theorem 6.4.3.

Theorem 6.4.5 Consider the family {ft, t ∈ T} ⊂ Γ0(X) and f :=
supt∈T ft. Then, for every x ∈ dom f, we have

∂f(x) =
⋂

ε>0
co

((
⋃

t∈Tε(x)

∂εft(x)

)

+ {0, ε}
(

⋃

J∈Tε(x)

∂εfJ(x)

))

,

(6.101)
where fJ and T are defined in (6.97), and
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Tε(x) := {J ∈ T : fJ(x) ≥ f(x) − ε}. (6.102)

Proof. Fix x ∈ dom f and ε > 0. So, by Theorem 5.2.2, for each L ∈
F(x) one has

∂f(x) ⊂ co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

. (6.103)

Now, given a fixed t0 ∈ Tε(x), we introduce the functions

gt := max{ft, ft0} + IL, t ∈ T ;

hence supt∈T gt = f + IL, and for all J ∈ T ,

gJ := max
t∈J

gt = fJ∪{t0} + IL. (6.104)

Observe that gJ(x) ≥ ft0(x) ≥ f(x) − ε; that is, J ′ := J ∪ {t0} ∈ Tε(x).
Therefore, since {gt, t ∈ T} ⊂ Γ0(X) and satisfies condition (6.93);
that is, inft∈T gt(x) ≥ ft0(x) > −∞, Proposition 6.4.2 entails

NL∩dom f (x) = Ndom(supt∈T gt)(x) =

[

co

(

⋃

J∈T
∂εgJ (x)

)]

∞

=

[

co

(

⋃

J∈T
∂ε(fJ∪{t0} + IL)(x)

)]

∞
⊂

[

co

(

⋃

J′∈Tε(x)

∂ε(fJ′ + IL)(x)

)]

∞
.

Thus, using formula (4.46) in Proposition 4.1.16,

NL∩dom f (x) ⊂
[
co

( ⋃
J∈Tε(x)

∂εfJ(x) + L⊥

)]
∞

⊂
[
co

(( ⋃
t∈Tε(x)

∂εft(x) + L⊥

)⋃( ⋃
J∈Tε(x)

∂εfJ(x) + L⊥

))]
∞

,

and we deduce that NL∩dom f (x) ⊂
[
co
(
Eε + L⊥)]

∞ (see Exercises 22
and 23), where

Eε :=

(
⋃

t∈Tε(x)

∂εft(x)

)

+ {0, ε}
(

⋃

J∈Tε(x)

∂εfJ(x)

)

.

Consequently, (6.103) gives rise to
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∂f(x) ⊂ co

(
⋃

t∈Tε(x)

∂εft(x) +
[
co
(
Eε + L⊥

)]

∞

)

⊂ co
(
Eε + L⊥ +

[
co
(
Eε + L⊥

)]

∞

)
= co

(
Eε + L⊥

)

⊂ co
(
Eε + L⊥

)
+ U = co (Eε) + L⊥ + U ⊂ co (Eε) + 2U,

and the desired inclusion “⊂” follows once we intersect over all U ∈
NX∗ and after over ε > 0. To verify the opposite inclusion, we easily
observe that, for all ε > 0,

⋃

t∈Tε(x)

∂εft(x) ⊂ ∂2εf(x) and
⋃

J∈Tε(x)

∂εfJ(x) ⊂ ∂2εf(x),

and so

⋂

ε>0
co (Eε) ⊂

⋂

ε>0
co (∂2εf(x) + {0, ε}∂2εf(x))

⊂
⋂

ε>0
[1, 1 + ε] ∂2εf(x) = ∂f(x).

6.5 Qualification conditions

This section addresses the conditions on the data functions, ft, t ∈ T,
which allow us to derive formulas for the subdifferential of the supre-
mum function f := supt∈T ft that are simpler than those given previ-
ously. These conditions are of a geometric and topological nature and
depend on the way in which the functions involved are related; that is,
when their effective domains overlap sufficiently. The term qualifica-
tion applies here because the conditions we give are of the same type as
those often used to derive optimality conditions for convex optimiza-
tion problems (see chapter 8). More precisely, some constraints are
qualified and lead to simple expressions of the subdifferential of f by
means of convex combinations of the subdifferentials of the qualified
ft’s. This approach avoids the use of limiting processes.

The first result in this section is based on a finite-dimensional qual-
ification. In contrast to Corollary 6.1.12, which assumes the continuity
of the supremum function f , the condition given here is only based on
the effective domains of the ft’s.
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Theorem 6.5.1 Given convex functions ft : Rn → R∞, t ∈ T, and
f := supt∈T ft, take x ∈ dom f and assume that the standard compact-
ness hypothesis (6.1) holds. If, additionally, we assume that

ri(dom ft) ∩ dom f �= ∅ for all t ∈ T (x), (6.105)

then we have

∂f(x) = Ndom f (x) + co

{
⋃

t∈T (x)

∂ft(x)

}

. (6.106)

Proof. Fix t ∈ T (x) and, by (6.105), take x0 ∈ ri(dom ft) ∩ dom f.
Then, by (2.15), for any x1 ∈ ri(dom f) ⊂ dom ft and λ ∈ ]0, 1[, we
have

λx1 + (1 − λ)x0 ∈ ri(dom ft) ∩ ri(dom f).

Thus, according Proposition 4.1.26, ∂(ft + Idom f )(x) = ∂ft(x)+
Ndom f (x), and consequently, (6.106) comes by combining Corollary
6.1.10 and Exercise 107.

Remark 17 Theorem 6.5.1 remains true if, instead of condition
(6.105), we assume that ∩t∈T ri(dom ft) �= ∅. Indeed, this condition
ensures that ri(dom f) = ∩t∈T ri(dom ft) (see Exercise 13), which in
turn yields condition (6.105).

Theorem 6.5.2 below gives an infinite-dimensional counterpart to
Theorem 6.5.1. It uses the continuity somewhere in dom f of all but
one of the active functions. This condition is much weaker than the
continuity of the supremum function f imposed in Corollary 6.1.12.

Theorem 6.5.2 Given convex functions ft : X → R∞, t ∈ T, we denote
f := supt∈T ft and assume the standard compactness hypothesis (6.1).
Let x ∈ dom f such that T (x) := {1, ..., m + 1} ⊂ T, m ≥ 0, and assume
that each one of the functions fi, i ∈ T (x), except perhaps one of them,
say fm+1, is continuous somewhere in dom f. Then we have

∂f(x) = co

{
⋃

1≤i≤m
∂fi(x)

⋃
∂(fm+1 + Idom f )(x)

}

+ Ndom f (x).

Proof. The inclusion “⊃” is straightforward. To prove “⊂” we may
assume that ∂f(x) �= ∅; hence f(x) = (cl f)(x) ∈ R and ∂f(x) =
∂(cl f)(x). We also assume that x = θ and f(θ) = (cl f)(θ) = 0.
Observe that if m = 0, so that T (θ) = {1}, then Corollary 6.1.6 yields
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∂f(θ) = ∂

(

max
k∈T (θ)

fk + Idom f

)

(θ) ≡ ∂ (f1 + Idom f ) (θ),

and the desired formula follows as (see (4.9))

Ndom f (θ) = Ndom f∩dom f1(θ) = (∂ (f1 + Idom f ) (θ))∞.

Now we consider the case m > 0. By the current assumption, for each
i ∈ {1, . . . , m} there exists some xi ∈ dom f such that fi is continuous
at xi. More precisely, (2.15) (see also Exercise 13) ensures that

x0 :=
1
m

∑

1≤i≤m
xi ∈ dom f ∩ int(dom f1) ∩ . . . ∩ int(dom fm),

and the functions f1, . . . , fm are continuous at x0 ∈ dom f . Conse-
quently, using Proposition 5.2.4(ii), we have

cl

(
max

{
max

1≤i≤m
fi, fm+1 + Idom f

})
= max

{
max

1≤i≤m
cl fi, cl(fm+1 + Idom f )

}
.

Therefore, taking into account Corollary 6.1.6 and observing that

max
i∈T (θ)

fi + Idom f = max{fi, 1 ≤ i ≤ m; fm+1 + Idom f},

by applying Corollary 5.1.9, we get

∂f(θ) = ∂

(
max

t∈T (θ)
ft + Idom f

)
(θ) =

⋃
λ∈S(θ)

∂

( ∑
1≤k≤m

λkfk + (λm+1fm+1 + Idom f )

)
(θ),

where λkfk = Idom fk
if λk = 0, and

S(θ) :=

{

λ ∈ Δm+1 :
∑

1≤k≤m+1

λkfk(θ) = 0

}

.

Hence, since the convex functions λ1f1, . . . , λmfm are also continuous
at x0 ∈ dom f (⊂ dom(λm+1fm+1 + Idom f )), by applying Proposition
4.1.20, we get

∂f(θ) =
⋃

λ∈S(θ)

∑

1≤k≤m

∂(λkfk)(θ) + ∂(λm+1fm+1 + Idom f )(θ)

=
⋃

λ∈S(θ)

∑

λk>0
1≤k≤m

λk∂fk(θ) +
∑

λk=0
1≤k≤m+1

Ndom fk
(θ) + ∂(λm+1fm+1 + Idom f )(θ)
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⊂
⋃

λ∈S(θ)

∑

λk>0
1≤k≤m

λk∂fk(θ) + ∂

⎛

⎜

⎝
λm+1fm+1 + Idom f +

∑

λk=0
1≤k≤m+1

Idom fk

⎞

⎟

⎠
(θ)

=
⋃

λ∈S(θ)

∑

λk>0
1≤k≤m

λk∂fk(θ) + ∂
(

λm+1fm+1 + Idom f

)

(θ), (6.107)

where the last inclusion holds because dom f ⊂ dom fk for all 1 ≤ k ≤
m + 1. Finally, given any x∗ ∈ ∂f(θ), by (6.107) there exists some λ ∈
Δm+1 such that

x∗ ∈
∑

λk>0, 1≤k≤m

λk∂fk(θ) + ∂(λm+1fm+1 + Idom f )(θ).

Denote A := ∪k∈T (θ)∂fk(θ). If λm+1 = 0, then

x∗ ∈
∑

λk>0, 1≤k≤m

λk∂fk(θ) + Ndom f (θ)

⊂ co A + Ndom f (θ) ⊂ co {A ∪ ∂(fm+1 + Idom f )(θ)} + Ndom f (θ),

and otherwise, i.e., when λm+1 > 0,

x∗ ∈
∑

λk>0, 1≤k≤m

λk∂fk(θ) + λm+1∂(fm+1 + Idom f )(θ)

⊂ co
{

A ∪ ∂(fm+1 + Idom f )(θ)
}

⊂ co
{

A ∪ ∂(fm+1 + Idom f )(θ)
}

+ Ndom f (θ).

The proof of the inclusion “⊂” is complete.
As a consequence of Theorem 6.5.2, we obtain the following result

for the maximum of a finite family of convex functions. This model
constitutes a relevant particular case of the compactly indexed setting
studied in section 6.1.

Corollary 6.5.3 Given a finite family of convex functions, fk : X →
R∞, k ∈ T := {1, ..., p}, p ≥ 1, we denote f := maxk∈T fk. Assume that
each one of the functions fk, k ∈ T, except perhaps one of them, say
fp, is continuous somewhere in dom f . Then, for every x ∈ X, we have

∂f(x) = co

{
⋃

k∈T (x)

∂fk(x)

}

+
∑

k∈T

Ndom fk
(x). (6.108)

Proof. First, if p = 1, then (6.108) trivially holds as it reduces to
∂f(x) = ∂f(x) + Ndom f (x). Assume that p > 1 and fix x ∈ X. If p /∈
T (x), so that all the active functions at x are continuous somewhere
in dom f, then Theorem 6.5.2 yields



278 CHAPTER 6. THE SUPREMUM IN SPECIFIC . . .

∂f(x) = co

{
⋃

k∈T (x)

∂fk(x)

}

+ Ndom f (x).

Thus, (6.108) follows by applying Proposition 4.1.20:

Ndom f (x) =
∑

k∈T

Ndom fk
(x). (6.109)

Next we assume that p ∈ T (x). By Corollary 6.1.6, we have

∂f(x) = ∂

(

max
k∈T (x)

fk + Idom f

)

(x) = ∂g(x), (6.110)

where g = max{fk, k ∈ T (x) \ {p}; fp + Idom f}. Since fp + Idom f ≤
g ≤ f, we observe that dom f = dom g. Then, since all the functions
fk, k ∈ T (x) \ {p}, are continuous somewhere in dom f = dom(fp +
Idom f ), by applying again Theorem 6.5.2, we obtain

∂g(x) = co

{
⋃

k∈T (x)\{p}
∂fk(x)

⋃
∂(fp + Idom f )(x)

}

+ Ndom f (x).

(6.111)
In addition, we have that

fp + Idom f = fp + I ∩
k∈T \{p}

dom fk
= fp +

∑

k∈T\{p}
Idom fk

and the functions Idom fk
, k ∈ T \ {p}, are continuous at a common

point in dom f ⊂ dom fp (by (2.15)). Then Proposition 4.1.20 yields

∂(fp + Idom f )(x) = ∂fp(x) +
∑

k∈T\{p}
Ndom fk

(x),

and (6.110), (6.111) and (6.109) entail

∂f(x) = co

{

⋃

k∈T (x)\{p}
∂fk(x)

⋃

(

∂fp(x) +
∑

k∈T\{p}
Ndom fk

(x)

)}

+
∑

k∈T
Ndom fk

(x)

⊂ co

{

⋃

k∈T (x)

∂fk(x)

}

+
∑

k∈T
Ndom fk

(x).

Thus, we are done since the opposite inclusion is straightforward.

Corollary 6.5.4 In addition to the assumption of Corollary 6.5.3,
suppose that T = T (x) and ∂fk(x) �= ∅ for all k ∈ T. Then
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∂f(x) = co
(
⋃

k∈T

∂fk(x)
)

.

Proof. By taking into account (4.9), Corollary 6.5.3 yields

∂f(x) = co

{

⋃

k∈T
∂fk(x)

}

+
∑

k∈T
Ndom fk

(x) = co

{

⋃

k∈T
∂fk(x)

}

+
∑

k∈T
(∂fk(x))∞

⊂ co

{

⋃

k∈T

∂fk(x)

}

+

(

co

(

⋃

k∈T

∂fk(x)

))

∞
⊂ co

(

⋃

k∈T

∂fk(x)

)

.

The desired formula follows because the opposite inclusion clearly
holds.

6.6 Exercises

Exercise 92 Prove the inclusion “⊃” in (6.12) and (6.16).

Exercise 93 (Exercise 40 revisited) Let f be a proper convex function
and take x ∈ dom f.

(a) If g := max{f, f(x) − 1}, prove that ∂f(x) = ∂g(x) (Hint: Apply
Theorem 6.1.4).

(b) If {ft : X → R, t ∈ T} is a family of convex functions and f =
supt∈T ft is proper, prove that

∂f(x) = ∂

(

sup
t∈T

(max{ft, f(x) − 1}
)

.

Exercise 94 Under hypothesis (6.1), prove that the sets Tε(x), x ∈
f−1(R), ε ≥ 0, are non-empty, closed and compact (remember that T
is not necessarily Hausdorff).

Exercise 95 Prove Lemma 6.2.1.

Exercise 96 Assume that X is Banach, and let the convex func-
tions ft : X → R, t ∈ T, be such that (6.1) holds. If the ft’s are finite
and continuous on some open set U ⊂ X, prove that the function
f := supt∈T ft is continuous on U.

Exercise 97 Given the functions ft : X → R, t ∈ T, and f :=
supt∈T ft, we assume that f∗∗ = supt∈T f∗∗

t . Prove that, for every
x ∈ X,



280 CHAPTER 6. THE SUPREMUM IN SPECIFIC . . .

∂f(x) =
⋂

L∈F(x)

co

{
⋂

ε>0
cl

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)}

.

Exercise 98 Assume that {ft, t ∈ T} ⊂ Γ0(X) with T compact and
that the mappings t �→ ft(z), z ∈ X, are usc. Take x ∈ dom f such that
inft∈T ft(x) > −∞ and, given t0 ∈ T (x) and 0 < μt < 1, we define

f̃t :=
{

ft, if t ∈ T (x),
μtft + (1 − μt)ft0 , if t ∈ T \ T (x),

and f̃ := supt∈T f̃t. Prove that, for every ε > 0,

Ndom f (x) = Ndom f̃ (x) =
[

co
(
⋃

t∈T

∂εf̃t(x)
)]

∞
. (6.112)

Exercise 99 Let {ft, t ∈ T} and T be as in Exercise 98. Given t0 ∈
T (x) and ε > 0, we define

f̃t,ε :=
{

ft, if t ∈ T (x),
μt,εft + (1 − μt,ε)ft0 , if t ∈ T \ T (x),

where μt,ε := ε(2f(x) − 2ft(x) + ε)−1, t ∈ T \ T (x), ε > 0. Prove that

∂f(x) =
⋂

ε>0
co
(
⋃

t∈T

∂εf̃t,ε(x)
)

, (6.113)

and so, provided that T (x) = T,

∂f(x) =
⋂

ε>0
co
(
⋃

t∈T

∂εft,ε(x)
)

. (6.114)

Exercise 100 Consider a family {ft, t ∈ T} ⊂ Γ0(X) and f :=
supt∈T ft. Given x ∈ dom f, L ∈ F(x), and u∗ ∈ Ndom f (x), prove the
existence of a sequence (tn)n ⊂ T such that u∗ ∈ Ndom(supn≥1 ftn )∩L(x).

Exercise 101 Let f be a proper convex function and take x ∈ dom f.
Prove that

∂f(x) =
⋂

0<ε≤ε0

co (∂εf(x) + {0, ε}∂ε+δf(x)) ,

for every δ ≥ 0 and ε0 > 0.



6.6. EXERCISES 281

Exercise 102 Consider a convex function f that attains its minimum
at x ∈ dom f. Prove that, for every δ ≥ 0 and ε0 > 0,

∂f(x) =
⋂

0<ε≤ε0

co (∂εf(x) ∪ ε∂ε+δf(x)) . (6.115)

Exercise 103 Assume that {ft, t ∈ T} ⊂ Γ0(X) with T compact and
that the mappings t �→ ft(z), z ∈ X, are usc. Denote f := supt∈T ft.

(i) Prove that

∂f(x) ⊂
⋂

ε>0
co

((
⋃

t∈T (x)

∂εft(x)

)
⋃
(

⋃

t∈T\T (x)

ε∂εft(x)

))

, (6.116)

and that (6.116) becomes an equality when inft∈T ft(x) > −∞ and x
is a minimum of f.

(ii) If we consider the family {ft, t ∈ T ; h} , where h is the constant
function h ≡ f(x) − 1 with x ∈ dom f not being a minimum of f, prove
that the inclusion in (6.116) may be strict for this new family.

Exercise 104 Given a family of convex functions, ft : X → R∞, t ∈
T, and f := supt∈T ft, we suppose that condition (6.1) holds. Given x ∈
dom f, we suppose that Tc := {t ∈ T (x) : ft is continuous somewhere
in dom f} is finite. Prove that, for every x ∈ dom f, we have

∂f(x) = co

{
⋃

t∈Tc

∂ft(x)
⋃

∂(f̃ + Idom f )(x)

}

+ Ndom f (x),

where f̃ := supt∈T (x)\Tc
ft.

Exercise 105 Complete the proof of Theorem 6.3.2 where, instead of
being in Γ0(X), the ft’s satisfy condition (5.10).

Exercise 106 Let E be a closed linear subspace of X. Given a non-
empty set A ⊂ X∗ and a net (z∗

i )i ⊂ A, we assume that (z∗
i )i ⊂ (U ∩

E)◦ for some U ∈ NX . Prove the existence of a subnet (z∗
ij
)j and z∗ ∈

cl(A + E⊥) such that
〈
z∗
ij

− z∗, u
〉

→j 0 for all u ∈ E.

Exercise 107 Given the convex functions ft, t ∈ T, we assume that
T is compact and that the mappings t �→ ft(z), z ∈ X, are usc. Denote
f := supt∈T ft and, for x ∈ X, ε1, ε2 ≥ 0 and L ∈ F(x), consider the
set
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EL := co

{
⋃

t∈Tε2 (x)

∂ε1(ft + IL∩dom f )(x)

}

.

Prove that EL is closed.

6.7 Bibliographical notes

An early version of Theorem 6.1.4 was established in [53, Theorem 3.6]
under slightly weaker conditions of continuity and compactness. The
current version of this result is [54, Proposition 1] and allows us to use
co instead of co. Formula (6.16) is given in [53, Theorem 3.8], whereas
(6.21) corresponds to [53, Corollary 3.10]. Corollary 6.1.12, which is
[53, Theorem 3.12], gives rise to the well-known characterization (6.24),
originally from [191]. Formula (6.25) was also proved in [53, Theorem
3.12].

In section 6.2, the compactification process of the index set is per-
formed using the Stone-Čech and one-point compact extensions; mean-
while, the regularization of the family of data functions is done by
enlarging it by means of the associated usc hulls. The main result in
this section is Theorem 6.2.5; some consequences of it were given in [54,
Theorem 1]. Theorem 6.2.8 is based on the one-point compact exten-
sion. Formula (6.73) in Theorem 6.3.2 is [56, Theorem 12, formula
(59)], whereas (6.92) can also be found in [204, Proposition 8]. The
main results of section 6.4 are Proposition 6.4.1 and Theorem 6.4.3,
and are stated in [55, Theorems 5 and 10, respectively]. The first result
in section 6.5 is Theorem 6.5.1, given in [52, Theorem 3(ii) ]. Theorem
6.5.2 represents an improvement of [52, Theorem 9]. Corollary 6.5.3 in
[196] goes back to [177] when the supremum function is continuous at
the reference point. Exercise 98 can be found in [102, Lemma 1].



Chapter 7

Other subdifferential
calculus rules

The main objective of this chapter is to establish new formulas for the
subdifferential of the sum under conditions that are at an intermediate
level of generality between those in Proposition 4.1.16, which hold for
lsc proper convex functions, and Proposition 4.1.20, which requires
additional continuity assumptions. Alternative sufficient conditions for
the validity of Proposition 4.1.16 will also be supplied, including the
case of polyhedral functions. Throughout this chapter, X stands for
an lcs with a dual X∗ endowed with a compatible topology (unless
otherwise stated). The associated bilinear form is represented by 〈·, ·〉.

7.1 Subdifferential of the sum

Throughout this section, we consider two convex functions f : Y → R

and g : X → R, where Y is another lcs, and a continuous linear map-
ping A : X → Y with continuous adjoint A∗. We show that Theo-
rem 5.2.2, which provides a characterization of the subdifferential of
suprema, also leads to other calculus rules for functions that can be
written as a supremum. This includes the sum of functions and the
composition with affine mappings.
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First, we give an alternative supremum-based proof to formula
(4.45) in Proposition 4.1.16 (for ε = 0). We actually assume a hypoth-
esis that is weaker than the lower semicontinuity assumption required
there.

Theorem 7.1.1 Consider two convex functions f : Y → R and g :
X → R, and a continuous linear mapping A : X → Y such that

cl(g + f ◦ A) = (cl g) + (cl f) ◦ A. (7.1)

Then, for every x ∈ X, we have

∂(g + f ◦ A)(x) =
⋂

ε>0
cl (∂εg(x) + A∗∂εf(Ax)) . (7.2)

Proof. Let us denote ϕ := g + f ◦ A and ψ := (cl g) + (cl f) ◦ A. The
inclusion “⊃” always holds as ∂εg(x) + A∗∂εf(Ax) ⊂ ∂2ε(g + f ◦ A)(x)
for all x ∈ X and ε > 0. Consequently, it suffices to establish the oppo-
site inclusion “⊂” when ∂ϕ(x) 	= ∅. In such a case, by (7.1), we have
that

(cl g) (x) + (cl f) (Ax) = (clϕ) (x) = ϕ(x) = g(x) + f(Ax) ∈ R,
(7.3)

and (by Exercise 62)

∂ϕ(x) = ∂ (clϕ) (x) = ∂ ((cl g) + (cl f) ◦ A) (x) = ∂ψ(x). (7.4)

Since (cl g) (x) ≤ g(x) and (cl f) (Ax) ≤ f(Ax), from (7.3) we get
(cl g) (x) = g(x) ∈ R and (cl f) (Ax) = f(Ax) ∈ R; therefore, cl f ∈
Γ0(Y ) and cl g ∈ Γ0(X). Furthermore, for every ε ≥ 0, one has (again
by Exercise 62)

∂ε (cl g) (x) = ∂εg(x) and ∂ε (cl f) (Ax) = ∂εf(Ax). (7.5)

Now, taking into account that cl f ∈ Γ0(Y ), Theorem 3.2.2 yields,
for every x ∈ X

ψ(x) = (cl g) (x) + f∗∗(Ax) = sup
y∗∈dom f∗

{(cl g) (x) + 〈A∗y∗, x〉 − f∗(y∗)}.

Hence, since the functions (cl g)(·) + 〈A∗y∗, ·〉 − f∗(y∗), y∗ ∈ dom f∗,
are obviously lsc, condition (5.10) trivially holds, and Theorem 5.2.2
gives rise to
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∂ψ(x) =
⋂

L∈F(x), ε>0

cl

(

co

(
⋃

y∗∈Tε(x)

(∂ε(cl g)(x) + A∗y∗)

)

+ NL∩dom ψ(x)

)

,

where we also have applied Proposition 4.1.6(i). Now, remembering
that ψ(x) = (cl g) (x) + (cl f) (Ax), we write

Tε(x) = {y∗ ∈ Y ∗ : (cl g) (x) + 〈A∗y∗, x〉 − f∗(y∗) ≥ ψ(x) − ε}
= {y∗ ∈ Y ∗ : (ψ(x) − (cl f) (Ax)) + 〈A∗y∗, x〉 − f∗(y∗) ≥ ψ(x) − ε}
= {y∗ ∈ Y ∗ : (cl f) (Ax) + f∗(y∗) ≤ 〈y∗, Ax〉 + ε}
= ∂ε (cl f) (Ax) = ∂εf(Ax).

Therefore,

∂ψ(x) =
⋂

L∈F(x), ε>0

cl (∂ε(cl g)(x) + A∗∂εf(Ax) + NL∩dom ψ(x)) .

(7.6)
Now, take V ∈ NX∗ , ε > 0 and let L ∈ F(x) such that L⊥ ⊂ (1/2)V.
Then the normal cone NL∩dom ψ(x) is written (Exercise 41)

NL∩dom ψ(x) = Ndom((cl g)+IL+(cl f)◦A)(x) =
[
cl

(
∂ε(cl g)(x) + L⊥ + A∗∂ε(cl f)(Ax)

)]

∞
,

and (7.6), (7.4) and (7.5) lead us to

∂ϕ(x) = ∂ψ(x)

⊂ cl
(
∂ε(cl g)(x) + A∗∂εf(Ax) +

[
cl

(
∂ε(cl g)(x) + L⊥ + A∗∂ε(cl f)(Ax)

)]

∞

)

⊂ cl(∂ε(cl g)(x) + A∗∂ε (cl f) (Ax) + L⊥)

⊂ ∂ε(cl g)(x) + A∗∂ε (cl f) (Ax) + L⊥ + (1/2)V

⊂ ∂ε(cl g)(x) + A∗∂ε (cl f) (Ax) + V

= ∂εg(x) + A∗∂εf(Ax) + V.

Consequently,

∂ϕ(x) ⊂ ⋂

ε>0

⋂

V ∈NX∗
(∂εg(x) + A∗∂εf(Ax) + V ) =

⋂

ε>0
cl (∂εg(x) + A∗∂εf(Ax)) ,

and the proof is complete.

Remark 18 The main motivation of Theorem 7.1.1 is to unify the
sum and the supremum calculus rules. An alternative proof, using
Proposition 4.1.16, is proposed in Exercises 108 and 109.

Again using our supremum-based methodology, we provide another
proof for formula (4.58) (when ε = 0). First we need the following
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lemma which shows the effect of continuity conditions on the topolog-
ical properties of the sets ∂εg(x) + A∗∂εf(Ax), ε ≥ 0.

Lemma 7.1.2 Let f : Y → R and g : X → R be convex functions and
A : X → Y be a continuous linear mapping. Assume that f is con-
tinuous at some point in A(dom g). Then, for every x ∈ dom g ∩
A−1(dom f) and ε ≥ 0, the set ∂εg(x) + A∗∂εf(Ax) is closed.

Proof. Fix x ∈ dom g ∩ A−1(dom f) and ε ≥ 0. Then it suffices to
prove that the convex set E := ∂εg(x) + A∗∂εf(Ax) is w∗-closed,
because we are considering a compatible topology in X∗. Take x∗ ∈
cl(E) = clw

∗
(E). Let x0 ∈ dom g such that f is continuous at Ax0.

Given nets (u∗
i )i⊂∂εg(x) and (v∗

i )i ⊂∂εf(Ax) such that u∗
i + A∗v∗

i →w∗

x∗, we may assume that 〈u∗
i + A∗v∗

i , x − x0〉 ≤ 〈x∗, x − x0〉 + 1 for
every i. Moreover, since u∗

i ∈ ∂εg(x), we have

〈v∗
i , Ax − Ax0〉 ≤ 〈u∗

i , x0 − x〉 + 〈x∗, x − x0〉 + 1
≤ g(x0) − g(x) + 〈x∗, x − x0〉 + ε + 1.

Now, due to the continuity of f at Ax0, we can choose U ∈ NY such
that supy∈U f(y + Ax0) ≤ f(Ax0) + 1. Hence, by the last inequality
above, we get for all y ∈ U

〈v∗
i , y〉 = 〈v∗

i , Ax − Ax0〉 + 〈v∗
i , y + Ax0 − Ax〉

≤ 〈v∗
i , Ax − Ax0〉 + f(y + Ax0) − f(Ax) + ε

≤ g(x0) − g(x) + 〈x∗, x − x0〉 + f(Ax0) − f(Ax) + 2ε + 2 ≤ μ,

for some μ > 0 (since the expression in the last inequality depends
only on x and x0). In other words, (v∗

i )i ⊂ (μ−1U)◦ and Theorem 2.1.9
ensures that (v∗

i )i is w∗-convergent (without loss of generality) to some
v∗ ∈ ∂εf(Ax) ∩ (μ−1U)◦. Moreover, since u∗

i + A∗v∗
i →w∗

x∗, the cor-
responding net (u∗

i )i also w∗-converges to u∗ := x∗ − A∗v∗ ∈ ∂εg(x);
that is, x∗ = u∗ + A∗v∗ ∈ ∂εg(x) + A∗∂εf(Ax), and we are done.

We recover the rules in Proposition 4.1.20 (when ε = 0).

Corollary 7.1.3 Under the assumptions of Lemma 7.1.2, we have

∂(g + f ◦ A)(x) = ∂g(x) + A∗∂f(Ax) for every x ∈ X.

Proof. Since the inclusion “⊃” trivially holds, we only need to
prove “⊂” when ∂(g + f ◦ A)(x) 	= ∅; hence, g(x), f(Ax) ∈ R. More-
over, using Proposition 2.2.11 , the current continuity assumption
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guarantees that cl(g + f ◦ A) = (cl g) + (cl f) ◦ A, and Theorem 7.1.1
together with Lemma 7.1.2 leads us to

∂(g + f ◦ A)(x) =
⋂

ε>0
cl (∂εg(x) + A∗∂εf(Ax)) =

⋂

ε>0
(∂εg(x) + A∗∂εf(Ax)) .

Thus, the proof will be over once we show that

⋂

ε>0
(∂εg(x) + A∗∂εf(Ax)) ⊂ ∂g(x) + A∗∂f(Ax). (7.7)

Take x∗ ∈ ∩ε>0 (∂εg(x) + A∗∂εf(Ax)) . Then, for each r = 1, 2, ..., there
exist u∗

r ∈ ∂1/rg(x) and v∗
r ∈ ∂1/rf(Ax) such that x∗ = u∗

r + A∗v∗
r . Pro-

ceeding as in the proof of Lemma 7.1.2, we choose x0 ∈ dom g and
U ∈ NY such that supy∈U f(y + Ax0) ≤ f(Ax0) + 1. Hence, for all
y ∈ U ,

〈v∗
r , y〉 = 〈v∗

r , Ax − Ax0〉 + 〈v∗
r , y + Ax0 − Ax〉

≤ 〈x∗, x − x0〉 + 〈u∗
r , x0 − x〉 + f(y + Ax0) − f(Ax) + 1/r

≤ 〈x∗, x − x0〉 + g(x0) − g(x) + f(Ax0) − f(Ax) + 1 + 2/r ≤ μ,

where μ > 0. Then (v∗
r )r ⊂ (μ−1U)◦ and, without loss of generality, we

may assume that (v∗
r )r and (u∗

r)r are w∗-convergent to some v∗ ∈ X∗
and x∗ − A∗v∗, respectively. Since u∗

r ∈ ∂1/rg(x) and v∗
r ∈ ∂1/rf(Ax)

for all r ≥ 1, by Proposition 4.1.6(vi), we deduce that u∗ ∈ ∂g(x) and
v∗ ∈ ∂f(Ax). Thus, x∗ = u∗ + A∗v∗ ∈ ∂g(x) + A∗∂f(Ax) and (7.7)
follows.

7.2 Symmetric versus asymmetric
conditions

As in the previous section, we consider two convex functions f : Y → R

and g : X → R, where Y is another lcs, and a continuous linear map-
ping A : X → Y with continuous adjoint A∗. We establish a subd-
ifferential sum rule that is given in terms of the exact subdifferen-
tial of one function and the approximate subdifferential of the other.
The given formula requires less restrictive conditions than those of
Theorem 7.1.1 and Corollary 7.1.3. More precisely, Corollary 7.1.3
requires the continuity of, say, g at some point in dom f, while its finite-
dimensional counterpart in Proposition 4.1.26 appeals to the condition
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ri(dom f) ∩ ri(dom g) 	= ∅. If one of the functions, say, g is polyhedral,
it is enough to assume that ri(dom f) ∩ dom g 	= ∅. Also, Theorem 7.1.1
uses condition (7.1); that is, cl(g + f) = (cl g) + (cl f) . In the following
theorem, X = Y and A is the identity mapping.

Theorem 7.2.1 Consider two functions f, g ∈ Γ0(X), and x ∈
dom f ∩ dom g. We assume that at least one of the following condi-
tions holds:

(i) R+(epi g − (x, g(x))) is closed,
(ii) dom f ∩ ri(dom g) 	= ∅ and g|aff(dom g) is continuous on ri(dom g).
Then we have

∂(f + g)(x) =
⋂

ε>0
cl(∂εf(x) + ∂g(x)). (7.8)

Proof. According to Theorem 7.1.1 (see, also, Proposition 4.1.16), we
have

∂(f + g)(x) =
⋂

ε>0
cl(∂εf(x) + ∂εg(x)). (7.9)

Hence, the inclusion “⊃” in (7.8) follows immediately. To show “⊂”
we pick x∗ in ∂(f + g)(x) (if ∂(f + g)(x) is empty, the inclusion is
trivial). Then, since ∂εg(x) × {−1} ⊂ Nε

epi g(x, g(x)), (by Proposition
4.1.6(vii)), (7.9) yields,

(x∗, −1) ∈ ⋂

ε>0
cl (∂εf(x) × {0} + ∂εg(x) × {−1})

⊂ ⋂

ε>0
cl

(
∂εf(x) × {0} + Nε

epi g(x, g(x))
)
. (7.10)

We appeal now to Exercise 79. If (i) holds, then it follows from the
last inclusion that

(x∗, −1) ∈ ⋂

ε>0
cl (∂εf(x) × {0} + Nepi g(x, g(x))) . (7.11)

Otherwise, if (ii) holds, then we can check that (see Exercise 19)

(ri(epi g − (x, g(x)))) ∩ ((dom f − x) × R) 	= ∅,

and so, since

(dom f − x) × R ⊂ (
dom σ∂εf(x)

) × R = dom σ∂εf(x)×{0},
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we conclude that

(ri(epi g − (x, g(x)))) ∩ domσ∂εf(x)×{0} 	= ∅.

Therefore, (7.11) also follows in the present case by Exercise 79.
Now we claim that, for each ε > 0 and u ∈ X,

σ∂(f+g)(x)(u) ≤ σ∂εf(x)+∂g(x)(u), (7.12)

as this clearly entails the inclusion “⊂” in (7.8). To prove (7.12), we
take α < σ∂(f+g)(x)(u). Let u∗ ∈ ∂(f + g)(x) such that α < 〈u∗, u〉 .
Then, using (7.11), we find nets (y∗

i )i ⊂ ∂εf(x), (z∗
i )i ⊂ X∗ and

(βi)i ⊂ R+ such that ((z∗
i , −βi))i ⊂ Nepi g(x, g(x)), βi → 1, and u∗ =

limi (y∗
i + z∗

i ) . Since βi → 1, we can suppose that βi > 0, and then
β−1
i z∗

i ∈ ∂g(x) (thanks again to Proposition 4.1.6(vii)). Consequently,
∂g(x) 	= ∅ and σ∂εf(x)+∂g(x)(u) = σ∂εf(x)(u) + σ∂g(x)(u). Then, writing

σ∂εf(x)(u) + βiσ∂g(x)(u) ≥ 〈y∗
i , u〉 + βi

〈
β−1
i z∗

i , u
〉

= 〈y∗
i + z∗

i , u〉 ,

and taking limits, we get

σ∂εf(x)+∂g(x)(u) = lim
i

(σ∂εf(x)(u) + βiσ∂g(x)(u)) ≥ lim
i

〈y∗
i + z∗

i , u〉 = 〈u∗, u〉 > α.

Therefore, (7.12) follows when α approaches the value σ∂(f+g)(x)(u).

The following result produces a nearly exact subdifferential rule
for convex functions whose domains or epigraphs overlap sufficiently.
Statement (iii) below has been proven in Corollary 4.1.27(ii) in the
case of indicator functions.

Theorem 7.2.2 Let functions f, g ∈ Γ0(X). Given x ∈ dom f ∩ dom g,
we assume that one of the following conditions holds:

(i) R+(epi f − (x, f(x))) is closed, dom f ∩ ri(dom g) 	= ∅ and
g|aff(dom g) is continuous on ri(dom g).

(ii) R+(epi f − (x, f(x))) and R+(epi g − (x, g(x))) are closed.
(iii) ri(dom f) ∩ ri(dom g) 	= ∅ and f|aff(dom f) and g|aff(dom g) are

continuous on ri(dom f) and ri(dom g), respectively.
Then we have

∂(f + g)(x) = cl (∂f(x) + ∂g(x)) . (7.13)
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Proof. We only need to prove that, for every x ∈ X such that ∂(f +
g)(x) 	= ∅,

∂(f + g)(x) ⊂ cl(∂f(x) + ∂g(x)), (7.14)

since the converse inclusion is straightforward. We take x∗ ∈ ∂(f +
g)(x). So, arguing as in the proof of Theorem 7.2.1 (statement (7.11)),
we show that

(x∗, −1) ∈ ⋂

ε>0
cl (∂εg(x) × {0} + Nepi f (x, g(x))) , (7.15)

under conditions (i) and (ii), and also under (iii), thanks to

ri(epi f − (x, f(x))) ∩ dom σ∂εg(x)×{0} 	= ∅.

Similarly, (7.15) implies that σ∂(f+g)(x)(u) ≤ σ∂f(x)+∂εg(x)(u), for all
ε > 0 and u ∈ X, which in turn leads us to x∗ ∈ ∩ε>0 cl(∂f(x) +
∂εg(x)). In order to remove ε from the last expression, we repeat the
same arguments as in the previous theorem to obtain that

(x∗, −1) ∈ ⋂

ε>0
cl (∂f(x) × {0} + Nepi g(x, g(x))) , (7.16)

leading us to the desired inclusion.

Remark 19 If in Theorem 7.2.2 f, g are the indicators functions of
two closed linear subspaces C, D ⊂ X, respectively, then (7.13) yields
the following formula (see, also, Exercise 53 for a standard proof based
on the bipolar theorem),

(C ∩ D)⊥ = ∂(IC + ID)(θ) = cl
(
C⊥ + D⊥

)
.

Note that the closure here can be removed when X is finite-dimensional.

Theorem 7.2.1 is applied below to derive a calculus rule for the
subdifferential of the composition with a linear mapping. This result
will be used in Theorem 7.2.5.

Theorem 7.2.3 Consider f ∈ Γ0(Y ) and a continuous linear map-
ping A : X → Y. Given x ∈ A−1(dom f), we assume that at least one
of the following conditions holds:

(i) R+(epi f − (Ax, f(Ax))) is closed.
(ii) A(X) ∩ ri(dom f) 	= ∅ and f|aff(dom f) is continuous at some

point in ri(dom f).
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Then we have that

∂(f ◦ A)(x) = cl(A∗∂f(Ax)). (7.17)

Proof. We consider the convex functions g, h : X × Y → R∞ defined
by

g(x, y) := f(y) and h(x, y) := IgphA(x, y),

which satisfy (Exercise 46)

∂(f ◦ A)(x) × {θ} = ∂(g + h)(x, Ax) ∩ (X∗ × {θ}) . (7.18)

Obviously, dom g = X × dom f and domh = gphA, and we have that
g, h ∈ Γ0(X × Y ). Then, on the one hand, from the relation

R+(epih − ((x,Ax) , 0)) = R+(((gphA) × R+) − ((x,Ax) , 0)) = (gphA) × R+,

it follows that R+(epi h − ((x, Ax) , 0)) is a closed set. On the other
hand, we have

R+(epi g − ((x, Ax) , f(Ax))) = R+((X × epi f) − ((x, Ax) , f(Ax)))
= X × (R+(epi f − (Ax, f(Ax)))) .

If (i) holds, then R+(epi g − ((x, Ax) , f(Ax))) is closed, and so, by
Theorem 7.2.2(ii),

∂(g + h)(x,Ax) = cl(∂g(x,Ax) + ∂IgphA(x,Ax)) = cl({θ} × ∂f(Ax) + NgphA(x,Ax)),

where
NgphA(x,Ax) = {(u∗, v∗) ∈ X∗ × Y ∗ : 〈u∗, z − x〉 + 〈v∗, A(z − x)〉 ≤ 0 for all z ∈ X}

= {(u∗, v∗) ∈ X∗ × Y ∗ : 〈u∗ + A∗v∗, z − x〉 ≤ 0 for all z ∈ X}
= {(A∗v∗,−v∗) : v∗ ∈ Y ∗}.

Thus, using (7.18),

∂(f ◦ A)(x) × {θ} = cl{(A∗v∗, y∗ − v∗) : y∗ ∈ ∂f(Ax), v∗ ∈ Y ∗} ∩ (X∗ × {θ}). (7.19)

In other words, if x∗ ∈ ∂(f ◦ A)(x), then we find nets (y∗
i )i ⊂ ∂f(Ax)

and (v∗
i )i ⊂ Y ∗ such that x∗ = limi A

∗v∗
i and limi(y∗

i − v∗
i ) = θ. Since

A∗ is continuous, we deduce that

x∗ = lim
i

A∗v∗
i = lim

i
A∗y∗

i ∈ cl(A∗∂f(Ax)) ,
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and the inclusion ∂(f ◦ A)(x) ⊂ cl (A∗∂f(Ax)) holds. The opposite
inclusion easily follows.

If (ii) is fulfilled and y0 := Ax0 ∈ ri(dom f) for some x0 ∈ X, then

(x0, y0) ∈ (gphA) ∩ (X × ri(dom f)) = (gphA) ∩ ri(X × dom f) = domh ∩ ri(dom g),

and g|aff(dom g) is continuous relative to ri(dom g) = X × ri(dom f).
Thus, we conclude as in the first part of the proof, but now applying
Theorem 7.2.2(i).

Conditions (iii) in Theorem 7.2.2 and (ii) in Theorem 7.2.3 are
clearly weaker than the continuity assumption used in Proposition
4.1.20. However, the conclusion of the latter is stronger since it pro-
duces formulas without the closure. The following corollary shows that
the closure in formula (7.13) of Theorem 7.2.2 can be sometimes ruled
out.

Corollary 7.2.4 Let f and g be the same as in Theorem 7.2.2(iii).
If x ∈ X is such that ∂f(x) or ∂g(x) is locally compact, then

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof. We may assume that f(x), g(x) ∈ R. According to Theorem
7.2.2(iii), we have that ∂(f + g)(x) = cl(∂f(x) + ∂g(x)). If ∂f(x) or
∂g(x) is empty, then we are done. So, we may assume that ∂f(x),
∂g(x), and ∂(f + g)(x) are non-empty; hence, x ∈ dom f ∩ dom g.
Assuming that θ ∈ ri(dom f) ∩ ri(dom g), without loss of generality,
we choose U ∈ NX such that

U1 := U ∩ span(dom f) ⊂ dom f, U2 := U ∩ span(dom g) ⊂ dom g;

hence U1 and U2 are absorbing, balanced, and convex neighborhoods of
θ in span(dom f) and span(dom g), respectively. Take v∗ ∈ (∂f(x))∞ ∩
(− (∂g(x))∞) = Ndom f (x) ∩ (−Ndom g(x)) , by (4.9). Then, for every
u1 ∈ U1 and u2 ∈ U2, we obtain

〈v∗, u1 − x〉 ≤ 0 and 〈−v∗, u2 − x〉 ≤ 0, (7.20)

and by summing up, 〈v∗, u1 − u2〉 ≤ 0. Moreover, since −u1 ∈ U1 and
−u2 ∈ U2, we also have 〈v∗, u2 − u1〉 ≤ 0 for all u1 ∈ U1 and u2 ∈ U2;
that is, v∗ ∈ (span(dom f − dom g))−. Then

Ndom f (x) ∩ (−Ndom g(x)) ⊂ (span(dom f − dom g))−,
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and observing that

(span(dom f − dom g))
− ⊂ (dom f − x)

− ∩
(
−

[
(dom g − x)

−
])

=Ndom f (x) ∩ (−Ndom g(x)) ,

we deduce that

Ndom f (x) ∩ (−Ndom g(x)) = (span(dom f − dom g))−.

Therefore, the closedness of ∂f(x) + ∂g(x) follows by Theorem 2.1.8.

The following theorem deals with a typical situation in which finite
and infinite-dimensional settings coexist (as in Remark 2). The result-
ing formula only involves, once again, the exact subdifferential of the
qualified function as in Theorem 7.2.1.

Theorem 7.2.5 Consider f ∈ Γ0(Rn), g ∈ Γ0(X), and a continu-
ous linear mapping A : X → R

n. Given x ∈ dom g ∩ A−1(dom f), we
assume that one of the following conditions holds:

(i) R+(epi f − (Ax, f(Ax))) is closed in R
n+1.

(ii) (A(dom g)) ∩ ri(dom f) 	= ∅.
Then we have

∂(g + f ◦ A)(x) =
⋂

ε>0
cl(∂εg(x) + A∗∂f(Ax)).

Proof. We suppose that ∂(g + f ◦ A)(x) 	= ∅, so that the conditions
of Theorem 7.2.3 are fulfilled, and we obtain

∂(f ◦ A)(x) = cl(A∗∂f(Ax)). (7.21)

Hence, we only need to check that the lsc convex functions f ◦ A and g
satisfy the assumptions of Theorem 7.2.1, with f ◦ A playing the role
of the qualified function; that is, f ◦ A satisfies

R+(epi(f ◦ A) − (x, (f(Ax)))) is closed, (7.22)

and
{

dom g ∩ ri(dom(f ◦ A)) 	= ∅ and
(f ◦ A)|aff(dom(f◦A)) is continuous on ri(dom(f ◦ A)). (7.23)

First, we assume that (i) holds. To show (7.22) we take

(u, μ) ∈ cl(R+(epi(f ◦ A) − (x, (f(Ax))))),
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and consider nets (αi)i ⊂ R+ and (xi, λi)i ⊂ epi(f ◦ A) such that
αi((xi, λi) − (x, f(Ax))) → (u, μ); hence,

(Axi, λi) ∈ epi f and αi((Axi, λi) − (Ax, f(Ax))) → (Au,μ).

Thus, condition (i) leads us to (Au, μ) ∈ R+(epi f − (Ax, f(Ax))), and
there are α ∈ R+ and (y, λ) ∈ epi f such that (Au, μ) = α((y, λ) −
(Ax, f(Ax))); that is, Au = α(y − Ax) and μ = α(λ − f(Ax)). Next,
thanks to the convexity of f, for all γ > 0 small enough to satisfy
αγ < 1, we obtain

(f ◦ A)(γu + x) = f(A(γu + x)) = f(γα(y − Ax) + Ax)
≤ αγf(y) + (1 − γα)f(Ax) ≤ αγλ + (1 − γα)f(Ax)
= γ(μ + αf(Ax)) + (1 − γα)f(Ax) = f(Ax) + γμ,

and so
(u, μ) ∈ γ−1(epi(f ◦ A) − (x, f(Ax))),

showing that (7.22) holds.
Now, assuming (ii), we prove that (7.23) holds. We choose x0 ∈

dom g such that y0 := Ax0 ∈ ri(dom f). Thus, taking into account
Corollary 2.2.9, there are some m ≥ 0 and V ∈ NRn (i.e., a ball cen-
tered at 0n) such that

f(y0 + y) ≤ m for all y ∈ V ∩ aff(dom f).

Let U ∈ NX such that A(U) ⊂ V. Then, for every z ∈ (x0 + U) ∩
aff(dom(f ◦ A)), we have

(f ◦ A)(z) ≤ sup
u∈U

f(y0 + Au) ≤ sup
y∈V

f(y0 + y) ≤ m,

and, particularly, x0 ∈ ri(dom(f ◦ A)); that is,

x0 ∈ dom g ∩ ri(dom(f ◦ A)).

Therefore, (7.23) follows. Finally, taking into account (7.21), Theorem
7.2.1 entails

∂(g + f ◦ A)(x) =
⋂

ε>0
cl(∂εg(x) + ∂(f ◦ A)(x))

=
⋂

ε>0
cl(∂εg(x) + cl(A∗∂f(Ax))) =

⋂

ε>0
cl(∂εg(x) + A∗∂f(Ax)),

yielding the conclusion of the theorem.
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The proof of the following result is similar to that of Theorem 7.2.5,
but its proof is based on Theorem 7.2.2 instead of Theorem 7.2.1 (see
Exercise 111 for the proof).

Corollary 7.2.6 With the notation of Theorem 7.2.5, assume that
the sets R+(epi f − (Ax, f(Ax))) and R+(epi g − (x, g(x))) are closed.
Then we have that

∂(g + f ◦ A)(x) = cl(∂g(x) + A∗ (∂f(Ax))).

The following corollary establishes a sequential rule. It only uses
exact subdifferentials at the reference point of the qualified function
(the one whose relative interior or epigraph is involved in the assump-
tion), while the subdifferential of the other function is taken at nearby
points. This result is stated in Banach spaces because it appeals to
Proposition 4.3.8 (or 4.3.7). The reflexivity assumption comes to jus-
tify the use of sequences instead of nets.

Corollary 7.2.7 Assume that X is a reflexive Banach space, and let
f, g ∈ Γ0(X). Given x ∈ dom f ∩ dom g, we assume that at least one of
conditions (i) and (ii) in Theorem 7.2.1 holds. Then, x∗ ∈ ∂(f + g)(x)
if and only if there are sequences (xn)n ⊂ X and (x∗

n)n ⊂ X, (y∗
n)n ⊂

∂g(x) such that x∗
n ∈ ∂f(xn), for all n ≥ 1, and

xn → x, f(xn) + 〈x∗
n, x − xn〉 → f(x), and x∗

n + y∗
n → x∗.

Proof. Fix x∗ ∈ ∂(f + g)(x). Then, using Theorem 7.2.1 and the
reflexivity assumption, we have

∂(f + g)(x) =
⋂

ε>0
cl‖·‖(∂εf(x) + ∂g(x)),

where ‖·‖ refers to the dual norm in X∗. So, for each integer n ≥ 1,
there are z∗

n ∈ ∂1/n2f(x) and y∗
n ∈ ∂g(x) such that x∗ ∈ z∗

n + y∗
n +

(1/n)BX∗ . Now, appealing to Proposition 4.3.8, we find xn ∈ x +
(1/n)BX and x∗

n ∈ ∂f(xn) such that ‖x∗
n − z∗

n‖ ≤ 1/n and |f(xn)−
f(x) + 〈z∗

n, x − xn〉| ≤ 2/n2. Thus, using the Cauchy–Schwarz inequal-
ity,

|f(xn) − f(x) + 〈x∗
n, x − xn〉| ≤ |f(xn) − f(x) + 〈z∗

n, x − xn〉| + |〈z∗
n − x∗

n, x − xn〉|

≤ 2

n2
+ ‖x∗

n − z∗
n‖ ‖x − xn‖ ≤ 3

n2
.

Consequently, x∗ ∈ x∗
n + y∗

n + (2/n)BX∗ , and so limn(x∗
n + y∗

n) = x∗.
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To prove the opposite implication, we take sequences (xn)n ⊂ X and
(x∗

n)n ⊂ X∗ such that x∗
n ∈ ∂f(xn), (y∗

n)n ⊂ ∂g(x), xn → x, f(xn) +
〈x∗

n, x − xn〉 → f(x) and x∗
n + y∗

n → x∗. Hence, for all z ∈ X,

〈x∗
n + y∗

n, z − x〉 = 〈x∗
n, z − xn〉 + 〈y∗

n, z − x〉 + 〈x∗
n, xn − x〉

≤ f(z) − f(xn) + 〈x∗
n, xn − x〉 + g(z) − g(x)

= f(z) − f(x) + g(z) − g(x) + f(x) − f(xn) + 〈x∗
n, xn − x〉 ,

and, taking the limits when n → ∞, we get

〈x∗, z − x〉 ≤ f(z) − f(x) + g(z) − g(x) + f(x),

showing that x∗ ∈ ∂(f + g)(x).

7.3 Supremum-sum subdifferential calculus

In this section, we deal jointly with a non-empty family of convex func-
tions ft : X → R, t ∈ T, together with a distinguished convex function
g : X → R. If f := supt∈T ft, the main purpose of this section is to
characterize the subdifferential of the sum f + g by means, exclu-
sively, of the ε-subdifferential of the functions ft, t ∈ T, and the
(exact) subdifferential of g. It is worth observing that, given that
f + g = supt∈T (ft + g), we can apply Theorem 5.2.2 to obtain the fol-
lowing formula

∂(f + g)(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂εft(x) + ∂εg(x) + NL∩dom f∩dom g(x)

}

,

where Tε(x) = {t ∈ T : ft(x) ≥ f(x) − ε}. This expression uses the
ε-subdifferential of ft and g (see details in Exercise 113). However,
our purpose here is to provide formulas involving the (exact) sub-
differential of the functions g + IL∩dom f , L ∈ F(x), rather than the
ε-subdifferential of g.

Theorem 7.3.2 below states the main result of this section, constitut-
ing the desired extension of (5.26). In its proof, we use the following
result, which involves the family F of finite-dimensional linear sub-
spaces of X.

Proposition 7.3.1 Let ft, g : X → R∞, t ∈ T, be proper convex func-
tions and consider f := supt∈T ft. Assume that
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cl (f + g) (x) = sup
t∈T

(cl ft)(x) + g(x) for all x ∈ dom f ∩ dom g.

(7.24)
Then we have

cl (f + g) = cl
(

sup
t∈T

(cl ft) + inf
L∈F

cl(g + IL∩dom f )
)

. (7.25)

Proof. Let us denote

f̃ := sup
t∈T

(cl ft) and gL := g + IL∩dom f , L ∈ F . (7.26)

Observe that, for every F ∈ F ,

f̃ + inf
L∈F

(cl gL) ≤ f̃ + cl gF ≤ f̃ + gF ≤ f + g + IF ,

and by taking the infimum over F ∈ F , we get

f̃ + inf
L∈F

(cl gL) ≤ inf
F∈F

(f + g + IF ) = f + g + I∪{F :F∈F} = f + g.

Thus, passing to the closure in each side, cl
(
f̃ + infL∈F (cl gL)

)
≤

cl (f + g) , and the inequality “≥” in (7.25) follows. To establish the
inequality “≤” in (7.25) we fix L ∈ F and take z ∈ cl(L ∩ dom f ∩
dom g). Since dom(g + IL∩dom f ) ⊂ L, we pick z0 ∈ ri(L ∩ dom f∩
dom g). Then, for every λ ∈ ]0, 1[ , (2.15) implies that

zλ := λz0 + (1 − λ)z ∈ ri(L ∩ dom f ∩ dom g).

Moreover, since dom(f + g + IL) = L ∩ dom f ∩ dom g = dom gL, we
have zλ ∈ ri(dom gL) and gL(zλ) = (cl gL) (zλ), due to Corollary 2.2.9.
Thus, the current assumption and the convexity of the data functions
entail

cl (f + g) (zλ) = f̃(zλ) + gL(zλ) = f̃(zλ) + (cl gL) (zλ)

≤ (1 − λ)f̃(z) + λf̃(z0) + (1 − λ) (cl gL) (z) + λ (cl gL) (z0).

As f̃(z0) < +∞ and (cl gL) (z0) = g(z0) < +∞, by taking limits over
λ ↓ 0, we get

cl (f + g) (z) ≤ lim inf
λ↓0

cl (f + g) (zλ) ≤ f̃(z) + (cl gL)(z).
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Since this last inequality also holds when z /∈ cl(L ∩ dom f ∩ dom g),
we deduce that

cl (f + g) (z) ≤ f̃(z) + (cl gL) (z) for all z ∈ X. (7.27)

Consequently, by taking the infimum over L ∈ F , we get cl (f + g) ≤
f̃ + infL∈F (cl gL) , and this implies the desired inequality “≤” in
(7.25).

Theorem 7.3.2 Let ft, g : X → R∞, t ∈ T, be proper convex func-
tions, f := supt∈T ft, and suppose that (7.24) holds. Then, for every
x ∈ X, we have

∂(f + g)(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂εft(x) + ∂(g + IL∩dom f )(x)

}

.

(7.28)

Proof. The proof of the inclusion “⊃” follows easily (as in Exercise
113). Thus, we only need to prove “⊂” in the nontrivial case when
∂(f + g)(x) 	= ∅; hence by Exercise 62,

cl (f + g) (x) = (f + g) (x) and ∂(f + g)(x) = ∂(cl (f + g))(x).
(7.29)

The idea of the proof is to look for an appropriate family of lsc
convex functions giving rise to a tight approximation of the subd-
ifferential of f + g. To this aim, we fix L ∈ F(x) and consider the
functions f̃ and gL defined previously in (7.26); i.e., f̃ = supt∈T (cl ft),
gL := g + IL∩dom f . Then, by Proposition 7.3.1,

cl (f + g) ≤ f̃ + cl gL. (7.30)

Moreover, since f̃(x) + (cl gL)(x) ≤ (f + g) (x) = cl (f + g) (x) by
(7.29), the inequality above ensures that

cl (f + g) (x) = (f + g) (x) = f̃(x) + (cl gL)(x), (7.31)

which in turn yields, due to the relations f̃ ≤ f and (cl gL)(x) ≤ g(x),

f(x) = f̃(x) and (cl gL)(x) = gL(x) = g(x) ∈ R. (7.32)

In particular, gL is lsc at x and cl gL ∈ Γ0(X), and Proposition 4.1.10
guarantees that ∂εgL(x) = ∂ε(cl gL)(x) 	= ∅ for all ε > 0. Now, we take
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x∗ ∈ ∂(f + g)(x) = ∂(cl (f + g))(x), so that x∗ ∈ ∂(f̃ + (cl gL))(x) due
to (7.30) and (7.31). Let us define the lsc convex functions

ht := (cl ft) + cl gL, t ∈ T, and h := sup
t∈T

ht.

Observe that x ∈ dom h ⊂ L, and so ri(cone(dom h − x)) 	= ∅. There-
fore, since h ≤ f + g + IL and L ∩ dom f ∩ dom g ⊂ dom h, Proposi-
tion 5.3.1 gives rise to

x∗ ∈ ∂h(x) =
⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂εht(x) + Ndomh(x)

}

⊂ ⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂εht(x) + NL∩dom f∩dom g(x)

}

, (7.33)

where, thanks to (7.32),

T̃ε(x) := {t ∈ T : (cl ft)(x) + (cl gL)(x) ≥ h(x) − ε} ⊂ Tε(x). (7.34)

Moreover, for each t ∈ T̃ε(x), one has

ft(x) ≥ (cl ft)(x) ≥ f(x) − ε ≥ ft(x) − ε, (7.35)

implying that ∂ε(cl ft)(x) ⊂ ∂2εft(x). Consequently, thanks to the fol-
lowing inclusions coming from (4.45),

∂εht(x) ⊂ cl (∂ε(cl ft)(x) + ∂ε(cl gL)(x)) ⊂ cl (∂2εft(x) + ∂2ε(cl gL)(x)) ,

and by (7.32) and (7.33), we obtain

x∗ ∈ ⋂

ε>0
co

{
⋃

t∈T̃ε(x)

cl (∂2εft(x) + ∂2ε(cl gL)(x)) + NL∩dom f∩dom g(x)

}

⊂ ⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂2εft(x) + ∂2ε(cl gL)(x) + NL∩dom f∩dom g(x)

}

=
⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂εft(x) + ∂ε(cl gL)(x)

}

, (7.36)

where in the last equality we took into account that

dom(cl gL) ⊂ cl(dom gL) = cl (L ∩ dom f ∩ dom g) .
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Finally, we introduce the closed convex sets

Aε := co

{
⋃

t∈T̃ε(x)

∂εft(x)

}

, ε > 0.

For every z∈ ri(dom(cl gL)) = ri(dom gL) = ri(L ∩ dom f ∩ dom g) and
ε > 0, by (7.35) we have

σAε(z − x) ≤ sup
t∈T̃ε(x)

(ft(z) − ft(x) + ε) ≤ f(z) − f(x) + 2ε < +∞,

showing that (ri(dom(cl gL)) − x) ∩ dom σAε 	= ∅. Consequently, since
cl gL ∈ Γ0(X) and (cl gL)|aff(dom gL) is continuous on ri(dom(cl gL)), by
Exercise 112 and (7.32), we get

x∗ ∈ ⋂

ε>0
cl (Aε + ∂ε(cl gL)(x)) =

⋂

ε>0
cl (Aε + ∂(cl gL)(x))

=
⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂εft(x) + ∂gL(x)

}

.

Therefore, since T̃ε(x) ⊂ Tε(x) by (7.34), we deduce that

x∗ ∈ ⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + ∂gL(x)

}

,

which leads us to the desired inclusion.
The following corollary is a particular instance of Theorem 7.3.2,

with g being the indicator of a convex set.

Corollary 7.3.3 Let ft : X → R∞, t ∈ T, be proper convex functions
and consider f := supt∈T ft. Let D ⊂ X be a non-empty convex set
such that

cl (f + ID) (x) = sup
t∈T

(cl ft)(x) for all x ∈ dom f ∩ D.

Then, for every x ∈ X, we have

∂(f + ID)(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂εft(x) + NL∩D∩dom f (x)

}

.
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The intersection over the L’s in Theorem 7.3.2 can obviously be
omitted in the finite-dimensional setting; in fact, we have the following
result which is more general.

Corollary 7.3.4 Let ft, g : X → R∞, t ∈ T, be proper convex func-
tions, f := supt∈T ft, and suppose that (7.24) holds. Additionally, we
assume that ri(dom f ∩ dom g) 	= ∅ and g|aff(dom f∩dom g) is continuous
on ri(dom f ∩ dom g). Then, for every x ∈ X, we have

∂(f + g)(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + ∂(g + Idom f )(x)

}

. (7.37)

Proof. If x /∈ dom f ∩ dom g = dom f ∩ dom(g + Idom f ), then ∂(f +
g)(x) = ∂(g + Idom f )(x) = ∅, and (7.37) holds trivially; so, we take
x ∈ dom f ∩ dom g. Given U ∈ NX∗ , we choose L ∈ F(x) such that
L⊥ ⊂ U, and take L1 ∈ F(x) satisfying L ⊂ L1 and L1 ∩ ri(dom f ∩
dom g) 	= ∅. Then, by Theorem 7.3.2,

∂(f + g)(x) ⊂ ⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + ∂(g + IL1∩dom f )(x)

)

, (7.38)

and we provide next a simplified expression for ∂(g + IL1∩dom f )(x). To
this aim, we introduce the functions

ϕ := IL1 and ψ := g + Idom f ,

and check that they satisfy the conditions of Theorem 7.2.2(iii).
Observe that ϕ|L1

is continuous on L1, and the equality ψ|aff(dom ψ) =
g|aff(dom f∩dom g) holds on ri(dom f ∩ dom g) 	= ∅. So, ψ|aff(dom ψ) is con-

tinuous on ri(domψ) by assumption. Then, Theorem 7.2.2(iii) yields

∂(g + IL1∩dom f )(x) = ∂(ϕ + ψ)(x) = cl(∂ϕ(x) + ∂ψ(x)) = cl(L⊥
1 + ∂(g + Idom f )(x)).

Plugging this equality into (7.38) yields

∂(f + g)(x) ⊂ ⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + cl
(
∂(g + Idom f )(x) + L⊥

1

)
)

=
⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + ∂(g + Idom f )(x) + L⊥
1

)
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⊂ ⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + ∂(g + Idom f )(x) + U

)

.

Finally, since U was arbitrarily chosen, we get

∂(f + g)(x) ⊂ ⋂

ε>0
co

(
⋃

t∈Tε(x)

∂εft(x) + ∂(g + Idom f )(x)

)

,

and the inclusion “⊂” of (7.37) follows. This finishes the proof since
the opposite inclusion is straightforward from Theorem 7.3.2, in virtue
of the relation ∂(g + Idom f )(x) ⊂ ∂(g + IL∩dom f )(x).

Another way to avoid finite-dimensional linear subspaces, as was
achieved in Corollary 7.3.4, is to use the ε-subdifferential of the func-
tion g + Idom f .

Corollary 7.3.5 Let ft, g : X → R∞, t ∈ T, be proper convex func-
tions, f := supt∈T ft, and suppose that (7.24) holds. If g + Idom f ∈
Γ0(X), then for every x ∈ X we have

∂(f + g)(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + ∂ε(g + Idom f )(x)

}

. (7.39)

Proof. Fix x ∈ dom f ∩ dom g, ε > 0 and L ∈ F(x). By (4.45), one
has

∂(g + IL∩dom f )(x) = ∂(g + Idom f + IL)(x) ⊂ cl
(
∂ε(g + Idom f )(x) + L⊥

)
,

and Theorem 7.3.2 gives rise to

∂(f + g)(x) ⊂ co

{
⋃

t∈Tε(x)

∂εft(x) + ∂(g + IL∩dom f )(x)

}

⊂ co

{
⋃

t∈Tε(x)

∂εft(x) + cl
(
∂ε(g + Idom f )(x) + L⊥

)
}

= co

{
⋃

t∈Tε(x)

∂εft(x) + ∂ε(g + Idom f )(x) + L⊥
}

.

Thus, using Exercise 10(iv) and taking the intersection over L ∈ F(x)
and ε > 0, we get the nontrivial inclusion in (7.39).
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7.4 Exercises

Exercise 108 Give a proof of (7.2) based on formula (4.45).

Exercise 109 Consider two functions f : Y → R and g : X → R

(non-necessarily convex), where Y is another lcs, and a continuous lin-
ear mapping A : X → Y such that co(g + f ◦ A) = (cog) + (cof) ◦ A.
Prove that, for every x ∈ X,

∂(g + f ◦ A)(x) =
⋂

ε>0
cl (∂εg(x) + A∗∂εf(Ax)) ,

where A∗ is the adjoint mapping of A.

Exercise 110 Let f, g : X → R∞ be such that cl f and cl g are proper.
If f and cl g are convex, and f is finite and continuous at some point
in dom(cl g), prove that cl(f + g) = (cl f) + (cl g) and ∂(f + g) = ∂f +
∂g.

Exercise 111 Prove Corollary 7.2.6.

Exercise 112 Let (Aε)ε>0 be a non-decreasing family of non-empty
closed convex sets of X∗; that is, if ε1 ≤ ε2, then Aε1 ⊂ Aε2 . Given
a function g ∈ Γ0(X), we assume that (ri(dom g) − x) ∩ dom σAε 	= ∅,
for every small ε > 0, and g|aff(dom g) is continuous on ri(dom g). Prove
that ⋂

ε>0
cl (Aε + ∂εg(x)) =

⋂

ε>0
cl (Aε + ∂g(x)) .

Exercise 113 Given lsc convex functions ft, f, g : X → R, t ∈ T, such
that f := supt∈T ft, prove that, for every x ∈ X,

∂(f + g)(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂εft(x) + ∂εg(x) + NL∩dom f∩dom g(x)

}

. (7.40)

Exercise 114 Let ft : X → R∞, t ∈ T, be proper convex functions
and consider f := supt∈T ft such that

(cl f)(x) = sup
t∈T

(cl ft)(x) for all x ∈ dom f.

(i) Prove that formula (5.26) holds; that is, for every x ∈ X,

∂f(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

}

. (7.41)
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(ii) If x ∈ X is such that either ri(cone(dom f − x)) 	= ∅ or cone
(dom f − x) is closed, prove that (5.65) holds; that is,

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x)

}

.

(iii) If x ∈ X and dom f is closed, prove that

∂f(x) =
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + Nε
dom f (x)

}

.

Exercise 115 Let ft : X → R∞, t ∈ T, be proper convex functions
and consider f := supt∈T ft and a convex set D ⊂ X. Prove that
cl (f + ID) = supt∈T (cl ft) holds on D if and only if it holds on the
larger set ∪L∈F cl(L ∩ D). (Remember that F is the family of finite-
dimensional subspaces of X.)

7.5 Bibliographical notes

Main references for this chapter are [49] and [50]. Theorem 7.1.1
is a slight extension of the Hiriart-Urruty–Phelps formula [111] (see
(4.45)), which relaxes the lower semicontinuity assumption. It was
established in [103, Theorem 13]. Corollary 7.1.3 is the classical chain
rule by Moreau and Rockafellar for the sum and composition with a
continuous linear mapping (see, e.g., [161]). Theorem 7.2.1, yielding an
asymmetric chain rule, was established in [49, Theorem 12], and the
symmetric version given in Theorem 7.2.2 is Theorem 15 of the same
paper. Indeed, Theorem 7.2.2 is an infinite-dimensional extension of
[174, Theorem 23.8]. In particular, Theorem 7.2.2(iii) makes use of an
assumption that can be regarded as a counterpart of the Attouch-Brzis
condition ([7]) for general locally convex spaces. Theorem 7.2.5, given
in [49, Corollary 23], provides an asymmetric version of the results in
[19, Theorem 4.2] (compare, also, with [19, Corollary 4.3] where the so-
called quasi-relative interior is involved). Corollary 7.2.7, given in [49,
Corollary 24], is in the spirit of the sequential calculus rules provided in
[123], [165], and [188]. Theorem 7.3.2, establishing a mixed supremum-
sum rule, is given in [49, Theorem 4]. Corollary 7.3.5, particularly its
second statement, is related to [113, Theorem 5.1] and applies when
f is a polyhedral function (see [49, Lemma 8]). A characterization of
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this closedness property can also be found in [152]. Exercise 110 pro-
vides an extension of Corollary 7.1.3 to non-convex functions whose
closures are in Γ0(X). In fact, functions with convex closures are fre-
quently used in variational analysis even though they are non-convex
(see, e.g., [80]). Exercise 115 is related to [134, Theorem 3.1].



Chapter 8

Miscellaneous

This last chapter addresses several issues related to the previous chap-
ters. The first part is mainly aimed at deriving optimality conditions
for a convex optimization problem, posed in an lcs, with an arbitrary
number of constraints. The approach taken is to replace the set of
constraints with a unique constraint via the supremum function. Sub-
sequently, we appeal to the properties of the subdifferential of the
supremum function that has been exhaustively studied in the previ-
ous chapters. With this goal, we extend to infinite convex systems two
constraint qualifications that are crucial in linear semi-infinite pro-
gramming. The first, called the Farkas–Minkowski property, is global
in nature, while the other is a local property, called locally Farkas–
Minkowski. We obtain two types of Karush–Kuhn–Tucker (KKT, in
brief) optimality conditions: asymptotic and non-asymptotic.

In section 8.3, we analyze the relationship between the optimal solu-
tions of a given optimization problem and those of its convex regular-
ization. This will be performed by exact or approximate solutions of
the original problem. Furthermore, in the same section, we give differ-
ent formulas for the subdifferential of the conjugate function, which
are extensions of the Fenchel formula (4.18). In section 8.4, we develop
an integration theory for the exact and approximate subdifferentials
of non-convex functions. This section builds on chapters 5 and 6 to
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provide extensions of the integration results of section 4.4 that were
limited to convex functions. Section 8.5 establishes some variational
characterizations of convexity of functions and sets, while last section
8.6 is devoted to the so-called Chebychev sets.

Also, in this chapter, X is an lcs with a dual X∗ that is endowed
with a compatible topology (unless otherwise stated). The associated
bilinear form is represented by 〈·, ·〉.

8.1 Convex systems and Farkas-type
qualifications

In this section, we deal with the convex optimization problem

(P) Min g(x)
s.t. ft(x) ≤ 0, t ∈ T,

x ∈ C,
(8.1)

where T is an arbitrary (possibly infinite) index set, C is a non-empty
closed convex subset of X, and {g; ft, t ∈ T} ⊂ Γ0(X). We consider
the constraint system

S := {ft(x) ≤ 0, t ∈ T ; x ∈ C}, (8.2)

and denote by F the corresponding set of solutions, also called feasi-
ble set . Observe that F is a closed convex set in X. When F �= ∅, we
say that S is a consistent system. The constraint x ∈ C is referred to
as the abstract constraint, whereas ft(x) ≤ 0, t ∈ T, are the explicit
constraints. We assume that F ∩ dom g �= ∅. We say that (P) is solv-
able when it has optimal solutions. An important particular case is
that when the explicit constraints are affine and there is no abstract
constraint, i.e.,

S := {〈a∗
t , x〉 ≤ bt, t ∈ T}, (8.3)

with a∗
t ∈ X∗, t ∈ T . If T is infinite, the objective function g is linear,

and X = R
n, we have the so-called linear semi-infinite optimization

problem (LSIP, in brief).
It is obvious that (P) can be written equivalently as follows:

(P) Min g(x)
s.t. f(x) ≤ 0,

(8.4)
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where
f := sup {ft, t ∈ T ; IC} , (8.5)

and, consequently, F = {x ∈ X : f(x) ≤ 0}.
The aim of the next section is to establish KKT optimality condi-

tions for (P). For this purpose, we extend to infinite convex systems two
constraint qualifications, which play a crucial role in linear semi-infinite
programming. The first, called the Farkas–Minkowski property, is of
global nature, whereas the second, called locally Farkas–Minkowski, is
a local property.

Let us recall that the space of generalized finite sequences, R
(T ),

was defined in chapter 3 (see (2.3)) as the (topological) dual of R
T ,

and that R
(T )
+ is its nonnegative cone. If λ ∈ R

(T )
+ and we are dealing

with proper functions (as in this chapter, where g, ft, t ∈ T, belong to
Γ0(X)), we define(∑

t∈T

λtft

)
(x) :=

∑
t∈supp λ

λtft(x) + I ⋂

t∈T

dom ft
(x) (8.6)

with the convention
∑

∅ = 0. Analogously, if {Yt, t ∈ T} is a family
of subsets of some linear space Y, whose zero is also denoted by θ, for
λ ∈ R

(T )
+ , we have ∑

t∈T

λtYt :=
∑

t∈supp λ

λtYt,

with the convention
∑

∅ = {θ}. Particularly, cone coA =
{∑

t∈T λtA :

λ ∈ R
(T )
+

}
for every non-empty set A ⊂ Y.

Definition 8.1.1 The characteristic cone of S = {ft(x) ≤ 0, t ∈ T ;
x ∈ C} is the convex cone

K := cone co
{ ⋃

t∈T

epi f∗
t ∪ epi σC

}
. (8.7)

Taking into account that epiσC is a convex cone, we can write

K = cone co
{ ⋃

t∈T

epi f∗
t

}
+ epi σC .

For the linear system (8.3), epi f∗
t = (a∗

t , bt) + R+(θ, 1), t ∈ T, and
epi σC ≡ epi σX = R+(θ, 1). Hence
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K = cone co {(a∗
t , bt), t ∈ T ; (θ, 1)} . (8.8)

Next, in Theorem 8.1.4, we will prove the so-called generalized
Farkas lemma in a simple way by applying the following lemma.

Lemma 8.1.2 If F �= ∅, then epi σF = cl K.

Proof. Since F = {x ∈ X : f(x) ≤ 0}, with f := sup {ft, t ∈ T ; IC}
(∈ Γ0(X)), Exercise 32(b) applies and yields epi σF = cl(cone(epi f∗)).
Now, since we are assuming F �= ∅, by Proposition 3.2.6,

f∗ = co (inf {f∗
t , t ∈ T ; I∗C}) = co (inf {f∗

t , t ∈ T ; σC}) ,

entailing epi f∗ = co {∪t∈T epi f∗
t ∪ epi σC} . Therefore,

epi σF = cone
(

co
{ ⋃

t∈T

epi f∗
t ∪ epi σC

})
= cl K.

By applying Exercise 32(a), we may also characterize the feasibility
of S; actually,

F �= ∅ ⇔ (θ, −1) /∈ clK. (8.9)

Definition 8.1.3 Given the functions h, � : X → R, we say that the
inequality � ≤ h is consequence of the consistent system S with feasible
set F , if and only if �(x) ≤ h(x), for every x ∈ F.

The following result can be regarded as a generalized Farkas lemma.
It turns out to be the key stone for deriving different characterizations
of consequent relations in Theorem 8.1.5.

Theorem 8.1.4 Let h, � ∈ Γ0(X), consider the consistent system S
with feasible set F, and suppose that F ∩ dom h �= ∅. Then � ≤ h is
consequence of S if and only if

epi �∗ ⊂ cl (epi h∗ + K) . (8.10)

Proof. The inequality � ≤ h is the consequence of the consistent
system S if and only if � ≤ h + IF . This happens if and only if
(h + IF )∗ ≤ �∗, equivalently if and only if, taking into account (4.44)
and Lemma 8.1.2,

epi �∗ ⊂ epi(h + IF )∗ = cl(epi h∗ + epi σF )
= cl(epi h∗ + cl K) = cl(epi h∗ + K).
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The following theorem provides several Farkas-type results.

Theorem 8.1.5 Suppose that S in (8.2) is consistent. Then the fol-
lowing statements hold:

(i) If (a∗, α) ∈ X∗ × R, the inequality 〈a∗, ·〉 ≤ α is consequence of
S if and only if

(a∗, α) ∈ cl K. (8.11)

(ii) If � ∈ Γ0(X) and α ∈ R, the inequality � ≤ α is a consequence
of S if and only if (θ, α) + epi �∗ ⊂ clK.

(iii) If h ∈ Γ0(X), γ ∈ R, and F ∩ dom h �= ∅, the inequality h ≥ γ
is a consequence of S if and only if

(θ, −γ) ∈ cl (epi h∗ + K) . (8.12)

(iv) If h ∈ Γ0(X), γ ∈ R, F ∩ dom h �= ∅, and epi h∗ + K is w∗-
closed, then h ≥ γ is a consequence of S if and only if there exists
λ ∈ R

(T )
+ such that

h(x) +
∑
t∈T

λtft(x) ≥ γ for all x ∈ C. (8.13)

(v) If h ∈ Γ0(X) is finite and continuous somewhere in F, γ ∈ R,
and K is w∗-closed, then h ≥ γ is a consequence of S if and only if
(8.13) holds for some λ ∈ R

(T )
+ .

Proof. (i) It is a straightforward consequence of Theorem 8.1.4 with
� := 〈a∗, ·〉 − α and h ≡ 0. If the inequality 〈a∗, ·〉 ≤ α is consequence
of S, since epi h∗ = R+(θ, 1) we get

(a∗, α) ∈ epi �∗ ⊂ cl (epi h∗ + K) = cl (R+(θ, 1) + K) = clK.

Conversely, if (8.11) holds,

epi �∗= (a∗, α) +R+(θ, 1) ⊂ (cl K) + R+(θ, 1)= cl K = cl(epi h∗ + K),

and Theorem 8.1.4 yields the desired conclusion.
(ii) Using Theorem 8.1.4, � ≤ α is consequence of S if and only if

epi �∗ ⊂ cl ((θ, −α) + R+(θ, 1) + K)
= cl ((θ, −α) + K) = (θ, −α) + cl K.
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(iii) Now take � ≡ γ. Then, by Theorem 8.1.4, h ≥ γ is consequence
of S if and only if

(θ, −γ) ∈ (θ, −γ) + R+(θ, 1) = epi �∗ ⊂ cl (epi h∗ + K) .

(iv) Suppose that epih∗ + K is w∗-closed. If h ≥ γ is consequence
of S, by (iii) there will exist a∗ ∈ dom h∗, ρ ≥ 0, x∗

t ∈ dom f∗
t , αt ≥ 0,

t ∈ T , z∗ ∈ dom σC , β ≥ 0 and λ ∈ R
(T )
+ such that

(θ,−γ) = (a∗, h∗(a∗) + ρ) +
∑

t∈supp λ

λt(x∗
t , f

∗
t (x∗

t ) + αt) + (z∗, σC(z∗) + β).

Equivalently,

⎧⎨
⎩

θ = a∗ +
∑

t∈supp λ

λtx
∗
t + z∗,

γ = −h∗(a∗) − ∑
t∈supp λ

λt(f∗
t (x∗

t ) + αt) − σC(z∗) − ρ − β.
(8.14)

Since, for all x ∈ X, h∗(a∗) ≥ 〈a∗, x〉 − h(x), f∗
t (x∗

t ) ≥ 〈x∗
t , x〉 − ft(x)

for all t ∈ T, and σC(z∗) ≥ 〈z∗, x〉 for all x ∈ C, it follows from the two
equalities in (8.14) that, for all x ∈ C,

γ = 〈a∗, x〉 − h∗(a∗) +
∑

t∈supp λ

λt(〈x∗
t , x〉 − f∗

t (x∗
t ))

+(〈z∗, x〉 − σC(z∗)) − ∑
t∈supp λ

λtαt − ρ − β

≤ h(x) +
∑

t∈supp λ

λtft(x) − ∑
t∈supp λ

λtαt − ρ − β

≤ h(x) +
∑

t∈supp λ

λtft(x),

which is (8.13). Finally, if (8.13) is satisfied and x ∈ F (⊂ C), then
γ ≤ h(x) +

∑
t∈supp λλtft(x) ≤ h(x), and we are done as h ≥ γ is con-

sequence of S.
(v) Due to Exercise 119, the continuity assumption ensures that

epi h∗ + K = epi h∗ + cl K is w∗-closed. Thus, it suffices to apply (iv).

The following property is crucial in getting (exact) KKT conditions
for problem (P). In fact, it constitutes the first constraint qualification
of system S in problem (P).

Definition 8.1.6 We say that the consistent system S in (8.2) is
Farkas–Minkowski (FM, in brief ) if K is w∗-closed.
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If T̂ is a finite subset of T , we say that

Ŝ := {ft(x) ≤ 0, t ∈ T̂ ; x ∈ C} (8.15)

is a finite subsystem of S, and its feasible set is correspondingly
denoted by F̂ . The finite subsystems always include the abstract con-
straint x ∈ C, and so F̂ ⊂ C.

Theorem 8.1.7 If S is FM, then every continuous affine consequence
of S is also consequence of a finite subsystem of it. The converse state-
ment holds if S is linear.

Proof. Since S is FM, if 〈a∗, x〉 ≤ α is consequence of S, then
(a∗, α) ∈ cl K = K, by Theorem 8.1.5(i). This implies the existence
of a (possibly empty) finite subset T̂ ⊂ T, {x∗

t , t ∈ T̂ ; z∗} ⊂ X∗, and{
λt, t ∈ T̂ ; αt, t ∈ T̂ ; β

}
⊂ R+ such that

(a∗, α) =
∑

t∈supp λ

λt (x∗
t , f

∗
t (x∗

t ) + αt) + (z∗, σC (z∗) + β) ∈ K̂,

where K̂ is the characteristic cone of the subsystem Ŝ in (8.15); i.e.,

K̂ = cone co

{ ⋃
t∈T̂

epi f∗
t ∪ epi σC

}
.

Since (a∗, α) ∈ K̂ ⊂ cl K̂, the inequality 〈a∗, ·〉 ≤ α is consequence of
Ŝ, again by Theorem 8.1.5(i). Now, we consider a linear system; i.e.,
C = X and ft (x) = 〈a∗

t , x〉 − bt, with a∗
t ∈ X∗ and bt ∈ R, t ∈ T. Take

any (a∗, α) ∈ clK and let us prove that (a∗, α) ∈ K. Theorem 8.1.5(i)
establishes that 〈a∗, ·〉 ≤ α is consequence of S. By assumption, there
exists a finite set T̂ ⊂ T such that 〈a∗, ·〉 ≤ α is consequence of Ŝ, so
that (a∗, α) ∈ cl K̂, where K̂ is the characteristic cone of Ŝ as defined
above. Since this cone is a polyhedral set, it is w∗-closed (Exercise 2)
and (a∗, α) ∈ K̂ ⊂ K. Thus, K is w∗-closed as we have proved that
clK ⊂ K.

The following example shows that the converse statement of Theo-
rem 8.1.7 is not true for a very simple convex system.

Example 8.1.8 Let C = X = R, T = {1} and S = {f1 (x) :=
(1/2)x2 ≤ 0

}
. Since f∗

1 (u) = (1/2)u2, the characteristic cone K =
(R×]0, +∞[) ∪ {02} is not closed. Thus, S is a finite non-FM convex
system.
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The following result is used later.

Proposition 8.1.9 Let S be an FM system and (a∗, α) ∈ X∗ × R.
Then the inequality 〈a∗, ·〉 ≤ α is consequence of S if and only if there
exists λ ∈ R

(T )
+ such that

〈a∗, x〉 − α ≤ ∑
t∈supp λ

λtft(x) for all x ∈ C. (8.16)

Proof. It is a mere application of Theorem 8.1.5(iv) with h ≡ 〈−a∗, ·〉
and γ = −α, and observing that

epi h∗ + K = (−a∗, 0) + ({θ} × R+) + K = (−a∗, 0) + K;

that is, epih∗ + K is a w∗-closed set because S is FM.
Now, we introduce another constraint qualification. Given x ∈ X,

consider the set of indices

A(x) := {t ∈ T : ft(x) = 0}.

If x ∈ F, A(x) corresponds to the so-called active constraints at x, and
it is easily verified (see Exercise 116) that

NC(x) + cone co

( ⋃
t∈A(x)

∂ft(x)

)
⊆ NF (x). (8.17)

Definition 8.1.10 We say that the consistent system S in (8.2) is
locally Farkas–Minkowski (LFM, in short) at x ∈ F if

NC(x) + cone co

( ⋃
t∈A(x)

∂ft(x)

)
= NF (x). (8.18)

And S is said to be LFM if it is LFM at every feasible point.

Thanks to (8.17), S is LFM at x ∈ F if and only if

NF (x) ⊂ NC(x) + cone co

( ⋃
t∈A(x)

∂ft(x)

)
.

The LFM property is closely related to the following condition,
involving the set of indices

T (x) := {t ∈ T : ft(x) = f̃(x)}, x ∈ C,
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where
f̃ := sup

t∈T
ft. (8.19)

The following theorem is a LFM counterpart to Theorem 8.1.7.

Theorem 8.1.11 If S is LFM at x ∈ F, and for certain a∗ ∈ X∗ we
have

〈a∗, z〉 ≤ 〈a∗, x〉 for all z ∈ F, (8.20)

then 〈a∗, ·〉 ≤ 〈a∗, x〉 is also consequence of a finite subsystem of S.
The converse statement holds provided that S is linear.

Proof. We only consider the non-trivial case a∗ �= θ. Then (8.20) is
equivalent to a∗ ∈ NF (x)�{θ}, and (8.18) entails the existence of

y∗ ∈ NC(x) and x∗ ∈ cone co

( ⋃
t∈A(x)

∂ft(x)

)
,

such that a∗ = y∗ + x∗.
If x∗ = θ, then a∗ = y∗ ∈ NC(x) and 〈a∗, ·〉 ≤ 〈a∗, x〉 is consequence

of any possible subsystems of S, whose solution set is always included
in C.

If x∗ �= θ, the convexity of the subdifferential set entails the exis-
tence of λ ∈ R

(T )
+ and u∗

t ∈ ∂ft(x), t ∈ supp λ ⊂ A(x), such that x∗ =∑
t∈supp λλtu

∗
t . Let

Ŝ := {ft(z) ≤ 0, t ∈ supp λ; z ∈ C},

and let z ∈ F̂ , where F̂ is the solution set of Ŝ. We have, for every
t ∈ supp λ ⊂ A(x),

0 ≥ ft(z) ≥ ft(x) + 〈u∗
t , z − x〉 = 〈u∗

t , z − x〉 ,

and so

0 ≥ ∑
t∈supp λ

λtft(z) ≥ ∑
t∈supp λ

λt 〈u∗
t , z − x〉 = 〈x∗, z − x〉

= 〈a∗ − y∗, z − x〉 = 〈a∗, z − x〉 + 〈−y∗, z − x〉 ≥ 〈a∗, z − x〉 ,

where the last inequality comes from y∗ ∈ NC(x). Thus, we have proved
that 〈a∗, z〉 ≤ 〈a∗, x〉 for every z ∈ F̂ , and we finished the proof of the
first statement.
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Now, let C = X and ft (z) = 〈a∗
t , z〉 − bt, with a∗

t ∈ X∗ and bt ∈
R, t ∈ T. Let a∗ ∈ NF (x)�{θ}; i.e., 〈a∗, z − x〉 ≤ 0 for all z ∈ F. By
assumption, there exists a finite set T̂ ⊂ T such that 〈a∗, z〉 ≤ 〈a∗, x〉
for all z ∈ F̂ , where

F̂ := {z ∈ X : 〈a∗
t , z〉 ≤ bt for all t ∈ T̂}.

Then, by Theorem 8.1.5(i),

(a∗, 〈a∗, x〉) ∈ cl K̂ = K̂ = cone co
{

(a∗
t , bt) , t ∈ T̂ ; (θ, 1)

}
;

i.e., there exist λt ≥ 0, t ∈ T̂ , not all of them equal to zero, and μ ≥ 0
such that (a∗, 〈a∗, x〉) =

∑
t∈T̂ λt (a∗

t , bt) + μ(θ, 1) so that, making the
scalar product of (a∗, 〈a∗, x〉) and (x,−1),

0 =
∑
t∈T̂

λt(〈a∗
t , x〉 − bt) − μ =

∑
t∈supp λ

λt(〈a∗
t , x〉 − bt) − μ.

Since x ∈ F, it must be μ = 0 and supp λ ⊂ A(x), entailing

a∗ ∈ cone co {a∗
t , t ∈ A(x)} = cone co

( ⋃
t∈A(x)

∂ft(x)

)
,

and (8.18) holds.
The converse statement in the last theorem does not hold in general

for convex systems without any additional assumption, as the same
Example 8.1.8 shows. An example of an infinite convex system illus-
trating this fact is given in Exercise 118. The following example shows
that the class of LFM systems is strictly larger than the FM class.

Example 8.1.12 Consider the system

S := {−x1 − t2x2 ≤ −2t, t > 0}.

Observe that every consequent linear inequality supporting F is a con-
sequence of a finite subsystem of S, namely the subsystem formed
by the same inequality. However, the inequality x2 ≥ 0 is a conse-
quence of S, but for every finite linear subsystem Ŝ, it happens that
F̂ ∩ {(x1, x2) ∈ R

2 : x2 < 0} �= ∅, and so x2 ≥ 0 is not a consequence
of Ŝ. Thus, by Theorem 8.1.7, S is not FM.
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The LFM property is related to the so-called basic constraint qual-
ification:

Definition 8.1.13 We say that the basic constraint qualification
(BCQ, in short) is fulfilled at x ∈ F if

NF (x) ⊆ NC(x) + cone co

( ⋃
t∈T (x)

∂ft(x)

)
. (8.21)

Exercise 117 establishes the equivalence between LFM and BCQ
under the continuity of f̃ at the reference point x when x ∈ int C.

8.2 Optimality and duality in
(semi)infinite convex optimization

Our aim in this second section is to present KKT optimality condi-
tions for problem (P) introduced previously. We do it by exploiting the
advantages of representation (8.4), and appealing to the properties of
the supremum function f and the characterizations of its subdifferen-
tial provided in the previous chapters. The following result, which is
known as the Pshenichnyi–Rockafellar theorem, constitutes the sim-
plest generalization of the Fermat rule for problem (P) in the absence
of explicit constraints.

Theorem 8.2.1 Suppose that either (dom g) ∩ (int C) �= ∅ or there
exists x0 ∈ (dom g) ∩ C where g is continuous. Then, under the absence
of explicit constraints, x ∈ C is an optimal solution of (P) if and only
if

∂g(x) ∩ (−NC(x)) �= ∅.

Proof. We apply Proposition 4.1.20 to the convex functions g and IC .
We obtain that x ∈ C is an optimal solution of (P) if and only if θ ∈
∂(g + IC)(x̄) = ∂g(x̄) + NC(x), if and and only if ∂g(x) ∩ (−NC(x)) �=
∅.

The following result gives approximate KKT conditions, avoiding
the qualifications of Theorem 8.2.1.

Theorem 8.2.2 A feasible solution of (P) is optimal if and only if,
for all ε > 0,
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θ ∈ cl

( ⋃
μ>0, λ∈Δ(T )

∂εg(x̄) + μ∂(
ε
μ + Σ

t∈supp λ
λtft(x)

)
( ∑

t∈supp λ

λtft

)
(x̄) + Nε

C(x)

)
,

where Δ(T ) is defined in (2.46).

Proof. Observe that x̄ ∈ C is an optimal solution of (P) if and only if
it is optimal for the unconstrained optimization problem

inf
x∈X

{
g(x) + I[supt∈T ft≤0](x) + IC(x)

}
;

hence, if and only if θ ∈ ∂(g + I[supt∈T ft≤0](x) + IC)(x̄). Therefore,
the conclusion follows by combining Proposition 4.1.20 and Example
5.1.13.

The following theorem provides KKT-type optimality conditions for
problem (P). These conditions are in contrast to those of Theorem
8.2.5 below, which are of a fuzzy type.

Theorem 8.2.3 Provided that g is finite and continuous somewhere
in F, under LFM at x ∈ F ∩ dom g, the point x is a (global) minimum
of (P) if and only if there exists λ ∈ R

(T )
+ such that

θ ∈ ∂g(x) +
∑

t∈supp λ

λt∂ft(x) + NC(x) and λtft(x) = 0 for all t ∈ T.

(8.22)

Proof. Notice that x ∈ F ∩ dom g is a minimum of (P) if and only if θ ∈
∂(g + IF )(x), if and only if θ ∈ ∂g(x) + ∂IF (x) = ∂g(x) + NF (x) due
to Proposition 4.1.20. In other words, if and only if there exists a∗ ∈
∂g(x) such that 〈−a∗, ·〉 ≤ 〈−a∗, x〉 is a consequence of S. Therefore,
if x is a minimum of (P), then Theorem 8.1.11 entails the existence of
some finite set T̂ ⊂ T such that

−(a∗, 〈a∗, x〉) ∈ cone co

{ ⋃
t∈T̂

epi f∗
t

}
+ epi σC ;

that is, there exist λ ∈ R
(T )
+ , x∗

t ∈ dom f∗
t , αt ≥ 0, t ∈ supp λ (a possi-

bly empty subset of T̂ ), z∗ ∈ dom σC , and β ≥ 0, satisfying

−(a∗, 〈a∗, x〉) =
∑
t∈T

λt (x∗
t , f

∗
t (x∗

t ) + αt) + (z∗, σC (z∗) + β) .

From this last equation, if η :=
∑

t∈T λtαt + β, we get
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0 =
∑
t∈T

λt(〈x∗
t , x〉 − f∗

t (x∗
t )) + (〈z∗, x〉 − σC (z∗)) − η

≤ ∑
t∈T

λtft(x) − η ≤ 0,

but this implies, from the one side, suppλ ⊂ A(x), β = 0 and αt = 0
for all t ∈ supp λ, and from the other side

〈x∗
t , x〉 − f∗

t (x∗
t ) = ft(x) for all t ∈ supp λ, (8.23)

and
〈z∗, x〉 − σC (z∗) = IC(x). (8.24)

Therefore,

x∗
t ∈ ∂ft(x) for all t ∈ supp λ, and z∗ ∈ ∂IC(x) = NC(x),

and
−a∗ =

∑
t∈T

λtx
∗
t + z∗ ∈ ∑

t∈supp λ

λt∂ft(x) + NC(x)

leads us to (8.22). Conversely, we show that (8.22) implies that x is a
minimum of (P). Indeed, (8.22) gives rise to some λ ∈ R

(T )
+ and a∗ ∈ X∗

such that −a∗ ∈ NC(x) and (using the convention 0ft = Idom ft
)

a∗ ∈ ∂g(x) +
∑

t∈supp λ

λt∂ft(x) ⊂ ∂

(
g +

∑
t∈T

λtft

)
(x),

so that

g(x) +
∑
t∈T

λtft(x) ≥ g(x) +
∑
t∈T

λtft(x) + 〈a∗, x − x〉 for all x ∈ X.

(8.25)
Since λtft(x) = 0 for all t ∈ supp λ, and −a∗ ∈ NC(x), (8.25) implies

g(x) +
∑
t∈T

λtft(x) − g(x) ≥ 〈a∗, x − x〉 ≥ 0 for all x ∈ C.

In particular, for x ∈ F , we get g(x) ≥ g(x) +
∑

t∈T λtft(x) ≥ g(x),
which proves that x is a minimum of (P).

The following example illustrates Theorem 8.2.3.
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Example 8.2.4 Consider problem (P) in R
2 where

(P) Min x2

s.t. tx1 − x2 ≤ (1/2)t2, t > 0,

whose optimal set is {x ∈ R
2 : x1 ≤ 0, x2 = 0}. Then

S := {tx1 − x2 ≤ (1/2)t2, t > 0}

is neither FM nor LFM at every point in the optimal set. Indeed, the
inequality x2 ≥ 0 defines a supporting half-space to F at every optimal
solution x̄ of (P), but it is not consequence of any finite subsystem of
S. Hence, S is not LFM and, a fortiori, is not FM (by Exercise 122).
Additionally, the KKT optimality conditions at x̄ = 02 are not satisfied
as A(02) = ∅ and

02 /∈ ∂g(02) + NR2(02) = {(0, 1)}.

Observe that if we consider the enlarged inequality system

S ′ :=
{
tx1 − x2 ≤ (1/2)t2, t ∈ [0, ∞[

}
,

then S ′ turns out to be LFM as every supporting half-space to F ′ (the
feasible set of S ′) is consequence of a subsystem composed by a unique
inequality constraint (the same inequality). Moreover, every affine con-
sequence of S ′ is of the form −x2 ≤ −tx1 − α with α ≤ −t2/2, t ≥ 0,
and therefore, it is also consequence of the finite subsystem

Ŝ ′ :=
{−x2 ≤ −tx1 + (1/2)t2

}
.

Consequently, Theorem 8.2.3 implies that, for every optimal solution
x̄ ∈ {x ∈ R

2 : x1 ≤ 0, x2 = 0}, we have that A(x̄) = {0}, and the KKT
optimality conditions are fulfilled as 02 ∈ (0, 1) + R+(0, −1).

Next, we establish fuzzy KKT optimality conditions for problem (P)
under, again, the LFM property.

Theorem 8.2.5 Let us assume that S is LFM and (ri F ) ∩ dom g �= ∅.
Then x ∈ F is a minimum of (P) if and only if, for each ε > 0 and
U ∈ NX∗ , there exists λ = λ(ε, U) ∈ R

(T )
+ such that supp λ ⊂ A(x) and

θ ∈ ∂εg(x) +
∑

t∈supp λ

λt∂ft(x) + NC(x) + U. (8.26)
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Proof. Suppose that x ∈ F ∩ dom g is a minimum of (P). Since (ri F ) ∩
dom g �= ∅, Theorem 7.2.1(ii) yields

∂(g + IF )(x) =
⋂

ε>0
cl(∂εg(x) + NF (x)).

Then,

x is optimal for (P) ⇔ θ ∈ ⋂
ε>0

cl(∂εg(x) + NF (x)).

So, θ ∈ ∂εg(x) + NF (x) + U for every given ε > 0 and U ∈ NX∗ . Thus,
by the LFM property, we have that

θ ∈ ∂εg(x) + cone co

( ⋃
t∈A(x̄)

∂ft(x̄)

)
+ NC(x̄) + U,

and we are done with the necessity statement. Conversely, we fix x ∈ F
(⊂ C). Given ε > 0, we choose U ∈ NX∗ such that |〈u∗, x − x〉| ≤ ε for
all u∗ ∈ U. If (8.26) holds, then there exists u∗

ε ∈ U such that

u∗
ε ∈ ∂εg(x) +

∑
t∈supp λ

λt∂ft(x) + NC(x) ⊂ ∂ε

(
g +

∑
t∈supp λ

λtft + IC

)
(x),

and we deduce

g(x) +
∑

t∈supp λ

λtft(x) ≥ g(x) +
∑

t∈supp λ

λtft(x) + 〈u∗
ε, x − x〉 − ε.

(8.27)
Hence, since supp λε ⊂ A(x),

g(x) ≥ g(x) +
∑

t∈supp λ

λtft(x) ≥ g(x) + 〈u∗
ε, x − x〉 − ε ≥ g(x) − 2ε,

the desired conclusion follows by taking limits for ε → 0.
We proceed by giving alternative fuzzy-type optimality conditions

for problem (P), using the following strong Slater qualification condi-
tion:

f̃(x0) = sup
t∈T

ft(x0) < 0, for some x0 ∈ C; (8.28)

the point x0 is called a strong Slater point . For the sake of simplicity,
the set C is supposed to be the whole space X.
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Theorem 8.2.6 Assume that X is a reflexive Banach space. Given
problem (P), suppose that C = X, T is compact and the mappings t �→
ft(z), z ∈ X, are usc, and assume that (8.28) holds. Let x ∈ F be a
minimum of (P) such that inft∈T ft(x̄) > −∞ and A(x̄) �= ∅. Then, for
every ε > 0, there exists (λ0, λ) = (λ0(ε), λ(ε)) ∈ R+ × R

(T )
+ such that

λ0 > 0, λ0 +
∑

t∈A(x̄) λt = 1,
∑

t∈T\A(x̄)λt ≤ ε and

θ ∈ λ0∂εg(x̄) +
∑

t∈A(x̄)

λt∂εft(x̄) +
∑

t∈T\A(x̄)

λt∂εft(x̄) + εBX∗ . (8.29)

Proof. It is well-known that x̄ is a minimum of the convex supremum
function ϕ : X → R∞, defined as

ϕ(x) := sup{g(x) − g(x̄); ft(x), t ∈ T}; (8.30)

that is, θ ∈ ∂ϕ(x̄), and Theorem 6.4.3 yields

θ ∈ ∂ϕ(x̄)

=
⋂

ε>0
co

((
∂εg(x̄) ∪

( ⋃
t∈A(x̄)

∂εft(x̄)

))
+

( ⋃
t∈T\A(x̄)

{0, ε}∂εft(x̄)

))

=
⋂

ε>0
cl‖·‖∗

(
co

(
∂εg(x̄) ∪

( ⋃
t∈A(x̄)

∂εft(x̄)

))
+ co

( ⋃
t∈T\A(x̄)

[0, ε]∂εft(x̄)

))
,

(8.31)

where ‖·‖∗ is the dual norm. Then, given ε > 0, we obtain

θ ∈ co

(
∂εg(x̄) ∪

( ⋃
t∈A(x̄)

∂εft(x̄)

))
+ co

( ⋃
t∈T\A(x̄)

[0, ε]∂εft(x̄)

)
+ εBX∗ ,

and there exists an associated (με,0, με) ∈ R+ × R
(T )
+ such that με,0 +∑

t∈A(x̄) με,t = 1,
∑

t∈T\A(x̄)με,t = 1 and

θ ∈ με,0∂εg(x̄) +
∑

t∈A(x̄)

με,t∂εft(x̄) +
∑

t∈T\A(x̄)

[0, εμε,t]∂εft(x̄) + εBX∗ .

(8.32)

Let us show that με,0 > 0 for all ε > 0 small enough. Arguing by con-
tradiction, we suppose the existence of some εk ↓ 0 such that μεk,0 = 0
for all k ≥ 1. Consequently, taking into account Proposition 4.1.10,
(8.32) becomes, for all k ≥ 1,
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θ ∈ ∑
t∈A(x̄)

μεk,t∂εk
ft(x̄) +

∑
t∈T\A(x̄)

[0, εkμεk,t]∂εk
ft(x̄) + εkBX∗

⊂ co

(( ⋃
t∈A(x̄)

∂εk
ft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, εk]∂εk
ft(x̄)

))
+ εkBX∗ ;

that is,

θ ∈ ⋂
k≥1

(
co

(( ⋃
t∈A(x̄)

∂εk
ft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, εk]∂εk
ft(x̄)

))
+ εkBX∗

)
.

Next, given any ε > 0, we can find some k0 ≥ 1 such that εk0 < ε and
the last relation yields

θ ∈ co

(( ⋃
t∈A(x̄)

∂εk0
ft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, εk0 ]∂εk
ft(x̄)

))
+ εk0BX∗

⊂ co

(( ⋃
t∈A(x̄)

∂εft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, ε]∂εft(x̄)

))
+ εBX∗ ,

and we conclude that

θ ∈ ⋂
ε>0

(
co

(( ⋃
t∈A(x̄)

∂εft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, ε]∂εft(x̄)

))
+ εBX∗

)

=
⋂

ε>0
co

(( ⋃
t∈A(x̄)

∂εft(x̄)

)
+

( ⋃
t∈T\A(x̄)

[0, ε]∂εft(x̄)

))

=
⋂

ε>0
co

(( ⋃
t∈A(x̄)

∂εft(x̄)

)
+

( ⋃
t∈T\A(x̄)

{0, ε}∂εft(x̄)

))
.

Hence, applying once again Theorem 6.4.3, we obtain θ ∈ ∂f̃(x̄), where
f̃ = supt∈T ft, contradicting the strong Slater condition. Finally, the
conclusion follows by taking λ0(ε) := με,0, λt(ε) := με,t for t ∈ A(x̄),
and λt(ε) := γε,tμε,t with γε,t ∈ [0, ε], for t ∈ T \ A(x̄).

We proceed by deriving other optimality conditions for the semi-
infinite convex optimization problem (P); i.e., now X = R

n and C ⊂ R
n

is convex, not necessarily closed, T is a Hausdorff topological space,
and the functions g, ft, t ∈ T , are proper convex, possibly not lsc. Let
us denote

D := dom g ∩ dom f̃ , (8.33)
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where we have denoted f̃ = supt∈T ft (see (8.19)). The following the-
orems provide Fritz-John optimality conditions for problem (P).

Theorem 8.2.7 Given the semi-infinite problem (P) above, assume
that T is compact and the mappings t �→ ft(z), z ∈ X, are usc. If x̄ is
optimal for (P) such that A(x̄) �= ∅, then

0n ∈ co

{
∂(g + ID∩C)(x̄) ∪ ⋃

t∈A(x̄)

∂(ft + ID∩C)(x̄)

}
. (8.34)

Moreover, we have

0n ∈ co

{
∂g(x̄) ∪ ⋃

t∈A(x̄)

∂ft(x̄)

}
+ ND∩C(x̄), (8.35)

provided that, for all t ∈ A(x̄),

ri(dom g) ∩ ri(D ∩ C) �= ∅, ri(dom ft) ∩ ri(D ∩ C) �= ∅. (8.36)

Proof. We know that if x̄ is optimal for (P), then x̄ is an unconstrained
minimum of the supremum function ϕ : R

n → R∞, defined as

ϕ(x) := sup{g(x) − g(x̄), IC(x) − 2ε0, ft(x), t ∈ T},

where ε0 > 0 is fixed. Consequently, according to Remark 14, we obtain

0n ∈ ∂ϕ(x̄) = co

{
∂(g + ID∩C)(x̄) ∪ ⋃

t∈A(x̄)

∂(ft + ID∩C)(x̄)

}
;

that is, (8.34) holds. Finally, (8.35) follows from (8.34) by applying
Proposition 4.1.26,

In the following result, we use the strong conical hull intersection
property (strong CHIP) at x ∈ C ∩ D of the family {C, dom g, dom ft,
t ∈ T}, stating that

NC∩dom g∩(∩t∈T dom ft)(x) = NC(x) + Ndom g(x) +
∑
t∈T

Ndom ft
(x),

(8.37)
where

∑
t∈T

Ndom ft
(x) :=

{∑
t∈J

at : at ∈ Ndom ft
(x), J being a finite subset of T

}
.

(8.38)
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Observe, for instance, that (8.37) holds in the finite-dimensional setting
when T is finite and

(ri C)
⋂

ri(dom g)
⋂( ⋂

t∈T

ri(dom ft)
)

�= ∅, (8.39)

as a consequence of Proposition 4.1.26 when applied to the correspond-
ing indicator functions.

Theorem 8.2.8 Assume that T is compact, the mappings t �→ ft(z),
z ∈ X, are usc, and that (8.36) holds. Let x̄ be optimal for (P) such
that A(x̄) �= ∅. If (8.37) holds at x̄, then

0n ∈ co

{
∂g(x̄) ∪ ⋃

t∈A(x̄)

∂ft(x̄)

}
+ NC(x̄) + Ndom g(x̄) +

∑
t∈T

Ndom ft
(x̄).

Proof. The compactness and the upper semicontinuity assumptions
imply that dom f = ∩t∈T dom ft (Exercise 9), entailing

D ∩ C = dom g ∩ C ∩
(⋂

t∈T

dom ft

)
.

Then, using (8.35), we get

0n ∈ co

{
∂g(x̄) ∪

( ⋃
t∈A(x̄)

∂ft(x̄)

)}
+ ND∩C(x̄),

and the result comes by applying (8.37).
Next, we give additional KKT optimality conditions for problem (P)

under the strong Slater qualification.

Theorem 8.2.9 If in Theorem 8.2.8 we assume, additionally, the
existence of a strong Slater point in dom g, then the optimality of x̄
implies the existence of a (possibly empty) finite set Â(x̄) ⊂ A(x̄) and
scalars λt > 0 for t ∈ Â(x̄), satisfying

0n ∈ ∂g(x̄) +
∑

t∈Â(x̄)

λt∂ft(x̄) + NC(x̄) +
∑
t∈T

Ndom ft
(x̄). (8.40)
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Proof. According to Theorem 8.2.8, we have

0n ∈ co

{
∂g(x̄) ∪

( ⋃
t∈A(x̄)

∂ft(x̄)

)}
+ NC(x̄) + Ndom g(x̄) +

∑
t∈T

Ndom ft
(x̄).

(8.41)
If ∂g(x̄) does not intervene within the convex combination of 0n coming
from (8.41), then we get

0n ∈ co

{ ⋃
t∈A(x̄)

∂ft(x̄)

}
+ NC(x̄) + Ndom g(x̄) +

∑
t∈T

Ndom ft
(x̄)

⊂ co

{ ⋃
t∈A(x̄)

∂ft(x̄)

}
+ NC(x̄) + Ndom g(x̄) + Ndom f̃ (x̄). (8.42)

Therefore,

0n ∈ ∂f̃(x̄) + NC(x̄) + Ndom g(x̄) + Ndom f̃ (x̄) ⊂ ∂(f̃ + IC∩dom g)(x̄),

and x̄ is a minimum of f̃ + IC∩dom g, constituting a contradiction with
the existence of a strong Slater point x0 ∈ C ∩ dom g,

0 = f̃(x̄) = (f̃ + IC∩dom g)(x̄) ≤ (f̃ + IC∩dom g)(x0) = f̃(x0) < 0.

Otherwise, if ∂g(x̄) intervenes in (8.41), then there would exist scalars
α > 0 and β ∈ R

(T )
+ such that supp β ⊂ A(x̄), α +

∑
t∈A(x̄) βt = 1 and

0n ∈ α∂g(x̄) +
∑

t∈supp β

βt∂ft(x̄) + NC(x̄) + Ndom g(x̄) +
∑
t∈T

Ndom ft
(x̄)

= α∂g(x̄) +
∑

t∈supp β

βt∂ft(x̄) + NC(x̄) +
∑
t∈T

Ndom ft
(x̄),

because α∂g(x̄) + Ndom g(x̄) = α∂g(x̄) and ∂g(x̄) �= ∅. Hence, dividing
by α,

0n ∈ ∂g(x̄) +
∑

t∈supp β

α−1βt∂ft(x̄) + NC(x̄) +
∑
t∈T

Ndom ft
(x̄),

and we are done.
We illustrate Theorem 8.2.9 by means of the following example.

Example 8.2.10 In (P) suppose n = 1, C = R, T = {1}, g(x) = x,
and f1(x) = −√

x if x ≥ 0 and +∞ if not. Then x̄ = 0 is the unique
optimal point of (P) and we have that ri(dom g) ∩ ri(dom f1) = R

∗
+.

Hence, (8.36) and (8.37) hold, due to Proposition 4.1.26. Then, since
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A(x̄) = {1}, NC(0) = {0} and the strong Slater condition holds, we can
apply Theorem 8.2.9 with Â(0) = ∅ :

0 ∈ ∂g(0) + NR+(0) = 1 + ] − ∞, 0 ] .

It turns out that we cannot get rid of the term Ndom f1(0) = NR+(0).

Corollary 8.2.11 Let x̄ be a feasible point of the semi-infinite prob-
lem (P) such that C = dom g = dom ft = R

n for all t ∈ T. Assume that
T is compact, the mappings t �→ ft(z), z ∈ X, are usc, and the strong
Slater condition (8.28) holds. Then x̄ is optimal for (P) if and only if
there exists λ ∈ R

(T )
+ such that

θ ∈ ∂g(x) +
∑

t∈supp λλt∂ft(x) and λtft(x) = 0 for all t ∈ T. (8.43)

Proof. Conditions (8.36) and (8.37) are fulfilled in the current setting.
Assume that x̄ is optimal for (P). If A(x̄) �= ∅, then (8.43) comes from
Theorem 8.2.9. Otherwise, if A(x̄) = ∅, then by the continuity of f̃ =
maxt∈T ft (dom f̃ = ∩t∈T dom ft = R

n), x̄ is an interior point of the
feasible set of (P), and so it satisfies 0n ∈ ∂g(x̄). The proof of the
converse statement is the same as the one in Theorem 8.2.3.

In the last part of this section, we specify the basic perturbational
duality scheme developed in section 4.2 to convex infinite program-
ming. We introduce a family of perturbed problems associated to (P)
together with the corresponding Lagrange dual problem (D). Under
the assumption that the constraint system S is FM, we will get strong
duality between (P) and (D).

Let us consider the perturbed primal problem

(Py) Min g(x)
s.t. ft(x) ≤ yt, t ∈ T, x ∈ C,

where y := (yt) ∈ R
T . Recall that T is an arbitrary index set, C is a

non-empty closed convex set, and {g; ft, t ∈ T} ⊂ Γ0(X). The feasible
set of (Py), represented by Fy, can be empty for some y �= 0T , where
0T represents both the zero of R

T and the zero of R
(T ).

If we represent by v(y) the optimal value of (Py), then in particular
v(0T ) = v(P), and the perturbed optimal value function v : R

T → R

is convex, and possibly non-proper. The function F ∈ Γ0(X × R
T )

defined by

F (x, y) := g(x) + IFy
(x)
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allows us to write

(Py) Min
x∈X

F (x, y), and (P) ≡ (P0T
) Min

x∈X
F (x, 0T ).

For each (x∗, y∗) ∈ X∗ × (RT )∗ = X∗ × R
(T ), we have

F ∗(x∗, y∗) = sup
x∈X, y∈RT

{〈x∗, x〉 + 〈y∗, y〉 − F (x, y)}

= sup
x∈X

sup
y∈RT

{
〈x∗, x〉 +

∑
t∈T

y∗
t yt − IFy (x) − g(x)

}

=

⎧⎨
⎩

sup
x∈C

{
〈x∗, x〉 +

∑
t∈T

y∗
t ft(x) − g(x)

}
, if y∗

t ≤ 0, ∀t ∈ supp y∗,

+∞, otherwise.

In particular, if λ := −y∗,

F ∗(θ, λ) =

⎧⎨
⎩− inf

x∈C

{
g(x) +

∑
t∈T

λtft(x)
}

, if λ ∈ R
(T )
+ ,

+∞, otherwise.

Additionally, we have that

v∗(λ) = sup
y∈RT

{
〈λ, y〉 − inf

x∈X
F (x, y)

}
= sup

x∈X, y∈RT

{〈λ, y〉 − F (x, y)} = F ∗(θ, λ).
(8.44)

The perturbed dual problem of (P) is defined as

(Dx∗) Min
λ∈R

(T )
+

F ∗(x∗, λ), and (D) ≡ (Dθ) Min
λ∈R

(T )
+

F ∗(0, λ).

Since the Lagrangian for (P) is the function L : X × R
(T ) → R∞ defined

by

L(x, λ) :=

{
g(x) +

∑
t∈T

λtft(x), if x ∈ C and λ ∈ R
(T )
+ ,

+∞, otherwise,

it turns out that

(D) − Max
λ∈R

(T )
+

inf
x∈C

L(x, λ).
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Then

v(P)=v(0T ) ≥ v∗∗(0T )= sup
λ∈R

(T )
+

(−v∗(λ)) = sup
λ∈R

(T )
+

(−F ∗(0, λ)) = −v(D),

and the weak duality holds between (P) and (D), v(P) + v(D) ≥ 0. The
next result shows that the strong duality between (P) and (D) also
holds under the standard assumptions used in this section.

Theorem 8.2.12 Let us assume that problem (P) satisfies v(0T ) ∈ R.
Suppose that S is FM and g is finite and continuous at some feasible
point of (P). Then (D) is solvable and v(P) + v(D) = 0; i.e., strong dual-
ity holds.

Proof. Because g is finite and continuous at some feasible point of (P)
and S is FM, Proposition 4.1.20 and Lemma 8.1.2 give rise to

epi(g + IF )∗ = epi g∗ + epi I∗F = epi g∗ + cl K = epi g∗ + K,

and epi g∗ + K is w∗-closed. Moreover, v(0T ) ∈ R entails the implica-
tion

ft(x) ≤ 0, t ∈ T, x ∈ C ⇒ g(x) ≥ v(0T ),

and Theorem 8.1.5(iv) yields some λ̄ ∈ R
(T )
+ such that g(x)+∑

t∈T λ̄tft(x) ≥ v(0T ) for all x ∈ C; that is,

−v(D) ≥ inf
x∈C

L(x, λ̄) ≥ v(0T ) = v(P).

This, together with the weak duality, gives rise to v(P) = −v(D), and
to the conclusion that λ̄ is an optimal solution of (D).

Let us consider, instead of the Lagrangian function L introduced
above, the function Ls : X × R → R∞ defined by

Ls(x, λ) :=
{

g(x) + λf̃(x), if x ∈ C and λ ≥ 0,
+∞, otherwise,

where f̃ is defined in (8.19); i.e., f̃ := supt∈T ft. Correspondingly, we
consider the following dual problem of (P),

(Ds) − Max
λ≥0

inf
x∈C

Ls(x, λ);

in other words, (Ds) has the format of (D) when the primal problem
(P) is written in the equivalent form
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(P) Min g(x)
s.t. f̃(x) ≤ 0, x ∈ C.

We can verify that v(D) ≥ v(Ds). Then, arguing as above but consider-
ing now this last representation, we consider the perturbation function
Fs ∈ Γ0(X × R) defined by

Fs(x, y) := g(x) + I[f̃≤y](x),

whose conjugate satisfies

F ∗
s (θ, λ) =

{
− inf

x∈C
{g(x) + λf̃(x)}, if λ ≥ 0,

+∞, otherwise.

Therefore, similarly as above, we get

v(P) = v(0) ≥ v∗∗(0) = sup
λ≥0

(−v∗(λ)) = sup
λ≥0

(−F ∗
s (0, λ)) = −v(Ds),

and the weak duality holds between (P) and (Ds); that is, v(P) +
v(Ds) ≥ 0. The following result easily comes from Theorem 4.2.2.

Corollary 8.2.13 Assume that problem (P) satisfies the strong Slater
condition (8.28) at some point in dom g. Then strong duality holds for
the pair (P) and (Ds).

8.3 Convexification processes in
optimization

Given a proper function f : X → R∞, we consider the optimization
problem

(Pf ) Min f(x)
s.t. x ∈ X,

(8.45)

together with associated convex relaxed problem

(Pg) Min g(x)
s.t. x ∈ X,

where g : X → R is a proper convex function that somehow approxi-
mates f, for instance, the convex, closed or closed convex hulls of f.
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More precisely, we are interested in comparing the optimal sets of both
problems (Pf ) and its relaxation (Pg). To this aim, if h is one of these
functions, f and g, we denote by v(Ph) and ε-sol(Ph) the optimal value
and the set of ε-optimal solutions of (Ph), ε ≥ 0, respectively; that is,

ε- sol(Ph) := (∂εh)−1(θ) = {x ∈ X : h(x) ≤ v(Ph) + ε}.

In addition, we write sol(Ph) := 0-sol(Ph) to denote the set of opti-
mal solutions of (Ph). Due to the properness assumption, we have
ε-sol(Ph) = ∅ whenever v(Ph) = −∞, while ε-sol(Ph) �= ∅ when ε > 0
and v(Ph) > −∞.

The following simple lemma shows that the convexification process
does not alter the optimal value of the original problem (Pf ).

Lemma 8.3.1 For every function f : X → R∞, the values v(Pf ) and
v(Pg) coincide for every function g : X → R∞ satisfying cof ≤ g ≤ f.

Proof. Take g : X → R∞ such that cof ≤ g ≤ f. Then the inequal-
ity v(Pf ) ≥ v(Pg) is a consequence of the relation g ≤ f. In particu-
lar, if v(Pf ) = −∞, then we get v(Pf ) = v(Pg) = −∞. Otherwise, if
v(Pf ) > −∞, then f(x) ≥ v(Pf ) for all x ∈ X, and we deduce that
g(x) ≥ (cof)(x) ≥ v(Pf ) for all x ∈ X; that is, v(Pg) ≥ v(Pf ).

It is also clear that every solution of (Pf ) is a solution of (Pg), for any
function g : X → R∞ satisfying cof ≤ g ≤ f. A general purpose would
be to express the optimal set of (Pg) in terms of the approximate and/or
exact optimal solutions of (Pf ), but here we will focus on (Pcof ). As
before, we use FX∗ to represent the family of finite-dimensional linear
subspaces of X∗.

Theorem 8.3.2 For every function f : X → R∞ with a proper con-
jugate, we have

sol(Pcof ) =
⋂

ε>0, L∈FX∗
co (ε- sol(Pf ) + NL∩dom f∗(θ)) . (8.46)

Moreover, the following statements hold true:
(i) If ri(cone(dom f∗)) �= ∅ or if cone(dom f∗) is closed, then

sol(Pcof ) =
⋂

ε>0
co (ε- sol(Pf ) + Ndom f∗(θ)) ,

and, when additionally cone(dom f∗) = X∗,

sol(Pcof ) =
⋂

ε>0
co (ε- sol(Pf )) .
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(ii) If int(cone(dom f∗)) �= ∅, then

sol(Pcof ) = Ndom f∗(θ) +
⋂

ε>0
co (ε- sol(Pf )) .

Proof. Since f∗ is assumed proper, the function f admits an affine
minorant and, according to Theorem 3.2.2, we have that f∗∗ = cof .
So, (4.18) together with (4.8) yields

∂f∗(θ) = (∂f∗∗)−1(θ) = (∂(cof))−1(θ) = sol(Pcof ). (8.47)

Now the inclusion “⊃” in (8.46) follows easily, because of (4.8), (4.17),
and (4.9) we have

ε- sol(Pf ) + Ndom f∗(θ) = (∂εf)−1(θ) + Ndom f∗(θ)
⊂ ∂εf

∗(θ) + Ndom f∗(θ) = ∂εf
∗(θ).

Hence, using (4.15) and (8.47),

⋂
ε>0

co (ε- sol(Pf ) + Ndom f∗(θ)) ⊂ ⋂
ε>0

∂εf
∗(θ) = ∂f∗(θ) = sol(Pcof )

and, particularly, the inclusion becomes an equality when sol(Pcof ) =
∅. To see that such an equality also holds when sol(Pcof ) �= ∅; hence,
f∗(θ) ∈ R, we apply Example 5.3.8 to the supremum function f∗ :=
supx∈X(〈·, x〉 − f(x)):

sol(Pcof ) = ∂f∗(θ) =
⋂

ε>0, L∈FX∗
co (Eε + NL∩dom f∗(θ)) , (8.48)

where
Eε := {x ∈ dom f : −f(x) ≥ f∗(θ) − ε} . (8.49)

In other words, thanks (4.18) and (4.8), we have Eε = (∂εf)−1 (θ) = ε-
sol(Pf ), and from (8.48), we obtain (8.46). The other assertions in (i)
and (ii) follow similarly by using, instead of Example 5.3.8, Proposition
5.3.1 and Corollary 5.3.2, respectively.

Additional relationships between sol(Pcof ) and sol(Pf ) are given in
the following theorem. Remember that the continuity assumption on
the conjugate function f∗ assumed below is with respect to a compat-
ible topology given in X∗.
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Theorem 8.3.3 Given a weakly lsc function f : X → R∞, we assume
that f∗ is finite and continuous somewhere. Then we have that

sol(Pcof ) = Ndom f∗(θ) + co (sol(Pf )) ,

and, when X = R
n,

sol(Pcof ) = Ndom f∗(θ) + co (sol(Pf )) .

Proof. We consider the compatible dual pair ((X∗,TX∗), (X,
σ(X, X∗))), where TX∗ is a compatible topology given in X∗ for which
f∗ is continuous at some point. We apply Corollary 6.3.6 in our dual
pair to the family of continuous convex functions fx : X∗ → R, x ∈ X,
defined by

fx(·) := 〈·, x〉 − f(x),

whose supremum is f∗. Furthermore, taking into account (8.47) and
the fact that f∗ is proper, we show as in the proof of Theorem 8.3.2 that
sol(Pcof ) = ∂f∗(θ). Therefore, since f∗ is assumed to be continuous
somewhere, Corollary 6.3.6 applies and yields

sol(Pcof ) = ∂f∗(θ) = Ndom f∗(θ) + co
{ ⋂

ε>0
(cl Eε)

}
, (8.50)

where Eε is defined as in (8.49); that is, Eε = {x ∈ X : −f(x) ≥
f∗(θ) − ε} , and cl Eε is the closure of Eε with respect to the weak
topology in X. The same Corollary 6.3.6 shows that (8.50) holds with
co instead of co when X = R

n. Moreover, since f is assumed to be
weakly lsc, the set Eε is weakly closed, and so

⋂
ε>0

cl (Eε) =
⋂

ε>0
Eε = {x ∈ X : f∗(θ) + f(x) = 0} = sol(Pf ).

The conclusion comes from (8.50).
The continuity assumption of the conjugate function in Theorems

8.3.2 and 8.3.3 is taken with respect to any topology in X∗ that is com-
patible with the duality pair (X∗, X). Of course, the Mackey topology
provides the less restrictive continuity condition, while the choice of the
w∗-continuity would be very restrictive as it forces, for instance in the
Hilbert setting, the original function f to have a finite-dimensional
effective domain. However, it is possible to relax this assumption of
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continuity in the case of normed spaces, allowing to consider the con-
tinuity with respect to the norm topology.

Given a function f : X → R, where X is assumed to be Banach,
we consider the function clw

∗∗
f̂ : X∗∗ → R introduced in section 4.3,

where f̂ is the extension of f to X∗∗ (see (4.103)). Then, by Theorem
4.3.3, we know that

(clw
∗∗

f̂)(z) = lim inf
x→w∗∗z, x∈X

f(x), (8.51)

where “→w∗∗
” refers to the convergence with respect to the topology

σ(X∗∗, X∗) in X∗∗. The issue here is that the norm topology in X∗ is
not necessarily compatible for the duality pair (X, X∗), entailing that
the conjugate function of f∗ should be defined on the whole space
X∗∗ :

(f∗)∗(z) = sup{〈z, x∗〉 − f∗(x∗), x∗ ∈ X∗}, z ∈ X∗∗.

Abusing the notation, we write (f∗)∗ = f∗∗ and use Ndom f∗(θ) to
denote the cone of vectors in X∗∗ that are normal to dom f∗ at x∗.
Accordingly, instead of (Pcof ) used above, we consider the problems
(Pf∗∗) and (Pclw

∗∗
f̂ ) posed in X∗∗. Then, in the following theorem, we

establish different relationships among the optimal solutions of prob-
lems (Pf ), (Pclw

∗∗
f̂ ) and (Pf∗∗). These results involve the normal cone

Ndom f∗(θ) (⊂ X∗∗) and the w∗∗-closed convex hull cow∗∗
.

The need for such an analysis that requires the passage to the bid-
ual space could be motivated by certain regularization methods in
applied topics such as problems issued from calculus of variations. In
such a case, the associated bidual consists of a good framework to
search for generalized solutions. After that, the problem arises of how
to relate these new solutions to those of the initial problem. The fol-
lowing results establish an abstract general framework to address such
an approach.

Theorem 8.3.4 Assume that X is a Banach space. Given a proper
function f : X → R∞, we suppose that f∗ is finite and norm-
continuous somewhere. Then the following statements hold true, pro-
vided that X∗ is endowed with its dual norm topology:

(i)
sol(Pf∗∗) = Ndom f∗(θ) +

⋂
ε>0

cow∗∗
(ε- sol(Pf )) .
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(ii) sol(Pf∗∗) = Ndom f∗(θ) + cow∗∗
(
sol(Pclw

∗∗
f̂ )

)
. (8.52)

(iii) If f∗ is norm-continuous at θ, then

sol(Pf∗∗) =
⋂

ε>0
cow∗∗

(ε- sol(Pf )) (8.53)

= cow∗∗
(
sol(Pclw

∗∗
f̂ )

)
, (8.54)

and, consequently,

sol(Pcof ) =
⋂

ε>0
co (ε- sol(Pf )) (8.55)

= X ∩
(
cow∗∗

(
sol(Pclw

∗∗
f̂ )

))
. (8.56)

Proof. Given the extension f̂ of f to X∗∗, as defined in (4.103), and
thanks to the identification of X as a linear subspace of X∗∗, the
definition of f̂ implies that

ε- sol(Pf ) = ε- sol(Pf̂ ) for all ε ≥ 0, (8.57)

and
(f̂)∗ = f∗ and dom(f̂)∗ = dom f∗. (8.58)

In addition, the continuity assumption on f∗ implies that f̂ is minorized
by a w∗∗-continuous affine mapping. So, we get

‖·‖∗ − int(cone(dom(f̂)∗)) = ‖·‖∗ − int(cone(dom f∗)) �= ∅

and Theorem 8.3.2(ii), applied to the function f̂ in the dual pair
((X∗∗, w∗∗), (X∗, ‖·‖∗)), together with (4.105) entails

sol(Pf∗∗) = sol(Pcow∗∗
(f̂)) = Ndom(f̂)∗(θ) +

⋂
ε>0

cow∗∗
(
ε- sol(Pf̂ )

)
.

Then, taking into account (8.57) and (8.58), we get

sol(Pf∗∗) = sol(Pcow∗∗
(f̂)) = Ndom f∗(θ) +

⋂
ε>0

cow∗∗
(ε- sol(Pf )) (8.59)

and the formula in (i) follows. If f∗ is additionally norm-continuous
at θ, then

Ndom(f̂)∗(θ) = Ndom f∗(θ) = {θ}
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and (8.59) reduces to

sol(Pf∗∗) = sol(Pcow∗∗
(f̂)) =

⋂
ε>0

cow∗∗
(ε- sol(Pf )) , (8.60)

showing that (8.53) holds. At the same time, due to the relation
(f∗∗)|X = cof coming from (4.106), relation (8.60) leads us to

sol(Pcof ) = X ∩ sol(Pcow∗∗
(f̂)) = X ∩

( ⋂
ε>0

cow∗∗
(ε- sol(Pf ))

)
=

⋂
ε>0

(
X ∩ cow∗∗

(ε- sol(Pf ))
)

=
⋂

ε>0
co (ε- sol(Pf )) ,

and we are done with (8.55).
We now turn to the proof of formulas (8.52), (8.54), and (8.56). To

show (8.52), we proceed as in the proof of Theorem 8.3.3 but, similarly
as in the paragraph above, we apply Corollary 6.3.6 in the dual pair
((X∗, ‖·‖∗), (X

∗∗, w∗∗)) to the family of norm-continuous convex func-
tions fx(·) = 〈·, x〉 − f(x), x ∈ X. Then, taking into account (4.105),
we get

sol(Pf∗∗) = sol(P
cow∗∗

(f̂)
) = ∂(f̂)∗(θ) = N

dom(f̂)∗(θ) + cow∗∗
{ ⋂

ε>0
cl

w∗∗
(Eε)

}
,

(8.61)
where

Eε :=
{

z ∈ X∗∗ : −f̂(z) ≥ (f̂)∗(θ) − ε
}

= {z ∈ X : −f(z) ≥ f∗(θ) − ε} .

Observe that cl
w∗∗

(Eε) ⊂
{

z ∈ X∗∗ : −(clw
∗∗

f̂)(z) ≥ f∗(θ) − ε
}

and,
using (8.58) and (3.7),

f∗(θ) = (f̂)∗(θ) = (clw
∗∗

f̂)∗(θ) = − inf
z∈X∗∗

(clw
∗∗

f̂)(z),

so that

⋂
ε>0

cl
w∗∗

(Eε) ⊂ ⋂
ε>0

{
z ∈ X∗∗ : −(clw

∗∗
f̂)(z) ≥ f∗(θ) − ε

}
=

{
z ∈ X∗∗ : −(clw

∗∗
f̂)(z) = f∗(θ)

}
= sol(Pclw

∗∗
f̂ ).

Therefore, using again (8.58), (8.61) implies that
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sol(Pf∗∗) ⊂ Ndom f∗(θ) + cow∗∗
(sol(Pclw

∗∗
f̂ )).

The converse of this last inclusion also holds because sol(Pclw
∗∗

f̂ ) ⊂
sol(Pcow∗∗

(f̂)) = ∂(f̂)∗(θ) and, due (4.9),

Ndom f∗(θ) + cow∗∗
(sol(Pclw

∗∗
f̂ )) ⊂ Ndom(f̂)∗(θ) + ∂(f̂)∗(θ)

= ∂(f̂)∗(θ) = sol(Pcow∗∗
(f̂));

that is, (8.52) holds.
Finally, formula (8.54) is easily derived from (8.52), while (8.56)

follows from (8.54) due to the fact seen above, sol(Pcof ) = X ∩ sol
(Pcow∗∗

(f̂)) = X ∩ sol(Pf∗∗).
The key in the proof of the previous results, giving different expres-

sions for sol(Pcof ) and sol(Pf∗∗), is the characterization of the subdif-
ferential of the conjugate at θ. More generally, the following corollary
gives the subdifferential of the conjugate at each point in terms of the
operators ∂εf, ε ≥ 0, in the setting of compatible dual pairs (X, X∗).
The formulas below can also be considered as non-convex extensions
of the Fenchel relation given in (4.18). For the sake of simplicity, we
denote F(x∗) the family of finite-dimensional linear subspaces of X∗
containing x∗ ∈ X∗.

Corollary 8.3.5 Given a function f : X → R∞ with a proper conju-
gate, for all x∗ ∈ X∗, we have

∂f∗(x∗) =
⋂

ε>0, L∈F(x∗)

co
(
(∂εf)−1(x∗) + NL∩dom f∗(x∗)

)
. (8.62)

Moreover, the following assertions are true:
(i) If ri(cone(dom f∗ − x∗)) �= ∅ or if cone(dom f∗ − x∗) is closed,

then
∂f∗(x∗) =

⋂
ε>0

co
(
(∂εf)−1(x∗) + Ndom f∗(x∗)

)
. (8.63)

(ii) If f is weakly lsc and f∗ is continuous somewhere, then

∂f∗(x∗) = Ndom f∗(x∗) + co
(
(∂f)−1(x∗)

)
. (8.64)

= Ndom f∗(x∗) + co
(
(∂f)−1(x∗)

)
(when X = R

n). (8.65)
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Proof. Fix x∗ ∈ X∗ and observe that, due to (4.18),

∂f∗(x∗) = sol(Pf∗∗−x∗) = sol(P(f−x∗)∗∗),

where (Pf∗∗−x∗) is the optimization problem whose objective function
is f∗∗(·) − 〈x∗, ·〉 , which coincides with the biconjugate of the func-
tion g(·) := f(·) − 〈x∗, ·〉 . Then, applying (8.46) to the function g, we
obtain that

∂f∗(x∗) = ∂g∗(θ) = sol(Pcog) =
⋂

ε>0, L∈FX∗
co (ε- sol(Pg) + NL∩dom g∗(θ)) ,

where FX∗ = F(θ). Thus, since dom g∗ = (dom f∗) − x∗ and

ε- sol(Pg) = {x ∈ X : −g(x) ≥ g∗(θ) − ε}
= {x ∈ X : −f(x) + 〈x∗, x〉 ≥ f∗(x∗) − ε} = (∂εf)−1(x∗),

we get

∂f∗(x∗) =
⋂

ε>0, L∈FX∗
co

(
(∂εf)−1(x∗) + NL∩(dom f∗−x∗)(θ)

)
=

⋂
ε>0, L∈F(x∗)

co
(
(∂εf)−1(x∗) + NL∩dom f∗(x∗)

)
,

proving (8.62).
The proof of the remaining formulas follows the same pattern as

above using the corresponding statements in Theorems 8.3.2, 8.3.3,
and 8.3.4.

The following corollary characterizes ∂f∗(x∗) as a subset of X∗∗ in
the framework of Banach spaces.

Corollary 8.3.6 Let X be a Banach space with X∗ being endowed
with the dual norm topology. Given a function f : X → R∞ such that
f∗ is norm-continuous somewhere, for every x∗ ∈ X∗, we have

∂f∗(x∗) = Ndom f∗(x∗) + cow∗∗
(
(∂(clw

∗∗
f̂))−1(x∗)

)
, (8.66)

and, when X is reflexive and f is weakly lsc,

∂f∗(x∗) = Ndom f∗(x∗) + co
(
(∂f)−1(x∗)

)
. (8.67)

Proof. Formula (8.66) follows as in the proof of Corollary 8.3.5, apply-
ing (8.52). Formula (8.67) is easily derived from (8.66).
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The previous formulas giving the subdifferential of the conjugate
become simpler when the latter is Fréchet-differentiable. To certain
extent, the formulas below extend to non-convex functions the well-
known relation ∂f∗ = (∂f)−1 satisfied by functions in Γ0(X) (see
(4.18)).

Theorem 8.3.7 Let X be a Banach space with X∗ being endowed with
the dual norm topology. Given a function f : X → R∞ and x∗ ∈ X∗,
the following assertions hold:

(i) If f∗ is Fréchet-differentiable at x∗ and f is lsc at (f∗)′(x∗)
(∈ X), then {

(f∗)′(x∗)
}

= ∂f∗(x∗) = (∂f)−1(x∗).

(ii) If f∗ is Gâteaux-differentiable at x∗, with Gâteaux-derivative
(f∗)′

G(x∗) ∈ X, and f is weakly lsc at (f∗)′
G(x∗), then{

(f∗)′
G(x∗)

}
= ∂f∗(x∗) = (∂f)−1(x∗).

Proof. (i) The Fréchet differentiability of f∗ at x∗, with derivative
x̄ := (f∗)′(x∗) (x̄ ∈ X, due to Proposition 4.3.10), implies its continuity
at x∗ and (8.66) simplifies to

{x̄} = ∂f∗(x∗) = cow∗∗
{

(∂(clw
∗∗

f̂))−1(x∗)
}

= X ∩ (∂(clw
∗∗

f̂))−1(x∗) = (∂(clw f))−1(x∗),

where the last equality comes from Lemma 4.3.2. Hence, x∗ ∈
∂(clw f)(x̄) and Proposition 4.1.6(v) gives us

(clw f)(x̄) + f∗(x∗) = (clw f)(x̄) + (clw f)∗(x∗) = 〈x̄, x∗〉 . (8.68)

Remembering the definition of clw f in (2.34), for each n ≥ 1, we find
xn ∈ X such that |〈x̄ − xn, x∗〉| ≤ 1/n and

f(xn) ≤ (clw f)(x̄) + 1/n =
〈
x̄, x∗〉 − f∗(x∗) + 1/n ≤ 〈

xn, x∗〉 − f∗(x∗) + 2/n,

entailing that

f∗(x∗) ≤ lim inf
n

(〈xn, x∗〉 − f(xn) + 2/n) = lim inf
n

(〈xn, x∗〉 − f(xn))

≤ lim sup
n

(〈xn, x∗〉 − f(xn)) ≤ f∗(x∗);
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that is, limn (〈xn, x∗〉 − f(xn)) = f∗(x∗). Thus, by Proposition 4.3.10,
the Fréchet differentiability of f∗ at x∗ implies that xn → x̄ and so,
using the lower semicontinuity of f at x̄, the last equality yields

f∗(x∗) = lim
n

(〈xn, x∗〉 − f(xn)) ≤ 〈x̄, x∗〉 − f(x̄) ≤ f∗(x∗).

Therefore, x̄ ∈ (∂f)−1(x∗) ⊂ ∂f∗(x∗) = {x̄} and the conclusion of (i)
follows.

(ii) The Gâteaux-differentiability assumption on the w∗-lsc (hence,
‖·‖∗-lsc) convex function f∗ implies that x∗ ∈ ‖·‖∗-int(dom f∗), so that
f∗ is norm-continuous at x∗ by Corollary 2.2.8. Thus, denoting z̄ :=
(f∗)′

G(x∗), (8.66) reduces to

{z̄} = cow∗∗
(
(∂(clw

∗∗
f̂))−1(x∗)

)
= (∂(clw

∗∗
f̂))−1(x∗).

Since z̄ ∈ X by the current assumption, Lemma 4.3.2 entails

{z̄} = X ∩ (∂(clw
∗∗

f̂))−1(x∗) = (∂(clw f))−1(x∗),

and the desired conclusion comes, as in the paragraph above, from the
weak lower semicontinuity of f at z̄.

The following corollary gives a slight extension of the Stegall varia-
tional principle (see Theorem 4.3.13), under the norm-continuity of the
conjugate function; see Exercise 126 for a sufficient condition for such
a continuity property. Formula (8.69) below shows that the (Fenchel)
relation ∂f∗ = (∂f)−1 holds in a dense subset of dom f∗ when working
in Banach spaces enjoying the RNP.

Corollary 8.3.8 Let X be a Banach space with the RNP, and let
the function f : X → R∞ be lsc and such that f∗ is finite and norm-
continuous somewhere. Then there exists some Gδ-set D ⊂ X∗, dense
in dom f∗, and satisfying{

(f∗)′(x∗)
}

= ∂f∗(x∗) = (∂f)−1(x∗) for all x∗ ∈ D. (8.69)

Consequently, the functions f − x∗, x∗ ∈ D, attain a strong minimum
on X.

Proof. By the RNP property, X∗ is w∗-Asplund, and so the w∗-lsc
convex function f∗ is Fréchet-differentiable on a Gδ-set D, which is
dense in dom f∗. Hence, using Theorem 8.3.7(i), for each x∗ ∈ D, we
have

{(f∗)′(x∗)} = ∂f∗(x∗) = (∂f)−1(x∗),
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particularly showing that (f∗)′(x∗) is a minimum of f − x∗ for all
x∗ ∈ D. Moreover, for every fixed x∗ ∈ D and every sequence (xn)n ⊂
X such that f(xn) − 〈x∗, xn〉 → infX(f − x∗) = −f∗(x∗), by Propo-
sition 4.3.10 the Fréchet differentiability of f∗ at x∗ implies that
xn → (f∗)′(x∗). This proves that the element (f∗)′(x∗) is, indeed, a
strong minimum of f − x∗.

The following corollary shows, under the continuity of the conjugate
function and the RNP, that the function f and its closed convex hull
cof have the same optimal solutions up to tilt perturbations.

Corollary 8.3.9 Assume that X is Banach with the RNP, and endow
X∗ with the dual norm topology. Let f : X → R∞ be an lsc func-
tion such that infX f ∈ R, and suppose that f∗ is finite and norm-
continuous somewhere. Then, for every ε > 0, there exists x∗ ∈ εBX∗

such that
sol(P(cof)−x∗) = sol(Pf−x∗).

Proof. On the one hand, the current assumption ensures that cof ∈
Γ0(X), so that (∂(cof))−1 = ∂(cof)∗ = ∂f∗ by (4.18). On the other
hand, by Corollary 8.3.8, there exists some Gδ-set D ⊂ X∗, which
is dense in dom f∗ and satisfies ∂f∗(x∗) = (∂f)−1(x∗) for all x∗ ∈
D; that is, (∂(cof))−1(x∗) = (∂f)−1(x∗) for all x∗ ∈ D. Therefore,
as (∂(cof))−1(x∗) = sol(P(cof)−x∗) and (∂f)−1(x∗) = sol(Pf−x∗), we
obtain sol(P(cof)−x∗) = sol(Pf−x∗) for all x∗ ∈ D. Finally, since θ ∈
dom f∗ thanks to the assumption infX f ∈ R, for every ε > 0 there
exists x∗ ∈ D ∩ (εBX∗), and we are done.

The following result extends Corollary 4.3.9 to non-necessarily con-
vex functions.

Corollary 8.3.10 Let X be a Banach space with the RNP, and let f :
X → R be an lsc function such that f∗ is norm-continuous somewhere.
Then we have

cl‖·‖(dom f∗) = cl‖·‖(Im(∂f)).

Moreover, if X is reflexive and f is weakly lsc, then

(∂f∗)−1(X) = Im(∂f).

Proof. It is clear that Im ∂f ⊂ dom f∗, and so cl‖·‖(Im ∂f)
⊂ cl‖·‖(dom f∗). Conversely, take x∗ ∈ dom f∗ ⊂ cl‖·‖(dom f∗) =
cl‖·‖(D), where D ⊂ X∗ is as in Corollary 8.3.8; that is, a dense
set in dom f∗ such that the equality {(f∗)′(z∗)} = (∂f)−1(z∗) holds
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for all z∗ ∈ D. Then there exists a sequence (x∗
n) ⊂ D such that

x∗
n → x∗ in norm. Since xn := (f∗)′(x∗

n) = (∂f)−1(x∗
n), we infer that

x∗
n ∈ ∂f(xn) ⊂ Im ∂f, and so x∗ ∈ cl‖·‖(Im ∂f). This yields the first

part of the corollary.
When X is reflexive and f is weakly lsc, we have x∗ ∈ dom ∂f∗ if

and only if ∂f∗(x∗) �= ∅; thus by (8.67) and taking into account (2.6),
if and only if (∂f)−1(x∗) �= ∅, if and only if x∗ ∈ Im ∂f.

8.4 Non-convex integration

In this section, we apply the material in chapters 5 and 6 to extend the
integration results of section 4.4 that were limited to convex functions.
We will need the following lemma.

Lemma 8.4.1 Assume that X is a Banach space, and let f, g ∈
Γ0(X). Given a non-empty open set V ⊂ (∂f)−1(X∗), we suppose the
existence of a dense subset D of V such that ∂f(x) ⊂ ∂g(x) for all
x ∈ D. Then

∂f(x) ⊂ ∂g(x) for all x ∈ V.

Proof. First, since V ⊂ (∂f)−1(X∗) ⊂ dom f, V ⊂ V ∩ (∂f)−1(X∗) ⊂
(∂g)−1(X∗) ⊂ dom g and V is open, Corollary 2.2.8 guarantees that f
and g are continuous on V. We fix x ∈ V . Proceeding by contradiction,
we assume that x∗ ∈ ∂f(x) \ ∂g(x) exists. Then, using the separation
theorem in (X∗, w∗), we find z0 ∈ X \ {θ} and α0 ∈ R such that

〈x∗, z0〉 < α0 < 〈y∗, z0〉 for all y∗ ∈ ∂g(x); (8.70)

that is,
∂g(x) ⊂ W := {y∗ ∈ X∗ : 〈y∗, z0〉 > α0}.

Furthermore, since W is (X∗, w∗)-open, Proposition 4.1.7 ((i) and
(iii)) establishes the existence of U ∈ NX and ε > 0 such that
B(x, 2ε) ⊂ V and

∂g(y) ⊂ U◦ ∩ W for all y ∈ B(x, 2ε). (8.71)

We choose δ > 0 small enough such that y := x − δz0 ∈ B(x, ε) (⊂ V ).
Then, by the density of D in V, we also choose (yn)n ⊂ D ∩ B(x, 2ε)
such that yn → y; therefore, the current assumption and Proposition
4.1.22 imply the existence of a sequence (y∗

n)n ⊂ X∗ such that y∗
n ∈

∂f(yn) ⊂ ∂g(yn) for all n ≥ 1. Then, due to Theorem 2.1.9, (8.71)
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gives rise to a subnet (y∗
i )i of (y∗

n)n and y∗ ∈ X∗ such that

y∗
i →w∗

y∗ and y∗
i ∈ ∂f(yi) ⊂ ∂g(yi) ⊂ U◦ for all i.

Therefore, since yi → y, Proposition 4.1.6(ix) implies that y∗ ∈ ∂f(y) ∩
∂g(y) (⊂ ∂f(y) ∩ W, by (8.71)). Thus, (8.70) leads us to

〈x∗ − y∗, x − y〉 = δ〈x∗ − y∗, z0〉 < 0,

which is a contradiction with 〈x∗ − y∗, x − y〉 ≥ 0, coming from the
monotonicity of ∂f. The proof is over.

Next, we introduce the concept of epi-pointed functions.

Definition 8.4.2 A function f : X → R∞ is called T-epi-pointed, for
a locally convex topology T in X∗, if f∗ is T-continuous at some point
of its effective domain.

The first result of this section, given in Theorem 8.4.3 below, pro-
vides an integration result that is valid in Banach spaces enjoying the
RNP. The β-epi-pointedness somewhat replaces the convexity of the
involved functions in section 4.4 (see, for instance, Proposition 4.4.8).

Theorem 8.4.3 Let X be a Banach space with the RNP and consider
functions f, g : X → R such that f is lsc and ‖·‖∗-epi-pointed. If

∂f(x) ⊂ ∂g(x) for all x ∈ X,

then there exists some c ∈ R such that

f∗∗ = g∗∗�σdom f∗ + c, (8.72)

with an exact inf-convolution. Equivalently,

f∗(x∗) = g∗(x∗) − c for all x∗ ∈ cl(dom f∗). (8.73)

Proof. First, from the relations ∂g ⊂ ∂(cog) (Exercise 62) and g∗∗ =
(cog)∗∗, we may assume without loss of generality that g is con-
vex and lsc. Furthermore, since Im(∂f) ⊂ dom f∗ ⊂ clw

∗
(dom f∗) =

∂σdom f∗(θ) by (4.13), we have that (Exercise 49)

∂f(x) ⊂ ∂g(x) ∩ ∂σdom f∗(θ) ⊂ ∂h(x), (8.74)
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where we denote h := g�σdom f∗ . Then we will assume without loss
of generality that θ ∈ ‖·‖∗-int(dom f∗). By the RNP (see page 35),
the dual space X∗ is a w∗-Asplund space. Since the w∗-lsc convex
function f∗ is (norm-) continuous on ‖·‖∗-int(dom f∗), it is Fréchet-
differentiable on a (norm-) dense subset D of the last set. Thus, using
the identification of X as a subspace of X∗∗, Proposition 4.1.22 and
Theorem 8.3.7(i), together with (8.74), entail for all x∗ ∈ D

∅ �= ∂f∗(x∗) = (∂f)−1(x∗) ⊂ ∂g(x) ∩ ∂σdom f∗(θ) ⊂ (∂h)−1(x∗) ⊂ ∂h∗(x∗);
(8.75)

hence, in particular, f∗, g∗ ∈ Γ0(X∗). Moreover, since D is (norm-)
dense in ‖·‖∗-int(dom f∗), applying Lemma 8.4.1 in the Banach space
(X∗, ‖·‖∗), we get

∂f∗(x∗) ⊂ ∂h∗(x∗) for all x∗ ∈ ‖·‖∗ - int(dom f∗).

Therefore, Corollary 4.4.4 gives rise to some c ∈ R such that f∗ ≡
h∗ + c on cl‖·‖(dom f∗), which in turn implies that

f∗ − c = h∗ + Icl‖·‖(dom f∗) =
(
g∗ + Icl‖·‖(dom f∗)

)
+ Icl‖·‖(dom f∗) = h∗.

Thus, taking the conjugate in each side, and since (‖·‖∗-int(dom f∗)) ∩
dom g∗ �= ∅ (from (8.75)), Proposition 4.1.20(i) entails

f∗∗ + c = h∗∗ = (g∗ + Icl‖·‖(dom f∗))
∗ = g∗∗�σdom f∗ ,

where the inf-convolution is exact. Therefore, (8.72) follows. Finally,
the claimed equivalence is also a consequence of Proposition 4.1.20.

We give a series of simple examples to justify the conditions used
in Theorem 8.4.3. The first example shows the necessity of the lower
semicontinuity assumption of f.

Example 8.4.4 We consider the functions f, g : R → R given by

f(x) :=
{ |x| − 1, if |x| > 1,

1, if − 1 ≤ x ≤ 1,
and g(x) := |x| ,

so that f∗ = |·| + I[−1,1]; hence, dom f∗ = [−1, 1] and

f∗∗(x) :=
{ |x| − 1, if |x| > 1,

0, if − 1 ≤ x ≤ 1.

Moreover, we have
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∂f(x) :=

⎧⎨
⎩

∅, if − 1 ≤ x ≤ 1,
1, if x > 1,
−1, if x < 1,

and ∂g(x) :=

⎧⎨
⎩

1, if x > 0,
−1, if x < 0,
[ − 1, 1], if x = 0,

showing that ∂f(x) ⊂ ∂g(x) for all x ∈ R. In other words, all the con-
ditions in Theorem 8.4.3 hold except the lower semicontinuity of f.
It is clear that f∗∗ and g∗∗ = g do not coincide up to an additive
constant. Formula (8.72) is also not satisfied, since σdom f∗ = |·| and
g∗∗�σdom f∗ = |·| (Exercise 17).

The following example shows that the term σdom f∗ cannot be
ignored within the conclusion of Theorem 8.4.3.

Example 8.4.5 We consider the functions f, g : R → R∞ given by

f(x) :=

⎧⎨
⎩

e−x, if x ≥ 1,
x, if 0 ≤ x < 1,
+∞, if x < 0,

and g(x) :=
{

x, if x ≥ 0,
+∞, if x < 0.

Then dom f∗ = R− and we have

∂f(x) :=
{∅, if x �= 0,

{0}, if x = 0,
and ∂g(x) :=

⎧⎨
⎩

1, if x > 0,
[0, 1], if x = 0,
∅, if x < 0.

Here, we have that ∂f(x) ⊂ ∂g(x) for all x ∈ R, but obviously f∗∗ =
IR+ and g∗∗ (= g) do not coincide up to an additive constant. But, for
all x ∈ R, we have

(g∗∗�σdom f∗) (x) = inf
x1

(
g(x1) + IR+(x − x1)

)
= inf

0≤x1≤x
x1 = f∗∗(x).

The following corollary gives conditions under which the term
σdom f∗ is dropped out from (8.72).

Corollary 8.4.6 Let X be a Banach space with the RNP and let f, g :
X → R be functions such that f is lsc and ‖·‖∗-epi-pointed. If

∂f(x) ⊂ ∂g(x) for every x ∈ X, (8.76)

then f∗∗ and g∗∗ coincide up to an additive constant, provided that one
of the following conditions holds:

(i) g ≤ f,

(ii) ‖·‖∗-int(dom g∗) ⊂ cl‖·‖∗(dom f∗).
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Proof. First, according to Theorem 8.4.3, there exists a constant
c ∈ R such that f∗∗ = g∗∗�σdom f∗ + c. We also proved there that
f∗, g∗ ∈ Γ0(X∗). Then, applying Theorem 3.2.2 to f∗ and g∗ in the
pair ((X∗, ‖·‖∗), (X

∗∗, w∗∗)), we obtain

f∗ = (f∗)∗∗ = (g∗)∗∗ + Icl‖·‖∗ (dom f∗) − c = g∗ + Icl‖·‖∗ (dom f∗) − c.

(8.77)
Now, under (i), we have f∗ ≤ g∗, and so dom g∗ ⊂ dom f∗. Thus, by

(8.77), f∗ = g∗ + Icl‖·‖∗ (dom f∗) − c = g∗ − c, and the conclusion follows
by taking the conjugate.

Under (ii), we have

‖·‖∗ − int(dom g∗) ⊂ cl‖·‖∗(dom f∗) ⊂ cl‖·‖∗(dom g∗),

due to (8.77), and we deduce that cl‖·‖∗(dom g∗) = cl‖·‖∗(dom f∗).
Therefore, the conclusion follows as above, using again (8.77).

Remark 20 As one can expect, the term σdom f∗ is also dropped out
from (8.72) in the convex setting. In fact, using Exercise 62, (8.76)
reads ∂f(x) ⊂ ∂g(x) ⊂ ∂(cl g)(x), for every x ∈ X, and Proposition
4.4.8, applied to the functions f ∈ Γ0(X) and the lsc function cl g,
establishes the equality (up to some additive constant) of f and cl g in
any Banach space not necessarily with RNP. In particular, this implies
that f∗∗ = (cl g)∗∗ + c = g∗∗ + c.

The following theorem gives a general integration criterion in the
lcs X, when the latter is not necessarily Banach, and without using
the epi-pointedness condition. As in (8.73), the conclusion now relies
on the equality between the conjugates f∗ and g∗ (up to some con-
stant) but only on the set ∪L∈FX∗ cl(L ∩ dom f∗) rather than the set
cl(dom f∗). Remember here that FX∗ denotes the family of all finite-
dimensional linear subspaces of X∗. As Exercise 5(iii) shows, the inclu-
sion ∪L∈FX∗ cl(L ∩ dom f∗) ⊂ cl(dom f∗) may be strict even in simple
cases such as �2.

Theorem 8.4.7 Consider two functions f, g : X → R∞ such that f∗
is proper, and assume the existence of some δ > 0 such that

∂εf(x) ⊂ ∂εg(x) for all x ∈ X and ε ∈ ]0, δ[. (8.78)

Then there exists some c satisfying

f∗(x∗) = g∗(x∗) + c for all x∗ ∈ ⋃
L∈FX∗

cl(L ∩ dom f∗). (8.79)
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Proof. Let us first verify that

dom f∗ ⊂ dom g∗. (8.80)

Indeed, if x∗ ∈ dom f∗, then, for every ε ∈ ]0, δ[, there exists some
x ∈ X such that x∗ ∈ ∂εf(x) ⊂ ∂εg(x), and x∗ ∈ dom g∗. The rest of
the proof is divided into two steps.

1st step. We prove (8.79) in the case where the set dom f∗ is finite-
dimensional. Hence, given x∗ ∈ dom f∗, we have that

ri(cone(dom f∗ − x∗)) �= ∅

and (8.63) in Corollary 8.3.5 together with the current assumption
yields

∂f∗(x∗) =
⋂

0<ε<δ

co
(
(∂εf)−1(x∗) + Ndom f∗(x∗)

)
⊂ ⋂

0<ε<δ

co
(
(∂εg)−1(x∗) + Ndom f∗(x∗)

)
.

But (∂εg)−1(x∗) ⊂ ∂εg
∗(x∗) by (4.17), so we get

∂f∗(x∗) ⊂ ⋂
0<ε<δ

∂ε(g∗ + Icl(dom f∗))(x
∗) = ∂(g∗ + Icl(dom f∗))(x

∗).

Therefore, there exists some c such that (Exercise 61)

f∗ = g∗ + Icl(dom f∗) + Iaff(dom f∗) + c = g∗ + Icl(dom f∗) + c.

Consequently, f∗ and g∗ + c coincide on the set cl(dom f∗), which in
the current case is equal to ∪L∈FX∗ cl(L ∩ dom f∗) (Exercise 5(i)).

2nd step. Fix x∗
0 ∈ dom f∗ (⊂ dom g∗, by (8.80)), L ∈ F(x∗

0) and
consider the functions

f1 := f�σL, g1 := g�σL,

so that f∗
1 = f∗ + IL and the function f∗

1 is proper and has a finite-
dimensional (effective) domain. Moreover, due to (4.38) in Proposition
4.1.13, for every x ∈ X and ε ∈ (0, δ/2), we have

∂εf1(x) =
⋂

0<α<δ/2

⋃
x1+x2=x

ε1,ε2>0, ε1+ε2=ε+α

∂ε1f(x1) ∩ ∂ε2σL(x2)

⊂ ⋂
0<α<δ/2

⋃
x1+x2=x

ε1,ε2>0, ε1+ε2=ε+α

∂ε1g(x1) ∩ ∂ε2σL(x2) = ∂εg1(x).
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Thus, by the first step, there exists some cL such that

f∗ + IL = f∗
1 = g∗

1 + Icl(L∩dom f∗) + cL

= (g∗ + IL) + Icl(L∩dom f∗) + cL = g∗ + Icl(L∩dom f∗) + cL.

In particular, the evaluation of this last relation at x∗
0 gives us cL =

f∗(x0) − g∗(x0) =: c. Therefore, since L ∈ F(x∗
0) was arbitrarily cho-

sen, we infer that

f∗ = inf
L∈F(x∗

0)
(f∗ + IL) = inf

L∈F(x∗
0)

(
g∗ + Icl(L∩dom f∗)

)
+ c (8.81)

= inf
L∈FX∗

(
g∗ + Icl(L∩dom f∗)

)
+ c = g∗ + I∪L∈FX∗ cl(L∩dom f∗) + c,

and (8.79) is proved.

Remark 21 In terms of primal objects, Theorem 8.4.7 yields the fol-
lowing relation between the closed convex hulls of the functions f and
g (Exercise 128):

cof = sup
L∈FX∗

cl ((cog)�σL∩dom f∗) + c. (8.82)

The following corollary simplifies Theorem 8.4.7.

Corollary 8.4.8 With the assumptions of Theorem 8.4.7, the follow-
ing statements hold for some scalar c :

(i) If dom f∗ is closed or ri(dom f∗) �= ∅, then

cof = cl ((cog)�σdom f∗) + c.

(ii) If g∗ is continuous somewhere in dom f∗, then

cof = (cog)�σdom f∗ + c.

(iii) If g ≤ f or dom g∗ ⊂ dom f∗, then cof = cog + c.

Proof. (i) In the current case, A := ∪L∈FX∗ cl(L ∩ dom f∗) =
cl(dom f∗), by Exercise 5(i). So, the conclusion follows as in Exercise
128.

(ii) Since dom f∗ ⊂ A, (8.79) implies f∗ = g∗ + Idom f∗ − c. There-
fore, due to (4.56) and Theorem 3.2.2, we get cof = (cog)�σdom f∗+c.

(iii) We have dom g∗ ⊂ dom f∗ ⊂ A. Then f∗ = g∗ + IA − c = g∗ −
c, by (8.79), and the conclusion follows once again by Theorem 3.2.2.
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The equality between cof and cog below follows provided that the
inclusion in (8.78) is reinforced for all ε > 0.

Corollary 8.4.9 Given two proper functions f, g : X → R∞ with f∗
being proper, we assume that

∂εf(x) ⊂ ∂εg(x) for all x ∈ X and all ε > 0.

Then cof and cog are equal up to an additive constant.

Proof. By Exercise 75, for every x∗ ∈ X∗ and ε ≥ 0, we have

∂εf
∗(x∗) =

⋂
δ>ε

cl

⎧⎪⎨
⎪⎩

⋃
λ∈Δk
k≥1

∑
1≤i≤k

λi(∂εi
f)−1(x∗) : εi ≥ 0,

∑
1≤i≤k

λiεi ≤ δ

⎫⎪⎬
⎪⎭

⊂ ⋂
δ>ε

cl

⎧⎪⎨
⎪⎩

⋃
λ∈Δk
k≥1

∑
1≤i≤k

λi(∂εi
g)−1(x∗) : εi ≥ 0,

∑
1≤i≤k

λiεi ≤ δ

⎫⎪⎬
⎪⎭ = ∂εg

∗(x∗).

Thus, since f∗∗ is also proper (by Proposition 3.1.4, as f∗ is assumed
proper), by applying Theorem 8.4.7 to the functions f∗, g∗ ∈ Γ0(X∗)
in the compatible dual pair ((X∗, w∗), (X,TX)) we find some c such
that

f∗∗ = g∗∗ + inf
L∈FX

Icl(L∩dom f∗∗) + c ≥ g∗∗ + c.

Then f∗ ≤ g∗ − c, using Theorem 3.2.2, and we deduce that dom g∗ ⊂
dom f∗. The conclusion follows then by Corollary 8.4.8(iii).

Let us illustrate the above integration criteria by means of a simple
example.

Example 8.4.10 Consider the functions f, g : R → R∞ defined by
g(x) := I{0} and

f(x) :=
{ |x| + 1, if x �= 0

0, if x = 0.

Then f∗ = I[−1,1], g∗ ≡ 0, (cof) (x) = |x| , and (cog) �σdom f∗(x) =
|x| . The ε-subdifferential of f and g are given by

∂εf(x) =

⎧⎪⎪⎨
⎪⎪⎩

∅, if ε ∈ [0, 1[ and x �= 0,
[−1, 1] , if ε ∈ [0, 1[ and x = 0,[
1 − ε−1

x , 1
]
, if ε ≥ 1 and x > 0,[−1, 1 + 1−ε

x

]
, if ε ≥ 1 and x < 0,
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and ∂εg(x) = ∅, if x �= 0, and ∂εg(x) = R, if x = 0. Observe that the
hypothesis of Theorem 8.4.7 holds but not the one of Corollary 8.4.9.

As applications of the previous integration results, one can obtain
constructive characterizations of the closed convex envelope cof by
means of ε-subdifferentials or subdifferentials of f. See Exercises 129
and 130, which provide extensions to non-convex functions of Corollary
4.4.9 and its consequences in section 4.4.

8.5 Variational characterization of
convexity

We give in this section different criteria ensuring the convexity of func-
tions defined on the lcs X. We will need the following lemma in order
to compare the subdifferential of an epi-pointed function and that of
its biconjugate.

Lemma 8.5.1 Given a τ -epi-pointed weakly lsc function f : X →
R∞, we denote

Mf := {x∗ ∈ X∗ : sol(Pf−x∗) is convex},

where sol(Pf−x∗) is the optimal set of problem (Pf−x∗) (see (8.45)).
Then, for every x ∈ X, we have

∂f∗∗(x) ∩ (τ - int(dom f∗)) ∩ Mf ⊂ ∂f(x). (8.83)

Consequently, for every non-empty w∗-compact convex set Ccontained in
τ - int (dom f∗) ∩ Mf , we have

σC�f∗∗ = σC�f.

Proof. Take x ∈ X and x∗ ∈ ∂f∗∗(x) ∩ (τ -int(dom f∗)) ∩ Mf . Since
the set (∂f)−1(x∗) = sol(Pf−x∗) is convex and (weakly) closed, apply-
ing Corollary 8.3.5(ii) in the dual pair ((X, τ(X, X∗)), (X∗, τ(X∗, X))),
we get

∂f∗(x∗) = Ndom f∗(x∗) + co
(
(∂f)−1(x∗)

)
= (∂f)−1 (x∗).

Consequently, using Theorem 3.2.2, since f∗ ∈ Γ0(X∗) we obtain

x ∈ ∂(f∗∗)∗(x∗) = ∂f∗(x∗) = (∂f)−1 (x∗)
showing that x∗ ∈ ∂f(x).
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To show the second statement, we choose a non-empty w∗-compact
convex set C ⊂ (τ - int(dom f∗)) ∩ Mf . Since f∗ is τ -continuous some-
where, it is τ -continuous in C, and taking into account Proposition
3.1.4, we infer from Proposition 4.1.20 that (IC + f∗)∗ = σC�f∗∗ ∈
Γ0(X) and there are x1, x2 ∈ X such that x = x1 + x2 and

(σC�f∗∗)(x) = σC(x1) + f∗∗(x2).

Observe that σC ≤ σC∪(−C) =: ρC and this latter is a τ(X, X∗)-continuous
seminorm in X, so Proposition 2.2.6 entails that σC , and a fortiori
σC�f∗∗, are also τ(X, X∗)-continuous. Therefore, ∂(σC�f∗∗)(x) �= ∅,
due to Proposition 4.1.22, and (see Exercise 49)

∅ �= ∂(σC�f∗∗)(x) = ∂σC(x1) ∩ ∂f∗∗(x2). (8.84)

Consequently, using (5.2), we have

∂σC(x1) ⊂ C ⊂ (τ − int(dom f∗)) ∩ Mf

and (8.83) together with (8.84) implies that

∅ �= ∂(σC�f∗∗)(x) ⊂ ∂σC(x1) ∩ ∂f(x2) ⊂ ∂(σC�f)(x); (8.85)

that is,

∅ �= ∂(σC�f∗∗)(x) ⊂ ∂(σC�f)(x) for all x ∈ X.

In particular, ∂(σC�f)(x) �= ∅ for all x ∈ X, and σC�f ∈ Γ0(X).
Therefore, applying Theorem 4.4.3, we find γ such that σC�f∗∗ =
σC�f + γ. More precisely, taking the conjugates and using Theorem
3.2.2, we get IC + f∗ = IC + (f∗∗)∗ = IC + f∗ − γ, and we deduce that
γ = 0 because ∅ �= C ⊂ τ -int(dom f∗); that is, σC�f∗∗ = σC�f.

Theorem 8.5.2 Let f : X → R∞ be a τ -epi-pointed weakly lsc func-
tion, and let D be a convex dense subset of dom f∗ such that sol(Pf−x∗)
is convex for every x∗ ∈ D. Then we have that

f∗∗ = σdom f∗�f.

Consequently, f is convex provided that dom f∗ = X∗.
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Proof. We may assume that D ⊂ τ -int(dom f∗); otherwise, instead
of D, we should work with the set D ∩ τ -int(dom f∗) which is also a
dense subset in dom f∗. Pick x∗

0 ∈ τ -int(dom f∗) and define the family

C := {coF : F is a finite subset of D, x∗
0 ∈ F},

endowed with the order given by ascending inclusions. Observe that
each C ∈ C is convex τ -compact and satisfies C ⊂ D ⊂ τ -int(dom f∗) ∩
Mf , and Lemma 8.5.1 entails σC�f = σC�f∗∗. Moreover, since f∗ is
τ -continuous at x∗

0 ∈ C = dom IC , by Propositions 4.1.20 and 3.2.5,
we have σC�f = σC�f∗∗ = (IC + f∗)∗ ∈ Γ0(X) and supC∈C (σC�f)
∈ Γ0(X). Thus, for every x ∈ X, we obtain

sup
C∈C

(σC�f) (x) = sup
C∈C

(
σC�f∗∗) (x) ≤ (

σdom f∗�f∗∗) (x) ≤ (
σdom f∗�f

)
(x),

(8.86)
with an equality when α := supC∈C (σC�f) (x) = +∞. Thus, we sup-
pose that α < +∞. Moreover, the function f∗∗ − x∗

0 is weakly inf-
compact, thanks to Proposition 3.1.3 applied in the dual pair
((X∗, τ), (X,TX)). Also, for each C ∈ C, every sequence (yk)k ⊂ X
such that σC(x − yk) + f(yk) → (σC�f)(x) (∈ R) satisfies, for all k
sufficiently large,

〈x∗
0, x − yk〉 + f(yk) ≤ σC(x − yk) + f(yk) ≤ (σC�f)(x) + 1 ≤ α + 1;

that is,
f(yk) − 〈x∗

0, yk〉 ≤ α + 1 − 〈x∗
0, x〉 =: γ ∈ R.

So, we can assume without loss of generality that (yk)k ⊂ [f − x∗
0 ≤

γ] ⊂ [f∗∗ − x∗
0 ≤ γ] =: A, with A being weakly compact. Therefore,

sup
C∈C

(σC�f) (x) = sup
C∈C

min
y∈A

(σC(x − y) + f(y)),

and Proposition 3.4.1 implies that

sup
C∈C

(σC�f) (x) = min
y∈A

sup
C∈C

(σC(x − y) + f(y)) = min
y∈A

(σD(x − y) + f(y))

= min
y∈A

(σdom f∗(x − y) + f(y)) ≥ (σdom f∗�f) (x).

Consequently, combining with (8.86),

sup
C∈C

(σC�f) = σdom f∗�f = σdom f∗�f∗∗,
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and the fact that σC�f ∈ Γ0(X) implies that all these functions are in
Γ0(X). Thus, the proof is done because Theorem 3.2.2 applies again
to conclude that (σdom f∗�f∗∗)∗ = Icl(dom f∗) + f∗ = f∗ and, so, f∗∗ =
(σdom f∗�f∗∗)∗∗ = σdom f∗�f∗∗; that is, σdom f∗�f=σdom f∗�f∗∗=f.

The following example illustrates the necessity of considering the
support function of dom f∗ in Theorem 8.5.2.

Example 8.5.3 Let f : R → R be the (non-convex) lsc function
defined by

f(x) =
{ |x|, if x ∈ [−1, 1],

|x| + e−|x|, if x ∈ R\[−1, 1].

We have f∗ = I[−1,1]; hence f is epi-pointed, and

sol(Pf−α) =

⎧⎪⎪⎨
⎪⎪⎩

{0}, if α ∈ ] − 1, 1[,
[0, 1], if α = 1,
[−1, 0], if α = −1,
∅, if α /∈ [−1, 1].

Therefore, Theorem 8.5.2 applies and yields f∗∗ = |·| = σdom f∗�f.
However, the equality f∗∗ = f obviously fails as f is not convex.

The following example shows the necessity of assuming the convexity
of the set D in Theorem 8.5.2.

Example 8.5.4 Assume that X is a reflexive Banach space, and con-
sider a function h∈ Γ0(X) such that dom h∗=X∗; hence h∗ is (norm-)
continuous on X by Corollary 2.2.8, and so h is τ -epi-pointed, as τ
coincides with the dual norm topology. Then we choose a non-convex
weakly lsc and nonnegative function g such that f := h + g is not con-
vex. Then f is weakly lsc and τ -epi-pointed because h∗ ≥ f∗, by Propo-
sition 2.2.6. Furthermore, we have dom f∗ = X∗, and so f∗ is also
τ -continuous on X∗. Consequently, f∗ is Fréchet-differentiable in a
(Gδ)-dense subset D ⊂ X∗, and Theorem 8.3.7(i) entails for all x∗ ∈ D

sol(Pf−x∗) = (∂f)−1(x∗) = {(f∗)′(x∗)};

that is, sol(Pf−x∗) is convex for all x∗ ∈ D. At the same time, the
equality f∗∗ = σdom f∗�f (= f) obviously fails because f is not convex.
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8.6 Chebychev sets and convexity

In his section, we study the convexity of Chebychev sets when X is a
Hilbert space with an inner product 〈·, ·〉 .

Definition 8.6.1 A non-empty set A ⊂ X is said to be a Chebychev
set if the projection set πA(x) is a singleton for every x ∈ X.

We also introduce the concept of weak projection .

Definition 8.6.2 Let A ⊂ X be a non-empty set. Given x ∈ X, the
set π̃A(x) ⊂ X given by

π̃A(x) := {w- lim
k

xk : xk ∈ A, ‖xk − x‖ → dA(x)},

is called weak projection set of x on the set A.

It is clear that π̃A(x) is weakly closed, and that every projection is
a weak projection; that is,

πA(x) ⊂ π̃A(x) for all x ∈ X, (8.87)

with a possibly strict inclusion in infinite-dimensional spaces. In partic-
ular, if A is weakly closed, then every weak projection y = w-limk xk,
such that (xk)k ⊂ A and ‖xk − x‖ → dA(x), satisfies y ∈ A and

dA(x) = lim
k

‖xk − x‖ ≥ ‖y − x‖ ≥ dA(x),

due to the weak lower semicontinuity of the norm function. Therefore,
dA(x) = ‖y − x‖ and y is a projection of x on A. Consequently, we
have that

π̃A(x) = πA(x). (8.88)

A similar relation holds for the so-called approximately compact sets.

Definition 8.6.3 A non-empty set A ⊂ X is said to be approximately
compact if, for every x ∈ X and (xk)k ⊂ A satisfying ‖xk − x‖ →
dA(x), the sequence (xk)k has a (norm-) convergent subsequence.

Proposition 8.6.4 If A ⊂ X is approximately compact, then π̃A(x) =
πcl A(x) for every x ∈ X.

Proof. Take y ∈ π̃A(x); that is, y = w-limk xk for a sequence (xk)k ⊂
A such that ‖xk − x‖ → dA(x). Then there exists a norm-convergent
subsequence (xkm

)m such that y = limm xkm
∈ clA and
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dA(x) = lim
m

‖xkm
− x‖ = ‖y − x‖ ≥ dcl A(x) = dA(x).

Thus, the Kadec–Klee property entails that (xkm
) (norm-) converges

to y, and we conclude that every subsequence of (xk)k has a sub-
sequence which norm-converges to the same limit y. Consequently,
the whole sequence (xk)k norm-converges to y, and we deduce that
π̃A(x) ⊂ πcl A(x). Conversely, if y ∈ πcl A(x) (⊂ cl A), then ‖x − y‖ =
dcl A(x), and every sequence (xk)k ⊂ A which norm-converges (hence,
weak converges) to y satisfies ‖xk − x‖ → ‖y − x‖ = dcl A(x) = dA(x);
that is, y ∈ π̃A(x), and the inclusion πcl A(x) ⊂ π̃A(x) follows.

The above concepts are related to the function fA : X → R∞ defined
by

fA(x) := IA(x) + (1/2) ‖x‖2 . (8.89)

The following lemma expresses the conjugate and the subdifferential
of fA. Other properties are gathered in Exercise 25. The function in
(i) below is the so-called Asplund function.

Lemma 8.6.5 Let A ⊂ X be a non-empty set. Then dom f∗
A = X, f∗

is (norm-) continuous and, for all x ∈ X,
(i) (fA)∗(x) = 1

2(‖x‖2 − d2
A(x)).

(ii) ∂(clw fA)(x) = (π̃A)−1(x).
(iii) ∂(fA)∗(x) = co(π̃A(x)).
(iv) ∂(fA)∗(x) = co(π̃A(x)) when X = R

n.

Proof. Relation (i) is easily verified and implies that dom(fA)∗ = X,
so that f∗ is norm-continuous by Proposition 2.2.6. Moreover, x ∈
(∂(clw fA))−1(y) if and only if

(clw fA)(x) + (fA)∗(y) = (clw fA)(x) + (clw fA)∗(y) = 〈y, x〉 ;

that is, by assertion (i), if and only if

(clw fA)(x) + (1/2) ‖y‖2 − (1/2)d2
A(y) = 〈y, x〉 .

Therefore, x ∈ (∂(clw fA))−1(y) if and only if there exists a sequence
(xk)k ⊂ A that weakly converges to x and such that

lim
k

(1/2) ‖xk − y‖2 = lim
k

(
(1/2) ‖xk‖2 − 〈y, xk〉

)
+ (1/2) ‖y‖2 = (1/2)d2A(y).

In other words, x ∈ (∂(clw fA))−1(y) if and only if x ∈ π̃A(y). This
proves assertion (ii), while assertion (iii) comes by combining Corol-
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lary 8.3.5(ii) and assertion (ii). Finally, assertion (iv) comes from
(8.65).

Corollary 8.6.6 Let A ⊂ X be a non-empty set, and suppose that
A is either weakly closed or approximately compact. Then, for every
x ∈ X,

∂(fA)∗(x) = co(πcl A(x)) (8.90)

and, when X = R
n,

∂(fA)∗(x) = co(πcl A(x)). (8.91)

Proof. Relation (8.90) follows by combining Lemma 8.6.5(iii), (8.88)
(when A is weakly closed) and Proposition 8.6.4 (when A is approxi-
mately compact). Relation (8.91) follows similarly but using assertion
(iv) in Lemma 8.6.5 instead of (iii).

We now proceed by characterizing the (norm, norm)-continuity of
the projection mapping.

Proposition 8.6.7 The following properties are equivalent, for every
non-empty closed set A ⊂ X,

(i) πA is (norm, norm)-continuous.
(ii) d2

A is Fréchet-differentiable on X.

Proof. According to Lemma 8.6.5(i), d2
A is Fréchet-differentiable on

X if and only if (fA)∗ is so. Moreover, using Lemma 8.6.5(iii), for all
x ∈ X , we have

πA(x) ∈ co{π̃A(x)} = ∂(fA)∗(x);

that is, πA(·) is a selection of ∂(fA)∗. Then the equivalence of (i) and
(ii) comes from Proposition 4.1.8.

The following theorem establishes the convexity of the weak closure
of sets having convex weak projection sets.

Theorem 8.6.8 Assume that X is Hilbert. Let A ⊂ X be a non-empty
set, and consider the following assertions:

(i) π̃A(x) is convex, for every x ∈ X.
(ii) π̃A(x) is convex, for every x in a convex dense subset of X.
(iii) The function clw fA is convex.
(iv) The set clw A is convex.
Then (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇒ (iv).
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Proof. (i) ⇒ (ii) This is obvious.
(ii) ⇒ (iii) Denote g := clw fA and let D be as in (ii). Take x ∈

D. Thanks to Lemma 8.6.5(ii) we have that ∂g = (π̃A)−1 and, so,
π̃A(x) = (∂g)−1(x). Thus, π̃A(x) is weakly closed due to the weak lower
semicontinuity of g. At the same time, Lemma 8.6.5(iii) ensures that
∂(fA)∗(x) = co(π̃A(x)) and, therefore,

∂(fA)∗(x) = cl(π̃A(x)) = π̃A(x) = (∂g)−1(x);

that is, sol(Pg−x) = (∂g)−1(x) is convex for every x ∈ D. Furthermore,
using Lemma 8.6.5, we have dom g∗ = dom(fA)∗ = X and, in par-
ticular, g is continuous in X thanks to Corollary 2.2.8; that is, g is
norm-epi-pointed. Therefore, the convexity of the weakly lsc function
g = clw fA follows from Theorem 8.5.2.

(iii) ⇒ (i) Assume that the function clw fA is convex. Then Lemma
8.6.5(ii) implies that the set π̃A(x) = (∂(clw fA))−1(x) is convex for
every x ∈ X.

(iii) ⇒ (iv) See Exercise 25(iv).
The convexity of clw A is the maximum that can be obtained from

Theorem 8.6.8. Here is an example.

Example 8.6.9 Let A be the unit sphere in �2. Then we verify that

π̃A(x) :=
{

πA(x), if x �= θ,
B�2 , if x = θ,

so that π̃A(x) is convex for all x ∈ �2. However, the set A is obviously
not convex, but clw A = B�2 is convex.

Now we give the characterization of the convexity of a set A by
means of the single-valuedness of π̃A, as well as other criteria related
to the continuity of πA or to the differentiability of d2

A.

Theorem 8.6.10 Given a closed set A ⊂ X, the following conditions
are equivalent:

(i) A is convex.
(ii) π̃A is single valued.
(iii) d2

A is Gâteaux differentiable.
(iv) d2

A is Fréchet differentiable.
(v) πA has a (norm, weak)-continuous selection.
(vi) πA has a (norm, norm)-continuous selection.

Proof. (iv) ⇒ (iii) and (vi) ⇒ (v) : They are evident.
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(vi) ⇒ (iv) : Notice that πA is a selection of ∂(fA)∗, combining
(8.87) and Lemma 8.6.5(iii). Then, thanks to Proposition 4.1.8(ii),
assertion (vi) implies the Fréchet differentiability of (fA)∗ on X, which
in turn implies the Fréchet differentiability of d2

A, due to Lemma
8.6.5(i).

(v) ⇒ (iii) : This is proved similarly as (vi) ⇒ (iv), but applying
assertion (i) in Proposition 4.1.8 instead of assertion (ii) there.

(iii) ⇒ (ii) By Lemma 8.6.5(i), assertion (iii) implies the Gâteaux-
differentiability of the function (fA)∗. So, according to Lemma 8.6.5(iii),
for all x ∈ X we have that ∂(fA)∗(x) = co(π̃A(x)) and π̃A(x) is a sin-
gleton.

(ii) ⇒ (i) Fix x ∈ X. Due to the relation ∅ �= πA(x) ⊂ π̃A(x) coming
from (8.87), by assertion (ii) we have that πA(x) = π̃A(x). So, Lemma
8.6.5(iii) and Exercise 25(v) imply that

∂(fA)∗(x) = co(π̃A(x)) = πA(x) = (∂fA)−1(x),

which in turn yields, using (4.18),

∂(fA)∗∗(x) = (∂(fA)∗)−1(x) ⊂ ∂fA(x) for all x ∈ X.

Therefore, since fA is lsc (because A is closed) and (fA)∗∗ ∈ Γ0(X),
Proposition 4.4.8 implies the equality of fA and (fA)∗∗ up to some
constant. This obviously entails that fA is convex and (i) follows.

(i) ⇒ (vi) : It comes from the 1-Lipschitz continuity of πA when A
is a (closed) convex set.

By combining the equivalence (i) ⇔ (ii) in Theorem 8.6.10 and
(8.88) together with Proposition 8.6.4, we get the following charac-
terization of Chebychev sets.

Corollary 8.6.11 Let A ⊂ X be a non-empty closed set which is
either weakly closed or approximately compact. Then A is convex if
and only if it is a Chebychev set.

8.7 Exercises

Exercise 116 Given problem (P) in (8.1), if x is a feasible point of
this problem (i.e., x ∈ F ), and A(x) is the set of active indices at x,
prove that
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NC(x) + cone co

( ⋃
t∈A(x)

∂ft(x)

)
⊆ NF (x).

Exercise 117 Suppose that, in problem (P), f̃ := supt∈T ft is contin-
uous at x ∈ F and x ∈ int C. Prove that the conditions LFM and BCQ
at x are equivalent.

Exercise 118 Let X = C = R, and

S =
{
ft (x) := max{0, x2t+1} ≤ 0, t ∈ N

}
.

Prove that S is not LFM despite that the condition in Theorem 8.1.11
is satisfied.

Exercise 119 Assume that the feasible set F of problem (P) in (8.1) is
non-empty. Prove that epi g∗ + clK is w∗-closed if any of the following
conditions is satisfied:

(a) The set epi g∗ + K is w∗-closed.
(b) The function g is linear.
(c) g is continuous at some point of F.
Consequently, prove that if g is continuous at some point of F and

S is FM, then epi g∗ + K is w∗-closed.

Exercise 120 Given the convex problem (P) such that C = dom g =
dom ft = R

n, for all t ∈ T , consider the linear system

SL := {〈x∗, x〉 ≤ 〈x∗, y〉 − ft(y), (t, y) ∈ T × R
n, x∗ ∈ ∂ft(y)} .

Prove the following assertions:
(a) The set of solutions of SL coincides with the feasible set of (P).
(b) The constraint system S of (P) is LFM if and only if SL is LFM.

Exercise 121 Prove Theorem 8.2.3 when the consistent system S :=
{ft(x) ≤ 0, t ∈ T, x ∈ C} is LFM at x ∈ F ∩ dom g, by applying The-
orem 8.2.1.

Exercise 122 Prove that if the consistent system S := {ft(x) ≤ 0, t ∈
T, x ∈ C} in (8.2) is FM, then it is also LFM at every feasible point
x̄.

Exercise 123 Suppose that v(0) ∈ R, S is FM, and g is continuous
at some point of F . Prove that x ∈ F is minimum of (P) if and only if
there exists λ̄ ∈ R

(T )
+ such that (x, λ̄) is a saddle point of the Lagrangian

function L; that is,
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L(x, λ) ≤ L(x, λ̄) ≤ L(x, λ̄), ∀λ ∈ R
(T )
+ and ∀x ∈ C. (8.92)

In such a case, λ̄ is a maximizer of (D).

Exercise 124 Prove that for any function f : X → R such that
dom f∗ �= ∅ one has

argmin f∗∗ =
⋂

ε>0, x∗∈dom f∗
co

(
ε- argmin f + {x∗}−)

. (8.93)

Exercise 125 Let X be a Banach space with the RNP, and let f :
X → R∞ be an lsc function such that, for some a > 0 and b ∈ R,

f(x) ≥ a ‖x‖ + b for all x ∈ X. (8.94)

Prove that there exists some Gδ-set D ⊂ aBX∗ , which is dense in aBX∗,
and such that the functions f − x∗, x∗ ∈ D, attain a strong minimum
on X.

Exercise 126 Given a normed space X and a function f : X → R,
prove that the following conditions are equivalent:

(i) f is β-epi-pointed; that is, f∗ is ‖·‖∗-continuous somewhere.
(ii) There are α > 0, μ ∈ R and x∗

0 ∈ X∗ such that

f(x) ≥ α ‖x‖ + 〈x∗
0, x〉 + μ for all x ∈ X. (8.95)

Exercise 127 Assume that X is Banach with the RNP. Let C ⊂ X be
a closed bounded convex set, and let f : C → R be an lsc function such
that infC f ∈ R. Prove that, for every ε > 0, there exists x∗ ∈ εBX∗

such that
argmin((cof) − x∗) = argmin(f − x∗).

Exercise 128 Consider two functions f, g : X → R∞ such that f∗ is
proper, and assume the existence of some δ > 0 such that ∂εf(x) ⊂
∂εg(x) for all x ∈ X and ε ∈ ]0, δ[. Prove the existence of some c such
that

cof = sup
L∈FX∗

cl ((cog)�σL∩dom f∗) + c.

Exercise 129 Given a function f : X → R∞, x0 ∈ (∂f)−1(X∗) and
δ > 0, prove that

(cof)(x) = f(x0) + sup
{∑n−1

i=0 〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉 − ∑n
i=0εi

}
,
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where the supremum is taken over n ≥ 0, εi ∈ (0, δ), xi ∈ X and x∗
i ∈

∂εi
f(xi), i = 0, . . . , n (with the convention that

∑−1
i=0 =

∑0
i=1 = 0).

Exercise 130 Assume that X is a Banach space with the RNP. Let
f : X → R∞ be lsc and ‖·‖∗-epi-pointed, and let x0 ∈ (∂f)−1(X∗).
Prove that

(cof) (x) = f(x0) + sup
{

n−1∑
i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉
}

, (8.96)

where the supremum is taken over n ≥ 0, xi ∈ X, x∗
i ∈ ∂f(xi), i =

0, . . . , n.

Exercise 131 Let f1, f2 : X → R∞ be two functions such that
dom(f1 + f2)∗ �= ∅, and consider the following assertions:

(i) There exists some δ > 0 such that, for all ε ∈ ] 0, δ ] and x ∈ X,

∂ε(f1 + f2)(x) =
⋂

δ>0

cl

⎛
⎜⎝ ⋃

ε1+ε2≤ε+δ
ε1,ε2≥0

∂ε1f1(x) + ∂ε2f2(x)

⎞
⎟⎠ . (8.97)

(ii) For all x ∈ X,

∂(f1 + f2)(x) =
⋂

ε>0
cl (∂εf1(x) + ∂εf2(x)) . (8.98)

(iii) co(f1 + f2) = (cof1) + (cof2) .
Prove that (i) ⇒ (iii) ⇒ (ii). If, in addition, X is Banach with

the RNP, f1, f2 are lsc, and int(dom(f1 + f2)∗) �= ∅, then prove that
(ii) ⇐⇒ (iii)

8.8 Bibliographical notes

The material in section 8.1 has been mainly extracted from [49], [71],
[72], and [116, Lemma 2.1]. Since the literature on the Farkas lemma
(Theorem 8.1.5) is vast (see, e.g., the survey in [117]), we mention here
some works giving Farkas-type results for the kind of systems consid-
ered in the section: [27], [92], [118], and [132] for semi-infinite systems;
[71], [116], [121], and [133] for infinite systems; and [74], [90], [119],
and [120] for cone convex systems. The condition of the closedness of
the characteristic cone K in (8.7) was introduced in [37] as a very
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general assumption for the duality theorem in LSIP, where it plays a
crucial role (see, e.g., [92]). The FM property for convex systems was
first studied in [119] with X being Banach and all the functions being
finite-valued, under the name of closed cone constraint qualification. It
is known that the FM property is strictly weaker than several known
interior-type regularity conditions, and gives rise to the so-called non-
asymptotic optimality conditions for (P) (Theorem 8.2.3). The char-
acterization of feasibility given in (8.9) was first established for linear
systems in [84, Theorem 1], and the convex version is provided in [71,
Theorem 3.1]. Proposition 8.1.9 is Theorem 4.4(iii′) in [71]. The LFM
property, related to BCQ (Definition 8.1.13), appeared in [108, p. 307]
relative to ordinary convex programming problems with equality and
inequality constraints. It was extended in [171] to the setting of lin-
ear semi-infinite systems, and intensively studied in [92, Chapter 5].
The consequences of its extension to convex semi-infinite systems were
analyzed in [82]. For a deep analysis of BCQ and related conditions,
see, also, [132] and [133]. Conditions BCQ and LFM are practically
equivalent, as it is pointed out in Exercise 117 (which is Proposition
2 in [72]). For other Farkas-type qualification conditions, see [27]. An
extensive comparative analysis of constraint qualifications for (P) is
given in [133] and [136]. Other contributions to constraint qualifica-
tions and optimality conditions in nonlinear semi-infinite and infinite
programming are [158] and [159] (see, also, [155, chapter 8]). In [159]
the authors dealt with the Banach space setting in contrast to the
Asplund space one in [157].

The different statements in Theorem 8.1.5 can be found in [71,
Proposition 3.4], extending [116, Theorem 2.1], [118, Theorem 4.1],
and [27, Theorem 5.6], where the last two deal with finite-valued con-
vex functions in the Euclidean space. Theorem 8.1.5(iii) applies to
the problem of set containment, which is key in solving large scale
knowledge-based data classification problems (e.g., [147]). Theorem
8.1.5(iv) is related to [74, Theorem 2.2], which deals with conical con-
straints in Banach spaces. In the presence of a set constraint C, and
assuming the continuity of the involved functions, Theorem 8.1.5(iv)
is given in [98], under a different closedness condition which is related
to the FM property ([74, p. 93]).

The notion of strongly CHIP, used in Theorem 8.2.8, was intro-
duced in [70], and extended to infinite families of convex sets in [135]
and [136]. Previously, in [92, Chapter 7], KKT conditions for convex
semi-infinite optimization were derived for finite-valued functions (see,
also, [140] for differentiable convex functions). The original version of
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Corollary 8.2.11 can be found in [92, Theorems 7.8 and 7.9], where it
is proved that, under the corresponding assumptions, the constraint
system S is LFM. Apart from this, many KKT conditions exist in
the literature which are obtained via different approaches: approxi-
mate subdifferentials of the data functions ([49], [55], [111]), exact
subdifferentials at close points ([188]), asymptotic KKT conditions
([137]) for linear semi-infinite programming, Farkas–Minkowski-type
closedness criteria ([71]) in convex semi-infinite optimization, strong
CHIP-like qualifications for convex optimization with non-necessarily
convex C1-constraints ([38]) (see, also, [78] for locally Lipschitz con-
straints), among others. We also refer to [205], and references therein,
for KKT conditions in the framework of sub-smooth semi-infinite opti-
mization, and to [85] for analyzing the relationship among KKT rules
and Lagrangian dualities. We finally refer to [92], [94], [138], etc., and
references therein, for theory, algorithms and applications of semi-
infinite optimization.

The relaxation arguments used in section 8.3 are very useful in prac-
tice, namely, in calculus of variations, in mathematical programming
problems, as well as in many other theoretical and numerical purposes
(see, e.g., [80] and [108]). This fundamental topic has been considered
by many researchers in recent years. The approach in [14] is based on
the subdifferential analysis of the closed convex hull. The different for-
mulas in Theorem 8.3.2 were given in [141], based on the subdifferen-
tial of the Fenchel conjugate, which itself relies on the subdifferential of
the supremum function. Theorem 8.3.4, given in [46], adapts Theorem
8.3.2 to the setting of Banach spaces. Theorem 8.3.3 is given in [45].
A variant of Theorem 8.3.3 involves the asymptotic theory from [68]
and [69], and was first established in [14, Theorem 4.6]. Theorem 8.3.7
provides criteria for the Gâteaux and Fréchet differentiability of the
conjugate function as in [5], [22], and [127]. A characterization of the
w∗-continuity of the conjugate function can be found in [161, Corollary
8.g] (remember that the continuity of the conjugate function in Theo-
rems 8.3.2 and 8.3.3 is required with respect to a compatible topology).
The concept of strong minima (or maxima) in Definition 4.3.12 is also
called Tychonoff well-posedness (e.g., [92]). Theorem 8.3.7(ii) can be
found, for instance, in [3, page 52]. Theorem 8.4.3 is given in [44] (see,
also, [143] and [144]). Theorem 8.4.7 is provided in [43] (see, also, [62]).
The convex counterpart to Corollary 8.4.9 is given in [148] for locally
convex spaces, and in [193] for normed spaces. Theorem 8.5.2 is given
in [59] (extending [179, Theorem 10] to the setting of locally convex
spaces). The definition of Asplund function in Lemma 8.6.5(i) can be
found [4]. The notion of approximately compact sets was introduced in
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[194]. It amounts to saying that the associated problem infy∈A ‖x − y‖
is well-posed at x (see [106]). It is still unknown whether the weak
projection in Theorem 8.6.10(ii) can be replaced with the standard
projection. Exercise 118 is similar to [82, Example 2.1]. Exercise 120
is [92, Theorem 7.10]. Exercise 125 is stated in [22, Corollary 2.3].
Exercise 129 is [43, Theorem 4.1]. Exercise 130 can be found in [44,
Corollary 15]. A related result relying on the construction of the closed
convex hull was given in [13]. The implication (iii) ⇒ (ii) in Exercise
131 is known (see, e.g., [43]).



Chapter 9

Exercises - Solutions

9.1 Exercises of chapter 2

Exercise 1: (i) First, observe that pC(θ) = inf{λ ≥ 0 : θ ∈ λC} = 0.
To check that pC is positively homogeneous on dom pC , we fix x ∈
dom pC and α ≥ 0. If α = 0, then pC(0x) = pC(θ) = 0 = 0pC(x). If α >
0, then

pC(αx) = inf{λ ≥ 0 : αx ∈ λC} = α inf{λ ≥ 0 : x ∈ λC} = αpC(x).

(ii) To prove the inclusion “⊂” in (2.63) take (x, α) ∈ epis pC , so
that pC(x) < α. If pC(x) > 0, then there exists λ > 0 such that x ∈ λC
and α > λ. So,

(x, α) ∈ (λC) × ]λ, +∞[= λ (C × ]1, +∞[)
⊂ R

∗
+ (C × ]1, +∞[) ⊂ R

∗
+ ((C ∪ {θ}) × ]1, +∞[) .

If pC(x) = 0 and x ∈ λkC for some sequence λk ↓ 0, then, for large
enough k such that λk < α, we obtain

(x, α) ∈ (λkC) × ]λk, +∞[= λk (C × ]1, +∞[)
⊂ R

∗
+ (C × ]1, +∞[) ⊂ R

∗
+ ((C ∪ {θ}) × ]1, +∞[) .
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If pC(x) = 0 and there is no sequence λk ↓ 0 such that x ∈ λkC, then
x ∈ 0C, entailing that x = θ. Thus,

(x, α) = (θ, α) ∈ {θ} × R
∗
+ ⊂ R

∗
+ ((C ∪ {θ}) × ]1, +∞[) .

In order to prove the opposite inclusion in (2.63), we take μ > 0 and
(x, α) ∈ μ ((C ∪ {θ}) × ]1, +∞[) ; that is, (x, α) = μ(a, β) for some
a ∈ C ∪ {θ} and β > 1. If a = θ, then x = θ and pC(x) = 0 < α, and we
get (x, α) ∈ epis pC . Otherwise, if a ∈ C, then, by the positive homo-
geneity of pC on dom pC , and the fact that pC(a) ≤ 1 and μ < α,
we conclude that pC(x) = pC(μa) = μpC(a) ≤ μ < α, entailing that
(x, α) ∈ epis pC .

(iii) If C is convex, then we can show that epis pC is convex
by observing that co(epis pC) ⊂ R

∗
+ (C × ]1, +∞[) ⊂ epis pC ; that is,

co(epis pC) = epis pC .

Exercise 2: Given x ∈ C let us denote Ix := {i ∈ {1, .., m} :
〈a∗

i , x〉 = bi}. If Ix = ∅, then x ∈ int C, and so R+(C − x) = X. Other-
wise, i.e., if Ix �= ∅, we prove that

R+(C − x) = {u ∈ X : 〈a∗
i , u〉 ≤ 0, for i ∈ Ix}.

The inclusion “⊂” is clear. To verify the other inclusion, we take
u(�= θ) in the set of the right-hand side and choose an α > 0 such that
〈a∗

i , αu + x〉 ≤ bi for all i ∈ {1, .., m} \ Jx. Then, since 〈a∗
i , αu + x〉 =

〈a∗
i , αu〉 + bi ≤ bi for all i ∈ Jx, we get αu + x ∈ C, and so u ∈ α−1(C −

x) ⊂ R+(C − x).

Exercise 3: (i) Suppose that intA �= ∅. Since we only need to prove
that Ai ⊂ int A, we pick a ∈ Ai. Proceeding by contradiction, we sup-
pose that a /∈ int A. Then, by the separation theorem, we find a proper
closed half-space S ⊂ X such that X = R+(A − a) ⊂ S, yielding a con-
tradiction.

(ii) Suppose that X is finite-dimensional and take a ∈ Ai. Then
R+(A − a) = X, and so aff A = X and we infer that intA = riA �= ∅.
Then we apply assertion (i).

(iii) We denote A := ∪m≥1Am for closed convex sets Am ⊂ X,
m ≥ 1. Due to the inclusion intA ⊂ Ai the equality intA = Ai holds
when Ai = ∅. Otherwise, we take a ∈ Ai. Since A − a is absorbing
and θ ∈ A − a, we have that X = ∪∞

n=1n(A − a) = ∪∞
n,m=1n(Am − a).

Then, by the Baire theorem, there exist n0, m0 ≥ 1 such that the set
int(n0(Am0 − x)) is non-empty, entailing ∅ �= int Am0 ⊂ int A. Hence,
Ai = int A, by assertion (i).
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Finally, given a proper lsc convex function f : X → R∞ defined on
the Banach space X, we show that int(dom f) = (dom f)i. Indeed, it
suffices to apply assertion (iii) above to the set dom f = ∪n≥1[f ≤ n],
since [f ≤ n] is convex and closed.

Exercise 4: Observe that each Ak is convex but not necessarily
closed. Also, the set A is convex. Assume that x ∈ Ai (⊂ �2), and so
there exists some k0 ≥ 1 such that x ∈ Ak0 ; that is, x =

∑k0
i=1 αiei,

αk0 > 0. Let t > 0 such that −ek0+1 ∈ t(A − x). Then −(1/t)ek0+1 +
x = −(1/t)ek0+1 +

∑
1≤k0

αiei ∈ A, and a contradiction occurs. There-
fore, Ai = int A = ∅.

Exercise 5: (i) Let C ⊂ X be a non-empty convex set. If C is
closed, then the conclusion is trivial. In the second case, pick x0 ∈ ri(C)
and denote C̃ := ∪L∈FX

cl(L ∩ C). Given x ∈ cl(C), if x = x0, then
obviously x ∈ C̃. Otherwise, x �= x0, and (2.15) implies that ]x, x0] ⊂
L ∩ C, where L := span{x, x0}. Thus, x ∈ cl(L ∩ C) ⊂ C̃.

(ii) If C is the set A of Exercise 4, then cl(C) = �2 and
∪L∈FX

cl(L ∩ C) = C because, for each L ∈ FX , there exists some k0

such that L ⊂ Ak0 .
(iii) Let (en)n be the canonical basis of �2, denote C := span{en,

n ≥ 1} and consider the function g : �2 → R∞ defined by

g(x) :=

{ ∑

k≥1

(|xk| + 1)k, if x :=
∑

k≥1 xkek ∈ C,

+∞, if not.

The function g is easily shown to be convex, entailing the convexity
of its closed hull f := cl g. Next, we verify that dom f = C. It is clear
that C ⊂ dom f. Conversely, take x ∈ dom f \ C and let (xm)m ⊂ C,
xm :=

∑
k≥1 xm

k ek, be a sequence converging to x such that f(x) =
limm g(xm). So, we can find mj → +∞ together with kj ≥ mj such

that
∣
∣
∣x

mj

kj

∣
∣
∣ > 0. Therefore,

f(x) = lim
j

g(xmj ) ≥ lim sup
j

(∣
∣
∣x

mj

kj

∣
∣
∣+ 1

)
kj ≥ lim sup

j
mj = +∞,

and we deduce that x /∈ dom f. Finally, we verify that

⋃

L∈FX∗
cl(L ∩ dom f) =

⋃

L∈FX∗
cl(L ∩ C) = C � �2 = cl(C) = cl(dom f).
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Exercise 6: Denote f := infα>0(IαA◦ + α). If x /∈ dom σA, then by
(2.49), we have x /∈ R+A◦, and so f(x) = +∞ = σA(x). If x ∈ dom σA

and (0 = 〈θ, x〉 ≤) σA(x) < λ for a given λ ∈ R, then λ−1x ∈ A◦, and
so f(x) ≤ IλA◦(x) + λ = λ. This entails f(x) ≤ σA(x) when λ ↓ σA(x).
To show the opposite inequality, we suppose that f(x) < λ for a given
λ ∈ R. Then there exists some α0 > 0 such that x ∈ α0A

◦ and α0 < λ.
Hence, σA(x) ≤ α0 < λ and we deduce that σA(x) ≤ f(x) as λ ↓ f(x).

Exercise 7: It is clear that h := infi,p∈P σAi,p
is positively homoge-

neous. To prove its subadditivity, we fix x, y ∈ X and α, β ∈ R such
that h(x) < α and h(y) < β. Then there are i1, i2 and p1, p2 ∈ P such
that σAi1,p1

(x) < α and σAi2,p2
(y) < β. Take i0 such that i1 � i0 and

i2 � i0 and choose p0 ∈ P such that p0 ≥ max{p1, p2} (P is saturated).
Then Ai0,p0 ⊂ Ai1,p1 ∩ Ai2,p2 and we deduce

h(x + y) ≤ σAi0,p0
(x + y) ≤ σAi0,p0

(x) + σAi0,p0
(y)

≤ σAi1,p1
(x) + σAi2,p2

(y) < α + β.

Thus, as α → h(x) and β → h(y), we obtain h(x + y) ≤ h(x) + h(y).
We are done since this last inequality also holds if h(x) = +∞ or
h(y) = +∞.

Exercise 8: Assume that f(θ) = 0 and f(λx) = λf(x) for all x ∈
dom f and λ > 0. Given (x, α) ∈ epi f (which is non-empty by the
properness of f) and λ > 0; hence x ∈ dom f , we have that f(λx) =
λf(x) ≤ λα; that is, λ(x, α) = (λx, λα) ∈ epi f. Thus, since (θ, 0) ∈
epi f , we deduce that R

∗
+(epi f ∪ {(θ, 0)}) ⊂ epi f, and epi f is a cone.

Conversely, assume that epi f is a cone. So, (θ, 0) ∈ epi f and
f(θ) ∈ R because f is proper. Moreover, given x ∈ dom f and λ >
0, we have (λx, λf(x)) = λ(x, f(x)) ∈ R

∗
+ epi f ⊂ epi f, entailing that

f(λx) ≤ λf(x), and hence λx ∈ dom f. Hence, f(λx) ≤ λf(x) =
λf(λ−1λx) ≤ λλ−1f(λx) = f(λx) and we deduce that f(λx) = λf(x).

Finally, if θ ∈ dom f and f(λx) = λf(x) for all x ∈ dom f and λ > 0,
then f(θ) = f(λθ) = λf(θ) for all λ > 0, and f(θ) = 0 follows when
λ ↓ 0.

Exercise 9: It is clear that dom f ⊂ ∩t∈T dom ft. If x ∈ ∩t∈T dom ft,
then the current assumption implies that f(x) = maxt∈T ft(x) ∈ R,
giving rise to the converse inclusion.

To prove the second statement, we take z ∈ ∩t∈T R+(dom ft − x). If
z = θ, then we are obviously done. Otherwise, for each t ∈ T , there
exist αt, mt > 0 and zt ∈ dom ft such that z = αt(zt − x) and ft(zt) <
mt. By arguing as above, the upper semicontinuity assumption yields
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some neighborhood Vt of t such that fs(zt) < mt for all s ∈ Vt. Con-
sider a finite covering Vt1 , . . . , Vtk

of T, so that zti
= α−1

ti
z + x ∈ dom fs

for all s ∈ Vti
. Next, for ᾱ := max {αti

, i = 1, . . . , k} we obtain that
ᾱ−1z ∈ ᾱ−1αti

(∩s∈Vti
(dom fs − x)) ⊂ ∩s∈Vti

(dom fs − x), 1 ≤ i ≤ k,
where the last inclusion comes from the convexity of the set
∩s∈Vti

(dom fs − x) and the fact that θ ∈ ∩s∈Vti
(dom fs − x). Hence,

ᾱ−1z ∈ ∩i=1,...,k ∩s∈Vti
(dom fs − x)

= ∩s∈Vti
,i=1,...,k(dom fs − x) = ∩t∈T (dom ft − x),

and the first statement of the lemma leads us to
z ∈ R+ (∩t∈T (dom ft − x)) = R+(dom f − x).

Exercise 10: (i) Due to the fact that the family of sets

{x∗ ∈ X∗ : |〈xi, x
∗〉| ≤ δ, i ∈ 1, .., k}, xi ∈ X, k ∈ N, δ > 0,

is a base of θ-neighborhoods of the w∗-topology, and observing that

{xi ∈ X, i ∈ 1, .., k}⊥ ⊂ {x∗ ∈ X∗ | |〈xi, x
∗〉| ≤ δ, i ∈ 1, .., k},

(2.11) allows us to write cl (A) ⊂
⋂

L∈F cl
(
A + L⊥) ⊂⋂

U∈NX∗ cl (A + U) = cl (A) . If x ∈ X, then we have that
⋂

L∈F cl
(
A + L⊥) ⊂

⋂
L∈F(x) cl

(
A + L⊥) . Conversely, we have that

⋂
L∈F cl

(
A + L⊥) =

⋂
L∈F cl

(
A + (L + Rx)⊥) ⊂

⋂
L∈F cl

(
A + L⊥) .

(ii) Let A be closed and let B be convex and compact with θ ∈
B. Then A ⊂

⋂
ε>0 (A + εB) . Conversely, take x ∈

⋂
ε>0 (A + εB) .

Hence, for each 0 < ε < 1, we write x = aε + εbε for some aε ∈ A and
bε ∈ B. Since εbε ∈ εB ⊂ B, we may assume without loss of gener-
ality that bε → b ∈ B and εbε → c ∈ B as ε ↓ 0. Moreover, for every
x∗ ∈ X∗, we have that limε↓0 〈εbε, x

∗〉 = 0; that is, εbε →w θ and so
c = θ. Hence, x = limε↓0(aε + εbε) = limε↓0 aε ∈ cl A = A.

In relation to the second statement in this part, we write

⋂

ε>0
(Aε + εB) =

⋂

δ>0

⋂

ε>0
(Aδ + εB) =

⋂

δ>0

Aδ.

(iii) For every L0 ∈ F , we have

⋂

L∈F
cl
(
CL + L⊥

)
⊂

⋂

L∈F , L⊃L0

cl
(
CL + L⊥

0

)

⊂
⋂

L∈F
cl
(
Cspan{L∪L0} + L⊥

0

)
⊂
⋂

L∈F
cl
(
CL + L⊥

0

)
,
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as Cspan{L∪L0} ⊂ CL. Thus, as L0 is arbitrary in F , by (2.67)

⋂

L∈F
cl

(
CL + L⊥

)
⊂

⋂

L0∈F

⋂

L∈F
cl

(
CL + L⊥

0

)
=

⋂

L∈F

⋂

L0∈F
cl

(
CL + L⊥

0

)
=

⋂

L∈F
cl (CL) ,

and we conclude that
⋂

L∈F cl
(
CL + L⊥) =

⋂
L∈F cl (CL) . Moreover,

as {CL, L ∈ F} is non-increasing, for each x ∈ X, we have

⋂

L∈F
cl
(
CL + L⊥

)
⊂
⋂

L∈F
cl
(
Cspan{L,x} + L⊥

)
⊂
⋂

L∈F
cl
(
CL + L⊥

)
.

Finally, the desired relation comes by observing that
⋂

L∈F cl (CL) =⋂
L∈F(x) cl (CL).
(iv) The first statement comes from assertions (i) and (iii). To verify

the last statement, take x ∈
⋂

ε>0 co(Aε + εBX∗). Applying (2.10) in
X∗ and taking into account that BX∗ is w∗-compact, we obtain that
x ∈

⋂

ε>0
cl(co(Aε) + εBX∗) =

⋂

ε>0
(co(Aε) + εBX∗). Since (co(Aε))ε>0 ⊂

X∗ is also non-decreasing with respect to ε, assertion (ii) applies in
(X∗, w∗) and entails x ∈

⋂
ε>0 co(Aε), yielding the inclusion “⊂”.

Exercise 11: The conclusion follows from the equality Λ(co A) =
co(ΛA) together with its consequence Λ(coA) = cl(Λ(co A)) = co(ΛA),
which are true under the assumption 0 /∈ Λ.

Exercise 12: The inclusion “⊃” is obvious since 1 ∈ Λε entails Aε ⊂
ΛεAε. Let us prove the inclusion “⊂”. If a ∈

⋂
ε>0 ΛεAε, we have a =

λεaε with λε ∈ Λε and aε ∈ Aε for all ε > 0. Since limε↓0 λε = 1, we can
assume that λε > 0. For each ε > 0, the net (aδ)0<δ<ε is contained in
Aε, and the closedness of Aε implies that limδ↓0 aδ = limδ↓0(λδ)−1a =
a ∈ Aε.

Exercise 13: Using (2.17), (2.69) implies that, for all t ∈ T,

ri(Ci) ∩ ri(C) = ri(Ci) ∩ ri

(
⋂

1≤i≤m

Ci

)

= ri(Ci) ∩
(
⋂

1≤i≤m

ri(Ci)

)

=
⋂

1≤i≤m

ri(Ci) �= ∅,

and (2.70) follows. Conversely, if condition (2.70) holds, we choose xi ∈
ri(Ci) ∩ C and denote x̄ :=

∑m
i=1

1
mxi. Then for each i0 ∈ {1, ..., m},

we have
∑

1≤i≤m, i
=i0
1

m−1xi ∈ C ⊂ Ci0 and so, by (2.15), x̄ = 1
mxi0 +
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(

m−1
m

)∑
1≤i≤m, i
=i0

1
m−1xi ∈ ri(Ci0). In other words, x̄ ∈

⋂
1≤i≤m ri(Ci)

and (2.69) holds.

Exercise 14: We only need to prove that infri A f ≤ f(y) for any
y ∈ cl A such that infri A f > −∞ and f(y) < +∞. Taking z ∈ (ri A) ∩
dom f, (2.15) would yield zλ := λz + (1 − λ)y ∈ ri A for all λ ∈]0, 1].
So, −∞ < infri A f ≤ f(zλ) ≤ λf(z) + (1 − λ)f(y) < +∞ for all λ ∈
]0, 1]. Accordingly, f(z) ∈ R, f(y) ∈ R and we are done by taking λ ↓ 0.

Exercise 15: Since f(x) ≥ (co f)(x) for all x ∈ X, the lim inf in
(2.71) is nonnegative (possibly +∞). Otherwise, there would exist c >
0 and A > 0 such that

inf
‖y‖≥‖x‖

f(y) − (co f)(y)
‖y‖ ≥ c for all x ∈ X such that ‖x‖ > A.

Thus, f(x) − (co f)(x) ≥ c ‖x‖ when ‖x‖ > A, while f(x) − (co f)(x)
≥ 0 otherwise. In short, f ≥ (co f)(·) + c(‖·‖ − A). Since the function
on the right-hand side is convex, we have co f ≥ (co f)(·) + c(‖·‖ − A).
But this is false for ‖x‖ > A, yielding a contradiction. Now observe
that, certainly, the gap between (co f)(x) and f(x) when ‖x‖ → ∞
may be larger and larger; this is the case of f : x ∈ R �→ f(x) :=

√
|x|.

Exercise 16: Fix t1, t2, t3 ∈ dom f such that t1 < t2 < t3. Then,
taking λ := t2−t1

t3−t1
, we have λ ∈ ]0, 1[ and (1 − λ)t1 + λt3 = t2. Thus,

f(t2) ≤ (1 − λ)f(t1) + λf(t3) by the convexity of f , and we obtain
f(t2) − f(t1) ≤ λ(f(t3) − f(t1)) and f(t2) − f(t3) ≤ (1 − λ)(f(t1) −
f(t3)). The desired inequalities follows by rearranging these terms.

Exercise 17: Apply (2.57) and (2.58).

Exercise 18: Applying (2.17) to A = dom f and B = dom g, we get
(2.73). Moreover, since f|aff(A) is continuous on ri(A), and aff(A ∩ B) ⊂
aff(A), it follows that f|aff(A∩B) is continuous on ri(A) ∩ aff(A ∩ B).
Similarly, g|aff(A∩B) is continuous on ri(B) ∩ aff(A ∩ B) so that (f +
g)|aff(A∩B) = f|aff(A∩B) + g|aff(A∩B) is continuous on ri(A) ∩ ri(B) ∩
aff(A ∩ B) = ri(A ∩ B) ∩ aff(A ∩ B) = ri(A ∩ B).

Exercise 19: (i) ⇒ (ii) If x0 ∈ dom f ∩ ri(dom g) and g|aff(dom g)

is continuous on ri(dom g), then, obviously, (x0, g(x0) + 1) ∈ ri(epi g).
Now, for any x ∈ dom g, one has (x0, g(x0) + 1) − (x, g(x)) ∈ ri(epi g −
(x, g(x))) and (x0 − x, g(x0) − g(x) + 1) ∈ (dom f − x) × R.

(iii) ⇒ (i) Take

(z, μ) ∈ (ri(epi g − (x0, g(x0)))) ∩ ((dom f − x0) × R)



372 CHAPTER 9. EXERCISES - SOLUTIONS

for x0 ∈ dom g. Since (z, μ) + (x0, g(x0)) ∈ ri(epi g), there exist V ∈
NX and ε > 0 such that

(V ∩ {(aff dom g) − (z + x0)}) × ]g(x0) + μ − ε, g(x0) + μ + ε[ ⊂ epi g.

Hence, g|aff(dom g) is continuous at z + x0 ∈ ri(dom g), and then on
ri(dom g), thanks to Proposition 2.2.6. In addition, since (z, μ) ∈
(dom f − x0) × R, we get z + x0 ∈ dom f, and so z + x0 ∈ ri(dom g) ∩
dom f. We are done since (ii) ⇒ (iii) obviously.

Exercise 20: The own definition of the lsc hull of a function yields
cl(f + g) ≥ cl f + cl g. To prove the opposite inequality, we take x ∈
dom(cl f) ∩ dom(cl g) ⊂ cl(dom f) ∩ cl(dom g).

(i) We pick x0 ∈ ri(dom f) ∩ ri(dom g) and denote xλ := λx + (1 −
λ)x0, λ ∈ [0, 1[ . Then, since xλ ∈ ri(dom f) ∩ ri(dom g), by the con-
tinuity assumption, we infer that (cl f)(xλ) = f(xλ) and (cl g)(xλ) =
g(xλ). Consequently, by the convexity of f and g, for every λ ∈ [0, 1[

f(xλ) + g(xλ) = (cl f)(xλ) + (cl g)(xλ)
≤ λ((cl f)(x) + (cl g)(x)) + (1 − λ)((cl f)(x0) + (cl g)(x0)).

Thus, since x0 ∈ dom f ∩ dom g ⊂ dom(cl f) ∩ dom(cl g) and cl f, cl g
are necessarily proper, by taking limits for λ ↑ 1, we get the desired
inequality

cl(f + g)(x) ≤ lim inf
λ↑1

(f + g)(xλ)

≤ lim inf
λ↑1

λ((cl f)(x) + (cl g)(x)) + (1 − λ)((cl f)(x0) + (cl g)(x0))

= (cl f)(x) + (cl g)(x).

(ii) We choose x0 ∈ dom f ∩ ri(dom g) and denote xλ as above so
that xλ ∈ dom(cl f) ∩ ri(dom g) and (cl g)(xλ) = g(xλ). If cl f is not
proper, then (cl f)(xλ) = −∞ for all λ ∈ [0, 1[ and we get cl(f +
g)(x) = cl((cl f) + g)(x) ≤ lim infλ↑1{(cl f)(xλ) + g(xλ)} = −∞, as
required. Moreover, when cl f is proper, we shall argue as in the proof
of (i).
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9.2 Exercises of chapter 3

Exercise 21: It suffices to prove the equality σdom f = σdom f∗∗ when
f is convex and lsc. To show that it is sufficient to take f∗(θ) = 0, we
pick x∗

0 ∈ dom f∗ so that f∗(x∗
0) ∈ R, as f∗ is supposed to be proper.

We consider the function g := f − x∗
0 + f∗(x∗

0). Then g∗ = f∗(· + x∗
0) −

f∗(x∗
0) and g∗∗ = f∗∗ − x∗

0 + f∗(x∗
0), and we obtain g∗(θ) = 0, dom f =

dom g, and dom f∗∗ = dom g∗∗. Thus, providing that σdom g∗∗ = σdom g,
we deduce that σdom f∗∗ = σdom g∗∗ = σdom g = σdom f .

Exercise 22: It is clear that max
{
σAk+1 , . . . , σAm

}
= σAk+1∪...∪Am

and, knowing that σA + σB = σA+B for every pair of sets A, B ⊂ X,

σA1 + . . . + σAk
+ max

{
σAk+1 , . . . , σAm

}
= σA1+...+Ak

+ σAk+1∪...∪Am

= σA1+...+Ak+(Ak+1∪...∪Am).

Next, observing that

dom σA1+...+Am
= dom(σA1 + . . . + σAm

)
= dom (max {σAi

, i = 1, . . . , m}) = dom (σA1∪...∪Am
) ,

by (3.52), we get

([co(A1 ∪ . . . ∪ Am)]∞)− = cl(dom σA1∪...∪Am
)

= cl(dom σA1+...+Am
) = ([co(A1 + . . . + Am)]∞)−.

Thus, the first equality in (3.72) follows from (3.51). The second equal-
ity in (3.72) comes from the first one and the following observation

[co(A1 ∪ . . . ∪ Am)]∞ = [co(A1 ∪ . . . ∪ Ak ∪ (Ak+1 ∪ . . . ∪ Am)]∞
= [co(A1 + . . . + Ak + (Ak+1 ∪ . . . ∪ Am)]∞ .

Exercise 23: Denoting T := T1 ∪ T2 and A := co (∪t∈T At) , the
functions ϕ1 := supt∈T1

σAt
and ϕ2 := supt∈T2

σρAt
satisfy

max {ϕ1, ϕ2} = σ(∪t∈T1At)∪(∪t∈T2ρAt) and

ϕ1 + ϕ2 = sup
t1∈T1,t2∈T2

(σAt1
+ σρAt2

)

= sup
t1∈T1,t2∈T2

σAt1+ρAt2
= σ∪t1∈T1,t2∈T2(At1+ρAt2 ).

(9.1)



374 CHAPTER 9. EXERCISES - SOLUTIONS

Moreover, since dom(ϕ1 + ϕ2) = dom(max {ϕ1, ϕ2}) = dom(max{
ϕ1, ρ

−1ϕ2

}
), (3.52) yields

⎛

⎝

⎡

⎣co

⎛

⎝
⋃

t1∈T1, t2∈T2

(
At1 + ρAt2

)
⎞

⎠

⎤

⎦

∞

⎞

⎠

−

=

⎛

⎝

⎡

⎣co

⎛

⎝

⎛

⎝
⋃

t∈T1

At

⎞

⎠ ∪
⎛

⎝
⋃

t∈T2

ρAt

⎞

⎠

⎞

⎠

⎤

⎦

∞

⎞

⎠

−

=

⎛

⎝

⎡

⎣co

⎛

⎝

⎛

⎝
⋃

t∈T1

At

⎞

⎠ ∪
⎛

⎝
⋃

t∈T2

At

⎞

⎠

⎞

⎠

⎤

⎦

∞

⎞

⎠

−

,

and we are done; thanks to (3.51).

Exercise 24: Fix x ∈ dom σA and ε ≥ 0. The first equality comes
from (3.52). Take x∗ ∈ Nε

([coA]∞)−(x), so that 〈x∗, αy − x〉 ≤ ε for all

y ∈ ([coA]∞)− and α > 0. Then, dividing by α and next making
α ↑ +∞, by (3.51), we obtain x∗ ∈ ([coA]∞)−− = [coA]∞ . Moreover,
since 〈x∗, (α − 1)x〉 ≤ ε and x ∈ dom σA ⊂ ([coA]∞)− (by (3.52)), it
follows that 〈x∗, (α − 1)x〉 ≤ ε for all α ≥ 0. Hence, taking α = 0, we
get −ε ≤ 〈x∗, x〉 , while 〈x∗, x〉 ≤ 0 when α → +∞. By summarizing,
we have proved that x∗ ∈ [coA]∞ ∩ {x∗ ∈ X∗ : −ε ≤ 〈x∗, x〉 ≤ 0}. Con-
versely, if x∗ ∈ [coA]∞ ∩ {x∗ : −ε ≤ 〈x∗, x〉 ≤ 0}, then 〈x∗, y − x〉 ≤
〈x∗, −x〉 ≤ ε for all y ∈ ([coA]∞)− , and so x∗ ∈ Nε

([coA]∞)−(x).

Exercise 25: (i) We have epi fA = (A × R) × epi(1
2 ‖·‖2), and so fA

is convex if and only if A is convex.
(ii) If A is closed, then obviously fA is lsc. Conversely, if f is lsc, then

fA = cl fA = cl(IA + 1
2 ‖·‖2) and the continuity of the norm ensures

that IA + 1
2 ‖·‖2 = cl(IA) + 1

2 ‖·‖2 = Icl A + 1
2 ‖·‖2 ; that is, A is closed.

(iii) From the relation cl(IA + 1
2 ‖·‖2) = Icl A + 1

2 ‖·‖2, it follows that
cl fA is convex if and only if clA is convex.

(iv) Assume that clw fA is convex. Given λ ∈]0, 1[ and x1, x2 ∈ A,
the relation clw f ≥ Iclw A + 1

2 ‖·‖2 yields

Iclw A(λx1 + (1 − λ)x2) ≤ (clw f)(λx1 + (1 − λ)x2)
≤ λ(clw f)(x1) + (1 − λ)(clw f)(x2)
≤ λf(x1) + (1 − λ)f(x2)

≤ λ

2
‖x1‖2 +

(1 − λ)
2

‖x2‖2 ,

so that λx1 + (1 − λ)x2 ∈ clw A. More generally, if x1, x2 ∈ clw A and
the nets (x1,i)i, (x2,j)j ⊂ A weakly converge to x1 and x2, respectively,
then the last arguments show that λx1,i + (1 − λ)x2,j ∈ clw A for all
i, j. Hence, by taking the limits on i and j, we obtain λx1 + (1 − λ)x2 ∈
clw A, proving the convexity of clw A.
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(v) We have x ∈ (∂fA)−1(y) if and only if fA(x) + (fA)∗(y) = 〈y, x〉 ;
that is, by assertion (i), if and only if fA(x) + (1/2) ‖y‖2 −
(1/2)d2

A(y) = 〈y, x〉 .Therefore, x ∈ (∂fA)−1(y) if and only if x ∈ A and

(1/2) ‖x − y‖2 = (1/2) ‖x‖2 − 〈y, x〉 + (1/2) ‖y‖2 = (1/2)d2
A(y).

In other words, x ∈ (∂fA)−1(y) if and only if x ∈ πA(y).

Exercise 26: First, taking into account that U is absorbing and
U◦ is w∗-compact, for each U ∈ NX , we have dom(f�σU◦) = dom f +
dom σU◦ = dom f + X and (f�σU◦) (x + y) ≤ f(x) + σU◦(y) ≤ f(x) +
1 < +∞ for all x ∈ dom f and y ∈ U ; that is, f�σU◦ is continuous
and g := supU∈NX

f�σU◦ is lsc on X. Let 〈x∗
0, ·〉 + α0 be such that

f + 〈x∗
0, ·〉 + α0 ≥ 0. Given x ∈ dom g and m ≥ 1, we choose n ≥ 1 such

that

n

2(n − 1)
≤ 1 and max{g(x), −m} +

1
n

+ 〈x∗
0, x〉 + α0 ≤ n

2
. (9.2)

Next, given U ∈ N 0
X := {V ∈ NX : σV (−x∗

0) ≤ 1}, we choose yn,U ∈ X
such that

〈x∗
0, yn,U − x〉 − α0 + σ( 1

n
U)◦(yn,U ) ≤ f(x − yn,U ) + σ( 1

n
U)◦(yn,U )

≤ max{f�σ( 1
n

U)◦(x), −m} +
1
n

.

(9.3)

Thus, since 〈−x∗
0, yn,U 〉 ≤ σU (−x∗

0)σU◦(yn,U ) ≤ σU◦(yn,U ) due to
(3.54), (9.2) entails

σ( 1
n

U)◦(yn,U ) ≤ max{f�σ( 1
n

U)◦(x), −m} +
1
n

+

+ 〈x∗
0, x〉 + α0 + σU◦(yn,U ) ≤ n

2
+ σU◦(yn,U ),

and we deduce that σU◦(yn,U ) = 1
nσ( 1

n
U)◦(yn,U ) ≤ 1

2 + 1
nσU◦(yn,U ), and

so σU◦(yn,U ) ≤ n
2(n−1) ≤ 1; that is, yn,U ∈ U. Next, since the set

N×N 0
X can be made a directed set through the partial order given

by (n1, U1) � (n2, U2) if and only if n1 ≤ n2 and U2 ⊂ U1, we infer
that the net (yn,U )n,U converges to θ. Consequently, using the second
inequality in (9.3), we get
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max {g(x), −m} ≥ max

{

sup
n≥1, U∈NX

(f�σ( 1
n

U)◦)(x), −m

}

≥ sup
n≥1, U∈N 0

X

max
{

(f�σ( 1
n

U)◦)(x), −m
}

≥ lim inf
n→∞, U∈N 0

X

(

f(x − yn,U ) + σ( 1
n

U)◦(yn,U ) − 1
n

)

≥ lim inf
n→∞

f(x − yn,U ) ≥ (cl f)(x).

Thus, letting m → +∞ we obtain that g(x) ≥ (cl f)(x). Since this
inequality obviously holds when g(x) = +∞, we deduce that cl f ≤
g ≤ f. Finally, by taking the closure in each side of these inequalities,
and remembering that g is lsc, we conclude that cl f = cl g = g.

Exercise 27: Because ∅ �= dom(cl f) ⊃ dom f and cl f is not proper,
cl f takes the value −∞, and so (αf)∗ = (α(cl f))∗ ≡ +∞ for all
α > 0. Thus, min

α≥0
(αf)∗ = (0f)∗ = (Idom f )∗ = σdom f . Moreover, since

(cl f)(x) = −∞ for all z ∈ cl(dom f) (�= ∅), we have that [cl f ≤ 0] =
cl(dom f). In addition, we must have that infX f < 0; otherwise, we
would have the contradiction −∞ = infX(cl f) = infX f ≥ 0. There-
fore, σ[f≤0] = σcl[f≤0] = σ[cl f≤0] = σcl(dom f) = σdom f , by Lemma 3.3.3
and the first statement follows. At the same time, since epi f∗ = ∅,
we deduce that epi σ[f≤0] = epi σdom f =

(
R

∗
+ epi f∗) ∪ epi σdom f , giv-

ing rise to the second statement.

Exercise 28: The current assumption implies that σA + σB = σA+B

≤ σA+C = σA + σC . Since A is bounded, σA is finite-valued and we
deduce σB ≤ σC . Then, Theorem 3.2.2 entails IcoC = (σC)∗ ≤ (σB)∗ =
(σcoB)∗ = IcoB, and we get B ⊂ coB ⊂ coC.

Exercise 29: First, we prove that [co(A1 + A2)]∞ ⊂ R+{e1}. Let
u := (ui)i≥1 ∈ [co(A1 + A2)]∞ = [co(A1 ∪ A2)]∞ , by Exercise 22, so
that −e1 + αu ∈ co(A1 ∪ A2) for all α > 0. Hence, for each α > 0,

u = α−1e1 + lim
k

(∑
j∈Jα,k

α−1λα,k,j(ije1 + 2ijeij
) −
∑

l∈Lα,k
α−1λα,k,lileil

)
,

where Jα,k and Lα,k are finite subsets of N, such that one of them
can be empty, and λα,k,j , λα,k,l are positive real numbers such that∑

j∈Jα,k
λα,k,j +

∑
l∈Lα,k

λα,k,l = 1.
Let us check that ui = 0 for all i ≥ 2, for instance, that u2 =

0. We distinguish two cases: a) First, if 2 /∈ Jα,k ∪ Lα,k for some
α > 0, then for infinitely many k, we get u2 = 0. b) If for each
α > 0, we have 2 ∈ Jα,k ∪ Lα,k eventually on k, then u2 = 0 + limk
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(∑

j∈Jα,k, ij=24α−1λα,k,j +
∑

l∈Lα,k, il=22α−1λα,k,l

)
and we deduce

that 0 ≤ u2 ≤ 6α−1; that is, u2 = 0 (by taking the limit as α → ∞).
Next, we prove that R+{e1} ⊂ [co(A1 + A2)]∞ or, equivalently, e1 ∈
[co(A1 + A2)]∞ . Suppose for the contrary that e1 /∈ [co(A1 + A2)]∞ .

Since, [co(A1 + A2)]∞ = (dom σA1+A2)
− , by (3.77), we find some z ∈

dom σA1+A2 (⊂ �∞) such that z1 := 〈z, e1〉 > 0. Observe that
dom σA1+A2 = dom(max(σA1 , σA2)), and so z ∈ dom(max(σA1 , σA2));
that is, σA1(z), σA2(z) ∈ R. More specifically, we have that σA1(z) =
supi≥1{iz1 + 2izi} and σA2(z) = supi≥1{−izi}. Hence,

σA1(z) = sup
i≥1

{iz1 + 2izi} ≥ sup
i≥1

{iz1} − sup
i≥1

{−2izi}

= sup
i≥1

{iz1} − 2σA2(z) = +∞,

and this constitutes a contradiction since σA1(z) < +∞.

Exercise 30: Since dom σA is a cone containing z, we write [coA]∞ ∩
{z}⊥ = (cl(dom σA))◦ ∩ (Rz)◦ = (dom σA)◦ ∩ (Rz)◦, and so

[coA]∞ ∩ {z}⊥ = ((dom σA) + Rz)◦ = ((dom σA) − R+z)◦ = NdomσA
(z).

Exercise 31: Since f is proper, we have that (inft∈T f∗
t )∗ =

supt∈T f∗∗
t = supt∈T ft = f ; hence f∗ = (inft∈T f∗

t )∗∗ = co (inft∈T f∗
t )

and
epi f∗ = co (∪t∈T epi f∗

t ) . Thus, since [epi f∗]∞ = epi(σdom f ),

Ndom f (x) = {x∗ ∈ X∗ : (x∗, 〈x∗, x〉) ∈ epi(σdom f )}

=

{

x∗ ∈ X∗ : (x∗, 〈x∗, x〉) ∈
[

co

(
⋃

t∈T

epi f∗
t

)]

∞

}

;

that is, (3.79) holds. Now we denote by E1(x) and E2(x) the sets
appearing in the right-hand sides of (3.78) and (3.79), respectively. To
prove the inclusion E2(x) ⊂ E1(x), observe that [co (∪t∈T gph f∗

t )]∞ ∩
(− [R+(θ, 1)]∞) = {(θ, 0)} and

co

( ⋃
t∈T

gph f∗
t

)
⊂ cl

[
co

( ⋃
t∈T

gph f∗
t

)
+ R+(θ, 1)

]
= co

( ⋃
t∈T

epi f∗
t

)
= epi f∗.

Thus, since f∗ is proper the set co (∪t∈T gph f∗
t ) + R+(θ, 1) is closed.

Whence,
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[

co

(
⋃

t∈T

epi f
∗
t

)]

∞

=

[

co

(
⋃

t∈T

gph f
∗
t

)

+ R+(θ, 1)

]

∞

=

[

co

(
⋃

t∈T

gph f
∗
t

)]

∞

+ R+(θ, 1).

Take x∗ ∈ E2(x), so that (x∗, 〈x∗, x〉) = (u∗, η + λ) for some (u∗, η) ∈
[co (∪t∈T gph f∗

t )]∞ and λ ≥ 0. Then, since

dom f × {−1} ⊂ dom (σepi f∗) ⊂ ([epi f∗]∞)−,

we obtain

dom f × {−1} ⊂ ([co (∪t∈T epi f∗
t )]∞)− ⊂ ([co (∪t∈T gph f∗

t )]∞)− ,

which yields 〈(u∗, η), (x,−1)〉 ≤ 0. In addition, we have x∗ = u∗ and so

λ = 〈(x∗, η), (x,−1)〉 = 〈(u∗, η), (x,−1)〉 ≤ 0;

that is, λ = 0, and so (x∗, 〈x∗, x〉) = (u∗, η) ∈ [co (∪t∈T gph f∗
t )]∞; that

is, x∗ ∈ E1(x).

Exercise 32: (a) If F �= ∅, then IF (x) ≥ f(x) for all x ∈ X, and
consequently, σF = I∗F ≤ f∗, entailing epi f∗ ⊂ epiσF . Then, as epi σF

is a closed convex cone, cl(cone(epi f∗)) ⊂ epi σF . Now, since (θ, −1) /∈
epi σF , we get (θ, −1) /∈ cl(cone(epi f∗)). Conversely, if (θ, −1) /∈
cl(cone(epi f∗)), by the separation theorem there will exist (x, λ) ∈
X × R such that 〈(θ, −1), (x, λ)〉 = −λ < 0 and

〈(x∗, α), (x, λ)〉 = 〈x∗, x〉 + αλ ≥ 0 for all (x∗, α) ∈ cl(cone(epi f∗)).
(9.4)

Now, if x := (1/λ)x, (9.4) yields 〈x∗, x〉 + α ≥ 0 for all (x∗, α) ∈
cl(cone(epi f∗)). Then, if x∗ ∈ dom f∗ (remember that f∗ ∈ Γ0(X∗)),
we have 〈x∗, x〉 + f∗(x∗) ≥ 0; equivalently, 〈x∗, −x〉 − f∗(x∗) ≤ 0.
Hence, f(−x) = f∗∗(−x) = supx∗∈dom f∗ {〈x∗, −x〉 − f∗(x∗)} ≤ 0 and
−x ∈ F.

(b) In (a), we proved the inclusion cl(cone epi f∗) ⊂ epiσF . To
establish the converse inclusion, suppose that (x∗, α) /∈ cl(cone epi f∗).
Also, from (a), we have that (θ, −1) /∈ cl(cone(epi f∗)). We consider
the segment B := co{(x∗, α), (θ, −1)} so that B ∩ cl(cone(epi f∗)) =
∅; otherwise, B ∩ cl(cone epi f∗) �= ∅ would yield δ0(x∗, α) + (1 − δ0)
(θ, −1) ∈ cl(cone(epi f∗)) for some δ0 ∈]0, 1[. Thus, since (θ, 1) ∈
cl(cone epi f∗), we deduce that

δ0(x∗, α) = δ0(x∗, α) + (1 − δ0)(θ,−1) + (1 − δ0)(θ, 1) ∈ cl(cone(epi f∗))
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and we get the contradiction (x∗, α) ∈ cl(cone(epi f∗)) as this set is a
cone. Next, taking into account that B is compact, we apply the sep-
aration theorem to conclude the existence of (x, ρ) ∈ X × R satisfying
〈(z∗, γ), (x, ρ)〉 ≥ 0, for all (z∗, γ) ∈ cl(cone(epi f∗)), and

〈δ(x∗, α) + (1 − δ)(θ, −1), (x, ρ)〉 = δ 〈x∗, x〉
+(δα − (1 − δ))ρ < 0 for all δ ∈ [0, 1],

(9.5)

In particular, ρ > 0 and 〈x∗, x〉 + αρ < 0; equivalently, 〈x∗, (1/ρ)
(−x)〉 > α. Additionally, it follows that 〈(z∗, f∗(z∗), ((1/ρ)(−x), −1)〉
≤ 0 for all z∗ ∈ dom f∗; i.e., 〈(z∗, (1/ρ)(−x)〉 − f∗(z∗) ≤ 0 for all z∗ ∈
dom f∗, entailing (1/ρ)(−x) ∈ F and

f((1/ρ)(−x)) = f∗∗((1/ρ)(−x)) = sup
z∗∈dom f∗

{〈z∗, (1/ρ)(−x)〉 − f∗(z∗)} ≤ 0.

Finally, σF (x∗) ≥ 〈x∗, (1/ρ)(−x)〉 > α and (x∗, α) /∈ epi σF , and the
inclusion epiσF ⊂ cl(cone(epi f∗)) is proved.

Exercise 33: Since f+ = max{f, 0} = supλ∈]0,1] λf and λf ∈ Γ0(X)
for all 0 < λ ≤ 1, Proposition 3.2.6 yields (f+)∗ = co(infλ∈]0,1](λf)∗).

Exercise 34: Let g : X∗ → R denote the function defined by

g(x∗) := inf

{

I{
Σ

1≤i≤k
γiai

}(x∗) +
∑

1≤i≤k

γibi : γ ∈ Δk

}

,

which is easily shown to be in Γ0(X∗), due to the compactness of Δk.
Also, the last infimum is attained, and so

g(x∗) = inf

{
∑

1≤i≤k

γibi :
∑

1≤i≤k

γiai = x∗, γ ∈ Δk

}

= min

{
∑

1≤i≤k

γibi :
∑

1≤i≤k

γiai = x∗, γ ∈ Δk

}

.

Then, by (3.10) and (2.45),

g∗(x) = sup

{〈
∑

1≤i≤k

γiai, x

〉

−
∑

1≤i≤k

γibi : γ ∈ Δk

}

= f(x),

and Theorem 3.2.2 leads us to f∗(x∗) = g∗∗ (x∗) = g (x∗) .
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Exercise 35: By the current assumption on A0,

sup
x∈A

f(x, y) = +∞ = sup
x∈A0

f(x, y) = +∞

for all y ∈ B, and the upper semicontinuity and concavity of the
functions f(·, y), y ∈ B, yield elements x(y) ∈ A, y ∈ B, such that
f(x(y), y) = +∞. Hence, the usc concave functions f(·, y), y ∈ B, are
non-proper (equivalently, the convex function −f(·, y) is non-proper)
and, consequently, they only take infinite values (either +∞ or −∞).
But, since we are also assuming that A0 �= ∅, we have f(x, y) > −∞
for all x ∈ A0 and y ∈ B, and so f(x, y) = +∞ for all x ∈ A0 and
y ∈ B. Therefore, using again the upper semicontinuity and concavity
assumptions on f ,

max
x∈A

inf
y∈B

f(x, y) = sup
x∈A

inf
y∈B

f(x, y)

≥ sup
x∈A0

inf
y∈B

f(x, y) = +∞ = inf
y∈B

sup
x∈A0

f(x, y),

and the proof is finished.

9.3 Exercises of chapter 4

Exercise 36: If m = infX f /∈ R, we have ε − argmin f = ∅, and so
σε−argmin f = −∞, which entails dom (σε−argmin f ) = X∗, and the inclu-
sion cone(dom f∗) ⊂ dom (σε−argmin f ) is trivially satisfied. Assume,
then, that m ∈ R. For any x∗ ∈ dom f∗, if we take x ∈ ε − argmin f ,
we have

〈x∗, x〉 ≤ f(x) + f∗(x∗) ≤ m + ε + f∗(x∗).

Therefore, σε−argmin f (x∗) ≤ m + ε + f∗(x∗) < +∞. Hence,

dom f∗ ⊂ dom (σε−argmin f )

and we are done since the set on the right-hand side is a cone.

Exercise 37: By (3.10), we have that

(f ′
ε(x; ·))∗ = sup

s>0

(
f(x + s·) − f(x) + ε

s

)∗

= sup
s>0

(
(
s−1f(x + s·)

)∗
+

f(x) − ε

s

)

.
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At the same time, we have
(

f(x + s·)
s

)∗
(x∗) = s−1 sup

z∈X
{〈x∗, x + sz〉 − f(x + sz)} − s−1 〈x∗, x〉

= s−1(f∗(x∗) − 〈x, x∗〉),

and we are done.

Exercise 38: Take u∗ ∈ Ndom f (x) and fix x∗
0 ∈ ∂εf(x). Then, for

every λ > 0, we have that 〈x∗
0 + λu∗, y − x〉 ≤ 〈x∗

0, y − x〉 ≤ f(y) −
f(x) + ε for all y ∈ dom f ; that is, x∗

0 + λu∗ ∈ ∂εf(x) and u∗ ∈
[∂εf(x)]∞ . Conversely, if u∗ ∈ [∂εf(x)]∞ , then 〈x∗

0 + λu∗, y − x〉 ≤
f(y) − f(x) + ε for all y ∈ dom f, λ ≥ 0 and, by dividing by λ and
making λ → +∞, we deduce that u∗ ∈ Ndom f (x).

Exercise 39: First, assume that X = R
n. If f is proper, then

ri(dom f) �= ∅ and ∂f(x) �= ∅ for all x ∈ ri(dom f). Hence, if
u ∈ ∂f(x) = ∂(cl f)(x), x ∈ ri(dom f), then cl f is minorized by the
(continuous) affine mapping f(x) + 〈u, · − x〉, and so it is proper. Con-
versely, if cl f is proper, then from the inequality f ≥ cl f , we deduce
that f is also proper. Now, consider the space c0 := {(xn)n≥1 : xn ∈ R,
xn → 0}, which is a subspace of �∞ such that (c0)∗ = �1, and define
the proper convex function f : c0 → R as

f(x) :=
{∑

n xn, x ∈ c00,
+∞, otherwise,

where c00 := {(xn)n≥1 : xn ∈ R, xn = 0 except for finitely many n’s}.
If cl f were proper, so that cl f ∈ Γ0(c0), then there would exist x∗ ∈ �1

and α ∈ R such that
∑

nx∗
nxn + α ≤ (cl f)(x) for all x ∈ c0 (by Theo-

rem 3.2.2). Because f is homogeneous, it can easily be seen that cl f
is positively homogeneous and we write

∑
nx∗

n(γxn) + α ≤ (cl f)(γx)
for all x ∈ c0 and all γ > 0 so that

∑
nx∗

nxn ≤ (cl f)(x) ≤
∑

nxn for
all x ∈ c00, by dividing over γ and after making γ ↑ ∞. In particular,
replacing x by en and −en, n ≥ 1, in the last inequality, we obtain that
x∗

n = 1 for all n ≥ 1, and we get the contradiction x∗ /∈ �1.

Exercise 40: (i) We may assume that x = θ ∈ f−1(R) ∩ g−1(R).
Let U ∈ NX such that f(z) = g(z) for all z ∈ U. Given x∗ ∈ ∂f(θ),
we get 〈x∗, z〉 ≤ f(z) − f(θ) = g(z) − g(θ) for all z ∈ U. Now, given
z ∈ X \ U, there exists some λ ∈ ]0, 1] such that λz ∈ U , and the last
inequality yields
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〈x∗, λz〉 ≤ g(λz) − g(θ) ≤ λg(z) + (1 − λ)g(θ) − g(θ) = λg(z) − λg(x).

Hence, dividing by λ, we get 〈x∗, z〉 ≤ g(z) − g(θ) and x∗ ∈ ∂g(θ). This
shows that ∂f(θ) ⊂ ∂g(θ), and by symmetry, we have the other inclu-
sion.

(ii) By the lower semicontinuity of f, there exists some U ∈ NX

such that f and g coincide on x + U, and the first assertion applies.

Exercise 41: (i) To simplify the proof, we take m = 2. Using (3.52),
(4.28), (4.1), and taking into account that R+(B ∩ C) = (R+B) ∩
(R+C), when B and C are convex sets containing θ, we get

([cl (∂ε1f1(x) + ∂ε2f2(x) + A∗(∂εg(Ax)))]∞)−

= cl(dom(σ∂ε1f1(x) + σ∂ε2f2(x) + σA∗(∂εg(Ax))))

= cl(dom(σ∂ε1f1(x) + σ∂ε2f2(x) + σ∂εg(Ax) ◦ A))

= cl
((

dom((f1)′
ε1

(x, ·)
)

∩
(
dom((f2)′

ε2
(x, ·)

)
∩ A−1(dom g′

ε(Ax, ·))
)

= cl
(
R+ (dom f1 − x) ∩ R+ (dom f2 − x) ∩ R+A−1(dom g − Ax)

)

= cl (R+ (dom f1 − x) ∩ R+ (dom f2 − x) ∩ R+(dom(g ◦ A) − x))
= cl (R+ (dom(f1 + f2 + g ◦ A) − x)) .

Whence the conclusion follows using (3.51).
(ii) It is enough to apply (3.72).

Exercise 42: For every ε > 0 and k ≥ 1, we have

∂εf(0) = {α ∈ R : αx ≤ x2 + ε for all x ∈ R} = [−2
√

ε, 2
√

ε],

Nε
[−1/k,1/k](0) = {α ∈ R : αx ≤ ε for all x ∈ [−1/k, 1/k]} = [−kε, kε].

Then, using (4.58), we have

∂ε(f + I[−1/k,1/k])(0) =
⋃

ε1+ε2=ε
ε1,ε2≥0

(∂ε1f(0) + Nε2

[−1/k,1/k](0))

=
⋃

ε1+ε2=ε
ε1,ε2≥0

([−2
√

ε1, 2
√

ε1] + [−kε2, kε2])

=
⋃

0≤ε1≤ε
[−2

√
ε1 − k(ε − ε1), 2

√
ε1 + k(ε − ε1)].
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In particular, taking ε1 = ε
2 , the assumption k > 2(2−

√
2)√

ε
yields

αk := 2
√

ε1 + k(ε − ε1) =
√

2ε + kε
2 > 2

√
ε, so that αk ∈

∂ε(f + I[−1/k,1/k])(0) \ ∂εf(0).

Exercise 43: (i) Obviously, z∗ ∈ [∂εf(x)]∞ if and only if x∗ + λz∗ ∈
∂εf(x) for all λ ≥ 0 and x∗ ∈ ∂εf(x); in other words,
f(y) ≥ f(x) + 〈x∗ + λz∗, y − x〉 − ε ∀y ∈ dom f, λ ≥ 0 and x∗ ∈
∂εf(x). With y and x∗ fixed, dividing by λ and taking limits for
λ ↑ ∞, we conclude that z∗ ∈ Ndom f (x). Conversely, for z∗ ∈ Ndom f (x)
and x∗ ∈ ∂εf(x), we can write, f(y) ≥ f(x) +
〈x∗, y − x〉 − ε ≥ f(x) + 〈x∗ + λz∗, y − x〉 − ε for any y ∈ dom f and
λ ≥ 0. In other words, x∗ + λz∗ ∈ ∂εf(x) for all λ ≥ 0, and z∗ ∈
[∂εf(x)]∞ .

(ii) Left to the reader.

Exercise 44: We prove first that (4.134) holds. It is clear that
epi f − (x, f(x)) ⊂ epi f ′(x; ·), and since f ′(x; ·) is sublinear,
R+(epi f − (x, f(x))) ⊂ epi f ′(x; ·). Conversely, for (u, λ) ∈ epi f ′(x; ·)
and δ > 0, there will exist t > 0 such that t−1(f(x + tu) − f(x)) < λ +
δ; that is, (u, λ + δ) ∈ t−1(epi f − (x, f(x))) ⊂ R+(epi f − (x, f(x)))
and (u, λ) ∈ cl R+(epi f − (x, f(x)) = R+(epi f − (x, f(x)). Thus,
epi f ′(x; ·) = R+(epi f − (x, f(x)) so that f ′(x; ·) is lsc. Consequently,
∂f(x) �= ∅ and (4.10) implies that f ′(x; ·) = σ∂f(x). Therefore, (cl f)(x)
= f(x) ∈ R and cl f is proper. Moreover, since

R+(epi(cl f) − (x, f(x))) = R+(cl(epi f) − (x, f(x)) = R+(epi f − (x, f(x)),

we infer that f ′(x; ·) = (cl f)′(x; ·) = σ∂(cl f)(x) = σ∂f(x).

Exercise 45: Consider a net (αi, (xi, λi))i ⊂ R+ × epi(f + g) such
that αi((xi, λi) − (x, f(x) + g(x)))) converges to some (u, μ) ∈ X ×
R; we shall prove that (u, μ) ∈ R+(epi(f + g) − (x, f(x) + g(x))). If
(u, μ) = (θ, 0), we are done, and therefore, we shall examine only
the cases u �= θ or u = θ, μ �= 0. Obviously, the net αi(xi − x) con-
verges to u and αi(λi − f(x) − g(x)) converges to μ. If y∗ ∈ ∂f(x) and
z∗ ∈ ∂g(x) (due to Exercise 44, ∂f(x) and ∂g(x) are both non-empty),
by taking into account that f(xi) + g(xi) ≤ λi, we can easily prove
that
〈
y∗, αi(xi − x)

〉 ≤ αi(f(xi) − f(x)) ≤ αi(λi − f(x) − g(x)) − 〈z∗, αi(xi − x)
〉

,

and so, for every ε > 0, the net αi(f(xi) − f(x)) is eventually con-
tained in the interval [〈y∗, u〉 − ε, μ − 〈z∗, u〉 + ε]. Similarly, the net
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αi(g(xi) − g(x)) is eventually contained in the interval [〈z∗, u〉 − ε, μ −
〈y∗, u〉 + ε]. Therefore, we may suppose that the (eventually bounded)
nets (αi(f(xi) − f(x)))i and (αi(g(xi) − g(x)))i converge to some
μ1, μ2 ∈ R, respectively. Moreover, we have αi(f(xi) − f(x)) +
αi(g(xi) − g(x)) ≤ αi(λi − f(x) − g(x)) for every i, entailing μ1 + μ2 ≤
μ. In other words, αi((xi, f(xi) − (x, f(x))) → (u, μ1) and αi((xi, g(xi) −
(x, g(x))) → (u, μ2). Thus, by the current assumption, there are γ1, γ2 ≥
0 such that (u, μ1) ∈ γ1(epi f − (x, f(x))) and (u, μ2) ∈
γ2(epi g − (x, g(x))). If the scalars γ1 and γ2 are positive, so that
(u, μ1) �= (θ, 0) and (u, μ2) �= (θ, 0), by the convexity of the sets epi f −
(x, f(x)) and epi g − (x, g(x)) and the fact that they contain (θ, 0), we
may assume that γ1 = γ2 ≥ 1. Then, denoting γ := γ1 = γ2, we con-
clude that (x, f(x)) + γ−1(u, μ1) ∈ epi f and (x, g(x)) + γ−1(u, μ2) ∈
epi g. This relation is also valid if (u, μ1) = (θ, 0) or (u, μ2) = (θ, 0).
Hence,

f(x + γ−1u) + g(x + γ−1u) ≤ f(x) + γ−1μ1 + g(x) + γ−1μ2

≤ f(x) + g(x) + γ−1μ.

Therefore, (x + γ−1u, f(x) + g(x) + γ−1μ) ∈ epi(f + g), and so
(u, μ) ∈ γ(epi(f + g) − (x, f(x) + g(x))).

Exercise 46: We have that x∗ ∈ ∂(f ◦ A)(x) if and only if 〈x∗, z − x〉
≤ f(Az) − f(Ax) for every z ∈ X; hence, if and only if 〈x∗, z − x〉 ≤
f(y) + Igph A(z, y) − f(Ax) for every (z, y) ∈ X × Y, if and only if
〈(x∗, θ), (z − x, y − Ax)〉 ≤ g(z, y) + h(z, y) − g(x, Ax) − h(x, Ax) for
every (z, y) ∈ X × Y. In other words, x∗ ∈ ∂(f ◦ A)(x) if and only if
(x∗, θ) ∈ ∂(g + h)(x, Ax).

Exercise 47: If x∗ ∈ ∂εf(x) with ε ≥ 0, we have
s−1(f(x + su) − f(x) + ε) ≥ 〈x∗, u〉 for all u ∈ X and s > 0, and so

f ′(x; u) − f ′(x; θ) = f ′(x; u) = inf
s>0

f(x + su) − f(x) + ε

s
≥ 〈x∗, u〉 ,

entailing x∗ ∈ ∂(f ′
ε(x; ·))(θ). Conversely, if x∗ ∈ ∂(f ′

ε(x; ·))(θ), we have
f(x + u) − f(x) + ε ≥ f ′

ε(x; u) ≥ f ′
ε(x; θ) + 〈x∗, u〉 = 〈x∗, u〉 for all u ∈

X and x∗ ∈ ∂εf(x). Moreover, u ∈ dom f ′
ε(x; ·) if and only if

infs>0 s−1(f(x + su) − f(x) + ε) ≤ +∞, if and only if there exists s0 >
0 such that f(x + s0u) ∈ R; i.e., if and only if u ∈ (1/s0)(dom f − x) ⊂
R+(dom f − x).
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Exercise 48: We start the proof by assuming that m = 1, where the
current hypothesis yields the existence of some x0 ∈ dom f0 such that
f1(x0) < 0. Let us define the function F : X × R → R∞ by F (x, y) :=
f0(x) + I[f1≤y1](x). We are going to apply Corollary 4.2.5 to F and
the dual pair (X × R, X∗ × R) given via the linear pairing 〈(x∗, y∗),
(x, y)〉 = 〈x∗, x〉 + y∗y, where y∗y is the inner product in R. It is clear
that infx∈X F (x, 0) = inf [f1≤0] f0 and F ∈ Γ0(X × R). Moreover, we
have

F ∗(θ, y∗) = sup{y∗y − F (x, y) : x ∈ X, y ∈ R}
= sup{y∗y − f0(x) : x ∈ X, f1(x) ≤ y},

so that F ∗(θ, y∗) = +∞ if y∗ > 0 and otherwise, when y∗ ≤ 0,

F ∗(θ, y∗) = sup
x∈X

{y∗f1(x) − f0(x)} = − inf
x∈X

{f0(x) − y∗f1(x)}.

Therefore, because infx∈X F (x, 0) ≤ F (x0, 0) = f0(x0) < +∞ and
F (x0, ·) is continuous at y0 = 0 ∈ R, as a consequence of Proposition
2.2.6, Corollary 4.2.5 entails

inf
[f1≤0]

f0 = − min
y∗∈R

F ∗(θ, y∗)

= − min
y∗≤0

(

− inf
x∈X

{f0(x) − y∗f1(x)}
)

= max
λ≥0

inf
x∈X

{f0(x) + λf1(x)}.

Now, to deal with the general case of m constraints, we write
inf [max1≤i≤m fi≤0] f0 = inf [fm≤0] f0(x) + I[f1≤0](x) + . . . + I[fm−1≤0](x),
and the first part of the proof yields some λm ≥ 0 such that

inf
[f1≤0]

f0 = inf
x∈X

{f0(x) + I[f1≤0](x) + . . . + I[fm−1≤0](x) + λmfm(x)}.

Thus, the conclusion follows by successively applying this argument.

Exercise 49: To verify the inclusion (4.135), in the non-trivial case,
take x∗ ∈ ∂ε1f(x) ∩ ∂ε2g(y). For every z, z1, z2 ∈ X such that z1 +
z2 = z, we have 〈x∗, z1 − x〉 ≤ f(z1) − f(x) + ε1 and 〈x∗, z2 − y〉 ≤
g(z2) − g(y) + ε2 and, by summing up, we get

〈x∗, z − (x + y)〉 ≤ f(z1) + g(z2) − f(x) − g(y) + ε1 + ε2 (9.6)
≤ f(z1) + g(z2) − (f�g)(x + y) + ε1 + ε2; (9.7)
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in particular, taking the infimum over z1 and z2 in (9.6), we get

(f�g)(x + y) ≥ f(x) + g(y) − ε1 − ε2.

Moreover, after taking the infimum over z1 and z2 in (9.7),

〈x∗, z − (x + y)〉 ≤ inf
z1+z2=z

(f(z1) + g(z2)) − (f�g)(x + y) + ε1 + ε2

= (f�g)(z) − (f�g)(x + y) + ε1 + ε2,

that is, x∗ ∈ ∂ε1+ε2(f�g)(x + y).
Suppose now that (f�g)(x + y) ≥ f(x) + g(y) − ε and take x∗ ∈

∂δ(f�g)(x + y). Then, for all z ∈ X,

(f�g)(z) ≥ (f�g)(x + y) + 〈x∗, z − (x + y)〉 − δ

≥ f(x) + g(y) + 〈x∗, z − (x + y)〉 − δ − ε.

Then

f(z − y) + g(y) ≥ (f�g)(z) ≥ f(x) + g(y) + 〈x∗, z − (x + y)〉 − δ − ε,
(9.8)

in other words, since y ∈ dom g, we deduce that f(z − y) ≥ f(x) +
〈x∗, (z − y) − x〉 − δ − ε for all z ∈ X, implying that x∗ ∈ ∂δ+εf(x).
Analogously, we show that x∗ ∈ ∂δ+εg(y).

Finally, if x∗ ∈ ∂(f�g)(x + y) and (xn, yn)n satisfies xn + yn = x +
y and f(xn) + g(yn) ≤ (f�g)(x + y) + 1

n , we write, for all z ∈ X,

(f�g)(z) ≥ (f�g)(x + y) + 〈x∗, z − (x + y)〉

≥ f(xn) + g(yn) + 〈x∗, z − (x + y)〉 − 1
n

.

Thus, if y∗ ∈ ∂f(x) ∩ ∂g(y), we have

(f�g)(z) ≥ f(x) + g(y) + 〈y∗, (xn + yn) − (x + y)〉 + 〈x∗, z − (x + y)〉 − 1
n

= f(x) + g(y) + 〈x∗, z − (x + y)〉 − 1
n

.

Taking limits for n → ∞, one gets (9.8), and the proof is finished as
above.

Exercise 50: Since f is proper, its extension f̂ is also proper. Then,
by Proposition 4.1.14, we have
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∂(clw
∗∗

f̂)(z) =
⋂

ε>0
U∈NX∗∗

⋃

y∈z+U

∂εf̂(y),

and the definition of f̂ together with the identification of X as a sub-
space of X∗∗ yields

∂(clw
∗∗

f̂)(z) =
⋂

ε>0
U∈NX∗∗

⋃

y∈z+U, y∈X

∂εf(y).

Consequently, again by Proposition 4.1.14,

(
∂(clw

∗∗
f̂)

)−1

(x∗) =
⋂

ε>0

clw
∗∗

((∂εf̂)−1(x∗)) =
⋂

ε>0

clw
∗∗

((∂εf)−1 (x∗)).

Exercise 51: Given convex functions f : X → R, g : Y → R, and a
continuous linear mapping A : X → Y, we suppose that g is finite and
continuous at some point of the form Ax0 with x0 ∈ dom f. We define
the convex function F : X × Y → R∞ by F (x, y) := f(x) + g(Ax + y),
so that F (x0, ·) is finite and continuous at θ. Therefore, by Proposition
4.1.24, the conjugate of the function ϕ(x) := F (x, θ) is computed as
ϕ∗ = miny∗∈Y ∗ F ∗(·, y∗), where F ∗ is expressed as, for all x∗ ∈ X∗ and
y∗ ∈ Y ∗,

F ∗(x∗, y∗) = sup
x∈X, y∈Y

{〈x∗, x〉 + 〈y∗, y − Ax〉 − f(x) + g(y)}

= f∗(x∗ − A∗y∗) + g∗(y∗).

Thus, taking into account (4.44), we infer that
ϕ∗(x∗) = miny∗∈Y ∗{f∗(x∗ − A∗y∗) + g∗(y∗)} for all x∗ ∈ X∗. More-
over, using the same arguments (taking, for example, f ≡ 0), we
show that the conjugate of the function (g ◦ A) satisfies (g ◦ A)∗(x∗) =
miny∗∈Y ∗, A∗y∗=x∗ g∗(y∗) = (A∗g∗)(x∗) for all x∗ ∈ X∗, proving (4.56).

Exercise 52: Formula (4.136) follows easily from (4.137), because

∂(f ◦ A)(x) =
⋂

δ>0

∂δ(f ◦ A)(x) =
⋂

δ>0

cl (A∗
0∂δf(Ax)) ,

and so, we only need to show (4.137). With this aim, we introduce
the continuous linear mapping Â : X × R → Y defined by Â(x, λ) :=
A0x + λb, and the proper lsc convex function h : X × R → R∞ defined
by h := f ◦ Â. Hence, for every given x ∈ X and ε > 0, by Propo-
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sition 4.1.16, we have ∂εh(x, 1) = cl
(
Â∗∂εf(A0x + b)

)
, where Â∗ :

Y ∗ → X∗ × R is the adjoint of Â, satisfying for every (x, λ) ∈ X × R

〈
(x, λ), (Â)∗y∗

〉
= 〈A0x + λb, y∗〉

= 〈x,A∗
0y

∗〉 + λ 〈b, y∗〉 = 〈(x, λ), (A∗
0y

∗, 〈b, y∗〉)〉 ,

that is, (Â)∗y∗ = (A∗
0y

∗, 〈b, y∗〉). In other words,

∂εh(x, 1) = cl {(A∗
0y

∗, 〈b, y∗〉) : y∗ ∈ ∂εf(A0x + b)} .

At the same time, taking into account (4.28), for every u ∈ X

σ∂εh(x,1)(u, 0) = h′
ε((x, 1); (u, 0)) = inf

s>0

h((x, 1) + s(u, 0)) − h(x, 1) + ε

s

= inf
s>0

f(A0(x + su) + b) − f(A0x + b) + ε

s
= σ∂ε(f◦A)(x)(u),

and we get

σ∂ε(f◦A)(x)(u) = σ{(A∗
0y∗,〈b,y∗〉):y∗∈∂εf(A0x+b)}(u, 0) = σA∗

0∂εf(A0x+b)(u).

The last relation leads us, due to Corollary 3.2.9, to ∂ε(f ◦ A)(x)
= cl (A∗

0∂εf(A0x + b)) .

Exercise 53: Define the functions f := IL and g := IM ◦ A. Then
f ∈ Γ0(X), g ∈ Γ0(Y ), and θ ∈ dom f ∩ A−1(dom g), and we verify
that x∗ ∈ (L ∩ A−1(M))− if and only if 〈x∗, x〉 ≤ 0 for all x ∈ L ∩
A−1(M), if and only if 〈x∗, x〉 ≤ IL(x) + IM ◦ A(x) for all x ∈ X. In
other words, using formula (4.45) in Proposition 4.1.16, we obtain

(L ∩ A−1(M))− = ∂(IL + IM ◦ A)(θ)

=
⋂

ε>0

cl

⎛
⎜⎝ ⋃

ε1+ε2=ε
ε1,ε2≥0

(∂ε1f(θ) + A∗∂ε2g(Aθ))

⎞
⎟⎠ = cl

(
L− + A∗(M−)

)
.

Exercise 54: Denote f := σA. Since cl(dom f) = [(coA)∞]− by
(3.52), for each x ∈ dom f , we have

Ndom f (x) = Ncl(dom f)(x)

= (cl(R+ (cl(dom f) − x)))− =
(
[(coA)∞]− − x

)−
.
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But we have ([(coA)∞]− − x)− = ([(coA)∞]− − R+x)−
, and so Corol-

lary 3.3.6 together with Exercise 53 ensures that ([(coA)∞]− − R+x)− =
(coA)∞ ∩ {−x}−; that is, Ndom f (x) = (coA)∞ ∩ {−x}−. Moreover,
any y ∈ (coA)∞ ∩ {−x}− satisfies y ∈ (coA)∞ = ([(coA)∞]−)− =
(dom f)−; that is, 0 ≤ 〈y, x〉 ≤ 0 as x ∈ dom f, and we conclude that
y ∈ (coA)∞ ∩ {x}⊥.

Exercise 55: (i) We have

x∗ ∈ ∂εf(x) ⇒ 〈x∗, y − x〉 ≤ f(y) − f(x) + ε for all y ∈ X

⇒
〈
x∗

|L, y − x
〉

= 〈x∗, y − x〉 ≤ f|L(y) − f|L(x) + ε for all y ∈ L

⇒ x∗
|L ∈ ∂εf|L(x).

Suppose now that dom f ⊂ L. If z∗ ∈ ∂εf|L(x), then 〈z∗, y − x〉 ≤
f|L(y) − f|L(x) + ε = f(y) − f(x) + ε for all y ∈ L. Consequently, for
every extension x∗ of z∗ to X, the inclusion dom f ⊂ L yields 〈x∗, y − x〉
≤ f(y) − f(x) + ε for all y ∈ X, and so x∗ ∈ ∂εf(x). Relation (4.139)
follows from (4.138) as dom(f + IL) ⊂ L. To prove (4.140), take z∗ ∈
∂ε(f + IL)(x). Then z∗

|L ∈ ∂(f + IL)|L(x), by (4.139), and we obtain
z∗ = z∗ + θ ∈ {x∗ + L⊥ : x∗

|L ∈ ∂ε(f + IL)|L(x)}.

Conversely, if z∗ ∈ x∗ + L⊥ with x∗
|L ∈ ∂ε(f + IL)|L(x), then for all z ∈

L, we get

〈x∗, z − x〉 = 〈x∗
|L, z − x〉 ≤ (f + IL)|L(z) − (f + IL)|L(x) + ε

= (f + IL)(z) − (f + IL)(x) + ε;

that is, z∗ ∈ ∂ε(f + IL)(x) + L⊥ ⊂ ∂ε(f + IL)(x).
(ii) By (4.140), we have

∂(f + g + IL)(x) = {x∗ + L⊥ : x∗
|L ∈ ∂(f|L + g|L)(x)}

= {x∗ + L⊥ : x∗
|L ∈ ∂f|L(x) + ∂g|L(x)}

= {x∗ + L⊥ : x∗
|L = z̃∗

1 + z̃∗
2 , z̃∗

1 ∈ ∂f|L(x), z̃∗
2 ∈ ∂g|L(x)}.

Then, using (4.139), for z̃∗
1 and z̃∗

2 there are z∗
1 ∈ ∂(f + IL)(x) and

z∗
2 ∈ ∂(g + IL)(x) such that z̃∗

1 = z∗
1|L and z̃∗

2 = z∗
2|L. Hence,

∂(f + g + IL)(x) = {x∗ + L⊥ : x∗
|L = z∗

1|L + z∗
2|L, z∗

1 ∈ ∂(f + IL)(x), z∗
2 ∈ ∂(g + IL)(x)}

= {x∗ + L⊥ : x∗ ∈ ∂(f + IL)(x) + ∂(g + IL)(x) + L⊥}

= ∂(f + IL)(x) + ∂(g + IL)(x) + L⊥.
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(iii) Given x ∈ L ∩ M , we pick x∗ ∈ ∂(f + g + IL∩M )(x). Since (f +
IL + g)|M is also the restriction of the function f + g + IL∩M to M, by
part (i) and (4.141), we obtain

x∗
|M ∈ ∂(f + IL + g)|M (x) = ∂(f + IL)|M (x) + ∂g|M (x).

Let u∗ ∈ ∂(f + IL)|M (x) and v∗ ∈ ∂g|M (x) such that x∗
|M = u∗ + v∗.

Then, since (f + IL)|M is the restriction of f + IL∩M to M and
dom(f + IL∩M ) ⊂ M, by (i) we find ẑ∗ ∈ ∂(f + IL∩M )(x) such that
ẑ∗
|M = u∗. Similarly, we find y∗ ∈ ∂(g + IM )(x) such that y∗

|M = v∗.

More precisely, arguing similarly, since ẑ∗
|L ∈ ∂(f + IM )|L(x) = ∂(f +

IL)|L(x) + ∂ (IM )|L (x), by (4.142), we find z̃∗ ∈ ∂(f + IL)|L(x) and
w∗ ∈ ∂ (IM )|L (x) satisfying ẑ∗

|L = z̃∗ + w∗, together with z∗ ∈ ∂(f +
IL)(x) such that z∗

|L = z̃∗. In particular, we have

〈x∗, z〉 = 〈u∗ + v∗, z〉 = 〈ẑ∗ + y∗, z〉
= 〈z̃∗ + y∗, z〉 = 〈z∗ + y∗, z〉 for all z ∈ L ∩ M,

which, using the relation (L ∩ M)⊥ = cl(L⊥ + M⊥) (see Exercise 53),
entails x∗ ∈ ∂ (f + IL) (x) + ∂(g + IM )(x) + cl(L⊥ + M⊥). This finishes
the proof of (iii) as the opposite inclusion is straightforward.

The statement in (iv) follows by applying statement (i) to the indi-
cator function of A.

Exercise 56: For the sake of simplicity, as in the proof of (4.58)
in Proposition 4.1.26, we prove (4.56) when ε = 0, m = n, A is the
identity mapping, and θ ∈ dom f ∩ dom g. Take x∗ ∈ R

n. Then, due to
Proposition 4.1.16, we have (f + g)∗(x∗) = cl(f∗�g∗)(x∗), and so by
Proposition 3.1.4, we may assume that (f + g)∗(x∗) ∈ R; otherwise,
+∞ = (f + g)∗(x∗) = cl(f∗�g∗)(x∗) and (4.56) obviously holds.

Arguing as in the proof of (4.58) in Proposition 4.1.26, we denote
E := span(dom g), and consider the restrictions f̃ and g̃ of the func-
tions f + IE and g to the subspace E, respectively. By the current
assumption, we can show that g̃ is (finite and) continuous some-
where in dom f̃ , and Proposition 4.1.20 together with the Banach
extension theorem implies the existence of some y∗, z∗ ∈ R

n such that
x∗ ∈ y∗ + z∗ + E⊥ and

(f + g)∗(x∗) = (f̃ + g̃)∗(x∗
|E) =

(
f̃∗�g̃∗

)
(x∗

|E) = (f + IE)∗(y∗) + g∗(z∗). (9.9)
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Similarly, we denote F := span(dom f) and consider the restrictions f̂

and ÎE∩F of the functions f and IF∩E to F, respectively. Then we can
show that f̂ is continuous at x0 ∈ dom ÎE∩F , and therefore, as above,
we find some u∗, v∗ ∈ R

n such that y∗ ∈ u∗ + v∗ + F⊥ and

(f + IE)∗(y∗) = (f̂ + ÎE∩F )∗(y∗
|F ) =

(
f̂∗�Î∗E∩F

)
(y∗

|F )

= f∗(u∗) + I∗E∩F (v∗) = f∗(u∗) + IE⊥+F ⊥(v∗), (9.10)

where the last equality comes from the relation I∗
E∩F = σE∩F = I(E∩F )⊥ ,

and the identity (E ∩ F )⊥ = cl(E⊥ + F⊥) = E⊥ + F⊥ (see Exercise
53). Therefore, combining (9.9) and (9.10), we get (f + g)∗(x∗) =
f∗(u∗) + IE⊥+F ⊥(v∗) + g∗(z∗). But we have (f + g)∗(x∗) ∈ R, and so
we must have IE⊥+F ⊥(v∗) = 0, which implies that v∗ ∈ E⊥ + F⊥. So,
x∗ ∈ y∗ + z∗ + E⊥ ⊂ u∗ + v∗ + F⊥ + z∗ + E⊥ = u∗ + z∗ + E⊥ + F⊥.
Let x∗

1 ∈ u∗ + F⊥ and x∗
2 ∈ z∗ + E⊥ such that x∗

1 + x∗
2 = x∗. Then, by

the definition of the conjugate, we easily check that f∗(u∗) = f∗(x∗
1)

and g∗(z∗) = g∗(x∗
2), and Proposition 4.1.20 imply that f∗(x∗

1) +
g∗(x∗

2) = (f + g)∗(x∗) = cl(f∗�g∗)(x∗) ≤ (f∗�g∗)(x∗); that is, (4.56)
holds.

Exercise 57: Observe that A + NC(x) = ∂σA(θ) + ∂IR+(C−x)(θ).
Also, since the function IR+(C−x) is continuous at some point in
dom σA, by (4.58), we obtain that A + NC(x) = ∂σA(θ) +
∂IR+(C−x)(θ) = ∂(σA + IR+(C−x))(θ), which yields the closedness of
A + NC(x).

Exercise 58: Fix x := (xn) ∈ �1 such that xn > 0 for all n ≥ 1. If
x∗ ∈ ∂g(x), then taking ek := (0, · · · , 0, 1(k), 0, · · · ) ∈ �1 we see that,
for all t ∈ R sufficiently small,

tx∗
k = 〈x∗, (x + tek) − x〉 ≤ g(x + tek) − g(x)

= ‖x + tek‖
1
− ‖x‖
1

= |xk + t| − |xk| = t.

Thus, x∗
k = 1 and we deduce that ∂g(x) ⊂ {(1, 1, . . .)}. Therefore,

since g is continuous, we have ∂g(x) �= ∅ (Proposition 4.1.22), and so
∂g(x) = {(1, 1, . . .)}.

Exercise 59: See the bibliographical notes of chapter 4.

Exercise 60: (i) We have int(dom f) ⊂ int(dom g). Also, we have
for all x ∈ int(dom f)

∅ �= ∂f(x) ∩ ∂g(x) ⊂ ∂f(x) ∩ (∂g(x) + Ndom f (x)) ⊂ ∂f(x) ∩ ∂(g + Idom f )(x).
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But g̃ := g + Idom f ∈ Γ0(X) and so, since int(dom g̃) = int(dom g) ∩
int(dom f) ⊂ int(dom f), the conclusion follows by applying Proposi-
tion 4.4.5 with f and g̃.

(ii) The current assumption implies that dom f = dom f ⊂ dom g.
Also, for all x ∈ dom f and 0 < ε ≤ ε0, we have

∅ 
= ∂εf(x) ∩ ∂εg(x) ⊂ ∂εf(x) ∩ (∂εg(x) + Ndom f (x)) ⊂ ∂εf(x) ∩ ∂ε(g + Idom f )(x).

Hence, g̃ := g + Idom f ∈ Γ0(X) and dom g̃ = dom g ∩ dom f ⊂ dom f,
and so the conclusion follows by applying Corollary 4.4.7 with f and
g̃.

Exercise 61: We may assume that θ ∈ dom f, so that
Y := aff(dom f) = span(dom f) is a finite-dimensional Banach space.
We consider the functions f1 := f|Y and g1 := (g + IY )|Y , so that
f1, g1 ∈ Γ0(Y ) and the current assumption together with Exercise 55(i)
implies that, for all y ∈ Y,

∂f1(y) =
{

x∗
|Y : x∗ ∈ ∂f(y)

}
⊂
{

x∗
|Y : x∗ ∈ ∂g(y)

}
. (9.11)

But, since g ≤ g + IY and the two functions coincide on Y, we have
that

{
x∗

|Y : x∗ ∈ ∂g(y)
} ⊂ {

x∗
|Y : x∗ ∈ ∂(g + IY )(y)

}
= ∂g1(y) for all y ∈ Y,

where the last equality comes again by Exercise 55(i), and so (9.11)
reads ∂f1(y) ⊂ ∂g1(y) for all y ∈ Y. Then, applying Proposition 4.4.8
in Y, there exists some c ∈ R such that f1(y) = g1(y) + c for all y ∈ Y,
entailing that f(y) = g(y) + c for all y ∈ Y.

Exercise 62: Take x∗ ∈ ∂εf(x). Then f(x) ∈ R and 〈x∗, y − x〉 +
f(x) ≤ f(y) + ε for all y ∈ X. Thus, the function cof satisfies the same
inequality, and so. (cof)(x) ≥ f(x) − ε as the affine function 〈x∗, ·〉 −
〈x∗, x〉 + f(x) − ε is an affine minorant of f + ε.

Exercise 63: If x∗ ∈ ∂(cof)(x)−f(x)+ε(cof)(x), then we can write, for
all y ∈ X,

f(y) ≥ (cof)(y) ≥ (cof)(x) + 〈x∗, y − x〉 − ((cof)(x) − f(x) + ε)
= f(x) + 〈x∗, y − x〉 − ε,
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and x∗ ∈ ∂εf(x). Conversely, if x∗ ∈ ∂εf(x), for all y ∈ X, the contin-
uous affine function h := 〈x∗, ·〉 − (〈x∗, x〉 − f(x) + ε) is a minorant of
f and this entails cof ≥ h, in other words, for all y ∈ X,

(cof)(y) ≥ h(y) = 〈x∗, y − x〉 − (−f(x) + ε)
= (cof)(x) + 〈x∗, y − x〉 − ((cof)(x) − f(x) + ε)),

i.e., we are done. Additionally, since cof ∈ Γ0(X), one has ∂η(cof)(x) �=
∅ for all η > 0, and we deduce from the first part that f is ε-
subdifferentiable for each ε > f(x) − (cof)(x). Finally, ∂εf(x) �= ∅ for
all ε > 0 if and only if (cof)(x) − f(x) + ε for all ε > 0, if and only if
(cof)(x) − f(x) = 0.

Exercise 64: We have h(x∗) = inft∈T (f∗
t (x∗) − 〈x∗, x〉) + f(x) ≥

inft∈T (−ft(x)) + f(x) = 0 and

h∗(z) = sup
t∈T

(f∗
t − 〈·, x〉 + f(x))∗(z) = sup

t∈T
sup

x∗∈X∗
{〈x∗, z〉 − f∗

t (x∗) + 〈x∗, x〉 − f(x)}

= sup
t∈T

{
sup

x∗∈X∗
(〈x∗, x + z〉 − f∗

t (x∗)) − f(x)

}
= sup

t∈T
{f∗∗

t (x + z) − f(x)}

= sup
t∈T

{ft(x + z) − f(x)} .

Finally, if h(x∗) < ε, there must exist t0 ∈ T such that f∗
t0(x

∗) −
〈x∗, x〉 + f(x) < ε, and from this we get −ft0(x) + f(x) ≤ (f∗

t0(x
∗) −

〈x∗, x〉) + f(x) < ε and f∗
t0(x

∗) − 〈x∗, x〉 + ft0(x) ≤ f∗
t0(x

∗) − 〈x∗, x〉 +
f(x) < ε; that is, t0 ∈ Tε(x) and x∗ ∈ ∂εft0(x).

Exercise 65: Take f := IBX
. Then f∗ = ‖·‖X∗ , (f∗)∗ = IBX∗∗ and

Theorem 4.3.3 gives rise to IBX∗∗ = (f∗)∗ = clw
∗∗

(f̂) = clw
∗∗

(IBX
) =

Iclw∗∗
(BX), where f̂ is defined in (4.103).

Exercise 66: By Proposition 4.1.14, we have for all x ∈ X and ε ∈
(0, δ/2)

∂ε(cl f)(x) =
⋂

0<γ<δ/2, V ∈NX

⋃

y∈V

∂ε+γf(x + y)

⊂
⋂

0<γ<δ/2, V ∈NX

⋃

y∈V

∂ε+γg(x + y) = ∂ε(cl g)(x).

Thus, since cl f ∈ Γ0(X) thanks to Proposition 3.1.4 (as (cl f)∗ = f∗ ∈
Γ0(X)), Proposition 4.4.6 yields the existence of some c such that
cl f = cl g + c.
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9.4 Exercises of chapter 5

Exercise 67: (i) It is clear that supi gi = f, so that supi cl gi ≤
supi gi = f, and hence supi(cl gi) ≤ cl f = cl(supi gi). Conversely, since
cl gi ≥ supt∈Ti

(cl ft), we obtain the other inequality, supi(cl gi) ≥ supi

supt∈Ti
(cl ft) = supt∈T (cl ft) = cl f = cl(supi gi). Now, concerning the

validity of (5.26) under the following condition cl f = sup{
cl ft, t ∈ Tε0(x); cl(supt∈T\Tε0 (x) ft)

}
, for some given ε0 > 0, we only

need to apply Theorem 5.2.2 to the family gt := ft, t ∈ Tε0(x), g1 :=
supt∈T\Tε0 (x) ft. Indeed, setting I := Tε0(x) ∪ {1} , with 1 being a new
index, we have that

∂f(x) = ∂(supi gi)(x) =
⋂

L∈F(x),0<ε<ε0

co
{⋃

t∈Iε(x)∂εgi(x) + NL∩dom f (x)
}

,

where Iε(x) := {i : gi(x) ≥ f(x) − ε} . Since for 0 < ε < ε0 we have
f(x) − ε > f(x) − ε0 ≥ supt∈T\Tε0 (x) ft(x) = g1(x), it follows that 1 /∈
Iε(x); that is, Iε(x) = Tε(x) and the last relation simplifies to

∂f(x) =
⋂

L∈F(x), ε>0

co
{⋃

t∈Tε(x)∂εft(x) + NL∩dom f (x)
}

.

(ii) Fix a convex set A ⊃ dom f. Assume first that ft ∈ Γ0(X) for all
t ∈ T. Then we have

sup
t∈T, x∗∈dom f∗

t

cl (x∗ − f∗
t (x∗) + IA) = sup

t∈T, x∗∈dom f∗
t

{
x∗ − f∗

t (x∗) + IA
}

= sup
t∈T

{
ft + IA

}
= f + IA = f = cl f = cl(f + IA),

which shows that the family {x∗ − f∗
t (x∗) + IA : t ∈ T, x∗ ∈ dom f∗

t },
whose supremum is f + IA, satisfies (5.10). Thus, by (i), the family

{ft + IA, t ∈ T} =

{

sup
x∗∈dom f∗

t

{x∗ − f∗
t (x∗) + IA} , t ∈ T

}

satisfies (5.10). Now, we suppose that cl ft ∈ Γ0(X) for all t ∈ T, so
that the last paragraph gives us

supt∈T cl((cl ft) + IA) = cl(supt∈T (cl ft) + IA) = cl((cl f) + IA).

Consequently, using the relations A ⊃ dom f ⊃ dom(cl f),
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supt∈T cl(ft + IA) ≥ supt∈T cl((cl ft) + IA) = cl((cl f) + IA) ≥ cl((cl f) + IA) = (cl f),

and so

supt∈T cl(ft + IA) ≥ cl f = cl(f + IA) ≥ supt∈T cl(ft + IA).

Thus, the family {ft + IA : t ∈ T} satisfies (5.10) as required.

Exercise 68: Fix x ∈ X and ε ≥ 0. If x∗ ∈ ∂εσA(x) and δ > ε, then
(5.1) yields a net (x∗

i )i ⊂ {z∗ ∈ co A : 〈z∗, x〉 ≥ σA(x) − δ} which w∗-
converges to x∗. Hence, the inclusion “⊂” in (5.81) follows. The con-
verse inclusion also holds since, by (4.4),

{x∗ ∈ co A : 〈x∗, x〉 ≥ σA(x) − δ} ⊂ ∂δσA(x) for all δ > ε.

Exercise 69: The same as the proof of Exercise 68, but with the
use of Proposition 5.1.2 instead of (5.1).

Exercise 70: Combine (5.1) and Proposition 5.1.2.

Exercise 71: First, observe that only the inclusion “⊂” in (5.83)
needs to be proved in the case where ∂εf(x) �= ∅. Hence, f(x) ≤
(cl f)(x) + ε ≤ f(x) + ε < +∞, and so we may assume for simplicity
that x = θ and f(θ) = 0, so that 0 ≥ supt∈T f̄t(θ) = f̄(θ) ≥ f(θ) − ε =
−ε.

(i) Since f̄t(z) = −∞, for all t ∈ T \ S0 and z ∈ cl(dom ft), the com-
ment above implies that S0 �= ∅. Also, since

sup
t∈T

f̄t(z) =
{

supt∈S0
f̄t(z), if z ∈

⋂
s∈T\S0

cl(dom fs),
+∞, if not,

and dom f ⊂ D ⊂ cl(D) ⊂ cl(dom fs) for all s ∈ T \ S0, (i) follows
from (5.10) and

f̄ = sup
t∈T

f̄t = sup
t∈S0, s∈T\S0

f̄t + Icl(dom fs) ≤ sup
t∈S0

f̄t + Icl(D) = sup
t∈S0

gt ≤ f̄ .

(ii) It is clear that {gt, t ∈ S0} ⊂ Γ0(X). To verify that this fam-
ily also satisfies the convex combinations closedness assumption we
pick λ ∈ Δ(S0), so that

∑
t∈supp λλtgt =

∑
t∈supp λλtft + Icl(D). But the

family {ft, t ∈ S0} is closed for convex combinations by the current
assumption, and so there exists some s ∈ S0 such that

∑
t∈supp λλtft ≤
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fs, showing that
∑

t∈supp λλtf̄t ≤ f̄s. Therefore,
∑

t∈supp λλtgt ≤ f̄s +
Icl(D) = gs and {gt, t ∈ S0} is closed for convex combinations.

(iii) Applying (5.82) to the family {gt, S0} ⊂ Γ0(X), we obtain

∂εf(θ) ⊂ ∂(ε+f̄(θ))f̄(θ) = cl

{
⋃

t∈S0

∂(ε+f̄t(θ))(f̄t + ID̄)(θ)

}

⊂ cl

{
⋃

t∈S0

∂(ε+ft(θ))(ft + ID)(θ)

}

,

which gives rise to the non-trivial inclusion in (5.83).

Exercise 72: Given x ∈ dom f, we fix δ > ε. By applying Theorem
5.1.4 and using the Mazur theorem, we obtain that

∂εf(x) ⊂ cl‖·‖∗

(

co

{
⋃

λ∈Δk, (ti)1≤i≤k⊂T, k≥1

A(δ, λ, t1, . . . , tk, k, 1)

})

,

where, for the sake of simplicity, we denoted

A(η, λ, t1, . . . , tk, k, γ) := ∂η+λ1ft1 (x)+...+λkftk
(x)−γf(x)

( ∑
1≤i≤k

λifti

)
(x).

Take x∗ ∈ A(δ, λ, t1, . . . , tk, k, 1) and y∗ ∈ A(δ, β, s1, . . . , sm, m, 1), for
λ ∈ Δk, β ∈ Δm, (ti)1≤i≤k, (si)1≤i≤m ⊂ T and k, m ≥ 1. Then, for all
α ∈]0, 1[,

αx
∗
+ (1 − α)y

∗ ∈ A(αδ, αλ, t1, . . . , tk, k, α) + A((1 − α)δ, (1 − α)β, s1, . . . , sm, m, (1 − α)),

and Proposition 4.1.6 gives us αx∗ + (1 − α)y∗ ∈ A(δ, γ, t1, . . . , tk, tk+1,
. . . , tm, k + m, 1), where γ := (αλ1, . . . , αλk, (1 − α)β1, . . . , (1 − α)βm)
∈ Δk+m. Thus, αx∗ + (1 − α)y∗ ∈

⋃
λ∈Δk, (ti)1≤i≤k⊂T, k≥1A(δ, λ, t1, . . . ,

tk, k, 1) and the inclusion “⊂” in (5.16) (with the norm closure) holds.
The converse inclusion is immediate from (5.16) (with the w∗-closure).

Exercise 73: The arguments are similar to Exercise 72.

Exercise 74: Take x∗ ∈ ∂εf(x) and fix δ > 0. Then f(x) + f∗(x∗) ≤
〈x∗, x〉 + ε < 〈x∗, x〉 + ε + δ. By Proposition 3.2.8(i), we know that
f∗ = cl(infi f∗

i ), and so

f(x) + cl(infi f∗
i )(x∗) = f(x) + f∗(x∗) < 〈x∗, x〉 + ε + δ.
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Hence, there exists a net (x∗
l )l ⊂ X∗ w∗-converging to x∗ such that

f(x) + (infi f∗
i ) (x∗

l ) < 〈x∗
l , x〉 + ε + δ for all l.

In other words, for each l, there exists il such that fi(x) + f∗
i (x∗

i ) ≤
f(x) + f∗

il
(x∗

i ) < 〈x∗
l , x〉 + ε + δ for all il � i; that is,

x∗
l ∈

⋂

il�i
∂ε+δfi(x) ⊂

⋃

j

⋂

j�i
∂ε+δfi(x),

and by taking the limit on l, we get x∗ ∈ cl (∪j ∩j�i ∂ε+δfj(x)). Then
the direct inclusion follows by intersecting over δ > 0, while the oppo-
site inclusion is straightforward.

Exercise 75: We consider the family {fx := 〈·, x〉 − f(x), x ∈
dom f} ⊂ Γ0(X), used in Example 5.1.8, so that

∑
x∈supp λ

λxfx =

〈
·, ∑

x∈supp λ

λxx

〉
− ∑

x∈supp λ

λxf(x) for all λ ∈ Δ(dom f).

Then, by (5.16), for all x∗ ∈ X∗ and ε > 0, we obtain

∂εf
∗(x∗) = cl

{ ∑
x∈supp λ

λxx :
α ≥ 0, λ ∈ Δ(dom f),∑
x∈supp λ

λxfx(x∗) ≥ f∗(x∗) + α − ε

}

= cl

{ ∑
x∈dom f

λxx :
λ ∈ Δ(dom f),∑
x∈supp λ

λx(〈x∗, x〉 − f(x)) − f∗(x∗) ≥ −ε

}
.

Next, taking εx := f(x) + f∗(x∗) − 〈x∗, x〉 , we get εx ≥ 0,
∑

x∈dom fλx

εx ≤ ε, and the last expression simplifies to (5.84).

Exercise 76: We denote gn := max1≤k≤n fk, n ≥ 1, so that (gn)n

is non-decreasing and f = supn gn. Then, by Example 5.1.6, for every
given x ∈ X and ε ≥ 0, we have

∂εf(x) =
⋂

δ>0

cl

(
⋃

k≥1

⋂

n≥k

∂ε+δgn(x)

)

.

Hence, given δ > 0 and U ∈ NX∗ and denoting hλ :=
∑

1≤i≤nλifi, for
each x∗ ∈ ∂εf(x) there exists some k0 ≥ 1 such that

x∗ ∈
⋂

n≥k0

∂ε+ δ

2
gn(x) + U =

⋂

n≥k0

⋃

λ∈Δn

∂ε+ δ

2
+Σ1≤i≤nλifi(x)−gn(x)hλ(x) + U,
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where the last equality comes from Corollary 5.1.9. Hence, if n0 ≥ k0

is such that gn(x) ≥ f(x) − δ
2 for all n ≥ n0, we deduce that

x∗ ∈
⋂

n≥n0

⋃

λ∈Δn

∂ε+ δ

2
+Σ1≤i≤nλifi(x)−gn(x)hλ(x) + U

⊂
⋃

n≥n0,λ∈Δn

∂ε+δ+Σ1≤i≤nλifi(x)−f(x)hλ(x) + U,

and, a fortiori, ∂εf(x) ⊂ ∪n≥1,λ∈Δn
∂ε+δ+Σ1≤i≤nλifi(x)−f(x)hλ(x) + U.

Finally, the inclusion “⊂” follows by intersecting over U ∈ NX∗ and
after over δ > 0. To verify the converse inclusion, we take x∗ ∈
∂ε+δ+Σ1≤i≤nλifi(x)−f(x)hλ(x) for given δ > 0, n ≥ 1 and λ ∈ Δn. Then,
for every y ∈ X,

〈x∗, y − x〉 ≤ hλ(y) − hλ(x) + ε + δ + hλ(x) − f(x) ≤ f(y) − f(x) + ε + δ,

so that x∗ ∈ ∂ε+δf(x). Consequently, using (4.15),

⋂
δ>0

cl

( ⋃
n≥1,λ∈Δn

∂ε+δ+Σ1≤i≤nλifi(x)−f(x)hλ(x)

)
⊂ ⋂

δ>0

cl ∂ε+δf(x) = ∂εf(x).

Exercise 77: (i) Fix x ∈ dom f , ε ≥ 0 and take x∗ ∈ ∂εf(x). Then,
taking into account the Mazur theorem, (5.22) yields

∂εf(x) ⊂
⋂

δ>ε

co

{
⋃

J∈T , J⊂S0

∂(δ+fJ(x)−f(x)) (fJ + ID) (x)

}

=
⋂

δ>ε

co‖·‖
{

⋃

J∈T , J⊂S0

∂(δ+fJ(x)−f(x)) (fJ + ID) (x)

}

. (9.12)

Moreover, for every α ∈ Δk and every selection of finite sets J1, . . . , Jk

⊂ S0, k ≥ 2, the set J := ∪1≤i≤kJi ∈ S0 is finite and satisfies, for all
δ > ε,

∑
1≤i≤kαi∂(

δ+fJi
(x)−f(x)

)
(

fJi
+ ID

)
(x) ⊂ ∂(

δ+ Σ
1≤i≤k

αifJi
(x)−f(x)

)
(∑

1≤i≤kαifJi
+ ID

)
(x)

⊂ ∂(δ+fJ (x)−f(x)) (fJ + ID) (x),

and consequently, (9.12) implies that

∂εf(x) ⊂
⋂

δ>ε

cl‖·‖
{

⋃

J∈T , J⊂S0

∂(δ+fJ(x)−f(x)) (fJ + ID) (x)

}

. (9.13)



9.4 EXERCISES OF CHAPTER 5 399

Now, take x∗ ∈ ∂εf(x). Then, by the last relation, for each n ≥ 1, there
exists a (finite) set Jn ⊂ T such that Jn ⊂ S0, fJn

(x) ≥ f(x) − ε − 1
n

(fJn
(x) ≥ f(x) − ε, if ε > 0), and

x∗ ∈ ∂(ε+ 1
n
+fJn (x)−f(x)) (fJn

+ ID) (x) +
1
n

BX∗

⊂ ∂(ε+ 1
n
+fJ(x)−f(x)) (fJ + ID) (x) +

1
n

BX∗ ,

where J := ∪n≥1Jn and BX∗ is the closed unit ball in X∗. Therefore, by
taking the limits as n → ∞, we deduce that x∗ ∈ ∂ε+fJ(x)−f(x) (fJ + ID)
(x), and since J is countable, (9.13) gives rise to the non-trivial inclu-
sion “⊂” in (i)

(ii) The proof of this assertion is the same as (i), except that we
use (5.23) instead of (5.22).

Exercise 78: (i) We have

sup
t∈T

(cl f̃t) = sup
t∈T

(cl(ft(· + x) − f(x))) = sup
t∈T

(cl(ft(· + x))) − f(x),

where cl(ft(· + x))(y) = lim infz→y ft(z + x) = (cl ft)(y + x) for all y ∈
X. Hence, since the family {ft, t ∈ T} satisfies (5.10),

sup
t∈T

(cl f̃t) = sup
t∈T

((cl ft)(· + x)) − f(x) = (cl f)(· + x) − f(x) = cl(f(· + x) − f(x)) = cl f̃ ,

that is, {f̃t, t ∈ T} also satisfies (5.10).
(ii) It is obvious that f̃(θ) = supt∈T f̃t(θ) = 0, while ∂f̃(θ) = ∂f(x)

and ∂εf̃t(θ) = ∂εft(x) for all t ∈ T and ε > 0. Hence, it suffices to prove
formula (5.26) for the functions f̃t, t ∈ T, as far as {t ∈ T : f̃t(θ) ≥
−ε} = {t ∈ T : ft(x) ≥ f(x) − ε} = Tε(x).

Exercise 79: We denote by B the set in the left-hand side of (5.85).
Then, taking into account the non-decreasing character of the Aε’s,
we only need to prove that B ⊂

⋂
0<ε<ε0

cl {Aε + NC(x)} in the non-
trivial case when the sets Aε’s are assumed to be non-empty (otherwise,
by (2.6) both sets in (5.85) are empty). Actually, we shall prove that,
for every u ∈ X and 0 < ε < ε0,

σB(u) ≤ σAε+NC(x)(u). (9.14)

More precisely, since σAε+NC(x)(u) = σAε
(u) + σNC(x)(u) = σAε

(u) +
I(NC(x))◦(u), we deduce that σAε+NC(x)(u) = +∞ when u /∈ (NC(x))◦ =
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cone(C − x), and (9.14) trivially holds in this case. Assume now that
u ∈ cone(C − x). If u = y − x, for some y ∈ C, then for all 0 < δ < ε <
ε0, we have

σB(u) ≤ σAδ
(u) + σNδ

C(x)(y − x) ≤ σAδ
(u) + δ ≤ σAε+NC(x)(u) + δ,

(9.15)
which leads us to σB(u) ≤ σAε+NC(x)(u). Thus, taking into account the
positive homogeneity of the support function, (9.14) holds for all u ∈
cone(C − x). Thus, we are done under the closedness of R+(C − x).
Therefore, only the case u ∈ cone(C − x)� cone(C − x) remains to be
checked when there is some u0 ∈ ri(C − x) ∩ dom σAε0

(⊂ ri(cone(C −
x)) ∩ dom σAε0

). To this aim, for each λ ∈ ]0, 1[, we denote uλ := λu +
(1 − λ)u0. Then, uλ ∈ ri(cone(C − x)) ⊂ cone(C − x) by (2.15), and
so, by the paragraph above and the convexity of the support function,
for every λ ∈ ]0, 1[ we obtain

σB(uλ) ≤ σAε+NC(x)(uλ) ≤ λσAε+NC(x)(u) + (1 − λ)σAε+NC(x)(u0).

Hence, using the lower semicontinuity and convexity of σB,

σB(u) ≤ lim inf
λ→1

σB(uλ) ≤ σAε+NC(x)(u) + lim sup
λ↑1

(1 − λ)σAε
(u0)

≤ σAε+NC(x)(u) + lim sup
λ↑1

(1 − λ)σAε0
(u0) = σAε+NC(x)(u),

and the desired conclusion follows.

Exercise 80: As in the first part of the proof of Theorem 5.2.2, we
are going to establish the following inclusion, when ∂f(x) �= ∅ (x = θ
and f(θ) = 0 by Exercise 78)

∂f(x) ⊂ A :=
⋂

ε>0,L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

. (9.16)

Since some of the ft’s are lsc, but possibly some of them are not proper,
we introduce the set of indices I := {t ∈ T : ft is not proper}. If I = ∅,
then ft ∈ Γ0(X) for all t ∈ T, and we are in the situation of the proof
of Theorem 5.2.2. Otherwise, if I �= ∅, then we define the functions
gt : X → R∞, t ∈ T, as

gt(z) :=
{

max{ft(z), −1}, for t ∈ I,
ft(z), for t ∈ T \ I,
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together with the associated supremum function g := supt∈T gt; that
is, g = max{f, −1}, and so dom f = dom g. It is clear that gt ∈ Γ0(X)
for all t ∈ T, and that T \ I �= ∅; if not, since ft(θ) ≤ f(θ) = 0 for
all t ∈ T, then we would have ft(θ) = −∞ for all t ∈ T, because
these functions are lsc. This would lead to the contradiction f(θ) =
supt∈T ft(θ) = −∞. Moreover, since f(θ) = 0 and f is lsc, there exists
a θ-neighborhood V ⊂ X such that f(z) ≥ −1 for all z ∈ V , so that
the functions f and g coincide on V. Consequently, since gt ∈ Γ0(X)
for all t ∈ T, as we have shown in the proof of Theorem 5.2.2 (for the
case of functions in Γ0(X)), we obtain that

∂f(θ) = ∂g(θ) =
⋂

L∈F(θ), ε>0

co

(
⋃

t∈T ′
ε(θ)

∂εgt(θ) + NL∩dom g(θ)

)

,

(9.17)
where T ′

ε(θ) := {t ∈ T : gt(θ) ≥ −ε}, ε > 0. Moreover, since ∂εgt(θ)
and T ′

ε(θ) do not increase as ε ↓ 0, we may restrict ourselves to ε ∈
]0, 1[. Take t ∈ T ′

ε(θ), with ε ∈ ]0, 1[ . If t ∈ I, then ft(θ) = −∞ and so
gt(θ) = max{ft(θ), −1} = −1 < −ε, entailing a contradiction. Hence,
T ′

ε(θ) ⊂ T \ I and gt ≡ ft; that is, T ′
ε(θ) ⊂ Tε(θ) and ∂εgt(θ) = ∂εft(θ),

and so (9.16) follows as NL∩dom g(θ) = NL∩dom f (θ). Thus, taking into
account that the opposite inclusion A ⊂ ∂f(x) always holds, Theorem
5.2.2 is proved in the current case.

Exercise 81: As in the proof of Exercise 80, we suppose that x = θ,
∂f(θ) = ∂ (cl f) (θ) �= ∅ and (cl f)(θ) = f(θ) = 0. Then it suffices to
prove that

∂f(θ) ⊂ A :=
⋂

ε>0, L∈F(θ)

co

(
⋃

t∈Tε(θ)

∂εft(θ) + NL∩dom f (θ)

)

.

Let us fix L ∈ F(θ) and define the convex and lsc functions ht :=
(cl ft) + IL∩dom f , t ∈ T, and h := sup

t∈T
ht, so that

h(θ) = sup
t∈T

ht(θ) = sup
t∈T

(cl ft)(θ) = (cl f)(θ) = f(θ) = 0, (9.18)

h = sup
t∈T

(cl ft) + IL∩dom f = (cl f) + IL∩dom f ; (9.19)

hence, dom h = dom(cl f) ∩ (L ∩ dom f) and L ∩ dom f ⊂ dom h. Now,
by combining (9.19) and Remark 1, we obtain that ∂f(θ) = ∂ (cl f) (θ)
⊂ ∂((cl f) + IL∩dom f )(θ) = ∂h(θ), and therefore (see Exercise 80),
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∂f(θ) ⊂ ∂h(θ) ⊂
⋂

ε>0
co

(
⋃

t∈T̃ε(θ)

∂εht(θ) + NL∩dom h(θ)

)

, (9.20)

where T̃ε(θ) := {t ∈ T : 0 ≥ ht(θ) ≥ −ε} . Take t ∈ T̃ε(θ) with ε > 0,
so that −ε ≤ ht(θ) = (cl ft)(θ) ≤ ft(θ) ≤ f(θ) = 0, t ∈ Tε(θ), and cl ft

is proper. Moreover, since ∂ε(cl ft)(θ) ⊂ ∂2εft(θ), by (4.46), we obtain

∂εht(θ) ⊂ cl(∂ε(cl ft)(θ) + Nε
L∩dom f

(θ)) ⊂ cl(∂2εft(θ) + Nε
L∩dom f (θ)).

Moreover, using (9.19),

∂f(θ) ⊂
⋂

ε>0

cl
(
Eε + Nε

L∩dom f (θ) + NL∩dom h(θ)
)

⊂
⋂

ε>0

cl
(
Eε + Nε

L∩dom f (θ)
)

,

(9.21)
where Eε := co

{⋃
t∈Tε(θ)∂2εft(θ)

}
. But for every z ∈ dom f and ε >

0, we have

σEε(z) = sup
t∈Tε(θ), z∗∈∂2εft(θ)

〈z∗, z〉 ≤ sup
t∈Tε(θ)

(ft(z) − ft(θ) + 2ε) ≤ f(z) + 3ε < +∞,

showing that (∅ �= ri(L ∩ dom f)) ⊂ dom f ⊂ dom σEε
. So, (see Exer-

cise 79)

⋂
ε>0

cl
(
Eε + Nε

L∩dom f (θ)
)

=
⋂

ε>0

cl
(
Eε + NL∩dom f (θ)

)
⊂

⋂
ε>0

cl
(
co

{⋃
t∈T2ε(θ)∂2εft(θ)

}
+ NL∩dom f (θ)

)
,

and the desired result follows from (9.21), as L was arbitrarily chosen
in F(θ).

Exercise 82: We only give the proof for formula (5.26). If

A :=
⋂

ε>0,L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

,

then we have
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A ⊂
⋂

ε>0
L∈F(x,A)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

=
⋂

ε>0
L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + N(L+span{A})∩dom f (x)

)

⊂
⋂

ε>0
L∈F(x)

co

(
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)

.

Exercise 83: Assertion (i) is a mere application of the Mazur theo-
rem, while (ii) follows because the functions ft + IL∩dom f are defined
in the finite-dimensional linear subspace L.

Exercise 84: See the bibliographical notes in chapter 5.

Exercise 85: Apply Proposition 5.3.1 and Exercise 31.

Exercise 86: Like in Exercise 85, apply Proposition 5.3.1 and Exer-
cise 31.

Exercise 87: We may assume that ∂f(x) �= ∅, so that f(x) =
(cl f)(x) and ∂f(x) = ∂(cl f)(x) (Exercise 62). Then, by applying The-
orem 5.2.12 to the family {cl ft, t ∈ T}, whose supremum is cl f, we
obtain

∂f(x) = ∂(cl f)(x)

⊂
⋂

ε>0
L∈F(x),p∈P

co

⎛
⎜⎜⎝ ⋃

t∈T̃ε(x)

y∈B̂p,t(x,ε)

∂((cl ft) + I
L∩dom(cl f)

)(y) ∩ Sε(y − x)

⎞
⎟⎟⎠ ,

where B̂p,t(x, ε) := {y ∈ X : p(y − x) ≤ ε, |(cl ft)(y) − (cl ft)(x)| ≤ ε}
and T̃ε(x) := {t ∈ T : (cl ft)(x) ≥ f(x) − ε}. Observe that ft(x) − ε ≤
f(x) − ε ≤ (cl ft)(x) ≤ ft(x) for all t ∈ T̃ε(x), entailing that
|(cl ft)(x) − ft(x)| ≤ ε. Consequently, |(cl ft)(y) − ft(x)| ≤
|(cl ft)(y) − (cl ft)(x)| + |(cl ft)(x) − ft(x)| ≤ 2ε for all t ∈ T̃ε(x);
that is, B̂p,t(x, ε) ⊂ Bp,t(x, 2ε). Therefore, denoting gL := IL∩dom f , the
inclusion “⊂” follows as
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∂f(x) ⊂
⋂

ε>0
L∈F(x),p∈P

co

⎛

⎜
⎜
⎝

⋃

t∈T̃ε(x)
y∈Bp,t(x,2ε)

∂((cl ft) + gL)(y) ∩ Sε(y − x)

⎞

⎟
⎟
⎠ .

To establish the opposite inclusion “⊃”, we first verify that, for all
y ∈ Bp,t(x, ε) and t ∈ T̃ε(x), we have that ∂((cl ft) + gL)(y) ∩ Sε(y −
x) ⊂ ∂3ε(f + gL)(x) (as in (5.59)). Indeed, if z∗ ∈ ∂((cl ft) + gL)(y), so
that y ∈ L ∩ dom f, then for all z ∈ L ∩ dom f , we get

〈z∗, z − y〉 ≤ (cl ft)(z) + gL(z) − (cl ft)(y) − gL(y)
≤ (cl ft)(z) − ft(x) + ε ≤ f(z) − f(x) + 2ε.

If, in addition, z∗ ∈ Sε(y − x), then we obtain 〈z∗, z − x〉 ≤ 〈z∗, z − y〉
+ 〈z∗, y − x〉 ≤ f(z) − f(x) + 3ε, proving that z∗ ∈ ∂3ε(f + gL)(x).
Therefore, we deduce that

⋂

ε>0
L∈F(x),p∈P

co

⎛

⎜
⎜
⎝

⋃

t∈T̃ε(x)
y∈Bp,t(x,2ε)

∂((cl ft) + gL)(y) ∩ Sε(y − x)

⎞

⎟
⎟
⎠ ⊂ ⋂

ε>0
L∈F(x)

∂3ε(f + gL)(x) = ∂f(x).

Exercise 88: Assertion (i) is a straightforward consequence of
(5.42). Assertion (ii) comes from (5.60). Finally, (iii) is implied by
(5.92) as ft + Idom f = ft + Idom ft

= ft + Idom ft
+ Idom ft

= ft, for all
t ∈ T. Indeed, this observation together with formula (5.92) yields

∂f(x) =
⋂

ε>0
co

(
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x) ∩ ∂εf(x)

)

⊂
⋂

ε>0
co

(
⋃

t∈Tε(x), y∈Bt(x,ε)

∂ft(y) ∩ Sε(y − x)

)

=: A.

Also, since ∂ft(y) ∩ Sε(y − x) ⊂ ∂3εf(x) by (5.45), we have that A ⊂
∩ε>0∂3εf(x) = ∂f(x).

Exercise 89: Since condition (5.10) holds (as f is continuous at x0,
Proposition 5.2.4(i)), and all the lsc convex proper functions fε0 :=
supt∈Tε0 (x) ft, ε0 > 0, are finite and continuous at x0 (again by the con-
tinuity of f at x0), Corollary 5.3.3 yields ∂f(x) = Ndom f (x) + ∂fε0(x)
for all ε0 > 0. Hence, taking into account that the (lsc) functions ft,
t ∈ Tε0(x), are proper, from the proof of (5.72) in Theorem 5.3.5, we
obtain, for any given ε0 > 0,
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∂f(x) = Ndom f (x) + Ndom fε0
(x) +

⋂

ε>0,p∈P
co

⎧
⎨

⎩

⋃

t∈T̂ε(x),y∈B̂p,t(x,ε)

∂ft(y) ∩ Sε(y − x)

⎫
⎬

⎭

= Ndom f (x) + Ndom fε0
(x) +

⋂

0<ε<ε0,p∈P
co

⎧
⎨

⎩

⋃

t∈T̂ε(x),y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x)

⎫
⎬

⎭
,

where, for 0 < ε < ε0,

T̂ε(x) := {t ∈ Tε0(x) : ft(x) ≥ fε0(x) − ε}
= {t ∈ Tε0(x) : ft(x) ≥ f(x) − ε} = Tε(x).

Moreover, we have that Ndom f (x) + Ndom fε0
(x) = Ndom f∩dom fε0

(x) =
Ndom f (x), coming from Proposition 4.1.20, and the equality above
entails

∂f(x) = Ndom f (x) +
⋂

0<ε<ε0,p∈P
co

{ ⋃
t∈Tε(x),y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x)

}

= Ndom f (x) +
⋂

ε>0,p∈P
co

{ ⋃
t∈Tε(x),y∈Bp,t(x,ε)

∂ft(y) ∩ Sε(y − x)

}
.

Exercise 90: We denote

Ãε,p :=
⋃

t∈Tε(x),y∈B̃p,t(x,ε)

∂(cl ft)(y) ∩ Sε(y − x).

The reader will easily verify, like in the proof of Theorem 5.2.7, that
the inclusion ∂(cl ft)(y) ∩ Sε(y − x) ⊂ ∂3εf(x) holds for all ε > 0, t ∈
Tε(x) and y ∈ B̃p,t(x, ε). This entails

Ndom f (x) +
⋂

ε>0,p∈P
co(Ãε,p) ⊂ Ndom f (x) +

⋂

ε>0
∂3εf(x) = Ndom f (x) + ∂f(x) = ∂f(x),

and the inclusion “⊂” follows. Thus, we are done if ∂f(x) = ∅, and
we only need to prove the statement when ∂f(x) �= ∅; hence ∂f(x) =
∂(cl f)(x) and f(x) = (cl f)(x) (Exercise 62). Indeed, under the current
continuity condition, (5.10) holds (Proposition 5.2.4(i)); that is, cl f =
supt∈T (cl ft). Thus, by applying formula (5.72) to the family {cl ft,
t ∈ T}, we obtain

∂f(x) = ∂(cl f)(x) = Ndom(cl f)(x) +
⋂

ε>0,p∈P
co

⎧
⎨

⎩

⋃

t∈T̂ε(x),y∈B̂p,t(x,ε)

∂(cl ft)(y) ∩ Sε(y − x)

⎫
⎬

⎭
,
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where T̂ε(x) := {t ∈ T : (cl ft)(x) ≥ (cl f)(x) − ε} = {t ∈ T : (cl ft)
(x) ≥ f(x) − ε} ⊂ Tε(x) and B̂p,t(x, ε) := {y ∈ X : p(y − x) ≤ ε,

|(cl ft)(y) − (cl ft)(x)| ≤ ε}. Observe that for all t ∈ T̂ε(x) and y ∈
B̂p,t(x, ε), we have ft(x) ≥ (cl ft)(x) ≥ f(x) − ε ≥ ft(x) − ε and

|(cl ft)(y) − ft(x)| ≤ |(cl ft)(y) − (cl ft)(x)| + |(cl ft)(x) − ft(x)| ≤ 2ε;

that is, B̂p,t(x, ε) ⊂ B̃p,t(x, 2ε). So,

∂f(x) ⊂ Ndom f (x) +
⋂

ε>0,p∈P
co

⎧
⎨

⎩

⋃

t∈Tε(x),y∈B̃p,t(x,2ε)

∂(cl ft)(y) ∩ Sε(y − x)

⎫
⎬

⎭

⊂ Ndom f (x) +
⋂

ε>0,p∈P
co

⎧
⎨

⎩

⋃

t∈T2ε(x),y∈B̃p,t(x,2ε)

∂(cl ft)(y) ∩ S2ε(y − x)

⎫
⎬

⎭
,

and we are done.

Exercise 91: According to Corollary 5.2.3, we have ∂f(x) = Ndom f

(x) + ∂fε0(x), and by applying Theorem 5.3.5 to the family {ft, t ∈
Tε0(x)}, we get

∂fε0(x) = Ndom fε0
(x) +

⋂

ε>0
co

{
⋃

t∈T̃ε(x)

∂εft(x)

}

= Ndom fε0
(x) +

⋂

0<ε<ε0

co

{
⋃

t∈T̃ε(x)

∂εft(x)

}

,

where T̃ε(x) := {t ∈ Tε0(x) : ft(x) ≥ fε0(x) − ε} = {t ∈ Tε0(x) : ft(x)
≥ f(x) − ε}; hence, T̃ε(x) = Tε(x) for all 0 < ε < ε0. Therefore,

∂f(x) = Ndom f (x) + Ndom fε0
(x) +

⋂

0<ε<ε0

co

{
⋃

t∈Tε(x)

∂εft(x)

}

,

and so, using the fact that Ndom f (x) + Ndom fε0
(x) = Ndom f∩dom fε0

(x)
= Ndom f (x), coming from Proposition 4.1.20, we obtain that

∂f(x) = Ndom f (x) +
⋂

0<ε<ε0

co

{
⋃

t∈Tε(x)

∂εft(x)

}

= Ndom f (x) +
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x)

}

.
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9.5 Exercises of chapter 6

Exercise 92: The inclusion “⊃” in (6.16) comes from formula (5.26) as
T (x) ⊂ Tε(x). To prove the inclusion “⊃” in (6.12), take x∗ ∈ ∂(ft +
IL∩dom f )(x) with L ∈ F(x) and t ∈ T (x). Then 〈x∗, y − x〉 ≤ ft(y) −
ft(x) ≤ f(y) − f(x) for all y ∈ L ∩ dom f, and x∗ ∈ ∂(f + IL∩dom f )
(x) = ∂(f + IL)(x). Hence, by (4.16),

⋂

L∈F(x)

co

{
⋃

t∈T (x)

∂(ft + IL∩dom f )(x)

}

⊂
⋂

L∈F(x)

∂(f + IL)(x) = ∂f(x).

Exercise 93: We apply Theorem 6.1.4 to the (two-elements) fam-
ily {f, f(x) − 1}. Indeed, since f is the unique active function of this
family at x, we obtain

∂g(x) =
⋂

L∈F(x)

∂(f + IL∩dom g)(x) =
⋂

L∈F(x)

∂(f + IL)(x) = ∂f(x).

Exercise 94: Take a sequence (tk)k ⊂ T such that ftk
(x) → f(x);

for instance, choose tk ∈ T such that ftk
(x) > f(x) − 1/k. Since T is

compact, there exists a subnet (tki
)i that converges to some t ∈ T.

Hence, by the upper semicontinuity assumption, f(x) = limk ftk
(x) =

limi ftki
(x) ≤ lim sups→t fs(x) ≤ ft(x) and t ∈ T (x) ⊂ Tε(x) for all ε ≥

0; that is, the sets Tε(x) are non-empty. Next, we proceed by show-
ing that each Tε(x), ε ≥ 0, is closed, and so compact. Indeed, given
a net (ti)i ⊂ Tε(x) converging to t ∈ T, we have that f(x) − ε ≤
lim supi fti

(x) ≤ lim sups→t fs(x) ≤ ft(x), and t ∈ Tε(x).

Exercise 95: (i) The set βT is a closed subset of the compact S,
and so it is compact.

(ii) If (ti)i ⊂ T is a net converging to t ∈ T, then γti
(ϕ) = ϕ(ti) →

ϕ(t) = γt(ϕ), for every ϕ ∈ C(T, [0, 1]); that is, w(ti) = γti
→ γi = w(t)

and w is continuous. If T is compact, then its image by the continuous
mapping w, βT = w(T ), is also compact in S, and so closed as S is
endowed with product topology which is Hausdorff.

(iii) If ti → t in T, then γti
→ γt by the continuity of w. If (ti)i ⊂ T

and t ∈ T are such that γti
→ γt, we suppose by contradiction that

ti � t. Then we find an open neighborhood V of t such that ti /∈ V,
frequently. By the complete regularity of T , there exists ϕ ∈ C(T, [0, 1])
such that ϕ(t) = 1 and ϕ(ti) = 0, frequently. But γti

→ γt implies that
ϕ(ti) = 0 → ϕ(t) = 1, which is a contradiction.
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Exercise 96: By proceeding as in the proof of Exercise 9, we see
that condition (6.1) entails U ⊂ dom f ; even more, we get U ⊂ f−1(R).
Moreover, since the family {ft, t ∈ T} satisfies (5.10) (by Propo-
sition 5.2.4(i)), for all x ∈ U we have (cl f)(x) = supt∈T (cl ft)(x) =
supt∈T ft(x) = f(x), and f is lsc on U. Now, given x ∈ U, we choose
r > 0 such that cl (BX(x, r)) ⊂ U, and consider the function f̃ :=
f + Icl(BX(x,r)). Then f̃ ∈ Γ0(X) and int(dom f̃) = BX(x, r) �= ∅, so
that Corollary 2.2.8 implies the continuity of f̃ on BX(x, r).

Exercise 97: It suffices to prove the inclusion “⊂” for x such that
∂f(x) �= ∅; hence f∗ is proper, f(x) = f∗∗(x), and ∂f(x) = ∂(cof)
(x) = ∂f∗∗(x). Thus, applying (6.73) to the family {f∗∗

t , t ∈ T} ,

∂f(x) = ∂f∗∗(x) =
⋂

L∈F(x)

co

{ ⋂
ε>0

cl

( ⋃
t∈T1

ε (x)

∂εf∗∗
t (x) + NL∩dom f∗∗ (x)

)}
,

where T 1
ε (x) := {t ∈ T : f∗∗

t (x) ≥ f(x) − ε}. Observe that every t ∈
T 1

ε (x) satisfies ft(x) ≥ f∗∗
t (x) ≥ f(x) − ε ≥ ft(x) − ε, so that t ∈ Tε(x)

and ∂εf
∗∗
t (x) ⊂ ∂2εft(x). Additionally, the inequality f∗∗ ≤ f implies

that NL∩dom f∗∗(x) ⊂ NL∩dom f (x), and the desired inclusion follows.

Exercise 98: It is clear that f̃ ≤ f, so that dom f ⊂ dom f̃ and
Ndom f̃ (x) ⊂ Ndom f (x). Thus, since inft∈T f̃t(x) > −∞, Proposition
6.4.1 implies that, for every fixed ε > 0,

Ndom f̃ (x) =
[
co
(
∪t∈T ∂εf̃t(x)

)]

∞
=: C.

So, we only need to verify that Ndom f (x) ⊂ C. Equivalently, due to
(3.51) and the relation

cl
(
dom

(
σ∪t∈T ∂εf̃t(x)

))
= C−

coming from (3.52), we show that cl
(
dom

(
σ∪t∈T ∂εf̃t(x)

))
⊂ cl(R+

(dom f − x)). To this aim, taking into account (4.28) and (4.1), we
pick

z ∈ dom
(
σ∪t∈T ∂εf̃t(x)

)
= dom

(

sup
t∈T

σ∂εf̃t(x)

)

;

that is,
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z ∈ dom
(

sup
t∈T

(f̃t)′
ε(x; ·)

)

⊂
⋂

t∈T

dom(f̃t)′
ε(x; ·) =

⋂

t∈T

R+(dom f̃t − x).

(9.22)
Observe that, for every t ∈ T \ T (x),

dom(f̃t)
′
ε(x; ·) = R+((dom(μtft) ∩ dom((1 − μt)ft0 )) − x)

= R+((dom ft ∩ dom ft0 ) − x) = (R+ dom(ft − x)) ∩ (R+ dom(ft0 − x)).

Then, denoting ht := (ft)′
ε(x; ·) if t ∈ T (x), and ht := (f̃t)′

ε(x; ·) if t ∈
T \ T (x), relation (9.22) entails

z ∈
⋂

t∈T (x)

dom ht

=

(
⋂

t∈T (x)

R+(dom ft − x)

)

∩
(

⋂

t∈T\T (x)

(R+ dom(ft − x)) ∩ (R+ dom(ft0 − x))

)

,

and so (Exercise 9),

z ∈
⋂

t∈T

R+ dom(ft − x) = R+(dom f − x) ⊂ cl(R+(dom f − x)).

Exercise 99: Let us suppose, for simplicity, that f(x) = 0. Fix
ε > 0. Then 0 < ρt,ε < 1 and f̃t,ε(x) = ρt,εft(x) > − ε

2 for every t ∈ T \
T (x). Moreover, since f̃t,ε ≤ max{ft, ft0} ≤ f, we have ∪t∈T\T (x)∂εf̃t,ε(x)
⊂ ∂ 3ε

2
f(x) ⊂ ∂2εf(x) and ∪t∈T (x)∂εf̃t,ε(x) ⊂ ∂εf(x)

⊂ ∂2εf(x). So, ∪t∈T ∂εf̃t,ε(x) ⊂ ∂2εf(x) and the inclusion “⊃” follows
by taking the closed convex hull and intersecting over ε > 0 (using
(4.15)). To verify the inclusion “⊂”, we fix ε > 0 and L ∈ F(x). Since
the family {f̃t,ε, t ∈ T ; IL} satisfies inft∈T f̃t,ε(x) ≥ − ε

2 , we can show
that (see Exercise 98)

NL∩dom f (x) =

[

co

(
⋃

t∈T
∂εf̃t,ε(x) ∪ L⊥

)]

∞
=

[

co

(
⋃

t∈T
∂εf̃t,ε(x) + L⊥

)]

∞
,

where the last equality comes from (8.24). Therefore, by (6.16),
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∂f(x) ⊂ co

(
⋃

t∈T (x)

∂εft(x) + NL∩dom f (x)

)

= co

(
⋃

t∈T (x)

∂εft(x) +
[

co
(
⋃

t∈T

∂εf̃t,ε(x) + L⊥
)]

∞

)

⊂ co
(
⋃

t∈T

∂εf̃t,ε(x) + L⊥
)

= cl
(

co
(
⋃

t∈T

∂εf̃t,ε(x)
)

+ L⊥
)

.

Intersecting over the L’s in F(x), we get

∂f(x) ⊂
⋂

L∈F(x)

cl
(

co
(
⋃

t∈T

∂εf̃t,ε(x)
)

+ L⊥
)

= co
(
⋃

t∈T

∂εf̃t,ε(x)
)

,

where the last equality is found in Exercise 10(i).

Exercise 100: Fix positive integers m, n with m > f(x) and take
δ > 0. Since u∗ ∈ Ndom f (x) ⊂ NL∩dom f (x), for every y ∈ L we have
f(y) ≤ m ⇒ 〈nu∗, y − x〉 ≤ 0 < δ; that is, 〈nu∗, y − x〉 ≥ δ, y ∈ L ⇒
f(y) > m, and so 〈nu∗, y − x〉 ≥ δ, y ∈ L ⇒ ∃ t ∈ T such that ft(y) >
m. In other words, 〈nu∗, y − x〉 ≥ δ, y ∈ L ⇒ y ∈ ∪t∈T [ft > m] and
this shows that

{y ∈ BL(x, δ) : 〈nu∗, y − x〉 ≥ δ} ⊂ {y ∈ L : 〈nu∗, y − x〉 ≥ δ} ⊂
⋃

t∈T
[ft > m] , (9.23)

where BL(x, δ) denotes the ball in L centered at x with radius δ (L
endowed with the relative topology of X is isomorphic to an Euclidean
space and, consequently, BL(x, δ) is compact). Therefore, since the sets
[ft > m] are open, by the lower semicontinuity of the ft’s, (9.23) gives
rise to a finite set

{
t
(n,m)
1 , . . . , t

(n,m)
k(n,m)

}
⊂ T, k(n,m) ≥ 1, such that

{y ∈ BL(x, δ) : 〈nu∗, y − x〉 ≥ δ} ⊂
⋃

i=1,...,k(n,m)

[
ft

(n,m)
i

> m
]
.

Equivalently, if we define the functions g(n,m) := maxi=1,...,k(n,m) ft
(n,m)
i

,

so that

[
g(n,m) ≤ m

]
=

⋂

i=1,...,k(n,m)

[

f
t
(n,m)
i

≤ m

]

⊂ (X \ BL(x, δ)) ∪ {
y ∈ X :

〈
nu

∗
, y − x

〉
< δ

}
.

Also, by denoting g := supn,m≥1 g(n,m), we have that
[g ≤ m] ⊂ ∩n≥1

[
g(n,m) ≤ m

]
and we obtain
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[g ≤ m] ∩ BL(x, δ) ⊂
(

⋂

n≥1

[
g(n,m) ≤ m

]
)

⋂
BL(x, δ) ⊂ {y ∈ X : 〈nu∗, y − x〉 < δ} .

(9.24)
Hence, since x ∈ [g ≤ m] ∩ BL(x, δ) (remember that m > f(x)), we get

nu∗ ∈ Nδ
[g≤m]∩BL(x,δ)(x) for all n ≥ 1,

and by taking n ↑ +∞ we deduce that u∗ ∈ N[g≤m]∩BL(x,δ)(x) =
N[g≤m]∩L(x) for all m > f(x). Therefore, u∗ ∈ ∩m>f(x)N[g≤m]∩L(x) ⊂
N∪m>f(x)[g≤m]∩L(x) = N(dom g)∩L(x) and we conclude the proof since

g = sup
n,m≥1

g(n,m) = sup
n,m≥1,i=1,...,k(n,m)

ft
(n,m)
i

is the supremum of a countable family.

Exercise 101: The relation that we aim to prove is obvious when
f(x) = −∞ (the sets in both sides are empty); then we suppose that
f(x) ∈ R. The inclusion

∂f(x) ⊂
⋂

0<ε≤ε0

co (∂εf(x) + {0, ε}∂ε+δf(x)) (9.25)

is obvious from ∂f(x) = ∩ε>0∂εf(x) = ∩0<ε≤ε0∂εf(x). In order to
prove the opposite inclusion “⊃” we suppose that f(x) = 0 (with-
out loss of generality) and take x∗ in the right-hand side set of (9.25).
Hence, for each ε ∈]0, ε0], we have

x∗ ∈ cl (∂εf(x) + co ({0, ε} ∂ε+δf(x))) ,

and so there are nets (y∗
i )i ⊂ ∂εf(x), (λi,k)i ⊂ [0, 1] , Σk=1,...,ki

λi,k ≤ 1
and (z∗

i,k)i ⊂ ∂ε+δf(x), k = 1, . . . , ki, ki ≥ 1, such that

x∗ = limi

(
y∗

i +
∑

k=1,...,ki
ελi,kz

∗
i,k

)
. Thus, since f(x) = 0, for each

y ∈ dom f , we can write

〈x∗, y − x〉 = lim
i

〈

y∗
i + ε

∑

k=1,...,ki

λi,kz∗
i,k, y − x

〉

≤ lim sup
i

(

(f(y) − f(x) + ε) + ε

(
∑

k=1,...,ki

λi,k(f(y) − f(x) + ε + δ)

))

= lim sup
i

(

f(y) + ε + ε
∑

k=1,...,ki

λi,k(f(y) + ε + δ)

)

≤ f(y) + ε + ε(f+(y) + ε + δ),

and x∗ ∈ ∂f(x), by taking ε ↓ 0.
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Exercise 102: The inclusion

∂f(x) ⊂
⋂

0<ε≤ε0

co (∂εf(x) ∪ ε∂ε+δf(x)) (9.26)

follows from ∂f(x) = ∩ε>0∂εf(x) = ∩0<ε≤ε0∂εf(x). To prove the oppo-
site inclusion, take x∗ in the right-hand side set in (9.26). Then,
for each fixed ε > 0, there are nets (λi)i ⊂ [0, 1] , (y∗

i )i ⊂ ∂εf(x), and
(z∗

i )i ⊂ ∂ε+δf(x) such that x∗ = limi(λiy
∗
i + (1 − λi)εz∗

i ). Thus, for
each y ∈ dom f,

〈x∗, y − x〉 = lim
i

〈λiy
∗
i + (1 − λi)εz∗

i , y − x〉

≤ lim sup
i

(λi(f(y) − f(x) + ε) + (1 − λi)ε(f(y) − f(x) + ε + ρ))

≤ f(y) − f(x) + ε + ε(f(y) − f(x) + ε + ρ),

as f(y) ≥ f(x). Now, taking ε > 0, we obtain 〈x∗, y − x〉 ≤ f(y) − f(x)
for all y ∈ X, showing that x∗ ∈ ∂f(x).

Exercise 103: (i) Fix x ∈ dom f and assume, without loss of gener-
ality, that f(x) = 0. Fix ε > 0, U ∈ NX∗ and pick L ∈ F(x) such that
L⊥ ⊂ U. Observe that the family {ft, t ∈ T ; IL} ⊂ Γ0(X) also satisfies
the compactness and upper semicontinuity assumptions as the fam-
ily {ft, t ∈ T}. Therefore, by applying Proposition 6.4.1 to the family
{ft, t ∈ T ; IL} , we obtain that (see Exercise 23)

NL∩dom f (x) =

[
co

(( ⋃
t∈T (x)

∂εft(x) ∪ L⊥
)

∪
(( ⋃

t∈T\T (x)

∂εft(x)

)))]
∞

=

[
co

(( ⋃
t∈T (x)

∂εft(x)

)
∪

( ⋃
t∈T\T (x)

ε∂εft(x)

)
∪ L⊥

)]
∞

,

Moreover, we have NL∩dom f (x) = [coA]∞ (Exercise 22) where A :=(⋃
t∈T (x)∂εft(x)

)
∪
(⋃

t∈T\T (x)ε∂εft(x) + L⊥
)

. Next, by combining
this relation and (6.16) and denoting Ct := ∂εft(x),
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∂f(x) ⊂ co

(
⋃

t∈T (x)

Ct + NL∩dom f (x)

)

= co

(
⋃

t∈T (x)

Ct + [coA]∞

)

⊂ co ((coA) + [coA]∞) = coA

⊂ co

((
⋃

t∈T (x)

Ct + L⊥
)

∪
(

⋃

t∈T\T (x)

εCt + L⊥
))

⊂ co

((
⋃

t∈T (x)

Ct

)

∪
(

⋃

t∈T\T (x)

εCt

))

+ L⊥ + U

⊂ co

((
⋃

t∈T (x)

Ct

)

∪
(

⋃

t∈T\T (x)

εCt

))

+ 2U.

Consequently, (6.116) follows by intersecting over U ∈ NX∗ and after
over ε > 0. We proceed now by showing the opposite inclusion in
(6.116), when x ∈ X is such that M := inft∈T ft(x) > −∞. Let x∗ ∈
X∗ such that x∗ ∈ co

((⋃
t∈T (x)Ct

)
∪
(⋃

t∈T\T (x)εCt

))
for each ε > 0.

Observe that, if z∗ ∈ Ct with t ∈ T (x), then 〈z∗, z − x〉 ≤ ft(z) −
ft(x) + ε ≤ f(z) + ε for every z ∈ X, and so z∗ ∈ ∂εf(x). Also, if z∗ ∈
Ct with t ∈ T \ T (x), then 〈z∗, z − x〉 ≤ ft(z) − ft(x) + ε ≤ f(z) −
M + ε for every z ∈ X, and so z∗ ∈ ∂ε−Mft(x) (observe that M ≤
f(x) = 0). Thus, as ε > 0 was arbitrarily chosen, we obtain x∗ ∈
∩ε>0co (∂εf(x) ∪ ε∂ε−Mf(x)) = ∂f(x) (see Exercise 102).

(ii) Denote g := sup{ft, t ∈ T ; h}. Then, by the lower semiconti-
nuity of the ft’s, the functions f and g coincide in a neighborhood of
x, entailing ∂f(x) = ∂g(x). If g satisfied (6.116) with equality, then
taking into account that ∂εh(x) = {θ}, we would have

∂g(x) =
⋂

ε>0
co

((
⋃

t∈T (x)

∂εft(x)

)

∪
(

⋃

t∈T\T (x)

ε∂εft(x)
⋃

{θ}
))

.

But this implies that θ ∈ ∂g(x) = ∂f(x), which contradicts our
assumption that x is not a minimum of f.

Exercise 104: First, as in the proof of Theorem 6.5.2, we may sup-
pose that all the ft’s, t ∈ Tc, are continuous at some common point
x0 ∈ dom f. By Corollary 6.1.6, we have

∂f(x) = ∂

(

sup
t∈T (x)

ft + Idom f

)

(x) = ∂
(
max

{
f̂ , f̃ + Idom f

})
(x),
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where f̂ := maxt∈Tc
ft. Observe that f̂ is continuous at x0 as Tc

is finite. Then Theorem 6.5.2 yields ∂f(x) = co
{

∂f̂(x) ∪ A
}

+ Ndom f (x),

where A := ∂(f̃ + Idom f )(x), whereas Corollary 6.1.12 gives us ∂f̂(x) =
Ndom f̂ (x) + coB ⊂ Ndom f (x) + coB, where B := ∪t∈Tc

∂ft(x). Hence,
by combining these two relations,

∂f(x) ⊂ co {(Ndom f (x) + coB) ∪ A} + Ndom f (x)
⊂ co {(Ndom f (x) + coB) ∪ (Ndom f (x) + A)} + Ndom f (x)
= co {(coB) ∪ A} + Ndom f (x) ⊂ co {B ∪ A} + Ndom f (x).

Exercise 105: The proof uses similar arguments to those compos-
ing Exercises 80 and 81, but here we take advantage of Theorem 6.1.4
(namely, one of its consequences given in Exercise 93), the whole thing
proved after Theorem 5.2.2. To prove the direct inclusion “⊂” in The-
orem 6.3.2, we assume without loss of generality that x = θ, f(θ) = 0
and ∂f(θ) �= ∅; hence, ∂(cl f)(θ) = ∂f(θ) and f(θ) = (cl f)(θ) = 0.
We consider the convex functions gt : X → R∞, t ∈ T, defined by

gt :=
{

cl ft, if cl ft is proper,
max {cl ft, −1} , otherwise.

It is easy to see that gt ∈ Γ0(X) and g := supt∈T gt =
max {supt∈T (cl ft), −1} = max {cl f, −1}, due to (5.10). Hence, since
(cl f)(θ) = f(θ) = 0, we easily verily that f and g have the same value
and the same subdifferential at θ. So, from the proof given in Theorem
6.3.2 (when ft ∈ Γ0(X), for all t ∈ T ), we have

∂f(θ) = ∂(cl f)(θ) = ∂g(θ)

=
⋂

L∈F(θ)

co

{
⋂

0<ε<1
cl

(
⋃

t∈T g
ε (x)

∂εgt(θ) + NL∩dom g(θ)

)}

,

(9.27)

where, for all ε ∈ ]0, 1[,

T g
ε (x) := {t ∈ T : gt(θ) ≥ −ε} = {t ∈ T : (cl ft)(θ) ≥ −ε}.

Take t ∈ T g
ε (x) with ε ∈ ]0, 1[. Then the function cl ft must be proper,

because −ε ≤ (cl ft)(θ) ≤ f(θ) = 0, and so gt = cl ft by the definition
of gt. Thus, since −ε ≤ (cl ft)(θ) ≤ ft(θ), we have t ∈ Tε(θ) and it can



9.5 EXERCISES OF CHAPTER 6 415

be easily proved that ∂εgt(θ) = ∂ε(cl ft)(θ) ⊂ ∂2εft(θ). Thus, taking
into account that dom f ⊂ dom(cl f) = dom g, (9.27) yields

∂f(θ) ⊂ ⋂

L∈F(θ)

co

{
⋂

ε>0
cl

(
⋃

t∈Tε(θ)

At,ε

)}

⊂ ⋂

L∈F(θ)

co

{
⋂

ε>0
cl

(
⋃

t∈T2ε(θ)

At,ε

)}

,

where we denoted At,ε := ∂2εft(θ) + NL∩dom f (θ).

Exercise 106: First, since (z∗
i )i ⊂ (U ∩ E)◦ and this last set is w∗-

compact in E∗, by Theorem 2.1.9, we find a subnet (z∗
ij |E)j , where

z∗
ij |E is the restriction to E of z∗

ij
, and z̃∗ ∈ E∗ such that

〈
z∗
ij |E − z̃∗, u

〉
→j 0 for all u ∈ E.

Let z∗ ∈ X∗ be an extension of z̃∗ to X∗, and fix V ∈ NX∗ . Then we
have (see section 2.1)

V|E :=
{

x∗
|E : x∗ ∈ V

}
∈ NE∗ .

Thus, by taking limits on j in the following inclusion

(z∗
ij |E) ⊂ B :=

{
u∗

|E ∈ E∗ : u∗ ∈ A
}

,

we infer that z∗
|E = z̃∗ ∈ clσ(E∗,E) B ⊂ B + V|E . So, there are u∗ ∈ A

and v∗ ∈ V such that z∗
|E = u∗

|E + v∗
|E ; that is, 〈z∗ − (u∗ + v∗), u〉 = 0

for all u ∈ E, and we obtain

z∗ ∈ u∗ + v∗ + E⊥ ⊂ A + V + E⊥.

Therefore, z∗ ∈ cl(A + E⊥), due to the arbitrariness of V ∈ NX∗ .

Exercise 107: If x /∈ dom f, then EL = ∅ for every L ∈ F(x), and
we are obviously done. Thus, we fix x ∈ dom f and L ∈ F(x), so
that Tε2(x) �= ∅, by Exercise 94. We introduce the functions g̃t :=
ft + IL∩dom f , t ∈ Tε2(x), entailing that EL = co

{⋃
t∈Tε2 (x)∂ε1 g̃t(x)

}

and dom g̃t = L ∩ dom f ∩ dom ft = L ∩ dom f. We also consider the
associated restrictions to L, gt := g̃t |

L
, t ∈ T (x). Take a net (u∗

i )i ⊂
EL such that u∗

i →w∗
u∗ ∈ X∗, and denote z∗

i := u∗
i |

L
; hence z∗

i →w∗

u∗ |
L

=: z∗ (the convergence in L∗) because 〈z∗, y〉 = 〈u∗, y〉 =
limi 〈u∗

i , y〉 = limi 〈z∗
i , y〉 for all y ∈ L. For each i, we write u∗

i =
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μi,1u
∗
i,1 + . . . + μi,ki

u∗
i,ki

, for some u∗
i,j ∈ ∂ε1 g̃ti,j

(x), ti,j ∈ Tε2(x), μi ∈
Δki

, ki ≥ 1. Thus, since u∗
i,j |

L
∈ ∂ε1gti,j

(x) (Exercise 55(i)), we have

z∗
i = u∗

i |
L

= μi,1u
∗
i,1 |

L
+ . . . + μi,ki

u∗
i,ki

|
L

and so (z∗
i )i ⊂ co

{⋃
t∈Tε2 (x)∂ε1gt(x)

}
⊂ L∗, where L∗ is the dual of

L (which is isomorphic to L, and hence it has the same dimension
as L, say m ≥ 1). Therefore, by the Carathéodory theorem, for each
i, we find some λi := (λi,1, . . . , λi,m+1) ∈ Δm+1 together with (ti,k)i ⊂
Tε2(x) and z∗

i,k ∈ ∂ε1gti,k
(x), k ∈ K := {1, . . . , m + 1} such that z∗

i =
λi,1z

∗
i,1 + . . . + λi,m+1z

∗
i,m+1. We may assume that (λi)i converges to

some λ ∈ Δm+1. Also, since (ti,k)i ⊂ Tε2(x) and Tε2(x) is compact and
closed, by Exercise 94, we may assume that ti,k → tk ∈ Tε2(x) for all
k ∈ K. Consequently, for every z ∈ L ∩ dom f (= dom gtk

, k ∈ K), we
obtain

〈z∗, z − x〉 = limi

〈
λi,1z

∗
i,1 + . . . + λi,m+1z

∗
i,m+1, z − x

〉

≤ λ1 lim supi(gti,1(z) − gti,1(x)) + . . .

+ λm+1 lim supi(gti,m+1(z) − gti,m+1(x)) + ε1

= λ1 lim supi gti,1(z) + . . . + λm+1 lim supi gti,m+1(z) − f(x) + ε1

≤ λ1 lim supi gt1(z) + . . . + λm+1 lim supi gtm+1(z) − f(x) + ε1

=
∑

k∈K+

λkgtk
(z) −

∑

k∈K+

λkgtk
(x) + ε1,

where K+ := {k ∈ K : λk > 0}; that is, z∗ ∈ ∂ε1

(∑
k∈K+

λkgtk

)
(x).

Hence, using Proposition 4.1.26, as gtk
+ IL∩dom f = gtk

and
ri(dom gtk

) = ri(L ∩ dom f) �= ∅, for all z ∈ L and k ∈ K we obtain
z∗ ∈ ∂ε1

(∑
k∈K+

λkgtk

)
(x) ⊂

∑
k∈K+

λk∂ε1gtk
(x). Hence, there exists

some v∗
k ∈ ∂ε1gtk

(x), k ∈ K+, such that z∗ =
∑

k∈K+
λkv

∗
k. Since

dom gtk
= L ∩ dom f ⊂ L, for every extension ṽ∗

k of v∗
k, k ∈ K+, we

have that ṽ∗
k ∈ ∂ε1 g̃tk

(x) (Exercise 55(i)), and so ṽ∗ :=
∑

k∈K+
λkṽ

∗
k ∈

∑
k∈K+

λk∂ε1 g̃tk
(x) is an extension of z∗ to X∗; that is, 〈ṽ∗, y〉 =

〈z∗, y〉 = 〈u∗, y〉 for all y ∈ L or, equivalently, u∗ − ṽ∗ ∈ L⊥. Therefore,

u∗ ∈
∑

k∈K+

λk∂ε1 g̃tk
(x) + L⊥

⊂
∑

k∈K+

λk∂ε1(ft + IL∩dom f + IL)(x) =
∑

k∈K+

λk∂ε1 g̃tk
(x) ⊂ EL.
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9.6 Exercises of chapter 7

Exercise 108: We proceed as in the beginning of the proof of Theorem
7.1.1; that is, we only need to verify the inclusion “⊂” when ∂(g + f ◦
A)(x) = ∂ ((cl g) + (cl f) ◦ A) (x) �= ∅, cl g ∈ Γ0(X), cl f ∈ Γ0(Y ),
(cl g)(x) = g(x) and (cl f) (Ax) = f(Ax). Then, by (4.45),

∂(g + f ◦ A)(x) = ∂ ((cl g) + (cl f) ◦ A) (x) =
⋂

ε>0

cl (∂ε (cl g) (x) + A∗∂ε (cl f) (Ax))

=
⋂

ε>0

cl (∂εg(x) + A∗∂εf(Ax)) .

Exercise 109: The proof is the same as the one of Exercise 108, but
using the functions cof and cog instead of cl f and cl g, respectively.

Exercise 110: Observe that f is proper and continuous on
int(dom f) so that cl(f + g)(x) = f(x) + (cl g)(x) for all
x ∈ int(dom f). To prove the non-trivial inequality cl(f + g)(x) ≤
(cl f)(x) + (cl g)(x) for x ∈ dom(cl f) ∩ dom(cl g), we choose
x0 ∈ int(dom f) ∩ dom(cl g) and denote xλ := λx0 + (1 − λ)x, 0 < λ <
1. Then xλ ∈ int(dom f) ∩ dom(cl g) and so

cl(f + g)(xλ) = f(xλ) + (cl g)(xλ) = (cl f)(xλ) + (cl g)(xλ).

But the functions (cl f) and (cl g) are convex and proper, and so

cl(f + g)(x) ≤ lim inf
λ↓0

cl(f + g)(xλ) = lim inf
λ↓0

((cl f)(xλ) + (cl g)(xλ))

≤ lim inf
λ↓0

(λ((cl f)(x0) + (cl g)(x0)) + (1 − λ)((cl f)(x) + (cl g)(x)))

= (cl f)(x) + (cl g)(x),

yielding the desired inequality. To prove the second statement, take
x ∈ X such that ∂(f + g)(x) �= ∅. Then, by taking into account the first
statement (and Exercise 62), (f + g)(x) = cl(f + g)(x) = (cl f)(x) +
(cl g)(x) ∈ R and ∂(f + g)(x) = ∂(cl(f + g))(x) = ∂((cl f) + (cl g))(x).
In particular, f(x), g(x), (cl f)(x), (cl g)(x) ∈ R and we obtain f(x) −
(cl f)(x) + g(x) − (cl g)(x) = 0. This implies that f(x) = (cl f)(x) and
g(x) = (cl g)(x). Moreover, since cl f ≤ f , the convex function cl f is
continuous at some point in dom(cl g), and Corollary 7.1.3 yields

∂(f + g)(x) = ∂((cl f) + (cl g))(x) = ∂(cl f)(x) + ∂(cl g)(x) = ∂f(x) + ∂g(x).
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Exercise 111: We start by proving that the set R+(epi(f ◦ A) −
(x, f(Ax))) is closed. We proceed as in the proof of Theorem 7.2.5 and
take nets (αi)i ⊂ R+ and (xi, λi)i ⊂ epi(f ◦ A) such that αi((xi, λi) −
(x, f(Ax))) → (u, μ) ∈ X × R. Then (Axi, λi) ∈ epi f and
αi((Axi, λi) − (Ax, f(Ax))) → (Au, μ), due to the continuity of A. But
αi((Axi, λi) − (Ax, f(Ax))) ∈ R+(epi f − (Ax, f(Ax))) and so, by the
current hypothesis, (Au, μ) ∈ R+(epi f − (Ax, f(Ax))). Let α ∈ R+

and (y, λ) ∈ epi f such that Au = α(y − Ax) and μ = α(λ − f(Ax)).
Next, if we take γ > 0 such that αγ < 1, then the convexity of f yields

(f ◦ A)(γu + x) = f(γα(y − Ax) + Ax) ≤ αγf(y) + (1 − γα)f(Ax)
≤ αγλ + (1 − γα)f(Ax) = f(Ax) + γμ,

and so (u, μ) ∈ γ−1(epi(f ◦ A) − (x, f(Ax))) ⊂ R+(epi(f ◦ A) −
(x, f(Ax))), showing that the set R+(epi(f ◦ A) − (x, f(Ax))) is closed.
Hence, the functions f ◦ A and g satisfy condition (ii) of Theorem
7.2.2, and we get ∂(g + f ◦ A)(x) = cl(∂g(x) + ∂(f ◦ A)(x)). More-
over, taking into account Theorem 7.2.3, the closedness of R+(epi f −
(Ax, f(Ax))) ensures that ∂(f ◦ A)(x) = cl(A∗∂f(Ax)). Consequently,
the conclusion comes by combining these two identities,

∂(g + f ◦ A)(x) = cl(∂g(x) + cl(A∗∂f(Ax))) = cl(∂g(x) + A∗∂f(Ax)).

Exercise 112: The inclusion “⊃” is obvious. Let δ > 0 be small
enough to have (ri(dom g) − x) ∩ dom σAδ

�= ∅. Observe that if we
define the function h : X → R as h(y) := σAδ

(y − x), y ∈ X, then by
(5.1), we have Aδ = ∂εσAδ

(θ) = ∂εh(x) for all ε > 0. Next, since the
family (Aε)ε>0 is non-decreasing, by applying consecutively Proposi-
tion 4.1.6(iii) and (4.15), we get

⋂

ε>0
cl (Aε + ∂εg(x)) ⊂

⋂

ε>0
cl (Aδ + ∂εg(x)) =

⋂

ε>0
cl (∂εh(x) + ∂εg(x))

⊂
⋂

ε>0
∂2ε(h + g)(x) = ∂(h + g)(x).

Now, Theorem 7.2.1(ii) gives rise to

⋂

ε>0
cl (Aε + ∂εg(x)) ⊂ ∂(h + g)(x) =

⋂

ε>0
cl (∂εh(x) + ∂g(x)) = cl (Aδ + ∂g(x)) .

Hence, since δ > 0 is arbitrarily small, we deduce that

⋂
ε>0 cl (Aε + ∂εg(x)) ⊂

⋂
δ>0 cl (Aδ + ∂g(x)) ,
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and we are done since the converse inclusion is obvious we are done.

Exercise 113: We represent by E the right-hand side set in (7.40),
and take x ∈ dom f ∩ dom g. For all t ∈ T , we have ∂εft(x) + ∂εg(x) ⊂
∂2ε(ft + g)(x). Moreover, for t ∈ Tε(x), we have ft ≤ f and ft(x) ≥
f(x) − ε, and this implies ∂2ε(ft + g)(x) ⊂ ∂3ε(f + g)(x). Therefore,
using (4.16) and (4.15),

E ⊂
⋂

ε>0, L∈F(x)

co {∂3ε(f + g)(x) + NL∩dom f∩dom g(x)}

⊂
⋂

ε>0, L∈F(x)

∂3ε(f + g + IL)(x) = ∂(f + g)(x),

and the inclusion “⊃” follows. To show the opposite inclusion “⊂”
we observe that f + g = supt∈T (ft + g). Then, since condition (5.10)
holds automatically in the current case, by Theorem 5.2.2 and making
use of formula (4.46), we get

∂ε(f + g)(x) = cl

⎛

⎜
⎝

⋃

ε1+ε2=ε
ε1,ε2≥0

∂ε1f(x) + ∂ε2g(x)

⎞

⎟
⎠ ⊂ cl (Aε + Bε) for all ε > 0,

where we denoted Aε := ∂εf(x) and Bε := ∂εg(x). So, denoting C :=
NL∩dom(f+g)(x),

∂(f + g)(x) =
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

∂ε(ft + g)(x) + C

}

⊂
⋂

ε>0, L∈F(x)

co

{
⋃

t∈Tε(x)

cl (Aε + Bε) + C

}

⊂
⋂

ε>0, L∈F(x)

co

(
⋃

t∈Tε(x)

Aε + Bε + C

)

.

Exercise 114: (i) Apply Theorem 7.3.2 with g ≡ 0.
(ii) Using (4.45) and the lower semicontinuity of the function

IR+(dom f−x), for all ε > 0 and L ∈ F(x), we obtain

NL∩dom f (x) = NL∩(R+(dom f−x))(θ)

⊂ cl
(
L⊥ + Nε

R+(dom f−x)(θ)
)

= cl
(
L⊥ + NR+(dom f−x)(θ)

)
.
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Thus, according to Theorem 7.3.2 (taking g ≡ 0),

∂f(x) ⊂
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + NL∩dom f (x)

}

⊂
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + cl
(
L⊥ + NR+(dom f−x)(θ)

)
}

⊂
⋂

ε>0
co

{
⋃

t∈Tε(x)

∂εft(x) + Ndom f (x) + L⊥
}

.

Thus, the inclusion “⊂” follows by intersecting over the L’s (Exercise
10(i)). The opposite inclusion in (7.41) is once again straightforward.
Assume now that ri(cone(dom f − x)) �= ∅. Take L ∈ F(x) such that
L ∩ ri(cone(dom f − x)) �= ∅. Then, since riL = L �= ∅, ri(cone(dom
f − x)) �= ∅, and the convex function (IL)|L and
(IR+(dom f−x))|aff(R+(dom f−x)) are continuous on L and ri(cone(dom f −
x)), respectively, Theorem 7.2.2(iii) yields

NL∩dom f (x) = NL∩(R+(dom f−x))(θ)

= ∂(IL + IR+(dom f−x))(θ) = cl
(
L⊥ + NR+(dom f−x)(θ)

)
.

Thus, the conclusion follows similarly as in the paragraph above using
Theorem 7.3.2.

(iii) Apply Corollary 7.3.5 with g = 0.

Exercise 115: Assume that cl (f + ID) = supt∈T (cl ft) holds on D.
Take x in cl(L ∩ D) for certain L ∈ F . Since L ∩ D ⊂ L, we pick x0 ∈
ri(L ∩ D). Then xλ := λx0 + (1 − λ)x ∈ L ∩ D ⊂ D for λ ∈ ]0, 1[ , and
so

cl (f + ID) (x) = lim
λ→0+

cl (f + ID) (xλ) = lim
λ→0+

sup
t∈T

(cl ft)(xλ) = sup
t∈T

(cl ft)(x).

9.7 Exercises of chapter 8

Exercise 116: If A(x) = ∅, then
⋃

t∈A(x)∂ft(x) = {θ} and the inclusion
trivially holds as F ⊂ C. Take x∗ ∈ NC(x) and t ∈ A(x). If ∂ft(x) =
∅, then obviously NC(x) + ∂ft(x) = ∅ ⊂ NF (x). Otherwise, take x∗

t ∈
∂ft(x), λt ≥ 0 and z ∈ F (⊂ C). Then

〈x∗ + λtx
∗
t , z − x〉 ≤ λt 〈x∗

t , z − x〉 ≤ λt(ft(z) − ft(x)) = λtft(z) ≤ 0,

that is, NC(x) + ∂ft(x) ⊆ NF (x). Hence,
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NC(x) + cone co

(
⋃

t∈A(x)

∂ft(x)

)

= cone co

(
⋃

t∈A(x)

(NC(x) + ∂ft(x))

)

⊆ NF (x).

Exercise 117: Take x ∈ F. If f̃(x) < 0, the continuity of f̃ together
with condition x ∈ int C entails x is an interior point of F. Then
NF (x) = {θ}, and (8.18) and (8.21) are both trivially satisfied. Finally,
if f̃(x) = 0, then T (x) = A(x) and once again LFM and BCQ are
equivalent.

Exercise 118: Observe that F =] − ∞, 0], for x = 0 we have T (0) =
T, and every finite subsystem has F as solution set. Despite this, we
have

NF (0) = [0, +∞[�= {0} = NC(0) + cone co

(
⋃

t∈T (0)

∂ft(0)

)

,

because ∂ft(0) = {0} for all t ∈ T. Thus, S is not LFM.

Exercise 119: (a) Observe that

cl(epi g∗ + cl K) = cl(epi g∗ + K) = epi g∗ + K ⊂ epi g∗ + cl K,

and epi g∗ + cl K is w∗-closed.
(b) If g is linear (and continuous), epi g∗ is a vertical half-line and

so, is locally compact. Moreover, (− epi g∗)∞ ∩ cl K = {(θ, 0)}, as a
consequence of (8.9), since (P) has feasible solutions. Then we apply
Theorem 2.1.8 to deduce that epi g∗ + cl K is w∗-closed.

(c) If g is continuous at some point of F, the result comes from
Proposition 4.1.20 and Lemma 8.1.2. In fact,

epi(g + IF )∗ = epi g∗ + epi I∗F = epi g∗ + epi σF = epi g∗ + cl K,

and epi g∗ + cl K is w∗-closed.

Exercise 120: See the bibliographical notes of chapter 8.

Exercise 121: According to Theorem 8.2.1, we have

x is optimal for (P) ⇔ ∂g(x) ∩ (−NF (x)) �= ∅ ⇔ θ ∈ ∂g(x) + NF (x).

Since S is assumed to be LFM at x, we obtain
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x is optimal for (P) ⇔ θ ∈ ∂g(x) + cone co

(
⋃

t∈A(x)

∂ft(x)

)

+ NC(x),

and we are done.

Exercise 122: If x∗ ∈ NF (x̄)�{θ}, where F is the feasible set of S,
then the point x̄ turns out to be a minimum of the problem

Min − 〈x∗, x〉
s.t. ft(x) ≤ 0, t ∈ T, x ∈ C.

Hence, arguing as in the proof of Theorem 8.2.3, we conclude the
existence of λ ∈ R

(T )
+ such that θ ∈ −x∗ +

∑
t∈supp λλt∂ft(x̄) + NC(x̄)

and λtft(x̄) = 0 for all t ∈ supp λ. Thus, supp λ ⊂ A(x̄) and

x∗ ∈ NC(x̄) + cone co

(
⋃

t∈A(x̄)

∂ft(x̄)

)

,

so that S is LFM at x̄.

Exercise 123: Let x ∈ F be a minimum of (P). Then v(0) = g(x),
and in the proof of Theorem 8.2.12, we established the existence of
λ̄ ∈ R

(T )
+ such that g(x) +

∑
t∈T λ̄tft(x) ≥ g(x) for all x ∈ C. It fol-

lows from this inequality (by letting x = x) that
∑

t∈T λ̄tft(x) = 0, and
hence L(x, λ̄) ≥ L(x, λ̄) = g(x) for all x ∈ C. In addition, for each λ ∈
R

(T )
+ , and since ft(x) ≤ 0, we have L(x, λ) = g(x) +

∑
t∈T λtft(x) ≤

g(x) = L(x, λ̄). Thus, (8.92) holds. Conversely, if there exists λ̄ ∈ R
(T )
+

satisfying (8.92), by letting λ = 0 in (8.92), we get g(x) ≤ g(x) +∑
t∈T λ̄tft(x) for all x ∈ C. Thus, if x ∈ F , then g(x) ≥ g(x) as∑
t∈T λ̄tft(x) ≤ 0. This means that x is a minimum of (P).
Finally, from the paragraph above, we deduce that v(P) = g(x) ≤

inf x∈CL(x, λ̄) ≤ −v(D), and we conclude that λ̄ is a maximizer of (D)
by the weak duality.

Exercise 124: It is obvious that (8.93) holds trivially (all the sets
are empty) when f = +∞; i.e., f∗ = −∞ and f∗∗ = +∞. If, alterna-
tively, f∗ �= −∞, the assumption dom f∗ �= ∅ gives rise to the existence
of x∗

0 ∈ Y such that f∗(x∗
0) ∈ R, and 〈·, x∗

0〉 − f∗(x∗
0) is a continuous

affine minorant of f (which is proper). Now two possibilities arise. The
first one corresponds to the case m = infX f = infX f∗∗ = −∞, where
(8.93) holds due to the convention on ε − argmin f. Exploring the
remaining case where f is bounded from below; i.e., m ∈ R, we prove
first the inclusion “⊂” in (8.93) under the assumption m = infX f =
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infX f∗∗ ∈ R. Then, for any ε > 0, x∗ ∈ dom f∗, u ∈ ε − argmin f and
z ∈ {x∗}− one has

〈x∗, u + z〉 − f∗(x∗) ≤ 〈x∗, z〉 + f(u) ≤ f(u) ≤ m + ε;

in other words, ε − argmin f + {x∗}− ⊆ [〈x∗, ·〉 − f∗(x∗) ≤ m + ε] .
Thus, since the set on the right hand side is closed and convex,

co
(
ε − argmin f + {x∗}−) ⊆ [〈·, x∗〉 − f∗(x∗) ≤ m + ε]

and taking the intersection over x∗ ∈ dom f∗, we obtain

⋂

x∗∈dom f∗
co
(
ε − argmin f + {x∗}−) ⊆

[

sup
x∗∈dom f∗

{〈·, x∗〉 − f∗(x∗)} ≤ m + ε

]

= [f∗∗ ≤ m + ε] ≡ ε − argmin f∗∗.

We finish this part of the proof by taking the intersection over ε > 0.
The converse inclusion “⊂” in (8.93) comes from (8.46) and the fact
that ε-argmin f + NL∩dom f∗(θ) ⊂ ε-argmin f + {x∗}−, for every x∗ ∈
dom f∗ and L ∈ FX∗ such that x∗ ∈ L.

Exercise 125: Taking into account (3.2), inequality (8.94) implies
that, for all x∗ ∈ X∗,

f∗(x∗) ≤ (a ‖·‖)∗(x∗) − b = a(σBX∗ )∗(
x∗

a
) − b

= IBX∗ (
x∗

a
) − b = IaBX∗ (x∗) − b,

showing that aBX∗ ⊂ dom f∗. Hence, f∗ is norm-continuous in the
interior of BX∗ . Then we apply Corollary 8.3.8.

Exercise 126: (ii) ⇒ (i) Assume that (ii) holds. Since σαBX∗ (x) =
α ‖x‖ for all x ∈ X, inequality (8.95) implies that f ≥ σx∗

0+αBX∗ + μ.
So,

f∗(x∗) ≤ (σx∗
0+αBX∗ + μ)∗ = Ix∗

0+αBX∗ (x∗) − μ

= −μ for all x∗ ∈ x∗
0 + αBX∗ ,

and Proposition 2.2.6 implies that f∗ is ‖·‖∗-continuous at x∗
0. In other

words, (i) follows:
(i) ⇒ (ii) If f∗ is ‖·‖∗-continuous at some x∗

0 ∈ X∗, then we find
some μ ∈ R and α > 0 such that 〈x∗, x〉 − f(x) ≤ f∗(x∗) ≤ −μ for all
x ∈ X and x∗ ∈ x∗

0 + αBX∗ . Thus, for all x ∈ X,

〈x∗
0, x〉 − f(x) + α ‖x‖ = 〈x∗

0, x〉 − f(x) + sup
x∗∈αBX∗

〈x∗, x〉 ≤ −μ,
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and (8.95) follows. This yields (ii).

Exercise 127: Consider the function f̃ : X → R∞ defined as f̃(x) :=
f(x) if x ∈ C, and f̃(x) := +∞ if not. We verify that f is lsc and
infX f = infC f ∈ R. Moreover, if M > 0 is such that C ⊂ MBX , we
get

f∗(x∗) = sup
x∈C

{〈x∗, x〉 − f(x)} ≤ sup
x∈C

‖x‖ ‖x∗‖ − inf
C

f ≤ M ‖x∗‖ − inf
C

f.

Hence, f∗ is norm-continuous on X∗, and we apply Corollary 8.3.9.

Exercise 128: Relation (8.81) reads

f∗ = inf
L∈F(x∗

0)

(
g∗ + Icl(L∩dom f∗)

)
+ c,

where x∗
0 ∈ dom f∗ (⊂ dom g∗, by (8.80)). Then, taking the conjugate

with respect to the pair ((X,TX), (X∗, σ(X∗, X))), the properness of
f∗ and Theorem 3.2.2 give rise to

cof = f∗∗ = sup
L∈F(x∗

0)

(
g∗ + Icl(L∩dom f∗)

)∗ − c.

Moreover, since x∗
0 ∈ cl(L ∩ dom f∗) ∩ dom g∗, Proposition 4.1.16

implies that

cof = sup
L∈F(x∗

0)

cl ((cog)�σL∩dom f∗) + c = sup
L∈FX∗

cl ((cog)�σL∩dom f∗) + c,

and we are done.

Exercise 129: We fix δ > 0 and denote the function in the right-
hand side by fδ. Then we easily verify that fδ ≤ f ; hence fδ ∈ Γ0(X)
and fδ ≤ cof. Next, given x ∈ X and ε ∈ (0, δ), we show that

∂εf(x) ⊂ ∂εfδ(x). (9.28)

Take x∗ ∈ ∂εf(x) and let α < fδ(x). Then there exist n ∈ N, (εi, xi, x
∗
i )

∈ R × X × X∗ with x∗
i ∈ ∂εi

f(xi), for i = 0, . . . , n, such that

f(x0) +
∑n−1

i=0 〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x − xn〉 −
∑n

i=0εi > α. (9.29)

Therefore, taking (xn+1, x
∗
n+1) := (x, x∗) in the graph of ∂εf and

εn+1 := ε, the definition of fδ implies that, for each y ∈ X,

fδ(y) ≥ f(x0) +
∑n

i=0〈x∗
i , xi+1 − xi〉 + 〈x∗, y − x〉 −

∑n+1
i=0 εi.
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So, (9.29) yields fδ(y) > α + 〈x∗, y − x〉 − ε for all α < fδ(x), and
we deduce fδ(y) ≥ fδ(x) + 〈x∗, y − x〉 − ε for all y ∈ X. This proves
that x∗ ∈ ∂εfδ(x), and so, (9.28) holds. Therefore, applying Corollary
8.4.8(iii), there exists c ∈ R such that cof = fδ + c, and we get the
coincidence of cof and fδ because

f(x0) = (cof) (x0) ≥ fδ(x0) ≥ f(x0) + sup
ε0≥0

(−ε0) = f(x0).

Exercise 130: If g denotes the right-hand side in (8.96), then
as in Exercise 129, we show that g ∈ Γ0(X), g ≤ f, g(x0) = f(x0),
and ∂f ⊂ ∂g. Thus, by Theorem 8.4.3, there exists c ∈ R such that
f∗∗ = g∗∗�σdom f∗ + c. Moreover, since g ≤ f , we have f∗ ≤ g∗ and
dom g∗ ⊂ dom f∗. Thus, taking the conjugates in the last relation
above and using Theorem 3.2.2, we obtain f∗ = g∗ + Idom f∗ − c =
g∗ − c. Consequently, again by taking the conjugates and using Theo-
rem 3.2.2, we get cof = g + c, and the equality cof = g follows because
c = (cof)(x0) − g(x0) = f(x0) − g(x0) = 0.

Exercise 131: (iii) ⇒ (ii) Assume (iii) and let x ∈ X such that
∂(f1 + f2)(x) �= ∅, implying that ∂(f1 + f2)(x) = ∂(co(f1 + f2))(x) =
∂((cof1) +
(cof2))(x) and (cof1) (x) + (cof2) (x) ∈ R. Hence, cof1,
cof2 ∈ Γ0(X), and Proposition 4.1.16 yields

∂(f1 + f2)(x) = ∂((cof1) + (cof2))(x) =
⋂

ε>0

cl (∂ε (cof1) (x) + ∂ε (cof2) (x)) . (9.30)

Also, by Exercise 62 and assumption (iii), we have f1(x) + f2(x)
= (co(f1 + f2)) (x) = (cof1) (x) + (cof2) (x), and so f1(x) = (cof1) (x),
f2(x) = (cof2) (x), ∂ (cof1) (x) = ∂f1(x), and ∂ (cof2) (x) = ∂f2(x).
Thus, the conclusion of (ii) follows by (9.30).

(i) ⇒ (iii) We fix ε ∈ ]0, δ], α > 0 and x ∈ X, and denote f̃1 := cof1,
f̃2 := cof2. Then, by (i) and using Proposition 4.1.6,

∂ε(f1 + f2)(x) = cl

⎛
⎜⎝ ⋃

ε1+ε2≤ε+α
ε1,ε2≥0

∂ε1f1(x) + ∂ε2f2(x)

⎞
⎟⎠

⊂ cl

⎛
⎜⎝ ⋃

ε1+ε2≤ε+α
ε1,ε2≥0

∂ε1 f̃1(x) + ∂ε2 f̃2(x)

⎞
⎟⎠ ⊂ ∂ε+α(f̃1 + f̃2)(x),

and taking the intersection over α > 0, we get ∂ε(f1 + f2)(x) ⊂ ∂ε(f̃1 +
f̃2)(x) for all x ∈ X and ε ∈ ]0, δ]. Since f̃1 + f̃2 ≤ f1 + f2, Corollary
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8.4.8 (iii) applies and yields some c ∈ R such that co(f1 + f2) = f̃1 +
f̃2 + c. Observe that c ≥ 0 because f̃1 + f̃2 ≤ co(f1 + f2). Moreover,
since dom(f1 + f2)∗ �= ∅ by the current assumption, for each γ ∈ ]0, δ

2 [
there is some (xγ , x∗) ∈ X × X∗ that satisfies x∗ ∈ ∂γ(f1 + f2)(xγ).
Hence, using (ii),

x∗ ∈ ∂γ(f1 + f2)(xγ) ⊂ cl

⎛

⎜
⎝

⋃

ε1+ε2≤2γ
ε1,ε2≥0

∂ε1f1(xγ) + ∂ε2f2(xγ)

⎞

⎟
⎠

⊂ cl (∂2γf1(xγ) + ∂2γf2(xγ)) ,

and we deduce that ∂2γf1(xγ) �= ∅ and ∂2γf2(xγ) �= ∅. Then, by Exer-
cise 62, we get f1(xγ) ≥ (cof1)(xγ) ≥ f1(xγ) − 2γ and f2(xγ) ≥ (cof2)
(xγ) ≥ f2(xγ) − 2γ, so that

c = co(f1 + f2)(xγ) − f̃1(xγ) − f̃2(xγ) ≤ (f1 + f2)(xγ)
− f1(xγ) + 2γ − f2(xγ) + 2γ = 4γ.

Therefore, since γ ∈ ]0, δ
2 [ is arbitrary, we infer that c ≤ 0; that is,

c = 0 and co(f1 + f2) = f̃1 + f̃2, as required in statement (iii).
(ii) ⇒ (iii) when X is Banach with the RNP, f, g are lsc, and

int(dom(f + g)∗) �= ∅. Given x ∈ X, (ii) implies that

∂(f1 + f2)(x) =
⋂

ε>0
cl (∂εf1(x) + ∂εf2(x)) ⊂

⋂

ε>0
cl
(
∂εf̃1(x) + ∂εf̃2(x)

)

⊂
⋂

ε>0
∂ε(f̃1 + f̃2)(x) = ∂(f̃1 + f̃2)(x).

Thus, by Remark 20, there exists some c ∈ R such that (f1 + f2)∗∗ =
f∗∗
1 + f∗∗

2 + c. Moreover, since int(dom(f + g)∗) �= ∅ and X is Banach
with the RNP, the w∗-lsc function (f + g)∗ is (norm-) continuous
on int(dom(f + g)∗), and so there exists a (norm-) dense set D of
int(dom(f + g)∗) such that (f + g)∗ is Fréchet-differentiable on D.
Take x∗

0 ∈ D. Then, by Theorem 8.3.7(i), we have that ∂(f + g)∗(x∗
0) =

{((f + g)∗)′(x∗
0)} = (∂(f + g))−1(x∗

0) =: x0 ∈ X. In other words, using
(ii),

x∗
0 ∈ ∂(f + g)(x0) =

⋂

ε>0
cl (∂εf1(x0) + ∂εf2(x0)) .

In particular, ∂(f + g)(x0), ∂εf1(x0), and ∂εf2(x0) are non-empty for
all ε > 0, and we deduce by Exercise 62 that (co(f + g))(x0) = (f +
g)(x0), f̃1(x0) = f1(x0) and f̃2(x0) = f2(x0). So, by Theorem 3.2.2,
we infer that c = (f1 + f2)∗∗(x0) − f∗∗

1 (x0) − f∗∗
2 (x0) = (f + g)(x0) −

f1(x0) − f2(x0) = 0.



Glossary of notations

R
∗
+ := ]0, +∞[

R+ := [0, +∞[

R := R ∪ {±∞}
R∞ := R ∪ {+∞}
R

n, n-dimensional Euclidean space
R

n
+, nonnegative orthant in R

n

0n, zero-vector in R
n

R
T := {λ : T → R}

suppλ := {t ∈ T : λt �= 0}, λ ∈ R
T

R
(T ) := {λ ∈ R

T : suppλ finite}
R

(T )
+ := {λ ∈ R

(T ) : λt ≥ 0 ∀t ∈ T}
N, natural numbers

|T |, cardinality of T

θ, zero, or origin, in X (also in X∗)
TX , initial topology in X

NX ,

{
convex, closed, and balanced
neighborhoods of θ in X

�p, p ≥ 1, sequences (xk)∞
k=1 s.t.

∑∞
k=1 |xk|p < +∞
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�∞, sequences (xk)∞
k=1 s.t. supk≥1 |xk| < +∞

c0, subspace of �∞ s.t. xk → 0

c00 := R
(N)

C(T ), continuous functions in R
T

C(T, [0, 1]), continuous functions from T to [0, 1]

C1(T ), continuously differentiable functions in R
T

�∞(T ), bounded functions in R
T

BX(x, r), closed ball of radius r > 0 centered at x

BX , closed unit ball

X∗ and X∗∗, (topological) dual and bidual spaces of X

Γ0(X), proper convex and lsc functions on X

A + B := {a + b : a ∈ A, b ∈ B}
ΛA := {λa : λ ∈ Λ, a ∈ A}, Λ ⊂ R

coA, convex hull of A

coneA, conic hull of A

affA, affine hull of A

spanA, linear hull of A

dim A, dimension of affA

linA, lineality space of A

F(x), finite-dimensional linear subspaces containing x

F := FX := F(θ)

A◦, polar set of A

A−, (negative) dual cone of A

A⊥, orthogonal subspace of A

Nε
A(x), ε-normal set to A at x

NA(x), normal cone to A at x

A∞, recession cone of A

intA, interior of A

clA (or A), closure of A
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bdA, boundary of A

coA := cl(coA)

coneA := cl(coneA)
riA, relative interior of A

domf, effective domain of f

epif, epigraph of f

episf, strict epigraph of f

gphf, graph of f

[f ≤ α], level set of f

clf, closed hull of f

cof, convex hull of f

cof, closed convex hull of f

f�g, inf-convolution of f and g

f ◦ g, composition of f and g

f∗, Fenchel conjugate of f

f∗∗, biconjugate of f

σA, support function of A

ρA := σA∪(−A)

IA, indicator function of A

pA, Minkowski gauge of A

dA, distance to A

πA, projection mapping on A

〈·, ·〉, duality pairing in X∗ × X

‖·‖ , norm

A∗ : Y ∗ → X∗, adjoint operator of A : X → Y

∂εf, ε-subdifferential of f

∂f, subdifferential off
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[57] R. Correa, A. Hantoute, and M.A. López, Biconjugate Moreau theorem revisited:

conjugacy analysis and minimax theorem, submitted, 2023.
[58] R. Correa, A. Hantoute, and M.A. López, Conjugacy based approach to subdiffer-

ential calculus, submitted, 2023.
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York, 2011.
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[95] M.A. Goberna, M.A. López, and M.I. Todorov, Stability theory for linear inequality
systems, SIAM J. Matrix Anal. Appl. 17 (1996) 730–743.
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[101] A. Hantoute and M.A. López, Characterization of total ill-posedness in linear semi-
infinite optimization, J. Comput. Appl. Math.217 (2008) 350–364.
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[108] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-
rithms I, II, Springer-Verlarg, Berlin, 1993.
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[141] M.A. López and M. Volle, A formula for the set of optimal solutions of a relaxed
minimization problem. Applications to subdifferential calculus, J. Convex Anal. 17
(2010) 1057–1075.
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A

absorbing, 21

accesibility lemma, 24

active constraint, 314

adjoint mapping, 67

affine hull, 21

Alaoglu–Banach–Bourbaki theorem, 30

algebraic interior, 24

approximate KKT conditions, 317

approximate subdifferential, 98

approximately compact, 354

Asplund function, 355

Asplund space, 35

B

Baire category theorem, 17

Baire space, 17

balanced, 21

ball, 31

Banach space, 31

BCQ constraint qualification, 317

biconjugate, 63

bidual space, 32

bipolar theorem, 80

boundary, 17

bounded set, 25

C

canonical projections, 20

canonical simplex, 20

Carathéodory theorem, 22

Cartesian product, 17

Cauchy sequence, 17

Cauchy–Schwarz’s inequality, 31

characteristic cone, 309

Chebychev set, 354

closed convex hull of a function, 39

closed for convex combinations, 177

closed hull of a function, 39

closed set, 16

closed unit ball, 31

closedness criterion, 177

closure, 17

cluster point, 18

compact, 17

compatibe dual pair, 27

compatible (or consistent) topologies, 27

complete metric space, 17

completely regular, 242

conic hull, 21

consequence, 310

consistent system, 308

constraint system, 308

continuous, 18

convergence, 18

convex, 21

convex function, 37

convex hull, 21

convex hull of a function, 39

convex optimization problem, 308

convex relaxed problem, 330

cyclically-monotone, 34
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D

dc (difference of convex) optimization,
141

dense, 17

Dieudonné theorem, 26

dimension, 22

directed set, 15

directional derivative, 34

distance function, 50

dual cone, 27

dual norm, 31

dual pair, 22

dual paring, 22

dual problem, 138

E

e-cyclically and cyclically monotone, 99

Eberlein–Smulian, 32

effective domain (or domain), 36

Ekeland variational principle, 147

epi-pointed, 343

epigraph, 36

epigraphical sum, 49

epsilon-directional derivative, 96

epsilon-Fermat rule, 97

epsilon-minima, 97

epsilon-normal set, 27

epsilon-subdifferentiable, 98

epsilon-subgradient, 97

equivalence class, 16

equivalence relation, 16

evaluation function, 242

eventually, 15

exact inf-convolution, 49

exact post-composition, 50

exposed point, 35

extended active index set, 245

extended e-active index set, 245

F

Farkas theorem, 80

Farkas–Minkowski systems, 312

feasible set, 308

Fenchel conjugate, 60

Fenchel duality, 131

Fenchel inequality, 62

Fréchet-derivative, 35

Fréchet-differentiable, 34

frequently, 15

Fritz-John conditions, 324

fuzzy KKT conditions, 320

G

Gâteaux-derivative, 34

Gâteaux-differentiable, 34

G delta set, 35

generalized Farkas lemma, 310

Goldstein theorem, 33

graph, 36

H

Hahn–Banach extension theorem, 25

Hausdorff, 17

Hilbert space, 32

homoemorphism, 18

I

indicator function, 46

inf-compact, 19

inf-convolution, 49

inner product, 31

integration criteria, 150

interior, 17

J

James theorem, 33

Jensen’s inequality, 37

K

Kadec–Klee property, 32

KKT conditions, 318

Krein–Šmulian theorem, 32

L

Lagrange duality, 131

Lagrangian dual problem, 136

Lagrangian function, 136

Lebesgue integration, 150

left-derivative, 34

lineality space, 25

linear hull (or span), 21

linear isometry, 33

linear isomorphism, 31

linear semi-infinite problem, 308

Lipschitz continuous (or Lipschitz), 17

local Farkas–Minkowski property, 314

locally compact, 18

locally convex space, 26

locally Lipschitz, 17

lower semicontinuous (or lsc), 19
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M
Mackey theorem, 33

Mackey topology, 29
marginal value function, 52
maximally cyclically-monotone, 34
maximally monotone, 34
Mazur theorem, 32, 396
metric space, 17
minimax theorem, 83
Minkowski gauge, 30
Minkowski sum, 21
monotone operator, 33
Moreau theorem, 68
Moreau–Yosida approximation, 50

N
neighborhood, 16
neighborhood base, 16
net, 15
norm, 28
normal cone, 27
normed space, 31

O
objective function, 308
one-point compact extension, 250
open set, 16
orthogonal subspace (or annihilator), 27

P
partial order, 16
perspective function, 66
perturbed dual problem, 138
perturbed optimal value functions, 138
perturbed primal problem, 138
polar set, 27
positively homogeneous, 38
post-composition with linear mappings,

50
primal problem, 138
product space, 242
projection, 50, 52
proper function, 37
properly separated, 25
Pshenichnyi–Rockafellar theorem, 317

Q
quasi-convex functions, 38
quasi-relative interior, 128

quotient canonical projection, 16

quotient set, 16

quotient topological space, 17

R

Radon–Nikodym property, 35

recession cone, 25

recession function, 51

reflexive Banach space, 33

relative (or induced) topology, 16

relative interior, 23

Riesz representation theorem, 35

right-derivative, 34

S

saturated family, 30

scalar multiple, 21

scalar product, 21

selection, 103

semi-infinite convex optimization prob-
lem, 323

semiballs, 28

seminorm, 28

separable, 17

separated, 17

sequentially closed, 18

sequentially compact, 18

sequentially lsc, 19

sign function, 18

Singer–Toland duality, 140

Slater condition, 137

solvable problem, 308

star product, 66

Stegall variational principle, 150

Stone–Cech compactification, 242

strict epigraph, 36

strong CHIP, 324

strong duality, 139

strong minimum, 150

strong separation, 26

strong Slater point, 321

strong Slater qualification condition, 321

strong topology, 29

strongly exposed points, 35

subadditive, 38

subdifferential, 98

subgradient, 98

sublevel sets, 19

sublinear, 38

subnet, 15

support function, 47

support of a function, 20



444 INDEX

T
topological dual, 22

topological space, 16
topological vector space, 22
topology, 16
Tychonoff, 242
Tychonoff theorem, 20

U
unit sphere, 31
upper and lower limits, 19

W
w*–Asplund, 35

weak duality, 138
weak projection, 354
weak topology, 28
weak*-topology, 28
Weierstrass theorem, 19

Z
zero duality gap, 139
zero-neighborhoods, 26
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